WorldWideScience

Sample records for color image segmentation

  1. Color image Segmentation using automatic thresholding techniques

    Harrabi, R.; Ben Braiek, E.

    2011-01-01

    In this paper, entropy and between-class variance based thresholding methods for color images segmentation are studied. The maximization of the between-class variance (MVI) and the entropy (ME) have been used as a criterion functions to determine an optimal threshold to segment images into nearly homogenous regions. Segmentation results from the two methods are validated and the segmentation sensitivity for the test data available is evaluated, and a comparative study between these methods in different color spaces is presented. The experimental results demonstrate the superiority of the MVI method for color image segmentation.

  2. Natural color image segmentation using integrated mechanism

    Jie Xu (徐杰); Pengfei Shi (施鹏飞)

    2003-01-01

    A new method for natural color image segmentation using integrated mechanism is proposed in this paper.Edges are first detected in term of the high phase congruency in the gray-level image. K-mean cluster is used to label long edge lines based on the global color information to estimate roughly the distribution of objects in the image, while short ones are merged based on their positions and local color differences to eliminate the negative affection caused by texture or other trivial features in image. Region growing technique is employed to achieve final segmentation results. The proposed method unifies edges, whole and local color distributions, as well as spatial information to solve the natural image segmentation problem.The feasibility and effectiveness of this method have been demonstrated by various experiments.

  3. Segmentation and Classification of Burn Color Images

    2001-10-25

    SEGMENTATION AND CLASSIFICATION OF BURN COLOR IMAGES Begoña Acha1, Carmen Serrano1, Laura Roa2 1Área de Teoría de la Señal y Comunicaciones ...2000, Las Vegas (USA), pp. 411-415. [21] G. Wyszecki and W.S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (New

  4. Segmentation and Classification of Burn Color Images

    Acha, Begonya

    2001-01-01

    .... In the classification part, we take advantage of color information by clustering, with a vector quantization algorithm, the color centroids of small squares, taken from the burnt segmented part of the image, in the (V1, V2) plane into two possible groups, where V1 and V2 are the two chrominance components of the CIE Lab representation.

  5. Performance Analysis of Segmentation of Hyperspectral Images Based on Color Image Segmentation

    Praveen Agarwal

    2017-06-01

    Full Text Available Image segmentation is a fundamental approach in the field of image processing and based on user’s application .This paper propose an original and simple segmentation strategy based on the EM approach that resolves many informatics problems about hyperspectral images which are observed by airborne sensors. In a first step, to simplify the input color textured image into a color image without texture. The final segmentation is simply achieved by a spatially color segmentation using feature vector with the set of color values contained around the pixel to be classified with some mathematical equations. The spatial constraint allows taking into account the inherent spatial relationships of any image and its color. This approach provides effective PSNR for the segmented image. These results have the better performance as the segmented images are compared with Watershed & Region Growing Algorithm and provide effective segmentation for the Spectral Images & Medical Images.

  6. Color Segmentation of Homogeneous Areas on Colposcopical Images

    Kosteley Yana

    2016-01-01

    Full Text Available The article provides an analysis of image processing and color segmentation applied to the problem of selection of homogeneous regions in the parameters of the color model. Methods of image processing such as Gaussian filter, median filter, histogram equalization and mathematical morphology are considered. The segmentation algorithm with the parameters of color components is presented, followed by isolation of the resulting connected component of a binary segmentation mask. Analysis of methods performed on images colposcopic research.

  7. Brain MR image segmentation using NAMS in pseudo-color.

    Li, Hua; Chen, Chuanbo; Fang, Shaohong; Zhao, Shengrong

    2017-12-01

    Image segmentation plays a crucial role in various biomedical applications. In general, the segmentation of brain Magnetic Resonance (MR) images is mainly used to represent the image with several homogeneous regions instead of pixels for surgical analyzing and planning. This paper proposes a new approach for segmenting MR brain images by using pseudo-color based segmentation with Non-symmetry and Anti-packing Model with Squares (NAMS). First of all, the NAMS model is presented. The model can represent the image with sub-patterns to keep the image content and largely reduce the data redundancy. Second, the key idea is proposed that convert the original gray-scale brain MR image into a pseudo-colored image and then segment the pseudo-colored image with NAMS model. The pseudo-colored image can enhance the color contrast in different tissues in brain MR images, which can improve the precision of segmentation as well as directly visual perceptional distinction. Experimental results indicate that compared with other brain MR image segmentation methods, the proposed NAMS based pseudo-color segmentation method performs more excellent in not only segmenting precisely but also saving storage.

  8. FUSION SEGMENTATION METHOD BASED ON FUZZY THEORY FOR COLOR IMAGES

    J. Zhao

    2017-09-01

    Full Text Available The image segmentation method based on two-dimensional histogram segments the image according to the thresholds of the intensity of the target pixel and the average intensity of its neighborhood. This method is essentially a hard-decision method. Due to the uncertainties when labeling the pixels around the threshold, the hard-decision method can easily get the wrong segmentation result. Therefore, a fusion segmentation method based on fuzzy theory is proposed in this paper. We use membership function to model the uncertainties on each color channel of the color image. Then, we segment the color image according to the fuzzy reasoning. The experiment results show that our proposed method can get better segmentation results both on the natural scene images and optical remote sensing images compared with the traditional thresholding method. The fusion method in this paper can provide new ideas for the information extraction of optical remote sensing images and polarization SAR images.

  9. A competition in unsupervised color image segmentation

    Haindl, Michal; Mikeš, Stanislav

    2016-01-01

    Roč. 57, č. 9 (2016), s. 136-151 ISSN 0031-3203 R&D Projects: GA ČR(CZ) GA14-10911S Institutional support: RVO:67985556 Keywords : Unsupervised image segmentation * Segmentation contest * Texture analysis Subject RIV: BD - Theory of Information Impact factor: 4.582, year: 2016 http://library.utia.cas.cz/separaty/2016/RO/haindl-0459179.pdf

  10. Unsupervised color image segmentation using a lattice algebra clustering technique

    Urcid, Gonzalo; Ritter, Gerhard X.

    2011-08-01

    In this paper we introduce a lattice algebra clustering technique for segmenting digital images in the Red-Green- Blue (RGB) color space. The proposed technique is a two step procedure. Given an input color image, the first step determines the finite set of its extreme pixel vectors within the color cube by means of the scaled min-W and max-M lattice auto-associative memory matrices, including the minimum and maximum vector bounds. In the second step, maximal rectangular boxes enclosing each extreme color pixel are found using the Chebychev distance between color pixels; afterwards, clustering is performed by assigning each image pixel to its corresponding maximal box. The two steps in our proposed method are completely unsupervised or autonomous. Illustrative examples are provided to demonstrate the color segmentation results including a brief numerical comparison with two other non-maximal variations of the same clustering technique.

  11. Objectness Supervised Merging Algorithm for Color Image Segmentation

    Haifeng Sima

    2016-01-01

    Full Text Available Ideal color image segmentation needs both low-level cues and high-level semantic features. This paper proposes a two-hierarchy segmentation model based on merging homogeneous superpixels. First, a region growing strategy is designed for producing homogenous and compact superpixels in different partitions. Total variation smoothing features are adopted in the growing procedure for locating real boundaries. Before merging, we define a combined color-texture histogram feature for superpixels description and, meanwhile, a novel objectness feature is proposed to supervise the region merging procedure for reliable segmentation. Both color-texture histograms and objectness are computed to measure regional similarities between region pairs, and the mixed standard deviation of the union features is exploited to make stop criteria for merging process. Experimental results on the popular benchmark dataset demonstrate the better segmentation performance of the proposed model compared to other well-known segmentation algorithms.

  12. Color image segmentation using perceptual spaces through applets ...

    Color image segmentation using perceptual spaces through applets for determining and preventing diseases in chili peppers. JL González-Pérez, MC Espino-Gudiño, J Gudiño-Bazaldúa, JL Rojas-Rentería, V Rodríguez-Hernández, VM Castaño ...

  13. Color Image Segmentation Based on Different Color Space Models Using Automatic GrabCut

    Dina Khattab

    2014-01-01

    Full Text Available This paper presents a comparative study using different color spaces to evaluate the performance of color image segmentation using the automatic GrabCut technique. GrabCut is considered as one of the semiautomatic image segmentation techniques, since it requires user interaction for the initialization of the segmentation process. The automation of the GrabCut technique is proposed as a modification of the original semiautomatic one in order to eliminate the user interaction. The automatic GrabCut utilizes the unsupervised Orchard and Bouman clustering technique for the initialization phase. Comparisons with the original GrabCut show the efficiency of the proposed automatic technique in terms of segmentation, quality, and accuracy. As no explicit color space is recommended for every segmentation problem, automatic GrabCut is applied with RGB, HSV, CMY, XYZ, and YUV color spaces. The comparative study and experimental results using different color images show that RGB color space is the best color space representation for the set of the images used.

  14. Color image segmentation to detect defects on fresh ham

    Marty-Mahe, Pascale; Loisel, Philippe; Brossard, Didier

    2003-04-01

    We present in this paper the color segmentation methods that were used to detect appearance defects on 3 dimensional shape of fresh ham. The use of color histograms turned out to be an efficient solution to characterize the healthy skin, but a special care must be taken to choose the color components because of the 3 dimensional shape of ham.

  15. SUPERVISED AUTOMATIC HISTOGRAM CLUSTERING AND WATERSHED SEGMENTATION. APPLICATION TO MICROSCOPIC MEDICAL COLOR IMAGES

    Olivier Lezoray

    2011-05-01

    Full Text Available In this paper, an approach to the segmentation of microscopic color images is addressed, and applied to medical images. The approach combines a clustering method and a region growing method. Each color plane is segmented independently relying on a watershed based clustering of the plane histogram. The marginal segmentation maps intersect in a label concordance map. The latter map is simplified based on the assumption that the color planes are correlated. This produces a simplified label concordance map containing labeled and unlabeled pixels. The formers are used as an image of seeds for a color watershed. This fast and robust segmentation scheme is applied to several types of medical images.

  16. Obtention of tumor volumes in PET images stacks using techniques of colored image segmentation

    Vieira, Jose W.; Lopes Filho, Ferdinand J.; Vieira, Igor F.

    2014-01-01

    This work demonstrated step by step how to segment color images of the chest of an adult in order to separate the tumor volume without significantly changing the values of the components R (Red), G (Green) and B (blue) of the colors of the pixels. For having information which allow to build color map you need to segment and classify the colors present at appropriate intervals in images. The used segmentation technique is to select a small rectangle with color samples in a given region and then erase with a specific color called 'rubber' the other regions of image. The tumor region was segmented into one of the images available and the procedure is displayed in tutorial format. All necessary computational tools have been implemented in DIP (Digital Image Processing), software developed by the authors. The results obtained, in addition to permitting the construction the colorful map of the distribution of the concentration of activity in PET images will also be useful in future work to enter tumors in voxel phantoms in order to perform dosimetric assessments

  17. Hybridizing Differential Evolution with a Genetic Algorithm for Color Image Segmentation

    R. V. V. Krishna

    2016-10-01

    Full Text Available This paper proposes a hybrid of differential evolution and genetic algorithms to solve the color image segmentation problem. Clustering based color image segmentation algorithms segment an image by clustering the features of color and texture, thereby obtaining accurate prototype cluster centers. In the proposed algorithm, the color features are obtained using the homogeneity model. A new texture feature named Power Law Descriptor (PLD which is a modification of Weber Local Descriptor (WLD is proposed and further used as a texture feature for clustering. Genetic algorithms are competent in handling binary variables, while differential evolution on the other hand is more efficient in handling real parameters. The obtained texture feature is binary in nature and the color feature is a real value, which suits very well the hybrid cluster center optimization problem in image segmentation. Thus in the proposed algorithm, the optimum texture feature centers are evolved using genetic algorithms, whereas the optimum color feature centers are evolved using differential evolution.

  18. A kind of color image segmentation algorithm based on super-pixel and PCNN

    Xu, GuangZhu; Wang, YaWen; Zhang, Liu; Zhao, JingJing; Fu, YunXia; Lei, BangJun

    2018-04-01

    Image segmentation is a very important step in the low-level visual computing. Although image segmentation has been studied for many years, there are still many problems. PCNN (Pulse Coupled Neural network) has biological background, when it is applied to image segmentation it can be viewed as a region-based method, but due to the dynamics properties of PCNN, many connectionless neurons will pulse at the same time, so it is necessary to identify different regions for further processing. The existing PCNN image segmentation algorithm based on region growing is used for grayscale image segmentation, cannot be directly used for color image segmentation. In addition, the super-pixel can better reserve the edges of images, and reduce the influences resulted from the individual difference between the pixels on image segmentation at the same time. Therefore, on the basis of the super-pixel, the original PCNN algorithm based on region growing is improved by this paper. First, the color super-pixel image was transformed into grayscale super-pixel image which was used to seek seeds among the neurons that hadn't been fired. And then it determined whether to stop growing by comparing the average of each color channel of all the pixels in the corresponding regions of the color super-pixel image. Experiment results show that the proposed algorithm for the color image segmentation is fast and effective, and has a certain effect and accuracy.

  19. Colorization and automated segmentation of human T2 MR brain images for characterization of soft tissues.

    Muhammad Attique

    Full Text Available Characterization of tissues like brain by using magnetic resonance (MR images and colorization of the gray scale image has been reported in the literature, along with the advantages and drawbacks. Here, we present two independent methods; (i a novel colorization method to underscore the variability in brain MR images, indicative of the underlying physical density of bio tissue, (ii a segmentation method (both hard and soft segmentation to characterize gray brain MR images. The segmented images are then transformed into color using the above-mentioned colorization method, yielding promising results for manual tracing. Our color transformation incorporates the voxel classification by matching the luminance of voxels of the source MR image and provided color image by measuring the distance between them. The segmentation method is based on single-phase clustering for 2D and 3D image segmentation with a new auto centroid selection method, which divides the image into three distinct regions (gray matter (GM, white matter (WM, and cerebrospinal fluid (CSF using prior anatomical knowledge. Results have been successfully validated on human T2-weighted (T2 brain MR images. The proposed method can be potentially applied to gray-scale images from other imaging modalities, in bringing out additional diagnostic tissue information contained in the colorized image processing approach as described.

  20. BlobContours: adapting Blobworld for supervised color- and texture-based image segmentation

    Vogel, Thomas; Nguyen, Dinh Quyen; Dittmann, Jana

    2006-01-01

    Extracting features is the first and one of the most crucial steps in recent image retrieval process. While the color features and the texture features of digital images can be extracted rather easily, the shape features and the layout features depend on reliable image segmentation. Unsupervised image segmentation, often used in image analysis, works on merely syntactical basis. That is, what an unsupervised segmentation algorithm can segment is only regions, but not objects. To obtain high-level objects, which is desirable in image retrieval, human assistance is needed. Supervised image segmentations schemes can improve the reliability of segmentation and segmentation refinement. In this paper we propose a novel interactive image segmentation technique that combines the reliability of a human expert with the precision of automated image segmentation. The iterative procedure can be considered a variation on the Blobworld algorithm introduced by Carson et al. from EECS Department, University of California, Berkeley. Starting with an initial segmentation as provided by the Blobworld framework, our algorithm, namely BlobContours, gradually updates it by recalculating every blob, based on the original features and the updated number of Gaussians. Since the original algorithm has hardly been designed for interactive processing we had to consider additional requirements for realizing a supervised segmentation scheme on the basis of Blobworld. Increasing transparency of the algorithm by applying usercontrolled iterative segmentation, providing different types of visualization for displaying the segmented image and decreasing computational time of segmentation are three major requirements which are discussed in detail.

  1. Segmentation of color images by chromaticity features using self-organizing maps

    Farid García-Lamont

    2016-05-01

    Full Text Available Usually, the segmentation of color images is performed using cluster-based methods and the RGB space to represent the colors. The drawback with these methods is the a priori knowledge of the number of groups, or colors, in the image; besides, the RGB space issensitive to the intensity of the colors. Humans can identify different sections within a scene by the chromaticity of its colors of, as this is the feature humans employ to tell them apart. In this paper, we propose to emulate the human perception of color by training a self-organizing map (SOM with samples of chromaticity of different colors. The image to process is mapped to the HSV space because in this space the chromaticity is decoupled from the intensity, while in the RGB space this is not possible. Our proposal does not require knowing a priori the number of colors within a scene, and non-uniform illumination does not significantly affect the image segmentation. We present experimental results using some images from the Berkeley segmentation database by employing SOMs with different sizes, which are segmented successfully using only chromaticity features.

  2. Color Image Segmentation Based on Statistics of Location and Feature Similarity

    Mori, Fumihiko; Yamada, Hiromitsu; Mizuno, Makoto; Sugano, Naotoshi

    The process of “image segmentation and extracting remarkable regions” is an important research subject for the image understanding. However, an algorithm based on the global features is hardly found. The requisite of such an image segmentation algorism is to reduce as much as possible the over segmentation and over unification. We developed an algorithm using the multidimensional convex hull based on the density as the global feature. In the concrete, we propose a new algorithm in which regions are expanded according to the statistics of the region such as the mean value, standard deviation, maximum value and minimum value of pixel location, brightness and color elements and the statistics are updated. We also introduced a new concept of conspicuity degree and applied it to the various 21 images to examine the effectiveness. The remarkable object regions, which were extracted by the presented system, highly coincided with those which were pointed by the sixty four subjects who attended the psychological experiment.

  3. Color Segmentation Approach of Infrared Thermography Camera Image for Automatic Fault Diagnosis

    Djoko Hari Nugroho; Ari Satmoko; Budhi Cynthia Dewi

    2007-01-01

    Predictive maintenance based on fault diagnosis becomes very important in current days to assure the availability and reliability of a system. The main purpose of this research is to configure a computer software for automatic fault diagnosis based on image model acquired from infrared thermography camera using color segmentation approach. This technique detects hot spots in equipment of the plants. Image acquired from camera is first converted to RGB (Red, Green, Blue) image model and then converted to CMYK (Cyan, Magenta, Yellow, Key for Black) image model. Assume that the yellow color in the image represented the hot spot in the equipment, the CMYK image model is then diagnosed using color segmentation model to estimate the fault. The software is configured utilizing Borland Delphi 7.0 computer programming language. The performance is then tested for 10 input infrared thermography images. The experimental result shows that the software capable to detect the faulty automatically with performance value of 80 % from 10 sheets of image input. (author)

  4. Nearest patch matching for color image segmentation supporting neural network classification in pulmonary tuberculosis identification

    Rulaningtyas, Riries; Suksmono, Andriyan B.; Mengko, Tati L. R.; Saptawati, Putri

    2016-03-01

    Pulmonary tuberculosis is a deadly infectious disease which occurs in many countries in Asia and Africa. In Indonesia, many people with tuberculosis disease are examined in the community health center. Examination of pulmonary tuberculosis is done through sputum smear with Ziehl - Neelsen staining using conventional light microscope. The results of Ziehl - Neelsen staining will give effect to the appearance of tuberculosis (TB) bacteria in red color and sputum background in blue color. The first examination is to detect the presence of TB bacteria from its color, then from the morphology of the TB bacteria itself. The results of Ziehl - Neelsen staining in sputum smear give the complex color images, so that the clinicians have difficulty when doing slide examination manually because it is time consuming and needs highly training to detect the presence of TB bacteria accurately. The clinicians have heavy workload to examine many sputum smear slides from the patients. To assist the clinicians when reading the sputum smear slide, this research built computer aided diagnose with color image segmentation, feature extraction, and classification method. This research used K-means clustering with patch technique to segment digital sputum smear images which separated the TB bacteria images from the background images. This segmentation method gave the good accuracy 97.68%. Then, feature extraction based on geometrical shape of TB bacteria was applied to this research. The last step, this research used neural network with back propagation method to classify TB bacteria and non TB bacteria images in sputum slides. The classification result of neural network back propagation are learning time (42.69±0.02) second, the number of epoch 5000, error rate of learning 15%, learning accuracy (98.58±0.01)%, and test accuracy (96.54±0.02)%.

  5. Image segmentation-based robust feature extraction for color image watermarking

    Li, Mianjie; Deng, Zeyu; Yuan, Xiaochen

    2018-04-01

    This paper proposes a local digital image watermarking method based on Robust Feature Extraction. The segmentation is achieved by Simple Linear Iterative Clustering (SLIC) based on which an Image Segmentation-based Robust Feature Extraction (ISRFE) method is proposed for feature extraction. Our method can adaptively extract feature regions from the blocks segmented by SLIC. This novel method can extract the most robust feature region in every segmented image. Each feature region is decomposed into low-frequency domain and high-frequency domain by Discrete Cosine Transform (DCT). Watermark images are then embedded into the coefficients in the low-frequency domain. The Distortion-Compensated Dither Modulation (DC-DM) algorithm is chosen as the quantization method for embedding. The experimental results indicate that the method has good performance under various attacks. Furthermore, the proposed method can obtain a trade-off between high robustness and good image quality.

  6. Segmenting texts from outdoor images taken by mobile phones using color features

    Liu, Zongyi; Zhou, Hanning

    2011-01-01

    Recognizing texts from images taken by mobile phones with low resolution has wide applications. It has been shown that a good image binarization can substantially improve the performances of OCR engines. In this paper, we present a framework to segment texts from outdoor images taken by mobile phones using color features. The framework consists of three steps: (i) the initial process including image enhancement, binarization and noise filtering, where we binarize the input images in each RGB channel, and apply component level noise filtering; (ii) grouping components into blocks using color features, where we compute the component similarities by dynamically adjusting the weights of RGB channels, and merge groups hierachically, and (iii) blocks selection, where we use the run-length features and choose the Support Vector Machine (SVM) as the classifier. We tested the algorithm using 13 outdoor images taken by an old-style LG-64693 mobile phone with 640x480 resolution. We compared the segmentation results with Tsar's algorithm, a state-of-the-art camera text detection algorithm, and show that our algorithm is more robust, particularly in terms of the false alarm rates. In addition, we also evaluated the impacts of our algorithm on the Abbyy's FineReader, one of the most popular commercial OCR engines in the market.

  7. A Fully Automated Method to Detect and Segment a Manufactured Object in an Underwater Color Image

    Barat, Christian; Phlypo, Ronald

    2010-12-01

    We propose a fully automated active contours-based method for the detection and the segmentation of a moored manufactured object in an underwater image. Detection of objects in underwater images is difficult due to the variable lighting conditions and shadows on the object. The proposed technique is based on the information contained in the color maps and uses the visual attention method, combined with a statistical approach for the detection and an active contour for the segmentation of the object to overcome the above problems. In the classical active contour method the region descriptor is fixed and the convergence of the method depends on the initialization. With our approach, this dependence is overcome with an initialization using the visual attention results and a criterion to select the best region descriptor. This approach improves the convergence and the processing time while providing the advantages of a fully automated method.

  8. Digital color imaging

    Fernandez-Maloigne, Christine; Macaire, Ludovic

    2013-01-01

    This collective work identifies the latest developments in the field of the automatic processing and analysis of digital color images.For researchers and students, it represents a critical state of the art on the scientific issues raised by the various steps constituting the chain of color image processing.It covers a wide range of topics related to computational color imaging, including color filtering and segmentation, color texture characterization, color invariant for object recognition, color and motion analysis, as well as color image and video indexing and retrieval. <

  9. Medical Image Segmentation using the HSI color space and Fuzzy Mathematical Morphology

    Gasparri, J P; Bouchet, A; Abras, G; Ballarin, V; Pastore, J I

    2011-01-01

    Diabetic retinopathy is the most common cause of blindness among the active population in developed countries. An early ophthalmologic examination followed by proper treatment can prevent blindness. The purpose of this work is develop an automated method for segmentation the vasculature in retinal images in order to assist the expert in the evolution of a specific treatment or in the diagnosis of a potential pathology. Since the HSI space has the ability to separate the intensity of the intrinsic color information, its use is recommended for the digital processing images when they are affected by lighting changes, characteristic of the images under study. By the application of color filters, is achieved artificially change the tone of blood vessels, to better distinguish them from the bottom. This technique, combined with the application of fuzzy mathematical morphology tools as the Top-Hat transformation, creates images of the retina, where vascular branches are markedly enhanced over the original. These images provide the visualization of blood vessels by the specialist.

  10. Medical Image Segmentation using the HSI color space and Fuzzy Mathematical Morphology

    Gasparri, J. P.; Bouchet, A.; Abras, G.; Ballarin, V.; Pastore, J. I.

    2011-12-01

    Diabetic retinopathy is the most common cause of blindness among the active population in developed countries. An early ophthalmologic examination followed by proper treatment can prevent blindness. The purpose of this work is develop an automated method for segmentation the vasculature in retinal images in order to assist the expert in the evolution of a specific treatment or in the diagnosis of a potential pathology. Since the HSI space has the ability to separate the intensity of the intrinsic color information, its use is recommended for the digital processing images when they are affected by lighting changes, characteristic of the images under study. By the application of color filters, is achieved artificially change the tone of blood vessels, to better distinguish them from the bottom. This technique, combined with the application of fuzzy mathematical morphology tools as the Top-Hat transformation, creates images of the retina, where vascular branches are markedly enhanced over the original. These images provide the visualization of blood vessels by the specialist.

  11. CMEIAS color segmentation: an improved computing technology to process color images for quantitative microbial ecology studies at single-cell resolution.

    Gross, Colin A; Reddy, Chandan K; Dazzo, Frank B

    2010-02-01

    Quantitative microscopy and digital image analysis are underutilized in microbial ecology largely because of the laborious task to segment foreground object pixels from background, especially in complex color micrographs of environmental samples. In this paper, we describe an improved computing technology developed to alleviate this limitation. The system's uniqueness is its ability to edit digital images accurately when presented with the difficult yet commonplace challenge of removing background pixels whose three-dimensional color space overlaps the range that defines foreground objects. Image segmentation is accomplished by utilizing algorithms that address color and spatial relationships of user-selected foreground object pixels. Performance of the color segmentation algorithm evaluated on 26 complex micrographs at single pixel resolution had an overall pixel classification accuracy of 99+%. Several applications illustrate how this improved computing technology can successfully resolve numerous challenges of complex color segmentation in order to produce images from which quantitative information can be accurately extracted, thereby gain new perspectives on the in situ ecology of microorganisms. Examples include improvements in the quantitative analysis of (1) microbial abundance and phylotype diversity of single cells classified by their discriminating color within heterogeneous communities, (2) cell viability, (3) spatial relationships and intensity of bacterial gene expression involved in cellular communication between individual cells within rhizoplane biofilms, and (4) biofilm ecophysiology based on ribotype-differentiated radioactive substrate utilization. The stand-alone executable file plus user manual and tutorial images for this color segmentation computing application are freely available at http://cme.msu.edu/cmeias/ . This improved computing technology opens new opportunities of imaging applications where discriminating colors really matter most

  12. Sentinel lymph node mapping in minimally invasive surgery: Role of imaging with color-segmented fluorescence (CSF).

    Lopez Labrousse, Maite I; Frumovitz, Michael; Guadalupe Patrono, M; Ramirez, Pedro T

    2017-09-01

    Sentinel lymph node mapping, alone or in combination with pelvic lymphadenectomy, is considered a standard approach in staging of patients with cervical or endometrial cancer [1-3]. The goal of this video is to demonstrate the use of indocyanine green (ICG) and color-segmented fluorescence when performing lymphatic mapping in patients with gynecologic malignancies. Injection of ICG is performed in two cervical sites using 1mL (0.5mL superficial and deep, respectively) at the 3 and 9 o'clock position. Sentinel lymph nodes are identified intraoperatively using the Pinpoint near-infrared imaging system (Novadaq, Ontario, CA). Color-segmented fluorescence is used to image different levels of ICG uptake demonstrating higher levels of perfusion. A color key on the side of the monitor shows the colors that coordinate with different levels of ICG uptake. Color-segmented fluorescence may help surgeons identify true sentinel nodes from fatty tissue that, although absorbing fluorescent dye, does not contain true nodal tissue. It is not intended to differentiate the primary sentinel node from secondary sentinel nodes. The key ranges from low levels of ICG uptake (gray) to the highest rate of ICG uptake (red). Bilateral sentinel lymph nodes are identified along the external iliac vessels using both standard and color-segmented fluorescence. No evidence of disease was noted after ultra-staging was performed in each of the sentinel nodes. Use of ICG in sentinel lymph node mapping allows for high bilateral detection rates. Color-segmented fluorescence may increase accuracy of sentinel lymph node identification over standard fluorescent imaging. The following are the supplementary data related to this article. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. COLOR IMAGES

    Dominique Lafon

    2011-05-01

    Full Text Available The goal of this article is to present specific capabilities and limitations of the use of color digital images in a characterization process. The whole process is investigated, from the acquisition of digital color images to the analysis of the information relevant to various applications in the field of material characterization. A digital color image can be considered as a matrix of pixels with values expressed in a vector-space (commonly 3 dimensional space whose specificity, compared to grey-scale images, is to ensure a coding and a representation of the output image (visualisation printing that fits the human visual reality. In a characterization process, it is interesting to regard color image attnbutes as a set of visual aspect measurements on a material surface. Color measurement systems (spectrocolorimeters, colorimeters and radiometers and cameras use the same type of light detectors: most of them use Charge Coupled Devices sensors. The difference between the two types of color data acquisition systems is that color measurement systems provide a global information of the observed surface (average aspect of the surface: the color texture is not taken into account. Thus, it seems interesting to use imaging systems as measuring instruments for the quantitative characterization of the color texture.

  14. Automated segmentation of geographic atrophy of the retinal epithelium via random forests in AREDS color fundus images.

    Feeny, Albert K; Tadarati, Mongkol; Freund, David E; Bressler, Neil M; Burlina, Philippe

    2015-10-01

    Age-related macular degeneration (AMD), left untreated, is the leading cause of vision loss in people older than 55. Severe central vision loss occurs in the advanced stage of the disease, characterized by either the in growth of choroidal neovascularization (CNV), termed the "wet" form, or by geographic atrophy (GA) of the retinal pigment epithelium (RPE) involving the center of the macula, termed the "dry" form. Tracking the change in GA area over time is important since it allows for the characterization of the effectiveness of GA treatments. Tracking GA evolution can be achieved by physicians performing manual delineation of GA area on retinal fundus images. However, manual GA delineation is time-consuming and subject to inter-and intra-observer variability. We have developed a fully automated GA segmentation algorithm in color fundus images that uses a supervised machine learning approach employing a random forest classifier. This algorithm is developed and tested using a dataset of images from the NIH-sponsored Age Related Eye Disease Study (AREDS). GA segmentation output was compared against a manual delineation by a retina specialist. Using 143 color fundus images from 55 different patient eyes, our algorithm achieved PPV of 0.82±0.19, and NPV of 0:95±0.07. This is the first study, to our knowledge, applying machine learning methods to GA segmentation on color fundus images and using AREDS imagery for testing. These preliminary results show promising evidence that machine learning methods may have utility in automated characterization of GA from color fundus images. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Color segmentation in the HSI color space using the K-means algorithm

    Weeks, Arthur R.; Hague, G. Eric

    1997-04-01

    Segmentation of images is an important aspect of image recognition. While grayscale image segmentation has become quite a mature field, much less work has been done with regard to color image segmentation. Until recently, this was predominantly due to the lack of available computing power and color display hardware that is required to manipulate true color images (24-bit). TOday, it is not uncommon to find a standard desktop computer system with a true-color 24-bit display, at least 8 million bytes of memory, and 2 gigabytes of hard disk storage. Segmentation of color images is not as simple as segmenting each of the three RGB color components separately. The difficulty of using the RGB color space is that it doesn't closely model the psychological understanding of color. A better color model, which closely follows that of human visual perception is the hue, saturation, intensity model. This color model separates the color components in terms of chromatic and achromatic information. Strickland et al. was able to show the importance of color in the extraction of edge features form an image. His method enhances the edges that are detectable in the luminance image with information from the saturation image. Segmentation of both the saturation and intensity components is easily accomplished with any gray scale segmentation algorithm, since these spaces are linear. The modulus 2(pi) nature of the hue color component makes its segmentation difficult. For example, a hue of 0 and 2(pi) yields the same color tint. Instead of applying separate image segmentation to each of the hue, saturation, and intensity components, a better method is to segment the chromatic component separately from the intensity component because of the importance that the chromatic information plays in the segmentation of color images. This paper presents a method of using the gray scale K-means algorithm to segment 24-bit color images. Additionally, this paper will show the importance the hue

  16. Superpixel segmentation and pigment identification of colored relics based on visible spectral image

    Li, Junfeng; Wan, Xiaoxia

    2018-01-01

    To enrich the contents of digital archive and to guide the copy and restoration of colored relics, non-invasive methods for extraction of painting boundary and identification of pigment composition are proposed in this study based on the visible spectral images of colored relics. Superpixel concept is applied for the first time to the field of oversegmentation of visible spectral images and implemented on the visible spectral images of colored relics to extract their painting boundary. Since different pigments are characterized by their own spectrum and the same kind of pigment has the similar geometric profile in spectrum, an automatic identification method is established by comparing the proximity between the geometric profiles of the unknown spectrum from each superpixel and the pre-known spectrum from a deliberately prepared database. The methods are validated using the visible spectral images of the ancient wall paintings in Mogao Grottoes. By the way, the visible spectral images are captured by a multispectral imaging system consisting of two broadband filters and a RGB camera with high spatial resolution.

  17. Fast color/texture segmentation for outdoor robots

    Blas, Morten Rufus; Agrawal, Motilal; Sundaresan, Aravind

    2008-01-01

    We present a fast integrated approach for online segmentation of images for outdoor robots. A compact color and texture descriptor has been developed to describe local color and texture variations in an image. This descriptor is then used in a two-stage fast clustering framework using K...

  18. A Vision Chip for Color Segmentation and Pattern Matching

    Ralph Etienne-Cummings

    2003-06-01

    Full Text Available A 128(H × 64(V × RGB CMOS imager is integrated with region-of-interest selection, RGB-to-HSI transformation, HSI-based pixel segmentation, (36bins × 12bits-HSI histogramming, and sum-of-absolute-difference (SAD template matching. Thirty-two learned color templates are stored and compared to each image. The chip captures the R, G, and B images using in-pixel storage before passing the pixel content to a multiplying digital-to-analog converter (DAC for white balancing. The DAC can also be used to pipe in images for a PC. The color processing uses a biologically inspired color opponent representation and an analog lookup table to determine the Hue (H of each pixel. Saturation (S is computed using a loser-take-all circuit. Intensity (I is given by the sum of the color components. A histogram of the segments of the image, constructed by counting the number of pixels falling into 36 Hue intervals of 10 degrees, is stored on a chip and compared against the histograms of new segments using SAD comparisons. We demonstrate color-based image segmentation and object recognition with this chip. Running at 30 fps, it uses 1 mW. To our knowledge, this is the first chip that integrates imaging, color segmentation, and color-based object recognition at the focal plane.

  19. Obtention of tumor volumes in PET images stacks using techniques of colored image segmentation; Obtencao de volumes tumorais em pilhas de imagens PET usando tecnicas de segmentacao de imagens coloridas

    Vieira, Jose W.; Lopes Filho, Ferdinand J., E-mail: jose.wilson@recife.ifpe.edu.br [Instituto Federal de Educacao e Tecnologia de Pernambuco (IFPE) Recife, PE (Brazil); Vieira, Igor F., E-mail: igoradiologia@gmail.com [Universidade Federal de Pernambuco (DEN/UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear; Lima, Fernando R.A.; Cordeiro, Landerson P., E-mail: leoxofisico@gmail.com, E-mail: falima@cnen.gov.br [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-NE), Recife, PE (Brazil)

    2014-07-01

    This work demonstrated step by step how to segment color images of the chest of an adult in order to separate the tumor volume without significantly changing the values of the components R (Red), G (Green) and B (blue) of the colors of the pixels. For having information which allow to build color map you need to segment and classify the colors present at appropriate intervals in images. The used segmentation technique is to select a small rectangle with color samples in a given region and then erase with a specific color called 'rubber' the other regions of image. The tumor region was segmented into one of the images available and the procedure is displayed in tutorial format. All necessary computational tools have been implemented in DIP (Digital Image Processing), software developed by the authors. The results obtained, in addition to permitting the construction the colorful map of the distribution of the concentration of activity in PET images will also be useful in future work to enter tumors in voxel phantoms in order to perform dosimetric assessments.

  20. Supervised retinal vessel segmentation from color fundus images based on matched filtering and AdaBoost classifier.

    Nogol Memari

    Full Text Available The structure and appearance of the blood vessel network in retinal fundus images is an essential part of diagnosing various problems associated with the eyes, such as diabetes and hypertension. In this paper, an automatic retinal vessel segmentation method utilizing matched filter techniques coupled with an AdaBoost classifier is proposed. The fundus image is enhanced using morphological operations, the contrast is increased using contrast limited adaptive histogram equalization (CLAHE method and the inhomogeneity is corrected using Retinex approach. Then, the blood vessels are enhanced using a combination of B-COSFIRE and Frangi matched filters. From this preprocessed image, different statistical features are computed on a pixel-wise basis and used in an AdaBoost classifier to extract the blood vessel network inside the image. Finally, the segmented images are postprocessed to remove the misclassified pixels and regions. The proposed method was validated using publicly accessible Digital Retinal Images for Vessel Extraction (DRIVE, Structured Analysis of the Retina (STARE and Child Heart and Health Study in England (CHASE_DB1 datasets commonly used for determining the accuracy of retinal vessel segmentation methods. The accuracy of the proposed segmentation method was comparable to other state of the art methods while being very close to the manual segmentation provided by the second human observer with an average accuracy of 0.972, 0.951 and 0.948 in DRIVE, STARE and CHASE_DB1 datasets, respectively.

  1. Dictionary Based Image Segmentation

    Dahl, Anders Bjorholm; Dahl, Vedrana Andersen

    2015-01-01

    We propose a method for weakly supervised segmentation of natural images, which may contain both textured or non-textured regions. Our texture representation is based on a dictionary of image patches. To divide an image into separated regions with similar texture we use an implicit level sets...

  2. Scorpion image segmentation system

    Joseph, E.; Aibinu, A. M.; Sadiq, B. A.; Bello Salau, H.; Salami, M. J. E.

    2013-12-01

    Death as a result of scorpion sting has been a major public health problem in developing countries. Despite the high rate of death as a result of scorpion sting, little report exists in literature of intelligent device and system for automatic detection of scorpion. This paper proposed a digital image processing approach based on the floresencing characteristics of Scorpion under Ultra-violet (UV) light for automatic detection and identification of scorpion. The acquired UV-based images undergo pre-processing to equalize uneven illumination and colour space channel separation. The extracted channels are then segmented into two non-overlapping classes. It has been observed that simple thresholding of the green channel of the acquired RGB UV-based image is sufficient for segmenting Scorpion from other background components in the acquired image. Two approaches to image segmentation have also been proposed in this work, namely, the simple average segmentation technique and K-means image segmentation. The proposed algorithm has been tested on over 40 UV scorpion images obtained from different part of the world and results obtained show an average accuracy of 97.7% in correctly classifying the pixel into two non-overlapping clusters. The proposed 1system will eliminate the problem associated with some of the existing manual approaches presently in use for scorpion detection.

  3. Hierarchical image segmentation for learning object priors

    Prasad, Lakshman [Los Alamos National Laboratory; Yang, Xingwei [TEMPLE UNIV.; Latecki, Longin J [TEMPLE UNIV.; Li, Nan [TEMPLE UNIV.

    2010-11-10

    The proposed segmentation approach naturally combines experience based and image based information. The experience based information is obtained by training a classifier for each object class. For a given test image, the result of each classifier is represented as a probability map. The final segmentation is obtained with a hierarchial image segmentation algorithm that considers both the probability maps and the image features such as color and edge strength. We also utilize image region hierarchy to obtain not only local but also semi-global features as input to the classifiers. Moreover, to get robust probability maps, we take into account the region context information by averaging the probability maps over different levels of the hierarchical segmentation algorithm. The obtained segmentation results are superior to the state-of-the-art supervised image segmentation algorithms.

  4. Unsupervised Image Segmentation

    Haindl, Michal; Mikeš, Stanislav

    2014-01-01

    Roč. 36, č. 4 (2014), s. 23-23 R&D Projects: GA ČR(CZ) GA14-10911S Institutional support: RVO:67985556 Keywords : unsupervised image segmentation Subject RIV: BD - Theory of Information http://library.utia.cas.cz/separaty/2014/RO/haindl-0434412.pdf

  5. Automatic segmentation of blood vessels from retinal fundus images ...

    The retinal blood vessels were segmented through color space conversion and color channel .... Retinal blood vessel segmentation was also attempted through multi-scale operators. A few works in this ... fundus camera at 35 degrees field of view. The image ... vessel segmentation is available from two human observers.

  6. Embedding Color Watermarks in Color Images

    Wu Tung-Lin

    2003-01-01

    Full Text Available Robust watermarking with oblivious detection is essential to practical copyright protection of digital images. Effective exploitation of the characteristics of human visual perception to color stimuli helps to develop the watermarking scheme that fills the requirement. In this paper, an oblivious watermarking scheme that embeds color watermarks in color images is proposed. Through color gamut analysis and quantizer design, color watermarks are embedded by modifying quantization indices of color pixels without resulting in perceivable distortion. Only a small amount of information including the specification of color gamut, quantizer stepsize, and color tables is required to extract the watermark. Experimental results show that the proposed watermarking scheme is computationally simple and quite robust in face of various attacks such as cropping, low-pass filtering, white-noise addition, scaling, and JPEG compression with high compression ratios.

  7. Metrics for image segmentation

    Rees, Gareth; Greenway, Phil; Morray, Denise

    1998-07-01

    An important challenge in mapping image-processing techniques onto applications is the lack of quantitative performance measures. From a systems engineering perspective these are essential if system level requirements are to be decomposed into sub-system requirements which can be understood in terms of algorithm selection and performance optimization. Nowhere in computer vision is this more evident than in the area of image segmentation. This is a vigorous and innovative research activity, but even after nearly two decades of progress, it remains almost impossible to answer the question 'what would the performance of this segmentation algorithm be under these new conditions?' To begin to address this shortcoming, we have devised a well-principled metric for assessing the relative performance of two segmentation algorithms. This allows meaningful objective comparisons to be made between their outputs. It also estimates the absolute performance of an algorithm given ground truth. Our approach is an information theoretic one. In this paper, we describe the theory and motivation of our method, and present practical results obtained from a range of state of the art segmentation methods. We demonstrate that it is possible to measure the objective performance of these algorithms, and to use the information so gained to provide clues about how their performance might be improved.

  8. Stamp Detection in Color Document Images

    Micenkova, Barbora; van Beusekom, Joost

    2011-01-01

    , moreover, it can be imprinted with a variable quality and rotation. Previous methods were restricted to detection of stamps of particular shapes or colors. The method presented in the paper includes segmentation of the image by color clustering and subsequent classification of candidate solutions...... by geometrical and color-related features. The approach allows for differentiation of stamps from other color objects in the document such as logos or texts. For the purpose of evaluation, a data set of 400 document images has been collected, annotated and made public. With the proposed method, recall of 83...

  9. Inference of segmented color and texture description by tensor voting.

    Jia, Jiaya; Tang, Chi-Keung

    2004-06-01

    A robust synthesis method is proposed to automatically infer missing color and texture information from a damaged 2D image by (N)D tensor voting (N > 3). The same approach is generalized to range and 3D data in the presence of occlusion, missing data and noise. Our method translates texture information into an adaptive (N)D tensor, followed by a voting process that infers noniteratively the optimal color values in the (N)D texture space. A two-step method is proposed. First, we perform segmentation based on insufficient geometry, color, and texture information in the input, and extrapolate partitioning boundaries by either 2D or 3D tensor voting to generate a complete segmentation for the input. Missing colors are synthesized using (N)D tensor voting in each segment. Different feature scales in the input are automatically adapted by our tensor scale analysis. Results on a variety of difficult inputs demonstrate the effectiveness of our tensor voting approach.

  10. Reflection symmetry-integrated image segmentation.

    Sun, Yu; Bhanu, Bir

    2012-09-01

    This paper presents a new symmetry-integrated region-based image segmentation method. The method is developed to obtain improved image segmentation by exploiting image symmetry. It is realized by constructing a symmetry token that can be flexibly embedded into segmentation cues. Interesting points are initially extracted from an image by the SIFT operator and they are further refined for detecting the global bilateral symmetry. A symmetry affinity matrix is then computed using the symmetry axis and it is used explicitly as a constraint in a region growing algorithm in order to refine the symmetry of the segmented regions. A multi-objective genetic search finds the segmentation result with the highest performance for both segmentation and symmetry, which is close to the global optimum. The method has been investigated experimentally in challenging natural images and images containing man-made objects. It is shown that the proposed method outperforms current segmentation methods both with and without exploiting symmetry. A thorough experimental analysis indicates that symmetry plays an important role as a segmentation cue, in conjunction with other attributes like color and texture.

  11. Region segmentation along image sequence

    Monchal, L.; Aubry, P.

    1995-01-01

    A method to extract regions in sequence of images is proposed. Regions are not matched from one image to the following one. The result of a region segmentation is used as an initialization to segment the following and image to track the region along the sequence. The image sequence is exploited as a spatio-temporal event. (authors). 12 refs., 8 figs

  12. Automated medical image segmentation techniques

    Sharma Neeraj

    2010-01-01

    Full Text Available Accurate segmentation of medical images is a key step in contouring during radiotherapy planning. Computed topography (CT and Magnetic resonance (MR imaging are the most widely used radiographic techniques in diagnosis, clinical studies and treatment planning. This review provides details of automated segmentation methods, specifically discussed in the context of CT and MR images. The motive is to discuss the problems encountered in segmentation of CT and MR images, and the relative merits and limitations of methods currently available for segmentation of medical images.

  13. ADVANCED CLUSTER BASED IMAGE SEGMENTATION

    D. Kesavaraja

    2011-11-01

    Full Text Available This paper presents efficient and portable implementations of a useful image segmentation technique which makes use of the faster and a variant of the conventional connected components algorithm which we call parallel Components. In the Modern world majority of the doctors are need image segmentation as the service for various purposes and also they expect this system is run faster and secure. Usually Image segmentation Algorithms are not working faster. In spite of several ongoing researches in Conventional Segmentation and its Algorithms might not be able to run faster. So we propose a cluster computing environment for parallel image Segmentation to provide faster result. This paper is the real time implementation of Distributed Image Segmentation in Clustering of Nodes. We demonstrate the effectiveness and feasibility of our method on a set of Medical CT Scan Images. Our general framework is a single address space, distributed memory programming model. We use efficient techniques for distributing and coalescing data as well as efficient combinations of task and data parallelism. The image segmentation algorithm makes use of an efficient cluster process which uses a novel approach for parallel merging. Our experimental results are consistent with the theoretical analysis and practical results. It provides the faster execution time for segmentation, when compared with Conventional method. Our test data is different CT scan images from the Medical database. More efficient implementations of Image Segmentation will likely result in even faster execution times.

  14. White blood cell segmentation by color-space-based k-means clustering.

    Zhang, Congcong; Xiao, Xiaoyan; Li, Xiaomei; Chen, Ying-Jie; Zhen, Wu; Chang, Jun; Zheng, Chengyun; Liu, Zhi

    2014-09-01

    White blood cell (WBC) segmentation, which is important for cytometry, is a challenging issue because of the morphological diversity of WBCs and the complex and uncertain background of blood smear images. This paper proposes a novel method for the nucleus and cytoplasm segmentation of WBCs for cytometry. A color adjustment step was also introduced before segmentation. Color space decomposition and k-means clustering were combined for segmentation. A database including 300 microscopic blood smear images were used to evaluate the performance of our method. The proposed segmentation method achieves 95.7% and 91.3% overall accuracy for nucleus segmentation and cytoplasm segmentation, respectively. Experimental results demonstrate that the proposed method can segment WBCs effectively with high accuracy.

  15. Retinal Image Preprocessing: Background and Noise Segmentation

    Usman Akram

    2012-09-01

    Full Text Available Retinal images are used for the automated screening and diagnosis of diabetic retinopathy. The retinal image quality must be improved for the detection of features and abnormalities and for this purpose preprocessing of retinal images is vital. In this paper, we present a novel automated approach for preprocessing of colored retinal images. The proposed technique improves the quality of input retinal image by separating the background and noisy area from the overall image. It contains coarse segmentation and fine segmentation. Standard retinal images databases Diaretdb0, Diaretdb1, DRIVE and STARE are used to test the validation of our preprocessing technique. The experimental results show the validity of proposed preprocessing technique.

  16. Determination of the impact of RGB points cloud attribute quality on color-based segmentation process

    Bartłomiej Kraszewski

    2015-06-01

    Full Text Available The article presents the results of research on the effect that radiometric quality of point cloud RGB attributes have on color-based segmentation. In the research, a point cloud with a resolution of 5 mm, received from FAROARO Photon 120 scanner, described the fragment of an office’s room and color images were taken by various digital cameras. The images were acquired by SLR Nikon D3X, and SLR Canon D200 integrated with the laser scanner, compact camera Panasonic TZ-30 and a mobile phone digital camera. Color information from images was spatially related to point cloud in FAROARO Scene software. The color-based segmentation of testing data was performed with the use of a developed application named “RGB Segmentation”. The application was based on public Point Cloud Libraries (PCL and allowed to extract subsets of points fulfilling the criteria of segmentation from the source point cloud using region growing method.Using the developed application, the segmentation of four tested point clouds containing different RGB attributes from various images was performed. Evaluation of segmentation process was performed based on comparison of segments acquired using the developed application and extracted manually by an operator. The following items were compared: the number of obtained segments, the number of correctly identified objects and the correctness of segmentation process. The best correctness of segmentation and most identified objects were obtained using the data with RGB attribute from Nikon D3X images. Based on the results it was found that quality of RGB attributes of point cloud had impact only on the number of identified objects. In case of correctness of the segmentation, as well as its error no apparent relationship between the quality of color information and the result of the process was found.[b]Keywords[/b]: terrestrial laser scanning, color-based segmentation, RGB attribute, region growing method, digital images, points cloud

  17. Content-Based Image Retrieval Benchmarking: Utilizing color categories and color distributions

    van den Broek, Egon; Kisters, Peter M.F.; Vuurpijl, Louis G.

    From a human centered perspective three ingredients for Content-Based Image Retrieval (CBIR) were developed. First, with their existence confirmed by experimental data, 11 color categories were utilized for CBIR and used as input for a new color space segmentation technique. The complete HSI color

  18. Automatic segmentation of blood vessels from retinal fundus images ...

    The retinal blood vessels were segmented through color space conversion and color channel extraction, image pre-processing, Gabor filtering, image postprocessing, feature construction through application of principal component analysis, k-means clustering and first level classification using Naïve–Bayes classification ...

  19. Hiding Information Using different lighting Color images

    Majead, Ahlam; Awad, Rash; Salman, Salema S.

    2018-05-01

    The host medium for the secret message is one of the important principles for the designers of steganography method. In this study, the best color image was studied to carrying any secret image.The steganography approach based Lifting Wavelet Transform (LWT) and Least Significant Bits (LSBs) substitution. The proposed method offers lossless and unnoticeable changes in the contrast carrier color image and imperceptible by human visual system (HVS), especially the host images which was captured in dark lighting conditions. The aim of the study was to study the process of masking the data in colored images with different light intensities. The effect of the masking process was examined on the images that are classified by a minimum distance and the amount of noise and distortion in the image. The histogram and statistical characteristics of the cover image the results showed the efficient use of images taken with different light intensities in hiding data using the least important bit substitution method. This method succeeded in concealing textual data without distorting the original image (low light) Lire developments due to the concealment process.The digital image segmentation technique was used to distinguish small areas with masking. The result is that smooth homogeneous areas are less affected as a result of hiding comparing with high light areas. It is possible to use dark color images to send any secret message between two persons for the purpose of secret communication with good security.

  20. Event-Based Color Segmentation With a High Dynamic Range Sensor

    Alexandre Marcireau

    2018-04-01

    Full Text Available This paper introduces a color asynchronous neuromorphic event-based camera and a methodology to process color output from the device to perform color segmentation and tracking at the native temporal resolution of the sensor (down to one microsecond. Our color vision sensor prototype is a combination of three Asynchronous Time-based Image Sensors, sensitive to absolute color information. We devise a color processing algorithm leveraging this information. It is designed to be computationally cheap, thus showing how low level processing benefits from asynchronous acquisition and high temporal resolution data. The resulting color segmentation and tracking performance is assessed both with an indoor controlled scene and two outdoor uncontrolled scenes. The tracking's mean error to the ground truth for the objects of the outdoor scenes ranges from two to twenty pixels.

  1. Segmentation of knee injury swelling on infrared images

    Puentes, John; Langet, Hélène; Herry, Christophe; Frize, Monique

    2011-03-01

    Interpretation of medical infrared images is complex due to thermal noise, absence of texture, and small temperature differences in pathological zones. Acute inflammatory response is a characteristic symptom of some knee injuries like anterior cruciate ligament sprains, muscle or tendons strains, and meniscus tear. Whereas artificial coloring of the original grey level images may allow to visually assess the extent inflammation in the area, their automated segmentation remains a challenging problem. This paper presents a hybrid segmentation algorithm to evaluate the extent of inflammation after knee injury, in terms of temperature variations and surface shape. It is based on the intersection of rapid color segmentation and homogeneous region segmentation, to which a Laplacian of a Gaussian filter is applied. While rapid color segmentation enables to properly detect the observed core of swollen area, homogeneous region segmentation identifies possible inflammation zones, combining homogeneous grey level and hue area segmentation. The hybrid segmentation algorithm compares the potential inflammation regions partially detected by each method to identify overlapping areas. Noise filtering and edge segmentation are then applied to common zones in order to segment the swelling surfaces of the injury. Experimental results on images of a patient with anterior cruciate ligament sprain show the improved performance of the hybrid algorithm with respect to its separated components. The main contribution of this work is a meaningful automatic segmentation of abnormal skin temperature variations on infrared thermography images of knee injury swelling.

  2. Color imaging fundamentals and applications

    Reinhard, Erik; Oguz Akyuz, Ahmet; Johnson, Garrett

    2008-01-01

    This book provides the reader with an understanding of what color is, where color comes from, and how color can be used correctly in many different applications. The authors first treat the physics of light and its interaction with matter at the atomic level, so that the origins of color can be appreciated. The intimate relationship between energy levels, orbital states, and electromagnetic waves helps to explain why diamonds shimmer, rubies are red, and the feathers of the Blue Jay are blue. Then, color theory is explained from its origin to the current state of the art, including image captu

  3. Efficient Depth Map Compression Exploiting Segmented Color Data

    Milani, Simone; Zanuttigh, Pietro; Zamarin, Marco

    2011-01-01

    performances is still an open research issue. This paper presents a novel compression scheme that exploits a segmentation of the color data to predict the shape of the different surfaces in the depth map. Then each segment is approximated with a parameterized plane. In case the approximation is sufficiently...

  4. Image Denoising And Segmentation Approchto Detect Tumor From BRAINMRI Images

    Shanta Rangaswamy

    2018-04-01

    Full Text Available The detection of the Brain Tumor is a challenging problem, due to the structure of the Tumor cells in the brain. This project presents a systematic method that enhances the detection of brain tumor cells and to analyze functional structures by training and classification of the samples in SVM and tumor cell segmentation of the sample using DWT algorithm. From the input MRI Images collected, first noise is removed from MRI images by applying wiener filtering technique. In image enhancement phase, all the color components of MRI Images will be converted into gray scale image and make the edges clear in the image to get better identification and improvised quality of the image. In the segmentation phase, DWT on MRI Image to segment the grey-scale image is performed. During the post-processing, classification of tumor is performed by using SVM classifier. Wiener Filter, DWT, SVM Segmentation strategies were used to find and group the tumor position in the MRI filtered picture respectively. An essential perception in this work is that multi arrange approach utilizes various leveled classification strategy which supports execution altogether. This technique diminishes the computational complexity quality in time and memory. This classification strategy works accurately on all images and have achieved the accuracy of 93%.

  5. Multiple Segmentation of Image Stacks

    Smets, Jonathan; Jaeger, Manfred

    2014-01-01

    We propose a method for the simultaneous construction of multiple image segmentations by combining a recently proposed “convolution of mixtures of Gaussians” model with a multi-layer hidden Markov random field structure. The resulting method constructs for a single image several, alternative...

  6. Brain Tumor Image Segmentation in MRI Image

    Peni Agustin Tjahyaningtijas, Hapsari

    2018-04-01

    Brain tumor segmentation plays an important role in medical image processing. Treatment of patients with brain tumors is highly dependent on early detection of these tumors. Early detection of brain tumors will improve the patient’s life chances. Diagnosis of brain tumors by experts usually use a manual segmentation that is difficult and time consuming because of the necessary automatic segmentation. Nowadays automatic segmentation is very populer and can be a solution to the problem of tumor brain segmentation with better performance. The purpose of this paper is to provide a review of MRI-based brain tumor segmentation methods. There are number of existing review papers, focusing on traditional methods for MRI-based brain tumor image segmentation. this paper, we focus on the recent trend of automatic segmentation in this field. First, an introduction to brain tumors and methods for brain tumor segmentation is given. Then, the state-of-the-art algorithms with a focus on recent trend of full automatic segmentaion are discussed. Finally, an assessment of the current state is presented and future developments to standardize MRI-based brain tumor segmentation methods into daily clinical routine are addressed.

  7. CLG for Automatic Image Segmentation

    Christo Ananth; S.Santhana Priya; S.Manisha; T.Ezhil Jothi; M.S.Ramasubhaeswari

    2017-01-01

    This paper proposes an automatic segmentation method which effectively combines Active Contour Model, Live Wire method and Graph Cut approach (CLG). The aim of Live wire method is to provide control to the user on segmentation process during execution. Active Contour Model provides a statistical model of object shape and appearance to a new image which are built during a training phase. In the graph cut technique, each pixel is represented as a node and the distance between those nodes is rep...

  8. A universal color image quality metric

    Toet, A.; Lucassen, M.P.

    2003-01-01

    We extend a recently introduced universal grayscale image quality index to a newly developed perceptually decorrelated color space. The resulting color image quality index quantifies the distortion of a processed color image relative to its original version. We evaluated the new color image quality

  9. A novel quantum steganography scheme for color images

    Li, Panchi; Liu, Xiande

    In quantum image steganography, embedding capacity and security are two important issues. This paper presents a novel quantum steganography scheme using color images as cover images. First, the secret information is divided into 3-bit segments, and then each 3-bit segment is embedded into the LSB of one color pixel in the cover image according to its own value and using Gray code mapping rules. Extraction is the inverse of embedding. We designed the quantum circuits that implement the embedding and extracting process. The simulation results on a classical computer show that the proposed scheme outperforms several other existing schemes in terms of embedding capacity and security.

  10. Finding text in color images

    Zhou, Jiangying; Lopresti, Daniel P.; Tasdizen, Tolga

    1998-04-01

    In this paper, we consider the problem of locating and extracting text from WWW images. A previous algorithm based on color clustering and connected components analysis works well as long as the color of each character is relatively uniform and the typography is fairly simple. It breaks down quickly, however, when these assumptions are violated. In this paper, we describe more robust techniques for dealing with this challenging problem. We present an improved color clustering algorithm that measures similarity based on both RGB and spatial proximity. Layout analysis is also incorporated to handle more complex typography. THese changes significantly enhance the performance of our text detection procedure.

  11. Parallel fuzzy connected image segmentation on GPU

    Zhuge, Ying; Cao, Yong; Udupa, Jayaram K.; Miller, Robert W.

    2011-01-01

    Purpose: Image segmentation techniques using fuzzy connectedness (FC) principles have shown their effectiveness in segmenting a variety of objects in several large applications. However, one challenge in these algorithms has been their excessive computational requirements when processing large image datasets. Nowadays, commodity graphics hardware provides a highly parallel computing environment. In this paper, the authors present a parallel fuzzy connected image segmentation algorithm impleme...

  12. A locally adaptive algorithm for shadow correction in color images

    Karnaukhov, Victor; Kober, Vitaly

    2017-09-01

    The paper deals with correction of color images distorted by spatially nonuniform illumination. A serious distortion occurs in real conditions when a part of the scene containing 3D objects close to a directed light source is illuminated much brighter than the rest of the scene. A locally-adaptive algorithm for correction of shadow regions in color images is proposed. The algorithm consists of segmentation of shadow areas with rank-order statistics followed by correction of nonuniform illumination with human visual perception approach. The performance of the proposed algorithm is compared to that of common algorithms for correction of color images containing shadow regions.

  13. Unsupervised motion-based object segmentation refined by color

    Piek, Matthijs C.; Braspenning, Ralph; Varekamp, Chris

    2003-06-01

    For various applications, such as data compression, structure from motion, medical imaging and video enhancement, there is a need for an algorithm that divides video sequences into independently moving objects. Because our focus is on video enhancement and structure from motion for consumer electronics, we strive for a low complexity solution. For still images, several approaches exist based on colour, but these lack in both speed and segmentation quality. For instance, colour-based watershed algorithms produce a so-called oversegmentation with many segments covering each single physical object. Other colour segmentation approaches exist which somehow limit the number of segments to reduce this oversegmentation problem. However, this often results in inaccurate edges or even missed objects. Most likely, colour is an inherently insufficient cue for real world object segmentation, because real world objects can display complex combinations of colours. For video sequences, however, an additional cue is available, namely the motion of objects. When different objects in a scene have different motion, the motion cue alone is often enough to reliably distinguish objects from one another and the background. However, because of the lack of sufficient resolution of efficient motion estimators, like the 3DRS block matcher, the resulting segmentation is not at pixel resolution, but at block resolution. Existing pixel resolution motion estimators are more sensitive to noise, suffer more from aperture problems or have less correspondence to the true motion of objects when compared to block-based approaches or are too computationally expensive. From its tendency to oversegmentation it is apparent that colour segmentation is particularly effective near edges of homogeneously coloured areas. On the other hand, block-based true motion estimation is particularly effective in heterogeneous areas, because heterogeneous areas improve the chance a block is unique and thus decrease the

  14. A framework for interactive image color editing

    Musialski, Przemyslaw; Cui, Ming; Ye, Jieping; Razdan, Anshuman; Wonka, Peter

    2012-01-01

    We propose a new method for interactive image color replacement that creates smooth and naturally looking results with minimal user interaction. Our system expects as input a source image and rawly scribbled target color values and generates high

  15. Image Segmentation Using Minimum Spanning Tree

    Dewi, M. P.; Armiati, A.; Alvini, S.

    2018-04-01

    This research aim to segmented the digital image. The process of segmentation is to separate the object from the background. So the main object can be processed for the other purposes. Along with the development of technology in digital image processing application, the segmentation process becomes increasingly necessary. The segmented image which is the result of the segmentation process should accurate due to the next process need the interpretation of the information on the image. This article discussed the application of minimum spanning tree on graph in segmentation process of digital image. This method is able to separate an object from the background and the image will change to be the binary images. In this case, the object that being the focus is set in white, while the background is black or otherwise.

  16. Image segmentation by hierarchial agglomeration of polygons using ecological statistics

    Prasad, Lakshman; Swaminarayan, Sriram

    2013-04-23

    A method for rapid hierarchical image segmentation based on perceptually driven contour completion and scene statistics is disclosed. The method begins with an initial fine-scale segmentation of an image, such as obtained by perceptual completion of partial contours into polygonal regions using region-contour correspondences established by Delaunay triangulation of edge pixels as implemented in VISTA. The resulting polygons are analyzed with respect to their size and color/intensity distributions and the structural properties of their boundaries. Statistical estimates of granularity of size, similarity of color, texture, and saliency of intervening boundaries are computed and formulated into logical (Boolean) predicates. The combined satisfiability of these Boolean predicates by a pair of adjacent polygons at a given segmentation level qualifies them for merging into a larger polygon representing a coarser, larger-scale feature of the pixel image and collectively obtains the next level of polygonal segments in a hierarchy of fine-to-coarse segmentations. The iterative application of this process precipitates textured regions as polygons with highly convolved boundaries and helps distinguish them from objects which typically have more regular boundaries. The method yields a multiscale decomposition of an image into constituent features that enjoy a hierarchical relationship with features at finer and coarser scales. This provides a traversable graph structure from which feature content and context in terms of other features can be derived, aiding in automated image understanding tasks. The method disclosed is highly efficient and can be used to decompose and analyze large images.

  17. Convolutional Neural Networks for SAR Image Segmentation

    Malmgren-Hansen, David; Nobel-Jørgensen, Morten

    2015-01-01

    Segmentation of Synthetic Aperture Radar (SAR) images has several uses, but it is a difficult task due to a number of properties related to SAR images. In this article we show how Convolutional Neural Networks (CNNs) can easily be trained for SAR image segmentation with good results. Besides...

  18. Unsupervised Performance Evaluation of Image Segmentation

    Chabrier Sebastien

    2006-01-01

    Full Text Available We present in this paper a study of unsupervised evaluation criteria that enable the quantification of the quality of an image segmentation result. These evaluation criteria compute some statistics for each region or class in a segmentation result. Such an evaluation criterion can be useful for different applications: the comparison of segmentation results, the automatic choice of the best fitted parameters of a segmentation method for a given image, or the definition of new segmentation methods by optimization. We first present the state of art of unsupervised evaluation, and then, we compare six unsupervised evaluation criteria. For this comparative study, we use a database composed of 8400 synthetic gray-level images segmented in four different ways. Vinet's measure (correct classification rate is used as an objective criterion to compare the behavior of the different criteria. Finally, we present the experimental results on the segmentation evaluation of a few gray-level natural images.

  19. Distance measures for image segmentation evaluation

    Monteiro, Fernando C.; Campilho, Aurélio

    2012-01-01

    In this paper we present a study of evaluation measures that enable the quantification of the quality of an image segmentation result. Despite significant advances in image segmentation techniques, evaluation of these techniques thus far has been largely subjective. Typically, the effectiveness of a new algorithm is demonstrated only by the presentation of a few segmented images and is otherwise left to subjective evaluation by the reader. Such an evaluation criterion can be useful for differ...

  20. Preparing Colorful Astronomical Images II

    Levay, Z. G.; Frattare, L. M.

    2002-12-01

    We present additional techniques for using mainstream graphics software (Adobe Photoshop and Illustrator) to produce composite color images and illustrations from astronomical data. These techniques have been used on numerous images from the Hubble Space Telescope to produce photographic, print and web-based products for news, education and public presentation as well as illustrations for technical publication. We expand on a previous paper to present more detail and additional techniques, taking advantage of new or improved features available in the latest software versions. While Photoshop is not intended for quantitative analysis of full dynamic range data (as are IRAF or IDL, for example), we have had much success applying Photoshop's numerous, versatile tools to work with scaled images, masks, text and graphics in multiple semi-transparent layers and channels.

  1. Optimizing color reproduction of natural images

    Yendrikhovskij, S.N.; Blommaert, F.J.J.; Ridder, de H.

    1998-01-01

    The paper elaborates on understanding, measuring and optimizing perceived color quality of natural images. We introduce a model for optimal color reproduction of natural scenes which is based on the assumption that color quality of natural images is constrained by perceived naturalness and

  2. A Hybrid Technique for Medical Image Segmentation

    Alamgir Nyma

    2012-01-01

    Full Text Available Medical image segmentation is an essential and challenging aspect in computer-aided diagnosis and also in pattern recognition research. This paper proposes a hybrid method for magnetic resonance (MR image segmentation. We first remove impulsive noise inherent in MR images by utilizing a vector median filter. Subsequently, Otsu thresholding is used as an initial coarse segmentation method that finds the homogeneous regions of the input image. Finally, an enhanced suppressed fuzzy c-means is used to partition brain MR images into multiple segments, which employs an optimal suppression factor for the perfect clustering in the given data set. To evaluate the robustness of the proposed approach in noisy environment, we add different types of noise and different amount of noise to T1-weighted brain MR images. Experimental results show that the proposed algorithm outperforms other FCM based algorithms in terms of segmentation accuracy for both noise-free and noise-inserted MR images.

  3. Colour application on mammography image segmentation

    Embong, R.; Aziz, N. M. Nik Ab.; Karim, A. H. Abd; Ibrahim, M. R.

    2017-09-01

    The segmentation process is one of the most important steps in image processing and computer vision since it is vital in the initial stage of image analysis. Segmentation of medical images involves complex structures and it requires precise segmentation result which is necessary for clinical diagnosis such as the detection of tumour, oedema, and necrotic tissues. Since mammography images are grayscale, researchers are looking at the effect of colour in the segmentation process of medical images. Colour is known to play a significant role in the perception of object boundaries in non-medical colour images. Processing colour images require handling more data, hence providing a richer description of objects in the scene. Colour images contain ten percent (10%) additional edge information as compared to their grayscale counterparts. Nevertheless, edge detection in colour image is more challenging than grayscale image as colour space is considered as a vector space. In this study, we implemented red, green, yellow, and blue colour maps to grayscale mammography images with the purpose of testing the effect of colours on the segmentation of abnormality regions in the mammography images. We applied the segmentation process using the Fuzzy C-means algorithm and evaluated the percentage of average relative error of area for each colour type. The results showed that all segmentation with the colour map can be done successfully even for blurred and noisy images. Also the size of the area of the abnormality region is reduced when compare to the segmentation area without the colour map. The green colour map segmentation produced the smallest percentage of average relative error (10.009%) while yellow colour map segmentation gave the largest percentage of relative error (11.367%).

  4. Color Texture Segmentation by Decomposition of Gaussian Mixture Model

    Grim, Jiří; Somol, Petr; Haindl, Michal; Pudil, Pavel

    2006-01-01

    Roč. 19, č. 4225 (2006), s. 287-296 ISSN 0302-9743. [Iberoamerican Congress on Pattern Recognition. CIARP 2006 /11./. Cancun, 14.11.2006-17.11.2006] R&D Projects: GA AV ČR 1ET400750407; GA MŠk 1M0572; GA MŠk 2C06019 EU Projects: European Commission(XE) 507752 - MUSCLE Institutional research plan: CEZ:AV0Z10750506 Keywords : texture segmentation * gaussian mixture model * EM algorithm Subject RIV: IN - Informatics, Computer Science Impact factor: 0.402, year: 2005 http://library.utia.cas.cz/separaty/historie/grim-color texture segmentation by decomposition of gaussian mixture model.pdf

  5. Probabilistic segmentation of remotely sensed images

    Gorte, B.

    1998-01-01

    For information extraction from image data to create or update geographic information systems, objects are identified and labeled using an integration of segmentation and classification. This yields geometric and thematic information, respectively.

    Bayesian image

  6. A new framework for interactive images segmentation

    Ashraf, M.; Sarim, M.; Shaikh, A.B.

    2017-01-01

    Image segmentation has become a widely studied research problem in image processing. There exist different graph based solutions for interactive image segmentation but the domain of image segmentation still needs persistent improvements. The segmentation quality of existing techniques generally depends on the manual input provided in beginning, therefore, these algorithms may not produce quality segmentation with initial seed labels provided by a novice user. In this work we investigated the use of cellular automata in image segmentation and proposed a new algorithm that follows a cellular automaton in label propagation. It incorporates both the pixel's local and global information in the segmentation process. We introduced the novel global constraints in automata evolution rules; hence proposed scheme of automata evolution is more effective than the automata based earlier evolution schemes. Global constraints are also effective in deceasing the sensitivity towards small changes made in manual input; therefore proposed approach is less dependent on label seed marks. It can produce the quality segmentation with modest user efforts. Segmentation results indicate that the proposed algorithm performs better than the earlier segmentation techniques. (author)

  7. Image color reduction method for color-defective observers using a color palette composed of 20 particular colors

    Sakamoto, Takashi

    2015-01-01

    This study describes a color enhancement method that uses a color palette especially designed for protan and deutan defects, commonly known as red-green color blindness. The proposed color reduction method is based on a simple color mapping. Complicated computation and image processing are not required by using the proposed method, and the method can replace protan and deutan confusion (p/d-confusion) colors with protan and deutan safe (p/d-safe) colors. Color palettes for protan and deutan defects proposed by previous studies are composed of few p/d-safe colors. Thus, the colors contained in these palettes are insufficient for replacing colors in photographs. Recently, Ito et al. proposed a p/dsafe color palette composed of 20 particular colors. The author demonstrated that their p/d-safe color palette could be applied to image color reduction in photographs as a means to replace p/d-confusion colors. This study describes the results of the proposed color reduction in photographs that include typical p/d-confusion colors, which can be replaced. After the reduction process is completed, color-defective observers can distinguish these confusion colors.

  8. Enriching text with images and colored light

    Sekulovski, Dragan; Geleijnse, Gijs; Kater, Bram; Korst, Jan; Pauws, Steffen; Clout, Ramon

    2008-01-01

    We present an unsupervised method to enrich textual applications with relevant images and colors. The images are collected by querying large image repositories and subsequently the colors are computed using image processing. A prototype system based on this method is presented where the method is applied to song lyrics. In combination with a lyrics synchronization algorithm the system produces a rich multimedia experience. In order to identify terms within the text that may be associated with images and colors, we select noun phrases using a part of speech tagger. Large image repositories are queried with these terms. Per term representative colors are extracted using the collected images. Hereto, we either use a histogram-based or a mean shift-based algorithm. The representative color extraction uses the non-uniform distribution of the colors found in the large repositories. The images that are ranked best by the search engine are displayed on a screen, while the extracted representative colors are rendered on controllable lighting devices in the living room. We evaluate our method by comparing the computed colors to standard color representations of a set of English color terms. A second evaluation focuses on the distance in color between a queried term in English and its translation in a foreign language. Based on results from three sets of terms, a measure of suitability of a term for color extraction based on KL Divergence is proposed. Finally, we compare the performance of the algorithm using either the automatically indexed repository of Google Images and the manually annotated Flickr.com. Based on the results of these experiments, we conclude that using the presented method we can compute the relevant color for a term using a large image repository and image processing.

  9. Recent progress in color image intensifier

    Nittoh, K.

    2010-01-01

    A multi-color scintillator based high-sensitive, wide dynamic range and long-life X-ray image intensifier (Ultimage TM ) has been developed. Europium activated Y 2 O 2 S scintillator, emitting red, green and blue wavelength photons of different intensities, is utilized as the output fluorescent screen of the intensifier. By combining this image intensifier with a suitably tuned high sensitive color CCD camera, the sensitivity of the red color component achieved six times higher than that of the conventional image intensifier. Simultaneous emission of a moderate green color and a weak blue color covers different sensitivity regions. This widens the dynamic range by nearly two orders of magnitude. With this image intensifier, it is possible to image complex objects containing various different X-ray transmissions from paper, water or plastic to heavy metals at a time. This color scintillator based image intensifier is widely used in X-ray inspections of various fields. (author)

  10. SALIENCY BASED SEGMENTATION OF SATELLITE IMAGES

    A. Sharma

    2015-03-01

    Full Text Available Saliency gives the way as humans see any image and saliency based segmentation can be eventually helpful in Psychovisual image interpretation. Keeping this in view few saliency models are used along with segmentation algorithm and only the salient segments from image have been extracted. The work is carried out for terrestrial images as well as for satellite images. The methodology used in this work extracts those segments from segmented image which are having higher or equal saliency value than a threshold value. Salient and non salient regions of image become foreground and background respectively and thus image gets separated. For carrying out this work a dataset of terrestrial images and Worldview 2 satellite images (sample data are used. Results show that those saliency models which works better for terrestrial images are not good enough for satellite image in terms of foreground and background separation. Foreground and background separation in terrestrial images is based on salient objects visible on the images whereas in satellite images this separation is based on salient area rather than salient objects.

  11. Visual Sensor Based Image Segmentation by Fuzzy Classification and Subregion Merge

    Huidong He

    2017-01-01

    Full Text Available The extraction and tracking of targets in an image shot by visual sensors have been studied extensively. The technology of image segmentation plays an important role in such tracking systems. This paper presents a new approach to color image segmentation based on fuzzy color extractor (FCE. Different from many existing methods, the proposed approach provides a new classification of pixels in a source color image which usually classifies an individual pixel into several subimages by fuzzy sets. This approach shows two unique features: the spatial proximity and color similarity, and it mainly consists of two algorithms: CreateSubImage and MergeSubImage. We apply the FCE to segment colors of the test images from the database at UC Berkeley in the RGB, HSV, and YUV, the three different color spaces. The comparative studies show that the FCE applied in the RGB space is superior to the HSV and YUV spaces. Finally, we compare the segmentation effect with Canny edge detection and Log edge detection algorithms. The results show that the FCE-based approach performs best in the color image segmentation.

  12. Metric Learning for Hyperspectral Image Segmentation

    Bue, Brian D.; Thompson, David R.; Gilmore, Martha S.; Castano, Rebecca

    2011-01-01

    We present a metric learning approach to improve the performance of unsupervised hyperspectral image segmentation. Unsupervised spatial segmentation can assist both user visualization and automatic recognition of surface features. Analysts can use spatially-continuous segments to decrease noise levels and/or localize feature boundaries. However, existing segmentation methods use tasks-agnostic measures of similarity. Here we learn task-specific similarity measures from training data, improving segment fidelity to classes of interest. Multiclass Linear Discriminate Analysis produces a linear transform that optimally separates a labeled set of training classes. The defines a distance metric that generalized to a new scenes, enabling graph-based segmentation that emphasizes key spectral features. We describe tests based on data from the Compact Reconnaissance Imaging Spectrometer (CRISM) in which learned metrics improve segment homogeneity with respect to mineralogical classes.

  13. SVM Pixel Classification on Colour Image Segmentation

    Barui, Subhrajit; Latha, S.; Samiappan, Dhanalakshmi; Muthu, P.

    2018-04-01

    The aim of image segmentation is to simplify the representation of an image with the help of cluster pixels into something meaningful to analyze. Segmentation is typically used to locate boundaries and curves in an image, precisely to label every pixel in an image to give each pixel an independent identity. SVM pixel classification on colour image segmentation is the topic highlighted in this paper. It holds useful application in the field of concept based image retrieval, machine vision, medical imaging and object detection. The process is accomplished step by step. At first we need to recognize the type of colour and the texture used as an input to the SVM classifier. These inputs are extracted via local spatial similarity measure model and Steerable filter also known as Gabon Filter. It is then trained by using FCM (Fuzzy C-Means). Both the pixel level information of the image and the ability of the SVM Classifier undergoes some sophisticated algorithm to form the final image. The method has a well developed segmented image and efficiency with respect to increased quality and faster processing of the segmented image compared with the other segmentation methods proposed earlier. One of the latest application result is the Light L16 camera.

  14. Automatic Segmentation of Dermoscopic Images by Iterative Classification

    Maciel Zortea

    2011-01-01

    Full Text Available Accurate detection of the borders of skin lesions is a vital first step for computer aided diagnostic systems. This paper presents a novel automatic approach to segmentation of skin lesions that is particularly suitable for analysis of dermoscopic images. Assumptions about the image acquisition, in particular, the approximate location and color, are used to derive an automatic rule to select small seed regions, likely to correspond to samples of skin and the lesion of interest. The seed regions are used as initial training samples, and the lesion segmentation problem is treated as binary classification problem. An iterative hybrid classification strategy, based on a weighted combination of estimated posteriors of a linear and quadratic classifier, is used to update both the automatically selected training samples and the segmentation, increasing reliability and final accuracy, especially for those challenging images, where the contrast between the background skin and lesion is low.

  15. Improving image segmentation by learning region affinities

    Prasad, Lakshman [Los Alamos National Laboratory; Yang, Xingwei [TEMPLE UNIV.; Latecki, Longin J [TEMPLE UNIV.

    2010-11-03

    We utilize the context information of other regions in hierarchical image segmentation to learn new regions affinities. It is well known that a single choice of quantization of an image space is highly unlikely to be a common optimal quantization level for all categories. Each level of quantization has its own benefits. Therefore, we utilize the hierarchical information among different quantizations as well as spatial proximity of their regions. The proposed affinity learning takes into account higher order relations among image regions, both local and long range relations, making it robust to instabilities and errors of the original, pairwise region affinities. Once the learnt affinities are obtained, we use a standard image segmentation algorithm to get the final segmentation. Moreover, the learnt affinities can be naturally unutilized in interactive segmentation. Experimental results on Berkeley Segmentation Dataset and MSRC Object Recognition Dataset are comparable and in some aspects better than the state-of-art methods.

  16. A Study of Color Transformation on Website Images for the Color Blind

    Siew-Li Ching; Maziani Sabudin

    2010-01-01

    In this paper, we study on color transformation method on website images for the color blind. The most common category of color blindness is red-green color blindness which is viewed as beige color. By transforming the colors of the images, the color blind can improve their color visibility. They can have a better view when browsing through the websites. To transform colors on the website images, we study on two algorithms which are the conversion techniques from RGB colo...

  17. Color in Image and Video Processing: Most Recent Trends and Future Research Directions

    Tominaga Shoji

    2008-01-01

    Full Text Available Abstract The motivation of this paper is to provide an overview of the most recent trends and of the future research directions in color image and video processing. Rather than covering all aspects of the domain this survey covers issues related to the most active research areas in the last two years. It presents the most recent trends as well as the state-of-the-art, with a broad survey of the relevant literature, in the main active research areas in color imaging. It also focuses on the most promising research areas in color imaging science. This survey gives an overview about the issues, controversies, and problems of color image science. It focuses on human color vision, perception, and interpretation. It focuses also on acquisition systems, consumer imaging applications, and medical imaging applications. Next it gives a brief overview about the solutions, recommendations, most recent trends, and future trends of color image science. It focuses on color space, appearance models, color difference metrics, and color saliency. It focuses also on color features, color-based object tracking, scene illuminant estimation and color constancy, quality assessment and fidelity assessment, color characterization and calibration of a display device. It focuses on quantization, filtering and enhancement, segmentation, coding and compression, watermarking, and lastly on multispectral color image processing. Lastly, it addresses the research areas which still need addressing and which are the next and future perspectives of color in image and video processing.

  18. Color in Image and Video Processing: Most Recent Trends and Future Research Directions

    Konstantinos N. Plataniotis

    2008-05-01

    Full Text Available The motivation of this paper is to provide an overview of the most recent trends and of the future research directions in color image and video processing. Rather than covering all aspects of the domain this survey covers issues related to the most active research areas in the last two years. It presents the most recent trends as well as the state-of-the-art, with a broad survey of the relevant literature, in the main active research areas in color imaging. It also focuses on the most promising research areas in color imaging science. This survey gives an overview about the issues, controversies, and problems of color image science. It focuses on human color vision, perception, and interpretation. It focuses also on acquisition systems, consumer imaging applications, and medical imaging applications. Next it gives a brief overview about the solutions, recommendations, most recent trends, and future trends of color image science. It focuses on color space, appearance models, color difference metrics, and color saliency. It focuses also on color features, color-based object tracking, scene illuminant estimation and color constancy, quality assessment and fidelity assessment, color characterization and calibration of a display device. It focuses on quantization, filtering and enhancement, segmentation, coding and compression, watermarking, and lastly on multispectral color image processing. Lastly, it addresses the research areas which still need addressing and which are the next and future perspectives of color in image and video processing.

  19. Region-Based Color Image Indexing and Retrieval

    Kompatsiaris, Ioannis; Triantafyllou, Evangelia; Strintzis, Michael G.

    2001-01-01

    In this paper a region-based color image indexing and retrieval algorithm is presented. As a basis for the indexing, a novel K-Means segmentation algorithm is used, modified so as to take into account the coherence of the regions. A new color distance is also defined for this algorithm. Based on ....... Experimental results demonstrate the performance of the algorithm. The development of an intelligent image content-based search engine for the World Wide Web is also presented, as a direct application of the presented algorithm....

  20. Retinal Vessel Segmentation via Structure Tensor Coloring and Anisotropy Enhancement

    Mehmet Nergiz

    2017-11-01

    Full Text Available Retinal vessel segmentation is one of the preliminary tasks for developing diagnosis software systems related to various retinal diseases. In this study, a fully automated vessel segmentation system is proposed. Firstly, the vessels are enhanced using a Frangi Filter. Afterwards, Structure Tensor is applied to the response of the Frangi Filter and a 4-D tensor field is obtained. After decomposing the Eigenvalues of the tensor field, the anisotropy between the principal Eigenvalues are enhanced exponentially. Furthermore, this 4-D tensor field is converted to the 3-D space which is composed of energy, anisotropy and orientation and then a Contrast Limited Adaptive Histogram Equalization algorithm is applied to the energy space. Later, the obtained energy space is multiplied by the enhanced mean surface curvature of itself and the modified 3-D space is converted back to the 4-D tensor field. Lastly, the vessel segmentation is performed by using Otsu algorithm and tensor coloring method which is inspired by the ellipsoid tensor visualization technique. Finally, some post-processing techniques are applied to the segmentation result. In this study, the proposed method achieved mean sensitivity of 0.8123, 0.8126, 0.7246 and mean specificity of 0.9342, 0.9442, 0.9453 as well as mean accuracy of 0.9183, 0.9442, 0.9236 for DRIVE, STARE and CHASE_DB1 datasets, respectively. The mean execution time of this study is 6.104, 6.4525 and 18.8370 s for the aforementioned three datasets respectively.

  1. Segmentation of liver tumors on CT images

    Pescia, D.

    2011-01-01

    This thesis is dedicated to 3D segmentation of liver tumors in CT images. This is a task of great clinical interest since it allows physicians benefiting from reproducible and reliable methods for segmenting such lesions. Accurate segmentation would indeed help them during the evaluation of the lesions, the choice of treatment and treatment planning. Such a complex segmentation task should cope with three main scientific challenges: (i) the highly variable shape of the structures being sought, (ii) their similarity of appearance compared with their surrounding medium and finally (iii) the low signal to noise ratio being observed in these images. This problem is addressed in a clinical context through a two step approach, consisting of the segmentation of the entire liver envelope, before segmenting the tumors which are present within the envelope. We begin by proposing an atlas-based approach for computing pathological liver envelopes. Initially images are pre-processed to compute the envelopes that wrap around binary masks in an attempt to obtain liver envelopes from estimated segmentation of healthy liver parenchyma. A new statistical atlas is then introduced and used to segmentation through its diffeomorphic registration to the new image. This segmentation is achieved through the combination of image matching costs as well as spatial and appearance prior using a multi-scale approach with MRF. The second step of our approach is dedicated to lesions segmentation contained within the envelopes using a combination of machine learning techniques and graph based methods. First, an appropriate feature space is considered that involves texture descriptors being determined through filtering using various scales and orientations. Then, state of the art machine learning techniques are used to determine the most relevant features, as well as the hyper plane that separates the feature space of tumoral voxels to the ones corresponding to healthy tissues. Segmentation is then

  2. Cluster Ensemble-Based Image Segmentation

    Xiaoru Wang

    2013-07-01

    Full Text Available Image segmentation is the foundation of computer vision applications. In this paper, we propose a new cluster ensemble-based image segmentation algorithm, which overcomes several problems of traditional methods. We make two main contributions in this paper. First, we introduce the cluster ensemble concept to fuse the segmentation results from different types of visual features effectively, which can deliver a better final result and achieve a much more stable performance for broad categories of images. Second, we exploit the PageRank idea from Internet applications and apply it to the image segmentation task. This can improve the final segmentation results by combining the spatial information of the image and the semantic similarity of regions. Our experiments on four public image databases validate the superiority of our algorithm over conventional single type of feature or multiple types of features-based algorithms, since our algorithm can fuse multiple types of features effectively for better segmentation results. Moreover, our method is also proved to be very competitive in comparison with other state-of-the-art segmentation algorithms.

  3. Color correction with blind image restoration based on multiple images using a low-rank model

    Li, Dong; Xie, Xudong; Lam, Kin-Man

    2014-03-01

    We present a method that can handle the color correction of multiple photographs with blind image restoration simultaneously and automatically. We prove that the local colors of a set of images of the same scene exhibit the low-rank property locally both before and after a color-correction operation. This property allows us to correct all kinds of errors in an image under a low-rank matrix model without particular priors or assumptions. The possible errors may be caused by changes of viewpoint, large illumination variations, gross pixel corruptions, partial occlusions, etc. Furthermore, a new iterative soft-segmentation method is proposed for local color transfer using color influence maps. Due to the fact that the correct color information and the spatial information of images can be recovered using the low-rank model, more precise color correction and many other image-restoration tasks-including image denoising, image deblurring, and gray-scale image colorizing-can be performed simultaneously. Experiments have verified that our method can achieve consistent and promising results on uncontrolled real photographs acquired from the Internet and that it outperforms current state-of-the-art methods.

  4. Statistical characterization and segmentation of drusen in fundus images.

    Santos-Villalobos, H; Karnowski, T P; Aykac, D; Giancardo, L; Li, Y; Nichols, T; Tobin, K W; Chaum, E

    2011-01-01

    Age related Macular Degeneration (AMD) is a disease of the retina associated with aging. AMD progression in patients is characterized by drusen, pigmentation changes, and geographic atrophy, which can be seen using fundus imagery. The level of AMD is characterized by standard scaling methods, which can be somewhat subjective in practice. In this work we propose a statistical image processing approach to segment drusen with the ultimate goal of characterizing the AMD progression in a data set of longitudinal images. The method characterizes retinal structures with a statistical model of the colors in the retina image. When comparing the segmentation results of the method between longitudinal images with known AMD progression and those without, the method detects progression in our longitudinal data set with an area under the receiver operating characteristics curve of 0.99.

  5. Statistical Characterization and Segmentation of Drusen in Fundus Images

    Santos-Villalobos, Hector J [ORNL; Karnowski, Thomas Paul [ORNL; Aykac, Deniz [ORNL; Giancardo, Luca [ORNL; Li, Yaquin [University of Tennessee, Knoxville (UTK); Nichols, Trent L [ORNL; Tobin Jr, Kenneth William [ORNL; Chaum, Edward [University of Tennessee, Knoxville (UTK)

    2011-01-01

    Age related Macular Degeneration (AMD) is a disease of the retina associated with aging. AMD progression in patients is characterized by drusen, pigmentation changes, and geographic atrophy, which can be seen using fundus imagery. The level of AMD is characterized by standard scaling methods, which can be somewhat subjective in practice. In this work we propose a statistical image processing approach to segment drusen with the ultimate goal of characterizing the AMD progression in a data set of longitudinal images. The method characterizes retinal structures with a statistical model of the colors in the retina image. When comparing the segmentation results of the method between longitudinal images with known AMD progression and those without, the method detects progression in our longitudinal data set with an area under the receiver operating characteristics curve of 0.99.

  6. Medical image segmentation using genetic algorithms.

    Maulik, Ujjwal

    2009-03-01

    Genetic algorithms (GAs) have been found to be effective in the domain of medical image segmentation, since the problem can often be mapped to one of search in a complex and multimodal landscape. The challenges in medical image segmentation arise due to poor image contrast and artifacts that result in missing or diffuse organ/tissue boundaries. The resulting search space is therefore often noisy with a multitude of local optima. Not only does the genetic algorithmic framework prove to be effective in coming out of local optima, it also brings considerable flexibility into the segmentation procedure. In this paper, an attempt has been made to review the major applications of GAs to the domain of medical image segmentation.

  7. Field Sampling from a Segmented Image

    Debba, Pravesh

    2008-06-01

    Full Text Available This paper presents a statistical method for deriving the optimal prospective field sampling scheme on a remote sensing image to represent different categories in the field. The iterated conditional modes algorithm (ICM) is used for segmentation...

  8. Psoriasis skin biopsy image segmentation using Deep Convolutional Neural Network.

    Pal, Anabik; Garain, Utpal; Chandra, Aditi; Chatterjee, Raghunath; Senapati, Swapan

    2018-06-01

    Development of machine assisted tools for automatic analysis of psoriasis skin biopsy image plays an important role in clinical assistance. Development of automatic approach for accurate segmentation of psoriasis skin biopsy image is the initial prerequisite for developing such system. However, the complex cellular structure, presence of imaging artifacts, uneven staining variation make the task challenging. This paper presents a pioneering attempt for automatic segmentation of psoriasis skin biopsy images. Several deep neural architectures are tried for segmenting psoriasis skin biopsy images. Deep models are used for classifying the super-pixels generated by Simple Linear Iterative Clustering (SLIC) and the segmentation performance of these architectures is compared with the traditional hand-crafted feature based classifiers built on popularly used classifiers like K-Nearest Neighbor (KNN), Support Vector Machine (SVM) and Random Forest (RF). A U-shaped Fully Convolutional Neural Network (FCN) is also used in an end to end learning fashion where input is the original color image and the output is the segmentation class map for the skin layers. An annotated real psoriasis skin biopsy image data set of ninety (90) images is developed and used for this research. The segmentation performance is evaluated with two metrics namely, Jaccard's Coefficient (JC) and the Ratio of Correct Pixel Classification (RCPC) accuracy. The experimental results show that the CNN based approaches outperform the traditional hand-crafted feature based classification approaches. The present research shows that practical system can be developed for machine assisted analysis of psoriasis disease. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Recognition of sport players' numbers using fast-color segmentation

    Verleysen, Cédric; De Vleeschouwer, Christophe

    2012-01-01

    This paper builds on a prior work for player detection, and proposes an efficient and effective method to distinguish among players based on the numbers printed on their jerseys. To extract the numbers, the dominant colors of the jersey are learnt during an initial phase and used to speed up the segmentation of the candidate digit regions. An additional set of criteria, considering the relative position and size (compared to the player bounding box) and the density (compared to the digit rectangular support) of the digit, are used to filter out the regions that obviously do not correspond to a digit. Once the plausible digit regions have been extracted, their recognition is based on feature-based classification. A number of original features are proposed to increase the robustness against digit appearance changes, resulting from the font thickness variability and from the deformations of the jersey during the game. Finally, the efficiency and the effectiveness of the proposed method are demonstrated on a real-life basketball dataset. It shows that the proposed segmentation runs about ten times faster than the mean-shift algorithm, but also outlines that the proposed additional features significantly increase the digit recognition accuracy. Despite significant deformations, 40% of the samples, that can be visually recognized as digits, are well classified as numbers. Out of these classified samples, more than 80% of them are correctly recognized. Besides, more than 95% of the samples, that are not numbers, are correctly identified as non-numbers.

  10. Compound image segmentation of published biomedical figures.

    Li, Pengyuan; Jiang, Xiangying; Kambhamettu, Chandra; Shatkay, Hagit

    2018-04-01

    Images convey essential information in biomedical publications. As such, there is a growing interest within the bio-curation and the bio-databases communities, to store images within publications as evidence for biomedical processes and for experimental results. However, many of the images in biomedical publications are compound images consisting of multiple panels, where each individual panel potentially conveys a different type of information. Segmenting such images into constituent panels is an essential first step toward utilizing images. In this article, we develop a new compound image segmentation system, FigSplit, which is based on Connected Component Analysis. To overcome shortcomings typically manifested by existing methods, we develop a quality assessment step for evaluating and modifying segmentations. Two methods are proposed to re-segment the images if the initial segmentation is inaccurate. Experimental results show the effectiveness of our method compared with other methods. The system is publicly available for use at: https://www.eecis.udel.edu/~compbio/FigSplit. The code is available upon request. shatkay@udel.edu. Supplementary data are available online at Bioinformatics.

  11. Review methods for image segmentation from computed tomography images

    Mamat, Nurwahidah; Rahman, Wan Eny Zarina Wan Abdul; Soh, Shaharuddin Cik; Mahmud, Rozi

    2014-01-01

    Image segmentation is a challenging process in order to get the accuracy of segmentation, automation and robustness especially in medical images. There exist many segmentation methods that can be implemented to medical images but not all methods are suitable. For the medical purposes, the aims of image segmentation are to study the anatomical structure, identify the region of interest, measure tissue volume to measure growth of tumor and help in treatment planning prior to radiation therapy. In this paper, we present a review method for segmentation purposes using Computed Tomography (CT) images. CT images has their own characteristics that affect the ability to visualize anatomic structures and pathologic features such as blurring of the image and visual noise. The details about the methods, the goodness and the problem incurred in the methods will be defined and explained. It is necessary to know the suitable segmentation method in order to get accurate segmentation. This paper can be a guide to researcher to choose the suitable segmentation method especially in segmenting the images from CT scan

  12. A Complete Color Normalization Approach to Histopathology Images Using Color Cues Computed From Saturation-Weighted Statistics.

    Li, Xingyu; Plataniotis, Konstantinos N

    2015-07-01

    In digital histopathology, tasks of segmentation and disease diagnosis are achieved by quantitative analysis of image content. However, color variation in image samples makes it challenging to produce reliable results. This paper introduces a complete normalization scheme to address the problem of color variation in histopathology images jointly caused by inconsistent biopsy staining and nonstandard imaging condition. Method : Different from existing normalization methods that either address partial cause of color variation or lump them together, our method identifies causes of color variation based on a microscopic imaging model and addresses inconsistency in biopsy imaging and staining by an illuminant normalization module and a spectral normalization module, respectively. In evaluation, we use two public datasets that are representative of histopathology images commonly received in clinics to examine the proposed method from the aspects of robustness to system settings, performance consistency against achromatic pixels, and normalization effectiveness in terms of histological information preservation. As the saturation-weighted statistics proposed in this study generates stable and reliable color cues for stain normalization, our scheme is robust to system parameters and insensitive to image content and achromatic colors. Extensive experimentation suggests that our approach outperforms state-of-the-art normalization methods as the proposed method is the only approach that succeeds to preserve histological information after normalization. The proposed color normalization solution would be useful to mitigate effects of color variation in pathology images on subsequent quantitative analysis.

  13. Guided color consistency optimization for image mosaicking

    Xie, Renping; Xia, Menghan; Yao, Jian; Li, Li

    2018-01-01

    This paper studies the problem of color consistency correction for sequential images with diverse color characteristics. Existing algorithms try to adjust all images to minimize color differences among images under a unified energy framework, however, the results are prone to presenting a consistent but unnatural appearance when the color difference between images is large and diverse. In our approach, this problem is addressed effectively by providing a guided initial solution for the global consistency optimization, which avoids converging to a meaningless integrated solution. First of all, to obtain the reliable intensity correspondences in overlapping regions between image pairs, we creatively propose the histogram extreme point matching algorithm which is robust to image geometrical misalignment to some extents. In the absence of the extra reference information, the guided initial solution is learned from the major tone of the original images by searching some image subset as the reference, whose color characteristics will be transferred to the others via the paths of graph analysis. Thus, the final results via global adjustment will take on a consistent color similar to the appearance of the reference image subset. Several groups of convincing experiments on both the synthetic dataset and the challenging real ones sufficiently demonstrate that the proposed approach can achieve as good or even better results compared with the state-of-the-art approaches.

  14. Color image guided depth image super resolution using fusion filter

    He, Jin; Liang, Bin; He, Ying; Yang, Jun

    2018-04-01

    Depth cameras are currently playing an important role in many areas. However, most of them can only obtain lowresolution (LR) depth images. Color cameras can easily provide high-resolution (HR) color images. Using color image as a guide image is an efficient way to get a HR depth image. In this paper, we propose a depth image super resolution (SR) algorithm, which uses a HR color image as a guide image and a LR depth image as input. We use the fusion filter of guided filter and edge based joint bilateral filter to get HR depth image. Our experimental results on Middlebury 2005 datasets show that our method can provide better quality in HR depth images both numerically and visually.

  15. Segmentation of elongated structures in medical images

    Staal, Jozef Johannes

    2004-01-01

    The research described in this thesis concerns the automatic detection, recognition and segmentation of elongated structures in medical images. For this purpose techniques have been developed to detect subdimensional pointsets (e.g. ridges, edges) in images of arbitrary dimension. These

  16. Active Mask Segmentation of Fluorescence Microscope Images

    Srinivasa, Gowri; Fickus, Matthew C.; Guo, Yusong; Linstedt, Adam D.; Kovačević, Jelena

    2009-01-01

    We propose a new active mask algorithm for the segmentation of fluorescence microscope images of punctate patterns. It combines the (a) flexibility offered by active-contour methods, (b) speed offered by multiresolution methods, (c) smoothing offered by multiscale methods, and (d) statistical modeling offered by region-growing methods into a fast and accurate segmentation tool. The framework moves from the idea of the “contour” to that of “inside and outside”, or, masks, allowing for easy mul...

  17. An unsupervised strategy for biomedical image segmentation

    Roberto Rodríguez

    2010-09-01

    Full Text Available Roberto Rodríguez1, Rubén Hernández21Digital Signal Processing Group, Institute of Cybernetics, Mathematics, and Physics, Havana, Cuba; 2Interdisciplinary Professional Unit of Engineering and Advanced Technology, IPN, MexicoAbstract: Many segmentation techniques have been published, and some of them have been widely used in different application problems. Most of these segmentation techniques have been motivated by specific application purposes. Unsupervised methods, which do not assume any prior scene knowledge can be learned to help the segmentation process, and are obviously more challenging than the supervised ones. In this paper, we present an unsupervised strategy for biomedical image segmentation using an algorithm based on recursively applying mean shift filtering, where entropy is used as a stopping criterion. This strategy is proven with many real images, and a comparison is carried out with manual segmentation. With the proposed strategy, errors less than 20% for false positives and 0% for false negatives are obtained.Keywords: segmentation, mean shift, unsupervised segmentation, entropy

  18. Determining the Number of Colors or Gray Levels in an Image Using Approximate Bayes Factors: The Pseudolikelihood Information Criterion (PLIC)

    Stanford, Derek C; Raftery, Adrian E

    2001-01-01

    .... This is motivated by medical and satellite image segmentation, and may also be useful for color and gray scale image quantization, the display and storage of computer-generated holograms, and the use...

  19. Comparison of Color Model in Cotton Image Under Conditions of Natural Light

    Zhang, J. H.; Kong, F. T.; Wu, J. Z.; Wang, S. W.; Liu, J. J.; Zhao, P.

    Although the color images contain a large amount of information reflecting the species characteristics, different color models also get different information. The selection of color models is the key to separating crops from background effectively and rapidly. Taking the cotton images collected under natural light as the object, we convert the color components of RGB color model, HSL color model and YIQ color model respectively. Then, we use subjective evaluation and objective evaluation methods, evaluating the 9 color components of conversion. It is concluded that the Q component of the soil, straw and plastic film region gray values remain the same without larger fluctuation when using subjective evaluation method. In the objective evaluation, we use the variance method, average gradient method, gray prediction objective evaluation error statistics method and information entropy method respectively to find the minimum numerical of Q color component suitable for background segmentation.

  20. Video-based noncooperative iris image segmentation.

    Du, Yingzi; Arslanturk, Emrah; Zhou, Zhi; Belcher, Craig

    2011-02-01

    In this paper, we propose a video-based noncooperative iris image segmentation scheme that incorporates a quality filter to quickly eliminate images without an eye, employs a coarse-to-fine segmentation scheme to improve the overall efficiency, uses a direct least squares fitting of ellipses method to model the deformed pupil and limbic boundaries, and develops a window gradient-based method to remove noise in the iris region. A remote iris acquisition system is set up to collect noncooperative iris video images. An objective method is used to quantitatively evaluate the accuracy of the segmentation results. The experimental results demonstrate the effectiveness of this method. The proposed method would make noncooperative iris recognition or iris surveillance possible.

  1. Transfer learning improves supervised image segmentation across imaging protocols

    van Opbroek, Annegreet; Ikram, M. Arfan; Vernooij, Meike W.

    2015-01-01

    with slightly different characteristics. The performance of the four transfer classifiers was compared to that of standard supervised classification on two MRI brain-segmentation tasks with multi-site data: white matter, gray matter, and CSF segmentation; and white-matter- /MS-lesion segmentation......The variation between images obtained with different scanners or different imaging protocols presents a major challenge in automatic segmentation of biomedical images. This variation especially hampers the application of otherwise successful supervised-learning techniques which, in order to perform...... well, often require a large amount of labeled training data that is exactly representative of the target data. We therefore propose to use transfer learning for image segmentation. Transfer-learning techniques can cope with differences in distributions between training and target data, and therefore...

  2. A framework for interactive image color editing

    Musialski, Przemyslaw

    2012-11-08

    We propose a new method for interactive image color replacement that creates smooth and naturally looking results with minimal user interaction. Our system expects as input a source image and rawly scribbled target color values and generates high quality results in interactive rates. To achieve this goal we introduce an algorithm that preserves pairwise distances of the signatures in the original image and simultaneously maps the color to the user defined target values. We propose efficient sub-sampling in order to reduce the computational load and adapt semi-supervised locally linear embedding to optimize the constraints in one objective function. We show the application of the algorithm on typical photographs and compare the results to other color replacement methods. © 2012 Springer-Verlag Berlin Heidelberg.

  3. Neural network segmentation of magnetic resonance images

    Frederick, B.

    1990-01-01

    Neural networks are well adapted to the task of grouping input patterns into subsets which share some similarity. Moreover, once trained, they can generalize their classification rules to classify new data sets. Sets of pixel intensities from magnetic resonance (MR) images provide a natural input to a neural network; by varying imaging parameters, MR images can reflect various independent physical parameters of tissues in their pixel intensities. A neural net can then be trained to classify physically similar tissue types based on sets of pixel intensities resulting from different imaging studies on the same subject. This paper reports that a neural network classifier for image segmentation was implanted on a Sun 4/60, and was tested on the task of classifying tissues of canine head MR images. Four images of a transaxial slice with different imaging sequences were taken as input to the network (three spin-echo images and an inversion recovery image). The training set consisted of 691 representative samples of gray matter, white matter, cerebrospinal fluid, bone, and muscle preclassified by a neuroscientist. The network was trained using a fast backpropagation algorithm to derive the decision criteria to classify any location in the image by its pixel intensities, and the image was subsequently segmented by the classifier

  4. Flood Water Segmentation from Crowdsourced Images

    Nguyen, J. K.; Minsker, B. S.

    2017-12-01

    In the United States, 176 people were killed by flooding in 2015. Along with the loss of human lives is the economic cost which is estimated to be $4.5 billion per flood event. Urban flooding has become a recent concern due to the increase in population, urbanization, and global warming. As more and more people are moving into towns and cities with infrastructure incapable of coping with floods, there is a need for more scalable solutions for urban flood management.The proliferation of camera-equipped mobile devices have led to a new source of information for flood research. In-situ photographs captured by people provide information at the local level that remotely sensed images fail to capture. Applications of crowdsourced images to flood research required understanding the content of the image without the need for user input. This paper addresses the problem of how to automatically segment a flooded and non-flooded region in crowdsourced images. Previous works require two images taken at similar angle and perspective of the location when it is flooded and when it is not flooded. We examine three different algorithms from the computer vision literature that are able to perform segmentation using a single flood image without these assumptions. The performance of each algorithm is evaluated on a collection of labeled crowdsourced flood images. We show that it is possible to achieve a segmentation accuracy of 80% using just a single image.

  5. Coupled dictionary learning for joint MR image restoration and segmentation

    Yang, Xuesong; Fan, Yong

    2018-03-01

    To achieve better segmentation of MR images, image restoration is typically used as a preprocessing step, especially for low-quality MR images. Recent studies have demonstrated that dictionary learning methods could achieve promising performance for both image restoration and image segmentation. These methods typically learn paired dictionaries of image patches from different sources and use a common sparse representation to characterize paired image patches, such as low-quality image patches and their corresponding high quality counterparts for the image restoration, and image patches and their corresponding segmentation labels for the image segmentation. Since learning these dictionaries jointly in a unified framework may improve the image restoration and segmentation simultaneously, we propose a coupled dictionary learning method to concurrently learn dictionaries for joint image restoration and image segmentation based on sparse representations in a multi-atlas image segmentation framework. Particularly, three dictionaries, including a dictionary of low quality image patches, a dictionary of high quality image patches, and a dictionary of segmentation label patches, are learned in a unified framework so that the learned dictionaries of image restoration and segmentation can benefit each other. Our method has been evaluated for segmenting the hippocampus in MR T1 images collected with scanners of different magnetic field strengths. The experimental results have demonstrated that our method achieved better image restoration and segmentation performance than state of the art dictionary learning and sparse representation based image restoration and image segmentation methods.

  6. Advanced Color Image Processing and Analysis

    2013-01-01

    This volume does much more than survey modern advanced color processing. Starting with a historical perspective on ways we have classified color, it sets out the latest numerical techniques for analyzing and processing colors, the leading edge in our search to accurately record and print what we see. The human eye perceives only a fraction of available light wavelengths, yet we live in a multicolor world of myriad shining hues. Colors rich in metaphorical associations make us “purple with rage” or “green with envy” and cause us to “see red.” Defining colors has been the work of centuries, culminating in today’s complex mathematical coding that nonetheless remains a work in progress: only recently have we possessed the computing capacity to process the algebraic matrices that reproduce color more accurately. With chapters on dihedral color and image spectrometers, this book provides technicians and researchers with the knowledge they need to grasp the intricacies of today’s color imaging.

  7. Parallel fuzzy connected image segmentation on GPU.

    Zhuge, Ying; Cao, Yong; Udupa, Jayaram K; Miller, Robert W

    2011-07-01

    Image segmentation techniques using fuzzy connectedness (FC) principles have shown their effectiveness in segmenting a variety of objects in several large applications. However, one challenge in these algorithms has been their excessive computational requirements when processing large image datasets. Nowadays, commodity graphics hardware provides a highly parallel computing environment. In this paper, the authors present a parallel fuzzy connected image segmentation algorithm implementation on NVIDIA's compute unified device Architecture (CUDA) platform for segmenting medical image data sets. In the FC algorithm, there are two major computational tasks: (i) computing the fuzzy affinity relations and (ii) computing the fuzzy connectedness relations. These two tasks are implemented as CUDA kernels and executed on GPU. A dramatic improvement in speed for both tasks is achieved as a result. Our experiments based on three data sets of small, medium, and large data size demonstrate the efficiency of the parallel algorithm, which achieves a speed-up factor of 24.4x, 18.1x, and 10.3x, correspondingly, for the three data sets on the NVIDIA Tesla C1060 over the implementation of the algorithm on CPU, and takes 0.25, 0.72, and 15.04 s, correspondingly, for the three data sets. The authors developed a parallel algorithm of the widely used fuzzy connected image segmentation method on the NVIDIA GPUs, which are far more cost- and speed-effective than both cluster of workstations and multiprocessing systems. A near-interactive speed of segmentation has been achieved, even for the large data set.

  8. Fluorescence Image Segmentation by using Digitally Reconstructed Fluorescence Images

    Blumer, Clemens; Vivien, Cyprien; Oertner, Thomas G; Vetter, Thomas

    2011-01-01

    In biological experiments fluorescence imaging is used to image living and stimulated neurons. But the analysis of fluorescence images is a difficult task. It is not possible to conclude the shape of an object from fluorescence images alone. Therefore, it is not feasible to get good manual segmented nor ground truth data from fluorescence images. Supervised learning approaches are not possible without training data. To overcome this issues we propose to synthesize fluorescence images and call...

  9. White blood cell counting analysis of blood smear images using various segmentation strategies

    Safuan, Syadia Nabilah Mohd; Tomari, Razali; Zakaria, Wan Nurshazwani Wan; Othman, Nurmiza

    2017-09-01

    In white blood cell (WBC) diagnosis, the most crucial measurement parameter is the WBC counting. Such information is widely used to evaluate the effectiveness of cancer therapy and to diagnose several hidden infection within human body. The current practice of manual WBC counting is laborious and a very subjective assessment which leads to the invention of computer aided system (CAS) with rigorous image processing solution. In the CAS counting work, segmentation is the crucial step to ensure the accuracy of the counted cell. The optimal segmentation strategy that can work under various blood smeared image acquisition conditions is remain a great challenge. In this paper, a comparison between different segmentation methods based on color space analysis to get the best counting outcome is elaborated. Initially, color space correction is applied to the original blood smeared image to standardize the image color intensity level. Next, white blood cell segmentation is performed by using combination of several color analysis subtraction which are RGB, CMYK and HSV, and Otsu thresholding. Noises and unwanted regions that present after the segmentation process is eliminated by applying a combination of morphological and Connected Component Labelling (CCL) filter. Eventually, Circle Hough Transform (CHT) method is applied to the segmented image to estimate the number of WBC including the one under the clump region. From the experiment, it is found that G-S yields the best performance.

  10. Active mask segmentation of fluorescence microscope images.

    Srinivasa, Gowri; Fickus, Matthew C; Guo, Yusong; Linstedt, Adam D; Kovacević, Jelena

    2009-08-01

    We propose a new active mask algorithm for the segmentation of fluorescence microscope images of punctate patterns. It combines the (a) flexibility offered by active-contour methods, (b) speed offered by multiresolution methods, (c) smoothing offered by multiscale methods, and (d) statistical modeling offered by region-growing methods into a fast and accurate segmentation tool. The framework moves from the idea of the "contour" to that of "inside and outside," or masks, allowing for easy multidimensional segmentation. It adapts to the topology of the image through the use of multiple masks. The algorithm is almost invariant under initialization, allowing for random initialization, and uses a few easily tunable parameters. Experiments show that the active mask algorithm matches the ground truth well and outperforms the algorithm widely used in fluorescence microscopy, seeded watershed, both qualitatively, as well as quantitatively.

  11. Automatic Hierarchical Color Image Classification

    Jing Huang

    2003-02-01

    Full Text Available Organizing images into semantic categories can be extremely useful for content-based image retrieval and image annotation. Grouping images into semantic classes is a difficult problem, however. Image classification attempts to solve this hard problem by using low-level image features. In this paper, we propose a method for hierarchical classification of images via supervised learning. This scheme relies on using a good low-level feature and subsequently performing feature-space reconfiguration using singular value decomposition to reduce noise and dimensionality. We use the training data to obtain a hierarchical classification tree that can be used to categorize new images. Our experimental results suggest that this scheme not only performs better than standard nearest-neighbor techniques, but also has both storage and computational advantages.

  12. The semiotics of medical image Segmentation.

    Baxter, John S H; Gibson, Eli; Eagleson, Roy; Peters, Terry M

    2018-02-01

    As the interaction between clinicians and computational processes increases in complexity, more nuanced mechanisms are required to describe how their communication is mediated. Medical image segmentation in particular affords a large number of distinct loci for interaction which can act on a deep, knowledge-driven level which complicates the naive interpretation of the computer as a symbol processing machine. Using the perspective of the computer as dialogue partner, we can motivate the semiotic understanding of medical image segmentation. Taking advantage of Peircean semiotic traditions and new philosophical inquiry into the structure and quality of metaphors, we can construct a unified framework for the interpretation of medical image segmentation as a sign exchange in which each sign acts as an interface metaphor. This allows for a notion of finite semiosis, described through a schematic medium, that can rigorously describe how clinicians and computers interpret the signs mediating their interaction. Altogether, this framework provides a unified approach to the understanding and development of medical image segmentation interfaces. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Medical image segmentation using improved FCM

    ZHANG XiaoFeng; ZHANG CaiMing; TANG WenJing; WEI ZhenWen

    2012-01-01

    Image segmentation is one of the most important problems in medical image processing,and the existence of partial volume effect and other phenomena makes the problem much more complex. Fuzzy Cmeans,as an effective tool to deal with PVE,however,is faced with great challenges in efficiency.Aiming at this,this paper proposes one improved FCM algorithm based on the histogram of the given image,which will be denoted as HisFCM and divided into two phases.The first phase will retrieve several intervals on which to compute cluster centroids,and the second one will perform image segmentation based on improved FCM algorithm.Compared with FCM and other improved algorithms,HisFCM is of much higher efficiency with satisfying results.Experiments on medical images show that HisFCM can achieve good segmentation results in less than 0.1 second,and can satisfy real-time requirements of medical image processing.

  14. Color doppler imaging of subclavian steal phenomenon

    Cho, Nari Ya; Chung, Tae Sub; Kim, Jai Keun

    1997-01-01

    To evaluate the characteristic color doppler imaging of vertebral artery flow in the subclavian steal phenomenon. The study group consisted of eight patients with reversed vertebral artery flow proved by color Doppler imaging. We classified this flow into two groups:(1) complete reversal;(2) partial reversal, as shown by Doppler velocity waveform. Vertebral angiography was performed in six of eight patients;color Doppler imaging and angiographic findings were compared. On color Doppler imaging, all eight cases with reversed vertebral artery flow showed no signal at the proximal subclavian or brachiocephalic artery. We confirmed shunting of six cases by performing angiography from the contralateral vertebral and basilar artery to the ipsilateral vertebral artery. On the Doppler spectrum, six cases showed complete reversal and two partial reversal. On angiography, one partial reversal case showed complete occlusion of the subclavian artery with abundant collateral circulation of muscular branches of the vertebral artery. On color Doppler imaging, a reversed vertebral artery suggests the subclavian steal phenomenon. In particular, partial reversal waveform may reflect collateral circulation

  15. An improved K-means clustering algorithm in agricultural image segmentation

    Cheng, Huifeng; Peng, Hui; Liu, Shanmei

    Image segmentation is the first important step to image analysis and image processing. In this paper, according to color crops image characteristics, we firstly transform the color space of image from RGB to HIS, and then select proper initial clustering center and cluster number in application of mean-variance approach and rough set theory followed by clustering calculation in such a way as to automatically segment color component rapidly and extract target objects from background accurately, which provides a reliable basis for identification, analysis, follow-up calculation and process of crops images. Experimental results demonstrate that improved k-means clustering algorithm is able to reduce the computation amounts and enhance precision and accuracy of clustering.

  16. Color feature extraction of HER2 Score 2+ overexpression on breast cancer using Image Processing

    Muhimmah Izzati

    2018-01-01

    Full Text Available One of the major challenges in the development of early diagnosis to assess HER2 status is recognized in the form of Gold Standard. The accuracy, validity and refraction of the Gold Standard HER2 methods are widely used in laboratory (Perez, et al., 2014. Method determining the status of HER2 (human epidermal growth factor receptor 2 is affected by reproductive problems and not reliable in predicting the benefit from anti-HER2 therapy (Nuciforo, et al., 2016. We extracted color features by methods adopting Statistics-based segmentation using a continuous-scale naïve Bayes approach. In this study, there were three parts of the main groups, namely image acquisition, image segmentation, and image testing. The stages of image acquisition consisted of image data collection and color deconvolution. The stages of image segmentation consisted of color features, classifier training, classifier prediction, and skeletonization. The stages of image testing were image testing, expert validation, and expert validation results. Area segmentation of the membrane is false positive and false negative. False positive and false negative from area are called the area of system failure. The failure of the system can be validated by experts that the results of segmentation region is not membrane HER2 (noise and the segmentation of the cytoplasm region. The average from 40 data of HER2 score 2+ membrane images show that 75.13% of the area is successfully recognized by the system.

  17. Composite Techniques Based Color Image Compression

    Zainab Ibrahim Abood

    2017-03-01

    Full Text Available Compression for color image is now necessary for transmission and storage in the data bases since the color gives a pleasing nature and natural for any object, so three composite techniques based color image compression is implemented to achieve image with high compression, no loss in original image, better performance and good image quality. These techniques are composite stationary wavelet technique (S, composite wavelet technique (W and composite multi-wavelet technique (M. For the high energy sub-band of the 3rd level of each composite transform in each composite technique, the compression parameters are calculated. The best composite transform among the 27 types is the three levels of multi-wavelet transform (MMM in M technique which has the highest values of energy (En and compression ratio (CR and least values of bit per pixel (bpp, time (T and rate distortion R(D. Also the values of the compression parameters of the color image are nearly the same as the average values of the compression parameters of the three bands of the same image.

  18. Fast Superpixel Segmentation Algorithm for PolSAR Images

    Zhang Yue

    2017-10-01

    Full Text Available As a pre-processing technique, superpixel segmentation algorithms should be of high computational efficiency, accurate boundary adherence and regular shape in homogeneous regions. A fast superpixel segmentation algorithm based on Iterative Edge Refinement (IER has shown to be applicable on optical images. However, it is difficult to obtain the ideal results when IER is applied directly to PolSAR images due to the speckle noise and small or slim regions in PolSAR images. To address these problems, in this study, the unstable pixel set is initialized as all the pixels in the PolSAR image instead of the initial grid edge pixels. In the local relabeling of the unstable pixels, the fast revised Wishart distance is utilized instead of the Euclidean distance in CIELAB color space. Then, a post-processing procedure based on dissimilarity measure is empolyed to remove isolated small superpixels as well as to retain the strong point targets. Finally, extensive experiments based on a simulated image and a real-world PolSAR image from Airborne Synthetic Aperture Radar (AirSAR are conducted, showing that the proposed algorithm, compared with three state-of-the-art methods, performs better in terms of several commonly used evaluation criteria with high computational efficiency, accurate boundary adherence, and homogeneous regularity.

  19. Categorization and Searching of Color Images Using Mean Shift Algorithm

    Prakash PANDEY

    2009-07-01

    Full Text Available Now a day’s Image Searching is still a challenging problem in content based image retrieval (CBIR system. Most CBIR system operates on all images without pre-sorting the images. The image search result contains many unrelated image. The aim of this research is to propose a new object based indexing system Based on extracting salient region representative from the image, categorizing the image into different types and search images that are similar to given query images.In our approach, the color features are extracted using the mean shift algorithm, a robust clustering technique, Dominant objects are obtained by performing region grouping of segmented thumbnails. The category for an image is generated automatically by analyzing the image for the presence of a dominant object. The images in the database are clustered based on region feature similarity using Euclidian distance. Placing an image into a category can help the user to navigate retrieval results more effectively. Extensive experimental results illustrate excellent performance.

  20. NUCLEAR SEGMENTATION IN MICROSCOPE CELL IMAGES: A HAND-SEGMENTED DATASET AND COMPARISON OF ALGORITHMS

    Coelho, Luís Pedro; Shariff, Aabid; Murphy, Robert F.

    2009-01-01

    Image segmentation is an essential step in many image analysis pipelines and many algorithms have been proposed to solve this problem. However, they are often evaluated subjectively or based on a small number of examples. To fill this gap, we hand-segmented a set of 97 fluorescence microscopy images (a total of 4009 cells) and objectively evaluated some previously proposed segmentation algorithms.

  1. Transfer learning improves supervised image segmentation across imaging protocols.

    van Opbroek, Annegreet; Ikram, M Arfan; Vernooij, Meike W; de Bruijne, Marleen

    2015-05-01

    The variation between images obtained with different scanners or different imaging protocols presents a major challenge in automatic segmentation of biomedical images. This variation especially hampers the application of otherwise successful supervised-learning techniques which, in order to perform well, often require a large amount of labeled training data that is exactly representative of the target data. We therefore propose to use transfer learning for image segmentation. Transfer-learning techniques can cope with differences in distributions between training and target data, and therefore may improve performance over supervised learning for segmentation across scanners and scan protocols. We present four transfer classifiers that can train a classification scheme with only a small amount of representative training data, in addition to a larger amount of other training data with slightly different characteristics. The performance of the four transfer classifiers was compared to that of standard supervised classification on two magnetic resonance imaging brain-segmentation tasks with multi-site data: white matter, gray matter, and cerebrospinal fluid segmentation; and white-matter-/MS-lesion segmentation. The experiments showed that when there is only a small amount of representative training data available, transfer learning can greatly outperform common supervised-learning approaches, minimizing classification errors by up to 60%.

  2. Automated retinal vessel type classification in color fundus images

    Yu, H.; Barriga, S.; Agurto, C.; Nemeth, S.; Bauman, W.; Soliz, P.

    2013-02-01

    Automated retinal vessel type classification is an essential first step toward machine-based quantitative measurement of various vessel topological parameters and identifying vessel abnormalities and alternations in cardiovascular disease risk analysis. This paper presents a new and accurate automatic artery and vein classification method developed for arteriolar-to-venular width ratio (AVR) and artery and vein tortuosity measurements in regions of interest (ROI) of 1.5 and 2.5 optic disc diameters from the disc center, respectively. This method includes illumination normalization, automatic optic disc detection and retinal vessel segmentation, feature extraction, and a partial least squares (PLS) classification. Normalized multi-color information, color variation, and multi-scale morphological features are extracted on each vessel segment. We trained the algorithm on a set of 51 color fundus images using manually marked arteries and veins. We tested the proposed method in a previously unseen test data set consisting of 42 images. We obtained an area under the ROC curve (AUC) of 93.7% in the ROI of AVR measurement and 91.5% of AUC in the ROI of tortuosity measurement. The proposed AV classification method has the potential to assist automatic cardiovascular disease early detection and risk analysis.

  3. Color-based free-space segmentation using online disparity-supervised learning

    Sanberg, W.P.; Dubbelman, G.; de With, P.H.N.

    2015-01-01

    This work contributes to vision processing for Advanced Driver Assist Systems (ADAS) and intelligent vehicle applications. We propose a color-only stixel segmentation framework to segment traffic scenes into free, drivable space and obstacles, which has a reduced latency to improve the real-time

  4. Automated segmentation of geographic atrophy of the retinal epithelium via random forests in AREDS color fundus images☆

    Feeny, Albert K.; Tadarati, Mongkol; Freund, David E.; Bressler, Neil M.; Burlina, Philippe

    2015-01-01

    Background Age-related macular degeneration (AMD), left untreated, is the leading cause of vision loss in people older than 55. Severe central vision loss occurs in the advanced stage of the disease, characterized by either the in growth of choroidal neovascularization (CNV), termed the “wet” form, or by geographic atrophy (GA) of the retinal pigment epithelium (RPE) involving the center of the macula, termed the “dry” form. Tracking the change in GA area over time is important since it allows for the characterization of the effectiveness of GA treatments. Tracking GA evolution can be achieved by physicians performing manual delineation of GA area on retinal fundus images. However, manual GA delineation is time-consuming and subject to inter-and intra-observer variability. Methods We have developed a fully automated GA segmentation algorithm in color fundus images that uses a supervised machine learning approach employing a random forest classifier. This algorithm is developed and tested using a dataset of images from the NIH-sponsored Age Related Eye Disease Study (AREDS). GA segmentation output was compared against a manual delineation by a retina specialist. Results Using 143 color fundus images from 55 different patient eyes, our algorithm achieved PPV of 0.82±0.19, and NPV of 0:95±0.07. Discussion This is the first study, to our knowledge, applying machine learning methods to GA segmentation on color fundus images and using AREDS imagery for testing. These preliminary results show promising evidence that machine learning methods may have utility in automated characterization of GA from color fundus images. PMID:26318113

  5. Image Segmentation, Registration, Compression, and Matching

    Yadegar, Jacob; Wei, Hai; Yadegar, Joseph; Ray, Nilanjan; Zabuawala, Sakina

    2011-01-01

    A novel computational framework was developed of a 2D affine invariant matching exploiting a parameter space. Named as affine invariant parameter space (AIPS), the technique can be applied to many image-processing and computer-vision problems, including image registration, template matching, and object tracking from image sequence. The AIPS is formed by the parameters in an affine combination of a set of feature points in the image plane. In cases where the entire image can be assumed to have undergone a single affine transformation, the new AIPS match metric and matching framework becomes very effective (compared with the state-of-the-art methods at the time of this reporting). No knowledge about scaling or any other transformation parameters need to be known a priori to apply the AIPS framework. An automated suite of software tools has been created to provide accurate image segmentation (for data cleaning) and high-quality 2D image and 3D surface registration (for fusing multi-resolution terrain, image, and map data). These tools are capable of supporting existing GIS toolkits already in the marketplace, and will also be usable in a stand-alone fashion. The toolkit applies novel algorithmic approaches for image segmentation, feature extraction, and registration of 2D imagery and 3D surface data, which supports first-pass, batched, fully automatic feature extraction (for segmentation), and registration. A hierarchical and adaptive approach is taken for achieving automatic feature extraction, segmentation, and registration. Surface registration is the process of aligning two (or more) data sets to a common coordinate system, during which the transformation between their different coordinate systems is determined. Also developed here are a novel, volumetric surface modeling and compression technique that provide both quality-guaranteed mesh surface approximations and compaction of the model sizes by efficiently coding the geometry and connectivity

  6. Color Histogram Diffusion for Image Enhancement

    Kim, Taemin

    2011-01-01

    Various color histogram equalization (CHE) methods have been proposed to extend grayscale histogram equalization (GHE) for color images. In this paper a new method called histogram diffusion that extends the GHE method to arbitrary dimensions is proposed. Ranges in a histogram are specified as overlapping bars of uniform heights and variable widths which are proportional to their frequencies. This diagram is called the vistogram. As an alternative approach to GHE, the squared error of the vistogram from the uniform distribution is minimized. Each bar in the vistogram is approximated by a Gaussian function. Gaussian particles in the vistoram diffuse as a nonlinear autonomous system of ordinary differential equations. CHE results of color images showed that the approach is effective.

  7. Optical coherence tomography in anterior segment imaging

    Kalev-Landoy, Maya; Day, Alexander C.; Cordeiro, M. Francesca; Migdal, Clive

    2008-01-01

    Purpose To evaluate the ability of optical coherence tomography (OCT), designed primarily to image the posterior segment, to visualize the anterior chamber angle (ACA) in patients with different angle configurations. Methods In a prospective observational study, the anterior segments of 26 eyes of 26 patients were imaged using the Zeiss Stratus OCT, model 3000. Imaging of the anterior segment was achieved by adjusting the focusing control on the Stratus OCT. A total of 16 patients had abnormal angle configurations including narrow or closed angles and plateau irides, and 10 had normal angle configurations as determined by prior full ophthalmic examination, including slit-lamp biomicroscopy and gonioscopy. Results In all cases, OCT provided high-resolution information regarding iris configuration. The ACA itself was clearly visualized in patients with narrow or closed angles, but not in patients with open angles. Conclusions Stratus OCT offers a non-contact, convenient and rapid method of assessing the configuration of the anterior chamber. Despite its limitations, it may be of help during the routine clinical assessment and treatment of patients with glaucoma, particularly when gonioscopy is not possible or difficult to interpret. PMID:17355288

  8. Preparing Colorful Astronomical Images and Illustrations

    Levay, Z. G.; Frattare, L. M.

    2001-12-01

    We present techniques for using mainstream graphics software, specifically Adobe Photoshop and Illustrator, for producing composite color images and illustrations from astronomical data. These techniques have been used with numerous images from the Hubble Space Telescope to produce printed and web-based news, education and public presentation products as well as illustrations for technical publication. While Photoshop is not intended for quantitative analysis of full dynamic range data (as are IRAF or IDL, for example), we have had much success applying Photoshop's numerous, versatile tools to work with scaled images, masks, text and graphics in multiple semi-transparent layers and channels. These features, along with its user-oriented, visual interface, provide convenient tools to produce high-quality, full-color images and graphics for printed and on-line publication and presentation.

  9. COMPARISON AND EVALUATION OF CLUSTER BASED IMAGE SEGMENTATION TECHNIQUES

    Hetangi D. Mehta*, Daxa Vekariya, Pratixa Badelia

    2017-01-01

    Image segmentation is the classification of an image into different groups. Numerous algorithms using different approaches have been proposed for image segmentation. A major challenge in segmentation evaluation comes from the fundamental conflict between generality and objectivity. A review is done on different types of clustering methods used for image segmentation. Also a methodology is proposed to classify and quantify different clustering algorithms based on their consistency in different...

  10. Intelligent Image Segment for Material Composition Detection

    Liang Xiaodan

    2017-01-01

    Full Text Available In the process of material composition detection, the image analysis is an inevitable problem. Multilevel thresholding based OTSU method is one of the most popular image segmentation techniques. How, with the increase of the number of thresholds, the computing time increases exponentially. To overcome this problem, this paper proposed an artificial bee colony algorithm with a two-level topology. This improved artificial bee colony algorithm can quickly find out the suitable thresholds and nearly no trap into local optimal. The test results confirm it good performance.

  11. Joint depth map and color consistency estimation for stereo images with different illuminations and cameras.

    Heo, Yong Seok; Lee, Kyoung Mu; Lee, Sang Uk

    2013-05-01

    Abstract—In this paper, we propose a method that infers both accurate depth maps and color-consistent stereo images for radiometrically varying stereo images. In general, stereo matching and performing color consistency between stereo images are a chicken-and-egg problem since it is not a trivial task to simultaneously achieve both goals. Hence, we have developed an iterative framework in which these two processes can boost each other. First, we transform the input color images to log-chromaticity color space, from which a linear relationship can be established during constructing a joint pdf of transformed left and right color images. From this joint pdf, we can estimate a linear function that relates the corresponding pixels in stereo images. Based on this linear property, we present a new stereo matching cost by combining Mutual Information (MI), SIFT descriptor, and segment-based plane-fitting to robustly find correspondence for stereo image pairs which undergo radiometric variations. Meanwhile, we devise a Stereo Color Histogram Equalization (SCHE) method to produce color-consistent stereo image pairs, which conversely boost the disparity map estimation. Experimental results show that our method produces both accurate depth maps and color-consistent stereo images, even for stereo images with severe radiometric differences.

  12. Remote sensing image segmentation based on Hadoop cloud platform

    Li, Jie; Zhu, Lingling; Cao, Fubin

    2018-01-01

    To solve the problem that the remote sensing image segmentation speed is slow and the real-time performance is poor, this paper studies the method of remote sensing image segmentation based on Hadoop platform. On the basis of analyzing the structural characteristics of Hadoop cloud platform and its component MapReduce programming, this paper proposes a method of image segmentation based on the combination of OpenCV and Hadoop cloud platform. Firstly, the MapReduce image processing model of Hadoop cloud platform is designed, the input and output of image are customized and the segmentation method of the data file is rewritten. Then the Mean Shift image segmentation algorithm is implemented. Finally, this paper makes a segmentation experiment on remote sensing image, and uses MATLAB to realize the Mean Shift image segmentation algorithm to compare the same image segmentation experiment. The experimental results show that under the premise of ensuring good effect, the segmentation rate of remote sensing image segmentation based on Hadoop cloud Platform has been greatly improved compared with the single MATLAB image segmentation, and there is a great improvement in the effectiveness of image segmentation.

  13. A comparative study on medical image segmentation methods

    Praylin Selva Blessy SELVARAJ ASSLEY

    2014-03-01

    Full Text Available Image segmentation plays an important role in medical images. It has been a relevant research area in computer vision and image analysis. Many segmentation algorithms have been proposed for medical images. This paper makes a review on segmentation methods for medical images. In this survey, segmentation methods are divided into five categories: region based, boundary based, model based, hybrid based and atlas based. The five different categories with their principle ideas, advantages and disadvantages in segmenting different medical images are discussed.

  14. Use of image analysis to assess color response on plants caused by herbicide application

    Asif, Ali; Streibig, Jens Carl; Duus, Joachim

    2013-01-01

    by herbicides. The range of color components of green and nongreen parts of the plants and soil in Hue, Saturation, and Brightness (HSB) color space were used for segmentation. The canopy color changes of barley, winter wheat, red fescue, and brome fescue caused by doses of a glyphosate and diflufenican mixture...... for the green and nongreen parts of the plants and soil were different. The relative potencies were not significantly different from one, indicating that visual and image analysis estimations were about the same. The comparison results suggest that image analysis can be used to assess color changes of plants......In herbicide-selectivity experiments, response can be measured by visual inspection, stand counts, plant mortality, and biomass. Some response types are relative to nontreated control. We developed a nondestructive method by analyzing digital color images to quantify color changes in leaves caused...

  15. Segmentation Toolbox for Tomographic Image Data

    Einarsdottir, Hildur

    , techniques to automatically analyze such data becomes ever more important. Most segmentation methods for large datasets, such as CT images, deal with simple thresholding techniques, where intensity values cut offs are predetermined and hard coded. For data where the intensity difference is not sufficient......Motivation: Image acquisition has vastly improved over the past years, introducing techniques such as X-ray computed tomography (CT). CT images provide the means to probe a sample non-invasively to investigate its inner structure. Given the wide usage of this technique and massive data amounts......, and partial volume voxels occur frequently, thresholding methods do not suffice and more advanced methods are required. Contribution: To meet these requirements a toolbox has been developed, combining well known methods within the image analysis field. The toolbox includes cluster-based methods...

  16. Automatic Vessel Segmentation on Retinal Images

    Chun-Yuan Yu; Chia-Jen Chang; Yen-Ju Yao; Shyr-Shen Yu

    2014-01-01

    Several features of retinal vessels can be used to monitor the progression of diseases. Changes in vascular structures, for example, vessel caliber, branching angle, and tortuosity, are portents of many diseases such as diabetic retinopathy and arterial hyper-tension. This paper proposes an automatic retinal vessel segmentation method based on morphological closing and multi-scale line detection. First, an illumination correction is performed on the green band retinal image. Next, the morphological closing and subtraction processing are applied to obtain the crude retinal vessel image. Then, the multi-scale line detection is used to fine the vessel image. Finally, the binary vasculature is extracted by the Otsu algorithm. In this paper, for improving the drawbacks of multi-scale line detection, only the line detectors at 4 scales are used. The experimental results show that the accuracy is 0.939 for DRIVE (digital retinal images for vessel extraction) retinal database, which is much better than other methods.

  17. Featured Image: Revealing Hidden Objects with Color

    Kohler, Susanna

    2018-02-01

    Stunning color astronomical images can often be the motivation for astronomers to continue slogging through countless data files, calculations, and simulations as we seek to understand the mysteries of the universe. But sometimes the stunning images can, themselves, be the source of scientific discovery. This is the case with the below image of Lynds Dark Nebula 673, located in the Aquila constellation, that was captured with the Mayall 4-meter telescope at Kitt Peak National Observatory by a team of scientists led by Travis Rector (University of Alaska Anchorage). After creating the image with a novel color-composite imaging method that reveals faint H emission (visible in red in both images here), Rector and collaborators identified the presence of a dozen new Herbig-Haro objects small cloud patches that are caused when material is energetically flung out from newly born stars. The image adapted above shows three of the new objects, HH 118789, aligned with two previously known objects, HH 32 and 332 suggesting they are driven by the same source. For more beautiful images and insight into the authors discoveries, check out the article linked below!Full view of Lynds Dark Nebula 673. Click for the larger view this beautiful composite image deserves! [T.A. Rector (University of Alaska Anchorage) and H. Schweiker (WIYN and NOAO/AURA/NSF)]CitationT. A. Rector et al 2018 ApJ 852 13. doi:10.3847/1538-4357/aa9ce1

  18. Bayesian Image Segmentations by Potts Prior and Loopy Belief Propagation

    Tanaka, Kazuyuki; Kataoka, Shun; Yasuda, Muneki; Waizumi, Yuji; Hsu, Chiou-Ting

    2014-12-01

    This paper presents a Bayesian image segmentation model based on Potts prior and loopy belief propagation. The proposed Bayesian model involves several terms, including the pairwise interactions of Potts models, and the average vectors and covariant matrices of Gauss distributions in color image modeling. These terms are often referred to as hyperparameters in statistical machine learning theory. In order to determine these hyperparameters, we propose a new scheme for hyperparameter estimation based on conditional maximization of entropy in the Potts prior. The algorithm is given based on loopy belief propagation. In addition, we compare our conditional maximum entropy framework with the conventional maximum likelihood framework, and also clarify how the first order phase transitions in loopy belief propagations for Potts models influence our hyperparameter estimation procedures.

  19. Utilization of Multispectral Images for Meat Color Measurements

    Trinderup, Camilla Himmelstrup; Dahl, Anders Lindbjerg; Carstensen, Jens Michael

    2013-01-01

    This short paper describes how the use of multispectral imaging for color measurement can be utilized in an efficient and descriptive way for meat scientists. The basis of the study is meat color measurements performed with a multispectral imaging system as well as with a standard colorimeter...... of color and color variance than what is obtained by the standard colorimeter....

  20. Image Transform Based on the Distribution of Representative Colors for Color Deficient

    Ohata, Fukashi; Kudo, Hiroaki; Matsumoto, Tetsuya; Takeuchi, Yoshinori; Ohnishi, Noboru

    This paper proposes the method to convert digital image containing distinguishing difficulty sets of colors into the image with high visibility. We set up four criteria, automatically processing by a computer, retaining continuity in color space, not making images into lower visible for people with normal color vision, and not making images not originally having distinguishing difficulty sets of colors into lower visible. We conducted the psychological experiment. We obtained the result that the visibility of a converted image had been improved at 60% for 40 images, and we confirmed the main criterion of the continuity in color space was kept.

  1. Text segmentation in degraded historical document images

    A.S. Kavitha

    2016-07-01

    Full Text Available Text segmentation from degraded Historical Indus script images helps Optical Character Recognizer (OCR to achieve good recognition rates for Hindus scripts; however, it is challenging due to complex background in such images. In this paper, we present a new method for segmenting text and non-text in Indus documents based on the fact that text components are less cursive compared to non-text ones. To achieve this, we propose a new combination of Sobel and Laplacian for enhancing degraded low contrast pixels. Then the proposed method generates skeletons for text components in enhanced images to reduce computational burdens, which in turn helps in studying component structures efficiently. We propose to study the cursiveness of components based on branch information to remove false text components. The proposed method introduces the nearest neighbor criterion for grouping components in the same line, which results in clusters. Furthermore, the proposed method classifies these clusters into text and non-text cluster based on characteristics of text components. We evaluate the proposed method on a large dataset containing varieties of images. The results are compared with the existing methods to show that the proposed method is effective in terms of recall and precision.

  2. Plane wave fast color flow mode imaging

    Bolic, Ibrahim; Udesen, Jesper; Gran, Fredrik

    2006-01-01

    A new Plane wave fast color flow imaging method (PWM) has been investigated, and performance evaluation of the PWM based on experimental measurements has been made. The results show that it is possible to obtain a CFM image using only 8 echo-pulse emissions for beam to flow angles between 45...... degrees and 75 degrees. Compared to the conventional ultrasound imaging the frame rate is similar to 30 - 60 times higher. The bias, B-est of the velocity profile estimate, based on 8 pulse-echo emissions, is between 3.3% and 6.1% for beam to flow angles between 45 degrees and 75 degrees, and the standard...

  3. Automatic Microaneurysm Detection and Characterization Through Digital Color Fundus Images

    Martins, Charles; Veras, Rodrigo; Ramalho, Geraldo; Medeiros, Fatima; Ushizima, Daniela

    2008-08-29

    Ocular fundus images can provide information about retinal, ophthalmic, and even systemic diseases such as diabetes. Microaneurysms (MAs) are the earliest sign of Diabetic Retinopathy, a frequently observed complication in both type 1 and type 2 diabetes. Robust detection of MAs in digital color fundus images is critical in the development of automated screening systems for this kind of disease. Automatic grading of these images is being considered by health boards so that the human grading task is reduced. In this paper we describe segmentation and the feature extraction methods for candidate MAs detection.We show that the candidate MAs detected with the methodology have been successfully classified by a MLP neural network (correct classification of 84percent).

  4. Automated image segmentation using information theory

    Hibbard, L.S.

    2001-01-01

    Full text: Our development of automated contouring of CT images for RT planning is based on maximum a posteriori (MAP) analyses of region textures, edges, and prior shapes, and assumes stationary Gaussian distributions for voxel textures and contour shapes. Since models may not accurately represent image data, it would be advantageous to compute inferences without relying on models. The relative entropy (RE) from information theory can generate inferences based solely on the similarity of probability distributions. The entropy of a distribution of a random variable X is defined as -Σ x p(x)log 2 p(x) for all the values x which X may assume. The RE (Kullback-Liebler divergence) of two distributions p(X), q(X), over X is Σ x p(x)log 2 {p(x)/q(x)}. The RE is a kind of 'distance' between p,q, equaling zero when p=q and increasing as p,q are more different. Minimum-error MAP and likelihood ratio decision rules have RE equivalents: minimum error decisions obtain with functions of the differences between REs of compared distributions. One applied result is the contour ideally separating two regions is that which maximizes the relative entropy of the two regions' intensities. A program was developed that automatically contours the outlines of patients in stereotactic headframes, a situation most often requiring manual drawing. The relative entropy of intensities inside the contour (patient) versus outside (background) was maximized by conjugate gradient descent over the space of parameters of a deformable contour. shows the computed segmentation of a patient from headframe backgrounds. This program is particularly useful for preparing images for multimodal image fusion. Relative entropy and allied measures of distribution similarity provide automated contouring criteria that do not depend on statistical models of image data. This approach should have wide utility in medical image segmentation applications. Copyright (2001) Australasian College of Physical Scientists and

  5. Vector sparse representation of color image using quaternion matrix analysis.

    Xu, Yi; Yu, Licheng; Xu, Hongteng; Zhang, Hao; Nguyen, Truong

    2015-04-01

    Traditional sparse image models treat color image pixel as a scalar, which represents color channels separately or concatenate color channels as a monochrome image. In this paper, we propose a vector sparse representation model for color images using quaternion matrix analysis. As a new tool for color image representation, its potential applications in several image-processing tasks are presented, including color image reconstruction, denoising, inpainting, and super-resolution. The proposed model represents the color image as a quaternion matrix, where a quaternion-based dictionary learning algorithm is presented using the K-quaternion singular value decomposition (QSVD) (generalized K-means clustering for QSVD) method. It conducts the sparse basis selection in quaternion space, which uniformly transforms the channel images to an orthogonal color space. In this new color space, it is significant that the inherent color structures can be completely preserved during vector reconstruction. Moreover, the proposed sparse model is more efficient comparing with the current sparse models for image restoration tasks due to lower redundancy between the atoms of different color channels. The experimental results demonstrate that the proposed sparse image model avoids the hue bias issue successfully and shows its potential as a general and powerful tool in color image analysis and processing domain.

  6. Low contrast detectability for color patterns variation of display images

    Ogura, Akio

    1998-01-01

    In recent years, the radionuclide images are acquired in digital form and displayed with false colors for signal intensity. This color scales for signal intensity have various patterns. In this study, low contrast detectability was compared the performance of gray scale cording with three color scales: the hot color scale, prism color scale and stripe color scale. SPECT images of brain phantom were displayed using four color patterns. These printed images and display images were evaluated with ROC analysis. Display images were indicated higher detectability than printed images. The hot scale and gray scale images indicated better Az of ROC than prism scale images because the prism scale images showed higher false positive rate. (author)

  7. Performance evaluation of image segmentation algorithms on microscopic image data

    Beneš, Miroslav; Zitová, Barbara

    2015-01-01

    Roč. 275, č. 1 (2015), s. 65-85 ISSN 0022-2720 R&D Projects: GA ČR GAP103/12/2211 Institutional support: RVO:67985556 Keywords : image segmentation * performance evaluation * microscopic images Subject RIV: JC - Computer Hardware ; Software Impact factor: 2.136, year: 2015 http://library.utia.cas.cz/separaty/2014/ZOI/zitova-0434809-DOI.pdf

  8. DETECTION OF CANCEROUS LESION BY UTERINE CERVIX IMAGE SEGMENTATION

    P. Priya

    2014-02-01

    Full Text Available This paper works at segmentation of lesion observed in cervical cancer, which is the second most common cancer among women worldwide. The purpose of segmentation is to determine the location for a biopsy to be taken for diagnosis. Cervix cancer is a disease in which cancer cells are found in the tissues of the cervix. The acetowhite region is a major indicator of abnormality in the cervix image. This project addresses the problem of segmenting uterine cervix image into different regions. We analyze two algorithms namely Watershed, K-means clustering algorithm, Expectation Maximization (EM Image Segmentation algorithm. These segmentations methods are carried over for the colposcopic uterine cervix image.

  9. HDR imaging and color constancy: two sides of the same coin?

    McCann, John J.

    2011-01-01

    At first, we think that High Dynamic Range (HDR) imaging is a technique for improved recordings of scene radiances. Many of us think that human color constancy is a variation of a camera's automatic white balance algorithm. However, on closer inspection, glare limits the range of light we can detect in cameras and on retinas. All scene regions below middle gray are influenced, more or less, by the glare from the bright scene segments. Instead of accurate radiance reproduction, HDR imaging works well because it preserves the details in the scene's spatial contrast. Similarly, on closer inspection, human color constancy depends on spatial comparisons that synthesize appearances from all the scene segments. Can spatial image processing play similar principle roles in both HDR imaging and color constancy?

  10. Heuristically improved Bayesian segmentation of brain MR images ...

    Heuristically improved Bayesian segmentation of brain MR images. ... or even the most prevalent task in medical image processing is image segmentation. Among them, brain MR images suffer ... show that our algorithm performs well in comparison with the one implemented in SPM. It can be concluded that incorporating ...

  11. A NDVI assisted remote sensing image adaptive scale segmentation method

    Zhang, Hong; Shen, Jinxiang; Ma, Yanmei

    2018-03-01

    Multiscale segmentation of images can effectively form boundaries of different objects with different scales. However, for the remote sensing image which widely coverage with complicated ground objects, the number of suitable segmentation scales, and each of the scale size is still difficult to be accurately determined, which severely restricts the rapid information extraction of the remote sensing image. A great deal of experiments showed that the normalized difference vegetation index (NDVI) can effectively express the spectral characteristics of a variety of ground objects in remote sensing images. This paper presents a method using NDVI assisted adaptive segmentation of remote sensing images, which segment the local area by using NDVI similarity threshold to iteratively select segmentation scales. According to the different regions which consist of different targets, different segmentation scale boundaries could be created. The experimental results showed that the adaptive segmentation method based on NDVI can effectively create the objects boundaries for different ground objects of remote sensing images.

  12. An LG-graph-based early evaluation of segmented images

    Tsitsoulis, Athanasios; Bourbakis, Nikolaos

    2012-01-01

    Image segmentation is one of the first important parts of image analysis and understanding. Evaluation of image segmentation, however, is a very difficult task, mainly because it requires human intervention and interpretation. In this work, we propose a blind reference evaluation scheme based on regional local–global (RLG) graphs, which aims at measuring the amount and distribution of detail in images produced by segmentation algorithms. The main idea derives from the field of image understanding, where image segmentation is often used as a tool for scene interpretation and object recognition. Evaluation here derives from summarization of the structural information content and not from the assessment of performance after comparisons with a golden standard. Results show measurements for segmented images acquired from three segmentation algorithms, applied on different types of images (human faces/bodies, natural environments and structures (buildings)). (paper)

  13. Pseudo color ghost coding imaging with pseudo thermal light

    Duan, De-yang; Xia, Yun-jie

    2018-04-01

    We present a new pseudo color imaging scheme named pseudo color ghost coding imaging based on ghost imaging but with multiwavelength source modulated by a spatial light modulator. Compared with conventional pseudo color imaging where there is no nondegenerate wavelength spatial correlations resulting in extra monochromatic images, the degenerate wavelength and nondegenerate wavelength spatial correlations between the idle beam and signal beam can be obtained simultaneously. This scheme can obtain more colorful image with higher quality than that in conventional pseudo color coding techniques. More importantly, a significant advantage of the scheme compared to the conventional pseudo color coding imaging techniques is the image with different colors can be obtained without changing the light source and spatial filter.

  14. An Improved FCM Medical Image Segmentation Algorithm Based on MMTD

    Ningning Zhou

    2014-01-01

    Full Text Available Image segmentation plays an important role in medical image processing. Fuzzy c-means (FCM is one of the popular clustering algorithms for medical image segmentation. But FCM is highly vulnerable to noise due to not considering the spatial information in image segmentation. This paper introduces medium mathematics system which is employed to process fuzzy information for image segmentation. It establishes the medium similarity measure based on the measure of medium truth degree (MMTD and uses the correlation of the pixel and its neighbors to define the medium membership function. An improved FCM medical image segmentation algorithm based on MMTD which takes some spatial features into account is proposed in this paper. The experimental results show that the proposed algorithm is more antinoise than the standard FCM, with more certainty and less fuzziness. This will lead to its practicable and effective applications in medical image segmentation.

  15. Microscopy image segmentation tool: Robust image data analysis

    Valmianski, Ilya, E-mail: ivalmian@ucsd.edu; Monton, Carlos; Schuller, Ivan K. [Department of Physics and Center for Advanced Nanoscience, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093 (United States)

    2014-03-15

    We present a software package called Microscopy Image Segmentation Tool (MIST). MIST is designed for analysis of microscopy images which contain large collections of small regions of interest (ROIs). Originally developed for analysis of porous anodic alumina scanning electron images, MIST capabilities have been expanded to allow use in a large variety of problems including analysis of biological tissue, inorganic and organic film grain structure, as well as nano- and meso-scopic structures. MIST provides a robust segmentation algorithm for the ROIs, includes many useful analysis capabilities, and is highly flexible allowing incorporation of specialized user developed analysis. We describe the unique advantages MIST has over existing analysis software. In addition, we present a number of diverse applications to scanning electron microscopy, atomic force microscopy, magnetic force microscopy, scanning tunneling microscopy, and fluorescent confocal laser scanning microscopy.

  16. Microscopy image segmentation tool: Robust image data analysis

    Valmianski, Ilya; Monton, Carlos; Schuller, Ivan K.

    2014-03-01

    We present a software package called Microscopy Image Segmentation Tool (MIST). MIST is designed for analysis of microscopy images which contain large collections of small regions of interest (ROIs). Originally developed for analysis of porous anodic alumina scanning electron images, MIST capabilities have been expanded to allow use in a large variety of problems including analysis of biological tissue, inorganic and organic film grain structure, as well as nano- and meso-scopic structures. MIST provides a robust segmentation algorithm for the ROIs, includes many useful analysis capabilities, and is highly flexible allowing incorporation of specialized user developed analysis. We describe the unique advantages MIST has over existing analysis software. In addition, we present a number of diverse applications to scanning electron microscopy, atomic force microscopy, magnetic force microscopy, scanning tunneling microscopy, and fluorescent confocal laser scanning microscopy.

  17. Microscopy image segmentation tool: Robust image data analysis

    Valmianski, Ilya; Monton, Carlos; Schuller, Ivan K.

    2014-01-01

    We present a software package called Microscopy Image Segmentation Tool (MIST). MIST is designed for analysis of microscopy images which contain large collections of small regions of interest (ROIs). Originally developed for analysis of porous anodic alumina scanning electron images, MIST capabilities have been expanded to allow use in a large variety of problems including analysis of biological tissue, inorganic and organic film grain structure, as well as nano- and meso-scopic structures. MIST provides a robust segmentation algorithm for the ROIs, includes many useful analysis capabilities, and is highly flexible allowing incorporation of specialized user developed analysis. We describe the unique advantages MIST has over existing analysis software. In addition, we present a number of diverse applications to scanning electron microscopy, atomic force microscopy, magnetic force microscopy, scanning tunneling microscopy, and fluorescent confocal laser scanning microscopy

  18. A novel multiphoton microscopy images segmentation method based on superpixel and watershed.

    Wu, Weilin; Lin, Jinyong; Wang, Shu; Li, Yan; Liu, Mingyu; Liu, Gaoqiang; Cai, Jianyong; Chen, Guannan; Chen, Rong

    2017-04-01

    Multiphoton microscopy (MPM) imaging technique based on two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) shows fantastic performance for biological imaging. The automatic segmentation of cellular architectural properties for biomedical diagnosis based on MPM images is still a challenging issue. A novel multiphoton microscopy images segmentation method based on superpixels and watershed (MSW) is presented here to provide good segmentation results for MPM images. The proposed method uses SLIC superpixels instead of pixels to analyze MPM images for the first time. The superpixels segmentation based on a new distance metric combined with spatial, CIE Lab color space and phase congruency features, divides the images into patches which keep the details of the cell boundaries. Then the superpixels are used to reconstruct new images by defining an average value of superpixels as image pixels intensity level. Finally, the marker-controlled watershed is utilized to segment the cell boundaries from the reconstructed images. Experimental results show that cellular boundaries can be extracted from MPM images by MSW with higher accuracy and robustness. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Pseudo-color processing in nuclear medical image

    Wang Zhiqian; Jin Yongjie

    1992-01-01

    The application of pseudo-color technology in nuclear medical image processing is discussed. It includes selection of the number of pseudo-colors, method of realizing pseudo-color transformation, function of pseudo-color transformation and operation on the function

  20. Fast and robust segmentation of white blood cell images by self-supervised learning.

    Zheng, Xin; Wang, Yong; Wang, Guoyou; Liu, Jianguo

    2018-04-01

    A fast and accurate white blood cell (WBC) segmentation remains a challenging task, as different WBCs vary significantly in color and shape due to cell type differences, staining technique variations and the adhesion between the WBC and red blood cells. In this paper, a self-supervised learning approach, consisting of unsupervised initial segmentation and supervised segmentation refinement, is presented. The first module extracts the overall foreground region from the cell image by K-means clustering, and then generates a coarse WBC region by touching-cell splitting based on concavity analysis. The second module further uses the coarse segmentation result of the first module as automatic labels to actively train a support vector machine (SVM) classifier. Then, the trained SVM classifier is further used to classify each pixel of the image and achieve a more accurate segmentation result. To improve its segmentation accuracy, median color features representing the topological structure and a new weak edge enhancement operator (WEEO) handling fuzzy boundary are introduced. To further reduce its time cost, an efficient cluster sampling strategy is also proposed. We tested the proposed approach with two blood cell image datasets obtained under various imaging and staining conditions. The experiment results show that our approach has a superior performance of accuracy and time cost on both datasets. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Automatic segmentation of Leishmania parasite in microscopic images using a modified CV level set method

    Farahi, Maria; Rabbani, Hossein; Talebi, Ardeshir; Sarrafzadeh, Omid; Ensafi, Shahab

    2015-12-01

    Visceral Leishmaniasis is a parasitic disease that affects liver, spleen and bone marrow. According to World Health Organization report, definitive diagnosis is possible just by direct observation of the Leishman body in the microscopic image taken from bone marrow samples. We utilize morphological and CV level set method to segment Leishman bodies in digital color microscopic images captured from bone marrow samples. Linear contrast stretching method is used for image enhancement and morphological method is applied to determine the parasite regions and wipe up unwanted objects. Modified global and local CV level set methods are proposed for segmentation and a shape based stopping factor is used to hasten the algorithm. Manual segmentation is considered as ground truth to evaluate the proposed method. This method is tested on 28 samples and achieved 10.90% mean of segmentation error for global model and 9.76% for local model.

  2. Color enhancement in multispectral image of human skin

    Mitsui, Masanori; Murakami, Yuri; Obi, Takashi; Yamaguchi, Masahiro; Ohyama, Nagaaki

    2003-07-01

    Multispectral imaging is receiving attention in medical color imaging, as high-fidelity color information can be acquired by the multispectral image capturing. On the other hand, as color enhancement in medical color image is effective for distinguishing lesion from normal part, we apply a new technique for color enhancement using multispectral image to enhance the features contained in a certain spectral band, without changing the average color distribution of original image. In this method, to keep the average color distribution, KL transform is applied to spectral data, and only high-order KL coefficients are amplified in the enhancement. Multispectral images of human skin of bruised arm are captured by 16-band multispectral camera, and the proposed color enhancement is applied. The resultant images are compared with the color images reproduced assuming CIE D65 illuminant (obtained by natural color reproduction technique). As a result, the proposed technique successfully visualizes unclear bruised lesions, which are almost invisible in natural color images. The proposed technique will provide support tool for the diagnosis in dermatology, visual examination in internal medicine, nursing care for preventing bedsore, and so on.

  3. Adaptive Secret Sharing for Color Images

    Jia-Hong Li

    2011-10-01

    Full Text Available A secret sharing model can secure a secret over multiple noise-like shadows and remain recoverable despite multiple shadow failures. Even if some of the shadows are compromised, the secret will not be revealed as long as the number of the compromised shadows is smaller than a pre-determined threshold. Moreover, there are some necessary details of concerns: the malicious tampering on shadows must be detectable; the shadows must be concealed in a camouflage image with adequate quality to reduce suspicion and possible attack; color image properties must be considered. In addition to these concerns, in this paper, an adaptable mechanism is further designed to balance the hiding quantity and the quality of camouflage images depending on different applications.This is an important and interesting aspect that has never been discussed in previous research.

  4. Voxel-based model construction from colored tomographic images

    Loureiro, Eduardo Cesar de Miranda

    2002-07-01

    This work presents a new approach in the construction of voxel-based phantoms that was implemented to simplify the segmentation process of organs and tissues reducing the time used in this procedure. The segmentation process is performed by painting tomographic images and attributing a different color for each organ or tissue. A voxel-based head and neck phantom was built using this new approach. The way as the data are stored allows an increasing in the performance of the radiation transport code. The program that calculates the radiation transport also works with image files. This capability allows image reconstruction showing isodose areas, under several points of view, increasing the information to the user. Virtual X-ray photographs can also be obtained allowing that studies could be accomplished looking for the radiographic techniques optimization assessing, at the same time, the doses in organs and tissues. The accuracy of the program here presented, called MCvoxEL, that implements this new approach, was tested by comparison to results from two modern and well-supported Monte Carlo codes. Dose conversion factors for parallel X-ray exposure were also calculated. (author)

  5. Energy functionals for medical image segmentation: choices and consequences

    McIntosh, Christopher

    2011-01-01

    Medical imaging continues to permeate the practice of medicine, but automated yet accurate segmentation and labeling of anatomical structures continues to be a major obstacle to computerized medical image analysis. Though there exists numerous approaches for medical image segmentation, one in particular has gained increasing popularity: energy minimization-based techniques, and the large set of methods encompassed therein. With these techniques an energy function must be chosen, segmentations...

  6. Segmentation of neuroanatomy in magnetic resonance images

    Simmons, Andrew; Arridge, Simon R.; Barker, G. J.; Tofts, Paul S.

    1992-06-01

    Segmentation in neurological magnetic resonance imaging (MRI) is necessary for feature extraction, volume measurement and for the three-dimensional display of neuroanatomy. Automated and semi-automated methods offer considerable advantages over manual methods because of their lack of subjectivity, their data reduction capabilities, and the time savings they give. We have used dual echo multi-slice spin-echo data sets which take advantage of the intrinsically multispectral nature of MRI. As a pre-processing step, a rf non-uniformity correction is applied and if the data is noisy the images are smoothed using a non-isotropic blurring method. Edge-based processing is used to identify the skin (the major outer contour) and the eyes. Edge-focusing has been used to significantly simplify edge images and thus allow simple postprocessing to pick out the brain contour in each slice of the data set. Edge- focusing is a technique which locates significant edges using a high degree of smoothing at a coarse level and tracks these edges to a fine level where the edges can be determined with high positional accuracy. Both 2-D and 3-D edge-detection methods have been compared. Once isolated, the brain is further processed to identify CSF, and, depending upon the MR pulse sequence used, the brain itself may be sub-divided into gray matter and white matter using semi-automatic contrast enhancement and clustering methods.

  7. Advances in low-level color image processing

    Smolka, Bogdan

    2014-01-01

    Color perception plays an important role in object recognition and scene understanding both for humans and intelligent vision systems. Recent advances in digital color imaging and computer hardware technology have led to an explosion in the use of color images in a variety of applications including medical imaging, content-based image retrieval, biometrics, watermarking, digital inpainting, remote sensing, visual quality inspection, among many others. As a result, automated processing and analysis of color images has become an active area of research, to which the large number of publications of the past two decades bears witness. The multivariate nature of color image data presents new challenges for researchers and practitioners as the numerous methods developed for single channel images are often not directly applicable to multichannel  ones. The goal of this volume is to summarize the state-of-the-art in the early stages of the color image processing pipeline.

  8. Applications of magnetic resonance image segmentation in neurology

    Heinonen, Tomi; Lahtinen, Antti J.; Dastidar, Prasun; Ryymin, Pertti; Laarne, Paeivi; Malmivuo, Jaakko; Laasonen, Erkki; Frey, Harry; Eskola, Hannu

    1999-05-01

    After the introduction of digital imagin devices in medicine computerized tissue recognition and classification have become important in research and clinical applications. Segmented data can be applied among numerous research fields including volumetric analysis of particular tissues and structures, construction of anatomical modes, 3D visualization, and multimodal visualization, hence making segmentation essential in modern image analysis. In this research project several PC based software were developed in order to segment medical images, to visualize raw and segmented images in 3D, and to produce EEG brain maps in which MR images and EEG signals were integrated. The software package was tested and validated in numerous clinical research projects in hospital environment.

  9. Optical granulometric analysis of sedimentary deposits by color segmentation-based software: OPTGRAN-CS

    Chávez, G. Moreno; Sarocchi, D.; Santana, E. Arce; Borselli, L.

    2015-12-01

    The study of grain size distribution is fundamental for understanding sedimentological environments. Through these analyses, clast erosion, transport and deposition processes can be interpreted and modeled. However, grain size distribution analysis can be difficult in some outcrops due to the number and complexity of the arrangement of clasts and matrix and their physical size. Despite various technological advances, it is almost impossible to get the full grain size distribution (blocks to sand grain size) with a single method or instrument of analysis. For this reason development in this area continues to be fundamental. In recent years, various methods of particle size analysis by automatic image processing have been developed, due to their potential advantages with respect to classical ones; speed and final detailed content of information (virtually for each analyzed particle). In this framework, we have developed a novel algorithm and software for grain size distribution analysis, based on color image segmentation using an entropy-controlled quadratic Markov measure field algorithm and the Rosiwal method for counting intersections between clast and linear transects in the images. We test the novel algorithm in different sedimentary deposit types from 14 varieties of sedimentological environments. The results of the new algorithm were compared with grain counts performed manually by the same Rosiwal methods applied by experts. The new algorithm has the same accuracy as a classical manual count process, but the application of this innovative methodology is much easier and dramatically less time-consuming. The final productivity of the new software for analysis of clasts deposits after recording field outcrop images can be increased significantly.

  10. Formation of radiation images using photographic color film

    Kuge, Ken'ichi; Kobayashi, Takaharu; Hasegawa, Akira; Yasuda, Nakahiro; Kumagai, Hiroshi

    2001-01-01

    A new method to reveal the three-dimensional information of nuclear tracks in a nuclear emulsion layer was developed by the use of color photography. The tracks were represented with a color image in which different depths were indicated by different colors, and the three-dimensional information was obtained from color changes. We present the procedure for a self-made photographic coating and the development formula that can represent the color tracks clearly. (author)

  11. SEGMENTATION AND QUALITY ANALYSIS OF LONG RANGE CAPTURED IRIS IMAGE

    Anand Deshpande

    2016-05-01

    Full Text Available The iris segmentation plays a major role in an iris recognition system to increase the performance of the system. This paper proposes a novel method for segmentation of iris images to extract the iris part of long range captured eye image and an approach to select best iris frame from the iris polar image sequences by analyzing the quality of iris polar images. The quality of iris image is determined by the frequency components present in the iris polar images. The experiments are carried out on CASIA-long range captured iris image sequences. The proposed segmentation method is compared with Hough transform based segmentation and it has been determined that the proposed method gives higher accuracy for segmentation than Hough transform.

  12. Automatic segmentation and disease classification using cardiac cine MR images

    Wolterink, Jelmer M.; Leiner, Tim; Viergever, Max A.; Išgum, Ivana

    2018-01-01

    Segmentation of the heart in cardiac cine MR is clinically used to quantify cardiac function. We propose a fully automatic method for segmentation and disease classification using cardiac cine MR images. A convolutional neural network (CNN) was designed to simultaneously segment the left ventricle

  13. Tissues segmentation based on multi spectral medical images

    Li, Ya; Wang, Ying

    2017-11-01

    Each band image contains the most obvious tissue feature according to the optical characteristics of different tissues in different specific bands for multispectral medical images. In this paper, the tissues were segmented by their spectral information at each multispectral medical images. Four Local Binary Patter descriptors were constructed to extract blood vessels based on the gray difference between the blood vessels and their neighbors. The segmented tissue in each band image was merged to a clear image.

  14. Color and neighbor edge directional difference feature for image retrieval

    Chaobing Huang; Shengsheng Yu; Jingli Zhou; Hongwei Lu

    2005-01-01

    @@ A novel image feature termed neighbor edge directional difference unit histogram is proposed, in which the neighbor edge directional difference unit is defined and computed for every pixel in the image, and is used to generate the neighbor edge directional difference unit histogram. This histogram and color histogram are used as feature indexes to retrieve color image. The feature is invariant to image scaling and translation and has more powerful descriptive for the natural color images. Experimental results show that the feature can achieve better retrieval performance than other color-spatial features.

  15. Color appearance for photorealistic image synthesis

    Marini, Daniele; Rizzi, Alessandro; Rossi, Maurizio

    2000-12-01

    Photorealistic Image Synthesis is a relevant research and application field in computer graphics, whose aim is to produce synthetic images that are undistinguishable from real ones. Photorealism is based upon accurate computational models of light material interaction, that allow us to compute the spectral intensity light field of a geometrically described scene. The fundamental methods are ray tracing and radiosity. While radiosity allows us to compute the diffuse component of the emitted and reflected light, applying ray tracing in a two pass solution we can also cope with non diffuse properties of the model surfaces. Both methods can be implemented to generate an accurate photometric distribution of light of the simulated environment. A still open problem is the visualization phase, whose purpose is to display the final result of the simulated mode on a monitor screen or on a printed paper. The tone reproduction problem consists of finding the best solution to compress the extended dynamic range of the computed light field into the limited range of the displayable colors. Recently some scholars have addressed this problem considering the perception stage of image formation, so including a model of the human visual system in the visualization process. In this paper we present a working hypothesis to solve the tone reproduction problem of synthetic image generation, integrating Retinex perception model into the photo realistic image synthesis context.

  16. Naturalness and image quality : chroma and hue variation in color images of natural scenes

    Ridder, de H.; Blommaert, F.J.J.; Fedorovskaya, E.A.; Rogowitz, B.E.; Allebach, J.P.

    1995-01-01

    The relation between perceptual image quality and naturalness was investigated by varying the colorfulness and hue of color images of natural scenes. These variations were created by digitizing the images, subsequently determining their color point distributions in the CIELUV color space and finally

  17. Naturalness and image quality: Chroma and hue variation in color images of natural scenes

    Ridder, de H.; Blommaert, F.J.J.; Fedorovskaya, E.A.; Eschbach, R.; Braun, K.

    1997-01-01

    The relation between perceptual image quality and natural ness was investigated by varying the colorfulness and hue of color images of natural scenes. These variations were created by digitizing the images, subsequently determining their color point distributions in the CIELUV color space and

  18. Deformable meshes for medical image segmentation accurate automatic segmentation of anatomical structures

    Kainmueller, Dagmar

    2014-01-01

    ? Segmentation of anatomical structures in medical image data is an essential task in clinical practice. Dagmar Kainmueller introduces methods for accurate fully automatic segmentation of anatomical structures in 3D medical image data. The author's core methodological contribution is a novel deformation model that overcomes limitations of state-of-the-art Deformable Surface approaches, hence allowing for accurate segmentation of tip- and ridge-shaped features of anatomical structures. As for practical contributions, she proposes application-specific segmentation pipelines for a range of anatom

  19. RGB Color Cube-Based Histogram Specification for Hue-Preserving Color Image Enhancement

    Kohei Inoue

    2017-07-01

    Full Text Available A large number of color image enhancement methods are based on the methods for grayscale image enhancement in which the main interest is contrast enhancement. However, since colors usually have three attributes, including hue, saturation and intensity of more than only one attribute of grayscale values, the naive application of the methods for grayscale images to color images often results in unsatisfactory consequences. Conventional hue-preserving color image enhancement methods utilize histogram equalization (HE for enhancing the contrast. However, they cannot always enhance the saturation simultaneously. In this paper, we propose a histogram specification (HS method for enhancing the saturation in hue-preserving color image enhancement. The proposed method computes the target histogram for HS on the basis of the geometry of RGB (rad, green and blue color space, whose shape is a cube with a unit side length. Therefore, the proposed method includes no parameters to be set by users. Experimental results show that the proposed method achieves higher color saturation than recent parameter-free methods for hue-preserving color image enhancement. As a result, the proposed method can be used for an alternative method of HE in hue-preserving color image enhancement.

  20. CFA-aware features for steganalysis of color images

    Goljan, Miroslav; Fridrich, Jessica

    2015-03-01

    Color interpolation is a form of upsampling, which introduces constraints on the relationship between neighboring pixels in a color image. These constraints can be utilized to substantially boost the accuracy of steganography detectors. In this paper, we introduce a rich model formed by 3D co-occurrences of color noise residuals split according to the structure of the Bayer color filter array to further improve detection. Some color interpolation algorithms, AHD and PPG, impose pixel constraints so tight that extremely accurate detection becomes possible with merely eight features eliminating the need for model richification. We carry out experiments on non-adaptive LSB matching and the content-adaptive algorithm WOW on five different color interpolation algorithms. In contrast to grayscale images, in color images that exhibit traces of color interpolation the security of WOW is significantly lower and, depending on the interpolation algorithm, may even be lower than non-adaptive LSB matching.

  1. Open-source software platform for medical image segmentation applications

    Namías, R.; D'Amato, J. P.; del Fresno, M.

    2017-11-01

    Segmenting 2D and 3D images is a crucial and challenging problem in medical image analysis. Although several image segmentation algorithms have been proposed for different applications, no universal method currently exists. Moreover, their use is usually limited when detection of complex and multiple adjacent objects of interest is needed. In addition, the continually increasing volumes of medical imaging scans require more efficient segmentation software design and highly usable applications. In this context, we present an extension of our previous segmentation framework which allows the combination of existing explicit deformable models in an efficient and transparent way, handling simultaneously different segmentation strategies and interacting with a graphic user interface (GUI). We present the object-oriented design and the general architecture which consist of two layers: the GUI at the top layer, and the processing core filters at the bottom layer. We apply the framework for segmenting different real-case medical image scenarios on public available datasets including bladder and prostate segmentation from 2D MRI, and heart segmentation in 3D CT. Our experiments on these concrete problems show that this framework facilitates complex and multi-object segmentation goals while providing a fast prototyping open-source segmentation tool.

  2. Optimization of Segmentation Quality of Integrated Circuit Images

    Gintautas Mušketas

    2012-04-01

    Full Text Available The paper presents investigation into the application of genetic algorithms for the segmentation of the active regions of integrated circuit images. This article is dedicated to a theoretical examination of the applied methods (morphological dilation, erosion, hit-and-miss, threshold and describes genetic algorithms, image segmentation as optimization problem. The genetic optimization of the predefined filter sequence parameters is carried out. Improvement to segmentation accuracy using a non optimized filter sequence makes 6%.Artcile in Lithuanian

  3. Word segmentation by alternating colors facilitates eye guidance in Chinese reading.

    Zhou, Wei; Wang, Aiping; Shu, Hua; Kliegl, Reinhold; Yan, Ming

    2018-02-12

    During sentence reading, low spatial frequency information afforded by spaces between words is the primary factor for eye guidance in spaced writing systems, whereas saccade generation for unspaced writing systems is less clear and under debate. In the present study, we investigated whether word-boundary information, provided by alternating colors (consistent or inconsistent with word-boundary information) influences saccade-target selection in Chinese. In Experiment 1, as compared to a baseline (i.e., uniform color) condition, word segmentation with alternating color shifted fixation location towards the center of words. In contrast, incorrect word segmentation shifted fixation location towards the beginning of words. In Experiment 2, we used a gaze-contingent paradigm to restrict the color manipulation only to the upcoming parafoveal words and replicated the results, including fixation location effects, as observed in Experiment 1. These results indicate that Chinese readers are capable of making use of parafoveal word-boundary knowledge for saccade generation, even if such information is unfamiliar to them. The present study provides novel support for the hypothesis that word segmentation is involved in the decision about where to fixate next during Chinese reading.

  4. Tomographic Particle Image Velocimetry Using Colored Shadow Imaging

    Alarfaj, Meshal K.

    2016-02-01

    Tomographic Particle Image Velocimetry Using Colored Shadow Imaging by Meshal K Alarfaj, Master of Science King Abdullah University of Science & Technology, 2015 Tomographic Particle image velocimetry (PIV) is a recent PIV method capable of reconstructing the full 3D velocity field of complex flows, within a 3-D volume. For nearly the last decade, it has become the most powerful tool for study of turbulent velocity fields and promises great advancements in the study of fluid mechanics. Among the early published studies, a good number of researches have suggested enhancements and optimizations of different aspects of this technique to improve the effectiveness. One major aspect, which is the core of the present work, is related to reducing the cost of the Tomographic PIV setup. In this thesis, we attempt to reduce this cost by using an experimental setup exploiting 4 commercial digital still cameras in combination with low-cost Light emitting diodes (LEDs). We use two different colors to distinguish the two light pulses. By using colored shadows with red and green LEDs, we can identify the particle locations within the measurement volume, at the two different times, thereby allowing calculation of the velocities. The present work tests this technique on the flows patterns of a jet ejected from a tube in a water tank. Results from the images processing are presented and challenges discussed.

  5. Integration of speckle de-noising and image segmentation using ...

    2Department of Electronics and Communication Engineering, National Institute of Technology Karnataka,. Surathkal, Mangalore 575 025, India. ... cal images obtained from the satellites are often prone to bad climatic conditions and hence ... (2009) for satellite image segmentation. Mean shift segmentation (MSS) is a non-.

  6. An interactive medical image segmentation framework using iterative refinement.

    Kalshetti, Pratik; Bundele, Manas; Rahangdale, Parag; Jangra, Dinesh; Chattopadhyay, Chiranjoy; Harit, Gaurav; Elhence, Abhay

    2017-04-01

    Segmentation is often performed on medical images for identifying diseases in clinical evaluation. Hence it has become one of the major research areas. Conventional image segmentation techniques are unable to provide satisfactory segmentation results for medical images as they contain irregularities. They need to be pre-processed before segmentation. In order to obtain the most suitable method for medical image segmentation, we propose MIST (Medical Image Segmentation Tool), a two stage algorithm. The first stage automatically generates a binary marker image of the region of interest using mathematical morphology. This marker serves as the mask image for the second stage which uses GrabCut to yield an efficient segmented result. The obtained result can be further refined by user interaction, which can be done using the proposed Graphical User Interface (GUI). Experimental results show that the proposed method is accurate and provides satisfactory segmentation results with minimum user interaction on medical as well as natural images. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. A new level set model for cell image segmentation

    Ma, Jing-Feng; Hou, Kai; Bao, Shang-Lian; Chen, Chun

    2011-02-01

    In this paper we first determine three phases of cell images: background, cytoplasm and nucleolus according to the general physical characteristics of cell images, and then develop a variational model, based on these characteristics, to segment nucleolus and cytoplasm from their relatively complicated backgrounds. In the meantime, the preprocessing obtained information of cell images using the OTSU algorithm is used to initialize the level set function in the model, which can speed up the segmentation and present satisfactory results in cell image processing.

  8. Development of an acquisition protocol and a segmentation algortihm for wounds of cutaneous Leishmaniasis in digital images

    Diaz, Kristians; Castañeda, Benjamín; Miranda, César; Lavarello, Roberto; Llanos, Alejandro

    2010-03-01

    We developed a protocol for the acquisition of digital images and an algorithm for a color-based automatic segmentation of cutaneous lesions of Leishmaniasis. The protocol for image acquisition provides control over the working environment to manipulate brightness, lighting and undesirable shadows on the injury using indirect lighting. Also, this protocol was used to accurately calculate the area of the lesion expressed in mm2 even in curved surfaces by combining the information from two consecutive images. Different color spaces were analyzed and compared using ROC curves in order to determine the color layer with the highest contrast between the background and the wound. The proposed algorithm is composed of three stages: (1) Location of the wound determined by threshold and mathematical morphology techniques to the H layer of the HSV color space, (2) Determination of the boundaries of the wound by analyzing the color characteristics in the YIQ space based on masks (for the wound and the background) estimated from the first stage, and (3) Refinement of the calculations obtained on the previous stages by using the discrete dynamic contours algorithm. The segmented regions obtained with the algorithm were compared with manual segmentations made by a medical specialist. Broadly speaking, our results support that color provides useful information during segmentation and measurement of wounds of cutaneous Leishmaniasis. Results from ten images showed 99% specificity, 89% sensitivity, and 98% accuracy.

  9. Hierarchical layered and semantic-based image segmentation using ergodicity map

    Yadegar, Jacob; Liu, Xiaoqing

    2010-04-01

    Image segmentation plays a foundational role in image understanding and computer vision. Although great strides have been made and progress achieved on automatic/semi-automatic image segmentation algorithms, designing a generic, robust, and efficient image segmentation algorithm is still challenging. Human vision is still far superior compared to computer vision, especially in interpreting semantic meanings/objects in images. We present a hierarchical/layered semantic image segmentation algorithm that can automatically and efficiently segment images into hierarchical layered/multi-scaled semantic regions/objects with contextual topological relationships. The proposed algorithm bridges the gap between high-level semantics and low-level visual features/cues (such as color, intensity, edge, etc.) through utilizing a layered/hierarchical ergodicity map, where ergodicity is computed based on a space filling fractal concept and used as a region dissimilarity measurement. The algorithm applies a highly scalable, efficient, and adaptive Peano- Cesaro triangulation/tiling technique to decompose the given image into a set of similar/homogenous regions based on low-level visual cues in a top-down manner. The layered/hierarchical ergodicity map is built through a bottom-up region dissimilarity analysis. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level of detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanisms for contextual topological object/region relationship generation. Experiments have been conducted within the maritime image environment where the segmented layered semantic objects include the basic level objects (i.e. sky/land/water) and deeper level objects in the sky/land/water surfaces. Experimental results demonstrate the proposed algorithm has the capability to robustly and efficiently segment images into layered semantic objects

  10. MULTI-SCALE SEGMENTATION OF HIGH RESOLUTION REMOTE SENSING IMAGES BY INTEGRATING MULTIPLE FEATURES

    Y. Di

    2017-05-01

    Full Text Available Most of multi-scale segmentation algorithms are not aiming at high resolution remote sensing images and have difficulty to communicate and use layers’ information. In view of them, we proposes a method of multi-scale segmentation of high resolution remote sensing images by integrating multiple features. First, Canny operator is used to extract edge information, and then band weighted distance function is built to obtain the edge weight. According to the criterion, the initial segmentation objects of color images can be gained by Kruskal minimum spanning tree algorithm. Finally segmentation images are got by the adaptive rule of Mumford–Shah region merging combination with spectral and texture information. The proposed method is evaluated precisely using analog images and ZY-3 satellite images through quantitative and qualitative analysis. The experimental results show that the multi-scale segmentation of high resolution remote sensing images by integrating multiple features outperformed the software eCognition fractal network evolution algorithm (highest-resolution network evolution that FNEA on the accuracy and slightly inferior to FNEA on the efficiency.

  11. Segmentation of medical images using explicit anatomical knowledge

    Wilson, Laurie S.; Brown, Stephen; Brown, Matthew S.; Young, Jeanne; Li, Rongxin; Luo, Suhuai; Brandt, Lee

    1999-07-01

    Knowledge-based image segmentation is defined in terms of the separation of image analysis procedures and representation of knowledge. Such architecture is particularly suitable for medical image segmentation, because of the large amount of structured domain knowledge. A general methodology for the application of knowledge-based methods to medical image segmentation is described. This includes frames for knowledge representation, fuzzy logic for anatomical variations, and a strategy for determining the order of segmentation from the modal specification. This method has been applied to three separate problems, 3D thoracic CT, chest X-rays and CT angiography. The application of the same methodology to such a range of applications suggests a major role in medical imaging for segmentation methods incorporating representation of anatomical knowledge.

  12. GPU accelerated fuzzy connected image segmentation by using CUDA.

    Zhuge, Ying; Cao, Yong; Miller, Robert W

    2009-01-01

    Image segmentation techniques using fuzzy connectedness principles have shown their effectiveness in segmenting a variety of objects in several large applications in recent years. However, one problem of these algorithms has been their excessive computational requirements when processing large image datasets. Nowadays commodity graphics hardware provides high parallel computing power. In this paper, we present a parallel fuzzy connected image segmentation algorithm on Nvidia's Compute Unified Device Architecture (CUDA) platform for segmenting large medical image data sets. Our experiments based on three data sets with small, medium, and large data size demonstrate the efficiency of the parallel algorithm, which achieves a speed-up factor of 7.2x, 7.3x, and 14.4x, correspondingly, for the three data sets over the sequential implementation of fuzzy connected image segmentation algorithm on CPU.

  13. Cellular image segmentation using n-agent cooperative game theory

    Dimock, Ian B.; Wan, Justin W. L.

    2016-03-01

    Image segmentation is an important problem in computer vision and has significant applications in the segmentation of cellular images. Many different imaging techniques exist and produce a variety of image properties which pose difficulties to image segmentation routines. Bright-field images are particularly challenging because of the non-uniform shape of the cells, the low contrast between cells and background, and imaging artifacts such as halos and broken edges. Classical segmentation techniques often produce poor results on these challenging images. Previous attempts at bright-field imaging are often limited in scope to the images that they segment. In this paper, we introduce a new algorithm for automatically segmenting cellular images. The algorithm incorporates two game theoretic models which allow each pixel to act as an independent agent with the goal of selecting their best labelling strategy. In the non-cooperative model, the pixels choose strategies greedily based only on local information. In the cooperative model, the pixels can form coalitions, which select labelling strategies that benefit the entire group. Combining these two models produces a method which allows the pixels to balance both local and global information when selecting their label. With the addition of k-means and active contour techniques for initialization and post-processing purposes, we achieve a robust segmentation routine. The algorithm is applied to several cell image datasets including bright-field images, fluorescent images and simulated images. Experiments show that the algorithm produces good segmentation results across the variety of datasets which differ in cell density, cell shape, contrast, and noise levels.

  14. Dental x-ray image segmentation

    Said, Eyad; Fahmy, Gamal F.; Nassar, Diaa; Ammar, Hany

    2004-08-01

    Law enforcement agencies have been exploiting biometric identifiers for decades as key tools in forensic identification. With the evolution in information technology and the huge volume of cases that need to be investigated by forensic specialists, it has become important to automate forensic identification systems. While, ante mortem (AM) identification, that is identification prior to death, is usually possible through comparison of many biometric identifiers, postmortem (PM) identification, that is identification after death, is impossible using behavioral biometrics (e.g. speech, gait). Moreover, under severe circumstances, such as those encountered in mass disasters (e.g. airplane crashers) or if identification is being attempted more than a couple of weeks postmortem, under such circumstances, most physiological biometrics may not be employed for identification, because of the decay of soft tissues of the body to unidentifiable states. Therefore, a postmortem biometric identifier has to resist the early decay that affects body tissues. Because of their survivability and diversity, the best candidates for postmortem biometric identification are the dental features. In this paper we present an over view about an automated dental identification system for Missing and Unidentified Persons. This dental identification system can be used by both law enforcement and security agencies in both forensic and biometric identification. We will also present techniques for dental segmentation of X-ray images. These techniques address the problem of identifying each individual tooth and how the contours of each tooth are extracted.

  15. Multispectral Imaging of Meat Quality - Color and Texture

    Trinderup, Camilla Himmelstrup

    transformations to the CIELAB color space, the common color space within food science. The results show that meat color assessment with a multispectral imaging is a great alternative to the traditional colorimeter, i.e. the vision system meets some of the limitations that the colorimeter possesses. To mention one...

  16. Content-based image retrieval: Color-selection exploited

    Broek, E.L. van den; Vuurpijl, L.G.; Kisters, P. M. F.; Schmid, J.C.M. von; Moens, M.F.; Busser, R. de; Hiemstra, D.; Kraaij, W.

    2002-01-01

    This research presents a new color selection interface that facilitates query-by-color in Content-Based Image Retrieval (CBIR). Existing CBIR color selection interfaces, are being judged as non-intuitive and difficult to use. Our interface copes with these problems of usability. It is based on 11

  17. Content-Based Image Retrieval: Color-selection exploited

    Moens, Marie-Francine; van den Broek, Egon; Vuurpijl, L.G.; de Brusser, Rik; Kisters, P.M.F.; Hiemstra, Djoerd; Kraaij, Wessel; von Schmid, J.C.M.

    2002-01-01

    This research presents a new color selection interface that facilitates query-by-color in Content-Based Image Retrieval (CBIR). Existing CBIR color selection interfaces, are being judged as non-intuitive and difficult to use. Our interface copes with these problems of usability. It is based on 11

  18. Automated image alignment and segmentation to follow progression of geographic atrophy in age-related macular degeneration.

    Ramsey, David J; Sunness, Janet S; Malviya, Poorva; Applegate, Carol; Hager, Gregory D; Handa, James T

    2014-07-01

    To develop a computer-based image segmentation method for standardizing the quantification of geographic atrophy (GA). The authors present an automated image segmentation method based on the fuzzy c-means clustering algorithm for the detection of GA lesions. The method is evaluated by comparing computerized segmentation against outlines of GA drawn by an expert grader for a longitudinal series of fundus autofluorescence images with paired 30° color fundus photographs for 10 patients. The automated segmentation method showed excellent agreement with an expert grader for fundus autofluorescence images, achieving a performance level of 94 ± 5% sensitivity and 98 ± 2% specificity on a per-pixel basis for the detection of GA area, but performed less well on color fundus photographs with a sensitivity of 47 ± 26% and specificity of 98 ± 2%. The segmentation algorithm identified 75 ± 16% of the GA border correctly in fundus autofluorescence images compared with just 42 ± 25% for color fundus photographs. The results of this study demonstrate a promising computerized segmentation method that may enhance the reproducibility of GA measurement and provide an objective strategy to assist an expert in the grading of images.

  19. Multifractal-based nuclei segmentation in fish images.

    Reljin, Nikola; Slavkovic-Ilic, Marijeta; Tapia, Coya; Cihoric, Nikola; Stankovic, Srdjan

    2017-09-01

    The method for nuclei segmentation in fluorescence in-situ hybridization (FISH) images, based on the inverse multifractal analysis (IMFA) is proposed. From the blue channel of the FISH image in RGB format, the matrix of Holder exponents, with one-by-one correspondence with the image pixels, is determined first. The following semi-automatic procedure is proposed: initial nuclei segmentation is performed automatically from the matrix of Holder exponents by applying predefined hard thresholding; then the user evaluates the result and is able to refine the segmentation by changing the threshold, if necessary. After successful nuclei segmentation, the HER2 (human epidermal growth factor receptor 2) scoring can be determined in usual way: by counting red and green dots within segmented nuclei, and finding their ratio. The IMFA segmentation method is tested over 100 clinical cases, evaluated by skilled pathologist. Testing results show that the new method has advantages compared to already reported methods.

  20. Perceptual distortion analysis of color image VQ-based coding

    Charrier, Christophe; Knoblauch, Kenneth; Cherifi, Hocine

    1997-04-01

    It is generally accepted that a RGB color image can be easily encoded by using a gray-scale compression technique on each of the three color planes. Such an approach, however, fails to take into account correlations existing between color planes and perceptual factors. We evaluated several linear and non-linear color spaces, some introduced by the CIE, compressed with the vector quantization technique for minimum perceptual distortion. To study these distortions, we measured contrast and luminance of the video framebuffer, to precisely control color. We then obtained psychophysical judgements to measure how well these methods work to minimize perceptual distortion in a variety of color space.

  1. Tiny Devices Project Sharp, Colorful Images

    2009-01-01

    Displaytech Inc., based in Longmont, Colorado and recently acquired by Micron Technology Inc. of Boise, Idaho, first received a Small Business Innovation Research contract in 1993 from Johnson Space Center to develop tiny, electronic, color displays, called microdisplays. Displaytech has since sold over 20 million microdisplays and was ranked one of the fastest growing technology companies by Deloitte and Touche in 2005. Customers currently incorporate the microdisplays in tiny pico-projectors, which weigh only a few ounces and attach to media players, cell phones, and other devices. The projectors can convert a digital image from the typical postage stamp size into a bright, clear, four-foot projection. The company believes sales of this type of pico-projector may exceed $1.1 billion within 5 years.

  2. Improved document image segmentation algorithm using multiresolution morphology

    Bukhari, Syed Saqib; Shafait, Faisal; Breuel, Thomas M.

    2011-01-01

    Page segmentation into text and non-text elements is an essential preprocessing step before optical character recognition (OCR) operation. In case of poor segmentation, an OCR classification engine produces garbage characters due to the presence of non-text elements. This paper describes modifications to the text/non-text segmentation algorithm presented by Bloomberg,1 which is also available in his open-source Leptonica library.2The modifications result in significant improvements and achieved better segmentation accuracy than the original algorithm for UW-III, UNLV, ICDAR 2009 page segmentation competition test images and circuit diagram datasets.

  3. An Automatic Assessment System of Diabetic Foot Ulcers Based on Wound Area Determination, Color Segmentation, and Healing Score Evaluation.

    Wang, Lei; Pedersen, Peder C; Strong, Diane M; Tulu, Bengisu; Agu, Emmanuel; Ignotz, Ron; He, Qian

    2015-08-07

    For individuals with type 2 diabetes, foot ulcers represent a significant health issue. The aim of this study is to design and evaluate a wound assessment system to help wound clinics assess patients with foot ulcers in a way that complements their current visual examination and manual measurements of their foot ulcers. The physical components of the system consist of an image capture box, a smartphone for wound image capture and a laptop for analyzing the wound image. The wound image assessment algorithms calculate the overall wound area, color segmented wound areas, and a healing score, to provide a quantitative assessment of the wound healing status both for a single wound image and comparisons of subsequent images to an initial wound image. The system was evaluated by assessing foot ulcers for 12 patients in the Wound Clinic at University of Massachusetts Medical School. As performance measures, the Matthews correlation coefficient (MCC) value for the wound area determination algorithm tested on 32 foot ulcer images was .68. The clinical validity of our healing score algorithm relative to the experienced clinicians was measured by Krippendorff's alpha coefficient (KAC) and ranged from .42 to .81. Our system provides a promising real-time method for wound assessment based on image analysis. Clinical comparisons indicate that the optimized mean-shift-based algorithm is well suited for wound area determination. Clinical evaluation of our healing score algorithm shows its potential to provide clinicians with a quantitative method for evaluating wound healing status. © 2015 Diabetes Technology Society.

  4. Scale selection for supervised image segmentation

    Li, Yan; Tax, David M J; Loog, Marco

    2012-01-01

    schemes are usually unsupervised, as they do not take into account the actual segmentation problem at hand. In this paper, we consider the problem of selecting scales, which aims at an optimal discrimination between user-defined classes in the segmentation. We show the deficiency of the classical...

  5. Fast globally optimal segmentation of cells in fluorescence microscopy images.

    Bergeest, Jan-Philip; Rohr, Karl

    2011-01-01

    Accurate and efficient segmentation of cells in fluorescence microscopy images is of central importance for the quantification of protein expression in high-throughput screening applications. We propose a new approach for segmenting cell nuclei which is based on active contours and convex energy functionals. Compared to previous work, our approach determines the global solution. Thus, the approach does not suffer from local minima and the segmentation result does not depend on the initialization. We also suggest a numeric approach for efficiently computing the solution. The performance of our approach has been evaluated using fluorescence microscopy images of different cell types. We have also performed a quantitative comparison with previous segmentation approaches.

  6. AUTOMATIC MULTILEVEL IMAGE SEGMENTATION BASED ON FUZZY REASONING

    Liang Tang

    2011-05-01

    Full Text Available An automatic multilevel image segmentation method based on sup-star fuzzy reasoning (SSFR is presented. Using the well-known sup-star fuzzy reasoning technique, the proposed algorithm combines the global statistical information implied in the histogram with the local information represented by the fuzzy sets of gray-levels, and aggregates all the gray-levels into several classes characterized by the local maximum values of the histogram. The presented method has the merits of determining the number of the segmentation classes automatically, and avoiding to calculating thresholds of segmentation. Emulating and real image segmentation experiments demonstrate that the SSFR is effective.

  7. Saliency-aware food image segmentation for personal dietary assessment using a wearable computer

    Chen, Hsin-Chen; Jia, Wenyan; Li, Yuecheng; Sun, Mingui; Sun, Xin; Li, Zhaoxin; Fernstrom, John D; Burke, Lora E; Baranowski, Thomas

    2015-01-01

    Image-based dietary assessment has recently received much attention in the community of obesity research. In this assessment, foods in digital pictures are specified, and their portion sizes (volumes) are estimated. Although manual processing is currently the most utilized method, image processing holds much promise since it may eventually lead to automatic dietary assessment. In this paper we study the problem of segmenting food objects from images. This segmentation is difficult because of various food types, shapes and colors, different decorating patterns on food containers, and occlusions of food and non-food objects. We propose a novel method based on a saliency-aware active contour model (ACM) for automatic food segmentation from images acquired by a wearable camera. An integrated saliency estimation approach based on food location priors and visual attention features is designed to produce a salient map of possible food regions in the input image. Next, a geometric contour primitive is generated and fitted to the salient map by means of multi-resolution optimization with respect to a set of affine and elastic transformation parameters. The food regions are then extracted after contour fitting. Our experiments using 60 food images showed that the proposed method achieved significantly higher accuracy in food segmentation when compared to conventional segmentation methods. (paper)

  8. Saliency-aware food image segmentation for personal dietary assessment using a wearable computer

    Chen, Hsin-Chen; Jia, Wenyan; Sun, Xin; Li, Zhaoxin; Li, Yuecheng; Fernstrom, John D.; Burke, Lora E.; Baranowski, Thomas; Sun, Mingui

    2015-02-01

    Image-based dietary assessment has recently received much attention in the community of obesity research. In this assessment, foods in digital pictures are specified, and their portion sizes (volumes) are estimated. Although manual processing is currently the most utilized method, image processing holds much promise since it may eventually lead to automatic dietary assessment. In this paper we study the problem of segmenting food objects from images. This segmentation is difficult because of various food types, shapes and colors, different decorating patterns on food containers, and occlusions of food and non-food objects. We propose a novel method based on a saliency-aware active contour model (ACM) for automatic food segmentation from images acquired by a wearable camera. An integrated saliency estimation approach based on food location priors and visual attention features is designed to produce a salient map of possible food regions in the input image. Next, a geometric contour primitive is generated and fitted to the salient map by means of multi-resolution optimization with respect to a set of affine and elastic transformation parameters. The food regions are then extracted after contour fitting. Our experiments using 60 food images showed that the proposed method achieved significantly higher accuracy in food segmentation when compared to conventional segmentation methods.

  9. Color-Image Classification Using MRFs for an Outdoor Mobile Robot

    Moises Alencastre-Miranda

    2005-02-01

    Full Text Available In this paper, we suggest to use color-image classification (in several phases using Markov Random Fields (MRFs in order to understand natural images from outdoor environment's scenes for a mobile robot. We skip preprocessing phase having same results and better performance. In segmentation phase, we implement a color segmentation method considering I3 color space measure average in little image's cells obtained from a single split step. In classification phase, a MRF was used to identify regions as one of three selected classes; here, we consider at the same time the intrinsic color features of the image and the neighborhood system between image's cells. Finally, we use region growing and contextual information to correct misclassification errors. We have implemented and tested those phases with several images taken at our campus' gardens. We include some results in off-line processing mode and in on-line execution mode on an outdoor mobile robot. The vision system has been used for reactive exploration in an outdoor environment.

  10. Computer-Generated Abstract Paintings Oriented by the Color Composition of Images

    Mao Li

    2017-06-01

    Full Text Available Designers and artists often require reference images at authoring time. The emergence of computer technology has provided new conditions and possibilities for artistic creation and research. It has also expanded the forms of artistic expression and attracted many artists, designers and computer experts to explore different artistic directions and collaborate with one another. In this paper, we present an efficient k-means-based method to segment the colors of an original picture to analyze the composition ratio of the color information and calculate individual color areas that are associated with their sizes. This information is transformed into regular geometries to reconstruct the colors of the picture to generate abstract images. Furthermore, we designed an application system using the proposed method and generated many works; some artists and designers have used it as an auxiliary tool for art and design creation. The experimental results of datasets demonstrate the effectiveness of our method and can give us inspiration for our work.

  11. Three Dimensional Fluorescence Microscopy Image Synthesis and Segmentation

    Fu, Chichen; Lee, Soonam; Ho, David Joon; Han, Shuo; Salama, Paul; Dunn, Kenneth W.; Delp, Edward J.

    2018-01-01

    Advances in fluorescence microscopy enable acquisition of 3D image volumes with better image quality and deeper penetration into tissue. Segmentation is a required step to characterize and analyze biological structures in the images and recent 3D segmentation using deep learning has achieved promising results. One issue is that deep learning techniques require a large set of groundtruth data which is impractical to annotate manually for large 3D microscopy volumes. This paper describes a 3D d...

  12. Using color and grayscale images to teach histology to color-deficient medical students.

    Rubin, Lindsay R; Lackey, Wendy L; Kennedy, Frances A; Stephenson, Robert B

    2009-01-01

    Examination of histologic and histopathologic microscopic sections relies upon differential colors provided by staining techniques, such as hematoxylin and eosin, to delineate normal tissue components and to identify pathologic alterations in these components. Given the prevalence of color deficiency (commonly called "color blindness") in the general population, it is likely that this reliance upon color differentiation poses a significant obstacle for several medical students beginning a course of study that includes examination of histologic slides. In the past, first-year medical students at Michigan State University who identified themselves as color deficient were encouraged to use color transparency overlays or tinted contact lenses to filter out problematic colors. Recently, however, we have offered such students a computer monitor adjusted to grayscale for in-lab work, as well as grayscale copies of color photomicrographs for examination purposes. Grayscale images emphasize the texture of tissues and the contrasts between tissues as the students learn histologic architecture. Using this approach, color-deficient students have quickly learned to compensate for their deficiency by focusing on cell and tissue structure rather than on color variation. Based upon our experience with color-deficient students, we believe that grayscale photomicrographs may also prove instructional for students with normal (trichromatic) color vision, by encouraging them to consider structural characteristics of cells and tissues that may otherwise be overshadowed by stain colors.

  13. Robust nuclei segmentation in cyto-histopathological images using statistical level set approach with topology preserving constraint

    Taheri, Shaghayegh; Fevens, Thomas; Bui, Tien D.

    2017-02-01

    Computerized assessments for diagnosis or malignancy grading of cyto-histopathological specimens have drawn increased attention in the field of digital pathology. Automatic segmentation of cell nuclei is a fundamental step in such automated systems. Despite considerable research, nuclei segmentation is still a challenging task due noise, nonuniform illumination, and most importantly, in 2D projection images, overlapping and touching nuclei. In most published approaches, nuclei refinement is a post-processing step after segmentation, which usually refers to the task of detaching the aggregated nuclei or merging the over-segmented nuclei. In this work, we present a novel segmentation technique which effectively addresses the problem of individually segmenting touching or overlapping cell nuclei during the segmentation process. The proposed framework is a region-based segmentation method, which consists of three major modules: i) the image is passed through a color deconvolution step to extract the desired stains; ii) then the generalized fast radial symmetry transform is applied to the image followed by non-maxima suppression to specify the initial seed points for nuclei, and their corresponding GFRS ellipses which are interpreted as the initial nuclei borders for segmentation; iii) finally, these nuclei border initial curves are evolved through the use of a statistical level-set approach along with topology preserving criteria for segmentation and separation of nuclei at the same time. The proposed method is evaluated using Hematoxylin and Eosin, and fluorescent stained images, performing qualitative and quantitative analysis, showing that the method outperforms thresholding and watershed segmentation approaches.

  14. IMAGE SEGMENTATION BASED ON MARKOV RANDOM FIELD AND WATERSHED TECHNIQUES

    纳瑟; 刘重庆

    2002-01-01

    This paper presented a method that incorporates Markov Random Field(MRF), watershed segmentation and merging techniques for performing image segmentation and edge detection tasks. MRF is used to obtain an initial estimate of x regions in the image under process where in MRF model, gray level x, at pixel location i, in an image X, depends on the gray levels of neighboring pixels. The process needs an initial segmented result. An initial segmentation is got based on K-means clustering technique and the minimum distance, then the region process in modeled by MRF to obtain an image contains different intensity regions. Starting from this we calculate the gradient values of that image and then employ a watershed technique. When using MRF method it obtains an image that has different intensity regions and has all the edge and region information, then it improves the segmentation result by superimpose closed and an accurate boundary of each region using watershed algorithm. After all pixels of the segmented regions have been processed, a map of primitive region with edges is generated. Finally, a merge process based on averaged mean values is employed. The final segmentation and edge detection result is one closed boundary per actual region in the image.

  15. Research on image complexity evaluation method based on color information

    Wang, Hao; Duan, Jin; Han, Xue-hui; Xiao, Bo

    2017-11-01

    In order to evaluate the complexity of a color image more effectively and find the connection between image complexity and image information, this paper presents a method to compute the complexity of image based on color information.Under the complexity ,the theoretical analysis first divides the complexity from the subjective level, divides into three levels: low complexity, medium complexity and high complexity, and then carries on the image feature extraction, finally establishes the function between the complexity value and the color characteristic model. The experimental results show that this kind of evaluation method can objectively reconstruct the complexity of the image from the image feature research. The experimental results obtained by the method of this paper are in good agreement with the results of human visual perception complexity,Color image complexity has a certain reference value.

  16. Graph run-length matrices for histopathological image segmentation.

    Tosun, Akif Burak; Gunduz-Demir, Cigdem

    2011-03-01

    The histopathological examination of tissue specimens is essential for cancer diagnosis and grading. However, this examination is subject to a considerable amount of observer variability as it mainly relies on visual interpretation of pathologists. To alleviate this problem, it is very important to develop computational quantitative tools, for which image segmentation constitutes the core step. In this paper, we introduce an effective and robust algorithm for the segmentation of histopathological tissue images. This algorithm incorporates the background knowledge of the tissue organization into segmentation. For this purpose, it quantifies spatial relations of cytological tissue components by constructing a graph and uses this graph to define new texture features for image segmentation. This new texture definition makes use of the idea of gray-level run-length matrices. However, it considers the runs of cytological components on a graph to form a matrix, instead of considering the runs of pixel intensities. Working with colon tissue images, our experiments demonstrate that the texture features extracted from "graph run-length matrices" lead to high segmentation accuracies, also providing a reasonable number of segmented regions. Compared with four other segmentation algorithms, the results show that the proposed algorithm is more effective in histopathological image segmentation.

  17. A fuzzy art neural network based color image processing and ...

    To improve the learning process from the input data, a new learning rule was suggested. In this paper, a new method is proposed to deal with the RGB color image pixels, which enables a Fuzzy ART neural network to process the RGB color images. The application of the algorithm was implemented and tested on a set of ...

  18. FCM Clustering Algorithms for Segmentation of Brain MR Images

    Yogita K. Dubey

    2016-01-01

    Full Text Available The study of brain disorders requires accurate tissue segmentation of magnetic resonance (MR brain images which is very important for detecting tumors, edema, and necrotic tissues. Segmentation of brain images, especially into three main tissue types: Cerebrospinal Fluid (CSF, Gray Matter (GM, and White Matter (WM, has important role in computer aided neurosurgery and diagnosis. Brain images mostly contain noise, intensity inhomogeneity, and weak boundaries. Therefore, accurate segmentation of brain images is still a challenging area of research. This paper presents a review of fuzzy c-means (FCM clustering algorithms for the segmentation of brain MR images. The review covers the detailed analysis of FCM based algorithms with intensity inhomogeneity correction and noise robustness. Different methods for the modification of standard fuzzy objective function with updating of membership and cluster centroid are also discussed.

  19. An Efficient Evolutionary Based Method For Image Segmentation

    Aslanzadeh, Roohollah; Qazanfari, Kazem; Rahmati, Mohammad

    2017-01-01

    The goal of this paper is to present a new efficient image segmentation method based on evolutionary computation which is a model inspired from human behavior. Based on this model, a four layer process for image segmentation is proposed using the split/merge approach. In the first layer, an image is split into numerous regions using the watershed algorithm. In the second layer, a co-evolutionary process is applied to form centers of finals segments by merging similar primary regions. In the t...

  20. Example-Based Image Colorization Using Locality Consistent Sparse Representation.

    Bo Li; Fuchen Zhao; Zhuo Su; Xiangguo Liang; Yu-Kun Lai; Rosin, Paul L

    2017-11-01

    Image colorization aims to produce a natural looking color image from a given gray-scale image, which remains a challenging problem. In this paper, we propose a novel example-based image colorization method exploiting a new locality consistent sparse representation. Given a single reference color image, our method automatically colorizes the target gray-scale image by sparse pursuit. For efficiency and robustness, our method operates at the superpixel level. We extract low-level intensity features, mid-level texture features, and high-level semantic features for each superpixel, which are then concatenated to form its descriptor. The collection of feature vectors for all the superpixels from the reference image composes the dictionary. We formulate colorization of target superpixels as a dictionary-based sparse reconstruction problem. Inspired by the observation that superpixels with similar spatial location and/or feature representation are likely to match spatially close regions from the reference image, we further introduce a locality promoting regularization term into the energy formulation, which substantially improves the matching consistency and subsequent colorization results. Target superpixels are colorized based on the chrominance information from the dominant reference superpixels. Finally, to further improve coherence while preserving sharpness, we develop a new edge-preserving filter for chrominance channels with the guidance from the target gray-scale image. To the best of our knowledge, this is the first work on sparse pursuit image colorization from single reference images. Experimental results demonstrate that our colorization method outperforms the state-of-the-art methods, both visually and quantitatively using a user study.

  1. Multilevel segmentation of intracranial aneurysms in CT angiography images

    Wang, Yan [Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94122 and University of Lyon, CREATIS, CNRS UMR 5220, INSERM U1206, UCB Lyon1, INSA Lyon, Lyon 69100 (France); Zhang, Yue, E-mail: y.zhang525@gmail.com [Veterans Affairs Medical Center, San Francisco, California 94121 and University of Lyon, CREATIS, CNRS UMR 5220, INSERM U1206, UCB Lyon1, INSA Lyon, Lyon 69100 (France); Navarro, Laurent [Ecole Nationale Superieure des Mines de Saint-Etienne, Saint-Etienne 42015 (France); Eker, Omer Faruk [CHU Montpellier, Neuroradiologie, Montpellier 34000 (France); Corredor Jerez, Ricardo A. [Ecole Polytechnique Federale de Lausanne, Lausanne 1015 (Switzerland); Chen, Yu; Zhu, Yuemin; Courbebaisse, Guy [University of Lyon, CREATIS, CNRS UMR 5220, INSERM U1206, UCB Lyon1, INSA Lyon, Lyon 69100 (France)

    2016-04-15

    Purpose: Segmentation of aneurysms plays an important role in interventional planning. Yet, the segmentation of both the lumen and the thrombus of an intracranial aneurysm in computed tomography angiography (CTA) remains a challenge. This paper proposes a multilevel segmentation methodology for efficiently segmenting intracranial aneurysms in CTA images. Methods: The proposed methodology first uses the lattice Boltzmann method (LBM) to extract the lumen part directly from the original image. Then, the LBM is applied again on an intermediate image whose lumen part is filled by the mean gray-level value outside the lumen, to yield an image region containing part of the aneurysm boundary. After that, an expanding disk is introduced to estimate the complete contour of the aneurysm. Finally, the contour detected is used as the initial contour of the level set with ellipse to refine the aneurysm. Results: The results obtained on 11 patients from different hospitals showed that the proposed segmentation was comparable with manual segmentation, and that quantitatively, the average segmentation matching factor (SMF) reached 86.99%, demonstrating good segmentation accuracy. Chan–Vese method, Sen’s model, and Luca’s model were used to compare the proposed method and their average SMF values were 39.98%, 40.76%, and 77.11%, respectively. Conclusions: The authors have presented a multilevel segmentation method based on the LBM and level set with ellipse for accurate segmentation of intracranial aneurysms. Compared to three existing methods, for all eleven patients, the proposed method can successfully segment the lumen with the highest SMF values for nine patients and second highest SMF values for the two. It also segments the entire aneurysm with the highest SMF values for ten patients and second highest SMF value for the one. This makes it potential for clinical assessment of the volume and aspect ratio of the intracranial aneurysms.

  2. COMPARISON OF DIFFERENT SEGMENTATION ALGORITHMS FOR DERMOSCOPIC IMAGES

    A.A. Haseena Thasneem

    2015-05-01

    Full Text Available This paper compares different algorithms for the segmentation of skin lesions in dermoscopic images. The basic segmentation algorithms compared are Thresholding techniques (Global and Adaptive, Region based techniques (K-means, Fuzzy C means, Expectation Maximization and Statistical Region Merging, Contour models (Active Contour Model and Chan - Vese Model and Spectral Clustering. Accuracy, sensitivity, specificity, Border error, Hammoude distance, Hausdorff distance, MSE, PSNR and elapsed time metrices were used to evaluate various segmentation techniques.

  3. Specialized Color Targets for Spectral Reflectance Reconstruction of Magnified Images

    Kruschwitz, Jennifer D. T.

    Digital images are used almost exclusively instead of film to capture visual information across many scientific fields. The colorimetric color representation within these digital images can be relayed from the digital counts produced by the camera with the use of a known color target. In image capture of magnified images, there is currently no reliable color target that can be used at multiple magnifications and give the user a solid understanding of the color ground truth within those images. The first part of this dissertation included the design, fabrication, and testing of a color target produced with optical interference coated microlenses for use in an off-axis illumination, compound microscope. An ideal target was designed to increase the color gamut for colorimetric imaging and provide the necessary "Block Dye" spectral reflectance profiles across the visible spectrum to reduce the number of color patches necessary for multiple filter imaging systems that rely on statistical models for spectral reflectance reconstruction. There are other scientific disciplines that can benefit from a specialized color target to determine the color ground truth in their magnified images and perform spectral estimation. Not every discipline has the luxury of having a multi-filter imaging system. The second part of this dissertation developed two unique ways of using an interference coated color mirror target: one that relies on multiple light-source angles, and one that leverages a dynamic color change with time. The source multi-angle technique would be used for the microelectronic discipline where the reconstructed spectral reflectance would be used to determine a dielectric film thickness on a silicon substrate, and the time varying technique would be used for a biomedical example to determine the thickness of human tear film.

  4. Imaging tristimulus colorimeter for the evaluation of color in printed textiles

    Hunt, Martin A.; Goddard, James S., Jr.; Hylton, Kathy W.; Karnowski, Thomas P.; Richards, Roger K.; Simpson, Marc L.; Tobin, Kenneth W., Jr.; Treece, Dale A.

    1999-03-01

    The high-speed production of textiles with complicated printed patterns presents a difficult problem for a colorimetric measurement system. Accurate assessment of product quality requires a repeatable measurement using a standard color space, such as CIELAB, and the use of a perceptually based color difference formula, e.g. (Delta) ECMC color difference formula. Image based color sensors used for on-line measurement are not colorimetric by nature and require a non-linear transformation of the component colors based on the spectral properties of the incident illumination, imaging sensor, and the actual textile color. This research and development effort describes a benchtop, proof-of-principle system that implements a projection onto convex sets (POCS) algorithm for mapping component color measurements to standard tristimulus values and incorporates structural and color based segmentation for improved precision and accuracy. The POCS algorithm consists of determining the closed convex sets that describe the constraints on the reconstruction of the true tristimulus values based on the measured imperfect values. We show that using a simulated D65 standard illuminant, commercial filters and a CCD camera, accurate (under perceptibility limits) per-region based (Delta) ECMC values can be measured on real textile samples.

  5. Hierarchical graph-based segmentation for extracting road networks from high-resolution satellite images

    Alshehhi, Rasha; Marpu, Prashanth Reddy

    2017-04-01

    Extraction of road networks in urban areas from remotely sensed imagery plays an important role in many urban applications (e.g. road navigation, geometric correction of urban remote sensing images, updating geographic information systems, etc.). It is normally difficult to accurately differentiate road from its background due to the complex geometry of the buildings and the acquisition geometry of the sensor. In this paper, we present a new method for extracting roads from high-resolution imagery based on hierarchical graph-based image segmentation. The proposed method consists of: 1. Extracting features (e.g., using Gabor and morphological filtering) to enhance the contrast between road and non-road pixels, 2. Graph-based segmentation consisting of (i) Constructing a graph representation of the image based on initial segmentation and (ii) Hierarchical merging and splitting of image segments based on color and shape features, and 3. Post-processing to remove irregularities in the extracted road segments. Experiments are conducted on three challenging datasets of high-resolution images to demonstrate the proposed method and compare with other similar approaches. The results demonstrate the validity and superior performance of the proposed method for road extraction in urban areas.

  6. Exploring the use of memory colors for image enhancement

    Xue, Su; Tan, Minghui; McNamara, Ann; Dorsey, Julie; Rushmeier, Holly

    2014-02-01

    Memory colors refer to those colors recalled in association with familiar objects. While some previous work introduces this concept to assist digital image enhancement, their basis, i.e., on-screen memory colors, are not appropriately investigated. In addition, the resulting adjustment methods developed are not evaluated from a perceptual view of point. In this paper, we first perform a context-free perceptual experiment to establish the overall distributions of screen memory colors for three pervasive objects. Then, we use a context-based experiment to locate the most representative memory colors; at the same time, we investigate the interactions of memory colors between different objects. Finally, we show a simple yet effective application using representative memory colors to enhance digital images. A user study is performed to evaluate the performance of our technique.

  7. Remote Sensing Image Registration with Line Segments and Their Intersections

    Chengjin Lyu

    2017-05-01

    Full Text Available Image registration is a basic but essential step for remote sensing image processing, and finding stable features in multitemporal images is one of the most considerable challenges in the field. The main shape contours of artificial objects (e.g., roads, buildings, farmlands, and airports can be generally described as a group of line segments, which are stable features, even in images with evident background changes (e.g., images taken before and after a disaster. In this study, a registration method that uses line segments and their intersections is proposed for multitemporal remote sensing images. First, line segments are extracted in image pyramids to unify the scales of the reference image and the test image. Then, a line descriptor based on the gradient distribution of local areas is constructed, and the segments are matched in image pyramids. Lastly, triplets of intersections of matching lines are selected to estimate affine transformation between two images. Additional corresponding intersections are provided based on the estimated transformation, and an iterative process is adopted to remove outliers. The performance of the proposed method is tested on a variety of optical remote sensing image pairs, including synthetic and real data. Compared with existing methods, our method can provide more accurate registration results, even in images with significant background changes.

  8. An Automatic Cognitive Graph-Based Segmentation for Detection of Blood Vessels in Retinal Images

    Rasha Al Shehhi

    2016-01-01

    Full Text Available This paper presents a hierarchical graph-based segmentation for blood vessel detection in digital retinal images. This segmentation employs some of perceptual Gestalt principles: similarity, closure, continuity, and proximity to merge segments into coherent connected vessel-like patterns. The integration of Gestalt principles is based on object-based features (e.g., color and black top-hat (BTH morphology and context and graph-analysis algorithms (e.g., Dijkstra path. The segmentation framework consists of two main steps: preprocessing and multiscale graph-based segmentation. Preprocessing is to enhance lighting condition, due to low illumination contrast, and to construct necessary features to enhance vessel structure due to sensitivity of vessel patterns to multiscale/multiorientation structure. Graph-based segmentation is to decrease computational processing required for region of interest into most semantic objects. The segmentation was evaluated on three publicly available datasets. Experimental results show that preprocessing stage achieves better results compared to state-of-the-art enhancement methods. The performance of the proposed graph-based segmentation is found to be consistent and comparable to other existing methods, with improved capability of detecting small/thin vessels.

  9. Visual wetness perception based on image color statistics.

    Sawayama, Masataka; Adelson, Edward H; Nishida, Shin'ya

    2017-05-01

    Color vision provides humans and animals with the abilities to discriminate colors based on the wavelength composition of light and to determine the location and identity of objects of interest in cluttered scenes (e.g., ripe fruit among foliage). However, we argue that color vision can inform us about much more than color alone. Since a trichromatic image carries more information about the optical properties of a scene than a monochromatic image does, color can help us recognize complex material qualities. Here we show that human vision uses color statistics of an image for the perception of an ecologically important surface condition (i.e., wetness). Psychophysical experiments showed that overall enhancement of chromatic saturation, combined with a luminance tone change that increases the darkness and glossiness of the image, tended to make dry scenes look wetter. Theoretical analysis along with image analysis of real objects indicated that our image transformation, which we call the wetness enhancing transformation, is consistent with actual optical changes produced by surface wetting. Furthermore, we found that the wetness enhancing transformation operator was more effective for the images with many colors (large hue entropy) than for those with few colors (small hue entropy). The hue entropy may be used to separate surface wetness from other surface states having similar optical properties. While surface wetness and surface color might seem to be independent, there are higher order color statistics that can influence wetness judgments, in accord with the ecological statistics. The present findings indicate that the visual system uses color image statistics in an elegant way to help estimate the complex physical status of a scene.

  10. Color quality improvement of reconstructed images in color digital holography using speckle method and spectral estimation

    Funamizu, Hideki; Onodera, Yusei; Aizu, Yoshihisa

    2018-05-01

    In this study, we report color quality improvement of reconstructed images in color digital holography using the speckle method and the spectral estimation. In this technique, an object is illuminated by a speckle field and then an object wave is produced, while a plane wave is used as a reference wave. For three wavelengths, the interference patterns of two coherent waves are recorded as digital holograms on an image sensor. Speckle fields are changed by moving a ground glass plate in an in-plane direction, and a number of holograms are acquired to average the reconstructed images. After the averaging process of images reconstructed from multiple holograms, we use the Wiener estimation method for obtaining spectral transmittance curves in reconstructed images. The color reproducibility in this method is demonstrated and evaluated using a Macbeth color chart film and staining cells of onion.

  11. New Colors for Histology: Optimized Bivariate Color Maps Increase Perceptual Contrast in Histological Images.

    Kather, Jakob Nikolas; Weis, Cleo-Aron; Marx, Alexander; Schuster, Alexander K; Schad, Lothar R; Zöllner, Frank Gerrit

    2015-01-01

    Accurate evaluation of immunostained histological images is required for reproducible research in many different areas and forms the basis of many clinical decisions. The quality and efficiency of histopathological evaluation is limited by the information content of a histological image, which is primarily encoded as perceivable contrast differences between objects in the image. However, the colors of chromogen and counterstain used for histological samples are not always optimally distinguishable, even under optimal conditions. In this study, we present a method to extract the bivariate color map inherent in a given histological image and to retrospectively optimize this color map. We use a novel, unsupervised approach based on color deconvolution and principal component analysis to show that the commonly used blue and brown color hues in Hematoxylin-3,3'-Diaminobenzidine (DAB) images are poorly suited for human observers. We then demonstrate that it is possible to construct improved color maps according to objective criteria and that these color maps can be used to digitally re-stain histological images. To validate whether this procedure improves distinguishability of objects and background in histological images, we re-stain phantom images and N = 596 large histological images of immunostained samples of human solid tumors. We show that perceptual contrast is improved by a factor of 2.56 in phantom images and up to a factor of 2.17 in sets of histological tumor images. Thus, we provide an objective and reliable approach to measure object distinguishability in a given histological image and to maximize visual information available to a human observer. This method could easily be incorporated in digital pathology image viewing systems to improve accuracy and efficiency in research and diagnostics.

  12. New Colors for Histology: Optimized Bivariate Color Maps Increase Perceptual Contrast in Histological Images.

    Jakob Nikolas Kather

    Full Text Available Accurate evaluation of immunostained histological images is required for reproducible research in many different areas and forms the basis of many clinical decisions. The quality and efficiency of histopathological evaluation is limited by the information content of a histological image, which is primarily encoded as perceivable contrast differences between objects in the image. However, the colors of chromogen and counterstain used for histological samples are not always optimally distinguishable, even under optimal conditions.In this study, we present a method to extract the bivariate color map inherent in a given histological image and to retrospectively optimize this color map. We use a novel, unsupervised approach based on color deconvolution and principal component analysis to show that the commonly used blue and brown color hues in Hematoxylin-3,3'-Diaminobenzidine (DAB images are poorly suited for human observers. We then demonstrate that it is possible to construct improved color maps according to objective criteria and that these color maps can be used to digitally re-stain histological images.To validate whether this procedure improves distinguishability of objects and background in histological images, we re-stain phantom images and N = 596 large histological images of immunostained samples of human solid tumors. We show that perceptual contrast is improved by a factor of 2.56 in phantom images and up to a factor of 2.17 in sets of histological tumor images.Thus, we provide an objective and reliable approach to measure object distinguishability in a given histological image and to maximize visual information available to a human observer. This method could easily be incorporated in digital pathology image viewing systems to improve accuracy and efficiency in research and diagnostics.

  13. Information system for administrating and distributing color images through internet

    2007-01-01

    Full Text Available The information system for administrating and distributing color images through the Internet ensures the consistent replication of color images, their storage - in an on-line data base - and predictable distribution, by means of a digitally distributed flow, based on Windows platform and POD (Print On Demand technology. The consistent replication of color images inde-pendently from the parameters of the processing equipment and from the features of the programs composing the technological flow, is ensured by the standard color management sys-tem defined by ICC (International Color Consortium, which is integrated by the Windows operation system and by the POD technology. The latter minimize the noticeable differences between the colors captured, displayed or printed by various replication equipments and/or edited by various graphical applications. The system integrated web application ensures the uploading of the color images in an on-line database and their administration and distribution among the users via the Internet. For the preservation of the data expressed by the color im-ages during their transfer along a digitally distributed flow, the software application includes an original tool ensuring the accurate replication of colors on computer displays or when printing them by means of various color printers or presses. For development and use, this application employs a hardware platform based on PC support and a competitive software platform, based on: the Windows operation system, the .NET. Development medium and the C# programming language. This information system is beneficial for creators and users of color images, the success of the printed or on-line (Internet publications depending on the sizeable, predictable and accurate replication of colors employed for the visual expression of information in every activity fields of the modern society. The herein introduced information system enables all interested persons to access the

  14. Scene recognition and colorization for vehicle infrared images

    Hou, Junjie; Sun, Shaoyuan; Shen, Zhenyi; Huang, Zhen; Zhao, Haitao

    2016-10-01

    In order to make better use of infrared technology for driving assistance system, a scene recognition and colorization method is proposed in this paper. Various objects in a queried infrared image are detected and labelled with proper categories by a combination of SIFT-Flow and MRF model. The queried image is then colorized by assigning corresponding colors according to the categories of the objects appeared. The results show that the strategy here emphasizes important information of the IR images for human vision and could be used to broaden the application of IR images for vehicle driving.

  15. Image segmentation evaluation for very-large datasets

    Reeves, Anthony P.; Liu, Shuang; Xie, Yiting

    2016-03-01

    With the advent of modern machine learning methods and fully automated image analysis there is a need for very large image datasets having documented segmentations for both computer algorithm training and evaluation. Current approaches of visual inspection and manual markings do not scale well to big data. We present a new approach that depends on fully automated algorithm outcomes for segmentation documentation, requires no manual marking, and provides quantitative evaluation for computer algorithms. The documentation of new image segmentations and new algorithm outcomes are achieved by visual inspection. The burden of visual inspection on large datasets is minimized by (a) customized visualizations for rapid review and (b) reducing the number of cases to be reviewed through analysis of quantitative segmentation evaluation. This method has been applied to a dataset of 7,440 whole-lung CT images for 6 different segmentation algorithms designed to fully automatically facilitate the measurement of a number of very important quantitative image biomarkers. The results indicate that we could achieve 93% to 99% successful segmentation for these algorithms on this relatively large image database. The presented evaluation method may be scaled to much larger image databases.

  16. Automatic Image Segmentation Using Active Contours with Univariate Marginal Distribution

    I. Cruz-Aceves

    2013-01-01

    Full Text Available This paper presents a novel automatic image segmentation method based on the theory of active contour models and estimation of distribution algorithms. The proposed method uses the univariate marginal distribution model to infer statistical dependencies between the control points on different active contours. These contours have been generated through an alignment process of reference shape priors, in order to increase the exploration and exploitation capabilities regarding different interactive segmentation techniques. This proposed method is applied in the segmentation of the hollow core in microscopic images of photonic crystal fibers and it is also used to segment the human heart and ventricular areas from datasets of computed tomography and magnetic resonance images, respectively. Moreover, to evaluate the performance of the medical image segmentations compared to regions outlined by experts, a set of similarity measures has been adopted. The experimental results suggest that the proposed image segmentation method outperforms the traditional active contour model and the interactive Tseng method in terms of segmentation accuracy and stability.

  17. Automatic segmentation of the glenohumeral cartilages from magnetic resonance images

    Neubert, A.; Yang, Z.; Engstrom, C.; Xia, Y.; Strudwick, M. W.; Chandra, S. S.; Crozier, S.; Fripp, J.

    2016-01-01

    Purpose: Magnetic resonance (MR) imaging plays a key role in investigating early degenerative disorders and traumatic injuries of the glenohumeral cartilages. Subtle morphometric and biochemical changes of potential relevance to clinical diagnosis, treatment planning, and evaluation can be assessed from measurements derived from in vivo MR segmentation of the cartilages. However, segmentation of the glenohumeral cartilages, using approaches spanning manual to automated methods, is technically challenging, due to their thin, curved structure and overlapping intensities of surrounding tissues. Automatic segmentation of the glenohumeral cartilages from MR imaging is not at the same level compared to the weight-bearing knee and hip joint cartilages despite the potential applications with respect to clinical investigation of shoulder disorders. In this work, the authors present a fully automated segmentation method for the glenohumeral cartilages using MR images of healthy shoulders. Methods: The method involves automated segmentation of the humerus and scapula bones using 3D active shape models, the extraction of the expected bone–cartilage interface, and cartilage segmentation using a graph-based method. The cartilage segmentation uses localization, patient specific tissue estimation, and a model of the cartilage thickness variation. The accuracy of this method was experimentally validated using a leave-one-out scheme on a database of MR images acquired from 44 asymptomatic subjects with a true fast imaging with steady state precession sequence on a 3 T scanner (Siemens Trio) using a dedicated shoulder coil. The automated results were compared to manual segmentations from two experts (an experienced radiographer and an experienced musculoskeletal anatomist) using the Dice similarity coefficient (DSC) and mean absolute surface distance (MASD) metrics. Results: Accurate and precise bone segmentations were achieved with mean DSC of 0.98 and 0.93 for the humeral head

  18. Automatic segmentation of the glenohumeral cartilages from magnetic resonance images

    Neubert, A., E-mail: ales.neubert@csiro.au [School of Information Technology and Electrical Engineering, University of Queensland, Brisbane 4072, Australia and The Australian E-Health Research Centre, CSIRO Health and Biosecurity, Brisbane 4029 (Australia); Yang, Z. [School of Information Technology and Electrical Engineering, University of Queensland, Brisbane 4072, Australia and Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190 (China); Engstrom, C. [School of Human Movement Studies, University of Queensland, Brisbane 4072 (Australia); Xia, Y.; Strudwick, M. W.; Chandra, S. S.; Crozier, S. [School of Information Technology and Electrical Engineering, University of Queensland, Brisbane 4072 (Australia); Fripp, J. [The Australian E-Health Research Centre, CSIRO Health and Biosecurity, Brisbane, 4029 (Australia)

    2016-10-15

    Purpose: Magnetic resonance (MR) imaging plays a key role in investigating early degenerative disorders and traumatic injuries of the glenohumeral cartilages. Subtle morphometric and biochemical changes of potential relevance to clinical diagnosis, treatment planning, and evaluation can be assessed from measurements derived from in vivo MR segmentation of the cartilages. However, segmentation of the glenohumeral cartilages, using approaches spanning manual to automated methods, is technically challenging, due to their thin, curved structure and overlapping intensities of surrounding tissues. Automatic segmentation of the glenohumeral cartilages from MR imaging is not at the same level compared to the weight-bearing knee and hip joint cartilages despite the potential applications with respect to clinical investigation of shoulder disorders. In this work, the authors present a fully automated segmentation method for the glenohumeral cartilages using MR images of healthy shoulders. Methods: The method involves automated segmentation of the humerus and scapula bones using 3D active shape models, the extraction of the expected bone–cartilage interface, and cartilage segmentation using a graph-based method. The cartilage segmentation uses localization, patient specific tissue estimation, and a model of the cartilage thickness variation. The accuracy of this method was experimentally validated using a leave-one-out scheme on a database of MR images acquired from 44 asymptomatic subjects with a true fast imaging with steady state precession sequence on a 3 T scanner (Siemens Trio) using a dedicated shoulder coil. The automated results were compared to manual segmentations from two experts (an experienced radiographer and an experienced musculoskeletal anatomist) using the Dice similarity coefficient (DSC) and mean absolute surface distance (MASD) metrics. Results: Accurate and precise bone segmentations were achieved with mean DSC of 0.98 and 0.93 for the humeral head

  19. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)

    Menze, Bjoern H.; Jakab, Andras; Bauer, Stefan

    2015-01-01

    a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements. The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing...

  20. Feasibility of automated 3-dimensional magnetic resonance imaging pancreas segmentation

    Shuiping Gou, PhD

    2016-07-01

    Conclusions: Our study demonstrated potential feasibility of automated segmentation of the pancreas on MRI scans with minimal human supervision at the beginning of imaging acquisition. The achieved accuracy is promising for organ localization.

  1. Segmentation techniques for extracting humans from thermal images

    Dickens, JS

    2011-11-01

    Full Text Available A pedestrian detection system for underground mine vehicles is being developed that requires the segmentation of people from thermal images in underground mine tunnels. A number of thresholding techniques are outlined and their performance on a...

  2. Image segmentation algorithm based on T-junctions cues

    Qian, Yanyu; Cao, Fengyun; Wang, Lu; Yang, Xuejie

    2016-03-01

    To improve the over-segmentation and over-merge phenomenon of single image segmentation algorithm,a novel approach of combing Graph-Based algorithm and T-junctions cues is proposed in this paper. First, a method by L0 gradient minimization is applied to the smoothing of the target image eliminate artifacts caused by noise and texture detail; Then, the initial over-segmentation result of the smoothing image using the graph-based algorithm; Finally, the final results via a region fusion strategy by t-junction cues. Experimental results on a variety of images verify the new approach's efficiency in eliminating artifacts caused by noise,segmentation accuracy and time complexity has been significantly improved.

  3. Spectral segmentation of polygonized images with normalized cuts

    Matsekh, Anna [Los Alamos National Laboratory; Skurikhin, Alexei [Los Alamos National Laboratory; Rosten, Edward [UNIV OF CAMBRIDGE

    2009-01-01

    We analyze numerical behavior of the eigenvectors corresponding to the lowest eigenvalues of the generalized graph Laplacians arising in the Normalized Cuts formulations of the image segmentation problem on coarse polygonal grids.

  4. Using neutrosophic graph cut segmentation algorithm for qualified rendering image selection in thyroid elastography video.

    Guo, Yanhui; Jiang, Shuang-Quan; Sun, Baiqing; Siuly, Siuly; Şengür, Abdulkadir; Tian, Jia-Wei

    2017-12-01

    Recently, elastography has become very popular in clinical investigation for thyroid cancer detection and diagnosis. In elastogram, the stress results of the thyroid are displayed using pseudo colors. Due to variation of the rendering results in different frames, it is difficult for radiologists to manually select the qualified frame image quickly and efficiently. The purpose of this study is to find the qualified rendering result in the thyroid elastogram. This paper employs an efficient thyroid ultrasound image segmentation algorithm based on neutrosophic graph cut to find the qualified rendering images. Firstly, a thyroid ultrasound image is mapped into neutrosophic set, and an indeterminacy filter is constructed to reduce the indeterminacy of the spatial and intensity information in the image. A graph is defined on the image and the weight for each pixel is represented using the value after indeterminacy filtering. The segmentation results are obtained using a maximum-flow algorithm on the graph. Then the anatomic structure is identified in thyroid ultrasound image. Finally the rendering colors on these anatomic regions are extracted and validated to find the frames which satisfy the selection criteria. To test the performance of the proposed method, a thyroid elastogram dataset is built and totally 33 cases were collected. An experienced radiologist manually evaluates the selection results of the proposed method. Experimental results demonstrate that the proposed method finds the qualified rendering frame with 100% accuracy. The proposed scheme assists the radiologists to diagnose the thyroid diseases using the qualified rendering images.

  5. Combination of Accumulated Motion and Color Segmentation for Human Activity Analysis

    Briassouli Alexia

    2008-01-01

    Full Text Available Abstract The automated analysis of activity in digital multimedia, and especially video, is gaining more and more importance due to the evolution of higher-level video processing systems and the development of relevant applications such as surveillance and sports. This paper presents a novel algorithm for the recognition and classification of human activities, which employs motion and color characteristics in a complementary manner, so as to extract the most information from both sources, and overcome their individual limitations. The proposed method accumulates the flow estimates in a video, and extracts "regions of activity" by processing their higher-order statistics. The shape of these activity areas can be used for the classification of the human activities and events taking place in a video and the subsequent extraction of higher-level semantics. Color segmentation of the active and static areas of each video frame is performed to complement this information. The color layers in the activity and background areas are compared using the earth mover's distance, in order to achieve accurate object segmentation. Thus, unlike much existing work on human activity analysis, the proposed approach is based on general color and motion processing methods, and not on specific models of the human body and its kinematics. The combined use of color and motion information increases the method robustness to illumination variations and measurement noise. Consequently, the proposed approach can lead to higher-level information about human activities, but its applicability is not limited to specific human actions. We present experiments with various real video sequences, from sports and surveillance domains, to demonstrate the effectiveness of our approach.

  6. Combination of Accumulated Motion and Color Segmentation for Human Activity Analysis

    Ioannis Kompatsiaris

    2008-03-01

    Full Text Available The automated analysis of activity in digital multimedia, and especially video, is gaining more and more importance due to the evolution of higher-level video processing systems and the development of relevant applications such as surveillance and sports. This paper presents a novel algorithm for the recognition and classification of human activities, which employs motion and color characteristics in a complementary manner, so as to extract the most information from both sources, and overcome their individual limitations. The proposed method accumulates the flow estimates in a video, and extracts “regions of activity” by processing their higher-order statistics. The shape of these activity areas can be used for the classification of the human activities and events taking place in a video and the subsequent extraction of higher-level semantics. Color segmentation of the active and static areas of each video frame is performed to complement this information. The color layers in the activity and background areas are compared using the earth mover's distance, in order to achieve accurate object segmentation. Thus, unlike much existing work on human activity analysis, the proposed approach is based on general color and motion processing methods, and not on specific models of the human body and its kinematics. The combined use of color and motion information increases the method robustness to illumination variations and measurement noise. Consequently, the proposed approach can lead to higher-level information about human activities, but its applicability is not limited to specific human actions. We present experiments with various real video sequences, from sports and surveillance domains, to demonstrate the effectiveness of our approach.

  7. Perceptual quality of color images of natural scenes transformed in CIELUV color space

    Fedorovskaya, E.A.; Blommaert, F.J.J.; Ridder, de H.; Eschbach, R.; Braun, K.

    1997-01-01

    Transformations of digitized color images in perceptually-uniform CIELUV color space and their perceptual relevance were investigated. Chroma veriation was chosen as the first step of a series of investigations into possible transformations (including lightness, hue-angle, chroma, ect.) To obtain

  8. Perceptual quality of color images of natural scenes transformed in CIELUV color space

    Fedorovskaya, E.A.; Blommaert, F.J.J.; Ridder, de H.

    1993-01-01

    Transformations of digitized color images in perceptually-uniform CIELUV color space and their perceptual relevance were investigated. Chroma variation was chosen as the first step of a series of investigations into possible transformations (including lightness, hue-angle, chroma, etc.). To obtain

  9. Fast iterative segmentation of high resolution medical images

    Hebert, T.J.

    1996-01-01

    Various applications in positron emission tomography (PET), single photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI) require segmentation of 20 to 60 high resolution images of size 256x256 pixels in 3-9 seconds per image. This places particular constraints on the design of image segmentation algorithms. This paper examines the trade-offs in segmenting images based on fitting a density function to the pixel intensities using curve-fitting versus the maximum likelihood method. A quantized data representation is proposed and the EM algorithm for fitting a finite mixture density function to the quantized representation for an image is derived. A Monte Carlo evaluation of mean estimation error and classification error showed that the resulting quantized EM algorithm dramatically reduces the required computation time without loss of accuracy

  10. Automatic nuclei segmentation in H&E stained breast cancer histopathology images.

    Mitko Veta

    Full Text Available The introduction of fast digital slide scanners that provide whole slide images has led to a revival of interest in image analysis applications in pathology. Segmentation of cells and nuclei is an important first step towards automatic analysis of digitized microscopy images. We therefore developed an automated nuclei segmentation method that works with hematoxylin and eosin (H&E stained breast cancer histopathology images, which represent regions of whole digital slides. The procedure can be divided into four main steps: 1 pre-processing with color unmixing and morphological operators, 2 marker-controlled watershed segmentation at multiple scales and with different markers, 3 post-processing for rejection of false regions and 4 merging of the results from multiple scales. The procedure was developed on a set of 21 breast cancer cases (subset A and tested on a separate validation set of 18 cases (subset B. The evaluation was done in terms of both detection accuracy (sensitivity and positive predictive value and segmentation accuracy (Dice coefficient. The mean estimated sensitivity for subset A was 0.875 (±0.092 and for subset B 0.853 (±0.077. The mean estimated positive predictive value was 0.904 (±0.075 and 0.886 (±0.069 for subsets A and B, respectively. For both subsets, the distribution of the Dice coefficients had a high peak around 0.9, with the vast majority of segmentations having values larger than 0.8.

  11. Automatic nuclei segmentation in H&E stained breast cancer histopathology images.

    Veta, Mitko; van Diest, Paul J; Kornegoor, Robert; Huisman, André; Viergever, Max A; Pluim, Josien P W

    2013-01-01

    The introduction of fast digital slide scanners that provide whole slide images has led to a revival of interest in image analysis applications in pathology. Segmentation of cells and nuclei is an important first step towards automatic analysis of digitized microscopy images. We therefore developed an automated nuclei segmentation method that works with hematoxylin and eosin (H&E) stained breast cancer histopathology images, which represent regions of whole digital slides. The procedure can be divided into four main steps: 1) pre-processing with color unmixing and morphological operators, 2) marker-controlled watershed segmentation at multiple scales and with different markers, 3) post-processing for rejection of false regions and 4) merging of the results from multiple scales. The procedure was developed on a set of 21 breast cancer cases (subset A) and tested on a separate validation set of 18 cases (subset B). The evaluation was done in terms of both detection accuracy (sensitivity and positive predictive value) and segmentation accuracy (Dice coefficient). The mean estimated sensitivity for subset A was 0.875 (±0.092) and for subset B 0.853 (±0.077). The mean estimated positive predictive value was 0.904 (±0.075) and 0.886 (±0.069) for subsets A and B, respectively. For both subsets, the distribution of the Dice coefficients had a high peak around 0.9, with the vast majority of segmentations having values larger than 0.8.

  12. Color standardization and optimization in Whole Slide Imaging

    Yagi Yukako

    2011-03-01

    Full Text Available Abstract Introduction Standardization and validation of the color displayed by digital slides is an important aspect of digital pathology implementation. While the most common reason for color variation is the variance in the protocols and practices in the histology lab, the color displayed can also be affected by variation in capture parameters (for example, illumination and filters, image processing and display factors in the digital systems themselves. Method We have been developing techniques for color validation and optimization along two paths. The first was based on two standard slides that are scanned and displayed by the imaging system in question. In this approach, one slide is embedded with nine filters with colors selected especially for H&E stained slides (looking like tiny Macbeth color chart; the specific color of the nine filters were determined in our previous study and modified for whole slide imaging (WSI. The other slide is an H&E stained mouse embryo. Both of these slides were scanned and the displayed images were compared to a standard. The second approach was based on our previous multispectral imaging research. Discussion As a first step, the two slide method (above was used to identify inaccurate display of color and its cause, and to understand the importance of accurate color in digital pathology. We have also improved the multispectral-based algorithm for more consistent results in stain standardization. In near future, the results of the two slide and multispectral techniques can be combined and will be widely available. We have been conducting a series of researches and developing projects to improve image quality to establish Image Quality Standardization. This paper discusses one of most important aspects of image quality – color.

  13. Learning normalized inputs for iterative estimation in medical image segmentation.

    Drozdzal, Michal; Chartrand, Gabriel; Vorontsov, Eugene; Shakeri, Mahsa; Di Jorio, Lisa; Tang, An; Romero, Adriana; Bengio, Yoshua; Pal, Chris; Kadoury, Samuel

    2018-02-01

    In this paper, we introduce a simple, yet powerful pipeline for medical image segmentation that combines Fully Convolutional Networks (FCNs) with Fully Convolutional Residual Networks (FC-ResNets). We propose and examine a design that takes particular advantage of recent advances in the understanding of both Convolutional Neural Networks as well as ResNets. Our approach focuses upon the importance of a trainable pre-processing when using FC-ResNets and we show that a low-capacity FCN model can serve as a pre-processor to normalize medical input data. In our image segmentation pipeline, we use FCNs to obtain normalized images, which are then iteratively refined by means of a FC-ResNet to generate a segmentation prediction. As in other fully convolutional approaches, our pipeline can be used off-the-shelf on different image modalities. We show that using this pipeline, we exhibit state-of-the-art performance on the challenging Electron Microscopy benchmark, when compared to other 2D methods. We improve segmentation results on CT images of liver lesions, when contrasting with standard FCN methods. Moreover, when applying our 2D pipeline on a challenging 3D MRI prostate segmentation challenge we reach results that are competitive even when compared to 3D methods. The obtained results illustrate the strong potential and versatility of the pipeline by achieving accurate segmentations on a variety of image modalities and different anatomical regions. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Variational segmentation problems using prior knowledge in imaging and vision

    Fundana, Ketut

    This dissertation addresses variational formulation of segmentation problems using prior knowledge. Variational models are among the most successful approaches for solving many Computer Vision and Image Processing problems. The models aim at finding the solution to a given energy functional defined......, prior knowledge is needed to obtain the desired solution. The introduction of shape priors in particular, has proven to be an effective way to segment objects of interests. Firstly, we propose a prior-based variational segmentation model to segment objects of interest in image sequences, that can deal....... Many objects have high variability in shape and orientation. This often leads to unsatisfactory results, when using a segmentation model with single shape template. One way to solve this is by using more sophisticated shape models. We propose to incorporate shape priors from a shape sub...

  15. Natural-color and color-infrared image mosaics of the Colorado River corridor in Arizona derived from the May 2009 airborne image collection

    Davis, Philip A.

    2013-01-01

    -processing software. The tiff world files (tfw) are provided, even though they are generally not needed for most software to read an embedded geotiff image. All image data are projected in the State Plane (SP) map projection using the central Arizona zone (202) and the North American Datum of 1983 (NAD83). The map-tile scheme used to segment the corridor image mosaic followed the standard USGS quarter-quadrangle (QQ) map borders, but the high resolution (20 cm) of the images required further quarter segmentation (QQQ) of the standard QQ tiles, where the image mosaic covered a large fraction of a QQ map tile (segmentation shown in (figure 6), where QQ_1 to QQ_4 shows the number convention used to designate a quarter of a QQ tile). To minimize the size of each image tile, each image or map tile was subset to only include that part of the tile that had image data. In addition, some QQQ image tiles within a QQ tile were combined when adjacent QQQ map tiles were small. Thus, some image tiles consist of combinations of QQQ map tiles, some consist of an entire QQ map tile, and some consist of two adjoining QQ map tiles. The final image tiles number 143, which is a large number of files to list on the Internet for both the natural-color and color-infrared images. Thus, the image tiles were placed in seven file folders based on the one-half-degree geographic boundaries within the study area (fig. 7). The map tiles in each file folder were compressed to minimize folder size for more efficient downloading. The file folders are sequentially referred to as zone 1 through zone 7, proceeding down river (fig. 7). The QQ designations of the image tiles contained within each folder or zone are shown on the index map for each respective zone (figs. 8–14).

  16. The structure and properties of color spaces and the representation of color images

    Dubois, Eric

    2009-01-01

    This lecture describes the author's approach to the representation of color spaces and their use for color image processing. The lecture starts with a precise formulation of the space of physical stimuli (light). The model includes both continuous spectra and monochromatic spectra in the form of Dirac deltas. The spectral densities are considered to be functions of a continuous wavelength variable. This leads into the formulation of color space as a three-dimensional vector space, with all the associated structure. The approach is to start with the axioms of color matching for normal human vie

  17. A new level set model for cell image segmentation

    Ma Jing-Feng; Chen Chun; Hou Kai; Bao Shang-Lian

    2011-01-01

    In this paper we first determine three phases of cell images: background, cytoplasm and nucleolus according to the general physical characteristics of cell images, and then develop a variational model, based on these characteristics, to segment nucleolus and cytoplasm from their relatively complicated backgrounds. In the meantime, the preprocessing obtained information of cell images using the OTSU algorithm is used to initialize the level set function in the model, which can speed up the segmentation and present satisfactory results in cell image processing. (cross-disciplinary physics and related areas of science and technology)

  18. Spatial imaging in color and HDR: prometheus unchained

    McCann, John J.

    2013-03-01

    The Human Vision and Electronic Imaging Conferences (HVEI) at the IS and T/SPIE Electronic Imaging meetings have brought together research in the fundamentals of both vision and digital technology. This conference has incorporated many color disciplines that have contributed to the theory and practice of today's imaging: color constancy, models of vision, digital output, high-dynamic-range imaging, and the understanding of perceptual mechanisms. Before digital imaging, silver halide color was a pixel-based mechanism. Color films are closely tied to colorimetry, the science of matching pixels in a black surround. The quanta catch of the sensitized silver salts determines the amount of colored dyes in the final print. The rapid expansion of digital imaging over the past 25 years has eliminated the limitations of using small local regions in forming images. Spatial interactions can now generate images more like vision. Since the 1950's, neurophysiology has shown that post-receptor neural processing is based on spatial interactions. These results reinforced the findings of 19th century experimental psychology. This paper reviews the role of HVEI in color, emphasizing the interaction of research on vision and the new algorithms and processes made possible by electronic imaging.

  19. False Color Image of Volcano Sapas Mons

    1991-01-01

    This false-color image shows the volcano Sapas Mons, which is located in the broad equatorial rise called Atla Regio (8 degrees north latitude and 188 degrees east longitude). The area shown is approximately 650 kilometers (404 miles) on a side. Sapas Mons measures about 400 kilometers (248 miles) across and 1.5 kilometers (0.9 mile) high. Its flanks show numerous overlapping lava flows. The dark flows on the lower right are thought to be smoother than the brighter ones near the central part of the volcano. Many of the flows appear to have been erupted along the flanks of the volcano rather than from the summit. This type of flank eruption is common on large volcanoes on Earth, such as the Hawaiian volcanoes. The summit area has two flat-topped mesas, whose smooth tops give a relatively dark appearance in the radar image. Also seen near the summit are groups of pits, some as large as one kilometer (0.6 mile) across. These are thought to have formed when underground chambers of magma were drained through other subsurface tubes and lead to a collapse at the surface. A 20 kilometer-diameter (12-mile diameter) impact crater northeast of the volcano is partially buried by the lava flows. Little was known about Atla Regio prior to Magellan. The new data, acquired in February 1991, show the region to be composed of at least five large volcanoes such as Sapas Mons, which are commonly linked by complex systems of fractures or rift zones. If comparable to similar features on Earth, Atla Regio probably formed when large volumes of molten rock upwelled from areas within the interior of Venus known as'hot spots.' Magellan is a NASA spacecraft mission to map the surface of Venus with imaging radar. The basic scientific instrument is a synthetic aperture radar, or SAR, which can look through the thick clouds perpetually shielding the surface of Venus. Magellan is in orbit around Venus which completes one turn around its axis in 243 Earth days. That period of time, one Venus day

  20. Color correction of projected image on color-screen for mobile beam-projector

    Son, Chang-Hwan; Sung, Soo-Jin; Ha, Yeong-Ho

    2008-01-01

    With the current trend of digital convergence in mobile phones, mobile manufacturers are researching how to develop a mobile beam-projector to cope with the limitations of a small screen size and to offer a better feeling of movement while watching movies or satellite broadcasting. However, mobile beam-projectors may project an image on arbitrary surfaces, such as a colored wall and paper, not on a white screen mainly used in an office environment. Thus, color correction method for the projected image is proposed to achieve good image quality irrespective of the surface colors. Initially, luminance values of original image transformed into the YCbCr space are changed to compensate for spatially nonuniform luminance distribution of arbitrary surface, depending on the pixel values of surface image captured by mobile camera. Next, the chromaticity values for each surface and white-screen image are calculated using the ratio of the sum of three RGB values to one another. Then their chromaticity ratios are multiplied by converted original image through an inverse YCbCr matrix to reduce an influence of modulating the appearance of projected image due to spatially different reflectance on the surface. By projecting corrected original image on a texture pattern or single color surface, the image quality of projected image can be improved more, as well as that of projected image on white screen.

  1. Multifractal analysis of three-dimensional histogram from color images

    Chauveau, Julien; Rousseau, David; Richard, Paul; Chapeau-Blondeau, Francois

    2010-01-01

    Natural images, especially color or multicomponent images, are complex information-carrying signals. To contribute to the characterization of this complexity, we investigate the possibility of multiscale organization in the colorimetric structure of natural images. This is realized by means of a multifractal analysis applied to the three-dimensional histogram from natural color images. The observed behaviors are confronted to those of reference models with known multifractal properties. We use for this purpose synthetic random images with trivial monofractal behavior, and multidimensional multiplicative cascades known for their actual multifractal behavior. The behaviors observed on natural images exhibit similarities with those of the multifractal multiplicative cascades and display the signature of elaborate multiscale organizations stemming from the histograms of natural color images. This type of characterization of colorimetric properties can be helpful to various tasks of digital image processing, as for instance modeling, classification, indexing.

  2. Emerging from Water: Underwater Image Color Correction Based on Weakly Supervised Color Transfer

    Li, Chongyi; Guo, Jichang; Guo, Chunle

    2017-01-01

    Underwater vision suffers from severe effects due to selective attenuation and scattering when light propagates through water. Such degradation not only affects the quality of underwater images but limits the ability of vision tasks. Different from existing methods which either ignore the wavelength dependency of the attenuation or assume a specific spectral profile, we tackle color distortion problem of underwater image from a new view. In this letter, we propose a weakly supervised color tr...

  3. SEGMENTATION OF MITOCHONDRIA IN ELECTRON MICROSCOPY IMAGES USING ALGEBRAIC CURVES.

    Seyedhosseini, Mojtaba; Ellisman, Mark H; Tasdizen, Tolga

    2013-01-01

    High-resolution microscopy techniques have been used to generate large volumes of data with enough details for understanding the complex structure of the nervous system. However, automatic techniques are required to segment cells and intracellular structures in these multi-terabyte datasets and make anatomical analysis possible on a large scale. We propose a fully automated method that exploits both shape information and regional statistics to segment irregularly shaped intracellular structures such as mitochondria in electron microscopy (EM) images. The main idea is to use algebraic curves to extract shape features together with texture features from image patches. Then, these powerful features are used to learn a random forest classifier, which can predict mitochondria locations precisely. Finally, the algebraic curves together with regional information are used to segment the mitochondria at the predicted locations. We demonstrate that our method outperforms the state-of-the-art algorithms in segmentation of mitochondria in EM images.

  4. Color image quality in projection displays: a case study

    Strand, Monica; Hardeberg, Jon Y.; Nussbaum, Peter

    2005-01-01

    Recently the use of projection displays has increased dramatically in different applications such as digital cinema, home theatre, and business and educational presentations. Even if the color image quality of these devices has improved significantly over the years, it is still a common situation for users of projection displays that the projected colors differ significantly from the intended ones. This study presented in this paper attempts to analyze the color image quality of a large set of projection display devices, particularly investigating the variations in color reproduction. As a case study, a set of 14 projectors (LCD and DLP technology) at Gjovik University College have been tested under four different conditions: dark and light room, with and without using an ICC-profile. To find out more about the importance of the illumination conditions in a room, and the degree of improvement when using an ICC-profile, the results from the measurements was processed and analyzed. Eye-One Beamer from GretagMacbeth was used to make the profiles. The color image quality was evaluated both visually and by color difference calculations. The results from the analysis indicated large visual and colorimetric differences between the projectors. Our DLP projectors have generally smaller color gamut than LCD projectors. The color gamuts of older projectors are significantly smaller than that of newer ones. The amount of ambient light reaching the screen is of great importance for the visual impression. If too much reflections and other ambient light reaches the screen, the projected image gets pale and has low contrast. When using a profile, the differences in colors between the projectors gets smaller and the colors appears more correct. For one device, the average ΔE*ab color difference when compared to a relative white reference was reduced from 22 to 11, for another from 13 to 6. Blue colors have the largest variations among the projection displays and makes them

  5. Image Mosaic Method Based on SIFT Features of Line Segment

    Jun Zhu

    2014-01-01

    Full Text Available This paper proposes a novel image mosaic method based on SIFT (Scale Invariant Feature Transform feature of line segment, aiming to resolve incident scaling, rotation, changes in lighting condition, and so on between two images in the panoramic image mosaic process. This method firstly uses Harris corner detection operator to detect key points. Secondly, it constructs directed line segments, describes them with SIFT feature, and matches those directed segments to acquire rough point matching. Finally, Ransac method is used to eliminate wrong pairs in order to accomplish image mosaic. The results from experiment based on four pairs of images show that our method has strong robustness for resolution, lighting, rotation, and scaling.

  6. Automatic labeling and segmentation of vertebrae in CT images

    Rasoulian, Abtin; Rohling, Robert N.; Abolmaesumi, Purang

    2014-03-01

    Labeling and segmentation of the spinal column from CT images is a pre-processing step for a range of image- guided interventions. State-of-the art techniques have focused either on image feature extraction or template matching for labeling of the vertebrae followed by segmentation of each vertebra. Recently, statistical multi- object models have been introduced to extract common statistical characteristics among several anatomies. In particular, we have created models for segmentation of the lumbar spine which are robust, accurate, and computationally tractable. In this paper, we reconstruct a statistical multi-vertebrae pose+shape model and utilize it in a novel framework for labeling and segmentation of the vertebra in a CT image. We validate our technique in terms of accuracy of the labeling and segmentation of CT images acquired from 56 subjects. The method correctly labels all vertebrae in 70% of patients and is only one level off for the remaining 30%. The mean distance error achieved for the segmentation is 2.1 +/- 0.7 mm.

  7. Evaluating the impact of image preprocessing on iris segmentation

    José F. Valencia-Murillo

    2014-08-01

    Full Text Available Segmentation is one of the most important stages in iris recognition systems. In this paper, image preprocessing algorithms are applied in order to evaluate their impact on successful iris segmentation. The preprocessing algorithms are based on histogram adjustment, Gaussian filters and suppression of specular reflections in human eye images. The segmentation method introduced by Masek is applied on 199 images acquired under unconstrained conditions, belonging to the CASIA-irisV3 database, before and after applying the preprocessing algorithms. Then, the impact of image preprocessing algorithms on the percentage of successful iris segmentation is evaluated by means of a visual inspection of images in order to determine if circumferences of iris and pupil were detected correctly. An increase from 59% to 73% in percentage of successful iris segmentation is obtained with an algorithm that combine elimination of specular reflections, followed by the implementation of a Gaussian filter having a 5x5 kernel. The results highlight the importance of a preprocessing stage as a previous step in order to improve the performance during the edge detection and iris segmentation processes.

  8. Automated breast segmentation in ultrasound computer tomography SAFT images

    Hopp, T.; You, W.; Zapf, M.; Tan, W. Y.; Gemmeke, H.; Ruiter, N. V.

    2017-03-01

    Ultrasound Computer Tomography (USCT) is a promising new imaging system for breast cancer diagnosis. An essential step before further processing is to remove the water background from the reconstructed images. In this paper we present a fully-automated image segmentation method based on three-dimensional active contours. The active contour method is extended by applying gradient vector flow and encoding the USCT aperture characteristics as additional weighting terms. A surface detection algorithm based on a ray model is developed to initialize the active contour, which is iteratively deformed to capture the breast outline in USCT reflection images. The evaluation with synthetic data showed that the method is able to cope with noisy images, and is not influenced by the position of the breast and the presence of scattering objects within the breast. The proposed method was applied to 14 in-vivo images resulting in an average surface deviation from a manual segmentation of 2.7 mm. We conclude that automated segmentation of USCT reflection images is feasible and produces results comparable to a manual segmentation. By applying the proposed method, reproducible segmentation results can be obtained without manual interaction by an expert.

  9. Color image definition evaluation method based on deep learning method

    Liu, Di; Li, YingChun

    2018-01-01

    In order to evaluate different blurring levels of color image and improve the method of image definition evaluation, this paper proposed a method based on the depth learning framework and BP neural network classification model, and presents a non-reference color image clarity evaluation method. Firstly, using VGG16 net as the feature extractor to extract 4,096 dimensions features of the images, then the extracted features and labeled images are employed in BP neural network to train. And finally achieve the color image definition evaluation. The method in this paper are experimented by using images from the CSIQ database. The images are blurred at different levels. There are 4,000 images after the processing. Dividing the 4,000 images into three categories, each category represents a blur level. 300 out of 400 high-dimensional features are trained in VGG16 net and BP neural network, and the rest of 100 samples are tested. The experimental results show that the method can take full advantage of the learning and characterization capability of deep learning. Referring to the current shortcomings of the major existing image clarity evaluation methods, which manually design and extract features. The method in this paper can extract the images features automatically, and has got excellent image quality classification accuracy for the test data set. The accuracy rate is 96%. Moreover, the predicted quality levels of original color images are similar to the perception of the human visual system.

  10. Quantifying the effect of colorization enhancement on mammogram images

    Wojnicki, Paul J.; Uyeda, Elizabeth; Micheli-Tzanakou, Evangelia

    2002-04-01

    Current methods of radiological displays provide only grayscale images of mammograms. The limitation of the image space to grayscale provides only luminance differences and textures as cues for object recognition within the image. However, color can be an important and significant cue in the detection of shapes and objects. Increasing detection ability allows the radiologist to interpret the images in more detail, improving object recognition and diagnostic accuracy. Color detection experiments using our stimulus system, have demonstrated that an observer can only detect an average of 140 levels of grayscale. An optimally colorized image can allow a user to distinguish 250 - 1000 different levels, hence increasing potential image feature detection by 2-7 times. By implementing a colorization map, which follows the luminance map of the original grayscale images, the luminance profile is preserved and color is isolated as the enhancement mechanism. The effect of this enhancement mechanism on the shape, frequency composition and statistical characteristics of the Visual Evoked Potential (VEP) are analyzed and presented. Thus, the effectiveness of the image colorization is measured quantitatively using the Visual Evoked Potential (VEP).

  11. Objective Color Classification of Ecstasy Tablets by Hyperspectral Imaging

    Edelman, Gerda; Lopatka, Martin; Aalders, Maurice

    2013-01-01

    The general procedure followed in the examination of ecstasy tablets for profiling purposes includes a color description, which depends highly on the observers' perception. This study aims to provide objective quantitative color information using visible hyperspectral imaging. Both self-manufactured

  12. Spatial characterization of nanotextured surfaces by visual color imaging

    Feidenhans'l, Nikolaj Agentoft; Murthy, Swathi; Madsen, Morten H.

    2016-01-01

    We present a method using an ordinary color camera to characterize nanostructures from the visual color of the structures. The method provides a macroscale overview image from which micrometer-sized regions can be analyzed independently, hereby revealing long-range spatial variations...

  13. Automated color classification of urine dipstick image in urine examination

    Rahmat, R. F.; Royananda; Muchtar, M. A.; Taqiuddin, R.; Adnan, S.; Anugrahwaty, R.; Budiarto, R.

    2018-03-01

    Urine examination using urine dipstick has long been used to determine the health status of a person. The economical and convenient use of urine dipstick is one of the reasons urine dipstick is still used to check people health status. The real-life implementation of urine dipstick is done manually, in general, that is by comparing it with the reference color visually. This resulted perception differences in the color reading of the examination results. In this research, authors used a scanner to obtain the urine dipstick color image. The use of scanner can be one of the solutions in reading the result of urine dipstick because the light produced is consistent. A method is required to overcome the problems of urine dipstick color matching and the test reference color that have been conducted manually. The method proposed by authors is Euclidean Distance, Otsu along with RGB color feature extraction method to match the colors on the urine dipstick with the standard reference color of urine examination. The result shows that the proposed approach was able to classify the colors on a urine dipstick with an accuracy of 95.45%. The accuracy of color classification on urine dipstick against the standard reference color is influenced by the level of scanner resolution used, the higher the scanner resolution level, the higher the accuracy.

  14. Color image analysis technique for measuring of fat in meat: an application for the meat industry

    Ballerini, Lucia; Hogberg, Anders; Lundstrom, Kerstin; Borgefors, Gunilla

    2001-04-01

    Intramuscular fat content in meat influences some important meat quality characteristics. The aim of the present study was to develop and apply image processing techniques to quantify intramuscular fat content in beefs together with the visual appearance of fat in meat (marbling). Color images of M. longissimus dorsi meat samples with a variability of intramuscular fat content and marbling were captured. Image analysis software was specially developed for the interpretation of these images. In particular, a segmentation algorithm (i.e. classification of different substances: fat, muscle and connective tissue) was optimized in order to obtain a proper classification and perform subsequent analysis. Segmentation of muscle from fat was achieved based on their characteristics in the 3D color space, and on the intrinsic fuzzy nature of these structures. The method is fully automatic and it combines a fuzzy clustering algorithm, the Fuzzy c-Means Algorithm, with a Genetic Algorithm. The percentages of various colors (i.e. substances) within the sample are then determined; the number, size distribution, and spatial distributions of the extracted fat flecks are measured. Measurements are correlated with chemical and sensory properties. Results so far show that advanced image analysis is useful for quantify the visual appearance of meat.

  15. Muscles of mastication model-based MR image segmentation

    Ng, H.P. [NUS Graduate School for Integrative Sciences and Engineering, Singapore (Singapore); Agency for Science Technology and Research, Singapore (Singapore). Biomedical Imaging Lab.; Ong, S.H. [National Univ. of Singapore (Singapore). Dept. of Electrical and Computer Engineering; National Univ. of Singapore (Singapore). Div. of Bioengineering; Hu, Q.; Nowinski, W.L. [Agency for Science Technology and Research, Singapore (Singapore). Biomedical Imaging Lab.; Foong, K.W.C. [NUS Graduate School for Integrative Sciences and Engineering, Singapore (Singapore); National Univ. of Singapore (Singapore). Dept. of Preventive Dentistry; Goh, P.S. [National Univ. of Singapore (Singapore). Dept. of Diagnostic Radiology

    2006-11-15

    Objective: The muscles of mastication play a major role in the orodigestive system as the principal motive force for the mandible. An algorithm for segmenting these muscles from magnetic resonance (MR) images was developed and tested. Materials and methods: Anatomical information about the muscles of mastication in MR images is used to obtain the spatial relationships relating the muscle region of interest (ROI) and head ROI. A model-based technique that involves the spatial relationships between head and muscle ROIs as well as muscle templates is developed. In the segmentation stage, the muscle ROI is derived from the model. Within the muscle ROI, anisotropic diffusion is applied to smooth the texture, followed by thresholding to exclude bone and fat. The muscle template and morphological operators are employed to obtain an initial estimate of the muscle boundary, which then serves as the input contour to the gradient vector flow snake that iterates to the final segmentation. Results: The method was applied to segmentation of the masseter, lateral pterygoid and medial pterygoid in 75 images. The overlap indices (K) achieved are 91.4, 92.1 and 91.2%, respectively. Conclusion: A model-based method for segmenting the muscles of mastication from MR images was developed and tested. The results show good agreement between manual and automatic segmentations. (orig.)

  16. Comparison of segmentation algorithms for fluorescence microscopy images of cells.

    Dima, Alden A; Elliott, John T; Filliben, James J; Halter, Michael; Peskin, Adele; Bernal, Javier; Kociolek, Marcin; Brady, Mary C; Tang, Hai C; Plant, Anne L

    2011-07-01

    The analysis of fluorescence microscopy of cells often requires the determination of cell edges. This is typically done using segmentation techniques that separate the cell objects in an image from the surrounding background. This study compares segmentation results from nine different segmentation techniques applied to two different cell lines and five different sets of imaging conditions. Significant variability in the results of segmentation was observed that was due solely to differences in imaging conditions or applications of different algorithms. We quantified and compared the results with a novel bivariate similarity index metric that evaluates the degree of underestimating or overestimating a cell object. The results show that commonly used threshold-based segmentation techniques are less accurate than k-means clustering with multiple clusters. Segmentation accuracy varies with imaging conditions that determine the sharpness of cell edges and with geometric features of a cell. Based on this observation, we propose a method that quantifies cell edge character to provide an estimate of how accurately an algorithm will perform. The results of this study will assist the development of criteria for evaluating interlaboratory comparability. Published 2011 Wiley-Liss, Inc.

  17. Muscles of mastication model-based MR image segmentation

    Ng, H.P.; Agency for Science Technology and Research, Singapore; Ong, S.H.; National Univ. of Singapore; Hu, Q.; Nowinski, W.L.; Foong, K.W.C.; National Univ. of Singapore; Goh, P.S.

    2006-01-01

    Objective: The muscles of mastication play a major role in the orodigestive system as the principal motive force for the mandible. An algorithm for segmenting these muscles from magnetic resonance (MR) images was developed and tested. Materials and methods: Anatomical information about the muscles of mastication in MR images is used to obtain the spatial relationships relating the muscle region of interest (ROI) and head ROI. A model-based technique that involves the spatial relationships between head and muscle ROIs as well as muscle templates is developed. In the segmentation stage, the muscle ROI is derived from the model. Within the muscle ROI, anisotropic diffusion is applied to smooth the texture, followed by thresholding to exclude bone and fat. The muscle template and morphological operators are employed to obtain an initial estimate of the muscle boundary, which then serves as the input contour to the gradient vector flow snake that iterates to the final segmentation. Results: The method was applied to segmentation of the masseter, lateral pterygoid and medial pterygoid in 75 images. The overlap indices (K) achieved are 91.4, 92.1 and 91.2%, respectively. Conclusion: A model-based method for segmenting the muscles of mastication from MR images was developed and tested. The results show good agreement between manual and automatic segmentations. (orig.)

  18. Color camera computed tomography imaging spectrometer for improved spatial-spectral image accuracy

    Wilson, Daniel W. (Inventor); Bearman, Gregory H. (Inventor); Johnson, William R. (Inventor)

    2011-01-01

    Computed tomography imaging spectrometers ("CTIS"s) having color focal plane array detectors are provided. The color FPA detector may comprise a digital color camera including a digital image sensor, such as a Foveon X3.RTM. digital image sensor or a Bayer color filter mosaic. In another embodiment, the CTIS includes a pattern imposed either directly on the object scene being imaged or at the field stop aperture. The use of a color FPA detector and the pattern improves the accuracy of the captured spatial and spectral information.

  19. Fuzzy object models for newborn brain MR image segmentation

    Kobashi, Syoji; Udupa, Jayaram K.

    2013-03-01

    Newborn brain MR image segmentation is a challenging problem because of variety of size, shape and MR signal although it is the fundamental study for quantitative radiology in brain MR images. Because of the large difference between the adult brain and the newborn brain, it is difficult to directly apply the conventional methods for the newborn brain. Inspired by the original fuzzy object model introduced by Udupa et al. at SPIE Medical Imaging 2011, called fuzzy shape object model (FSOM) here, this paper introduces fuzzy intensity object model (FIOM), and proposes a new image segmentation method which combines the FSOM and FIOM into fuzzy connected (FC) image segmentation. The fuzzy object models are built from training datasets in which the cerebral parenchyma is delineated by experts. After registering FSOM with the evaluating image, the proposed method roughly recognizes the cerebral parenchyma region based on a prior knowledge of location, shape, and the MR signal given by the registered FSOM and FIOM. Then, FC image segmentation delineates the cerebral parenchyma using the fuzzy object models. The proposed method has been evaluated using 9 newborn brain MR images using the leave-one-out strategy. The revised age was between -1 and 2 months. Quantitative evaluation using false positive volume fraction (FPVF) and false negative volume fraction (FNVF) has been conducted. Using the evaluation data, a FPVF of 0.75% and FNVF of 3.75% were achieved. More data collection and testing are underway.

  20. Combining Constraint Types From Public Data in Aerial Image Segmentation

    Jacobsen, Thomas Stig; Jensen, Jacob Jon; Jensen, Daniel Rune

    2013-01-01

    We introduce a method for image segmentation that constraints the clustering with map and point data. The method is showcased by applying the spectral clustering algorithm on aerial images for building detection with constraints built from a height map and address point data. We automatically det...

  1. Color image digitization and analysis for drum inspection

    Muller, R.C.; Armstrong, G.A.; Burks, B.L.; Kress, R.L.; Heckendorn, F.M.; Ward, C.R.

    1993-01-01

    A rust inspection system that uses color analysis to find rust spots on drums has been developed. The system is composed of high-resolution color video equipment that permits the inspection of rust spots on the order of 0.25 cm (0.1-in.) in diameter. Because of the modular nature of the system design, the use of open systems software (X11, etc.), the inspection system can be easily integrated into other environmental restoration and waste management programs. The inspection system represents an excellent platform for the integration of other color inspection and color image processing algorithms

  2. High-dynamic-range imaging for cloud segmentation

    Dev, Soumyabrata; Savoy, Florian M.; Lee, Yee Hui; Winkler, Stefan

    2018-04-01

    Sky-cloud images obtained from ground-based sky cameras are usually captured using a fisheye lens with a wide field of view. However, the sky exhibits a large dynamic range in terms of luminance, more than a conventional camera can capture. It is thus difficult to capture the details of an entire scene with a regular camera in a single shot. In most cases, the circumsolar region is overexposed, and the regions near the horizon are underexposed. This renders cloud segmentation for such images difficult. In this paper, we propose HDRCloudSeg - an effective method for cloud segmentation using high-dynamic-range (HDR) imaging based on multi-exposure fusion. We describe the HDR image generation process and release a new database to the community for benchmarking. Our proposed approach is the first using HDR radiance maps for cloud segmentation and achieves very good results.

  3. Multi scales based sparse matrix spectral clustering image segmentation

    Liu, Zhongmin; Chen, Zhicai; Li, Zhanming; Hu, Wenjin

    2018-04-01

    In image segmentation, spectral clustering algorithms have to adopt the appropriate scaling parameter to calculate the similarity matrix between the pixels, which may have a great impact on the clustering result. Moreover, when the number of data instance is large, computational complexity and memory use of the algorithm will greatly increase. To solve these two problems, we proposed a new spectral clustering image segmentation algorithm based on multi scales and sparse matrix. We devised a new feature extraction method at first, then extracted the features of image on different scales, at last, using the feature information to construct sparse similarity matrix which can improve the operation efficiency. Compared with traditional spectral clustering algorithm, image segmentation experimental results show our algorithm have better degree of accuracy and robustness.

  4. Automated Segmentation of Cardiac Magnetic Resonance Images

    Stegmann, Mikkel Bille; Nilsson, Jens Chr.; Grønning, Bjørn A.

    2001-01-01

    Magnetic resonance imaging (MRI) has been shown to be an accurate and precise technique to assess cardiac volumes and function in a non-invasive manner and is generally considered to be the current gold-standard for cardiac imaging [1]. Measurement of ventricular volumes, muscle mass and function...

  5. Semiautomatic segmentation of liver metastases on volumetric CT images

    Yan, Jiayong; Schwartz, Lawrence H.; Zhao, Binsheng

    2015-01-01

    Purpose: Accurate segmentation and quantification of liver metastases on CT images are critical to surgery/radiation treatment planning and therapy response assessment. To date, there are no reliable methods to perform such segmentation automatically. In this work, the authors present a method for semiautomatic delineation of liver metastases on contrast-enhanced volumetric CT images. Methods: The first step is to manually place a seed region-of-interest (ROI) in the lesion on an image. This ROI will (1) serve as an internal marker and (2) assist in automatically identifying an external marker. With these two markers, lesion contour on the image can be accurately delineated using traditional watershed transformation. Density information will then be extracted from the segmented 2D lesion and help determine the 3D connected object that is a candidate of the lesion volume. The authors have developed a robust strategy to automatically determine internal and external markers for marker-controlled watershed segmentation. By manually placing a seed region-of-interest in the lesion to be delineated on a reference image, the method can automatically determine dual threshold values to approximately separate the lesion from its surrounding structures and refine the thresholds from the segmented lesion for the accurate segmentation of the lesion volume. This method was applied to 69 liver metastases (1.1–10.3 cm in diameter) from a total of 15 patients. An independent radiologist manually delineated all lesions and the resultant lesion volumes served as the “gold standard” for validation of the method’s accuracy. Results: The algorithm received a median overlap, overestimation ratio, and underestimation ratio of 82.3%, 6.0%, and 11.5%, respectively, and a median average boundary distance of 1.2 mm. Conclusions: Preliminary results have shown that volumes of liver metastases on contrast-enhanced CT images can be accurately estimated by a semiautomatic segmentation

  6. FBIH financial market segmentation on the basis of image factors

    Arnela Bevanda

    2008-12-01

    Full Text Available The aim of the study is to recognize, single out and define market segments useful for future marketing strategies, using certain statistical techniques on the basis of influence of various image factors of financial institutions. The survey included a total of 500 interviewees: 250 bank clients and 250 clients of insurance companies. Starting from the problem area and research goal, the following hypothesis has been formulated: Basic preferences of clients in regard of image factors while selecting financial institutions are different enough to be used as such for differentiating significant market segments of clients. Two segments have been singled out by cluster analysis and named, respectively, traditionalists and visualists. Results of the research confirmed the established hypothesis and pointed to the fact that managers in the financial institutions of the Federation of Bosnia and Herzegovina (FBIH must undertake certain corrective actions, especially when planning and implementing communication strategies, if they wish to maintain their competitiveness in serving both selected segments.

  7. Active contour based segmentation of resected livers in CT images

    Oelmann, Simon; Oyarzun Laura, Cristina; Drechsler, Klaus; Wesarg, Stefan

    2015-03-01

    The majority of state of the art segmentation algorithms are able to give proper results in healthy organs but not in pathological ones. However, many clinical applications require an accurate segmentation of pathological organs. The determination of the target boundaries for radiotherapy or liver volumetry calculations are examples of this. Volumetry measurements are of special interest after tumor resection for follow up of liver regrow. The segmentation of resected livers presents additional challenges that were not addressed by state of the art algorithms. This paper presents a snakes based algorithm specially developed for the segmentation of resected livers. The algorithm is enhanced with a novel dynamic smoothing technique that allows the active contour to propagate with different speeds depending on the intensities visible in its neighborhood. The algorithm is evaluated in 6 clinical CT images as well as 18 artificial datasets generated from additional clinical CT images.

  8. Segmentation of images for gingival growth measurement

    Kim, Dong-Il; Wilson, Joseph N.

    1992-12-01

    The ability to measure gingival volume growth from dental casts would provide a valuable resource for periodontists. This problem is attractive from a computer vision standpoint due to the complexities of data acquisition, segmentation of gingival and tooth surfaces and boundaries, and extraction of features (such as tooth axes) to help solve the correspondence problem for multiple casts. In this paper, a structured light 3-D range finder is used to collect raw data. The most complicated subtask is that of detecting discontinuities such as the gingival margin. Discontinuity detection is hindered both by cast anomalies (such as bubbles and holes generated during the process of dental impression) and by the subtle nature of the discontinuities themselves. First, we discuss an approach to segmenting a dental cast into tooth and gingival units using depth and orientation discontinuities. The visible cast surface is reconstructed by obtaining the minimum of a parameterized functional. The first derivative of the energy functional (which corresponds to the Euler-Lagrange equation) is solved using the multigrid methods. both orientation and depth discontinuities are detected by adding a discrete discontinuity functional to the energy functional. The principal axes and boundaries of the teeth provide the information necessary to determine the region to be measured in estimating gingival growth. Finally, voxels corresponding to growth regions are counted to measure the target volume.

  9. Robust generative asymmetric GMM for brain MR image segmentation.

    Ji, Zexuan; Xia, Yong; Zheng, Yuhui

    2017-11-01

    Accurate segmentation of brain tissues from magnetic resonance (MR) images based on the unsupervised statistical models such as Gaussian mixture model (GMM) has been widely studied during last decades. However, most GMM based segmentation methods suffer from limited accuracy due to the influences of noise and intensity inhomogeneity in brain MR images. To further improve the accuracy for brain MR image segmentation, this paper presents a Robust Generative Asymmetric GMM (RGAGMM) for simultaneous brain MR image segmentation and intensity inhomogeneity correction. First, we develop an asymmetric distribution to fit the data shapes, and thus construct a spatial constrained asymmetric model. Then, we incorporate two pseudo-likelihood quantities and bias field estimation into the model's log-likelihood, aiming to exploit the neighboring priors of within-cluster and between-cluster and to alleviate the impact of intensity inhomogeneity, respectively. Finally, an expectation maximization algorithm is derived to iteratively maximize the approximation of the data log-likelihood function to overcome the intensity inhomogeneity in the image and segment the brain MR images simultaneously. To demonstrate the performances of the proposed algorithm, we first applied the proposed algorithm to a synthetic brain MR image to show the intermediate illustrations and the estimated distribution of the proposed algorithm. The next group of experiments is carried out in clinical 3T-weighted brain MR images which contain quite serious intensity inhomogeneity and noise. Then we quantitatively compare our algorithm to state-of-the-art segmentation approaches by using Dice coefficient (DC) on benchmark images obtained from IBSR and BrainWeb with different level of noise and intensity inhomogeneity. The comparison results on various brain MR images demonstrate the superior performances of the proposed algorithm in dealing with the noise and intensity inhomogeneity. In this paper, the RGAGMM

  10. Color Multifocus Image Fusion Using Empirical Mode Decomposition

    S. Savić

    2013-11-01

    Full Text Available In this paper, a recently proposed grayscale multifocus image fusion method based on the first level of Empirical Mode Decomposition (EMD has been extended to color images. In addition, this paper deals with low contrast multifocus image fusion. The major advantages of the proposed methods are simplicity, absence of artifacts and control of contrast, while this isn’t the case with other pyramidal multifocus fusion methods. The efficiency of the proposed method is tested subjectively and with a vector gradient based objective measure, that is proposed in this paper for multifocus color image fusion. Subjective analysis performed on a multifocus image dataset has shown its superiority to the existing EMD and DWT based methods. The objective measures of grayscale and color image fusion show significantly better scores for this method than for the classic complex EMD fusion method.

  11. Polarization image segmentation of radiofrequency ablated porcine myocardial tissue.

    Iftikhar Ahmad

    Full Text Available Optical polarimetry has previously imaged the spatial extent of a typical radiofrequency ablated (RFA lesion in myocardial tissue, exhibiting significantly lower total depolarization at the necrotic core compared to healthy tissue, and intermediate values at the RFA rim region. Here, total depolarization in ablated myocardium was used to segment the total depolarization image into three (core, rim and healthy zones. A local fuzzy thresholding algorithm was used for this multi-region segmentation, and then compared with a ground truth segmentation obtained from manual demarcation of RFA core and rim regions on the histopathology image. Quantitative comparison of the algorithm segmentation results was performed with evaluation metrics such as dice similarity coefficient (DSC = 0.78 ± 0.02 and 0.80 ± 0.02, sensitivity (Sn = 0.83 ± 0.10 and 0.91 ± 0.08, specificity (Sp = 0.76 ± 0.17 and 0.72 ± 0.17 and accuracy (Acc = 0.81 ± 0.09 and 0.71 ± 0.10 for RFA core and rim regions, respectively. This automatic segmentation of parametric depolarization images suggests a novel application of optical polarimetry, namely its use in objective RFA image quantification.

  12. AUTOMATED CELL SEGMENTATION WITH 3D FLUORESCENCE MICROSCOPY IMAGES.

    Kong, Jun; Wang, Fusheng; Teodoro, George; Liang, Yanhui; Zhu, Yangyang; Tucker-Burden, Carol; Brat, Daniel J

    2015-04-01

    A large number of cell-oriented cancer investigations require an effective and reliable cell segmentation method on three dimensional (3D) fluorescence microscopic images for quantitative analysis of cell biological properties. In this paper, we present a fully automated cell segmentation method that can detect cells from 3D fluorescence microscopic images. Enlightened by fluorescence imaging techniques, we regulated the image gradient field by gradient vector flow (GVF) with interpolated and smoothed data volume, and grouped voxels based on gradient modes identified by tracking GVF field. Adaptive thresholding was then applied to voxels associated with the same gradient mode where voxel intensities were enhanced by a multiscale cell filter. We applied the method to a large volume of 3D fluorescence imaging data of human brain tumor cells with (1) small cell false detection and missing rates for individual cells; and (2) trivial over and under segmentation incidences for clustered cells. Additionally, the concordance of cell morphometry structure between automated and manual segmentation was encouraging. These results suggest a promising 3D cell segmentation method applicable to cancer studies.

  13. Adaptive Residual Interpolation for Color and Multispectral Image Demosaicking.

    Monno, Yusuke; Kiku, Daisuke; Tanaka, Masayuki; Okutomi, Masatoshi

    2017-12-01

    Color image demosaicking for the Bayer color filter array is an essential image processing operation for acquiring high-quality color images. Recently, residual interpolation (RI)-based algorithms have demonstrated superior demosaicking performance over conventional color difference interpolation-based algorithms. In this paper, we propose adaptive residual interpolation (ARI) that improves existing RI-based algorithms by adaptively combining two RI-based algorithms and selecting a suitable iteration number at each pixel. These are performed based on a unified criterion that evaluates the validity of an RI-based algorithm. Experimental comparisons using standard color image datasets demonstrate that ARI can improve existing RI-based algorithms by more than 0.6 dB in the color peak signal-to-noise ratio and can outperform state-of-the-art algorithms based on training images. We further extend ARI for a multispectral filter array, in which more than three spectral bands are arrayed, and demonstrate that ARI can achieve state-of-the-art performance also for the task of multispectral image demosaicking.

  14. A deep level set method for image segmentation

    Tang, Min; Valipour, Sepehr; Zhang, Zichen Vincent; Cobzas, Dana; MartinJagersand

    2017-01-01

    This paper proposes a novel image segmentation approachthat integrates fully convolutional networks (FCNs) with a level setmodel. Compared with a FCN, the integrated method can incorporatesmoothing and prior information to achieve an accurate segmentation.Furthermore, different than using the level set model as a post-processingtool, we integrate it into the training phase to fine-tune the FCN. Thisallows the use of unlabeled data during training in a semi-supervisedsetting. Using two types o...

  15. Research of image retrieval technology based on color feature

    Fu, Yanjun; Jiang, Guangyu; Chen, Fengying

    2009-10-01

    Recently, with the development of the communication and the computer technology and the improvement of the storage technology and the capability of the digital image equipment, more and more image resources are given to us than ever. And thus the solution of how to locate the proper image quickly and accurately is wanted.The early method is to set up a key word for searching in the database, but now the method has become very difficult when we search much more picture that we need. In order to overcome the limitation of the traditional searching method, content based image retrieval technology was aroused. Now, it is a hot research subject.Color image retrieval is the important part of it. Color is the most important feature for color image retrieval. Three key questions on how to make use of the color characteristic are discussed in the paper: the expression of color, the abstraction of color characteristic and the measurement of likeness based on color. On the basis, the extraction technology of the color histogram characteristic is especially discussed. Considering the advantages and disadvantages of the overall histogram and the partition histogram, a new method based the partition-overall histogram is proposed. The basic thought of it is to divide the image space according to a certain strategy, and then calculate color histogram of each block as the color feature of this block. Users choose the blocks that contain important space information, confirming the right value. The system calculates the distance between the corresponding blocks that users choosed. Other blocks merge into part overall histograms again, and the distance should be calculated. Then accumulate all the distance as the real distance between two pictures. The partition-overall histogram comprehensive utilizes advantages of two methods above, by choosing blocks makes the feature contain more spatial information which can improve performance; the distances between partition-overall histogram

  16. Continuously live image processor for drift chamber track segment triggering

    Berenyi, A.; Chen, H.K.; Dao, K.

    1999-01-01

    The first portion of the BaBar experiment Level 1 Drift Chamber Trigger pipeline is the Track Segment Finder (TSF). Using a novel method incorporating both occupancy and drift-time information, the TSF system continually searches for segments in the supercells of the full 7104-wire Drift Chamber hit image at 3.7 MHz. The TSF was constructed to operate in a potentially high beam-background environment while achieving high segment-finding efficiency, deadtime-free operation, a spatial resolution of 5 simulated physics events

  17. Image Based Hair Segmentation Algorithm for the Application of Automatic Facial Caricature Synthesis

    Yehu Shen

    2014-01-01

    Full Text Available Hair is a salient feature in human face region and are one of the important cues for face analysis. Accurate detection and presentation of hair region is one of the key components for automatic synthesis of human facial caricature. In this paper, an automatic hair detection algorithm for the application of automatic synthesis of facial caricature based on a single image is proposed. Firstly, hair regions in training images are labeled manually and then the hair position prior distributions and hair color likelihood distribution function are estimated from these labels efficiently. Secondly, the energy function of the test image is constructed according to the estimated prior distributions of hair location and hair color likelihood. This energy function is further optimized according to graph cuts technique and initial hair region is obtained. Finally, K-means algorithm and image postprocessing techniques are applied to the initial hair region so that the final hair region can be segmented precisely. Experimental results show that the average processing time for each image is about 280 ms and the average hair region detection accuracy is above 90%. The proposed algorithm is applied to a facial caricature synthesis system. Experiments proved that with our proposed hair segmentation algorithm the facial caricatures are vivid and satisfying.

  18. LSB-based Steganography Using Reflected Gray Code for Color Quantum Images

    Li, Panchi; Lu, Aiping

    2018-02-01

    At present, the classical least-significant-bit (LSB) based image steganography has been extended to quantum image processing. For the existing LSB-based quantum image steganography schemes, the embedding capacity is no more than 3 bits per pixel. Therefore, it is meaningful to study how to improve the embedding capacity of quantum image steganography. This work presents a novel LSB-based steganography using reflected Gray code for colored quantum images, and the embedding capacity of this scheme is up to 4 bits per pixel. In proposed scheme, the secret qubit sequence is considered as a sequence of 4-bit segments. For the four bits in each segment, the first bit is embedded in the second LSB of B channel of the cover image, and and the remaining three bits are embedded in LSB of RGB channels of each color pixel simultaneously using reflected-Gray code to determine the embedded bit from secret information. Following the transforming rule, the LSB of stego-image are not always same as the secret bits and the differences are up to almost 50%. Experimental results confirm that the proposed scheme shows good performance and outperforms the previous ones currently found in the literature in terms of embedding capacity.

  19. A Color Image Watermarking Scheme Resistant against Geometrical Attacks

    Y. Xing

    2010-04-01

    Full Text Available The geometrical attacks are still a problem for many digital watermarking algorithms at present. In this paper, we propose a watermarking algorithm for color images resistant to geometrical distortions (rotation and scaling. The singular value decomposition is used for watermark embedding and extraction. The log-polar map- ping (LPM and phase correlation method are used to register the position of geometrical distortion suffered by the watermarked image. Experiments with different kinds of color images and watermarks demonstrate that the watermarking algorithm is robust to common image processing attacks, especially geometrical attacks.

  20. ImageSURF: An ImageJ Plugin for Batch Pixel-Based Image Segmentation Using Random Forests

    Aidan O'Mara

    2017-11-01

    Full Text Available Image segmentation is a necessary step in automated quantitative imaging. ImageSURF is a macro-compatible ImageJ2/FIJI plugin for pixel-based image segmentation that considers a range of image derivatives to train pixel classifiers which are then applied to image sets of any size to produce segmentations without bias in a consistent, transparent and reproducible manner. The plugin is available from ImageJ update site http://sites.imagej.net/ImageSURF/ and source code from https://github.com/omaraa/ImageSURF. Funding statement: This research was supported by an Australian Government Research Training Program Scholarship.

  1. Bladder segmentation in MR images with watershed segmentation and graph cut algorithm

    Blaffert, Thomas; Renisch, Steffen; Schadewaldt, Nicole; Schulz, Heinrich; Wiemker, Rafael

    2014-03-01

    Prostate and cervix cancer diagnosis and treatment planning that is based on MR images benefit from superior soft tissue contrast compared to CT images. For these images an automatic delineation of the prostate or cervix and the organs at risk such as the bladder is highly desirable. This paper describes a method for bladder segmentation that is based on a watershed transform on high image gradient values and gray value valleys together with the classification of watershed regions into bladder contents and tissue by a graph cut algorithm. The obtained results are superior if compared to a simple region-after-region classification.

  2. Image Segmentation and Processing for Efficient Parking Space Analysis

    Tutika, Chetan Sai; Vallapaneni, Charan; R, Karthik; KP, Bharath; Muthu, N Ruban Rajesh Kumar

    2018-01-01

    In this paper, we develop a method to detect vacant parking spaces in an environment with unclear segments and contours with the help of MATLAB image processing capabilities. Due to the anomalies present in the parking spaces, such as uneven illumination, distorted slot lines and overlapping of cars. The present-day conventional algorithms have difficulties processing the image for accurate results. The algorithm proposed uses a combination of image pre-processing and false contour detection ...

  3. Automated Segmentability Index for Layer Segmentation of Macular SD-OCT Images

    Lee, K.; Buitendijk, G.H.; Bogunovic, H.; Springelkamp, H.; Hofman, A.; Wahle, A.; Sonka, M.; Vingerling, J.R.; Klaver, C.C.W.; Abramoff, M.D.

    2016-01-01

    PURPOSE: To automatically identify which spectral-domain optical coherence tomography (SD-OCT) scans will provide reliable automated layer segmentations for more accurate layer thickness analyses in population studies. METHODS: Six hundred ninety macular SD-OCT image volumes (6.0 x 6.0 x 2.3 mm3)

  4. Individual Building Rooftop and Tree Crown Segmentation from High-Resolution Urban Aerial Optical Images

    Jichao Jiao

    2016-01-01

    Full Text Available We segment buildings and trees from aerial photographs by using superpixels, and we estimate the tree’s parameters by using a cost function proposed in this paper. A method based on image complexity is proposed to refine superpixels boundaries. In order to classify buildings from ground and classify trees from grass, the salient feature vectors that include colors, Features from Accelerated Segment Test (FAST corners, and Gabor edges are extracted from refined superpixels. The vectors are used to train the classifier based on Naive Bayes classifier. The trained classifier is used to classify refined superpixels as object or nonobject. The properties of a tree, including its locations and radius, are estimated by minimizing the cost function. The shadow is used to calculate the tree height using sun angle and the time when the image was taken. Our segmentation algorithm is compared with other two state-of-the-art segmentation algorithms, and the tree parameters obtained in this paper are compared to the ground truth data. Experiments show that the proposed method can segment trees and buildings appropriately, yielding higher precision and better recall rates, and the tree parameters are in good agreement with the ground truth data.

  5. Multilevel Image Segmentation Based on an Improved Firefly Algorithm

    Kai Chen

    2016-01-01

    Full Text Available Multilevel image segmentation is time-consuming and involves large computation. The firefly algorithm has been applied to enhancing the efficiency of multilevel image segmentation. However, in some cases, firefly algorithm is easily trapped into local optima. In this paper, an improved firefly algorithm (IFA is proposed to search multilevel thresholds. In IFA, in order to help fireflies escape from local optima and accelerate the convergence, two strategies (i.e., diversity enhancing strategy with Cauchy mutation and neighborhood strategy are proposed and adaptively chosen according to different stagnation stations. The proposed IFA is compared with three benchmark optimal algorithms, that is, Darwinian particle swarm optimization, hybrid differential evolution optimization, and firefly algorithm. The experimental results show that the proposed method can efficiently segment multilevel images and obtain better performance than the other three methods.

  6. Image Segmentation of Historical Handwriting from Palm Leaf Manuscripts

    Surinta, Olarik; Chamchong, Rapeeporn

    Palm leaf manuscripts were one of the earliest forms of written media and were used in Southeast Asia to store early written knowledge about subjects such as medicine, Buddhist doctrine and astrology. Therefore, historical handwritten palm leaf manuscripts are important for people who like to learn about historical documents, because we can learn more experience from them. This paper presents an image segmentation of historical handwriting from palm leaf manuscripts. The process is composed of three steps: 1) background elimination to separate text and background by Otsu's algorithm 2) line segmentation and 3) character segmentation by histogram of image. The end result is the character's image. The results from this research may be applied to optical character recognition (OCR) in the future.

  7. Phase contrast image segmentation using a Laue analyser crystal

    Kitchen, Marcus J; Paganin, David M; Lewis, Robert A; Pavlov, Konstantin M; Uesugi, Kentaro; Allison, Beth J; Hooper, Stuart B

    2011-01-01

    Dual-energy x-ray imaging is a powerful tool enabling two-component samples to be separated into their constituent objects from two-dimensional images. Phase contrast x-ray imaging can render the boundaries between media of differing refractive indices visible, despite them having similar attenuation properties; this is important for imaging biological soft tissues. We have used a Laue analyser crystal and a monochromatic x-ray source to combine the benefits of both techniques. The Laue analyser creates two distinct phase contrast images that can be simultaneously acquired on a high-resolution detector. These images can be combined to separate the effects of x-ray phase, absorption and scattering and, using the known complex refractive indices of the sample, to quantitatively segment its component materials. We have successfully validated this phase contrast image segmentation (PCIS) using a two-component phantom, containing an iodinated contrast agent, and have also separated the lungs and ribcage in images of a mouse thorax. Simultaneous image acquisition has enabled us to perform functional segmentation of the mouse thorax throughout the respiratory cycle during mechanical ventilation.

  8. Definition of Linear Color Models in the RGB Vector Color Space to Detect Red Peaches in Orchard Images Taken under Natural Illumination

    Jordi Palacín

    2012-06-01

    Full Text Available This work proposes the detection of red peaches in orchard images based on the definition of different linear color models in the RGB vector color space. The classification and segmentation of the pixels of the image is then performed by comparing the color distance from each pixel to the different previously defined linear color models. The methodology proposed has been tested with images obtained in a real orchard under natural light. The peach variety in the orchard was the paraguayo (Prunus persica var. platycarpa peach with red skin. The segmentation results showed that the area of the red peaches in the images was detected with an average error of 11.6%; 19.7% in the case of bright illumination; 8.2% in the case of low illumination; 8.6% for occlusion up to 33%; 12.2% in the case of occlusion between 34 and 66%; and 23% for occlusion above 66%. Finally, a methodology was proposed to estimate the diameter of the fruits based on an ellipsoidal fitting. A first diameter was obtained by using all the contour pixels and a second diameter was obtained by rejecting some pixels of the contour. This approach enables a rough estimate of the fruit occlusion percentage range by comparing the two diameter estimates.

  9. Hyperspectral image segmentation using a cooperative nonparametric approach

    Taher, Akar; Chehdi, Kacem; Cariou, Claude

    2013-10-01

    In this paper a new unsupervised nonparametric cooperative and adaptive hyperspectral image segmentation approach is presented. The hyperspectral images are partitioned band by band in parallel and intermediate classification results are evaluated and fused, to get the final segmentation result. Two unsupervised nonparametric segmentation methods are used in parallel cooperation, namely the Fuzzy C-means (FCM) method, and the Linde-Buzo-Gray (LBG) algorithm, to segment each band of the image. The originality of the approach relies firstly on its local adaptation to the type of regions in an image (textured, non-textured), and secondly on the introduction of several levels of evaluation and validation of intermediate segmentation results before obtaining the final partitioning of the image. For the management of similar or conflicting results issued from the two classification methods, we gradually introduced various assessment steps that exploit the information of each spectral band and its adjacent bands, and finally the information of all the spectral bands. In our approach, the detected textured and non-textured regions are treated separately from feature extraction step, up to the final classification results. This approach was first evaluated on a large number of monocomponent images constructed from the Brodatz album. Then it was evaluated on two real applications using a respectively multispectral image for Cedar trees detection in the region of Baabdat (Lebanon) and a hyperspectral image for identification of invasive and non invasive vegetation in the region of Cieza (Spain). A correct classification rate (CCR) for the first application is over 97% and for the second application the average correct classification rate (ACCR) is over 99%.

  10. Medical image segmentation by means of constraint satisfaction neural network

    Chen, C.T.; Tsao, C.K.; Lin, W.C.

    1990-01-01

    This paper applies the concept of constraint satisfaction neural network (CSNN) to the problem of medical image segmentation. Constraint satisfaction (or constraint propagation), the procedure to achieve global consistency through local computation, is an important paradigm in artificial intelligence. CSNN can be viewed as a three-dimensional neural network, with the two-dimensional image matrix as its base, augmented by various constraint labels for each pixel. These constraint labels can be interpreted as the connections and the topology of the neural network. Through parallel and iterative processes, the CSNN will approach a solution that satisfies the given constraints thus providing segmented regions with global consistency

  11. Automated Segmentation of Nuclei in Breast Cancer Histopathology Images.

    Paramanandam, Maqlin; O'Byrne, Michael; Ghosh, Bidisha; Mammen, Joy John; Manipadam, Marie Therese; Thamburaj, Robinson; Pakrashi, Vikram

    2016-01-01

    The process of Nuclei detection in high-grade breast cancer images is quite challenging in the case of image processing techniques due to certain heterogeneous characteristics of cancer nuclei such as enlarged and irregularly shaped nuclei, highly coarse chromatin marginalized to the nuclei periphery and visible nucleoli. Recent reviews state that existing techniques show appreciable segmentation accuracy on breast histopathology images whose nuclei are dispersed and regular in texture and shape; however, typical cancer nuclei are often clustered and have irregular texture and shape properties. This paper proposes a novel segmentation algorithm for detecting individual nuclei from Hematoxylin and Eosin (H&E) stained breast histopathology images. This detection framework estimates a nuclei saliency map using tensor voting followed by boundary extraction of the nuclei on the saliency map using a Loopy Back Propagation (LBP) algorithm on a Markov Random Field (MRF). The method was tested on both whole-slide images and frames of breast cancer histopathology images. Experimental results demonstrate high segmentation performance with efficient precision, recall and dice-coefficient rates, upon testing high-grade breast cancer images containing several thousand nuclei. In addition to the optimal performance on the highly complex images presented in this paper, this method also gave appreciable results in comparison with two recently published methods-Wienert et al. (2012) and Veta et al. (2013), which were tested using their own datasets.

  12. Automated Segmentation of Nuclei in Breast Cancer Histopathology Images.

    Maqlin Paramanandam

    Full Text Available The process of Nuclei detection in high-grade breast cancer images is quite challenging in the case of image processing techniques due to certain heterogeneous characteristics of cancer nuclei such as enlarged and irregularly shaped nuclei, highly coarse chromatin marginalized to the nuclei periphery and visible nucleoli. Recent reviews state that existing techniques show appreciable segmentation accuracy on breast histopathology images whose nuclei are dispersed and regular in texture and shape; however, typical cancer nuclei are often clustered and have irregular texture and shape properties. This paper proposes a novel segmentation algorithm for detecting individual nuclei from Hematoxylin and Eosin (H&E stained breast histopathology images. This detection framework estimates a nuclei saliency map using tensor voting followed by boundary extraction of the nuclei on the saliency map using a Loopy Back Propagation (LBP algorithm on a Markov Random Field (MRF. The method was tested on both whole-slide images and frames of breast cancer histopathology images. Experimental results demonstrate high segmentation performance with efficient precision, recall and dice-coefficient rates, upon testing high-grade breast cancer images containing several thousand nuclei. In addition to the optimal performance on the highly complex images presented in this paper, this method also gave appreciable results in comparison with two recently published methods-Wienert et al. (2012 and Veta et al. (2013, which were tested using their own datasets.

  13. Segmentation of fluorescence microscopy cell images using unsupervised mining.

    Du, Xian; Dua, Sumeet

    2010-05-28

    The accurate measurement of cell and nuclei contours are critical for the sensitive and specific detection of changes in normal cells in several medical informatics disciplines. Within microscopy, this task is facilitated using fluorescence cell stains, and segmentation is often the first step in such approaches. Due to the complex nature of cell issues and problems inherent to microscopy, unsupervised mining approaches of clustering can be incorporated in the segmentation of cells. In this study, we have developed and evaluated the performance of multiple unsupervised data mining techniques in cell image segmentation. We adapt four distinctive, yet complementary, methods for unsupervised learning, including those based on k-means clustering, EM, Otsu's threshold, and GMAC. Validation measures are defined, and the performance of the techniques is evaluated both quantitatively and qualitatively using synthetic and recently published real data. Experimental results demonstrate that k-means, Otsu's threshold, and GMAC perform similarly, and have more precise segmentation results than EM. We report that EM has higher recall values and lower precision results from under-segmentation due to its Gaussian model assumption. We also demonstrate that these methods need spatial information to segment complex real cell images with a high degree of efficacy, as expected in many medical informatics applications.

  14. Adaptive geodesic transform for segmentation of vertebrae on CT images

    Gaonkar, Bilwaj; Shu, Liao; Hermosillo, Gerardo; Zhan, Yiqiang

    2014-03-01

    Vertebral segmentation is a critical first step in any quantitative evaluation of vertebral pathology using CT images. This is especially challenging because bone marrow tissue has the same intensity profile as the muscle surrounding the bone. Thus simple methods such as thresholding or adaptive k-means fail to accurately segment vertebrae. While several other algorithms such as level sets may be used for segmentation any algorithm that is clinically deployable has to work in under a few seconds. To address these dual challenges we present here, a new algorithm based on the geodesic distance transform that is capable of segmenting the spinal vertebrae in under one second. To achieve this we extend the theory of the geodesic distance transforms proposed in1 to incorporate high level anatomical knowledge through adaptive weighting of image gradients. Such knowledge may be provided by the user directly or may be automatically generated by another algorithm. We incorporate information 'learnt' using a previously published machine learning algorithm2 to segment the L1 to L5 vertebrae. While we present a particular application here, the adaptive geodesic transform is a generic concept which can be applied to segmentation of other organs as well.

  15. Automated segmentation and isolation of touching cell nuclei in cytopathology smear images of pleural effusion using distance transform watershed method

    Win, Khin Yadanar; Choomchuay, Somsak; Hamamoto, Kazuhiko

    2017-06-01

    The automated segmentation of cell nuclei is an essential stage in the quantitative image analysis of cell nuclei extracted from smear cytology images of pleural fluid. Cell nuclei can indicate cancer as the characteristics of cell nuclei are associated with cells proliferation and malignancy in term of size, shape and the stained color. Nevertheless, automatic nuclei segmentation has remained challenging due to the artifacts caused by slide preparation, nuclei heterogeneity such as the poor contrast, inconsistent stained color, the cells variation, and cells overlapping. In this paper, we proposed a watershed-based method that is capable to segment the nuclei of the variety of cells from cytology pleural fluid smear images. Firstly, the original image is preprocessed by converting into the grayscale image and enhancing by adjusting and equalizing the intensity using histogram equalization. Next, the cell nuclei are segmented using OTSU thresholding as the binary image. The undesirable artifacts are eliminated using morphological operations. Finally, the distance transform based watershed method is applied to isolate the touching and overlapping cell nuclei. The proposed method is tested with 25 Papanicolaou (Pap) stained pleural fluid images. The accuracy of our proposed method is 92%. The method is relatively simple, and the results are very promising.

  16. New feature of the neutron color image intensifier

    Nittoh, Koichi; Konagai, Chikara; Noji, Takashi; Miyabe, Keisuke

    2009-06-01

    We developed prototype neutron color image intensifiers with high-sensitivity, wide dynamic range and long-life characteristics. In the prototype intensifier (Gd-Type 1), a terbium-activated Gd 2O 2S is used as the input-screen phosphor. In the upgraded model (Gd-Type 2), Gd 2O 3 and CsI:Na are vacuum deposited to form the phosphor layer, which improved the sensitivity and the spatial uniformity. A europium-activated Y 2O 2S multi-color scintillator, emitting red, green and blue photons with different intensities, is utilized as the output screen of the intensifier. By combining this image intensifier with a suitably tuned high-sensitive color CCD camera, higher sensitivity and wider dynamic range could be simultaneously attained than that of the conventional P20-phosphor-type image intensifier. The results of experiments at the JRR-3M neutron radiography irradiation port (flux: 1.5×10 8 n/cm 2/s) showed that these neutron color image intensifiers can clearly image dynamic phenomena with a 30 frame/s video picture. It is expected that the color image intensifier will be used as a new two-dimensional neutron sensor in new application fields.

  17. New feature of the neutron color image intensifier

    Nittoh, Koichi; Konagai, Chikara; Noji, Takashi; Miyabe, Keisuke

    2009-01-01

    We developed prototype neutron color image intensifiers with high-sensitivity, wide dynamic range and long-life characteristics. In the prototype intensifier (Gd-Type 1), a terbium-activated Gd 2 O 2 S is used as the input-screen phosphor. In the upgraded model (Gd-Type 2), Gd 2 O 3 and CsI:Na are vacuum deposited to form the phosphor layer, which improved the sensitivity and the spatial uniformity. A europium-activated Y 2 O 2 S multi-color scintillator, emitting red, green and blue photons with different intensities, is utilized as the output screen of the intensifier. By combining this image intensifier with a suitably tuned high-sensitive color CCD camera, higher sensitivity and wider dynamic range could be simultaneously attained than that of the conventional P20-phosphor-type image intensifier. The results of experiments at the JRR-3M neutron radiography irradiation port (flux: 1.5x10 8 n/cm 2 /s) showed that these neutron color image intensifiers can clearly image dynamic phenomena with a 30 frame/s video picture. It is expected that the color image intensifier will be used as a new two-dimensional neutron sensor in new application fields.

  18. Automatic comic page image understanding based on edge segment analysis

    Liu, Dong; Wang, Yongtao; Tang, Zhi; Li, Luyuan; Gao, Liangcai

    2013-12-01

    Comic page image understanding aims to analyse the layout of the comic page images by detecting the storyboards and identifying the reading order automatically. It is the key technique to produce the digital comic documents suitable for reading on mobile devices. In this paper, we propose a novel comic page image understanding method based on edge segment analysis. First, we propose an efficient edge point chaining method to extract Canny edge segments (i.e., contiguous chains of Canny edge points) from the input comic page image; second, we propose a top-down scheme to detect line segments within each obtained edge segment; third, we develop a novel method to detect the storyboards by selecting the border lines and further identify the reading order of these storyboards. The proposed method is performed on a data set consisting of 2000 comic page images from ten printed comic series. The experimental results demonstrate that the proposed method achieves satisfactory results on different comics and outperforms the existing methods.

  19. Automatic segmentation of lumbar vertebrae in CT images

    Kulkarni, Amruta; Raina, Akshita; Sharifi Sarabi, Mona; Ahn, Christine S.; Babayan, Diana; Gaonkar, Bilwaj; Macyszyn, Luke; Raghavendra, Cauligi

    2017-03-01

    Lower back pain is one of the most prevalent disorders in the developed/developing world. However, its etiology is poorly understood and treatment is often determined subjectively. In order to quantitatively study the emergence and evolution of back pain, it is necessary to develop consistently measurable markers for pathology. Imaging based measures offer one solution to this problem. The development of imaging based on quantitative biomarkers for the lower back necessitates automated techniques to acquire this data. While the problem of segmenting lumbar vertebrae has been addressed repeatedly in literature, the associated problem of computing relevant biomarkers on the basis of the segmentation has not been addressed thoroughly. In this paper, we propose a Random-Forest based approach that learns to segment vertebral bodies in CT images followed by a biomarker evaluation framework that extracts vertebral heights and widths from the segmentations obtained. Our dataset consists of 15 CT sagittal scans obtained from General Electric Healthcare. Our main approach is divided into three parts: the first stage is image pre-processing which is used to correct for variations in illumination across all the images followed by preparing the foreground and background objects from images; the next stage is Machine Learning using Random-Forests, which distinguishes the interest-point vectors between foreground or background; and the last step is image post-processing, which is crucial to refine the results of classifier. The Dice coefficient was used as a statistical validation metric to evaluate the performance of our segmentations with an average value of 0.725 for our dataset.

  20. An imaging colorimeter for noncontact tissue color mapping.

    Balas, C

    1997-06-01

    There has been a considerable effort in several medical fields, for objective color analysis and characterization of biological tissues. Conventional colorimeters have proved inadequate for this purpose, since they do not provide spatial color information and because the measuring procedure randomly affects the color of the tissue. In this paper an imaging colorimeter is presented, where the nonimaging optical photodetector of colorimeters is replaced with the charge-coupled device (CCD) sensor of a color video camera, enabling the independent capturing of the color information for any spatial point within its field-of-view. Combining imaging and colorimetry methods, the acquired image is calibrated and corrected, under several ambient light conditions, providing noncontact reproducible color measurements and mapping, free of the errors and the limitations present in conventional colorimeters. This system was used for monitoring of blood supply changes of psoriatic plaques, that have undergone Psoralens and ultraviolet-A radiation (PUVA) therapy, where reproducible and reliable measurements were demonstrated. These features highlight the potential of the imaging colorimeters as clinical and research tools for the standardization of clinical diagnosis and for the objective evaluation of treatment effectiveness.

  1. Diagnostic accuracy of color Doppler flow imaging and Duplex US in peripheral arterial disease

    Karmel, M.I.; Polak, J.F.; Whittemore, A.D.; Mannick, J.A.; Donaldson, M.C.; O'Leary, D.H.

    1988-01-01

    Color Doppler flow imaging (5 MHz) and Duplex US were used in a prospective examination of 154 arterial segments in the lower extremities of 11 symptomatic patients. Each extremity was divided into seven arterial segments (common femoral, profunda femoral, proximal, middle, and distal superficial femoral, and proximal and distal popliteal arteries). Arterial maps were drawn for each patient and compared with the arteriograms. Seventeen significant stenoses and 18 complete occlusions were predicted and confirmed by means of arteriography. Four significant stenoses and four occlusions were predicted and not confirmed. One hundred nine normal arterial segments were correctly predicted. No significant stenoses or occlusions were missed. Prospective identification of the severity and location of disease can help to optimize both the angiographic approach and hospital services utilization

  2. Color sensitivity of the multi-exposure HDR imaging process

    Lenseigne, Boris; Jacobs, Valéry Ann; Withouck, Martijn; Hanselaer, Peter; Jonker, Pieter P.

    2013-04-01

    Multi-exposure high dynamic range(HDR) imaging builds HDR radiance maps by stitching together different views of a same scene with varying exposures. Practically, this process involves converting raw sensor data into low dynamic range (LDR) images, estimate the camera response curves, and use them in order to recover the irradiance for every pixel. During the export, applying white balance settings and image stitching, which both have an influence on the color balance in the final image. In this paper, we use a calibrated quasi-monochromatic light source, an integrating sphere, and a spectrograph in order to evaluate and compare the average spectral response of the image sensor. We finally draw some conclusion about the color consistency of HDR imaging and the additional steps necessary to use multi-exposure HDR imaging as a tool to measure the physical quantities such as radiance and luminance.

  3. A Simple Encryption Algorithm for Quantum Color Image

    Li, Panchi; Zhao, Ya

    2017-06-01

    In this paper, a simple encryption scheme for quantum color image is proposed. Firstly, a color image is transformed into a quantum superposition state by employing NEQR (novel enhanced quantum representation), where the R,G,B values of every pixel in a 24-bit RGB true color image are represented by 24 single-qubit basic states, and each value has 8 qubits. Then, these 24 qubits are respectively transformed from a basic state into a balanced superposition state by employed the controlled rotation gates. At this time, the gray-scale values of R, G, B of every pixel are in a balanced superposition of 224 multi-qubits basic states. After measuring, the whole image is an uniform white noise, which does not provide any information. Decryption is the reverse process of encryption. The experimental results on the classical computer show that the proposed encryption scheme has better security.

  4. New false color mapping for image fusion

    Toet, A.; Walraven, J.

    1996-01-01

    A pixel based colour mapping algorithm is presented that produces a fused false colour rendering of two gray level images representing different sensor modalities. The result-ing fused false colour images have a higher information content than each of the original images and retain sensor-specific

  5. Effect of image scaling and segmentation in digital rock characterisation

    Jones, B. D.; Feng, Y. T.

    2016-04-01

    Digital material characterisation from microstructural geometry is an emerging field in computer simulation. For permeability characterisation, a variety of studies exist where the lattice Boltzmann method (LBM) has been used in conjunction with computed tomography (CT) imaging to simulate fluid flow through microscopic rock pores. While these previous works show that the technique is applicable, the use of binary image segmentation and the bounceback boundary condition results in a loss of grain surface definition when the modelled geometry is compared to the original CT image. We apply the immersed moving boundary (IMB) condition of Noble and Torczynski as a partial bounceback boundary condition which may be used to better represent the geometric definition provided by a CT image. The IMB condition is validated against published work on idealised porous geometries in both 2D and 3D. Following this, greyscale image segmentation is applied to a CT image of Diemelstadt sandstone. By varying the mapping of CT voxel densities to lattice sites, it is shown that binary image segmentation may underestimate the true permeability of the sample. A CUDA-C-based code, LBM-C, was developed specifically for this work and leverages GPU hardware in order to carry out computations.

  6. Eliciting Perceptual Ground Truth for Image Segmentation

    Hodge, Victoria Jane; Eakins, John; Austin, Jim

    2006-01-01

    In this paper, we investigate human visual perception and establish a body of ground truth data elicited from human visual studies. We aim to build on the formative work of Ren, Eakins and Briggs who produced an initial ground truth database. Human subjects were asked to draw and rank their perceptions of the parts of a series of figurative images. These rankings were then used to score the perceptions, identify the preferred human breakdowns and thus allow us to induce perceptual rules for h...

  7. Automatic segmentation of cerebral MR images using artificial neural networks

    Alirezaie, J.; Jernigan, M.E.; Nahmias, C.

    1996-01-01

    In this paper we present an unsupervised clustering technique for multispectral segmentation of magnetic resonance (MR) images of the human brain. Our scheme utilizes the Self Organizing Feature Map (SOFM) artificial neural network for feature mapping and generates a set of codebook vectors. By extending the network with an additional layer the map will be classified and each tissue class will be labelled. An algorithm has been developed for extracting the cerebrum from the head scan prior to the segmentation. Extracting the cerebrum is performed by stripping away the skull pixels from the T2 image. Three tissue types of the brain: white matter, gray matter and cerebral spinal fluid (CSF) are segmented accurately. To compare the results with other conventional approaches we applied the c-means algorithm to the problem

  8. Automated segmentation of pigmented skin lesions in multispectral imaging

    Carrara, Mauro; Tomatis, Stefano; Bono, Aldo; Bartoli, Cesare; Moglia, Daniele; Lualdi, Manuela; Colombo, Ambrogio; Santinami, Mario; Marchesini, Renato

    2005-01-01

    The aim of this study was to develop an algorithm for the automatic segmentation of multispectral images of pigmented skin lesions. The study involved 1700 patients with 1856 cutaneous pigmented lesions, which were analysed in vivo by a novel spectrophotometric system, before excision. The system is able to acquire a set of 15 different multispectral images at equally spaced wavelengths between 483 and 951 nm. An original segmentation algorithm was developed and applied to the whole set of lesions and was able to automatically contour them all. The obtained lesion boundaries were shown to two expert clinicians, who, independently, rejected 54 of them. The 97.1% contour accuracy indicates that the developed algorithm could be a helpful and effective instrument for the automatic segmentation of skin pigmented lesions. (note)

  9. Imaging QRS complex and ST segment in myocardial infarction

    Bacharova, Ljuba; Bang, Lia E; Szathmary, Vavrinec

    2014-01-01

    BACKGROUND: Acute myocardial infarction creates regions of altered electrical properties of myocardium resulting in typical QRS patterns (pathological Q waves) and ST segment deviations observed in leads related to the MI location. The aim of this study was to present a graphical method for imaging...... the changes in the sequence of depolarization and the ST segment deviations in myocardial infarction using the Dipolar ElectroCARdioTOpography (DECARTO) method. MATERIAL AND METHODS: Simulated ECG data corresponding to intramural, electrically inactive areas encircled by transmural areas with slowed impulse...... propagation velocity in anteroseptal and inferior locations were used for imaging the altered sequence of depolarization and the ST vector. The ECGs were transformed to areas projected on the image surface so as to image the process of ventricular depolarization based on the orientation and magnitude...

  10. Color Image Quality Assessment Based on CIEDE2000

    Yang Yang

    2012-01-01

    Full Text Available Combining the color difference formula of CIEDE2000 and the printing industry standard for visual verification, we present an objective color image quality assessment method correlated with subjective vision perception. An objective score conformed to subjective perception (OSCSP Q was proposed to directly reflect the subjective visual perception. In addition, we present a general method to calibrate correction factors of color difference formula under real experimental conditions. Our experiment results show that the present DE2000-based metric can be consistent with human visual system in general application environment.

  11. Color image segmentation using perceptual spaces through applets ...

    HP-630

    2013-02-13

    Feb 13, 2013 ... 4New Information and Communication Technologies, Faculty of Engineering, Department of Intelligent Buildings,. Autonomous University of Queretaro, ... to the requirement of temperature-controlled facilities, extended period for the .... Due to the nature of the human eye and the trichromatic theory, all ...

  12. Improving HOG with image segmentation: application to human detection

    Salas, Y.S.; Bermudez, D.V.; Peña, A.M.L.; Gomez, D.G.; Gevers, T.

    2012-01-01

    In this paper we improve the histogram of oriented gradients (HOG), a core descriptor of state-of-the-art object detection, by the use of higher-level information coming from image segmentation. The idea is to re-weight the descriptor while computing it without increasing its size. The benefits of

  13. Contourlet-based active contour model for PET image segmentation

    Abdoli, M.; Dierckx, R. A. J. O.; Zaidi, H.

    Purpose: PET-guided radiation therapy treatment planning, clinical diagnosis, assessment of tumor growth, and therapy response rely on the accurate delineation of the tumor volume and quantification of tracer uptake. Most PET image segmentation techniques proposed thus far are suboptimal in the

  14. General Purpose Segmentation for Microorganisms in Microscopy Images

    Jensen, Sebastian H. Nesgaard; Moeslund, Thomas B.; Rankl, Christian

    2014-01-01

    In this paper, we propose an approach for achieving generalized segmentation of microorganisms in mi- croscopy images. It employs a pixel-wise classification strategy based on local features. Multilayer percep- trons are utilized for classification of the local features and is trained for each sp...

  15. Image Segmentation Based on Period Difference of the Oscillation

    王直杰; 张珏; 范宏; 柯克峰

    2004-01-01

    A new method for image segmentation based on pulse neural network is proposed. Every neuron in the network represents one pixel in the image and the network is locally connected.Each group of the neurons that correspond to each object synchronizes while different gronps of the neurons oscillate at different period. Applying this period difference,different objects are divided. In addition to simulation, an analysis of the mechanism of the method is presented in this paper.

  16. Ontology-Based Knowledge Organization for the Radiograph Images Segmentation

    MATEI, O.

    2008-04-01

    Full Text Available The quantity of thoracic radiographies in the medical field is ever growing. An automated system for segmenting the images would help doctors enormously. Some approaches are knowledge-based; therefore we propose here an ontology for this purpose. Thus it is machine oriented, rather than human-oriented. That is all the structures visible on a thoracic image are described from a technical point of view.

  17. Color impact in visual attention deployment considering emotional images

    Chamaret, C.

    2012-03-01

    Color is a predominant factor in the human visual attention system. Even if it cannot be sufficient to the global or complete understanding of a scene, it may impact the visual attention deployment. We propose to study the color impact as well as the emotion aspect of pictures regarding the visual attention deployment. An eye-tracking campaign has been conducted involving twenty people watching half pictures of database in full color and the other half of database in grey color. The eye fixations of color and black and white images were highly correlated leading to the question of the integration of such cues in the design of visual attention model. Indeed, the prediction of two state-of-the-art computational models shows similar results for the two color categories. Similarly, the study of saccade amplitude and fixation duration versus time viewing did not bring any significant differences between the two mentioned categories. In addition, spatial coordinates of eye fixations reveal an interesting indicator for investigating the differences of visual attention deployment over time and fixation number. The second factor related to emotion categories shows evidences of emotional inter-categories differences between color and grey eye fixations for passive and positive emotion. The particular aspect associated to this category induces a specific behavior, rather based on high frequencies, where the color components influence the visual attention deployment.

  18. Automated 3D closed surface segmentation: application to vertebral body segmentation in CT images.

    Liu, Shuang; Xie, Yiting; Reeves, Anthony P

    2016-05-01

    A fully automated segmentation algorithm, progressive surface resolution (PSR), is presented in this paper to determine the closed surface of approximately convex blob-like structures that are common in biomedical imaging. The PSR algorithm was applied to the cortical surface segmentation of 460 vertebral bodies on 46 low-dose chest CT images, which can be potentially used for automated bone mineral density measurement and compression fracture detection. The target surface is realized by a closed triangular mesh, which thereby guarantees the enclosure. The surface vertices of the triangular mesh representation are constrained along radial trajectories that are uniformly distributed in 3D angle space. The segmentation is accomplished by determining for each radial trajectory the location of its intersection with the target surface. The surface is first initialized based on an input high confidence boundary image and then resolved progressively based on a dynamic attraction map in an order of decreasing degree of evidence regarding the target surface location. For the visual evaluation, the algorithm achieved acceptable segmentation for 99.35 % vertebral bodies. Quantitative evaluation was performed on 46 vertebral bodies and achieved overall mean Dice coefficient of 0.939 (with max [Formula: see text] 0.957, min [Formula: see text] 0.906 and standard deviation [Formula: see text] 0.011) using manual annotations as the ground truth. Both visual and quantitative evaluations demonstrate encouraging performance of the PSR algorithm. This novel surface resolution strategy provides uniform angular resolution for the segmented surface with computation complexity and runtime that are linearly constrained by the total number of vertices of the triangular mesh representation.

  19. AN IMPROVED FUZZY CLUSTERING ALGORITHM FOR MICROARRAY IMAGE SPOTS SEGMENTATION

    V.G. Biju

    2015-11-01

    Full Text Available An automatic cDNA microarray image processing using an improved fuzzy clustering algorithm is presented in this paper. The spot segmentation algorithm proposed uses the gridding technique developed by the authors earlier, for finding the co-ordinates of each spot in an image. Automatic cropping of spots from microarray image is done using these co-ordinates. The present paper proposes an improved fuzzy clustering algorithm Possibility fuzzy local information c means (PFLICM to segment the spot foreground (FG from background (BG. The PFLICM improves fuzzy local information c means (FLICM algorithm by incorporating typicality of a pixel along with gray level information and local spatial information. The performance of the algorithm is validated using a set of simulated cDNA microarray images added with different levels of AWGN noise. The strength of the algorithm is tested by computing the parameters such as the Segmentation matching factor (SMF, Probability of error (pe, Discrepancy distance (D and Normal mean square error (NMSE. SMF value obtained for PFLICM algorithm shows an improvement of 0.9 % and 0.7 % for high noise and low noise microarray images respectively compared to FLICM algorithm. The PFLICM algorithm is also applied on real microarray images and gene expression values are computed.

  20. Optimization-Based Image Segmentation by Genetic Algorithms

    Rosenberger C

    2008-01-01

    Full Text Available Abstract Many works in the literature focus on the definition of evaluation metrics and criteria that enable to quantify the performance of an image processing algorithm. These evaluation criteria can be used to define new image processing algorithms by optimizing them. In this paper, we propose a general scheme to segment images by a genetic algorithm. The developed method uses an evaluation criterion which quantifies the quality of an image segmentation result. The proposed segmentation method can integrate a local ground truth when it is available in order to set the desired level of precision of the final result. A genetic algorithm is then used in order to determine the best combination of information extracted by the selected criterion. Then, we show that this approach can either be applied for gray-levels or multicomponents images in a supervised context or in an unsupervised one. Last, we show the efficiency of the proposed method through some experimental results on several gray-levels and multicomponents images.

  1. Optimization-Based Image Segmentation by Genetic Algorithms

    H. Laurent

    2008-05-01

    Full Text Available Many works in the literature focus on the definition of evaluation metrics and criteria that enable to quantify the performance of an image processing algorithm. These evaluation criteria can be used to define new image processing algorithms by optimizing them. In this paper, we propose a general scheme to segment images by a genetic algorithm. The developed method uses an evaluation criterion which quantifies the quality of an image segmentation result. The proposed segmentation method can integrate a local ground truth when it is available in order to set the desired level of precision of the final result. A genetic algorithm is then used in order to determine the best combination of information extracted by the selected criterion. Then, we show that this approach can either be applied for gray-levels or multicomponents images in a supervised context or in an unsupervised one. Last, we show the efficiency of the proposed method through some experimental results on several gray-levels and multicomponents images.

  2. Segmentation of multiple sclerosis lesions in MR images: a review

    Mortazavi, Daryoush; Kouzani, Abbas Z. [Deakin University, School of Engineering, Geelong, Victoria (Australia); Soltanian-Zadeh, Hamid [Henry Ford Health System, Image Analysis Laboratory, Radiology Department, Detroit, MI (United States); University of Tehran, Control and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, Tehran (Iran, Islamic Republic of); School of Cognitive Sciences, Institute for Studies in Theoretical Physics and Mathematics (IPM), Tehran (Iran, Islamic Republic of)

    2012-04-15

    Multiple sclerosis (MS) is an inflammatory demyelinating disease that the parts of the nervous system through the lesions generated in the white matter of the brain. It brings about disabilities in different organs of the body such as eyes and muscles. Early detection of MS and estimation of its progression are critical for optimal treatment of the disease. For diagnosis and treatment evaluation of MS lesions, they may be detected and segmented in Magnetic Resonance Imaging (MRI) scans of the brain. However, due to the large amount of MRI data to be analyzed, manual segmentation of the lesions by clinical experts translates into a very cumbersome and time consuming task. In addition, manual segmentation is subjective and prone to human errors. Several groups have developed computerized methods to detect and segment MS lesions. These methods are not categorized and compared in the past. This paper reviews and compares various MS lesion segmentation methods proposed in recent years. It covers conventional methods like multilevel thresholding and region growing, as well as more recent Bayesian methods that require parameter estimation algorithms. It also covers parameter estimation methods like expectation maximization and adaptive mixture model which are among unsupervised techniques as well as kNN and Parzen window methods that are among supervised techniques. Integration of knowledge-based methods such as atlas-based approaches with Bayesian methods increases segmentation accuracy. In addition, employing intelligent classifiers like Fuzzy C-Means, Fuzzy Inference Systems, and Artificial Neural Networks reduces misclassified voxels. (orig.)

  3. Segmentation of multiple sclerosis lesions in MR images: a review

    Mortazavi, Daryoush; Kouzani, Abbas Z.; Soltanian-Zadeh, Hamid

    2012-01-01

    Multiple sclerosis (MS) is an inflammatory demyelinating disease that the parts of the nervous system through the lesions generated in the white matter of the brain. It brings about disabilities in different organs of the body such as eyes and muscles. Early detection of MS and estimation of its progression are critical for optimal treatment of the disease. For diagnosis and treatment evaluation of MS lesions, they may be detected and segmented in Magnetic Resonance Imaging (MRI) scans of the brain. However, due to the large amount of MRI data to be analyzed, manual segmentation of the lesions by clinical experts translates into a very cumbersome and time consuming task. In addition, manual segmentation is subjective and prone to human errors. Several groups have developed computerized methods to detect and segment MS lesions. These methods are not categorized and compared in the past. This paper reviews and compares various MS lesion segmentation methods proposed in recent years. It covers conventional methods like multilevel thresholding and region growing, as well as more recent Bayesian methods that require parameter estimation algorithms. It also covers parameter estimation methods like expectation maximization and adaptive mixture model which are among unsupervised techniques as well as kNN and Parzen window methods that are among supervised techniques. Integration of knowledge-based methods such as atlas-based approaches with Bayesian methods increases segmentation accuracy. In addition, employing intelligent classifiers like Fuzzy C-Means, Fuzzy Inference Systems, and Artificial Neural Networks reduces misclassified voxels. (orig.)

  4. Lung tumor segmentation in PET images using graph cuts.

    Ballangan, Cherry; Wang, Xiuying; Fulham, Michael; Eberl, Stefan; Feng, David Dagan

    2013-03-01

    The aim of segmentation of tumor regions in positron emission tomography (PET) is to provide more accurate measurements of tumor size and extension into adjacent structures, than is possible with visual assessment alone and hence improve patient management decisions. We propose a segmentation energy function for the graph cuts technique to improve lung tumor segmentation with PET. Our segmentation energy is based on an analysis of the tumor voxels in PET images combined with a standardized uptake value (SUV) cost function and a monotonic downhill SUV feature. The monotonic downhill feature avoids segmentation leakage into surrounding tissues with similar or higher PET tracer uptake than the tumor and the SUV cost function improves the boundary definition and also addresses situations where the lung tumor is heterogeneous. We evaluated the method in 42 clinical PET volumes from patients with non-small cell lung cancer (NSCLC). Our method improves segmentation and performs better than region growing approaches, the watershed technique, fuzzy-c-means, region-based active contour and tumor customized downhill. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  5. A Benchmark for Endoluminal Scene Segmentation of Colonoscopy Images

    David Vázquez

    2017-01-01

    Full Text Available Colorectal cancer (CRC is the third cause of cancer death worldwide. Currently, the standard approach to reduce CRC-related mortality is to perform regular screening in search for polyps and colonoscopy is the screening tool of choice. The main limitations of this screening procedure are polyp miss rate and the inability to perform visual assessment of polyp malignancy. These drawbacks can be reduced by designing decision support systems (DSS aiming to help clinicians in the different stages of the procedure by providing endoluminal scene segmentation. Thus, in this paper, we introduce an extended benchmark of colonoscopy image segmentation, with the hope of establishing a new strong benchmark for colonoscopy image analysis research. The proposed dataset consists of 4 relevant classes to inspect the endoluminal scene, targeting different clinical needs. Together with the dataset and taking advantage of advances in semantic segmentation literature, we provide new baselines by training standard fully convolutional networks (FCNs. We perform a comparative study to show that FCNs significantly outperform, without any further postprocessing, prior results in endoluminal scene segmentation, especially with respect to polyp segmentation and localization.

  6. Deep convolutional networks for pancreas segmentation in CT imaging

    Roth, Holger R.; Farag, Amal; Lu, Le; Turkbey, Evrim B.; Summers, Ronald M.

    2015-03-01

    Automatic organ segmentation is an important prerequisite for many computer-aided diagnosis systems. The high anatomical variability of organs in the abdomen, such as the pancreas, prevents many segmentation methods from achieving high accuracies when compared to state-of-the-art segmentation of organs like the liver, heart or kidneys. Recently, the availability of large annotated training sets and the accessibility of affordable parallel computing resources via GPUs have made it feasible for "deep learning" methods such as convolutional networks (ConvNets) to succeed in image classification tasks. These methods have the advantage that used classification features are trained directly from the imaging data. We present a fully-automated bottom-up method for pancreas segmentation in computed tomography (CT) images of the abdomen. The method is based on hierarchical coarse-to-fine classification of local image regions (superpixels). Superpixels are extracted from the abdominal region using Simple Linear Iterative Clustering (SLIC). An initial probability response map is generated, using patch-level confidences and a two-level cascade of random forest classifiers, from which superpixel regions with probabilities larger 0.5 are retained. These retained superpixels serve as a highly sensitive initial input of the pancreas and its surroundings to a ConvNet that samples a bounding box around each superpixel at different scales (and random non-rigid deformations at training time) in order to assign a more distinct probability of each superpixel region being pancreas or not. We evaluate our method on CT images of 82 patients (60 for training, 2 for validation, and 20 for testing). Using ConvNets we achieve maximum Dice scores of an average 68% +/- 10% (range, 43-80%) in testing. This shows promise for accurate pancreas segmentation, using a deep learning approach and compares favorably to state-of-the-art methods.

  7. Embryonic Heart Morphogenesis from Confocal Microscopy Imaging and Automatic Segmentation

    Hongda Mao

    2013-01-01

    Full Text Available Embryonic heart morphogenesis (EHM is a complex and dynamic process where the heart transforms from a single tube into a four-chambered pump. This process is of great biological and clinical interest but is still poorly understood for two main reasons. On the one hand, the existing imaging modalities for investigating EHM suffered from either limited penetration depth or limited spatial resolution. On the other hand, current works typically adopted manual segmentation, which was tedious, subjective, and time consuming considering the complexity of developing heart geometry and the large size of images. In this paper, we propose to utilize confocal microscopy imaging with tissue optical immersion clearing technique to image the heart at different stages of development for EHM study. The imaging method is able to produce high spatial resolution images and achieve large penetration depth at the same time. Furthermore, we propose a novel convex active contour model for automatic image segmentation. The model has the ability to deal with intensity fall-off in depth which is characterized by confocal microscopy images. We acquired the images of embryonic quail hearts from day 6 to day 14 of incubation for EHM study. The experimental results were promising and provided us with an insight view of early heart growth pattern and also paved the road for data-driven heart growth modeling.

  8. Community detection for fluorescent lifetime microscopy image segmentation

    Hu, Dandan; Sarder, Pinaki; Ronhovde, Peter; Achilefu, Samuel; Nussinov, Zohar

    2014-03-01

    Multiresolution community detection (CD) method has been suggested in a recent work as an efficient method for performing unsupervised segmentation of fluorescence lifetime (FLT) images of live cell images containing fluorescent molecular probes.1 In the current paper, we further explore this method in FLT images of ex vivo tissue slices. The image processing problem is framed as identifying clusters with respective average FLTs against a background or "solvent" in FLT imaging microscopy (FLIM) images derived using NIR fluorescent dyes. We have identified significant multiresolution structures using replica correlations in these images, where such correlations are manifested by information theoretic overlaps of the independent solutions ("replicas") attained using the multiresolution CD method from different starting points. In this paper, our method is found to be more efficient than a current state-of-the-art image segmentation method based on mixture of Gaussian distributions. It offers more than 1:25 times diversity based on Shannon index than the latter method, in selecting clusters with distinct average FLTs in NIR FLIM images.

  9. A New Wavelet-Based Document Image Segmentation Scheme

    赵健; 李道京; 俞卞章; 耿军平

    2002-01-01

    The document image segmentation is very useful for printing, faxing and data processing. An algorithm is developed for segmenting and classifying document image. Feature used for classification is based on the histogram distribution pattern of different image classes. The important attribute of the algorithm is using wavelet correlation image to enhance raw image's pattern, so the classification accuracy is improved. In this paper document image is divided into four types: background, photo, text and graph. Firstly, the document image background has been distingusished easily by former normally method; secondly, three image types will be distinguished by their typical histograms, in order to make histograms feature clearer, each resolution' s HH wavelet subimage is used to add to the raw image at their resolution. At last, the photo, text and praph have been devided according to how the feature fit to the Laplacian distrbution by -X2 and L. Simulations show that classification accuracy is significantly improved. The comparison with related shows that our algorithm provides both lower classification error rates and better visual results.

  10. A MULTI-RESOLUTION FUSION MODEL INCORPORATING COLOR AND ELEVATION FOR SEMANTIC SEGMENTATION

    W. Zhang

    2017-05-01

    Full Text Available In recent years, the developments for Fully Convolutional Networks (FCN have led to great improvements for semantic segmentation in various applications including fused remote sensing data. There is, however, a lack of an in-depth study inside FCN models which would lead to an understanding of the contribution of individual layers to specific classes and their sensitivity to different types of input data. In this paper, we address this problem and propose a fusion model incorporating infrared imagery and Digital Surface Models (DSM for semantic segmentation. The goal is to utilize heterogeneous data more accurately and effectively in a single model instead of to assemble multiple models. First, the contribution and sensitivity of layers concerning the given classes are quantified by means of their recall in FCN. The contribution of different modalities on the pixel-wise prediction is then analyzed based on visualization. Finally, an optimized scheme for the fusion of layers with color and elevation information into a single FCN model is derived based on the analysis. Experiments are performed on the ISPRS Vaihingen 2D Semantic Labeling dataset. Comprehensive evaluations demonstrate the potential of the proposed approach.

  11. Plantar fascia segmentation and thickness estimation in ultrasound images.

    Boussouar, Abdelhafid; Meziane, Farid; Crofts, Gillian

    2017-03-01

    Ultrasound (US) imaging offers significant potential in diagnosis of plantar fascia (PF) injury and monitoring treatment. In particular US imaging has been shown to be reliable in foot and ankle assessment and offers a real-time effective imaging technique that is able to reliably confirm structural changes, such as thickening, and identify changes in the internal echo structure associated with diseased or damaged tissue. Despite the advantages of US imaging, images are difficult to interpret during medical assessment. This is partly due to the size and position of the PF in relation to the adjacent tissues. It is therefore a requirement to devise a system that allows better and easier interpretation of PF ultrasound images during diagnosis. This study proposes an automatic segmentation approach which for the first time extracts ultrasound data to estimate size across three sections of the PF (rearfoot, midfoot and forefoot). This segmentation method uses artificial neural network module (ANN) in order to classify small overlapping patches as belonging or not-belonging to the region of interest (ROI) of the PF tissue. Features ranking and selection techniques were performed as a post-processing step for features extraction to reduce the dimension and number of the extracted features. The trained ANN classifies the image overlapping patches into PF and non-PF tissue, and then it is used to segment the desired PF region. The PF thickness was calculated using two different methods: distance transformation and area-length calculation algorithms. This new approach is capable of accurately segmenting the PF region, differentiating it from surrounding tissues and estimating its thickness. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Interactive segmentation for geographic atrophy in retinal fundus images.

    Lee, Noah; Smith, R Theodore; Laine, Andrew F

    2008-10-01

    Fundus auto-fluorescence (FAF) imaging is a non-invasive technique for in vivo ophthalmoscopic inspection of age-related macular degeneration (AMD), the most common cause of blindness in developed countries. Geographic atrophy (GA) is an advanced form of AMD and accounts for 12-21% of severe visual loss in this disorder [3]. Automatic quantification of GA is important for determining disease progression and facilitating clinical diagnosis of AMD. The problem of automatic segmentation of pathological images still remains an unsolved problem. In this paper we leverage the watershed transform and generalized non-linear gradient operators for interactive segmentation and present an intuitive and simple approach for geographic atrophy segmentation. We compare our approach with the state of the art random walker [5] algorithm for interactive segmentation using ROC statistics. Quantitative evaluation experiments on 100 FAF images show a mean sensitivity/specificity of 98.3/97.7% for our approach and a mean sensitivity/specificity of 88.2/96.6% for the random walker algorithm.

  13. A fourth order PDE based fuzzy c- means approach for segmentation of microscopic biopsy images in presence of Poisson noise for cancer detection.

    Kumar, Rajesh; Srivastava, Subodh; Srivastava, Rajeev

    2017-07-01

    For cancer detection from microscopic biopsy images, image segmentation step used for segmentation of cells and nuclei play an important role. Accuracy of segmentation approach dominate the final results. Also the microscopic biopsy images have intrinsic Poisson noise and if it is present in the image the segmentation results may not be accurate. The objective is to propose an efficient fuzzy c-means based segmentation approach which can also handle the noise present in the image during the segmentation process itself i.e. noise removal and segmentation is combined in one step. To address the above issues, in this paper a fourth order partial differential equation (FPDE) based nonlinear filter adapted to Poisson noise with fuzzy c-means segmentation method is proposed. This approach is capable of effectively handling the segmentation problem of blocky artifacts while achieving good tradeoff between Poisson noise removals and edge preservation of the microscopic biopsy images during segmentation process for cancer detection from cells. The proposed approach is tested on breast cancer microscopic biopsy data set with region of interest (ROI) segmented ground truth images. The microscopic biopsy data set contains 31 benign and 27 malignant images of size 896 × 768. The region of interest selected ground truth of all 58 images are also available for this data set. Finally, the result obtained from proposed approach is compared with the results of popular segmentation algorithms; fuzzy c-means, color k-means, texture based segmentation, and total variation fuzzy c-means approaches. The experimental results shows that proposed approach is providing better results in terms of various performance measures such as Jaccard coefficient, dice index, Tanimoto coefficient, area under curve, accuracy, true positive rate, true negative rate, false positive rate, false negative rate, random index, global consistency error, and variance of information as compared to other

  14. Cryo-EM Structure Determination Using Segmented Helical Image Reconstruction.

    Fromm, S A; Sachse, C

    2016-01-01

    Treating helices as single-particle-like segments followed by helical image reconstruction has become the method of choice for high-resolution structure determination of well-ordered helical viruses as well as flexible filaments. In this review, we will illustrate how the combination of latest hardware developments with optimized image processing routines have led to a series of near-atomic resolution structures of helical assemblies. Originally, the treatment of helices as a sequence of segments followed by Fourier-Bessel reconstruction revealed the potential to determine near-atomic resolution structures from helical specimens. In the meantime, real-space image processing of helices in a stack of single particles was developed and enabled the structure determination of specimens that resisted classical Fourier helical reconstruction and also facilitated high-resolution structure determination. Despite the progress in real-space analysis, the combination of Fourier and real-space processing is still commonly used to better estimate the symmetry parameters as the imposition of the correct helical symmetry is essential for high-resolution structure determination. Recent hardware advancement by the introduction of direct electron detectors has significantly enhanced the image quality and together with improved image processing procedures has made segmented helical reconstruction a very productive cryo-EM structure determination method. © 2016 Elsevier Inc. All rights reserved.

  15. Image segmentation for enhancing symbol recognition in prosthetic vision.

    Horne, Lachlan; Barnes, Nick; McCarthy, Chris; He, Xuming

    2012-01-01

    Current and near-term implantable prosthetic vision systems offer the potential to restore some visual function, but suffer from poor resolution and dynamic range of induced phosphenes. This can make it difficult for users of prosthetic vision systems to identify symbolic information (such as signs) except in controlled conditions. Using image segmentation techniques from computer vision, we show it is possible to improve the clarity of such symbolic information for users of prosthetic vision implants in uncontrolled conditions. We use image segmentation to automatically divide a natural image into regions, and using a fixation point controlled by the user, select a region to phosphenize. This technique improves the apparent contrast and clarity of symbolic information over traditional phosphenization approaches.

  16. A Novel Plant Root Foraging Algorithm for Image Segmentation Problems

    Lianbo Ma

    2014-01-01

    Full Text Available This paper presents a new type of biologically-inspired global optimization methodology for image segmentation based on plant root foraging behavior, namely, artificial root foraging algorithm (ARFO. The essential motive of ARFO is to imitate the significant characteristics of plant root foraging behavior including branching, regrowing, and tropisms for constructing a heuristic algorithm for multidimensional and multimodal problems. A mathematical model is firstly designed to abstract various plant root foraging patterns. Then, the basic process of ARFO algorithm derived in the model is described in details. When tested against ten benchmark functions, ARFO shows the superiority to other state-of-the-art algorithms on several benchmark functions. Further, we employed the ARFO algorithm to deal with multilevel threshold image segmentation problem. Experimental results of the new algorithm on a variety of images demonstrated the suitability of the proposed method for solving such problem.

  17. Level set method for image segmentation based on moment competition

    Min, Hai; Wang, Xiao-Feng; Huang, De-Shuang; Jin, Jing; Wang, Hong-Zhi; Li, Hai

    2015-05-01

    We propose a level set method for image segmentation which introduces the moment competition and weakly supervised information into the energy functional construction. Different from the region-based level set methods which use force competition, the moment competition is adopted to drive the contour evolution. Here, a so-called three-point labeling scheme is proposed to manually label three independent points (weakly supervised information) on the image. Then the intensity differences between the three points and the unlabeled pixels are used to construct the force arms for each image pixel. The corresponding force is generated from the global statistical information of a region-based method and weighted by the force arm. As a result, the moment can be constructed and incorporated into the energy functional to drive the evolving contour to approach the object boundary. In our method, the force arm can take full advantage of the three-point labeling scheme to constrain the moment competition. Additionally, the global statistical information and weakly supervised information are successfully integrated, which makes the proposed method more robust than traditional methods for initial contour placement and parameter setting. Experimental results with performance analysis also show the superiority of the proposed method on segmenting different types of complicated images, such as noisy images, three-phase images, images with intensity inhomogeneity, and texture images.

  18. Rational Variety Mapping for Contrast-Enhanced Nonlinear Unsupervised Segmentation of Multispectral Images of Unstained Specimen

    Kopriva, Ivica; Hadžija, Mirko; Popović Hadžija, Marijana; Korolija, Marina; Cichocki, Andrzej

    2011-01-01

    A methodology is proposed for nonlinear contrast-enhanced unsupervised segmentation of multispectral (color) microscopy images of principally unstained specimens. The methodology exploits spectral diversity and spatial sparseness to find anatomical differences between materials (cells, nuclei, and background) present in the image. It consists of rth-order rational variety mapping (RVM) followed by matrix/tensor factorization. Sparseness constraint implies duality between nonlinear unsupervised segmentation and multiclass pattern assignment problems. Classes not linearly separable in the original input space become separable with high probability in the higher-dimensional mapped space. Hence, RVM mapping has two advantages: it takes implicitly into account nonlinearities present in the image (ie, they are not required to be known) and it increases spectral diversity (ie, contrast) between materials, due to increased dimensionality of the mapped space. This is expected to improve performance of systems for automated classification and analysis of microscopic histopathological images. The methodology was validated using RVM of the second and third orders of the experimental multispectral microscopy images of unstained sciatic nerve fibers (nervus ischiadicus) and of unstained white pulp in the spleen tissue, compared with a manually defined ground truth labeled by two trained pathophysiologists. The methodology can also be useful for additional contrast enhancement of images of stained specimens. PMID:21708116

  19. Naturalness and image quality : saturation and lightness variation in color images of natural scenes

    Ridder, de H.

    1996-01-01

    The relation between perceived image quality and naturalness was investigated by varying the colorfulness of natural images at various lightness levels. At each lightness level, subjects assessed perceived colorfulness, naturalness, and quality as a function of average saturation by means of direct

  20. Color Processing using Max-trees : A Comparison on Image Compression

    Tushabe, Florence; Wilkinson, M.H.F.

    2012-01-01

    This paper proposes a new method of processing color images using mathematical morphology techniques. It adapts the Max-tree image representation to accommodate color and other vectorial images. The proposed method introduces three new ways of transforming the color image into a gray scale image

  1. Superiority Of Graph-Based Visual Saliency GVS Over Other Image Segmentation Methods

    Umu Lamboi

    2017-02-01

    Full Text Available Although inherently tedious the segmentation of images and the evaluation of segmented images are critical in computer vision processes. One of the main challenges in image segmentation evaluation arises from the basic conflict between generality and objectivity. For general segmentation purposes the lack of well-defined ground-truth and segmentation accuracy limits the evaluation of specific applications. Subjectivity is the most common method of evaluation of segmentation quality where segmented images are visually compared. This is daunting task however limits the scope of segmentation evaluation to a few predetermined sets of images. As an alternative supervised evaluation compares segmented images against manually-segmented or pre-processed benchmark images. Not only good evaluation methods allow for different comparisons but also for integration with target recognition systems for adaptive selection of appropriate segmentation granularity with improved recognition accuracy. Most of the current segmentation methods still lack satisfactory measures of effectiveness. Thus this study proposed a supervised framework which uses visual saliency detection to quantitatively evaluate image segmentation quality. The new benchmark evaluator uses Graph-based Visual Saliency GVS to compare boundary outputs for manually segmented images. Using the Berkeley Segmentation Database the proposed algorithm was tested against 4 other quantitative evaluation methods Probabilistic Rand Index PRI Variation of Information VOI Global Consistency Error GSE and Boundary Detection Error BDE. Based on the results the GVS approach outperformed any of the other 4 independent standard methods in terms of visual saliency detection of images.

  2. An image processing pipeline to detect and segment nuclei in muscle fiber microscopic images.

    Guo, Yanen; Xu, Xiaoyin; Wang, Yuanyuan; Wang, Yaming; Xia, Shunren; Yang, Zhong

    2014-08-01

    Muscle fiber images play an important role in the medical diagnosis and treatment of many muscular diseases. The number of nuclei in skeletal muscle fiber images is a key bio-marker of the diagnosis of muscular dystrophy. In nuclei segmentation one primary challenge is to correctly separate the clustered nuclei. In this article, we developed an image processing pipeline to automatically detect, segment, and analyze nuclei in microscopic image of muscle fibers. The pipeline consists of image pre-processing, identification of isolated nuclei, identification and segmentation of clustered nuclei, and quantitative analysis. Nuclei are initially extracted from background by using local Otsu's threshold. Based on analysis of morphological features of the isolated nuclei, including their areas, compactness, and major axis lengths, a Bayesian network is trained and applied to identify isolated nuclei from clustered nuclei and artifacts in all the images. Then a two-step refined watershed algorithm is applied to segment clustered nuclei. After segmentation, the nuclei can be quantified for statistical analysis. Comparing the segmented results with those of manual analysis and an existing technique, we find that our proposed image processing pipeline achieves good performance with high accuracy and precision. The presented image processing pipeline can therefore help biologists increase their throughput and objectivity in analyzing large numbers of nuclei in muscle fiber images. © 2014 Wiley Periodicals, Inc.

  3. Automatic segmentation of liver structure in CT images

    Bae, K.T.; Giger, M.L.; Chen, C.; Kahn, C.E. Jr.

    1993-01-01

    The segmentation and three-dimensional representation of the liver from a computed tomography (CT) scan is an important step in many medical applications, such as in the surgical planning for a living-donor liver transplant and in the automatic detection and documentation of pathological states. A method is being developed to automatically extract liver structure from abdominal CT scans using a priori information about liver morphology and digital image-processing techniques. Segmentation is performed sequentially image-by-image (slice-by-slice), starting with a reference image in which the liver occupies almost the entire right half of the abdomen cross section. Image processing techniques include gray-level thresholding, Gaussian smoothing, and eight-point connectivity tracking. For each case, the shape, size, and pixel density distribution of the liver are recorded for each CT image and used in the processing of other CT images. Extracted boundaries of the liver are smoothed using mathematical morphology techniques and B-splines. Computer-determined boundaries were compared with those drawn by a radiologist. The boundary descriptions from the two methods were in agreement, and the calculated areas were within 10%

  4. Constrained Deep Weak Supervision for Histopathology Image Segmentation.

    Jia, Zhipeng; Huang, Xingyi; Chang, Eric I-Chao; Xu, Yan

    2017-11-01

    In this paper, we develop a new weakly supervised learning algorithm to learn to segment cancerous regions in histopathology images. This paper is under a multiple instance learning (MIL) framework with a new formulation, deep weak supervision (DWS); we also propose an effective way to introduce constraints to our neural networks to assist the learning process. The contributions of our algorithm are threefold: 1) we build an end-to-end learning system that segments cancerous regions with fully convolutional networks (FCNs) in which image-to-image weakly-supervised learning is performed; 2) we develop a DWS formulation to exploit multi-scale learning under weak supervision within FCNs; and 3) constraints about positive instances are introduced in our approach to effectively explore additional weakly supervised information that is easy to obtain and enjoy a significant boost to the learning process. The proposed algorithm, abbreviated as DWS-MIL, is easy to implement and can be trained efficiently. Our system demonstrates the state-of-the-art results on large-scale histopathology image data sets and can be applied to various applications in medical imaging beyond histopathology images, such as MRI, CT, and ultrasound images.

  5. GPU-based relative fuzzy connectedness image segmentation

    Zhuge Ying; Ciesielski, Krzysztof C.; Udupa, Jayaram K.; Miller, Robert W.

    2013-01-01

    Purpose:Recently, clinical radiological research and practice are becoming increasingly quantitative. Further, images continue to increase in size and volume. For quantitative radiology to become practical, it is crucial that image segmentation algorithms and their implementations are rapid and yield practical run time on very large data sets. The purpose of this paper is to present a parallel version of an algorithm that belongs to the family of fuzzy connectedness (FC) algorithms, to achieve an interactive speed for segmenting large medical image data sets. Methods: The most common FC segmentations, optimizing an ℓ ∞ -based energy, are known as relative fuzzy connectedness (RFC) and iterative relative fuzzy connectedness (IRFC). Both RFC and IRFC objects (of which IRFC contains RFC) can be found via linear time algorithms, linear with respect to the image size. The new algorithm, P-ORFC (for parallel optimal RFC), which is implemented by using NVIDIA’s Compute Unified Device Architecture (CUDA) platform, considerably improves the computational speed of the above mentioned CPU based IRFC algorithm. Results: Experiments based on four data sets of small, medium, large, and super data size, achieved speedup factors of 32.8×, 22.9×, 20.9×, and 17.5×, correspondingly, on the NVIDIA Tesla C1060 platform. Although the output of P-ORFC need not precisely match that of IRFC output, it is very close to it and, as the authors prove, always lies between the RFC and IRFC objects. Conclusions: A parallel version of a top-of-the-line algorithm in the family of FC has been developed on the NVIDIA GPUs. An interactive speed of segmentation has been achieved, even for the largest medical image data set. Such GPU implementations may play a crucial role in automatic anatomy recognition in clinical radiology.

  6. GPU-based relative fuzzy connectedness image segmentation

    Zhuge Ying; Ciesielski, Krzysztof C.; Udupa, Jayaram K.; Miller, Robert W. [Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892 (United States); Department of Mathematics, West Virginia University, Morgantown, West Virginia 26506 (United States) and Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892 (United States)

    2013-01-15

    Purpose:Recently, clinical radiological research and practice are becoming increasingly quantitative. Further, images continue to increase in size and volume. For quantitative radiology to become practical, it is crucial that image segmentation algorithms and their implementations are rapid and yield practical run time on very large data sets. The purpose of this paper is to present a parallel version of an algorithm that belongs to the family of fuzzy connectedness (FC) algorithms, to achieve an interactive speed for segmenting large medical image data sets. Methods: The most common FC segmentations, optimizing an Script-Small-L {sub {infinity}}-based energy, are known as relative fuzzy connectedness (RFC) and iterative relative fuzzy connectedness (IRFC). Both RFC and IRFC objects (of which IRFC contains RFC) can be found via linear time algorithms, linear with respect to the image size. The new algorithm, P-ORFC (for parallel optimal RFC), which is implemented by using NVIDIA's Compute Unified Device Architecture (CUDA) platform, considerably improves the computational speed of the above mentioned CPU based IRFC algorithm. Results: Experiments based on four data sets of small, medium, large, and super data size, achieved speedup factors of 32.8 Multiplication-Sign , 22.9 Multiplication-Sign , 20.9 Multiplication-Sign , and 17.5 Multiplication-Sign , correspondingly, on the NVIDIA Tesla C1060 platform. Although the output of P-ORFC need not precisely match that of IRFC output, it is very close to it and, as the authors prove, always lies between the RFC and IRFC objects. Conclusions: A parallel version of a top-of-the-line algorithm in the family of FC has been developed on the NVIDIA GPUs. An interactive speed of segmentation has been achieved, even for the largest medical image data set. Such GPU implementations may play a crucial role in automatic anatomy recognition in clinical radiology.

  7. GPU-based relative fuzzy connectedness image segmentation.

    Zhuge, Ying; Ciesielski, Krzysztof C; Udupa, Jayaram K; Miller, Robert W

    2013-01-01

    Recently, clinical radiological research and practice are becoming increasingly quantitative. Further, images continue to increase in size and volume. For quantitative radiology to become practical, it is crucial that image segmentation algorithms and their implementations are rapid and yield practical run time on very large data sets. The purpose of this paper is to present a parallel version of an algorithm that belongs to the family of fuzzy connectedness (FC) algorithms, to achieve an interactive speed for segmenting large medical image data sets. The most common FC segmentations, optimizing an [script-l](∞)-based energy, are known as relative fuzzy connectedness (RFC) and iterative relative fuzzy connectedness (IRFC). Both RFC and IRFC objects (of which IRFC contains RFC) can be found via linear time algorithms, linear with respect to the image size. The new algorithm, P-ORFC (for parallel optimal RFC), which is implemented by using NVIDIA's Compute Unified Device Architecture (CUDA) platform, considerably improves the computational speed of the above mentioned CPU based IRFC algorithm. Experiments based on four data sets of small, medium, large, and super data size, achieved speedup factors of 32.8×, 22.9×, 20.9×, and 17.5×, correspondingly, on the NVIDIA Tesla C1060 platform. Although the output of P-ORFC need not precisely match that of IRFC output, it is very close to it and, as the authors prove, always lies between the RFC and IRFC objects. A parallel version of a top-of-the-line algorithm in the family of FC has been developed on the NVIDIA GPUs. An interactive speed of segmentation has been achieved, even for the largest medical image data set. Such GPU implementations may play a crucial role in automatic anatomy recognition in clinical radiology.

  8. GPU-based relative fuzzy connectedness image segmentation

    Zhuge, Ying; Ciesielski, Krzysztof C.; Udupa, Jayaram K.; Miller, Robert W.

    2013-01-01

    Purpose: Recently, clinical radiological research and practice are becoming increasingly quantitative. Further, images continue to increase in size and volume. For quantitative radiology to become practical, it is crucial that image segmentation algorithms and their implementations are rapid and yield practical run time on very large data sets. The purpose of this paper is to present a parallel version of an algorithm that belongs to the family of fuzzy connectedness (FC) algorithms, to achieve an interactive speed for segmenting large medical image data sets. Methods: The most common FC segmentations, optimizing an ℓ∞-based energy, are known as relative fuzzy connectedness (RFC) and iterative relative fuzzy connectedness (IRFC). Both RFC and IRFC objects (of which IRFC contains RFC) can be found via linear time algorithms, linear with respect to the image size. The new algorithm, P-ORFC (for parallel optimal RFC), which is implemented by using NVIDIA’s Compute Unified Device Architecture (CUDA) platform, considerably improves the computational speed of the above mentioned CPU based IRFC algorithm. Results: Experiments based on four data sets of small, medium, large, and super data size, achieved speedup factors of 32.8×, 22.9×, 20.9×, and 17.5×, correspondingly, on the NVIDIA Tesla C1060 platform. Although the output of P-ORFC need not precisely match that of IRFC output, it is very close to it and, as the authors prove, always lies between the RFC and IRFC objects. Conclusions: A parallel version of a top-of-the-line algorithm in the family of FC has been developed on the NVIDIA GPUs. An interactive speed of segmentation has been achieved, even for the largest medical image data set. Such GPU implementations may play a crucial role in automatic anatomy recognition in clinical radiology. PMID:23298094

  9. Superpixel-based segmentation of glottal area from videolaryngoscopy images

    Turkmen, H. Irem; Albayrak, Abdulkadir; Karsligil, M. Elif; Kocak, Ismail

    2017-11-01

    Segmentation of the glottal area with high accuracy is one of the major challenges for the development of systems for computer-aided diagnosis of vocal-fold disorders. We propose a hybrid model combining conventional methods with a superpixel-based segmentation approach. We first employed a superpixel algorithm to reveal the glottal area by eliminating the local variances of pixels caused by bleedings, blood vessels, and light reflections from mucosa. Then, the glottal area was detected by exploiting a seeded region-growing algorithm in a fully automatic manner. The experiments were conducted on videolaryngoscopy images obtained from both patients having pathologic vocal folds as well as healthy subjects. Finally, the proposed hybrid approach was compared with conventional region-growing and active-contour model-based glottal area segmentation algorithms. The performance of the proposed method was evaluated in terms of segmentation accuracy and elapsed time. The F-measure, true negative rate, and dice coefficients of the hybrid method were calculated as 82%, 93%, and 82%, respectively, which are superior to the state-of-art glottal-area segmentation methods. The proposed hybrid model achieved high success rates and robustness, making it suitable for developing a computer-aided diagnosis system that can be used in clinical routines.

  10. Automatic tissue image segmentation based on image processing and deep learning

    Kong, Zhenglun; Luo, Junyi; Xu, Shengpu; Li, Ting

    2018-02-01

    Image segmentation plays an important role in multimodality imaging, especially in fusion structural images offered by CT, MRI with functional images collected by optical technologies or other novel imaging technologies. Plus, image segmentation also provides detailed structure description for quantitative visualization of treating light distribution in the human body when incorporated with 3D light transport simulation method. Here we used image enhancement, operators, and morphometry methods to extract the accurate contours of different tissues such as skull, cerebrospinal fluid (CSF), grey matter (GM) and white matter (WM) on 5 fMRI head image datasets. Then we utilized convolutional neural network to realize automatic segmentation of images in a deep learning way. We also introduced parallel computing. Such approaches greatly reduced the processing time compared to manual and semi-automatic segmentation and is of great importance in improving speed and accuracy as more and more samples being learned. Our results can be used as a criteria when diagnosing diseases such as cerebral atrophy, which is caused by pathological changes in gray matter or white matter. We demonstrated the great potential of such image processing and deep leaning combined automatic tissue image segmentation in personalized medicine, especially in monitoring, and treatments.

  11. An Image Matching Algorithm Integrating Global SRTM and Image Segmentation for Multi-Source Satellite Imagery

    Xiao Ling

    2016-08-01

    Full Text Available This paper presents a novel image matching method for multi-source satellite images, which integrates global Shuttle Radar Topography Mission (SRTM data and image segmentation to achieve robust and numerous correspondences. This method first generates the epipolar lines as a geometric constraint assisted by global SRTM data, after which the seed points are selected and matched. To produce more reliable matching results, a region segmentation-based matching propagation is proposed in this paper, whereby the region segmentations are extracted by image segmentation and are considered to be a spatial constraint. Moreover, a similarity measure integrating Distance, Angle and Normalized Cross-Correlation (DANCC, which considers geometric similarity and radiometric similarity, is introduced to find the optimal correspondences. Experiments using typical satellite images acquired from Resources Satellite-3 (ZY-3, Mapping Satellite-1, SPOT-5 and Google Earth demonstrated that the proposed method is able to produce reliable and accurate matching results.

  12. Color Image Evaluation for Small Space Based on FA and GEP

    Li Deng

    2014-01-01

    Full Text Available Aiming at the problem that color image is difficult to quantify, this paper proposes an evaluation method of color image for small space based on factor analysis (FA and gene expression programming (GEP and constructs a correlation model between color image factors and comprehensive color image. The basic color samples of small space and color images are evaluated by semantic differential method (SD method, color image factors are selected via dimension reduction in FA, factor score function is established, and by combining the entropy weight method to determine each factor weights then the comprehensive color image score is calculated finally. The best fitting function between color image factors and comprehensive color image is obtained by GEP algorithm, which can predict the users’ color image values. A color image evaluation system for small space is developed based on this model. The color evaluation of a control room on AC frequency conversion rig is taken as an example, verifying the effectiveness of the proposed method. It also can assist the designers in other color designs and provide a fast evaluation tool for testing users’ color image.

  13. Copyright Protection of Color Imaging Using Robust-Encoded Watermarking

    M. Cedillo-Hernandez

    2015-04-01

    Full Text Available In this paper we present a robust-encoded watermarking method applied to color images for copyright protection, which presents robustness against several geometric and signal processing distortions. Trade-off between payload, robustness and imperceptibility is a very important aspect which has to be considered when a watermark algorithm is designed. In our proposed scheme, previously to be embedded into the image, the watermark signal is encoded using a convolutional encoder, which can perform forward error correction achieving better robustness performance. Then, the embedding process is carried out through the discrete cosine transform domain (DCT of an image using the image normalization technique to accomplish robustness against geometric and signal processing distortions. The embedded watermark coded bits are extracted and decoded using the Viterbi algorithm. In order to determine the presence or absence of the watermark into the image we compute the bit error rate (BER between the recovered and the original watermark data sequence. The quality of the watermarked image is measured using the well-known indices: Peak Signal to Noise Ratio (PSNR, Visual Information Fidelity (VIF and Structural Similarity Index (SSIM. The color difference between the watermarked and original images is obtained by using the Normalized Color Difference (NCD measure. The experimental results show that the proposed method provides good performance in terms of imperceptibility and robustness. The comparison among the proposed and previously reported methods based on different techniques is also provided.

  14. Color image fusion for concealed weapon detection

    Toet, A.

    2003-01-01

    Recent advances in passive and active imaging sensor technology offer the potential to detect weapons that are concealed underneath a person's clothing or carried along in bags. Although the concealed weapons can sometimes easily be detected, it can be difficult to perceive their context, due to the

  15. Robust medical image segmentation for hyperthermia treatment planning

    Neufeld, E.; Chavannes, N.; Kuster, N.; Samaras, T.

    2005-01-01

    Full text: This work is part of an ongoing effort to develop a comprehensive hyperthermia treatment planning (HTP) tool. The goal is to unify all the steps necessary to perform treatment planning - from image segmentation to optimization of the energy deposition pattern - in a single tool. The bases of the HTP software are the routines and know-how developed in our TRINTY project that resulted the commercial EM platform SEMCAD-X. It incorporates the non-uniform finite-difference time-domain (FDTD) method, permitting the simulation of highly detailed models. Subsequently, in order to create highly resolved patient models, a powerful and robust segmentation tool is needed. A toolbox has been created that allows the flexible combination of various segmentation methods as well as several pre-and postprocessing functions. It works primarily with CT and MRI images, which it can read in various formats. A wide variety of segmentation methods has been implemented. This includes thresholding techniques (k-means classification, expectation maximization and modal histogram analysis for automatic threshold detection, multi-dimensional if required), region growing methods (with hysteretic behavior and simultaneous competitive growing), an interactive marker based watershed transformation, level-set methods (homogeneity and edge based, fast-marching), a flexible live-wire implementation as well as fuzzy connectedness. Due to the large number of tissues that need to be segmented for HTP, no methods that rely on prior knowledge have been implemented. Various edge extraction routines, distance transforms, smoothing techniques (convolutions, anisotropic diffusion, sigma filter...), connected component analysis, topologically flexible interpolation, image algebra and morphological operations are available. Moreover, contours or surfaces can be extracted, simplified and exported. Using these different techniques on several samples, the following conclusions have been drawn: Due to the

  16. COLOR IMAGE RETRIEVAL BASED ON FEATURE FUSION THROUGH MULTIPLE LINEAR REGRESSION ANALYSIS

    K. Seetharaman

    2015-08-01

    Full Text Available This paper proposes a novel technique based on feature fusion using multiple linear regression analysis, and the least-square estimation method is employed to estimate the parameters. The given input query image is segmented into various regions according to the structure of the image. The color and texture features are extracted on each region of the query image, and the features are fused together using the multiple linear regression model. The estimated parameters of the model, which is modeled based on the features, are formed as a vector called a feature vector. The Canberra distance measure is adopted to compare the feature vectors of the query and target images. The F-measure is applied to evaluate the performance of the proposed technique. The obtained results expose that the proposed technique is comparable to the other existing techniques.

  17. Classification of Diabetic Macular Edema and Its Stages Using Color Fundus Image

    Muhammad Zubair; Shoab A. Khan; Ubaid Ullah Yasin

    2014-01-01

    Diabetic macular edema (DME) is a retinal thickening involving the center of the macula. It is one of the serious eye diseases which affects the central vision and can lead to partial or even complete visual loss. The only cure is timely diagnosis, prevention, and treatment of the disease. This paper presents an automated system for the diagnosis and classification of DME using color fundus image. In the proposed technique, first the optic disc is removed by applying some preprocessing steps. The preprocessed image is then passed through a classifier for segmentation of the image to detect exudates. The classifier uses dynamic thresholding technique by using some input parameters of the image. The stage classification is done on the basis of anearly treatment diabetic retinopathy study (ETDRS) given criteria to assess the severity of disease. The proposed technique gives a sensitivity, specificity, and accuracy of 98.27%, 96.58%, and 96.54%, respectively on publically available database.

  18. STUDY OF IMAGE SEGMENTATION TECHNIQUES ON RETINAL IMAGES FOR HEALTH CARE MANAGEMENT WITH FAST COMPUTING

    Srikanth Prabhu

    2012-02-01

    Full Text Available The role of segmentation in image processing is to separate foreground from background. In this process, the features become clearly visible when appropriate filters are applied on the image. In this paper emphasis has been laid on segmentation of biometric retinal images to filter out the vessels explicitly for evaluating the bifurcation points and features for diabetic retinopathy. Segmentation on images is performed by calculating ridges or morphology. Ridges are those areas in the images where there is sharp contrast in features. Morphology targets the features using structuring elements. Structuring elements are of different shapes like disk, line which is used for extracting features of those shapes. When segmentation was performed on retinal images problems were encountered during image pre-processing stage. Also edge detection techniques have been deployed to find out the contours of the retinal images. After the segmentation has been performed, it has been seen that artifacts of the retinal images have been minimal when ridge based segmentation technique was deployed. In the field of Health Care Management, image segmentation has an important role to play as it determines whether a person is normal or having any disease specially diabetes. During the process of segmentation, diseased features are classified as diseased one’s or artifacts. The problem comes when artifacts are classified as diseased ones. This results in misclassification which has been discussed in the analysis Section. We have achieved fast computing with better performance, in terms of speed for non-repeating features, when compared to repeating features.

  19. An area efficient readout architecture for photon counting color imaging

    Lundgren, Jan; O'Nils, Mattias; Oelmann, Bengt; Norlin, Boerje; Abdalla, Suliman

    2007-01-01

    The introduction of several energy levels, namely color imaging, in photon counting X-ray image sensors is a trade-off between circuit complexity and spatial resolution. In this paper, we propose a pixel architecture that has full resolution for the intensity and uses sub-sampling for the energy spectrum. The results show that this sub-sampling pixel architecture produces images with an image quality which is, on average, 2.4 dB (PSNR) higher than those for a single energy range architecture and with half the circuit complexity of that for a full sampling architecture

  20. Preferred and acceptable color gamut for reproducing natural image content

    Sekulovski, D.; de Volder, R.J.; Heynderickx, I.E.J.

    2009-01-01

    The preferred and maximally acceptable chroma for natural images of mainly one hue is determined using both a tuning and a paired-comparison task. The results clearly show the need for wide-gamut displays, but also the limited acceptance of over-saturated colors. Preference in chroma is dominated by

  1. Color management systems: methods and technologies for increased image quality

    Caretti, Maria

    1997-02-01

    All the steps in the imaging chain -- from handling the originals in the prepress to outputting them on any device - - have to be well calibrated and adjusted to each other, in order to reproduce color images in a desktop environment as accurate as possible according to the original. Today most of the steps in the prepress production are digital and therefore it is realistic to believe that the color reproduction can be well controlled. This is true thanks to the last years development of fast, cost effective scanners, digital sources and digital proofing devices not the least. It is likely to believe that well defined tools and methods to control this imaging flow will lead to large cost and time savings as well as increased overall image quality. Until now, there has been a lack of good, reliable, easy-to- use systems (e.g. hardware, software, documentation, training and support) in an extent that has made them accessible to the large group of users of graphic arts production systems. This paper provides an overview of the existing solutions to manage colors in a digital pre-press environment. Their benefits and limitations are discussed as well as how they affect the production workflow and organization. The difference between a color controlled environment and one that is not is explained.

  2. Tomographic Particle Image Velocimetry using Smartphones and Colored Shadows

    Aguirre-Pablo, Andres A.; Alarfaj, Meshal K.; Li, Erqiang; Hernandez Sanchez, Jose Federico; Thoroddsen, Sigurdur T

    2017-01-01

    We demonstrate the viability of using four low-cost smartphone cameras to perform Tomographic PIV. We use colored shadows to imprint two or three different time-steps on the same image. The back-lighting is accomplished with three sets

  3. Segmentation and classification of cell cycle phases in fluorescence imaging.

    Ersoy, Ilker; Bunyak, Filiz; Chagin, Vadim; Cardoso, M Christina; Palaniappan, Kannappan

    2009-01-01

    Current chemical biology methods for studying spatiotemporal correlation between biochemical networks and cell cycle phase progression in live-cells typically use fluorescence-based imaging of fusion proteins. Stable cell lines expressing fluorescently tagged protein GFP-PCNA produce rich, dynamically varying sub-cellular foci patterns characterizing the cell cycle phases, including the progress during the S-phase. Variable fluorescence patterns, drastic changes in SNR, shape and position changes and abundance of touching cells require sophisticated algorithms for reliable automatic segmentation and cell cycle classification. We extend the recently proposed graph partitioning active contours (GPAC) for fluorescence-based nucleus segmentation using regional density functions and dramatically improve its efficiency, making it scalable for high content microscopy imaging. We utilize surface shape properties of GFP-PCNA intensity field to obtain descriptors of foci patterns and perform automated cell cycle phase classification, and give quantitative performance by comparing our results to manually labeled data.

  4. Asymmetric similarity-weighted ensembles for image segmentation

    Cheplygina, V.; Van Opbroek, A.; Ikram, M. A.

    2016-01-01

    Supervised classification is widely used for image segmentation. To work effectively, these techniques need large amounts of labeled training data, that is representative of the test data. Different patient groups, different scanners or different scanning protocols can lead to differences between...... the images, thus representative data might not be available. Transfer learning techniques can be used to account for these differences, thus taking advantage of all the available data acquired with different protocols. We investigate the use of classifier ensembles, where each classifier is weighted...... and the direction of measurement needs to be chosen carefully. We also show that a point set similarity measure is robust across different studies, and outperforms state-of-the-art results on a multi-center brain tissue segmentation task....

  5. Point based interactive image segmentation using multiquadrics splines

    Meena, Sachin; Duraisamy, Prakash; Palniappan, Kannappan; Seetharaman, Guna

    2017-05-01

    Multiquadrics (MQ) are radial basis spline function that can provide an efficient interpolation of data points located in a high dimensional space. MQ were developed by Hardy to approximate geographical surfaces and terrain modelling. In this paper we frame the task of interactive image segmentation as a semi-supervised interpolation where an interpolating function learned from the user provided seed points is used to predict the labels of unlabeled pixel and the spline function used in the semi-supervised interpolation is MQ. This semi-supervised interpolation framework has a nice closed form solution which along with the fact that MQ is a radial basis spline function lead to a very fast interactive image segmentation process. Quantitative and qualitative results on the standard datasets show that MQ outperforms other regression based methods, GEBS, Ridge Regression and Logistic Regression, and popular methods like Graph Cut,4 Random Walk and Random Forest.6

  6. A novel algorithm for segmentation of brain MR images

    Sial, M.Y.; Yu, L.; Chowdhry, B.S.; Rajput, A.Q.K.; Bhatti, M.I.

    2006-01-01

    Accurate and fully automatic segmentation of brain from magnetic resonance (MR) scans is a challenging problem that has received an enormous amount of . attention lately. Many researchers have applied various techniques however a standard fuzzy c-means algorithm has produced better results compared to other methods. In this paper, we present a modified fuzzy c-means (FCM) based algorithm for segmentation of brain MR images. Our algorithm is formulated by modifying the objective function of the standard FCM and uses a special spread method to get a smooth and slow varying bias field This method has the advantage that it can be applied at an early stage in an automated data analysis before a tissue model is available. The results on MRI images show that this method provides better results compared to standard FCM algorithms. (author)

  7. A combination chaotic system and application in color image encryption

    Parvaz, R.; Zarebnia, M.

    2018-05-01

    In this paper, by using Logistic, Sine and Tent systems we define a combination chaotic system. Some properties of the chaotic system are studied by using figures and numerical results. A color image encryption algorithm is introduced based on new chaotic system. Also this encryption algorithm can be used for gray scale or binary images. The experimental results of the encryption algorithm show that the encryption algorithm is secure and practical.

  8. Improved Calibration Shows Images True Colors

    2015-01-01

    Innovative Imaging and Research, located at Stennis Space Center, used a single SBIR contract with the center to build a large-scale integrating sphere, capable of calibrating a whole array of cameras simultaneously, at a fraction of the usual cost for such a device. Through the use of LEDs, the company also made the sphere far more efficient than existing products and able to mimic sunlight.

  9. Interactive segmentation for geographic atrophy in retinal fundus images

    Lee, Noah; Smith, R. Theodore; Laine, Andrew F.

    2008-01-01

    Fundus auto-fluorescence (FAF) imaging is a non-invasive technique for in vivo ophthalmoscopic inspection of age-related macular degeneration (AMD), the most common cause of blindness in developed countries. Geographic atrophy (GA) is an advanced form of AMD and accounts for 12–21% of severe visual loss in this disorder [3]. Automatic quantification of GA is important for determining disease progression and facilitating clinical diagnosis of AMD. The problem of automatic segmentation of patho...

  10. Animal Detection in Natural Images: Effects of Color and Image Database

    Zhu, Weina; Drewes, Jan; Gegenfurtner, Karl R.

    2013-01-01

    The visual system has a remarkable ability to extract categorical information from complex natural scenes. In order to elucidate the role of low-level image features for the recognition of objects in natural scenes, we recorded saccadic eye movements and event-related potentials (ERPs) in two experiments, in which human subjects had to detect animals in previously unseen natural images. We used a new natural image database (ANID) that is free of some of the potential artifacts that have plagued the widely used COREL images. Color and grayscale images picked from the ANID and COREL databases were used. In all experiments, color images induced a greater N1 EEG component at earlier time points than grayscale images. We suggest that this influence of color in animal detection may be masked by later processes when measuring reation times. The ERP results of go/nogo and forced choice tasks were similar to those reported earlier. The non-animal stimuli induced bigger N1 than animal stimuli both in the COREL and ANID databases. This result indicates ultra-fast processing of animal images is possible irrespective of the particular database. With the ANID images, the difference between color and grayscale images is more pronounced than with the COREL images. The earlier use of the COREL images might have led to an underestimation of the contribution of color. Therefore, we conclude that the ANID image database is better suited for the investigation of the processing of natural scenes than other databases commonly used. PMID:24130744

  11. Deformable M-Reps for 3D Medical Image Segmentation

    Pizer, Stephen M.; Fletcher, P. Thomas; Joshi, Sarang; Thall, Andrew; Chen, James Z.; Fridman, Yonatan; Fritsch, Daniel S.; Gash, Graham; Glotzer, John M.; Jiroutek, Michael R.; Lu, Conglin; Muller, Keith E.; Tracton, Gregg; Yushkevich, Paul; Chaney, Edward L.

    2013-01-01

    M-reps (formerly called DSLs) are a multiscale medial means for modeling and rendering 3D solid geometry. They are particularly well suited to model anatomic objects and in particular to capture prior geometric information effectively in deformable models segmentation approaches. The representation is based on figural models, which define objects at coarse scale by a hierarchy of figures – each figure generally a slab representing a solid region and its boundary simultaneously. This paper focuses on the use of single figure models to segment objects of relatively simple structure. A single figure is a sheet of medial atoms, which is interpolated from the model formed by a net, i.e., a mesh or chain, of medial atoms (hence the name m-reps), each atom modeling a solid region via not only a position and a width but also a local figural frame giving figural directions and an object angle between opposing, corresponding positions on the boundary implied by the m-rep. The special capability of an m-rep is to provide spatial and orientational correspondence between an object in two different states of deformation. This ability is central to effective measurement of both geometric typicality and geometry to image match, the two terms of the objective function optimized in segmentation by deformable models. The other ability of m-reps central to effective segmentation is their ability to support segmentation at multiple levels of scale, with successively finer precision. Objects modeled by single figures are segmented first by a similarity transform augmented by object elongation, then by adjustment of each medial atom, and finally by displacing a dense sampling of the m-rep implied boundary. While these models and approaches also exist in 2D, we focus on 3D objects. The segmentation of the kidney from CT and the hippocampus from MRI serve as the major examples in this paper. The accuracy of segmentation as compared to manual, slice-by-slice segmentation is reported. PMID

  12. Use of discrete chromatic space to tune the image tone in a color image mosaic

    Zhang, Zuxun; Li, Zhijiang; Zhang, Jianqing; Zheng, Li

    2003-09-01

    Color image process is a very important problem. However, the main approach presently of them is to transfer RGB colour space into another colour space, such as HIS (Hue, Intensity and Saturation). YIQ, LUV and so on. Virutally, it may not be a valid way to process colour airborne image just in one colour space. Because the electromagnetic wave is physically altered in every wave band, while the color image is perceived based on psychology vision. Therefore, it's necessary to propose an approach accord with physical transformation and psychological perception. Then, an analysis on how to use relative colour spaces to process colour airborne photo is discussed and an application on how to tune the image tone in colour airborne image mosaic is introduced. As a practice, a complete approach to perform the mosaic on color airborne images via taking full advantage of relative color spaces is discussed in the application.

  13. Medical image segmentation by a constraint satisfaction neural network

    Chen, C.T.; Tsao, E.C.K.; Lin, W.C.

    1991-01-01

    This paper proposes a class of Constraint Satisfaction Neural Networks (CSNNs) for solving the problem of medical image segmentation which can be formulated as a Constraint Satisfaction Problem (CSP). A CSNN consists of a set of objects, a set of labels for each object, a collection of constraint relations linking the labels of neighboring objects, and a topological constraint describing the neighborhood relationship among various objects. Each label for a particular object indicates one possible interpretation for that object. The CSNN can be viewed as a collection of neurons that interconnect with each other. The connections and the topology of a CSNN are used to represent the constraints in a CSP. The mechanism of the neural network is to find a solution that satisfies all the constraints in order to achieve a global consistency. The final solution outlines segmented areas and simultaneously satisfies all the constraints. This technique has been applied to medical images and the results show that this CSNN method is a very promising approach for image segmentation

  14. A holistic image segmentation framework for cloud detection and extraction

    Shen, Dan; Xu, Haotian; Blasch, Erik; Horvath, Gregory; Pham, Khanh; Zheng, Yufeng; Ling, Haibin; Chen, Genshe

    2013-05-01

    Atmospheric clouds are commonly encountered phenomena affecting visual tracking from air-borne or space-borne sensors. Generally clouds are difficult to detect and extract because they are complex in shape and interact with sunlight in a complex fashion. In this paper, we propose a clustering game theoretic image segmentation based approach to identify, extract, and patch clouds. In our framework, the first step is to decompose a given image containing clouds. The problem of image segmentation is considered as a "clustering game". Within this context, the notion of a cluster is equivalent to a classical equilibrium concept from game theory, as the game equilibrium reflects both the internal and external (e.g., two-player) cluster conditions. To obtain the evolutionary stable strategies, we explore three evolutionary dynamics: fictitious play, replicator dynamics, and infection and immunization dynamics (InImDyn). Secondly, we use the boundary and shape features to refine the cloud segments. This step can lower the false alarm rate. In the third step, we remove the detected clouds and patch the empty spots by performing background recovery. We demonstrate our cloud detection framework on a video clip provides supportive results.

  15. A Linear Criterion to sort Color Components in Images

    Leonardo Barriga Rodriguez

    2017-01-01

    Full Text Available The color and its representation play a basic role in Image Analysis process. Several methods can be beneficial whenever they have a correct representation of wave-length variations used to represent scenes with a camera. A wide variety of spaces and color representations is founded in specialized literature. Each one is useful in concrete circumstances and others may offer redundant color information (for instance, all RGB components are high correlated. This work deals with the task of identifying and sorting which component from several color representations offers the majority of information about the scene. This approach is based on analyzing linear dependences among each color component, by the implementation of a new sorting algorithm based on entropy. The proposal is tested in several outdoor/indoor scenes with different light conditions. Repeatability and stability are tested in order to guarantee its use in several image analysis applications. Finally, the results of this work have been used to enhance an external algorithm to compensate the camera random vibrations.

  16. Image-guided regularization level set evolution for MR image segmentation and bias field correction.

    Wang, Lingfeng; Pan, Chunhong

    2014-01-01

    Magnetic resonance (MR) image segmentation is a crucial step in surgical and treatment planning. In this paper, we propose a level-set-based segmentation method for MR images with intensity inhomogeneous problem. To tackle the initialization sensitivity problem, we propose a new image-guided regularization to restrict the level set function. The maximum a posteriori inference is adopted to unify segmentation and bias field correction within a single framework. Under this framework, both the contour prior and the bias field prior are fully used. As a result, the image intensity inhomogeneity can be well solved. Extensive experiments are provided to evaluate the proposed method, showing significant improvements in both segmentation and bias field correction accuracies as compared with other state-of-the-art approaches. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Color Image Authentication and Recovery via Adaptive Encoding

    Chun-Hung Chen

    2014-01-01

    Full Text Available We describe an authentication and recovery scheme for color image protection based on adaptive encoding. The image blocks are categorized based on their contents and different encoding schemes are applied according to their types. Such adaptive encoding results in better image quality and more robust image authentication. The approximations of the luminance and chromatic channels are carefully calculated, and for the purpose of reducing the data size, differential coding is used to encode the channels with variable size according to the characteristic of the block. The recovery data which represents the approximation and the detail of the image is embedded for data protection. The necessary data is well protected by using error correcting coding and duplication. The experimental results demonstrate that our technique is able to identify and localize image tampering, while preserving high quality for both watermarked and recovered images.

  18. A Variational Approach to Simultaneous Image Segmentation and Bias Correction.

    Zhang, Kaihua; Liu, Qingshan; Song, Huihui; Li, Xuelong

    2015-08-01

    This paper presents a novel variational approach for simultaneous estimation of bias field and segmentation of images with intensity inhomogeneity. We model intensity of inhomogeneous objects to be Gaussian distributed with different means and variances, and then introduce a sliding window to map the original image intensity onto another domain, where the intensity distribution of each object is still Gaussian but can be better separated. The means of the Gaussian distributions in the transformed domain can be adaptively estimated by multiplying the bias field with a piecewise constant signal within the sliding window. A maximum likelihood energy functional is then defined on each local region, which combines the bias field, the membership function of the object region, and the constant approximating the true signal from its corresponding object. The energy functional is then extended to the whole image domain by the Bayesian learning approach. An efficient iterative algorithm is proposed for energy minimization, via which the image segmentation and bias field correction are simultaneously achieved. Furthermore, the smoothness of the obtained optimal bias field is ensured by the normalized convolutions without extra cost. Experiments on real images demonstrated the superiority of the proposed algorithm to other state-of-the-art representative methods.

  19. Segmentation of HER2 protein overexpression in immunohistochemically stained breast cancer images using Support Vector Machines

    Pezoa, Raquel; Salinas, Luis; Torres, Claudio; Härtel, Steffen; Maureira-Fredes, Cristián; Arce, Paola

    2016-10-01

    Breast cancer is one of the most common cancers in women worldwide. Patient therapy is widely supported by analysis of immunohistochemically (IHC) stained tissue sections. In particular, the analysis of HER2 overexpression by immunohistochemistry helps to determine when patients are suitable to HER2-targeted treatment. Computational HER2 overexpression analysis is still an open problem and a challenging task principally because of the variability of immunohistochemistry tissue samples and the subjectivity of the specialists to assess the samples. In addition, the immunohistochemistry process can produce diverse artifacts that difficult the HER2 overexpression assessment. In this paper we study the segmentation of HER2 overexpression in IHC stained breast cancer tissue images using a support vector machine (SVM) classifier. We asses the SVM performance using diverse color and texture pixel-level features including the RGB, CMYK, HSV, CIE L*a*b* color spaces, color deconvolution filter and Haralick features. We measure classification performance for three datasets containing a total of 153 IHC images that were previously labeled by a pathologist.

  20. Model-based segmentation of short-axis MR cardiac images

    Spreeuwers, Lieuwe Jan; Breeuwer, M.

    Reliable automatic segmentation of MR cardiac images is still an important problem in medical image processing. Although image data quality has improved considerably during the last years, this segmentation is still considered a difficult problem. Manual segmentation is hardly an option as this is

  1. Multi-clues image retrieval based on improved color invariants

    Liu, Liu; Li, Jian-Xun

    2012-05-01

    At present, image retrieval has a great progress in indexing efficiency and memory usage, which mainly benefits from the utilization of the text retrieval technology, such as the bag-of-features (BOF) model and the inverted-file structure. Meanwhile, because the robust local feature invariants are selected to establish BOF, the retrieval precision of BOF is enhanced, especially when it is applied to a large-scale database. However, these local feature invariants mainly consider the geometric variance of the objects in the images, and thus the color information of the objects fails to be made use of. Because of the development of the information technology and Internet, the majority of our retrieval objects is color images. Therefore, retrieval performance can be further improved through proper utilization of the color information. We propose an improved method through analyzing the flaw of shadow-shading quasi-invariant. The response and performance of shadow-shading quasi-invariant for the object edge with the variance of lighting are enhanced. The color descriptors of the invariant regions are extracted and integrated into BOF based on the local feature. The robustness of the algorithm and the improvement of the performance are verified in the final experiments.

  2. Filler segmentation of SEM paper images based on mathematical morphology.

    Ait Kbir, M; Benslimane, Rachid; Princi, Elisabetta; Vicini, Silvia; Pedemonte, Enrico

    2007-07-01

    Recent developments in microscopy and image processing have made digital measurements on high-resolution images of fibrous materials possible. This helps to gain a better understanding of the structure and other properties of the material at micro level. In this paper SEM image segmentation based on mathematical morphology is proposed. In fact, paper models images (Whatman, Murillo, Watercolor, Newsprint paper) selected in the context of the Euro Mediterranean PaperTech Project have different distributions of fibers and fillers, caused by the presence of SiAl and CaCO3 particles. It is a microscopy challenge to make filler particles in the sheet distinguishable from the other components of the paper surface. This objectif is reached here by using switable strutural elements and mathematical morphology operators.

  3. Infrared Image Segmentation by Combining Fractal Geometry with Wavelet Transformation

    Xionggang Tu

    2014-11-01

    Full Text Available An infrared image is decomposed into three levels by discrete stationary wavelet transform (DSWT. Noise is reduced by wiener filter in the high resolution levels in the DSWT domain. Nonlinear gray transformation operation is used to enhance details in the low resolution levels in the DSWT domain. Enhanced infrared image is obtained by inverse DSWT. The enhanced infrared image is divided into many small blocks. The fractal dimensions of all the blocks are computed. Region of interest (ROI is extracted by combining all the blocks, which have similar fractal dimensions. ROI is segmented by global threshold method. The man-made objects are efficiently separated from the infrared image by the proposed method.

  4. Fast Graph Partitioning Active Contours for Image Segmentation Using Histograms

    Nath SumitK

    2009-01-01

    Full Text Available Abstract We present a method to improve the accuracy and speed, as well as significantly reduce the memory requirements, for the recently proposed Graph Partitioning Active Contours (GPACs algorithm for image segmentation in the work of Sumengen and Manjunath (2006. Instead of computing an approximate but still expensive dissimilarity matrix of quadratic size, , for a 2D image of size and regular image tiles of size , we use fixed length histograms and an intensity-based symmetric-centrosymmetric extensor matrix to jointly compute terms associated with the complete dissimilarity matrix. This computationally efficient reformulation of GPAC using a very small memory footprint offers two distinct advantages over the original implementation. It speeds up convergence of the evolving active contour and seamlessly extends performance of GPAC to multidimensional images.

  5. A robust color image watermarking algorithm against rotation attacks

    Han, Shao-cheng; Yang, Jin-feng; Wang, Rui; Jia, Gui-min

    2018-01-01

    A robust digital watermarking algorithm is proposed based on quaternion wavelet transform (QWT) and discrete cosine transform (DCT) for copyright protection of color images. The luminance component Y of a host color image in YIQ space is decomposed by QWT, and then the coefficients of four low-frequency subbands are transformed by DCT. An original binary watermark scrambled by Arnold map and iterated sine chaotic system is embedded into the mid-frequency DCT coefficients of the subbands. In order to improve the performance of the proposed algorithm against rotation attacks, a rotation detection scheme is implemented before watermark extracting. The experimental results demonstrate that the proposed watermarking scheme shows strong robustness not only against common image processing attacks but also against arbitrary rotation attacks.

  6. A new iterative triclass thresholding technique in image segmentation.

    Cai, Hongmin; Yang, Zhong; Cao, Xinhua; Xia, Weiming; Xu, Xiaoyin

    2014-03-01

    We present a new method in image segmentation that is based on Otsu's method but iteratively searches for subregions of the image for segmentation, instead of treating the full image as a whole region for processing. The iterative method starts with Otsu's threshold and computes the mean values of the two classes as separated by the threshold. Based on the Otsu's threshold and the two mean values, the method separates the image into three classes instead of two as the standard Otsu's method does. The first two classes are determined as the foreground and background and they will not be processed further. The third class is denoted as a to-be-determined (TBD) region that is processed at next iteration. At the succeeding iteration, Otsu's method is applied on the TBD region to calculate a new threshold and two class means and the TBD region is again separated into three classes, namely, foreground, background, and a new TBD region, which by definition is smaller than the previous TBD regions. Then, the new TBD region is processed in the similar manner. The process stops when the Otsu's thresholds calculated between two iterations is less than a preset threshold. Then, all the intermediate foreground and background regions are, respectively, combined to create the final segmentation result. Tests on synthetic and real images showed that the new iterative method can achieve better performance than the standard Otsu's method in many challenging cases, such as identifying weak objects and revealing fine structures of complex objects while the added computational cost is minimal.

  7. Placental fetal stem segmentation in a sequence of histology images

    Athavale, Prashant; Vese, Luminita A.

    2012-02-01

    Recent research in perinatal pathology argues that analyzing properties of the placenta may reveal important information on how certain diseases progress. One important property is the structure of the placental fetal stems. Analysis of the fetal stems in a placenta could be useful in the study and diagnosis of some diseases like autism. To study the fetal stem structure effectively, we need to automatically and accurately track fetal stems through a sequence of digitized hematoxylin and eosin (H&E) stained histology slides. There are many problems in successfully achieving this goal. A few of the problems are: large size of images, misalignment of the consecutive H&E slides, unpredictable inaccuracies of manual tracing, very complicated texture patterns of various tissue types without clear characteristics, just to name a few. In this paper we propose a novel algorithm to achieve automatic tracing of the fetal stem in a sequence of H&E images, based on an inaccurate manual segmentation of a fetal stem in one of the images. This algorithm combines global affine registration, local non-affine registration and a novel 'dynamic' version of the active contours model without edges. We first use global affine image registration of all the images based on displacement, scaling and rotation. This gives us approximate location of the corresponding fetal stem in the image that needs to be traced. We then use the affine registration algorithm "locally" near this location. At this point, we use a fast non-affine registration based on L2-similarity measure and diffusion regularization to get a better location of the fetal stem. Finally, we have to take into account inaccuracies in the initial tracing. This is achieved through a novel dynamic version of the active contours model without edges where the coefficients of the fitting terms are computed iteratively to ensure that we obtain a unique stem in the segmentation. The segmentation thus obtained can then be used as an

  8. Munsell color analysis of Landsat color-ratio-composite images of limonitic areas in southwest New Mexico

    Kruse, F. A.

    1985-01-01

    The causes of color variations in the green areas on Landsat 4/5-4/6-6/7 (red-blue-green) color-ratio-composite (CRC) images, defined as limonitic areas, were investigated by analyzing the CRC images of the Lordsburg, New Mexico area. The red-blue-green additive color system was mathematically transformed into the cylindrical Munsell color coordinates (hue, saturation, and value), and selected areas were digitally analyzed for color variation. The obtained precise color characteristics were then correlated with properties of surface material. The amount of limonite (L) visible to the sensor was found to be the primary cause of the observed color differences. The visible L is, is turn, affected by the amount of L on the material's surface and by within-pixel mixing of limonitic and nonlimonitic materials. The secondary cause of variation was vegetation density, which shifted CRC hues towards yellow-green, decreased saturation, and increased value.

  9. Quantitative Comparison of SPM, FSL, and Brainsuite for Brain MR Image Segmentation

    Kazemi K

    2014-03-01

    Full Text Available Background: Accurate brain tissue segmentation from magnetic resonance (MR images is an important step in analysis of cerebral images. There are software packages which are used for brain segmentation. These packages usually contain a set of skull stripping, intensity non-uniformity (bias correction and segmentation routines. Thus, assessment of the quality of the segmented gray matter (GM, white matter (WM and cerebrospinal fluid (CSF is needed for the neuroimaging applications. Methods: In this paper, performance evaluation of three widely used brain segmentation software packages SPM8, FSL and Brainsuite is presented. Segmentation with SPM8 has been performed in three frameworks: i default segmentation, ii SPM8 New-segmentation and iii modified version using hidden Markov random field as implemented in SPM8-VBM toolbox. Results: The accuracy of the segmented GM, WM and CSF and the robustness of the tools against changes of image quality has been assessed using Brainweb simulated MR images and IBSR real MR images. The calculated similarity between the segmented tissues using different tools and corresponding ground truth shows variations in segmentation results. Conclusion: A few studies has investigated GM, WM and CSF segmentation. In these studies, the skull stripping and bias correction are performed separately and they just evaluated the segmentation. Thus, in this study, assessment of complete segmentation framework consisting of pre-processing and segmentation of these packages is performed. The obtained results can assist the users in choosing an appropriate segmentation software package for the neuroimaging application of interest.

  10. Segmenting overlapping nano-objects in atomic force microscopy image

    Wang, Qian; Han, Yuexing; Li, Qing; Wang, Bing; Konagaya, Akihiko

    2018-01-01

    Recently, techniques for nanoparticles have rapidly been developed for various fields, such as material science, medical, and biology. In particular, methods of image processing have widely been used to automatically analyze nanoparticles. A technique to automatically segment overlapping nanoparticles with image processing and machine learning is proposed. Here, two tasks are necessary: elimination of image noises and action of the overlapping shapes. For the first task, mean square error and the seed fill algorithm are adopted to remove noises and improve the quality of the original image. For the second task, four steps are needed to segment the overlapping nanoparticles. First, possibility split lines are obtained by connecting the high curvature pixels on the contours. Second, the candidate split lines are classified with a machine learning algorithm. Third, the overlapping regions are detected with the method of density-based spatial clustering of applications with noise (DBSCAN). Finally, the best split lines are selected with a constrained minimum value. We give some experimental examples and compare our technique with two other methods. The results can show the effectiveness of the proposed technique.

  11. Semantic Segmentation of Aerial Images with AN Ensemble of Cnns

    Marmanis, D.; Wegner, J. D.; Galliani, S.; Schindler, K.; Datcu, M.; Stilla, U.

    2016-06-01

    This paper describes a deep learning approach to semantic segmentation of very high resolution (aerial) images. Deep neural architectures hold the promise of end-to-end learning from raw images, making heuristic feature design obsolete. Over the last decade this idea has seen a revival, and in recent years deep convolutional neural networks (CNNs) have emerged as the method of choice for a range of image interpretation tasks like visual recognition and object detection. Still, standard CNNs do not lend themselves to per-pixel semantic segmentation, mainly because one of their fundamental principles is to gradually aggregate information over larger and larger image regions, making it hard to disentangle contributions from different pixels. Very recently two extensions of the CNN framework have made it possible to trace the semantic information back to a precise pixel position: deconvolutional network layers undo the spatial downsampling, and Fully Convolution Networks (FCNs) modify the fully connected classification layers of the network in such a way that the location of individual activations remains explicit. We design a FCN which takes as input intensity and range data and, with the help of aggressive deconvolution and recycling of early network layers, converts them into a pixelwise classification at full resolution. We discuss design choices and intricacies of such a network, and demonstrate that an ensemble of several networks achieves excellent results on challenging data such as the ISPRS semantic labeling benchmark, using only the raw data as input.

  12. Simultaneous macula detection and optic disc boundary segmentation in retinal fundus images

    Girard, Fantin; Kavalec, Conrad; Grenier, Sébastien; Ben Tahar, Houssem; Cheriet, Farida

    2016-03-01

    The optic disc (OD) and the macula are important structures in automatic diagnosis of most retinal diseases inducing vision defects such as glaucoma, diabetic or hypertensive retinopathy and age-related macular degeneration. We propose a new method to detect simultaneously the macula and the OD boundary. First, the color fundus images are processed to compute several maps highlighting the different anatomical structures such as vessels, the macula and the OD. Then, macula candidates and OD candidates are found simultaneously and independently using seed detectors identified on the corresponding maps. After selecting a set of macula/OD pairs, the top candidates are sent to the OD segmentation method. The segmentation method is based on local K-means applied to color coordinates in polar space followed by a polynomial fitting regularization step. Pair scores are updated, resulting in the final best macula/OD pair. The method was evaluated on two public image databases: ONHSD and MESSIDOR. The results show an overlapping area of 0.84 on ONHSD and 0.90 on MESSIDOR, which is better than recent state of the art methods. Our segmentation method is robust to contrast and illumination problems and outputs the exact boundary of the OD, not just a circular or elliptical model. The macula detection has an accuracy of 94%, which again outperforms other macula detection methods. This shows that combining the OD and macula detections improves the overall accuracy. The computation time for the whole process is 6.4 seconds, which is faster than other methods in the literature.

  13. Segmentation and intensity estimation of microarray images using a gamma-t mixture model.

    Baek, Jangsun; Son, Young Sook; McLachlan, Geoffrey J

    2007-02-15

    We present a new approach to the analysis of images for complementary DNA microarray experiments. The image segmentation and intensity estimation are performed simultaneously by adopting a two-component mixture model. One component of this mixture corresponds to the distribution of the background intensity, while the other corresponds to the distribution of the foreground intensity. The intensity measurement is a bivariate vector consisting of red and green intensities. The background intensity component is modeled by the bivariate gamma distribution, whose marginal densities for the red and green intensities are independent three-parameter gamma distributions with different parameters. The foreground intensity component is taken to be the bivariate t distribution, with the constraint that the mean of the foreground is greater than that of the background for each of the two colors. The degrees of freedom of this t distribution are inferred from the data but they could be specified in advance to reduce the computation time. Also, the covariance matrix is not restricted to being diagonal and so it allows for nonzero correlation between R and G foreground intensities. This gamma-t mixture model is fitted by maximum likelihood via the EM algorithm. A final step is executed whereby nonparametric (kernel) smoothing is undertaken of the posterior probabilities of component membership. The main advantages of this approach are: (1) it enjoys the well-known strengths of a mixture model, namely flexibility and adaptability to the data; (2) it considers the segmentation and intensity simultaneously and not separately as in commonly used existing software, and it also works with the red and green intensities in a bivariate framework as opposed to their separate estimation via univariate methods; (3) the use of the three-parameter gamma distribution for the background red and green intensities provides a much better fit than the normal (log normal) or t distributions; (4) the

  14. Effects of chromatic image statistics on illumination induced color differences.

    Lucassen, Marcel P; Gevers, Theo; Gijsenij, Arjan; Dekker, Niels

    2013-09-01

    We measure the color fidelity of visual scenes that are rendered under different (simulated) illuminants and shown on a calibrated LCD display. Observers make triad illuminant comparisons involving the renderings from two chromatic test illuminants and one achromatic reference illuminant shown simultaneously. Four chromatic test illuminants are used: two along the daylight locus (yellow and blue), and two perpendicular to it (red and green). The observers select the rendering having the best color fidelity, thereby indirectly judging which of the two test illuminants induces the smallest color differences compared to the reference. Both multicolor test scenes and natural scenes are studied. The multicolor scenes are synthesized and represent ellipsoidal distributions in CIELAB chromaticity space having the same mean chromaticity but different chromatic orientations. We show that, for those distributions, color fidelity is best when the vector of the illuminant change (pointing from neutral to chromatic) is parallel to the major axis of the scene's chromatic distribution. For our selection of natural scenes, which generally have much broader chromatic distributions, we measure a higher color fidelity for the yellow and blue illuminants than for red and green. Scrambled versions of the natural images are also studied to exclude possible semantic effects. We quantitatively predict the average observer response (i.e., the illuminant probability) with four types of models, differing in the extent to which they incorporate information processing by the visual system. Results show different levels of performance for the models, and different levels for the multicolor scenes and the natural scenes. Overall, models based on the scene averaged color difference have the best performance. We discuss how color constancy algorithms may be improved by exploiting knowledge of the chromatic distribution of the visual scene.

  15. Availability of color calibration for consistent color display in medical images and optimization of reference brightness for clinical use

    Iwai, Daiki; Suganami, Haruka; Hosoba, Minoru; Ohno, Kazuko; Emoto, Yutaka; Tabata, Yoshito; Matsui, Norihisa

    2013-03-01

    Color image consistency has not been accomplished yet except the Digital Imaging and Communication in Medicine (DICOM) Supplement 100 for implementing a color reproduction pipeline and device independent color spaces. Thus, most healthcare enterprises could not check monitor degradation routinely. To ensure color consistency in medical color imaging, monitor color calibration should be introduced. Using simple color calibration device . chromaticity of colors including typical color (Red, Green, Blue, Green and White) are measured as device independent profile connection space value called u'v' before and after calibration. In addition, clinical color images are displayed and visual differences are observed. In color calibration, monitor brightness level has to be set to quite lower value 80 cd/m2 according to sRGB standard. As Maximum brightness of most color monitors available currently for medical use have much higher brightness than 80 cd/m2, it is not seemed to be appropriate to use 80 cd/m2 level for calibration. Therefore, we propose that new brightness standard should be introduced while maintaining the color representation in clinical use. To evaluate effects of brightness to chromaticity experimentally, brightness level is changed in two monitors from 80 to 270cd/m2 and chromaticity value are compared with each brightness levels. As a result, there are no significant differences in chromaticity diagram when brightness levels are changed. In conclusion, chromaticity is close to theoretical value after color calibration. Moreover, chromaticity isn't moved when brightness is changed. The results indicate optimized reference brightness level for clinical use could be set at high brightness in current monitors .

  16. Acquisition and visualization techniques for narrow spectral color imaging.

    Neumann, László; García, Rafael; Basa, János; Hegedüs, Ramón

    2013-06-01

    This paper introduces a new approach in narrow-band imaging (NBI). Existing NBI techniques generate images by selecting discrete bands over the full visible spectrum or an even wider spectral range. In contrast, here we perform the sampling with filters covering a tight spectral window. This image acquisition method, named narrow spectral imaging, can be particularly useful when optical information is only available within a narrow spectral window, such as in the case of deep-water transmittance, which constitutes the principal motivation of this work. In this study we demonstrate the potential of the proposed photographic technique on nonunderwater scenes recorded under controlled conditions. To this end three multilayer narrow bandpass filters were employed, which transmit at 440, 456, and 470 nm bluish wavelengths, respectively. Since the differences among the images captured in such a narrow spectral window can be extremely small, both image acquisition and visualization require a novel approach. First, high-bit-depth images were acquired with multilayer narrow-band filters either placed in front of the illumination or mounted on the camera lens. Second, a color-mapping method is proposed, using which the input data can be transformed onto the entire display color gamut with a continuous and perceptually nearly uniform mapping, while ensuring optimally high information content for human perception.

  17. Automatic airline baggage counting using 3D image segmentation

    Yin, Deyu; Gao, Qingji; Luo, Qijun

    2017-06-01

    The baggage number needs to be checked automatically during baggage self-check-in. A fast airline baggage counting method is proposed in this paper using image segmentation based on height map which is projected by scanned baggage 3D point cloud. There is height drop in actual edge of baggage so that it can be detected by the edge detection operator. And then closed edge chains are formed from edge lines that is linked by morphological processing. Finally, the number of connected regions segmented by closed chains is taken as the baggage number. Multi-bag experiment that is performed on the condition of different placement modes proves the validity of the method.

  18. Variational Histogram Equalization for Single Color Image Defogging

    Li Zhou

    2016-01-01

    Full Text Available Foggy images taken in the bad weather inevitably suffer from contrast loss and color distortion. Existing defogging methods merely resort to digging out an accurate scene transmission in ignorance of their unpleasing distortion and high complexity. Different from previous works, we propose a simple but powerful method based on histogram equalization and the physical degradation model. By revising two constraints in a variational histogram equalization framework, the intensity component of a fog-free image can be estimated in HSI color space, since the airlight is inferred through a color attenuation prior in advance. To cut down the time consumption, a general variation filter is proposed to obtain a numerical solution from the revised framework. After getting the estimated intensity component, it is easy to infer the saturation component from the physical degradation model in saturation channel. Accordingly, the fog-free image can be restored with the estimated intensity and saturation components. In the end, the proposed method is tested on several foggy images and assessed by two no-reference indexes. Experimental results reveal that our method is relatively superior to three groups of relevant and state-of-the-art defogging methods.

  19. Using wavelet denoising and mathematical morphology in the segmentation technique applied to blood cells images

    Boix García, Macarena; Cantó Colomina, Begoña

    2013-01-01

    Accurate image segmentation is used in medical diagnosis since this technique is a noninvasive pre-processing step for biomedical treatment. In this work we present an efficient segmentation method for medical image analysis. In particular, with this method blood cells can be segmented. For that, we combine the wavelet transform with morphological operations. Moreover, the wavelet thresholding technique is used to eliminate the noise and prepare the image for suitable segmentation. In wavelet...

  20. GLOBAL CLASSIFICATION OF DERMATITIS DISEASE WITH K-MEANS CLUSTERING IMAGE SEGMENTATION METHODS

    Prafulla N. Aerkewar1 & Dr. G. H. Agrawal2

    2018-01-01

    The objective of this paper to presents a global technique for classification of different dermatitis disease lesions using the process of k-Means clustering image segmentation method. The word global is used such that the all dermatitis disease having skin lesion on body are classified in to four category using k-means image segmentation and nntool of Matlab. Through the image segmentation technique and nntool can be analyze and study the segmentation properties of skin lesions occurs in...

  1. #TheDress: Categorical perception of an ambiguous color image

    Lafer-Sousa, Rosa; Conway, Bevil R.

    2017-01-01

    We present a full analysis of data from our preliminary report (Lafer-Sousa, Hermann, & Conway, 2015) and test whether #TheDress image is multistable. A multistable image must give rise to more than one mutually exclusive percept, typically within single individuals. Clustering algorithms of color-matching data showed that the dress was seen categorically, as white/gold (W/G) or blue/black (B/K), with a blue/brown transition state. Multinomial regression predicted categorical labels. Consistent with our prior hypothesis, W/G observers inferred a cool illuminant, whereas B/K observers inferred a warm illuminant; moreover, subjects could use skin color alone to infer the illuminant. The data provide some, albeit weak, support for our hypothesis that day larks see the dress as W/G and night owls see it as B/K. About half of observers who were previously familiar with the image reported switching categories at least once. Switching probability increased with professional art experience. Priming with an image that disambiguated the dress as B/K biased reports toward B/K (priming with W/G had negligible impact); furthermore, knowledge of the dress's true colors and any prior exposure to the image shifted the population toward B/K. These results show that some people have switched their perception of the dress. Finally, consistent with a role of attention and local image statistics in determining how multistable images are seen, we found that observers tended to discount as achromatic the dress component that they did not attend to: B/K reporters focused on a blue region, whereas W/G reporters focused on a golden region. PMID:29090319

  2. #TheDress: Categorical perception of an ambiguous color image.

    Lafer-Sousa, Rosa; Conway, Bevil R

    2017-10-01

    We present a full analysis of data from our preliminary report (Lafer-Sousa, Hermann, & Conway, 2015) and test whether #TheDress image is multistable. A multistable image must give rise to more than one mutually exclusive percept, typically within single individuals. Clustering algorithms of color-matching data showed that the dress was seen categorically, as white/gold (W/G) or blue/black (B/K), with a blue/brown transition state. Multinomial regression predicted categorical labels. Consistent with our prior hypothesis, W/G observers inferred a cool illuminant, whereas B/K observers inferred a warm illuminant; moreover, subjects could use skin color alone to infer the illuminant. The data provide some, albeit weak, support for our hypothesis that day larks see the dress as W/G and night owls see it as B/K. About half of observers who were previously familiar with the image reported switching categories at least once. Switching probability increased with professional art experience. Priming with an image that disambiguated the dress as B/K biased reports toward B/K (priming with W/G had negligible impact); furthermore, knowledge of the dress's true colors and any prior exposure to the image shifted the population toward B/K. These results show that some people have switched their perception of the dress. Finally, consistent with a role of attention and local image statistics in determining how multistable images are seen, we found that observers tended to discount as achromatic the dress component that they did not attend to: B/K reporters focused on a blue region, whereas W/G reporters focused on a golden region.

  3. Hybrid of Fuzzy Logic and Random Walker Method for Medical Image Segmentation

    Jasdeep Kaur; Manish Mahajan

    2015-01-01

    The procedure of partitioning an image into various segments to reform an image into somewhat that is more significant and easier to analyze, defined as image segmentation. In real world applications, noisy images exits and there could be some measurement errors too. These factors affect the quality of segmentation, which is of major concern in medical fields where decisions about patients’ treatment are based on information extracted from radiological images. Several algorithms and technique...

  4. Active Segmentation.

    Mishra, Ajay; Aloimonos, Yiannis

    2009-01-01

    The human visual system observes and understands a scene/image by making a series of fixations. Every fixation point lies inside a particular region of arbitrary shape and size in the scene which can either be an object or just a part of it. We define as a basic segmentation problem the task of segmenting that region containing the fixation point. Segmenting the region containing the fixation is equivalent to finding the enclosing contour- a connected set of boundary edge fragments in the edge map of the scene - around the fixation. This enclosing contour should be a depth boundary.We present here a novel algorithm that finds this bounding contour and achieves the segmentation of one object, given the fixation. The proposed segmentation framework combines monocular cues (color/intensity/texture) with stereo and/or motion, in a cue independent manner. The semantic robots of the immediate future will be able to use this algorithm to automatically find objects in any environment. The capability of automatically segmenting objects in their visual field can bring the visual processing to the next level. Our approach is different from current approaches. While existing work attempts to segment the whole scene at once into many areas, we segment only one image region, specifically the one containing the fixation point. Experiments with real imagery collected by our active robot and from the known databases 1 demonstrate the promise of the approach.

  5. Toward optimal color image quality of television display

    MacDonald, Lindsay W.; Endrikhovski, Sergej N.; Bech, Soren; Jensen, Kaj

    1999-12-01

    A general framework and first experimental results are presented for the `OPTimal IMage Appearance' (OPTIMA) project, which aims to develop a computational model for achieving optimal color appearance of natural images on adaptive CRT television displays. To achieve this goal we considered the perceptual constraints determining quality of displayed images and how they could be quantified. The practical value of the notion of optimal image appearance was translated from the high level of the perceptual constraints into a method for setting the display's parameters at the physical level. In general, the whole framework of quality determination includes: (1) evaluation of perceived quality; (2) evaluation of the individual perceptual attributes; and (3) correlation between the physical measurements, psychometric parameters and the subjective responses. We performed a series of psychophysical experiments, with observers viewing a series of color images on a high-end consumer television display, to investigate the relationships between Overall Image Quality and four quality-related attributes: Brightness Rendering, Chromatic Rendering, Visibility of Details and Overall Naturalness. The results of the experiments presented in this paper suggest that these attributes are highly inter-correlated.

  6. Extended Multiscale Image Segmentation for Castellated Wall Management

    Sakamoto, M.; Tsuguchi, M.; Chhatkuli, S.; Satoh, T.

    2018-05-01

    Castellated walls are positioned as tangible cultural heritage, which require regular maintenance to preserve their original state. For the demolition and repair work of the castellated wall, it is necessary to identify the individual stones constituting the wall. However, conventional approaches using laser scanning or integrated circuits (IC) tags were very time-consuming and cumbersome. Therefore, we herein propose an efficient approach for castellated wall management based on an extended multiscale image segmentation technique. In this approach, individual stone polygons are extracted from the castellated wall image and are associated with a stone management database. First, to improve the performance of the extraction of individual stone polygons having a convex shape, we developed a new shape criterion named convex hull fitness in the image segmentation process and confirmed its effectiveness. Next, we discussed the stone management database and its beneficial utilization in the repair work of castellated walls. Subsequently, we proposed irregular-shape indexes that are helpful for evaluating the stone shape and the stability of the stone arrangement state in castellated walls. Finally, we demonstrated an application of the proposed method for a typical castellated wall in Japan. Consequently, we confirmed that the stone polygons can be extracted with an acceptable level. Further, the condition of the shapes and the layout of the stones could be visually judged with the proposed irregular-shape indexes.

  7. Rotation invariants from Gaussian-Hermite moments of color images

    Yang, B.; Suk, Tomáš; Flusser, Jan; Shi, Z.; Chen, X.

    2018-01-01

    Roč. 143, č. 1 (2018), s. 282-291 ISSN 0165-1684 R&D Projects: GA ČR GA15-16928S Institutional support: RVO:67985556 Keywords : Color images * Object recognition * Rotation invariants * Gaussian–Hermite moments * Joint invariants Subject RIV: JD - Computer Applications, Robotics Impact factor: 3.110, year: 2016 http://library.utia.cas.cz/separaty/2017/ZOI/suk-0479748.pdf

  8. Ant Colony Clustering Algorithm and Improved Markov Random Fusion Algorithm in Image Segmentation of Brain Images

    Guohua Zou

    2016-12-01

    Full Text Available New medical imaging technology, such as Computed Tomography and Magnetic Resonance Imaging (MRI, has been widely used in all aspects of medical diagnosis. The purpose of these imaging techniques is to obtain various qualitative and quantitative data of the patient comprehensively and accurately, and provide correct digital information for diagnosis, treatment planning and evaluation after surgery. MR has a good imaging diagnostic advantage for brain diseases. However, as the requirements of the brain image definition and quantitative analysis are always increasing, it is necessary to have better segmentation of MR brain images. The FCM (Fuzzy C-means algorithm is widely applied in image segmentation, but it has some shortcomings, such as long computation time and poor anti-noise capability. In this paper, firstly, the Ant Colony algorithm is used to determine the cluster centers and the number of FCM algorithm so as to improve its running speed. Then an improved Markov random field model is used to improve the algorithm, so that its antinoise ability can be improved. Experimental results show that the algorithm put forward in this paper has obvious advantages in image segmentation speed and segmentation effect.

  9. Microarray BASICA: Background Adjustment, Segmentation, Image Compression and Analysis of Microarray Images

    Jianping Hua

    2004-01-01

    Full Text Available This paper presents microarray BASICA: an integrated image processing tool for background adjustment, segmentation, image compression, and analysis of cDNA microarray images. BASICA uses a fast Mann-Whitney test-based algorithm to segment cDNA microarray images, and performs postprocessing to eliminate the segmentation irregularities. The segmentation results, along with the foreground and background intensities obtained with the background adjustment, are then used for independent compression of the foreground and background. We introduce a new distortion measurement for cDNA microarray image compression and devise a coding scheme by modifying the embedded block coding with optimized truncation (EBCOT algorithm (Taubman, 2000 to achieve optimal rate-distortion performance in lossy coding while still maintaining outstanding lossless compression performance. Experimental results show that the bit rate required to ensure sufficiently accurate gene expression measurement varies and depends on the quality of cDNA microarray images. For homogeneously hybridized cDNA microarray images, BASICA is able to provide from a bit rate as low as 5 bpp the gene expression data that are 99% in agreement with those of the original 32 bpp images.

  10. Research on Methods of Infrared and Color Image Fusion Based on Wavelet Transform

    Zhao Rentao

    2014-06-01

    Full Text Available There is significant difference in the imaging features of infrared image and color image, but their fusion images also have very good complementary information. In this paper, based on the characteristics of infrared image and color image, first of all, wavelet transform is applied to the luminance component of the infrared image and color image. In multi resolution the relevant regional variance is regarded as the activity measure, relevant regional variance ratio as the matching measure, and the fusion image is enhanced in the process of integration, thus getting the fused images by final synthesis module and multi-resolution inverse transform. The experimental results show that the fusion image obtained by the method proposed in this paper is better than the other methods in keeping the useful information of the original infrared image and the color information of the original color image. In addition, the fusion image has stronger adaptability and better visual effect.

  11. A fuzzy Hopfield neural network for medical image segmentation

    Lin, J.S.; Cheng, K.S.; Mao, C.W.

    1996-01-01

    In this paper, an unsupervised parallel segmentation approach using a fuzzy Hopfield neural network (FHNN) is proposed. The main purpose is to embed fuzzy clustering into neural networks so that on-line learning and parallel implementation for medical image segmentation are feasible. The idea is to cast a clustering problem as a minimization problem where the criteria for the optimum segmentation is chosen as the minimization of the Euclidean distance between samples to class centers. In order to generate feasible results, a fuzzy c-means clustering strategy is included in the Hopfield neural network to eliminate the need of finding weighting factors in the energy function, which is formulated and based on a basic concept commonly used in pattern classification, called the within-class scatter matrix principle. The suggested fuzzy c-means clustering strategy has also been proven to be convergent and to allow the network to learn more effectively than the conventional Hopfield neural network. The fuzzy Hopfield neural network based on the within-class scatter matrix shows the promising results in comparison with the hard c-means method

  12. Uniform color space analysis of LACIE image products

    Nalepka, R. F. (Principal Investigator); Balon, R. J.; Cicone, R. C.

    1979-01-01

    The author has identified the following significant results. Analysis and comparison of image products generated by different algorithms show that the scaling and biasing of data channels for control of PFC primaries lead to loss of information (in a probability-of misclassification sense) by two major processes. In order of importance they are: neglecting the input of one channel of data in any one image, and failing to provide sufficient color resolution of the data. The scaling and biasing approach tends to distort distance relationships in data space and provides less than desirable resolution when the data variation is typical of a developed, nonhazy agricultural scene.

  13. Segmentation of radiologic images with self-organizing maps: the segmentation problem transformed into a classification task

    Pelikan, Erich; Vogelsang, Frank; Tolxdorff, Thomas

    1996-04-01

    The texture-based segmentation of x-ray images of focal bone lesions using topological maps is introduced. Texture characteristics are described by image-point correlation of feature images to feature vectors. For the segmentation, the topological map is labeled using an improved labeling strategy. Results of the technique are demonstrated on original and synthetic x-ray images and quantified with the aid of quality measures. In addition, a classifier-specific contribution analysis is applied for assessing the feature space.

  14. Stokes image reconstruction for two-color microgrid polarization imaging systems.

    Lemaster, Daniel A

    2011-07-18

    The Air Force Research Laboratory has developed a new microgrid polarization imaging system capable of simultaneously reconstructing linear Stokes parameter images in two colors on a single focal plane array. In this paper, an effective method for extracting Stokes images is presented for this type of camera system. It is also shown that correlations between the color bands can be exploited to significantly increase overall spatial resolution. Test data is used to show the advantages of this approach over bilinear interpolation. The bounds (in terms of available reconstruction bandwidth) on image resolution are also provided.

  15. Choroidal vasculature characteristics based choroid segmentation for enhanced depth imaging optical coherence tomography images

    Chen, Qiang; Niu, Sijie [School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Yuan, Songtao; Fan, Wen, E-mail: fanwen1029@163.com; Liu, Qinghuai [Department of Ophthalmology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029 (China)

    2016-04-15

    Purpose: In clinical research, it is important to measure choroidal thickness when eyes are affected by various diseases. The main purpose is to automatically segment choroid for enhanced depth imaging optical coherence tomography (EDI-OCT) images with five B-scans averaging. Methods: The authors present an automated choroid segmentation method based on choroidal vasculature characteristics for EDI-OCT images with five B-scans averaging. By considering the large vascular of the Haller’s layer neighbor with the choroid-sclera junction (CSJ), the authors measured the intensity ascending distance and a maximum intensity image in the axial direction from a smoothed and normalized EDI-OCT image. Then, based on generated choroidal vessel image, the authors constructed the CSJ cost and constrain the CSJ search neighborhood. Finally, graph search with smooth constraints was utilized to obtain the CSJ boundary. Results: Experimental results with 49 images from 10 eyes in 8 normal persons and 270 images from 57 eyes in 44 patients with several stages of diabetic retinopathy and age-related macular degeneration demonstrate that the proposed method can accurately segment the choroid of EDI-OCT images with five B-scans averaging. The mean choroid thickness difference and overlap ratio between the authors’ proposed method and manual segmentation drawn by experts were −11.43 μm and 86.29%, respectively. Conclusions: Good performance was achieved for normal and pathologic eyes, which proves that the authors’ method is effective for the automated choroid segmentation of the EDI-OCT images with five B-scans averaging.

  16. Choroidal vasculature characteristics based choroid segmentation for enhanced depth imaging optical coherence tomography images

    Chen, Qiang; Niu, Sijie; Yuan, Songtao; Fan, Wen; Liu, Qinghuai

    2016-01-01

    Purpose: In clinical research, it is important to measure choroidal thickness when eyes are affected by various diseases. The main purpose is to automatically segment choroid for enhanced depth imaging optical coherence tomography (EDI-OCT) images with five B-scans averaging. Methods: The authors present an automated choroid segmentation method based on choroidal vasculature characteristics for EDI-OCT images with five B-scans averaging. By considering the large vascular of the Haller’s layer neighbor with the choroid-sclera junction (CSJ), the authors measured the intensity ascending distance and a maximum intensity image in the axial direction from a smoothed and normalized EDI-OCT image. Then, based on generated choroidal vessel image, the authors constructed the CSJ cost and constrain the CSJ search neighborhood. Finally, graph search with smooth constraints was utilized to obtain the CSJ boundary. Results: Experimental results with 49 images from 10 eyes in 8 normal persons and 270 images from 57 eyes in 44 patients with several stages of diabetic retinopathy and age-related macular degeneration demonstrate that the proposed method can accurately segment the choroid of EDI-OCT images with five B-scans averaging. The mean choroid thickness difference and overlap ratio between the authors’ proposed method and manual segmentation drawn by experts were −11.43 μm and 86.29%, respectively. Conclusions: Good performance was achieved for normal and pathologic eyes, which proves that the authors’ method is effective for the automated choroid segmentation of the EDI-OCT images with five B-scans averaging.

  17. Tomographic Particle Image Velocimetry using Smartphones and Colored Shadows

    Aguirre-Pablo, Andres A.

    2017-06-12

    We demonstrate the viability of using four low-cost smartphone cameras to perform Tomographic PIV. We use colored shadows to imprint two or three different time-steps on the same image. The back-lighting is accomplished with three sets of differently-colored pulsed LEDs. Each set of Red, Green & Blue LEDs is shone on a diffuser screen facing each of the cameras. We thereby record the RGB-colored shadows of opaque suspended particles, rather than the conventionally used scattered light. We subsequently separate the RGB color channels, to represent the separate times, with preprocessing to minimize noise and cross-talk. We use commercially available Tomo-PIV software for the calibration, 3-D particle reconstruction and particle-field correlations, to obtain all three velocity components in a volume. Acceleration estimations can be done thanks to the triple pulse illumination. Our test flow is a vortex ring produced by forcing flow through a circular orifice, using a flexible membrane, which is driven by a pressurized air pulse. Our system is compared to a commercial stereoscopic PIV system for error estimations. We believe this proof of concept experiment will make this technique available for education, industry and scientists for a fraction of the hardware cost needed for traditional Tomo-PIV.

  18. Multi-granularity synthesis segmentation for high spatial resolution Remote sensing images

    Yi, Lina; Liu, Pengfei; Qiao, Xiaojun; Zhang, Xiaoning; Gao, Yuan; Feng, Boyan

    2014-01-01

    Traditional segmentation method can only partition an image in a single granularity space, with segmentation accuracy limited to the single granularity space. This paper proposes a multi-granularity synthesis segmentation method for high spatial resolution remote sensing images based on a quotient space model. Firstly, we divide the whole image area into multiple granules (regions), each region is consisted of ground objects that have similar optimal segmentation scale, and then select and synthesize the sub-optimal segmentations of each region to get the final segmentation result. To validate this method, the land cover category map is used to guide the scale synthesis of multi-scale image segmentations for Quickbird image land use classification. Firstly, the image is coarsely divided into multiple regions, each region belongs to a certain land cover category. Then multi-scale segmentation results are generated by the Mumford-Shah function based region merging method. For each land cover category, the optimal segmentation scale is selected by the supervised segmentation accuracy assessment method. Finally, the optimal scales of segmentation results are synthesized under the guide of land cover category. Experiments show that the multi-granularity synthesis segmentation can produce more accurate segmentation than that of a single granularity space and benefit the classification

  19. A Multiresolution Image Completion Algorithm for Compressing Digital Color Images

    R. Gomathi

    2014-01-01

    Full Text Available This paper introduces a new framework for image coding that uses image inpainting method. In the proposed algorithm, the input image is subjected to image analysis to remove some of the portions purposefully. At the same time, edges are extracted from the input image and they are passed to the decoder in the compressed manner. The edges which are transmitted to decoder act as assistant information and they help inpainting process fill the missing regions at the decoder. Textural synthesis and a new shearlet inpainting scheme based on the theory of p-Laplacian operator are proposed for image restoration at the decoder. Shearlets have been mathematically proven to represent distributed discontinuities such as edges better than traditional wavelets and are a suitable tool for edge characterization. This novel shearlet p-Laplacian inpainting model can effectively reduce the staircase effect in Total Variation (TV inpainting model whereas it can still keep edges as well as TV model. In the proposed scheme, neural network is employed to enhance the value of compression ratio for image coding. Test results are compared with JPEG 2000 and H.264 Intracoding algorithms. The results show that the proposed algorithm works well.

  20. Artificial immune kernel clustering network for unsupervised image segmentation

    Wenlong Huang; Licheng Jiao

    2008-01-01

    An immune kernel clustering network (IKCN) is proposed based on the combination of the artificial immune network and the support vector domain description (SVDD) for the unsupervised image segmentation. In the network, a new antibody neighborhood and an adaptive learning coefficient, which is inspired by the long-term memory in cerebral cortices are presented. Starting from IKCN algorithm, we divide the image feature sets into subsets by the antibodies, and then map each subset into a high dimensional feature space by a mercer kernel, where each antibody neighborhood is represented as a support vector hypersphere. The clustering results of the local support vector hyperspheres are combined to yield a global clustering solution by the minimal spanning tree (MST), where a predefined number of clustering is not needed. We compare the proposed methods with two common clustering algorithms for the artificial synthetic data set and several image data sets, including the synthetic texture images and the SAR images, and encouraging experimental results are obtained.

  1. The Edge Detectors Suitable for Retinal OCT Image Segmentation

    Su Luo

    2017-01-01

    Full Text Available Retinal layer thickness measurement offers important information for reliable diagnosis of retinal diseases and for the evaluation of disease development and medical treatment responses. This task critically depends on the accurate edge detection of the retinal layers in OCT images. Here, we intended to search for the most suitable edge detectors for the retinal OCT image segmentation task. The three most promising edge detection algorithms were identified in the related literature: Canny edge detector, the two-pass method, and the EdgeFlow technique. The quantitative evaluation results show that the two-pass method outperforms consistently the Canny detector and the EdgeFlow technique in delineating the retinal layer boundaries in the OCT images. In addition, the mean localization deviation metrics show that the two-pass method caused the smallest edge shifting problem. These findings suggest that the two-pass method is the best among the three algorithms for detecting retinal layer boundaries. The overall better performance of Canny and two-pass methods over EdgeFlow technique implies that the OCT images contain more intensity gradient information than texture changes along the retinal layer boundaries. The results will guide our future efforts in the quantitative analysis of retinal OCT images for the effective use of OCT technologies in the field of ophthalmology.

  2. Color image encryption based on Coupled Nonlinear Chaotic Map

    Mazloom, Sahar; Eftekhari-Moghadam, Amir Masud

    2009-01-01

    Image encryption is somehow different from text encryption due to some inherent features of image such as bulk data capacity and high correlation among pixels, which are generally difficult to handle by conventional methods. The desirable cryptographic properties of the chaotic maps such as sensitivity to initial conditions and random-like behavior have attracted the attention of cryptographers to develop new encryption algorithms. Therefore, recent researches of image encryption algorithms have been increasingly based on chaotic systems, though the drawbacks of small key space and weak security in one-dimensional chaotic cryptosystems are obvious. This paper proposes a Coupled Nonlinear Chaotic Map, called CNCM, and a novel chaos-based image encryption algorithm to encrypt color images by using CNCM. The chaotic cryptography technique which used in this paper is a symmetric key cryptography with a stream cipher structure. In order to increase the security of the proposed algorithm, 240 bit-long secret key is used to generate the initial conditions and parameters of the chaotic map by making some algebraic transformations to the key. These transformations as well as the nonlinearity and coupling structure of the CNCM have enhanced the cryptosystem security. For getting higher security and higher complexity, the current paper employs the image size and color components to cryptosystem, thereby significantly increasing the resistance to known/chosen-plaintext attacks. The results of several experimental, statistical analysis and key sensitivity tests show that the proposed image encryption scheme provides an efficient and secure way for real-time image encryption and transmission.

  3. Hyperspectral image segmentation of the common bile duct

    Samarov, Daniel; Wehner, Eleanor; Schwarz, Roderich; Zuzak, Karel; Livingston, Edward

    2013-03-01

    Over the course of the last several years hyperspectral imaging (HSI) has seen increased usage in biomedicine. Within the medical field in particular HSI has been recognized as having the potential to make an immediate impact by reducing the risks and complications associated with laparotomies (surgical procedures involving large incisions into the abdominal wall) and related procedures. There are several ongoing studies focused on such applications. Hyperspectral images were acquired during pancreatoduodenectomies (commonly referred to as Whipple procedures), a surgical procedure done to remove cancerous tumors involving the pancreas and gallbladder. As a result of the complexity of the local anatomy, identifying where the common bile duct (CBD) is can be difficult, resulting in comparatively high incidents of injury to the CBD and associated complications. It is here that HSI has the potential to help reduce the risk of such events from happening. Because the bile contained within the CBD exhibits a unique spectral signature, we are able to utilize HSI segmentation algorithms to help in identifying where the CBD is. In the work presented here we discuss approaches to this segmentation problem and present the results.

  4. Animal detection in natural images: effects of color and image database.

    Weina Zhu

    Full Text Available The visual system has a remarkable ability to extract categorical information from complex natural scenes. In order to elucidate the role of low-level image features for the recognition of objects in natural scenes, we recorded saccadic eye movements and event-related potentials (ERPs in two experiments, in which human subjects had to detect animals in previously unseen natural images. We used a new natural image database (ANID that is free of some of the potential artifacts that have plagued the widely used COREL images. Color and grayscale images picked from the ANID and COREL databases were used. In all experiments, color images induced a greater N1 EEG component at earlier time points than grayscale images. We suggest that this influence of color in animal detection may be masked by later processes when measuring reation times. The ERP results of go/nogo and forced choice tasks were similar to those reported earlier. The non-animal stimuli induced bigger N1 than animal stimuli both in the COREL and ANID databases. This result indicates ultra-fast processing of animal images is possible irrespective of the particular database. With the ANID images, the difference between color and grayscale images is more pronounced than with the COREL images. The earlier use of the COREL images might have led to an underestimation of the contribution of color. Therefore, we conclude that the ANID image database is better suited for the investigation of the processing of natural scenes than other databases commonly used.

  5. Generating color terrain images in an emergency response system

    Belles, R.D.

    1985-08-01

    The Atmospheric Release Advisory Capability (ARAC) provides real-time assessments of the consequences resulting from an atmospheric release of radioactive material. In support of this operation, a system has been created which integrates numerical models, data acquisition systems, data analysis techniques, and professional staff. Of particular importance is the rapid generation of graphical images of the terrain surface in the vicinity of the accident site. A terrain data base and an associated acquisition system have been developed that provide the required terrain data. This data is then used as input to a collection of graphics programs which create and display realistic color images of the terrain. The graphics system currently has the capability of generating color shaded relief images from both overhead and perspective viewpoints within minutes. These images serve to quickly familiarize ARAC assessors with the terrain near the release location, and thus permit them to make better informed decisions in modeling the behavior of the released material. 7 refs., 8 figs

  6. Butterfly wing coloration studied with a novel imaging scatterometer

    Stavenga, Doekele

    2010-03-01

    Animal coloration functions for display or camouflage. Notably insects provide numerous examples of a rich variety of the applied optical mechanisms. For instance, many butterflies feature a distinct dichromatism, that is, the wing coloration of the male and the female differ substantially. The male Brimstone, Gonepteryx rhamni, has yellow wings that are strongly UV iridescent, but the female has white wings with low reflectance in the UV and a high reflectance in the visible wavelength range. In the Small White cabbage butterfly, Pieris rapae crucivora, the wing reflectance of the male is low in the UV and high at visible wavelengths, whereas the wing reflectance of the female is higher in the UV and lower in the visible. Pierid butterflies apply nanosized, strongly scattering beads to achieve their bright coloration. The male Pipevine Swallowtail butterfly, Battus philenor, has dorsal wings with scales functioning as thin film gratings that exhibit polarized iridescence; the dorsal wings of the female are matte black. The polarized iridescence probably functions in intraspecific, sexual signaling, as has been demonstrated in Heliconius butterflies. An example of camouflage is the Green Hairstreak butterfly, Callophrys rubi, where photonic crystal domains exist in the ventral wing scales, resulting in a matte green color that well matches the color of plant leaves. The spectral reflection and polarization characteristics of biological tissues can be rapidly and with unprecedented detail assessed with a novel imaging scatterometer-spectrophotometer, built around an elliptical mirror [1]. Examples of butterfly and damselfly wings, bird feathers, and beetle cuticle will be presented. [4pt] [1] D.G. Stavenga, H.L. Leertouwer, P. Pirih, M.F. Wehling, Optics Express 17, 193-202 (2009)

  7. Color-flow Doppler imaging in suspected extremity venous thrombosis

    Foley, W.D.; Middleton, W.D.; Lawson, T.L.; Hinson, G.W.; Puller, D.R.

    1987-01-01

    Color-flow Doppler imaging (CFDI) (Quanatum, 5 and 7.5 MHz, linear array) has been performed on 23 extremities (nine positive for venous thrombosis, 14 negative) with venographic correlation. CFDI criteria evaluated were venous color-flow respiratory variation, augmentation, compressibility, valve competence, and intraluminal echogenic filling defects. Both CFDI and venography were evaluated independently and prospectively. CFDI and venography agreed in all six cases of femoral vein thrombosis and eight of nine cases of popliteal vein thrombosis. CFDI was negative in one instance of recanalized popliteal vein thrombosis. Recanalized femoral vein thrombosis was documented in three patients by CFDI when the vein was nonopacified on conventional venography. CFDI provides a rapid and accurate assessment of the femoral popliteal venous system and can distinguish an occluded from a recanalized thrombus. Initial experience with auxiliary subclavian venous thrombus has produced equally accurate results

  8. Image segmentation of pyramid style identifier based on Support Vector Machine for colorectal endoscopic images.

    Okamoto, Takumi; Koide, Tetsushi; Sugi, Koki; Shimizu, Tatsuya; Anh-Tuan Hoang; Tamaki, Toru; Raytchev, Bisser; Kaneda, Kazufumi; Kominami, Yoko; Yoshida, Shigeto; Mieno, Hiroshi; Tanaka, Shinji

    2015-08-01

    With the increase of colorectal cancer patients in recent years, the needs of quantitative evaluation of colorectal cancer are increased, and the computer-aided diagnosis (CAD) system which supports doctor's diagnosis is essential. In this paper, a hardware design of type identification module in CAD system for colorectal endoscopic images with narrow band imaging (NBI) magnification is proposed for real-time processing of full high definition image (1920 × 1080 pixel). A pyramid style image segmentation with SVMs for multi-size scan windows, which can be implemented on an FPGA with small circuit area and achieve high accuracy, is proposed for actual complex colorectal endoscopic images.

  9. From printed color to image appearance: tool for advertising assessment

    Bonanomi, Cristian; Marini, Daniele; Rizzi, Alessandro

    2012-07-01

    We present a methodology to calculate the color appearance of advertising billboards set in indoor and outdoor environments, printed on different types of paper support and viewed under different illuminations. The aim is to simulate the visual appearance of an image printed on a specific support, observed in a certain context and illuminated with a specific source of light. Knowing in advance the visual rendering of an image in different conditions can avoid problems related to its visualization. The proposed method applies a sequence of transformations to convert a four channels image (CMYK) into a spectral one, considering the paper support, then it simulates the chosen illumination, and finally computes an estimation of the appearance.

  10. Automated rice leaf disease detection using color image analysis

    Pugoy, Reinald Adrian D. L.; Mariano, Vladimir Y.

    2011-06-01

    In rice-related institutions such as the International Rice Research Institute, assessing the health condition of a rice plant through its leaves, which is usually done as a manual eyeball exercise, is important to come up with good nutrient and disease management strategies. In this paper, an automated system that can detect diseases present in a rice leaf using color image analysis is presented. In the system, the outlier region is first obtained from a rice leaf image to be tested using histogram intersection between the test and healthy rice leaf images. Upon obtaining the outlier, it is then subjected to a threshold-based K-means clustering algorithm to group related regions into clusters. Then, these clusters are subjected to further analysis to finally determine the suspected diseases of the rice leaf.

  11. Gravel Image Segmentation in Noisy Background Based on Partial Entropy Method

    2000-01-01

    Because of wide variation in gray levels and particle dimensions and the presence of many small gravel objects in the background, as well as corrupting the image by noise, it is difficult o segment gravel objects. In this paper, we develop a partial entropy method and succeed to realize gravel objects segmentation. We give entropy principles and fur calculation methods. Moreover, we use minimum entropy error automaticly to select a threshold to segment image. We introduce the filter method using mathematical morphology. The segment experiments are performed by using different window dimensions for a group of gravel image and demonstrates that this method has high segmentation rate and low noise sensitivity.

  12. Soft tissue segmentation and 3D display from computerized tomography and magnetic resonance imaging

    Fan, R.T.; Trivedi, S.S.; Fellingham, L.L.; Gamboa-Aldeco, A.; Hedgcock, M.W.

    1987-01-01

    Volume calculation and 3D display of human anatomy facilitate a physician's diagnosis, treatment, and evaluation. Accurate segmentation of soft tissue structures is a prerequisite for such volume calculations and 3D displays, but segmentation by hand-outlining structures is often tedious and time-consuming. In this paper, methods based on analysis of statistics of image gray level are applied to segmentation of soft tissue in medical images, with the goal of making segmentation automatic or semi-automatic. The resulting segmented images, volume calculations, and 3D displays are analyzed and compared with results based on physician-drawn outlines as well as actual volume measurements

  13. Identifying Generalizable Image Segmentation Parameters for Urban Land Cover Mapping through Meta-Analysis and Regression Tree Modeling

    Brian A. Johnson

    2018-01-01

    Full Text Available The advent of very high resolution (VHR satellite imagery and the development of Geographic Object-Based Image Analysis (GEOBIA have led to many new opportunities for fine-scale land cover mapping, especially in urban areas. Image segmentation is an important step in the GEOBIA framework, so great time/effort is often spent to ensure that computer-generated image segments closely match real-world objects of interest. In the remote sensing community, segmentation is frequently performed using the multiresolution segmentation (MRS algorithm, which is tuned through three user-defined parameters (the scale, shape/color, and compactness/smoothness parameters. The scale parameter (SP is the most important parameter and governs the average size of generated image segments. Existing automatic methods to determine suitable SPs for segmentation are scene-specific and often computationally intensive, so an approach to estimating appropriate SPs that is generalizable (i.e., not scene-specific could speed up the GEOBIA workflow considerably. In this study, we attempted to identify generalizable SPs for five common urban land cover types (buildings, vegetation, roads, bare soil, and water through meta-analysis and nonlinear regression tree (RT modeling. First, we performed a literature search of recent studies that employed GEOBIA for urban land cover mapping and extracted the MRS parameters used, the image properties (i.e., spatial and radiometric resolutions, and the land cover classes mapped. Using this data extracted from the literature, we constructed RT models for each land cover class to predict suitable SP values based on the: image spatial resolution, image radiometric resolution, shape/color parameter, and compactness/smoothness parameter. Based on a visual and quantitative analysis of results, we found that for all land cover classes except water, relatively accurate SPs could be identified using our RT modeling results. The main advantage of our

  14. Graphical user interface to optimize image contrast parameters used in object segmentation - biomed 2009.

    Anderson, Jeffrey R; Barrett, Steven F

    2009-01-01

    Image segmentation is the process of isolating distinct objects within an image. Computer algorithms have been developed to aid in the process of object segmentation, but a completely autonomous segmentation algorithm has yet to be developed [1]. This is because computers do not have the capability to understand images and recognize complex objects within the image. However, computer segmentation methods [2], requiring user input, have been developed to quickly segment objects in serial sectioned images, such as magnetic resonance images (MRI) and confocal laser scanning microscope (CLSM) images. In these cases, the segmentation process becomes a powerful tool in visualizing the 3D nature of an object. The user input is an important part of improving the performance of many segmentation methods. A double threshold segmentation method has been investigated [3] to separate objects in gray scaled images, where the gray level of the object is among the gray levels of the background. In order to best determine the threshold values for this segmentation method the image must be manipulated for optimal contrast. The same is true of other segmentation and edge detection methods as well. Typically, the better the image contrast, the better the segmentation results. This paper describes a graphical user interface (GUI) that allows the user to easily change image contrast parameters that will optimize the performance of subsequent object segmentation. This approach makes use of the fact that the human brain is extremely effective in object recognition and understanding. The GUI provides the user with the ability to define the gray scale range of the object of interest. These lower and upper bounds of this range are used in a histogram stretching process to improve image contrast. Also, the user can interactively modify the gamma correction factor that provides a non-linear distribution of gray scale values, while observing the corresponding changes to the image. This

  15. Color reproduction and processing algorithm based on real-time mapping for endoscopic images.

    Khan, Tareq H; Mohammed, Shahed K; Imtiaz, Mohammad S; Wahid, Khan A

    2016-01-01

    In this paper, we present a real-time preprocessing algorithm for image enhancement for endoscopic images. A novel dictionary based color mapping algorithm is used for reproducing the color information from a theme image. The theme image is selected from a nearby anatomical location. A database of color endoscopy image for different location is prepared for this purpose. The color map is dynamic as its contents change with the change of the theme image. This method is used on low contrast grayscale white light images and raw narrow band images to highlight the vascular and mucosa structures and to colorize the images. It can also be applied to enhance the tone of color images. The statistic visual representation and universal image quality measures show that the proposed method can highlight the mucosa structure compared to other methods. The color similarity has been verified using Delta E color difference, structure similarity index, mean structure similarity index and structure and hue similarity. The color enhancement was measured using color enhancement factor that shows considerable improvements. The proposed algorithm has low and linear time complexity, which results in higher execution speed than other related works.

  16. Spot detection and image segmentation in DNA microarray data.

    Qin, Li; Rueda, Luis; Ali, Adnan; Ngom, Alioune

    2005-01-01

    Following the invention of microarrays in 1994, the development and applications of this technology have grown exponentially. The numerous applications of microarray technology include clinical diagnosis and treatment, drug design and discovery, tumour detection, and environmental health research. One of the key issues in the experimental approaches utilising microarrays is to extract quantitative information from the spots, which represent genes in a given experiment. For this process, the initial stages are important and they influence future steps in the analysis. Identifying the spots and separating the background from the foreground is a fundamental problem in DNA microarray data analysis. In this review, we present an overview of state-of-the-art methods for microarray image segmentation. We discuss the foundations of the circle-shaped approach, adaptive shape segmentation, histogram-based methods and the recently introduced clustering-based techniques. We analytically show that clustering-based techniques are equivalent to the one-dimensional, standard k-means clustering algorithm that utilises the Euclidean distance.

  17. X-ray image segmentation for vertebral mobility analysis

    Benjelloun, Mohammed; Mahmoudi, Said

    2008-01-01

    The goal of this work is to extract the parameters determining vertebral motion and its variation during flexion-extension movements using a computer vision tool for estimating and analyzing vertebral mobility. To compute vertebral body motion parameters we propose a comparative study between two segmentation methods proposed and applied to lateral X-ray images of the cervical spine. The two vertebra contour detection methods include (1) a discrete dynamic contour model (DDCM) and (2) a template matching process associated with a polar signature system. These two methods not only enable vertebra segmentation but also extract parameters that can be used to evaluate vertebral mobility. Lateral cervical spine views including 100 views in flexion, extension and neutral orientations were available for evaluation. Vertebral body motion was evaluated by human observers and using automatic methods. The results provided by the automated approaches were consistent with manual measures obtained by 15 human observers. The automated techniques provide acceptable results for the assessment of vertebral body mobility in flexion and extension on lateral views of the cervical spine. (orig.)

  18. Color-coded MR imaging phase velocity mapping with the Pixar image processor

    Singleton, H.R.; Cranney, G.B.; Pohost, G.M.

    1989-01-01

    The authors have developed a graphic interaction technique in which a mouse and cursor are used to assign colors to phase-sensitive MR images of the heart. Two colors are used, one for flow in the positive direction, another for flow in the negative direction. A lookup table is generated interactively by manipulating lines representing ramps superimposed on an intensity histogram. Intensity is made to vary with flow magnitude in each color's direction. Coded series of the ascending and descending aorta, and of two- and four-chamber views of the heart, have been generated. In conjunction with movie display, flow dynamics, especially changes in direction, are readily apparent

  19. Evaluation of segmentation algorithms for optical coherence tomography images of ovarian tissue

    Sawyer, Travis W.; Rice, Photini F. S.; Sawyer, David M.; Koevary, Jennifer W.; Barton, Jennifer K.

    2018-02-01

    Ovarian cancer has the lowest survival rate among all gynecologic cancers due to predominantly late diagnosis. Early detection of ovarian cancer can increase 5-year survival rates from 40% up to 92%, yet no reliable early detection techniques exist. Optical coherence tomography (OCT) is an emerging technique that provides depthresolved, high-resolution images of biological tissue in real time and demonstrates great potential for imaging of ovarian tissue. Mouse models are crucial to quantitatively assess the diagnostic potential of OCT for ovarian cancer imaging; however, due to small organ size, the ovaries must rst be separated from the image background using the process of segmentation. Manual segmentation is time-intensive, as OCT yields three-dimensional data. Furthermore, speckle noise complicates OCT images, frustrating many processing techniques. While much work has investigated noise-reduction and automated segmentation for retinal OCT imaging, little has considered the application to the ovaries, which exhibit higher variance and inhomogeneity than the retina. To address these challenges, we evaluated a set of algorithms to segment OCT images of mouse ovaries. We examined ve preprocessing techniques and six segmentation algorithms. While all pre-processing methods improve segmentation, Gaussian filtering is most effective, showing an improvement of 32% +/- 1.2%. Of the segmentation algorithms, active contours performs best, segmenting with an accuracy of 0.948 +/- 0.012 compared with manual segmentation (1.0 being identical). Nonetheless, further optimization could lead to maximizing the performance for segmenting OCT images of the ovaries.

  20. A spectral k-means approach to bright-field cell image segmentation.

    Bradbury, Laura; Wan, Justin W L

    2010-01-01

    Automatic segmentation of bright-field cell images is important to cell biologists, but difficult to complete due to the complex nature of the cells in bright-field images (poor contrast, broken halo, missing boundaries). Standard approaches such as level set segmentation and active contours work well for fluorescent images where cells appear as round shape, but become less effective when optical artifacts such as halo exist in bright-field images. In this paper, we present a robust segmentation method which combines the spectral and k-means clustering techniques to locate cells in bright-field images. This approach models an image as a matrix graph and segment different regions of the image by computing the appropriate eigenvectors of the matrix graph and using the k-means algorithm. We illustrate the effectiveness of the method by segmentation results of C2C12 (muscle) cells in bright-field images.

  1. Automatic segmentation of MR brain images with a convolutional neural network

    Moeskops, P.; Viergever, M.A.; Mendrik, A.M.; de Vries, L.S.; Benders, M.J.N.L.; Išgum, I.

    2016-01-01

    Automatic segmentation in MR brain images is important for quantitative analysis in large-scale studies with images acquired at all ages. This paper presents a method for the automatic segmentation of MR brain images into a number of tissue classes using a convolutional neural network. To ensure

  2. Reevaluation of JPEG image compression to digitalized gastrointestinal endoscopic color images: a pilot study

    Kim, Christopher Y.

    1999-05-01

    Endoscopic images p lay an important role in describing many gastrointestinal (GI) disorders. The field of radiology has been on the leading edge of creating, archiving and transmitting digital images. With the advent of digital videoendoscopy, endoscopists now have the ability to generate images for storage and transmission. X-rays can be compressed 30-40X without appreciable decline in quality. We reported results of a pilot study using JPEG compression of 24-bit color endoscopic images. For that study, the result indicated that adequate compression ratios vary according to the lesion and that images could be compressed to between 31- and 99-fold smaller than the original size without an appreciable decline in quality. The purpose of this study was to expand upon the methodology of the previous sty with an eye towards application for the WWW, a medium which would expand both clinical and educational purposes of color medical imags. The results indicate that endoscopists are able to tolerate very significant compression of endoscopic images without loss of clinical image quality. This finding suggests that even 1 MB color images can be compressed to well under 30KB, which is considered a maximal tolerable image size for downloading on the WWW.

  3. Segmentation of MR images via discriminative dictionary learning and sparse coding: Application to hippocampus labeling

    Tong, Tong; Wolz, Robin; Coupe, Pierrick; Hajnal, Joseph V.; Rueckert, Daniel

    2013-01-01

    International audience; We propose a novel method for the automatic segmentation of brain MRI images by using discriminative dictionary learning and sparse coding techniques. In the proposed method, dictionaries and classifiers are learned simultaneously from a set of brain atlases, which can then be used for the reconstruction and segmentation of an unseen target image. The proposed segmentation strategy is based on image reconstruction, which is in contrast to most existing atlas-based labe...

  4. Fat segmentation on chest CT images via fuzzy models

    Tong, Yubing; Udupa, Jayaram K.; Wu, Caiyun; Pednekar, Gargi; Subramanian, Janani Rajan; Lederer, David J.; Christie, Jason; Torigian, Drew A.

    2016-03-01

    Quantification of fat throughout the body is vital for the study of many diseases. In the thorax, it is important for lung transplant candidates since obesity and being underweight are contraindications to lung transplantation given their associations with increased mortality. Common approaches for thoracic fat segmentation are all interactive in nature, requiring significant manual effort to draw the interfaces between fat and muscle with low efficiency and questionable repeatability. The goal of this paper is to explore a practical way for the segmentation of subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) components of chest fat based on a recently developed body-wide automatic anatomy recognition (AAR) methodology. The AAR approach involves 3 main steps: building a fuzzy anatomy model of the body region involving all its major representative objects, recognizing objects in any given test image, and delineating the objects. We made several modifications to these steps to develop an effective solution to delineate SAT/VAT components of fat. Two new objects representing interfaces of SAT and VAT regions with other tissues, SatIn and VatIn are defined, rather than using directly the SAT and VAT components as objects for constructing the models. A hierarchical arrangement of these new and other reference objects is built to facilitate their recognition in the hierarchical order. Subsequently, accurate delineations of the SAT/VAT components are derived from these objects. Unenhanced CT images from 40 lung transplant candidates were utilized in experimentally evaluating this new strategy. Mean object location error achieved was about 2 voxels and delineation error in terms of false positive and false negative volume fractions were, respectively, 0.07 and 0.1 for SAT and 0.04 and 0.2 for VAT.

  5. A contextual image segmentation system using a priori information for automatic data classification in nuclear physics

    Benkirane, A.; Auger, G.; Chbihi, A.; Bloyet, D.; Plagnol, E.

    1994-01-01

    This paper presents an original approach to solve an automatic data classification problem by means of image processing techniques. The classification is achieved using image segmentation techniques for extracting the meaningful classes. Two types of information are merged for this purpose: the information contained in experimental images and a priori information derived from underlying physics (and adapted to image segmentation problem). This data fusion is widely used at different stages of the segmentation process. This approach yields interesting results in terms of segmentation performances, even in very noisy cases. Satisfactory classification results are obtained in cases where more ''classical'' automatic data classification methods fail. (authors). 25 refs., 14 figs., 1 append

  6. A contextual image segmentation system using a priori information for automatic data classification in nuclear physics

    Benkirane, A; Auger, G; Chbihi, A [Grand Accelerateur National d` Ions Lourds (GANIL), 14 - Caen (France); Bloyet, D [Caen Univ., 14 (France); Plagnol, E [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire

    1994-12-31

    This paper presents an original approach to solve an automatic data classification problem by means of image processing techniques. The classification is achieved using image segmentation techniques for extracting the meaningful classes. Two types of information are merged for this purpose: the information contained in experimental images and a priori information derived from underlying physics (and adapted to image segmentation problem). This data fusion is widely used at different stages of the segmentation process. This approach yields interesting results in terms of segmentation performances, even in very noisy cases. Satisfactory classification results are obtained in cases where more ``classical`` automatic data classification methods fail. (authors). 25 refs., 14 figs., 1 append.

  7. A segmentation algorithm based on image projection for complex text layout

    Zhu, Wangsheng; Chen, Qin; Wei, Chuanyi; Li, Ziyang

    2017-10-01

    Segmentation algorithm is an important part of layout analysis, considering the efficiency advantage of the top-down approach and the particularity of the object, a breakdown of projection layout segmentation algorithm. Firstly, the algorithm will algorithm first partitions the text image, and divided into several columns, then for each column scanning projection, the text image is divided into several sub regions through multiple projection. The experimental results show that, this method inherits the projection itself and rapid calculation speed, but also can avoid the effect of arc image information page segmentation, and also can accurate segmentation of the text image layout is complex.

  8. Reasonable threshold value used to segment the individual comet from the comet assay image

    Yan Xuekun; Chen Ying; Du Jie; Zhang Xueqing; Luo Yisheng

    2009-01-01

    Reasonable segmentation of the individual comet contour from the Comet Assay (CA) images is the precondition for all of parameters analysis during the automatic analyzing for the CA. The Otsu method and several arithmetic operators for image segmentation, such as Sobel, Prewitt, Roberts and Canny were used to segment the comet contour, and characters of the CA images were analyzed firstly. And then the segmentation methods which had been adopted in the software for CA automatic analysis, such as the CASP, the TriTek CometScore TM , were put for-ward and compared. At last, a two-step procedure for threshold calculation based on image-content analysis is adopted to segment the individual comet from the CA images, and several principles for the segmentation are put forward too.(authors)

  9. Region-based Image Segmentation by Watershed Partition and DCT Energy Compaction

    Chi-Man Pun

    2012-02-01

    Full Text Available An image segmentation approach by improved watershed partition and DCT energy compaction has been proposed in this paper. The proposed energy compaction, which expresses the local texture of an image area, is derived by exploiting the discrete cosine transform. The algorithm is a hybrid segmentation technique which is composed of three stages. First, the watershed transform is utilized by preprocessing techniques: edge detection and marker in order to partition the image in to several small disjoint patches, while the region size, mean and variance features are used to calculate region cost for combination. Then in the second merging stage the DCT transform is used for energy compaction which is a criterion for texture comparison and region merging. Finally the image can be segmented into several partitions. The experimental results show that the proposed approach achieved very good segmentation robustness and efficiency, when compared to other state of the art image segmentation algorithms and human segmentation results.

  10. Image processing pipeline for segmentation and material classification based on multispectral high dynamic range polarimetric images.

    Martínez-Domingo, Miguel Ángel; Valero, Eva M; Hernández-Andrés, Javier; Tominaga, Shoji; Horiuchi, Takahiko; Hirai, Keita

    2017-11-27

    We propose a method for the capture of high dynamic range (HDR), multispectral (MS), polarimetric (Pol) images of indoor scenes using a liquid crystal tunable filter (LCTF). We have included the adaptive exposure estimation (AEE) method to fully automatize the capturing process. We also propose a pre-processing method which can be applied for the registration of HDR images after they are already built as the result of combining different low dynamic range (LDR) images. This method is applied to ensure a correct alignment of the different polarization HDR images for each spectral band. We have focused our efforts in two main applications: object segmentation and classification into metal and dielectric classes. We have simplified the segmentation using mean shift combined with cluster averaging and region merging techniques. We compare the performance of our segmentation with that of Ncut and Watershed methods. For the classification task, we propose to use information not only in the highlight regions but also in their surrounding area, extracted from the degree of linear polarization (DoLP) maps. We present experimental results which proof that the proposed image processing pipeline outperforms previous techniques developed specifically for MSHDRPol image cubes.

  11. Minimizing manual image segmentation turn-around time for neuronal reconstruction by embracing uncertainty.

    Stephen M Plaza

    Full Text Available The ability to automatically segment an image into distinct regions is a critical aspect in many visual processing applications. Because inaccuracies often exist in automatic segmentation, manual segmentation is necessary in some application domains to correct mistakes, such as required in the reconstruction of neuronal processes from microscopic images. The goal of the automated segmentation tool is traditionally to produce the highest-quality segmentation, where quality is measured by the similarity to actual ground truth, so as to minimize the volume of manual correction necessary. Manual correction is generally orders-of-magnitude more time consuming than automated segmentation, often making handling large images intractable. Therefore, we propose a more relevant goal: minimizing the turn-around time of automated/manual segmentation while attaining a level of similarity with ground truth. It is not always necessary to inspect every aspect of an image to generate a useful segmentation. As such, we propose a strategy to guide manual segmentation to the most uncertain parts of segmentation. Our contributions include 1 a probabilistic measure that evaluates segmentation without ground truth and 2 a methodology that leverages these probabilistic measures to significantly reduce manual correction while maintaining segmentation quality.

  12. A secure cyclic steganographic technique for color images using randomization

    Muhammad, K.; Ahmad, J.; Rehman, N.U.

    2014-01-01

    Information Security is a major concern in today's modern era. Almost all the communicating bodies want the security, confidentiality and integrity of their personal data. But this security goal cannot be achieved easily when we are using an open network like internet. Steganography provides one of the best solutions to this problem. This paper represents a new Cyclic Steganographic Technique (CST) based on Least Significant Bit (LSB) for true color (RGB) images. The proposed method hides the secret data in the LSBs of cover image pixels in a randomized cyclic manner. The proposed technique is evaluated using both subjective and objective analysis using histograms changeability, Peak Signal-to-Noise Ratio (PSNR) and Mean Square Error (MSE). Experimentally it is found that the proposed method gives promising results in terms of security, imperceptibility and robustness as compared to some existent methods and vindicates this new algorithm. (author)

  13. Multi-color imaging of magnetic Co/Pt heterostructures

    Felix Willems

    2017-01-01

    Full Text Available We present an element specific and spatially resolved view of magnetic domains in Co/Pt heterostructures in the extreme ultraviolet spectral range. Resonant small-angle scattering and coherent imaging with Fourier-transform holography reveal nanoscale magnetic domain networks via magnetic dichroism of Co at the M2,3 edges as well as via strong dichroic signals at the O2,3 and N6,7 edges of Pt. We demonstrate for the first time simultaneous, two-color coherent imaging at a free-electron laser facility paving the way for a direct real space access to ultrafast magnetization dynamics in complex multicomponent material systems.

  14. [Application of GVF snake model in segmentation of whole body bone SPECT image].

    Zhu, Chunmei; Tian, Lianfang; Chen, Ping; Wang, Lifei; Ye, Guangchun; Mao, Zongyuan

    2008-02-01

    Limited by the imaging principle of whole body bone SPECT image, the gray value of bladder area is quite high, which affects the image's brightness, contrast and readability. In the meantime, the similarity between bladder area and focus makes it difficult for some images to be segmented automatically. In this paper, an improved Snake model, GVF Snake, is adopted to automatically segment bladder area, preparing for further processing of whole body bone SPECT images.

  15. Multi-focus Image Fusion Using Epifluorescence Microscopy for Robust Vascular Segmentation

    Pelapur, Rengarajan; Prasath, Surya; Palaniappan, Kannappan

    2014-01-01

    We are building a computerized image analysis system for Dura Mater vascular network from fluorescence microscopy images. We propose a system that couples a multi-focus image fusion module with a robust adaptive filtering based segmentation. The robust adaptive filtering scheme handles noise without destroying small structures, and the multi focal image fusion considerably improves the overall segmentation quality by integrating information from multiple images. Based on the segmenta...

  16. INTEGRATION OF SPATIAL INFORMATION WITH COLOR FOR CONTENT RETRIEVAL OF REMOTE SENSING IMAGES

    Bikesh Kumar Singh

    2010-08-01

    Full Text Available There is rapid increase in image databases of remote sensing images due to image satellites with high resolution, commercial applications of remote sensing & high available bandwidth in last few years. The problem of content-based image retrieval (CBIR of remotely sensed images presents a major challenge not only because of the surprisingly increasing volume of images acquired from a wide range of sensors but also because of the complexity of images themselves. In this paper, a software system for content-based retrieval of remote sensing images using RGB and HSV color spaces is presented. Further, we also compare our results with spatiogram based content retrieval which integrates spatial information along with color histogram. Experimental results show that the integration of spatial information in color improves the image analysis of remote sensing data. In general, retrievals in HSV color space showed better performance than in RGB color space.

  17. San Gabriel Mountains, California, Radar image, color as height

    2000-01-01

    This topographic radar image shows the relationship of the urban area of Pasadena, California to the natural contours of the land. The image includes the alluvial plain on which Pasadena and the Jet Propulsion Laboratory sit, and the steep range of the San Gabriel Mountains. The mountain front and the arcuate valley running from upper left to the lower right are active fault zones, along which the mountains are rising. The chaparral-covered slopes above Pasadena are also a prime area for wildfires and mudslides. Hazards from earthquakes, floods and fires are intimately related to the topography in this area. Topographic data and other remote sensing images provide valuable information for assessing and mitigating the natural hazards for cities along the front of active mountain ranges.This image combines two types of data from the Shuttle Radar Topography Mission. The image brightness corresponds to the strength of the radar signal reflected from the ground, while colors show the elevation as measured by SRTM. Colors range from blue at the lowest elevations to white at the highest elevations. This image contains about 2300 meters (7500 feet) of total relief. White speckles on the face of some of the mountains are holes in the data caused by steep terrain. These will be filled using coverage from an intersecting pass.The Shuttle Radar Topography Mission (SRTM), launched on February 11,2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) and the

  18. A Hybrid DWT-SVD Image-Coding System (HDWTSVD for Color Images

    Humberto Ochoa

    2003-04-01

    Full Text Available In this paper, we propose the HDWTSVD system to encode color images. Before encoding, the color components (RGB are transformed into YCbCr. Cb and Cr components are downsampled by a factor of two, both horizontally and vertically, before sending them through the encoder. A criterion based on the average standard deviation of 8x8 subblocks of the Y component is used to choose DWT or SVD for all the components. Standard test images are compressed based on the proposed algorithm.

  19. Color-Based Image Retrieval from High-Similarity Image Databases

    Hansen, Michael Adsetts Edberg; Carstensen, Jens Michael

    2003-01-01

    Many image classification problems can fruitfully be thought of as image retrieval in a "high similarity image database" (HSID) characterized by being tuned towards a specific application and having a high degree of visual similarity between entries that should be distinguished. We introduce...... a method for HSID retrieval using a similarity measure based on a linear combination of Jeffreys-Matusita (JM) distances between distributions of color (and color derivatives) estimated from a set of automatically extracted image regions. The weight coefficients are estimated based on optimal retrieval...... performance. Experimental results on the difficult task of visually identifying clones of fungal colonies grown in a petri dish and categorization of pelts show a high retrieval accuracy of the method when combined with standardized sample preparation and image acquisition....

  20. Simultaneous reconstruction and segmentation for dynamic SPECT imaging

    Burger, Martin; Rossmanith, Carolin; Zhang, Xiaoqun

    2016-01-01

    This work deals with the reconstruction of dynamic images that incorporate characteristic dynamics in certain subregions, as arising for the kinetics of many tracers in emission tomography (SPECT, PET). We make use of a basis function approach for the unknown tracer concentration by assuming that the region of interest can be divided into subregions with spatially constant concentration curves. Applying a regularised variational framework reminiscent of the Chan-Vese model for image segmentation we simultaneously reconstruct both the labelling functions of the subregions as well as the subconcentrations within each region. Our particular focus is on applications in SPECT with the Poisson noise model, resulting in a Kullback–Leibler data fidelity in the variational approach. We present a detailed analysis of the proposed variational model and prove existence of minimisers as well as error estimates. The latter apply to a more general class of problems and generalise existing results in literature since we deal with a nonlinear forward operator and a nonquadratic data fidelity. A computational algorithm based on alternating minimisation and splitting techniques is developed for the solution of the problem and tested on appropriately designed synthetic data sets. For those we compare the results to those of standard EM reconstructions and investigate the effects of Poisson noise in the data. (paper)