WorldWideScience

Sample records for colorimetric sensor scaffolds

  1. Novel colorimetric sensor for oral malodour

    Energy Technology Data Exchange (ETDEWEB)

    Alagirisamy, Nethaji; Hardas, Sarita S. [Hindustan Unilever Research Center, 64 Main Road, Whitefield, Bangalore 560066 (India); Jayaraman, Sujatha, E-mail: sujatha.jayaraman@unilever.com [Hindustan Unilever Research Center, 64 Main Road, Whitefield, Bangalore 560066 (India)

    2010-02-19

    Volatile sulphur compounds are the primary constituents of oral malodour. Quantitative tools for the detection of oral malodour are beneficial to evaluate the intensity of malodour, analyse its causes and monitor the effectiveness of customized treatments. We have developed an objective, cost effective, do-it-yourself colorimetric sensor for oral malodour quantification. The sensor consisted of a sensing solution, a gas sampling unit for collecting a known volume of mouth air and a photometric detector. The sensing solution was iodine and the depletion of iodine on reaction with hydrogen sulphide was detected colorimetrically using starch. The detection limit of the sensor is 0.05 {mu}g L{sup -1} of hydrogen sulphide, which is fit-for-purpose for oral malodour detection in healthy subjects as well as halitosis patients. Volatile sulphur compounds in mouth air were quantified in healthy human volunteers using this portable sensor and the detected levels were in the range of 0.2-0.4 {mu}g L{sup -1}. There was a good correlation between the VSC levels detected by the colorimetric sensor and halimeter (R{sup 2} = 0.934). The developed sensor can be easily fabricated in the laboratory, and it shows high potential to be used as a clinical evaluation tool for oral malodour assessments.

  2. Novel colorimetric sensor for oral malodour

    International Nuclear Information System (INIS)

    Alagirisamy, Nethaji; Hardas, Sarita S.; Jayaraman, Sujatha

    2010-01-01

    Volatile sulphur compounds are the primary constituents of oral malodour. Quantitative tools for the detection of oral malodour are beneficial to evaluate the intensity of malodour, analyse its causes and monitor the effectiveness of customized treatments. We have developed an objective, cost effective, do-it-yourself colorimetric sensor for oral malodour quantification. The sensor consisted of a sensing solution, a gas sampling unit for collecting a known volume of mouth air and a photometric detector. The sensing solution was iodine and the depletion of iodine on reaction with hydrogen sulphide was detected colorimetrically using starch. The detection limit of the sensor is 0.05 μg L -1 of hydrogen sulphide, which is fit-for-purpose for oral malodour detection in healthy subjects as well as halitosis patients. Volatile sulphur compounds in mouth air were quantified in healthy human volunteers using this portable sensor and the detected levels were in the range of 0.2-0.4 μg L -1 . There was a good correlation between the VSC levels detected by the colorimetric sensor and halimeter (R 2 = 0.934). The developed sensor can be easily fabricated in the laboratory, and it shows high potential to be used as a clinical evaluation tool for oral malodour assessments.

  3. Combined Colorimetric and Gravimetric CMUT Sensor for Detection of Phenylacetone

    DEFF Research Database (Denmark)

    Mølgaard, Mathias Johannes Grøndahl; Laustsen, Milan; Thygesen, Ida Lysgaard

    2017-01-01

    The detection of phenylacetone is of interest as it is a common precursor for the synthesis of (meth)amphetamine. Resonant gravimetric sensors can be used to detect the mass and hereby the concentration of a gas while colorimetric arrays typically have an exceptional selectivity to the target...... analyte if the right colorimetric dyes are chosen. We present a sensor system consisting of a Capacitive Micromachined Ultrasonic Transducer (CMUT) and a colorimetric array for detection of phenylacetone. The CMUT is used as a resonant gravimetric gas sensor where the resonance frequency shift due to mass...

  4. Achromatic-chromatic colorimetric sensors for on-off type detection of analytes.

    Science.gov (United States)

    Heo, Jun Hyuk; Cho, Hui Hun; Lee, Jin Woong; Lee, Jung Heon

    2014-12-21

    We report the development of achromatic colorimetric sensors; sensors changing their colors from achromatic black to other chromatic colors. An achromatic colorimetric sensor was prepared by mixing a general colorimetric indicator, whose color changes between chromatic colors, and a complementary colored dye with no reaction to the targeted analyte. As the color of an achromatic colorimetric sensor changes from black to a chromatic color, the color change could be much easily recognized than general colorimetric sensors with naked eyes. More importantly, the achromatic colorimetric sensors enable on-off type recognition of the presence of analytes, which have not been achieved from most colorimetric sensors. In addition, the color changes from some achromatic colorimetric sensors (achromatic Eriochrome Black T and achromatic Benedict's solution) could be recognized with naked eyes at much lower concentration ranges than normal chromatic colorimetric sensors. These results provide new opportunities in the use of colorimetric sensors for diverse applications, such as harsh industrial, environmental, and biological detection.

  5. Colorimetric Sensor Array for White Wine Tasting

    Directory of Open Access Journals (Sweden)

    Soo Chung

    2015-07-01

    Full Text Available A colorimetric sensor array was developed to characterize and quantify the taste of white wines. A charge-coupled device (CCD camera captured images of the sensor array from 23 different white wine samples, and the change in the R, G, B color components from the control were analyzed by principal component analysis. Additionally, high performance liquid chromatography (HPLC was used to analyze the chemical components of each wine sample responsible for its taste. A two-dimensional score plot was created with 23 data points. It revealed clusters created from the same type of grape, and trends of sweetness, sourness, and astringency were mapped. An artificial neural network model was developed to predict the degree of sweetness, sourness, and astringency of the white wines. The coefficients of determination (R2 for the HPLC results and the sweetness, sourness, and astringency were 0.96, 0.95, and 0.83, respectively. This research could provide a simple and low-cost but sensitive taste prediction system, and, by helping consumer selection, will be able to have a positive effect on the wine industry.

  6. Colorimetric Sensor Array for White Wine Tasting.

    Science.gov (United States)

    Chung, Soo; Park, Tu San; Park, Soo Hyun; Kim, Joon Yong; Park, Seongmin; Son, Daesik; Bae, Young Min; Cho, Seong In

    2015-07-24

    A colorimetric sensor array was developed to characterize and quantify the taste of white wines. A charge-coupled device (CCD) camera captured images of the sensor array from 23 different white wine samples, and the change in the R, G, B color components from the control were analyzed by principal component analysis. Additionally, high performance liquid chromatography (HPLC) was used to analyze the chemical components of each wine sample responsible for its taste. A two-dimensional score plot was created with 23 data points. It revealed clusters created from the same type of grape, and trends of sweetness, sourness, and astringency were mapped. An artificial neural network model was developed to predict the degree of sweetness, sourness, and astringency of the white wines. The coefficients of determination (R2) for the HPLC results and the sweetness, sourness, and astringency were 0.96, 0.95, and 0.83, respectively. This research could provide a simple and low-cost but sensitive taste prediction system, and, by helping consumer selection, will be able to have a positive effect on the wine industry.

  7. Capillarity-based preparation system for optical colorimetric sensor arrays.

    Science.gov (United States)

    Luo, Xiao-Gang; Yi, Xin; Bu, Xiang-Nan; Hou, Chang-Jun; Huo, Dan-Qun; Yang, Mei; Fa, Huan-Bao; Lei, Jin-Can

    2017-03-01

    In recent years, optical colorimetric sensor arrays have demonstrated beneficial features, including rapid response, high selectivity, and high specificity; as a result, it has been extensively applied in food inspection and chemical studies, among other fields. There are instruments in the current market available for the preparation of an optical colorimetric sensor array, but it lacks the corresponding research of the preparation mechanism. Therefore, in connection with the main features of this kind of sensor array such as consistency, based on the preparation method of contact spotting, combined with a capillary fluid model, Washburn equation, Laplace equation, etc., this paper develops a diffusion model of an optical colorimetric sensor array during its preparation and sets up an optical colorimetric sensor array preparation system based on this diffusion model. Finally, this paper compares and evaluates the sensor arrays prepared by the system and prepared manually in three aspects such as the quality of array point, response of array, and response result, and the results show that the performance index of the sensor array prepared by a system under this diffusion model is better than that of the sensor array of manual spotting, which meets the needs of the experiment.

  8. A colorimetric tetrathiafulvalene-calix 4 pyrrole anion sensor

    DEFF Research Database (Denmark)

    Nielsen, K. A.

    2012-01-01

    The interaction and colorimetric sensing properties of a tetrathiafulvalene substituted calix[4]pyrrole sensor with anions were investigated using H-1 NMR and absorption spectroscopic techniques. Visual color changes were observed upon addition of different anions (Cl-, Br-, CN-, and Ac......O-) to a solution of the sensor. (C) 2012 Elsevier Ltd. All rights reserved....

  9. Photonic Crystal Structures with Tunable Structure Color as Colorimetric Sensors

    Science.gov (United States)

    Wang, Hui; Zhang, Ke-Qin

    2013-01-01

    Colorimetric sensing, which transduces environmental changes into visible color changes, provides a simple yet powerful detection mechanism that is well-suited to the development of low-cost and low-power sensors. A new approach in colorimetric sensing exploits the structural color of photonic crystals (PCs) to create environmentally-influenced color-changeable materials. PCs are composed of periodic dielectrics or metallo-dielectric nanostructures that affect the propagation of electromagnetic waves (EM) by defining the allowed and forbidden photonic bands. Simultaneously, an amazing variety of naturally occurring biological systems exhibit iridescent color due to the presence of PC structures throughout multi-dimensional space. In particular, some kinds of the structural colors in living organisms can be reversibly changed in reaction to external stimuli. Based on the lessons learned from natural photonic structures, some specific examples of PCs-based colorimetric sensors are presented in detail to demonstrate their unprecedented potential in practical applications, such as the detections of temperature, pH, ionic species, solvents, vapor, humidity, pressure and biomolecules. The combination of the nanofabrication technique, useful design methodologies inspired by biological systems and colorimetric sensing will lead to substantial developments in low-cost, miniaturized and widely deployable optical sensors. PMID:23539027

  10. Photonic Crystal Structures with Tunable Structure Color as Colorimetric Sensors

    Directory of Open Access Journals (Sweden)

    Ke-Qin Zhang

    2013-03-01

    Full Text Available Colorimetric sensing, which transduces environmental changes into visible color changes, provides a simple yet powerful detection mechanism that is well-suited to the development of low-cost and low-power sensors. A new approach in colorimetric sensing exploits the structural color of photonic crystals (PCs to create environmentally-influenced color-changeable materials. PCs are composed of periodic dielectrics or metallo-dielectric nanostructures that affect the propagation of electromagnetic waves (EM by defining the allowed and forbidden photonic bands. Simultaneously, an amazing variety of naturally occurring biological systems exhibit iridescent color due to the presence of PC structures throughout multi-dimensional space. In particular, some kinds of the structural colors in living organisms can be reversibly changed in reaction to external stimuli. Based on the lessons learned from natural photonic structures, some specific examples of PCs-based colorimetric sensors are presented in detail to demonstrate their unprecedented potential in practical applications, such as the detections of temperature, pH, ionic species, solvents, vapor, humidity, pressure and biomolecules. The combination of the nanofabrication technique, useful design methodologies inspired by biological systems and colorimetric sensing will lead to substantial developments in low-cost, miniaturized and widely deployable optical sensors.

  11. Haussdorff and hellinger for colorimetric sensor array classification

    DEFF Research Database (Denmark)

    Alstrøm, Tommy Sonne; Jensen, Bjørn Sand; Schmidt, Mikkel Nørgaard

    2012-01-01

    Development of sensors and systems for detection of chemical compounds is an important challenge with applications in areas such as anti-terrorism, demining, and environmental monitoring. A newly developed colorimetric sensor array is able to detect explosives and volatile organic compounds......; however, each sensor reading consists of hundreds of pixel values, and methods for combining these readings from multiple sensors must be developed to make a classification system. In this work we examine two distance based classification methods, K-Nearest Neighbor (KNN) and Gaussian process (GP......) classification, which both rely on a suitable distance metric. We evaluate a range of different distance measures and propose a method for sensor fusion in the GP classifier. Our results indicate that the best choice of distance measure depends on the sensor and the chemical of interest....

  12. Virtual colorimetric sensor array: single ionic liquid for solvent discrimination.

    Science.gov (United States)

    Galpothdeniya, Waduge Indika S; Regmi, Bishnu P; McCarter, Kevin S; de Rooy, Sergio L; Siraj, Noureen; Warner, Isiah M

    2015-04-21

    There is a continuing need to develop high-performance sensors for monitoring organic solvents, primarily due to the environmental impact of such compounds. In this regard, colorimetric sensors have been a subject of intense research for such applications. Herein, we report a unique virtual colorimetric sensor array based on a single ionic liquid (IL) for accurate detection and identification of similar organic solvents and mixtures of such solvents. In this study, we employ eight alcohols and seven binary mixtures of ethanol and methanol as analytes to provide a stringent test for assessing the capabilities of this array. The UV-visible spectra of alcoholic solutions of the IL used in this study show two absorption bands. Interestingly, the ratio of absorbance for these two bands is found to be extremely sensitive to alcohol polarity. A virtual sensor array is created by using four different concentrations of IL sensor, which allowed identification of these analytes with 96.4-100% accuracy. Overall, this virtual sensor array is found to be very promising for discrimination of closely related organic solvents.

  13. Multi-colorimetric sensor array for detection of illegal materials

    DEFF Research Database (Denmark)

    Kostesha, Natalie; Boisen, Anja; Jakobsen, Mogens Havsteen

    2012-01-01

    The detection of low pressure illegal compounds is an important analytical problem which requires reliable, selective and sensitive detection methods which provide the highest level of confidence in the result. Therefore, to contribute in the successful development of the recognition technology...... and signal processing enhancements to sensing methods, recognition ability, data acquisition time and data processing algorithms are necessary. In this research we work towards the development of a rapid, easy in use, highly sensitive, specific (minimal false positives) sensor based on a colorimetric sensing...

  14. Plasmonic colorimetric sensors based on etching and growth of noble metal nanoparticles: Strategies and applications.

    Science.gov (United States)

    Zhang, Zhiyang; Wang, Han; Chen, Zhaopeng; Wang, Xiaoyan; Choo, Jaebum; Chen, Lingxin

    2018-08-30

    Plasmonic colorimetric sensors have emerged as a powerful tool in chemical and biological sensing applications due to the localized surface plasmon resonance (LSPR) extinction in the visible range. Among the plasmonic sensors, the most famous sensing mode is the "aggregation" plasmonic colorimetric sensor which is based on plasmon coupling due to nanoparticle aggregation. Herein, this review focuses on the newly-developing plasmonic colorimetric sensing mode - the etching or the growth of metal nanoparticles induces plasmon changes, namely, "non-aggregation" plasmonic colorimetric sensor. This type of sensors has attracted increasing interest because of their exciting properties of high sensitivity, multi-color changes, and applicability to make a test strip. Of particular interest, the test strip by immobilization of nanoparticles on the substrate can avoid the influence of nanoparticle auto-aggregation and increase the simplicity in storage and use. Although there are many excellent reviews available that describe the advance of plasmonic sensors, limited attention has been paid to the plasmonic colorimetric sensors based on etching or growth of metal nanoparticles. This review highlights recent progress on strategies and application of "non-aggregation" plasmonic colorimetric sensors. We also provide some personal insights into current challenges associated with "non-aggregation" plasmonic colorimetric sensors and propose future research directions. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Feature extraction using distribution representation for colorimetric sensor arrays used as explosives detectors

    DEFF Research Database (Denmark)

    Alstrøm, Tommy Sonne; Raich, Raviv; Kostesha, Natalie

    2012-01-01

    is required. We present a new approach of extracting features from a colorimetric sensor array based on a color distribution representation. For each sensor in the array, we construct a K-nearest neighbor classifier based on the Hellinger distances between color distribution of a test compound and the color......We present a colorimetric sensor array which is able to detect explosives such as DNT, TNT, HMX, RDX and TATP and identifying volatile organic compounds in the presence of water vapor in air. To analyze colorimetric sensors with statistical methods, a suitable representation of sensory readings...

  16. Smartphone-Based VOC Sensor Using Colorimetric Polydiacetylenes.

    Science.gov (United States)

    Park, Dong-Hoon; Heo, Jung-Moo; Jeong, Woomin; Yoo, Young Hyuk; Park, Bum Jun; Kim, Jong-Man

    2018-02-07

    Owing to a unique colorimetric (typically blue-to-red) feature upon environmental stimulation, polydiacetylenes (PDAs) have been actively employed in chemosensor systems. We developed a highly accurate and simple volatile organic compound (VOC) sensor system that can be operated using a conventional smartphone. The procedure begins with forming an array of four different PDAs on conventional paper using inkjet printing of four corresponding diacetylenes followed by photopolymerization. A database of color changes (i.e., red and hue values) is then constructed on the basis of different solvatochromic responses of the 4 PDAs to 11 organic solvents. Exposure of the PDA array to an unknown solvent promotes color changes, which are imaged using a smartphone camera and analyzed using the app. A comparison of the color changes to the database promoted by the 11 solvents enables the smartphone app to identify the unknown solvent with 100% accuracy. Additionally, it was demonstrated that the PDA array sensor was sufficiently sensitive to accurately detect the 11 VOC gases.

  17. Development and validation of a colorimetric sensor array for fish spoilage monitoring

    DEFF Research Database (Denmark)

    Morsy, Mohamed K.; Zor, Kinga; Kostesha, Natalie

    2016-01-01

    their color changes in response to compounds present in fresh products (hexanal, 1-octane-3-ol) used as negative controls. The colorimetric sensor array was used to follow fish spoilage over time at room temperature for up to 24 h as well as at 4 °C for 9 days. Additionally, fish decay was monitored using......Given the need for non-destructive methods and sensors for food spoilage monitoring, we have evaluated sixteen chemo-sensitive compounds incorporated in an array for colorimetric detection of typical spoilage compounds (trimethylamine, dimethylamine, cadaverine, putrescine) and characterized...

  18. A colorimetric sensor array for identification of toxic gases below permissible exposure limits†

    OpenAIRE

    Feng, Liang; Musto, Christopher J.; Kemling, Jonathan W.; Lim, Sung H.; Suslick, Kenneth S.

    2010-01-01

    A colorimetric sensor array has been developed for the rapid and sensitive detection of 20 toxic industrial chemicals (TICs) at their PELs (permissible exposure limits). The color changes in an array of chemically responsive nanoporous pigments provide facile identification of the TICs with an error rate below 0.7%.

  19. Optical sensing of sulfate by polymethinium salt receptors: colorimetric sensor for heparin

    Czech Academy of Sciences Publication Activity Database

    Bříza, T.; Kejík, Z.; Císařová, I.; Králová, Jarmila; Martásek, P.; Král, V.

    2008-01-01

    Roč. 16, - (2008), s. 1901-1903 ISSN 1359-7345 R&D Projects: GA AV ČR KAN200200651; GA ČR(CZ) GA203/06/1038 Institutional research plan: CEZ:AV0Z50520514 Keywords : colorimetric sensor * heparin * polymethinium salt Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.340, year: 2008

  20. Styrene and Azo-Styrene Based Colorimetric Sensors for Highly Selective Detection of Cyanide

    OpenAIRE

    Prestiani, Agustina Eka; Purwono, Bambang

    2017-01-01

    A novel styrene (1) and azo-styrene (2) based chemosensor from vanillin has been successfully synthesized. Sensor 1 was obtained by one step Knoevenagel condensation of Ultrasound method and sensor 2 by coupling diazo and Knoevenagel condensation reaction. Both of sensors showed high sensitivity and selectivity to detect CN- in aqueous media, even the presence of other anions, such as F-, Cl-, Br-, I-, CO32-, SO42-, H2PO4-, and AcO-. Colorimetric sensing of sensor 1 is inclined to be deproton...

  1. Colorimetric sensor array for determination and identification of toxic industrial chemicals.

    Science.gov (United States)

    Feng, Liang; Musto, Christopher J; Kemling, Jonathan W; Lim, Sung H; Zhong, Wenxuan; Suslick, Kenneth S

    2010-11-15

    A low-cost yet highly sensitive colorimetric sensor array for the detection and identification of toxic industrial chemicals (TICs) has been developed. The sensor consists of a disposable array of cross-responsive nanoporous pigments whose colors are changed by diverse chemical interactions with analytes. Clear differentiation among 20 different TICs has been easily achieved at both their IDLH (immediately dangerous to life or health) concentration within 2 min of exposure and PEL (permissible exposure limit) concentration within 5 min of exposure with no errors or misclassifications. Detection limits are generally well below the PEL (in most cases below 5% of PEL) and are typically in the low ppb range. The colorimetric sensor array is not responsive to changes in humidity or temperature over a substantial range. The printed arrays show excellent batch to batch reproducibility and long shelf life (greater than 3 months).

  2. Multi-colorimetric sensor array for detection of explosives in gas and liquid phase

    DEFF Research Database (Denmark)

    Kostesha, Natalie; Alstrøm, Tommy Sonne; Johnsen, C.

    2011-01-01

    In the framework of the research project "Xsense" at the Technical University of Denmark (DTU) we are developing a simple colorimetric sensor array which can be useful in detection of explosives like DNT, TATP, HMX, RDX and identification of reagents needed for making homemade explosives. The tec......In the framework of the research project "Xsense" at the Technical University of Denmark (DTU) we are developing a simple colorimetric sensor array which can be useful in detection of explosives like DNT, TATP, HMX, RDX and identification of reagents needed for making homemade explosives...... to the analytes creates a color difference map which gives a unique fingerprint for each explosive and VOCs. Such sensing technology can be used for screening relevant explosives in a complex background as well as to distinguish mixtures of volatile organic compounds distributed in gas and liquid phases....... This sensor array is inexpensive, and can potentially be produced as single use disposable....

  3. A Colorimetric Sensor for Qualitative Discrimination and Quantitative Detection of Volatile Amines

    Directory of Open Access Journals (Sweden)

    Zhonglin Tang

    2010-06-01

    Full Text Available We have developed a novel colorimetric sensor based on a digital camera and white LED illumination. Colorimetric sensor arrays (CSAs were made from a set of six chemically responsive dyes impregnated on an inert substrate plate by solution casting. Six common amine aqueous solutions, including dimethylamine, triethylamine, diisopropyl-amine, aniline, cyclohexylamine, and pyridine vaporized at 25 °C and six health-related trimethylamine (TMA concentrations including 170 ppm, 51 ppm, 8 ppm, 2 ppm, 125 ppb and 50 ppb were analyzed by the sensor to test its ability for the qualitative discrimination and quantitative detection of volatile amines. We extracted the feature vectors of the CSA's response to the analytes from a fusional color space, which was obtained by conducting a joint search algorithm of sequential forward selection and sequential backward selection (SFS&SBS based on the linear discriminant criteria (LDC in a mixed color space composed of six common color spaces. The principle component analysis (PCA followed by the hierarchical cluser analysis (HCA were utilized to discriminate 12 analytes. Results showed that the colorimetric sensor grouped the six amine vapors and five TMA concentrations correctly, while TMA concentrations of 125 ppb and 50 ppb were indiscriminable from each other. The limitation of detection (LOD of the sensor for TMA was found to be lower than 50 ppb. The CSAs were reusable for TMA concentrations below 8 ppm.

  4. Discrimination of honeys using colorimetric sensor arrays, sensory analysis and gas chromatography techniques.

    Science.gov (United States)

    Tahir, Haroon Elrasheid; Xiaobo, Zou; Xiaowei, Huang; Jiyong, Shi; Mariod, Abdalbasit Adam

    2016-09-01

    Aroma profiles of six honey varieties of different botanical origins were investigated using colorimetric sensor array, gas chromatography-mass spectrometry (GC-MS) and descriptive sensory analysis. Fifty-eight aroma compounds were identified, including 2 norisoprenoids, 5 hydrocarbons, 4 terpenes, 6 phenols, 7 ketones, 9 acids, 12 aldehydes and 13 alcohols. Twenty abundant or active compounds were chosen as key compounds to characterize honey aroma. Discrimination of the honeys was subsequently implemented using multivariate analysis, including hierarchical clustering analysis (HCA) and principal component analysis (PCA). Honeys of the same botanical origin were grouped together in the PCA score plot and HCA dendrogram. SPME-GC/MS and colorimetric sensor array were able to discriminate the honeys effectively with the advantages of being rapid, simple and low-cost. Moreover, partial least squares regression (PLSR) was applied to indicate the relationship between sensory descriptors and aroma compounds. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Development of a novel colorimetric sensor based on alginate beads for monitoring rainbow trout spoilage.

    Science.gov (United States)

    Majdinasab, Marjan; Hosseini, Seyed Mohammad Hashem; Sepidname, Marziyeh; Negahdarifar, Manizheh; Li, Peiwu

    2018-05-01

    Alginate is a non-toxic, renewable, and linear copolymer obtained from the brown algae Laminaria digitata that can be easily shaped into beads. Its good gel forming properties have made it useful for entrapping food and pharmaceutical ingredients. In this study, alginate beads were used in a novel application as a colorimetric sensor in food intelligent packaging. Colorimetric sensor was developed through entrapping red cabbage extract as a pH indicator in alginate beads. The pH indicator beads were used in rainbow trout packaging for monitoring fillets spoilage. Color change of beads during fish storage was measured using the CIELab method. The alginate bead colorimetric sensor is validated by measuring total volatile basic nitrogen (TVB-N) levels and microbial populations in fish samples. Moreover, peroxide value (PV) and thiobarbituric acid reactive substances (TBARS) were evaluated during storage. Results indicated that increasing the bacterial population during storage and production of proteolytic enzymes resulted in protein degradation, accumulation of volatile amine compounds, increase in the pH and finally color change of alginate beads. The values of TVB-N, pH, PV and TBARS increased with time of storage. The results of TVB-N and microbial growth were in accordance with color change of beads and CIELab data. Therefore, the proposed system enjoys a high sensitivity to pH variations and is capable of monitoring the spoilage of fish or other protein-rich products through its wide range of color changes. The alginate beads containing the red cabbage extract can, thus, be used as a low-cost colorimetric sensor for intelligent packaging applications.

  6. Development of the colorimetric sensor array for detection of explosives and volatile organic compounds in air

    DEFF Research Database (Denmark)

    Kostesha, Natalie; Alstrøm, Tommy Sonne; Johnsen, C

    2010-01-01

    a color difference map which gives a unique fingerprint for each explosive and volatile organic compound. Such sensing technology can be used to screen for relevant explosives in a complex background as well as to distinguish mixtures of volatile organic compounds distributed in gas phase. This sensor......In the framework of the research project 'Xsense' at the Technical University of Denmark (DTU) we are developing a simple colorimetric sensor array which can be useful in detection of explosives like DNT and TNT, and identification of volatile organic compounds in the presence of water vapor in air...

  7. A New Coumarin-Based Colorimetric and Fluorometric Sensor for Cu{sup 2+}

    Energy Technology Data Exchange (ETDEWEB)

    An, Kyounglyong; Jun, Kun [Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of); Park, Koon Ha [Chungnam National Univ., Daejeon (Korea, Republic of)

    2014-07-15

    We have developed a new colorimetric and fluorescent 'turn-off' sensor for Cu{sup 2+} based on coumarin Shiff base of hydroxycinnamaldehyde. It displays a 50 nm red-shift of maximum absorption band with color change from colorless to greenish-yellow upon addition of Cu{sup 2+} in 10 mM tris-HCl buffer solution (acetonitrile/water = 9:1, pH = 7.01). And also remarkable fluorescence quenching was observed upon the addition of Cu{sup 2+}. The 1:2 stoichiometry of sensor complex (sensor A + Cu{sup 2+}) was confirmed by Job's plot based on absorption titration. Chemosensors, small chemical compounds that sense the presence of analytes or energy, typically consist of two components: a receptor moiety that interacts with the target analytes and a read-out system that signals binding. And one of the most utilized research tool for the study of chemosensors employs a colorimetric and fluorometric spectroscopic techniques. So far successful reports on metal ion sensors have been documented including our recent result. Many different kinds of optical or fluorescent sensors have several advantages (such as high sensitivity and selectivity, non-destructive analysis, low cost and real-time monitoring), which allow naked-eye detection of color and fluorescent emission change upon metal ion binding without the use of any expensive spectroscopic equipment.

  8. Improved detection of chemical substances from colorimetric sensor data using probabilistic machine learning

    DEFF Research Database (Denmark)

    Mølgaard, Lasse Lohilahti; Buus, Ole Thomsen; Larsen, Jan

    2017-01-01

    We present a data-driven machine learning approach to detect drug- and explosives-precursors using colorimetric sensor technology for air-sampling. The sensing technology has been developed in the context of the CRIM-TRACK project. At present a fully- integrated portable prototype for air sampling...... of the highly multi-variate data produced from the colorimetric chip a number of machine learning techniques are employed to provide reliable classification of target analytes from confounders found in the air streams. We demonstrate that a data-driven machine learning method using dimensionality reduction...... in combination with a probabilistic classifier makes it possible to produce informative features and a high detection rate of analytes. Furthermore, the probabilistic machine learning approach provides a means of automatically identifying unreliable measurements that could produce false predictions...

  9. Improved detection of chemical substances from colorimetric sensor data using probabilistic machine learning

    Science.gov (United States)

    Mølgaard, Lasse L.; Buus, Ole T.; Larsen, Jan; Babamoradi, Hamid; Thygesen, Ida L.; Laustsen, Milan; Munk, Jens Kristian; Dossi, Eleftheria; O'Keeffe, Caroline; Lässig, Lina; Tatlow, Sol; Sandström, Lars; Jakobsen, Mogens H.

    2017-05-01

    We present a data-driven machine learning approach to detect drug- and explosives-precursors using colorimetric sensor technology for air-sampling. The sensing technology has been developed in the context of the CRIM-TRACK project. At present a fully- integrated portable prototype for air sampling with disposable sensing chips and automated data acquisition has been developed. The prototype allows for fast, user-friendly sampling, which has made it possible to produce large datasets of colorimetric data for different target analytes in laboratory and simulated real-world application scenarios. To make use of the highly multi-variate data produced from the colorimetric chip a number of machine learning techniques are employed to provide reliable classification of target analytes from confounders found in the air streams. We demonstrate that a data-driven machine learning method using dimensionality reduction in combination with a probabilistic classifier makes it possible to produce informative features and a high detection rate of analytes. Furthermore, the probabilistic machine learning approach provides a means of automatically identifying unreliable measurements that could produce false predictions. The robustness of the colorimetric sensor has been evaluated in a series of experiments focusing on the amphetamine pre-cursor phenylacetone as well as the improvised explosives pre-cursor hydrogen peroxide. The analysis demonstrates that the system is able to detect analytes in clean air and mixed with substances that occur naturally in real-world sampling scenarios. The technology under development in CRIM-TRACK has the potential as an effective tool to control trafficking of illegal drugs, explosive detection, or in other law enforcement applications.

  10. Detection of Carbendazim Residues with a Colorimetric Sensor Based on Gold Nanoparticles

    Science.gov (United States)

    Ma, Y.; Jiang, H.; Shen, C.; Hou, Ch.; Huo, D.; Wu, H.; Yang, M.

    2017-07-01

    Carbendazim is among the most popular benzimidazole bactericides that are widely used to boost food production, and its residue poses a great threat to human health and the environment. In this paper, we presented a colorimetric sensor based on gold nanoparticles (Au-NPs) for the detection of carbendazim residues. The Au-NPs were stabilized by citric acid synthesized by chloroauric acid and sodium citrate with a diameter of about 13 nm. Upon reaction with carbendazim, the sensor gave a clear color change that could be distinguished with the naked eye. Thus we elaborated a new method for rapid determination of this benzimidazole bactericide. After optimization of the detection conditions, the sensor showed a very good linear relationship with the carbendazim concentrations varying from 10 to 600 ppb with a detection limit down to 3.4 ppb (S/N = 3). These preliminary results demonstrate that the presented sensor is promising for fast carbendazim analysis.

  11. A C{sub 2}-symmetric ratiometric fluorescence and colorimetric anion sensor based on pyrrole derivative

    Energy Technology Data Exchange (ETDEWEB)

    Liu Ge [Department of Chemistry, Chifeng University, Chifeng 024000 (China); Shao Jie, E-mail: njshao@live.c [Department of Chemistry and Materials Science, Nanjing Forestry University, Nanjing 210037 (China)

    2011-07-15

    A C{sub 2}-symmetric fluorescence and colorimetric anion sensor (1) based on pyrrole derivative was designed and synthesized according to binding site-signaling subunit approach. The compound 1 was easily prepared by reaction of pyrrole-2,5-dicarboxaldehyde with 4-nitrophenylhydrazine in ethanol (yield=78%). In DMSO, the sensor 1 exhibited a visible color change from red to brown upon exposure to anions such as AcO{sup -} and F{sup -}; however, no obvious color changes were observed when the other tested anions (e. g. H{sub 2}PO{sub 4}{sup -}, Cl{sup -}, Br{sup -} and I{sup -}) were added. There was a significant redshift ({Delta}{lambda}{sub max}=160 nm) in UV-vis spectrum during UV-vis spectral titrations. In particular, the sensor 1 showed ratiometric fluorescence responses to anions. - Highlights: {yields} C{sub 2}-symmetric fluorescence and colorimetric anion sensor based on pyrrole derivative was designed and synthesized according to binding site-signaling subunit approach. {yields} The sensor was easily prepared by reaction of pyrrole-2,5-dicarboxaldehyde with 4-nitrophenylhydrazine in ethanol (yield=78%). {yields} In DMSO, the sensor exhibited a visible color change from red to brown upon exposure to anions such as AcO{sup -} and F{sup -}, however, no obvious color changes were observed when the other anions tested (e. g. H{sub 2}PO{sub 4}{sup -}, Cl{sup -}, Br{sup -} and I{sup -}) were added. {yields} The sensor showed ratiometric fluorescence responses to anions.

  12. Urinary Colorimetric Sensor Array and Algorithm to Distinguish Kawasaki Disease from Other Febrile Illnesses.

    Directory of Open Access Journals (Sweden)

    Zhen Li

    Full Text Available Kawasaki disease (KD is an acute pediatric vasculitis of infants and young children with unknown etiology and no specific laboratory-based test to identify. A specific molecular diagnostic test is urgently needed to support the clinical decision of proper medical intervention, preventing subsequent complications of coronary artery aneurysms. We used a simple and low-cost colorimetric sensor array to address the lack of a specific diagnostic test to differentiate KD from febrile control (FC patients with similar rash/fever illnesses.Demographic and clinical data were prospectively collected for subjects with KD and FCs under standard protocol. After screening using a genetic algorithm, eleven compounds including metalloporphyrins, pH indicators, redox indicators and solvatochromic dye categories, were selected from our chromatic compound library (n = 190 to construct a colorimetric sensor array for diagnosing KD. Quantitative color difference analysis led to a decision-tree-based KD diagnostic algorithm.This KD sensing array allowed the identification of 94% of KD subjects (receiver operating characteristic [ROC] area under the curve [AUC] 0.981 in the training set (33 KD, 33 FC and 94% of KD subjects (ROC AUC: 0.873 in the testing set (16 KD, 17 FC. Color difference maps reconstructed from the digital images of the sensing compounds demonstrated distinctive patterns differentiating KD from FC patients.The colorimetric sensor array, composed of common used chemical compounds, is an easily accessible, low-cost method to realize the discrimination of subjects with KD from other febrile illness.

  13. Colorimetric Sensor Arrays for the Detection and Identification of Chemical Weapons and Explosives.

    Science.gov (United States)

    Kangas, Michael J; Burks, Raychelle M; Atwater, Jordyn; Lukowicz, Rachel M; Williams, Pat; Holmes, Andrea E

    2017-03-04

    There is a significant demand for devices that can rapidly detect chemical-biological-explosive (CBE) threats on-site and allow for immediate responders to mitigate spread, risk, and loss. The key to an effective reconnaissance mission is a unified detection technology that analyzes potential threats in real time. In addition to reviewing the current state of the art in the field, this review illustrates the practicality of colorimetric arrays composed of sensors that change colors in the presence of analytes. This review also describes an outlook toward future technologies, and describes how they could possibly be used in areas such as war zones to detect and identify hazardous substances.

  14. Highly Sensitive and Fast Response Colorimetric Humidity Sensors Based on Graphene Oxides Film.

    Science.gov (United States)

    Chi, Hong; Liu, Yan Jun; Wang, FuKe; He, Chaobin

    2015-09-16

    Uniform graphene oxide (GO) film for optical humidity sensing was fabricated by dip-coating technique. The resulting GO thin film shows linear optical shifts in the visible range with increase of humidity in the whole relative humidity range (from dry state to 98%). Moreover, GO films exhibit ultrafast sensing to moisture within 250 ms because of the unique atomic thinness and superpermeability of GO sheets. The humidity sensing mechanism was investigated using XRD and computer simulation. The ultrasensitive humidity colorimetric properties of GOs film may enable many potential applications such as disposable humidity sensors for packaging, health, and environmental monitoring.

  15. Efficient colorimetric pH sensor based on responsive polymer-quantum dot integrated graphene oxide.

    Science.gov (United States)

    Paek, Kwanyeol; Yang, Hyunseung; Lee, Junhyuk; Park, Junwoo; Kim, Bumjoon J

    2014-03-25

    In this paper, we report the development of a versatile platform for a highly efficient and stable graphene oxide (GO)-based optical sensor that exhibits distinctive ratiometric color responses. To demonstrate the applicability of the platform, we fabricated a colorimetric, GO-based pH sensor that responds to a wide range of pH changes. Our sensing system is based on responsive polymer and quantum dot (QD) hybrids integrated on a single GO sheet (MQD-GO), with the GO providing an excellent signal-to-noise ratio and high dispersion stability in water. The photoluminescence emissions of the blue and orange color-emitting QDs (BQDs and OQDs) in MQD-GO can be controlled independently by different pH-responsive linkers of poly(acrylic acid) (PAA) (pKa=4.5) and poly(2-vinylpyridine) (P2VP) (pKa=3.0) that can tune the efficiencies of Förster resonance energy transfer from the BQDs to the GO and from the OQDs to the GO, respectively. As a result, the color of MQD-GO changes from orange to near-white to blue over a wide range of pH values. The detailed mechanism of the pH-dependent response of the MQD-GO sensor was elucidated by measurements of time-resolved fluorescence and dynamic light scattering. Furthermore, the MQD-GO sensor showed excellent reversibility and high dispersion stability in pure water, indicating that our system is an ideal platform for biological and environmental applications. Our colorimetric GO-based optical sensor can be expanded easily to various other multifunctional, GO-based sensors by using alternate stimuli-responsive polymers.

  16. Fluorescent, MRI, and colorimetric chemical sensors for the first-row d-block metal ions.

    Science.gov (United States)

    Zhu, Hao; Fan, Jiangli; Wang, Benhua; Peng, Xiaojun

    2015-07-07

    Transition metals (d-blocks) are recognized as playing critical roles in biology, and they most often act as cofactors in diverse enzymes; however, improper regulation of transition metal stores is also connected to serious disorders. Therefore, the monitoring and imaging of transition metals are significant for biological research as well as clinical diagnosis. In this article, efforts have been made to review the chemical sensors that have been developed for the detection of the first-row d-block metals (except Cu and Zn): Cr, Mn, Fe, Co, and Ni. We focus on the development of fluorescent sensors (fall into three classes: "turn-off", "turn-on", and ratiometric), colorimetric sensors, and responsive MRI contrast agents for these transition metals (242 references). Future work will be likely to fill in the blanks: (1) sensors for Sc, Ti, and V; (2) MRI sensors for Cr, Mn, Co, Ni; (3) ratiometric fluorescent sensors for Cr(6+), Mn(2+), and Ni(2+), explore new ways of sensing Fe(3+) or Cr(3+) without the proton interference, as well as extend applications of MRI sensors to living systems.

  17. Rapid recognition of volatile organic compounds with colorimetric sensor arrays for lung cancer screening.

    Science.gov (United States)

    Zhong, Xianhua; Li, Dan; Du, Wei; Yan, Mengqiu; Wang, You; Huo, Danqun; Hou, Changjun

    2018-06-01

    Volatile organic compounds (VOCs) in breath can be used as biomarkers to identify early stages of lung cancer. Herein, we report a disposable colorimetric array that has been constructed from diverse chemo-responsive colorants. Distinguishable difference maps were plotted within 4 min for specifically targeted VOCs. Through the consideration of various chemical interactions with VOCs, the arrays successfully discriminate between 20 different volatile organic compounds in breath that are related to lung cancer. VOCs were identified either with the visualized difference maps or through pattern recognition with an accuracy of at least 90%. No uncertainties or errors were observed in the hierarchical cluster analysis (HCA). Finally, good reproducibility and stability of the array was achieved against changes in humidity. Generally, this work provides fundamental support for construction of simple and rapid VOC sensors. More importantly, this approach provides a hypothesis-free array method for breath testing via VOC profiling. Therefore, this small, rapid, non-invasive, inexpensive, and visualized sensor array is a powerful and promising tool for early screening of lung cancer. Graphical abstract A disposable colorimetric array has been developed with broadly chemo-responsive dyes to incorporate various chemical interactions, through which the arrays successfully discriminate 20 VOCs that are related to lung cancer via difference maps alone or chemometrics within 4 min. The hydrophobic porous matrix provides good stability against changes in humidity.

  18. A fluorescent colorimetric pH sensor and the influences of matrices on sensing performances

    Science.gov (United States)

    Tian, Yanqing; Fuller, Emily; Klug, Summer; Lee, Fred; Su, Fengyu; Zhang, Liqiang; Chao, Shih-hui; Meldrum, Deirdre R.

    2013-01-01

    A fluorescent colorimetric pH sensor was developed by a polymerization of a monomeric fluorescein based green emitter (SM1) with a monomeric 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran derived red emitter (SM2) in poly(2-hydroxyethyl methacrylate)-co-polyacrylamide (PHEMA-co-PAM) matrices. Polymerized SM1 (PSM1) in the polymer matrices showed bright emissions at basic conditions and weak emissions at acidic conditions. Polymerized SM2 (PSM2) in the polymer matrices exhibited a vastly different response when compared to PSM1. The emissions of PSM2 are stronger under acidic conditions than those under basic conditions. When SM1 and SM2 were polymerized in the same polymer matrix, a dual emission sensor acting as a ratiometric pH sensor (PSM1,2) was successfully developed. Because the PSM1 and PSM2 exhibited different pH responses and separated emission windows, the changes in the emission colors were clearly observed in their dual color sensor of PSM1,2, which changed emission colors dramatically from green at pH 7 to red at pH 4, which was detected visually and/or by using a color camera under an excitation of 488 nm. In addition to the development of the dual color ratiometric pH sensor, we also studied the effects of different matrix compositions, crosslinkers, and charges on the reporting capabilities of the sensors (sensitivity and pKa). PMID:24078772

  19. A fluorescent colorimetric pH sensor and the influences of matrices on sensing performances.

    Science.gov (United States)

    Tian, Yanqing; Fuller, Emily; Klug, Summer; Lee, Fred; Su, Fengyu; Zhang, Liqiang; Chao, Shih-Hui; Meldrum, Deirdre R

    2013-10-01

    A fluorescent colorimetric pH sensor was developed by a polymerization of a monomeric fluorescein based green emitter ( SM1 ) with a monomeric 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran derived red emitter ( SM2 ) in poly(2-hydroxyethyl methacrylate)- co -polyacrylamide (PHEMA-co-PAM) matrices. Polymerized SM1 ( PSM1 ) in the polymer matrices showed bright emissions at basic conditions and weak emissions at acidic conditions. Polymerized SM2 ( PSM2 ) in the polymer matrices exhibited a vastly different response when compared to PSM1 . The emissions of PSM2 are stronger under acidic conditions than those under basic conditions. When SM1 and SM2 were polymerized in the same polymer matrix, a dual emission sensor acting as a ratiometric pH sensor ( PSM1,2 ) was successfully developed. Because the PSM1 and PSM2 exhibited different pH responses and separated emission windows, the changes in the emission colors were clearly observed in their dual color sensor of PSM1,2 , which changed emission colors dramatically from green at pH 7 to red at pH 4, which was detected visually and/or by using a color camera under an excitation of 488 nm. In addition to the development of the dual color ratiometric pH sensor, we also studied the effects of different matrix compositions, crosslinkers, and charges on the reporting capabilities of the sensors (sensitivity and p K a ).

  20. Identification of accelerants, fuels and post-combustion residues using a colorimetric sensor array.

    Science.gov (United States)

    Li, Zheng; Jang, Minseok; Askim, Jon R; Suslick, Kenneth S

    2015-09-07

    A linear (1 × 36) colorimetric sensor array has been integrated with a pre-oxidation technique for detection and identification of a variety of fuels and post-combustion residues. The pre-oxidation method permits the conversion of fuel vapor into more detectable species and therefore greatly enhances the sensitivity of the sensor array. The pre-oxidation technique used a packed tube of chromic acid on an oxide support and was optimized in terms of the support and concentration. Excellent batch to batch reproducibility was observed for preparation and use of the disposable pre-oxidation tubes. Twenty automotive fuels including gasolines and diesel from five gasoline retailers were individually identifiable with no confusions or misclassifications in quintuplicate trials. Limits of detection were at sub-ppm concentrations for gasoline and diesel fuels. In addition, burning tests were performed on commonly used fire accelerants, and clear differentiation was achieved among both the fuels themselves and their volatile residues after burning.

  1. L-cysteine protected copper nanoparticles as colorimetric sensor for mercuric ions.

    Science.gov (United States)

    Soomro, Razium A; Nafady, Ayman; Sirajuddin; Memon, Najma; Sherazi, Tufail H; Kalwar, Nazar H

    2014-12-01

    This report demonstrates a novel, simple and efficient protocol for the synthesis of copper nanoparticles in aqueous solution using L-cysteine as capping or protecting agent. UV-visible (UV-vis) spectroscopy was employed to monitor the LSPR band of L-cysteine functionalized copper nanoparticles (Cyst-Cu NPs) based on optimizing various reaction parameters. Fourier Transform Infrared (FTIR) spectroscopy provided information about the surface interaction between L-cysteine and Cu NPs. Transmission Electron Microscopy (TEM) confirmed the formation of fine spherical, uniformly distributed Cyst-Cu NPs with average size of 34 ± 2.1 nm. X-ray diffractometry (XRD) illustrated the formation of pure metallic phase crystalline Cyst-Cu NPs. As prepared Cyst-Cu NPs were tested as colorimetric sensor for determining mercuric (Hg(2+)) ions in an aqueous system. Cyst-Cu NPs demonstrated very sensitive and selective colorimetric detection of Hg(2+) ions in the range of 0.5 × 10(-6)-3.5 × 10(-6) mol L(-1) based on decrease in LSPR intensity as monitored by a UV-vis spectrophotometer. The developed sensor is simple, economic compared to those based on precious metal nanoparticles and sensitive to detect Hg(2+) ions with detection limit down to 4.3 × 10(-8) mol L(-1). The sensor developed in this work has a high potential for rapid and on-site detection of Hg(2+) ions. The sensor was successfully applied for assessment of Hg(2+) ions in real water samples collected from various locations of the Sindh River. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Colorimetric sensor arrays based on pattern recognition for the detection of nitroaromatic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wei; Dong, Xiao [School of Chemical Engineering and the Environment, Beijing Institute of Technology, Beijing, 100081 (China); Qiu, Lili, E-mail: qiulili@bit.edu.cn [School of Chemical Engineering and the Environment, Beijing Institute of Technology, Beijing, 100081 (China); Yan, Zequn [School of Chemical Engineering and the Environment, Beijing Institute of Technology, Beijing, 100081 (China); Meng, Zihui, E-mail: m_zihui@yahoo.com [School of Chemical Engineering and the Environment, Beijing Institute of Technology, Beijing, 100081 (China); Xue, Min [School of Chemical Engineering and the Environment, Beijing Institute of Technology, Beijing, 100081 (China); He, Xuan; Liu, Xueyong [Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, Sichuan, 621900 (China)

    2017-03-15

    Graphical abstract: A colorimetric sensor array based on four kinds molecularly imprinted photonic crystal (MIPC) was explored for the selective visual detection of TNT, 2,6-DNT, 2,4-DNT and 4-MNT. The color of individual sensor changed with the increasing concentration of the analytes, and a cross-responsive platform was evaluated by a “radar” pattern. With the assistance of principal component analysis (PCA), a separate response region contained 95.25% of significant characteristics for the detection of nitroaromatics was generated, which also promised high potential for the customized visual detection system of other harmful chemicals. - Highlights: • Nitroaromatics were visually detected by molecularly imprinted photonic crystal. • The adsorption capacity was calculated. • The cross responsive platform of sensor array was established and discussed. • The discrimination capability was promoted by principal component analysis. • This system had high potential to be used in other customed visual detection. - Abstract: This research demonstrated that, in a colorimetric sensor array, 2,4,6-trinitrotoluene (TNT), 2,6-dinitrotoluene (2,6-DNT), 2,4-dinitrotoluene (2,4-DNT) and 4-nitrotoluene (4-MNT) were identifiable through a unique pattern in a qualitative and semi-quantitative manner. The adsorption capacity of the molecularly imprinted colloidal particles (MICs) for their corresponding templates was 0.27 mmol TNT/g, 0.22 mmol 2,6-DNT/g, 0.31 mmol 2,4-DNT/g and 0.16 mmol 4-MNT/g, respectively. Every optical sensor utilized in the arrays contained three-dimensional molecularly imprinted photonic crystal (MIPC) sensor with different imprinted templates. The intelligent materials can display different colors from green to red to 20 mM corresponding nitroaromatics with varying diffraction red shifts of 84 nm (TNT), 46 nm (2,6-DNT), 54 nm (2,4-DNT) and 35 nm (4-MNT), respectively. With the assistance of principal component analysis (PCA) and rational design

  3. Colorimetric sensor arrays based on pattern recognition for the detection of nitroaromatic molecules

    International Nuclear Information System (INIS)

    Lu, Wei; Dong, Xiao; Qiu, Lili; Yan, Zequn; Meng, Zihui; Xue, Min; He, Xuan; Liu, Xueyong

    2017-01-01

    Graphical abstract: A colorimetric sensor array based on four kinds molecularly imprinted photonic crystal (MIPC) was explored for the selective visual detection of TNT, 2,6-DNT, 2,4-DNT and 4-MNT. The color of individual sensor changed with the increasing concentration of the analytes, and a cross-responsive platform was evaluated by a “radar” pattern. With the assistance of principal component analysis (PCA), a separate response region contained 95.25% of significant characteristics for the detection of nitroaromatics was generated, which also promised high potential for the customized visual detection system of other harmful chemicals. - Highlights: • Nitroaromatics were visually detected by molecularly imprinted photonic crystal. • The adsorption capacity was calculated. • The cross responsive platform of sensor array was established and discussed. • The discrimination capability was promoted by principal component analysis. • This system had high potential to be used in other customed visual detection. - Abstract: This research demonstrated that, in a colorimetric sensor array, 2,4,6-trinitrotoluene (TNT), 2,6-dinitrotoluene (2,6-DNT), 2,4-dinitrotoluene (2,4-DNT) and 4-nitrotoluene (4-MNT) were identifiable through a unique pattern in a qualitative and semi-quantitative manner. The adsorption capacity of the molecularly imprinted colloidal particles (MICs) for their corresponding templates was 0.27 mmol TNT/g, 0.22 mmol 2,6-DNT/g, 0.31 mmol 2,4-DNT/g and 0.16 mmol 4-MNT/g, respectively. Every optical sensor utilized in the arrays contained three-dimensional molecularly imprinted photonic crystal (MIPC) sensor with different imprinted templates. The intelligent materials can display different colors from green to red to 20 mM corresponding nitroaromatics with varying diffraction red shifts of 84 nm (TNT), 46 nm (2,6-DNT), 54 nm (2,4-DNT) and 35 nm (4-MNT), respectively. With the assistance of principal component analysis (PCA) and rational design

  4. Beetroot-pigment-derived colorimetric sensor for detection of calcium dipicolinate in bacterial spores.

    Directory of Open Access Journals (Sweden)

    Letícia Christina Pires Gonçalves

    Full Text Available In this proof-of-concept study, we describe the use of the main red beet pigment betanin for the quantification of calcium dipicolinate in bacterial spores, including Bacillus anthracis. In the presence of europium(III ions, betanin is converted to a water-soluble, non-luminescent orange 1∶1 complex with a stability constant of 1.4 × 10(5 L mol(-1. The addition of calcium dipicolinate, largely found in bacterial spores, changes the color of the aqueous solution of [Eu(Bn(+] from orange to magenta. The limit of detection (LOD of calcium dipicolinate is around 2.0 × 10(-6 mol L(-1 and the LOD determined for both spores, B. cereus and B. anthracis, is (1.1 ± 0.3× 10(6 spores mL(-1. This simple, green, fast and low cost colorimetric assay was selective for calcium dipicolinate when compared to several analogous compounds. The importance of this work relies on the potential use of betalains, raw natural pigments, as colorimetric sensors for biological applications.

  5. Colorimetric detection of Cr (VI) based on the leaching of gold nanoparticles using a paper-based sensor.

    Science.gov (United States)

    Guo, Jian-Feng; Huo, Dan-Qun; Yang, Mei; Hou, Chang-Jun; Li, Jun-Jie; Fa, Huan-Bao; Luo, Hui-Bo; Yang, Ping

    2016-12-01

    Herein, we have developed a simple, sensitive and paper-based colorimetric sensor for the selective detection of Chromium (Ⅵ) ions (Cr (VI)). Silanization-titanium dioxide modified filter paper (STCP) was used to trap bovine serum albumin capped gold nanoparticles (BSA-Au NPs), leading to the fabrication of BSA-Au NPs decorated membrane (BSA-Au NPs/STCP). The BSA-Au NPs/STCP operated on the principle that BSA-Au NPs anchored on the STCP were gradually etched by Cr (VI) as the leaching process of gold in the presence of hydrobromic acid (HBr) and hence induced a visible color change. Under optimum conditions, the paper-based colorimetric sensor showed clear color change after reaction with Cr (VI) as well as with favorable selectivity to a variety of possible interfering counterparts. The amount-dependent colorimetric response was linearly correlated with the Cr (VI) concentrations ranging from 0.5µM to 50.0µM with a detection limit down to 280nM. Moreover, the developed cost-effective colorimetric sensor has been successfully applied to real environmental samples which demonstrated the potential for field applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. A highly sensitive and selective aptamer-based colorimetric sensor for the rapid detection of PCB 77.

    Science.gov (United States)

    Cheng, Ruojie; Liu, Siyao; Shi, Huijie; Zhao, Guohua

    2018-01-05

    A highly sensitive, specific and simple colorimetric sensor based on aptamer was established for the detection of polychlorinated biphenyls (PCB 77). The use of unmodified gold nanoparticles as a colorimetric probe for aptamer sensors enabled the highly sensitive and selective detection of polychlorinated biphenyls (PCB 77). A linear range of 0.5nM to 900nM was obtained for the colorimetric assay with a minimum detection limit of 0.05nM. In addition, by the methods of circular dichroism, UV and naked eyes, we found that the 35 base fragments retained after cutting 5 bases from the 5 'end of aptamer plays the most significant role in the PCB 77 specific recognition process. We found a novel way to truncated nucleotides to optimize the detection of PCB 77, and the selected nucleotides also could achieve high affinity with PCB 77. At the same time, the efficient detection of the PCB 77 by our colorimetric sensor in the complex environmental water samples was realized, which shows a good application prospect. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. A smartphone colorimetric reader integrated with an ambient light sensor and a 3D printed attachment for on-site detection of zearalenone.

    Science.gov (United States)

    Chen, Yuan; Fu, Qiangqiang; Li, Dagang; Xie, Jun; Ke, Dongxu; Song, Qifang; Tang, Yong; Wang, Hong

    2017-11-01

    Smartphone biosensors could be cost-effective, portable instruments to be used for the readout of liquid colorimetric assays. However, current reported smartphone colorimetric readers have relied on photos of liquid assays captured using a camera, and then analyzed using software programs. This approach results in a relatively low accuracy and low generality. In this work, we reported a novel smartphone colorimetric reader that has been integrated with an ambient light sensor and a 3D printed attachment for the readout of liquid colorimetric assays. The portable and low-cost ($0.15) reader utilized a simplified electronic and light path design. Furthermore, our reported smartphone colorimetric reader can be compatible with different smartphones. As a proof of principle, the utility of this device was demonstrated using it in conjunction with an enzyme-linked immunosorbent assay to detect zearalenone. Results were consistent with those obtained using a professional microplate reader. The developed smartphone colorimetric reader was capable of providing scalable, cost-effective, and accurate results for liquid colorimetric assays that related to clinical diagnoses, environment pollution, and food testing. Graphical abstract A novel smartphone colorimetric reader that has been integrated with an ambient light sensor and a 3D printed attachment for the readout of liquid colorimetric assays.

  8. Colorimetric Humidity Sensor Using Inverse Opal Photonic Gel in Hydrophilic Ionic Liquid.

    Science.gov (United States)

    Kim, Seulki; Han, Sung Gu; Koh, Young Gook; Lee, Hyunjung; Lee, Wonmok

    2018-04-27

    We demonstrate a fast response colorimetric humidity sensor using a crosslinked poly(2-hydroxyethyl methacrylate) (PHEMA) in the form of inverse opal photonic gel (IOPG) soaked in 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM⁺][BF₄ − ]), a non-volatile hydrophilic room temperature ionic liquid (IL). An evaporative colloidal assembly enabled the fabrication of highly crystalline opal template, and a subsequent photopolymerization of PHEMA followed by solvent-etching and final soaking in IL produced a humidity-responsive IOPG showing highly reflective structural color by Bragg diffraction. Three IOPG sensors with different crosslinking density were fabricated on a single chip, where a lightly crosslinked IOPG exhibited the color change response over entire visible spectrum with respect to the humidity changes from 0 to 80% RH. As the water content increased in IL, thermodynamic interactions between PHEMA and [BMIM⁺][BF₄ − ] became more favorable, to show a red-shifted structural color owing to a longitudinal swelling of IOPG. Highly porous IO structure enabled fast humidity-sensing kinetics with the response times of ~1 min for both swelling and deswelling. Temperature-dependent swelling of PHEMA in [BMIM⁺][BF₄ − ] revealed that the current system follows an upper critical solution temperature (UCST) behavior with the diffraction wavelength change as small as 1% at the temperature changes from 10 °C to 30 °C.

  9. DNA-Catalytically Active Gold Nanoparticle Conjugates-Based Colorimetric Multidimensional Sensor Array for Protein Discrimination.

    Science.gov (United States)

    Wei, Xiangcong; Chen, Zhengbo; Tan, Lulu; Lou, Tianhong; Zhao, Yan

    2017-01-03

    A series of single-strand oligonucleotides functionalized catalytically active gold nanoparticle (AuNPs) as nonspecific receptors have been designed to build a protein sensing array. We take advantage of the correlation between the catalytic activity and the exposed surface area of AuNPs, i.e., DNA-proteins interactions mask the surface area of AuNPs, leading to poor catalytic performance of AuNPs. As the number of DNA-bound proteins increases, the surfaces of AuNPs become more masked; thus, the time of 4- nitrophenol/NaBH 4 reaction for color change (yellow → colorless) of the solution increases. Taking advantage of three nonspecific SH-labeled DNA sequences (A15, C15, and T15) as array sensing elements and the color-change time (CCT) of the solution as signal readout, colorimetric response patterns can be obtained on the array and identified via linear discriminant analysis (LDA). Eleven proteins have been completely distinguished with 100% accuracy with the naked eye at the 30 nM level. Remarkably, two similar proteins (bovine serum albumin and human serum albumin), two different proteins (bovine serum albumin and concanavalin) at the same concentration, and the mixtures of the two proteins with different molar ratios have been discriminated with 100%. The practicability of this sensor array is further validated by high accuracy (100%) identification of 11 proteins in human serum samples.

  10. Prediction of warmed-over flavour development in cooked chicken by colorimetric sensor array.

    Science.gov (United States)

    Kim, Su-Yeon; Li, Jinglei; Lim, Na-Ri; Kang, Bo-Sik; Park, Hyun-Jin

    2016-11-15

    The aim of this study was to develop a simple and rapid method based on colorimetric sensor array (CSA) for evaluation of warmed-over flavour (WOF) in cooked chicken. All samples were classified according to storage time by CSA coupled with principle component analysis (PCA) or hierarchical cluster analysis (HCA). The CSA data were used to establish prediction models with thiobarbituric acid reactive substances (TBARS), pentanal, hexanal, or heptanal associated with WOF by partial least square regression (PLSR). For the TBARS model, the coefficient of determination (rp(2)) was 0.9997 in the prediction range of 0.28-0.69mg/kg. In each of the models for pentanal, hexanal, and heptanal, all rp(2) were higher than 0.960 in the range of 0.58-2.10mg/kg, 5.50-11.69mg/kg, and 0.09-0.16mg/kg, respectively. These results demonstrate that the CSA was able to predict WOF development and to distinguish between each storage time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Seed-mediated grown silver nanoparticles as a colorimetric sensor for detection of ascorbic acid

    Science.gov (United States)

    Rostami, Simindokht; Mehdinia, Ali; Jabbari, Ali

    2017-06-01

    A simple and sensitive approach was demonstrated for detection of ascorbic acid (AA) based on seed-mediated growth of silver nanoparticles (Ag NPs). According to the seeding strategy, silver ions existing in the growth solution were reduced to silver atoms on the surface of silver seeds via redox reaction between silver ions and AA. This process -led to appear an absorption band in near 420 nm owing to the localized surface plasmon resonance peak of the generated Ag NPs. This change in absorption spectra of Ag NPs caused a change in color of the mixture from colorless to yellow. It was found that the changes in absorption intensity at 420 nm have a good relationship with the concentration of AA. Also, detection of AA was achieved through the established colorimetric sensor in the range of 0.25-25 μM with detection limit of 0.054 μM. Moreover, the selectivity of the method was evaluated with considering potential interferences. The method showed high selectivity toward AA rather than potential interferences and coexisted molecules with AA. It was successfully applied for detection and determination of AA in pharmaceutical tablets and commercial lemonade.

  12. A label-free colorimetric sensor for Pb2+ detection based on the acceleration of gold leaching by graphene oxide.

    Science.gov (United States)

    Shi, Xinhao; Gu, Wei; Zhang, Cuiling; Zhao, Longyun; Peng, Weidong; Xian, Yuezhong

    2015-03-14

    In this work, we developed a novel, label-free, colorimetric sensor for Pb(2+) detection based on the acceleration of gold leaching by graphene oxide (GO) at room temperature. Gold nanoparticles (AuNPs) can be dissolved in a thiosulfate (S2O3(2-)) aqueous environment in the presence of oxygen; however, the leaching rate is very slow due to the high activation energy (27.99 kJ mol(-1)). In order to enhance the reaction rate, some accelerators should be added. In comparison with the traditional accelerators (metal ions or middle ligands), we found that GO could efficiently accelerate the gold leaching reaction. Kinetic data demonstrate that the dissolution rate of gold in the Pb(2+)-S2O3(2-)-GO system is 5 times faster than that without GO at room temperature. In addition, the effects of surface modification and the nanoparticle size on the etching of AuNPs were investigated. Based on the GO-accelerated concentration-dependent colour changes of AuNPs, a colorimetric sensor for Pb(2+) detection was developed with a linear range from 0.1 to 20 μM and the limit of detection (LOD) was evaluated to be 0.05 μM. This colorimetric assay is simple, low-cost, label-free, and has numerous potential applications in the field of environmental chemistry.

  13. Aggregation-based colorimetric sensor for determination of prothioconazole fungicide using colloidal silver nanoparticles (AgNPs)

    Science.gov (United States)

    Ivrigh, Zahra Jafar-Nezhad; Fahimi-Kashani, Nafiseh; Hormozi-Nezhad, M. Reza

    2017-12-01

    There is a growing interest in developing high-performance sensors monitoring fungicides, due to their broadly usage and their adverse effects on humans and wildlife. In the present study, a colorimetric probe has been proposed for detection of prothioconazole based on aggregation of unmodified silver nanoparticles (AgNPs). Under optimized condition, linear relationships between the concentration of prothioconazole and the absorbance ratio of A500/A395 were found over the range of 0.01 μg·mL- 1 to 0.4 μg·mL- 1 with quantification limit as low as 1.7 ng·mL- 1. Furthermore, AgNPs color change from yellow to pink-orange in presence of prothioconazole, indicates highly sensitive naked-eye colorimetric assay for quantifying prothioconazole in real applications. The proposed approach was successfully used for the determination of prothioconazole in wheat flour and paddy water sample.

  14. Rapid Colorimetric Detection of Cartap Residues by AgNP Sensor with Magnetic Molecularly Imprinted Microspheres as Recognition Elements

    Directory of Open Access Journals (Sweden)

    Mao Wu

    2018-06-01

    Full Text Available The overuse of cartap in tea tree leads to hazardous residues threatening human health. A colorimetric determination was established to detect cartap residues in tea beverages by silver nanoparticles (AgNP sensor with magnetic molecularly imprinted polymeric microspheres (Fe3O4@mSiO2@MIPs as recognition elements. Using Fe3O4 as supporting core, mesoporous SiO2 as intermediate shell, methylacrylic acid as functional monomer, and cartap as template, Fe3O4@mSiO2@MIPs were prepared to selectively and magnetically separate cartap from tea solution before colorimetric determination by AgNP sensors. The core-shell Fe3O4@mSiO2@MIPs were also characterized by FT-IR, TEM, VSM, and experimental adsorption. The Fe3O4@mSiO2@MIPs could be rapidly separated by an external magnet in 10 s with good reusability (maintained 95.2% through 10 cycles. The adsorption process of cartap on Fe3O4@mSiO2@MIPs conformed to Langmuir adsorption isotherm with maximum adsorption capacity at 0.257 mmol/g and short equilibrium time of 30 min at 298 K. The AgNP colorimetric method semi-quantified cartap ≥5 mg/L by naked eye and quantified cartap 0.1–5 mg/L with LOD 0.01 mg/L by UV-vis spectroscopy. The AgNP colorimetric detection after pretreatment with Fe3O4@mSiO2@MIPs could be successfully utilized to recognize and detect cartap residues in tea beverages.

  15. Development of a colorimetric microfluidic pH sensor for autonomous seawater measurements.

    Science.gov (United States)

    Rérolle, Victoire M C; Floquet, Cedric F A; Harris, Andy J K; Mowlem, Matt C; Bellerby, Richard R G J; Achterberg, Eric P

    2013-07-05

    High quality carbonate chemistry measurements are required in order to fully understand the dynamics of the oceanic carbonate system. Seawater pH data with good spatial and temporal coverage are particularly critical to apprehend ocean acidification phenomena and their consequences. There is a growing need for autonomous in situ instruments that measure pH on remote platforms. Our aim is to develop an accurate and precise autonomous in situ pH sensor for long term deployment on remote platforms. The widely used spectrophotometric pH technique is capable of the required high-quality measurements. We report a key step towards the miniaturization of a colorimetric pH sensor with the successful implementation of a simple microfluidic design with low reagent consumption. The system is particularly adapted to shipboard deployment: high quality data was obtained over a period of more than a month during a shipboard deployment in northwest European shelf waters, and less than 30 mL of indicator was consumed. The system featured a short term precision of 0.001 pH (n=20) and an accuracy within the range of a certified Tris buffer (0.004 pH). The quality of the pH system measurements have been checked using various approaches: measurements of certified Tris buffer, measurement of certified seawater for DIC and TA, comparison of measured pH against calculated pH from pCO2, DIC and TA during the cruise in northwest European shelf waters. All showed that our measurements were of high quality. The measurements were made close to in situ temperature (+0.2°C) in a sampling chamber which had a continuous flow of the ship's underway seawater supply. The optical set up was robust and relatively small due to the use of an USB mini-spectrometer, a custom made polymeric flow cell and an LED light source. The use of a three wavelength LED with detection that integrated power across the whole of each LED output spectrum indicated that low wavelength resolution detectors can be used

  16. Recyclable colorimetric sensor of Cr3 + and Pb2 + ions simultaneously using a zwitterionic amino acid modified gold nanoparticles

    Science.gov (United States)

    Sang, Fuming; Li, Xin; Zhang, Zhizhou; Liu, Jia; Chen, Guofu

    2018-03-01

    In this work, a rapid, simple and sensitive colorimetric sensor for simultaneous (or respective) detection of Cr3 + and Pb2 + using tyrosine functionalized gold nanoparticles (AuNPsTyr) has been developed. Tyrosine, a natural and zwitterionic amino acid, could be as a reducing and capping agent to synthesise AuNPs and allow for the simultaneous and selective detection of Cr3 + and Pb2 +. Upon the addition of Cr3 + or Pb2 + (a combination of them), the color of AuNPsTyr solution changes from red to blue grey and the characteristic surface plasmon resonance (SPR) band is red-shifted to 580 nm due to the aggregation of AuNPs. Interestingly, the aggregated AuNPsTyr can be regnerated and recycled by removing Pb2 + and Cr3 +. Even after 3 rounds, AuNPsTyr show almost the same A580 nm / A520 nm value for the assays of Pb2 + and Cr3 +, indicating the good recyclability of the colorimetric sensor. The responding time (within 1 min) and sensitivity of the colorimetric sensor are largely improved after the addition of 0.1 M NaCl. Moreover, the AuNPsTyr aggregated by Cr3 + or Pb2 + (a combination of them) show excellent selectivity compared to other metal ions (Cr3 +, Pb2 +, Fe2 +,Cu2 +,Zn2 +,Cr6 +,Ni2 +,Co2 +,Hg2 +,Mn2 +,Mg2 +,Ca2 +,Cd2 +). More importantly, the developed sensor manifests good stability at room temperature for 3 months, which has been successfully used to determine Cr3 + and Pb2 + in the real water samples with a high sensitivity.

  17. A novel colorimetric sensor based on BODIPY-coumarin dye for simultaneous detection of cyanide and fluoride

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yanhua, E-mail: hpyyh@aliyun.com [Institute for Interdisciplinary Research, Jianghan University, Wuhan 430056 (China); Shu, Tingting; Fu, Cheng; Yu, Bingjie; Zhang, Dongdong; Luo, Huixiu; Chen, Junjie [Institute for Interdisciplinary Research, Jianghan University, Wuhan 430056 (China); Dong, Changzhi [Institute for Interdisciplinary Research, Jianghan University, Wuhan 430056 (China); University Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR CNRS 7086, 15 rue J-A de Baïf, 75205 Paris Cedex 13 (France)

    2017-06-15

    A novel colorimetric and fluorescent sensor 6 for fluoride and cyanide was developed based on BODIPY-coumarin platform and its anions sensing properties were investigated in the mixture of acetonitrile and Tris–HCl buffer (v/v = 95:5, pH = 7.5). Probe 6 could simultaneously detect F{sup –} and CN{sup –} through colorimetric method over the other competitive anions, such as Cl{sup –}, Br{sup –}, I{sup –}, NO{sub 3}{sup –}, ClO{sub 4}{sup –}, HSO{sub 4}{sup –}, S{sup 2–} and H{sub 2}PO{sub 4}{sup –}. It exhibited a distinct color change from red to green upon addition of F{sup –} through deprotection of tert-butyldiphenylsilyl group of coumarin. Moreover, it displayed an obvious color change from red to yellow through deprotection process firstly, then with a nucleophilic displacement mechanism. Therefore, the sensor 6 provides a novel method to simultaneously detect F{sup −} and CN{sup −} with different color change in the same solvent environment. The detection limit of sensor 6 toward F{sup –} and CN{sup –} ion was determined to be 0.43 μM and 1.9 μM respectively,.

  18. A simple highly sensitive and selective aptamer-based colorimetric sensor for environmental toxins microcystin-LR in water samples.

    Science.gov (United States)

    Li, Xiuyan; Cheng, Ruojie; Shi, Huijie; Tang, Bo; Xiao, Hanshuang; Zhao, Guohua

    2016-03-05

    A simple and highly sensitive aptamer-based colorimetric sensor was developed for selective detection of Microcystin-LR (MC-LR). The aptamer (ABA) was employed as recognition element which could bind MC-LR with high-affinity, while gold nanoparticles (AuNPs) worked as sensing materials whose plasma resonance absorption peaks red shifted upon binding of the targets at a high concentration of sodium chloride. With the addition of MC-LR, the random coil aptamer adsorbed on Au NPs altered into regulated structure to form MC-LR-aptamer complexes and broke away from the surface of Au NPs, leading to the aggregation of AuNPs, and the color converted from red to blue due to the interparticle plasmon coupling. Results showed that our aptamer-based colorimetric sensor exhibited rapid and sensitive detection performance for MC-LR with linear range from 0.5 nM to 7.5 μM and the detection limit reached 0.37 nM. Meanwhile, the pollutants usually coexisting with MC-LR in pollutant water samples had not demonstrated disturbance for detecting of MC-LR. The mechanism was also proposed suggesting that high affinity interaction between aptamer and MC-LR significantly enhanced the sensitivity and selectivity for MC-LR detection. Besides, the established method was utilized in analyzing real water samples and splendid sensitivity and selectivity were obtained as well. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. A one-step colorimetric acid-base titration sensor using a complementary color changing coordination system.

    Science.gov (United States)

    Cho, Hui Hun; Kim, Si Hyun; Heo, Jun Hyuk; Moon, Young Eel; Choi, Young Hun; Lim, Dong Cheol; Han, Kwon-Hoon; Lee, Jung Heon

    2016-06-21

    We report the development of a colorimetric sensor that allows for the quantitative measurement of the acid content via acid-base titration in a single-step. In order to create the sensor, we used a cobalt coordination system (Co-complex sensor) that changes from greenish blue colored Co(H2O)4(OH)2 to pink colored Co(H2O)6(2+) after neutralization. Greenish blue and pink are two complementary colors with a strong contrast. As a certain amount of acid is introduced to the Co-complex sensor, a portion of greenish blue colored Co(H2O)4(OH)2 changes to pink colored Co(H2O)6(2+), producing a different color. As the ratio of greenish blue and pink in the Co-complex sensor is determined by the amount of neutralization reaction occurring between Co(H2O)4(OH)2 and an acid, the sensor produced a spectrum of green, yellow green, brown, orange, and pink colors depending on the acid content. In contrast, the color change appeared only beyond the end point for normal acid-base titration. When we mixed this Co-complex sensor with different concentrations of citric acid, tartaric acid, and malic acid, three representative organic acids in fruits, we observed distinct color changes for each sample. This color change could also be observed in real fruit juice. When we treated the Co-complex sensor with real tangerine juice, it generated diverse colors depending on the concentration of citric acid in each sample. These results provide a new angle on simple but quantitative measurements of analytes for on-site usage in various applications, such as in food, farms, and the drug industry.

  20. Colorimetric biomimetic sensor systems based on molecularly imprinted polymer membranes for highly-selective detection of phenol in environmental samples

    Directory of Open Access Journals (Sweden)

    Sergeyeva T. A.

    2014-05-01

    Full Text Available Aim. Development of an easy-to-use colorimetric sensor system for fast and accurate detection of phenol in envi- ronmental samples. Methods. Technique of molecular imprinting, method of in situ polymerization of molecularly imprinted polymer membranes. Results. The proposed sensor is based on free-standing molecularly imprinted polymer (MIP membranes, synthesized by in situ polymerization, and having in their structure artificial binding sites capable of selective phenol recognition. The quantitative detection of phenol, selectively adsorbed by the MIP membranes, is based on its reaction with 4-aminoantipyrine, which gives a pink-colored product. The intensity of staining of the MIP membrane is proportional to phenol concentration in the analyzed sample. Phenol can be detected within the range 50 nM–10 mM with limit of detection 50 nM, which corresponds to the concentrations that have to be detected in natural and waste waters in accordance with environmental protection standards. Stability of the MIP-membrane-based sensors was assessed during 12 months storage at room temperature. Conclusions. The sensor system provides highly-selective and sensitive detection of phenol in both mo- del and real (drinking, natural, and waste water samples. As compared to traditional methods of phenol detection, the proposed system is characterized by simplicity of operation and can be used in non-laboratory conditions.

  1. Covalent Organic Framework Functionalized with 8-Hydroxyquinoline as a Dual-Mode Fluorescent and Colorimetric pH Sensor.

    Science.gov (United States)

    Chen, Long; He, Linwei; Ma, Fuyin; Liu, Wei; Wang, Yaxing; Silver, Mark A; Chen, Lanhua; Zhu, Lin; Gui, Daxiang; Diwu, Juan; Chai, Zhifang; Wang, Shuao

    2018-05-09

    Real-time and accurate detection of pH in aqueous solution is of great significance in chemical, environmental, and engineering-related fields. We report here the use of 8-hydroxyquinoline-functionalized covalent organic framework (COF-HQ) for dual-mode pH sensing. In the fluorescent mode, the emission intensity of COF-HQ weakened as the pH decreased, and also displayed a good linear relationship against pH in the range from 1 to 5. In addition, COF-HQ showed discernible color changes from yellow to black as the acidity increased and can be therefore used as a colorimetric pH sensor. All these changes are reversible and COF-HQ can be recycled for multiple detection runs owing to its high hydrolytical stability. It can be further assembled into a mixed matrix membrane for practical applications.

  2. A colorimetric chiral sensor based on chiral crown ether for the recognition of the two enantiomers of primary amino alcohols and amines.

    Science.gov (United States)

    Cho, Eun Na Rae; Li, Yinan; Kim, Hee Jin; Hyun, Myung Ho

    2011-04-01

    A new colorimetric chiral sensor material consisting of three different functional sites such as chromophore (2,4-dinitrophenylazophenol dye), binding site (crown ether), and chiral barrier (3,3'-diphenyl-1,1'-binaphthyl group) was prepared and applied to the recognition of the two enantiomers of primary amino alcohols and amines. Among five primary amino alcohols and two primary amines tested, the two enantiomers of phenylalaninol show the highest difference in the absorption maximum wavelength (Δλ(max)=43.5 nm) and in the association constants (K(S)/K(R)=2.51) upon complexation with the colorimetric chiral sensor material and, consequently, the two enantiomers of phenylalaninol were clearly distinguished from each other by the color difference. Copyright © 2010 Wiley-Liss, Inc.

  3. Chitosan Capped Silver Nanoparticles as Colorimetric Sensor for the Determination of Iron(III

    Directory of Open Access Journals (Sweden)

    Javad Tashkhourian

    2017-12-01

    Full Text Available A selective, simple and low-cost method for the colorimetric determination of Fe3+ ions based on chitosan capped silver nanoparticles (Chit-AgNPs was presented. Chitosan is a cationic polyelectrolyte and possesses amino and hydroxy groups which make it widely used as a capping agent for Ag NPs. The synthesized chitosan capped silver nanoparticles with excellent colloidal stability were characterized by UV–Visible spectrometry, transmission electron microscopy, Fourier transform infrared, X-ray diffraction. Chit-AgNPs exhibit a strong surface plasmon resonance band which disappears in the presence of increasing concentrations of Fe3+ ions. This system showed a visually detectable color change from brownish-yellow to colorless for the selective determination of Fe3+. The method can be applied for the determination of Fe3+ ions in the concentration range of 1.0×10-6 to 5.0×10-4 M. The detection limit was determined from three times the standard deviation of the blank signal (3σ/slope as 5.3 × 10−7 M. The developed method was successfully applied for the determination of Fe3+in real samples

  4. Novel colorimetric sensors for cyanide based on azo-hydrazone tautomeric skeletons.

    Science.gov (United States)

    Adegoke, Olajire A; Adesuji, Temitope E; Thomas, Olusegun E

    2014-07-15

    The monoazo dyes, 4-carboxyl-2, 6-dinitrophenylazohydroxynaphthalenes dyes (AZ-01, AZ-03 and AZ-04), were evaluated as a highly selective colorimetric chemosensor for cyanide ion. The recognition of cyanide ion gave an obvious colour change from light yellow to brownish red and upon dilution with acetone produced a purple to lilac colour. Optimum conditions for the reaction between the azo dyes and cyanide ion were established at 30°C for 5 min, and different variables affecting the reaction were carefully studied and optimised. Under the optimum conditions, linear relationships between the CN(-) concentrations and light absorption were established. Using these azo-hydrazone molecular switch entities, excellent selectivity towards the detection of CN(-) in aqueous solution over miscellaneous competitive anions was observed. Such selectivity mainly results from the possibility of nucleophilic attack on the azo-hydrazone chemosensors by cyanide anions in aqueous system, which is not afforded by other competing anions. The cyanide chemosensor method described here should have potential application as a new family probes for detecting cyanide in aqueous solution. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Colorimetric humidity sensor based on liquid composite materials for the monitoring of food and pharmaceuticals.

    Science.gov (United States)

    Bridgeman, Devon; Corral, Javier; Quach, Ashley; Xian, Xiaojun; Forzani, Erica

    2014-09-09

    Using supported ionic-liquid membrane (SILM)-inspired methodologies, we have synthesized, characterized, and developed a humidity sensor by coating a liquid composite material onto a hygroscopic, porous substrate. Similar to pH paper, the sensor responds to the environment's relative humidity and changes color accordingly. The humidity indicator is prepared by casting a few microliters of low-toxicity reagents on a nontoxic substrate. The sensing material is a newly synthesized liquid composite that comprises a hygroscopic medium for environmental humidity capture and a color indicator that translates the humidity level into a distinct color change. Sodium borohydride was used to form a liquid composite medium, and DenimBlu30 dye was used as a redox indicator. The liquid composite medium provides a hygroscopic response to the relative humidity, and DenimBlu30 translates the chemical changes into a visual change from yellow to blue. The borate-redox dye-based humidity sensor was prepared, and then Fourier transform infrared spectroscopy, differential scanning calorimetry, and image analysis methods were used to characterize the chemical composition, optimize synthesis, and gain insight into the sensor reactivity. Test results indicated that this new sensing material can detect relative humidity in the range of 5-100% in an irreversible manner with good reproducibility and high accuracy. The sensor is a low-cost, highly sensitive, easy-to-use humidity indicator. More importantly, it can be easily packaged with products to monitor humidity levels in pharmaceutical and food packaging.

  6. The combined rapid detection and species-level identification of yeasts in simulated blood culture using a colorimetric sensor array.

    Science.gov (United States)

    Shrestha, Nabin K; Lim, Sung H; Wilson, Deborah A; SalasVargas, Ana Victoria; Churi, Yair S; Rhodes, Paul A; Mazzone, Peter J; Procop, Gary W

    2017-01-01

    A colorimetric sensor array (CSA) has been demonstrated to rapidly detect and identify bacteria growing in blood cultures by obtaining a species-specific "fingerprint" of the volatile organic compounds (VOCs) produced during growth. This capability has been demonstrated in prokaryotes, but has not been reported for eukaryotic cells growing in culture. The purpose of this study was to explore if a disposable CSA could differentially identify 7 species of pathogenic yeasts growing in blood culture. Culture trials of whole blood inoculated with a panel of clinically important pathogenic yeasts at four different microorganism loads were performed. Cultures were done in both standard BacT/Alert and CSA-embedded bottles, after adding 10 mL of spiked blood to each bottle. Color changes in the CSA were captured as images by an optical scanner at defined time intervals. The captured images were analyzed to identify the yeast species. Time to detection by the CSA was compared to that in the BacT/Alert system. One hundred sixty-two yeast culture trials were performed, including strains of several species of Candida (Ca. albicans, Ca. glabrata, Ca. parapsilosis, and Ca. tropicalis), Clavispora (synonym Candida) lusitaniae, Pichia kudriavzevii (synonym Candida krusei) and Cryptococcus neoformans, at loads of 8.2 × 105, 8.3 × 103, 8.5 × 101, and 1.7 CFU/mL. In addition, 8 negative trials (no yeast) were conducted. All negative trials were correctly identified as negative, and all positive trials were detected. Colorimetric responses were species-specific and did not vary by inoculum load over the 500000-fold range of loads tested, allowing for accurate species-level identification. The mean sensitivity for species-level identification by CSA was 74% at detection, and increased with time, reaching almost 95% at 4 hours after detection. At an inoculum load of 1.7 CFU/mL, mean time to detection with the CSA was 6.8 hours (17%) less than with the BacT/Alert platform. The CSA

  7. The combined rapid detection and species-level identification of yeasts in simulated blood culture using a colorimetric sensor array.

    Directory of Open Access Journals (Sweden)

    Nabin K Shrestha

    Full Text Available A colorimetric sensor array (CSA has been demonstrated to rapidly detect and identify bacteria growing in blood cultures by obtaining a species-specific "fingerprint" of the volatile organic compounds (VOCs produced during growth. This capability has been demonstrated in prokaryotes, but has not been reported for eukaryotic cells growing in culture. The purpose of this study was to explore if a disposable CSA could differentially identify 7 species of pathogenic yeasts growing in blood culture.Culture trials of whole blood inoculated with a panel of clinically important pathogenic yeasts at four different microorganism loads were performed. Cultures were done in both standard BacT/Alert and CSA-embedded bottles, after adding 10 mL of spiked blood to each bottle. Color changes in the CSA were captured as images by an optical scanner at defined time intervals. The captured images were analyzed to identify the yeast species. Time to detection by the CSA was compared to that in the BacT/Alert system.One hundred sixty-two yeast culture trials were performed, including strains of several species of Candida (Ca. albicans, Ca. glabrata, Ca. parapsilosis, and Ca. tropicalis, Clavispora (synonym Candida lusitaniae, Pichia kudriavzevii (synonym Candida krusei and Cryptococcus neoformans, at loads of 8.2 × 105, 8.3 × 103, 8.5 × 101, and 1.7 CFU/mL. In addition, 8 negative trials (no yeast were conducted. All negative trials were correctly identified as negative, and all positive trials were detected. Colorimetric responses were species-specific and did not vary by inoculum load over the 500000-fold range of loads tested, allowing for accurate species-level identification. The mean sensitivity for species-level identification by CSA was 74% at detection, and increased with time, reaching almost 95% at 4 hours after detection. At an inoculum load of 1.7 CFU/mL, mean time to detection with the CSA was 6.8 hours (17% less than with the BacT/Alert platform

  8. Colorimetric Sensor for Detection of Adulteration in Gasoline using Polydiacetyleneelectro-Spun Fibers

    Directory of Open Access Journals (Sweden)

    Shamshad Ali

    2016-06-01

    Full Text Available We report the successful incorporation of pentacosadiynoic acid (PCDA in poly(Ɛ-caprolactone (PCL by electro-spinning technique for sensor application. The UV-polymerization of the resulting electro-spun fibers mats (EFMs produced polydiacetylenes (PDA polymer exhibiting blue color. The PCL-PDA EFMs were characterized by Raman Spectroscopy, UV-Vis Spectroscopy and FE-SEM analysis. Sensor test results revealed that the treatment of the PCL-PDA EFMs with adulterated gasoline showed a blue to red color transitionrapidly. FE-SEM images demonstrated that the thinner or toluene used as an adulterant in the gasoline destroyed the PCL electro-spun fibers; which gave access to PDA polymer producing red color.

  9. Oligothiophene-based colorimetric and ratiometric fluorescence dual-channel cyanide chemosensor: Sensing ability, TD-DFT calculations and its application as an efficient solid state sensor

    Science.gov (United States)

    Lan, Linxin; Li, Tianduo; Wei, Tao; Pang, He; Sun, Tao; Wang, Enhua; Liu, Haixia; Niu, Qingfen

    2018-03-01

    An oligothiophene-based colorimetric and ratiometric fluorescence dual-channel cyanide chemosensor 3 T-2CN was reported. Sensor 3 T-2CN showed both naked-eye recognition and ratiometric fluorescence response for CN- with an excellent selectivity and high sensitivity. The sensing mechanism based on the nucleophilic attack of CN- on the vinyl Cdbnd C bond has been successfully confirmed by the optical measurements, 1H NMR titration, FT-IR spectra as well as the DFT/TD-DFT calculations. Moreover, the detection limit was calculated to be 0.19 μM, which is much lower than the maximum permission concentration in drinking water (1.9 μM). Importantly, test strips (filter paper and TLC plates) containing 3 T-2CN were fabricated, which could act as a practical and efficient solid state optical sensor for CN- in field measurements.

  10. Highly selective and sensitive paper-based colorimetric sensor using thiosulfate catalytic etching of silver nanoplates for trace determination of copper ions.

    Science.gov (United States)

    Chaiyo, Sudkate; Siangproh, Weena; Apilux, Amara; Chailapakul, Orawon

    2015-03-25

    A novel, highly selective and sensitive paper-based colorimetric sensor for trace determination of copper (Cu(2+)) ions was developed. The measurement is based on the catalytic etching of silver nanoplates (AgNPls) by thiosulfate (S2O3(2-)). Upon the addition of Cu(2+) to the ammonium buffer at pH 11, the absorption peak intensity of AuNPls/S2O3(2-) at 522 nm decreased and the pinkish violet AuNPls became clear in color as visible to the naked eye. This assay provides highly sensitive and selective detection of Cu(2+) over other metal ions (K(+), Cr(3+), Cd(2+), Zn(2+), As(3+), Mn(2+), Co(2+), Pb(2+), Al(3+), Ni(2+), Fe(3+), Mg(2+), Hg(2+) and Bi(3+)). A paper-based colorimetric sensor was then developed for the simple and rapid determination of Cu(2+) using the catalytic etching of AgNPls. Under optimized conditions, the modified AgNPls coated at the test zone of the devices immediately changes in color in the presence of Cu(2+). The limit of detection (LOD) was found to be 1.0 ng mL(-1) by visual detection. For semi-quantitative measurement with image processing, the method detected Cu(2+) in the range of 0.5-200 ng mL(-1)(R(2)=0.9974) with an LOD of 0.3 ng mL(-1). The proposed method was successfully applied to detect Cu(2+) in the wide range of real samples including water, food, and blood. The results were in good agreement according to a paired t-test with results from inductively coupled plasma-optical emission spectrometry (ICP-OES). Copyright © 2015. Published by Elsevier B.V.

  11. A new multifunctional Schiff base as a fluorescence sensor for Fe{sup 2+} and F{sup −} ions, and a colorimetric sensor for Fe{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Chin-Feng [School of Medical Applied Chemistry, Chung Shan Medical University, Taichung City 40201, Taiwan (China); Chang, Ya-Ju; Chien, Chih-Yu; Sie, Yi-Wun; Hu, Ching-Han [Department of Chemistry, National Changhua University of Education, Changhua 50058, Taiwan (China); Wu, An-Tai, E-mail: antai@cc.ncue.edu.tw [Department of Chemistry, National Changhua University of Education, Changhua 50058, Taiwan (China)

    2016-10-15

    A multifunctional Schiff base fluorescent sensor (receptor L) was prepared and its metal ions and anions sensing properties were investigated. Receptor L exhibited an excellent selective fluorescence response toward Fe{sup 2+} and F{sup −}. It also showed colorimetric response (from colorless to yellow) toward Fe{sup 3+} among a series of ions. Moreover, the detection limits of receptor L for Fe{sup 2+} and F{sup −} were determined to be 0.3 ppm and 25.7 ppb, respectively. The two detection limit values were sufficiently low to detect nano-molar concentration of Fe{sup 2+} and F{sup −}.

  12. Electron-deficient tripodal amide based receptor: An exclusive turn-on fluorescent and colorimetric chemo sensor for cyanide ion

    Science.gov (United States)

    Murugesan, Kumaresan; Jeyasingh, Vanthana; Lakshminarayanan, Sudha; Govindaraj, Tamil Selvan; Paulraj, Mosae Selvakumar; Narayanan, Selvapalam; Piramuthu, Lakshminarayanan

    2018-06-01

    Here in, we have designed, synthesized and isolated sensor L, as an exclusive selective turn-on fluorescent chemo sensor for cyanide ion. The acetonitrile solution contains L with tetrabutyl ammonium cyanide, results sudden color change from colorless to yellowish-brown. Chemosensor L produced a strong fluorescence response with an enhancement of very high fluorescence intensity while addition of CN- ion and the strength of the chemosensor L towards cyanide binding is found to be 3.9813 × 104 M-1. In order to use this sensor in practical application, we also prepared a cassette which is fabricated with sensor L and we succeeded to sense cyanide ion.

  13. Functionalized graphene oxide quantum dot-PVA hydrogel: a colorimetric sensor for Fe2+, Co2+ and Cu2+ ions

    Science.gov (United States)

    Baruah, Upama; Chowdhury, Devasish

    2016-04-01

    Functionalized graphene oxide quantum dots (GOQDs)-poly(vinyl alcohol) (PVA) hybrid hydrogels were prepared using a simple, facile and cost-effective strategy. GOQDs bearing different surface functional groups were introduced as the cross-linking agent into the PVA matrix thereby resulting in gelation. The four different types of hybrid hydrogels were prepared using graphene oxide, reduced graphene oxide, ester functionalized graphene oxide and amine functionalized GOQDs as cross-linking agents. It was observed that the hybrid hydrogel prepared with amine functionalized GOQDs was the most stable. The potential applicability of using this solid sensing platform has been subsequently explored in an easy, simple, effective and sensitive method for optical detection of M2+ (Fe2+, Co2+ and Cu2+) in aqueous media involving colorimetric detection. Amine functionalized GOQDs-PVA hybrid hydrogel when put into the corresponding solution of Fe2+, Co2+ and Cu2+ renders brown, orange and blue coloration respectively of the solution detecting the presence of Fe2+, Co2+ and Cu2+ ions in the solution. The minimum detection limit observed was 1 × 10-7 M using UV-visible spectroscopy. Further, the applicability of the sensing material was also tested for a mixture of co-existing ions in solution to demonstrate the practical applicability of the system. Insight into the probable mechanistic pathway involved in the detection process is also being discussed.

  14. Integration of Nanoparticle-Based Paper Sensors into the Classroom: An Example of Application for Rapid Colorimetric Analysis of Antioxidants

    Science.gov (United States)

    Sharpe, Erica; Andreescu, Silvana

    2015-01-01

    We describe a laboratory experiment that employs the Nanoceria Reducing Antioxidant Capacity (or NanoCerac) Assay to introduce students to portable nanoparticle-based paper sensors for rapid analysis and field detection of polyphenol antioxidants. The experiment gives students a hands-on opportunity to utilize nanoparticle chemistry to develop…

  15. An aggregation-induced emission (AIE) active probe for multiple targets: a fluorescent sensor for Zn(2+) and Al(3+) & a colorimetric sensor for Cu(2+) and F(-).

    Science.gov (United States)

    Samanta, Soham; Manna, Utsab; Ray, Turjya; Das, Gopal

    2015-11-21

    A rationally designed probe L, which consists of both cation and anion binding sites, is capable of displaying interesting aggregation induced emission (AIE) properties. L not only can sense Al(3+) and Zn(2+) through selective turn-on fluorescence responses in 9 : 1 methanol-HEPES buffer (5 mM, pH 7.3; 9 : 1, v/v) medium due to metal ion triggered AIE activity, but also can distinguish them through individual emission signals. L can also detect Cu(2+) in mixed buffer medium and F(-) in acetonitrile through sharp colorimetric responses. All the sensing processes are conspicuous through the naked eye. A theoretical study strongly backed the proposed sensing mechanisms.

  16. Sulfophenyl-Functionalized Reduced Graphene Oxide Networks on Electrospun 3D Scaffold for Ultrasensitive NO2 Gas Sensor

    Directory of Open Access Journals (Sweden)

    Bin Zou

    2017-12-01

    Full Text Available Ultrasensitive room temperature real-time NO2 sensors are highly desirable due to potential threats on environmental security and personal respiratory. Traditional NO2 gas sensors with highly operated temperatures (200–600 °C and limited reversibility are mainly constructed from semiconducting oxide-deposited ceramic tubes or inter-finger probes. Herein, we report the functionalized graphene network film sensors assembled on an electrospun three-dimensional (3D nanonetwork skeleton for ultrasensitive NO2 sensing. The functional 3D scaffold was prepared by electrospinning interconnected polyacrylonitrile (PAN nanofibers onto a nylon window screen to provide a 3D nanonetwork skeleton. Then, the sulfophenyl-functionalized reduced graphene oxide (SFRGO was assembled on the electrospun 3D nanonetwork skeleton to form SFRGO network films. The assembled functionalized graphene network film sensors exhibit excellent NO2 sensing performance (10 ppb to 20 ppm at room temperature, reliable reversibility, good selectivity, and better sensing cycle stability. These improvements can be ascribed to the functionalization of graphene with electron-withdrawing sulfophenyl groups, the high surface-to-volume ratio, and the effective sensing channels from SFRGO wrapping onto the interconnected 3D scaffold. The SFRGO network-sensing film has the advantages of simple preparation, low cost, good processability, and ultrasensitive NO2 sensing, all advantages that can be utilized for potential integration into smart windows and wearable electronic devices for real-time household gas sensors.

  17. Sulfophenyl-Functionalized Reduced Graphene Oxide Networks on Electrospun 3D Scaffold for Ultrasensitive NO₂ Gas Sensor.

    Science.gov (United States)

    Zou, Bin; Guo, Yunlong; Shen, Nannan; Xiao, Anshan; Li, Mingjun; Zhu, Liang; Wan, Pengbo; Sun, Xiaoming

    2017-12-19

    Ultrasensitive room temperature real-time NO₂ sensors are highly desirable due to potential threats on environmental security and personal respiratory. Traditional NO₂ gas sensors with highly operated temperatures (200-600 °C) and limited reversibility are mainly constructed from semiconducting oxide-deposited ceramic tubes or inter-finger probes. Herein, we report the functionalized graphene network film sensors assembled on an electrospun three-dimensional (3D) nanonetwork skeleton for ultrasensitive NO₂ sensing. The functional 3D scaffold was prepared by electrospinning interconnected polyacrylonitrile (PAN) nanofibers onto a nylon window screen to provide a 3D nanonetwork skeleton. Then, the sulfophenyl-functionalized reduced graphene oxide (SFRGO) was assembled on the electrospun 3D nanonetwork skeleton to form SFRGO network films. The assembled functionalized graphene network film sensors exhibit excellent NO₂ sensing performance (10 ppb to 20 ppm) at room temperature, reliable reversibility, good selectivity, and better sensing cycle stability. These improvements can be ascribed to the functionalization of graphene with electron-withdrawing sulfophenyl groups, the high surface-to-volume ratio, and the effective sensing channels from SFRGO wrapping onto the interconnected 3D scaffold. The SFRGO network-sensing film has the advantages of simple preparation, low cost, good processability, and ultrasensitive NO₂ sensing, all advantages that can be utilized for potential integration into smart windows and wearable electronic devices for real-time household gas sensors.

  18. A colorimetric turn-on optical chemosensor for Cu2+ ions and its application as solid state sensor

    Science.gov (United States)

    Pannipara, Mehboobali; Al-Sehemi, Abdullah G.; Assiri, Mohammed; Kalam, Abul

    2018-05-01

    We report a novel coumarin based optical chemosensor (Probe 1) for the selective and sensitive detection of Cu2+ ions in aqueous medium. The addition of Cu2+ ions to Probe 1 shows distinct color change from light yellow to pinkish red color under visible light with the sensing limit of 1.54 μM. Moreover, practical utility of Probe 1 as solid state optical sensor (test paper, TLC plates) for sensing Cu2+ has been demonstrated by instantaneous "naked eye" response.

  19. Facile synthesis of enzyme-embedded magnetic metal-organic frameworks as a reusable mimic multi-enzyme system: mimetic peroxidase properties and colorimetric sensor.

    Science.gov (United States)

    Hou, Chen; Wang, Yang; Ding, Qinghua; Jiang, Long; Li, Ming; Zhu, Weiwei; Pan, Duo; Zhu, Hao; Liu, Mingzhu

    2015-11-28

    This work reports a facile and easily-achieved approach for enzyme immobilization by embedding glucose oxidase (GOx) in magnetic zeolitic imidazolate framework 8 (mZIF-8) via a de novo approach. As a demonstration of the power of such materials, the resulting GOx embedded mZIF-8 (mZIF-8@GOx) was utilized as a colorimetric sensor for rapid detection of glucose. This method was constructed on the basis of metal-organic frameworks (MOFs), which possessed very fascinating peroxidase-like properties, and the cascade reaction for the visual detection of glucose was combined into one step through the mZIF-8@GOx based mimic multi-enzyme system. After characterization by electron microscopy, X-ray diffraction, nitrogen sorption, fourier transform infrared spectroscopy and vibrating sample magnetometry, the as-prepared mZIF-8@GOx was confirmed with the robust core-shell structure, the monodisperse nanoparticle had an average diameter of about 200 nm and displayed superparamagnetism with a saturation magnetization value of 40.5 emu g(-1), it also exhibited a large surface area of 396.10 m(2) g(-1). As a peroxidase mimic, mZIF-8 was verified to be highly stable and of low cost, and showed a strong affinity towards H2O2. Meanwhile, the mZIF-8 embedded GOx also exhibited improved activity, stability and greatly enhanced selectivity in glucose detection. Moreover, the mZIF-8@GOx had excellent recyclability with high activity (88.7% residual activity after 12 times reuse).

  20. Selective colorimetric sensors based on the monitoring of an unmodified silver nanoparticles (AgNPs) reduction for a simple and rapid determination of mercury

    Science.gov (United States)

    Jarujamrus, Purim; Amatatongchai, Maliwan; Thima, Araya; Khongrangdee, Thatsanee; Mongkontong, Chakrit

    2015-05-01

    In this work, selective colorimetric sensors for simple and rapid detection of Hg(II) ions based on the monitoring of an unmodified silver nanoparticles (AgNPs) reduction were developed. The average diameter of synthesized AgNPs was 8.3 ± 1.4 nm which was characterized by transmission electron microscopy (TEM). The abrupt change in absorbance of the unmodified AgNPs was observed which progressively decreased and slightly shifted to the blue wavelength as the concentration of Hg(II) increased, indicating the oxidation of Ag(0) to Ag(I) occurred. It appears that the AgNPs were oxidized by Hg(II), resulting in disintegration of the AgNPs into smaller particles as well as mediating the reduction of Hg(II) to Hg(0) adsorbed onto the surface of AgNPs. The adsorption of Hg(0) resulted in the lack of sufficient charges on AgNPs surfaces due to the decrease in the surface coverage of negatively charged citrate molecules, which then leaded to enlargement of AgNPs. The calibration curve of this technique was demonstrated from 0.5 to 7 ppm (r2 = 0.995), the limit of detection (LOD) was 0.06 ppm (SDblank/slope of calibration curve) with the precision (RSD, n = 4) of 3.24-4.53. Interestingly, the results show a significant enhance in the Hg(II) analytical sensitivity when Cu(II) is doped onto the unmodified AgNPs, which improves the quantitative detection limit to 0.008 ppm. In addition, greater selectivity toward Hg(II) compared with the other metal ions tested was observed. Furthermore, the percentage recoveries of spiked drinking water, tap water and SRM1641d (mercury in water) were in acceptable range with a good precision (RSD) which were in agreement with the values obtained from graphite furnace atomic absorption spectrometer (GFAAS). The technique proposed in this study provides a rapid, simple, sensitive and selective detection method for Hg(II) in water samples.

  1. A schiff-base receptor based naphthalimide derivative: Highly selective and colorimetric fluorescent turn-on sensor for Al{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Lei; Liu, Ya-Tong; Li, Na-Na; Dang, Qian-Xi [Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin 150030 (China); Xing, Zhi-Yong, E-mail: zyxing@neau.edu.cn [Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin 150030 (China); Li, Jin-Long; Zhang, Yu [College of Heilongjiang Province Key Laboratory of Fine Chemicals, Qiqihar University, Qiqihar 161006 (China)

    2017-06-15

    A new schiff-base receptor L based on naphthalimide had been investigated as a selective and sensitive chemosensor for Al{sup 3+} in CH{sub 3}OH. Upon addition of Al{sup 3+}, L showed a 39-fold enhancement at 508 nm with colorimetric and fluorometric dual-signaling response which might be induced by the integration of ICT and CHEF. A 1:1 stoichiometry for the L-Al{sup 3+} complex was formed with an association constant of 1.62×10{sup 4} M{sup −1}, and the limit of detection for Al{sup 3+} was determined as 7.4 nM. In addition, the potential utility of L in sensing Al{sup 3+} was also examined in real water samples.

  2. Colorimetric Recognition of Aldehydes and Ketones.

    Science.gov (United States)

    Li, Zheng; Fang, Ming; LaGasse, Maria K; Askim, Jon R; Suslick, Kenneth S

    2017-08-07

    A colorimetric sensor array has been designed for the identification of and discrimination among aldehydes and ketones in vapor phase. Due to rapid chemical reactions between the solid-state sensor elements and gaseous analytes, distinct color difference patterns were produced and digitally imaged for chemometric analysis. The sensor array was developed from classical spot tests using aniline and phenylhydrazine dyes that enable molecular recognition of a wide variety of aliphatic or aromatic aldehydes and ketones, as demonstrated by hierarchical cluster, principal component, and support vector machine analyses. The aldehyde/ketone-specific sensors were further employed for differentiation among and identification of ten liquor samples (whiskies, brandy, vodka) and ethanol controls, showing its potential applications in the beverage industry. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Phenazine containing indeno-furan based colorimetric and “on–off” fluorescent sensor for the detection of Cu{sup 2+} and Pb{sup 2+}

    Energy Technology Data Exchange (ETDEWEB)

    Aggarwal, Komal; Khurana, Jitender M., E-mail: jmkhurana1@yahoo.co.in

    2015-11-15

    A new fluorescent sensor 10a,15a-dihydroxy-10aH-benzo[a]indeno[2′,1′:4,5]furo[2,3-c]phenazin-15 (15aH)-one (1) based on the combination of phenazine and indenofuran moieties was designed and synthesized. Structure of the synthesized sensor has been confirmed by X-ray crystallographic analysis. Absorption and emission spectra of 1 has been studied in solvents of different polarity. The solvent effect on the spectral properties of 1 has been investigated by using the Lippert–Mataga and Reichardt–Dimroth methods. It exhibits high sensitivity and selectivity towards Cu{sup 2+} and Pb{sup 2+} ions over other metal ions by fluorescence quenching. Sensor 1 exhibited a visible color change from light orange to pink, and yellow in the presence of Cu{sup 2+} and Pb{sup 2+}, respectively. The fluorescence of the 1-Cu{sup 2+}/Pb{sup 2+} complexes can be reversibly restored to that of the uncomplexed ligand by using EDTA. Binding stoichiometry and mechanism of Cu{sup 2+} and Pb{sup 2+} ions detection have been investigated. The linear range for the synthesized sensor was found to be 1×10{sup −6}–6.31×10{sup −5} M with detection limit of 1.3×10{sup −6} M. Theoretical calculations were employed to understand the sensing mechanism of the sensors towards Cu{sup 2+}. - Highlights: • A new indeno-furan based “on–off” sensor for detection of Cu{sup 2+} and Pb{sup 2+} has been synthesized. • 1 shows naked-eye visible color changes upon interaction with Cu{sup 2+} and Pb{sup 2+}. • The complex formation of 1 with Cu{sup 2+} and Pb{sup 2+} could be reversed by addition of EDTA.

  4. Phenazine containing indeno-furan based colorimetric and “on–off” fluorescent sensor for the detection of Cu2+ and Pb2+

    International Nuclear Information System (INIS)

    Aggarwal, Komal; Khurana, Jitender M.

    2015-01-01

    A new fluorescent sensor 10a,15a-dihydroxy-10aH-benzo[a]indeno[2′,1′:4,5]furo[2,3-c]phenazin-15 (15aH)-one (1) based on the combination of phenazine and indenofuran moieties was designed and synthesized. Structure of the synthesized sensor has been confirmed by X-ray crystallographic analysis. Absorption and emission spectra of 1 has been studied in solvents of different polarity. The solvent effect on the spectral properties of 1 has been investigated by using the Lippert–Mataga and Reichardt–Dimroth methods. It exhibits high sensitivity and selectivity towards Cu 2+ and Pb 2+ ions over other metal ions by fluorescence quenching. Sensor 1 exhibited a visible color change from light orange to pink, and yellow in the presence of Cu 2+ and Pb 2+ , respectively. The fluorescence of the 1-Cu 2+ /Pb 2+ complexes can be reversibly restored to that of the uncomplexed ligand by using EDTA. Binding stoichiometry and mechanism of Cu 2+ and Pb 2+ ions detection have been investigated. The linear range for the synthesized sensor was found to be 1×10 −6 –6.31×10 −5 M with detection limit of 1.3×10 −6 M. Theoretical calculations were employed to understand the sensing mechanism of the sensors towards Cu 2+ . - Highlights: • A new indeno-furan based “on–off” sensor for detection of Cu 2+ and Pb 2+ has been synthesized. • 1 shows naked-eye visible color changes upon interaction with Cu 2+ and Pb 2+ . • The complex formation of 1 with Cu 2+ and Pb 2+ could be reversed by addition of EDTA

  5. Electrospun fibre colorimetric probe based on gold nanoparticles for ...

    African Journals Online (AJOL)

    2014-11-20

    Nov 20, 2014 ... pump operated at a flow rate of 0.300 mℓ/h and a high-voltage power supply with a ..... Y (2012) A simple colorimetric sensor based on anti-aggregation of ... inside polystyrene domains dispersed in an epoxy matrix. Eur.

  6. Colorimetric gold nanoparticles-based aptasensors

    Directory of Open Access Journals (Sweden)

    Rezavn Yazdian-Robati

    2018-01-01

    Full Text Available Recognition of different agents including chemical and biological plays important role in forensic, biomedical and environmentalfield.In recent decades, nanotechnology and nano materials had a high impact on development of sensors. Using  nanomaterials in construction of biosensors can effectively improve the Sensitivity and other features of biosensors. Different type of nanostructures including nanotubes, nanodiamonds, thin films ,nanorods, nanoparticles(NP, nanofibers andvarious clusters have been explored and applied in construction of biosensors. Among nanomaterials mentioned above, gold nanoparticle (GNPas a new class of unique fluorescence quenchers, is receiving significant attention in developing of optical biosensors because of their unique physical, chemical and biological properties. In this mini review, we discussed the use of GNPs in construction of colorimetric aptasensorsas a class of optical sensors for detection of antibiotics, toxins and infection diseases.

  7. In-Doped ZnO Hexagonal Stepped Nanorods and Nanodisks as Potential Scaffold for Highly-Sensitive Phenyl Hydrazine Chemical Sensors.

    Science.gov (United States)

    Umar, Ahmad; Kim, Sang Hoon; Kumar, Rajesh; Al-Assiri, Mohammad S; Al-Salami, A E; Ibrahim, Ahmed A; Baskoutas, Sotirios

    2017-11-21

    Herein, we report the growth of In-doped ZnO (IZO) nanomaterials, i.e., stepped hexagonal nanorods and nanodisks by the thermal evaporation process using metallic zinc and indium powders in the presence of oxygen. The as-grown IZO nanomaterials were investigated by several techniques in order to examine their morphological, structural, compositional and optical properties. The detailed investigations confirmed that the grown nanomaterials, i.e., nanorods and nanodisks possess well-crystallinity with wurtzite hexagonal phase and grown in high density. The room-temperature PL spectra exhibited a suppressed UV emissions with strong green emissions for both In-doped ZnO nanomaterials, i.e., nanorods and nanodisks. From an application point of view, the grown IZO nanomaterials were used as a potential scaffold to fabricate sensitive phenyl hydrazine chemical sensors based on the I-V technique. The observed sensitivities of the fabricated sensors based on IZO nanorods and nanodisks were 70.43 μA·mM -1 cm -2 and 130.18 μA·mM -1 cm -2 , respectively. For both the fabricated sensors, the experimental detection limit was 0.5 μM, while the linear range was 0.5 μM-5.0 mM. The observed results revealed that the simply grown IZO nanomaterials could efficiently be used to fabricate highly sensitive chemical sensors.

  8. Colorimetric detection for paper-based biosensing applications

    Science.gov (United States)

    Brink, C.; Joubert, T.-H.

    2016-02-01

    Research on affordable point-of-care health diagnostics is rapidly advancing1. Colorimetric biosensor applications are typically qualitative, but recently the focus has been shifted to quantitative measurements2,3. Although numerous qualitative point-of-care (POC) health diagnostic devices are available, the challenge exists of developing a quantitative colorimetric array reader system that complies with the ASSURED (Affordable, Sensitive, Specific, User-friendly, Rapid and Robust, Equipment-free, Deliverable to end-users) principles of the World Health Organization4. This paper presents a battery powered 8-bit tonal resolution colorimetric sensor circuit for paper microfluidic assays using low cost photo-detection circuitry and a low-power LED light source. A colorimetric 3×3-pixel array reader was developed for rural environments where resources and personnel are limited. The device sports an ultralow-power E-ink paper display. The colorimetric device includes integrated GPS functionality and EEPROM memory to log measurements with geo-tags for possible analysis of regional trends. The device competes with colour intensity measurement techniques using smartphone cameras, but proves to be a cheaper solution, compensating for the typical performance variations between cameras of different brands of smartphones. Inexpensive methods for quantifying bacterial assays have been shown using desktop scanners, which are not portable, and cameras, which suffer severely from changes in ambient light in different environments. Promising colorimetric detection results have been demonstrated using devices such as video cameras5, digital colour analysers6, flatbed scanners7 or custom portable readers8. The major drawback of most of these methods is the need for specialized instrumentation and for image analysis on a computer.

  9. Sulfophenyl-Functionalized Reduced Graphene Oxide Networks on Electrospun 3D Scaffold for Ultrasensitive NO2 Gas Sensor

    OpenAIRE

    Zou, Bin; Guo, Yunlong; Shen, Nannan; Xiao, Anshan; Li, Mingjun; Zhu, Liang; Wan, Pengbo; Sun, Xiaoming

    2017-01-01

    Ultrasensitive room temperature real-time NO2 sensors are highly desirable due to potential threats on environmental security and personal respiratory. Traditional NO2 gas sensors with highly operated temperatures (200–600 °C) and limited reversibility are mainly constructed from semiconducting oxide-deposited ceramic tubes or inter-finger probes. Herein, we report the functionalized graphene network film sensors assembled on an electrospun three-dimensional (3D) nanonetwork skeleton for ultr...

  10. Colorimetric characterization of LED luminaires

    International Nuclear Information System (INIS)

    Costa, C L M; Vieira, R R; Pereira, R C; Silva, P V M; Oliveira, I A A; Sardinha, A S; Viana, D D; Barbosa, A H; Souza, L P; Alvarenga, A D

    2015-01-01

    The Optical Metrology Division of Inmetro – National Institute of Metrology, Quality and Technology has recently started the colorimetric characterization of lamps by implementing Correlated Color Temperature (CCT) and Color Rendering Index (CRI) measurements of incandescent lamps, followed by the CFL, and LED lamps and luminaires. Here we present the results for the verification of the color characterization of samples of SSL luminaires for public as well as indoor illumination that are sold in Brazil

  11. Fluorescent and Colorimetric Electrospun Nanofibers for Heavy-Metal Sensing

    Directory of Open Access Journals (Sweden)

    Idelma A. A. Terra

    2017-12-01

    Full Text Available The accumulation of heavy metals in the human body and/or in the environment can be highly deleterious for mankind, and currently, considerable efforts have been made to develop reliable and sensitive techniques for their detection. Among the detection methods, chemical sensors appear as a promising technology, with emphasis on systems employing optically active nanofibers. Such nanofibers can be obtained by the electrospinning technique, and further functionalized with optically active chromophores such as dyes, conjugated polymers, carbon-based nanomaterials and nanoparticles, in order to produce fluorescent and colorimetric nanofibers. In this review we survey recent investigations reporting the use of optically active electrospun nanofibers in sensors aiming at the specific detection of heavy metals using colorimetry and fluorescence methods. The examples given in this review article provide sufficient evidence of the potential of optically electrospun nanofibers as a valid approach to fabricate highly selective and sensitive optical sensors for fast and low-cost detection of heavy metals.

  12. Charge Transfer Based Colorimetric Detection of Silver Ion

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seung Choul; Kim, Kwang Seob; Choi, Soon Kyu; Oh, Jinho; Lee, Jae Wook [Dong-A Univ., Busan (Korea, Republic of)

    2014-05-15

    We have demonstrated the colorimetric chemosensor for detection of Ag{sup +} via formation of nanoparticles which is based on the intramolecular CT interaction between the electron-rich (2,6-dialkoxynaphthalene; Np) moiety and the electron-deficient (methyl viologen; MV{sup 2+}) moiety of a single sensor molecule. Under irradiation of light, Ag{sup +} was reduced to very small silver nanoparticle by CT interaction in the presence of OEGs as flexible recognition moiety of Ag{sup +} and stabilizer for Ag nanoparticles, thus Ag nanoparticles resulted to reddish brown in the color change of sensor solution, gradually. Therefore, the charge-transfer interaction between an electron-deficient and an electron-rich units existing at a sensor molecule can be regarded as a new and efficient method to construct various colorimetric chemosensors. Donor.acceptor interactions or charge transfer (CT) interactions are an important class of non-covalent interactions and have been widely exploited in self-assembling systems. Beyond molecular chemistry, supramolecular chemistry aims at constituting highly complex, functional chemical systems from components held together by intermolecular forces. Chemosensors are the molecules of abiotic origin that bind selectively and reversibly with the analyte with concomitant change in one or more properties of the system. The recognition and signaling of ionic and neutral species of varying complexity is one of the most intensively studied areas of contemporary supramolecular chemistry.

  13. Scaffolded biology.

    Science.gov (United States)

    Minelli, Alessandro

    2016-09-01

    Descriptions and interpretations of the natural world are dominated by dichotomies such as organism vs. environment, nature vs. nurture, genetic vs. epigenetic, but in the last couple of decades strong dissatisfaction with those partitions has been repeatedly voiced and a number of alternative perspectives have been suggested, from perspectives such as Dawkins' extended phenotype, Turner's extended organism, Oyama's Developmental Systems Theory and Odling-Smee's niche construction theory. Last in time is the description of biological phenomena in terms of hybrids between an organism (scaffolded system) and a living or non-living scaffold, forming unit systems to study processes such as reproduction and development. As scaffold, eventually, we can define any resource used by the biological system, especially in development and reproduction, without incorporating it as happens in the case of resources fueling metabolism. Addressing biological systems as functionally scaffolded systems may help pointing to functional relationships that can impart temporal marking to the developmental process and thus explain its irreversibility; revisiting the boundary between development and metabolism and also regeneration phenomena, by suggesting a conceptual framework within which to investigate phenomena of regular hypermorphic regeneration such as characteristic of deer antlers; fixing a periodization of development in terms of the times at which a scaffolding relationship begins or is terminated; and promoting plant galls to legitimate study objects of developmental biology.

  14. Semiotic scaffolding

    DEFF Research Database (Denmark)

    Hoffmeyer, Jesper

    2015-01-01

    Life processes at all levels (from the genetic to the behavioral) are coordinated by semiotic interactions between cells, tissues, membranes, organs, or individuals and tuned through evolution to stabilize important functions. A stabilizing dynamics based on a system of semiotic scaffoldings impl...... semiotic scaffolding is not, of course, exclusive for phylogenetic and ontogenetic development, it is also an important dynamical element in cultural evolution.......Life processes at all levels (from the genetic to the behavioral) are coordinated by semiotic interactions between cells, tissues, membranes, organs, or individuals and tuned through evolution to stabilize important functions. A stabilizing dynamics based on a system of semiotic scaffoldings...... (the representamen) and the effect. Semiotic interaction patterns therefore provide fast and versatile mechanisms for adaptations, mechanisms that depend on communication and “learning” rather than on genetic preformation. Seen as a stabilizing agency supporting the emergence of higher-order structure...

  15. Developmental Scaffolding

    DEFF Research Database (Denmark)

    Giorgi, Franco; Bruni, Luis Emilio

    2015-01-01

    . Within the developmental hierarchy, each module yields an inter-level relationship that makes it possible for the scaffolding to mediate the production of selectable variations. Awide range of genetic, cellular and morphological mechanisms allows the scaffolding to integrate these modular variations...... to the complexity of sign recognition proper of a cellular community. In this semiotic perspective, the apparent goal directness of any developmental strategy should no longer be accounted for by a predetermined genetic program, but by the gradual definition of the relationships selected amongst the ones...

  16. Sensors

    CERN Document Server

    Pigorsch, Enrico

    1997-01-01

    This is the 5th edition of the Metra Martech Directory "EUROPEAN CENTRES OF EXPERTISE - SENSORS." The entries represent a survey of European sensors development. The new edition contains 425 detailed profiles of companies and research institutions in 22 countries. This is reflected in the diversity of sensors development programmes described, from sensors for physical parameters to biosensors and intelligent sensor systems. We do not claim that all European organisations developing sensors are included, but this is a good cross section from an invited list of participants. If you see gaps or omissions, or would like your organisation to be included, please send details. The data base invites the formation of effective joint ventures by identifying and providing access to specific areas in which organisations offer collaboration. This issue is recognised to be of great importance and most entrants include details of collaboration offered and sought. We hope the directory on Sensors will help you to find the ri...

  17. Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, H. [PBI-Dansensor A/S (Denmark); Toft Soerensen, O. [Risoe National Lab., Materials Research Dept. (Denmark)

    1999-10-01

    A new type of ceramic oxygen sensors based on semiconducting oxides was developed in this project. The advantage of these sensors compared to standard ZrO{sub 2} sensors is that they do not require a reference gas and that they can be produced in small sizes. The sensor design and the techniques developed for production of these sensors are judged suitable by the participating industry for a niche production of a new generation of oxygen sensors. Materials research on new oxygen ion conducting conductors both for applications in oxygen sensors and in fuel was also performed in this project and finally a new process was developed for fabrication of ceramic tubes by dip-coating. (EHS)

  18. Colorimetric anion sensors based on positional effect of nitro group for recognition of biologically relevant anions in organic and aqueous medium, insight real-life application and DFT studies

    Science.gov (United States)

    Singh, Archana; Sahoo, Suban K.; Trivedi, Darshak R.

    2018-01-01

    A new six colorimetric receptors A1-A6 were designed and synthesized, characterized by typical common spectroscopic techniques like FT-IR, UV-Visible, 1H NMR, 13C NMR and ESI-MS. The receptor A1 and A2 exhibit a significant naked-eye response towards F- and AcO- ions in DMSO. Due to presences of the NO2 group at para and ortho position with extended π-conjugation of naphthyl group carrying sbnd OH as a binding site. Compared to receptor A2, A1 is extremely capable of detecting F- and AcO- ions present in the form of sodium salts in an aqueous medium. This is owed to the occurrence of sbnd NO2 group at para position induced in increasing the acidity of sbnd OH proton. Consequently, it easily gets deprotonated in aqueous media. The detection limit of receptor A1 was turned out to be 0.40 and 0.35 ppm for F- and AcO- ions which is beneath WHO permission level (1.0 ppm). Receptor A1 shows a solitary property of solvatochromism in different aprotic solvents in presence of AcO- ion. Receptor A1 depicts high selectivity towards AcO- ion in DMSO: HEPES buffer (9:1, v/v). Receptor A1 proved itself for real life application by detecting anion in solution and solid state. The binding mechanism of receptor A1 with AcO- and F- ions was monitored from 1HNMR titration and DFT study.

  19. Multiplexed Colorimetric Solid-Phase Extraction

    Science.gov (United States)

    Gazda, Daniel B.; Fritz, James S.; Porter, Marc D.

    2009-01-01

    Multiplexed colorimetric solid-phase extraction (MC-SPE) is an extension of colorimetric solid-phase extraction (C-SPE) an analytical platform that combines colorimetric reagents, solid phase extraction, and diffuse reflectance spectroscopy to quantify trace analytes in water. In CSPE, analytes are extracted and complexed on the surface of an extraction membrane impregnated with a colorimetric reagent. The analytes are then quantified directly on the membrane surface using a handheld diffuse reflectance spectrophotometer. Importantly, the use of solid-phase extraction membranes as the matrix for impregnation of the colorimetric reagents creates a concentration factor that enables the detection of low concentrations of analytes in small sample volumes. In extending C-SPE to a multiplexed format, a filter holder that incorporates discrete analysis channels and a jig that facilitates the concurrent operation of multiple sample syringes have been designed, enabling the simultaneous determination of multiple analytes. Separate, single analyte membranes, placed in a readout cartridge create unique, analyte-specific addresses at the exit of each channel. Following sample exposure, the diffuse reflectance spectrum of each address is collected serially and the Kubelka-Munk function is used to quantify each water quality parameter via calibration curves. In a demonstration, MC-SPE was used to measure the pH of a sample and quantitate Ag(I) and Ni(II).

  20. Rapid colorimetric sensing of gadolinium by EGCG-derived AgNPs: the development of a nanohybrid bioimaging probe.

    Science.gov (United States)

    Singh, Rohit Kumar; Mishra, Sourav; Jena, Satyapriya; Panigrahi, Bijayananda; Das, Bhaskar; Jayabalan, Rasu; Parhi, Pankaj Kumar; Mandal, Dindyal

    2018-04-17

    Polyphenol functionalized silver nanoparticles (AgNPs) have been developed and demonstrated as colorimetric sensors for the selective detection of gadolinium. The newly obtained AgNP-Gd3+ conjugates exhibit high aqueous dispersibility and excitation dependent fluorescence emission. The conjugates offer multicolor bioimaging potential owing to their excellent luminescence properties.

  1. Colorimetric detection of ammonia using smartphones based on localized surface plasmon resonance of silver nanoparticles.

    Science.gov (United States)

    Amirjani, Amirmostafa; Fatmehsari, Davoud Haghshenas

    2018-01-01

    In this work, a rapid and straightforward method was developed for colorimetric determination of ammonia using smartphones. The mechanisms is based on the manipulation of the surface plasmon band of silver nanoparticles (AgNPs) via the formation of Ag (NH 3 ) 2 + complex. This complex decreases the amount of AgNPs in the solution and consequently, the color intensity of the colloidal system decreases. Not only the variation in color intensity of the solution can be tracked by a UV-vis spectrophotometer, but also a smartphone can be employed to monitor the color intensity variation by RGB analysis. Ammonia, in the concentration range of 10-1000mgL -1 , was successfully measured spectrophotometrically (UV-vis spectrophotometer) and colorimetrically (RGB measurement) with the detection limit of 180 and 200mgL -1 , respectively. Linear relationships were also developed for both methods. Also, the response time of the developed colorimetric sensor was around 20s. Both of the colorimetric and spectrophotometric methods showed a reliable performance for determination of ammonia in the real samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Visualizing Capsaicinoids: Colorimetric Analysis of Chili Peppers

    Science.gov (United States)

    Thompson, Robert Q.; Chu, Christopher; Gent, Robin; Gould, Alexandra P.; Rios, Laura; Vertigan, Theresa M.

    2012-01-01

    A colorimetric method for total capsaicinoids in chili pepper ("Capsicum") fruit is described. The placental material of the pepper, containing 90% of the capsaicinoids, was physically separated from the colored materials in the pericarp and extracted twice with methanol, capturing 85% of the remaining capsaicinoids. The extract, evaporated and…

  3. Ultrasensitive colorimetric detection of Cu2+ ion based on catalytic oxidation of L-cysteine.

    Science.gov (United States)

    Yin, Kun; Li, Bowei; Wang, Xiaochun; Zhang, Weiwei; Chen, Lingxin

    2015-02-15

    As an essential element, copper ion (Cu(2+)) plays important roles in human beings for its participation in diverse metabolic processes as a cofactor and/or a structural component of enzymes. However, excessive uptake of Cu(2+) ion gives rise to the risk of certain diseases. So, it is important to develop simple ways to monitor and detect Cu(2+) ion. In this study, a simple, facile colorimetric sensor for the ultrasensitive determination of Cu(2+) ion was developed based on the following principle: L-cysteine and 1-chloro-2,4-dinitrobenzene (CDNB) could be conjugated to form the yellow product 2,4-dinitrophenylcysteine (DNPC), which was measurable at 355nm; however, upon addition of Cu(2+) ion, the absorbance of DNPC would be decreased owing to the Cu(2+) ion catalytic oxidation of L-cysteine to L-cystine in the presence of O2. Thus, the colorimetric detection of Cu(2+) ion could be achieved. The optimal pH, buffer, temperature and incubation time for the colorimetric sensor were obtained of pH 6.8 in 0.1M HEPES solution, 90 °C and 50 min, respectively. A good linearity within the range of 0.8-10 nM (r = 0.996) was attained, with a high detectability up to 0.5nM. Analyses of Cu(2+) ion in drinking water, lake water, seawater and biological samples were carried out and the method performances were found to agree well with that obtained by ICP-MS. The developed simple colorimetric sensor proved applicable for Cu(2+) ion determination in real samples with high sensitivity and selectivity. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Paper-Plastic Hybrid Microfluidic Device for Smartphone-Based Colorimetric Analysis of Urine.

    Science.gov (United States)

    Jalal, Uddin M; Jin, Gyeong Jun; Shim, Joon S

    2017-12-19

    In this work, a disposable paper-plastic hybrid microfluidic lab-on-a-chip (LOC) has been developed and successfully applied for the colorimetric measurement of urine by the smartphone-based optical platform using a "UrineAnalysis" Android app. The developed device was cost-effectively implemented as a stand-alone hybrid LOC by incorporating the paper-based conventional reagent test strip inside the plastic-based LOC microchannel. The LOC device quantitatively investigated the small volume (40 μL) of urine analytes for the colorimetric reaction of glucose, protein, pH, and red blood cell (RBC) in integration with the finger-actuating micropump. On the basis of our experiments, the conventional urine strip showed large deviation as the reaction time goes by, because dipping the strip sensor in a bottle of urine could not control the reaction volume. By integrating the strip sensor in the LOC device for urine analysis, our device significantly improves the time-dependent inconstancy of the conventional dipstick-based urine strip, and the smartphone app used for image analysis enhances the visual assessment of the test strip, which is a major user concern for the colorimetric analysis in point-of-care (POC) applications. As a result, the user-friendly LOC, which is successfully implemented in a disposable format with the smartphone-based optical platform, may be applicable as an effective tool for rapid and qualitative POC urinalysis.

  5. Sensor

    OpenAIRE

    Gleeson, Helen; Dierking, Ingo; Grieve, Bruce; Woodyatt, Christopher; Brimicombe, Paul

    2015-01-01

    An electrical temperature sensor (10) comprises a liquid crystalline material (12). First and second electrically conductive contacts (14), (16), having a spaced relationship there between, contact the liquid crystalline material (12). An electric property measuring device is electrically connected to the first and second contacts (14), (16) and is arranged to measure an electric property of the liquid crystalline material (12). The liquid crystalline material (12) has a transition temperatur...

  6. Colorimetric evaluation of irradiated red beet roots

    International Nuclear Information System (INIS)

    Nunes, Thaise C.F.; Rogovschi, Vladimir D.; Fabbri, Adriana D.T.; Sagretti, Juliana M.A.; Hirashima, Fabiana K.; Sabato, Susy F.

    2013-01-01

    The red beetroot contain antioxidant and anticancer activity and have been consumed all over the world. In order to increase the consumption of beetroot the food industry has created a practical alternative, a beetroot shaped like a small ball, minimally processed with the convenience in meal preparation. Food irradiation is in consonance with the proposal to increase the consumption of beetroot whilst maintaining quality and product safety. The aim of this study was to analyze changes in colorimetric properties in beetroot after the irradiation process. Samples of minimally processed beetroot were purchased at a local supermarket. The samples were exposed to gamma rays with doses of 1.0kG y , 2.0kG y , 3.0kG y and 4.0 kG y and were stored at 5 deg C. Colorimetric characteristics were analyzed such as L * , a * , b * , C * , h * , δE and WI. The results of the colorimetric evaluation showed no significant difference among the samples. The authors concluded that the treatment with low doses of gamma radiation keeps the quality of beetroot. (author)

  7. Colorimetric evaluation of irradiated red beet roots

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, Thaise C.F.; Rogovschi, Vladimir D.; Fabbri, Adriana D.T.; Sagretti, Juliana M.A.; Hirashima, Fabiana K.; Sabato, Susy F., E-mail: thaisecfnunes@hotmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    The red beetroot contain antioxidant and anticancer activity and have been consumed all over the world. In order to increase the consumption of beetroot the food industry has created a practical alternative, a beetroot shaped like a small ball, minimally processed with the convenience in meal preparation. Food irradiation is in consonance with the proposal to increase the consumption of beetroot whilst maintaining quality and product safety. The aim of this study was to analyze changes in colorimetric properties in beetroot after the irradiation process. Samples of minimally processed beetroot were purchased at a local supermarket. The samples were exposed to gamma rays with doses of 1.0kG{sub y}, 2.0kG{sub y}, 3.0kG{sub y} and 4.0 kG{sub y} and were stored at 5 deg C. Colorimetric characteristics were analyzed such as L{sup *}, a{sup *}, b{sup *}, C{sup *}, h{sup *}, δE and WI. The results of the colorimetric evaluation showed no significant difference among the samples. The authors concluded that the treatment with low doses of gamma radiation keeps the quality of beetroot. (author)

  8. Engineering of an Extremely Thermostable Alpha/Beta Barrel Scaffold to Serve as a High Affinity Molecular Recognition Element for Use in Sensor Applications

    Science.gov (United States)

    2015-12-23

    Molecular Recognition Element For Use in Sensor Applications Report Title The overall goal of the project was to evolve a highly thermostable enzyme ( alcohol ...SECURITY CLASSIFICATION OF: The overall goal of the project was to evolve a highly thermostable enzyme ( alcohol dehydrogenase D (AdhD) from Pyrococcus...furiosus) to bind an explosive molecule, RDX. The enzyme naturally catalyzes the nicotinamide cofactor-dependent oxidation or reduction of alcohols

  9. Flexible Nanowire Cluster as a Wearable Colorimetric Humidity Sensor.

    Science.gov (United States)

    Wei, Zhiqiang; Zhou, Zhang-Kai; Li, Qiuyu; Xue, Jiancai; Di Falco, Andrea; Yang, Zhongjian; Zhou, Jianhua; Wang, Xuehua

    2017-07-01

    Wearable plasmonic devices combine the advantages of high flexibility, ultrathinness, light weight, and excellent integration with the optical benefits mediated by plasmon-enhanced electric fields. However, two obstacles severely hinder further developments and applications of a wearable plasmonic device. One is the lack of efficient approach to obtaining devices with robust antimotion-interference property, i.e., the devices can work independently on the morphology changes of their working structures caused by arbitrary wearing conditions. The other issue is to seek a facile and high-throughput fabrication method to satisfy the financial requirement of industrialization. In order to overcome these two challenges, a functional flexible film of nanowire cluster is developed, which can be easily fabricated by taking the advantages of both conventional electrochemical and sputtering methods. Such flexible plasmonic films can be made into wearable devices that work independently on shape changes induced by various wearing conditions (such as bending, twisting and stretching). Furthermore, due to plasmonic advantages of color controlling and high sensitivity to environment changes, the flexible film of nanowire cluster can be used to fabricate wearable items (such as bracelet, clothes, bag, or even commercial markers), with the ability of wireless visualization for humidity sensing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Improved colorimetric determination of serum zinc.

    Science.gov (United States)

    Johnson, D J; Djuh, Y Y; Bruton, J; Williams, H L

    1977-07-01

    We show how zinc may easily be quantified in serum by first using an optimum concentration of guanidine hydrochloride to cause release of zinc from proteins, followed by complexation of released metals with cyanide. The cyanide complex of zinc is preferentially demasked with chloral hydrate, followed by a colorimetric reaction between zinc and 4-(2-pyridylazo)resorcinol. This is a sensitive water-soluble ligand; its complex with zinc has an absorption maximum at 497 nm. Values found by this technique compare favorably with those obtained by atomic absorption spectroscopy.

  11. Analysis of DNA Hydroxymethylation Using Colorimetric Assay.

    Science.gov (United States)

    Golubov, Andrey; Kovalchuk, Igor

    2017-01-01

    Hydroxymethylcytosine (hmC or 5-hmC) is a nitrogen base occurring as a result of cytosine methylation followed by replacing a methyl group with a hydroxyl group through active oxidation. 5-hmC is considered to be one of the forms of epigenetic modification and is suggested as an intermediate step in a semi-active loss of DNA methylation mark. 5-hmC plays an important role in the epigenetic regulation of gene expression in animals, although its role in plants remains controversial. Here, we present a colorimetric method of quantification of 5-hmC using Brassica rapa DNA.

  12. Colorimetric on-line control of U

    International Nuclear Information System (INIS)

    Perez, J.J.; Boisde, G.; Dedaldechamp, P.; Dureault, B.

    The instrumentation developed for the automatic colorimetric control of U is presented. Two techniques are used: absorptiometry of U ions using optical probes enabling to measure in situ the solutions containing 0.5 g U(IV)/l or 1 g U(VI)/l; colorimetry of the U-DBM complexe after separation of U by TOPO (this technique is applied to the control of U at the ppm level). The automatic devices used are described. They are experimented in laboratory or in pilot-plant [fr

  13. Droplet-based microscale colorimetric biosensor for multiplexed DNA analysis via a graphene nanoprobe

    International Nuclear Information System (INIS)

    Xiang Xia; Luo Ming; Shi Liyang; Ji Xinghu; He Zhike

    2012-01-01

    Graphical abstract: With a microvalve manipulate technique combined with droplet platform, a microscale fluorescence-based colorimetric sensor for multiplexed DNA analysis is developed via a graphene nanoprobe. Highlights: ► A quantitative detection for multiplexed DNA is first realized on droplet platform. ► The DNA detection is relied on a simple fluorescence-based colorimetric method. ► GO is served as a quencher for two different DNA fluorescent probes. ► This present work provides a rapid, sensitive, visual and convenient detection tool for droplet biosensor. - Abstract: The development of simple and inexpensive DNA detection strategy is very significant for droplet-based microfluidic system. Here, a droplet-based biosensor for multiplexed DNA analysis is developed with a common imaging device by using fluorescence-based colorimetric method and a graphene nanoprobe. With the aid of droplet manipulation technique, droplet size adjustment, droplet fusion and droplet trap are realized accurately and precisely. Due to the high quenching efficiency of graphene oxide (GO), in the absence of target DNAs, the droplet containing two single-stranded DNA probes and GO shows dark color, in which the DNA probes are labeled carboxy fluorescein (FAM) and 6-carboxy-X-rhodamine (ROX), respectively. The droplet changes from dark to bright color when the DNA probes form double helix with the specific target DNAs leading to the dyes far away from GO. This colorimetric droplet biosensor exhibits a quantitative capability for simultaneous detection of two different target DNAs with the detection limits of 9.46 and 9.67 × 10 −8 M, respectively. It is also demonstrated that this biosensor platform can become a promising detection tool in high throughput applications with low consumption of reagents. Moreover, the incorporation of graphene nanoprobe and droplet technique can drive the biosensor field one more step to some extent.

  14. Polycaprolactone-Polydiacetylene Electrospun Fibers for Colorimetric Detection of Fake Gasoline

    Directory of Open Access Journals (Sweden)

    Shamshad Ali

    2016-04-01

    Full Text Available PCDA (Pentacosadiynoic Acid monomers were successfully embedded in PCL (Poly ?-Caprolactone polymer matrix by electrospinning process for the first time. The resultant EFM (Electrospun Fibers Mat was photo-polymerized under 254 nm UV light that enables colorimetric detection of fake gasoline. Results revealed that the fake gasoline develops a red color mat within 5 sec. FE-SEM images showed that the fake gasoline treatment dissolved the PCL EFM that give access to interact with PDA polymer. The proposed litmus-type sensor based on PCL-PDA EFM is highly sensitive to fake gasoline and can be fabricated easily

  15. Folic acid functionalized silver nanoparticles with sensitivity and selectivity colorimetric and fluorescent detection for Hg2+ and efficient catalysis.

    Science.gov (United States)

    Su, Dongyue; Yang, Xin; Xia, Qingdong; Zhang, Qi; Chai, Fang; Wang, Chungang; Qu, Fengyu

    2014-09-05

    In this research, folic acid functionalized silver nanoparticles (FA-AgNPs) were selected as a colorimetric and a 'turn on' fluorescent sensor for detecting Hg(2+). After being added into Hg(2+), AgNPs can emit stable fluorescence at 440 nm when the excitation wavelength is selected at 275 nm. The absorbance and fluorescence of the FA-AgNPs could reflect the concentration of the Hg(2+) ions. Thus, we developed a simple, sensitive analytical method to detect Hg(2+) based on the colorimetric and fluorescence enhancement of FA-AgNPs. The sensor exhibits two linear response ranges between absorbance and fluorescence intensity with Hg(2+) concentration, respectively. Meanwhile, a detection limit of 1 nM is estimated based on the linear relationship between responses with a concentration of Hg(2+). The high specificity of Hg(2+) with FA-AgNPs interactions provided the excellent selectivity towards detecting Hg(2+) over other metal ions (Pb(2+), Mg(2+), Zn(2+), Ni(2+), Cu(2+), Co(2+), Ca(2+), Mn(2+), Fe(2+), Cd(2+), Ba(2+), Cr(6+) and Cr(3+)). This will provide a simple, effective and multifunctional colorimetric and fluorescent sensor for on-site and real-time Hg(2+) ion detection. The proposed method can be applied to the analysis of trace Hg(2+) in lake water. Additionally, the FA-AgNPs can be used as efficient catalyst for the reduction of 4-nitrophenol and potassium hexacyanoferrate (III).

  16. Cyclic voltammetry, square wave voltammetry, electrochemical impedance spectroscopy and colorimetric method for hydrogen peroxide detection based on chitosan/silver nanocomposite

    Directory of Open Access Journals (Sweden)

    Hoang V. Tran

    2018-05-01

    Full Text Available In this paper, we demonstrate a promising method to fabricate a non-enzymatic stable, highly sensitive and selective hydrogen peroxide sensor based on a chitosan/silver nanoparticles (CS/AgNPs hybrid. Using this composite, we elaborated both electrochemical and colorimetric sensors for hydrogen peroxide detection. The colorimetric sensor is based on a homogenous reaction which fades the color of CS/AgNPs solutions from red-orange to colorless depending on hydrogen peroxide concentration. For the electrochemical sensor, CS/AgNPs were immobilized on glassy carbon electrodes and hydrogen peroxide was measured using cyclic voltammetry, square wave voltammetry and electrochemical impedance spectroscopy. The response time is less than 10 s and the detection limit is 5 μM. Keywords: Spectrophotometric detection, Electrochemical impedance spectroscopy, Square wave voltammetry, Cyclic voltammetry, Chitosan/silver nanoparticles (CS/AgNPs hybrid, Hydrogen peroxide

  17. Xanthine oxidase functionalized Ta2O5 nanostructures as a novel scaffold for highly sensitive SPR based fiber optic xanthine sensor.

    Science.gov (United States)

    Kant, Ravi; Tabassum, Rana; Gupta, Banshi D

    2018-01-15

    Fabrication and characterization of a surface plasmon resonance based fiber optic xanthine sensor using entrapment of xanthine oxidase (XO) enzyme in several nanostructures of tantalum (v) oxide (Ta 2 O 5 ) have been reported. Chemical route was adopted for synthesizing Ta 2 O 5 nanoparticles, nanorods, nanotubes and nanowires while Ta 2 O 5 nanofibers were prepared by electrospinning technique. The synthesized Ta 2 O 5 nanostructures were characterized by photoluminescence, scanning electron microscopy, UV-Visible spectra and X-ray diffraction pattern. The probes were fabricated by coating an unclad core of the fiber with silver layer followed by the deposition of XO entrapped Ta 2 O 5 nanostructures. The crux of sensing mechanism relies on the modification of dielectric function of sensing layer upon exposure to xanthine solution of diverse concentrations, reflected in terms of shift in resonance wavelength. The sensing probe coated with XO entrapped Ta 2 O 5 nanofibers has been turned out to possess maximum sensitivity amongst the synthesized nanostructures. The probe was optimized in terms of pH of the sample and the concentration of XO entrapped in Ta 2 O 5 nanofibers. The optimized sensing probe possesses a remarkably good sensitivity of 26.2nm/µM in addition to linear range from 0 to 3µM with an invincible LOD value of 0.0127µM together with a response time of 1min. Furthermore, probe selectivity with real sample analysis ensure the usage of the sensor for practical scenario. The results reported open a novel perspective towards a sensitive, rapid, reliable and selective detection of xanthine. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Silver nanoparticles-based colorimetric array for the detection of Thiophanate-methyl

    Science.gov (United States)

    Zheng, Mingda; Wang, Yingying; Wang, Chenge; Wei, Wei; Ma, Shuang; Sun, Xiaohan; He, Jiang

    2018-06-01

    A simple and selective colorimetric sensor based on citrate capped silver nanoparticles (Cit-AgNPs) is proposed for the detection of Thiophanate-methyl (TM) with high sensitivity and selectivity. The method based on the color change of Cit-AgNPs from yellow to cherry red with the addition of TM to Cit-AgNPs that caused a red-shift on the surface plasmon resonance (SPR) band from 394 nm to 525 nm due to the hydrogen-bonding and substitution. The density functional theory (DFT) method was also calculated the interactions between the TM and citrate ions. Under the optimized conditions, a linear relationship between the absorption ratio (A525nm/A394nm) and TM concentration was found in the range of 2-100 μM with correlation coefficient (R2) of 0.988. The detection limit of TM was 0.12 μM by UV-vis spectrometer. Moreover, the applicability of colorimetric sensor is successfully verified by the detection of TM in environmental samples with good recoveries.

  19. Blue emitting copper nanoclusters as colorimetric and fluorescent probe for the selective detection of bilirubin

    Science.gov (United States)

    R. S., Aparna; J. S., Anjali Devi; John, Nebu; Abha, K.; S. S., Syamchand; George, Sony

    2018-06-01

    Hurdles to develop point of care diagnostic methods restrict the translation of progress in the health care sector from bench side to bedside. In this article a simple, cost effective fluorescent as well as colorimetric nanosensor was developed for the early and easy detection of hyperbilirubinemia. A stable, water soluble bovine serum albumin stabilised copper nanocluster (BSA CuNC) was used as the fluorescent probe which exhibited strong blue emission (404 nm) upon 330 nm excitation. The fluorescence of the BSA CuNC can be effectively quenched by the addition of bilirubin by the formation of copper-bilirubin complex. Meanwhile the copper-bilirubin complex resulted in an observable colour change from pale violet to green facilitating colorimetric detection. The prepared sensor displayed good selectivity and sensitivity over other co-existing molecules, and can be used for quantifying bilirubin with a detection limit down to 257 fM. Additionally, the as-prepared probe was coated on a paper strip to develop a portable paper strip sensor of bilirubin. Moreover, the method was successfully applied in real sample analysis and obtained promising result.

  20. A dual-responsive colorimetric and fluorescent chemosensor based on diketopyrrolopyrrole derivative for naked-eye detection of Fe3 + and its practical application

    Science.gov (United States)

    Zhang, Shanshan; Sun, Tao; Xiao, Dejun; Yuan, Fang; Li, Tianduo; Wang, Enhua; Liu, Haixia; Niu, Qingfen

    2018-01-01

    A novel dual-responsive colorimetric and fluorescent chemosensor L based on diketopyrrolopyrrole derivative for Fe3 + detection was designed and synthesized. In presence of Fe3 +, sensor L displayed strong colorimetric response as amaranth to rose pink and significant fluorescence enhancement and chromogenic change, which served as a naked-eye indicator by an obvious color change from purple to red. The binding constant for L-Fe3 + complex was found as 2.4 × 104 with the lower detection limit of 14.3 nM. The sensing mechanism was investigated in detail by fluorescence measurements, IR and 1H NMR spectra. Sensor L for Fe3 + detection also exhibited high anti-interference performance, good reversibility, wide pH response range and instantaneous response time. Furthermore, the sensor L has been used to quantify Fe3 + ions in practical water samples with good recovery.

  1. Reagent-Free Quantification of Aqueous Free Chlorine via Electrical Readout of Colorimetrically Functionalized Pencil Lines.

    Science.gov (United States)

    Mohtasebi, Amirmasoud; Broomfield, Andrew D; Chowdhury, Tanzina; Selvaganapathy, P Ravi; Kruse, Peter

    2017-06-21

    Colorimetric methods are commonly used to quantify free chlorine in drinking water. However, these methods are not suitable for reagent-free, continuous, and autonomous applications. Here, we demonstrate how functionalization of a pencil-drawn film with phenyl-capped aniline tetramer (PCAT) can be used for quantitative electric readout of free chlorine concentrations. The functionalized film can be implemented in a simple fluidic device for continuous sensing of aqueous free chlorine concentrations. The sensor is selective to free chlorine and can undergo a reagent-free reset for further measurements. Our sensor is superior to electrochemical methods in that it does not require a reference electrode. It is capable of quantification of free chlorine in the range of 0.1-12 ppm with higher precision than colorimetric (absorptivity) methods. The interactions of PCAT with the pencil-drawn film upon exposure to hypochlorite were characterized spectroscopically. A previously reported detection mechanism relied on the measurement of a baseline shift to quantify free chlorine concentrations. The new method demonstrated here measures initial spike size upon exposure to free chlorine. It relies on a fast charge built up on the sensor film due to intermittent PCAT salt formation. It has the advantage of being significantly faster than the measurement of baseline shift, but it cannot be used to detect gradual changes in free chlorine concentration without the use of frequent reset pulses. The stability of PCAT was examined in the presence of free chlorine as a function of pH. While most ions commonly present in drinking water do not interfere with the free chlorine detection, other oxidants may contribute to the signal. Our sensor is easy to fabricate and robust, operates reagent-free, and has very low power requirements and is thus suitable for remote deployment.

  2. Plasmon-Based Colorimetric Nanosensors for Ultrasensitive Molecular Diagnostics.

    Science.gov (United States)

    Tang, Longhua; Li, Jinghong

    2017-07-28

    Colorimetric detection of target analytes with high specificity and sensitivity is of fundamental importance to clinical and personalized point-of-care diagnostics. Because of their extraordinary optical properties, plasmonic nanomaterials have been introduced into colorimetric sensing systems, which provide significantly improved sensitivity in various biosensing applications. Here we review the recent progress on these plasmonic nanoparticles-based colorimetric nanosensors for ultrasensitive molecular diagnostics. According to their different colorimetric signal generation mechanisms, these plasmonic nanosensors are classified into two categories: (1) interparticle distance-dependent colorimetric assay based on target-induced forming cross-linking assembly/aggregate of plasmonic nanoparticles; and (2) size/morphology-dependent colorimetric assay by target-controlled growth/etching of the plasmonic nanoparticles. The sensing fundamentals and cutting-edge applications will be provided for each of them, particularly focusing on signal generation and/or amplification mechanisms that realize ultrasensitive molecular detection. Finally, we also discuss the challenge and give our future perspective in this emerging field.

  3. Exact approaches for scaffolding

    OpenAIRE

    Weller, Mathias; Chateau, Annie; Giroudeau, Rodolphe

    2015-01-01

    This paper presents new structural and algorithmic results around the scaffolding problem, which occurs prominently in next generation sequencing. The problem can be formalized as an optimization problem on a special graph, the "scaffold graph". We prove that the problem is polynomial if this graph is a tree by providing a dynamic programming algorithm for this case. This algorithm serves as a basis to deduce an exact algorithm for general graphs using a tree decomposition of the input. We ex...

  4. Performance evaluation of a colorimetric hydrazine dosimeter

    Science.gov (United States)

    Brenner, Karen P.; Rose-Pehrsson, Susan L.

    1994-06-01

    A dosimeter for real-time, colorimetric detection of hydrazine in air has been developed. The passive badge consists of a dosimeter card containing a vanillin solution coated on a thin paper substrate. The active patch consists of a thick cellulose substrate coated with a vanillin solution. When placed in a plastic sample holder attached to a personnel pump, up to 5 L/min can be drawn through the active badge substrate. Through a condensation reaction, vanillin reacts with hydrazine to form a colored product that absorbs in the visible region. The hydrazone formed in the reaction is yellow; its intensity is proportional to the dose. When exposed passively to hydrazine, the experimental detection limit is less than 20 ppb-hrs. Extrapolated results indicate a detection limit of less than 5 ppb-hrs for long sampling periods. Actively sampling of hydrazine vapors gives an experimental detection limit of less than 100 ppb-L at a sample rate of 5 L/min. Relative humidity effects on badge response were minor. High humidity enhanced the color development on the vanillin badge; while low humidity had no effect on badge response. Interference testing of the dosimeters revealed a tobacco smoke interference. Preliminary shelf life tests indicated no decrease in sensitivity to hydrazine when stored at room temperature for 6 months.

  5. Basic design principles of colorimetric vision systems

    Science.gov (United States)

    Mumzhiu, Alex M.

    1998-10-01

    Color measurement is an important part of overall production quality control in textile, coating, plastics, food, paper and other industries. The color measurement instruments such as colorimeters and spectrophotometers, used for production quality control have many limitations. In many applications they cannot be used for a variety of reasons and have to be replaced with human operators. Machine vision has great potential for color measurement. The components for color machine vision systems, such as broadcast quality 3-CCD cameras, fast and inexpensive PCI frame grabbers, and sophisticated image processing software packages are available. However the machine vision industry has only started to approach the color domain. The few color machine vision systems on the market, produced by the largest machine vision manufacturers have very limited capabilities. A lack of understanding that a vision based color measurement system could fail if it ignores the basic principles of colorimetry is the main reason for the slow progress of color vision systems. the purpose of this paper is to clarify how color measurement principles have to be applied to vision systems and how the electro-optical design features of colorimeters have to be modified in order to implement them for vision systems. The subject of this presentation far exceeds the limitations of a journal paper so only the most important aspects will be discussed. An overview of the major areas of applications for colorimetric vision system will be discussed. Finally, the reasons why some customers are happy with their vision systems and some are not will be analyzed.

  6. Colorimetric detection of riboflavin by silver nanoparticles capped with β-cyclodextrin-grafted citrate.

    Science.gov (United States)

    Ma, Qi; Song, Jinping; Zhang, Sufang; Wang, Meifang; Guo, Yong; Dong, Chuan

    2016-12-01

    β-Cyclodextrin-grafted citrate was used for the first time as a stabilizer and reducer to prepare silver nanoparticles (AgNPs). The as-synthesized AgNPs were further characterized by UV-vis absorption spectroscopy, powder X-ray diffraction spectroscopy, and transmission electron microscopy. The results show that the presence of riboflavin caused severe aggregation of the nanoparticles, thereby inducing a colour change from yellow to red. 1 H NMR further verified the formation of non-inclusion complexes between riboflavin and β-cyclodextrin-grafted citrate. Hydrogen bond was considered the main driving force of the interaction between the riboflavin and external rim of β-cyclodextrin. Based on these observations, the as-synthesized AgNPs were utilized to develop a novel colorimetric sensor for riboflavin detection. This colorimetric probe showed excellent selectivity and high sensitivity for riboflavin with a detection limit of 167nM. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Simple colorimetric detection of doxycycline and oxytetracycline using unmodified gold nanoparticles

    Science.gov (United States)

    Li, Jie; Fan, Shumin; Li, Zhigang; Xie, Yuanzhe; Wang, Rui; Ge, Baoyu; Wu, Jing; Wang, Ruiyong

    2014-08-01

    The interaction between tetracycline antibiotics and gold nanoparticles was studied. With citrate-coated gold nanoparticles as colorimetric probe, a simple and rapid detection method for doxycycline and oxytetracycline has been developed. This method relies on the distance-dependent optical properties of gold nanoparticles. In weakly acidic buffer medium, doxycycline and oxytetracycline could rapidly induce the aggregation of gold nanoparticles, resulting in red-to-blue (or purple) colour change. The experimental parameters were optimized with regard to pH, the concentration of the gold nanoparticles and the reaction time. Under optimal experimental conditions, the linear range of the colorimetric sensor for doxycycline/oxytetracycline was 0.06-0.66 and 0.59-8.85 μg mL-1, respectively. The corresponding limit of detection for doxycycline and oxytetracycline was 0.0086 and 0.0838 μg mL-1, respectively. This assay was sensitive, selective, simple and readily used to detect tetracycline antibiotics in food products.

  8. Rapid colorimetric assay for gentamicin injection.

    Science.gov (United States)

    Tarbutton, P

    1987-01-01

    A rapid colorimetric method for determining gentamicin concentration in commercial preparations of gentamicin sulfate injection was developed. Methods currently available for measuring gentamicin concentration via its colored complex with cupric ions in alkaline solution were modified to reduce the time required for a single analysis. The alkaline copper tartrate (ACT) reagent solution was prepared such that each milliliter contained 100 mumol cupric sulfate, 210 mumol potassium sodium tartrate, and 1.25 mmol sodium hydroxide. The assay involves mixing 0.3 mL gentamicin sulfate injection 40 mg/mL (of gentamicin), 1.0 mL ACT reagent, and 0.7 mL water; the absorbance of the resulting solution at 560 nm was used to calculate the gentamicin concentration in the sample. For injections containing 10 mg/mL of gentamicin, the amount of the injection was increased to 0.5 mL and water decreased to 0.5 mL. The concentration of gentamicin in samples representing 11 lots of gentamicin sulfate injection 40 mg/mL and 8 lots of gentamicin sulfate injection 10 mg/mL was determined. The specificity, reproducibility, and accuracy of the assay were assessed. The colored complex was stable for at least two hours. Gentamicin concentration ranged from 93.7 to 108% and from 95 to 109% of the stated label value of the 40 mg/mL and the 10 mg/mL injections, respectively. No components of the preservative system present in the injections interfered with the assay. Since other aminoglycosides produced a colored complex, the assay is not specific for gentamicin. The assay was accurate and reproducible over the range of 4-20 mg of gentamicin. This rapid and accurate assay can be easily applied in the hospital pharmacy setting.

  9. Tantalum coating on porous Ti6Al4V scaffold using chemical vapor deposition and preliminary biological evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiang, E-mail: xiangliwj@sjtu.edu.cn [School of Mechanical Engineering, Shanghai Jiao Tong University, State Key Laboratory of Mechanical System and Vibration, Shanghai, 200240 (China); Wang, Lin [Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi' an, 710032 (China); Yu, Xiaoming [The Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 (China); Feng, Yafei [Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi' an, 710032 (China); Wang, Chengtao [School of Mechanical Engineering, Shanghai Jiao Tong University, State Key Laboratory of Mechanical System and Vibration, Shanghai, 200240 (China); Yang, Ke [The Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 (China); Su, Daniel [School of Mechanical Engineering, Shanghai Jiao Tong University, State Key Laboratory of Mechanical System and Vibration, Shanghai, 200240 (China)

    2013-07-01

    Porous tantalum (Ta), produced via chemical vapor deposition (CVD) of commercially pure Ta onto a vitreous carbon, is currently available for use in orthopedic applications. However, the relatively high manufacturing cost and the incapability to produce customized implant using medical image data have limited its application to gain widespread acceptance. In this study, Ta film was deposited on porous Ti6Al4V scaffolds using CVD technique. Digital microscopy and scanning electron microscopy indicated that the Ta coating evenly covered the entire scaffold structure. X-ray diffraction analysis showed that the coating consisted of α and β phases of Ta. Goat mesenchymal stem cells were seeded and cultured on the Ti6Al4V scaffolds with and without coating. The tetrazolium-based colorimetric assay exhibited better cell adhesion and proliferation on Ta-coated scaffolds compared with uncoated scaffolds. The porous scaffolds were subsequently implanted in goats for 12 weeks. Histological analysis revealed similar bone formation around the periphery of the coated and uncoated implants, but bone ingrowth is better within the Ta-coated scaffolds. To demonstrate the ability of producing custom implant for clinical applications via this technology, we designed and fabricated a porous Ti6Al4V scaffold with segmental mandibular shape derived from patient computerized tomography data. - Highlights: • Ta film was coated on porous Ti6Al4V scaffold using chemical vapor deposition. • Tantalum coating allowed for higher levels of cell adhesion and proliferation. • Better new bone formation occurred inside the tantalum-coated scaffolds. • Clinical image data was integrated with EBM to fabricate customized scaffold.

  10. Tantalum coating on porous Ti6Al4V scaffold using chemical vapor deposition and preliminary biological evaluation

    International Nuclear Information System (INIS)

    Li, Xiang; Wang, Lin; Yu, Xiaoming; Feng, Yafei; Wang, Chengtao; Yang, Ke; Su, Daniel

    2013-01-01

    Porous tantalum (Ta), produced via chemical vapor deposition (CVD) of commercially pure Ta onto a vitreous carbon, is currently available for use in orthopedic applications. However, the relatively high manufacturing cost and the incapability to produce customized implant using medical image data have limited its application to gain widespread acceptance. In this study, Ta film was deposited on porous Ti6Al4V scaffolds using CVD technique. Digital microscopy and scanning electron microscopy indicated that the Ta coating evenly covered the entire scaffold structure. X-ray diffraction analysis showed that the coating consisted of α and β phases of Ta. Goat mesenchymal stem cells were seeded and cultured on the Ti6Al4V scaffolds with and without coating. The tetrazolium-based colorimetric assay exhibited better cell adhesion and proliferation on Ta-coated scaffolds compared with uncoated scaffolds. The porous scaffolds were subsequently implanted in goats for 12 weeks. Histological analysis revealed similar bone formation around the periphery of the coated and uncoated implants, but bone ingrowth is better within the Ta-coated scaffolds. To demonstrate the ability of producing custom implant for clinical applications via this technology, we designed and fabricated a porous Ti6Al4V scaffold with segmental mandibular shape derived from patient computerized tomography data. - Highlights: • Ta film was coated on porous Ti6Al4V scaffold using chemical vapor deposition. • Tantalum coating allowed for higher levels of cell adhesion and proliferation. • Better new bone formation occurred inside the tantalum-coated scaffolds. • Clinical image data was integrated with EBM to fabricate customized scaffold

  11. PRINCIPLE OF VALIDATION OF MULTILEVEL RGB COLORIMETRIC SYSTEMS OF REMOTE SENSING

    Directory of Open Access Journals (Sweden)

    Lala Rustam Bekirova

    2013-12-01

    Full Text Available The possibility of development of two-level RGB colorimetric systems of remote sensing is analyzed. The principle of validation in multi-level RGB colorimetric systems taking into account the effect of metamerizm is formulated

  12. Emergency First Responders' Experience with Colorimetric Detection Methods

    Energy Technology Data Exchange (ETDEWEB)

    Sandra L. Fox; Keith A. Daum; Carla J. Miller; Marnie M. Cortez

    2007-10-01

    Nationwide, first responders from state and federal support teams respond to hazardous materials incidents, industrial chemical spills, and potential weapons of mass destruction (WMD) attacks. Although first responders have sophisticated chemical, biological, radiological, and explosive detectors available for assessment of the incident scene, simple colorimetric detectors have a role in response actions. The large number of colorimetric chemical detection methods available on the market can make the selection of the proper methods difficult. Although each detector has unique aspects to provide qualitative or quantitative data about the unknown chemicals present, not all detectors provide consistent, accurate, and reliable results. Included here, in a consumer-report-style format, we provide “boots on the ground” information directly from first responders about how well colorimetric chemical detection methods meet their needs in the field and how they procure these methods.

  13. Synthesis of indolo[3,2-b]carbazole-based new colorimetric receptor for anions: A unique color change for fluoride ions

    Directory of Open Access Journals (Sweden)

    Ajit Kumar Mahapatra

    2010-02-01

    Full Text Available A novel indolocarbazole-based chemosensor 1 containing hydrogen bond donor moieties has been established as a selective colorimetric and fluorometric sensor for F− in CH3CN/H2O (4:1 v/v. Upon the addition of a series of tetrabutylammonium salts to receptor 1 in aqueous CH3CN, only when the counter ion was F− was a significant color change (from light violet to dark orange observed.

  14. Semiotic Scaffolding in Mathematics

    DEFF Research Database (Denmark)

    Johansen, Mikkel Willum; Misfeldt, Morten

    2015-01-01

    This paper investigates the notion of semiotic scaffolding in relation to mathematics by considering its influence on mathematical activities, and on the evolution of mathematics as a research field. We will do this by analyzing the role different representational forms play in mathematical...... cognition, and more broadly on mathematical activities. In the main part of the paper, we will present and analyze three different cases. For the first case, we investigate the semiotic scaffolding involved in pencil and paper multiplication. For the second case, we investigate how the development of new...... in both mathematical cognition and in the development of mathematics itself, but mathematical cognition cannot itself be reduced to the use of semiotic scaffolding....

  15. Two colorimetric and ratiometric fluorescence probes for hydrogen sulfide based on AIE strategy of α-cyanostilbenes

    Science.gov (United States)

    Zhao, Baoying; Yang, Binsheng; Hu, Xiangquan; Liu, Bin

    2018-06-01

    Aggregation-induced emission (AIE) active fluorescent probes have attracted great potential in biological sensors. In this paper two cyanostilbene based fluorescence chemoprobe Cya-NO2 (1) and Cya-N3 (2) were developed and evaluated for the selective and sensitive detection of hydrogen sulfide (H2S). Both of these probes behave aggression-induced emission (AIE) activity which fluoresces in the red region with a large Stokes shift. They exhibit rapid response to H2S with enormous colorimetric and ratiometric fluorescent changes. They are readily employed for assessing intracellular H2S levels.

  16. Colorimetric detection of Cucumber green mottle mosaic virus using unmodified gold nanoparticles as colorimetric probes.

    Science.gov (United States)

    Wang, Lin; Liu, Zhanmin; Xia, Xueying; Yang, Cuiyun; Huang, Junyi; Wan, Sibao

    2017-05-01

    Cucumber green mottle mosaic virus (CGMMV)causes a severe mosaic symptom of watermelon and cucumber, and can be transmitted via infected cucumber seeds, leaves and soil. It remains a challenge to detect this virus to prevent its introduction and infection and spread in fields. For this purpose, a simple and sensitive label-free colorimetric detection method for CGMMV has been developed with unmodified gold nanoparticles (AuNPs) as colorimetric probes. The method is based on the finding that the presence of RT-PCR target products of CGMMV and species-specific probes results in color change of AuNPs from red to blue after NaCl induction. Normally, species-specific probes attach to the surface of AuNPs and thereby increasing their resistance to NaCl-induced aggregation. The concentration of sodium, probes in the reaction system and evaluation of specificity and sensitivity of a novel assay, visual detection of Cucumber green mottle mosaic virus using unmodified AuNPs has been carried out with simple preparation of samples in our study. Through this assay, as low as 30pg/μL of CGMMV RNA was thus detected visually, by the naked eye, without the need for any sophisticated, expensive instrumentation and biochemical reagents. The specificity was 100% and exhibited good reproducibility in our assays. The results note that this assay is highly species-specific, simple, low-cost, and visual for easy detection of CGMMV in plant tissues. Therefore, visual assay is a potentially useful tool for middle or small-scales corporations and entry-exit inspection and quarantine bureau to detect CGMMV in cucumber seeds or plant tissues. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Citric acid-coated gold nanoparticles for visual colorimetric recognition of pesticide dimethoate

    Energy Technology Data Exchange (ETDEWEB)

    Dar, Aqib Iqbal; Walia, Shanka; Acharya, Amitabha, E-mail: amitabhachem@gmail.com, E-mail: amitabha@ihbt.res.in [CSIR-Institute of Himalayan Bioresource Technology, Biotechnology Division (India)

    2016-08-15

    A colorimetric chemo-sensor based on citric acid-coated gold NPs (C-GNP) showed a linear increase in fluorescence intensity with increasing concentration of pesticide dimethoate (DM). The limit of detection was found to be between ~8.25± 0.3 and 20 ± 9.5 ppm. The increase in fluorescence intensity was suggested to have originated from the soft–soft interaction between C-GNPs and DM via sulfur group which is absent in pesticide dicofol (DF). Similar studies with citric acid-coated silver NPs (C-SNPs) did not result any change in the fluorescence intensity. The microscopic studies suggested aggregation of C-GNPs in the presence of DM but not in case of DF.Graphical Abstract.

  18. Salicylimine-Based Colorimetric and Fluorescent Chemosensor for Selective Detection of Cyanide in Aqueous Buffer

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Jin Young; Hwang, In Hong; Kim, Hyun; Song, Eun Joo; Kim, Kyung Beom; Kim, Cheal [Seoul National Univ., Seoul (Korea, Republic of)

    2013-07-15

    A simple colorimetric and fluorescent anion sensor 1 based on salicylimine showed a high selectivity and sensitivity for detection of cyanide in aqueous solution. The receptor 1 showed high selectivity toward CN{sup -} ions in a 1:1 stoichiometric manner, which induces a fast color change from colorless to orange and a dramatic enhancement in fluorescence intensity selectively for cyanide anions over other anions. Such selectivity resulted from the nucleophilic addition of CN{sup -} to the carbon atom of an electron-deficient imine group. The sensitivity of the fluorescence-based assay (0.06 μM) is below the 1.9 μM suggested by the World Health Organization (WHO) as the maximum allowable cyanide concentration in drinking water, capable of being a practical system for the monitoring of CN. concentrations in aqueous samples.

  19. A simple colorimetric assay for detection of amplified Mycobacterium leprae DNA

    NARCIS (Netherlands)

    van der Vliet, G. M.; de Wit, M. Y.; Klatser, P. R.

    1993-01-01

    A colorimetric assay for the detection of PCR-products is described. The assay is based on amplification of DNA in the presence of digoxigenin-dUTP. After immobilization of the PCR products to a microtitre plate, amplified DNA could be detected colorimetrically. The sensitivity of this colorimetric

  20. New turn-on fluorescent and colorimetric probe for cyanide detection based on BODIPY-salicylaldehyde and its application in cell imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sukato, Rangsarit [Program of Petrochemistry and Polymer Science, Chulalongkorn University, Bangkok 10330 (Thailand); Sangpetch, Nuanphan; Palaga, Tanapat [Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330 (Thailand); Jantra, Suthikorn; Vchirawongkwin, Viwat; Jongwohan, Chanantida [Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Sukwattanasinitt, Mongkol [Nanotec-CU Center of Excellence on Food and Agriculture, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Wacharasindhu, Sumrit, E-mail: sumrit.w@chula.ac.th [Nanotec-CU Center of Excellence on Food and Agriculture, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand)

    2016-08-15

    Highlights: • A novel salicylaldehyde-BODIPY fluorescent sensor is prepared. • The sensor shows dual colorimetric & turn-on fluorescence response to cyanide ion. • Detection limit is 0.88 μM (below WHO standard for drinking water). • It is effective for cyanide detection an in vitro cellular system. - Abstract: Development of cyanide sensor is important as the anion is harmful to human health and the environment. Herein, a new colorimetric and fluorescent probe GSB based on boron dipyrrole-methene (BODIPY) containing salicylaldehyde group for cyanide detection has been reported. GSB undergoes exclusive colorimetric change from orange to colorless and exhibits selective fluorescence turn-on at 504 nm upon the addition of cyanide. Other 13 anions give almost no interference under physiological condition. Detection limit of the new cyanide-sensing GSB is 0.88 μM, which is below World Health Organization (WHO) recommended level in drinking water. A calculation by density functional theory (DFT) shows suppression of photoinduced electron transfer (PET) mechanism along with the interruption of π-conjugation between salicylaldehyde and BODIPY core by cyanide anion. Cell imaging studies demonstrated that GSB is compatible and capable of sensing cyanide anion in living cells.

  1. New turn-on fluorescent and colorimetric probe for cyanide detection based on BODIPY-salicylaldehyde and its application in cell imaging

    International Nuclear Information System (INIS)

    Sukato, Rangsarit; Sangpetch, Nuanphan; Palaga, Tanapat; Jantra, Suthikorn; Vchirawongkwin, Viwat; Jongwohan, Chanantida; Sukwattanasinitt, Mongkol; Wacharasindhu, Sumrit

    2016-01-01

    Highlights: • A novel salicylaldehyde-BODIPY fluorescent sensor is prepared. • The sensor shows dual colorimetric & turn-on fluorescence response to cyanide ion. • Detection limit is 0.88 μM (below WHO standard for drinking water). • It is effective for cyanide detection an in vitro cellular system. - Abstract: Development of cyanide sensor is important as the anion is harmful to human health and the environment. Herein, a new colorimetric and fluorescent probe GSB based on boron dipyrrole-methene (BODIPY) containing salicylaldehyde group for cyanide detection has been reported. GSB undergoes exclusive colorimetric change from orange to colorless and exhibits selective fluorescence turn-on at 504 nm upon the addition of cyanide. Other 13 anions give almost no interference under physiological condition. Detection limit of the new cyanide-sensing GSB is 0.88 μM, which is below World Health Organization (WHO) recommended level in drinking water. A calculation by density functional theory (DFT) shows suppression of photoinduced electron transfer (PET) mechanism along with the interruption of π-conjugation between salicylaldehyde and BODIPY core by cyanide anion. Cell imaging studies demonstrated that GSB is compatible and capable of sensing cyanide anion in living cells.

  2. Bone tissue engineering scaffolding: computer-aided scaffolding techniques.

    Science.gov (United States)

    Thavornyutikarn, Boonlom; Chantarapanich, Nattapon; Sitthiseripratip, Kriskrai; Thouas, George A; Chen, Qizhi

    Tissue engineering is essentially a technique for imitating nature. Natural tissues consist of three components: cells, signalling systems (e.g. growth factors) and extracellular matrix (ECM). The ECM forms a scaffold for its cells. Hence, the engineered tissue construct is an artificial scaffold populated with living cells and signalling molecules. A huge effort has been invested in bone tissue engineering, in which a highly porous scaffold plays a critical role in guiding bone and vascular tissue growth and regeneration in three dimensions. In the last two decades, numerous scaffolding techniques have been developed to fabricate highly interconnective, porous scaffolds for bone tissue engineering applications. This review provides an update on the progress of foaming technology of biomaterials, with a special attention being focused on computer-aided manufacturing (Andrade et al. 2002) techniques. This article starts with a brief introduction of tissue engineering (Bone tissue engineering and scaffolds) and scaffolding materials (Biomaterials used in bone tissue engineering). After a brief reviews on conventional scaffolding techniques (Conventional scaffolding techniques), a number of CAM techniques are reviewed in great detail. For each technique, the structure and mechanical integrity of fabricated scaffolds are discussed in detail. Finally, the advantaged and disadvantage of these techniques are compared (Comparison of scaffolding techniques) and summarised (Summary).

  3. Developing and Demonstrating an Augmented Reality Colorimetric Titration Tool

    Science.gov (United States)

    Tee, Nicholas Yee Kwang; Gan, Hong Seng; Li, Jonathan; Cheong, Brandon Huey-Ping; Tan, Han Yen; Liew, Oi Wah; Ng, Tuck Wah

    2018-01-01

    The handling of chemicals in the laboratory presents a challenge in instructing large class sizes and when students are relatively new to the laboratory environment. In this work, we describe and demonstrate an augmented reality colorimetric titration tool that operates out of the smartphone or tablet of students. It allows multiple students to…

  4. Parallel fabrication of macroporous scaffolds.

    Science.gov (United States)

    Dobos, Andrew; Grandhi, Taraka Sai Pavan; Godeshala, Sudhakar; Meldrum, Deirdre R; Rege, Kaushal

    2018-07-01

    Scaffolds generated from naturally occurring and synthetic polymers have been investigated in several applications because of their biocompatibility and tunable chemo-mechanical properties. Existing methods for generation of 3D polymeric scaffolds typically cannot be parallelized, suffer from low throughputs, and do not allow for quick and easy removal of the fragile structures that are formed. Current molds used in hydrogel and scaffold fabrication using solvent casting and porogen leaching are often single-use and do not facilitate 3D scaffold formation in parallel. Here, we describe a simple device and related approaches for the parallel fabrication of macroporous scaffolds. This approach was employed for the generation of macroporous and non-macroporous materials in parallel, in higher throughput and allowed for easy retrieval of these 3D scaffolds once formed. In addition, macroporous scaffolds with interconnected as well as non-interconnected pores were generated, and the versatility of this approach was employed for the generation of 3D scaffolds from diverse materials including an aminoglycoside-derived cationic hydrogel ("Amikagel"), poly(lactic-co-glycolic acid) or PLGA, and collagen. Macroporous scaffolds generated using the device were investigated for plasmid DNA binding and cell loading, indicating the use of this approach for developing materials for different applications in biotechnology. Our results demonstrate that the device-based approach is a simple technology for generating scaffolds in parallel, which can enhance the toolbox of current fabrication techniques. © 2018 Wiley Periodicals, Inc.

  5. Scaffolding students’ assignments

    DEFF Research Database (Denmark)

    Slot, Marie Falkesgaard

    2013-01-01

    This article discusses scaffolding in typical student assignments in mother tongue learning materials in upper secondary education in Denmark and the United Kingdom. It has been determined that assignments do not have sufficient scaffolding end features to help pupils understand concepts and build...... objects. The article presents the results of empirical research on tasks given in Danish and British learning materials. This work is based on a further development of my PhD thesis: “Learning materials in the subject of Danish” (Slot 2010). The main focus is how cognitive models (and subsidiary explicit...... learning goals) can help students structure their argumentative and communica-tive learning processes, and how various multimodal representations can give more open-ended learning possibilities for collaboration. The article presents a short introduction of the skills for 21st century learning and defines...

  6. Colorimetric gas detection by the varying thickness of a thin film of ultrasmall PTSA-coated TiO2 nanoparticles on a Si substrate

    Directory of Open Access Journals (Sweden)

    Urmas Joost

    2017-01-01

    Full Text Available Colorimetric gas sensing is demonstrated by thin films based on ultrasmall TiO2 nanoparticles (NPs on Si substrates. The NPs are bound into the film by p-toluenesulfonic acid (PTSA and the film is made to absorb volatile organic compounds (VOCs. Since the color of the sensing element depends on the interference of reflected light from the surface of the film and from the film/silicon substrate interface, colorimetric detection is possible by the varying thickness of the NP-based film. Indeed, VOC absorption causes significant swelling of the film. Thus, the optical path length is increased, interference wavelengths are shifted and the refractive index of the film is decreased. This causes a change of color of the sensor element visible by the naked eye. The color response is rapid and changes reversibly within seconds of exposure. The sensing element is extremely simple and cheap, and can be fabricated by common coating processes.

  7. Colorimetric measurements as control elements in wood conservation status

    Directory of Open Access Journals (Sweden)

    Ovidia Soto-Martín

    2014-01-01

    Full Text Available This paper is a methodological proposal for the study of altarpieces on wooden supports. The process was implemented to study the altarpiece of San Antonio de Padua in Garachico, Tenerife. For this, we conducted a review of key aspects appropriate to the discipline of wood identification carried out by macroscopic examination and for the characterization of the status of deterioration by colorimetric analysis. For the evaluation of the wood conservation status, the samples were subjected for the first time to colorimetric measurement. As a result we have created an online database to provide information for conservation professionals permitting them to design a proposal for preventive conservation and intervention individually for each object.

  8. Rapid colorimetric sensing platform for the detection of Listeria monocytogenes foodborne pathogen.

    Science.gov (United States)

    Alhogail, Sahar; Suaifan, Ghadeer A R Y; Zourob, Mohammed

    2016-12-15

    Listeria monocytogenes is a serious cause of human foodborne infections worldwide, which needs spending billions of dollars for inspection of bacterial contamination in food every year. Therefore, there is an urgent need for rapid, in-field and cost effective detection techniques. In this study, rapid, low-cost and simple colorimetric assay was developed using magnetic nanoparticles for the detection of listeria bacteria. The protease from the listeria bacteria was detected using D-amino acid substrate. D-amino acid substrate was linked to the carboxylic acid on the magnetic nanoparticles using EDC/NHS chemistry. The cysteine residue at the C-terminal of the substrate was used for the self-assembled monolayer formation on the gold sensor surface, which in turn the black magnetic nanobeads will mask the golden color. The color will change from black to golden color upon the cleavage of the specific peptide sequence by the Listeria protease. The sensor was tested with serial dilutions of Listeria bacteria. It was found that the appearance of the gold surface area is proportional to the bacterial concentrations in CFU/ml. The lowest detection limit of the developed sensor for Listeria was found to be 2.17×10(2) colony forming unit/ml (CFU/ml). The specificity of the biosensor was tested against four different foodborne associated bacteria (Escherichia coli, Salmonella, Shigella flexnerii and Staphylococcus aureus). Finally, the sensor was tested with artificially spiked whole milk and ground meat spiked with listeria. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Antitumor evaluation of epigallocatechin gallate by colorimetric methods

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Soon Ok [Korean Ginseng and Tobacco Research institute, Daejon (Korea, Republic of); Kim, Il Kwang; Baek, Seung Hwa; Han, Du Seok [Wonkwang Unvi., Iksan (Korea, Republic of)

    1998-08-01

    In the present study, we were evaluated cytotoxic effects of epigallocatechin gallate in human skin melanoma cells such as HTB-69. The light microscopic study showed morphological changes of the treated cells. Disruptions in cell organelles were determined by colorimetric methods; 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, neutral red (NR) assay and sulforhodamine B protein (SRB) as-say. These results suggest that epigallocatechin gallate retains a potential antitumor activity.

  10. Fluorescent and Colorimetric Molecular Recognition Probe for Hydrogen Bond Acceptors

    OpenAIRE

    Pike, Sarah Jane; Hunter, Christopher Alexander

    2018-01-01

    The association constants for formation of 1 : 1 complexes between a H-bond donor, 1-naphthol, and a diverse range of charged and neutral H-bond acceptors have been measured using UV/vis absorption and fluorescence emission titrations. The performance of 1-naphthol as a dual colorimetric and fluorescent molecular recognition probe for determining the H-bond acceptor (HBA) parameters of charged and neutral solutes has been investigated in three solvents. The data were employed to establish sel...

  11. Green synthesis of carbon dots functionalized silver nanoparticles for the colorimetric detection of phoxim.

    Science.gov (United States)

    Zheng, Mingda; Wang, Chenge; Wang, Yingying; Wei, Wei; Ma, Shuang; Sun, Xiaohan; He, Jiang

    2018-08-01

    In this work, Lycii Fructus as raw materials for green synthesis of fluorescent carbon dots (CDs) reduce AgNO 3 . The CDs-AgNPs were synthesized by one-step method. CDs were applied to stabilize AgNPs due to abundant functional groups on the surface of CDs. In presence of phoxim, the dispersed CDs-AgNPs get aggregated and the absorption peak with red shift from 400 nm to 525 nm, resulting in the color changed from yellow to red. Under optimized conditions, the absorbance ratio at A 525 nm /A 400 nm was related linearly to the concentrations of phoxim in the range of 0.1-100 μM. The detection limit was calculated to 0.04 μM, which is lower than maximum residue limits of phoxim in samples in China. The colorimetric sensor was successfully utilized to monitoring phoxim in environmental and fruit samples with good recoveries ranges from 87% to 110.0%. These results showed the sensor had a promising application prospect in real samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Colorimetric characterization of three wood species from the amazon forest

    Directory of Open Access Journals (Sweden)

    Sâmia Valéria dos Santos Barros

    2014-09-01

    Full Text Available The aim of this study was to analyze wood color variability in the (radial, tangential and transversal anatomic sections of Breu-vermelho, Tauari-vermelho and Pequiarana species through quantitative colorimetry using CIELAB color system. Such species come from a forest sustainable area of Thousand Precious Woods Company, located in Itacoatiara in the Amazon region of Brazil. Five wood samples from each species were selected so as to determine the following colorimetric parameters: L*, a*, b*, C e h*. In addition, 225 measurements were carried out with Konica Minolta CM-5 spectrophotometer connected to the computer. Results pointed out to statistical differences in the colorimetric parameters and also a low saturation in a* in the analyzed species. According to the cluster gathering, Breu-vermelho wood presents olive and/or grayish pink color, Tauari-vermelho is pinkish-gray and Pequiarana is grayish-pink and/or pinkish-gray. Such species presented differences in color among the three anatomic sections cited above and were also influenced by the yellow color defined in b* parameter. To summarize, colorimetric analysis to establish wood color is a simple procedure which may be used from the sawing of the logs until their final exploitation enabling value aggregation to the final product.

  13. A biodegradable colorimetric film for rapid low-cost field determination of formaldehyde contamination by digital image colorimetry.

    Science.gov (United States)

    Wongniramaikul, Worawit; Limsakul, Wadcharawadee; Choodum, Aree

    2018-05-30

    A biodegradable colorimetric film was fabricated on the lid of portable tube for in-tube formaldehyde detection. Based on the entrapment of colorimetric reagents within a thin film of tapioca starch, the yellow reaction product was observed with formaldehyde. Intensity of the blue channel from the digital image of yellow product showed a linear relationship in the range of 0-25 mg L -1 with low detection limit of 0.7 ± 0.1 mg L -1 . Inter-day precision of 0.61-3.10%RSD were obtained with less than 4.2% relative error from control samples. The developed method was applied for various food samples in Phuket and formaldehyde concentration range was non-detectable to 1.413 mg kg -1 . The quantified concentrations of formaldehyde in fish and squid samples provided relative errors of -7.7% and +10.8% compared to spectrophotometry. This low cost sensor (∼0.04 USD/test) with digital image colorimetry was thus an effective alternative for formaldehyde detection in food sample. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. A Simple Assay for Ultrasensitive Colorimetric Detection of Ag⁺ at Picomolar Levels Using Platinum Nanoparticles.

    Science.gov (United States)

    Wang, Yi-Wei; Wang, Meili; Wang, Lixing; Xu, Hui; Tang, Shurong; Yang, Huang-Hao; Zhang, Lan; Song, Hongbo

    2017-11-02

    In this work, uniformly-dispersed platinum nanoparticles (PtNPs) were synthesized by a simple chemical reduction method, in which citric acid and sodium borohydride acted as a stabilizer and reducer, respectively. An ultrasensitive colorimetric sensor for the facile and rapid detection of Ag⁺ ions was constructed based on the peroxidase mimetic activities of the obtained PtNPs, which can catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by H₂O₂ to produce colored products. The introduced Ag⁺ would be reduced to Ag⁰ by the capped citric acid, and the deposition of Ag⁰ on the PtNPs surface, can effectively inhibit the peroxidase-mimetic activity of PtNPs. Through measuring the maximum absorption signal of oxidized TMB at 652 nm, ultra-low detection limits (7.8 pM) of Ag⁺ can be reached. In addition to such high sensitivity, the colorimetric assay also displays excellent selectivity for other ions of interest and shows great potential for the detection of Ag⁺ in real water samples.

  15. A novel colorimetric assay for rapid detection of cysteine and Hg²⁺ based on gold clusters.

    Science.gov (United States)

    Wang, Yi-Wei; Tang, Shurong; Yang, Huang-Hao; Song, Hongbo

    2016-01-01

    Inhibition and recovery of the catalytic activity of bovine serum albumin-capped gold nanoclusters (BSA-AuNCs) is observed for the first time by introduction of cysteine and Hg(2+). The prepared BSA-AuNCs possess highly intrinsic peroxidase-like activity. It can catalyze the oxidation of 3, 3, 5, 5-tetramethylbenzidine by H2O2 to produce a blue colored product. Based on this phenomenon, a new colorimetric assay for rapid, selective and sensitive detection of cysteine and Hg(2+) in aqueous solution has been demonstrated. The interaction process between target molecule and BSA-AuNCs is very fast, so that the whole test can be completed within ten minutes. Moreover, the fabricated colorimetric sensor is simple and cost-effective, without the need of nucleic acid based recognition element and complicated washing, separation and labeling process, thus holds great promise for routine analysis of cysteine and Hg(2+) in real samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. A water-soluble and retrievable ruthenium-based probe for colorimetric recognition of Hg(II) and Cys.

    Science.gov (United States)

    Cui, Yali; Hao, Yuanqiang; Zhang, Yintang; Liu, Baoxia; Zhu, Xu; Qu, Peng; Li, Deliang; Xu, Maotian

    2016-08-05

    A new ruthenium-based complex 1 [(bis(4,4'-dimethylphosphonic-2,2'-bipyridine) dithiocyanato ruthenium (II))] was developed as a colorimetric probe for the detection of Hg(II) and Cys (Cysteine). The obtained compound 1 can give interconversional color changes upon the alternating addition of Hg(II) and Cys in 100% aqueous solution. The specific coordination between NCS groups with Hg(II) can lead to the formation of 1-Hg(2+) complex, which can induce a remarkable spectral changes of probe 1. Afterwards the formed 1-Hg(2+) complex can act as effective colorimetric sensor for Cys. Owing to the stronger binding affinity of sulfhydryl group to Hg(2+), Cys can extract Hg(2+) from 1-Hg(2+) complex resulting in the release of 1 and the revival of absorption profile of the probe 1. By introducing the hydrophilic phosphonic acid groups, the proposed probe exhibited excellent water solubility. The limits of detection (LODs) of the assay for Hg(2+) and Cys are calculated to be 15nM and 200nM, respectively. Copyright © 2016. Published by Elsevier B.V.

  17. Using Scaffolds in Problem-Based Hypermedia

    Science.gov (United States)

    Su, Yuyan; Klein, James D.

    2010-01-01

    This study investigated the use of scaffolds in problem-based hypermedia. Three hundred and twelve undergraduate students enrolled in a computer literacy course worked in project teams to use a hypermedia PBL program focused on designing a personal computer. The PBL program included content scaffolds, metacognitive scaffolds, or no scaffolds.…

  18. Highly sensitive colorimetric detection of glucose in a serum based on DNA-embeded Au@Ag core–shell nanoparticles

    International Nuclear Information System (INIS)

    Kang, Fei; Xu, Kun; Hou, Xiangshu

    2015-01-01

    Glucose is a key energy substance in diverse biology and closely related to the life activities of the organism. To develop a simple and sensitive method for glucose detection is extremely urgent but still remains a key challenge. Herein, we report a colorimetric glucose sensor in a homogeneous system based on DNA-embedded core–shell Au@Ag nanoparticles. In this assay, a glucose substrate was first catalytically oxidized by glucose oxidase to produce H 2 O 2 which would further oxidize and gradually etch the outer silver shell of Au@Ag nanoparticles. Afterwards, the solution color changed from yellow to red and the surface plasmon resonance (SPR) band of Au@Ag nanoparticles declined and red-shifted from 430 to 516 nm. Compared with previous silver-based glucose colorimetric detection strategies, the distinctive SPR band change is superior to the color variation, which is critical to the high sensitivity of this assay. Benefiting from the outstanding optical property, robust stability and well-dispersion of the core–shell Au@AgNPs hybrid, this colorimetric assay obtained a detection limit of glucose as low as 10 nM, which is at least a 10-fold improvement over other AgNPs-based procedures. Moreover, this optical biosensor was successfully employed to the determination of glucose in fetal bovine serum. (paper)

  19. Aggregation of Individual Sensing Units for Signal Accumulation: Conversion of Liquid-Phase Colorimetric Assay into Enhanced Surface-Tethered Electrochemical Analysis.

    Science.gov (United States)

    Wei, Tianxiang; Dong, Tingting; Wang, Zhaoyin; Bao, Jianchun; Tu, Wenwen; Dai, Zhihui

    2015-07-22

    A novel concept is proposed for converting liquid-phase colorimetric assay into enhanced surface-tethered electrochemical analysis, which is based on the analyte-induced formation of a network architecture of metal nanoparticles (MNs). In a proof-of-concept trial, thymine-functionalized silver nanoparticle (Ag-T) is designed as the sensing unit for Hg(2+) determination. Through a specific T-Hg(2+)-T coordination, the validation system based on functionalized sensing units not only can perform well in a colorimetric Hg(2+) assay, but also can be developed into a more sensitive and stable electrochemical Hg(2+) sensor. In electrochemical analysis, the simple principle of analyte-induced aggregation of MNs can be used as a dual signal amplification strategy for significantly improving the detection sensitivity. More importantly, those numerous and diverse colorimetric assays that rely on the target-induced aggregation of MNs can be augmented to satisfy the ambitious demands of sensitive analysis by converting them into electrochemical assays via this approach.

  20. Passive Leak Detection Using Commercial Hydrogen Colorimetric Indicator

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Kevin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Buttner, William [National Renewable Energy Lab. (NREL), Golden, CO (United States); Burgess, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Rivkin, Carl [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    Element One, Inc. (www.elem.com), a small business with in Boulder, CO, has been developing hydrogen detection technology based upon a highly selective colorimetric indicator. In its native state, the indicator pigment is a pale gray color, but becomes black upon exposure to hydrogen. The colorimetric change can be readily observed by the naked eye without the need for supplemental electronics or other hardware. Recently, the colorimetric indicator was integrated into a pliable, self-adhesive tape that can readily wrap around pneumatic fittings to serve as a hydrogen leak detector. A prototype version of the Element One indicator tape was tested within an NREL hydrogen system and successfully identified the unexpected presence of a small leak; a summary document for this case study is presented in Appendix 1. The tape was subsequently configured into 10-foot rolls as a product prototype that has just recently been commercialized and marketed under the tradename DetecTape(R). Figure 1 shows the commercial version of DetecTape along with an indicator sample in its native state and one that had been exposed to hydrogen. DetecTape is a self-adhesive silicone-based tape impregnated with a proprietary hydrogen-sensitive indicator based on transition metal oxides. A length of the tape can be cut from the roll and stretched by a factor of two or three times around a fitting. Due to the self-adhesive property of the tape, this provides a tight seal around the fitting. The seal is not hermetic, and is not intended to prevent the release of a leaking gas. However, a portion of the hydrogen leaking from a wrapped fitting will pass through the tape and react with the active indicator impregnated within the tape, thereby inducing blackening.

  1. Needle Decompression of Tension Pneumothorax with Colorimetric Capnography.

    Science.gov (United States)

    Naik, Nimesh D; Hernandez, Matthew C; Anderson, Jeff R; Ross, Erika K; Zielinski, Martin D; Aho, Johnathon M

    2017-11-01

    The success of needle decompression for tension pneumothorax is variable, and there are no objective measures assessing effective decompression. Colorimetric capnography, which detects carbon dioxide present within the pleural space, may serve as a simple test to assess effective needle decompression. Three swine underwent traumatically induced tension pneumothorax (standard of care, n = 15; standard of care with needle capnography, n = 15). Needle thoracostomy was performed with an 8-cm angiocatheter. Similarly, decompression was performed with the addition of colorimetric capnography. Subjective operator assessment of decompression was recorded and compared with true decompression, using thoracoscopic visualization for both techniques. Areas under receiver operating curves were calculated and pairwise comparison was performed to assess statistical significance (P pneumothorax, that is, the absence of any pathologic/space-occupying lesion, in 100% of cases (10 of 10 attempts). Standard of care needle decompression was detected by operators in 9 of 15 attempts (60%) and was detected in 3 of 10 attempts when tension pneumothorax was not present (30%). True decompression, under direct visualization with thoracoscopy, occurred 15 of 15 times (100%) with capnography, and 12 of 15 times (80%) without capnography. Areas under receiver operating curves were 0.65 for standard of care and 1.0 for needle capnography (P = .002). Needle decompression with colorimetric capnography provides a rapid, effective, and highly accurate method for eliminating operator bias for tension pneumothorax decompression. This may be useful for the treatment of this life-threatening condition. Copyright © 2017 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  2. Colorimetric Characterization of Mobile Devices for Vision Applications.

    Science.gov (United States)

    de Fez, Dolores; Luque, Maria José; García-Domene, Maria Carmen; Camps, Vicente; Piñero, David

    2016-01-01

    Available applications for vision testing in mobile devices usually do not include detailed setup instructions, sacrificing rigor to obtain portability and ease of use. In particular, colorimetric characterization processes are generally obviated. We show that different mobile devices differ also in colorimetric profile and that those differences limit the range of applications for which they are most adequate. The color reproduction characteristics of four mobile devices, two smartphones (Samsung Galaxy S4, iPhone 4s) and two tablets (Samsung Galaxy Tab 3, iPad 4), have been evaluated using two procedures: 3D LUT (Look Up Table) and a linear model assuming primary constancy and independence of the channels. The color reproduction errors have been computed with the CIEDE2000 color difference formula. There is good constancy of primaries but large deviations of additivity. The 3D LUT characterization yields smaller reproduction errors and dispersions for the Tab 3 and iPhone 4 devices, but for the iPad 4 and S4, both models are equally good. The smallest reproduction errors occur with both Apple devices, although the iPad 4 has the highest number of outliers of all devices with both colorimetric characterizations. Even though there is good constancy of primaries, the large deviations of additivity exhibited by the devices and the larger reproduction errors make any characterization based on channel independence not recommendable. The smartphone screens show, in average, the best color reproduction performance, particularly the iPhone 4, and therefore, they are more adequate for applications requiring precise color reproduction.

  3. Towards A Colorimetric Digital Image Archive For The Visual Arts

    Science.gov (United States)

    Martinez, Kirk; Hamber, Anthony

    1989-04-01

    The aim of this project is to produce a high-resolution, colorimetric and permanent digital archive of images taken directly from works of art. The proposed system is designed for use in education, research, galleries and museums. Tentative user requirements are examined with particular reference to resolution, image access and colorimetry. Existing technology and projects are considered. Some 3000x3000 pel images of paintings are used to illustrate the interrelationship between dimensions of the original, its inherent detail, scan resolution and display.

  4. Colorimetric detection of endogenous hydrogen sulfide production in living cells

    Science.gov (United States)

    Ahn, Yong Jin; Lee, Young Ju; Lee, Jaemyeon; Lee, Doyeon; Park, Hun-Kuk; Lee, Gi-Ja

    2017-04-01

    Hydrogen sulfide (H2S) has received great attention as a third gaseous signal transmitter, following nitric oxide and carbon monoxide. In particular, H2S plays an important role in the regulation of cancer cell biology. Therefore, the detection of endogenous H2S concentrations within biological systems can be helpful to understand the role of gasotransmitters in pathophysiology. Although a simple and inexpensive method for the detection of H2S has been developed, its direct and precise measurement in living cells remains a challenge. In this study, we introduced a simple, facile, and inexpensive colorimetric system for selective H2S detection in living cells using a silver-embedded Nafion/polyvinylpyrrolidone (PVP) membrane. This membrane could be easily applied onto a polystyrene microplate cover. First, we optimized the composition of the coating membrane, such as the PVP/Nafion mixing ratio and AgNO3 concentration, as well as the pH of the Na2S (H2S donor) solution and the reaction time. Next, the in vitro performance of a colorimetric detection assay utilizing the silver/Nafion/PVP membrane was evaluated utilizing a known concentration of Na2S standard solution both at room temperature and at 37 °C in a 5% CO2 incubator. As a result, the sensitivity of the colorimetric assay for H2S at 37 °C in the incubator (0.0056 Abs./μM Na2S, R2 = 0.9948) was similar to that at room temperature (0.0055 Abs./μM Na2S, R2 = 0.9967). Moreover, these assays were less sensitive to interference from compounds such as glutathione, L-cysteine (Cys), and dithiothreitol than to the H2S from Na2S. This assay based on the silver/Nafion/PVP membrane also showed excellent reproducibility (2.8% RSD). Finally, we successfully measured the endogenous H2S concentrations in live C6 glioma cells by s-(5‧-adenosyl)-L-methionine stimulation with and without Cys and L-homocysteine, utilizing the silver/Nafion/PVP membrane. In summary, colorimetric assays using silver

  5. Cost Effective Paper-Based Colorimetric Microfluidic Devices and Mobile Phone Camera Readers for the Classroom

    Science.gov (United States)

    Koesdjojo, Myra T.; Pengpumkiat, Sumate; Wu, Yuanyuan; Boonloed, Anukul; Huynh, Daniel; Remcho, Thomas P.; Remcho, Vincent T.

    2015-01-01

    We have developed a simple and direct method to fabricate paper-based microfluidic devices that can be used for a wide range of colorimetric assay applications. With these devices, assays can be performed within minutes to allow for quantitative colorimetric analysis by use of a widely accessible iPhone camera and an RGB color reader application…

  6. A simple and selective colorimetric mercury (II) sensing system based on chitosan stabilized gold nanoparticles and 2,6-pyridinedicarboxylic acid

    International Nuclear Information System (INIS)

    Tian, Kun; Siegel, Gene; Tiwari, Ashutosh

    2017-01-01

    The development of simple and cost-effective methods for the detection and treatment of Hg 2+ in the environment is an important area of research due to the serious health risk that Hg 2+ poses to humans. Colorimetric sensing based on the induced aggregation of nanoparticles is of great interest since it offers a low cost, simple, and relatively rapid procedure, making it perfect for on-site analysis. Herein we report the development of a simple colorimetric sensor for the selective detection and estimation of mercury ions in water, based on chitosan stabilized gold nanoparticles (AuNPs) and 2,6-pyridinedicarboxylic acid (PDA). In the presence of Hg 2+ , PDA induces the aggregation of AuNPs, causing the solution to change colors varying from red to blue, depending on the concentration of Hg 2+ . The formation of aggregated AuNPs in the presence of Hg 2+ was confirmed using transmission electron microscopy (TEM) and UV–Vis spectroscopy. The method exhibits linearity in the range of 300 nM to 5 μM and shows excellent selectivity towards Hg 2+ among seventeen different metal ions and was successfully applied for the detection of Hg 2+ in spiked river water samples. The developed technique is simple and superior to the existing techniques in that it allows detection of Hg 2+ using the naked eye and simple and rapid colorimetric analysis, which eliminates the need for sophisticated instruments and sample preparation methods. - Highlights: • A simple colorimetric method for detection of Hg 2+ in water was proposed. • Au nanoparticles and 2,6-pyridinedicarboxylic acid were used for sensing Hg 2+ . • Sensing mechanisms were demonstrated by TEM and UV–Visible measurements. • It showed the solution color changes from red to blue upon addition of Hg 2+ . • The method selectively detected Hg 2+ among seventeen different metal ions.

  7. Label-free colorimetric detection of mercury via Hg2+ ions-accelerated structural transformation of nanoscale metal-oxo clusters

    Science.gov (United States)

    Chen, Kun; She, Shan; Zhang, Jiangwei; Bayaguud, Aruuhan; Wei, Yongge

    2015-11-01

    Mercury and its compounds are known to be extremely toxic but widely distributed in environment. Although many works have been reported to efficiently detect mercury, development of simple and convenient sensors is still longed for quick analyzing mercury in water. In this work, a nanoscale metal-oxo cluster, (n-Bu4N)2[Mo5NaO13(OCH3)4(NO)], (MLPOM), organically-derivatized from monolacunary Lindqvist-type polyoxomolybdate, is found to specifically react with Hg2+ in methanol/water via structural transformation. The MLPOM methanol solution displays a color change from purple to brown within seconds after being mixed with an aqueous solution containing Hg2+. By comparing the structure of polyoxomolybdate before and after reaction, the color change is revealed to be the essentially structural transformation of MLPOM accelerated by Hg2+. Based on this discovery, MLPOM could be utilized as a colorimetric sensor to sense the existence of Hg2+, and a simple and label-free method is developed to selectively detect aqueous Hg2+. Furthermore, the colorimetric sensor has been applied to indicating mercury contamination in industrial sewage.

  8. Portable and low-cost colorimetric office paper-based device for phenacetin detection in seized cocaine samples.

    Science.gov (United States)

    da Silva, Gabriela O; de Araujo, William R; Paixão, Thiago R L C

    2018-01-01

    An office paper-based colorimetric device is proposed as a portable, rapid, and low-cost sensor for forensic applications aiming to detect phenacetin used as adulterant in illicit seized materials such as cocaine. The proposed method uses white office paper as the substrate and wax printing technology to fabricate the detection zones. Based on the optimum conditions, a linear analytical curve was obtained for phenacetin concentrations ranging from 0 to 64.52µgmL ‒1 , and the straight line was in accordance with the following equation: (Magenta percentage color) = 1.19 + 0.458 (C Phe /µgmL ‒1 ), R 2 = 0.990. The limit of detection was calculated as 3.5µgmL ‒1 (3σ/slope). The accuracy of the proposed method was evaluated using real seized cocaine samples and the spike-recovery procedure. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Detection of proteins using a colorimetric bio-barcode assay.

    Science.gov (United States)

    Nam, Jwa-Min; Jang, Kyung-Jin; Groves, Jay T

    2007-01-01

    The colorimetric bio-barcode assay is a red-to-blue color change-based protein detection method with ultrahigh sensitivity. This assay is based on both the bio-barcode amplification method that allows for detecting miniscule amount of targets with attomolar sensitivity and gold nanoparticle-based colorimetric DNA detection method that allows for a simple and straightforward detection of biomolecules of interest (here we detect interleukin-2, an important biomarker (cytokine) for many immunodeficiency-related diseases and cancers). The protocol is composed of the following steps: (i) conjugation of target capture molecules and barcode DNA strands onto silica microparticles, (ii) target capture with probes, (iii) separation and release of barcode DNA strands from the separated probes, (iv) detection of released barcode DNA using DNA-modified gold nanoparticle probes and (v) red-to-blue color change analysis with a graphic software. Actual target detection and quantification steps with premade probes take approximately 3 h (whole protocol including probe preparations takes approximately 3 days).

  10. New generation in process-control colorimetric instrumentation

    Science.gov (United States)

    Ladson, Jack A.

    1992-08-01

    Colorimetric performance parameters (repeatability and reproducibility) of a new spectrophotometer/colorimeter manufactured by BYK-Gardner, Inc. are reported. The color- viewTM spectrophotometer (CVS) uses forty-five degree illumination and zero degree viewing geometry relative to the plane of the test specimen. The CVS is designed for the measurement of diffuse reflectance factor. It is designed to conform to national and international recommendations for Spectrophotometry and Colorimetry. Colorimetric performance was evaluated by measuring colored tiles manufactured by the British Ceramic Research Association (BCRA). Instrument repeatability was recorded after an hour, eight hours, and thirty days. Routine performance of the CVS shows that color difference repeatability over short and medium time periods is within 0.15 CIELAB color difference unit. The long term repeatability is within 0.4 unit. Reproducibility was evaluated by making color measurements on BCRA tiles with 54 instruments. Measurements made on CVS instruments indicate that its reproducibility is better than the reproducibility of product standards. Reproducibility is well within the requirement for industrial applications. Actually, the repeatability and reproducibility is comparable to that of reference instruments in national standardizing laboratories.

  11. Wearable Optical Sensors

    KAUST Repository

    Ballard, Zachary S.

    2017-07-12

    The market for wearable sensors is predicted to grow to $5.5 billion by 2025, impacting global health in unprecedented ways. Optics and photonics will play a key role in the future of these wearable technologies, enabling highly sensitive measurements of otherwise invisible information and parameters about our health and surrounding environment. Through the implementation of optical wearable technologies, such as heart rate, blood pressure, and glucose monitors, among others, individuals are becoming more empowered to generate a wealth of rich, multifaceted physiological and environmental data, making personalized medicine a reality. Furthermore, these technologies can also be implemented in hospitals, clinics, point-of-care offices, assisted living facilities or even in patients’ homes for real-time, remote patient monitoring, creating more expeditious as well as resource-efficient systems. Several key optical technologies make such sensors possible, including e.g., optical fiber textiles, colorimetric, plasmonic, and fluorometric sensors, as well as Organic Light Emitting Diode (OLED) and Organic Photo-Diode (OPD) technologies. These emerging technologies and platforms show great promise as basic sensing elements in future wearable devices and will be reviewed in this chapter along-side currently existing fully integrated wearable optical sensors.

  12. Design and development of a microfluidic platform for use with colorimetric gold nanoprobe assays

    Science.gov (United States)

    Bernacka-Wojcik, Iwona

    Due to the importance and wide applications of the DNA analysis, there is a need to make genetic analysis more available and more affordable. As such, the aim of this PhD thesis is to optimize a colorimetric DNA biosensor based on gold nanoprobes developed in CEMOP by reducing its price and the needed volume of solution without compromising the device sensitivity and reliability, towards the point of care use. Firstly, the price of the biosensor was decreased by replacing the silicon photodetector by a low cost, solution processed TiO2 photodetector. To further reduce the photodetector price, a novel fabrication method was developed: a cost-effective inkjet printing technology that enabled to increase TiO2 surface area. Secondly, the DNA biosensor was optimized by means of microfluidics that offer advantages of miniaturization, much lower sample/reagents consumption, enhanced system performance and functionality by integrating different components. In the developed microfluidic platform, the optical path length was extended by detecting along the channel and the light was transmitted by optical fibres enabling to guide the light very close to the analysed solution. Microfluidic chip of high aspect ratio ( 13), smooth and nearly vertical sidewalls was fabricated in PDMS using a SU-8 mould for patterning. The platform coupled to the gold nanoprobe assay enabled detection of Mycobacterium tuberculosis using 3 mul on DNA solution, i.e. 20 times less than in the previous state-of-the-art. Subsequently, the bio-microfluidic platform was optimized in terms of cost, electrical signal processing and sensitivity to colour variation, yielding 160% improvement of colorimetric AuNPs analysis. Planar microlenses were incorporated to converge light into the sample and then to the output fibre core increasing 6 times the signal-to-losses ratio. The optimized platform enabled detection of single nucleotide polymorphism related with obesity risk (FTO) using target DNA concentration

  13. Scaffolding in Assisted Instruction

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available On-The-Job Training, developed as direct instruction, is one of the earliest forms of training. This method is still widely in use today because it requires only a person who knows how to do the task, and the tools the person uses to do the task. This paper is intended to be a study of the methods used in education in Knowledge Society, with more specific aspects in training the trainers; as a result of this approach, it promotes scaffolding in assisted instruction as a reflection of the digital age for the learning process. Training the trainers in old environment with default techniques and designing the learning process in assisted instruction, as an application of the Vygotskian concept of the zone of proximal development (ZPD to the area of computer literacy for the younger users, generate diversity in educational communities and requires standards for technology infrastructure, standards for the content, developed as a concepts map, and applications for personalized in-struction, based on ZPD theory.

  14. Neuronal Networks on Nanocellulose Scaffolds.

    Science.gov (United States)

    Jonsson, Malin; Brackmann, Christian; Puchades, Maja; Brattås, Karoline; Ewing, Andrew; Gatenholm, Paul; Enejder, Annika

    2015-11-01

    Proliferation, integration, and neurite extension of PC12 cells, a widely used culture model for cholinergic neurons, were studied in nanocellulose scaffolds biosynthesized by Gluconacetobacter xylinus to allow a three-dimensional (3D) extension of neurites better mimicking neuronal networks in tissue. The interaction with control scaffolds was compared with cationized nanocellulose (trimethyl ammonium betahydroxy propyl [TMAHP] cellulose) to investigate the impact of surface charges on the cell interaction mechanisms. Furthermore, coatings with extracellular matrix proteins (collagen, fibronectin, and laminin) were investigated to determine the importance of integrin-mediated cell attachment. Cell proliferation was evaluated by a cellular proliferation assay, while cell integration and neurite propagation were studied by simultaneous label-free Coherent anti-Stokes Raman Scattering and second harmonic generation microscopy, providing 3D images of PC12 cells and arrangement of nanocellulose fibrils, respectively. Cell attachment and proliferation were enhanced by TMAHP modification, but not by protein coating. Protein coating instead promoted active interaction between the cells and the scaffold, hence lateral cell migration and integration. Irrespective of surface modification, deepest cell integration measured was one to two cell layers, whereas neurites have a capacity to integrate deeper than the cell bodies in the scaffold due to their fine dimensions and amoeba-like migration pattern. Neurites with lengths of >50 μm were observed, successfully connecting individual cells and cell clusters. In conclusion, TMAHP-modified nanocellulose scaffolds promote initial cellular scaffold adhesion, which combined with additional cell-scaffold treatments enables further formation of 3D neuronal networks.

  15. Hybrid nanosensor for colorimetric and ultrasensitive detection of nuclease contaminations

    Science.gov (United States)

    Cecere, Paola; Valentini, Paola; Pompa, Pier Paolo

    2016-04-01

    Nucleases are ubiquitous enzymes that degrade DNA or RNA, thus they can prejudice the good outcome of molecular biology experiments involving nucleic acids. We propose a colorimetric test for the naked-eye detection of nuclease contaminations. The system uses an hybrid nanosensor, based on gold nanoparticles functionalized with DNA probes. Our assay is rapid, instrument-free, simple and low-cost. Moreover, it reaches sensitivity equal or better than those of commercial kits, and presents a lot of advantageous aspects. Therefore, it is very competitive, with a real market potential. This test will be relevant in routine process monitoring in scientific laboratories, and in quality control in clinical laboratories and industrial processes, allowing the simultaneous detection of nucleases with different substrate specificities and large-scale screening.

  16. Smart phone-based Chemistry Instrumentation: Digitization of Colorimetric Measurements

    International Nuclear Information System (INIS)

    Chang, Byoung Yong

    2012-01-01

    This report presents a mobile instrumentation platform based on a smart phone using its built-in functions for colorimetric diagnosis. The color change as a result of detection is taken as a picture through a CCD camera built in the smart phone, and is evaluated in the form of the hue value to give the well-defined relationship between the color and the concentration. To prove the concept in the present work, proton concentration measurements were conducted on pH paper coupled with a smart phone for demonstration. This report is believed to show the possibility of adapting a smart phone to a mobile analytical transducer, and more applications for bioanalysis are expected to be developed using other built-in functions of the smart phone

  17. A new automated colorimetric method for measuring total oxidant status.

    Science.gov (United States)

    Erel, Ozcan

    2005-12-01

    To develop a new, colorimetric and automated method for measuring total oxidation status (TOS). The assay is based on the oxidation of ferrous ion to ferric ion in the presence of various oxidant species in acidic medium and the measurement of the ferric ion by xylenol orange. The oxidation reaction of the assay was enhanced and precipitation of proteins was prevented. In addition, autoxidation of ferrous ion present in the reagent was prevented during storage. The method was applied to an automated analyzer, which was calibrated with hydrogen peroxide and the analytical performance characteristics of the assay were determined. There were important correlations with hydrogen peroxide, tert-butyl hydroperoxide and cumene hydroperoxide solutions (r=0.99, Ptotal antioxidant capacity (TAC) (r=-0.66 Ptotal oxidant status.

  18. Paper-based tuberculosis diagnostic devices with colorimetric gold nanoparticles

    International Nuclear Information System (INIS)

    Tsai, Tsung-Ting; Shen, Shu-Wei; Chen, Chien-Fu; Cheng, Chao-Min

    2013-01-01

    A colorimetric sensing strategy employing gold nanoparticles and a paper assay platform has been developed for tuberculosis diagnosis. Unmodified gold nanoparticles and single-stranded detection oligonucleotides are used to achieve rapid diagnosis without complicated and time-consuming thiolated or other surface-modified probe preparation processes. To eliminate the use of sophisticated equipment for data analysis, the color variance for multiple detection results was simultaneously collected and concentrated on cellulose paper with the data readout transmitted for cloud computing via a smartphone. The results show that the 2.6 nM tuberculosis mycobacterium target sequences extracted from patients can easily be detected, and the turnaround time after the human DNA is extracted from clinical samples was approximately 1 h. (paper)

  19. Color digital halftoning taking colorimetric color reproduction into account

    Science.gov (United States)

    Haneishi, Hideaki; Suzuki, Toshiaki; Shimoyama, Nobukatsu; Miyake, Yoichi

    1996-01-01

    Taking colorimetric color reproduction into account, the conventional error diffusion method is modified for color digital half-toning. Assuming that the input to a bilevel color printer is given in CIE-XYZ tristimulus values or CIE-LAB values instead of the more conventional RGB or YMC values, two modified versions based on vector operation in (1) the XYZ color space and (2) the LAB color space were tested. Experimental results show that the modified methods, especially the method using the LAB color space, resulted in better color reproduction performance than the conventional methods. Spatial artifacts that appear in the modified methods are presented and analyzed. It is also shown that the modified method (2) with a thresholding technique achieves a good spatial image quality.

  20. Mechanical anisotropy of titanium scaffolds

    Directory of Open Access Journals (Sweden)

    Rüegg Jasmine

    2017-09-01

    Full Text Available The clinical performance of an implant, e.g. for the treatment of large bone defects, depends on the implant material, anchorage, surface topography and chemistry, but also on the mechanical properties, like the stiffness. The latter can be adapted by the porosity. Whereas foams show isotropic mechanical properties, digitally modelled scaffolds can be designed with anisotropic behaviour. In this study, we designed and produced 3D scaffolds based on an orthogonal architecture and studied its angle-dependent stiffness. The aim was to produce scaffolds with different orientations of the microarchitecture by selective laser melting and compare the angle-specific mechanical behaviour with an in-silico simulation. The anisotropic characteristics of open-porous implants and technical limitations of the production process were studied.

  1. A scaffold easy to decontaminate

    International Nuclear Information System (INIS)

    Mourek, D.

    1992-01-01

    The conventional scaffold used in the assembling work and in revisions of technological facilities at nuclear power plants has many drawbacks. The most serious of them are a high amount of radioactive waste arising from the decontamination (planing) of the floor timber and from the discarding of damaged irreparable parts, and a considerable corrosion of the carbon steel supporting structure after the decontamination. A detailed description is given of a novel scaffold assembly which can be decontaminated and which exhibits many assets, in particular a good mechanical resistance (also to bad weather), a lower weight, and the use of prepreg floor girders for the construction of service platforms or scaffold bridges which can readily be assembled from the pressed pieces in a modular way. (Z.S.). 4 figs., 4 refs

  2. A highly selective chemosensor for colorimetric detection of Hg2+ and fluorescence detection of pH changes in aqueous solution

    International Nuclear Information System (INIS)

    Kavitha, Ramasamy; Stalin, Thambusamy

    2014-01-01

    A naturally existing and unmodified simple chemosensor, 2-hydroxy-1,4-naphthoquinone (2HNQ), was identified and used for both the colorimetric detection of Hg 2+ and the fluorescent (on-off) detection of pH. The distinct color change and quenching of fluorescence emission was visible to the naked eye. More importantly, the chemosensor was used in combination with β-cyclodextrin (β-CD), which enabled the sensor to be solubilized and stabilized in aqueous solutions. The sensor selectively detected Hg 2+ via the stable 1:1 complexation of the CåO and OH groups with Hg 2+ and reflected pH changes in the range from 6 to 12 via a fluorescence on–off response resulting from the deprotonation of the hydroxyl group in 2HNQ. - Highlights: • The 2-Hydroxy-1,4-Naphthoquinone (2HNQ) chemosensor is capable of both colorimetric detection of Hg 2+ and a fluorescence on-off response to pH. • The distinct color change and quenching of fluorescence emission are detectable with the naked eye. • The on– off fluorescence response in the pH range from 6– to 12 is due to the deprotonation of the hydroxyl group in 2HNQ

  3. Systematic Prediction of Scaffold Proteins Reveals New Design Principles in Scaffold-Mediated Signal Transduction

    Science.gov (United States)

    Hu, Jianfei; Neiswinger, Johnathan; Zhang, Jin; Zhu, Heng; Qian, Jiang

    2015-01-01

    Scaffold proteins play a crucial role in facilitating signal transduction in eukaryotes by bringing together multiple signaling components. In this study, we performed a systematic analysis of scaffold proteins in signal transduction by integrating protein-protein interaction and kinase-substrate relationship networks. We predicted 212 scaffold proteins that are involved in 605 distinct signaling pathways. The computational prediction was validated using a protein microarray-based approach. The predicted scaffold proteins showed several interesting characteristics, as we expected from the functionality of scaffold proteins. We found that the scaffold proteins are likely to interact with each other, which is consistent with previous finding that scaffold proteins tend to form homodimers and heterodimers. Interestingly, a single scaffold protein can be involved in multiple signaling pathways by interacting with other scaffold protein partners. Furthermore, we propose two possible regulatory mechanisms by which the activity of scaffold proteins is coordinated with their associated pathways through phosphorylation process. PMID:26393507

  4. Paper-Based Heavy Metal Sensors from the Concise Synthesis of an Anionic Porphyrin: A Practical Application of Organic Synthesis to Environmental Chemistry

    Science.gov (United States)

    Prabpal, Jutamat; Vilaivan, Tirayut; Praneenararat, Thanit

    2017-01-01

    Tetrakis(4-sulfonatophenyl)porphyrin (TSPP) was immobilized on patterned paper and used as a sensor for heavy metal ions in an advanced organic chemistry course. The resulting sensor could detect Hg[superscript 2+] and Cd[superscript 2+] ions colorimetrically, while Cu[superscript 2+] ion resulted in fluorescence quenching, thus demonstrating a…

  5. Direct quantification of carotenoids in low fat babyfoods via laser photoacoustics and colorimetric index a

    NARCIS (Netherlands)

    Doka, O.; Ajtony, Z.; Bicanic, D.D.; Valinger, D.; Vegvari, G.

    2014-01-01

    Carotenoids are important antioxidants found in various foods including those for nutrition of infants. In this investigation, the total carotenoid content (TCC) of nine different commercially available baby foods was quantified using colorimetric index a * obtained via reflectance colorimetry (RC)

  6. Mentha-Stabilized Silver Nanoparticles for High-Performance Colorimetric Detection of Al(III) in Aqueous Systems.

    Science.gov (United States)

    Sharma, Rekha; Dhillon, Ankita; Kumar, Dinesh

    2018-03-26

    The present paper reports a facile and selective colorimetric method for the detection of potential environmental and health hazardous metal ions using green synthesized silver nanoparticles (AgNPs). Here the organic functional groups present in the plant extract (Mentha arvensis) are used as reductants and stabilizers in the synthesis of AgNPs. They also provide a suitable binding site to the (Al(III)) analyte in the detection mechanism. The leaf extract of Mentha arvensis was used to synthesize AgNPs at room-temperature and at 80 °C. The AgNPs synthesized at 80 °C exhibit excellent selective colorimetric detection of Al(III). The as-synthesized AgNPs have been characterized, and the synthesis, stabilization of NPs and detection mechanism has also been illustrated by using UV-vis, XPS, FTIR, TEM, EDX, SEM, AAS, and TGA analytical tools and techniques. The selectivity of detection probe was supported by the reaction between probe and metal ions followed first-order kinetics having the highest value of the regression coefficient (R 2  = 0.99) for Al(III) and the analysis of thermodynamic parameters. The prepared sensor showed a lower limit of detection (LOD) of 1 nM (S/N = 3.2) in real water samples. The proposed method can be successfully utilized for the detection of Al(III) from both drinking and real water samples at the nanomolar level.

  7. A practice scaffolding interactive platform

    DEFF Research Database (Denmark)

    Bundsgaard, Jeppe

    2009-01-01

    A Practice Scaffolding Interactive Platform (PracSIP) is a social learning platform which supports students in collaborative project based learning by simulating a professional practice. A PracSIP puts the core tools of the simulated practice at the students' disposal, it organizes collaboration...

  8. Problem Solving, Scaffolding and Learning

    Science.gov (United States)

    Lin, Shih-Yin

    2012-01-01

    Helping students to construct robust understanding of physics concepts and develop good solving skills is a central goal in many physics classrooms. This thesis examine students' problem solving abilities from different perspectives and explores strategies to scaffold students' learning. In studies involving analogical problem solving…

  9. Porous heat-treated polyacrylonitrile scaffolds for bone tissue engineering

    Czech Academy of Sciences Publication Activity Database

    Vetrík, Miroslav; Pařízek, Martin; Hadraba, Daniel; Kukačková, Olivia; Brus, Jiří; Hlídková, Helena; Kománková, Lucie; Hodan, Jiří; Sedláček, Ondřej; Šlouf, Miroslav; Bačáková, Lucie; Hrubý, Martin

    2018-01-01

    Roč. 10, č. 10 (2018), s. 8496-8506 ISSN 1944-8244 R&D Projects: GA MZd(CZ) NV15-32497A; GA MŠk(CZ) LM2015064; GA MZd(CZ) NV16-30544A; GA ČR(CZ) GA16-03156S Institutional support: RVO:61389013 ; RVO:67985823 Keywords : 3D scaffolds * black orlon * carbon-based material Subject RIV: CD - Macromolecular Chemistry; EI - Biotechnology ; Bionics (FGU-C) OBOR OECD: Polymer science; Biomaterials (as related to medical implants, devices, sensors) (FGU-C) Impact factor: 7.504, year: 2016

  10. Chitin Scaffolds in Tissue Engineering

    Science.gov (United States)

    Jayakumar, Rangasamy; Chennazhi, Krishna Prasad; Srinivasan, Sowmya; Nair, Shantikumar V.; Furuike, Tetsuya; Tamura, Hiroshi

    2011-01-01

    Tissue engineering/regeneration is based on the hypothesis that healthy stem/progenitor cells either recruited or delivered to an injured site, can eventually regenerate lost or damaged tissue. Most of the researchers working in tissue engineering and regenerative technology attempt to create tissue replacements by culturing cells onto synthetic porous three-dimensional polymeric scaffolds, which is currently regarded as an ideal approach to enhance functional tissue regeneration by creating and maintaining channels that facilitate progenitor cell migration, proliferation and differentiation. The requirements that must be satisfied by such scaffolds include providing a space with the proper size, shape and porosity for tissue development and permitting cells from the surrounding tissue to migrate into the matrix. Recently, chitin scaffolds have been widely used in tissue engineering due to their non-toxic, biodegradable and biocompatible nature. The advantage of chitin as a tissue engineering biomaterial lies in that it can be easily processed into gel and scaffold forms for a variety of biomedical applications. Moreover, chitin has been shown to enhance some biological activities such as immunological, antibacterial, drug delivery and have been shown to promote better healing at a faster rate and exhibit greater compatibility with humans. This review provides an overview of the current status of tissue engineering/regenerative medicine research using chitin scaffolds for bone, cartilage and wound healing applications. We also outline the key challenges in this field and the most likely directions for future development and we hope that this review will be helpful to the researchers working in the field of tissue engineering and regenerative medicine. PMID:21673928

  11. G-Quadruplex DNAzyme Molecular Beacon for Amplified Colorimetric Biosensing of Pseudostellaria heterophylla

    Directory of Open Access Journals (Sweden)

    Juan Hu

    2013-01-01

    Full Text Available With an internal transcribed spacer of 18 S, 5.8 S and 26 S nuclear ribosomal DNA (nrDNA ITS as DNA marker, we report a colorimetric approach for authentication of Pseudostellaria heterophylla (PH and its counterfeit species based on the differentiation of the nrDNA ITS sequence. The assay possesses an unlabelled G-quadruplex DNAzyme molecular beacon (MB probe, employing complementary sequence as biorecognition element and 1:1:1:1 split G-quadruplex halves as reporter. In the absence of target DNA (T-DNA, the probe can shape intermolecular G-quadruplex structures capable of binding hemin to form G-quadruplex-hemin DNAzyme and catalyze the oxidation of ABTS2− to blue-green ABTS•− by H2O2. In the presence of T-DNA, T-DNA can hybridize with the complementary sequence to form a duplex structure, hindering the formation of the G-quadruplex structure and resulting in the loss of the catalytic activity. Consequently, a UV-Vis absorption signal decrease is observed in the ABTS2−-H2O2 system. The “turn-off” assay allows the detection of T-DNA from 1.0 × 10−9 to 3.0 × 10−7 mol·L−1 (R2 = 0.9906, with a low detection limit of 3.1 × 10−10 mol·L−1. The present study provides a sensitive and selective method and may serve as a foundation of utilizing the DNAzyme MB sensor for identifying traditional Chinese medicines.

  12. Etching and anti-etching strategy for sensitive colorimetric sensing of H2O2 and biothiols based on silver/carbon nanomaterial.

    Science.gov (United States)

    Hou, Wenli; Liu, Xiaoying; Lu, Qiujun; Liu, Meiling; Zhang, Youyu; Yao, Shouzhuo

    2018-02-01

    In this paper, the colorimetric sensing of H 2 O 2 related molecules and biothiols based on etching and anti-etching strategy was firstly proposed. Ag/carbon nanocomposite (Ag/C NC) was served as the sensing nanoprobe, which was synthesized via carbon dots (C-dots) as the reductant and stabilizer. The characteristic surface plasmon resonance (SPR) absorbance of Ag nanoparticles (AgNPs) was sensitive to the amount of hydrogen peroxide (H 2 O 2 ). It exhibited strong optical responses to H 2 O 2 with the solution colour changing from yellow to nearly colourless, which is resulted from the etching of Ag by H 2 O 2 . The sensing platform was further extended to detect H 2 O 2 related molecules such as lactate in coupling with the specific catalysis oxidation of L-lactate by lactate oxidase (LOx) and formation of H 2 O 2 . It provides wide linear range for detecting H 2 O 2 in 0.1-80μM and 80-220μM with the detection limit as low as 0.03μM (S/N=3). In the presence of biothiols, the etching from the H 2 O 2 can be hampered. Other biothiols exhibit anti-etching effects well. The strategy works well in detecting of typical biothiols including cysteine (Cys), homocysteine (Hcy) and glutathione (GSH). Thus, a simple colorimetric strategy for sensitive detection of H 2 O 2 and biothiols is proposed. It is believed that the colorimetric sensor based on etching and anti-etching strategy can be applied in other systems in chemical and biosensing areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Smartphone Based Platform for Colorimetric Sensing of Dyes

    Science.gov (United States)

    Dutta, Sibasish; Nath, Pabitra

    We demonstrate the working of a smartphone based optical sensor for measuring absorption band of coloured dyes. By integration of simple laboratory optical components with the camera unit of the smartphone we have converted it into a visible spectrometer with a pixel resolution of 0.345 nm/pixel. Light from a broadband optical source is allowed to transmit through a specific dye solution. The transmitted light signal is captured by the camera of the smartphone. The present sensor is inexpensive, portable and light weight making it an ideal handy sensor suitable for different on-field sensing.

  14. Quercetin as colorimetric reagent for determination of zirconium

    Science.gov (United States)

    Grimaldi, F.S.; White, C.E.

    1953-01-01

    Methods described in the literature for the determination of zirconium are generally designed for relatively large amounts of this element. A good procedure using colorimetric reagent for the determination of trace amounts is desirable. Quercetin has been found to yield a sensitive color reaction with zirconium suitable for the determination of from 0.1 to 50?? of zirconium dioxide. The procedure developed involves the separation of zirconium from interfering elements by precipitation with p-dimethylaminoazophenylarsonic acid prior to its estimation with quercetin. The quercetin reaction is carried out in 0.5N hydrochloric acid solution. Under the operating conditions it is indicated that quercetin forms a 2 to 1 complex with zirconium; however, a 2 to 1 and a 1 to 1 complex can coexist under special conditions. Approximate values for the equilibrium constants of the complexes are K1 = 0.33 ?? 10-5 and K2 = 1.3 ?? 10-9. Seven Bureau of Standards samples of glass sands and refractories were analyzed with excellent results. The method described should find considerable application in the analysis of minerals and other materials for macro as well as micro amounts of zirconium.

  15. Colorimetric detection of cholesterol based on enzyme modified gold nanoparticles

    Science.gov (United States)

    Nirala, Narsingh R.; Saxena, Preeti S.; Srivastava, Anchal

    2018-02-01

    We develop a simple colorimetric method for determination of free cholesterol in aqueous solution based on functionalized gold nanoparticles with cholesterol oxidase. Functionalized gold nanoparticles interact with free cholesterol to produce H2O2 in proportion to the level of cholesterol visually is being detected. The quenching in optical properties and agglomeration of functionalized gold nanoparticles play a key role in cholesterol sensing due to the electron accepting property of H2O2. While the lower ranges of cholesterol (lower detection limit i.e. 0.2 mg/dL) can be effectively detected using fluorescence study, the absorption study attests evident visual color change which becomes effective for detection of higher ranges of cholesterol (lower detection limit i.e. 19 mg/dL). The shades of red gradually change to blue/purple as the level of cholesterol detected (as evident at 100 mg/dL) using unaided eye without the use of expensive instruments. The potential of the proposed method to be applied in the field is shown by the proposed cholesterol measuring color wheel.

  16. Colorimetric properties of TiN coating implanted by aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Q.G. [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)]. E-mail: zhouqg99@mails.tsinghua.edu.cn; Bai, X.D. [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Xue, X.Y. [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Ling, Y.H. [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Chen, X.W. [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Xu, J. [Beijing Great Wall Ti-Gold Corporation, Beijing 100095 (China); Wang, D.R. [Beijing Great Wall Ti-Gold Corporation, Beijing 100095 (China)

    2005-04-05

    TiN coating was prepared by cathodic arc deposition and implanted aluminum using a metal vacuum vapor arc ion source with doses ranging from 5 x 10{sup 16} to 2 x 10{sup 17} ions/cm{sup 2}. The purpose of this work was to determine the dependence of the colorimetric properties of TiN films on the implanting conditions, especially by the aluminum ion implantation. The colorimetry of coatings was evaluated quantitatively in terms of CIE L * a * b *. The color coordinate values L *, a *, and b * provide a numerical representation of the color of the surface. With the dose increasing, the surface color has no obvious change but the surface turns brighter, and a * as well as b * values all decline. The X-ray diffraction patterns showed that the aluminum implantation induced a slight shift of diffraction peaks. X-ray photoemission spectroscopy was employed to analyze the surface valence states. The oxygen in surface top layer does not decrease a * and b * values, it partially combined with nitrogen.

  17. Colorimetric determination of reducing normality in the Purex process

    International Nuclear Information System (INIS)

    Baumann, E.W.

    1983-07-01

    Adjustment of the valence state of plutonium from extractable Pu(IV) to nonextractable Pu(III) in the Purex process is accomplished by addition of reductants such as Fe(II), hydroxylamine nitrate (HAN), or U(IV). To implement on-line monitoring of this reduction step for improved process control at the Savannah River Plant, a simple colorimetric method for determining excess reductant (reducing normality) was developed. The method is based on formation of a colored complex of Fe(II) with FerroZine (Hach Chemical Company). The concentration of Fe(II) is determined directly. The concentration of HAN or U(IV), in addition to Fe(II), is determined indirectly as Fe(II), produced through reduction of Fe(III). Experimental conditions for a HAN-Fe(III) reaction of known stoichiometry were established. The effect of hydrazine, which stabilizes U(IV), was also determined. Real-time measurements of color development were made that simulated on-line performance. A laboratory analytical procedure is included. 5 references, 8 figures

  18. Gold nanoparticles-based colorimetric and visual creatinine assay

    International Nuclear Information System (INIS)

    He, Yi; Zhang, Xianhui; Yu, Haili

    2015-01-01

    We demonstrate a selective and sensitive method for determination of creatinine using citrate-stabilized gold nanoparticles (AuNPs) as a colorimetric probe. It is based on a direct cross-linking reaction that occurs between creatinine and AuNPs that causes aggregation of AuNPs and results in a color change from wine red to blue. The absorption peak is shifted from 520 to 670 nm. Under the optimized conditions, the shift in the absorption peak is related the logarithm of the creatinine concentration in the 0.1 to 20 mM range, and the instrumental detection limit (LOD) is 80 μM. This LOD is about one order of magnitude better than that that of the Jaffé method (720 μM). The assay displays good selectivity over interfering substances including various inorganic ions, organic small compounds, proteins, and biothiols. It was successfully employed to the determination of creatinine in spiked human urine. (author)

  19. Colorimetric determination of neomycin using melamine modified gold nanoparticles

    International Nuclear Information System (INIS)

    Xiao, Can; Liu, Junfeng; Yang, Ankang; Zhao, Hong; He, Yujian; Li, Xiangjun; Yuan, Zhuobin

    2015-01-01

    The colorimetric assay for neomycin presented here is based on melamine-modified gold nanoparticles (mel-AuNPs) and the finding that hydrogen bonding between melamine and neomycin results in the aggregation of mel-AuNPs. This results in a change in the color of the solution from wine red to blue and in a red-shift of the absorption maximum of the mel-AuNPs. The concentration of neomycin can be determined by spectrophotometry. The ratio of absorptions at 680 nm and 520 nm is linearly related to the logarithm of the concentration of neomycin in the 0.1 to 5.0 nM range and in the 5 to 100 nM range, with regression coefficients of 0.997 and 0.999, respectively. The detection limit (at an S/N ratio of 3) is 30 pM. This is far below the usual safety limit. The method was applied to the detection of trace levels of neomycin in milk samples and gave recoveries between 98 and 105 %. (author)

  20. Fluorescent and colorimetric molecular recognition probe for hydrogen bond acceptors.

    Science.gov (United States)

    Pike, Sarah J; Hunter, Christopher A

    2017-11-22

    The association constants for formation of 1 : 1 complexes between a H-bond donor, 1-naphthol, and a diverse range of charged and neutral H-bond acceptors have been measured using UV/vis absorption and fluorescence emission titrations. The performance of 1-naphthol as a dual colorimetric and fluorescent molecular recognition probe for determining the H-bond acceptor (HBA) parameters of charged and neutral solutes has been investigated in three solvents. The data were employed to establish self-consistent H-bond acceptor parameters (β) for benzoate, azide, chloride, thiocyanate anions, a series of phosphine oxides, phosphate ester, sulfoxide and a tertiary amide. The results demonstrate both the transferability of H-bond parameters between different solvents and the utility of the naphthol-based dual molecular recognition probe to exploit orthogonal spectroscopic techniques to determine the HBA properties of neutral and charged solutes. The benzoate anion is the strongest HBA studied with a β parameter of 15.4, and the neutral tertiary amide is the weakest H-bond acceptor investigated with a β parameter of 8.5. The H-bond acceptor strength of the azide anion is higher than that of chloride (12.8 and 12.2 respectively), and the thiocyanate anion has a β value of 10.8 and thus is a significantly weaker H-bond acceptor than both the azide and chloride anions.

  1. A colorimetric method to quantify endo-polygalacturonase activity.

    Science.gov (United States)

    Torres, Sebastián; Sayago, Jorge E; Ordoñez, Roxana M; Isla, María Inés

    2011-02-08

    We report a new colorimetric assay to quantify endo-polygalacturonase activity, which hydrolyzes polygalacturonic acid to produce smaller chains of galacturonate. Some of the reported polygalacturonase assays measure the activity by detecting the appearance of reducing ends such as the Somogyi-Nelson method. As a result of being general towards reducing groups, the Somogyi-Nelson method is not appropriate when studying polygalacturonase and polygalacturonase inhibitors in plant crude extracts, which often have a strong reducing power. Ruthenium Red is an inorganic dye that binds polygalacturonic acid and causes its precipitation. In the presence of polygalacturonase, polygalacturonic acid is hydrolyzed bringing about a corresponding gain in soluble Ruthenium Red. The described assay utilizes Ruthenium Red as the detection reagent which has been used previously in plate-based assays but not in liquid medium reactions. The new method measures the disappearance of the substrate polygalacturonic acid and is compared to the Somogyi-Nelson assay. The experimental results using lemon peel, a fern fronds and castor leaf crude extracts demonstrate that the new method provides a way to the quickly screening of polygalacturonase activity and polygalacturonase inhibitors in plant crude extracts containing high amounts of reducing power. On the other hand, the Ruthenium Red assay is not able to determine the activity of an exo-polygalacturonase as initial velocity and thus would allow the differentiation between endo- and exo-polygalacturonase activities. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Bioactive polymeric scaffolds for tissue engineering

    Directory of Open Access Journals (Sweden)

    Scott Stratton

    2016-12-01

    Full Text Available A variety of engineered scaffolds have been created for tissue engineering using polymers, ceramics and their composites. Biomimicry has been adopted for majority of the three-dimensional (3D scaffold design both in terms of physicochemical properties, as well as bioactivity for superior tissue regeneration. Scaffolds fabricated via salt leaching, particle sintering, hydrogels and lithography have been successful in promoting cell growth in vitro and tissue regeneration in vivo. Scaffold systems derived from decellularization of whole organs or tissues has been popular due to their assured biocompatibility and bioactivity. Traditional scaffold fabrication techniques often failed to create intricate structures with greater resolution, not reproducible and involved multiple steps. The 3D printing technology overcome several limitations of the traditional techniques and made it easier to adopt several thermoplastics and hydrogels to create micro-nanostructured scaffolds and devices for tissue engineering and drug delivery. This review highlights scaffold fabrication methodologies with a focus on optimizing scaffold performance through the matrix pores, bioactivity and degradation rate to enable tissue regeneration. Review highlights few examples of bioactive scaffold mediated nerve, muscle, tendon/ligament and bone regeneration. Regardless of the efforts required for optimization, a shift in 3D scaffold uses from the laboratory into everyday life is expected in the near future as some of the methods discussed in this review become more streamlined.

  3. Alginate based scaffolds for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Valente, J.F.A.; Valente, T.A.M. [CICS-UBI - Centro de Investigacao em Ciencias da Saude, Faculdade de Ciencias da Saude, Universidade da Beira Interior, Covilha (Portugal); Alves, P.; Ferreira, P. [CIEPQPF, Departamento de Engenharia Quimica, Universidade de Coimbra, Polo II, Pinhal de Marrocos, 3030-290 Coimbra (Portugal); Silva, A. [Centro de Ciencia e Tecnologia Aeroespaciais, Universidade da Beira Interior, Covilha (Portugal); Correia, I.J., E-mail: icorreia@ubi.pt [CICS-UBI - Centro de Investigacao em Ciencias da Saude, Faculdade de Ciencias da Saude, Universidade da Beira Interior, Covilha (Portugal)

    2012-12-01

    The design and production of scaffolds for bone tissue regeneration is yet unable to completely reproduce the native bone properties. In the present study new alginate microparticle and microfiber aggregated scaffolds were produced to be applied in this area of regenerative medicine. The scaffolds' mechanical properties were characterized by thermo mechanical assays. Their morphological characteristics were evaluated by isothermal nitrogen adsorption and scanning electron microscopy. The density of both types of scaffolds was determined by helium pycnometry and mercury intrusion porosimetry. Furthermore, scaffolds' cytotoxic profiles were evaluated in vitro by seeding human osteoblast cells in their presence. The results obtained showed that scaffolds have good mechanical and morphological properties compatible with their application as bone substitutes. Moreover, scaffold's biocompatibility was confirmed by the observation of cell adhesion and proliferation after 5 days of being seeded in their presence and by non-radioactive assays. - Highlights: Black-Right-Pointing-Pointer Design and production of scaffolds for bone tissue regeneration. Black-Right-Pointing-Pointer Microparticle and microfiber alginate scaffolds were produced through a particle aggregation technique; Black-Right-Pointing-Pointer Scaffolds' mechanically and biologically properties were characterized through in vitro studies;.

  4. Colorimetric sensor for triphosphates and their application as a viable staining agent for prokaryotes and eukaryotes.

    Science.gov (United States)

    Ghosh, Amrita; Shrivastav, Anupama; Jose, D Amilan; Mishra, Sanjiv K; Chandrakanth, C K; Mishra, Sandhya; Das, Amitava

    2008-07-15

    The chromogenic complex 1 x Zn (where 1 is (E)-4-(4-dimethylamino-phenylazo)-N,N-bispyridin-2-ylmethyl-benzenesulfonamide) showed high affinity toward the phosphate ion in tetrabutylammonium phosphate in acetonitrile solution and could preferentially bind to adenosine triphosphate (ATP) in aqueous solution at physiological pH. This binding caused a visual change in color, whereas no such change was noticed with other related anions (adenosine monophosphate, adenosine diphosphate, pyrophosphate, and phosphate) of biological significance. Thus, 1 x Zn could be used as a staining agent for different biological cells through binding to the ATP, generated in situ by the mitochondria (in eukaryotes). For prokaryotes (bacteria) the cell membrane takes care of the cells' energy conversion, since they lack mitochondria. ATP is produced in their unique cell structure on the cell membrane, which is not found in any eukaryotes. These stained cells could be viewed with normal light microscopy. This reagent could even be used for distinguishing the gram-positive and the gram-negative bacteria (prokaryotes). This dye was found to be nonlipophilic in nature and nontoxic to living microbes (eukaryotes and prokaryotes). Further, stained cells were found to grow in their respective media, and this confirmed the maintenance of viability of the microbes even after staining, unlike with many other dyes available commercially.

  5. Graphene Oxide-terpyridine Conjugate: A Highly Selective Colorimetric and Sensitive Fluorescence Nano-chemosensor for Fe2+ in Aqueous Media

    Directory of Open Access Journals (Sweden)

    Bagher Eftekhari-Sis

    2016-07-01

    Full Text Available A graphene oxide-terpyridine conjugate (GOTC based colorimetric and fluorescent nano-chemosensor was synthesized. It showed high selectivity and sensitivity for Fe2+ and Fe3+ ions in neutral aqueous solution over other metal ions such as Li+, Na+, Ba2+, Ca2+, Al3+, Cd2+, Co2+, Cu2+, Hg2+, Mn2+, Ni2+, Pb2+, Zn2+, Cr3+ and Ag+. In absorption spectra, upon addition of Fe2+ or Fe3+, the sensor displayed a peak at 568 nm, by changing the color of the solution from light pink for GOTC to light magenta and deep magenta for Fe3+ and Fe2+, respectively. Also, the fluorescence studies revealed that, Fe2+, Fe3+ and Co2+ quench the emission of GOTC at 473 nm, while other metal ions do not quench the fluorescence of GOTC in solution. Colorimetric and fluorescence techniques could be used for detection of Fe2+ ion concentration at least about 6-10 μM in water solution. The sensing on test paper was also investigated for the naked-eye detection of Fe2+.

  6. A colorimetric platform for sensitively differentiating telomere DNA with different lengths, monitoring G-quadruplex and dsDNA based on silver nanoclusters and unmodified gold nanoparticles

    Science.gov (United States)

    Qu, Fei; Chen, Zeqiu; You, Jinmao; Song, Cuihua

    2018-05-01

    Human telomere DNA plays a vital role in genome integrity control and carcinogenesis as an indication for extensive cell proliferation. Herein, silver nanoclusters (Ag NCs) templated by polymer and unmodified gold nanoparticles (Au NPs) are designed as a new colorimetric platform for sensitively differentiating telomere DNA with different lengths, monitoring G-quadruplex and dsDNA. Ag NCs can produce the aggregation of Au NPs, so the color of Au NPs changes to blue and the absorption peak moves to 700 nm. While the telomere DNA can protect Au NPs from aggregation, the color turns to red again and the absorption band blue shift. Benefiting from the obvious color change, we can differentiate the length of telomere DNA by naked eyes. As the length of telomere DNA is longer, the variation of color becomes more noticeable. The detection limits of telomere DNA containing 10, 22, 40, 64 bases are estimated to be 1.41, 1.21, 0.23 and 0.22 nM, respectively. On the other hand, when telomere DNA forms G-quadruplex in the presence of K+, or dsDNA with complementary sequence, both G-quadruplex and dsDNA can protect Au NPs better than the unfolded telomere DNA. Hence, a new colorimetric platform for monitoring structure conversion of DNA is established by Ag NCs-Au NPs system, and to prove this type of application, a selective K+ sensor is developed.

  7. Antimicrobial Cu-bearing stainless steel scaffolds

    International Nuclear Information System (INIS)

    Wang, Qiang; Ren, Ling; Li, Xiaopeng; Zhang, Shuyuan; Sercombe, Timothy B.; Yang, Ke

    2016-01-01

    Copper-bearing stainless steel scaffolds with two different structures (Body Centered Cubic and Gyroid labyrinth) at two solid fractions (25% and 40%) were fabricated from both 316L powder and a mixture of 316L and elemental Cu powder using selective laser melting, and relative 316L scaffolds were served as control group. After processing, the antimicrobial testing demonstrated that the 316L-Cu scaffolds presented excellent antimicrobial activity against Escherichia coli and Staphylococcus aureus, and the cell viability assay indicated that there was no cytotoxic effect of 316L-Cu scaffolds on rat marrow mesenchymal stem cells. As such, these have the potential to reduce implant-associated infections. The Cu was also found to homogeneously distribute within the microstructure by scanning electronic microcopy. The addition of Cu would not significantly affect its strength and stiffness compared to 316L scaffold, and the stiffness of all the scaffolds (3-20GPa) is similar to that of bone and much less than that of bulk stainless steel. Consequently, fabrication of such low stiffness porous structures, especially coupled with the addition of antimicrobial Cu, may provide a new direction for medical stainless steels. - Highlights: • 316L-Cu scaffolds were fabricated by using selective laser melting (SLM). • 316L-Cu scaffolds showed satisfied antimicrobial activities. • 316L-Cu scaffolds have no cytotoxic effect on normal cells. • Other properties of 316L-Cu scaffolds were similar to 316L scaffolds. • 316L-Cu scaffolds have the potential to be used in orthopedic applications.

  8. Antimicrobial Cu-bearing stainless steel scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qiang, E-mail: mfqwang@163.com [School of Stomatology, China Medical University, Shenyang 110002 (China); Ren, Ling [Institute of Metal Research, Chinese Academy of Sciences (China); Li, Xiaopeng [School of Mechanical and Chemical Engineering, The University of Western Australia (Australia); Zhang, Shuyuan [Institute of Metal Research, Chinese Academy of Sciences (China); Sercombe, Timothy B., E-mail: tim.sercombe@uwa.edu.au [School of Mechanical and Chemical Engineering, The University of Western Australia (Australia); Yang, Ke, E-mail: kyang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences (China)

    2016-11-01

    Copper-bearing stainless steel scaffolds with two different structures (Body Centered Cubic and Gyroid labyrinth) at two solid fractions (25% and 40%) were fabricated from both 316L powder and a mixture of 316L and elemental Cu powder using selective laser melting, and relative 316L scaffolds were served as control group. After processing, the antimicrobial testing demonstrated that the 316L-Cu scaffolds presented excellent antimicrobial activity against Escherichia coli and Staphylococcus aureus, and the cell viability assay indicated that there was no cytotoxic effect of 316L-Cu scaffolds on rat marrow mesenchymal stem cells. As such, these have the potential to reduce implant-associated infections. The Cu was also found to homogeneously distribute within the microstructure by scanning electronic microcopy. The addition of Cu would not significantly affect its strength and stiffness compared to 316L scaffold, and the stiffness of all the scaffolds (3-20GPa) is similar to that of bone and much less than that of bulk stainless steel. Consequently, fabrication of such low stiffness porous structures, especially coupled with the addition of antimicrobial Cu, may provide a new direction for medical stainless steels. - Highlights: • 316L-Cu scaffolds were fabricated by using selective laser melting (SLM). • 316L-Cu scaffolds showed satisfied antimicrobial activities. • 316L-Cu scaffolds have no cytotoxic effect on normal cells. • Other properties of 316L-Cu scaffolds were similar to 316L scaffolds. • 316L-Cu scaffolds have the potential to be used in orthopedic applications.

  9. Rapid colorimetric sensing of tetracycline antibiotics with in situ growth of gold nanoparticles

    International Nuclear Information System (INIS)

    Shen, Li; Chen, Jing; Li, Na; He, Pingli; Li, Zhen

    2014-01-01

    Highlights: • Tetracyclines directly reduce aurate into gold nanoparticles. • Gold nanoparticles showed characteristic plamson absorbance at 526 nm. • Quantitative detection of tetracyclines with the colorimetric assay. • Tetracyclines spiked urine samples can be detected with the assay. - Abstract: A colorimetric assay utilizing the formation of gold nanoparticles was developed to detect tetracycline antibiotics in fluidic samples. Tetracycline antibiotics showed the capability of directly reducing aurate salts into atomic gold which form gold nanoparticles spontaneously under proper conditions. The resulted gold nanoparticles showed characteristic plasmon absorbance at 526 nm, which can be visualized by naked eyes or with a spectrophotometer. UV–vis absorbance of the resulted gold nanoparticles is correlated directly with the concentrations of tetracycline antibiotics in the solution, allowing for quantitative colorimetric detection of tetracycline antibiotics. Reaction conditions, such as pH, temperature, reaction time, and ionic strength were optimized. Sensitivity of the colorimetric assay can be enhanced by the addition of gold nanoparticle seeds, a LOD as low as 20 ng mL −1 can be achieved with the help of seed particles. The colorimetric assay showed minimum interference from ethanol, methanol, urea, glucose, and other antibiotics such as sulfonamides, amino glycosides etc. Validity of the method was also evaluated on urine samples spiked with tetracycline antibiotics. The method provides a broad spectrum detection method for rapid and sensitive detection of reductive substances such as tetracycline antibiotics in liquid and biological samples

  10. Rapid colorimetric sensing of tetracycline antibiotics with in situ growth of gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Li [Logistics School, Beijing Wuzi University, Beijing 101149 (China); Chen, Jing; Li, Na [Logistics School, Beijing Wuzi University, Beijing 101149 (China); He, Pingli [State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100094 (China); Li, Zhen [State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193 (China)

    2014-08-11

    Highlights: • Tetracyclines directly reduce aurate into gold nanoparticles. • Gold nanoparticles showed characteristic plamson absorbance at 526 nm. • Quantitative detection of tetracyclines with the colorimetric assay. • Tetracyclines spiked urine samples can be detected with the assay. - Abstract: A colorimetric assay utilizing the formation of gold nanoparticles was developed to detect tetracycline antibiotics in fluidic samples. Tetracycline antibiotics showed the capability of directly reducing aurate salts into atomic gold which form gold nanoparticles spontaneously under proper conditions. The resulted gold nanoparticles showed characteristic plasmon absorbance at 526 nm, which can be visualized by naked eyes or with a spectrophotometer. UV–vis absorbance of the resulted gold nanoparticles is correlated directly with the concentrations of tetracycline antibiotics in the solution, allowing for quantitative colorimetric detection of tetracycline antibiotics. Reaction conditions, such as pH, temperature, reaction time, and ionic strength were optimized. Sensitivity of the colorimetric assay can be enhanced by the addition of gold nanoparticle seeds, a LOD as low as 20 ng mL{sup −1} can be achieved with the help of seed particles. The colorimetric assay showed minimum interference from ethanol, methanol, urea, glucose, and other antibiotics such as sulfonamides, amino glycosides etc. Validity of the method was also evaluated on urine samples spiked with tetracycline antibiotics. The method provides a broad spectrum detection method for rapid and sensitive detection of reductive substances such as tetracycline antibiotics in liquid and biological samples.

  11. A simple and selective colorimetric mercury (II) sensing system based on chitosan stabilized gold nanoparticles and 2,6-pyridinedicarboxylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Kun; Siegel, Gene; Tiwari, Ashutosh, E-mail: tiwari@eng.utah.edu

    2017-02-01

    The development of simple and cost-effective methods for the detection and treatment of Hg{sup 2+} in the environment is an important area of research due to the serious health risk that Hg{sup 2+} poses to humans. Colorimetric sensing based on the induced aggregation of nanoparticles is of great interest since it offers a low cost, simple, and relatively rapid procedure, making it perfect for on-site analysis. Herein we report the development of a simple colorimetric sensor for the selective detection and estimation of mercury ions in water, based on chitosan stabilized gold nanoparticles (AuNPs) and 2,6-pyridinedicarboxylic acid (PDA). In the presence of Hg{sup 2+}, PDA induces the aggregation of AuNPs, causing the solution to change colors varying from red to blue, depending on the concentration of Hg{sup 2+}. The formation of aggregated AuNPs in the presence of Hg{sup 2+} was confirmed using transmission electron microscopy (TEM) and UV–Vis spectroscopy. The method exhibits linearity in the range of 300 nM to 5 μM and shows excellent selectivity towards Hg{sup 2+} among seventeen different metal ions and was successfully applied for the detection of Hg{sup 2+} in spiked river water samples. The developed technique is simple and superior to the existing techniques in that it allows detection of Hg{sup 2+} using the naked eye and simple and rapid colorimetric analysis, which eliminates the need for sophisticated instruments and sample preparation methods. - Highlights: • A simple colorimetric method for detection of Hg{sup 2+} in water was proposed. • Au nanoparticles and 2,6-pyridinedicarboxylic acid were used for sensing Hg{sup 2+}. • Sensing mechanisms were demonstrated by TEM and UV–Visible measurements. • It showed the solution color changes from red to blue upon addition of Hg{sup 2+}. • The method selectively detected Hg{sup 2+} among seventeen different metal ions.

  12. Cell–scaffold interaction within engineered tissue

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Haiping; Liu, Yuanyuan, E-mail: Yuanyuan_liu@shu.edu.cn; Jiang, Zhenglong; Chen, Weihua; Yu, Yongzhe; Hu, Qingxi

    2014-05-01

    The structure of a tissue engineering scaffold plays an important role in modulating tissue growth. A novel gelatin–chitosan (Gel–Cs) scaffold with a unique structure produced by three-dimensional printing (3DP) technology combining with vacuum freeze-drying has been developed for tissue-engineering applications. The scaffold composed of overall construction, micro-pore, surface morphology, and effective mechanical property. Such a structure meets the essential design criteria of an ideal engineered scaffold. The favorable cell–matrix interaction supports the active biocompatibility of the structure. The structure is capable of supporting cell attachment and proliferation. Cells seeded into this structure tend to maintain phenotypic shape and secreted large amounts of extracellular matrix (ECM) and the cell growth decreased the mechanical properties of scaffold. This novel biodegradable scaffold has potential applications for tissue engineering based upon its unique structure, which acts to support cell growth. - Highlights: • The scaffold is not only for providing a surface for cell residence but also for determining cell phenotype and retaining structural integrity. • The mechanical property of scaffold can be affected by activities of cell. • The scaffold provides a microenvironment for cell attachment, growth, and migration.

  13. Platelet lysate embedded scaffolds for skin regeneration.

    Science.gov (United States)

    Sandri, Giuseppina; Bonferoni, Maria Cristina; Rossi, Silvia; Ferrari, Franca; Mori, Michela; Cervio, Marila; Riva, Federica; Liakos, Ioannis; Athanassiou, Athanassia; Saporito, Francesca; Marini, Lara; Caramella, Carla

    2015-04-01

    The work presents the development of acellular scaffolds extemporaneously embedded with platelet lysate (PL), as an innovative approach in the field of tissue regeneration/reparation. PL embedded scaffolds should have a tridimensional architecture to support cell migration and growth, in order to restore skin integrity. For this reason, chondroitin sulfate (CS) was associated with sodium alginate (SA) to prepare highly porous systems. The developed scaffolds were characterized for chemical stability to γ-radiation, morphology, hydration and mechanical properties. Moreover, the capability of fibroblasts and endothelial cells to populate the scaffold was evaluated by means of proliferation test 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and confocal laser scanning microscopy study. The scaffolds, not altered by sterilization, were characterized by limited swelling and high flexibility, by foam-like structure with bubbles that formed a high surface area and irregular texture suitable for cell adhesion. Cell growth and scaffold population were evident on the bubble surface, where the cells appeared anchored to the scaffold structure. Scaffold network based on CS and SA demonstrated to be an effective support to enhance and to allow fibroblasts and endothelial cells (human umbilical vein endothelial cells, HUVEC) adhesion and proliferation. In particular, it could be hypothesized that cell adhesion was facilitated by the synergic effect of PL and CS. Although further in vivo evaluation is needed, on the basis of in vitro results, PL embedded scaffolds seem promising systems for skin wound healing.

  14. Colorimetric and fluorescent chemosensor for highly selective and sensitive relay detection of Cu2 + and H2PO4- in aqueous media

    Science.gov (United States)

    Su, Jun-Xia; Wang, Xiao-Ting; Chang, Jing; Wu, Gui-Yuan; Wang, Hai-Ming; Yao, Hong; Lin, Qi; Zhang, You-Ming; Wei, Tai-Bao

    2017-07-01

    In this manuscript, a new colorimetric and fluorescent chemosensor (T) was designed and synthesized, it could successively detect Cu2 + and H2PO4- in DMSO/H2O (v/v = 9:1, pH = 7.2) buffer solution with high selectivity and sensitivity. When added Cu2 + ions into the solution of T, it showed a color changes from yellow to colorless, meanwhile, the green fluorescence of sensor T quenched. This recognition behavior was not affected in the presence of other cations, including Hg2 +, Ag+, Ca2 +, Co2 +, Ni2 +, Cd2 +, Pb2 +, Zn2 +, Cr3 +, and Mg2 + ions. More interestingly, the Cu2 + ions contain sensor T solution could recover the color and fluorescence upon the addition of H2PO4- anions in the same medium. And other surveyed anions (including F-, Cl-, Br-, I-, AcO-, HSO4-, ClO4-, CN- and SCN-) had nearly no influence on the recognition behavior. The detection limits of T to Cu2 + and T-Cu2 + to H2PO4- were evaluated to be 1.609 × 10- 8 M and 0.994 × 10- 7 M, respectively. In addition, the sensor T also could be served as a recyclable component and the logic gate output was also defined in sensing materials. The test strips based on sensor T were fabricated, which acted as a convenient and efficient Cu2 + and H2PO4- test kits.

  15. WiseScaffolder: an algorithm for the semi-automatic scaffolding of Next Generation Sequencing data.

    Science.gov (United States)

    Farrant, Gregory K; Hoebeke, Mark; Partensky, Frédéric; Andres, Gwendoline; Corre, Erwan; Garczarek, Laurence

    2015-09-03

    The sequencing depth provided by high-throughput sequencing technologies has allowed a rise in the number of de novo sequenced genomes that could potentially be closed without further sequencing. However, genome scaffolding and closure require costly human supervision that often results in genomes being published as drafts. A number of automatic scaffolders were recently released, which improved the global quality of genomes published in the last few years. Yet, none of them reach the efficiency of manual scaffolding. Here, we present an innovative semi-automatic scaffolder that additionally helps with chimerae resolution and generates valuable contig maps and outputs for manual improvement of the automatic scaffolding. This software was tested on the newly sequenced marine cyanobacterium Synechococcus sp. WH8103 as well as two reference datasets used in previous studies, Rhodobacter sphaeroides and Homo sapiens chromosome 14 (http://gage.cbcb.umd.edu/). The quality of resulting scaffolds was compared to that of three other stand-alone scaffolders: SSPACE, SOPRA and SCARPA. For all three model organisms, WiseScaffolder produced better results than other scaffolders in terms of contiguity statistics (number of genome fragments, N50, LG50, etc.) and, in the case of WH8103, the reliability of the scaffolds was confirmed by whole genome alignment against a closely related reference genome. We also propose an efficient computer-assisted strategy for manual improvement of the scaffolding, using outputs generated by WiseScaffolder, as well as for genome finishing that in our hands led to the circularization of the WH8103 genome. Altogether, WiseScaffolder proved more efficient than three other scaffolders for both prokaryotic and eukaryotic genomes and is thus likely applicable to most genome projects. The scaffolding pipeline described here should be of particular interest to biologists wishing to take advantage of the high added value of complete genomes.

  16. Taste sensor; Mikaku sensor

    Energy Technology Data Exchange (ETDEWEB)

    Toko, K. [Kyushu University, Fukuoka (Japan)

    1998-03-05

    This paper introduces a taste sensor having a lipid/polymer membrane to work as a receptor of taste substances. The paper describes the following matters: this sensor uses a hollow polyvinyl chloride rod filled with KCl aqueous solution, and placed with silver and silver chloride wires, whose cross section is affixed with a lipid/polymer membrane as a lipid membrane electrode to identify taste from seven or eight kinds of response patterns of electric potential output from the lipid/polymer membrane; measurements of different substances presenting acidic taste, salty taste, bitter taste, sweet taste and flavor by using this sensor identified clearly each taste (similar response is shown to a similar taste even if the substances are different); different responses are indicated on different brands of beers; from the result of measuring a great variety of mineral waters, a possibility was suggested that this taste sensor could be used for water quality monitoring sensors; and application of this taste sensor may be expected as a maturation control sensor for Japanese sake (wine) and miso (bean paste) manufacturing. 2 figs., 1 tab.

  17. SHOP: scaffold hopping by GRID-based similarity searches

    DEFF Research Database (Denmark)

    Bergmann, Rikke; Linusson, Anna; Zamora, Ismael

    2007-01-01

    A new GRID-based method for scaffold hopping (SHOP) is presented. In a fully automatic manner, scaffolds were identified in a database based on three types of 3D-descriptors. SHOP's ability to recover scaffolds was assessed and validated by searching a database spiked with fragments of known...... scaffolds were in the 31 top-ranked scaffolds. SHOP also identified new scaffolds with substantially different chemotypes from the queries. Docking analysis indicated that the new scaffolds would have similar binding modes to those of the respective query scaffolds observed in X-ray structures...

  18. Discriminating Bacteria with Optical Sensors Based on Functionalized Nanoporous Xerogels

    Directory of Open Access Journals (Sweden)

    Sabine Crunaire

    2014-06-01

    Full Text Available An innovative and low-cost method is proposed for the detection and discrimination of indole-positive pathogen bacteria. The method allows the non-invasive detection of gaseous indole, released by bacteria, with nanoporous colorimetric sensors. The innovation comes from the use of nanoporous matrices doped with 4-(dimethylamino-cinnamaldehyde, which act as sponges to trap and concentrate the targeted analyte and turn from transparent to dark green, long before the colonies get visible with naked eyes. With such sensors, it was possible to discriminate E. coli from H. alvei, two indole-positive and negative bacteria after seven hours of incubation.

  19. Microtiter plate based colorimetric assay for characterization of dehalogenation activity of GAC/Fe0 composite

    DEFF Research Database (Denmark)

    Hwang, Yuhoon; Salatas, Apostolos; Mines, Paul D.

    2015-01-01

    of nZVI and its composite with granular activated carbon (GAC). The assay focused on analysis of reaction products rather than its mother compounds, which gives more accurate quantification of reductive activity. The colorimetric assays were developed to quantify three reaction products, ammonia......Even though nanoscale zero valent iron (nZVI) has been intensively studied for the treatment of a plethora of pollutants through reductive reaction, a quantification of nZVI reactivity has not been standardized. Here, we developed series of colorimetric assays for determining reductive activity...

  20. Cell penetration to nanofibrous scaffolds

    Czech Academy of Sciences Publication Activity Database

    Rampichová, Michala; Buzgo, Matej; Chvojka, J.; Prosecká, Eva; Kofroňová, Olga; Amler, Evžen

    2014-01-01

    Roč. 8, č. 1 (2014), s. 36-41 ISSN 1933-6918 Grant - others:GA UK(CZ) 384311; GA UK(CZ) 626012; GA UK(CZ) 270513; GA UK(CZ) 330611; GA UK(CZ) 648112; GA MZd(CZ) NT12156; GA MŠk(CZ) project IPv6 Institutional support: RVO:68378041 ; RVO:61388971 Keywords : fibrous scaffold * mesenchymal stem cells * Forcespinning (R) Subject RIV: FP - Other Medical Disciplines Impact factor: 4.505, year: 2014

  1. Standardization of Neisseria meningitidis Serogroup B Colorimetric Serum Bactericida Assay

    Science.gov (United States)

    Rodríguez, Tamara; Lastre, Miriam; Cedré, Barbara; Campo, Judith del; Bracho, Gustavo; Zayas, Caridad; Taboada, Carlos; Díaz, Miriam; Sierra, Gustavo; Pérez, Oliver

    2002-01-01

    The correlate of protection for serogroup B meningococci is not currently known, but for serogroup C it is believed to be the serum bactericidal assay (SBA). The current SBAs are labor intensive and the variations in protocols among different laboratories make interpretation of results difficult. A colorimetric SBA (cSBA), based on the ability of Neisseria meningitidis serogroup B to consume glucose, leading to acid production, was standardized by using group B strain Cu385-83 as the target. The cSBA results were compared to those obtained for a traditional colony-counting microassay (mSBA). Glucose and bromocresol purple pH indicator were added to the medium in order to estimate growth of cSBA target cell survivors through color change. Different variants of the assay parameters were optimized: growth of target cells (Mueller Hinton agar plates), target cell number (100 CFU/per well), and human complement source used at a final concentration of 25%. After the optimization, three other group B strains (H44/76, 490/91, and 511/91) were used as targets for the cSBA. The selection of the assay parameters and the standardization of cSBA were done with 13 sera from vaccinated volunteers. The titers were determined as the higher serum dilution that totally inhibited the bacterial growth marked by the color invariability of the pH indicator. This was detected visually as well as spectrophotometrically and was closely related to a significant difference in the growth of target cell survivors determined using Student’s t test. Intralaboratory reproducibility was ±1 dilution. The correlation between bactericidal median titers and specific immunoglobulin G serum concentration by enzyme immunoassay was high (r = 0.910, P < 0.01). The bactericidal titers generated by the cSBA and the mSBA were nearly identical, and there was a high correlation between the two assays (r = 0.974, P < 0.01). The standardized cSBA allows easy, fast, and efficient evaluation of samples. PMID

  2. Convert a low-cost sensor to a colorimeter using an improved regression method

    Science.gov (United States)

    Wu, Yifeng

    2008-01-01

    Closed loop color calibration is a process to maintain consistent color reproduction for color printers. To perform closed loop color calibration, a pre-designed color target should be printed, and automatically measured by a color measuring instrument. A low cost sensor has been embedded to the printer to perform the color measurement. A series of sensor calibration and color conversion methods have been developed. The purpose is to get accurate colorimetric measurement from the data measured by the low cost sensor. In order to get high accuracy colorimetric measurement, we need carefully calibrate the sensor, and minimize all possible errors during the color conversion. After comparing several classical color conversion methods, a regression based color conversion method has been selected. The regression is a powerful method to estimate the color conversion functions. But the main difficulty to use this method is to find an appropriate function to describe the relationship between the input and the output data. In this paper, we propose to use 1D pre-linearization tables to improve the linearity between the input sensor measuring data and the output colorimetric data. Using this method, we can increase the accuracy of the regression method, so as to improve the accuracy of the color conversion.

  3. Recombinant protein scaffolds for tissue engineering

    International Nuclear Information System (INIS)

    Werkmeister, Jerome A; Ramshaw, John A M

    2012-01-01

    New biological materials for tissue engineering are now being developed using common genetic engineering capabilities to clone and express a variety of genetic elements that allow cost-effective purification and scaffold fabrication from these recombinant proteins, peptides or from chimeric combinations of these. The field is limitless as long as the gene sequences are known. The utility is dependent on the ease, product yield and adaptability of these protein products to the biomedical field. The development of recombinant proteins as scaffolds, while still an emerging technology with respect to commercial products, is scientifically superior to current use of natural materials or synthetic polymer scaffolds, in terms of designing specific structures with desired degrees of biological complexities and motifs. In the field of tissue engineering, next generation scaffolds will be the key to directing appropriate tissue regeneration. The initial period of biodegradable synthetic scaffolds that provided shape and mechanical integrity, but no biological information, is phasing out. The era of protein scaffolds offers distinct advantages, particularly with the combination of powerful tools of molecular biology. These include, for example, the production of human proteins of uniform quality that are free of infectious agents and the ability to make suitable quantities of proteins that are found in low quantity or are hard to isolate from tissue. For the particular needs of tissue engineering scaffolds, fibrous proteins like collagens, elastin, silks and combinations of these offer further advantages of natural well-defined structural scaffolds as well as endless possibilities of controlling functionality by genetic manipulation. (topical review)

  4. Scaffolding Mathematical Modelling with a Solution Plan

    Science.gov (United States)

    Schukajlow, Stanislaw; Kolter, Jana; Blum, Werner

    2015-01-01

    In the study presented in this paper, we examined the possibility to scaffold mathematical modelling with strategies. The strategies were prompted using an instrument called "solution plan" as a scaffold. The effects of this step by step instrument on mathematical modelling competency and on self-reported strategies were tested using…

  5. Scaffolding proteins: not such innocent bystanders.

    Science.gov (United States)

    Smith, F Donelson; Scott, John D

    2013-06-17

    Sequential transfer of information from one enzyme to the next within the confines of a protein kinase scaffold enhances signal transduction. Though frequently considered to be inert organizational elements, two recent reports implicate kinase-scaffolding proteins as active participants in signal relay. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Scaffolding Proteins: Not Such Innocent Bystanders

    OpenAIRE

    Smith, F. Donelson; Scott, John D.

    2013-01-01

    Sequential transfer of information from one enzyme to the next within the confines of a protein kinase scaffold enhances signal transduction. Though frequently considered to be inert organizational elements, two recent reports implicate kinase-scaffolding proteins as active participants in signal relay.

  7. Metacognitive Scaffolding in an Innovative Learning Arrangement

    Science.gov (United States)

    Molenaar, Inge; van Boxtel, Carla A. M.; Sleegers, Peter J. C.

    2011-01-01

    This study examined the effects of metacognitive scaffolds on learning outcomes of collaborating students in an innovative learning arrangement. The triads were supported by computerized scaffolds, which were dynamically integrated into the learning process and took a structuring or problematizing form. In an experimental design the two…

  8. Teaching language teachers scaffolding professional learning

    CERN Document Server

    Maggioli, Gabriel Diaz

    2012-01-01

    Teaching Language Teachers: Scaffolding Professional Learning provides an updated view of as well as a reader-friendly introduction to the field of Teaching Teachers, with special reference to language teaching. By taking a decidedly Sociocultural perspective, the book addresses the main role of the Teacher of Teachers (ToT) as that of scaffolding the professional learning of aspiring teachers.

  9. Giant Gold Nanowire Vesicle-Based Colorimetric and SERS Dual-Mode Immunosensor for Ultrasensitive Detection of Vibrio parahemolyticus.

    Science.gov (United States)

    Guo, Zhiyong; Jia, Yaru; Song, Xinxin; Lu, Jing; Lu, Xuefei; Liu, Baoqing; Han, Jiaojiao; Huang, Youju; Zhang, Jiawei; Chen, Tao

    2018-05-15

    Conventional methods for the detection of Vibrio parahemolyticus (VP) usually need tedious, labor-intensive processes, and have low sensitivity, which further limits their practical applications. Herein, we developed a simple and efficient colorimetry and surface-enhanced Raman scattering (SERS) dual-mode immunosensor for sensitive detection of VP, by employing giant Au vesicles with anchored tiny gold nanowires (AuNW) as a smart probe. Due to the larger specific surface and special hollow structure of giant Au vesicles, silver staining would easily lead to vivid color change for colorimetric analysis and further amplify SERS signals. The t-test was further used to determine if two sets of data from colorimetry and SERS were significantly different from each other. The result shows that there was no significant difference between data from the two methods. Two sets of data can mutually validate each other and avoid false positive and negative detection. The designed colorimetry-SERS dual-mode sensor would be very promising in various applications such as food safety inspection, personal healthcare, and on-site environmental monitoring.

  10. 5,10,15,20-Tetrakis(4-carboxyl phenyl)porphyrin–CdS nanocomposites with intrinsic peroxidase-like activity for glucose colorimetric detection

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qingyun, E-mail: qyliu@sdust.edu.cn [School of Chemistry and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266510 (China); Jia, Qingyan; Zhu, Renren; Shao, Qian; Wang, Dongmei; Cui, Peng [School of Chemistry and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266510 (China); Ge, Jiechao, E-mail: jchge2010@mail.ipc.ac.cn [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-09-01

    Here, we describe the design of a novel mimic peroxidase, nanocomposites composed by 5,10,15,20-tetrakis(4-carboxyl phenyl)-porphyrin (H{sub 2}TCPP) and cadmium sulfide (CdS). The H{sub 2}TCPP–CdS nanocomposites can catalyze oxidation of substrate 3,3,5,5-tetramethylbenzidine (TMB) in the presence of H{sub 2}O{sub 2} and form a blue product which can be seen by the naked eye in 5 min. The mechanism of the catalytic reaction originated from the generation of hydroxyl radical (·OH), which is a powerful oxidizing agent to oxidize TMB to produce a blue product. Then, we developed a colorimetric method that is highly sensitive and selective to detect glucose, combined with glucose oxidase (GOx). The proposed method allowed the detection of H{sub 2}O{sub 2} concentration in the range of 4 × 10{sup −6}–1.4 × 10{sup −5} M and glucose in the range of 1.875 × 10{sup −5}–1 × 10{sup −4} M with detectable H{sub 2}O{sub 2} concentration as low as 4.6 × 10{sup −7} M and glucose as low as 7.02 × 10{sup −6} M, respectively. The results provided the theoretical basis of practical application in glucose detecting and peroxidase mimetic enzymes. - Graphical abstract: 5,10,15,20-tetrakis(4-carboxyl phenyl)-porphyrin (H{sub 2}TCPP)–CdS nanohybrids were demonstrated to possess intrinsic peroxidase-like activity and used for a glucose colorimetric sensor. - Highlights: • H{sub 2}TCPP–CdS nanocomposites were synthesized by a facile one step under mild condition. • H{sub 2}TCPP–CdS nanocomposites possess excellent intrinsic peroxidase-like activity. • A sensitive and selective colorimetric sensor for glucose is provided based on H{sub 2}TCPP–CdS nanocomposites. • The generation of hydroxyl radical (·OH) decomposed from H{sub 2}O{sub 2} is contributed to efficient catalytic.

  11. Determination of trace amounts of hydroperoxides by column liquid chromatography and colorimetric detection

    NARCIS (Netherlands)

    Deelder, R.S.; Kroll, M.; van den Berg, J.H.M.

    1976-01-01

    The sensitive and selective determination of separated compounds in effluents from liquid chromatographic columns can be carried out by continuously adding a suitable colorimetric agent to the column effluent and continuously monitoring the absorbance of the reaction mixture. However, a considerable

  12. A fast, sensitive and easy colorimetric assay for chitinase and cellulase activity detection.

    NARCIS (Netherlands)

    Ferrari, Alessandro; Gaber, Yasser; Fraaije, Marco

    2014-01-01

    BACKGROUND: Most of the current colorimetric methods for detection of chitinase or cellulase activities on the insoluble natural polymers chitin and cellulose depend on a chemical redox reaction. The reaction involves the reducing ends of the hydrolytic products. The Schales' procedure and the

  13. Rapid colorimetric sensing of tetracycline antibiotics with in situ growth of gold nanoparticles.

    Science.gov (United States)

    Shen, Li; Chen, Jing; Li, Na; He, Pingli; Li, Zhen

    2014-08-11

    A colorimetric assay utilizing the formation of gold nanoparticles was developed to detect tetracycline antibiotics in fluidic samples. Tetracycline antibiotics showed the capability of directly reducing aurate salts into atomic gold which form gold nanoparticles spontaneously under proper conditions. The resulted gold nanoparticles showed characteristic plasmon absorbance at 526 nm, which can be visualized by naked eyes or with a spectrophotometer. UV-vis absorbance of the resulted gold nanoparticles is correlated directly with the concentrations of tetracycline antibiotics in the solution, allowing for quantitative colorimetric detection of tetracycline antibiotics. Reaction conditions, such as pH, temperature, reaction time, and ionic strength were optimized. Sensitivity of the colorimetric assay can be enhanced by the addition of gold nanoparticle seeds, a LOD as low as 20 ng mL(-1) can be achieved with the help of seed particles. The colorimetric assay showed minimum interference from ethanol, methanol, urea, glucose, and other antibiotics such as sulfonamides, amino glycosides etc. Validity of the method was also evaluated on urine samples spiked with tetracycline antibiotics. The method provides a broad spectrum detection method for rapid and sensitive detection of reductive substances such as tetracycline antibiotics in liquid and biological samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. A rapid colorimetric assay for mold spore germination using XTT tetrazolium salt

    Science.gov (United States)

    Carol A. Clausen; Vina W. Yang

    2011-01-01

    Current laboratory test methods to measure efficacy of new mold inhibitors are time consuming, some require specialized test equipment and ratings are subjective. Rapid, simple quantitative assays to measure the efficacy of mold inhibitors are needed. A quantitative, colorimetric microassay was developed using XTT tetrazolium salt to metabolically assess mold spore...

  15. 2 development of a simple amino-modified silica-based colorimetric

    African Journals Online (AJOL)

    Temechegn

    with the increase in detection times as the concentration of the ions decreased. ..... New York: Clear Thinking Communications. 2010. ... W.S. Harwood and M.M. McMahon, Effects of integrated video media on student achievement ... Q. Lin, P. Chen, J. Liu, Y. Fu, Y. Zhang and T. Wei, Colorimetric chemosensor and test kit for.

  16. Simple colorimetric assay for dehalogenation reactivity of nanoscale zero-valent iron using 4-chlorophenol

    DEFF Research Database (Denmark)

    Hwang, Yuhoon; Mines, Paul D.; Jakobsen, Mogens Havsteen

    2015-01-01

    Despite the wide application of nanoscale zero valent iron (nZVI) for the treatment of a plethora of pollutants through reductive reactions, reactivity evaluation of nZVI towards dehalogenation has not been standardized. In this light, it was desired to develop a simple colorimetric assay...

  17. A Novel Colorimetric Immunoassay Utilizing the Peroxidase Mimicking Activity of Magnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Hyun Gyu Park

    2013-05-01

    Full Text Available A simple colorimetric immunoassay system, based on the peroxidase mimicking activity of Fe3O4 magnetic nanoparticles (MNPs, has been developed to detect clinically important antigenic molecules. MNPs with ca. 10 nm in diameter were synthesized and conjugated with specific antibodies against target molecules, such as rotaviruses and breast cancer cells. Conjugation of the MNPs with antibodies (MNP-Abs enabled specific recognition of the corresponding target antigenic molecules through the generation of color signals arising from the colorimetric reaction between the selected peroxidase substrate, 3,3',5,5'-tetramethylbenzidine (TMB and H2O2. Based on the MNP-promoted colorimetric reaction, the target molecules were detected and quantified by measuring absorbance intensities corresponding to the oxidized form of TMB. Owing to the higher stabilities and economic feasibilities of MNPs as compared to horseradish peroxidase (HRP, the new colorimetric system employing MNP-Abs has the potential of serving as a potent immunoassay that should substitute for conventional HRP-based immunoassays. The strategy employed to develop the new methodology has the potential of being extended to the construction of simple diagnostic systems for a variety of biomolecules related to human cancers and infectious diseases, particularly in the realm of point-of-care applications.

  18. A simple, reversible, colorimetric and water-soluble fluorescent chemosensor for the naked-eye detection of Cu2 + in 100% aqueous media and application to real samples

    Science.gov (United States)

    Sun, Tao; Niu, Qingfen; Li, Tianduo; Guo, Zongrang; Liu, Haixia

    2018-01-01

    A simple, reversible, colorimetric and water-soluble fluorescent chemosensor ADA for the naked-eye detection of Cu2 + was developed. Sensor ADA showed high selectivity and sensitivity toward Cu2 + in 100% aqueous media over wide pH range. Sensor ADA exhibited a red-shift in the absorption spectra from 466 to 480 nm that is accompanied by significant color change from light yellow to yellowish brown instantaneously. The Cu2 + recognition is based on the chelation-enhanced fluorescence quenching (CHEQ) effect of the paramagnetic nature. The lowest detection limit is determined to be 15.8 nM, which is much lower than the allowable level of Cu2 + in drinking water set by U.S. Environmental Protection Agency ( 20 μM) and the World Health Organization ( 30 μM). The 1:1 binding process was confirmed by fluorescence measurements, IR analysis and DFT studies. Moreover, sensor ADA was successfully applied for determination of trace level of Cu2 + with 4 reuse cycles in various water samples, which affords promising potential in ion-detection field.

  19. A simple, reversible, colorimetric and water-soluble fluorescent chemosensor for the naked-eye detection of Cu2+ in ~100% aqueous media and application to real samples.

    Science.gov (United States)

    Sun, Tao; Niu, Qingfen; Li, Tianduo; Guo, Zongrang; Liu, Haixia

    2018-01-05

    A simple, reversible, colorimetric and water-soluble fluorescent chemosensor ADA for the naked-eye detection of Cu 2+ was developed. Sensor ADA showed high selectivity and sensitivity toward Cu 2+ in ~100% aqueous media over wide pH range. Sensor ADA exhibited a red-shift in the absorption spectra from 466 to 480nm that is accompanied by significant color change from light yellow to yellowish brown instantaneously. The Cu 2+ recognition is based on the chelation-enhanced fluorescence quenching (CHEQ) effect of the paramagnetic nature. The lowest detection limit is determined to be 15.8nM, which is much lower than the allowable level of Cu 2+ in drinking water set by U.S. Environmental Protection Agency (~20μM) and the World Health Organization (~30μM). The 1:1 binding process was confirmed by fluorescence measurements, IR analysis and DFT studies. Moreover, sensor ADA was successfully applied for determination of trace level of Cu 2+ with 4 reuse cycles in various water samples, which affords promising potential in ion-detection field. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Self-Imitation and Environmental Scaffolding for Robot Teaching

    Directory of Open Access Journals (Sweden)

    Joe Saunders

    2007-03-01

    Full Text Available Imitative learning and learning by observation are social mechanisms that allow a robot to acquire knowledge from a human or another robot. However to be able to obtain skills in this way the robot faces many complex issues, one of which is that of finding solutions to the correspondence problem. Evolutionary predecessors to observational imitation may have been self-imitation where an agent avoids the complexities of the correspondence problem by learning and replicating actions it has experienced through the manipulation of its body. We investigate how a robotic control and teaching system using self-imitation can be constructed with reference to psychological models of motor control and ideas from social scaffolding seen in animals. Within these scaffolded environments sets of competencies can be built by constructing hierarchical state/action memory maps of the robot's interaction within that environment. The scaffolding process provides a mechanism to enable learning to be scaled up. The resulting system allows a human trainer to teach a robot new skills and modify skills that the robot may possess. Additionally the system allows the robot to notify the trainer when it is being taught skills it already has in its repertoire and to direct and focus its attention and sensor resources to relevant parts of the skill being executed. We argue that these mechanisms may be a first step towards the transformation from self-imitation to observational imitation. The system is validated on a physical pioneer robot that is taught using self-imitation to track, follow and point to a patterned object.

  1. Self-imitation and Environmental Scaffolding for Robot Teaching

    Directory of Open Access Journals (Sweden)

    Chrystopher L. Nehaniv

    2008-11-01

    Full Text Available Imitative learning and learning by observation are social mechanisms that allow a robot to acquire knowledge from a human or another robot. However to be able to obtain skills in this way the robot faces many complex issues, one of which is that of finding solutions to the correspondence problem. Evolutionary predecessors to observational imitation may have been self-imitation where an agent avoids the complexities of the correspondence problem by learning and replicating actions it has experienced through the manipulation of its body. We investigate how a robotic control and teaching system using self-imitation can be constructed with reference to psychological models of motor control and ideas from social scaffolding seen in animals. Within these scaffolded environments sets of competencies can be built by constructing hierarchical state/action memory maps of the robot's interaction within that environment. The scaffolding process provides a mechanism to enable learning to be scaled up. The resulting system allows a human trainer to teach a robot new skills and modify skills that the robot may possess. Additionally the system allows the robot to notify the trainer when it is being taught skills it already has in its repertoire and to direct and focus its attention and sensor resources to relevant parts of the skill being executed. We argue that these mechanisms may be a first step towards the transformation from self-imitation to observational imitation. The system is validated on a physical pioneer robot that is taught using self-imitation to track, follow and point to a patterned object.

  2. [Colorimetric card use for early detection visual biliary atresia].

    Science.gov (United States)

    Reyes-Cerecedo, Alicia; Flores-Calderón, Judith; Villasis-Keever, Miguel Á; Chávez-Barrera, José A; Delgado-González, Elba E

    2018-01-01

    Bile duct atresia (BVA) is a condition that causes obstruction to biliary flow, not corrected surgically, causes cirrhosis and death before 2 years of age. In Mexico from 2013 the visual colorimetric card (VVC) was incorporated for the timely detection of BVA to the National Health Card (NHC). The aim of this study was to evaluate the impact of VCT for the detection of BVA before and after the use of NHC incorporation. Ambispective, analytical observational study. We included patients with AVB treated in two pediatric hospitals of third level care. We compared the age of reference, diagnosis and surgery before and after incorporation of the TCV. In addition, a questionnaire was made to the parents to know their perception about the TCV. In 59 children, there were no differences in age at diagnosis (75 vs 70 days) and age at surgery (84 vs 90 days) between the pre and post-implementation period of the VVC. The questionnaire showed that 10 (30%) of the parents received information about the use of the VVC and 13 (38%) identified the abnormal evacuations. This study did not show changes in time for the timely detection of BVA by using VVC. Therefore, it is necessary to reinforce the program in the three levels of care in our country. La atresia de vías biliares (AVB) es una condición que provoca obstrucción al flujo biliar, y de no corregirse quirúrgicamente, provoca cirrosis y la muerte antes de los 2 años de edad. En México, a partir del año 2013 se incorporó la tarjeta colorimétrica visual (TCV) para la detección oportuna de la AVB a la Cartilla Nacional de Salud (CNS). El objetivo de este estudio fue evaluar el impacto de la TCV para la detección de AVB antes y después de su incorporación a la CNS. Estudio ambispectivo, observacional y analítico. Se incluyeron pacientes con AVB atendidos en dos hospitales pediátricos de tercer nivel de atención. Se compararon la edad de referencia, el diagnóstico y la cirugía antes y después de la incorporaci

  3. Teenaged Internet Tutors' Use of Scaffolding with Older Learners

    Science.gov (United States)

    Tambaum, Tiina

    2017-01-01

    This study analyses how teenaged instructors paired with older learners make use of scaffolding. Video data were categorised according to 15 types of direct scaffolding tactics, indirect scaffolding, and unused scaffolding opportunities. The results show that a teenager who is unprepared for the role of an instructor of Internet skills for older…

  4. Titanate nanotube coatings on biodegradable photopolymer scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Beke, S., E-mail: szabolcs.beke@iit.it [Department of Nanophysics, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova (Italy); Kőrösi, L. [Department of Biotechnology, Nanophage Therapy Center, Enviroinvest Corporation, Kertváros u. 2, H-7632, Pécs (Hungary); Scarpellini, A. [Department of Nanochemistry, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova (Italy); Anjum, F.; Brandi, F. [Department of Nanophysics, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova (Italy)

    2013-05-01

    Rigid, biodegradable photopolymer scaffolds were coated with titanate nanotubes (TNTs) by using a spin-coating method. TNTs were synthesized by a hydrothermal process at 150 °C under 4.7 bar ambient pressure. The biodegradable photopolymer scaffolds were produced by mask-assisted excimer laser photocuring at 308 nm. For scaffold coating, a stable ethanolic TNT sol was prepared by a simple colloid chemical route without the use of any binding compounds or additives. Scanning electron microscopy along with elemental analysis revealed that the scaffolds were homogenously coated by TNTs. The developed TNT coating can further improve the surface geometry of fabricated scaffolds, and therefore it can further increase the cell adhesion. Highlights: ► Biodegradable scaffolds were produced by mask-assisted UV laser photocuring. ► Titanate nanotube deposition was carried out without binding compounds or additives. ► The titanate nanotube coating can further improve the surface geometry of scaffolds. ► These reproducible platforms will be of high importance for biological applications.

  5. Scaffold translation: barriers between concept and clinic.

    Science.gov (United States)

    Hollister, Scott J; Murphy, William L

    2011-12-01

    Translation of scaffold-based bone tissue engineering (BTE) therapies to clinical use remains, bluntly, a failure. This dearth of translated tissue engineering therapies (including scaffolds) remains despite 25 years of research, research funding totaling hundreds of millions of dollars, over 12,000 papers on BTE and over 2000 papers on BTE scaffolds alone in the past 10 years (PubMed search). Enabling scaffold translation requires first an understanding of the challenges, and second, addressing the complete range of these challenges. There are the obvious technical challenges of designing, manufacturing, and functionalizing scaffolds to fill the Form, Fixation, Function, and Formation needs of bone defect repair. However, these technical solutions should be targeted to specific clinical indications (e.g., mandibular defects, spine fusion, long bone defects, etc.). Further, technical solutions should also address business challenges, including the need to obtain regulatory approval, meet specific market needs, and obtain private investment to develop products, again for specific clinical indications. Finally, these business and technical challenges present a much different model than the typical research paradigm, presenting the field with philosophical challenges in terms of publishing and funding priorities that should be addressed as well. In this article, we review in detail the technical, business, and philosophical barriers of translating scaffolds from Concept to Clinic. We argue that envisioning and engineering scaffolds as modular systems with a sliding scale of complexity offers the best path to addressing these translational challenges. © Mary Ann Liebert, Inc.

  6. Inverse Opal Scaffolds and Their Biomedical Applications.

    Science.gov (United States)

    Zhang, Yu Shrike; Zhu, Chunlei; Xia, Younan

    2017-09-01

    Three-dimensional porous scaffolds play a pivotal role in tissue engineering and regenerative medicine by functioning as biomimetic substrates to manipulate cellular behaviors. While many techniques have been developed to fabricate porous scaffolds, most of them rely on stochastic processes that typically result in scaffolds with pores uncontrolled in terms of size, structure, and interconnectivity, greatly limiting their use in tissue regeneration. Inverse opal scaffolds, in contrast, possess uniform pores inheriting from the template comprised of a closely packed lattice of monodispersed microspheres. The key parameters of such scaffolds, including architecture, pore structure, porosity, and interconnectivity, can all be made uniform across the same sample and among different samples. In conjunction with a tight control over pore sizes, inverse opal scaffolds have found widespread use in biomedical applications. In this review, we provide a detailed discussion on this new class of advanced materials. After a brief introduction to their history and fabrication, we highlight the unique advantages of inverse opal scaffolds over their non-uniform counterparts. We then showcase their broad applications in tissue engineering and regenerative medicine, followed by a summary and perspective on future directions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Multilayer scaffolds in orthopaedic tissue engineering.

    Science.gov (United States)

    Atesok, Kivanc; Doral, M Nedim; Karlsson, Jon; Egol, Kenneth A; Jazrawi, Laith M; Coelho, Paulo G; Martinez, Amaury; Matsumoto, Tomoyuki; Owens, Brett D; Ochi, Mitsuo; Hurwitz, Shepard R; Atala, Anthony; Fu, Freddie H; Lu, Helen H; Rodeo, Scott A

    2016-07-01

    The purpose of this study was to summarize the recent developments in the field of tissue engineering as they relate to multilayer scaffold designs in musculoskeletal regeneration. Clinical and basic research studies that highlight the current knowledge and potential future applications of the multilayer scaffolds in orthopaedic tissue engineering were evaluated and the best evidence collected. Studies were divided into three main categories based on tissue types and interfaces for which multilayer scaffolds were used to regenerate: bone, osteochondral junction and tendon-to-bone interfaces. In vitro and in vivo studies indicate that the use of stratified scaffolds composed of multiple layers with distinct compositions for regeneration of distinct tissue types within the same scaffold and anatomic location is feasible. This emerging tissue engineering approach has potential applications in regeneration of bone defects, osteochondral lesions and tendon-to-bone interfaces with successful basic research findings that encourage clinical applications. Present data supporting the advantages of the use of multilayer scaffolds as an emerging strategy in musculoskeletal tissue engineering are promising, however, still limited. Positive impacts of the use of next generation scaffolds in orthopaedic tissue engineering can be expected in terms of decreasing the invasiveness of current grafting techniques used for reconstruction of bone and osteochondral defects, and tendon-to-bone interfaces in near future.

  8. Scaffolding With and Through Videos

    DEFF Research Database (Denmark)

    Otrel-Cass, Kathrin; Khoo, Elaine; Cowie, Bronwen

    2012-01-01

    In New Zealand and internationally claims are being made about the potential for information and communication technologies (ICTs) to transform teaching and learning. However, the theoretical underpinnings explaining the complex interplay between the content, pedagogy and technology a teacher needs...... to scaffold learning. It showcases the intricate interplay between teachers’ knowledge about content, digital video technology, and students’ learning needs based on a qualitative study of two science teachers and their students in a New Zealand primary school....... to consider must be expanded. This article explicates theoretical and practical ideas related to teachers’ application of their ICT technology, pedagogy, and content knowledge (TPACK) in science. The article unpacks the social and technological dimensions of teachers’ use of TPACK when they use digital videos...

  9. Semiotic Scaffolding in Living Systems

    DEFF Research Database (Denmark)

    Hoffmeyer, Jesper

    2008-01-01

    The apparently purposeful nature of living systems is obtained through a sophisticated network of semiotic controls whereby biochemical, physiological and behavioral processes become tuned to the needs of the system. The operation of these semiotic controls takes place and is enabled across...... a diversity of levels. Such semiotic controls may be distinguished from ordinary deterministic control mechanisms through an inbuilt anticipatory capacity based on a distinct kind of causation that I call here "semiotic causation" to denote the bringing about of changes under the guidance of interpretation...... in a local .context. Anticipation through the skilled interpretation of indicators of temporal relations in the context of a particular survival project (or life strategy) guides organismic behavior towards local ends. This network of semiotic controls establishes an enormously complex semiotic scaffolding...

  10. Computational Exploration of Molecular Scaffolds in Medicinal Chemistry.

    Science.gov (United States)

    Hu, Ye; Stumpfe, Dagmar; Bajorath, Jürgen

    2016-05-12

    The scaffold concept is widely applied in medicinal chemistry. Scaffolds are mostly used to represent core structures of bioactive compounds. Although the scaffold concept has limitations and is often viewed differently from a chemical and computational perspective, it has provided a basis for systematic investigations of molecular cores and building blocks, going far beyond the consideration of individual compound series. Over the past 2 decades, alternative scaffold definitions and organization schemes have been introduced and scaffolds have been studied in a variety of ways and increasingly on a large scale. Major applications of the scaffold concept include the generation of molecular hierarchies, structural classification, association of scaffolds with biological activities, and activity prediction. This contribution discusses computational approaches for scaffold generation and analysis, with emphasis on recent developments impacting medicinal chemistry. A variety of scaffold-based studies are discussed, and a perspective on scaffold methods is provided.

  11. A Colorimetric Method for the Determination of the Exhaustion Level of Granular Activated Carbons Used in Rum Production

    Directory of Open Access Journals (Sweden)

    Harold Crespo Sariol

    2016-09-01

    Full Text Available Spectrophotometric measurement applied on saturated granular activated carbon (GAC is not yet explored. A colorimetric method in the visible range has been developed in order to determine the exhaustion level of GAC used in rum production. Aqueous ammonia solution has been used as an indicative agent to determine the extraction rate of taste compounds within the rum production process and the exhaustion degree of the GAC. The colorimetric results showed excellent correlation with the iodine number and the contact pH. The proposed colorimetric method opens possibilities for rum producers to improve the management and economical use of the activated carbon at the industrial scale.

  12. Ambient Sensors

    NARCIS (Netherlands)

    Börner, Dirk; Specht, Marcus

    2014-01-01

    This software sketches comprise two custom-built ambient sensors, i.e. a noise and a movement sensor. Both sensors measure an ambient value and process the values to a color gradient (green > yellow > red). The sensors were built using the Processing 1.5.1 development environment. Available under

  13. Photo-crosslinkable polymers for fabrication of photonic multilayer sensors

    Science.gov (United States)

    Chiappelli, Maria; Hayward, Ryan C.

    2013-03-01

    We have used photo-crosslinkable polymers to fabricate photonic multilayer sensors. Benzophenone is utilized as a covalently incorporated pendent photo-crosslinker, providing a convenient means of fabricating multilayer films by sequential spin-coating and crosslinking processes. Colorimetric temperature sensors were designed from thermally-responsive, low-refractive index poly(N-isopropylacrylamide) (PNIPAM) and high-refractive index poly(para-methyl styrene) (P pMS). Copolymer chemistries and layer thicknesses were selected to provide robust multilayer sensors which show color changes across nearly the full visible spectrum due to changes in temperature of the hydrated film stack. We have characterized the uniformity and interfacial broadening within the multilayers, the kinetics of swelling and de-swelling, and the reversibility over multiple hydration/dehydration cycles. We also describe how the approach can be extended to alternative sensor designs through the ability to tailor each layer independently, as well as to additional stimuli by selecting alternative copolymer chemistries.

  14. Analog series-based scaffolds: computational design and exploration of a new type of molecular scaffolds for medicinal chemistry

    Science.gov (United States)

    Dimova, Dilyana; Stumpfe, Dagmar; Hu, Ye; Bajorath, Jürgen

    2016-01-01

    Aim: Computational design of and systematic search for a new type of molecular scaffolds termed analog series-based scaffolds. Materials & methods: From currently available bioactive compounds, analog series were systematically extracted, key compounds identified and new scaffolds isolated from them. Results: Using our computational approach, more than 12,000 scaffolds were extracted from bioactive compounds. Conclusion: A new scaffold definition is introduced and a computational methodology developed to systematically identify such scaffolds, yielding a large freely available scaffold knowledge base. PMID:28116132

  15. Comprehensive assessment of electrospun scaffolds hemocompatibility

    Czech Academy of Sciences Publication Activity Database

    Horáková, J.; Mikeš, P.; Šaman, A.; Švarcová, T.; Jenčová, V.; Suchý, Tomáš; Heczková, B.; Jakubková, Š.; Jiroušová, J.; Procházková, R.

    2018-01-01

    Roč. 82, JAN 1 (2018), s. 330-335 ISSN 0928-4931 Institutional support: RVO:67985891 Keywords : fibrous scaffolds * blood compatibility * polycaprolactone * copolymer of polylactide and polycaprolactone * collagen Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery

  16. Biomimetic nanoclay scaffolds for bone tissue engineering

    Science.gov (United States)

    Ambre, Avinash Harishchandra

    Tissue engineering offers a significant potential alternative to conventional methods for rectifying tissue defects by evoking natural regeneration process via interactions between cells and 3D porous scaffolds. Imparting adequate mechanical properties to biodegradable scaffolds for bone tissue engineering is an important challenge and extends from molecular to macroscale. This work focuses on the use of sodium montmorillonite (Na-MMT) to design polymer composite scaffolds having enhanced mechanical properties along with multiple interdependent properties. Materials design beginning at the molecular level was used in which Na-MMT clay was modified with three different unnatural amino acids and further characterized using Fourier Transform Infrared (FTIR) spectroscopy, X-ray diffraction (XRD). Based on improved bicompatibility with human osteoblasts (bone cells) and intermediate increase in d-spacing of MMT clay (shown by XRD), 5-aminovaleric acid modified clay was further used to prepare biopolymer (chitosan-polygalacturonic acid complex) scaffolds. Osteoblast proliferation in biopolymer scaffolds containing 5-aminovaleric acid modified clay was similar to biopolymer scaffolds containing hydroxyapatite (HAP). A novel process based on biomineralization in bone was designed to prepare 5-aminovaleric acid modified clay capable of imparting multiple properties to the scaffolds. Bone-like apatite was mineralized in modified clay and a novel nanoclay-HAP hybrid (in situ HAPclay) was obtained. FTIR spectroscopy indicated a molecular level organic-inorganic association between the intercalated 5-aminovaleric acid and mineralized HAP. Osteoblasts formed clusters on biopolymer composite films prepared with different weight percent compositions of in situ HAPclay. Human MSCs formed mineralized nodules on composite films and mineralized extracellular matrix (ECM) in composite scaffolds without the use of osteogenic supplements. Polycaprolactone (PCL), a synthetic polymer, was

  17. Super dielectric capacitor using scaffold dielectric

    OpenAIRE

    Phillips, Jonathan

    2018-01-01

    Patent A capacitor having first and second electrodes and a scaffold dielectric. The scaffold dielectric comprises an insulating material with a plurality of longitudinal channels extending across the dielectric and filled with a liquid comprising cations and anions. The plurality of longitudinal channels are substantially parallel and the liquid within the longitudinal channels generally has an ionic strength of at least 0.1. Capacitance results from the migrations of...

  18. A review: fabrication of porous polyurethane scaffolds.

    Science.gov (United States)

    Janik, H; Marzec, M

    2015-03-01

    The aim of tissue engineering is the fabrication of three-dimensional scaffolds that can be used for the reconstruction and regeneration of damaged or deformed tissues and organs. A wide variety of techniques have been developed to create either fibrous or porous scaffolds from polymers, metals, composite materials and ceramics. However, the most promising materials are biodegradable polymers due to their comprehensive mechanical properties, ability to control the rate of degradation and similarities to natural tissue structures. Polyurethanes (PUs) are attractive candidates for scaffold fabrication, since they are biocompatible, and have excellent mechanical properties and mechanical flexibility. PU can be applied to various methods of porous scaffold fabrication, among which are solvent casting/particulate leaching, thermally induced phase separation, gas foaming, emulsion freeze-drying and melt moulding. Scaffold properties obtained by these techniques, including pore size, interconnectivity and total porosity, all depend on the thermal processing parameters, and the porogen agent and solvents used. In this review, various polyurethane systems for scaffolds are discussed, as well as methods of fabrication, including the latest developments, and their advantages and disadvantages. Copyright © 2014. Published by Elsevier B.V.

  19. Scaffolds for peripheral nerve repair and reconstruction.

    Science.gov (United States)

    Yi, Sheng; Xu, Lai; Gu, Xiaosong

    2018-06-02

    Trauma-associated peripheral nerve defect is a widespread clinical problem. Autologous nerve grafting, the current gold standard technique for the treatment of peripheral nerve injury, has many internal disadvantages. Emerging studies showed that tissue engineered nerve graft is an effective substitute to autologous nerves. Tissue engineered nerve graft is generally composed of neural scaffolds and incorporating cells and molecules. A variety of biomaterials have been used to construct neural scaffolds, the main component of tissue engineered nerve graft. Synthetic polymers (e.g. silicone, polyglycolic acid, and poly(lactic-co-glycolic acid)) and natural materials (e.g. chitosan, silk fibroin, and extracellular matrix components) are commonly used along or together to build neural scaffolds. Many other materials, including the extracellular matrix, glass fabrics, ceramics, and metallic materials, have also been used to construct neural scaffolds. These biomaterials are fabricated to create specific structures and surface features. Seeding supporting cells and/or incorporating neurotrophic factors to neural scaffolds further improve restoration effects. Preliminary studies demonstrate that clinical applications of these neural scaffolds achieve satisfactory functional recovery. Therefore, tissue engineered nerve graft provides a good alternative to autologous nerve graft and represents a promising frontier in neural tissue engineering. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Strategies for osteochondral repair: Focus on scaffolds

    Directory of Open Access Journals (Sweden)

    Seog-Jin Seo

    2014-07-01

    Full Text Available Interest in osteochondral repair has been increasing with the growing number of sports-related injuries, accident traumas, and congenital diseases and disorders. Although therapeutic interventions are entering an advanced stage, current surgical procedures are still in their infancy. Unlike other tissues, the osteochondral zone shows a high level of gradient and interfacial tissue organization between bone and cartilage, and thus has unique characteristics related to the ability to resist mechanical compression and restoration. Among the possible therapies, tissue engineering of osteochondral tissues has shown considerable promise where multiple approaches of utilizing cells, scaffolds, and signaling molecules have been pursued. This review focuses particularly on the importance of scaffold design and its role in the success of osteochondral tissue engineering. Biphasic and gradient composition with proper pore configurations are the basic design consideration for scaffolds. Surface modification is an essential technique to improve the scaffold function associated with cell regulation or delivery of signaling molecules. The use of functional scaffolds with a controllable delivery strategy of multiple signaling molecules is also considered a promising therapeutic approach. In this review, we updated the recent advances in scaffolding approaches for osteochondral tissue engineering.

  1. Improving colorimetric assays through protein enzyme-assisted gold nanoparticle amplification.

    Science.gov (United States)

    Xie, Xiaoji; Xu, Wei; Liu, Xiaogang

    2012-09-18

    The discovery of the DNA-mediated assembly of gold nanoparticles was a great moment in the history of science; this understanding and chemical control enabled the rational design of functional nanomaterials as novel probes in biodetection. In contrast with conventional probes such as organic dyes, gold nanoparticles exhibit high photostability and unique size-dependent optical properties. Because of their high extinction coefficients and strong distance dependent optical properties, these nanoparticles have emerged over the past decade as a promising platform for rapid, highly sensitive colorimetric assays that allow for the visual detection of low concentrations of metal ions, small molecules, and biomacromolecules. These discoveries have deepened our knowledge of biological phenomena and facilitated the development of many new diagnostic and therapeutic tools. Despite these many advances and continued research efforts, current nanoparticle-based colorimetric detection systems still suffer from several drawbacks, such as limited sensitivity and selectivity. This Account describes the recent development of colorimetric assays based on protein enzyme-assisted gold nanoparticle amplification. The benefits of such detection systems include significantly improved detection sensitivity and selectivity. First, we discuss the general design of enzyme-modified nanoparticle systems in colorimetric assays. We show that a quantitative understanding of the unique properties of different enzymes is paramount for effective biological assays. We then examine the assays for nucleic acid detection based on different types of enzymes, including endonucleases, ligases, and polymerases. For each of these assays, we identify the underlying principles that contribute to the enhanced detection capability of nanoparticle systems and illustrate them with selected examples. Furthermore, we demonstrate that the combination of gold nanoparticles and specific enzymes can probe enzyme dynamics

  2. DNA tetrahedral scaffolds-based platform for the construction of electrochemiluminescence biosensor.

    Science.gov (United States)

    Feng, Qiu-Mei; Zhou, Zhen; Li, Mei-Xing; Zhao, Wei; Xu, Jing-Juan; Chen, Hong-Yuan

    2017-04-15

    Proximal metallic nanoparticles (NPs) could quench the electrochemiluminescence (ECL) emission of semiconductor quantum dots (QDs) due to Förster energy transfer (FRET), but at a certain distance, the coupling of light-emission with surface plasmon resonance (SPR) result in enhanced ECL. Thus, the modification strategies and distances control between QDs and metallic NPs are critical for the ECL intensity of QDs. In this strategy, a SPR enhanced ECL sensor based on DNA tetrahedral scaffolds modified platform was reported for the detection of telomerase activity. Due to the rigid three-dimensional structure, DNA tetrahedral scaffolds grafting on the electrode surface could accurately modulate the distance between CdS QDs and luminol labelled gold nanoparticles (L-Au NPs), meanwhile provide an enhanced spatial dimension and accessibility for the assembly of multiple L-Au NPs. The ECL intensities of both CdS QDs (-1.25V vs. SCE) and luminol (+0.33V vs. SCE) gradually increased along with the formation of multiple L-Au NPs at the vertex of DNA tetrahedral scaffolds induced by telomerase, bringing in a dual-potential ECL analysis. The proposed method showed high sensitivity for the identification of telomerase and was successfully applied for the differentiation of cancer cells from normal cells. This work suggests that DNA tetrahedral scaffolds could serve as an excellent choice for the construction of SPR-ECL system. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Signs, dispositions, and semiotic scaffolding.

    Science.gov (United States)

    Fernández, Eliseo

    2015-12-01

    scaffolding. These interactions transpire between energetic causal chains and a wide range of converging semiotic transactions unfolding within each individual organism and between organisms and their environment. The perspective advanced here helps elucidate the manner in which physical and semiotic causation cooperate in an orchestrated fashion, giving rise to an ever-expanding profusion of scaffolding structures and processes. Using simple examples I outline some mechanisms that bring about this orchestration as well as the resultant channeling activities that eventually merge and find their culmination in the enactment of goal-oriented behavior. Copyright © 2015. Published by Elsevier Ltd.

  4. Synthesis, characterization and application of poly(acrylamide-co-methylenbisacrylamide) nanocomposite as a colorimetric chemosensor for visual detection of trace levels of Hg and Pb ions

    Energy Technology Data Exchange (ETDEWEB)

    Sedghi, Roya, E-mail: r_sedghi@sbu.ac.ir; Heidari, Bahareh; Behbahani, Mohammad

    2015-03-21

    Highlights: • Poly(acrylamide-co-methylenbisacrylamide) nanocomposite. • Colorimetric chemosensor. • Determination of trace levels of Hg and Pb ions. • Environmental samples. - Abstract: In this study, a new colorimetric chemosensor based on TiO{sub 2}/poly(acrylamide-co-methylenbisacrylamide) nanocomposites was designed for determination of mercury and lead ions at trace levels in environmental samples. The removal and preconcentration of lead and mercury ions on the sorbent was achieved due to sharing an electron pair of N and O groups of polymer chains with the mentioned heavy metal ions. The hydrogel sensor was designed by surface modification of a synthesized TiO{sub 2} nanoparticles using methacryloxypropyltrimethoxysilan (MAPTMS), which provided a reactive C=C bond that polymerized the acrylamide and methylenbisacrylamide. The sorbent was characterized using X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscope (SEM), EDS analysis and Fourier transform in frared (FT-IR) spectrometer. This nanostructured composite with polymer shell was developed as a sensitive and selective sorbent for adsorption of mercury and lead ions from aqueous solution at optimized condition. This method involves two-steps: (1) preconcentration of mercury and lead ions by the synthesized sorbent and (2) its selective monitoring of the target ions by complexation with dithizone (DZ). The color of the sorbent in the absence and presence of mercury and lead ions shifts from white to violet and red, respectively. The detection limit of the synthesized nanochemosensor for mercury and lead ions was 1 and 10 μg L{sup −1}, respectively. The method was successfully applied for trace detection of mercury and lead ions in tap, river, and sea water samples.

  5. Tubular inverse opal scaffolds for biomimetic vessels

    Science.gov (United States)

    Zhao, Ze; Wang, Jie; Lu, Jie; Yu, Yunru; Fu, Fanfan; Wang, Huan; Liu, Yuxiao; Zhao, Yuanjin; Gu, Zhongze

    2016-07-01

    There is a clinical need for tissue-engineered blood vessels that can be used to replace or bypass damaged arteries. The success of such grafts depends strongly on their ability to mimic native arteries; however, currently available artificial vessels are restricted by their complex processing, controversial integrity, or uncontrollable cell location and orientation. Here, we present new tubular scaffolds with specific surface microstructures for structural vessel mimicry. The tubular scaffolds are fabricated by rotationally expanding three-dimensional tubular inverse opals that are replicated from colloidal crystal templates in capillaries. Because of the ordered porous structure of the inverse opals, the expanded tubular scaffolds are imparted with circumferentially oriented elliptical pattern microstructures on their surfaces. It is demonstrated that these tailored tubular scaffolds can effectively make endothelial cells to form an integrated hollow tubular structure on their inner surface and induce smooth muscle cells to form a circumferential orientation on their outer surface. These features of our tubular scaffolds make them highly promising for the construction of biomimetic blood vessels.There is a clinical need for tissue-engineered blood vessels that can be used to replace or bypass damaged arteries. The success of such grafts depends strongly on their ability to mimic native arteries; however, currently available artificial vessels are restricted by their complex processing, controversial integrity, or uncontrollable cell location and orientation. Here, we present new tubular scaffolds with specific surface microstructures for structural vessel mimicry. The tubular scaffolds are fabricated by rotationally expanding three-dimensional tubular inverse opals that are replicated from colloidal crystal templates in capillaries. Because of the ordered porous structure of the inverse opals, the expanded tubular scaffolds are imparted with circumferentially

  6. DNA-scaffolded nanoparticle structures

    Energy Technology Data Exchange (ETDEWEB)

    Hoegberg, Bjoern; Olin, Haakan [Department of Engineering Physics and Mathematics, Mid Sweden University, SE-851 70 Sundsvall, Sweden (Sweden)

    2007-03-15

    DNA self-assembly is a powerful route to the production of very small, complex structures. When used in combination with nanoparticles it is likely to become a key technology in the production of nanoelectronics in the future. Previously, demonstrated nanoparticle assemblies have mainly been periodic and highly symmetric arrays, unsuited as building blocks for any complex circuits. With the invention of DNA-scaffolded origami reported earlier this year (Rothemund P W K 2006 Nature 440 (7082) 297-302), a new route to complex nanostructures using DNA has been opened. Here, we give a short review of the field and present the current status of our experiments were DNA origami is used in conjunction with nanoparticles. Gold nanoparticles are functionalized with thiolated single stranded DNA. Strands that are complementary to the gold particle strands can be positioned on the self-assembled DNA-structure in arbitrary patterns. This property should allow an accurate positioning of the particles by letting them hybridize on the lattice. We report on our recent experiments on this system and discuss open problems and future applications.

  7. DNA-scaffolded nanoparticle structures

    International Nuclear Information System (INIS)

    Hoegberg, Bjoern; Olin, Haakan

    2007-01-01

    DNA self-assembly is a powerful route to the production of very small, complex structures. When used in combination with nanoparticles it is likely to become a key technology in the production of nanoelectronics in the future. Previously, demonstrated nanoparticle assemblies have mainly been periodic and highly symmetric arrays, unsuited as building blocks for any complex circuits. With the invention of DNA-scaffolded origami reported earlier this year (Rothemund P W K 2006 Nature 440 (7082) 297-302), a new route to complex nanostructures using DNA has been opened. Here, we give a short review of the field and present the current status of our experiments were DNA origami is used in conjunction with nanoparticles. Gold nanoparticles are functionalized with thiolated single stranded DNA. Strands that are complementary to the gold particle strands can be positioned on the self-assembled DNA-structure in arbitrary patterns. This property should allow an accurate positioning of the particles by letting them hybridize on the lattice. We report on our recent experiments on this system and discuss open problems and future applications

  8. Mobile micro-colorimeter and micro-spectrometer sensor modules as enablers for the replacement of subjective inspections by objective measurements for optically clear colored liquids in-field

    Science.gov (United States)

    Dittrich, Paul-Gerald; Grunert, Fred; Ehehalt, Jörg; Hofmann, Dietrich

    2015-03-01

    Aim of the paper is to show that the colorimetric characterization of optically clear colored liquids can be performed with different measurement methods and their application specific multichannel spectral sensors. The possible measurement methods are differentiated by the applied types of multichannel spectral sensors and therefore by their spectral resolution, measurement speed, measurement accuracy and measurement costs. The paper describes how different types of multichannel spectral sensors are calibrated with different types of calibration methods and how the measurement values can be used for further colorimetric calculations. The different measurement methods and the different application specific calibration methods will be explained methodically and theoretically. The paper proofs that and how different multichannel spectral sensor modules with different calibration methods can be applied with smartpads for the calculation of measurement results both in laboratory and in field. A given practical example is the application of different multichannel spectral sensors for the colorimetric characterization of petroleum oils and fuels and their colorimetric characterization by the Saybolt color scale.

  9. A Rapid Colorimetric Method Reveals Fraudulent Substitutions in Sea Urchin Roe Marketed in Sardinia (Italy).

    Science.gov (United States)

    Meloni, Domenico; Spina, Antonio; Satta, Gianluca; Chessa, Vittorio

    2016-06-25

    In recent years, besides the consumption of fresh sea urchin specimens, the demand of minimally-processed roe has grown considerably. This product has made frequent consumption in restaurants possible and frauds are becoming widespread with the partial replacement of sea urchin roe with surrogates that are similar in colour. One of the main factors that determines the quality of the roe is its colour and small differences in colour scale cannot be easily discerned by the consumers. In this study we have applied a rapid colorimetric method for reveal the fraudulent partial substitution of semi-solid sea urchin roe with liquid egg yolk. Objective assessment of whiteness (L*), redness (a*), yellowness (b*), hue (h*), and chroma (C*) was carried out with a digital spectrophotometer using the CIE L*a*b* colour measurement system. The colorimetric method highlighted statistically significant differences among sea urchin roe and liquid egg yolk that could be easily discerned quantitatively.

  10. Relationship between colorimetric (instrumental) evaluation and consumer-defined beef colour acceptability.

    Science.gov (United States)

    Holman, Benjamin W B; Mao, Yanwei; Coombs, Cassius E O; van de Ven, Remy J; Hopkins, David L

    2016-11-01

    The relationship between instrumental colorimetric values (L*, a*, b*, the ratio of reflectance at 630nm and 580nm) and consumer perception of acceptable beef colour was evaluated using a web-based survey and standardised photographs of beef m. longissimus lumborum with known colorimetrics. Only L* and b* were found to relate to average consumer opinions of beef colour acceptability. Respondent nationality was also identified as a source of variation in beef colour acceptability score. Although this is a preliminary study with the findings necessitating additional investigation, these results suggest L* and b* as candidates for developing instrumental thresholds for consumer beef colour expectations. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  11. Bio-functionalized silver nanoparticles for selective colorimetric sensing of toxic metal ions and antimicrobial studies

    Science.gov (United States)

    Vinod Kumar, V.; Anbarasan, S.; Christena, Lawrence Rene; SaiSubramanian, Nagarajan; Philip Anthony, Savarimuthu

    2014-08-01

    Hibiscus Sabdariffa (Gongura) plant extracts (leaves (HL) and stem (HS) were used for the first time in the green synthesis of bio-functionalized silver nanoparticles (AgNPs). The bio-functionality of AgNPs has been successfully utilized for selective colorimetric sensing of potentially health and environmentally hazardous Hg2+, Cd2+ and Pb2+ metal ions at ppm level in aqueous solution. Importantly, clearly distinguishable colour for all three metal ions was observed. The influence of extract preparation condition and pH were also explored on the formation of AgNPs. Both selectivity and sensitivity differed for AgNPs synthesized from different parts of the plant. Direct correlation between the stability of green synthesized AgNPs at different pH and its antibacterial effects has been established. The selective colorimetric sensing of toxic metal ions and antimicrobial effect of green synthesized AgNPs demonstrated the multifunctional applications of green nanotechnology.

  12. Investigation of the Effects of Rosemary Extract on Barrier and Colorimetric Properties of Mungbean Starch Films

    Directory of Open Access Journals (Sweden)

    H. Safari Maznabi

    2013-08-01

    Full Text Available Barrier properties are one of the most important factors in the edible film. In this study, edible mungbean films were prepared containing (0%, 15%, 30%, 45% concentrations of rosemary aqueous extract. Then the effect of rosemary was investigated on colorimetric and barrier properties (water vapor permeability, oxygen permeability. Rosemary extract increased the absorption of color in the visible region, which in turn led to increase of the parameters a (index color tends toward green and b (index color tends towards yellow. The results showed that increasing concentrations of rosemary extract have a significant effect( p <0.05 to reduce the amount of oxygen and water vapor permeability.  Also turbidity of mungbean starch was increased with increasing concentrations of rosemary in the film. Improving barrier properties and the colorimetric properties were showed by rosemary extract compounds that these materials can use as the safety of food and pharmaceutical packaging industry.

  13. Enzyme-free colorimetric detection systems based on the DNA strand displacement competition reaction

    DEFF Research Database (Denmark)

    Zhang, Zhao; Birkedal, Victoria; Gothelf, Kurt Vesterager

    2016-01-01

    The strand displacement competition assay is based on the dynamic equilibrium of the competitive hybridization of two oligonucleotides (A and B) to a third oligonucleotide (S). In the presence of an analyte that binds to a specific affinity-moiety conjugated to strand B, the equilibrium shifts, w...... G-quadruplex DNAzyme for colorimetric readout of the detection of streptavidin by the naked eye. Finally, we integrate the whole G-quadruplex DNAzyme system in a single DNA strand and show that it is applicable to colorimetric detection......., which can be detected by a shift in the fluorescence resonance energy transfer signal between dyes attached to the DNA strands. In the present study we have integrated an ATP aptamer in the strand B and demonstrated the optical detection of ATP. Furthermore we explore a new readout method using a split...

  14. Enzyme-free colorimetric detection systems based on the DNA strand displacement competition reaction

    Science.gov (United States)

    Zhang, Z.; Birkedal, V.; Gothelf, K. V.

    2016-05-01

    The strand displacement competition assay is based on the dynamic equilibrium of the competitive hybridization of two oligonucleotides (A and B) to a third oligonucleotide (S). In the presence of an analyte that binds to a specific affinity-moiety conjugated to strand B, the equilibrium shifts, which can be detected by a shift in the fluorescence resonance energy transfer signal between dyes attached to the DNA strands. In the present study we have integrated an ATP aptamer in the strand B and demonstrated the optical detection of ATP. Furthermore we explore a new readout method using a split G-quadruplex DNAzyme for colorimetric readout of the detection of streptavidin by the naked eye. Finally, we integrate the whole G-quadruplex DNAzyme system in a single DNA strand and show that it is applicable to colorimetric detection.

  15. Colorimetric detection of trace copper ions based on catalytic leaching of silver-coated gold nanoparticles.

    Science.gov (United States)

    Lou, Tingting; Chen, Lingxin; Chen, Zhaopeng; Wang, Yunqing; Chen, Ling; Li, Jinhua

    2011-11-01

    A colorimetric, label-free, and nonaggregation-based silver coated gold nanoparticles (Ag/Au NPs) probe has been developed for detection of trace Cu(2+) in aqueous solution, based on the fact that Cu(2+) can accelerate the leaching rate of Ag/Au NPs by thiosulfate (S(2)O(3)(2-)). The leaching of Ag/Au NPs would lead to dramatic decrease in the surface plasmon resonance (SPR) absorption as the size of Ag/Au NPs decreased. This colorimetric strategy based on size-dependence of nanoparticles during their leaching process provided a highly sensitive (1.0 nM) and selective detection toward Cu(2+), with a wide linear detection range (5-800 nM) over nearly 3 orders of magnitude. The cost-effective probe allows rapid and sensitive detection of trace Cu(2+) ions in water samples, indicating its potential applicability for the determination of copper in real samples.

  16. Design, Certification, and Deployment of the Colorimetric Water Quality Monitoring Kit (CWQMK)

    Science.gov (United States)

    Gazda, Daniel B.; Nolan, Daniel J.; Rutz, Jeff A.; Schultz, John R.; Siperko, Lorraine M.; Porter, Marc D.; Lipert, Robert J.; Flint, Stephanie M.; McCoy, J. Torin

    2010-01-01

    In August 2009, an experimental water quality monitoring kit based on Colorimetric Solid Phase Extraction (CSPE) technology was delivered to the International Space Station (ISS) aboard STS-128/17A. The kit, called the Colorimetric Water Quality Monitoring Kit (CWQMK), was flown and deployed as a Station Development Test Objective (SDTO) experiment on the ISS. The goal of the SDTO experiment is to evaluate the acceptability of CSPE technology for routine water quality monitoring on the ISS. This paper provides an overview of the SDTO experiment, as well as a detailed description of the CWQMK hardware and a summary of the testing and analysis conducted to certify the CWQMK for use on the ISS. The initial results obtained from the SDTO experiment are also reported and discussed in detail

  17. Facile Fabrication of Multi-hierarchical Porous Polyaniline Composite as Pressure Sensor and Gas Sensor with Adjustable Sensitivity

    OpenAIRE

    He, Xiao-Xiao; Li, Jin-Tao; Jia, Xian-Sheng; Tong, Lu; Wang, Xiao-Xiong; Zhang, Jun; Zheng, Jie; Ning, Xin; Long, Yun-Ze

    2017-01-01

    A multi-hierarchical porous polyaniline (PANI) composite which could be used in good performance pressure sensor and adjustable sensitivity gas sensor has been fabricated by a facile in situ polymerization. Commercial grade sponge was utilized as a template scaffold to deposit PANI via in situ polymerization. With abundant interconnected pores throughout the whole structure, the sponge provided sufficient surface for the growth of PANI nanobranches. The flexible porous structure helped the co...

  18. Modifying bone scaffold architecture in vivo with permanent magnets to facilitate fixation of magnetic scaffolds.

    Science.gov (United States)

    Panseri, S; Russo, A; Sartori, M; Giavaresi, G; Sandri, M; Fini, M; Maltarello, M C; Shelyakova, T; Ortolani, A; Visani, A; Dediu, V; Tampieri, A; Marcacci, M

    2013-10-01

    The fundamental elements of tissue regeneration are cells, biochemical signals and the three-dimensional microenvironment. In the described approach, biomineralized-collagen biomaterial functions as a scaffold and provides biochemical stimuli for tissue regeneration. In addition superparamagnetic nanoparticles were used to magnetize the biomaterials with direct nucleation on collagen fibres or impregnation techniques. Minimally invasive surgery was performed on 12 rabbits to implant cylindrical NdFeB magnets in close proximity to magnetic scaffolds within the lateral condyles of the distal femoral epiphyses. Under this static magnetic field we demonstrated, for the first time in vivo, that the ability to modify the scaffold architecture could influence tissue regeneration obtaining a well-ordered tissue. Moreover, the association between NdFeB magnet and magnetic scaffolds represents a potential technique to ensure scaffold fixation avoiding micromotion at the tissue/biomaterial interface. © 2013.

  19. Biodegradable Polymer-Based Scaffolds for Bone Tissue Engineering

    CERN Document Server

    Sultana, Naznin

    2013-01-01

    This book addresses the principles, methods and applications of biodegradable polymer based scaffolds for bone tissue engineering. The general principle of bone tissue engineering is reviewed and the traditional and novel scaffolding materials, their properties and scaffold fabrication techniques are explored. By acting as temporary synthetic extracellular matrices for cell accommodation, proliferation, and differentiation, scaffolds play a pivotal role in tissue engineering. This book does not only provide the comprehensive summary of the current trends in scaffolding design but also presents the new trends and directions for scaffold development for the ever expanding tissue engineering applications.

  20. Concentrations of arsenic in brackish lake water : Application of tristimulus colorimetric determination

    OpenAIRE

    Rahman, Md. Mustafizur; Seike, Yasushi; Okumura, Minoru

    2006-01-01

    The evaluation of a simple and rapid tristimulus colorimetric method for the determination of arsenic in brackish waters and its application to brackish water samples taken from brackish Lake Nakaumi are described. The determinations of arsenic in brackish water samples were made satisfactorily independent of sample salinity. By applying this method to lake water samples, the distributions and behaviors of arsenic in the lake and their controlling factors were clarified, such as seasonal vari...

  1. Electrospun nanofiber based colorimetric probe for rapid detection of Fe{sup 2+} in water

    Energy Technology Data Exchange (ETDEWEB)

    Ondigo, D.A. [Department of Chemistry, Rhodes University, P.O. Box 94, Grahamstown 6140 (South Africa); Tshentu, Z.R. [Department of Chemistry, Rhodes University, P.O. Box 94, Grahamstown 6140 (South Africa); Department of Chemistry, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth, 6031 (South Africa); Torto, N., E-mail: N.Torto@ru.ac.za [Department of Chemistry, Rhodes University, P.O. Box 94, Grahamstown 6140 (South Africa)

    2013-12-04

    Graphical abstract: -- Highlights: •Colorimetric probe for the detection of Fe{sup 2+} was developed. •Polymeric electrospun nanofibers were used as host for the signaling reagent. •The functionalized electrospun nanofibers exhibited a selective color change in the presence of Fe{sup 2+}. •The mechanism was based on spin crossover (SCO) from high spin Fe{sup 2+} to low spin Fe{sup 2+} upon interaction with the embedded ligand. -- Abstract: An imidazole derivative, 2-(2′-pyridyl)imidazole (PIMH), was developed as a colorimetric probe for the qualitative analysis of Fe{sup 2+} in aqueous solution. PIMH was then used to post-functionalize poly(vinylbenzyl chloride) (PVBC) nanofibers after electrospinning so as to afford a solid state colorimetric probe. Upon treatment with Fe{sup 2+} the probe displayed a distinctive color change both in liquid and solid platforms. The linear dynamic range for the colorimetric determination of Fe{sup 2+} was 0.0988–3.5 μg mL{sup −1}. The ligand showed a high chromogenic selectivity for Fe{sup 2+} over other cations with a detection limit of 0.102 μg mL{sup −1} in solution (lower than the WHO drinking water guideline limit of 2 mg L{sup −1}), and 2 μg mL{sup −1} in the solid state. The concentration of Fe{sup 2+} in a certified reference material (Iron, Ferrous, 1072) was found to be 2.39 ± 0.01 mg L{sup −1}, which was comparable with the certified value of 2.44 ± 0.12 mg L{sup −1}. Application of the probe to real samples spiked with Fe{sup 2+} achieved recoveries of over 97% confirming accuracy of the method and its potential for on-site monitoring.

  2. Evaluation of Colorimetric Assays for Analyzing Reductively Methylated Proteins: Biases and Mechanistic Insights

    OpenAIRE

    Brady, Pamlea N.; Macnaughtan, Megan A.

    2015-01-01

    Colorimetric protein assays, such as the Coomassie blue G-250 dye-binding (Bradford) and bicinchoninic acid (BCA) assays, are commonly used to quantify protein concentration. The accuracy of these assays depends on the amino acid composition. Because of the extensive use of reductive methylation in the study of proteins and the importance of biological methylation, it is necessary to evaluate the impact of lysyl methylation on the Bradford and BCA assays. Unmodified and reductively methylated...

  3. A colorimetric determination of boron in biological sample for boron neutron capture therapy (BNCT)

    International Nuclear Information System (INIS)

    Camillo, M.A.P.; Tomac Junior, U.

    1990-01-01

    The boron neutron capture therapy (BNCT) has shown better prognosis in the treatment of glyemas and gluoblastomas grade III and IV than other therapies. During the treatment the levels of Na 2 10 B 12 H 11 SH must be known in several compartiments of the organism and with this purpose the method of colorimetric determination of boron using curcumine was established. This method is simple, reprodutible and adequate sensitivity for this control. (author) [pt

  4. A colorimetric determination of boron in biological sample for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Camilo, M.A.P.; Tomac Junior, U.

    1989-01-01

    The boron neutron capture therapy (BNCT) has shown better prognosis in the treatment of gliomas and glioblastomas grade III and IV than other therapies. During the treatment of levels of Na 2 10 B 12 H 11 S H must be known in several compartments of the organism and with this purpose the method of colorimetric determination of boron using curcumin was established. This method is simples, reproducible and has adequate sensitivity for this control. (author). 7 refs, 3 figs, 1 tab

  5. Electrochemical and colorimetric assessment on the influence of target metals on wine color

    OpenAIRE

    Esparza, I. (Irene); Santamaria, C. (Carolina); Garcia-Mina, J.M. (José María); Fernandez, J.M. (José María)

    2006-01-01

    Presentado en Book of abstracts of the11th International Conference on Electroanalysis ESEAC, 2006; P2-081. Three year old samples of Vitis vinifera origin-controlled red wine samples were spiked with adequate amounts of metals and subsequent colorimetric parameters evolution and complexing capacity behaviour were checked. The used approach consisted in the study of the complexing capacity of natural occurring ligands on wine with respect to Zn and Cu by means of stripping voltammetry in ...

  6. Colorimetric Analysis on Flocculation of Bioinspired Au Self-Assembly for Biophotonic Application

    Directory of Open Access Journals (Sweden)

    Wan-Joong Kim

    2009-01-01

    Full Text Available Gold nanoparticles exhibited strong surface plasmon absorption and couplings between neighboring particles within bioactivated self-assembly modified their optical properties. Colorimetric analysis on the optical modification of surface plasmon resoanance (SPR shift and flocculation parameter functionalized bioinspired gold assembly for biophotonic application. The physical origin of bioinspired gold aggregation-induced shifting, decreasing, or broadening of the plasmon absorption spectra could be explained in terms of dynamic depolarization, collisional damping, and shadowing effects.

  7. Visual and colorimetric methods for rapid determination of total tannins in vegetable raw materials

    Directory of Open Access Journals (Sweden)

    S. P. Kalinkina

    2016-01-01

    Full Text Available The article is dedicated to the development of rapid colorimetric method for determining the amount of tannins in aqueous extracts of vegetable raw materials. The sorption-based colorimetric test is determining sorption tannins polyurethane foam, impregnated of FeCl3, receiving on its surface painted in black and green color of the reaction products and the determination of their in sorbent matrix. Selectivity is achieved by determining the tannins specific interaction of polyphenols with iron ions (III. The conditions of sorption-colorimetric method: the concentration of ferric chloride (III, impregnated in the polyurethane foam; sorbent mass in the analytical cartridge; degree of loading his agent; the contact time of the phases. color scales have been developed for the visual determination of the amount of tannins in terms of gallic acid. Spend a digitized image obtained scales using computer program “Sorbfil TLC”, excluding a subjective assessment of the intensity of the color scale of the test. The results obtained determine the amount of tannins in aqueous extracts of vegetable raw rapid method using tablets and analytical cartridges. The results of the test determination of tannins with visual and densitometric analytical signal registration are compared to known methods. Spend a metrological evaluation of the results of determining the amount of tannins sorption rapid colorimetric methods. Time visual and densitometric rapid determination of tannins, taking into account the sample preparation is 25–30 minutes, the relative error does not exceed 28 %. The developed test methods for quantifying the content of tannins allow to exclude the use of sophisticated analytical equipment, carry out the analysis in non-laboratory conditions do not require highly skilled personnel.

  8. [Colorimetric detection of HPV6 and HPV16 by loop mediated isothermal amplification].

    Science.gov (United States)

    Lu, Chun-bin; Luo, Le; Yang, Meng-jie; Nie, Kai; Wang, Miao; Ma, Xue-Jun

    2011-01-01

    A simple, rapid and sensitive colorimetric loop mediated isothermal amplification (LAMP) method was established to detect HPV6 and HPV 16 respectively. The method employed a set of four specially designed primers that recognized six distinct sequences of HPV6-E6 or HPV16-E7 for amplification of nucleic acid under isothermal conditions at 63 degrees C for one hour. The amplification process of LAMP was monitored by the addition of HNB (hydroxy naphthol blue) dye prior to amplification. A positive reaction was indicated by a color change from violet to sky blue and confirmed by real-time turbidimeter and agarose electrophoresis. Thirteen cervical swab samples having single infection with 13 different HPV genotypes were examined to evaluate the specificity. A serial dilution of a cloned plasmid containing HPV-E6 or HPV-E7 gene was examined to evaluate the sensitivity. The results showed that no cross-reaction with other HPV genotypes was observed. The colorimetric LAMP assay could achieve a sensitivity of 1000 copies, 10-20 times lower than that of real-time PCR. The assay was further evaluated with 62 clinical specimens and consistent results were obtained compared with the detection using Kai Pu HPV Genotyping Kit. We concluded that this colorimetric LAMP assay had potential usefulness for the rapid screening of the HPV6 or HPV16 infection in the laboratories and hospitals of provincial and municipal region in China.

  9. Application of Chemometric Techniques to Colorimetric Data in Classifying Automobile Paint

    International Nuclear Information System (INIS)

    Nur Awatif Rosli; Rozita Osman; Norashikin Saim; Mohd Zuli Jaafar

    2015-01-01

    The analysis of paint chips is of great interest to forensic investigators, particularly in the examination of hit-and run cases. This study proposes a direct and rapid method in classifying automobile paint samples based on colorimetric data sets; absorption value, reflectance value, luminosity value (L), degree of redness (a) and degree of yellowness (b) obtained from video spectral comparator (VSC) technique. A total of 42 automobile paint samples from 7 manufacturers were analysed. The colorimetric datasets obtained from VSC analysis were subjected to chemometric technique namely cluster analysis (CA) and principal component analysis (PCA). Based on CA, 5 clusters were generated; Cluster 1 consisted of silver color, cluster 2 consisted of white color, cluster 3 consisted of blue and black colors, cluster 4 consisted of red color and cluster 5 consisted of light blue color. PCA resulted in two latent factors explaining 95.58 % of the total variance, enabled to group the 42 automobile paints into five groups. Chemometric application on colorimetric datasets provide meaningful classification of automobile paints based on their tone colour (L, a, b) and light intensity These approaches have the potential to ease the interpretation of complex spectral data involving a large number of comparisons. (author)

  10. A Universal Fast Colorimetric Method for DNA Signal Detection with DNA Strand Displacement and Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    Xin Li

    2015-01-01

    Full Text Available DNA or gene signal detection is of great significance in many fields including medical examination, intracellular molecular monitoring, and gene disease signal diagnosis, but detection of DNA or gene signals in a low concentration with instant visual results remains a challenge. In this work, a universal fast and visual colorimetric detection method for DNA signals is proposed. Specifically, a DNA signal amplification “circuit” based on DNA strand displacement is firstly designed to amplify the target DNA signals, and then thiol modified hairpin DNA strands and gold nanoparticles are used to make signal detection results visualized in a colorimetric manner. If the target DNA signal exists, the gold nanoparticles aggregate and settle down with color changing from dark red to grey quickly; otherwise, the gold nanoparticles’ colloids remain stable in dark red. The proposed method provides a novel way to detect quickly DNA or gene signals in low concentrations with instant visual results. When applied in real-life, it may provide a universal colorimetric method for gene disease signal diagnosis.

  11. Comparison of macro-gravimetric and micro-colorimetric lipid determination methods.

    Science.gov (United States)

    Inouye, Laura S; Lotufo, Guiherme R

    2006-10-15

    In order to validate a method for lipid analysis of small tissue samples, the standard macro-gravimetric method of Bligh-Dyer (1959) [E.G. Bligh, W.J. Dyer, Can. J. Biochem. Physiol. 37 (1959) 911] and a modification of the micro-colorimetric assay developed by Van Handel (1985) [E. Van Handel, J. Am. Mosq. Control Assoc. 1 (1985) 302] were compared. No significant differences were observed for wet tissues of two species of fish. However, limited analysis of wet tissue of the amphipod, Leptocheirusplumulosus, indicated that the Bligh-Dyer gravimetric method generated higher lipid values, most likely due to the inclusion of non-lipid materials. Additionally, significant differences between the methods were observed with dry tissues, with the micro-colorimetric method consistently reporting calculated lipid values greater than as reported by the gravimetric method. This was most likely due to poor extraction of dry tissue in the standard Bligh-Dyer method, as no significant differences were found when analyzing a single composite extract. The data presented supports the conclusion that the micro-colorimetric method described in this paper is accurate, rapid, and minimizes time and solvent use.

  12. Colorimetric and sensory characteristics of fermented cured sausage with Brazilian ostrich meat addition

    Directory of Open Access Journals (Sweden)

    Carlos Pasqualin Cavalheiro

    2013-12-01

    Full Text Available The aim of this study was to determine the colorimetric and sensory characteristics of a fermented cured sausage containing ostrich meat (Struthio camelus and pork meat. Four treatments were performed: one with no ostrich meat (TC and the others containing 19.08 (T1, 38.34 (T2, and 57.60% (T3 of ostrich meat and pork meat. Colorimetric analyses were measuring L*, a*, b*, C*, and hº. Sensory analysis was conducted assessing color, aroma, flavor, and texture at the end of the sausages' processing. The sausages containing ostrich meat were statistically different from the control in the instrumental colorimetric analysis. In the sensory analysis, no significant differences were observed between the treatments for aroma, flavor, and texture. However, significant differences were found in the color of the sausages due to the high myoglobin content present in the ostrich meat, which resulted in a very dark color in the treatment with the highest percentage of this type of meat.

  13. An imaging-based photometric and colorimetric measurement method for characterizing OLED panels for lighting applications

    Science.gov (United States)

    Zhu, Yiting; Narendran, Nadarajah; Tan, Jianchuan; Mou, Xi

    2014-09-01

    The organic light-emitting diode (OLED) has demonstrated its novelty in displays and certain lighting applications. Similar to white light-emitting diode (LED) technology, it also holds the promise of saving energy. Even though the luminous efficacy values of OLED products have been steadily growing, their longevity is still not well understood. Furthermore, currently there is no industry standard for photometric and colorimetric testing, short and long term, of OLEDs. Each OLED manufacturer tests its OLED panels under different electrical and thermal conditions using different measurement methods. In this study, an imaging-based photometric and colorimetric measurement method for OLED panels was investigated. Unlike an LED that can be considered as a point source, the OLED is a large form area source. Therefore, for an area source to satisfy lighting application needs, it is important that it maintains uniform light level and color properties across the emitting surface of the panel over a long period. This study intended to develop a measurement procedure that can be used to test long-term photometric and colorimetric properties of OLED panels. The objective was to better understand how test parameters such as drive current or luminance and temperature affect the degradation rate. In addition, this study investigated whether data interpolation could allow for determination of degradation and lifetime, L70, at application conditions based on the degradation rates measured at different operating conditions.

  14. Attention Sensor

    NARCIS (Netherlands)

    Börner, Dirk; Kalz, Marco; Specht, Marcus

    2014-01-01

    This software sketch was used in the context of an experiment for the PhD project “Ambient Learning Displays”. The sketch comprises a custom-built attention sensor. The sensor measured (during the experiment) whether a participant looked at and thus attended a public display. The sensor was built

  15. Computational design of new molecular scaffolds for medicinal chemistry, part II: generalization of analog series-based scaffolds

    Science.gov (United States)

    Dimova, Dilyana; Stumpfe, Dagmar; Bajorath, Jürgen

    2018-01-01

    Aim: Extending and generalizing the computational concept of analog series-based (ASB) scaffolds. Materials & methods: Methodological modifications were introduced to further increase the coverage of analog series (ASs) and compounds by ASB scaffolds. From bioactive compounds, ASs were systematically extracted and second-generation ASB scaffolds isolated. Results: More than 20,000 second-generation ASB scaffolds with single or multiple substitution sites were extracted from active compounds, achieving more than 90% coverage of ASs. Conclusion: Generalization of the ASB scaffold approach has yielded a large knowledge base of scaffold-capturing compound series and target information. PMID:29379641

  16. Improving Students' Speaking Ability through Scaffolding Technique

    Directory of Open Access Journals (Sweden)

    Gede Ginaya

    2018-03-01

    Full Text Available Students often got confused and felt hesitant when they speak English. This situation had caused poor speaking ability, which then lead to serious problem in the teaching-learning process.  The application of scaffolding technique in the EFL learning might be the ideal solution; it had some principles that could improve the students’ speaking ability. This research is aimed at finding out the effect of the implementing Scaffolding Technique towards the students’ speaking ability. Participants were 50 (27 males and 23 females third-semester students, enrolled in a three-year diploma program in Travel and Tourism Business, State Polytechnic of Bali in 2017/2018 academic year. The students in the experimental group were given communicative activities such as brainstorming, business games, simulation, WebQuest, problem-solving, which were carefully designed to necessitate the implementation of the scaffolding technique. The students in the control group were taught by the deductive method of the lesson book. The students’ performance in the post-test was compared for both groups in order to determine whether there were significant differences between the groups in relation to the treatment. Significant differences occurring in the experimental group’s post-test speaking performance when compared to the pre-test indicate that the implementation of scaffolding technique can improve students’ speaking ability. The result of this study indicates scaffolding technique has the potential for use in promoting students’ speaking ability

  17. Heterogeneity of Scaffold Biomaterials in Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Lauren Edgar

    2016-05-01

    Full Text Available Tissue engineering (TE offers a potential solution for the shortage of transplantable organs and the need for novel methods of tissue repair. Methods of TE have advanced significantly in recent years, but there are challenges to using engineered tissues and organs including but not limited to: biocompatibility, immunogenicity, biodegradation, and toxicity. Analysis of biomaterials used as scaffolds may, however, elucidate how TE can be enhanced. Ideally, biomaterials should closely mimic the characteristics of desired organ, their function and their in vivo environments. A review of biomaterials used in TE highlighted natural polymers, synthetic polymers, and decellularized organs as sources of scaffolding. Studies of discarded organs supported that decellularization offers a remedy to reducing waste of donor organs, but does not yet provide an effective solution to organ demand because it has shown varied success in vivo depending on organ complexity and physiological requirements. Review of polymer-based scaffolds revealed that a composite scaffold formed by copolymerization is more effective than single polymer scaffolds because it allows copolymers to offset disadvantages a single polymer may possess. Selection of biomaterials for use in TE is essential for transplant success. There is not, however, a singular biomaterial that is universally optimal.

  18. Scaffolds in regenerative endodontics: A review

    Science.gov (United States)

    Gathani, Kinjal M.; Raghavendra, Srinidhi Surya

    2016-01-01

    Root canal therapy has enabled us to save numerous teeth over the years. The most desired outcome of endodontic treatment would be when diseased or nonvital pulp is replaced with healthy pulp tissue that would revitalize the teeth through regenerative endodontics. ‘A search was conducted using the Pubmed and MEDLINE databases for articles with the criteria ‘Platelet rich plasma’, ‘Platelet rich fibrin’, ‘Stem cells’, ‘Natural and artificial scaffolds’ from 1982–2015’. Tissues are organized as three-dimensional structures, and appropriate scaffolding is necessary to provide a spatially correct position of cell location and regulate differentiation, proliferation, or metabolism of the stem cells. Extracellular matrix molecules control the differentiation of stem cells, and an appropriate scaffold might selectively bind and localize cells, contain growth factors, and undergo biodegradation over time. Different scaffolds facilitate the regeneration of different tissues. To ensure a successful regenerative procedure, it is essential to have a thorough and precise knowledge about the suitable scaffold for the required tissue. This article gives a review on the different scaffolds providing an insight into the new developmental approaches on the horizon. PMID:27857762

  19. Scaffolds in regenerative endodontics: A review

    Directory of Open Access Journals (Sweden)

    Kinjal M Gathani

    2016-01-01

    Full Text Available Root canal therapy has enabled us to save numerous teeth over the years. The most desired outcome of endodontic treatment would be when diseased or nonvital pulp is replaced with healthy pulp tissue that would revitalize the teeth through regenerative endodontics. ′A search was conducted using the Pubmed and MEDLINE databases for articles with the criteria ′Platelet rich plasma′, ′Platelet rich fibrin′, ′Stem cells′, ′Natural and artificial scaffolds′ from 1982-2015′. Tissues are organized as three-dimensional structures, and appropriate scaffolding is necessary to provide a spatially correct position of cell location and regulate differentiation, proliferation, or metabolism of the stem cells. Extracellular matrix molecules control the differentiation of stem cells, and an appropriate scaffold might selectively bind and localize cells, contain growth factors, and undergo biodegradation over time. Different scaffolds facilitate the regeneration of different tissues. To ensure a successful regenerative procedure, it is essential to have a thorough and precise knowledge about the suitable scaffold for the required tissue. This article gives a review on the different scaffolds providing an insight into the new developmental approaches on the horizon.

  20. In vitro osteoclastogenesis on textile chitosan scaffold

    Directory of Open Access Journals (Sweden)

    C Heinemann

    2010-02-01

    Full Text Available Textile chitosan fibre scaffolds were evaluated in terms of interaction with osteoclast-like cells, derived from human primary monocytes. Part of the scaffolds was further modified by coating with fibrillar collagen type I in order to make the surface biocompatible. Monocytes were cultured directly on the scaffolds in the presence of macrophage colony stimulating factor (M-CSF and receptor activator of nuclear factor kappaB ligand (RANKL for up to 18 days. Confocal laser scanning microscopy (CLSM as well as scanning electron microscopy (SEM revealed the formation of multinuclear osteoclast-like cells on both the raw chitosan fibres and the collagen-coated scaffolds. The modified surface supported the osteoclastogenesis. Differentiation towards the osteoclastic lineage was confirmed by the microscopic detection of cathepsin K, tartrate resistant acid phosphatase (TRAP, acidic compartments using 3-(2,4-dinitroanillino-3’-amino-N-methyldipropylamine (DAMP, immunological detection of TRAP isoform 5b, and analysis of gene expression of the osteoclastic markers TRAP, cathepsin K, vitronectin receptor, and calcitonin receptor using reverse transcription-polymerase chain reaction (RT-PCR. The feature of the collagen-coated but also of the raw chitosan fibre scaffolds to support attachment and differentiation of human monocytes facilitates cell-induced material resorption – one main requirement for successful bone tissue engineering.

  1. A Guide to Scaffold Use in the Construction Industry

    National Research Council Canada - National Science Library

    2001-01-01

    On August 30, 1996, OSHA issued revised standards for scaffolds. The revised standard, known as "Safety Standards for Scaffolds Used in the Construction Industry" is found in Title 29 Code of Federal Regulations (CFR) Part, Subpart L...

  2. Biodegradation and bioresorption of poly(-caprolactone) nanocomposite scaffolds

    CSIR Research Space (South Africa)

    Mkhabela, V

    2015-08-01

    Full Text Available confirmed the elemental composition of the scaffolds. The phase composition of the scaffolds was shown by XRD, which also indicated a decrease in crystallinity with the introduction of nanoclay. Biodegradability studies which were conducted in simulated...

  3. Knowledge scaffolding visualizations: A guiding framework

    Directory of Open Access Journals (Sweden)

    Elitsa Alexander

    2015-06-01

    Full Text Available In this paper we provide a guiding framework for understanding and selecting visual representations in the knowledge management (KM practice. We build on an interdisciplinary analogy between two connotations of the notion of “scaffolding”: physical scaffolding from an architectural-engineering perspective and scaffolding of the “everyday knowing in practice” from a KM perspective. We classify visual structures for knowledge communication in teams into four types of scaffolds: grounded (corresponding e.g., to perspectives diagrams or dynamic facilitation diagrams, suspended (e.g., negotiation sketches, argument maps, panel (e.g., roadmaps or timelines and reinforcing (e.g., concept diagrams. The article concludes with a set of recommendations in the form of questions to ask whenever practitioners are choosing visualizations for specific KM needs. Our recommendations aim at providing a framework at a broad-brush level to aid choosing a suitable visualization template depending on the type of KM endeavour.

  4. Nano/macro porous bioactive glass scaffold

    Science.gov (United States)

    Wang, Shaojie

    Bioactive glass (BG) and ceramics have been widely studied and developed as implants to replace hard tissues of the musculo-skeletal system, such as bones and teeth. Recently, instead of using bulk materials, which usually do not degrade rapidly enough and may remain in the human body for a long time, the idea of bioscaffold for tissue regeneration has generated much interest. An ideal bioscaffold is a porous material that would not only provide a three-dimensional structure for the regeneration of natural tissue, but also degrade gradually and, eventually be replaced by the natural tissue completely. Among various material choices the nano-macro dual porous BG appears as the most promising candidate for bioscaffold applications. Here macropores facilitate tissue growth while nanopores control degradation and enhance cell response. The surface area, which controls the degradation of scaffold can also be tuned by changing the nanopore size. However, fabrication of such 3D structure with desirable nano and macro pores has remained challenging. In this dissertation, sol-gel process combined with spinodal decomposition or polymer sponge replication method has been developed to fabricate the nano-macro porous BG scaffolds. Macropores up to 100microm are created by freezing polymer induced spinodal structure through sol-gel transition, while larger macropores (>200um) of predetermined size are obtained by the polymer sponge replication technique. The size of nanopores, which are inherent to the sol-gel method of glass fabrication, has been tailored using several approaches: Before gel point, small nanopores are generated using acid catalyst that leads to weakly-branched polymer-like network. On the other hand, larger nanopores are created with the base-catalyzed gel with highly-branched cluster-like structure. After the gel point, the nanostructure can be further modified by manipulating the sintering temperature and/or the ammonia concentration used in the solvent

  5. SCAFFOLDING IN CONNECTIVIST MOBILE LEARNING ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Ozlem OZAN

    2013-04-01

    Full Text Available Social networks and mobile technologies are transforming learning ecology. In this changing learning environment, we find a variety of new learner needs. The aim of this study is to investigate how to provide scaffolding to the learners in connectivist mobile learning environment: Ø to learn in a networked environment, Ø to manage their networked learning process, Ø to interact in a networked society, and Ø to use the tools belonging to the network society. The researcher described how Vygotsky's “scaffolding” concept, Berge’s “learner support” strategies, and Siemens’ “connectivism” approach can be used together to satisfy mobile learners’ needs. A connectivist mobile learning environment was designed for the research, and the research was executed as a mixed-method study. Data collection tools were Facebook wall entries, personal messages, chat records; Twitter, Diigo, blog entries; emails, mobile learning management system statistics, perceived learning survey and demographic information survey. Results showed that there were four major aspects of scaffolding in connectivist mobile learning environment as type of it, provider of it, and timing of it and strategies of it. Participants preferred mostly social scaffolding, and then preferred respectively, managerial, instructional and technical scaffolding. Social scaffolding was mostly provided by peers, and managerial scaffolding was mostly provided by instructor. Use of mobile devices increased the learner motivation and interest. Some participants stated that learning was more permanent by using mobile technologies. Social networks and mobile technologies made it easier to manage the learning process and expressed a positive impact on perceived learning.

  6. Novel Spectroscopic and Electrochemical Sensors and Nanoprobes for the Characterization of Food and Biological Antioxidants.

    Science.gov (United States)

    Apak, Reşat; Demirci Çekiç, Sema; Üzer, Ayşem; Çelik, Saliha Esin; Bener, Mustafa; Bekdeşer, Burcu; Can, Ziya; Sağlam, Şener; Önem, Ayşe Nur; Erçağ, Erol

    2018-01-11

    Since an unbalanced excess of reactive oxygen/nitrogen species (ROS/RNS) causes various diseases, determination of antioxidants that can counter oxidative stress is important in food and biological analyses. Optical/electrochemical nanosensors have attracted attention in antioxidant activity (AOA) assessment because of their increased sensitivity and selectivity. Optical sensors offer advantages such as low cost, flexibility, remote control, speed, miniaturization and on-site/in situ analysis. Electrochemical sensors using noble metal nanoparticles on modified electrodes better catalyze bioelectrochemical reactions. We summarize the design principles of colorimetric sensors and nanoprobes for food antioxidants (including electron-transfer based and ROS/RNS scavenging assays) and important milestones contributed by our laboratory. We present novel sensors and nanoprobes together with their mechanisms and analytical performances. Our colorimetric sensors for AOA measurement made use of cupric-neocuproine and ferric-phenanthroline complexes immobilized on a Nafion membrane. We recently designed an optical oxidant/antioxidant sensor using N , N -dimethyl- p -phenylene diamine (DMPD) as probe, from which ROS produced colored DMPD-quinone cationic radicals electrostatically retained on a Nafion membrane. The attenuation of initial color by antioxidants enabled indirect AOA estimation. The surface plasmon resonance absorption of silver nanoparticles as a result of enlargement of citrate-reduced seed particles by antioxidant addition enabled a linear response of AOA. We determined biothiols with Ellman reagent-derivatized gold nanoparticles.

  7. Simulations as Scaffolds in Science Education

    DEFF Research Database (Denmark)

    Renken, Maggie; Peffer, Melanie; Otrel-Cass, Kathrin

    This book outlines key issues for addressing the grand challenges posed to educators, developers, and researchers interested in the intersection of simulations and science education. To achieve this, the authors explore the use of computer simulations as instructional scaffolds that provide...... strategies and support when students are faced with the need to acquire new skills or knowledge. The monograph aims to provide insight into what research has reported on navigating the complex process of inquiry- and problem-based science education and whether computer simulations as instructional scaffolds...

  8. Scaffold Diversity from N-Acyliminium Ions

    DEFF Research Database (Denmark)

    Wu, Peng; Nielsen, Thomas E

    2017-01-01

    N-Acyliminium ions are powerful reactive species for the formation of carbon-carbon and carbon-heteroatom bonds. Strategies relying on intramolecular reactions of N-acyliminium intermediates, also referred to as N-acyliminium ion cyclization reactions, have been employed for the construction...... of structurally diverse scaffolds, ranging from simple bicyclic skeletons to complex polycyclic systems and natural-product-like compounds. This review aims to provide an overview of cyclization reactions of N-acyliminium ions derived from various precursors for the assembly of structurally diverse scaffolds...

  9. Scaffolds of polycaprolactone with hydroxyapatite fibers

    International Nuclear Information System (INIS)

    Cardoso, Guinea B.C.; Zavaglia, Cecilia A.C.; Arruda, Antonio Celso F.

    2009-01-01

    Scaffolds of poly (ε-caprolactone) has been studied in many researches in tissue engineering. The used of hydroxyapatite fibers, allowed increase its resistance mechanical, beside the character bioactive and osteoconductive. Improving, its role in tissue engineering. The aim in this study was developed polycaprolactone matrix with dispersed hydroxyapatite fibers. The characterizations were by scanning electron microscopy (SEM), X- Ray Diffractometer (XRD), X-Ray Fluorescence (XRF) and Energy dispersive X-Ray Detector (EDX). Was able reviewed its composition, morphology and possible contaminations. The results were scaffolds with porosity and distribution of the fibers in all its area. (author)

  10. Bio-functionalized PCL nanofibrous scaffolds for nerve tissue engineering

    International Nuclear Information System (INIS)

    Ghasemi-Mobarakeh, Laleh; Prabhakaran, Molamma P.; Morshed, Mohammad; Nasr-Esfahani, Mohammad Hossein; Ramakrishna, S.

    2010-01-01

    Surface properties of scaffolds such as hydrophilicity and the presence of functional groups on the surface of scaffolds play a key role in cell adhesion, proliferation and migration. Different modification methods for hydrophilicity improvement and introduction of functional groups on the surface of scaffolds have been carried out on synthetic biodegradable polymers, for tissue engineering applications. In this study, alkaline hydrolysis of poly (ε-caprolactone) (PCL) nanofibrous scaffolds was carried out for different time periods (1 h, 4 h and 12 h) to increase the hydrophilicity of the scaffolds. The formation of reactive groups resulting from alkaline hydrolysis provides opportunities for further surface functionalization of PCL nanofibrous scaffolds. Matrigel was attached covalently on the surface of an optimized 4 h hydrolyzed PCL nanofibrous scaffolds and additionally the fabrication of blended PCL/matrigel nanofibrous scaffolds was carried out. Chemical and mechanical characterization of nanofibrous scaffolds were evaluated using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, contact angle, scanning electron microscopy (SEM) and tensile measurement. In vitro cell adhesion and proliferation study was carried out after seeding nerve precursor cells (NPCs) on different scaffolds. Results of cell proliferation assay and SEM studies showed that the covalently functionalized PCL/matrigel nanofibrous scaffolds promote the proliferation and neurite outgrowth of NPCs compared to PCL and hydrolyzed PCL nanofibrous scaffolds, providing suitable substrates for nerve tissue engineering.

  11. Patterns of Scaffolding in Computer-Mediated Collaborative Inquiry

    Science.gov (United States)

    Lakkala, Minna; Muukkonen, Hanni; Hakkarainen, Kai

    2005-01-01

    There is wide agreement on the importance of scaffolding for student learning. Yet, models of individual and face-to-face scaffolding are not necessarily applicable to educational settings in which a group of learners is pursuing a process of inquiry mediated by technology. The scaffolding needed for such a process may be examined from three…

  12. Sensors, Volume 4, Thermal Sensors

    Science.gov (United States)

    Scholz, Jorg; Ricolfi, Teresio

    1996-12-01

    'Sensors' is the first self-contained series to deal with the whole area of sensors. It describes general aspects, technical and physical fundamentals, construction, function, applications and developments of the various types of sensors. This volume describes the construction and applicational aspects of thermal sensors while presenting a rigorous treatment of the underlying physical principles. It provides a unique overview of the various categories of sensors as well as of specific groups, e.g. temperature sensors (resistance thermometers, thermocouples, and radiation thermometers), noise and acoustic thermometers, heat-flow and mass-flow sensors. Specific facettes of applications are presented by specialists from different fields including process control, automotive technology and cryogenics. This volume is an indispensable reference work and text book for both specialists and newcomers, researchers and developers.

  13. Label-free aptamer-based colorimetric detection of mercury ions in aqueous media using unmodified gold nanoparticles as colorimetric probe

    Energy Technology Data Exchange (ETDEWEB)

    Li, Li; Li, Baoxin; Qi, Yingying; Jin, Yan [Shaanxi Normal University, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Materials Science, Xi' an (China)

    2009-04-15

    We report a simple and sensitive aptamer-based colorimetric detection of mercury ions (Hg{sup 2+}) using unmodified gold nanoparticles as colorimetric probe. It is based on the fact that bare gold nanoparticles interact differently with short single-strand DNA and double-stranded DNA. The anti-Hg{sup 2+} aptamer is rich in thymine (T) and readily forms T-Hg{sup 2+}-T configuration in the presence of Hg{sup 2+}. By measuring color change or adsorption ratio, the bare gold nanoparticles can effectively differentiate the Hg{sup 2+}-induced conformational change of the aptamer in the presence of a given salt with high concentration. The assay shows a linear response toward Hg{sup 2+} concentration through a five-decade range of 1 x 10{sup -4} mol L{sup -1} to 1 x 10{sup -9} mol L{sup -1}. Even with the naked eye, we could identify micromolar Hg{sup 2+} concentrations within minutes. By using the spectrometric method, the detection limit was improved to the nanomolar range (0.6 nM). The assay shows excellent selectivity for Hg{sup 2+} over other metal cations including K{sup +}, Ba{sup 2+}, Ni{sup 2+}, Pb{sup 2+}, Cu{sup 2+}, Cd{sup 2+}, Mg{sup 2+}, Ca{sup 2+}, Zn{sup 2+}, Al{sup 3+}, and Fe{sup 3+}. The major advantages of this Hg{sup 2+} assay are its water-solubility, simplicity, low cost, visual colorimetry, and high sensitivity. This method provides a potentially useful tool for the Hg{sup 2+} detection. (orig.)

  14. Fiber-optic sensors for rapid, inexpensive characterization of soil and ground water contamination

    International Nuclear Information System (INIS)

    Milanovich, F.P.; Yow, J.L. Jr.

    1994-08-01

    The extent and complexity of worldwide environmental contamination are great enough that characterization, remediation, and performance monitoring will be extremely costly and lengthy. Characterization techniques that are rapid, inexpensive, and simple and that do not generate waste are urgently needed. Towards this end LLNL is developing a fiber-optic chemical sensor technology for use in groundwater and vadose-zone monitoring. We use a colorimetric detection technique, based on an irreversible chemical reaction between a specific reagent and the target compound. The accuracy and sensitivity of the sensor (<5 ppb by weight in water, determined by comparison with gas chromatographic standard measurements) are sufficient for environmental monitoring of trichloroethylene (TCE) and chloroform

  15. Fluorescent composite scaffolds made of nanodiamonds/polycaprolactone

    Science.gov (United States)

    Cao, Li; Hou, Yanwen; Lafdi, Khalid; Urmey, Kirk

    2015-11-01

    Polycaprolactone (PCL) has been widely studied for biological applications. Biodegradable PCL fibrous scaffold can work as an appropriate substrate for tissue regeneration. In this letter, fluorescent nanodiamonds (FNDs) were prepared after surface passivation with octadecylamine. The FNDs were then mixed with PCL polymer and subsequently electrospun into FNDs/PCL fibrous scaffolds. The obtained scaffolds not only exhibited photoluminescence, but also showed reinforced mechanical strength. Toxicity study indicated FNDs/PCL scaffolds were nontoxic. This biocompatible fluorescent composite fibrous scaffold can support in vitro cell growth and also has the potential to act as an optical probe for tissue engineering application in vitro and in vivo.

  16. Gas Sensor

    KAUST Repository

    Luebke, Ryan

    2015-01-22

    A gas sensor using a metal organic framework material can be fully integrated with related circuitry on a single substrate. In an on-chip application, the gas sensor can result in an area-efficient fully integrated gas sensor solution. In one aspect, a gas sensor can include a first gas sensing region including a first pair of electrodes, and a first gas sensitive material proximate to the first pair of electrodes, wherein the first gas sensitive material includes a first metal organic framework material.

  17. Gas Sensor

    KAUST Repository

    Luebke, Ryan; Eddaoudi, Mohamed; Omran, Hesham; Belmabkhout, Youssef; Shekhah, Osama; Salama, Khaled N.

    2015-01-01

    A gas sensor using a metal organic framework material can be fully integrated with related circuitry on a single substrate. In an on-chip application, the gas sensor can result in an area-efficient fully integrated gas sensor solution. In one aspect, a gas sensor can include a first gas sensing region including a first pair of electrodes, and a first gas sensitive material proximate to the first pair of electrodes, wherein the first gas sensitive material includes a first metal organic framework material.

  18. Sensor web

    Science.gov (United States)

    Delin, Kevin A. (Inventor); Jackson, Shannon P. (Inventor)

    2011-01-01

    A Sensor Web formed of a number of different sensor pods. Each of the sensor pods include a clock which is synchronized with a master clock so that all of the sensor pods in the Web have a synchronized clock. The synchronization is carried out by first using a coarse synchronization which takes less power, and subsequently carrying out a fine synchronization to make a fine sync of all the pods on the Web. After the synchronization, the pods ping their neighbors to determine which pods are listening and responded, and then only listen during time slots corresponding to those pods which respond.

  19. "Scaffolding" through Talk in Groupwork Learning

    Science.gov (United States)

    Panselinas, Giorgos; Komis, Vassilis

    2009-01-01

    In the present study, we develop and deploy a conceptual framework of "scaffolding" in groupwork learning, through the analysis of the pursuit of a learning goal over time. The analysis follows individuals' different experiences of an interaction as well as collective experiences, considering individual attainment as a result of a bi-directional…

  20. Acellular organ scaffolds for tumor tissue engineering

    Science.gov (United States)

    Guller, Anna; Trusova, Inna; Petersen, Elena; Shekhter, Anatoly; Kurkov, Alexander; Qian, Yi; Zvyagin, Andrei

    2015-12-01

    Rationale: Tissue engineering (TE) is an emerging alternative approach to create models of human malignant tumors for experimental oncology, personalized medicine and drug discovery studies. Being the bottom-up strategy, TE provides an opportunity to control and explore the role of every component of the model system, including cellular populations, supportive scaffolds and signalling molecules. Objectives: As an initial step to create a new ex vivo TE model of cancer, we optimized protocols to obtain organ-specific acellular matrices and evaluated their potential as TE scaffolds for culture of normal and tumor cells. Methods and results: Effective decellularization of animals' kidneys, ureter, lungs, heart, and liver has been achieved by detergent-based processing. The obtained scaffolds demonstrated biocompatibility and growthsupporting potential in combination with normal (Vero, MDCK) and tumor cell lines (C26, B16). Acellular scaffolds and TE constructs have been characterized and compared with morphological methods. Conclusions: The proposed methodology allows creation of sustainable 3D tumor TE constructs to explore the role of organ-specific cell-matrix interaction in tumorigenesis.

  1. Teacher Scaffolding of Oral Language Production

    Science.gov (United States)

    George, May G.

    2011-01-01

    This research involved two observational studies. It explored the scaffolding processes as part of classroom pedagogy. The research shed light on the way a teacher's instructional methodology took shape in the classroom. The target event for this study was the time in which a novice learner was engaged publicly in uttering a sentence in Arabic in…

  2. Membrane supported scaffold architectures for tissue engineering

    NARCIS (Netherlands)

    Bettahalli Narasimha, M.S.

    2011-01-01

    Tissue engineering aims at restoring or regenerating a damaged tissue. Often the tissue recreation occurs by combining cells, derived from a patient biopsy, onto a 3D porous matrix, functioning as a scaffold. One of the current limitations of tissue engineering is the inability to provide sufficient

  3. Communication Scaffolds for Project Management in PBL

    Science.gov (United States)

    Sasaki, Shigeru; Arai, Masayuki; Takai, Kumiko; Ogawa, Mitsuhiro; Watanabe, Hiroyoshi

    2017-01-01

    In this study, the role-playing situation and the system requirement list are adopted into project-based learning classes to develop web applications. In the classes, the third-year undergraduate project managers communicate with the client of the project rolled by teachers on the Web bulletin board. These are expected to act as scaffolds to…

  4. Polylactic acid organogel as versatile scaffolding technique

    NARCIS (Netherlands)

    Punet, Xavier; Levato, Riccardo; Bataille, Isabelle; Letourneur, Didier; Engel, Elisabeth; Mateos-Timoneda, Miguel A

    2017-01-01

    Tissue engineering requires scaffolding techniques based on non-toxic processes that permits the fabrication of constructs with tailored properties. Here, a two-step methodology based on the gelation and precipitation of the poly(lactic) acid/ethyl lactate organogel system is presented. With this

  5. Comparison of TALEN scaffolds in Xenopus tropicalis

    Directory of Open Access Journals (Sweden)

    Keisuke Nakajima

    2013-11-01

    Transcription activator-like effector nucleases (TALENs are facile and potent tools used to modify a gene of interest for targeted gene knockout. TALENs consist of an N-terminal domain, a DNA-binding domain, and a C-terminal domain, which are derived from a transcription activator-like effector, and the non-specific nuclease domain of FokI. Using Xenopus tropicalis (X. tropicalis, we compared the toxicities and somatic mutation activities of four TALEN architectures in a side-by-side manner: a basic TALEN, a scaffold with the same truncated N- and C-terminal domains as GoldyTALEN, a scaffold with the truncated N- and C-terminal domains and an obligate heterodimeric nuclease domain, and a scaffold with the truncated N- and C-terminal domains and an obligate heterodimeric Sharkey nuclease domain. The strongest phenotype and targeted somatic gene mutation were induced by the injection of TALEN mRNAs containing the truncated N- and C-terminal domains and an obligate heterodimeric nuclease domain. The obligate heterodimeric TALENs exhibited reduced toxicity compared to the homodimeric TALENs, and the homodimeric GoldyTALEN-type scaffold showed both a high activity of somatic gene modification and high toxicity. The Sharkey mutation in the heterodimeric nuclease domain reduced the TALEN-mediated somatic mutagenesis.

  6. Enhancing Student Learning through Scaffolded Client Projects

    Science.gov (United States)

    Tomlinson, Elizabeth

    2017-01-01

    This article reports on the current status of client projects (CPs) in business communication courses, provides a scaffolded model for implementing CP, and assesses student learning in CPs. Using a longitudinal mixed method research design, survey data and qualitative materials from six semesters are presented. The instructor survey indicated need…

  7. Muscle fragments on a scaffold in rats

    DEFF Research Database (Denmark)

    Jangö, Hanna; Gräs, Søren; Christensen, Lise

    2015-01-01

    -PLGA scaffolds seeded with autologous MFF affected some histological and biomechanical properties of native tissue repair in an abdominal wall defect model in rats. The method thus appears to be a simple tissue engineering concept with potential relevance for native tissue repair of POP....

  8. Biodegradable elastomeric scaffolds for soft tissue engineering

    NARCIS (Netherlands)

    Pêgo, A.P.; Poot, Andreas A.; Grijpma, Dirk W.; Feijen, Jan

    2003-01-01

    Elastomeric copolymers of 1,3-trimethylene carbonate (TMC) and ε-caprolactone (CL) and copolymers of TMC and D,L-lactide (DLLA) have been evaluated as candidate materials for the preparation of biodegradable scaffolds for soft tissue engineering. TMC-DLLA copolymers are amorphous and degrade more

  9. Peer scaffolding in an EFL writing classroom: An investigation of writing accuracy and scaffolding behaviors

    Directory of Open Access Journals (Sweden)

    Parastou Gholami Pasand

    2017-09-01

    Full Text Available Considering the tenets of Sociocultural Theory with its emphasis on co-construction of knowledge, L2 writing can be regarded as a co-writing practice whereby assistance is provided to struggling writers. To date, most studies have dealt with peer scaffolding in the revision phase of writing, as such planning and drafting are remained untouched. The present study examines the impact of peer scaffolding on writing accuracy of a group of intermediate EFL learners, and explores scaffolding behaviors employed by them in planning and drafting phases of writing. To these ends, 40 freshmen majoring in English Language and Literature in the University of Guilan were randomly divided into a control group and an experimental group consisting of dyads in which a competent writer provided scaffolding to a less competent one using the process approach to writing. Results of independent samples t-tests revealed that learners in the experimental group produced more accurate essays. Microgenetic analysis of one dyad’s talks showed that scaffolding behaviors used in planning and drafting phases of writing were more or less the same as those identified in the revision phase. These findings can be used to inform peer intervention in L2 writing classes, and assist L2 learners in conducting successful peer scaffolding in the planning and drafting phases of writing.

  10. A rapid colorimetric screening method for vanillic acid and vanillin-producing bacterial strains.

    Science.gov (United States)

    Zamzuri, N A; Abd-Aziz, S; Rahim, R A; Phang, L Y; Alitheen, N B; Maeda, T

    2014-04-01

    To isolate a bacterial strain capable of biotransforming ferulic acid, a major component of lignin, into vanillin and vanillic acid by a rapid colorimetric screening method. For the production of vanillin, a natural aroma compound, we attempted to isolate a potential strain using a simple screening method based on pH change resulting from the degradation of ferulic acid. The strain Pseudomonas sp. AZ10 UPM exhibited a significant result because of colour changes observed on the assay plate on day 1 with a high intensity of yellow colour. The biotransformation of ferulic acid into vanillic acid by the AZ10 strain provided the yield (Yp/s ) and productivity (Pr ) of 1·08 mg mg(-1) and 53·1 mg L(-1) h(-1) , respectively. In fact, new investigations regarding lignin degradation revealed that the strain was not able to produce vanillin and vanillic acid directly from lignin; however, partially digested lignin by mixed enzymatic treatment allowed the strain to produce 30·7 mg l(-1) and 1·94 mg l(-1) of vanillic acid and biovanillin, respectively. (i) The rapid colorimetric screening method allowed the isolation of a biovanillin producer using ferulic acid as the sole carbon source. (ii) Enzymatic treatment partially digested lignin, which could then be utilized by the strain to produce biovanillin and vanillic acid. To the best of our knowledge, this is the first study reporting the use of a rapid colorimetric screening method for bacterial strains producing vanillin and vanillic acid from ferulic acid. © 2013 The Society for Applied Microbiology.

  11. Silver nanoplates-based colorimetric iodide recognition and sensing using sodium thiosulfate as a sensitizer

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Xinyan; Chen, Shu, E-mail: chenshumail@gmail.com; Tang, Jian; Xiong, Yuan; Long, Yunfei, E-mail: l_yunfei927@163.com

    2014-05-01

    Highlights: • A new colorimetric iodide detection strategy based on triangular Ag nanoplate. • Sodium thiosulfate performed as a sensitizer. • Formation of insoluble AgI on the surface of Ag nanoplate. • This method has the advantages of good selectivity and high sensitivity. Abstract: A colorimetric method for the recognition and sensing of iodide ions (I⁻) has been developed by utilizing the reactions between triangular silver nanoplates (TAg-NPs) and I⁻ in the presence of sodium thiosulfate (Na₂S₂O₃). Specifically, I⁻ together with Na₂S₂O₃ can induce protection of TAg-NPs owing to the formation of insoluble AgI, as confirmed by the high-resolution transmission electron microscopy (HRTEM). In the absence of Na₂S₂O₃, the etching reactions on TAg-NPs were observed not only by I⁻ but also other halides ions. The Na₂S₂O₃ plays as a sensitizer in this system, which improved the selectivity and sensitivity. The desired colorimetric detection can be achieved by measuring the change of the absorption peak wavelength corresponding to localized surface plasmon resonance (LSPR) with UV–vis spectrophotometer or recognized by naked eye observation. The results show that the shift of the maximum absorption wavelength (Δλ) of the TAg-NPs/Na₂S₂O₃/I⁻ mixture was proportional to the concentration of I⁻ in the range 1.0 × 10⁻⁹–1.0 × 10⁻⁶ mol L⁻¹. Moreover, no other ions besides I⁻ can induce an eye discernible color change as low as 1.0 × 10⁻⁷ mol L⁻¹. Finally, this method was successfully applied for I⁻ determination in kelp samples.

  12. Evaluation of tetrazolium-based semiautomatic colorimetric assay for measurement of human antitumor cytotoxicity

    International Nuclear Information System (INIS)

    Heo, D.S.; Park, J.G.; Hata, K.; Day, R.; Herberman, R.B.; Whiteside, T.L.

    1990-01-01

    A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)-based colorimetric assay was developed and compared with 51Cr release from different adherent tumor cell targets (human squamous cell carcinoma lines of the head and neck established in our laboratory, melanoma, and colorectal carcinoma) using 5-7-day human lymphokine-activated killer cells and monocyte-depleted peripheral blood lymphocytes as effectors. With adherent tumor cell targets, MTT colorimetry was more sensitive than the 51Cr release assay in measuring the antitumor activity of effectors: median, 4385 (range, 988-8144) versus median, 1061 (range, 582-7294) lytic units (the number of effector cells required to lyse 20% of 5 x 10(3) targets)/10(7) effectors (P less than 0.01). Background effects (without effector cells) were comparable in 4-h assays (9% versus 10%) between MTT colorimetry and 51Cr release. In 24-h assays, MTT colorimetry showed higher antitumor activity (70-100% versus 40-60% lysis at 1:1 effector:target cell ratio) but lower background effects (6% versus 38%) than 51Cr release assay. Thus, MTT colorimetry was more sensitive, did not use radiolabeled targets, required fewer effector cells, and was easier, less expensive, and better adaptable to serial monitoring of effector cell function in cancer patients. This colorimetric assay is especially well suited to adherent tumor cell targets. The use of adherent tumor cell monolayers, as opposed to trypsinized single cell suspensions, provides an opportunity to measure interactions of effector cells with enzymatically unaltered solid tumor targets. Because of the greater sensitivity of the colorimetric assay, the transformation of MTT data into lytic units, as commonly used for 51Cr release assays, required an adjustment to avoid the extrapolation based on the exponential fit equation

  13. Fabrication and Mechanical Characterization of Hydrogel Infused Network Silk Scaffolds

    Directory of Open Access Journals (Sweden)

    Lakshminath Kundanati

    2016-09-01

    Full Text Available Development and characterization of porous scaffolds for tissue engineering and regenerative medicine is of great importance. In recent times, silk scaffolds were developed and successfully tested in tissue engineering and drug release applications. We developed a novel composite scaffold by mechanical infusion of silk hydrogel matrix into a highly porous network silk scaffold. The mechanical behaviour of these scaffolds was thoroughly examined for their possible use in load bearing applications. Firstly, unconfined compression experiments show that the denser composite scaffolds displayed significant enhancement in the elastic modulus as compared to either of the components. This effect was examined and further explained with the help of foam mechanics principles. Secondly, results from confined compression experiments that resemble loading of cartilage in confinement, showed nonlinear material responses for all scaffolds. Finally, the confined creep experiments were performed to calculate the hydraulic permeability of the scaffolds using soil mechanics principles. Our results show that composite scaffolds with some modifications can be a potential candidate for use of cartilage like applications. We hope such approaches help in developing novel scaffolds for tissue engineering by providing an understanding of the mechanics and can further be used to develop graded scaffolds by targeted infusion in specific regions.

  14. Automatic colorimetric determination of low concentrations of sulphate for measuring sulphur dioxide in ambient air

    Energy Technology Data Exchange (ETDEWEB)

    Persson, G A

    1966-01-01

    An automatic colorimetric method for the determination of low concentrations of sulphate (0-10 microgram/ml) using the thoron indicator is described. Total amounts of sulphate as small as 0.3 micrograms can be determined. The sulphate is precipitated with barium perchlorate and the excess of barium is indicated with 1-(o-arsenophenylazo)-2-naphthol-3-6-disulfonic acid(thoron). The procedure is worked out primarily for the determination of sulphur dioxide in air after absorption in diluted hydrogen peroxide.

  15. Colorimetric determination of the fluoride ion - application to uranium metal and to uranous fluoride

    International Nuclear Information System (INIS)

    Hering, H.; Hure, J.; Legrand, S.

    1949-12-01

    In the determination described for fluoride in U metal, the U is brought into H 2 SO 4 solution by anodic oxidation, the fluo-silicic acid is distilled by entrainment in water vapor, and the F ion is determined in the distillate by using the fact that it complexes Zr and thus prevents the formation of the Zr-alizarin S lake. For F ion in UF 4 , the compound is dissolved in a Na 2 CO 3 -H 2 O 2 mixture, and F is determined in the solution by the colorimetric method described. (author)

  16. Preparation of bioactive porous HA/PCL composite scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, J.; Guo, L.Y.; Yang, X.B. [Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Weng, J. [Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China)], E-mail: jweng@swjtu.cn

    2008-12-30

    Porous hydroxyapatite (HA) bioceramic scaffold has been widely attracted the attention to act as a three-dimensional (3D) template for cell adhesion, proliferation, differentiation and thus promoting bone and cartilage regeneration because of its osteoinduction. However, the porous bioceramic scaffold is fragile so that it is not suitable to be applied in clinic for bone repair or replacement. Therefore, it is significant to improve the mechanical property of porous HA bioceramics while the interconnected structure is maintained for tissue ingrowth in vivo. In the present research, a porous composite scaffold composed of HA scaffold and polycaprolactone (PCL) lining was fabricated by the method of polymer impregnating to produce HA scaffold coated with PCL lining. Subsequently, the composite scaffolds were deposited with biomimetic coating for improving the bioactivity. The HA/PCL composite scaffolds with improved mechanical property and bioactivity is expected to be a promising bone substitute in tissue engineering applications.

  17. Scaffold diversification enhances effectiveness of a superlibrary of hyperthermophilic proteins.

    Science.gov (United States)

    Hussain, Mahmud; Gera, Nimish; Hill, Andrew B; Rao, Balaji M

    2013-01-18

    The use of binding proteins from non-immunoglobulin scaffolds has become increasingly common in biotechnology and medicine. Typically, binders are isolated from a combinatorial library generated by mutating a single scaffold protein. In contrast, here we generated a "superlibrary" or "library-of-libraries" of 4 × 10(8) protein variants by mutagenesis of seven different hyperthermophilic proteins; six of the seven proteins have not been used as scaffolds prior to this study. Binding proteins for five different model targets were successfully isolated from this library. Binders obtained were derived from five out of the seven scaffolds. Strikingly, binders from this modestly sized superlibrary have affinities comparable or higher than those obtained from a library with 1000-fold higher sequence diversity but derived from a single stable scaffold. Thus scaffold diversification, i.e., randomization of multiple different scaffolds, is a powerful alternate strategy for combinatorial library construction.

  18. Polyelectrolyte-complex nanostructured fibrous scaffolds for tissue engineering

    International Nuclear Information System (INIS)

    Verma, Devendra; Katti, Kalpana S.; Katti, Dinesh R.

    2009-01-01

    In the current work, polyelectrolyte complex (PEC) fibrous scaffolds for tissue engineering have been synthesized and a mechanism of their formation has been investigated. The scaffolds are synthesized using polygalacturonic acid and chitosan using the freeze drying methodology. Highly interconnected pores of sizes in the range of 5-20 μm are observed in the scaffolds. The thickness of the fibers was found to be in the range of 1-2 μm. Individual fibers have a nanogranular structure as observed using AFM imaging. In these scaffolds, PEC nanoparticles assemble together at the interface of ice crystals during freeze drying process. Further investigation shows that the freezing temperature and concentration have a remarkable effect on structure of scaffolds. Biocompatibility studies show that scaffold containing chitosan, polygalacturonic acid and hydroxyapatite promotes cell adhesion and proliferation. On the other hand, cells on scaffolds fabricated without hydroxyapatite nanoparticles showed poor adhesion.

  19. Synergistic Effect of Carbon Nanotubes and Graphene on Diopside Scaffolds.

    Science.gov (United States)

    Liu, Tingting; Wu, Ping; Gao, Chengde; Feng, Pei; Xiao, Tao; Deng, Youwen; Shuai, Cijun; Peng, Shuping

    2016-01-01

    A synergetic effect between carbon nanotubes (CNTs) and graphene on diopside (Di) scaffolds was demonstrated. 3D network architecture in the matrix was formed through the 1D CNTs inlaid among the 2D graphene platelets (GNPs). The mechanical properties of the CNTs/GNPs/Di scaffolds were significantly improved compared with the CNTs/Di scaffolds and GNPs/Di scaffolds. In addition, the scaffolds exhibited excellent apatite-forming ability, a modest degradation rate, and stable mechanical properties in simulated body fluid (SBF). Moreover, cell culturing tests indicated that the scaffolds supported the cells attachment and proliferation. Taken together, the CNTs/GNPs/Di scaffolds offered great potential for bone tissue engineering.

  20. Preparation of bioactive porous HA/PCL composite scaffolds

    International Nuclear Information System (INIS)

    Zhao, J.; Guo, L.Y.; Yang, X.B.; Weng, J.

    2008-01-01

    Porous hydroxyapatite (HA) bioceramic scaffold has been widely attracted the attention to act as a three-dimensional (3D) template for cell adhesion, proliferation, differentiation and thus promoting bone and cartilage regeneration because of its osteoinduction. However, the porous bioceramic scaffold is fragile so that it is not suitable to be applied in clinic for bone repair or replacement. Therefore, it is significant to improve the mechanical property of porous HA bioceramics while the interconnected structure is maintained for tissue ingrowth in vivo. In the present research, a porous composite scaffold composed of HA scaffold and polycaprolactone (PCL) lining was fabricated by the method of polymer impregnating to produce HA scaffold coated with PCL lining. Subsequently, the composite scaffolds were deposited with biomimetic coating for improving the bioactivity. The HA/PCL composite scaffolds with improved mechanical property and bioactivity is expected to be a promising bone substitute in tissue engineering applications

  1. A gold nanoparticles-based colorimetric test to detect single nucleotide polymorphisms for improvement of personalized therapy of psoriasis

    Science.gov (United States)

    Marsella, Alessandra; Valentini, Paola; Tarantino, Paolo; Congedo, Maurizio; Pompa, Pier Paolo

    2016-04-01

    We report a simple, rapid and low-cost test, based on gold nanoparticles, for the naked-eye colorimetric detection of a signature of single nucleotide polymorphisms (SNPs) relevant for the personalized medicine of psoriasis patients. We validated the colorimetric assay on real-world DNA samples from a cohort of 30 psoriasis patients and we compared the results, in double-blind, with those obtained with two state-of-the-art instrumental techniques, namely reverse dot blotting and direct sequencing, finding 100% agreement. We demonstrated high accuracy, sensitivity and specificity of the colorimetric test that can be easily adapted for the genotypization of different SNPs, important for the pharmacogenomics of various diseases, and in other fields, such as food traceability and population structure analysis.

  2. A colorimetric method for highly sensitive and accurate detection of iodide by finding the critical color in a color change process using silver triangular nanoplates

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiu-Hua; Ling, Jian, E-mail: lingjian@ynu.edu.cn; Peng, Jun; Cao, Qiu-E., E-mail: qecao@ynu.edu.cn; Ding, Zhong-Tao; Bian, Long-Chun

    2013-10-10

    Graphical abstract: -- Highlights: •Demonstrated a new colorimetric strategy for iodide detection by silver nanoplates. •The colorimetric strategy is to find the critical color in a color change process. •The colorimetric strategy is more accurate and sensitive than common colorimetry. •Discovered a new morphological transformation phenomenon of silver nanoplates. -- Abstract: In this contribution, we demonstrated a novel colorimetric method for highly sensitive and accurate detection of iodide using citrate-stabilized silver triangular nanoplates (silver TNPs). Very lower concentration of iodide can induce an appreciable color change of silver TNPs solution from blue to yellow by fusing of silver TNPs to nanoparticles, as confirmed by UV–vis absorption spectroscopy and transmission electron microscopy (TEM). The principle of this colorimetric assay is not an ordinary colorimetry, but a new colorimetric strategy by finding the critical color in a color change process. With this strategy, 0.1 μM of iodide can be recognized within 30 min by naked-eyes observation, and lower concentration of iodide down to 8.8 nM can be detected using a spectrophotometer. Furthermore, this high sensitive colorimetric assay has good accuracy, stability and reproducibility comparing with other ordinary colorimetry. We believe this new colorimetric method will open up a fresh insight of simple, rapid and reliable detection of iodide and can find its future application in the biochemical analysis or clinical diagnosis.

  3. A colorimetric method for highly sensitive and accurate detection of iodide by finding the critical color in a color change process using silver triangular nanoplates

    International Nuclear Information System (INIS)

    Yang, Xiu-Hua; Ling, Jian; Peng, Jun; Cao, Qiu-E.; Ding, Zhong-Tao; Bian, Long-Chun

    2013-01-01

    Graphical abstract: -- Highlights: •Demonstrated a new colorimetric strategy for iodide detection by silver nanoplates. •The colorimetric strategy is to find the critical color in a color change process. •The colorimetric strategy is more accurate and sensitive than common colorimetry. •Discovered a new morphological transformation phenomenon of silver nanoplates. -- Abstract: In this contribution, we demonstrated a novel colorimetric method for highly sensitive and accurate detection of iodide using citrate-stabilized silver triangular nanoplates (silver TNPs). Very lower concentration of iodide can induce an appreciable color change of silver TNPs solution from blue to yellow by fusing of silver TNPs to nanoparticles, as confirmed by UV–vis absorption spectroscopy and transmission electron microscopy (TEM). The principle of this colorimetric assay is not an ordinary colorimetry, but a new colorimetric strategy by finding the critical color in a color change process. With this strategy, 0.1 μM of iodide can be recognized within 30 min by naked-eyes observation, and lower concentration of iodide down to 8.8 nM can be detected using a spectrophotometer. Furthermore, this high sensitive colorimetric assay has good accuracy, stability and reproducibility comparing with other ordinary colorimetry. We believe this new colorimetric method will open up a fresh insight of simple, rapid and reliable detection of iodide and can find its future application in the biochemical analysis or clinical diagnosis

  4. Colorimetric end-tidal CO2 detector for verification of endotracheal tube placement in out-of-hospital cardiac arrest.

    Science.gov (United States)

    Hayden, S R; Sciammarella, J; Viccellio, P; Thode, H; Delagi, R

    1995-06-01

    To evaluate the ability of a disposable, colorimetric end-tidal CO2 detector to verify proper endotracheal (ET) tube placement in out-of-hospital cardiac arrest, and to correlate semiquantitative CO2 measurements with the rate of return of spontaneous circulation (ROSC). Prospective, observational study using a convenience sample of intubated out-of-hospital cardiac arrest patients. A disposable, colorimetric end-tidal CO2 detector was attached to the ET tube after intubation. In the absence of a colorimetric change, the paramedics reassessed the tube placement and could reintubate the patient. Tube placement was verified at the hospital. Paramedics were instructed to contact the base station and report the colorimetric change upon hospital arrival. ROSC was defined as restoration of a self-sustaining pulse until hospital arrival. Between December 1990 and May 1993, ET tubes were placed in 566 victims of out-of-hospital cardiac arrest. 541 of the 566 intubations (95.6%) were associated with a color change. In one case with a color change and out-of-hospital clinical evidence of proper tube placement, the tube was determined to be in the esophagus at the hospital. Correct placement of the remaining 565 of 566 (99.8%) tubes was verified. Of the 566 patients who had a colorimetric change, 91 (16%) had ROSC vs one of 25 (4%) patients who did not have a color change. In one subgroup (n = 179), the degree of color change was highly associated with ROSC (p = 0.004). A disposable, colorimetric end-tidal CO2 detector appears reliable in verifying proper ET tube placement in victims of out-of-hospital cardiac arrest. The degree of color change correlates with the probability of ROSC.

  5. Chemical sensors

    International Nuclear Information System (INIS)

    Hubbard, C.W.; Gordon, R.L.

    1987-05-01

    The revolution in analytical chemistry promised by recent developments in the field of chemical sensors has potential for significant positive impact on both research and production activities conducted by and for the Department of Energy. Analyses which were, in the past, performed only with a roomful of expensive equipment can now be performed with miniature solid-state electronic devices or small optical probes. Progress in the development of chemical sensors has been rapid, and the field is currently growing at a great rate. In accordance, Pacific Northwest Laboratory initiated a survey of recent literature so that contributors to active programs in research on analytical methods could be made aware of principles and applications of this new technology. This report presents the results of that survey. The sensors discussed here are divided into three types: micro solid-state devices, optical sensors, and piezoelectric crystal devices. The report is divided into three corresponding sections. The first section, ''Micro Solid-State Devices,'' discusses the design, operation, and application of electronic sensors that are produced in much the same way as standard solid-state electronic devices. The second section, ''Optrodes,'' covers the design and operation of chemical sensors that use fiber optics to detect chemically induced changes in optical properties. The final section, ''Piezoelectric Crystal Detectors,'' discusses two types of chemical sensors that depend on the changes in the properties of an oscillating piezoelectric crystal to detect the presence of certain materials. Advantages and disadvantages of each type of sensor are summarized in each section

  6. Use of Interim Scaffolding and Neotissue Development to Produce a Scaffold-Free Living Hyaline Cartilage Graft.

    Science.gov (United States)

    Lau, Ting Ting; Leong, Wenyan; Peck, Yvonne; Su, Kai; Wang, Dong-An

    2015-01-01

    The fabrication of three-dimensional (3D) constructs relies heavily on the use of biomaterial-based scaffolds. These are required as mechanical supports as well as to translate two-dimensional cultures to 3D cultures for clinical applications. Regardless of the choice of scaffold, timely degradation of scaffolds is difficult to achieve and undegraded scaffold material can lead to interference in further tissue development or morphogenesis. In cartilage tissue engineering, hydrogel is the highly preferred scaffold material as it shares many similar characteristics with native cartilaginous matrix. Hence, we employed gelatin microspheres as porogens to create a microcavitary alginate hydrogel as an interim scaffold to facilitate initial chondrocyte 3D culture and to establish a final scaffold-free living hyaline cartilaginous graft (LhCG) for cartilage tissue engineering.

  7. Highly defined 3D printed chitosan scaffolds featuring improved cell growth.

    Science.gov (United States)

    Elviri, Lisa; Foresti, Ruben; Bergonzi, Carlo; Zimetti, Francesca; Marchi, Cinzia; Bianchera, Annalisa; Bernini, Franco; Silvestri, Marco; Bettini, Ruggero

    2017-07-12

    The augmented demand for medical devices devoted to tissue regeneration and possessing a controlled micro-architecture means there is a need for industrial scale-up in the production of hydrogels. A new 3D printing technique was applied to the automation of a freeze-gelation method for the preparation of chitosan scaffolds with controlled porosity. For this aim, a dedicated 3D printer was built in-house: a preliminary effort has been necessary to explore the printing parameter space to optimize the printing results in terms of geometry, tolerances and mechanical properties of the product. Analysed parameters included viscosity of the starting chitosan solution, which was measured with a Brookfield viscometer, and temperature of deposition, which was determined by filming the process with a cryocooled sensor thermal camera. Optimized parameters were applied to the production of scaffolds from solutions of chitosan alone or with the addition of raffinose as a viscosity modifier. Resulting hydrogels were characterized in terms of morphology and porosity. In vitro cell culture studies comparing 3D printed scaffolds with their homologous produced by solution casting evidenced an improvement in biocompatibility deriving from the production technique as well as from the solid state modification of chitosan stemming from the addition of the viscosity modifier.

  8. Paper-based assay of antioxidant activity using analyte-mediated on-paper nucleation of gold nanoparticles as colorimetric probes.

    Science.gov (United States)

    Choleva, Tatiana G; Kappi, Foteini A; Giokas, Dimosthenis L; Vlessidis, Athanasios G

    2015-02-20

    With the increasing interest in the health benefits arising from the consumption of dietary products rich in antioxidants, there exists a clear demand for easy-to-use and cost-effective tests that can be used for the identification of the antioxidant power of food products. Paper-based analytical devices constitute a remarkable platform for such expedient and low-cost assays with minimal external resources but efforts in this direction are still scarce. In this work we introduce a new paper-based device in the form of a sensor patch that enables the determination of antioxidant activity through analyte-driven on-paper formation of gold nanoparticles. The principle of detection capitalizes, for the first time, on the on-paper nucleation of gold ions to its respective nanoparticles, upon reduction by antioxidant compounds present in an aqueous sample. The ensuing chromatic transitions, induced on the paper surface, are used as an optical "signature" of the antioxidant strength of the solution. The response of the paper-based sensor was evaluated against a large variety of antioxidant species and the respective dose response curves were constructed. On the basis of these data, the contribution of each species according to its chemical structure was elucidated. For the analysis of real samples, a concentration-dependent colorimetric response was established against Gallic acid equivalents over a linear range of 10 μM-1.0 mM, with detection limits at the low and ultra-low μM levels (i.e. <1.0 μM) and satisfactory precision (RSD=3.6-12.6%). The sensor has been tested for the assessment of antioxidant activity in real samples (teas and wines) and the results correlated well with commonly used antioxidant detection methods. Importantly, the sensor performed favorably for long periods of time when stored at moisture-free and low temperature conditions without losing its activity thus posing as an attractive alternative to the assessment of antioxidant activity without

  9. Polycaprolactone nanofiber interspersed collagen type-I scaffold for bone regeneration: a unique injectable osteogenic scaffold

    International Nuclear Information System (INIS)

    Baylan, Nuray; Ditto, Maggie; Lawrence, Joseph G; Yildirim-Ayan, Eda; Bhat, Samerna; Lecka-Czernik, Beata

    2013-01-01

    There is an increasing demand for an injectable cell coupled three-dimensional (3D) scaffold to be used as bone fracture augmentation material. To address this demand, a novel injectable osteogenic scaffold called PN-COL was developed using cells, a natural polymer (collagen type-I), and a synthetic polymer (polycaprolactone (PCL)). The injectable nanofibrous PN-COL is created by interspersing PCL nanofibers within pre-osteoblast cell embedded collagen type-I. This simple yet novel and powerful approach provides a great benefit as an injectable bone scaffold over other non-living bone fracture stabilization polymers, such as polymethylmethacrylate and calcium content resin-based materials. The advantages of injectability and the biomimicry of collagen was coupled with the structural support of PCL nanofibers, to create cell encapsulated injectable 3D bone scaffolds with intricate porous internal architecture and high osteoconductivity. The effects of PCL nanofiber inclusion within the cell encapsulated collagen matrix has been evaluated for scaffold size retention and osteocompatibility, as well as for MC3T3-E1 cells osteogenic activity. The structural analysis of novel bioactive material proved that the material is chemically stable enough in an aqueous solution for an extended period of time without using crosslinking reagents, but it is also viscous enough to be injected through a syringe needle. Data from long-term in vitro proliferation and differentiation data suggests that novel PN-COL scaffolds promote the osteoblast proliferation, phenotype expression, and formation of mineralized matrix. This study demonstrates for the first time the feasibility of creating a structurally competent, injectable, cell embedded bone tissue scaffold. Furthermore, the results demonstrate the advantages of mimicking the hierarchical architecture of native bone with nano- and micro-size formation through introducing PCL nanofibers within macron-size collagen fibers and in

  10. UV-vis spectral property of a multi-hydroxyl Schiff-base derivative and its colorimetric response to some special metal ions.

    Science.gov (United States)

    Xing, Lin; Zheng, Xiaoyu; Sun, Wenyu; Yuan, Hua; Hu, Lei; Yan, Zhengquan

    2018-06-05

    A multi-hydroxyl Schiff-base derivative, N-2'-hydroxyl-1'-naphthyl methylene-2-amino phenol (HNMAP), was synthesized and characterized by FTIR, 1 H NMR and UV-vis spectroscopy. It was noted to find there was great effect for solvent and pH on the UV-vis spectroscopy of HNMAP. Especially, some metal ions could make its UV-vis spectra changed regularly with different time-resolved effects. For example, a real-time and multi-wavelength response to Fe 2+ at 520 nm, 466 nm and 447 nm and a quite slow one about 26 min to Fe 3+ at 447 nm and 466 nm, respectively. Under the optimized conditions, the changes in the corresponding absorption intensities at above wavelengths were in proportion to c Fe 2+ or c Fe 3+ during respectively partitioned linear ranges, which realized to quantitatively detect Fe 2+ or Fe 3+ with a large linear range more than two orders of magnitude. A 1:1 complex mode for HNMAP-Fe 2+ and 1:2 for HNMAP-Fe 3+ were proposed from UV-vis spectral titration and Job's plot. HNMAP would be a potential sensor for colorimetric detection of Fe 2+ and Fe 3+ in practice. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Optical Sensors for Detection of Amino Acids.

    Science.gov (United States)

    Pettiwala, Aafrin M; Singh, Prabhat K

    2017-11-06

    Amino acids are crucially involved in a myriad of biological processes. Any aberrant changes in physiological level of amino acids often manifest in common metabolic disorders, serious neurological conditions and cardiovascular diseases. Thus, devising methods for detection of trace amounts of amino acids becomes highly elemental to their efficient clinical diagnosis. Recently, the domain of developing optical sensors for detection of amino acids has witnessed significant activity which is the focus of the current review article. We undertook a detailed search of the peer-reviewed literature that primarily deals with optical sensors for amino acids and focuses on the use of different type of materials as a sensing platform. Ninety-five papers have been included in the review, majority of which deals with optical sensors. We attempt to systematically classify these contributions based on applications of various chemical and biological scaffolds such as polymers, supramolecular assemblies, nanoparticles, DNA, heparin etc. for the sensing of amino acids. This review identifies that supramolecular assemblies and nanomaterial continue to be commonly used materials to devise sensors for amino acids followed by surfactant assemblies. The broad implications of amino acids in human health and diagnosis have stirred a lot of interest to develop optimized optical detection systems for amino acids in recent years, using different materials based on chemical and biological scaffolds. We have also attempted to highlight the merits and demerits of some of the noteworthy sensor systems to instigate further efforts for constructing amino acids sensor based on unconventional concepts. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Aptamer-mediated colorimetric method for rapid and sensitive detection of chloramphenicol in food.

    Science.gov (United States)

    Yan, Chao; Zhang, Jing; Yao, Li; Xue, Feng; Lu, Jianfeng; Li, Baoguang; Chen, Wei

    2018-09-15

    We report an aptamer-mediated colorimetric method for sensitive detection of chloramphenicol (CAP). The aptamer of CAP is immobilized by the hybridization with pre-immobilized capture probe in the microtiter plate. The horseradish peroxidase (HRP) is covalently attached to the aptamer by the biotin-streptavidin system for signal production. CAP will preferably bind with aptamer due to the high binding affinity, which attributes to the release of aptamer and HRP and thus, affects the optical signal intensity. Quantitative determination of CAP is successfully achieved in the wide range from 0.001 to 1000 ng/mL with detection limit of 0.0031 ng/mL, which is more sensitive than traditional immunoassays. This method is further validated by measuring the recovery of CAP spiked in two different food matrices (honey and fish). The aptamer-mediated colorimetric method can be a useful protocol for rapid and sensitive screening of CAP, and may be used as an alternative means for traditional immunoassays. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Single Gold Nanoparticle-Based Colorimetric Detection of Picomolar Mercury Ion with Dark-Field Microscopy.

    Science.gov (United States)

    Liu, Xiaojun; Wu, Zhangjian; Zhang, Qingquan; Zhao, Wenfeng; Zong, Chenghua; Gai, Hongwei

    2016-02-16

    Mercury severely damages the environment and human health, particularly when it accumulates in the food chain. Methods for the colorimetric detection of Hg(2+) have increasingly been developed over the past decade because of the progress in nanotechnology. However, the limits of detection (LODs) of these methods are mostly either comparable to or higher than the allowable maximum level (10 nM) in drinking water set by the US Environmental Protection Agency. In this study, we report a single Au nanoparticle (AuNP)-based colorimetric assay for Hg(2+) detection in solution. AuNPs modified with oligonucleotides were fixed on the slide. The fixed AuNPs bound to free AuNPs in the solution in the presence of Hg(2+) because of oligonucleotide hybridization. This process was accompanied by a color change from green to yellow as observed under an optical microscope. The ratio of changed color spots corresponded with Hg(2+) concentration. The LOD was determined as 1.4 pM, which may help guard against mercury accumulation. The proposed approach was applied to environmental samples with recoveries of 98.3 ± 7.7% and 110.0 ± 8.8% for Yuquan River and industrial wastewater, respectively.

  14. Palindromic Molecule Beacon-Based Cascade Amplification for Colorimetric Detection of Cancer Genes.

    Science.gov (United States)

    Shen, Zhi-Fa; Li, Feng; Jiang, Yi-Fan; Chen, Chang; Xu, Huo; Li, Cong-Cong; Yang, Zhe; Wu, Zai-Sheng

    2018-03-06

    A highly sensitive and selective colorimetric assay based on a multifunctional molecular beacon with palindromic tail (PMB) was proposed for the detection of target p53 gene. The PMB probe can serve as recognition element, primer, and polymerization template and contains a nicking site and a C-rich region complementary to a DNAzyme. In the presence of target DNA, the hairpin of PMB is opened, and the released palindromic tails intermolecularly hybridize with each other, triggering the autonomous polymerization/nicking/displacement cycles. Although only one type of probe is involved, the system can execute triple and continuous polymerization strand displacement amplifications, generating large amounts of G-quadruplex fragments. These G-rich fragments can bind to hemin and form the DNAzymes that possess the catalytic activity similar to horseradish peroxidase, catalyzing the oxidation of ABTS by H 2 O 2 and producing the colorimetric signal. Utilizing the newly proposed sensing system, target DNA can be detected down to 10 pM with a linear response range from 10 pM to 200 nM, and mutant target DNAs are able to be distinguished even by the naked eye. The desirable detection sensitivity, high specificity, and operation convenience without any separation step and chemical modification demonstrate that the palindromic molecular beacon holds the potential for detecting and monitoring a variety of nucleic acid-related biomarkers.

  15. Colorimetric DNAzyme Biosensor for Convenience Detection of Enterotoxin B Harboring Staphylococcus aureus from Food Samples.

    Science.gov (United States)

    Mondal, Bhairab; N, Bhavanashri; Ramlal, Shylaja; Kingston, Joseph

    2018-02-14

    In the present study, a colorimetric DNAzymes biosensor strategy was devised in combination with immunomagnetic separation for rapid and easy detection of enterotoxin B harboring Staphylococcus aureus from food and clinical samples. The method employs immunocapture of S. aureus and amplification of seb gene by DNAzyme complementary sequence integrated forward primer and with specific reverse primer. The DNAzyme sequence integrated dsDNA PCR products when treated with hemin and TMB (3,3',5,5'-tetramethylbenzidine) in the presence of H 2 O 2 produce colorimetric signal. A linear relationship of optical signal with the initial template of seb was obtained which could be monitored by visually or spectrophotrometrically for qualitative and quantitative detection. The limit of detection for the assay was approximately 10 2 CFU/mL of seb gene harboring target. This method is convenient compared to gel based and ELISA systems. Further, spiking studies and analysis on natural samples emphasized the robustness and applicability of developed method. Altogether, the established assay could be a reliable alternative, low-cost, viable detection tool for the routine investigation of seb from food and clinical sources.

  16. Relationship between skin color and solar elastosis in aged Asian skin: A colorimetric-pathologic correlation.

    Science.gov (United States)

    Kim, Dai Hyun; Oh, Ga Na; Kwon, In Hyuk; Seo, Soo Hong; Kye, Young Chul; Ahn, Hyo Hyun

    2017-10-01

    Aged skin is reported to be associated with unattractive skin color changes and solar elastosis. However, comparative studies have not documented the possible correlation between the two factors. This study investigated the plausible relationship between the facial skin color of elderly Asians and solar elastosis. A total of 22 skin specimens were collected from 22 Korean patients who underwent cheek skin biopsies. Skin color was quantitatively measured using colorimetric photography techniques to produce CIE L*a*b* values; the degree of solar elastosis was quantifiably assessed using a histologic grading scale. These values were used to investigate a correlation between the CIE L*a*b* coordinates and solar elastosis grade. The solar elastosis grade increased according to patient age (r = 0.67, p = .0006). However, the extent of solar elastosis was not statistically correlated with the CIE L*a*b* values, including L*, a*, and b* (r = 0.02, p = .95; r = 0.15, p = 0.50; r = -0.07, p = 0.76, respectively). The results showed that the solar elastosis grade increased, according to patient age, because of cumulative actinic damage. However, colorimetric skin color data did not correlate with the degree of solar elastosis. Therefore, cutaneous color changes and solar elastosis are separate, age-related phenomena. Physicians should be aware of the possible histologic changes in actinically damaged facial skin, regardless of the skin color. © 2017 Wiley Periodicals, Inc.

  17. Colorimetric test-systems for creatinine detection based on composite molecularly imprinted polymer membranes.

    Science.gov (United States)

    Sergeyeva, T A; Gorbach, L A; Piletska, E V; Piletsky, S A; Brovko, O O; Honcharova, L A; Lutsyk, O D; Sergeeva, L M; Zinchenko, O A; El'skaya, A V

    2013-04-03

    An easy-to-use colorimetric test-system for the efficient detection of creatinine in aqueous samples was developed. The test-system is based on composite molecularly imprinted polymer (MIP) membranes with artificial receptor sites capable of creatinine recognition. A thin MIP layer was created on the surface of microfiltration polyvinylidene fluoride (PVDF) membranes using method of photo-initiated grafting polymerization. The MIP layer was obtained by co-polymerization of a functional monomer (e.g. 2-acrylamido-2-methyl-1-propanesulfonic acid, itaconic acid or methacrylic acid) with N, N'-methylenebisacrylamide as a cross-linker. The choice of the functional monomer was based on the results of computational modeling. The creatinine-selective composite MIP membranes were used for measuring creatinine in aqueous samples. Creatinine molecules were selectively adsorbed by the MIP membranes and quantified using color reaction with picrates. The intensity of MIP membranes staining was proportional to creatinine concentration in an analyzed sample. The colorimetric test-system based on the composite MIP membranes was characterized with 0.25 mM detection limit and 0.25-2.5mM linear dynamic range. Storage stability of the MIP membranes was estimated as at least 1 year at room temperature. As compared to the traditional methods of creatinine detection the developed test-system is characterized by simplicity of operation, small size and low cost. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Colorimetric determination of sildenafil citrate (Viagra) through ion-associate complex formation.

    Science.gov (United States)

    Amin, Alaa S; Moustafa, Moustafa E; El-Dosoky, Reham

    2009-01-01

    A simple, quick, accurate, and sensitive colorimetric method is described for the determination of sildenafil citrate (SLD). The method is based on the reaction of SLD with Congo Red, Sudan II, and Gentian Violet in buffered aqueous solutions at pH 2.5, 6.5, and 11.0, respectively, to give highly colored soluble ion-associate complex species; the colored products are quantitated colorimetrically at 523, 554, and 569 nm, respectively. The various experimental conditions were optimized. The stoichiometric ratio was found to be 1:1 for all ion associates; the calculated logarithmic stability constants were 8.51, 7.79, and 5.58, respectively. Beer's law was obeyed over the concentration range of 0.2-7.0 microg/mL, whereas the Ringbom optimum concentration range was 0.4-6.5 microg/mL. Values for molar absorptivity, Sandell sensitivity, and detection and quantification limits were also calculated. The proposed method was successfully applied to the determination of SLD in Viagra tablets and in serum samples by using the technique of standard additions with mean accuracy values of 100.06 +/- 1.14, 99.87 +/- 0.70, and 99.86 +/- 0.97% for Viagra tablets and 99.88 +/- 0.60, 99.90 +/- 0.90, and 100.24 +/- 0.80% for serum samples, respectively.

  19. Colorimetric method for enzymatic screening assay of ATP using Fe(III)-xylenol orange complex formation.

    Science.gov (United States)

    Ishida, Akihiko; Yamada, Yasuko; Kamidate, Tamio

    2008-11-01

    In hygiene management, recently there has been a significant need for screening methods for microbial contamination by visual observation or with commonly used colorimetric apparatus. The amount of adenosine triphosphate (ATP) can serve as the index of a microorganism. This paper describes the development of a colorimetric method for the assay of ATP, using enzymatic cycling and Fe(III)-xylenol orange (XO) complex formation. The color characteristics of the Fe(III)-XO complexes, which show a distinct color change from yellow to purple, assist the visual observation in screening work. In this method, a trace amount of ATP was converted to pyruvate, which was further amplified exponentially with coupled enzymatic reactions. Eventually, pyruvate was converted to the Fe(III)-XO complexes through pyruvate oxidase reaction and Fe(II) oxidation. As the assay result, yellow or purple color was observed: A yellow color indicates that the ATP concentration is lower than the criterion of the test, and a purple color indicates that the ATP concentration is higher than the criterion. The method was applied to the assay of ATP extracted from Escherichia coli cells added to cow milk.

  20. Colorimetric microwell plate reverse-hybridization assay for Mycobacterium tuberculosis detection

    Directory of Open Access Journals (Sweden)

    Candice Tosi Michelon

    2011-03-01

    Full Text Available Direct smear examination using Ziehl-Neelsen staining for pulmonary tuberculosis (PTB diagnosis is inexpensive and easy to use, but has the major limitation of low sensitivity. Rapid molecular methods are becoming more widely available in centralized laboratories, but they depend on timely reporting of results and strict quality assurance obtainable only from costly commercial kits available in high burden nations. This study describes a pre-commercial colorimetric method, Detect-TB, for detecting Mycobacterium tuberculosis DNA in which an oligonucleotide probe is fixed onto wells of microwell plates and hybridized with biotinylated polymerase chain reaction amplification products derived from clinical samples. The probe is capable of hybridising with the IS6110 insertion element and was used to specifically recognise the M. tuberculosis complex. When combined with an improved silica-based DNA extraction method, the sensitivity of the test was 50 colony-forming units of the M. tuberculosis reference strain H37Rv. The results that were in agreement with reference detection methods were observed in 95.2% (453/476 of samples included in the analysis. Sensitivity and specificity for 301 induced sputum samples and 175 spontaneous sputum samples were 85% and 98%, and 94% and 100%, respectively. This colorimetric method showed similar specificity to that described for commercially available kits and may provide an important contribution for PTB diagnosis.

  1. Colorimetric determination of nitrate plus nitrite in water by enzymatic reduction, automated discrete analyzer methods

    Science.gov (United States)

    Patton, Charles J.; Kryskalla, Jennifer R.

    2011-01-01

    This report documents work at the U.S. Geological Survey (USGS) National Water Quality Laboratory (NWQL) to validate enzymatic reduction, colorimetric determinative methods for nitrate + nitrite in filtered water by automated discrete analysis. In these standard- and low-level methods (USGS I-2547-11 and I-2548-11), nitrate is reduced to nitrite with nontoxic, soluble nitrate reductase rather than toxic, granular, copperized cadmium used in the longstanding USGS automated continuous-flow analyzer methods I-2545-90 (NWQL laboratory code 1975) and I-2546-91 (NWQL laboratory code 1979). Colorimetric reagents used to determine resulting nitrite in aforementioned enzymatic- and cadmium-reduction methods are identical. The enzyme used in these discrete analyzer methods, designated AtNaR2 by its manufacturer, is produced by recombinant expression of the nitrate reductase gene from wall cress (Arabidopsis thaliana) in the yeast Pichia pastoris. Unlike other commercially available nitrate reductases we evaluated, AtNaR2 maintains high activity at 37°C and is not inhibited by high-phenolic-content humic acids at reaction temperatures in the range of 20°C to 37°C. These previously unrecognized AtNaR2 characteristics are essential for successful performance of discrete analyzer nitrate + nitrite assays (henceforth, DA-AtNaR2) described here.

  2. Sensitive paper-based analytical device for fast colorimetric detection of nitrite with smartphone.

    Science.gov (United States)

    Zhang, Xiu-Xiu; Song, Yi-Zhen; Fang, Fang; Wu, Zhi-Yong

    2018-04-01

    On-site rapid monitoring of nitrite as an assessment indicator of the environment, food, and physiological systems has drawn extensive attention. Here, electrokinetic stacking (ES) was combined with colorimetric reaction on a paper-based device (PAD) to achieve colorless nitrite detection with smartphone. In this paper, nitrite was stacked on the paper fluidic channel as a narrow band by electrokinetic stacking. Then, Griess reagent was introduced to visualize the stacking band. Under optimal conditions, the sensitivity of nitrite was 160-fold increased within 5 min. A linear response in the range of 0.075 to 1.0 μg mL -1 (R 2  = 0.99) and a limit of detection (LOD) of 73 ng mL -1 (0.86 μM) were obtained. The LOD was 10 times lower than the reported PAD, and close to that achieved by a desktop spectrophotometer. The applicability was demonstrated by nitrite detection from saliva and water with good selectivity, adding 100 times more concentrated co-ions. High recovery (91.0~108.7%) and reasonable intra-day and inter-day reproducibility (RSD work shows that the sensitivity of colorless analyte detection-based colorimetric reaction can be effectively enhanced by integration of ES on a PAD. Graphical abstract Schematic of the experimental setups (left) and the corresponding images (right) of the actual portable device.

  3. Cis–Trans Configuration of Coumaric Acid Acylation Affects the Spectral and Colorimetric Properties of Anthocyanins

    Directory of Open Access Journals (Sweden)

    Gregory T. Sigurdson

    2018-03-01

    Full Text Available The color expression of anthocyanins can be affected by a variety of environmental factors and structural characteristics. Anthocyanin acylation (type and number of acids is known to be key, but the influence of acyl isomers (with unique stereochemistries remains to be explored. The objective of this study was to investigate the effects of cis–trans configuration of the acylating group on the spectral and colorimetric properties of anthocyanins. Petunidin-3-rutinoside-5-glucoside (Pt-3-rut-5-glu and Delphinidin-3-rutinoside-5-glucoside (Dp-3-rut-5-glu and their cis and trans coumaroylated derivatives were isolated from black goji and eggplant, diluted in pH 1–9 buffers, and analyzed spectrophotometrically (380–700 nm and colorimetrically (CIELAB during 72 h of storage (25 °C, dark. The stereochemistry of the acylating group strongly impacted the spectra, color, and stability of the Dp and Pt anthocyanins. Cis acylated pigments exhibited the greatest λmax in all pH, as much as 66 nm greater than their trans counterparts, showing bluer hues. Cis acylation seemed to reduce hydration across pH, increasing color intensity, while trans acylation generally improved color retention over time. Dp-3-cis-p-cou-rut-5-glu exhibited blue hues even in pH 5 (C*ab = 10, hab = 256° where anthocyanins are typically colorless. Cis or trans double bond configurations of the acylating group affected anthocyanin spectral and stability properties.

  4. An effective colorimetric and ratiometric fluorescent probe for bisulfite in aqueous solution

    International Nuclear Information System (INIS)

    Dai, Xi; Zhang, Tao; Du, Zhi-Fang; Cao, Xiang-Jian; Chen, Ming-Yu; Hu, Sheng-Wen; Miao, Jun-Ying; Zhao, Bao-Xiang

    2015-01-01

    We have developed the first two-photon colorimetric and ratiometric fluorescent probe, BICO, for the detection of bisulfite (HSO 3 − ) in aqueous solution. The probe contains coumarin and benzimidazole moieties and can detect HSO 3 − based on the Michael addition reaction with a limit of detection 5.3 × 10 −8  M in phosphate-buffered saline solution. The probe was used to detect bisulfite in tap water, sugar and dry white wine. Moreover, test strips were made and used easily. We successfully applied the probe to image living cells, using one-photon fluorescence imaging. BICO overcomes the limitations in sensitivity of previously reported probes and the solvation effect of bisulfite, which demonstrates its excellent value in practical application. - Highlights: • A colorimetric and ratiometric fluorescent probe was developed. • The probe could detect bisulfite in PBS buffer solution and real samples. • Bisulfite test paper was made to naked-eye detect bisulfite. • This probe successfully used to living cell imaging in ratiometric manner

  5. Color dependence with horizontal-viewing angle and colorimetric characterization of two displays using different backlighting

    Science.gov (United States)

    Castro, José J.; Pozo, Antonio M.; Rubiño, Manuel

    2013-11-01

    In this work we studied the color dependence with a horizontal-viewing angle and colorimetric characterization of two liquid-crystal displays (LCD) using two different backlighting: Cold Cathode Fluorescent Lamps (CCFLs) and light-emitting diodes (LEDs). The LCDs studied had identical resolution, size, and technology (TFT - thin film transistor). The colorimetric measurements were made with the spectroradiometer SpectraScan PR-650 following the procedure recommended in the European guideline EN 61747-6. For each display, we measured at the centre of the screen the chromaticity coordinates at horizontal viewing angles of 0, 20, 40, 60 and 80 degrees for the achromatic (A), red (R), green (G) and blue (B) channels. Results showed a greater color-gamut area for the display with LED backlight, compared with the CCFL backlight, showing a greater range of colors perceptible by human vision. This color-gamut area diminished with viewing angle for both displays. Higher differences between trends for viewing angles were observed in the LED-backlight, especially for the R- and G-channels, demonstrating a higher variability of the chromaticity coordinates with viewing angle. The best additivity was reached by the LED-backlight display (a lower error percentage). LED-backlight display provided better color performance of visualization.

  6. An effective colorimetric and ratiometric fluorescent probe for bisulfite in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Xi [Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Zhang, Tao [Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100 (China); Du, Zhi-Fang; Cao, Xiang-Jian; Chen, Ming-Yu [Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Taishan College, Shandong University, Jinan 250100 (China); Hu, Sheng-Wen [Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Miao, Jun-Ying, E-mail: miaojy@sdu.edu.cn [Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100 (China); Zhao, Bao-Xiang, E-mail: bxzhao@sdu.edu.cn [Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)

    2015-08-12

    We have developed the first two-photon colorimetric and ratiometric fluorescent probe, BICO, for the detection of bisulfite (HSO{sub 3}{sup −}) in aqueous solution. The probe contains coumarin and benzimidazole moieties and can detect HSO{sub 3}{sup −} based on the Michael addition reaction with a limit of detection 5.3 × 10{sup −8} M in phosphate-buffered saline solution. The probe was used to detect bisulfite in tap water, sugar and dry white wine. Moreover, test strips were made and used easily. We successfully applied the probe to image living cells, using one-photon fluorescence imaging. BICO overcomes the limitations in sensitivity of previously reported probes and the solvation effect of bisulfite, which demonstrates its excellent value in practical application. - Highlights: • A colorimetric and ratiometric fluorescent probe was developed. • The probe could detect bisulfite in PBS buffer solution and real samples. • Bisulfite test paper was made to naked-eye detect bisulfite. • This probe successfully used to living cell imaging in ratiometric manner.

  7. A facile strategy for the preparation of ZnS nanoparticles deposited on montmorillonite and their higher catalytic activity for rapidly colorimetric detection of H{sub 2}O{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Yanyuan; Sun, Lifang; Jiang, Yanling; Liu, Shunxiang; Chen, Mingxing; Chen, Miaomiao; Ding, Yanan; Liu, Qingyun, E-mail: qyliu@sdust.edu.cn

    2016-10-01

    In this paper, ZnS nanoparticles deposited on montmorillonite (ZnS-MMT) were prepared by a facile method at room temperature and characterized by powder X-ray diffraction (XRD), Energy-dispersive X-ray Detector (EDX) and transmission electron microscope (TEM), respectively. Significantly, the as-prepared ZnS-MMT nanocomposites have been proven to possess intrinsic peroxidase-like activity that can rapidly catalyze the reaction of peroxidase substrate 3,3′,5,5′-tetramethylbenzidine (TMB) in the presence of H{sub 2}O{sub 2} and produce a blue color product in less than 30 seconds, which provides a sensitive colorimetric sensor to detect H{sub 2}O{sub 2}. Due to the synergistic effects between montmorillonite and ZnS nanoparticles, the obtained ZnS-MMT nanocomposites exhibit higher catalytic activity than that of MMT or ZnS alone. The catalytic behaviors of the ZnS-MMT nanocomposites showed a typical Michaelis–Menten kinetics. The catalytic activity and the catalytic mechanism were investigated using the procedures of steady-state kinetics and hydroxyl radical detection. ESR data revealed that the peroxidase-like activity of ZnS-MMT originated from the generation of ·OH radicals. - Highlights: • ZnS nanocomposites deposited on MMT was synthesized by a facile one step method. • MMT-ZnS nanocomposites possess excellent intrinsic peroxidase-like activity and show highly catalytic activity. • A sensitive colorimetric sensor for H{sub 2}O{sub 2} is provided based on MMT-ZnS nanocomposites. • The catalytic mechanism is from the generation of hydroxyl radical (·OH) decomposed from H{sub 2}O{sub 2}.

  8. Development of colorimetric solid Phase Extraction (C-SPE) for in-flight Monitoring of spacecraft Water Supplies

    Energy Technology Data Exchange (ETDEWEB)

    Gazda, Daniel Bryan [Iowa State Univ., Ames, IA (United States)

    2004-01-01

    Although having recently been extremely successful gathering data on the surface of Mars, robotic missions are not an effective substitute for the insight and knowledge about our solar system that can be gained though first-hand exploration. Earlier this year, President Bush presented a ''new course'' for the U.S. space program that shifts NASA's focus to the development of new manned space vehicles to the return of humans to the moon. Re-establishing the human presence on the moon will eventually lead to humans permanently living and working in space and also serve as a possible launch point for missions into deeper space. There are several obstacles to the realization of these goals, most notably the lack of life support and environmental regeneration and monitoring hardware capable of functioning on long duration spaceflight. In the case of the latter, past experience on the International Space Station (ISS), Mir, and the Space Shuttle has strongly underscored the need to develop broad spectrum in-flight chemical sensors that: (1) meet current environmental monitoring requirements on ISS as well as projected requirements for future missions, and (2) enable the in-situ acquisition and analysis of analytical data in order to further define on-orbit monitoring requirements. Additionally, systems must be designed to account for factors unique to on-orbit deployment such as crew time availability, payload restrictions, material consumption, and effective operation in microgravity. This dissertation focuses on the development, ground testing, and microgravity flight demonstration of Colorimetric Solid Phase Extraction (C-SPE) as a candidate technology to meet the near- and long-term water quality monitoring needs of NASA. The introduction will elaborate further on the operational and design requirements for on-orbit water quality monitoring systems by discussing some of the characteristics of an ''ideal'' system. A

  9. A Low-Cost Imaging Method for the Temporal and Spatial Colorimetric Detection of Free Amines on Maize Root Surfaces

    Directory of Open Access Journals (Sweden)

    Truc H. Doan

    2017-08-01

    Full Text Available Plant root exudates are important mediators in the interactions that occur between plants and microorganisms in the soil, yet much remains to be learned about spatial and temporal variation in their production. This work outlines a method utilizing a novel colorimetric paper to detect spatial and temporal changes in the production of nitrogen-containing compounds on the root surface. While existing methods have made it possible to conduct detailed analysis of root exudate composition, relatively less is known about where in the root system exudates are produced and how this localization changes as the root grows. Furthermore, there is much to learn about how exudate localization and composition varies in response to stress. Root exudates are chemically diverse secretions composed of organic acids, amino acids, proteins, sugars, and other metabolites. The sensor utilized for the method, ninhydrin, is a colorless substance in solution that reacts with free amino groups to form a purple dye. A detection paper was developed by formulating ninhydrin into a print solution that was uniformly deposited onto paper with a commercial ink jet printer. This “ninhydrin paper” was used to analyze the chemical makeup of root surfaces from maize seedlings grown vertically on germination paper. Through contact between the ninhydrin paper and seedling root surfaces, combined with images of both the seedlings and dried ninhydrin papers captured using a standard flatbed scanner, nitrogen-containing substances on the root surface can be localized and concentration of signal estimated for over 2 weeks of development. The method was found to be non-inhibiting to plant growth over the analysis period although damage to root hairs was observed. The method is sensitive in the detection of free amines at concentrations as little as 140 μM. Furthermore, ninhydrin paper is stable, showing consistent color changes up to 2 weeks after printing. This relatively simple, low

  10. Single-analyte to multianalyte fluorescence sensors

    Science.gov (United States)

    Lavigne, John J.; Metzger, Axel; Niikura, Kenichi; Cabell, Larry A.; Savoy, Steven M.; Yoo, J. S.; McDevitt, John T.; Neikirk, Dean P.; Shear, Jason B.; Anslyn, Eric V.

    1999-05-01

    The rational design of small molecules for the selective complexation of analytes has reached a level of sophistication such that there exists a high degree of prediction. An effective strategy for transforming these hosts into sensors involves covalently attaching a fluorophore to the receptor which displays some fluorescence modulation when analyte is bound. Competition methods, such as those used with antibodies, are also amenable to these synthetic receptors, yet there are few examples. In our laboratories, the use of common dyes in competition assays with small molecules has proven very effective. For example, an assay for citrate in beverages and an assay for the secondary messenger IP3 in cells have been developed. Another approach we have explored focuses on multi-analyte sensor arrays with attempt to mimic the mammalian sense of taste. Our system utilizes polymer resin beads with the desired sensors covalently attached. These functionalized microspheres are then immobilized into micromachined wells on a silicon chip thereby creating our taste buds. Exposure of the resin to analyte causes a change in the transmittance of the bead. This change can be fluorescent or colorimetric. Optical interrogation of the microspheres, by illuminating from one side of the wafer and collecting the signal on the other, results in an image. These data streams are collected using a CCD camera which creates red, green and blue (RGB) patterns that are distinct and reproducible for their environments. Analysis of this data can identify and quantify the analytes present.

  11. Magnetic responsive hydroxyapatite composite scaffolds construction for bone defect reparation.

    Science.gov (United States)

    Zeng, Xiao Bo; Hu, Hao; Xie, Li Qin; Lan, Fang; Jiang, Wen; Wu, Yao; Gu, Zhong Wei

    2012-01-01

    In recent years, interest in magnetic biomimetic scaffolds for tissue engineering has increased considerably. A type of magnetic scaffold composed of magnetic nanoparticles (MNPs) and hydroxyapatite (HA) for bone repair has been developed by our research group. In this study, to investigate the influence of the MNP content (in the scaffolds) on the cell behaviors and the interactions between the magnetic scaffold and the exterior magnetic field, a series of MNP-HA magnetic scaffolds with different MNP contents (from 0.2% to 2%) were fabricated by immersing HA scaffold into MNP colloid. ROS 17/2.8 and MC3T3-E1 cells were cultured on the scaffolds in vitro, with and without an exterior magnetic field, respectively. The cell adhesion, proliferation and differentiation were evaluated via scanning electron microscopy; confocal laser scanning microscopy; and 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), alkaline phosphatase, and bone gla protein activity tests. The results demonstrated the positive influence of the magnetic scaffolds on cell adhesion, proliferation, and differentiation. Further, a higher amount of MNPs on the magnetic scaffolds led to more significant stimulation. The magnetic scaffold can respond to the exterior magnetic field and engender some synergistic effect to intensify the stimulating effect of a magnetic field to the proliferation and differentiation of cells.

  12. 3D Printing of Scaffolds for Tissue Regeneration Applications

    Science.gov (United States)

    Do, Anh-Vu; Khorsand, Behnoush; Geary, Sean M.; Salem, Aliasger K.

    2015-01-01

    The current need for organ and tissue replacement, repair and regeneration for patients is continually growing such that supply is not meeting the high demand primarily due to a paucity of donors as well as biocompatibility issues that lead to immune rejection of the transplant. In an effort to overcome these drawbacks, scientists working in the field of tissue engineering and regenerative medicine have investigated the use of scaffolds as an alternative to transplantation. These scaffolds are designed to mimic the extracellular matrix (ECM) by providing structural support as well as promoting attachment, proliferation, and differentiation with the ultimate goal of yielding functional tissues or organs. Initial attempts at developing scaffolds were problematic and subsequently inspired a growing interest in 3D printing as a mode for generating scaffolds. Utilizing three-dimensional printing (3DP) technologies, ECM-like scaffolds can be produced with a high degree of complexity and precision, where fine details can be included at a micron level. In this review, we discuss the criteria for printing viable and functional scaffolds, scaffolding materials, and 3DP technologies used to print scaffolds for tissue engineering. A hybrid approach, employing both natural and synthetic materials, as well as multiple printing processes may be the key to yielding an ECM-like scaffold with high mechanical strength, porosity, interconnectivity, biocompatibility, biodegradability, and high processability. Creating such biofunctional scaffolds could potentially help to meet the demand by patients for tissues and organs without having to wait or rely on donors for transplantation. PMID:26097108

  13. Surface modified electrospun nanofibrous scaffolds for nerve tissue engineering

    International Nuclear Information System (INIS)

    Prabhakaran, Molamma P; Venugopal, J; Chan, Casey K; Ramakrishna, S

    2008-01-01

    The development of biodegradable polymeric scaffolds with surface properties that dominate interactions between the material and biological environment is of great interest in biomedical applications. In this regard, poly-ε-caprolactone (PCL) nanofibrous scaffolds were fabricated by an electrospinning process and surface modified by a simple plasma treatment process for enhancing the Schwann cell adhesion, proliferation and interactions with nanofibers necessary for nerve tissue formation. The hydrophilicity of surface modified PCL nanofibrous scaffolds (p-PCL) was evaluated by contact angle and x-ray photoelectron spectroscopy studies. Naturally derived polymers such as collagen are frequently used for the fabrication of biocomposite PCL/collagen scaffolds, though the feasibility of procuring large amounts of natural materials for clinical applications remains a concern, along with their cost and mechanical stability. The proliferation of Schwann cells on p-PCL nanofibrous scaffolds showed a 17% increase in cell proliferation compared to those on PCL/collagen nanofibrous scaffolds after 8 days of cell culture. Schwann cells were found to attach and proliferate on surface modified PCL nanofibrous scaffolds expressing bipolar elongations, retaining their normal morphology. The results of our study showed that plasma treated PCL nanofibrous scaffolds are a cost-effective material compared to PCL/collagen scaffolds, and can potentially serve as an ideal tissue engineered scaffold, especially for peripheral nerve regeneration.

  14. A Review on Fabricating Tissue Scaffolds using Vat Photopolymerization.

    Science.gov (United States)

    Chartrain, Nicholas A; Williams, Christopher B; Whittington, Abby R

    2018-05-09

    Vat Photopolymerization (stereolithography, SLA), an Additive Manufacturing (AM) or 3D printing technology, holds particular promise for the fabrication of tissue scaffolds for use in regenerative medicine. Unlike traditional tissue scaffold fabrication techniques, SLA is capable of fabricating designed scaffolds through the selective photopolymerization of a photopolymer resin on the micron scale. SLA offers unprecedented control over scaffold porosity and permeability, as well as pore size, shape, and interconnectivity. Perhaps even more significantly, SLA can be used to fabricate vascular networks that may encourage angio and vasculogenesis. Fulfilling this potential requires the development of new photopolymers, the incorporation of biochemical factors into printed scaffolds, and an understanding of the effects scaffold geometry have on cell viability, proliferation, and differentiation. This review compares SLA to other scaffold fabrication techniques, highlights significant advances in the field, and offers a perspective on the field's challenges and future directions. Engineering de novo tissues continues to be challenging due, in part, to our inability to fabricate complex tissue scaffolds that can support cell proliferation and encourage the formation of developed tissue. The goal of this review is to first introduce the reader to traditional and Additive Manufacturing scaffold fabrication techniques. The bulk of this review will then focus on apprising the reader of current research and provide a perspective on the promising use of vat photopolymerization (stereolithography, SLA) for the fabrication of complex tissue scaffolds. Copyright © 2018. Published by Elsevier Ltd.

  15. Image-based characterization of foamed polymeric tissue scaffolds

    International Nuclear Information System (INIS)

    Mather, Melissa L; Morgan, Stephen P; Crowe, John A; White, Lisa J; Shakesheff, Kevin M; Tai, Hongyun; Howdle, Steven M; Kockenberger, Walter

    2008-01-01

    Tissue scaffolds are integral to many regenerative medicine therapies, providing suitable environments for tissue regeneration. In order to assess their suitability, methods to routinely and reproducibly characterize scaffolds are needed. Scaffold structures are typically complex, and thus their characterization is far from trivial. The work presented in this paper is centred on the application of the principles of scaffold characterization outlined in guidelines developed by ASTM International. Specifically, this work demonstrates the capabilities of different imaging modalities and analysis techniques used to characterize scaffolds fabricated from poly(lactic-co-glycolic acid) using supercritical carbon dioxide. Three structurally different scaffolds were used. The scaffolds were imaged using: scanning electron microscopy, micro x-ray computed tomography, magnetic resonance imaging and terahertz pulsed imaging. In each case two-dimensional images were obtained from which scaffold properties were determined using image processing. The findings of this work highlight how the chosen imaging modality and image-processing technique can influence the results of scaffold characterization. It is concluded that in order to obtain useful results from image-based scaffold characterization, an imaging methodology providing sufficient contrast and resolution must be used along with robust image segmentation methods to allow intercomparison of results

  16. ASTM International Workshop on Standards & Measurements for Tissue Engineering Scaffolds

    Science.gov (United States)

    Simon, Carl G.; Yaszemski, Michael J.; Ratcliffe, Anthony; Tomlins, Paul; Luginbuehl, Reto; Tesk, John A.

    2016-01-01

    The “Workshop on Standards & Measurements for Tissue Engineering Scaffolds” was held on May 21, 2013 in Indianapolis, IN and was sponsored by the ASTM International (ASTM). The purpose of the workshop was to identify the highest priority items for future standards work for scaffolds used in the development and manufacture of tissue engineered medical products (TEMPs). Eighteen speakers and 78 attendees met to assess current scaffold standards and to prioritize needs for future standards. A key finding was that the ASTM TEMPs subcommittees (F04.41-46) have many active “guide” documents for educational purposes, but that few standard “test methods” or “practices” have been published. Overwhelmingly, the most clearly identified need was standards for measuring the structure of scaffolds, followed by standards for biological characterization, including in vitro testing, animal models and cell-material interactions. The third most pressing need was to develop standards for assessing the mechanical properties of scaffolds. Additional needs included standards for assessing scaffold degradation, clinical outcomes with scaffolds, effects of sterilization on scaffolds, scaffold composition and drug release from scaffolds. Discussions also highlighted the need for additional scaffold reference materials and the need to use them for measurement traceability. Finally, dialogue emphasized the needs to promote the use of standards in scaffold fabrication, characterization, and commercialization and to assess the use and impact of standards in the TEMPs community. Many scaffold standard needs have been identified and focus should now turn to generating these standards to support the use of scaffolds in TEMPs. PMID:25220952

  17. A radiopaque electrospun scaffold for engineering fibrous musculoskeletal tissues: Scaffold characterization and in vivo applications.

    Science.gov (United States)

    Martin, John T; Milby, Andrew H; Ikuta, Kensuke; Poudel, Subash; Pfeifer, Christian G; Elliott, Dawn M; Smith, Harvey E; Mauck, Robert L

    2015-10-01

    Tissue engineering strategies have emerged in response to the growing prevalence of chronic musculoskeletal conditions, with many of these regenerative methods currently being evaluated in translational animal models. Engineered replacements for fibrous tissues such as the meniscus, annulus fibrosus, tendons, and ligaments are subjected to challenging physiologic loads, and are difficult to track in vivo using standard techniques. The diagnosis and treatment of musculoskeletal conditions depends heavily on radiographic assessment, and a number of currently available implants utilize radiopaque markers to facilitate in vivo imaging. In this study, we developed a nanofibrous scaffold in which individual fibers included radiopaque nanoparticles. Inclusion of radiopaque particles increased the tensile modulus of the scaffold and imparted radiation attenuation within the range of cortical bone. When scaffolds were seeded with bovine mesenchymal stem cells in vitro, there was no change in cell proliferation and no evidence of promiscuous conversion to an osteogenic phenotype. Scaffolds were implanted ex vivo in a model of a meniscal tear in a bovine joint and in vivo in a model of total disc replacement in the rat coccygeal spine (tail), and were visualized via fluoroscopy and microcomputed tomography. In the disc replacement model, histological analysis at 4 weeks showed that the scaffold was biocompatible and supported the deposition of fibrous tissue in vivo. Nanofibrous scaffolds that include radiopaque nanoparticles provide a biocompatible template with sufficient radiopacity for in vivo visualization in both small and large animal models. This radiopacity may facilitate image-guided implantation and non-invasive long-term evaluation of scaffold location and performance. The healing capacity of fibrous musculoskeletal tissues is limited, and injury or degeneration of these tissues compromises the standard of living of millions in the US. Tissue engineering repair

  18. Automotive sensors

    Science.gov (United States)

    Marek, Jiri; Illing, Matthias

    2003-01-01

    Sensors are an essential component of most electronic systems in the car. They deliver input parameters for comfort features, engine and emission control as well as for the active and passive safety systems. New technologies such as silicon micromachining play an important role for the introduction of these sensors in all vehicle classes. The importance and use of these sensor technologies in today"s automotive applications will be shown in this article. Finally an outlook on important current developments and new functions in the car will be given.

  19. Piezoceramic Sensors

    CERN Document Server

    Sharapov, Valeriy

    2011-01-01

    This book presents the latest and complete information about various types of piezosensors. A sensor is a converter of the measured physical size to an electric signal. Piezoelectric transducers and sensors are based on piezoelectric effects. They have proven to be versatile tools for the measurement of various processes. They are used for quality assurance, process control and for research and development in many different industries. In each area of application specific requirements to the parameters of transducers and sensors are developed. This book presents the fundamentals, technical des

  20. The design of 3D scaffold for tissue engineering using automated scaffold design algorithm.

    Science.gov (United States)

    Mahmoud, Shahenda; Eldeib, Ayman; Samy, Sherif

    2015-06-01

    Several progresses have been introduced in the field of bone regenerative medicine. A new term tissue engineering (TE) was created. In TE, a highly porous artificial extracellular matrix or scaffold is required to accommodate cells and guide their growth in three dimensions. The design of scaffolds with desirable internal and external structure represents a challenge for TE. In this paper, we introduce a new method known as automated scaffold design (ASD) for designing a 3D scaffold with a minimum mismatches for its geometrical parameters. The method makes use of k-means clustering algorithm to separate the different tissues and hence decodes the defected bone portions. The segmented portions of different slices are registered to construct the 3D volume for the data. It also uses an isosurface rendering technique for 3D visualization of the scaffold and bones. It provides the ability to visualize the transplanted as well as the normal bone portions. The proposed system proves good performance in both the segmentation results and visualizations aspects.

  1. Dynamic Scaffolding of Socially Regulated Learning in a Computer-Based Learning Environment

    Science.gov (United States)

    Molenaar, Inge; Roda, Claudia; van Boxtel, Carla; Sleegers, Peter

    2012-01-01

    The aim of this study is to test the effects of dynamically scaffolding social regulation of middle school students working in a computer-based learning environment. Dyads in the scaffolding condition (N=56) are supported with computer-generated scaffolds and students in the control condition (N=54) do not receive scaffolds. The scaffolds are…

  2. Protein Scaffolding for Small Molecule Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Baker, David [Univ. of Washington, Seattle, WA (United States)

    2014-09-14

    We aim to design hybrid catalysts for energy production and storage that combine the high specificity, affinity, and tunability of proteins with the potent chemical reactivities of small organometallic molecules. The widely used Rosetta and RosettaDesign methodologies will be extended to model novel protein / small molecule catalysts in which one or many small molecule active centers are supported and coordinated by protein scaffolding. The promise of such hybrid molecular systems will be demonstrated with the nickel-phosphine hydrogenase of DuBois et. al.We will enhance the hydrogenase activity of the catalyst by designing protein scaffolds that incorporate proton relays and systematically modulate the local environment of the catalyticcenter. In collaboration with DuBois and Shaw, the designs will be experimentally synthesized and characterized.

  3. Diamond as a scaffold for bone growth.

    Science.gov (United States)

    Fox, Kate; Palamara, Joseph; Judge, Roy; Greentree, Andrew D

    2013-04-01

    Diamond is an attractive material for biomedical implants. In this work, we investigate its capacity as a bone scaffold. It is well established that the bioactivity of a material can be evaluated by examining its capacity to form apatite-like calcium phosphate phases on its surface when exposed to simulated body fluid. Accordingly, polycrystalline diamond (PCD) and ultrananocrystalline diamond (UNCD) deposited by microwave plasma chemical vapour deposition were exposed to simulated body fluid and assessed for apatite growth when compared to the bulk silicon. Scanning electron microscopy and X-ray photoelectron spectroscopy showed that both UNCD and PCD are capable of acting as a bone scaffold. The composition of deposited apatite suggests that UNCD and PCD are suitable for in vivo implantation with UNCD possible favoured in applications where rapid osseointegration is essential.

  4. Optimized Diazo Scaffold for Protein Esterification

    Science.gov (United States)

    Mix, Kalie A.

    2015-01-01

    The O-alkylation of carboxylic acids with diazo compounds provides a means to esterify carboxylic acids in aqueous solution. A Hammett analysis of the reactivity of diazo compounds derived from phenylglycinamide revealed that the p-methylphenylglycinamide scaffold has an especially high reaction rate and ester:alcohol product ratio, and esterifies protein carboxyl groups more efficiently than does any known reagent. PMID:25938936

  5. In Vitro Degradation of PHBV Scaffolds and nHA/PHBV Composite Scaffolds Containing Hydroxyapatite Nanoparticles for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Naznin Sultana

    2012-01-01

    Full Text Available This paper investigated the long-term in vitro degradation properties of scaffolds based on biodegradable polymers and osteoconductive bioceramic/polymer composite materials for the application of bone tissue engineering. The three-dimensional porous scaffolds were fabricated using emulsion-freezing/freeze-drying technique using poly(hydroxybutyrate-co-hydroxyvalerate (PHBV which is a natural biodegradable and biocompatible polymer. Nanosized hydroxyapatite (nHA particles were successfully incorporated into the PHBV scaffolds to render the scaffolds osteoconductive. The PHBV and nHA/PHBV scaffolds were systematically evaluated using various techniques in terms of mechanical strength, porosity, porous morphology, and in vitro degradation. PHBV and nHA/PHBV scaffolds degraded over time in phosphate-buffered saline at 37°C. PHBV polymer scaffolds exhibited slow molecular weight loss and weight loss in the in vitro physiological environment. Accelerated weight loss was observed in nHA incorporated PHBV composite scaffolds. An increasing trend of crystallinity was observed during the initial period of degradation time. The compressive properties decreased more than 40% after 5-month in vitro degradation. Together with interconnected pores, high porosity, suitable mechanical properties, and slow degradation profile obtained from long-term degradation studies, the PHBV scaffolds and osteoconductive nHA/PHBV composite scaffolds showed promises for bone tissue engineering application.

  6. Soy Protein Scaffold Biomaterials for Tissue Engineering and Regenerative Medicine

    Science.gov (United States)

    Chien, Karen B.

    Developing functional biomaterials using highly processable materials with tailorable physical and bioactive properties is an ongoing challenge in tissue engineering. Soy protein is an abundant, natural resource with potential use for regenerative medicine applications. Preliminary studies show that soy protein can be physically modified and fabricated into various biocompatible constructs. However, optimized soy protein structures for tissue regeneration (i.e. 3D porous scaffolds) have not yet been designed. Furthermore, little work has established the in vivo biocompatibility of implanted soy protein and the benefit of using soy over other proteins including FDA-approved bovine collagen. In this work, freeze-drying and 3D printing fabrication processes were developed using commercially available soy protein to create porous scaffolds that improve cell growth and infiltration compared to other soy biomaterials previously reported. Characterization of scaffold structure, porosity, and mechanical/degradation properties was performed. In addition, the behavior of human mesenchymal stem cells seeded on various designed soy scaffolds was analyzed. Biological characterization of the cell-seeded scaffolds was performed to assess feasibility for use in liver tissue regeneration. The acute and humoral response of soy scaffolds implanted in an in vivo mouse subcutaneous model was also investigated. All fabricated soy scaffolds were modified using thermal, chemical, and enzymatic crosslinking to change properties and cell growth behavior. 3D printing allowed for control of scaffold pore size and geometry. Scaffold structure, porosity, and degradation rate significantly altered the in vivo response. Freeze-dried soy scaffolds had similar biocompatibility as freeze-dried collagen scaffolds of the same protein content. However, the soy scaffolds degraded at a much faster rate, minimizing immunogenicity. Interestingly, subcutaneously implanted soy scaffolds affected blood

  7. Aptamer-Based Paper Strip Sensor for Detecting Vibrio fischeri.

    Science.gov (United States)

    Shin, Woo-Ri; Sekhon, Simranjeet Singh; Rhee, Sung-Keun; Ko, Jung Ho; Ahn, Ji-Young; Min, Jiho; Kim, Yang-Hoon

    2018-05-14

    Aptamer-based paper strip sensor for detecting Vibrio fischeri was developed. Our method was based on the aptamer sandwich assay between whole live cells, V. fischeri and DNA aptamer probes. Following 9 rounds of Cell-SELEX and one of the negative-SELEX, V. fischeri Cell Aptamer (VFCA)-02 and -03 were isolated, with the former showing approximately 10-fold greater avidity (in the subnanomolar range) for the target cells when arrayed on a surface. The colorimetric response of a paper sensor based on VFCA-02 was linear in the range of 4 × 10 1 to 4 × 10 5 CFU/mL of target cell by using scanning reader. The linear regression correlation coefficient ( R 2 ) was 0.9809. This system shows promise for use in aptamer-conjugated gold nanoparticle probes in paper strip format for in-field detection of marine bioindicating bacteria.

  8. Highly sensitive colorimetric and fluorescent sensor for cyanazine based on the inner filter effect of gold nanoparticles

    International Nuclear Information System (INIS)

    Dong, Liang; Hou, Changjun; Yang, Mei; Fa, Huanbao; Wu, Huixiang; Shen, Caihong; Huo, Danqun

    2016-01-01

    Cyanazine residue poses a great threat to human health and its derivatives would remain in soils, natural waters, and other environmental domains for a long time. Herein, a simple, rapid, and ultra-sensitive analytical method for the determination of cyanazine (CZ) based on inner filter effect (IFE) of Au nanoparticles (AuNPs) on the fluorescence of CdTe quantum dots (QDs) is first described in this study. With the presence of citrate-stabilized AuNPs, the fluorescence of GSH-capped CdTe QDs was remarkably quenched by AuNPs via IFE. The fluorescence of the AuNP–CdTe QD system was recovered upon addition of CZ. CZ can adsorb on to the surface of AuNPs due to its cyano group that has good affinity with gold, which could induce the aggregation of AuNPs accompanying color change from red to blue. Thus, the IFE of AuNPs on CdTe QDs was weakened, and the fluorescence intensity of CdTe QDs was recovered accordingly. A good linear correlation for detection of CZ was exhibited from 0.05 to 9 μM, and the detection limit reached 0.1568 μM, which was much lower than the safety limit required by the USA, the UK, and China. In order to probe into the selectivity of AuNPs towards CZ over other pesticides, various frequently used pesticides were mixed with AuNPs. AuNP composite solution shows good selectivity towards CZ among other pesticides. This method was successfully carried out for the assessment of CZ in real samples with satisfactory results, which revealed many advantages such as high sensitivity, low cost, and non-time-consuming compared with traditional methods.

  9. Highly sensitive colorimetric and fluorescent sensor for cyanazine based on the inner filter effect of gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Liang; Hou, Changjun, E-mail: houcj@cqu.edu.cn; Yang, Mei [Chongqing University, Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering (China); Fa, Huanbao [Chongqing University, College of Chemistry and Chemical Engineering (China); Wu, Huixiang [Chongqing University, Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering (China); Shen, Caihong [Luzhou Laojiao Group Co.Ltd, National Engineering Research Center of Solid-State Brewing (China); Huo, Danqun, E-mail: huodq@cqu.edu.cn [Chongqing University, Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering (China)

    2016-06-15

    Cyanazine residue poses a great threat to human health and its derivatives would remain in soils, natural waters, and other environmental domains for a long time. Herein, a simple, rapid, and ultra-sensitive analytical method for the determination of cyanazine (CZ) based on inner filter effect (IFE) of Au nanoparticles (AuNPs) on the fluorescence of CdTe quantum dots (QDs) is first described in this study. With the presence of citrate-stabilized AuNPs, the fluorescence of GSH-capped CdTe QDs was remarkably quenched by AuNPs via IFE. The fluorescence of the AuNP–CdTe QD system was recovered upon addition of CZ. CZ can adsorb on to the surface of AuNPs due to its cyano group that has good affinity with gold, which could induce the aggregation of AuNPs accompanying color change from red to blue. Thus, the IFE of AuNPs on CdTe QDs was weakened, and the fluorescence intensity of CdTe QDs was recovered accordingly. A good linear correlation for detection of CZ was exhibited from 0.05 to 9 μM, and the detection limit reached 0.1568 μM, which was much lower than the safety limit required by the USA, the UK, and China. In order to probe into the selectivity of AuNPs towards CZ over other pesticides, various frequently used pesticides were mixed with AuNPs. AuNP composite solution shows good selectivity towards CZ among other pesticides. This method was successfully carried out for the assessment of CZ in real samples with satisfactory results, which revealed many advantages such as high sensitivity, low cost, and non-time-consuming compared with traditional methods.

  10. Highly sensitive colorimetric and fluorescent sensor for cyanazine based on the inner filter effect of gold nanoparticles

    Science.gov (United States)

    Dong, Liang; Hou, Changjun; Yang, Mei; Fa, Huanbao; Wu, Huixiang; Shen, Caihong; Huo, Danqun

    2016-06-01

    Cyanazine residue poses a great threat to human health and its derivatives would remain in soils, natural waters, and other environmental domains for a long time. Herein, a simple, rapid, and ultra-sensitive analytical method for the determination of cyanazine (CZ) based on inner filter effect (IFE) of Au nanoparticles (AuNPs) on the fluorescence of CdTe quantum dots (QDs) is first described in this study. With the presence of citrate-stabilized AuNPs, the fluorescence of GSH-capped CdTe QDs was remarkably quenched by AuNPs via IFE. The fluorescence of the AuNP-CdTe QD system was recovered upon addition of CZ. CZ can adsorb on to the surface of AuNPs due to its cyano group that has good affinity with gold, which could induce the aggregation of AuNPs accompanying color change from red to blue. Thus, the IFE of AuNPs on CdTe QDs was weakened, and the fluorescence intensity of CdTe QDs was recovered accordingly. A good linear correlation for detection of CZ was exhibited from 0.05 to 9 μM, and the detection limit reached 0.1568 μM, which was much lower than the safety limit required by the USA, the UK, and China. In order to probe into the selectivity of AuNPs towards CZ over other pesticides, various frequently used pesticides were mixed with AuNPs. AuNP composite solution shows good selectivity towards CZ among other pesticides. This method was successfully carried out for the assessment of CZ in real samples with satisfactory results, which revealed many advantages such as high sensitivity, low cost, and non-time-consuming compared with traditional methods.

  11. A novel colorimetric and off–on fluorescent sensor for Hg2+ and its application in live cell imaging

    International Nuclear Information System (INIS)

    Li, Man; Jiang, Yuhua; Zhang, Di; Ding, Peigang; Wang, Zhenji; Ye, Yong; Zhao, Yufen

    2014-01-01

    A novel rhodamine-based fluorescent probe L2 with two “S” groups was synthesized and characterized. As expected, L2 exhibited high selectivity and sensitivity for Hg 2+ over other commonly coexistent metal ions. Its selectivity is excellent, and the detection limit was measured to be 1 ppm. The significant changes in the fluorescence color could be used for naked-eye detection. Furthermore, fluorescence imaging experiments of Hg 2+ ions in living EC-109 cells demonstrated its value of practical applications in biological systems. -- Highlights: • A new rhodamine-based chemodosimeter (L2) was synthesized and characterized. • L2 exhibited high selectivity and excellent sensitivity detection of Hg 2+ . • The significant changes in color could be used for naked-eye detection. • The fluorescence imaging experiments of Hg 2+ ions in living EC-109 cells demonstrated its value of practical applications in biological systems

  12. Melt electrospinning of biodegradable polyurethane scaffolds

    Science.gov (United States)

    Karchin, Ari; Simonovsky, Felix I.; Ratner, Buddy D.; Sanders, Joan E.

    2014-01-01

    Electrospinning from the melt, in contrast to from solution, is an attractive tissue engineering scaffold manufacturing process as it allows for the formation of small diameter fibers while eliminating potentially cytotoxic solvents. Despite this, there is a dearth of literature on scaffold formation via melt electrospinning. This is likely due to the technical challenges related to the need for a well-controlled high temperature setup and the difficulty in developing an appropriate polymer. In this paper, a biodegradable and thermally stable polyurethane (PU) is described specifically for use in melt electrospinning. Polymer formulations of aliphatic PUs based on (CH2)4-content diisocyanates, polycaprolactone (PCL), 1,4-butanediamine and 1,4-butanediol (BD) were evaluated for utility in the melt electrospinning process. The final polymer formulation, a catalyst-purified PU based on 1,4-butane diisocyanate, PCL and BD in a 4/1/3 molar ratio with a weight-average molecular weight of about 40 kDa, yielded a nontoxic polymer that could be readily electrospun from the melt. Scaffolds electrospun from this polymer contained point bonds between fibers and mechanical properties analogous to many in vivo soft tissues. PMID:21640853

  13. Microfibrous silver-coated polymeric scaffolds with tunable mechanical properties

    KAUST Repository

    Kalakonda, Parvathalu.; Aldhahri, Musab A.; Abdel-wahab, Mohamed Shaaban; Tamayol, Ali; Moghaddam, K. Mollazadeh; Ben Rached, Fathia; Pain, Arnab; Khademhosseini, Ali; Memic, Adnan; Chaieb, Saharoui

    2017-01-01

    Electrospun scaffolds of poly(glycerol sebacate)/poly(ε-caprolactone) (PGS/PCL) have been used for engineered tissues due to their desirable thermal and mechanical properties as well as their tunable degradability. In this paper, we fabricated micro-fibrous scaffolds from a composite of PGS/PCL using a standard electrospinning method and coated them with silver (Ag). The low temperature coating method prevented substrate melting and the Ag coating decreases the pore size and increases the diameter of fibers which resulted in enhanced thermal and mechanical properties. We further compared the mechanical properties of the composite fibrous scaffolds with different thicknesses of Ag coated scaffolds. The composite fibrous scaffold with a 275 nm Ag coating showed higher tensile modulus (E) and ultimate tensile strength (UTS) without any post-processing treatment. Lastly, potential controlled release of the Ag coating from the composite fibrous scaffolds could present interesting biomedical applications.

  14. Microfibrous silver-coated polymeric scaffolds with tunable mechanical properties

    KAUST Repository

    Kalakonda, Parvathalu.

    2017-07-07

    Electrospun scaffolds of poly(glycerol sebacate)/poly(ε-caprolactone) (PGS/PCL) have been used for engineered tissues due to their desirable thermal and mechanical properties as well as their tunable degradability. In this paper, we fabricated micro-fibrous scaffolds from a composite of PGS/PCL using a standard electrospinning method and coated them with silver (Ag). The low temperature coating method prevented substrate melting and the Ag coating decreases the pore size and increases the diameter of fibers which resulted in enhanced thermal and mechanical properties. We further compared the mechanical properties of the composite fibrous scaffolds with different thicknesses of Ag coated scaffolds. The composite fibrous scaffold with a 275 nm Ag coating showed higher tensile modulus (E) and ultimate tensile strength (UTS) without any post-processing treatment. Lastly, potential controlled release of the Ag coating from the composite fibrous scaffolds could present interesting biomedical applications.

  15. Bioactive Nano-fibrous Scaffold for Vascularized Craniofacial Bone Regeneration

    DEFF Research Database (Denmark)

    Prabha, Rahul Damodaran; Kraft, David Christian Evar; Harkness, Linda

    2018-01-01

    the limitation of cell penetration of electrospun scaffolds and improve on its osteoconductive nature, in this study, we fabricated a novel electrospun composite scaffold of polyvinyl alcohol (PVA) - poly (ε) caprolactone (PCL) - Bioceramic (HAB), namely, PVA-PCL-HAB. The scaffold prepared by dual...... electrospinning of PVA and PCL with HAB overcomes reduced cell attachment associated with hydrophobic poly (ε) caprolactone (PCL) by combination with a hydrophilic polyvinyl alcohol (PVA) and the bioceramic (HAB) can contribute to enhance osteo-conductivity. We characterized the physicochemical...... and biocompatibility properties of the new scaffold material. Our results indicate PVA-PCL-HAB scaffolds support attachment and growth of stromal stem cells; (human bone marrow skeletal (mesenchymal) stem cells (hMSC) and dental pulp stem cells (DPSC)). In addition, the scaffold supported in vitro osteogenic...

  16. Optischer Sensor

    OpenAIRE

    Brandenburg, A.; Hutter, F.; Edelhaeuser, R.

    1992-01-01

    WO 2010040565 A1 UPAB: 20100506 NOVELTY - The integrated optical sensor comprises a first waveguide (4), a second waveguide (5) optically coupled to the first waveguide via a directional coupler, a substrate, which carries the first and the second waveguides, a single waveguide coupled with a light source, and an output waveguide coupled with a light-sensitive element. The sensor has a functional surface in the region of the directional coupler for depositing or deposition of the substance to...

  17. Wireless sensor

    Science.gov (United States)

    Lamberti, Vincent E.; Howell, JR, Layton N.; Mee, David K.; Sepaniak, Michael J.

    2016-02-09

    Disclosed is a sensor for detecting a target material. The sensor includes a ferromagnetic metal and a molecular recognition reagent coupled to the ferromagnetic metal. The molecular recognition reagent is operable to expand upon exposure to vapor or liquid from the target material such that the molecular recognition reagent changes a tensile stress upon the ferromagnetic metal. The target material is detected based on changes in the magnetic switching characteristics of the ferromagnetic metal caused by the changes in the tensile stress.

  18. A comparison of two colorimetric assays, based upon Lowry and Bradford techniques, to estimate total protein in soil extracts

    OpenAIRE

    Redmile-Gordon, M.A.; Armenise, E.; White, R.P.; Hirsch, P.R.; Goulding, K.W.T.

    2013-01-01

    Soil extracts usually contain large quantities of dissolved humified organic material, typically reflected by high polyphenolic content. Since polyphenols seriously confound quantification of extracted protein, minimising this interference is important to ensure measurements are representative. Although the Bradford colorimetric assay is used routinely in soil science for rapid quantification protein in soil-extracts, it has several limitations. We therefore investigated an alternative colori...

  19. Exploiting pH-Regulated Dimer-Tetramer Transformation of Concanavalin A to Develop Colorimetric Biosensing of Bacteria.

    Science.gov (United States)

    Xu, Xiahong; Yuan, Yuwei; Hu, Guixian; Wang, Xiangyun; Qi, Peipei; Wang, Zhiwei; Wang, Qiang; Wang, Xinquan; Fu, Yingchun; Li, Yanbin; Yang, Hua

    2017-05-03

    Gold nanoparticles (AuNPs) aggregation-based colorimetric biosensing remains a challenge for bacteria due to their large size. Here we propose a novel colorimetric biosensor for rapid detection of Escherichia coli O157:H7 (E. coli O157:H7) in milk samples based on pH-regulated transformation of dimer/tetramer of Concanavalin A (Con A) and the Con A-glycosyl recognition. Briefly, antibody-modified magnetic nanoparticles was used to capture and concentrate E. coli O157:H7 and then to label with Con A; pH adjusted to 5 was then applied to dissociate Con A tetramer to release dimer, which was collected and re-formed tetramer at pH of 7 to cause the aggregation of dextran-modified AuNPs. The interesting pH-dependent conformation-transformation behavior of Con A innovated the design of the release from the bacteria surface and then the reconstruction of Con A. Therefore, we realized the sensitive colorimetric biosensing of bacteria, which are much larger than AuNPs that is generally not suitable for this kind of method. The proposed biosensor exhibited a limit of detection down to 41 CFU/mL, short assay time (~95 min) and satisfactory specificity. The biosensor also worked well for the detection in milk sample, and may provide a universal concept for the design of colorimetric biosensors for bacteria and virus.

  20. A colorimetric DET technique for the high-resolution measurement of two-dimensional alkalinity distributions in sediment porewaters

    DEFF Research Database (Denmark)

    Bennett, William W.; Welsh, David T.; Serriere, Antoine

    2015-01-01

    Measurements of porewater alkalinity are fundamental to the study of organic matter mineralization in sediments, which plays an essential role in the global cycles of carbon and nutrients. A new colorimetric diffusive equilibration in thin film (DET) technique is described for measuring two-dimen...

  1. Porous magnesium-based scaffolds for tissue engineering

    International Nuclear Information System (INIS)

    Yazdimamaghani, Mostafa; Razavi, Mehdi; Vashaee, Daryoosh; Moharamzadeh, Keyvan; Boccaccini, Aldo R.; Tayebi, Lobat

    2017-01-01

    Significant amount of research efforts have been dedicated to the development of scaffolds for tissue engineering. Although at present most of the studies are focused on non-load bearing scaffolds, many scaffolds have also been investigated for hard tissue repair. In particular, metallic scaffolds are being studied for hard tissue engineering due to their suitable mechanical properties. Several biocompatible metallic materials such as stainless steels, cobalt alloys, titanium alloys, tantalum, nitinol and magnesium alloys have been commonly employed as implants in orthopedic and dental treatments. They are often used to replace and regenerate the damaged bones or to provide structural support for healing bone defects. Among the common metallic biomaterials, magnesium (Mg) and a number of its alloys are effective because of their mechanical properties close to those of human bone, their natural ionic content that may have important functional roles in physiological systems, and their in vivo biodegradation characteristics in body fluids. Due to such collective properties, Mg based alloys can be employed as biocompatible, bioactive, and biodegradable scaffolds for load-bearing applications. Recently, porous Mg and Mg alloys have been specially suggested as metallic scaffolds for bone tissue engineering. With further optimization of the fabrication techniques, porous Mg is expected to make a promising hard substitute scaffold. The present review covers research conducted on the fabrication techniques, surface modifications, properties and biological characteristics of Mg alloys based scaffolds. Furthermore, the potential applications, challenges and future trends of such degradable metallic scaffolds are discussed in detail. - Highlights: • A porous 3D material provides the required pathways for cells to grow, proliferate, and differentiate • Porous magnesium and Mg alloys could be used as load-bearing scaffolds • Porous magnesium and Mg alloys are good

  2. Porous magnesium-based scaffolds for tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Yazdimamaghani, Mostafa [School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078 (United States); Razavi, Mehdi [Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304 (United States); Vashaee, Daryoosh [Electrical and Computer Engineering Department, North Carolina State University, Raleigh, NC 27606 (United States); Moharamzadeh, Keyvan [School of Clinical Dentistry, University of Sheffield, Claremont Crescent, Sheffield (United Kingdom); Marquette University School of Dentistry, Milwaukee, WI 53233 (United States); Boccaccini, Aldo R. [Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen (Germany); Tayebi, Lobat, E-mail: lobat.tayebi@marquette.edu [Marquette University School of Dentistry, Milwaukee, WI 53233 (United States)

    2017-02-01

    Significant amount of research efforts have been dedicated to the development of scaffolds for tissue engineering. Although at present most of the studies are focused on non-load bearing scaffolds, many scaffolds have also been investigated for hard tissue repair. In particular, metallic scaffolds are being studied for hard tissue engineering due to their suitable mechanical properties. Several biocompatible metallic materials such as stainless steels, cobalt alloys, titanium alloys, tantalum, nitinol and magnesium alloys have been commonly employed as implants in orthopedic and dental treatments. They are often used to replace and regenerate the damaged bones or to provide structural support for healing bone defects. Among the common metallic biomaterials, magnesium (Mg) and a number of its alloys are effective because of their mechanical properties close to those of human bone, their natural ionic content that may have important functional roles in physiological systems, and their in vivo biodegradation characteristics in body fluids. Due to such collective properties, Mg based alloys can be employed as biocompatible, bioactive, and biodegradable scaffolds for load-bearing applications. Recently, porous Mg and Mg alloys have been specially suggested as metallic scaffolds for bone tissue engineering. With further optimization of the fabrication techniques, porous Mg is expected to make a promising hard substitute scaffold. The present review covers research conducted on the fabrication techniques, surface modifications, properties and biological characteristics of Mg alloys based scaffolds. Furthermore, the potential applications, challenges and future trends of such degradable metallic scaffolds are discussed in detail. - Highlights: • A porous 3D material provides the required pathways for cells to grow, proliferate, and differentiate • Porous magnesium and Mg alloys could be used as load-bearing scaffolds • Porous magnesium and Mg alloys are good

  3. [Colorimetric investigation of normal tongue and lip colors from 516 healthy adults by visible reflection spectrum].

    Science.gov (United States)

    Zeng, Chang-chun; Yang, Li; Xu, Ying; Liu, Pei-pei; Guo, Shi-jun; Liu, Song-hao

    2011-09-01

    Using the data from normal tongue and lip colors of normal people which were collected by the visible reflection spectrum, we analyzed the colorimetric parameters of tongue and lip colors. In this study, 516 healthy students aging from 19 to 26 from the colleges and universities of Guangdong Province of China were taken as research subjects. After collecting the data of tongue and lip colors of the 516 subjects using visible reflectance spectroscopy, CIE XYZ tristimulus values as defined by the International Commission on Illumination in 1964 were calculated, and the colorimetric parameters of the normal tongue and lip colors were obtained, such as the CIE 1964 chromaticity coordinate, brightness, dominant wavelength and excitation purity. The results of CIE 1964 chromaticity diagram calculated on the visible reflection spectrum showed that the normal tongue color chromaticity coordinate x(10) was 0.341 3±0.008 5 and y(10) was 0.332 6±0.005 1, and the normal lip color chromaticity coordinate x(10) was 0.357 7±0.009 2 and y(10) was 0.338 3±0.005 7; the brightness Y values of the normal tongue color and lip colors were 17.96±3.78 and 19.78±3.72, the dominant wavelength values of the normal tongue color and lip color were (626.3±51.6) nm and (600.4±18.2) nm, and the excitation purity values of the normal tongue color and lip color were 0.083±0.031 and 0.144±0.036, respectively. Application of the visible reflection spectrum is a standard way to collect colorimetric data for inspection of the complexion. The investigation of chromaticity coordinates, brightness, dominant wavelength and excitation purity of the normal tongue and lip colors may offer the basic reference for diagnosing morbid complexion on the tongue and lip colors in traditional Chinese medicine.

  4. Spectro colorimetric and GC-MS Models, Used to Determine the Changes in the Natural Compounds of the Sea Buck thorn Leaves Sterilized with Ionizing Radiations

    International Nuclear Information System (INIS)

    Minea, R.; Popescu, M.I.; Sima, E.; Dumitrascu, M.; Culea, M.; Manea, St.; Mazilu, E.

    2009-01-01

    Spectro colorimetric and GC-MS methods were developed for the quantitative and quality analyze of the fatty acid methyl esters (FAME) and of some natural compounds extracted from the Sea Buckthorn (Hippophae rhamnoides) leaves sterilized by treating them with accelerated electron beams, generated by a linear accelerator. The spectro colorimetric models describe and easy controls the color as it relies on the psycho physics of the color perception and on the simple colorimetric models. Hunter Lab, CIELAB, CIELCH simple colorimetric models are used in developing complex colorimetric models and for the calculation of simple colorimetric models expressed as the total color difference between a sample and a witness, ΔΕ * , ΔΕ C MC, ΔΕ * D IN99, ΔΕ * C IE2000. They provide qualitative data on the deterioration of the active compounds by irradiation. If they are validated by GC-MS methods, they can also provide quantitative data on the radioinduced changes caused to the Sea Buckthorn leaves. The developed GC-MS methods allow the validation of the spectro colorimetric methods for the quantitative and qualitative evaluation of the radioinduced changes in the Sea Buckthorn leaves, reducing both the analyze times and the analyze cost, respectively the random errors of the procedures for extraction and derivation applied to samples preparation

  5. Intrinsic Osteoinductivity of Porous Titanium Scaffold for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Maryam Tamaddon

    2017-01-01

    Full Text Available Large bone defects and nonunions are serious complications that are caused by extensive trauma or tumour. As traditional therapies fail to repair these critical-sized defects, tissue engineering scaffolds can be used to regenerate the damaged tissue. Highly porous titanium scaffolds, produced by selective laser sintering with mechanical properties in range of trabecular bone (compressive strength 35 MPa and modulus 73 MPa, can be used in these orthopaedic applications, if a stable mechanical fixation is provided. Hydroxyapatite coatings are generally considered essential and/or beneficial for bone formation; however, debonding of the coatings is one of the main concerns. We hypothesised that the titanium scaffolds have an intrinsic potential to induce bone formation without the need for a hydroxyapatite coating. In this paper, titanium scaffolds coated with hydroxyapatite using electrochemical method were fabricated and osteoinductivity of coated and noncoated scaffolds was compared in vitro. Alizarin Red quantification confirmed osteogenesis independent of coating. Bone formation and ingrowth into the titanium scaffolds were evaluated in sheep stifle joints. The examinations after 3 months revealed 70% bone ingrowth into the scaffold confirming its osteoinductive capacity. It is shown that the developed titanium scaffold has an intrinsic capacity for bone formation and is a suitable scaffold for bone tissue engineering.

  6. Multilayer porous UHMWPE scaffolds for bone defects replacement

    Energy Technology Data Exchange (ETDEWEB)

    Maksimkin, A.V. [National University of Science and Technology “MISIS”, Moscow (Russian Federation); Senatov, F.S., E-mail: senatov@misis.ru [National University of Science and Technology “MISIS”, Moscow (Russian Federation); Anisimova, N.Yu.; Kiselevskiy, M.V. [National University of Science and Technology “MISIS”, Moscow (Russian Federation); N.N. Blokhin Russian Cancer Research Center, Moscow (Russian Federation); Zalepugin, D.Yu.; Chernyshova, I.V.; Tilkunova, N.A. [State Plant of Medicinal Drugs, Moscow (Russian Federation); Kaloshkin, S.D. [National University of Science and Technology “MISIS”, Moscow (Russian Federation)

    2017-04-01

    Reconstruction of the structural integrity of the damaged bone tissue is an urgent problem. UHMWPE may be potentially used for the manufacture of porous implants simulating as closely as possible the porous cancellous bone tissue. But the extremely high molecular weight of the polymer does not allow using traditional methods of foaming. Porous and multilayer UHMWPE scaffolds with nonporous bulk layer and porous layer that mimics cancellous bone architecture were obtained by solid-state mixing, thermopressing and washing in subcritical water. Structural and mechanical properties of the samples were studied. Porous UHMWPE samples were also studied in vitro and in vivo. The pores of UHMWPE scaffold are open and interconnected. Volume porosity of the obtained samples was 79 ± 2%; the pore size range was 80–700 μm. Strong connection of the two layers in multilayer UHMWPE scaffolds was observed with decreased number of fusion defects. Functionality of implants based on multilayer UHMWPE scaffolds is provided by the fixation of scaffolds in the bone defect through ingrowths of the connective tissue into the pores, which ensures the maintenance of the animals' mobility - Highlights: • Porous UHMWPE scaffold mimics cancellous bone architecture, maintaining its flexibility. • Multilayer UHMWPE scaffold is able to simulate different types of bone tissue. • Fixation of scaffolds in the bone provides through ingrowths of the connective tissue into pores. • Multilayer UHMWPE scaffolds can be used for the formation of bone implants.

  7. Multilayer porous UHMWPE scaffolds for bone defects replacement

    International Nuclear Information System (INIS)

    Maksimkin, A.V.; Senatov, F.S.; Anisimova, N.Yu.; Kiselevskiy, M.V.; Zalepugin, D.Yu.; Chernyshova, I.V.; Tilkunova, N.A.; Kaloshkin, S.D.

    2017-01-01

    Reconstruction of the structural integrity of the damaged bone tissue is an urgent problem. UHMWPE may be potentially used for the manufacture of porous implants simulating as closely as possible the porous cancellous bone tissue. But the extremely high molecular weight of the polymer does not allow using traditional methods of foaming. Porous and multilayer UHMWPE scaffolds with nonporous bulk layer and porous layer that mimics cancellous bone architecture were obtained by solid-state mixing, thermopressing and washing in subcritical water. Structural and mechanical properties of the samples were studied. Porous UHMWPE samples were also studied in vitro and in vivo. The pores of UHMWPE scaffold are open and interconnected. Volume porosity of the obtained samples was 79 ± 2%; the pore size range was 80–700 μm. Strong connection of the two layers in multilayer UHMWPE scaffolds was observed with decreased number of fusion defects. Functionality of implants based on multilayer UHMWPE scaffolds is provided by the fixation of scaffolds in the bone defect through ingrowths of the connective tissue into the pores, which ensures the maintenance of the animals' mobility - Highlights: • Porous UHMWPE scaffold mimics cancellous bone architecture, maintaining its flexibility. • Multilayer UHMWPE scaffold is able to simulate different types of bone tissue. • Fixation of scaffolds in the bone provides through ingrowths of the connective tissue into pores. • Multilayer UHMWPE scaffolds can be used for the formation of bone implants.

  8. Biochemical properties of Hemigraphis alternata incorporated chitosan hydrogel scaffold.

    Science.gov (United States)

    Annapoorna, M; Sudheesh Kumar, P T; Lakshman, Lakshmi R; Lakshmanan, Vinoth-Kumar; Nair, Shantikumar V; Jayakumar, R

    2013-02-15

    In this work, Hemigraphis alternata extract incorporated chitosan scaffold was synthesized and characterized for wound healing. The antibacterial activity of Hemigraphis incorporated chitosan scaffold (HIC) against Escherichia coli and Staphylococcus aureus was evaluated which showed a reduction in total colony forming units by 45-folds toward E. coli and 25-fold against S. aureus respectively. Cell viability studies using Human Dermal Fibroblast cells (HDF) showed 90% viability even at 48 h when compared to the chitosan control. The herbal scaffold made from chitosan was highly haemostatic and antibacterial. The obtained results were in support that the herbal scaffold can be effectively applied for infectious wounds. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Low elastic modulus titanium–nickel scaffolds for bone implants

    International Nuclear Information System (INIS)

    Li, Jing; Yang, Hailin; Wang, Huifeng; Ruan, Jianming

    2014-01-01

    The superelastic nature of repeating the human bones is crucial to the ideal artificial biomedical implants to ensure smooth load transfer and foster the ingrowth of new bone tissues. Three dimensional interconnected porous TiNi scaffolds, which have the tailorable porous structures with micro-hole, were fabricated by slurry immersing with polymer sponge and sintering method. The crystallinity and phase composition of scaffolds were studied by X-ray diffraction. The pore morphology, size and distribution in the scaffolds were characterized by scanning electron microscopy. The porosity ranged from 65 to 72%, pore size was 250–500 μm. Compressive strength and elastic modulus of the scaffolds were ∼ 73 MPa and ∼ 3GPa respectively. The above pore structural and mechanical properties are similar to those of cancellous bone. In the initial cell culture test, osteoblasts adhered well to the scaffold surface during a short time, and then grew smoothly into the interconnected pore channels. These results indicate that the porous TiNi scaffolds fabricated by this method could be bone substitute materials. - Highlights: • A novel approach for the fabrication of porous TiNi scaffolds • Macroporous structures are replicated from the polymer sponge template. • The pore characteristics and mechanical properties of TiNi scaffolds agree well with the requirement of trabecular bone. • Cytocompatibility of TiNi scaffolds is assessed, and it closely associated with pore property

  10. [Strategies to choose scaffold materials for tissue engineering].

    Science.gov (United States)

    Gao, Qingdong; Zhu, Xulong; Xiang, Junxi; Lü, Yi; Li, Jianhui

    2016-02-01

    Current therapies of organ failure or a wide range of tissue defect are often not ideal. Transplantation is the only effective way for long time survival. But it is hard to meet huge patients demands because of donor shortage, immune rejection and other problems. Tissue engineering could be a potential option. Choosing a suitable scaffold material is an essential part of it. According to different sources, tissue engineering scaffold materials could be divided into three types which are natural and its modified materials, artificial and composite ones. The purpose of tissue engineering scaffold is to repair the tissues or organs damage, so could reach the ideal recovery in its function and structure aspect. Therefore, tissue engineering scaffold should even be as close as much to the original tissue or organs in function and structure. We call it "organic scaffold" and this strategy might be the drastic perfect substitute for the tissues or organs in concern. Optimized organization with each kind scaffold materials could make up for biomimetic structure and function of the tissue or organs. Scaffold material surface modification, optimized preparation procedure and cytosine sustained-release microsphere addition should be considered together. This strategy is expected to open new perspectives for tissue engineering. Multidisciplinary approach including material science, molecular biology, and engineering might find the most ideal tissue engineering scaffold. Using the strategy of drawing on each other strength and optimized organization with each kind scaffold material to prepare a multifunctional biomimetic tissue engineering scaffold might be a good method for choosing tissue engineering scaffold materials. Our research group had differentiated bone marrow mesenchymal stem cells into bile canaliculi like cells. We prepared poly(L-lactic acid)/poly(ε-caprolactone) biliary stent. The scaffold's internal played a part in the long-term release of cytokines which

  11. Novel biodegradable porous scaffold applied to skin regeneration.

    Science.gov (United States)

    Wang, Hui-Min; Chou, Yi-Ting; Wen, Zhi-Hong; Wang, Chau-Zen; Wang, Zhao-Ren; Chen, Chun-Hong; Ho, Mei-Ling

    2013-01-01

    Skin wound healing is an important lifesaving issue for massive lesions. A novel porous scaffold with collagen, hyaluronic acid and gelatin was developed for skin wound repair. The swelling ratio of this developed scaffold was assayed by water absorption capacity and showed a value of over 20 g water/g dried scaffold. The scaffold was then degraded in time- and dose-dependent manners by three enzymes: lysozyme, hyaluronidase and collagenase I. The average pore diameter of the scaffold was 132.5±8.4 µm measured from SEM images. With human skin cells growing for 7 days, the SEM images showed surface fractures on the scaffold due to enzymatic digestion, indicating the biodegradable properties of this scaffold. To simulate skin distribution, the human epidermal keratinocytes, melanocytes and dermal fibroblasts were seeded on the porous scaffold and the cross-section immunofluorescent staining demonstrated normal human skin layer distributions. The collagen amount was also quantified after skin cells seeding and presented an amount 50% higher than those seeded on culture wells. The in vivo histological results showed that the scaffold ameliorated wound healing, including decreasing neutrophil infiltrates and thickening newly generated skin compared to the group without treatments.

  12. Novel biodegradable porous scaffold applied to skin regeneration.

    Directory of Open Access Journals (Sweden)

    Hui-Min Wang

    Full Text Available Skin wound healing is an important lifesaving issue for massive lesions. A novel porous scaffold with collagen, hyaluronic acid and gelatin was developed for skin wound repair. The swelling ratio of this developed scaffold was assayed by water absorption capacity and showed a value of over 20 g water/g dried scaffold. The scaffold was then degraded in time- and dose-dependent manners by three enzymes: lysozyme, hyaluronidase and collagenase I. The average pore diameter of the scaffold was 132.5±8.4 µm measured from SEM images. With human skin cells growing for 7 days, the SEM images showed surface fractures on the scaffold due to enzymatic digestion, indicating the biodegradable properties of this scaffold. To simulate skin distribution, the human epidermal keratinocytes, melanocytes and dermal fibroblasts were seeded on the porous scaffold and the cross-section immunofluorescent staining demonstrated normal human skin layer distributions. The collagen amount was also quantified after skin cells seeding and presented an amount 50% higher than those seeded on culture wells. The in vivo histological results showed that the scaffold ameliorated wound healing, including decreasing neutrophil infiltrates and thickening newly generated skin compared to the group without treatments.

  13. Chitosan composite three dimensional macrospheric scaffolds for bone tissue engineering.

    Science.gov (United States)

    Vyas, Veena; Kaur, Tejinder; Thirugnanam, Arunachalam

    2017-11-01

    The present work deals with the fabrication of chitosan composite scaffolds with controllable and predictable internal architecture for bone tissue engineering. Chitosan (CS) based composites were developed by varying montmorillonite (MMT) and hydroxyapatite (HA) combinations to fabricate macrospheric three dimensional (3D) scaffolds by direct agglomeration of the sintered macrospheres. The fabricated CS, CS/MMT, CS/HA and CS/MMT/HA 3D scaffolds were characterized for their physicochemical, biological and mechanical properties. The XRD and ATR-FTIR studies confirmed the presence of the individual constituents and the molecular interaction between them, respectively. The reinforcement with HA and MMT showed reduced swelling and degradation rate. It was found that in comparison to pure CS, the CS/HA/MMT composites exhibited improved hemocompatibility and protein adsorption. The sintering of the macrospheres controlled the swelling ability of the scaffolds which played an important role in maintaining the mechanical strength of the 3D scaffolds. The CS/HA/MMT composite scaffold showed 14 folds increase in the compressive strength when compared to pure CS scaffolds. The fabricated scaffolds were also found to encourage the MG 63 cell proliferation. Hence, from the above studies it can be concluded that the CS/HA/MMT composite 3D macrospheric scaffolds have wider and more practical application in bone tissue regeneration applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Dual-Modal Colorimetric/Fluorescence Molecular Probe for Ratiometric Sensing of pH and Its Application.

    Science.gov (United States)

    Wu, Luling; Li, Xiaolin; Huang, Chusen; Jia, Nengqin

    2016-08-16

    As traditional pH meters cannot work well for minute regions (such as subcellular organelles) and in harsh media, molecular pH-sensitive devices for monitoring pH changes in diverse local heterogeneous environments are urgently needed. Here, we report a new dual-modal colorimetric/fluorescence merocyanine-based molecular probe (CPH) for ratiometric sensing of pH. Compared with previously reported pH probes, CPH bearing the benzyl group at the nitrogen position of the indolium group and the phenol, which is used as the acceptor for proton, could respond to pH changes immediately through both the ratiometric fluorescence signal readout and naked-eye colorimetric observation. The sensing process was highly stable and reversible. Most importantly, the suitable pKa value (6.44) allows CPH to presumably accumulate in lysosomes and become a lysosome-target fluorescent probe. By using CPH, the intralysosomal pH fluctuation stimulated by antimalaria drug chloroquine was successfully tracked in live cells through the ratiometric fluorescence images. Additionally, CPH could be immobilized on test papers, which exhibited a rapid and reversible colorimetric response to acid/base vapor through the naked-eye colorimetric analysis. This proof-of-concept study presents the potential application of CPH as a molecular tool for monitoring intralysosomal pH fluctuation in live cells, as well as paves the way for developing the economic, reusable, and fast-response optical pH meters for colorimetric sensing acid/base vapor with direct naked-eye observation.

  15. Discovering the enzyme mimetic activity of metal-organic framework (MOF) for label-free and colorimetric sensing of biomolecules.

    Science.gov (United States)

    Wang, Ying; Zhu, Yingjing; Binyam, Atsebeha; Liu, Misha; Wu, Yinan; Li, Fengting

    2016-12-15

    A label-free sensing strategy based on the enzyme-mimicking activity of MOF was demonstrated for colorimetric detection of biomolecules. Firstly obvious blue color was observed due to the high efficiency of peroxidase-like catalytic activity of Fe-MIL-88A (an ion-based MOF material) toward 3,3',5,5'-tetramethylbenzidine (TMB). Then in the presence of target biomolecule and corresponding aptamer, the mimetic activity of Fe-MIL-88A can be strongly inhibited and used directly to realize the colorimetric detection. On the basis of the interesting findings, we designed a straightforward, label-free and sensitive colorimetric method for biomolecule detection by using the enzyme mimetic property of MOF coupling with molecular recognition element. Compared with the existed publications, our work breaks the routine way by setting up an inorganic-organic MOF-aptamer hybrid platform for colorimetric determination of biomolecules, expanding the targets scope from H2O2 or glucose to biomolecules. As a proof of concept, thrombin and thrombin aptamer was used as a model analyte. The limit of detection of 10nM can be achieved with naked eyes and ultrahigh selectivity of thrombin toward numerous interfering substances with 10-fold concentration was demonstrated significantly. Of note, the method was further applied for the detection of thrombin in human serum samples, showing the results in agreement with those values obtained in an immobilization buffer by the colorimetric method. This inorganic-organic MOF-aptamer sensing strategy may in principle be universally applicable for the detection of a range of environmental or biomedical molecules of interests. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Facile method of building hydroxyapatite 3D scaffolds assembled from porous hollow fibers enabling nutrient delivery

    NARCIS (Netherlands)

    Salamon, David; Da Silva Teixeira, Sandra; Dutczak, S.M.; Stamatialis, Dimitrios

    2014-01-01

    Nowadays, diffusion through scaffold and tissue usually limits transport, and forms potentially hypoxic regions. Several methods are used for preparation of 3D hydroxyapatite scaffolds, however, production of a scaffold including porous hollow fibers for nutrition delivery is difficult and

  17. Triptycene: A Nucleic Acid Three-Way Junction Binder Scaffold

    Science.gov (United States)

    Yoon, Ina

    Nucleic acids play a critical role in many biological processes such as gene regulation and replication. The development of small molecules that modulate nucleic acids with sequence or structure specificity would provide new strategies for regulating disease states at the nucleic acid level. However, this remains challenging mainly because of the nonspecific interactions between nucleic acids and small molecules. Three-way junctions are critical structural elements of nucleic acids. They are present in many important targets such as trinucleotide repeat junctions related to Huntington's disease, a temperature sensor sigma32 in E. coli, Dengue virus, and HIV. Triptycene-derived small molecules have been shown to bind to nucleic acid three-way junctions, resulting from their shape complementary. To develop a better understanding of designing molecules for targeting different junctions, a rapid screening of triptycene-based small molecules is needed. We envisioned that the installation of a linker at C9 position of the bicyclic core would allow for a rapid solid phase diversification. To achieve this aim, we synthesized 9-substituted triptycene scaffolds by using two different synthetic routes. The first synthetic route installed the linker from the amidation reaction between carboxylic acid at C9 position of the triptycene and an amine linker, beta-alanine ethyl ester. This new 9-substituted triptycene scaffold was then attached to a 2-chlorotrityl chloride resin for solid-phase diversification. This enabled a rapid diversification and an easy purification of mono-, di-, and tri-peptide triptycene derivatives. The binding affinities of these compounds were investigated towards a (CAG)˙(CTG) trinucleotide repeat junction. In the modified second synthetic route, we utilized a combined Heck coupling/benzyne Diels-Alder strategy. This improved synthetic strategy reduced the number of steps and total reaction times, increased the overall yield, improved solubilities of

  18. Enzyme-based Colorimetric and Potentiometric Biosensor for Detecting Pb (II Ions in Milk

    Directory of Open Access Journals (Sweden)

    Hardeep Kaur

    2014-08-01

    Full Text Available The aim of the present work was to study a simple colorimetric and potentiometric biosensor based on urease inhibition by Pb (II ions for its estimation in milk samples. Urease immobilized on nylon membrane by hydrosol gel method was used as the biocomponent to demonstrate the metal effect on the enzyme activity using phenol red as the pH indicator. A lower limit detection of 38.6µm was achieved in the milk and the enzyme membranes were stable for more than two months at 4ºC. In potentiometric approach, response of an ion selective electrode (ISE to changing ammonium ion concentration as a consequence of urease inhibition by Pb (II ions was explored to achieve a detection limit of 9.66 µm. Lead specificity was attained by means of masking agents 1,10 - phenanthroline and sodium potassium tartarate. Validation of the developed biosensors was carried out with spiked milk samples.

  19. A simple in situ visual and tristimulus colorimetric method for the determination of diphosgene in air

    Directory of Open Access Journals (Sweden)

    VLADIMÍR PITSCHMANN

    2007-10-01

    Full Text Available A simple visual and tristimulus colorimetric method (three-dimensional system CIE–L*a*b* for the determination of trace amounts of diphosgene in air has been developed. The method is based on the suction of diphosgene vapors through a modified cotton fabric filter fixed in a special adapter. Prior to analysis, the filter is saturated with a chromogenic reagent based on 4-(p-nitrobenzylpyridine. The optimal composition of the reagent is 2 g of 4-(p-nitrobenzylpyridine and 4 g of N-phenylbenzylamine in 100 ml of a 50:50 ethanol–glycerol mixture. The intensity of the formed red coloration of the filter is evaluated visually or by a tristimulus colorimeter (LMG 173, Lange, Germany. The detection limit is 0.01 mg m-3. Acetyl chloride and benzoyl chloride react in 150 and 50 times higher concentrations, respecttively. The method is suitable for mobile field analysis.

  20. Dual Colorimetric and Fluorescent Authentication Based on Semiconducting Polymer Dots for Anticounterfeiting Applications.

    Science.gov (United States)

    Tsai, Wei-Kai; Lai, Yung-Sheng; Tseng, Po-Jung; Liao, Chia-Hsien; Chan, Yang-Hsiang

    2017-09-13

    Semiconducting polymer dots (Pdots) have recently emerged as a novel type of ultrabright fluorescent probes that can be widely used in analytical sensing and material science. Here, we developed a dual visual reagent based on Pdots for anticounterfeiting applications. We first designed and synthesized two types of photoswitchable Pdots by incorporating photochromic dyes with multicolor semiconducting polymers to modulate their emission intensities and wavelengths. The resulting full-color Pdot assays showed that the colorimetric and fluorescent dual-readout abilities enabled the Pdots to serve as an anticounterfeiting reagent with low background interference. We also doped these Pdots into flexible substrates and prepared these Pdots as inks for pen handwriting as well as inkjet printing. We further applied this reagent in printing paper and checks for high-security anticounterfeiting purposes. We believe that this dual-readout method based on Pdots will create a new avenue for developing new generations of anticounterfeiting technologies.

  1. Aloe vera is non-toxic to cells: A microculture tetrazolium technique colorimetric assay study

    Directory of Open Access Journals (Sweden)

    Devi Gopakumar

    2014-01-01

    Full Text Available Introduction: Aloe vera (Av, a succulent of Liliaceae family is now a widely used medicinal plant. Its′ application covers a wide spectrum of human diseases, including oral mucosa, gastric mucosa and skin. Aloe vera preparations in the form of gel, mouth washes and cream are applied topically for many oral diseases. The applications include oral lichen planus, candidiasis, oral submucous fibrosis, geographic tongue, etc. Aims and Objectives: To evaluate the cytotoxicity of Av on human fibroblasts. Materials and Methods: Aloe vera preparation (70% was applied on the fibroblast cell lineage and the cell viability was evaluated by microculture tetrazolium technique (MTT colorimetric assay. Results: The cell viability at different concentrations was measured. The cells have maintained their viability at different concentrations used in the study. Conclusion: Our study shows the cell viability at different sample concentrations of Av. This could open up wide clinical applications of Av for reactive, inflammatory and potentially malignant oral and other mucocutaneous diseases.

  2. The colorimetric analysis of anti-tuberculosis fixed-dose combination tablets and capsules.

    Science.gov (United States)

    Ellard, G A

    1999-11-01

    The perceived need to demonstrate whether or not the actual amounts of rifampicin, isoniazid and pyrazinamide in fixed-dose combination tablets or capsules correspond to their stated drug contents. To adapt specific, robust and simple colorimetric methods that have been previously applied to measuring plasma and urinary rifampicin, isoniazid, pyrazinamide and ethambutol concentrations to estimate tablet and capsule drug contents. The methods were applied to the analysis of 14 commercially manufactured fixed-dose combinations: two capsule and three tablet formulations containing rifampicin and isoniazid; seven tablet formulations containing rifampicin, isoniazid and pyrazinamide; and two tablet formulations containing rifampicin, isoniazid, pyrazinamide and ethambutol. All the combined formulations contained near to their stated drug contents. Replicate analyses confirmed the excellent precision of the drug analyses. Such methods are not only rapid to perform but should be practical in many Third World situations with relatively modest laboratory facilities.

  3. Simple in situ visual and tristimulus colorimetric determination of sulfur dioxide in air

    International Nuclear Information System (INIS)

    Pitschmann, V.; Tusarova, I.; Halamek, E.; Kobliha, Z. pitschmann@orites.cz

    2006-01-01

    A simple in situ visual and tristimulus colorimetric method of determination of the trace amount of sulfur dioxide in air has been developed. Tristimulus colorimetry is based on application of three-dimensional colour space L*a*b according to CIE (Commission Internationale de Eclairage). L* represents lightness and a* and b* represent chromaticity. The analytical method is based on drawing the harmful pollutants through a filter made of modified cotton fabric, which is planted on a special extension piece. The filter is saturated with chromogenic reagent based on 5,5-dithio-bis( 2-nitrobenzoic acid) in the mixture of N,N-dimethylformamide dimethyl sulfoxide (1 : 1). On the filter the orange colour appears; the intensity of the colour is assessed visually and/or by a tristimulus colorimeter (LMG 173, Lange, Germany). The detection limit is 0.01 mg.m -3 .Interferences of reduction (especially hydrogen sulfide), oxidation, alkaline and acid agents have been describes. (author)

  4. Colorimetric determination of TOPO during synthesis process by complexation with thiocyanate

    International Nuclear Information System (INIS)

    Achache, A.; Meddour, L.; Azzouz, A.

    1990-09-01

    We have shown up a method which permits to dose tri-n-octyl phosphine oxid (TOPO) dissolved into the cyclohexan by colorimetric technique. This leads to find out a method capable to follow the evolution of the process of the synthesis for the tri-n-octyl phosphine oxid. This method consists in mixing up TOTO-cyclohexan with thiocyanate salts, and the formation of a complex of red colour occurs. Further, the complex amount was determined by spectrophotometry U.V. under the following conditions: =487nm; the concentration of the TOPO into the cyclohexan varies in range 1 to 5 10 -4 M/L. This method previously tested on the commercial TOPO (Flukz) was further used for the titration of synthetizied TOPO

  5. Zero- and two-dimensional hybrid carbon phosphors for high colorimetric purity white light-emission.

    Science.gov (United States)

    Ding, Yamei; Chang, Qing; Xiu, Fei; Chen, Yingying; Liu, Zhengdong; Ban, Chaoyi; Cheng, Shuai; Liu, Juqing; Huang, Wei

    2018-03-01

    Carbon nanomaterials are promising phosphors for white light emission. A facile single-step synthesis method has been developed to prepare zero- and two-dimensional hybrid carbon phosphors for the first time. Zero-dimensional carbon dots (C-dots) emit bright blue luminescence under 365 nm UV light and two-dimensional nanoplates improve the dispersity and film forming ability of C-dots. As a proof-of-concept application, the as-prepared hybrid carbon phosphors emit bright white luminescence in the solid state, and the phosphor-coated blue LEDs exhibit high colorimetric purity white light-emission with a color coordinate of (0.3308, 0.3312), potentially enabling the successful application of white emitting phosphors in the LED field.

  6. A plasmonic colorimetric strategy for visual miRNA detection based on hybridization chain reaction

    Science.gov (United States)

    Miao, Jie; Wang, Jingsheng; Guo, Jinyang; Gao, Huiguang; Han, Kun; Jiang, Chengmin; Miao, Peng

    2016-08-01

    In this work, a novel colorimetric strategy for miRNA analysis is proposed based on hybridization chain reaction (HCR)-mediated localized surface plasmon resonance (LSPR) variation of silver nanoparticles (AgNPs). miRNA in the sample to be tested is able to release HCR initiator from a solid interface to AgNPs colloid system by toehold exchange-mediated strand displacement, which then triggers the consumption of fuel strands with single-stranded tails for HCR. The final produced long nicked double-stranded DNA loses the ability to protect AgNPs from salt-induced aggregation. The stability variation of the colloid system can then be monitored by recording corresponding UV-vis spectrum and initial miRNA level is thus determined. This sensing system involves only four DNA strands which is quite simple. The practical utility is confirmed to be excellent by employing different biological samples.

  7. Hierarchically structured photonic crystals for integrated chemical separation and colorimetric detection.

    Science.gov (United States)

    Fu, Qianqian; Zhu, Biting; Ge, Jianping

    2017-02-16

    A SiO 2 colloidal photonic crystal film with a hierarchical porous structure is fabricated to demonstrate an integrated separation and colorimetric detection of chemical species for the first time. This new photonic crystal based thin layer chromatography process requires no dyeing, developing and UV irradiation compared to the traditional TLC. The assembling of mesoporous SiO 2 particles via a supersaturation-induced-precipitation process forms uniform and hierarchical photonic crystals with micron-scale cracks and mesopores, which accelerate the diffusion of developers and intensify the adsorption/desorption between the analytes and silica for efficient separation. Meanwhile, the chemical substances infiltrated to the voids of photonic crystals cause an increase of the refractive index and a large contrast of structural colors towards the unloaded part, so that the sample spots can be directly recognized with the naked eye before and after separation.

  8. Effect of Steaming on the Colorimetric Properties of Eucalyptus saligna Wood

    Directory of Open Access Journals (Sweden)

    Reinaldo Calçada Guina Luís

    2018-03-01

    Full Text Available ABSTRACT This study aimed to homogenize the color of Eucalyptus saligna wood by means of steaming and compare the resulting color with that of Cariniana legalis wood, a species of high commercial value. To this end, two steaming curves were tested: 100% relative humidity for 12 (T1 and 24 (T2 hours at 90 °C followed by drying in a pilot-scale conventional kiln. The colorimetric parameters L*, a*, b*, C*, and h were determined according to the CIE L*a*b* color measurement system after drying. Results showed that steaming can be used for color homogenization between heartwood and sapwood. The treatment conducted for 24 hours (T2 presented the best results.

  9. In vitro preliminary cytotoxicity testing of vegetal extracts, using colorimetric methods

    Directory of Open Access Journals (Sweden)

    Claudia Patricia Cordero Camacho

    2002-01-01

    Full Text Available To advance in the study of the Colombian vegetal biodiversity, considered as a potential source of pharmacologically active products, the establishment of biological activity evaluation systems is necessary, which allow the detection of active products against pathologies with high social and economical impact, such as cancer. This work describes the implementation of a preliminary in vitro methodology for the determination of potential anticancer activity in vegetal extracts, by cytotoxicity testing upon human tumor cell lines, measuring the cellular mass indirectly with the colorimetric assays of MTT (methyl tetrazolium tiazole reduction and SRB (sulforhodamine Bstaining. HT-29, MCF-7, SiHa and HEp-2 cell lines cultures were adapted, MTT concentration, cellular density and treatment period parameters for the cytotoxicity assay were selected. Cell lines sensitivity to the chemotherapeutic agent Doxorubicin HCl was determined. Colombian vegetal species extracts cytotoxicity was tested and usefulness of the assay as a tool to bioguide the search of active products was evidenced.

  10. A colorimetric and fluorogenic probe for bisulfite using benzopyrylium as the recognition unit.

    Science.gov (United States)

    Zhang, Yun; Zhang, Xiangwen; Yang, Xiao-Feng; Zhang, Juan

    2017-11-01

    A coumarin-benzopyrylium (CB) platform has been developed for the colorimetric and fluorogenic detection of bisulfite. The proposed probe utilizes coumarin as the fluorophore and positively charged benzopyrylium as the reaction site. The method employs the nucleophilic addition of bisulfite to the benzopyrylium moiety of CB to inactivate the electron-deficient oxonium ion. The driving force for photo-induced electron transfer is considerably diminished, thereby promoting the emission intensity of the coumarin fluorophore. The fluorescence intensity at 510 nm is linear with bisulfite concentration over a range of 0.2-7.5 μM with a detection limit of 42 nM (3δ). CB shows a rapid response (within 30 s) and high selectivity and sensitivity for bisulfite. Preliminary studies show that CB has great potential for bisulfite detection in real samples and in living cells. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Colorimetric sensing of iodide based on triazole-acetamide functionalized gold nanoparticles

    International Nuclear Information System (INIS)

    Lee, I-Lin; Sung, Yi-Ming; Wu, Shu-Pao; Wu, Chien-Hou

    2014-01-01

    We have modified gold nanoparticles (AuNPs) with triazole acetamide to obtain a material for the sensitive and selective colorimetric determination of iodide. The functionalized AuNPs were prepared by a reductive single chemical step using a Cu(I)-catalyzed click reaction. The presence of iodide ions induces the aggregation of these AuNPs and results in a color change from wine-red to purple. The iodide-induced aggregation can be detected visually with bare eyes, but also by photometry. The detection limit is as low as 15 nM. The method displays excellent selectivity for iodide over other anions due to the selective interaction with the amido groups of the triazole. The method was applied to the determination of iodide in spiked lake waters. (author)

  12. Colorimetric Detection of Specific DNA Segments Amplified by Polymerase Chain Reactions

    Science.gov (United States)

    Kemp, David J.; Smith, Donald B.; Foote, Simon J.; Samaras, N.; Peterson, M. Gregory

    1989-04-01

    The polymerase chain reaction (PCR) procedure has many potential applications in mass screening. We describe here a general assay for colorimetric detection of amplified DNA. The target DNA is first amplified by PCR, and then a second set of oligonucleotides, nested between the first two, is incorporated by three or more PCR cycles. These oligonucleotides bear ligands: for example, one can be biotinylated and the other can contain a site for a double-stranded DNA-binding protein. After linkage to an immobilized affinity reagent (such as a cloned DNA-binding protein, which we describe here) and labeling with a second affinity reagent (for example, avidin) linked to horseradish peroxidase, reaction with a chromogenic substrate allows detection of the amplified DNA. This amplified DNA assay (ADA) is rapid, is readily applicable to mass screening, and uses routine equipment. We show here that it can be used to detect human immunodeficiency virus sequences specifically against a background of human DNA.

  13. Colorimetric As (V) detection based on S-layer functionalized gold nanoparticles.

    Science.gov (United States)

    Lakatos, Mathias; Matys, Sabine; Raff, Johannes; Pompe, Wolfgang

    2015-11-01

    Herein, we present simple and rapid colorimetric and UV/VIS spectroscopic methods for detecting anionic arsenic (V) complexes in aqueous media. The methods exploit the aggregation of S-layer-functionalized spherical gold nanoparticles of sizes between 20 and 50 nm in the presence of arsenic species. The gold nanoparticles were functionalized with oligomers of the S-layer protein of Lysinibacillus sphaericus JG-A12. The aggregation of the nanoparticles results in a color change from burgundy-red for widely dispersed nanoparticles to blue for aggregated nanoparticles. A detailed signal analysis was achieved by measuring the shift of the particle plasmon resonance signal with UV/VIS spectroscopy. To further improve signal sensitivity, the influence of larger nanoparticles was tested. In the case of 50 nm gold nanoparticles, a concentration of the anionic arsenic (V) complex lower than 24 ppb was detectable. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. In vitro preliminary cytotoxicity testing of vegetal extracts, using colorimetric methods

    Directory of Open Access Journals (Sweden)

    Claudia Patricia Cordero Camacho

    2011-12-01

    Full Text Available To advance in the study of the Colombian vegetal biodiversity, considered as a potential source of pharmacologically active products, the establishment of biological activity evaluation systems is necessary, which allow the detection of active products against pathologies with high social and economical impact, such as cancer. This work describes the implementation of a preliminary in vitro methodology for the determination of potential anticancer activity in vegetal extracts, by cytotoxicity testing upon human tumor cell lines, measuring the cellular mass indirectly with the colorimetric assays of MTT (methyl tetrazolium tiazole reduction and SRB (sulforhodamine Bstaining. HT-29, MCF-7, SiHa and HEp-2 cell lines cultures were adapted, MTT concentration, cellular density and treatment period parameters for the cytotoxicity assay were selected. Cell lines sensitivity to the chemotherapeutic agent Doxorubicin HCl was determined. Colombian vegetal species extracts cytotoxicity was tested and usefulness of the assay as a tool to bioguide the search of active products was evidenced.

  15. Colorimetric Solid Phase Extraction (CSPE): Using Color to Monitor Spacecraft Water Quality

    Science.gov (United States)

    Gazda, Daniel B.; Nolan, Daniel J.; Rutz, Jeffrey A.; Schultz, John R.; Siperko, Lorraine M.; Porter, Marc D.; Lipert, Robert J.; Flint, Stephanie M.; McCoy, J. Torin

    2010-01-01

    In August 2009, an experimental water quality monitoring kit based on Colorimetric Solid Phase Extraction (CSPE) technology was delivered to the International Space Station (ISS). The kit, called the Colorimetric Water Quality Monitoring Kit (CWQMK), was launched as a Station Development Test Objective (SDTO) experiment to evaluate the suitability of CSPE technology for routine use monitoring water quality on the ISS. CSPE is a sorption-spectrophotometric technique that combines colorimetric reagents, solid-phase extraction, and diffuse reflectance spectroscopy to quantify trace analytes in water samples. In CSPE, a known volume of sample is metered through a membrane disk that has been impregnated with an analyte-specific colorimetric reagent and any additives required to optimize the formation of the analyte-reagent complex. As the sample flows through the membrane disk, the target analyte is selectively extracted, concentrated, and complexed. Formation of the analyte-reagent complex causes a detectable change in the color of the membrane disk that is proportional to the amount of analyte present in the sample. The analyte is then quantified by measuring the color of the membrane disk surface using a hand-held diffuse reflectance spectrophotometer (DRS). The CWQMK provides the capability to measure the ionic silver (Ag +) and molecular iodine (I2) in water samples on-orbit. These analytes were selected for the evaluation of CSPE technology because they are the biocides used in the potable water storage and distribution systems on the ISS. Biocides are added to the potable water systems on spacecraft to inhibit microbial growth. On the United States (US) segment of the ISS molecular iodine serves as the biocide, while the Russian space agency utilizes silver as a biocide in their systems. In both cases, the biocides must be maintained at a level sufficient to control bacterial growth, but low enough to avoid any negative effects on crew health. For example, the

  16. Composite porous scaffold of PEG/PLA support improved bone matrix deposition in vitro compared to PLA-only scaffolds.

    Science.gov (United States)

    Bhaskar, Birru; Owen, Robert; Bahmaee, Hossein; Wally, Zena; Sreenivasa Rao, Parcha; Reilly, Gwendolen C

    2018-05-01

    Controllable pore size and architecture are essential properties for tissue-engineering scaffolds to support cell ingrowth colonization. To investigate the effect of polyethylene glycol (PEG) addition on porosity and bone-cell behavior, porous polylactic acid (PLA)-PEG scaffolds were developed with varied weight ratios of PLA-PEG (100/0, 90/10, 75/25) using solvent casting and porogen leaching. Sugar 200-300 µm in size was used as a porogen. To assess scaffold suitability for bone tissue engineering, MLO-A5 murine osteoblast cells were cultured and cell metabolic activity, alkaline phosphatase (ALP) activity and bone-matrix production determined using (alizarin red S staining for calcium and direct red 80 staining for collagen). It was found that metabolic activity was significantly higher over time on scaffolds containing PEG, ALP activity and mineralized matrix production were also significantly higher on scaffolds containing 25% PEG. Porous architecture and cell distribution and penetration into the scaffold were analyzed using SEM and confocal microscopy, revealing that inclusion of PEG increased pore interconnectivity and therefore cell ingrowth in comparison to pure PLA scaffolds. The results of this study confirmed that PLA-PEG porous scaffolds support mineralizing osteoblasts better than pure PLA scaffolds, indicating they have a high potential for use in bone tissue engineering applications. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1334-1340, 2018. © 2018 Wiley Periodicals, Inc.

  17. Ultrasensitive colorimetric detection of heparin based on self-assembly of gold nanoparticles on graphene oxide.

    Science.gov (United States)

    Fu, Xiuli; Chen, Lingxin; Li, Jinhua

    2012-08-21

    A novel colorimetric method was developed for ultrasensitive detection of heparin based on self-assembly of gold nanoparticles (AuNPs) onto the surface of graphene oxide (GO). Polycationic protamine was used as a medium for inducing the self-assembly of citrate-capped AuNPs on GO through electrostatic interaction, resulting in a shift in the surface plasmon resonance (SPR) absorption of AuNPs and exhibiting a blue color. Addition of polyanionic heparin disturbed the self-assemble of AuNPs due to its strong affinity to protamine. With the increase of heparin concentration, the amounts of self-assembly AuNPs decreased and the color changed from blue to red in solution. Therefore, a "blue-to-red" colorimetric sensing strategy based on self-assembly of AuNPs could be established for heparin detection. Compared with the commonly reported aggregation-based methods ("red-to-blue"), the color change from blue to red was more eye-sensitive, especially in low concentration of target. Moreover, stronger interaction between protamine and heparin led to distinguish heparin from its analogues as well as various potentially coexistent physiological species. The strategy was simply achieved by the self-assembly nature of AuNPs and the application of two types of polyionic media, showing it to be label-free, simple, rapid and visual. This method could selectively detect heparin with a detection limit of 3.0 ng mL(-1) in standard aqueous solution and good linearity was obtained over the range 0.06-0.36 μg mL(-1) (R = 0.9936). It was successfully applied to determination of heparin in fetal bovine serum samples as low as 1.7 ng mL(-1) with a linear range of 0-0.8 μg mL(-1).

  18. In Situ Enzymatically Generated Photoswitchable Oxidase Mimetics and Their Application for Colorimetric Detection of Glucose Oxidase.

    Science.gov (United States)

    Cao, Gen-Xia; Wu, Xiu-Ming; Dong, Yu-Ming; Li, Zai-Jun; Wang, Guang-Li

    2016-07-09

    In this study, a simple and amplified colorimetric assay is developed for the detection of the enzymatic activity of glucose oxidase (GOx) based on in situ formation of a photoswitchable oxidase mimetic of PO₄(3-)-capped CdS quantum dots (QDs). GOx catalyzes the oxidation of 1-thio-β-d-glucose to give 1-thio-β-d-gluconic acid which spontaneously hydrolyzes to β-d-gluconic acid and H₂S; the generated H₂S instantly reacts with Cd(2+) in the presence of Na₃PO₄ to give PO₄(3-)-stabilized CdS QDs in situ. Under visible-light (λ ≥ 400 nm) stimulation, the PO₄(3-)-capped CdS QDs are a new style of oxidase mimic derived by producing some active species, such as h⁺, (•)OH, O₂(•-) and a little H₂O₂, which can oxidize the typical substrate (3,3,5,5-tetramethylbenzydine (TMB)) with a color change. Based on the GOx-triggered growth of the oxidase mimetics of PO₄(3-)-capped CdS QDs in situ, we developed a simple and amplified colorimetric assay to probe the enzymatic activity of GOx. The proposed method allowed the detection of the enzymatic activity of GOx over the range from 25 μg/L to 50 mg/L with a low detection limit of 6.6 μg/L. We believe the PO₄(3-)-capped CdS QDs generated in situ with photo-stimulated enzyme-mimicking activity may find wide potential applications in biosensors.

  19. Aqueous zymography screening of matrix metalloproteinase activity and inhibition based on colorimetric gold nanoparticles.

    Science.gov (United States)

    Chuang, Yao-Chen; Huang, Wei-Ting; Chiang, Pin-Hsuan; Tang, Meng-Che; Lin, Chih-Sheng

    2012-02-15

    An optical gold nanoparticles (AuNPs)-based method was fabricated for the rapid detection of matrix metalloproteinase (MMP) activity and screening potential MMP inhibitors without sophisticated instruments. The diagnosis platform was composed of AuNPs, particular MMP substrates and 6-mercapto-1-hexanol (MCH). The functionalized AuNPs were subjected to specific MMP digestion, and the MMP found the substrate on AuNPs, such that the AuNPs lost shelter and MCH increased the attraction force between AuNPs. Consequently, AuNPs aggregation and a color change from red to purple with increasing MMP concentration were observed. The surface plasmon resonance (SPR) of the formed AuNPs allowed for the quantitative detection of MMP activity. A sensitive linear correlation existed between the absorbance and the activity of the MMPs, which ranged from 10 ng/mL to 700 ng/mL in NTTC buffer and plasma samples. The proposed colorimetric method could be accomplished in a homogeneous solution with one-step operation in 30 min and has been successfully applied to the determination of particular MMP activity in plasma samples, in which the results are consistent with substrate zymography. This technology may become a simple platform for parallel screening a number of inhibitors and offer an alternative method to studying the efficiency of inhibitors for suppressing MMP activity. The absorbance ratio at 625 nm and 525 nm (A(625)/A(525)) confirmed the efficiency of the inhibitors as observed in substrate zymography. The IC(50) of ONO-4817 and galardin for MMP-1, MMP-2 and MMP-7 determined by the proposed colorimetric method was similar to the results of substrate zymography. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  20. Real-time monitoring of enzyme-free strand displacement cascades by colorimetric assays

    Science.gov (United States)

    Duan, Ruixue; Wang, Boya; Hong, Fan; Zhang, Tianchi; Jia, Yongmei; Huang, Jiayu; Hakeem, Abdul; Liu, Nannan; Lou, Xiaoding; Xia, Fan

    2015-03-01

    The enzyme-free toehold-mediated strand displacement reaction has shown potential for building programmable DNA circuits, biosensors, molecular machines and chemical reaction networks. Here we report a simple colorimetric method using gold nanoparticles as signal generators for the real-time detection of the product of the strand displacement cascade. During the process the assembled gold nanoparticles can be separated, resulting in a color change of the solution. This assay can also be applied in complex mixtures, fetal bovine serum, and to detect single-base mismatches. These results suggest that this method could be of general utility to monitor more complex enzyme-free strand displacement reaction-based programmable systems or for further low-cost diagnostic applications.The enzyme-free toehold-mediated strand displacement reaction has shown potential for building programmable DNA circuits, biosensors, molecular machines and chemical reaction networks. Here we report a simple colorimetric method using gold nanoparticles as signal generators for the real-time detection of the product of the strand displacement cascade. During the process the assembled gold nanoparticles can be separated, resulting in a color change of the solution. This assay can also be applied in complex mixtures, fetal bovine serum, and to detect single-base mismatches. These results suggest that this method could be of general utility to monitor more complex enzyme-free strand displacement reaction-based programmable systems or for further low-cost diagnostic applications. Electronic supplementary information (ESI) available: Experimental procedures and analytical data are provided. See DOI: 10.1039/c5nr00697j

  1. Novel colorimetric method overcoming phosphorus interference during trace arsenic analysis in soil solution.

    Science.gov (United States)

    Makris, Konstantinos C; Punamiya, Pravin; Sarkar, Dibyendu; Datta, Rupali

    2008-02-01

    A sensitive (method detection limit, 2.0 microg As L(-1)) colorimetric determination of trace As(v) and As(iii) concentrations in the presence of soluble phosphorus (P) concentrations in soil/water extracts is presented. The proposed method modifies the malachite green method (MG) originally developed for P in soil and water. Our method relies upon the finding that As(iii) and As(v) do not develop the green color during P analysis using the MG method. When an optimum concentration of ascorbic acid (AA) is added to a sample containing up to 15 times P > As (microM) concentrations, the final sample absorbance due to P will be equal to that of As(v) molecules. The soluble As concentration can then be quantified by the concentration difference between the mixed oxyanion (As + P) absorbance (proposed method) and the MG method absorbance that measures only P. Our method is miniaturized using a 96-well microplate UV-VIS reader that utilizes minute reagent and sample volumes (120 and 200 microL sample(-1), respectively), thus, minimizing waste and offering flexibility in the field. Our method was tested in a suite of As-contaminated soils that successfully measured both As and P in soil water extracts and total digests. Mean% As recoveries ranged between 84 and 117%, corroborating data obtained with high-resolution inductively-coupled plasma mass-spectrometry. The performance of the proposed colorimetric As method was unaffected by the presence of Cu, Zn, Pb, Ni, Fe, Al, Si, and Cr in both neutral and highly-acidic (ca. pH 2) soil extracts. Data from this study provide the proof of concept towards creating a field-deployable, portable As kit.

  2. Comparison of thiaminase activity in fish using the radiometric and 4-nitrothiophenol colorimetric methods

    Science.gov (United States)

    Honeyfield, D.C.; Hanes, J.W.; Brown, L.; Kraft, C.E.; Begley, T.P.

    2010-01-01

    Thiaminase induced thiamine deficiency occurs in fish, humans, livestock and wild animals. A non-radioactive thiaminase assay was described in 2007, but a direct comparison with the radioactive 14C-thiamine method which has been in use for more than 30years has not been reported. The objective was to measure thiaminase activity in forage fish (alewife Alosa pseudoharengus, rainbow smelt Osmerus mordax, and slimy sculpin Cottus cognatus) consumed by predators that manifest thiamine deficiency using both methods. Modifications were made to the colorimetric assay to improve repeatability. Modification included a change in assay pH, enhanced sample clean-up, constant assay temperature (37??C), increase in the concentration of 4-nitrothiophenol (4NTP) and use of a spectrophotometer fitted with a 0.2cm cell. A strong relationship between the two assays was found for 51 alewife (R2=0.85), 36 smelt (R2=0.87) and 20 sculpin (R2=0.82). Thiaminase activity in the colorimetric assay was about 1000 times higher than activity measured by the radioactive method. Application of the assay to fish species from which no thiaminase activity has previously been reported resulted in no 4NTP thiaminase activity being found in bloater Coregonus hoyi, lake trout Salvelinus namaycusch, steelhead trout Oncorhynchus mykiss or Chinook salmon Oncorhynchus tshawytscha. In species previously reported to contain thiaminase, 4NTP thiaminase activity was measured in bacteria Paenibacillus thiaminolyticus, gizzard shad Dorosoma cepedianum, bracken fern Pteridium aquilinum, quagga mussel Dreissena bugensis and zebra mussels D. polymorpha. ?? 2010.

  3. Determination of colloidal and dissolved silver in water samples using colorimetric solid-phase extraction.

    Science.gov (United States)

    Hill, April A; Lipert, Robert J; Porter, Marc D

    2010-03-15

    The increase in bacterial resistance to antibiotics has led to resurgence in the use of silver as a biocidal agent in applications ranging from washing machine additives to the drinking water treatment system on the International Space Station (ISS). However, growing concerns about the possible toxicity of colloidal silver to bacteria, aquatic organisms and humans have led to recently issued regulations by the US EPA and FDA regarding the usage of silver. As part of an ongoing project, we have developed a rapid, simple method for determining total silver, both ionic (silver(I)) and colloidal, in 0.1-1mg/L aqueous samples, which spans the ISS potable water target of 0.3-0.5mg/L (total silver) and meets the US EPA limit of 0.1mg/L in drinking water. The method is based on colorimetric solid-phase extraction (C-SPE) and involves the extraction of silver(I) from water samples by passage through a solid-phase membrane impregnated with the colorimetric reagent DMABR (5-[4-(dimethylamino)benzylidene]rhodanine). Silver(I) exhaustively reacts with impregnated DMABR to form a colored compound, which is quantified using a handheld diffuse reflectance spectrophotometer. Total silver is determined by first passing the sample through a cartridge containing Oxone, which exhaustively oxidizes colloidal silver to dissolved silver(I). The method, which takes less than 2 min to complete and requires only approximately 1 mL of sample, has been validated through a series of tests, including a comparison with the ICP-MS analysis of a water sample from ISS that contained both silver(I) and colloidal silver. Potential earth-bound applications are also briefly discussed. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  4. An aptamer-based biosensor for colorimetric detection of Escherichia coli O157:H7.

    Directory of Open Access Journals (Sweden)

    Wenhe Wu

    Full Text Available BACKGROUND: An aptamer based biosensor (aptasensor was developed and evaluated for rapid colorimetric detection of Escherichia coli (E. coli O157:H7. METHODOLOGY/PRINCIPAL FINDINGS: The aptasensor was assembled by modifying the truncated lipopolysaccharides (LPS-binding aptamer on the surface of nanoscale polydiacetylene (PDA vesicle using peptide bonding between the carboxyl group of the vesicle and the amine group of the aptamer. Molecular recognition between E. coli O157:H7 and aptamer at the interface of the vesicle lead to blue-red transition of PDA which was readily visible to the naked eyes and could be quantified by colorimetric responses (CR. Confocal laser scanning microscope (CLSM and transmission electron microscopy (TEM was used to confirm the specific interactions between the truncated aptamer and E. coli O157:H7. The aptasensor could detect cellular concentrations in a range of 10(4~ 10(8 colony-forming units (CFU/ml within 2 hours and its specificity was 100% for detection of E. coli O157:H7. Compared with the standard culture method, the correspondent rate was 98.5% for the detection of E. coli O157:H7 on 203 clinical fecal specimens with our aptasensor. CONCLUSIONS: The new aptasensor represents a significant advancement in detection capabilities based on the combination of nucleic acid aptamer with PDA vesicle, and offers a specific and convenient screening method for the detection of pathogenic bacteria. This technic could also be applied in areas from clinical analysis to biological terrorism defense, especially in low-resource settings.

  5. A sensitive colorimetric aptasensor based on trivalent peroxidase-mimic DNAzyme and magnetic nanoparticles.

    Science.gov (United States)

    Liu, Shuwen; Xu, Naihan; Tan, Chunyan; Fang, Wei; Tan, Ying; Jiang, Yuyang

    2018-08-14

    In this study, a novel colorimetric aptasensor was prepared by coupling trivalent peroxidase-mimic DNAzyme and magnetic nanoparticles for highly sensitive and selective detection of target proteins. A three G-quadruplex (G4) DNA-hemin complex was employed as the trivalent peroxidase-mimic DNAzyme, in which hemin assisted the G4-DNA to fold into a catalytic conformation and act as an enzyme. The design of the aptasensor includes magnetic nanoparticles (MNPs), complementary DNA (cDNA) modified with biotin, and a label-free single strand DNA (ssDNA) including the aptamer and trivalent peroxidase-mimic DNAzyme. The trivalent DNAzyme, which has the highest catalytic activity among multivalent DNAzymes, catalyzed the H 2 O 2 -mediated oxidation of ABTS. The colorless ABTS was oxidized to produce a blue-green product that can be clearly distinguished by the naked eye. The aptamer and trivalent peroxidase-mimic DNAzyme promote the specificity and sensitivity of this detection method, which can be generalized for other targets by simply replacing the corresponding aptamers. To demonstrate the feasible use of the aptasensor for target detection, a well-known tumor biomarker MUC1 was evaluated as the model target. The limits of detection were determined to be 5.08 and 5.60 nM in a linear range of 50-1000 nM in a buffer solution and 10% serum system, respectively. This colorimetric and label-free aptasensor with excellent sensitivity and strong anti-interference ability has potential application in disease diagnoses, prognosis tracking, and therapeutic evaluation. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Silk fibroin porous scaffolds for nucleus pulposus tissue engineering

    International Nuclear Information System (INIS)

    Zeng, Chao; Yang, Qiang; Zhu, Meifeng; Du, Lilong; Zhang, Jiamin; Ma, Xinlong; Xu, Baoshan; Wang, Lianyong

    2014-01-01

    Intervertebral discs (IVDs) are structurally complex tissue that hold the vertebrae together and provide mobility to spine. The nucleus pulposus (NP) degeneration often results in degenerative IVD disease that is one of the most common causes of back and neck pain. Tissue engineered nucleus pulposus offers an alternative approach to regain the function of the degenerative IVD. The aim of this study is to determine the feasibility of porous silk fibroin (SF) scaffolds fabricated by paraffin-sphere-leaching methods with freeze-drying in the application of nucleus pulposus regeneration. The prepared scaffold possessed high porosity of 92.38 ± 5.12% and pore size of 165.00 ± 8.25 μm as well as high pore interconnectivity and appropriate mechanical properties. Rabbit NP cells were seeded and cultured on the SF scaffolds. Scanning electron microscopy, histology, biochemical assays and mechanical tests revealed that the porous scaffolds could provide an appropriate microstructure and environment to support adhesion, proliferation and infiltration of NP cells in vitro as well as the generation of extracellular matrix. The NP cell–scaffold construction could be preliminarily formed after subcutaneously implanted in a nude mice model. In conclusion, The SF porous scaffold offers a potential candidate for tissue engineered NP tissue. - Highlights: • Paraffin microsphere-leaching method is used to fabricate silk fibroin scaffold. • The scaffold has appropriate mechanical property, porosity and pore size • The scaffold supports growth and infiltration of nucleus pulposus cells. • Nucleus pulposus cells can secrete extracellular matrix in the scaffolds. • The scaffold is a potential candidate for tissue engineered nucleus pulposus

  7. Silk fibroin porous scaffolds for nucleus pulposus tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Chao; Yang, Qiang [Department of Spine Surgery, Tianjin Hospital, Tianjin 300211 (China); Tianjin Medical University, Tianjin 300070 (China); Zhu, Meifeng [The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071 (China); Du, Lilong [Department of Spine Surgery, Tianjin Hospital, Tianjin 300211 (China); Tianjin Medical University, Tianjin 300070 (China); Zhang, Jiamin [The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071 (China); Ma, Xinlong [Department of Spine Surgery, Tianjin Hospital, Tianjin 300211 (China); Xu, Baoshan, E-mail: xubaoshan99@126.com [Department of Spine Surgery, Tianjin Hospital, Tianjin 300211 (China); Wang, Lianyong, E-mail: wly@nankai.edu.cn [The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071 (China)

    2014-04-01

    Intervertebral discs (IVDs) are structurally complex tissue that hold the vertebrae together and provide mobility to spine. The nucleus pulposus (NP) degeneration often results in degenerative IVD disease that is one of the most common causes of back and neck pain. Tissue engineered nucleus pulposus offers an alternative approach to regain the function of the degenerative IVD. The aim of this study is to determine the feasibility of porous silk fibroin (SF) scaffolds fabricated by paraffin-sphere-leaching methods with freeze-drying in the application of nucleus pulposus regeneration. The prepared scaffold possessed high porosity of 92.38 ± 5.12% and pore size of 165.00 ± 8.25 μm as well as high pore interconnectivity and appropriate mechanical properties. Rabbit NP cells were seeded and cultured on the SF scaffolds. Scanning electron microscopy, histology, biochemical assays and mechanical tests revealed that the porous scaffolds could provide an appropriate microstructure and environment to support adhesion, proliferation and infiltration of NP cells in vitro as well as the generation of extracellular matrix. The NP cell–scaffold construction could be preliminarily formed after subcutaneously implanted in a nude mice model. In conclusion, The SF porous scaffold offers a potential candidate for tissue engineered NP tissue. - Highlights: • Paraffin microsphere-leaching method is used to fabricate silk fibroin scaffold. • The scaffold has appropriate mechanical property, porosity and pore size • The scaffold supports growth and infiltration of nucleus pulposus cells. • Nucleus pulposus cells can secrete extracellular matrix in the scaffolds. • The scaffold is a potential candidate for tissue engineered nucleus pulposus.

  8. Scaffold hopping in drug discovery using inductive logic programming.

    Science.gov (United States)

    Tsunoyama, Kazuhisa; Amini, Ata; Sternberg, Michael J E; Muggleton, Stephen H

    2008-05-01

    In chemoinformatics, searching for compounds which are structurally diverse and share a biological activity is called scaffold hopping. Scaffold hopping is important since it can be used to obtain alternative structures when the compound under development has unexpected side-effects. Pharmaceutical companies use scaffold hopping when they wish to circumvent prior patents for targets of interest. We propose a new method for scaffold hopping using inductive logic programming (ILP). ILP uses the observed spatial relationships between pharmacophore types in pretested active and inactive compounds and learns human-readable rules describing the diverse structures of active compounds. The ILP-based scaffold hopping method is compared to two previous algorithms (chemically advanced template search, CATS, and CATS3D) on 10 data sets with diverse scaffolds. The comparison shows that the ILP-based method is significantly better than random selection while the other two algorithms are not. In addition, the ILP-based method retrieves new active scaffolds which were not found by CATS and CATS3D. The results show that the ILP-based method is at least as good as the other methods in this study. ILP produces human-readable rules, which makes it possible to identify the three-dimensional features that lead to scaffold hopping. A minor variant of a rule learnt by ILP for scaffold hopping was subsequently found to cover an inhibitor identified by an independent study. This provides a successful result in a blind trial of the effectiveness of ILP to generate rules for scaffold hopping. We conclude that ILP provides a valuable new approach for scaffold hopping.

  9. Radiation sensor

    International Nuclear Information System (INIS)

    Brown, W.L.; Geronime, R.L.

    1977-01-01

    Radiation sensor and thermocouple, respectively, which can be used for reactor in-core instrumentation. The radiation sensor consists of an inconel conductor wire and rhodium emitter wire, the thermocouple of two intertwined alumel or chromel wires. Both are arranged in the center of a metal tube relative to which they are separated by an insulator made of SiO 2 fibers. This insulator is first introduced as a loose fabric between the radiation sensor and the thermocouple, respectively, and the metal tube and then compacted to a density of 35-73% of pure SiO 2 by drawing the tube. There is no need for soldering or welding. The insulation resistivity at room temperature ist between 10 14 and 10 15 ohms. (ORU) [de

  10. Water Sensors

    Science.gov (United States)

    1992-01-01

    Mike Morris, former Associate Director of STAC, formed pHish Doctor, Inc. to develop and sell a pH monitor for home aquariums. The monitor, or pHish Doctor, consists of a sensor strip and color chart that continually measures pH levels in an aquarium. This is important because when the level gets too high, ammonia excreted by fish is highly toxic; at low pH, bacteria that normally break down waste products stop functioning. Sales have run into the tens of thousands of dollars. A NASA Tech Brief Technical Support Package later led to a salt water version of the system and a DoE Small Business Innovation Research (SBIR) grant for development of a sensor for sea buoys. The company, now known as Ocean Optics, Inc., is currently studying the effects of carbon dioxide buildup as well as exploring other commercial applications for the fiber optic sensor.

  11. Cytocompatibility of a silk fibroin tubular scaffold

    International Nuclear Information System (INIS)

    Wang, Jiannan; Wei, Yali; Yi, Honggen; Liu, Zhiwu; Sun, Dan; Zhao, Huanrong

    2014-01-01

    Regenerated silk fibroin (SF) materials are increasingly used for tissue engineering applications. In order to explore the feasibility of a novel biomimetic silk fibroin tubular scaffold (SFTS) crosslinked by poly(ethylene glycol) diglycidyl ether (PEG-DE), biocompatibility with cells was evaluated. The novel biomimetic design of the SFTS consisted of three distinct layers: a regenerated SF intima, a silk braided media and a regenerated SF adventitia. The SFTS exhibited even silk fibroin penetration throughout the braid, forming a porous layered tube with superior mechanical, permeable and cell adhesion properties that are beneficial to vascular regeneration. Cytotoxicity and cell compatibility were tested on L929 cells and human umbilical vein endothelial cells (EA.hy926). DNA content analysis, scanning electron and confocal microscopies and MTT assay showed no inhibitory effects on DNA replication. Cell morphology, viability and proliferation were good for L929 cells, and satisfactory for EA.hy926 cells. Furthermore, the suture retention strength of the SFTS was about 23 N and the Young's modulus was 0.2–0.3 MPa. Collectively, these data demonstrate that PEG-DE crosslinked SFTS possesses the appropriate cytocompatibility and mechanical properties for use as vascular scaffolds as an alternative to vascular autografts. - Highlights: • A PEG-DE cross-linked small caliber porous silk fibroin tubular scaffold (SFTS) • PEG-DE cross-linked SF film had no inhibitory effect on DNA replication of cells. • Cells cultured on the SFTS showed good morphology, cell viability and proliferative activity. • SFTS would be beneficial to endothelialization. • SFTS had good suture retention strength and flexibility

  12. Porous allograft bone scaffolds: doping with strontium.

    Directory of Open Access Journals (Sweden)

    Yantao Zhao

    Full Text Available Strontium (Sr can promote the process of bone formation. To improve bioactivity, porous allograft bone scaffolds (ABS were doped with Sr and the mechanical strength and bioactivity of the scaffolds were evaluated. Sr-doped ABS were prepared using the ion exchange method. The density and distribution of Sr in bone scaffolds were investigated by inductively coupled plasma optical emission spectrometry (ICP-OES, X-ray photoelectron spectroscopy (XPS, and energy-dispersive X-ray spectroscopy (EDS. Controlled release of strontium ions was measured and mechanical strength was evaluated by a compressive strength test. The bioactivity of Sr-doped ABS was investigated by a simulated body fluid (SBF assay, cytotoxicity testing, and an in vivo implantation experiment. The Sr molar concentration [Sr/(Sr+Ca] in ABS surpassed 5% and Sr was distributed nearly evenly. XPS analyses suggest that Sr combined with oxygen and carbonate radicals. Released Sr ions were detected in the immersion solution at higher concentration than calcium ions until day 30. The compressive strength of the Sr-doped ABS did not change significantly. The bioactivity of Sr-doped material, as measured by the in vitro SBF immersion method, was superior to that of the Sr-free freeze-dried bone and the Sr-doped material did not show cytotoxicity compared with Sr-free culture medium. The rate of bone mineral deposition for Sr-doped ABS was faster than that of the control at 4 weeks (3.28 ± 0.23 µm/day vs. 2.60 ± 0.20 µm/day; p<0.05. Sr can be evenly doped into porous ABS at relevant concentrations to create highly active bone substitutes.

  13. Scaffold engineering: a bridge to where?

    International Nuclear Information System (INIS)

    Hollister, Scott J

    2009-01-01

    A significant amount of federal research funding (over $4 billion) has gone into tissue engineering over the last 20 years. This has led to an exponential increase in research productivity as evidenced by the number of published papers referencing 'tissue engineering' and 'scaffold'. However, the number of tissue engineering products resulting from this research remains a paltry few, of which true tissue engineering products can be counted using the fingers of two hands. The fundamental question remains 'Why does such a gap exist between research and translation?'. This paper argues that such a gap exists in part due to the research paradigms followed in tissue engineering, in which a linear model is followed that assumed individual technical discovery can be bundled into model tissue engineering systems, followed by manufacturing scale up and regulatory approval. As such, most research funding follows this linear model with the vast majority of research spent on the discovery phase. This includes funding on both cell therapy and scaffold materials and engineering. It is assumed that therapy systems can readily be constructed by combining disparate technologies derived in different laboratories and that these therapies can readily achieve regulatory approval. Yet, most tissue engineering technologies fail to make it to clinical application because they simply have not been engineered for these specific applications or cannot be scaled to clinical level production. This paper argues that a different research paradigm is needed, essentially that of Pasteur's Quadrant proposed by Donald Stokes in the book of the same name. In this paradigm, research is pursued from the twin perspective of end use and the need for fundamental understanding. From this perspective, more funding emphasis should be placed on scalable manufacturing of systems that are designed for specific clinical applications that can attain regulatory approval. Funding of such scaffold/cell manufacturing

  14. Scaffolded filmmaking in PlayOFF

    DEFF Research Database (Denmark)

    Philipsen, Heidi

    2012-01-01

    How is it possible to make an entire short film in only 48 hours? This task was carried out in the global online film contest, called PlayOFF, held by Odense International Film Festival (OFF) in August 2010 and -11. Contestants from all over the world - as different countries as Palestine, China...... the productions. This article is based on an empirical study of film processes in PlayOFF 2010 and -11, and I will point out how these findings could be used in developing creativity. Based on my empirical studies I will suggest a learning design for scaffolded filmmaking and propose some ideas of how to transfer...

  15. Printing and Prototyping of Tissues and Scaffolds

    Science.gov (United States)

    Derby, Brian

    2012-11-01

    New manufacturing technologies under the banner of rapid prototyping enable the fabrication of structures close in architecture to biological tissue. In their simplest form, these technologies allow the manufacture of scaffolds upon which cells can grow for later implantation into the body. A more exciting prospect is the printing and patterning in three dimensions of all the components that make up a tissue (cells and matrix materials) to generate structures analogous to tissues; this has been termed bioprinting. Such techniques have opened new areas of research in tissue engineering and regenerative medicine.

  16. Porous ceramic scaffolds with complex architectures

    Science.gov (United States)

    Munch, E.; Franco, J.; Deville, S.; Hunger, P.; Saiz, E.; Tomsia, A. P.

    2008-06-01

    This work compares two novel techniques for the fabrication of ceramic scaffolds for bone tissue engineering with complex porosity: robocasting and freeze casting. Both techniques are based on the preparation of concentrated ceramic suspensions with suitable properties for the process. In robocasting, the computer-guided deposition of the suspensions is used to build porous materials with designed three dimensional geometries and microstructures. Freeze casting uses ice crystals as a template to form porous lamellar ceramic materials. Preliminary results on the compressive strengths of the materials are also reported.

  17. Ethnic differences in disability risk between Dutch and Turkish scaffolders

    NARCIS (Netherlands)

    Elders, L.A.M.; Burdorf, A.; Öry, F.G.

    2004-01-01

    The number of native Dutch and Turkish workers receiving a permanent disability pension in the Netherlands is still rising. To assess ethnic differences in disability risk between Dutch and Turkish scaffolders, a retrospective study was conducted within a large scaffolding company. Medical files for

  18. The effect of scaffold pore size in cartilage tissue engineering.

    Science.gov (United States)

    Nava, Michele M; Draghi, Lorenza; Giordano, Carmen; Pietrabissa, Riccardo

    2016-07-26

    The effect of scaffold pore size and interconnectivity is undoubtedly a crucial factor for most tissue engineering applications. The aim of this study was to examine the effect of pore size and porosity on cartilage construct development in different scaffolds seeded with articular chondrocytes. We fabricated poly-L-lactide-co-trimethylene carbonate scaffolds with different pore sizes, using a solvent-casting/particulate-leaching technique. We seeded primary bovine articular chondrocytes on these scaffolds, cultured the constructs for 2 weeks and examined cell proliferation, viability and cell-specific production of cartilaginous extracellular matrix proteins, including GAG and collagen. Cell density significantly increased up to 50% with scaffold pore size and porosity, likely facilitated by cell spreading on the internal surface of bigger pores, and by increased mass transport of gases and nutrients to cells, and catabolite removal from cells, allowed by lower diffusion barriers in scaffolds with a higher porosity. However, both the cell metabolic activity and the synthesis of cartilaginous matrix proteins significantly decreased by up to 40% with pore size. We propose that the association of smaller pore diameters, causing 3-dimensional cell aggregation, to a lower oxygenation caused by a lower porosity, could have been the condition that increased the cell-specific synthesis of cartilaginous matrix proteins in the scaffold with the smallest pores and the lowest porosity among those tested. In the initial steps of in vitro cartilage engineering, the combination of small scaffold pores and low porosity is an effective strategy with regard to the promotion of chondrogenesis.

  19. Using the Community of Inquiry Framework to Scaffold Online Tutoring

    Science.gov (United States)

    Feng, Xiaoying; Xie, Jingjing; Liu, Yue

    2017-01-01

    Tutoring involves providing learners with a suitable level of structure and guidance to support their learning. This study reports on an exploration of how to design such structure and guidance (i.e., learning scaffolds) in the Chinese online educational context, and in so doing, answer the following two questions: (a) What scaffolding strategies…

  20. Enzymatically biomineralized chitosan scaffolds for tissue-engineering applications.

    NARCIS (Netherlands)

    Dash, M.; Samal, S.K.; Douglas, T.E.L.; Schaubroeck, D.; Leeuwenburgh, S.C.G.; Voort, P. van der; Declercq, H.A.; Dubruel, P.

    2017-01-01

    Porous biodegradable scaffolds represent promising candidates for tissue-engineering applications because of their capability to be preseeded with cells. We report an uncrosslinked chitosan scaffold designed with the aim of inducing and supporting enzyme-mediated formation of apatite minerals in the

  1. Scaffolding of Small Groups' Metacognitive Activities with an Avatar

    Science.gov (United States)

    Molenaar, Inge; Chiu, Ming Ming; Sleegers, Peter; van Boxtel, Carla

    2011-01-01

    Metacognitive scaffolding in a computer-supported learning environment can influence students' metacognitive activities, metacognitive knowledge and domain knowledge. In this study we analyze how metacognitive activities mediate the relationships between different avatar scaffolds on students' learning. Multivariate, multilevel analysis of the…

  2. Metacognitive Scaffolding during Collaborative Learning: A Promising Combination

    Science.gov (United States)

    Molenaar, Inge; Sleegers, Peter; van Boxtel, Carla

    2014-01-01

    This article explores the effect of computerized scaffolding with different scaffolds (structuring vs. problematizing) on intra-group metacognitive interaction. In this study, we investigate 4 types of intra-group social metacognitive activities; namely ignored, accepted, shared and co-constructed metacognitive activities in 18 triads (6 control…

  3. Maternal Scaffolding and Attention Regulation in Children Living in Poverty

    Science.gov (United States)

    Robinson, Julia B.; Burns, Barbara M.; Davis, Deborah Winders

    2009-01-01

    This study examines the relation of maternal scaffolding and children's attention regulation abilities in preschool children from low-income families within the context of a parent-child interaction task and in a child-alone task. Maternal scaffolding behaviors differed for mothers of children with different attention regulation skills. Mothers…

  4. Anisotropic silk fibroin/gelatin scaffolds from unidirectional freezing

    Energy Technology Data Exchange (ETDEWEB)

    Asuncion, Maria Christine Tankeh, E-mail: christine.asuncion@u.nus.edu [National University of Singapore, Department of Biomedical Engineering (Singapore); Goh, James Cho-Hong [National University of Singapore, Department of Biomedical Engineering (Singapore); National University of Singapore, Department of Orthopedic Surgery (Singapore); Toh, Siew-Lok [National University of Singapore, Department of Biomedical Engineering (Singapore); National University of Singapore, Department of Mechanical Engineering (Singapore)

    2016-10-01

    Recent studies have underlined the importance of matching scaffold properties to the biological milieu. Tissue, and thus scaffold, anisotropy is one such property that is important yet sometimes overlooked. Methods that have been used to achieve anisotropic scaffolds present challenges such as complicated fabrication steps, harsh processing conditions and toxic chemicals involved. In this study, unidirectional freezing was employed to fabricate anisotropic silk fibroin/gelatin scaffolds in a simple and mild manner. Morphological, mechanical, chemical and cellular compatibility properties were investigated, as well as the effect of the addition of gelatin to certain properties of the scaffold. It was shown that scaffold properties were suitable for cell proliferation and that mesenchymal stem cells were able to align themselves along the directed fibers. The fabricated scaffolds present a platform that can be used for anisotropic tissue engineering applications such as cardiac patches. - Highlights: • Silk/gelatin scaffolds with unidirectional alignment were fabricated using a simple and scalable process • Presence of gelatin in silk resulted to lesser shrinkage, better water retention and improved cell proliferation. • Mesenchymal stem cells were shown to align themselves according to the fiber alignment.

  5. Bioactive Scaffolds for Regeneration of Cartilage and Subchondral Bone Interface

    Science.gov (United States)

    Deng, Cuijun; Zhu, Huiying; Li, Jiayi; Feng, Chun; Yao, Qingqiang; Wang, Liming; Chang, Jiang; Wu, Chengtie

    2018-01-01

    The cartilage lesion resulting from osteoarthritis (OA) always extends into subchondral bone. It is of great importance for simultaneous regeneration of two tissues of cartilage and subchondral bone. 3D-printed Sr5(PO4)2SiO4 (SPS) bioactive ceramic scaffolds may achieve the aim of regenerating both of cartilage and subchondral bone. We hypothesized that strontium (Sr) and silicon (Si) ions released from SPS scaffolds play a crucial role in osteochondral defect reconstruction. Methods: SPS bioactive ceramic scaffolds were fabricated by a 3D-printing method. The SEM and ICPAES were used to investigate the physicochemical properties of SPS scaffolds. The proliferation and maturation of rabbit chondrocytes stimulated by SPS bioactive ceramics were measured in vitro. The stimulatory effect of SPS scaffolds for cartilage and subchondral bone regeneration was investigated in vivo. Results: SPS scaffolds significantly stimulated chondrocyte proliferation, and SPS extracts distinctly enhanced the maturation of chondrocytes and preserved chondrocytes from OA. SPS scaffolds markedly promoted the regeneration of osteochondral defects. The complex interface microstructure between cartilage and subchondral bone was obviously reconstructed. The underlying mechanism may be related to Sr and Si ions stimulating cartilage regeneration by activating HIF pathway and promoting subchondral bone reconstruction through activating Wnt pathway, as well as preserving chondrocytes from OA via inducing autophagy and inhibiting hedgehog pathway. Conclusion: Our findings suggest that SPS scaffolds can help osteochondral defect reconstruction and well reconstruct the complex interface between cartilage and subchondral bone, which represents a promising strategy for osteochondral defect regeneration. PMID:29556366

  6. Multiscale fabrication of biomimetic scaffolds for tympanic membrane tissue engineering

    International Nuclear Information System (INIS)

    Mota, Carlos; Danti, Serena; D’Alessandro, Delfo; Trombi, Luisa; Ricci, Claudio; Berrettini, Stefano; Puppi, Dario; Dinucci, Dinuccio; Chiellini, Federica; Milazzo, Mario; Stefanini, Cesare; Moroni, Lorenzo

    2015-01-01

    The tympanic membrane (TM) is a thin tissue able to efficiently collect and transmit sound vibrations across the middle ear thanks to the particular orientation of its collagen fibers, radiate on one side and circular on the opposite side. Through the combination of advanced scaffolds and autologous cells, tissue engineering (TE) could offer valuable alternatives to autografting in major TM lesions. In this study, a multiscale approach based on electrospinning (ES) and additive manufacturing (AM) was investigated to fabricate scaffolds, based on FDA approved copolymers, resembling the anatomic features and collagen fiber arrangement of the human TM. A single scale TM scaffold was manufactured using a custom-made collector designed to confer a radial macro-arrangement to poly(lactic-co-glycolic acid) electrospun fibers during their deposition. Dual and triple scale scaffolds were fabricated combining conventional ES with AM to produce poly(ethylene oxide terephthalate)/poly(butylene terephthalate) block copolymer scaffolds with anatomic-like architecture. The processing parameters were optimized for each manufacturing method and copolymer. TM scaffolds were cultured in vitro with human mesenchymal stromal cells, which were viable, metabolically active and organized following the anisotropic character of the scaffolds. The highest viability, cell density and protein content were detected in dual and triple scale scaffolds. Our findings showed that these biomimetic micro-patterned substrates enabled cell disposal along architectural directions, thus appearing as promising substrates for developing functional TM replacements via TE. (paper)

  7. Scaffolding and Dialogic Teaching in Mathematics Education: Introduction and Review

    Science.gov (United States)

    Bakker, Arthur; Smit, Jantien; Wegerif, Rupert

    2015-01-01

    This article has two purposes: firstly to introduce this special issue on scaffolding and dialogic teaching in mathematics education and secondly to review the recent literature on these topics as well as the articles in this special issue. First we define and characterise scaffolding and dialogic teaching and provide a brief historical overview…

  8. Scaffolding Performance in EPSSs: Bridging Theory and Practice.

    Science.gov (United States)

    Hannafin, Michael J; McCarthy, James E.; Hannafin, Kathleen M.; Radtke, Paul

    Electronic performance support systems (EPSS) help users accomplish tasks, using computational technologies. Scaffolding is the process through which efforts are supported while engaging a learning or performance task. A number of different types of scaffolds are possible, including conceptual, metacognitive, procedural, and strategic. Each of…

  9. Biomimetic mineral-organic composite scaffolds with controlled internal architecture.

    Science.gov (United States)

    Manjubala, I; Woesz, Alexander; Pilz, Christine; Rumpler, Monika; Fratzl-Zelman, Nadja; Roschger, Paul; Stampfl, Juergen; Fratzl, Peter

    2005-12-01

    Bone and cartilage generation by three-dimensional scaffolds is one of the promising techniques in tissue engineering. One approach is to generate histologically and functionally normal tissue by delivering healthy cells in biocompatible scaffolds. These scaffolds provide the necessary support for cells to proliferate and maintain their differentiated function, and their architecture defines the ultimate shape. Rapid prototyping (RP) is a technology by which a complex 3-dimensional (3D) structure can be produced indirectly from computer aided design (CAD). The present study aims at developing a 3D organic-inorganic composite scaffold with defined internal architecture by a RP method utilizing a 3D printer to produce wax molds. The composite scaffolds consisting of chitosan and hydroxyapatite were prepared using soluble wax molds. The behaviour and response of MC3T3-E1 pre-osteoblast cells on the scaffolds was studied. During a culture period of two and three weeks, cell proliferation and in-growth were observed by phase contrast light microscopy, histological staining and electron microscopy. The Giemsa and Gömöri staining of the cells cultured on scaffolds showed that the cells proliferated not only on the surface, but also filled the micro pores of the scaffolds and produced extracellular matrix within the pores. The electron micrographs showed that the cells covering the surface of the struts were flattened and grew from the periphery into the middle region of the pores.

  10. Apple derived cellulose scaffolds for 3D mammalian cell culture.

    Directory of Open Access Journals (Sweden)

    Daniel J Modulevsky

    Full Text Available There are numerous approaches for producing natural and synthetic 3D scaffolds that support the proliferation of mammalian cells. 3D scaffolds better represent the natural cellular microenvironment and have many potential applications in vitro and in vivo. Here, we demonstrate that 3D cellulose scaffolds produced by decellularizing apple hypanthium tissue can be employed for in vitro 3D culture of NIH3T3 fibroblasts, mouse C2C12 muscle myoblasts and human HeLa epithelial cells. We show that these cells can adhere, invade and proliferate in the cellulose scaffolds. In addition, biochemical functionalization or chemical cross-linking can be employed to control the surface biochemistry and/or mechanical properties of the scaffold. The cells retain high viability even after 12 continuous weeks of culture and can achieve cell densities comparable with other natural and synthetic scaffold materials. Apple derived cellulose scaffolds are easily produced, inexpensive and originate from a renewable source. Taken together, these results demonstrate that naturally derived cellulose scaffolds offer a complementary approach to existing techniques for the in vitro culture of mammalian cells in a 3D environment.

  11. 29 CFR 1915.71 - Scaffolds or staging.

    Science.gov (United States)

    2010-07-01

    ... construction of scaffolds shall be spruce, fir, long leaf yellow pine, Oregon pine or wood of equal strength... large, loose or dead knots. It shall also be free from dry rot, large checks, worm holes or other... accidentally disengaged from the crane hook. (c) Independent pole wood scaffolds. (1) All pole uprights shall...

  12. Practical Use Technique of Sensor

    International Nuclear Information System (INIS)

    Hwang, Gyu Seop

    1985-11-01

    This book tells of practical use technology of sensor, introducing the recent trend of sensor for electronic industry, IC temperature sensor, radiation temperature sensor of surface acoustic wave, optical fiber temperature sensor, a polyelectrolyte film humidity sensor, semiconductor pressure sensor for industrial instrumentation, silicon integration pressure sensor, thick film humidity sensor and its application, photo sensor reflection type, and color sensor. It also deals with sensor for FA, sensor for a robot and sensor for the chemical industry.

  13. Practical Use Technique of Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Gyu Seop

    1985-11-15

    This book tells of practical use technology of sensor, introducing the recent trend of sensor for electronic industry, IC temperature sensor, radiation temperature sensor of surface acoustic wave, optical fiber temperature sensor, a polyelectrolyte film humidity sensor, semiconductor pressure sensor for industrial instrumentation, silicon integration pressure sensor, thick film humidity sensor and its application, photo sensor reflection type, and color sensor. It also deals with sensor for FA, sensor for a robot and sensor for the chemical industry.

  14. Comparison of inductively coupled plasma mass spectrometry and colorimetric determination of total and extractable phosphorus in soils

    International Nuclear Information System (INIS)

    Ivanov, Krasimir; Zaprjanova, Penka; Petkova, Milena; Stefanova, Violeta; Kmetov, Veselin; Georgieva, Deyana; Angelova, Violina

    2012-01-01

    The most widely used method for determination of total phosphorus in soils is perchloric acid digestion, followed by a colorimetric assay to measure the concentration of P in solution. The first part of this study compares an alternative digestion method, using aqua regia (ISO 11466 and EPA Method 3052), with perchloric acid digestion procedure, and also compares inductively coupled plasma mass spectroscopy (ICP-MS) with colorimetry for the measurement of P on the basis of five internationally certified standard soils and 20 real-life soils with widely different extractability of phosphorus. The phosphorus concentration was determined by means of the reduced phosphomolybdenum blue and ICP-MS. The relationship between methods has been examined statistically. Good agreement of the results from colorimetry and ICP-MS was established for all certified soils. The microwave-assisted digestion with aqua regia was comparable, both in precision and accuracy, with the hot plate aqua regia method. The phosphorus concentration found with the HF + HClO 4 digestion method was in good agreement with the certified mean values, while the superiority in extracting phosphorus, when compared to other methods, was obvious. Soil testing for plant-available phosphorus in Bulgaria and many European countries is most commonly conducted using acid Ca-lactate extraction (Egner–Riehm test) and alkaline sodium bicarbonate extraction (BDS ISO 11263:2002), based on Olsen test, followed by a colorimetric assay to measure the concentration of P in solution. The second part of this study reports the differences between Egner–Riehm test and BDS ISO 11263:2002 measured colorimetrically and by ICP-MS. Fifty soils were selected from South Bulgaria to represent a wide range of soil properties. It was established that ICP-MS consistently yielded significantly higher P concentrations than the colorimetric method in both extraction tests, and the relative differences were greatest in soils with lower P

  15. Comparison of inductively coupled plasma mass spectrometry and colorimetric determination of total and extractable phosphorus in soils

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Krasimir, E-mail: kivanov1@abv.bg [Department of Chemistry, University of Agriculture, Plovdiv (Bulgaria); Zaprjanova, Penka [Tobacco and Tobacco Products Institute, Plovdiv (Bulgaria); Petkova, Milena [Department of Chemistry, University of Agriculture, Plovdiv (Bulgaria); Stefanova, Violeta; Kmetov, Veselin; Georgieva, Deyana [Department of Analytical Chemistry, Plovdiv University ' Paisii Hilendarski,' Plovdiv (Bulgaria); Angelova, Violina [Department of Chemistry, University of Agriculture, Plovdiv (Bulgaria)

    2012-05-15

    The most widely used method for determination of total phosphorus in soils is perchloric acid digestion, followed by a colorimetric assay to measure the concentration of P in solution. The first part of this study compares an alternative digestion method, using aqua regia (ISO 11466 and EPA Method 3052), with perchloric acid digestion procedure, and also compares inductively coupled plasma mass spectroscopy (ICP-MS) with colorimetry for the measurement of P on the basis of five internationally certified standard soils and 20 real-life soils with widely different extractability of phosphorus. The phosphorus concentration was determined by means of the reduced phosphomolybdenum blue and ICP-MS. The relationship between methods has been examined statistically. Good agreement of the results from colorimetry and ICP-MS was established for all certified soils. The microwave-assisted digestion with aqua regia was comparable, both in precision and accuracy, with the hot plate aqua regia method. The phosphorus concentration found with the HF + HClO{sub 4} digestion method was in good agreement with the certified mean values, while the superiority in extracting phosphorus, when compared to other methods, was obvious. Soil testing for plant-available phosphorus in Bulgaria and many European countries is most commonly conducted using acid Ca-lactate extraction (Egner-Riehm test) and alkaline sodium bicarbonate extraction (BDS ISO 11263:2002), based on Olsen test, followed by a colorimetric assay to measure the concentration of P in solution. The second part of this study reports the differences between Egner-Riehm test and BDS ISO 11263:2002 measured colorimetrically and by ICP-MS. Fifty soils were selected from South Bulgaria to represent a wide range of soil properties. It was established that ICP-MS consistently yielded significantly higher P concentrations than the colorimetric method in both extraction tests, and the relative differences were greatest in soils with lower

  16. Design of a bioresorbable polymeric scaffold for osteoblast culture

    Science.gov (United States)

    Ditaranto, Vincent M., Jr.

    Bioresorbable polymeric scaffolds were designed for the purpose of growing rat osteosarcoma cells (ROS 17/2.8) using the compression molding method. The material used in the construction of the scaffolds was a mixture of polycaprolactone (PCL), Hydroxyapatite (HA), Glycerin (GL) and salt (NaCl) for porosity. The concentration of the several materials utilized, was determined by volume. Past research at the University of Massachusetts Lowell (UML) has successfully utilized the compression molding method for the construction of scaffolds, but was unable to accomplish the goal of long term cell survival and complete cellular proliferation throughout a three dimensional scaffold. This research investigated various concentrations of the materials and molding temperatures used for the manufacture of scaffolds in order to improve the scaffold design and address those issues. The design of the scaffold using the compression molding process is detailed in the Method and Materials section of this thesis. The porogen (salt) used for porosity was suspected as a possible source of contamination causing cell apoptosis in past studies. This research addressed the issues for cell survival and proliferation throughout a three dimensional scaffold. The leaching of the salt was one major design modification. This research successfully used ultrasonic leaching in addition to the passive method. Prior to cell culture, the scaffolds were irradiated to 2.75 Mrad, with cobalt-60 gamma radionuclide. The tissue culture consisted of two trials: (1) cell culture in scaffolds cleaned with passive leaching; (2) cell culture with scaffolds cleaned with ultrasonic leaching. Cell survival and proliferation was accomplished only with the addition of ultrasonic leaching of the scaffolds. Analysis of the scaffolds included Scanning Electron Microscopy (SEM), Nikon light microscopy and x-ray mapping of the calcium, sodium and chloride ion distribution. The cells were analyzed by Environmental Scanning

  17. Bionic Design, Materials and Performance of Bone Tissue Scaffolds

    Directory of Open Access Journals (Sweden)

    Tong Wu

    2017-10-01

    Full Text Available Design, materials, and performance are important factors in the research of bone tissue scaffolds. This work briefly describes the bone scaffolds and their anatomic structure, as well as their biological and mechanical characteristics. Furthermore, we reviewed the characteristics of metal materials, inorganic materials, organic polymer materials, and composite materials. The importance of the bionic design in preoperative diagnosis models and customized bone scaffolds was also discussed, addressing both the bionic structure design (macro and micro structure and the bionic performance design (mechanical performance and biological performance. Materials and performance are the two main problems in the development of customized bone scaffolds. Bionic design is an effective way to solve these problems, which could improve the clinical application of bone scaffolds, by creating a balance between mechanical performance and biological performance.

  18. Mesenchymal stem cell ingrowth and differentiation on coralline hydroxyapatite scaffolds

    DEFF Research Database (Denmark)

    Mygind, Tina; Stiehler, Maik; Baatrup, Anette

    2007-01-01

    Culture of osteogenic cells on a porous scaffold could offer a new solution to bone grafting using autologous human mesenchymal stem cells (hMSC) from the patient. We compared coralline hydroxyapatite scaffolds with pore sizes of 200 and 500 microm for expansion and differentiation of hMSCs. We...... polymerase chain reaction for 10 osteogenic markers. The 500-microm scaffolds had increased proliferation rates and accommodated a higher number of cells (shown by DNA content, scanning electron microscopy and fluorescence microscopy). Thus the porosity of a 3D microporous biomaterial may be used to steer h......MSC in a particular direction. We found that dynamic spinner flask cultivation of hMSC/scaffold constructs resulted in increased proliferation, differentiation and distribution of cells in scaffolds. Therefore, spinner flask cultivation is an easy-to-use inexpensive system for cultivating hMSCs on small...

  19. Electrospun PVA-PCL-HAB scaffold for craniofacial bone regeneration

    DEFF Research Database (Denmark)

    Prabha, Rahul; Kraft, David Christian Evar; Melsen, Birte

    2015-01-01

    -caprolactone (PCL)- triphasic bioceramic(HAB) scaffold to biomimic native tissue and we tested its ability to support osteogenic differentiation of stromal stem cells ( MSC) and its suitability for regeneration of craniofa- cial defects. Physiochemical characterizations of the scaffold, including con- tact angle...... body fluid immersed scaffold samples. Culturing human adult dental pulp stem cells (DPSC) and human bone marrow derived MSC seeded on PVA-PCL-HAB scaffold showed enhanced cell proliferation and in vitro osteoblastic differentiation. Cell-containing scaffolds were implanted subcutaneously in immune...... deficient mice. Histologic ex- amination of retrieved implant sections stained with H&E, Col- lagenType I and Human Vimentin antibody demonstrated that the cells survived in vivo in the implants for at least 8 weeks with evidence of osteoblastic differentiation and angiogenesis within the implants. Our...

  20. A molecular rotor based ratiometric sensor for basic amino acids.

    Science.gov (United States)

    Pettiwala, Aafrin M; Singh, Prabhat K

    2018-01-05

    The inevitable importance of basic amino acids, arginine and lysine, in human health and metabolism demands construction of efficient sensor systems for them. However, there are only limited reports on the 'ratiometric' detection of basic amino acids which is further restricted by the use of chemically complex sensor molecules, which impedes their prospect for practical applications. Herein, we report a ratiometric sensor system build on simple mechanism of disassociation of novel emissive Thioflavin-T H-aggregates from heparin surface, when subjected to interaction with basic amino acids. The strong and selective electrostatic and hydrogen bonding interaction of basic amino acids with heparin leads to large alteration in photophysical attributes of heparin bound Thioflavin-T, which forms a highly sensitive sensor platform for detection of basic amino acids in aqueous solution. These selective interactions between basic amino acids and heparin allow our sensor system to discriminate arginine and lysine from other amino acids. This unique mechanism of dissociation of Thioflavin-T aggregates from heparin surface provides ratiometric response on both fluorimetric and colorimetric outputs for detection of arginine and lysine, and thus it holds a significant advantage over other developed sensor systems which are restricted to single wavelength detection. Apart from the sensitivity and selectivity, our system also provides the advantage of simplicity, dual mode of sensing, and more importantly, it employs an inexpensive commercially available probe molecule, which is a significant advantage over other developed sensor systems that uses tedious synthesis protocol for the employed probe in the detection scheme, an impediment for practical applications. Additionally, our sensor system also shows response in complex biological media of serum samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Chemical sensor

    Science.gov (United States)

    Rauh, R. David (Inventor)

    1990-01-01

    A sensor for detecting a chemical substance includes an insertion element having a structure which enables insertion of the chemical substance with a resulting change in the bulk electrical characteristics of the insertion element under conditions sufficient to permit effective insertion; the change in the bulk electrical characteristics of the insertion element is detected as an indication of the presence of the chemical substance.

  2. Load sensor

    NARCIS (Netherlands)

    Van den Ende, D.; Almeida, P.M.R.; Dingemans, T.J.; Van der Zwaag, S.

    2007-01-01

    The invention relates to a load sensor comprising a polymer matrix and a piezo-ceramic material such as PZT, em not bedded in the polymer matrix, which together form a compos not ite, wherein the polymer matrix is a liquid crystalline resin, and wherein the piezo-ceramic material is a PZT powder

  3. Gas sensor

    Science.gov (United States)

    Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

    2014-09-09

    A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

  4. Magnetic responsive hydroxyapatite composite scaffolds construction for bone defect reparation

    Directory of Open Access Journals (Sweden)

    Zeng XB

    2012-07-01

    Full Text Available Xiao Bo Zeng, Hao Hu, Li Qin Xie, Fang Lan, Wen Jiang, Yao Wu, Zhong Wei GuNational Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, People's Republic of ChinaIntroduction: In recent years, interest in magnetic biomimetic scaffolds for tissue engineering has increased considerably. A type of magnetic scaffold composed of magnetic nanoparticles (MNPs and hydroxyapatite (HA for bone repair has been developed by our research group.Aim and methods: In this study, to investigate the influence of the MNP content (in the scaffolds on the cell behaviors and the interactions between the magnetic scaffold and the exterior magnetic field, a series of MNP-HA magnetic scaffolds with different MNP contents (from 0.2% to 2% were fabricated by immersing HA scaffold into MNP colloid. ROS 17/2.8 and MC3T3-E1 cells were cultured on the scaffolds in vitro, with and without an exterior magnetic field, respectively. The cell adhesion, proliferation and differentiation were evaluated via scanning electron microscopy; confocal laser scanning microscopy; and 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT, alkaline phosphatase, and bone gla protein activity tests.Results: The results demonstrated the positive influence of the magnetic scaffolds on cell adhesion, proliferation, and differentiation. Further, a higher amount of MNPs on the magnetic scaffolds led to more significant stimulation.Conclusion: The magnetic scaffold can respond to the exterior magnetic field and engender some synergistic effect to intensify the stimulating effect of a magnetic field to the proliferation and differentiation of cells.Keywords: magnetic therapy, magnetic nanoparticles, bone repair, magnetic responsive

  5. Scaffold library for tissue engineering: a geometric evaluation.

    Science.gov (United States)

    Chantarapanich, Nattapon; Puttawibul, Puttisak; Sucharitpwatskul, Sedthawatt; Jeamwatthanachai, Pongnarin; Inglam, Samroeng; Sitthiseripratip, Kriskrai

    2012-01-01

    Tissue engineering scaffold is a biological substitute that aims to restore, to maintain, or to improve tissue functions. Currently available manufacturing technology, that is, additive manufacturing is essentially applied to fabricate the scaffold according to the predefined computer aided design (CAD) model. To develop scaffold CAD libraries, the polyhedrons could be used in the scaffold libraries development. In this present study, one hundred and nineteen polyhedron models were evaluated according to the established criteria. The proposed criteria included considerations on geometry, manufacturing feasibility, and mechanical strength of these polyhedrons. CAD and finite element (FE) method were employed as tools in evaluation. The result of evaluation revealed that the close-cellular scaffold included truncated octahedron, rhombicuboctahedron, and rhombitruncated cuboctahedron. In addition, the suitable polyhedrons for using as open-cellular scaffold libraries included hexahedron, truncated octahedron, truncated hexahedron, cuboctahedron, rhombicuboctahedron, and rhombitruncated cuboctahedron. However, not all pore size to beam thickness ratios (PO:BT) were good for making the open-cellular scaffold. The PO:BT ratio of each library, generating the enclosed pore inside the scaffold, was excluded to avoid the impossibility of material removal after the fabrication. The close-cellular libraries presented the constant porosity which is irrespective to the different pore sizes. The relationship between PO:BT ratio and porosity of open-cellular scaffold libraries was displayed in the form of Logistic Power function. The possibility of merging two different types of libraries to produce the composite structure was geometrically evaluated in terms of the intersection index and was mechanically evaluated by means of FE analysis to observe the stress level. The couples of polyhedrons presenting low intersection index and high stress level were excluded. Good couples for

  6. Scaffold Library for Tissue Engineering: A Geometric Evaluation

    Directory of Open Access Journals (Sweden)

    Nattapon Chantarapanich

    2012-01-01

    Full Text Available Tissue engineering scaffold is a biological substitute that aims to restore, to maintain, or to improve tissue functions. Currently available manufacturing technology, that is, additive manufacturing is essentially applied to fabricate the scaffold according to the predefined computer aided design (CAD model. To develop scaffold CAD libraries, the polyhedrons could be used in the scaffold libraries development. In this present study, one hundred and nineteen polyhedron models were evaluated according to the established criteria. The proposed criteria included considerations on geometry, manufacturing feasibility, and mechanical strength of these polyhedrons. CAD and finite element (FE method were employed as tools in evaluation. The result of evaluation revealed that the close-cellular scaffold included truncated octahedron, rhombicuboctahedron, and rhombitruncated cuboctahedron. In addition, the suitable polyhedrons for using as open-cellular scaffold libraries included hexahedron, truncated octahedron, truncated hexahedron, cuboctahedron, rhombicuboctahedron, and rhombitruncated cuboctahedron. However, not all pore size to beam thickness ratios (PO : BT were good for making the open-cellular scaffold. The PO : BT ratio of each library, generating the enclosed pore inside the scaffold, was excluded to avoid the impossibility of material removal after the fabrication. The close-cellular libraries presented the constant porosity which is irrespective to the different pore sizes. The relationship between PO : BT ratio and porosity of open-cellular scaffold libraries was displayed in the form of Logistic Power function. The possibility of merging two different types of libraries to produce the composite structure was geometrically evaluated in terms of the intersection index and was mechanically evaluated by means of FE analysis to observe the stress level. The couples of polyhedrons presenting low intersection index and high stress

  7. Electrospun nanofiber scaffolds: engineering soft tissues

    International Nuclear Information System (INIS)

    Kumbar, S G; Nukavarapu, S P; Laurencin, C T; James, R

    2008-01-01

    Electrospinning has emerged to be a simple, elegant and scalable technique to fabricate polymeric nanofibers. Pure polymers as well as blends and composites of both natural and synthetics have been successfully electrospun into nanofiber matrices. Physiochemical properties of nanofiber matrices can be controlled by manipulating electrospinning parameters to meet the requirements of a specific application. Such efforts include the fabrication of fiber matrices containing nanofibers, microfibers, combination of nano-microfibers and also different fiber orientation/alignments. Polymeric nanofiber matrices have been extensively investigated for diversified uses such as filtration, barrier fabrics, wipes, personal care, biomedical and pharmaceutical applications. Recently electrospun nanofiber matrices have gained a lot of attention, and are being explored as scaffolds in tissue engineering due to their properties that can modulate cellular behavior. Electrospun nanofiber matrices show morphological similarities to the natural extra-cellular matrix (ECM), characterized by ultrafine continuous fibers, high surface-to-volume ratio, high porosity and variable pore-size distribution. Efforts have been made to modify nanofiber surfaces with several bioactive molecules to provide cells with the necessary chemical cues and a more in vivo like environment. The current paper provides an overlook on such efforts in designing nanofiber matrices as scaffolds in the regeneration of various soft tissues including skin, blood vessel, tendon/ligament, cardiac patch, nerve and skeletal muscle

  8. Electrospun nanofiber scaffolds: engineering soft tissues

    Energy Technology Data Exchange (ETDEWEB)

    Kumbar, S G; Nukavarapu, S P; Laurencin, C T [Department of Orthopaedic Surgery, University of Virginia, VA 22908 (United States); James, R [Department of Biomedical Engineering, University of Virginia, VA 22908 (United States)], E-mail: laurencin@virginia.edu

    2008-09-01

    Electrospinning has emerged to be a simple, elegant and scalable technique to fabricate polymeric nanofibers. Pure polymers as well as blends and composites of both natural and synthetics have been successfully electrospun into nanofiber matrices. Physiochemical properties of nanofiber matrices can be controlled by manipulating electrospinning parameters to meet the requirements of a specific application. Such efforts include the fabrication of fiber matrices containing nanofibers, microfibers, combination of nano-microfibers and also different fiber orientation/alignments. Polymeric nanofiber matrices have been extensively investigated for diversified uses such as filtration, barrier fabrics, wipes, personal care, biomedical and pharmaceutical applications. Recently electrospun nanofiber matrices have gained a lot of attention, and are being explored as scaffolds in tissue engineering due to their properties that can modulate cellular behavior. Electrospun nanofiber matrices show morphological similarities to the natural extra-cellular matrix (ECM), characterized by ultrafine continuous fibers, high surface-to-volume ratio, high porosity and variable pore-size distribution. Efforts have been made to modify nanofiber surfaces with several bioactive molecules to provide cells with the necessary chemical cues and a more in vivo like environment. The current paper provides an overlook on such efforts in designing nanofiber matrices as scaffolds in the regeneration of various soft tissues including skin, blood vessel, tendon/ligament, cardiac patch, nerve and skeletal muscle.

  9. Engineered porous scaffolds for periprosthetic infection prevention

    Energy Technology Data Exchange (ETDEWEB)

    Iviglia, Giorgio, E-mail: giorgio.iviglia@polito.it [Nobil Bio Ricerche Srl, 14037 Portacomaro (Italy); Department of Applied Science and Technology, Institute of Materials Physics and Engineering, Politecnico di Torino, 10121 Torino (Italy); Cassinelli, Clara; Bollati, Daniele [Nobil Bio Ricerche Srl, 14037 Portacomaro (Italy); Baino, Francesco [Department of Applied Science and Technology, Institute of Materials Physics and Engineering, Politecnico di Torino, 10121 Torino (Italy); Torre, Elisa; Morra, Marco [Nobil Bio Ricerche Srl, 14037 Portacomaro (Italy); Vitale-Brovarone, Chiara [Department of Applied Science and Technology, Institute of Materials Physics and Engineering, Politecnico di Torino, 10121 Torino (Italy)

    2016-11-01

    Periprosthetic infection is a consequence of implant insertion procedures and strategies for its prevention involve either an increase in the rate of new bone formation or the release of antibiotics such as vancomycin. In this work we combined both strategies and developed a novel, multifunctional three-dimensional porous scaffold that was produced using hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP), coupled with a pectin (PEC)-chitosan (CHIT) polyelectrolyte (PEI), and loaded with vancomycin (VCA). By this approach, a controlled vancomycin release was achieved and serial bacterial dilution test demonstrated that, after 1 week, the engineered construct still inhibits the bacterial growth. Degradation tests show an excellent behavior in a physiological and acidic environment (< 10% of mass loss). Furthermore, the PEI coating shows an anti-inflammatory response, and good cell proliferation and migration were demonstrated in vitro using osteoblast SAOS-2 cell line. This new engineered construct exhibits excellent properties both as an antibacterial material and as a stimulator of bone formation, which makes it a good candidate to contrast periprosthetic infection. - Highlights: • A novel three-dimensional ceramic scaffold was developed for infection prevention. • Pectin/chitosan coating stabilizes the degradation behavior in acidic environment. • Polyelectrolyte complex allows sustained release of vancomycin. • Inhibition of bacterial proliferation and biofilm formation was assessed. • PEI coating elicits anti-inflammatory response.

  10. Engineered porous scaffolds for periprosthetic infection prevention

    International Nuclear Information System (INIS)

    Iviglia, Giorgio; Cassinelli, Clara; Bollati, Daniele; Baino, Francesco; Torre, Elisa; Morra, Marco; Vitale-Brovarone, Chiara

    2016-01-01

    Periprosthetic infection is a consequence of implant insertion procedures and strategies for its prevention involve either an increase in the rate of new bone formation or the release of antibiotics such as vancomycin. In this work we combined both strategies and developed a novel, multifunctional three-dimensional porous scaffold that was produced using hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP), coupled with a pectin (PEC)-chitosan (CHIT) polyelectrolyte (PEI), and loaded with vancomycin (VCA). By this approach, a controlled vancomycin release was achieved and serial bacterial dilution test demonstrated that, after 1 week, the engineered construct still inhibits the bacterial growth. Degradation tests show an excellent behavior in a physiological and acidic environment (< 10% of mass loss). Furthermore, the PEI coating shows an anti-inflammatory response, and good cell proliferation and migration were demonstrated in vitro using osteoblast SAOS-2 cell line. This new engineered construct exhibits excellent properties both as an antibacterial material and as a stimulator of bone formation, which makes it a good candidate to contrast periprosthetic infection. - Highlights: • A novel three-dimensional ceramic scaffold was developed for infection prevention. • Pectin/chitosan coating stabilizes the degradation behavior in acidic environment. • Polyelectrolyte complex allows sustained release of vancomycin. • Inhibition of bacterial proliferation and biofilm formation was assessed. • PEI coating elicits anti-inflammatory response.

  11. Electrodeposition of copper nanoparticles using pectin scaffold at graphene nanosheets for electrochemical sensing of glucose and hydrogen peroxide

    International Nuclear Information System (INIS)

    Mani, Veerappan; Devasenathipathy, Rajkumar; Chen, Shen-Ming; Wang, Sea-Fue; Devi, Parvathy; Tai, Yian

    2015-01-01

    A simple electrodeposition approach has been described for the preparation of copper nanoparticles (CuNPs) using biopolymer pectin as a scaffold and graphene as a support. The formation of graphene/pectin-CuNPs was confirmed by scanning electron microscopy, UV-Visible spectroscopy and X-ray diffraction studies. The graphene/pectin-CuNPs film modified electrode was prepared and its electrocatalytic applications to the oxidation of glucose and reduction of H 2 O 2 have been explored. An amperometric glucose sensor was fabricated which exhibited excellent sensor performance in terms of wide linear range (10 μM–5.5 mM), low detection limit (2.1 μM) and high sensitivity (0.0457 μAμM −1 cm −2 ). Likewise, an amperometric sensor has been fabricated for the determination of H 2 O 2 which displayed linear range of 1 μM–1 mM, detection limit of 0.35 μM and sensitivity of 0.391 μAμM −1 cm −2 . The sensor displayed appreciable repeatability, reproducibity and stability. Furthermore, practical feasibility of the sensor has been demonstrated in human serum and contact lens cleaning solution to determine glucose and H 2 O 2 , respectively. The main advantages of sensor include simple and green fabrication approach, roughed and stable electrode matrix, high sensitivity and stability, fast in sensing and highly reproducible

  12. Facile Fabrication of Multi-hierarchical Porous Polyaniline Composite as Pressure Sensor and Gas Sensor with Adjustable Sensitivity

    Science.gov (United States)

    He, Xiao-Xiao; Li, Jin-Tao; Jia, Xian-Sheng; Tong, Lu; Wang, Xiao-Xiong; Zhang, Jun; Zheng, Jie; Ning, Xin; Long, Yun-Ze

    2017-08-01

    A multi-hierarchical porous polyaniline (PANI) composite which could be used in good performance pressure sensor and adjustable sensitivity gas sensor has been fabricated by a facile in situ polymerization. Commercial grade sponge was utilized as a template scaffold to deposit PANI via in situ polymerization. With abundant interconnected pores throughout the whole structure, the sponge provided sufficient surface for the growth of PANI nanobranches. The flexible porous structure helped the composite to show high performance in pressure detection with fast response and favorable recoverability and gas detection with adjustable sensitivity. The sensing mechanism of the PANI/sponge-based flexible sensor has also been discussed. The results indicate that this work provides a feasible approach to fabricate efficient sensors with advantages of low cost, facile preparation, and easy signal collection.

  13. A high-throughput colorimetric assay for glucose detection based on glucose oxidase-catalyzed enlargement of gold nanoparticles

    Science.gov (United States)

    Xiong, Yanmei; Zhang, Yuyan; Rong, Pengfei; Yang, Jie; Wang, Wei; Liu, Dingbin

    2015-09-01

    We developed a simple high-throughput colorimetric assay to detect glucose based on the glucose oxidase (GOx)-catalysed enlargement of gold nanoparticles (AuNPs). Compared with the currently available glucose kit method, the AuNP-based assay provides higher clinical sensitivity at lower cost, indicating its great potential to be a powerful tool for clinical screening of glucose.We developed a simple high-throughput colorimetric assay to detect glucose based on the glucose oxidase (GOx)-catalysed enlargement of gold nanoparticles (AuNPs). Compared with the currently available glucose kit method, the AuNP-based assay provides higher clinical sensitivity at lower cost, indicating its great potential to be a powerful tool for clinical screening of glucose. Electronic supplementary information (ESI) available: Experimental section and additional figures. See DOI: 10.1039/c5nr03758a

  14. Colorimetric Detection of Some Highly Hydrophobic Flavonoids Using Polydiacetylene Liposomes Containing Pentacosa-10,12-diynoyl Succinoglycan Monomers

    Science.gov (United States)

    Yun, Deokgyu; Jeong, Daham; Cho, Eunae; Jung, Seunho

    2015-01-01

    Flavonoids are a group of plant secondary metabolites including polyphenolic molecules, and they are well known for antioxidant, anti-allergic, anti-inflammatory and anti-viral propertied. In general, flavonoids are detected with various non-colorimetric detection methods such as column liquid chromatography, thin-layer chromatography, and electrochemical analysis. For the first time, we developed a straightforward colorimetric detection system allowing recognition of some highly hydrophobic flavonoids such as alpha-naphthoflavone and beta-naphthoflavone, visually using 10,12-pentacosadiynoic acid (PCDA) derivatized with succinoglycan monomers isolated from Sinorhizobium meliloti. Besides changes in visible spectrum, we also demonstrate fluorescence changes using our detection system in the presence of those flavonoids. The succinoglycan monomers attached to PCDA molecules may function as an unstructured molecular capturer for some highly hydrophobic flavonoids by hydrophobic interactions, and transmit their molecular interactions as a color change throughout the PCDA liposome. PMID:26600071

  15. Robust Chemiresistive Sensor for Continuous Monitoring of Free Chlorine Using Graphene-like Carbon.

    Science.gov (United States)

    Aryasomayajula, Aditya; Wojnas, Caroline; Divigalpitiya, Ranjith; Selvaganapathy, Ponnambalam Ravi; Kruse, Peter

    2018-02-23

    Free chlorine is widely used in industry as a bleaching and oxidizing agent. Its concentration is tightly monitored to avoid environmental contamination and deleterious human health effects. Here, we demonstrate a solid state chemiresistive sensor using graphene like carbon (GLC) to detect free chlorine in water. A 15-20 nm thick GLC layer on a PET substrate was modified with a redox-active aniline oligomer (phenyl-capped aniline tetramer, PCAT) to increase sensitivity, improve selectivity, and impart fouling resistance. Both the bare GLC sensor and the PCAT-modified GLC sensor can detect free chlorine continuously and, unlike previous chemiresistive sensors, do not require a reset. The PCAT-modified sensor showed a linear response with a slope of 13.89 (mg/L) -1 to free chlorine concentrations between 0.2 and 0.8 mg/L which is relevant for free chlorine monitoring for drinking water and wastewater applications. The PCAT-modified GLC sensors were found to be selective and showed less than 0.5% change in current in response to species such as nitrates, phosphates and sulfates in water. They also were resistant to fouling from organic material and showed only a 2% loss in signal. Tap water samples from residential area were tested using this sensor which showed good agreement with standard colorimetric measurement methods. The GLC and PCAT-GLC sensors show high sensitivity and excellent selectivity to free chlorine and can be used for continuous automated monitoring of free chlorine.

  16. Penetrometer compatible, fiber-optic sensor for continuous monitoring of chlorinated hydrocarbons -- field test results

    International Nuclear Information System (INIS)

    Milanovich, F.P.; Brown, S.B.; Colston, B.W. Jr.

    1993-04-01

    We have developed and field tested a fiber optic chemical sensor for use in environmental monitoring and remediation. The principle of detection is colorimetric and is based on an irreversible chemical reaction between a specific reagent and the target compound. The formation of reaction products are monitored remotely with optical fibers. Successive or on-demand measurements are made possible with a reagent reservoir and a miniature pumping system. The sensor has been evaluated against gas chromatography standards and has demonstrated accuracy and sensitivity (>5ppb w/w) sufficient for the environmental monitoring of the contaminants triceoroethlyene (TCE) and chloroform. The sensor system can be used for bench-top analyses or for in-situ measurements such as groundwater and vadose monitoring wells or in Penetrometry mediated placements

  17. A novel cyanide-selective colorimetric and fluorescent chemosensor: First molecular security keypad lock based on phosphotungstic acid and CN{sup −} inputs

    Energy Technology Data Exchange (ETDEWEB)

    Tavallali, Hossein, E-mail: Tavallali@pnu.ac.ir; Deilamy-Rad, Gohar; Parhami, Abolfath; Hasanli, Nahid

    2014-02-15

    Highlights: • Our probe is commercially available with good photo stability and high quantum yield. • Both color and fluorescence change with long emission wavelength in aqueous media. • Characteristics of an ON–OFF–ON fluorescence switch. • The simple receptor for CN{sup -} detection with low detection limit (≪WHO). • Mimic the function of a security keypad lock on sequential addition of PTA and CN{sup −}. -- Abstract: Rhodamine B (Rh{sub B}) an available dye has been developed as novel and efficient colorimetric and fluorometric chemosensor for cyanide ions in an absolutely aqueous media. The UV–vis absorption and fluorescent emission titrations experiments have been employed to study the sensing process. Rh{sub B} could act as an efficient “ON–OFF” fluorescent response for phosphotungstic acid (H{sub 3}PW{sub 12}O{sub 40} or PTA) based on an ion associate process. Also (Rh{sub B}{sup +}){sub 3}·PTA{sup 3−} could operate as an “OFF–ON” fluorescent sensor for cyanide anions based on a ligand substitution process. It has been identified as highly sensitive probe for CN{sup −} which responds at 0.3 and 0.04 μmol L{sup −1} concentration levels by absorption and fluorescent method respectively. Depending upon the sequence of addition of PTA and CN{sup −} ions into the solution, Rh{sub B} could be as a molecular security keypad lock with PTA and CN{sup −} inputs. The ionic inputs to new fluorophore have been mimicked as a superimposed electronic molecular keypad lock. The results were compared successfully (>96%) with the data of a spectrophotometry approved method (EPA 9014-1) for cyanide ions.

  18. Application of a colorimetric technique in quality control for printed pediatric orodispersible drug delivery systems containing propranolol hydrochloride

    DEFF Research Database (Denmark)

    Vakili, Hossein; Nyman, Johan O; Genina, Natalja

    2016-01-01

    and the excipients. The inkjet printing technique deposited precise and uniform escalating doses (0.08-3.16mg) of the active pharmaceutical ingredient onto the substrates (R(2)≥0.9934). A disintegration test with clear end-point detection confirmed that all the substrates meet the requirements of the Ph. Eur....... to disintegrate within 180s. The colorimetric technique proved to be a reliable method to distinguish the small color differences between formulations containing an escalating dose of propranolol hydrochloride....

  19. Simple colorimetric methods for determination of sub-milligram amounts of ultra-high molecular weight polyethylene wear particles

    Czech Academy of Sciences Publication Activity Database

    Veselý, F.; Zolotarevova, E.; Špundová, M.; Kaftan, Filip; Šlouf, Miroslav; Entlicher, G.

    2012-01-01

    Roč. 8, č. 5 (2012), s. 1935-1938 ISSN 1742-7061 R&D Projects: GA MŠk 2B06096; GA MZd NT12229 Grant - others:GA ČR(CZ) GAP503/11/0163 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z40500505 Keywords : joint replacement * polyethylene wear particles * wear particles determination * colorimetric methods Subject RIV: CC - Organic Chemistry Impact factor: 5.093, year: 2012

  20. Method for estimating effects of unknown correlations in spectral irradiance data on uncertainties of spectrally integrated colorimetric quantities

    Science.gov (United States)

    Kärhä, Petri; Vaskuri, Anna; Mäntynen, Henrik; Mikkonen, Nikke; Ikonen, Erkki

    2017-08-01

    Spectral irradiance data are often used to calculate colorimetric properties, such as color coordinates and color temperatures of light sources by integration. The spectral data may contain unknown correlations that should be accounted for in the uncertainty estimation. We propose a new method for estimating uncertainties in such cases. The method goes through all possible scenarios of deviations using Monte Carlo analysis. Varying spectral error functions are produced by combining spectral base functions, and the distorted spectra are used to calculate the colorimetric quantities. Standard deviations of the colorimetric quantities at different scenarios give uncertainties assuming no correlations, uncertainties assuming full correlation, and uncertainties for an unfavorable case of unknown correlations, which turn out to be a significant source of uncertainty. With 1% standard uncertainty in spectral irradiance, the expanded uncertainty of the correlated color temperature of a source corresponding to the CIE Standard Illuminant A may reach as high as 37.2 K in unfavorable conditions, when calculations assuming full correlation give zero uncertainty, and calculations assuming no correlations yield the expanded uncertainties of 5.6 K and 12.1 K, with wavelength steps of 1 nm and 5 nm used in spectral integrations, respectively. We also show that there is an absolute limit of 60.2 K in the error of the correlated color temperature for Standard Illuminant A when assuming 1% standard uncertainty in the spectral irradiance. A comparison of our uncorrelated uncertainties with those obtained using analytical methods by other research groups shows good agreement. We re-estimated the uncertainties for the colorimetric properties of our 1 kW photometric standard lamps using the new method. The revised uncertainty of color temperature is a factor of 2.5 higher than the uncertainty assuming no correlations.