Influence of a guide field on collisionless driven reconnection
International Nuclear Information System (INIS)
Horiuchi, Ritoku; Usami, Shunsuke; Ohtani, Hiroaki
2014-01-01
The influence of a guide field on collisionless driven reconnection is investigated by means of two-dimensional electromagnetic particle simulation in an open system. In a quasi-steady state when reconnection electric field evolves fully, a current layer evolves locally in a narrow kinetic region and its scale decreases in proportion to an electron meandering scale as the guide field is intensified. Here, the meandering scale stands for an average spatial scale of nongyrotropic motions in the vicinity of the reconnection point. Force terms associated with off-diagonal components of electron and ion pressure tensors, which are originating from nongyrotropic motions of charged particles, becomes dominant at the reconnection point and sustain the reconnection electric field even when the guide field is strong. It is also found that thermalization of both ions and electrons is suppressed by the guide field. For the weak guide field, an electron nonthermal component is significantly created through a fast outburst from the kinetic region, while for the strong guide field, an ion nonthermal component is generated through the acceleration by an in-plane electric field near the magnetic separatrix. (author)
Towards cross-hierarchy simulation of collisionless driven reconnection in an open system
R., HORIUCHI; H., OHTANI; A., ISHIZAWA
2006-01-01
The basic idea of a cross-hierarchy model for magnetic reconnection in an open system is proposed, where a microscopic system is surrounded by a macroscopic system and the interaction between the two systems is expressed by the plasma inflow and outflow through the system boundary. Collisionless driven reconnection in two-dimensional and three-dimensional open systems is demonstrated using an open particle simulation model developed as a microscopic part of a cross-hierarchy model. It is foun...
Yoon, Young Dae
2017-10-01
A generalized, intuitive two-fluid picture of 2D non-driven collisionless magnetic reconnection is described using results from a full-3D numerical simulation. The relevant two-fluid equations simplify to the condition that the flux associated with canonical circulation Q =me ∇ ×ue +qe B is perfectly frozen into the electron fluid. Q is the curl of P =meue +qe A , which is the electron canonical momenrum. Since ∇ . Q = 0 , the Q flux tubes are incompressible and so have a fixed volume. Because they are perfectly frozen into the electron fluid, the Q flux tubes cannot reconnect. Following the behavior of these Q flux tubes provides an intuitive insight into 2D collisionless reconnection of B . In the reconnection geometry, a small perturbation to the central electron current sheet effectively brings a localized segment of a Q flux tube towards the X-point. This flux tube segment is convected downwards with the central electron current, effectively stretching the flux tube, decreasing its cross-section to maintain a fixed volume and so increasing the magnitude of Q . Also, because Q is the sum of the electron vorticity and the magnetic field, the two terms may change in such a way that one term becomes smaller while the other becomes larger while preserving constant Q flux. This allows magnetic reconnection, which is a conversion of magnetic field into particle velocity, to occur without any dissipation mechanism. The entire process has positive feedback with no restoring mechanism and therefore is an instability. The Q motion provides an interpretation for other phenomena as well, such as spiked central electron current filaments. The simulated reconnection rate was found to agree with a previous analytical calculation having the same geometry. Energy analysis shows that the magnetic energy is converted and propagated mainly in the form of the Poynting flux, while helicity analysis shows that the canonical helicity ∫ P . QdV as a whole must be considered when
Lessons on collisionless reconnection from quantum fluids
Directory of Open Access Journals (Sweden)
Yasuhito eNarita
2014-12-01
Full Text Available Magnetic reconnection in space plasmas remains a challenge in physics in that the phenomenon is associated with the breakdown of frozen-in magnetic field in a collisionless medium. Such a topology change can also be found in superfluidity, known as the quantum vortex reconnection. We give a plasma physicists' view of superfluidity to obtain insights on essential processes in collisionless reconnection, including discussion of the kinetic and fluid pictures, wave dynamics, and time reversal asymmetry. The most important lesson from the quantum fluid is the scenario that reconnection is controlled by the physics of topological defects on the microscopic scale, and by the physics of turbulence on the macroscopic scale. Quantum vortex reconnection is accompanied by wave emission in the form of Kelvin waves and sound waves, which imprints the time reversal asymmetry.
Whistler dominated quasi-collisionless magnetic reconnection
International Nuclear Information System (INIS)
Biskamp, D.; Drake, J.F.
1995-05-01
A theory of fast quasi-collisionless reconnection is presented. For spatial scales smaller than the ion inertia length the electrons decouple from the ions and the dynamics is described by electron magnetohydrodynamics (EMHD). A qualitative analysis of the reconnection region is obtained, which is corroborated by numerical simulations. The main results are that in contrast to resistive reconnection no macroscopic current sheet is generated, and the reconnection rate is independent of the smallness parameters of the system, i.e. the electron inertia length and the dissipation coefficients. At larger scales the coupling to the ions is important, which, however, does not change the small-scale dynamics. The reconnection rate is only limited by ion inertia being independent of the electron inertia scale and the dissipation coefficients. Reconnection is much faster than in the absence of the whistler mode. (orig.)
On the Collisionless Asymmetric Magnetic Reconnection Rate
Liu, Yi-Hsin; Hesse, M.; Cassak, P. A.; Shay, M. A.; Wang, S.; Chen, L.-J.
2018-04-01
A prediction of the steady state reconnection electric field in asymmetric reconnection is obtained by maximizing the reconnection rate as a function of the opening angle made by the upstream magnetic field on the weak magnetic field (magnetosheath) side. The prediction is within a factor of 2 of the widely examined asymmetric reconnection model (Cassak & Shay, 2007, https://doi.org/10.1063/1.2795630) in the collisionless limit, and they scale the same over a wide parameter regime. The previous model had the effective aspect ratio of the diffusion region as a free parameter, which simulations and observations suggest is on the order of 0.1, but the present model has no free parameters. In conjunction with the symmetric case (Liu et al., 2017, https://doi.org/10.1103/PhysRevLett.118.085101), this work further suggests that this nearly universal number 0.1, essentially the normalized fast-reconnection rate, is a geometrical factor arising from maximizing the reconnection rate within magnetohydrodynamic-scale constraints.
Superdiffusion revisited in view of collisionless reconnection
Directory of Open Access Journals (Sweden)
R. A. Treumann
2014-06-01
Full Text Available The concept of diffusion in collisionless space plasmas like those near the magnetopause and in the geomagnetic tail during reconnection is reexamined making use of the division of particle orbits into waiting orbits and break-outs into ballistic motion lying at the bottom, for instance, of Lévy flights. The rms average displacement in this case increases with time, describing superdiffusion, though faster than classical, is still a weak process, being however strong enough to support fast reconnection. Referring to two kinds of numerical particle-in-cell simulations we determine the anomalous diffusion coefficient, the anomalous collision frequency on which the diffusion process is based, and construct a relation between the diffusion coefficients and the resistive scale. The anomalous collision frequency from electron pseudo-viscosity in reconnection turns out to be of the order of the lower-hybrid frequency with the latter providing a lower limit, thus making similar assumptions physically meaningful. Tentative though not completely justified use of the κ distribution yields κ ≈ 6 in the reconnection diffusion region and, for the anomalous diffusion coefficient, the order of several times Bohm diffusivity.
Collisionless Reconnection in Magnetohydrodynamic and Kinetic Turbulence
Loureiro, Nuno F.; Boldyrev, Stanislav
2017-12-01
It has recently been proposed that the inertial interval in magnetohydrodynamic (MHD) turbulence is terminated at small scales not by a Kolmogorov-like dissipation region, but rather by a new sub-inertial interval mediated by tearing instability. However, many astrophysical plasmas are nearly collisionless so the MHD approximation is not applicable to turbulence at small scales. In this paper, we propose an extension of the theory of reconnection-mediated turbulence to plasmas which are so weakly collisional that the reconnection occurring in the turbulent eddies is caused by electron inertia rather than by resistivity. We find that the transition scale to reconnection-mediated turbulence depends on the plasma beta and on the assumptions of the plasma turbulence model. However, in all of the cases analyzed, the energy spectra in the reconnection-mediated interval range from E({k}\\perp ){{dk}}\\perp \\propto {k}\\perp -8/3{{dk}}\\perp to E({k}\\perp ){{dk}}\\perp \\propto {k}\\perp -3{{dk}}\\perp .
Pressure gradient turbulent transport and collisionless reconnection
International Nuclear Information System (INIS)
Connor, J.W.
1993-01-01
The scale invariance technique is employed to discuss pressure gradient driven turbulent transport when an Ohm's law with electron inertia, rather than resistivity, is relevant. An expression for thermal diffusivity which has many features appropriate to L-mode transport in tokamaks, is seen to have greater generality than indicated by their particular calculation. The results of applying the technique to a more appropriate collisionless Ohm's law are discussed. (Author)
Collisionless reconnection: magnetic field line interaction
Directory of Open Access Journals (Sweden)
R. A. Treumann
2012-10-01
Full Text Available Magnetic field lines are quantum objects carrying one quantum Φ0 = 2πh/e of magnetic flux and have finite radius λm. Here we argue that they possess a very specific dynamical interaction. Parallel field lines reject each other. When confined to a certain area they form two-dimensional lattices of hexagonal structure. We estimate the filling factor of such an area. Anti-parallel field lines, on the other hand, attract each other. We identify the physical mechanism as being due to the action of the gauge potential field, which we determine quantum mechanically for two parallel and two anti-parallel field lines. The distortion of the quantum electrodynamic vacuum causes a cloud of virtual pairs. We calculate the virtual pair production rate from quantum electrodynamics and estimate the virtual pair cloud density, pair current and Lorentz force density acting on the field lines via the pair cloud. These properties of field line dynamics become important in collisionless reconnection, consistently explaining why and how reconnection can spontaneously set on in the field-free centre of a current sheet below the electron-inertial scale.
A new fast reconnection model in a collisionless regime
International Nuclear Information System (INIS)
Tsiklauri, David
2008-01-01
Based on the first principles [i.e., (i) by balancing the magnetic field advection with the term containing electron pressure tensor nongyrotropic components in the generalized Ohm's law; (ii) using the conservation of mass; and (iii) assuming that the weak magnetic field region width, where electron meandering motion supports electron pressure tensor off-diagonal (nongyrotropic) components, is of the order of electron Larmor radius] a simple model of magnetic reconnection in a collisionless regime is formulated. The model is general, resembling its collisional Sweet-Parker analog in that it is not specific to any initial configuration, e.g., Harris-type tearing unstable current sheet, X-point collapse or otherwise. In addition to its importance from the fundamental point of view, the collisionless reconnection model offers a much faster reconnection rate [M c ' less =(c/ω pe ) 2 /(r L,e L)] than Sweet-Parker's classical one (M sp =S -1/2 ). The width of the diffusion region (current sheet) in the collisionless regime is found to be δ c ' less =(c/ω pe ) 2 /r L,e , which is independent of the global reconnection scale L and is only prescribed by microphysics (electron inertial length, c/ω pe , and electron Larmor radius, r L,e ). Amongst other issues, the fastness of the reconnection rate alleviates, e.g., the problem of interpretation of solar flares by means of reconnection, as for the typical solar coronal parameters the obtained collisionless reconnection time can be a few minutes, as opposed to Sweet-Parker's equivalent value of less than a day. The new theoretical reconnection rate is compared to the Magnetic Reconnection Experiment device experimental data by Yamada et al. [Phys. Plasmas 13, 052119 (2006)] and Ji et al. [Geophys. Res. Lett. 35, 13106 (2008)], and a good agreement is obtained.
New Measure of the Dissipation Region in Collisionless Magnetic Reconnection
International Nuclear Information System (INIS)
Zenitani, Seiji; Hesse, Michael; Klimas, Alex; Kuznetsova, Masha
2011-01-01
A new measure to identify a small-scale dissipation region in collisionless magnetic reconnection is proposed. The energy transfer from the electromagnetic field to plasmas in the electron's rest frame is formulated as a Lorentz-invariant scalar quantity. The measure is tested by two-dimensional particle-in-cell simulations in typical configurations: symmetric and asymmetric reconnection, with and without the guide field. The innermost region surrounding the reconnection site is accurately located in all cases. We further discuss implications for nonideal MHD dissipation.
New Measure of the Dissipation Region in Collisionless Magnetic Reconnection
Zenitani, Seiji; Hesse, Michael; Klimas, Alex; Kuznetsova, Masha
2012-01-01
A new measure to identify a small-scale dissipation region in collisionless magnetic reconnection is proposed. The energy transfer from the electromagnetic field to plasmas in the electron s rest frame is formulated as a Lorentz-invariant scalar quantity. The measure is tested by two-dimensional particle-in-cell simulations in typical configurations: symmetric and asymmetric reconnection, with and without the guide field. The innermost region surrounding the reconnection site is accurately located in all cases. We further discuss implications for nonideal MHD dissipation.
Collisionless magnetic reconnection associated with coalescence of flux bundles
International Nuclear Information System (INIS)
Tanaka, Motohiko.
1994-11-01
The basic process of collisionless reconnection is studied in terms of coalescence of magnetized flux bundles using an implicit particle simulation of two-dimensions. The toroidal electric field that directly relates to magnetic reconnection is generated solenoidally in a region much broader than the current sheet whose width is a few electron skin depths. The reconnected flux increases linearly in time, but it is insensitive to finite Larmor radii of the ions in this Sweet-Parker regime. The toroidal electric field is controlled by a balance of transit acceleration of finite-mass electrons and their removal by sub-Alfvenic E x B drift outflow. The simulation results supports the collisionless Ohm's law E t ≅η eq J t with η eq the inertia resistivity. (author)
The Diffusion Region in Collisionless Magnetic Reconnection
Hesse, Michael; Neukirch, Thomas; Schindler, Karl; Kuznetsova, Masha; Zenitani, Seiji
2011-01-01
A review of present understanding of the dissipation region in magnetic reconnection is presented. The review focuses on results of the thermal inertia-based dissipation mechanism but alternative mechanisms are mentioned as well. For the former process, a combination of analytical theory and numerical modeling is presented. Furthermore, a new relation between the electric field expressions for anti-parallel and guide field reconnection is developed.
Collisionless magnetic reconnection in a plasmoid chain
Directory of Open Access Journals (Sweden)
S. Markidis
2012-02-01
Full Text Available The kinetic features of plasmoid chain formation and evolution are investigated by two dimensional Particle-in-Cell simulations. Magnetic reconnection is initiated in multiple X points by the tearing instability. Plasmoids form and grow in size by continuously coalescing. Each chain plasmoid exhibits a strong out-of plane core magnetic field and an out-of-plane electron current that drives the coalescing process. The disappearance of the X points in the coalescence process are due to anti-reconnection, a magnetic reconnection where the plasma inflow and outflow are reversed with respect to the original reconnection flow pattern. Anti-reconnection is characterized by the Hall magnetic field quadrupole signature. Two new kinetic features, not reported by previous studies of plasmoid chain evolution, are here revealed. First, intense electric fields develop in-plane normally to the separatrices and drive the ion dynamics in the plasmoids. Second, several bipolar electric field structures are localized in proximity of the plasmoid chain. The analysis of the electron distribution function and phase space reveals the presence of counter-streaming electron beams, unstable to the two stream instability, and phase space electron holes along the reconnection separatrices.
Particle Demagnetization in Collisionless Magnetic Reconnection
Hesse, Michael
2006-01-01
The dissipation mechanism of magnetic reconnection remains a subject of intense scientific interest. On one hand, one set of recent studies have shown that particle inertia-based processes, which include thermal and bulk inertial effects, provide the reconnection electric field in the diffusion region. In this presentation, we present analytical theory results, as well as 2.5 and three-dimensional PIC simulations of guide field magnetic reconnection. We will show that diffusion region scale sizes in moderate and large guide field cases are determined by electron Larmor radii, and that analytical estimates of diffusion region dimensions need to include description of the heat flux tensor. The dominant electron dissipation process appears to be based on thermal electron inertia, expressed through nongyrotropic electron pressure tensors. We will argue that this process remains viable in three dimensions by means of a detailed comparison of high resolution particle-in-cell simulations.
The generalized Ohm's law in collisionless magnetic reconnection
International Nuclear Information System (INIS)
Cai, H.J.; Lee, L.C.
1997-01-01
The generalized Ohm close-quote s law and the force balance near neutral lines in collisionless magnetic reconnection is studied based on two-dimensional full particle simulations in which the ion endash electron mass ratio is set to be 1836. The off-diagonal elements of a plasma pressure tensor are found to be responsible for the breakdown of the frozen-in condition in collisionless reconnection. While the off-diagonal elements of the electron pressure tensor are dominant terms in the generalized Ohm close-quote s law near neutral lines, the ion off-diagonal pressure terms are of significant importance when ions are main current carriers. The spatial scale of electron off-diagonal pressure term P xy (e) is also found to be proportional to the Dungey length scale, (m e E y /eβ 2 ) 1/3 , where β=∂B z /∂x. copyright 1997 American Institute of Physics
About 'reconnection' in a collisionless plasma
International Nuclear Information System (INIS)
Pellat, R.
1979-01-01
Two kinds of mechanisms have been advertised for magnetic field line reconnection in plasmas: a slow diffusive process, proposed by Parker and Sweet (1958), related to the Tearing mode and field line stochasticity; an Alfenic flow, with a fast merging rate, the so-called Petschek theory. The present author considers both mechanisms successively and emphasizes the yet unsolved theoretical difficulties. (Auth.)
Effects of electron inertia in collisionless magnetic reconnection
Energy Technology Data Exchange (ETDEWEB)
Andrés, Nahuel, E-mail: nandres@iafe.uba.ar; Gómez, Daniel [Instituto de Astronomía y Física del Espacio, CC. 67, suc. 28, 1428, Buenos Aires (Argentina); Departamento de Física, Facultad de Ciencias Exactas y Naturales, Univrsidad de Buenos Aires, Pabellón I, 1428, Buenos Aires (Argentina); Martin, Luis; Dmitruk, Pablo [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Univrsidad de Buenos Aires, Pabellón I, 1428, Buenos Aires (Argentina)
2014-07-15
We present a study of collisionless magnetic reconnection within the framework of full two-fluid MHD for a completely ionized hydrogen plasma, retaining the effects of the Hall current, electron pressure and electron inertia. We performed 2.5D simulations using a pseudo-spectral code with no dissipative effects. We check that the ideal invariants of the problem are conserved down to round-off errors. Our numerical results confirm that the change in the topology of the magnetic field lines is exclusively due to the presence of electron inertia. The computed reconnection rates remain a fair fraction of the Alfvén velocity, which therefore qualifies as fast reconnection.
Greess, S.; Egedal, J.; Olson, J.; Millet-Ayala, A.; Myers, R.; Wallace, J.; Clark, M.; Forest, C.
2017-12-01
Kinetic effects are expected to dominate the collisionless reconnection regime, where the mean free path is large enough that the anisotropic electron pressure can develop without being damped away by collisional pitch angle scattering. In simulations, the anisotropic pressure drives the formation of outflow jets [1]. These jets are expected to play a role in the reconnection layer at the Earth's magnetopause, which is currently being explored by Magnetospheric Multiscale Mission (MMS) [2]. Until recently, this regime of anisotropic pressure was inaccessible by laboratory experiments, but new data from the Terrestrial Reconnection Experiment (TREX) shows that fully collisionless reconnection can now be achieved in the laboratory. Future runs at TREX will delve deeper into this collisionless regime in both the antiparallel and guide-field cases. [1] Le, A. et al. JPP, 81(1). doi: 10.1017/S0022377814000907. [2] Burch, J. L. et al. Space Sci. Rev. 199,5. doi: 10.1007/s11214-015-0164-9 Supported in part by NSF/DOE award DE-SC0013032.
The Impact of Geometrical Constraints on Collisionless Magnetic Reconnection
Hesse, Michael; Aunai, Nico; Kuznetsova, Masha; Frolov, Rebekah; Black, Carrrie
2012-01-01
One of the most often cited features associated with collisionless magnetic reconnection is a Hall-type magnetic field, which leads, in antiparallel geometries, to a quadrupolar magnetic field signature. The combination of this out of plane magnetic field with the reconnection in-plane magnetic field leads to angling of magnetic flux tubes out of the plane defined by the incoming magnetic flux. Because it is propagated by Whistler waves, the quadrupolar field can extend over large distances in relatively short amounts of time - in fact, it will extend to the boundary of any modeling domain. In reality, however, the surrounding plasma and magnetic field geometry, defined, for example, by the overall solar wind flow, will in practice limit the extend over which a flux tube can be angled out of the main plain. This poses the question to what extent geometric constraints limit or control the reconnection process and this is the question investigated in this presentation. The investigation will involve a comparison of calculations, where open boundary conditions are set up to mimic either free or constrained geometries. We will compare momentum transport, the geometry of the reconnection regions, and the acceleration if ions and electrons to provide the current sheet in the outflow jet.
Hamiltonian derivation of a gyrofluid model for collisionless magnetic reconnection
International Nuclear Information System (INIS)
Tassi, E
2014-01-01
We consider a simple electromagnetic gyrokinetic model for collisionless plasmas and show that it possesses a Hamiltonian structure. Subsequently, from this model we derive a two-moment gyrofluid model by means of a procedure which guarantees that the resulting gyrofluid model is also Hamiltonian. The first step in the derivation consists of imposing a generic fluid closure in the Poisson bracket of the gyrokinetic model, after expressing such bracket in terms of the gyrofluid moments. The constraint of the Jacobi identity, which every Poisson bracket has to satisfy, selects then what closures can lead to a Hamiltonian gyrofluid system. For the case at hand, it turns out that the only closures (not involving integro/differential operators or an explicit dependence on the spatial coordinates) that lead to a valid Poisson bracket are those for which the second order parallel moment, independently for each species, is proportional to the zero order moment. In particular, if one chooses an isothermal closure based on the equilibrium temperatures and derives accordingly the Hamiltonian of the system from the Hamiltonian of the parent gyrokinetic model, one recovers a known Hamiltonian gyrofluid model for collisionless reconnection. The proposed procedure, in addition to yield a gyrofluid model which automatically conserves the total energy, provides also, through the resulting Poisson bracket, a way to derive further conservation laws of the gyrofluid model, associated with the so called Casimir invariants. We show that a relation exists between Casimir invariants of the gyrofluid model and those of the gyrokinetic parent model. The application of such Hamiltonian derivation procedure to this two-moment gyrofluid model is a first step toward its application to more realistic, higher-order fluid or gyrofluid models for tokamaks. It also extends to the electromagnetic gyrokinetic case, recent applications of the same procedure to Vlasov and drift- kinetic systems
Turbulent transport in 2D collisionless guide field reconnection
Muñoz, P. A.; Büchner, J.; Kilian, P.
2017-02-01
Transport in hot and dilute, i.e., collisionless, astrophysical and space, plasmas is called "anomalous." This transport is due to the interaction between the particles and the self-generated turbulence by their collective interactions. The anomalous transport has very different and not well known properties compared to the transport due to binary collisions, dominant in colder and denser plasmas. Because of its relevance for astrophysical and space plasmas, we explore the excitation of turbulence in current sheets prone to component- or guide-field reconnection, a process not well understood yet. This configuration is typical for stellar coronae, and it is created in the laboratory for which a 2.5D geometry applies. In our analysis, in addition to the immediate vicinity of the X-line, we also include regions outside and near the separatrices. We analyze the anomalous transport properties by using 2.5D Particle-in-Cell code simulations. We split off the mean slow variation (in contrast to the fast turbulent fluctuations) of the macroscopic observables and determine the main transport terms of the generalized Ohm's law. We verify our findings by comparing with the independently determined slowing-down rate of the macroscopic currents (due to a net momentum transfer from particles to waves) and with the transport terms obtained by the first order correlations of the turbulent fluctuations. We find that the turbulence is most intense in the "low density" separatrix region of guide-field reconnection. It is excited by streaming instabilities, is mainly electrostatic and "patchy" in space, and so is the associated anomalous transport. Parts of the energy exchange between turbulence and particles are reversible and quasi-periodic. The remaining irreversible anomalous resistivity can be parametrized by an effective collision rate ranging from the local ion-cyclotron to the lower-hybrid frequency. The contributions to the parallel and the perpendicular (to the magnetic
International Nuclear Information System (INIS)
Lu Quanming; Lu San; Huang Can; Wu Mingyu; Wang Shui
2013-01-01
The onset of collisionless magnetic reconnection is considered to be controlled by electron dynamics in the electron diffusion region, where the reconnection electric field is balanced mainly by the off-diagonal electron pressure tensor term. Two-dimensional particle-in-cell simulations are employed in this paper to investigate the self-reinforcing process of the reconnection electric field in the electron diffusion region, which is found to grow exponentially. A theoretical model is proposed to demonstrate such a process in the electron diffusion region. In addition the reconnection electric field in the pileup region, which is balanced mainly by the electromotive force term, is also found to grow exponentially and its growth rate is twice that in the electron diffusion region. (paper)
The role of current sheet formation in driven plasmoid reconnection in laser-produced plasma bubbles
Lezhnin, Kirill; Fox, William; Bhattacharjee, Amitava
2017-10-01
We conduct a multiparametric study of driven magnetic reconnection relevant to recent experiments on colliding magnetized laser produced plasmas using the PIC code PSC. Varying the background plasma density, plasma resistivity, and plasma bubble geometry, the results demonstrate a variety of reconnection behavior and show the coupling between magnetic reconnection and global fluid evolution of the system. We consider both collision of two radially expanding bubbles where reconnection is driven through an X-point, and collision of two parallel fields where reconnection must be initiated by the tearing instability. Under various conditions, we observe transitions between fast, collisionless reconnection to a Sweet-Parker-like slow reconnection to complete stalling of the reconnection. By varying plasma resistivity, we observe the transition between fast and slow reconnection at Lundquist number S 103 . The transition from plasmoid reconnection to a single X-point reconnection also happens around S 103 . We find that the criterion δ /di < 1 is necessary for fast reconnection onset. Finally, at sufficiently high background density, magnetic reconnection can be suppressed, leading to bouncing motion of the magnetized plasma bubbles.
Aspects of collisionless magnetic reconnection in asymmetric systems
Energy Technology Data Exchange (ETDEWEB)
Hesse, Michael; Aunai, Nicolas; Kuznetsova, Masha [Heliophysics Science Division, Code 670, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States); Zenitani, Seiji [National Astronomical Observatory of Japan, Tokyo (Japan); Birn, Joachim [Space Science Institute, Boulder, Colorado 80301 (United States)
2013-06-15
Asymmetric reconnection is being investigated by means of particle-in-cell simulations. The research has two foci: the direction of the reconnection line in configurations with nonvanishing magnetic fields; and the question why reconnection can be faster if a guide field is added to an otherwise unchanged asymmetric configuration. We find that reconnection prefers a direction, which maximizes the available magnetic energy, and show that this direction coincides with the bisection of the angle between the asymptotic magnetic fields. Regarding the difference in reconnection rates between planar and guide field models, we demonstrate that a guide field can provide essential confinement for particles in the reconnection region, which the weaker magnetic field in one of the inflow directions cannot necessarily provide.
Aspects of collisionless magnetic reconnection in asymmetric systems
International Nuclear Information System (INIS)
Hesse, Michael; Aunai, Nicolas; Kuznetsova, Masha; Zenitani, Seiji; Birn, Joachim
2013-01-01
Asymmetric reconnection is being investigated by means of particle-in-cell simulations. The research has two foci: the direction of the reconnection line in configurations with nonvanishing magnetic fields; and the question why reconnection can be faster if a guide field is added to an otherwise unchanged asymmetric configuration. We find that reconnection prefers a direction, which maximizes the available magnetic energy, and show that this direction coincides with the bisection of the angle between the asymptotic magnetic fields. Regarding the difference in reconnection rates between planar and guide field models, we demonstrate that a guide field can provide essential confinement for particles in the reconnection region, which the weaker magnetic field in one of the inflow directions cannot necessarily provide
Aspects of Collisionless Magnetic Reconnection in Asymmetric Systems
Hesse, Michael; Aunai, Nicolas; Zeitani, Seiji; Kuznetsova, Masha; Birn, Joachim
2013-01-01
Asymmetric reconnection is being investigated by means of particle-in-cell simulations. The research has two foci: the direction of the reconnection line in configurations with non-vanishing magnetic fields; and the question why reconnection can be faster if a guide field is added to an otherwise unchanged asymmetric configuration. We find that reconnection prefers a direction, which maximizes the available magnetic energy, and show that this direction coincides with the bisection of the angle between the asymptotic magnetic fields. Regarding the difference in reconnection rates between planar and guide field models, we demonstrate that a guide field can provide essential confinement for particles in the reconnection region, which the weaker magnetic field in one of the inflow directions cannot necessarily provide.
Erratum: A Simple, Analytical Model of Collisionless Magnetic Reconnection in a Pair Plasma
Hesse, Michael; Zenitani, Seiji; Kuznetsova, Masha; Klimas, Alex
2011-01-01
The following describes a list of errata in our paper, "A simple, analytical model of collisionless magnetic reconnection in a pair plasma." It supersedes an earlier erratum. We recently discovered an error in the derivation of the outflow-to-inflow density ratio.
Impulsive relaxation process in MHD driven reconnection
International Nuclear Information System (INIS)
Kitabata, H.; Hayashi, T.; Sato, T.
1997-01-01
Compressible magnetohydrodynamic (MHD) simulation is carried out in order to investigate energy relaxation process of the driven magnetic reconnection in an open finite system through a long time calculation. It is found that a very impulsive energy release occurs in an intermittent fashion through magnetic reconnection for a continuous magnetic flux injection on the boundary. We focus our attention on the detailed process in the impulsive phase, which is the reconnection rate is remarkably enhanced up. (author)
Impulsive nature in collisional driven reconnection
International Nuclear Information System (INIS)
Kitabata, Hideyuki; Hayashi, Takaya; Sato, Tetsuya.
1995-11-01
Compressible magnetohydrodynamic simulation is carried out in order to investigate energy relaxation process of the driven magnetic reconnection in an open finite system through a long time calculation. It is found that a very impulsive energy release occurs in an intermittent fashion through magnetic reconnection for a continuous magnetic flux injection on the boundary. In the impulsive phase, the reconnection rate is remarkably enhanced up to more than ten times of the driving rate on the boundary. (author)
Origins of effective resistivity in collisionless magnetic reconnection
Energy Technology Data Exchange (ETDEWEB)
Singh, Nagendra [Electrical and Computer Engineering, University of Alabama, Huntsville, Alabama 35899 (United States)
2014-07-15
The mechanisms that provide effective resistivity for supporting collisonless magnetic reconnection have remained unsettled despite numerous studies. Some of these studies demonstrated that the electron pressure nongyrotropy generates the resistivity (η{sub npg}) in the electron diffusion region (EDR). We derive an analytical relation for the effective resistivity (η{sub kin}) by momentum balance in a control volume in the EDR. Both η{sub npg} and η{sub kin} mutually compare well and they also compare well with the resistivity required to support reconnection electric field E{sub rec} in multi-dimensional particle-in-cell simulations as well as in satellite observations when reconnection occurs in an EDR. But they are about an order of magnitude or so smaller than that required when the reconnection occurred in a much wider reconnecting current sheet (RCS) of half width (w) of the order of the ion skin depth (d{sub i}), observed in the Earth magnetosphere. The chaos-induced resistivity reported in the literature is found to be even more deficient. We find that for reconnection in RCS with w ∼ d{sub i}, anomalous diffusion, such as the universal Bhom diffusion and/or that arising from kinetic Alfven waves, could fairly well account for the required resistivity.
Current disruption and its spreading in collisionless magnetic reconnection
International Nuclear Information System (INIS)
Jain, Neeraj; Büchner, Jörg; Dorfman, Seth; Ji, Hantao; Surjalal Sharma, A.
2013-01-01
Recent magnetic reconnection experiments (MRX) [Dorfman et al., Geophys. Res. Lett. 40, 233 (2013)] have disclosed current disruption in the absence of an externally imposed guide field. During current disruption in MRX, both the current density and the total observed out-of-reconnection-plane current drop simultaneous with a rise in out-of-reconnection-plane electric field. Here, we show that current disruption is an intrinsic property of the dynamic formation of an X-point configuration of magnetic field in magnetic reconnection, independent of the model used for plasma description and of the dimensionality (2D or 3D) of reconnection. An analytic expression for the current drop is derived from Ampere's Law. Its predictions are verified by 2D and 3D electron-magnetohydrodynamic (EMHD) simulations. Three dimensional EMHD simulations show that the current disruption due to localized magnetic reconnection spreads along the direction of the electron drift velocity with a speed which depends on the wave number of the perturbation. The implications of these results for MRX are discussed
Particle-in-cell simulations of collisionless magnetic reconnection with a non-uniform guide field
International Nuclear Information System (INIS)
Wilson, F.; Neukirch, T.; Harrison, M. G.; Hesse, M.; Stark, C. R.
2016-01-01
Results are presented of a first study of collisionless magnetic reconnection starting from a recently found exact nonlinear force-free Vlasov–Maxwell equilibrium. The initial state has a Harris sheet magnetic field profile in one direction and a non-uniform guide field in a second direction, resulting in a spatially constant magnetic field strength as well as a constant initial plasma density and plasma pressure. It is found that the reconnection process initially resembles guide field reconnection, but that a gradual transition to anti-parallel reconnection happens as the system evolves. The time evolution of a number of plasma parameters is investigated, and the results are compared with simulations starting from a Harris sheet equilibrium and a Harris sheet plus constant guide field equilibrium.
Role of compressibility on driven magnetic reconnection
International Nuclear Information System (INIS)
Sato, T.; Hayashi, T.; Watanabe, K.; Horiuchi, R.; Tanaka, M.; Sawairi, N.; Kusano, K.
1991-08-01
Whether it is induced by an ideal (current driven) instability or by an external force, plasma flow causes a change in the magnetic field configuration and often gives rise to a current intensification locally, thereby a fast driven reconnection being driven there. Many dramatic phenomena in magnetically confined plasmas such as magnetospheric substorms, solar flares, MHD self-organization and tokamak sawtooth crash, may be attributed to this fast driven reconnection. Using a fourth order MHD simulation code it is confirmed that compressibility of the plasma plays a crucial role in leading to a fast (MHD time scale) driven reconnection. This indicates that the incompressible representation is not always applicable to the study of a global dynamical behavior of a magnetically confined plasma. (author)
Non-thermal particle acceleration in collisionless relativistic electron-proton reconnection
Werner, G. R.; Uzdensky, D. A.; Begelman, M. C.; Cerutti, B.; Nalewajko, K.
2018-02-01
Magnetic reconnection in relativistic collisionless plasmas can accelerate particles and power high-energy emission in various astrophysical systems. Whereas most previous studies focused on relativistic reconnection in pair plasmas, less attention has been paid to electron-ion plasma reconnection, expected in black hole accretion flows and relativistic jets. We report a comprehensive particle-in-cell numerical investigation of reconnection in an electron-ion plasma, spanning a wide range of ambient ion magnetizations σi, from the semirelativistic regime (ultrarelativistic electrons but non-relativistic ions, 10-3 ≪ σi ≪ 1) to the fully relativistic regime (both species are ultrarelativistic, σi ≫ 1). We investigate how the reconnection rate, electron and ion plasma flows, electric and magnetic field structures, electron/ion energy partitioning, and non-thermal particle acceleration depend on σi. Our key findings are: (1) the reconnection rate is about 0.1 of the Alfvénic rate across all regimes; (2) electrons can form concentrated moderately relativistic outflows even in the semirelativistic, small-σi regime; (3) while the released magnetic energy is partitioned equally between electrons and ions in the ultrarelativistic limit, the electron energy fraction declines gradually with decreased σi and asymptotes to about 0.25 in the semirelativistic regime; and (4) reconnection leads to efficient non-thermal electron acceleration with a σi-dependent power-law index, p(σ _i)˜eq const+0.7σ _i^{-1/2}. These findings are important for understanding black hole systems and lend support to semirelativistic reconnection models for powering non-thermal emission in blazar jets, offering a natural explanation for the spectral indices observed in these systems.
Zenitani, Seiji; Hesse, Michael; Klimas, Alex; Black, Carrie; Kuznetsova, Masha
2011-01-01
It was recently proposed that the electron-frame dissipation measure, the energy transfer from the electromagnetic field to plasmas in the electron s rest frame, identifies the dissipation region of collisionless magnetic reconnection [Zenitani et al., Phys. Rev. Lett. 106, 195003 (2011)]. The measure is further applied to the electron-scale structures of antiparallel reconnection, by using two-dimensional particle-in-cell simulations. The size of the central dissipation region is controlled by the electron-ion mass ratio, suggesting that electron physics is essential. A narrow electron jet extends along the outflow direction until it reaches an electron shock. The jet region appears to be anti-dissipative. At the shock, electron heating is relevant to a magnetic cavity signature. The results are summarized to a unified picture of the single dissipation region in a Hall magnetic geometry.
International Nuclear Information System (INIS)
Zenitani, Seiji; Hesse, Michael; Klimas, Alex; Black, Carrie; Kuznetsova, Masha
2011-01-01
It was recently proposed that the electron-frame dissipation measure, the energy transfer from the electromagnetic field to plasmas in the electron's rest frame, identifies the dissipation region of collisionless magnetic reconnection [Zenitani et al., Phys. Rev. Lett. 106, 195003 (2011)]. The measure is further applied to the electron-scale structures of antiparallel reconnection, by using two-dimensional particle-in-cell simulations. The size of the central dissipation region is controlled by the electron-ion mass ratio, suggesting that electron physics is essential. A narrow electron jet extends along the outflow direction until it reaches an electron shock. The jet region appears to be anti-dissipative. At the shock, electron heating is relevant to a magnetic cavity signature. The results are summarized to a unified picture of the single dissipation region in a Hall magnetic geometry.
Energy Technology Data Exchange (ETDEWEB)
Zenitani, Seiji; Hesse, Michael; Klimas, Alex; Black, Carrie; Kuznetsova, Masha [NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States)
2011-12-15
It was recently proposed that the electron-frame dissipation measure, the energy transfer from the electromagnetic field to plasmas in the electron's rest frame, identifies the dissipation region of collisionless magnetic reconnection [Zenitani et al., Phys. Rev. Lett. 106, 195003 (2011)]. The measure is further applied to the electron-scale structures of antiparallel reconnection, by using two-dimensional particle-in-cell simulations. The size of the central dissipation region is controlled by the electron-ion mass ratio, suggesting that electron physics is essential. A narrow electron jet extends along the outflow direction until it reaches an electron shock. The jet region appears to be anti-dissipative. At the shock, electron heating is relevant to a magnetic cavity signature. The results are summarized to a unified picture of the single dissipation region in a Hall magnetic geometry.
Collisionless tearing mode reconnection at the dayside magnetopause of the earth's magnetosphere
International Nuclear Information System (INIS)
Quest, K.B.
1982-01-01
The purpose of this thesis was to determine if the collisionless tearing mode, a plasma instability, is a viable mechanism for interconnecting field lines at the dayside magnetopause. More generally, it was wished to test theoretically the assertion that collisionless tearing is a probable first step in cosmical reconnection. The procedure was to model the magnetopause as a local one-dimensional Vlasov equilibrium, and then calculate the linear and nonlinear stability properties of tearing and tearing-like oscillations. Quantitative estimates of the range of plasma parameter space over which significant growth occurs were obtained. Assuming that significant tearing mode growth implies significant reconnection, conditions were determined for which tearing will be important to dayside reconnection. Linearly it was found that the growth rate is relatively insensitive to the temperature of the species, but depends sensitively on (1) the thickness of the magnetopause current, (2) the number density at the location of the singular layer, and (3) the magnitude of the magnetic shear. For significant linear growth the magnetopause half-sheet thickness was required to be on the order of or less than a thermal ion gyroradius, the number density was required to be no more than 100 cm - 3 , and the magnetosheath field was required to be locally antialigned with the magnetospheric field. If the above conditions are met, which are stringent but not impossible, the mode will linearly amplify. Another topic examined is the question of the structure of the tearing eigenmodes at the dayside magnetopause. By considering finite transit time effects on electron Landau resonance it was concluded that magnetopause tearing turbulence probably occurs in spatially bounded wave packets
A domain-decomposed multi-model plasma simulation of collisionless magnetic reconnection
Datta, I. A. M.; Shumlak, U.; Ho, A.; Miller, S. T.
2017-10-01
Collisionless magnetic reconnection is a process relevant to many areas of plasma physics in which energy stored in magnetic fields within highly conductive plasmas is rapidly converted into kinetic and thermal energy. Both in natural phenomena such as solar flares and terrestrial aurora as well as in magnetic confinement fusion experiments, the reconnection process is observed on timescales much shorter than those predicted by a resistive MHD model. As a result, this topic is an active area of research in which plasma models with varying fidelity have been tested in order to understand the proper physics explaining the reconnection process. In this research, a hybrid multi-model simulation employing the Hall-MHD and two-fluid plasma models on a decomposed domain is used to study this problem. The simulation is set up using the WARPXM code developed at the University of Washington, which uses a discontinuous Galerkin Runge-Kutta finite element algorithm and implements boundary conditions between models in the domain to couple their variable sets. The goal of the current work is to determine the parameter regimes most appropriate for each model to maintain sufficient physical fidelity over the whole domain while minimizing computational expense. This work is supported by a Grant from US AFOSR.
Disruption of Alfvénic turbulence by magnetic reconnection in a collisionless plasma
Mallet, Alfred; Schekochihin, Alexander A.; Chandran, Benjamin D. G.
2017-12-01
We calculate the disruption scale \\text{D}$ at which sheet-like structures in dynamically aligned Alfvénic turbulence are destroyed by the onset of magnetic reconnection in a low- collisionless plasma. The scaling of \\text{D}$ depends on the order of the statistics being considered, with more intense structures being disrupted at larger scales. The disruption scale for the structures that dominate the energy spectrum is \\text{D}\\sim L\\bot 1/9(de\\unicode[STIX]{x1D70C}s)4/9$ , where e$ is the electron inertial scale, s$ is the ion sound scale and \\bot $ is the outer scale of the turbulence. When e$ and s/L\\bot $ are sufficiently small, the scale \\text{D}$ is larger than s$ and there is a break in the energy spectrum at \\text{D}$ , rather than at s$ . We propose that the fluctuations produced by the disruption are circularised flux ropes, which may have already been observed in the solar wind. We predict the relationship between the amplitude and radius of these structures and quantify the importance of the disruption process to the cascade in terms of the filling fraction of undisrupted structures and the fractional reduction of the energy contained in them at the ion sound scale s$ . Both of these fractions depend strongly on e$ , with the disrupted structures becoming more important at lower e$ . Finally, we predict that the energy spectrum between \\text{D}$ and s$ is steeper than \\bot -3$ , when this range exists. Such a steep `transition range' is sometimes observed in short intervals of solar-wind turbulence. The onset of collisionless magnetic reconnection may therefore significantly affect the nature of plasma turbulence around the ion gyroscale.
High-Mach number, laser-driven magnetized collisionless shocks
International Nuclear Information System (INIS)
Schaeffer, Derek B.; Fox, W.; Haberberger, D.; Fiksel, G.; Bhattacharjee, A.
2017-01-01
Collisionless shocks are ubiquitous in space and astrophysical systems, and the class of supercritical shocks is of particular importance due to their role in accelerating particles to high energies. While these shocks have been traditionally studied by spacecraft and remote sensing observations, laboratory experiments can provide reproducible and multi-dimensional datasets that provide complementary understanding of the underlying microphysics. We present experiments undertaken on the OMEGA and OMEGA EP laser facilities that show the formation and evolution of high-Mach number collisionless shocks created through the interaction of a laser-driven magnetic piston and magnetized ambient plasma. Through time-resolved, 2-D imaging we observe large density and magnetic compressions that propagate at super-Alfvenic speeds and that occur over ion kinetic length scales. Electron density and temperature of the initial ambient plasma are characterized using optical Thomson scattering. Measurements of the piston laser-plasma are modeled with 2-D radiation-hydrodynamic simulations, which are used to initialize 2-D particle-in-cell simulations of the interaction between the piston and ambient plasmas. The numerical results show the formation of collisionless shocks, including the separate dynamics of the carbon and hydrogen ions that constitute the ambient plasma and their effect on the shock structure. Furthermore, the simulations also show the shock separating from the piston, which we observe in the data at late experimental times.
International Nuclear Information System (INIS)
Chen Lijen; Lefebvre, Bertrand; Torbert, Roy B.; Daughton, William S.
2011-01-01
Based on two-dimensional fully kinetic simulations that resolve the electron diffusion layer in undriven collisionless magnetic reconnection with zero guide field, this paper reports the existence and evolution of an inversion layer of bipolar electric fields, its corresponding phase-space structure (an electron-hole layer), and the implication to collisionless dissipation. The inversion electric field layer is embedded in the layer of bipolar Hall electric field and extends throughout the entire length of the electron diffusion layer. The electron phase-space hole structure spontaneously arises during the explosive growth phase when there exist significant inflows into the reconnection layer, and electrons perform meandering orbits across the layer while being cyclotron-turned toward the outflow directions. The cyclotron turning of meandering electrons by the magnetic field normal to the reconnection layer is shown to be a primary factor limiting the current density in the region where the reconnection electric field is balanced by the gradient (along the current sheet normal) of the off-diagonal electron pressure-tensor.
Explosive magnetic reconnection caused by an X-shaped current-vortex layer in a collisionless plasma
Energy Technology Data Exchange (ETDEWEB)
Hirota, M.; Hattori, Y. [Institute of Fluid Science, Tohoku University, Sendai, Miyagi 980-8677 (Japan); Morrison, P. J. [Department of Physics and Institute for Fusion Studies, University of Texas at Austin, Austin, Texas 78712 (United States)
2015-05-15
A mechanism for explosive magnetic reconnection is investigated by analyzing the nonlinear evolution of a collisionless tearing mode in a two-fluid model that includes the effects of electron inertia and temperature. These effects cooperatively enable a fast reconnection by forming an X-shaped current-vortex layer centered at the reconnection point. A high-resolution simulation of this model for an unprecedentedly small electron skin depth d{sub e} and ion-sound gyroradius ρ{sub s}, satisfying d{sub e}=ρ{sub s}, shows an explosive tendency for nonlinear growth of the tearing mode, where it is newly found that the explosive widening of the X-shaped layer occurs locally around the reconnection point with the length of the X shape being shorter than the domain length and the wavelength of the linear tearing mode. The reason for the onset of this locally enhanced reconnection is explained theoretically by developing a novel nonlinear and nonequilibrium inner solution that models the local X-shaped layer, and then matching it to an outer solution that is approximated by a linear tearing eigenmode with a shorter wavelength than the domain length. This theoretical model proves that the local reconnection can release the magnetic energy more efficiently than the global one and the estimated scaling of the explosive growth rate agrees well with the simulation results.
International Nuclear Information System (INIS)
Wang, Liang; Germaschewski, K.; Hakim, Ammar H.; Bhattacharjee, A.
2015-01-01
We introduce an extensible multi-fluid moment model in the context of collisionless magnetic reconnection. This model evolves full Maxwell equations and simultaneously moments of the Vlasov-Maxwell equation for each species in the plasma. Effects like electron inertia and pressure gradient are self-consistently embedded in the resulting multi-fluid moment equations, without the need to explicitly solving a generalized Ohm's law. Two limits of the multi-fluid moment model are discussed, namely, the five-moment limit that evolves a scalar pressures for each species and the ten-moment limit that evolves the full anisotropic, non-gyrotropic pressure tensor for each species. We first demonstrate analytically and numerically that the five-moment model reduces to the widely used Hall magnetohydrodynamics (Hall MHD) model under the assumptions of vanishing electron inertia, infinite speed of light, and quasi-neutrality. Then, we compare ten-moment and fully kinetic particle-in-cell (PIC) simulations of a large scale Harris sheet reconnection problem, where the ten-moment equations are closed with a local linear collisionless approximation for the heat flux. The ten-moment simulation gives reasonable agreement with the PIC results regarding the structures and magnitudes of the electron flows, the polarities and magnitudes of elements of the electron pressure tensor, and the decomposition of the generalized Ohm's law. Possible ways to improve the simple local closure towards a nonlocal fully three-dimensional closure are also discussed
Macroscale particle simulation of externally driven magnetic reconnection
International Nuclear Information System (INIS)
Murakami, Sadayoshi; Sato, Tetsuya.
1991-09-01
Externally driven reconnection, assuming an anomalous particle collision model, is numerically studied by means of a 2.5D macroscale particle simulation code in which the field and particle motions are solved self-consistently. Explosive magnetic reconnection and energy conversion are observed as a result of slow shock formation. Electron and ion distribution functions exhibit large bulk acceleration and heating of the plasma. Simulation runs with different collision parameters suggest that the development of reconnection, particle acceleration and heating do not significantly depend on the parameters of the collision model. (author)
Energy Technology Data Exchange (ETDEWEB)
Graf von der Pahlen, J.; Tsiklauri, D. [School of Physics and Astronomy, Queen Mary University of London, London E1 4NS (United Kingdom)
2014-01-15
Works of Tsiklauri and Haruki [Phys. Plasmas 15, 102902 (2008); 14, 112905 (2007)] are extended by inclusion of the out-of-plane magnetic (guide) field. In particular, magnetic reconnection during collisionless, stressed X-point collapse for varying out-of-plane guide-fields is studied using a kinetic, 2.5D, fully electromagnetic, relativistic particle-in-cell numerical code. For zero guide-field, cases for both open and closed boundary conditions are investigated, where magnetic flux and particles are lost and conserved, respectively. It is found that reconnection rates, out-of-plane currents and density in the X-point increase more rapidly and peak sooner in the closed boundary case, but higher values are reached in the open boundary case. The normalized reconnection rate is fast: 0.10-0.25. In the open boundary case it is shown that an increase of guide-field yields later onsets in the reconnection peak rates, while in the closed boundary case initial peak rates occur sooner but are suppressed. The reconnection current changes similarly with increasing guide-field; however for low guide-fields the reconnection current increases, giving an optimal value for the guide-field between 0.1 and 0.2 times the in-plane field in both cases. Also, in the open boundary case, it is found that for guide-fields of the order of the in-plane magnetic field, the generation of electron vortices occurs. Possible causes of the vortex generation, based on the flow of decoupled particles in the diffusion region and localized plasma heating, are discussed. Before peak reconnection onset, oscillations in the out-of-plane electric field at the X-point are found, ranging in frequency from approximately 1 to 2 ω{sub pe} and coinciding with oscillatory reconnection. These oscillations are found to be part of a larger wave pattern in the simulation domain. Mapping the out-of-plane electric field along the central lines of the domain over time and applying a 2D Fourier transform reveal that
Study of driven magnetic reconnection in a laboratory plasma
International Nuclear Information System (INIS)
Yamada, Masaaki; Ji, H.; Hsu, S.; Carter, T.; Kulsrud, R.; Bretz, N.; Jobes, F.; Ono, Yasushi; Perkins, F.
1998-01-01
The Magnetic Reconnection Experiment (MRX) has been constructed to investigate the fundamental physics of magnetic reconnection in a well controlled laboratory setting. This device creates an environment satisfying the criteria for a magnetohydrodynamic (MHD) plasma (S much-gt 1, ρ i much-lt L). The boundary conditions can be controlled externally, and experiments with fully three-dimensional reconnection are now possible. In the initial experiments, the effects of the third vector component of reconnecting fields have been studied. Two distinctively different shapes of neutral sheet current layers, depending on the third component, are identified during driven magnetic reconnection. Without the third component (anti-parallel or null-helicity reconnection), a thin double-Y shaped diffusion region is identified. A neutral sheet current profile is measured accurately to be as narrow as order ion gyro-radius. In the presence of an appreciable third component (co-helicity reconnection), an O-shaped diffusion region appears and grows into a spheromak configuration
Energy Technology Data Exchange (ETDEWEB)
Ek-In, Surapat; Ruffolo, David [Department of Physics, Faculty of Science, Mahidol University, Bangkok (Thailand); Malakit, Kittipat [Department of Physics, Faculty of Science and Techonology, Thammasat University, Pathum Thani (Thailand); Shay, Michael A. [Department of Physics and Astronomy, University of Delaware, Newark, DE (United States); Cassak, Paul A., E-mail: kmalakit@gmail.com [Department of Physics and Astronomy, West Virginia University, Morgantown, WV (United States)
2017-08-20
We perform the first study of the properties of the Larmor electric field (LEF) in collisionless asymmetric magnetic reconnection in the presence of an out-of-plane (guide) magnetic field for different sets of representative upstream parameters at Earth’s dayside magnetopause with an ion temperature greater than the electron temperature (the ion-to-electron temperature ratio fixed at 2) using two-dimensional particle-in-cell simulations. We show that the LEF does persist in the presence of a guide field. We study how the LEF thickness and strength change as a function of guide field and the magnetospheric temperature and reconnecting magnetic field strength. We find that the thickness of the LEF structure decreases, while its magnitude increases when a guide field is added to the reconnecting magnetic field. The added guide field makes the Larmor radius smaller, so the scaling with the magnetospheric ion Larmor radius is similar to that reported for the case without a guide field. Note, however, that the physics causing the LEF is not well understood, so future work in other parameter regimes is needed to fully predict the LEF for arbitrary conditions. We also find that a previously reported upstream electron temperature anisotropy arises in the vicinity of the LEF region both with and without a guide field. We argue that the generation of the anisotropy is linked to the existence of the LEF. The LEF can be used in combination with the electron temperature anisotropy as a signature to effectively identify dayside reconnection sites in observations.
International Nuclear Information System (INIS)
Ek-In, Surapat; Ruffolo, David; Malakit, Kittipat; Shay, Michael A.; Cassak, Paul A.
2017-01-01
We perform the first study of the properties of the Larmor electric field (LEF) in collisionless asymmetric magnetic reconnection in the presence of an out-of-plane (guide) magnetic field for different sets of representative upstream parameters at Earth’s dayside magnetopause with an ion temperature greater than the electron temperature (the ion-to-electron temperature ratio fixed at 2) using two-dimensional particle-in-cell simulations. We show that the LEF does persist in the presence of a guide field. We study how the LEF thickness and strength change as a function of guide field and the magnetospheric temperature and reconnecting magnetic field strength. We find that the thickness of the LEF structure decreases, while its magnitude increases when a guide field is added to the reconnecting magnetic field. The added guide field makes the Larmor radius smaller, so the scaling with the magnetospheric ion Larmor radius is similar to that reported for the case without a guide field. Note, however, that the physics causing the LEF is not well understood, so future work in other parameter regimes is needed to fully predict the LEF for arbitrary conditions. We also find that a previously reported upstream electron temperature anisotropy arises in the vicinity of the LEF region both with and without a guide field. We argue that the generation of the anisotropy is linked to the existence of the LEF. The LEF can be used in combination with the electron temperature anisotropy as a signature to effectively identify dayside reconnection sites in observations.
An experimental platform for pulsed-power driven magnetic reconnection
Hare, J. D.; Suttle, L. G.; Lebedev, S. V.; Loureiro, N. F.; Ciardi, A.; Chittenden, J. P.; Clayson, T.; Eardley, S. J.; Garcia, C.; Halliday, J. W. D.; Robinson, T.; Smith, R. A.; Stuart, N.; Suzuki-Vidal, F.; Tubman, E. R.
2018-05-01
We describe a versatile pulsed-power driven platform for magnetic reconnection experiments, based on the exploding wire arrays driven in parallel [Suttle et al., Phys. Rev. Lett. 116, 225001 (2016)]. This platform produces inherently magnetised plasma flows for the duration of the generator current pulse (250 ns), resulting in a long-lasting reconnection layer. The layer exists for long enough to allow the evolution of complex processes such as plasmoid formation and movement to be diagnosed by a suite of high spatial and temporal resolution laser-based diagnostics. We can access a wide range of magnetic reconnection regimes by changing the wire material or moving the electrodes inside the wire arrays. We present results with aluminium and carbon wires, in which the parameters of the inflows and the layer that forms are significantly different. By moving the electrodes inside the wire arrays, we change how strongly the inflows are driven. This enables us to study both symmetric reconnection in a range of different regimes and asymmetric reconnection.
Magnetic Reconnection Driven by Thermonuclear Burning
Gatto, R.; Coppi, B.
2017-10-01
Considering that fusion reaction products (e.g. α-particles) deposit their energy on the electrons, the relevant thermal energy balance equation is characterized by a fusion source term, a relatively large longitudinal thermal conductivity and an appropriate transverse thermal conductivity. Then, looking for modes that are radially localized around rational surfaces, reconnected field configurations are found that can be sustained by the electron thermal energy source due to fusion reactions. Then this process can be included in the category of endogenous reconnection processes and may be viewed as a form of the thermonuclear instability that can develop in an ignited inhomogeneous plasma. A complete analysis of the equations supporting the relevant theory is reported. Sponsored in part by the U.S. DoE.
A simple, analytical model of collisionless magnetic reconnection in a pair plasma
International Nuclear Information System (INIS)
Hesse, Michael; Zenitani, Seiji; Kuznetsova, Masha; Klimas, Alex
2009-01-01
A set of conservation equations is utilized to derive balance equations in the reconnection diffusion region of a symmetric pair plasma. The reconnection electric field is assumed to have the function to maintain the current density in the diffusion region and to impart thermal energy to the plasma by means of quasiviscous dissipation. Using these assumptions it is possible to derive a simple set of equations for diffusion region parameters in dependence on inflow conditions and on plasma compressibility. These equations are solved by means of a simple, iterative procedure. The solutions show expected features such as dominance of enthalpy flux in the reconnection outflow, as well as combination of adiabatic and quasiviscous heating. Furthermore, the model predicts a maximum reconnection electric field of E * =0.4, normalized to the parameters at the inflow edge of the diffusion region.
A Simple, Analytical Model of Collisionless Magnetic Reconnection in a Pair Plasma
Hesse, Michael; Zenitani, Seiji; Kuznetova, Masha; Klimas, Alex
2011-01-01
A set of conservation equations is utilized to derive balance equations in the reconnection diffusion region of a symmetric pair plasma. The reconnection electric field is assumed to have the function to maintain the current density in the diffusion region, and to impart thermal energy to the plasma by means of quasi-viscous dissipation. Using these assumptions it is possible to derive a simple set of equations for diffusion region parameters in dependence on inflow conditions and on plasma compressibility. These equations are solved by means of a simple, iterative, procedure. The solutions show expected features such as dominance of enthalpy flux in the reconnection outflow, as well as combination of adiabatic and quasi-viscous heating. Furthermore, the model predicts a maximum reconnection electric field of E(sup *)=0.4, normalized to the parameters at the inflow edge of the diffusion region.
Collisionless magnetic reconnection in large-scale electron-positron plasmas
International Nuclear Information System (INIS)
Daughton, William; Karimabadi, Homa
2007-01-01
One of the most fundamental questions in reconnection physics is how the dynamical evolution will scale to macroscopic systems of physical relevance. This issue is examined for electron-positron plasmas using two-dimensional fully kinetic simulations with both open and periodic boundary conditions. The resulting evolution is complex and highly dynamic throughout the entire duration. The initial phase is distinguished by the coalescence of tearing islands to larger scale while the later phase is marked by the expansion of diffusion regions into elongated current layers that are intrinsically unstable to plasmoid generation. It appears that the repeated formation and ejection of plasmoids plays a key role in controlling the average structure of a diffusion region and preventing the further elongation of the layer. The reconnection rate is modulated in time as the current layers expand and new plasmoids are formed. Although the specific details of this evolution are affected by the boundary and initial conditions, the time averaged reconnection rate remains fast and is remarkably insensitive to the system size for sufficiently large systems. This dynamic scenario offers an alternative explanation for fast reconnection in large-scale systems
Electron-inertia effects on driven magnetic field reconnection
International Nuclear Information System (INIS)
Al-Salti, N.; Shivamoggi, B.K.
2003-01-01
Electron-inertia effects on the magnetic field reconnection induced by perturbing the boundaries of a slab of plasma with a magnetic neutral surface inside are considered. Energetics of the tearing mode dynamics with electron inertia which controls the linearized collisionless magnetohydrodynamics (MHD) are considered with a view to clarify the role of the plasma pressure in this process. Cases with the boundaries perturbed at rates slow or fast compared with the hydromagnetic evolution rate are considered separately. When the boundaries are perturbed at a rate slow compared with the hydromagnetic evolution rate and fast compared with the resistive diffusion rate, the plasma response for early times is according to ideal MHD. A current sheet formation takes place at the magnetic neutral surface for large times in the ideal MHD stage and plasma becomes motionless. The subsequent evolution of the current sheet is found to be divided into two distinct stages: (i) the electron-inertia stage for small times (when the current sheet is very narrow); (ii) the resistive-diffusion stage for large times. The current sheet mainly undergoes exponential damping in the electron-inertia regime while the bulk of the diffusion happens in the resistivity regime. For large times of the resistive-diffusion stage when plasma flow is present, the current sheet completely disappears and the magnetic field reconnection takes place. When the boundaries are perturbed at a rate fast compared even with the hydromagnetic evolution rate, there is no time for the development of a current sheet and the magnetic field reconnection has been found not to take place
Wave driven magnetic reconnection in the Taylor problem
International Nuclear Information System (INIS)
Fitzpatrick, Richard; Bhattacharjee, Amitava; Ma Zhiwei; Linde, Timur
2003-01-01
An improved Laplace transform theory is developed in order to investigate the initial response of a stable slab plasma equilibrium enclosed by conducting walls to a suddenly applied wall perturbation in the so-called Taylor problem. The novel feature of this theory is that it does not employ asymptotic matching. If the wall perturbation is switched on slowly compared to the Alfven time then the plasma response eventually asymptotes to that predicted by conventional asymptotic matching theory. However, at early times there is a compressible Alfven wave driven contribution to the magnetic reconnection rate which is not captured by asymptotic matching theory, and leads to a significant increase in the reconnection rate. If the wall perturbation is switched on rapidly compared to the Alfven time then strongly localized compressible Alfven wave-pulses are generated which bounce backward and forward between the walls many times. Each instance these wave-pulses cross the resonant surface they generate a transient surge in the reconnection rate. The maximum pulse driven reconnection rate can be much larger than that predicted by conventional asymptotic matching theory
Magnetic reconnection in the presence of externally driven and self-generated turbulence
International Nuclear Information System (INIS)
Karimabadi, H.; Lazarian, A.
2013-01-01
Magnetic reconnection is an important process that violates flux freezing and induces change of magnetic field topology in conducting fluids and, as a consequence, converts magnetic field energy into particle energy. It is thought to be operative in laboratory, heliophysical, and astrophysical plasmas. These environments exhibit wide variations in collisionality, ranging from collisionless in the Earth's magnetosphere to highly collisional in molecular clouds. A common feature among these plasmas is, however, the presence of turbulence. We review the present understanding of the effects of turbulence on the reconnection rate, discussing both how strong pre-existing turbulence modifies Sweet-Parker reconnection and how turbulence may develop as a result of reconnection itself. In steady state, reconnection rate is proportional to the aspect ratio of the diffusion region. Thus, two general MHD classes of models for fast reconnection have been proposed, differing on whether they keep the aspect ratio finite by increasing the width due to turbulent broadening or shortening the length of the diffusion layer due to plasmoid instability. One of the consequences of the plasmoid instability model is the possibility that the current sheet thins down to collisionless scales where kinetic effects become dominant. As a result, kinetic effects may be of importance for many astrophysical applications which were considered to be in the realm of MHD. Whether pre-existing turbulence can significantly modify the transition to the kinetic regime is not currently known. Although most studies of turbulent reconnection have been based on MHD, recent advances in kinetic simulations are enabling 3D studies of turbulence and reconnection in the collisionless regime. A summary of these recent works, highlighting similarities and differences with the MHD models of turbulent reconnection, as well as comparison with in situ observations in the magnetosphere and in the solar wind, are presented
International Nuclear Information System (INIS)
Kolesnikov, R.A.; Krommes, J.A.
2005-01-01
The transition to collisionless ion-temperature-gradient-driven plasma turbulence is considered by applying dynamical systems theory to a model with 10 degrees of freedom. The study of a four-dimensional center manifold predicts a 'Dimits shift' of the threshold for turbulence due to the excitation of zonal flows and establishes (for the model) the exact value of that shift
Energy Technology Data Exchange (ETDEWEB)
Graf von der Pahlen, J.; Tsiklauri, D. [School of Physics and Astronomy, Queen Mary University of London, London E1 4NS (United Kingdom)
2014-06-15
The out-of-plane magnetic field, generated by fast magnetic reconnection, during collisionless, stressed X-point collapse, was studied with a kinetic, 2.5D, fully electromagnetic, relativistic particle-in-cell numerical code, using both closed (flux conserving) and open boundary conditions on a square grid. It was discovered that the well known quadrupolar structure in the out-of-plane magnetic field gains four additional regions of opposite magnetic polarity, emerging near the corners of the simulation box, moving towards the X-point. The emerging, outer, magnetic field structure has opposite polarity to the inner quadrupolar structure, leading to an overall octupolar structure. Using Ampere's law and integrating electron and ion currents, defined at grid cells, over the simulation domain, contributions to the out-of-plane magnetic field from electron and ion currents were determined. The emerging regions of opposite magnetic polarity were shown to be the result of ion currents. Magnetic octupolar structure is found to be a signature of X-point collapse, rather than tearing mode, and factors relating to potential discoveries in experimental scenarios or space-craft observations are discussed.
Weibel instability mediated collisionless shocks using intense laser-driven plasmas
Palaniyappan, Sasikumar; Fiuza, Federico; Huang, Chengkun; Gautier, Donald; Ma, Wenjun; Schreiber, Jorg; Raymer, Abel; Fernandez, Juan; Shimada, Tom; Johnson, Randall
2017-10-01
The origin of cosmic rays remains a long-standing challenge in astrophysics and continues to fascinate physicists. It is believed that ``collisionless shocks'' - where the particle Coulomb mean free path is much larger that the shock transition - are a dominant source of energetic cosmic rays. These shocks are ubiquitous in astrophysical environments such as gamma-ray bursts, supernova remnants, pulsar wind nebula and coronal mass ejections from the sun. A particular type of electromagnetic plasma instability known as Weibel instability is believed to be the dominant mechanism behind the formation of these collisionless shocks in the cosmos. The understanding of the microphysics behind collisionless shocks and their particle acceleration is tightly related with nonlinear basic plasma processes and remains a grand challenge. In this poster, we will present results from recent experiments at the LANL Trident laser facility studying collisionless shocks using intense ps laser (80J, 650 fs - peak intensity of 1020 W/cm2) driven near-critical plasmas using carbon nanotube foam targets. A second short pulse laser driven protons from few microns thick gold foil is used to radiograph the main laser-driven plasma. Work supported by the LDRD program at LANL.
The Current-Driven, Ion-Acoustic Instability in a Collisionless Plasma
DEFF Research Database (Denmark)
Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens
1979-01-01
The current-driven, ion-acoustic instability was investigated by means of an experiment performed in a collisionless plasma produced in a single-ended Q-machine. Reflections at the ends of the plasma column gave rise to a standing wave. Parameters of the instability were investigated, and it was ......, and it was demonstrated that the fluctuations in the plasma column behave as a classical Van der Pol oscillator. Accurate measurements of the growth rate of the instability can be performed by making explicit use of the particular properties of such a system.......The current-driven, ion-acoustic instability was investigated by means of an experiment performed in a collisionless plasma produced in a single-ended Q-machine. Reflections at the ends of the plasma column gave rise to a standing wave. Parameters of the instability were investigated...
Laser-driven, magnetized quasi-perpendicular collisionless shocks on the Large Plasma Device
International Nuclear Information System (INIS)
Schaeffer, D. B.; Everson, E. T.; Bondarenko, A. S.; Clark, S. E.; Constantin, C. G.; Vincena, S.; Van Compernolle, B.; Tripathi, S. K. P.; Gekelman, W.; Niemann, C.; Winske, D.
2014-01-01
The interaction of a laser-driven super-Alfvénic magnetic piston with a large, preformed magnetized ambient plasma has been studied by utilizing a unique experimental platform that couples the Raptor kJ-class laser system [Niemann et al., J. Instrum. 7, P03010 (2012)] to the Large Plasma Device [Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] at the University of California, Los Angeles. This platform provides experimental conditions of relevance to space and astrophysical magnetic collisionless shocks and, in particular, allows a detailed study of the microphysics of shock formation, including piston-ambient ion collisionless coupling. An overview of the platform and its capabilities is given, and recent experimental results on the coupling of energy between piston and ambient ions and the formation of collisionless shocks are presented and compared to theoretical and computational work. In particular, a magnetosonic pulse consistent with a low-Mach number collisionless shock is observed in a quasi-perpendicular geometry in both experiments and simulations
International Nuclear Information System (INIS)
Kolesnikov, R.A.; Krommes, J.A.
2004-01-01
The transition to collisionless ion-temperature-gradient-driven plasma turbulence is considered by applying dynamical systems theory to a model with ten degrees of freedom. Study of a four-dimensional center manifold predicts a ''Dimits shift'' of the threshold for turbulence due to the excitation of zonal flows and establishes the exact value of that shift in terms of physical parameters. For insight into fundamental physical mechanisms, the method provides a viable alternative to large simulations
OBSERVATION OF MAGNETIC RECONNECTION DRIVEN BY GRANULAR SCALE ADVECTION
Energy Technology Data Exchange (ETDEWEB)
Zeng Zhicheng; Cao Wenda [Center for Solar-Terrestrial Research, New Jersey Institute of Technology, 323 Martin Luther King Blvd., Newark, NJ 07102 (United States); Ji Haisheng [Big Bear Solar Observatory, 40386 North Shore Lane, Big Bear City, CA 92314 (United States)
2013-06-01
We report the first evidence of magnetic reconnection driven by advection in a rapidly developing large granule using high spatial resolution observations of a small surge event (base size {approx} 4'' Multiplication-Sign 4'') with the 1.6 m aperture New Solar Telescope at the Big Bear Solar Observatory. The observations were carried out in narrowband (0.5 A) He I 10830 A and broadband (10 A) TiO 7057 A. Since He I 10830 A triplet has a very high excitation level and is optically thin, its filtergrams enable us to investigate the surge from the photosphere through the chromosphere into the lower corona. Simultaneous space data from the Atmospheric Imaging Assembly and Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory were used in the analysis. It is shown that the surge is spatio-temporally associated with magnetic flux emergence in the rapidly developing large granule. During the development of the granule, its advecting flow ({approx}2 km s{sup -1}) squeezed the magnetic flux into an intergranular lane area, where a magnetic flux concentration was formed and the neighboring flux with opposite magnetic polarity was canceled. During the cancellation, the surge was produced as absorption in He I 10830 A filtergrams while simultaneous EUV brightening occurred at its base. The observations clearly indicate evidence of a finest-scale reconnection process driven by the granule's motion.
OBSERVATION OF MAGNETIC RECONNECTION DRIVEN BY GRANULAR SCALE ADVECTION
International Nuclear Information System (INIS)
Zeng Zhicheng; Cao Wenda; Ji Haisheng
2013-01-01
We report the first evidence of magnetic reconnection driven by advection in a rapidly developing large granule using high spatial resolution observations of a small surge event (base size ∼ 4'' × 4'') with the 1.6 m aperture New Solar Telescope at the Big Bear Solar Observatory. The observations were carried out in narrowband (0.5 Å) He I 10830 Å and broadband (10 Å) TiO 7057 Å. Since He I 10830 Å triplet has a very high excitation level and is optically thin, its filtergrams enable us to investigate the surge from the photosphere through the chromosphere into the lower corona. Simultaneous space data from the Atmospheric Imaging Assembly and Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory were used in the analysis. It is shown that the surge is spatio-temporally associated with magnetic flux emergence in the rapidly developing large granule. During the development of the granule, its advecting flow (∼2 km s –1 ) squeezed the magnetic flux into an intergranular lane area, where a magnetic flux concentration was formed and the neighboring flux with opposite magnetic polarity was canceled. During the cancellation, the surge was produced as absorption in He I 10830 Å filtergrams while simultaneous EUV brightening occurred at its base. The observations clearly indicate evidence of a finest-scale reconnection process driven by the granule's motion.
Intense laser driven collision-less shock and ion acceleration in magnetized plasmas
Mima, K.; Jia, Q.; Cai, H. B.; Taguchi, T.; Nagatomo, H.; Sanz, J. R.; Honrubia, J.
2016-05-01
The generation of strong magnetic field with a laser driven coil has been demonstrated by many experiments. It is applicable to the magnetized fast ignition (MFI), the collision-less shock in the astrophysics and the ion shock acceleration. In this paper, the longitudinal magnetic field effect on the shock wave driven by the radiation pressure of an intense short pulse laser is investigated by theory and simulations. The transition of a laminar shock (electro static shock) to the turbulent shock (electromagnetic shock) occurs, when the external magnetic field is applied in near relativistic cut-off density plasmas. This transition leads to the enhancement of conversion of the laser energy into high energy ions. The enhancement of the conversion efficiency is important for the ion driven fast ignition and the laser driven neutron source. It is found that the total number of ions reflected by the shock increases by six time when the magnetic field is applied.
Faganello, Matteo; Borgogno, Dario; Califano, Francesco; Pegoraro, Francesco
2015-11-01
In an almost collisionless MagnetoHydrodynamic plasma in a relatively strong magnetic field, stresses can be conveyed far from the region where they are exerted e.g., through the propagation of Alfvèn waves. The forced dynamics of line-tied magnetic structures in solar and stellar coronae is a paradigmatic case. We investigate how this action at a distance develops from the equatorial region of the Kelvin-Helmholtz unstable flanks of the Earth's magnetosphere leading to the onset, at mid latitude in both hemispheres, of correlated double magnetic field line reconnection events that can allow the solar wind plasma to enter the Earth's magnetosphere. This mid-latitude double reconnection process, first investigated in, has been confirmed here by following a large set of individual field lines using a method similar to a Poincarè map.
Self-organized Te Redistribution during Driven Reconnection Processes in High Temperature Plasmas
International Nuclear Information System (INIS)
Park, H.K.; Mazzucato, E.; Luhmann, N.C. Jr.; Domier, C.W.; Xia, Z.; Munsat, T.; Donne, A.J.H.; Classen, I.G.J.; van de Pol, M.J.
2005-01-01
Two-dimensional (2-D) images of electron temperature fluctuations with a high temporal and spatial resolution were employed to study the sawtooth oscillation in TEXTOR tokamak plasmas. The new findings are: (1) 2-D images revealed that the reconnection is localized and permitted the determination of the physical dimensions of the reconnection zone in the poloidal and toroidal planes. (2) The combination of a pressure driven mode and a kink instability leads to an 'X-point' reconnection process. (3) Reconnection can take place anywhere along the q∼1 rational magnetic surface (both high and low field sides). (4) Heat flow from the core to the outside of the inversion radius during the reconnection time is highly asymmetric and the behavior is collective. These new findings are compared with the characteristics of various theoretical models and experimental results for the study of the sawtooth oscillation in tokamak plasmas
A simulation of driven reconnection by a high precision MHD code
International Nuclear Information System (INIS)
Kusano, Kanya; Ouchi, Yasuo; Hayashi, Takaya; Horiuchi, Ritoku; Watanabe, Kunihiko; Sato, Tetsuya.
1988-01-01
A high precision MHD code, which has the fourth-order accuracy for both the spatial and time steps, is developed, and is applied to the simulation studies of two dimensional driven reconnection. It is confirm that the numerical dissipation of this new scheme is much less than that of two-step Lax-Wendroff scheme. The effect of the plasma compressibility on the reconnection dynamics is investigated by means of this high precision code. (author)
3-D magnetic reconnection in colliding laser-produced plasmas
Matteucci, Jackson; Fox, Will; Moissard, Clement; Bhattacharjee, Amitava
2017-10-01
Recent experiments have demonstrated magnetic reconnection between colliding plasma plumes, where the reconnecting magnetic fields were self-generated in the expanding laser-produced plasmas by the Biermann battery effect. Using fully kinetic 3-D particle in cell simulations, we conduct the first end-to-end simulations of these experiments, including self-consistent magnetic field generation via the Biermann effect through driven magnetic field reconnection. The simulations show rich, temporally and spatially dependent magnetic field reconnection. First, we find fast, vertically-localized ``Biermann-mediated reconnection,'' an inherently 3-D reconnection mechanism where the sign of the Biermann term reverses in the reconnection layer, destroying incoming flux and reconnecting flux downstream. Reconnection then transitions to fast, collisionless reconnection sustained by the non-gyrotropic pressure tensor. To separate out the role 3-D mechanisms, 2-D simulations are initialized based on reconnection-plane cuts of the 3-D simulations. These simulations demonstrate: (1) suppression of Biermann-mediated reconnection in 2-D; (2) similar efficacy of pressure tensor mechanisms in 2-D and 3-D; and (3) plasmoids develop in the reconnection layer in 2-D, where-as they are suppressed in 3-D. Supported by NDSEG Fellowship. This research used resources of the OLCF at ORNL, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.
International Nuclear Information System (INIS)
Pegoraro, F; Faganello, M; Califano, F
2008-01-01
In a magnetized plasma streaming with a non uniform velocity, the Kelvin-Helmholtz instability plays a major role in mixing different plasma regions and in stretching the magnetic field lines leading to the formation of layers with a sheared magnetic field where magnetic field line reconnection can take place. A relevant example is provided by the formation of a mixing layer between the Earth's magnetosphere and the solar wind at low latitudes during northward periods. In the considered configuration, in the presence of a magnetic field nearly perpendicular to the plane defined by the velocity field and its inhomogeneity direction, velocity shear drives a Kelvin-Helmholtz instability which advects and distorts the magnetic field configuration. If the Alfven velocity associated to the in-plane magnetic field is sufficiently weak with respect to the variation of the fluid velocity in the plasma, the Kelvin-Helmholtz instability generates fully rolled-up vortices which advect the magnetic field lines into a complex configuration, causing the formation of current layers along the inversion curves of the in-plane magnetic field component. Pairing of the vortices generated by the Kelvin-Helmholtz instability is a well know phenomenon in two-dimensional hydrodynamics. Here we investigate the development of magnetic reconnection during the vortex pairing process and show that completely different magnetic structures are produced depending on how fast the reconnection process develops on the time scale set by the pairing process.
International Nuclear Information System (INIS)
Park, HK; Luhmann, NC; Donne, AJH; Classen, IGJ; Domier, CW; Mazzucato, E; Munsat, T; van de Pol, MJ; Xia, Z
2005-01-01
High resolution (temporal and spatial), two-dimensional images of electron temperature fluctuations during sawtooth oscillations were employed to study driven reconnection processes in magnetically confined toroidal plasmas. The combination of kink and local pressure driven instabilities leads to an 'X-point' reconnection process that is localized in the toroidal and poloidal planes. The reconnection is not always confined to the magnetic surfaces with minimum energy. The heat transport process from the core is demonstrated to be highly collective rather than stochastic
Power-law Statistics of Driven Reconnection in the Magnetically Closed Corona
Knizhnik, K. J.; Uritsky, V. M.; Klimchuk, J. A.; DeVore, C. R.
2018-01-01
Numerous observations have revealed that power-law distributions are ubiquitous in energetic solar processes. Hard X-rays, soft X-rays, extreme ultraviolet radiation, and radio waves all display power-law frequency distributions. Since magnetic reconnection is the driving mechanism for many energetic solar phenomena, it is likely that reconnection events themselves display such power-law distributions. In this work, we perform numerical simulations of the solar corona driven by simple convective motions at the photospheric level. Using temperature changes, current distributions, and Poynting fluxes as proxies for heating, we demonstrate that energetic events occurring in our simulation display power-law frequency distributions, with slopes in good agreement with observations. We suggest that the braiding-associated reconnection in the corona can be understood in terms of a self-organized criticality model driven by convective rotational motions similar to those observed at the photosphere.
Power-Law Statistics of Driven Reconnection in the Magnetically Closed Corona
Klimchuk, J. A.; DeVore, C. R.; Knizhnik, K. J.; Uritskiy, V. M.
2018-01-01
Numerous observations have revealed that power-law distributions are ubiquitous in energetic solar processes. Hard X-rays, soft X-rays, extreme ultraviolet radiation, and radio waves all display power-law frequency distributions. Since magnetic reconnection is the driving mechanism for many energetic solar phenomena, it is likely that reconnection events themselves display such power-law distributions. In this work, we perform numerical simulations of the solar corona driven by simple convective motions at the photospheric level. Using temperature changes, current distributions, and Poynting fluxes as proxies for heating, we demonstrate that energetic events occurring in our simulation display power-law frequency distributions, with slopes in good agreement with observations. We suggest that the braiding-associated reconnection in the corona can be understood in terms of a self-organized criticality model driven by convective rotational motions similar to those observed at the photosphere.
Fox, W.; Porkolab, M.; Egedal, J.; Katz, N.; Le, A.
2012-03-01
This work presents detailed experimental observations of electron phase-space holes driven during magnetic reconnection events on the Versatile Toroidal Facility. The holes are observed to travel on the order of or faster than the electron thermal speed, and are of large size scale, with diameter of order 60 Debye lengths. In addition, they have 3D spheroidal structure with approximately unity aspect ratio. We estimate the direct anomalous resistivity due to ion interaction with the holes and find it to be too small to affect the reconnection rate; however, the holes may play a role in reining in a tail of accelerated electrons and they indicate the presence of other processes in the reconnection layer, such as electron energization and electron beam formation.
Turbulence-driven anisotropic electron tail generation during magnetic reconnection
DuBois, A. M.; Scherer, A.; Almagri, A. F.; Anderson, J. K.; Pandya, M. D.; Sarff, J. S.
2018-05-01
Magnetic reconnection (MR) plays an important role in particle transport, energization, and acceleration in space, astrophysical, and laboratory plasmas. In the Madison Symmetric Torus reversed field pinch, discrete MR events release large amounts of energy from the equilibrium magnetic field, a fraction of which is transferred to electrons and ions. Previous experiments revealed an anisotropic electron tail that favors the perpendicular direction and is symmetric in the parallel. New profile measurements of x-ray emission show that the tail distribution is localized near the magnetic axis, consistent modeling of the bremsstrahlung emission. The tail appears first near the magnetic axis and then spreads radially, and the dynamics in the anisotropy and diffusion are discussed. The data presented imply that the electron tail formation likely results from a turbulent wave-particle interaction and provides evidence that high energy electrons are escaping the core-localized region through pitch angle scattering into the parallel direction, followed by stochastic parallel transport to the plasma edge. New measurements also show a strong correlation between high energy x-ray measurements and tearing mode dynamics, suggesting that the coupling between core and edge tearing modes is essential for energetic electron tail formation.
Anomalous heating and plasmoid formation in pulsed power driven magnetic reconnection experiments
Hare, Jack
2017-10-01
Magnetic reconnection is an important process occurring in various plasma environments, including high energy density plasmas. In this talk we will present results from a recently developed magnetic reconnection platform driven by the MAGPIE pulsed power generator (1 MA, 250 ns) at Imperial College London. In these experiments, supersonic, sub-Alfvénic plasma flows collide, bringing anti-parallel magnetic fields into contact and producing a well-defined, elongated reconnection layer. This layer is long-lasting (>200 ns, > 10 hydrodynamic flow times) and is diagnosed using a suite of high resolution, spatially and temporally resolved diagnostics which include laser interferometry, Thomson scattering and Faraday rotation imaging. We observe significant heating of the electrons and ions inside the reconnection layer, and calculate that the heating must occur on time-scales far faster than can be explained by classical mechanisms. Possible anomalous mechanisms include in-plane electric fields caused by two-fluid effects, and enhanced resistivity and viscosity caused by kinetic turbulence. We also observe the repeated formation of plasmoids in the reconnection layer, which are ejected outwards along the layer at super-Alfvénic velocities. The O-point magnetic field structure of these plasmoids is determined using in situ magnetic probes, and these plasmoids could also play a role in the anomalous heating of the electrons and ions. In addition, we present further modifications to this experimental platform which enable us to study asymmetric reconnection or measure the out-of-plane magnetic field inside the plasmoids. This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) Grant No. EP/N013379/1, and by the U.S. Department of Energy (DOE) Awards No. DE-F03-02NA00057 and No. DE-SC-0001063.
INJECTION OF PLASMA INTO THE NASCENT SOLAR WIND VIA RECONNECTION DRIVEN BY SUPERGRANULAR ADVECTION
International Nuclear Information System (INIS)
Yang Liping; He Jiansen; Tu Chuanyi; Chen Wenlei; Zhang Lei; Wang Linghua; Yan Limei; Peter, Hardi; Marsch, Eckart; Feng, Xueshang
2013-01-01
To understand the origin of the solar wind is one of the key research topics in modern solar and heliospheric physics. Previous solar wind models assumed that plasma flows outward along a steady magnetic flux tube that reaches continuously from the photosphere through the chromosphere into the corona. Inspired by more recent comprehensive observations, Tu et al. suggested a new scenario for the origin of the solar wind, in which it flows out in a magnetically open coronal funnel and mass is provided to the funnel by small-scale side loops. Thus mass is supplied by means of magnetic reconnection that is driven by supergranular convection. To validate this scenario and simulate the processes involved, a 2.5 dimensional (2.5D) numerical MHD model is established in the present paper. In our simulation a closed loop moves toward an open funnel, which has opposite polarity and is located at the edge of a supergranulation cell, and magnetic reconnection is triggered and continues while gradually opening up one half of the closed loop. Its other half connects with the root of the open funnel and forms a new closed loop which is submerged by a reconnection plasma stream flowing downward. Thus we find that the outflowing plasma in the newly reconnected funnel originates not only from the upward reconnection flow but also from the high-pressure leg of the originally closed loop. This implies an efficient supply of mass from the dense loop to the dilute funnel. The mass flux of the outflow released from the funnel considered in our study is calculated to be appropriate for providing the mass flux at the coronal base of the solar wind, though additional heating and acceleration mechanisms are necessary to keep the velocity at the higher location. Our numerical model demonstrates that in the funnel the mass for the solar wind may be supplied from adjacent closed loops via magnetic reconnection as well as directly from the footpoints of open funnels.
Particle-in-cell simulations of magnetically driven reconnection using laser-powered capacitor coils
Huang, Kai; Lu, Quanming; Gao, Lan; Ji, Hantao; Wang, Xueyi; Fan, Feibin
2018-05-01
In this paper, we propose an experimental scheme to fulfill magnetically driven reconnections. Here, two laser beams are focused on a capacitor-coil target and then strong currents are wired in two parallel circular coils. Magnetic reconnection occurs between the two magnetic bubbles created by the currents in the two parallel circular coils. A two-dimensional particle-in-cell simulation model in the cylindrical coordinate is used to investigate such a process, and the simulations are performed in the (r ,z ) plane. The results show that with the increase of the currents in the two coils, the associated magnetic bubbles expand and a current sheet is formed between the two bubbles. Magnetic reconnection occurs when the current sheet is sufficiently thin. A quadrupole structure of the magnetic field in the θ direction ( Bθ ) is generated in the diffusion region and a strong electron current along the r direction ( Je r ) is also formed due to the existence of the high-speed electron flow away from the X line in the center of the outflow region. Because the X line is a circle along the θ direction, the convergence of the plasma flow around r =0 will lead to the asymmetry of Je r and Bθ between the two outflow regions of magnetic reconnection.
FAN-SPINE TOPOLOGY FORMATION THROUGH TWO-STEP RECONNECTION DRIVEN BY TWISTED FLUX EMERGENCE
International Nuclear Information System (INIS)
Toeroek, T.; Aulanier, G.; Schmieder, B.; Reeves, K. K.; Golub, L.
2009-01-01
We address the formation of three-dimensional nullpoint topologies in the solar corona by combining Hinode/X-ray Telescope (XRT) observations of a small dynamic limb event, which occurred beside a non-erupting prominence cavity, with a three-dimensional (3D) zero-β magnetohydrodynamics (MHD) simulation. To this end, we model the boundary-driven 'kinematic' emergence of a compact, intense, and uniformly twisted flux tube into a potential field arcade that overlies a weakly twisted coronal flux rope. The expansion of the emerging flux in the corona gives rise to the formation of a nullpoint at the interface of the emerging and the pre-existing fields. We unveil a two-step reconnection process at the nullpoint that eventually yields the formation of a broad 3D fan-spine configuration above the emerging bipole. The first reconnection involves emerging fields and a set of large-scale arcade field lines. It results in the launch of a torsional MHD wave that propagates along the arcades, and in the formation of a sheared loop system on one side of the emerging flux. The second reconnection occurs between these newly formed loops and remote arcade fields, and yields the formation of a second loop system on the opposite side of the emerging flux. The two loop systems collectively display an anenome pattern that is located below the fan surface. The flux that surrounds the inner spine field line of the nullpoint retains a fraction of the emerged twist, while the remaining twist is evacuated along the reconnected arcades. The nature and timing of the features which occur in the simulation do qualititatively reproduce those observed by XRT in the particular event studied in this paper. Moreover, the two-step reconnection process suggests a new consistent and generic model for the formation of anemone regions in the solar corona.
Laser-driven magnetic reconnection in the multi-plasmoid regime
Totorica, Samuel; Abel, Tom; Fiuza, Frederico
2017-10-01
Magnetic reconnection is a promising candidate mechanism for accelerating the nonthermal particles associated with explosive astrophysical phenomena. Laboratory experiments are starting to probe multi-plasmoid regimes of relevance for particle acceleration. We have performed two- and three-dimensional particle-in-cell (PIC) simulations to explore particle acceleration for parameters relevant to laser-driven reconnection experiments. We have extended our previous work to explore particle acceleration in larger system sizes. Our results show the transition to plasmoid-dominated acceleration associated with the merging and contraction of plasmoids that further extend the maximum energy of the power-law tail of the particle distribution. Furthermore, we have modeled Coulomb collisions and will discuss the influence of collisionality on the plasmoid formation, dynamics, and particle acceleration.
Dynamics of a reconnection-driven runaway ion tail in a reversed field pinch plasma
Energy Technology Data Exchange (ETDEWEB)
Anderson, J. K., E-mail: jkanders@wisc.edu; Kim, J.; Bonofiglo, P. J.; Capecchi, W.; Eilerman, S.; Nornberg, M. D.; Sarff, J. S.; Sears, S. H. [Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)
2016-05-15
While reconnection-driven ion heating is common in laboratory and astrophysical plasmas, the underlying mechanisms for converting magnetic to kinetic energy remain not fully understood. Reversed field pinch discharges are often characterized by rapid ion heating during impulsive reconnection, generating an ion distribution with an enhanced bulk temperature, mainly perpendicular to magnetic field. In the Madison Symmetric Torus, a subset of discharges with the strongest reconnection events develop a very anisotropic, high energy tail parallel to magnetic field in addition to bulk perpendicular heating, which produces a fusion neutron flux orders of magnitude higher than that expected from a Maxwellian distribution. Here, we demonstrate that two factors in addition to a perpendicular bulk heating mechanism must be considered to explain this distribution. First, ion runaway can occur in the strong parallel-to-B electric field induced by a rapid equilibrium change triggered by reconnection-based relaxation; this effect is particularly strong on perpendicularly heated ions which experience a reduced frictional drag relative to bulk ions. Second, the confinement of ions varies dramatically as a function of velocity. Whereas thermal ions are governed by stochastic diffusion along tearing-altered field lines (and radial diffusion increases with parallel speed), sufficiently energetic ions are well confined, only weakly affected by a stochastic magnetic field. High energy ions traveling mainly in the direction of toroidal plasma current are nearly classically confined, while counter-propagating ions experience an intermediate confinement, greater than that of thermal ions but significantly less than classical expectations. The details of ion confinement tend to reinforce the asymmetric drive of the parallel electric field, resulting in a very asymmetric, anisotropic distribution.
Stratified Simulations of Collisionless Accretion Disks
Energy Technology Data Exchange (ETDEWEB)
Hirabayashi, Kota; Hoshino, Masahiro, E-mail: hirabayashi-k@eps.s.u-tokyo.ac.jp [Department of Earth and Planetary Science, The University of Tokyo, Tokyo, 113-0033 (Japan)
2017-06-10
This paper presents a series of stratified-shearing-box simulations of collisionless accretion disks in the recently developed framework of kinetic magnetohydrodynamics (MHD), which can handle finite non-gyrotropy of a pressure tensor. Although a fully kinetic simulation predicted a more efficient angular-momentum transport in collisionless disks than in the standard MHD regime, the enhanced transport has not been observed in past kinetic-MHD approaches to gyrotropic pressure anisotropy. For the purpose of investigating this missing link between the fully kinetic and MHD treatments, this paper explores the role of non-gyrotropic pressure and makes the first attempt to incorporate certain collisionless effects into disk-scale, stratified disk simulations. When the timescale of gyrotropization was longer than, or comparable to, the disk-rotation frequency of the orbit, we found that the finite non-gyrotropy selectively remaining in the vicinity of current sheets contributes to suppressing magnetic reconnection in the shearing-box system. This leads to increases both in the saturated amplitude of the MHD turbulence driven by magnetorotational instabilities and in the resultant efficiency of angular-momentum transport. Our results seem to favor the fast advection of magnetic fields toward the rotation axis of a central object, which is required to launch an ultra-relativistic jet from a black hole accretion system in, for example, a magnetically arrested disk state.
Reconnection-driven Magnetohydrodynamic Turbulence in a Simulated Coronal-hole Jet
Energy Technology Data Exchange (ETDEWEB)
Uritsky, Vadim M.; Roberts, Merrill A. [Catholic University of America, 620 Michigan Avenue NE, Washington, DC 20064 (United States); DeVore, C. Richard; Karpen, Judith T., E-mail: vadim.uritsky@nasa.gov [Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)
2017-03-10
Extreme-ultraviolet and X-ray jets occur frequently in magnetically open coronal holes on the Sun, especially at high solar latitudes. Some of these jets are observed by white-light coronagraphs as they propagate through the outer corona toward the inner heliosphere, and it has been proposed that they give rise to microstreams and torsional Alfvén waves detected in situ in the solar wind. To predict and understand the signatures of coronal-hole jets, we have performed a detailed statistical analysis of such a jet simulated by an adaptively refined magnetohydrodynamics model. The results confirm the generation and persistence of three-dimensional, reconnection-driven magnetic turbulence in the simulation. We calculate the spatial correlations of magnetic fluctuations within the jet and find that they agree best with the Müller–Biskamp scaling model including intermittent current sheets of various sizes coupled via hydrodynamic turbulent cascade. The anisotropy of the magnetic fluctuations and the spatial orientation of the current sheets are consistent with an ensemble of nonlinear Alfvén waves. These properties also reflect the overall collimated jet structure imposed by the geometry of the reconnecting magnetic field. A comparison with Ulysses observations shows that turbulence in the jet wake is in quantitative agreement with that in the fast solar wind.
International Nuclear Information System (INIS)
Borgogno, D.; Califano, F.; Pegoraro, F.; Faganello, M.
2015-01-01
In an almost collisionless magnetohydrodynamic plasma in a relatively strong magnetic field, stresses can be conveyed far from the region where they are exerted, e.g., through the propagation of Alfvèn waves. The forced dynamics of line-tied magnetic structures in solar and stellar coronae (see, e.g., A. F. Rappazzo and E. N. Parker, Astrophys. J. 773, L2 (2013) and references therein) is a paradigmatic case. Here, we investigate how this action at a distance develops from the equatorial region of the Kelvin-Helmholtz unstable flanks of the Earth's magnetosphere leading to the onset, at mid latitude in both hemispheres, of correlated double magnetic field line reconnection events that can allow the solar wind plasma to enter the Earth's magnetosphere
Graf von der Pahlen, J.; Tsiklauri, D.
2015-12-01
Magnetic X-point collapse is investigated using a 2.5D fully relativistic particle-in-cell simulation, with varying strengths of guide-field as well as open and closed boundary conditions. In the zero guide-field case we discover a new signature of Hall-reconnection in the out-of-plane magnetic field, namely an octupolar pattern, as opposed to the well-studied quadrupolar out-of-plane field of reconnection. The emergence of the octupolar components was found to be caused by ion currents and is a general feature of X-point collapse. In a comparative study of tearing-mode reconnection, signatures of octupolar components are found only in the out-flow region. It is argued that space-craft observations of magnetic fields at reconnection sites may be used accordingly to identify the type of reconnection [1][2]. Further, initial oscillatory reconnection is observed, prior to reconnection onset, generating electro-magnetic waves at the upper-hybrid frequency, matching solar flare progenitor emission. When applying a guide-field, in both open and closed boundary conditions, thinner dissipation regions are obtained and the onset of reconnection is increasingly delayed. Investigations with open boundary conditions show that, for guide-fields close to the strength of the in-plane field, shear flows emerge, leading to the formation of electron flow vortices and magnetic islands [3]. Asymmetries in the components of the generalised Ohm's law across the dissipation region are observed. Extended in 3D geometry, it is shown that locations of magnetic islands and vortices are not constant along the height of the current-sheet. Vortices formed on opposite sites of the current-sheet travel in opposite directions along it, leading to a criss-cross vortex pattern. Possible instabilities resulting from this specific structure formation are to be investigated [4].[1] J. Graf von der Pahlen and D. Tsiklauri, Phys. Plasmas 21, 060705 (2014), [2] J. Graf von der Pahlen and D. Tsiklauri
RECONNECTION-DRIVEN CORONAL-HOLE JETS WITH GRAVITY AND SOLAR WIND
Energy Technology Data Exchange (ETDEWEB)
Karpen, J. T.; DeVore, C. R.; Antiochos, S. K. [Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt MD 20771 (United States); Pariat, E. [LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Université, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité, 5 place Jules Janssen, F-92195 Meudon (France)
2017-01-01
Coronal-hole jets occur ubiquitously in the Sun's coronal holes, at EUV and X-ray bright points associated with intrusions of minority magnetic polarity. The embedded-bipole model for these jets posits that they are driven by explosive, fast reconnection between the stressed closed field of the embedded bipole and the open field of the surrounding coronal hole. Previous numerical studies in Cartesian geometry, assuming uniform ambient magnetic field and plasma while neglecting gravity and solar wind, demonstrated that the model is robust and can produce jet-like events in simple configurations. We have extended these investigations by including spherical geometry, gravity, and solar wind in a nonuniform, coronal hole-like ambient atmosphere. Our simulations confirm that the jet is initiated by the onset of a kink-like instability of the internal closed field, which induces a burst of reconnection between the closed and external open field, launching a helical jet. Our new results demonstrate that the jet propagation is sustained through the outer corona, in the form of a traveling nonlinear Alfvén wave front trailed by slower-moving plasma density enhancements that are compressed and accelerated by the wave. This finding agrees well with observations of white-light coronal-hole jets, and can explain microstreams and torsional Alfvén waves detected in situ in the solar wind. We also use our numerical results to deduce scaling relationships between properties of the coronal source region and the characteristics of the resulting jet, which can be tested against observations.
Toward multi-scale simulation of reconnection phenomena in space plasma
Den, M.; Horiuchi, R.; Usami, S.; Tanaka, T.; Ogawa, T.; Ohtani, H.
2013-12-01
Magnetic reconnection is considered to play an important role in space phenomena such as substorm in the Earth's magnetosphere. It is well known that magnetic reconnection is controlled by microscopic kinetic mechanism. Frozen-in condition is broken due to particle kinetic effects and collisionless reconnection is triggered when current sheet is compressed as thin as ion kinetic scales under the influence of external driving flow. On the other hand configuration of the magnetic field leading to formation of diffusion region is determined in macroscopic scale and topological change after reconnection is also expressed in macroscopic scale. Thus magnetic reconnection is typical multi-scale phenomenon and microscopic and macroscopic physics are strongly coupled. Recently Horiuchi et al. developed an effective resistivity model based on particle-in-cell (PIC) simulation results obtained in study of collisionless driven reconnection and applied to a global magnetohydrodynamics (MHD) simulation of substorm in the Earth's magnetosphere. They showed reproduction of global behavior in substrom such as dipolarization and flux rope formation by global three dimensional MHD simulation. Usami et al. developed multi-hierarchy simulation model, in which macroscopic and microscopic physics are solved self-consistently and simultaneously. Based on the domain decomposition method, this model consists of three parts: a MHD algorithm for macroscopic global dynamics, a PIC algorithm for microscopic kinetic physics, and an interface algorithm to interlock macro and micro hierarchies. They verified the interface algorithm by simulation of plasma injection flow. In their latest work, this model was applied to collisionless reconnection in an open system and magnetic reconnection was successfully found. In this paper, we describe our approach to clarify multi-scale phenomena and report the current status. Our recent study about extension of the MHD domain to global system is presented. We
Collisionless current sheet equilibria
Neukirch, T.; Wilson, F.; Allanson, O.
2018-01-01
Current sheets are important for the structure and dynamics of many plasma systems. In space and astrophysical plasmas they play a crucial role in activity processes, for example by facilitating the release of magnetic energy via processes such as magnetic reconnection. In this contribution we will focus on collisionless plasma systems. A sensible first step in any investigation of physical processes involving current sheets is to find appropriate equilibrium solutions. The theory of collisionless plasma equilibria is well established, but over the past few years there has been a renewed interest in finding equilibrium distribution functions for collisionless current sheets with particular properties, for example for cases where the current density is parallel to the magnetic field (force-free current sheets). This interest is due to a combination of scientific curiosity and potential applications to space and astrophysical plasmas. In this paper we will give an overview of some of the recent developments, discuss their potential applications and address a number of open questions.
Experimental Verification of the Hall Effect during Magnetic Reconnection in a Laboratory Plasma
International Nuclear Information System (INIS)
Yang Ren; Masaaki Yamada; Stefan Gerhardt; Hantao Ji; Russell Kulsrud; Aleksey Kuritsyn
2005-01-01
In this letter we report a clear and unambiguous observation of the out-of-plane quadrupole magnetic field suggested by numerical simulations in the reconnecting current sheet in the Magnetic Reconnection Experiment (MRX). Measurements show that the Hall effect is large in collisionless regime and becomes small as the collisionality increases, indicating that the Hall effect plays an important role in collisionless reconnection
Energy Technology Data Exchange (ETDEWEB)
Singh, Chandra B.; Pino, Elisabete M. de Gouveia Dal [Department of Astronomy (IAG-USP), University of São Paulo, São Paulo (Brazil); Mizuno, Yosuke, E-mail: csingh@iag.usp.br, E-mail: dalpino@iag.usp.br, E-mail: mizuno@th.physik.uni-frankfurt.de [Institute for Theoretical Physics, Goethe University, D-60438, Frankfurt am Main (Germany)
2016-06-10
Using the three-dimensional relativistic magnetohydrodynamic code RAISHIN, we investigated the influence of the radial density profile on the spatial development of the current-driven kink instability along magnetized rotating, relativistic jets. For the purposes of our study, we used a nonperiodic computational box, the jet flow is initially established across the computational grid, and a precessional perturbation at the inlet triggers the growth of the kink instability. We studied light and heavy jets with respect to the environment depending on the density profile. Different angular velocity amplitudes have been also tested. The results show the propagation of a helically kinked structure along the jet and a relatively stable configuration for the lighter jets. The jets appear to be collimated by the magnetic field, and the flow is accelerated owing to conversion of electromagnetic into kinetic energy. We also identify regions of high current density in filamentary current sheets, indicative of magnetic reconnection, which are associated with the kink-unstable regions and correlated with the decrease of the sigma parameter of the flow. We discuss the implications of our findings for Poynting-flux-dominated jets in connection with magnetic reconnection processes. We find that fast magnetic reconnection may be driven by the kink-instability turbulence and govern the transformation of magnetic into kinetic energy, thus providing an efficient way to power and accelerate particles in active galactic nucleus and gamma-ray-burst relativistic jets.
TenBarge, J. M.; Shay, M. A.; Sharma, P.; Juno, J.; Haggerty, C. C.; Drake, J. F.; Bhattacharjee, A.; Hakim, A.
2017-12-01
Turbulence and magnetic reconnection are the primary mechanisms responsible for the conversion of stored magnetic energy into particle energy in many space and astrophysical plasmas. The magnetospheric multiscale mission (MMS) has given us unprecedented access to high cadence particle and field data of turbulence and magnetic reconnection at earth's magnetopause. The observations include large guide field reconnection events generated within the turbulent magnetopause. Motivated by these observations, we present a study of large guide reconnection using the fully kinetic Eulerian Vlasov-Maxwell component of the Gkeyll simulation framework, and we also employ and compare with gyrokinetics to explore the asymptotically large guide field limit. In addition to studying the configuration space dynamics, we leverage the recently developed field-particle correlations to diagnose the dominant sources of dissipation and compare the results of the field-particle correlation to other energy dissipation measures.
Magnetic field, reconnection, and particle acceleration in extragalactic jets
Romanova, M. M.; Lovelace, R. V. E.
1992-01-01
Extra-galactic radio jets are investigated theoretically taking into account that the jet magnetic field is dragged out from the central rotating source by the jet flow. Thus, magnetohydrodynamic models of jets are considered with zero net poloidal current and flux, and consequently a predominantly toroidal magnetic field. The magnetic field naturally has a cylindrical neutral layer. Collisionless reconnection of the magnetic field in the vicinity of the neutral layer acts to generate a non-axisymmetric radial magnetic field. In turn, axial shear-stretching of reconnected toroidal field gives rise to a significant axial magnetic field if the flow energy-density is larger than the energy-density of the magnetic field. This can lead to jets with an apparent longitudinal magnetic field as observed in the Fanaroff-Riley class II jets. In the opposite limit, where the field energy-density is large, the field remains mainly toroidal as observed in Fanaroff-Riley class I jets. Driven collisionless reconnection at neutral layers may lead to acceleration of electrons to relativistic energies in the weak electrostatic field of the neutral layer. A simple model is discussed for particle acceleration at neutral layers in electron/positron and electron/proton plasmas.
Energy balance in current sheets: From Petschek to gravity driven reconnection
International Nuclear Information System (INIS)
Mercier, C.; Heyvaerts, J.
1980-01-01
It has been shown earlier that energy balance processes play a very important role in the determination of the reconnection regime in the central diffusive region of a steady Petschek flow (usually considered elsewhere as isothermal and incompressible): as a consequence of the plasma thermal properties, abrupt transitions in the reconnection regime may occur for special external conditions. The regime becomes then a dynamical one, and it was suggested that onset of plasma microturbulence may result and act as a primary triggering mechanism in solar flares. In this paper we will reexamine the problem of onset of such dynamical transition and conclude that plasma microturbulence does not appear in a straightforward way. However it is possible that the canonical Petschek regime may evolute into a new one in which the dissipative sheet is no longer infinitesimal with respect to the dimensions of the structure, and in which gravity plays an important role. Flare triggering, if related to the reconnection regime, must then proceed by more complex processes, possibly related to tearing mode dynamics, or to more global properties of the magnetic structure of the active region. (orig.)
Collisionless magnetic reconnection : the Contour Dynamics approach
Plas, van der E.V.
2007-01-01
A long time ago, mankind was a pretty pathetic species. We were cold, dependent on the sun for light and heat, and our diet was abhorrent. Fortunately, Prometheus felt sorry for us, and presented us the gift of fire. Zeus was not too keen on letting humans set fire to just about everything they
Table-top solar flares produced with laser driven magnetic reconnections
Directory of Open Access Journals (Sweden)
Zhong J.Y.
2013-11-01
Full Text Available The American Nuclear Society (ANS has presented the prestigious Edward Teller award to Dr. Bruce A. Remington during the 2011 IFSA conference due to his “pioneering scientific work in the fields of inertial confinement fusion (ICF, and especially developing an international effort in high energy density laboratory astrophysics” [1,2]. This is a great acknowledgement to the subject of high energy density laboratory astrophysics. In this context, we report here one experiment conducted to model solar flares in the laboratory with intense lasers [3]. The mega-gauss –scale magnetic fields produced by laser produced plasmas can be used to make magnetic reconnection topology. We have produced one table-top solar flare in our laboratory experiment with the same geometric setup as associated with solar flares.
The Onset of Magnetic Reconnection in Tail-Like Equilibria
Hesse, Michael; Birn, Joachim; Kuznetsova, Masha
1999-01-01
Magnetic reconnection is a fundamental mode of dynamics in the magnetotail, and is recognized as the basic mechanisms converting stored magnetic energy into kinetic energy of plasma particles. The effects of the reconnection process are well documented by spacecraft observations of plasmoids in the distant magnetotail, or bursty bulk flows, and magnetic field dipolarizations in the near Earth region. Theoretical and numerical analyses have, in recent years, shed new light on the way reconnection operates, and, in particular, which microscopic mechanism supports the dissipative electric field in the associated diffusion region. Despite this progress, however. the question of how magnetic reconnection initiates in a tail-like magnetic field with finite flux threading the current i.sheet remains unanswered. Instead, theoretical studies supported by numerical simulations support the point-of-view that such plasma and current sheets are stable with respect to collisionless tearing mode. In this paper, we will further investigate this conclusion, with emphasis on the question whether it remains valid in plasma sheets with embedded thin current sheets. For this purpose, we perform particle-in-cell simulations of the driven formation of thin current sheets, and their subsequent evolution either to equilibrium or to instability of a tearing-type mode. In the latter case we will pay particular attention to the nature of the electric field contribution which unmagnetizes the electrons.
Comparative Examination of Reconnection-Driven Magnetotail Dynamics at Mercury and Earth
Slavin, J. A.
2014-12-01
MESSENGER plasma and magnetic field observations of Mercury's magnetotail are reviewed and compared to that of Earth. Mercury's magnetosphere is created by the solar wind interaction with its highly dipolar, spin-axis aligned magnetic field. However, its equatorial magnetic field is ~ 150 times weaker than at Earth. As a result the altitude of its subsolar magnetopause is typically only ~ 1000 km and there is no possibility for trapped radiation belts. Magnetopause reconnection at Mercury does not exhibit the "half-wave rectifier" response to interplanetary magnetic field (IMF) direction observed at Earth. Rather magnetopause reconnection occurs for all non-zero shear angles with plasma β as the primary parameter controlling its rate. The cross-magnetosphere electric potential drop derived from magnetopause and plasma mantle structure is ~ 30 kV in contrast to ~ 100 kV at Earth. This large potential drop at Mercury relative to its small size appears due to the lack of an electrically conducting ionosphere and the strong IMF found in the inner heliosphere. Structurally these magnetotails are very similar in most respects, but the magnetic field intensities and plasma densities and temperatures are all higher at Mercury. Plasma sheet composition indicates solar wind origin, but with 10% Na+ derived from it tenuous exosphere. Given Mercury's very slow rotation rate, once every 59 Earth days, most sunward plasma sheet convection will impact the nightside of the planet. Magnetic flux loading/unloading in Mercury's tail is similar to that seen at Earth during substorms. However, the duration and amplitude of these cycles are ~ 2 - 3 min and ~ 30 to 50 %, respectively, as compared to ~ 1 - 2 hr and 10 - 25 % at Earth. These episodic, substorm-like events are accompanied by plasmoid ejection and near-tail dipolarization similar what is seen at Earth. Mercury can also exhibit Earth-like steady magnetospheric convection during which plasmoid ejection and dipolarization
Yi, Longqing; Shen, Baifei; Pukhov, Alexander; Fülöp, Tünde
2017-10-01
Magnetic reconnection (MR) in the relativistic regime is generally thought to be responsible for powering rapid bursts of non-thermal radiation in astrophysical events. It is therefore of significant importance to study how the field energy is transferred to the plasma to power the observed emission. However, due to the difficulty in making direct measurements in astrophysical systems or achieving relativistic MR in laboratory environments, the particle acceleration is usually studied using fully kinetic PIC simulations. Here we present a numerical study of a readily available (TW-mJ-class) laser interacting with a micro-scale plasma slab. The simulations show when the electron beams excited on both sides of the slab approach the end of the plasma structure, ultrafast relativistic MR occurs. As the field topology changes, the explosive release of magnetic energy results in emission of relativistic electron jets with cut-off energy 12 MeV. The proposed novel scenario can be straightforwardly implemented in experiments, and might significantly improve the understanding of fundamental questions such as field dissipation and particle acceleration in relativistic MR. This work is supported by the Knut and Alice Wallenberg Foundation and the European Research Council (ERC-2014-CoG Grant 64712).
Energy Technology Data Exchange (ETDEWEB)
Brannon, Sean; Longcope, Dana [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)
2014-09-01
Magnetic reconnection in the corona results in contracting flare loops, releasing energy into plasma heating and shocks. The hydrodynamic shocks produced in this manner drive thermal conduction fronts (TCFs) which transport energy into the chromosphere and drive upflows (evaporation) and downflows (condensation) in the cooler, denser footpoint plasma. Observations have revealed that certain properties of the transition point between evaporation and condensation (the 'flow reversal point' or FRP), such as temperature and velocity-temperature derivative at the FRP, vary between different flares. These properties may provide a diagnostic tool to determine parameters of the coronal energy release mechanism and the loop atmosphere. In this study, we develop a one-dimensional hydrodynamical flare loop model with a simplified three-region atmosphere (chromosphere/transition region/corona), with TCFs initiated by shocks introduced in the corona. We investigate the effect of two different flare loop parameters (post-shock temperature and transition region temperature ratio) on the FRP properties. We find that both of the evaporation characteristics have scaling-law relationships to the varied flare parameters, and we report the scaling exponents for our model. This provides a means of using spectroscopic observations of the chromosphere as quantitative diagnostics of flare energy release in the corona.
Fan-shaped jets above the light bridge of a sunspot driven by reconnection
Robustini, Carolina; Leenaarts, Jorrit; de la Cruz Rodriguez, Jaime; Rouppe van der Voort, Luc
2016-05-01
We report on a fan-shaped set of high-speed jets above a strongly magnetized light bridge (LB) of a sunspot observed in the Hα line. We study the origin, dynamics, and thermal properties of the jets using high-resolution imaging spectroscopy in Hα from the Swedish 1m Solar Telescope and data from the Solar Dynamics Observatory and Hinode. The Hα jets have lengths of 7-38 Mm, are impulsively accelerated to a speed of ~100 km s-1 close to photospheric footpoints in the LB, and exhibit a constant deceleration consistent with solar effective gravity. They are predominantly launched from one edge of the light bridge, and their footpoints appear bright in the Hα wings. Atmospheric Imaging Assembly data indicates elongated brightenings that are nearly co-spatial with the Hα jets. We interpret them as jets of transition region temperatures. The magnetic field in the light bridge has a strength of 0.8-2 kG and it is nearly horizontal. All jet properties are consistent with magnetic reconnection as the driver. Movies associated to Figs. 1 and 2 are available in electronic form at http://www.aanda.org
Collisionless plasmas in astrophysics
Belmont, Gerard; Mottez, Fabrice; Pantellini, Filippo; Pelletier, Guy
2013-01-01
Collisionless Plasmas in Astrophysics examines the unique properties of media without collisions in plasma physics. Experts in this field, the authors present the first book to concentrate on collisionless conditions in plasmas, whether close or not to thermal equilibrium. Filling a void in scientific literature, Collisionless Plasmas in Astrophysics explains the possibilities of modeling such plasmas, using a fluid or a kinetic framework. It also addresses common misconceptions that even professionals may possess, on phenomena such as "collisionless (Landau) damping". Abundant illustrations
Collisionless electrostatic shocks
DEFF Research Database (Denmark)
Andersen, H.K.; Andersen, S.A.; Jensen, Vagn Orla
1970-01-01
An attempt was made in the laboratory to observe the standing collisionless electrostatic shocks in connection with the bow shock of the earth......An attempt was made in the laboratory to observe the standing collisionless electrostatic shocks in connection with the bow shock of the earth...
Low-β magnetic reconnection driven by the intense lasers with a double-turn capacitor-coil
Yuan, Xiaoxia; Zhong, Jiayong; Zhang, Zhe; Zhou, Weimin; Teng, Jian; Li, Yutong; Han, Bo; Yuan, Dawei; Lin, Jun; Liu, Chang; Li, Yanfei; Zhu, Baojun; Wei, Huigang; Liang, Guiyun; Hong, Wei; He, Shukai; Yang, Siqian; Zhao, Yongqiang; Deng, Zhigang; Lu, Feng; Zhang, Zhimeng; Zhu, Bin; Zhou, Kainan; Su, Jingqin; Zhao, Zongqing; Gu, Yuqiu; Zhao, Gang; Zhang, Jie
2018-06-01
A double-turn capacitor-coil is used to produce a magnetic field (38.5 T) and construct a topology of magnetic reconnection in a low-β (β magnetic field topology. We demonstrated through experiments and numerical simulations that the reconnection process takes place between two non-uniform magnetic fields created by the coils, and that the plasma state and the associated magnetic topology in the process can be seen via the technology of the optical probe beam and the proton backlight.
High-energy Nd:glass laser facility for collisionless laboratory astrophysics
International Nuclear Information System (INIS)
Niemann, C; Constantin, C G; Schaeffer, D B; Lucky, Z; Gekelman, W; Everson, E T; Tauschwitz, A; Weiland, T; Winske, D
2012-01-01
A kilojoule-class laser (Raptor) has recently been activated at the Phoenix-laser-facility at the University of California Los Angeles (UCLA) for an experimental program on laboratory astrophysics in conjunction with the Large Plasma Device (LAPD). The unique combination of a high-energy laser system and the 18 meter long, highly-magnetized but current-free plasma will support a new class of plasma physics experiments, including the first laboratory simulations of quasi-parallel collisionless shocks, experiments on magnetic reconnection, or advanced laser-based diagnostics of basic plasmas. Here we present the parameter space accessible with this new instrument, results from a laser-driven magnetic piston experiment at reduced power, and a detailed description of the laser system and its performance.
On the location of the stationary reconnection region in the Earth's magnetotail
International Nuclear Information System (INIS)
Buechner, J.; Zeleny, L.M.
1987-01-01
The reconnection of plasma and magnetic flux, disconnected from the Earth's magnetosphere on its dayside, to the Earth through the geomagnetotail is investigated. A new approach is proposed explaining the physical mechanism responsible for more stationary reconnection in the extremely collisionless plasma of the far magnetotail. Specially the average behaviour of a parameter along the Earth's magnetotail is analyzed, determining the threshold of a collisionless tearing mode instability due to chaotization of the thermal electron motion
On the cessation of magnetic reconnection
Directory of Open Access Journals (Sweden)
M. Hesse
2004-01-01
Full Text Available Kinetic simulations of collisionless magnetic reconnection are used to study the effect on the reconnection rate of ion density enhancements in the inflow region. The goal of the investigation is to study a candidate mechanism for the slow-down of magnetic reconnection. The calculations involve either proton or oxygen additions in the inflow region, initially located at two distances from the current sheet. Protons are found to be much more tightly coupled into the evolution of the reconnecting system and, therefore, they effect an immediate slowdown of the reconnection process, as soon as the flux tubes they reside on become involved. Oxygen, on the other hand, has, within the limits of the calculations, a much less pronounced effect on the reconnection electric field. The difference is attributed to the lack of tight coupling to the magnetic field of the oxygen populations. Last, a study of proton and oxygen acceleration finds that protons respond primarily to the reconnection electric field, whereas the main oxygen electric field is achieved by Hall-type electric fields at the plasma sheet boundary. Key words. Space plasma physics (magnetic reconnection; numerical simulation studies; numerical simulation studies
Joglekar, A S; Thomas, A G R; Fox, W; Bhattacharjee, A
2014-03-14
In the interaction of high-power laser beams with solid density plasma there are a number of mechanisms that generate strong magnetic fields. Such fields subsequently inhibit or redirect electron flows, but can themselves be advected by heat fluxes, resulting in complex interplay between thermal transport and magnetic fields. We show that for heating by multiple laser spots reconnection of magnetic field lines can occur, mediated by these heat fluxes, using a fully implicit 2D Vlasov-Fokker-Planck code. Under such conditions, the reconnection rate is dictated by heat flows rather than Alfvènic flows. We find that this mechanism is only relevant in a high β plasma. However, the Hall parameter ωcτei can be large so that thermal transport is strongly modified by these magnetic fields, which can impact longer time scale temperature homogeneity and ion dynamics in the system.
A RECONNECTION-DRIVEN MODEL OF THE HARD X-RAY LOOP-TOP SOURCE FROM FLARE 2004 FEBRUARY 26
Energy Technology Data Exchange (ETDEWEB)
Longcope, Dana; Qiu, Jiong; Brewer, Jasmine [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)
2016-12-20
A compact X-class flare on 2004 February 26 showed a concentrated source of hard X-rays at the tops of the flare’s loops. This was analyzed in previous work and interpreted as plasma heated and compressed by slow magnetosonic shocks (SMSs) generated during post-reconnection retraction of the flux. That work used analytic expressions from a thin flux tube (TFT) model, which neglected many potentially important factors such as thermal conduction and chromospheric evaporation. Here we use a numerical solution of the TFT equations to produce a more comprehensive and accurate model of the same flare, including those effects previously omitted. These simulations corroborate the prior hypothesis that slow-mode shocks persist well after the retraction has ended, thus producing a compact, loop-top source instead of an elongated jet, as steady reconnection models predict. Thermal conduction leads to densities higher than analytic estimates had predicted, and evaporation enhances the density still higher, but at lower temperatures. X-ray light curves and spectra are synthesized by convolving the results from a single TFT simulation with the rate at which flux is reconnected, as measured through motion of flare ribbons, for example. These agree well with light curves observed by RHESSI and GOES and spectra from RHESSI . An image created from a superposition of TFT model runs resembles one produced from RHESSI observations. This suggests that the HXR loop-top source, at least the one observed in this flare, could be the result of SMSs produced in fast reconnection models like Petschek’s.
Magnetic reconnection under anisotropic magnetohydrodynamic approximation
International Nuclear Information System (INIS)
Hirabayashi, K.; Hoshino, M.
2013-01-01
We study the formation of slow-mode shocks in collisionless magnetic reconnection by using one- and two-dimensional collisionless MHD codes based on the double adiabatic approximation and the Landau closure model. We bridge the gap between the Petschek-type MHD reconnection model accompanied by a pair of slow shocks and the observational evidence of the rare occasion of in-situ slow shock observations. Our results showed that once magnetic reconnection takes place, a firehose-sense (p ∥ >p ⊥ ) pressure anisotropy arises in the downstream region, and the generated slow shocks are quite weak comparing with those in an isotropic MHD. In spite of the weakness of the shocks, however, the resultant reconnection rate is 10%–30% higher than that in an isotropic case. This result implies that the slow shock does not necessarily play an important role in the energy conversion in the reconnection system and is consistent with the satellite observation in the Earth's magnetosphere
Nonlinear magnetic reconnection in low collisionality plasmas
Energy Technology Data Exchange (ETDEWEB)
Ottaviani, M [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Porcelli, F [Politecnico di Torino, Turin (Italy)
1994-07-01
The magnetic reconnection in collisionless regimes, where electron inertia is responsible for the decoupling of the plasma motion from that of the field lines, is discussed. Since the linear theory of m=1 modes breaks down for very small magnetic island widths, a non linear analysis is called for. Thus, the behaviour of a collisionless, 2-D fluid slab model in the limit {rho}/d -> 0, is analyzed. The main result is that, when the island size is larger than the linear layer but smaller than the equilibrium scale length, the reconnection rate exhibits a quasi-explosive time behaviour, during which a current density sub-layer narrower than the skin depth is formed. It is believed that the inclusion of the electron initial term in Ohm`s law opens the possibility to understand the rapidity of relaxation process observed in low collisionality plasmas. 7 refs., 6 figs.
Energy Technology Data Exchange (ETDEWEB)
Masaaki Yamada, Russell Kulsrud and Hantao Ji
2009-09-17
We review the fundamental physics of magnetic reconnection in laboratory and space plasmas, by discussing results from theory, numerical simulations, observations from space satellites, and the recent results from laboratory plasma experiments. After a brief review of the well-known early work, we discuss representative recent experimental and theoretical work and attempt to interpret the essence of significant modern findings. In the area of local reconnection physics, many significant findings have been made with regard to two- uid physics and are related to the cause of fast reconnection. Profiles of the neutral sheet, Hall currents, and the effects of guide field, collisions, and micro-turbulence are discussed to understand the fundamental processes in a local reconnection layer both in space and laboratory plasmas. While the understanding of the global reconnection dynamics is less developed, notable findings have been made on this issue through detailed documentation of magnetic self-organization phenomena in fusion plasmas. Application of magnetic reconnection physics to astrophysical plasmas is also brie y discussed.
International Nuclear Information System (INIS)
Yamada, Masaaki; Kulsrud, Russell; Ji, Hantao
2009-01-01
We review the fundamental physics of magnetic reconnection in laboratory and space plasmas, by discussing results from theory, numerical simulations, observations from space satellites, and the recent results from laboratory plasma experiments. After a brief review of the well-known early work, we discuss representative recent experimental and theoretical work and attempt to interpret the essence of significant modern findings. In the area of local reconnection physics, many significant findings have been made with regard to two-fluid physics and are related to the cause of fast reconnection. Profiles of the neutral sheet, Hall currents, and the effects of guide field, collisions, and micro-turbulence are discussed to understand the fundamental processes in a local reconnection layer both in space and laboratory plasmas. While the understanding of the global reconnection dynamics is less developed, notable findings have been made on this issue through detailed documentation of magnetic self-organization phenomena in fusion plasmas. Application of magnetic reconnection physics to astrophysical plasmas is also briefly discussed.
The Time-Dependent Structure of the Electron Reconnection Layer
Hesse, Michael; Zenitani, Seiji; Kuznetsova, Masha; Klimas, Alex
2009-01-01
Collisionless magnetic reconnection is often associated with time-dependent behavior. Specifically, current layers in the diffusion region can become unstable to tearing-type instabilities on one hand, or to instabilities with current-aligned wave vectors on the other. In the former case, the growth of tearing instabilities typically leads to the production of magnetic islands, which potentially provide feedback on the reconnection process itself, as well as on the rate of reconnection. The second class of instabilities tend to modulate the current layer along the direction of the current flow, for instance generating kink-type perturbations, or smaller-scale turbulence with the potential to broaden the current layer. All of these processes contribute to rendering magnetic reconnection time-dependent. In this presentation, we will provide a summary of these effects, and a discussion of how much they contribute to the overall magnetic reconnection rate.
Toward laboratory torsional spine magnetic reconnection
Chesny, David L.; Orange, N. Brice; Oluseyi, Hakeem M.; Valletta, David R.
2017-12-01
Magnetic reconnection is a fundamental energy conversion mechanism in nature. Major attempts to study this process in controlled settings on Earth have largely been limited to reproducing approximately two-dimensional (2-D) reconnection dynamics. Other experiments describing reconnection near three-dimensional null points are non-driven, and do not induce any of the 3-D modes of spine fan, torsional fan or torsional spine reconnection. In order to study these important 3-D modes observed in astrophysical plasmas (e.g. the solar atmosphere), laboratory set-ups must be designed to induce driven reconnection about an isolated magnetic null point. As such, we consider the limited range of fundamental resistive magnetohydrodynamic (MHD) and kinetic parameters of dynamic laboratory plasmas that are necessary to induce the torsional spine reconnection (TSR) mode characterized by a driven rotational slippage of field lines - a feature that has yet to be achieved in operational laboratory magnetic reconnection experiments. Leveraging existing reconnection models, we show that within a 3$ apparatus, TSR can be achieved in dense plasma regimes ( 24~\\text{m}-3$ ) in magnetic fields of -1~\\text{T}$ . We find that MHD and kinetic parameters predict reconnection in thin current sheets on time scales of . While these plasma regimes may not explicitly replicate the plasma parameters of observed astrophysical phenomena, studying the dynamics of the TSR mode within achievable set-ups signifies an important step in understanding the fundamentals of driven 3-D magnetic reconnection and the self-organization of current sheets. Explicit control of this reconnection mode may have implications for understanding particle acceleration in astrophysical environments, and may even have practical applications to fields such as spacecraft propulsion.
International Nuclear Information System (INIS)
Tajima, T.; Horton, W.
1990-01-01
Ions in the field reversed configuration (FRC) exhibit stochastic orbits due to the field null and the curvature of poloidal field lines. Velocity correlations of these particles decay in a power law fashion t -m where 1 ≤ m ≤ 2. This decay of the single particle correlation function is characteristic of the long tail correlations of strongly chaotic or nonlinear systems found in other problems of statistical physics. This decay of correlations gives rise to a collisionless resistivity that can far exceed the collisional resistivity in an FRC plasma. The finite correlation τ c of a single particle limits the acceleration in the electric field producing the finite resistivity. Maxwellian test particle distributions are integrated to find the measure of the set of stochastic ions that contribute to the collisionless resistivity. The computed conductivity is proportional to the square root of the characteristic ion gyroradius in both simulation and theory
Anomalous particle pinch for collisionless plasma
International Nuclear Information System (INIS)
Terry, P.W.
1989-01-01
The particle transport arising from the convection of nonadiabatic electron density by ion temperature gradient driven turbulence is examined when trapped electrons collide less often than a bounce period. In the lower temperature end of this regime, trapped electrons are collisional and the particle flux is outward (in the direction of the gradients). When the trapped electrons are collisionless, there is a temperature threshold above which the electron temperature gradient driven particle flux changes sign and becomes inward. The magnitude of the nonadiabatic electron contribution to the growth rate is found to be potentially of the same order as the ion contribution. 11 refs
International Nuclear Information System (INIS)
Sagdeev, R.Z.; Kennel, C.F.
1991-01-01
Collisionless shocks cannot occur naturally on the earth, because nearly all matter here consists of electrically neutral atoms and molecules. In space, however, high temperatures and ultraviolet radiation from hot stars decompose atoms into their constituent nuclei and electrons, producing a soup of electrically charged particles known as a plasma. Plasma physicists proposed that the collective electrical and magnetic properties of plasmas could produce interactions that take the place of collisions and permit shocks to form. In 1964 the theoretical work found its first experimental confirmation. Norman F. Ness and his colleagues at the Goddard Space Flight Center, using data collected from the iMP-1 spacecraft, detected clear signs that a collisionless shock exists where the solar wind encounters the earth's magnetic field. More recent research has demonstrated that collisionless shocks appear in a dazzling array of astronomical settings. For example, shocks have been found in the solar wind upstream (sunward) of all the planet and comets that have been visited by spacecraft. Violent flares on the sun generate shocks that propagate to the far reaches of the solar system; tremendous galactic outbursts create disruptions in the intergalactic medium that are trillions of times larger. In addition, many astrophysicists think that shocks from supernova explosions in our galaxy accelerate cosmic rays, a class of extraordinarily energetic elementary particles and atomic nuclei that rain down on the earth from all directions
Oieroset, M.; Phan, T.; Haggerty, C. C.; Shay, M.; Eastwood, J. P.; Gershman, D. J.; Drake, J. F.; Fujimoto, M.; Ergun, R.; Mozer, F.; Oka, M.; Torbert, R. B.; Burch, J. L.; Wang, S.; Chen, L. J.; Swisdak, M.; Pollock, C. J.; Dorelli, J.; Fuselier, S. A.; Lavraud, B.; Kacem, I.; Giles, B. L.; Moore, T. E.; Saito, Y.; Avanov, L. A.; Paterson, W. R.; Strangeway, R. J.; Schwartz, S. J.; Khotyaintsev, Y. V.; Lindqvist, P. A.; Malakit, K.
2017-12-01
The formation and evolution of magnetic flux ropes is of critical importance for a number of collisionless plasma phenomena. At the dayside magnetopause flux rope-like structures can form between two X-lines. The two X-lines produce converging plasma jets. At the interface between the colliding jets a compressed current sheet can form, which in turn can undergo reconnection. We present MMS observations of the exhaust and diffusion region of such reconnection.
Helicity, Reconnection, and Dynamo Effects
International Nuclear Information System (INIS)
Ji, Hantao
1998-01-01
The inter-relationships between magnetic helicity, magnetic reconnection, and dynamo effects are discussed. In laboratory experiments, where two plasmas are driven to merge, the helicity content of each plasma strongly affects the reconnection rate, as well as the shape of the diffusion region. Conversely, magnetic reconnection events also strongly affect the global helicity, resulting in efficient helicity cancellation (but not dissipation) during counter-helicity reconnection and a finite helicity increase or decrease (but less efficiently than dissipation of magnetic energy) during co-helicity reconnection. Close relationships also exist between magnetic helicity and dynamo effects. The turbulent electromotive force along the mean magnetic field (alpha-effect), due to either electrostatic turbulence or the electron diamagnetic effect, transports mean-field helicity across space without dissipation. This has been supported by direct measurements of helicity flux in a laboratory plasma. When the dynamo effect is driven by electromagnetic turbulence, helicity in the turbulent field is converted to mean-field helicity. In all cases, however, dynamo processes conserve total helicity except for a small battery effect, consistent with the observation that the helicity is approximately conserved during magnetic relaxation
Nearly collisionless spherical accretion
International Nuclear Information System (INIS)
Begelman, M.C.
1977-01-01
A fluid-like gas accretes much more efficiently than a collisionless gas. The ability of an accreting gas to behave like a fluid depends on the relationship of the mean free path of a gas particle at r → infinity lambdasub(infinity), to the typical length scales associated with the star-gas system. This relationship is examined in detail. For constant collision cross-section evidence is found for a rapid changeover from collisionless to fluid-like accretion flow when lambdasub(infinity) drops below a certain value, but for hard Coulomb collisions, the transition is more gradual, and is sensitive to the adiabatic index of the gas at r→ infinity. To these results must be added the effects of the substantial cusp of bound particles, which always develops in a system with arbitrarily small but non-zero cross-section. The density run in such a cusp depends on the collision properties of the particles. 'Loss-cone' accretion from the cusp may in some cases exceed the predicted accretion rate. (author)
Fast Magnetic Reconnection in the Plasmoid-Dominated Regime
International Nuclear Information System (INIS)
Uzdensky, D. A.; Loureiro, N. F.; Schekochihin, A. A.
2010-01-01
A conceptual model of resistive magnetic reconnection via a stochastic plasmoid chain is proposed. The global reconnection rate is shown to be independent of the Lundquist number. The distribution of fluxes in the plasmoids is shown to be an inverse-square law. It is argued that there is a finite probability of emergence of abnormally large plasmoids, which can disrupt the chain (and may be responsible for observable large abrupt events in solar flares and sawtooth crashes). A criterion for the transition from the resistive magnetohydrodynamic to the collisionless regime is provided.
Collisionless sausage instability
International Nuclear Information System (INIS)
Coppins, M.
1989-01-01
The Chew--Goldberger--Low (CGL) double adiabatic model [Proc. R. Soc. London Ser. A 236, 112 (1956)] is used to study the linear m = 0 (sausage) mode in a Z pinch operating in the collisionless, small ion Larmor radius regime. The model is valid in this case since the parallel heat flow is identically zero. A necessary and sufficient condition for stability, applicable to arbitrary (anisotropic) Z-pinch equilibria, is derived and the eigenvalue equation is solved for two classes of isotropic equilibria. Growth rates are shown to be lower than those of ideal magnetohydrodynamics (MHD). It is found that, in contrast to ideal MHD, the CGL eigenfunctions are characterized by an unperturbed inner region
Magnetic reconnection in magnetotail and solar plasmas
International Nuclear Information System (INIS)
Wang Xiaogang.
1991-01-01
The formation of current sheets which dominates the heating of the solar corona and the onset of substorms due to collisionless tearing instability in the magnetotail are investigated in the context of magnetic field line reconnection in space plasmas. In Chapters 2 and 3 of this thesis, the collisionless tearing instability and current disruption of the magnetotail are considered. The linear collisionless tearing instability, with wavelengths of the order of 10 R E , and with a growth rate γ ∼ 10 -2 /sec, is identified as a possible mechanism for the growth phase of a substorm. The linear analysis is carried out in the presence of an equilibrium B y -field, neglected in other theories. The nonlinear theory of collisionless tearing mode is dominated by mode coupling effects. From the evolution equations for electro-magnetic field perturbations, the author derived a nonlinear growth rate by generalizing the boundary layer techniques of linear theory. He finds that the nonlinear growth is of the order of 1 sec, much faster than the linear growth. It is proposed that collisionless tearing modes provide a mechanism for current disruption observed by spacecrafts. The electrical field generated during the nonlinear evolution can cause particle acceleration in the earth-tail direction. His estimates indicate ion energies up to 0.7 MeV and electron energies up to 8.1 MeV, which is not inconsistent with the observations. In the Chapter 4 it is shown that current sheets can be formed in Parker's model of the solar corona in the presence of smooth photospheric flows, despite van Ballegooijen and Field's proof that in an ideal plasma current sheets doe not occur unless the boundary velocity field is discontinuous
Shearing Box Simulations of the MRI in a Collisionless Plasma
International Nuclear Information System (INIS)
Sharma, Prateek; Hammett, Gregory W.; Quataert, Eliot; Stone, James M.
2005-01-01
We describe local shearing box simulations of turbulence driven by the magnetorotational instability (MRI) in a collisionless plasma. Collisionless effects may be important in radiatively inefficient accretion flows, such as near the black hole in the Galactic Center. The MHD version of ZEUS is modified to evolve an anisotropic pressure tensor. A fluid closure approximation is used to calculate heat conduction along magnetic field lines. The anisotropic pressure tensor provides a qualitatively new mechanism for transporting angular momentum in accretion flows (in addition to the Maxwell and Reynolds stresses). We estimate limits on the pressure anisotropy due to pitch angle scattering by kinetic instabilities. Such instabilities provide an effective ''collision'' rate in a collisionless plasma and lead to more MHD-like dynamics. We find that the MRI leads to efficient growth of the magnetic field in a collisionless plasma, with saturation amplitudes comparable to those in MHD. In the saturated state, the anisotropic stress is comparable to the Maxwell stress, implying that the rate of angular momentum transport may be moderately enhanced in a collisionless plasma
Electron Surfing Acceleration in Magnetic Reconnection
Hoshino, Masahiro
2005-01-01
We discuss that energetic electrons are generated near the X-type magnetic reconnection region due to a surfing acceleration mechanism. In a thin plasma sheet, the polarization electric fields pointing towards the neutral sheet are induced around the boundary between the lobe and plasma sheet in association with the Hall electric current. By using a particle-in-cell simulation, we demonstrate that the polarization electric fields are strongly enhanced in an externally driven reconnection syst...
A Parallel Two-fluid Code for Global Magnetic Reconnection Studies
International Nuclear Information System (INIS)
Breslau, J.A.; Jardin, S.C.
2001-01-01
This paper describes a new algorithm for the computation of two-dimensional resistive magnetohydrodynamic (MHD) and two-fluid studies of magnetic reconnection in plasmas. It has been implemented on several parallel platforms and shows good scalability up to 32 CPUs for reasonable problem sizes. A fixed, nonuniform rectangular mesh is used to resolve the different spatial scales in the reconnection problem. The resistive MHD version of the code uses an implicit/explicit hybrid method, while the two-fluid version uses an alternating-direction implicit (ADI) method. The technique has proven useful for comparing several different theories of collisional and collisionless reconnection
How Does the Electron Dynamics Affect the Reconnection Rate in a Typical Reconnection Layer?
Hesse, Michael
2009-01-01
The question of whether the microscale controls the macroscale or vice-versa remains one of the most challenging problems in plasmas. A particular topic of interest within this context is collisionless magnetic reconnection, where both points of views are espoused by different groups of researchers. This presentation will focus on this topic. We will begin by analyzing the properties of electron diffusion region dynamics both for guide field and anti-parallel reconnection, and how they can be scaled to different inflow conditions. As a next step, we will study typical temporal variations of the microscopic dynamics with the objective of understanding the potential for secular changes to the macroscopic system. The research will be based on a combination of analytical theory and numerical modeling.
Collisionless dissipation of Langmuir turbulence
International Nuclear Information System (INIS)
Erofeev, V.I.
2002-01-01
An analysis of two experimental observations of Langmuir wave collapse is performed. The corresponding experimental data are shown to give evidence against the collapse. The physical reason for preventing the collapses is found to be the nonresonant electron diffusion in momentums. In this process, plasma thermal electrons are efficiently heated at the expense of wave energy, and intense collisionless wave dissipation takes place. The basic reason of underestimation of this phenomenon in traditional theory is shown to be the substitution of real plasma by a plasma probabilistic ensemble. A theory of nonresonant electron diffusion in a single collisionless plasma is developed. It is shown that corresponding collisionless wave dissipation may arrest spectral energy transfer towards small wave numbers
Endogenous Magnetic Reconnection in Solar Coronal Loops
Asgari-Targhi, M.; Coppi, B.; Basu, B.; Fletcher, A.; Golub, L.
2017-12-01
We propose that a magneto-thermal reconnection process occurring in coronal loops be the source of the heating of the Solar Corona [1]. In the adopted model, magnetic reconnection is associated with electron temperature gradients, anisotropic electron temperature fluctuations and plasma current density gradients [2]. The input parameters for our theoretical model are derived from the most recent observations of the Solar Corona. In addition, the relevant (endogenous) collective modes can produce high energy particle populations. An endogenous reconnection process is defined as being driven by factors internal to the region where reconnection takes place. *Sponsored in part by the U.S. D.O.E. and the Kavli Foundation* [1] Beafume, P., Coppi, B. and Golub, L., (1992) Ap. J. 393, 396. [2] Coppi, B. and Basu, B. (2017) MIT-LNS Report HEP 17/01.
Magnetic reconnection physics in the solar wind with Voyager 2
Stevens, Michael L.
2009-08-01
Magnetic reconnection is the process by which the magnetic topology evolves in collisionless plasmas. This phenomenon is fundamental to a broad range of astrophysical processes such as stellar flares, magnetospheric substorms, and plasma accretion, yet it is poorly understood and difficult to observe in situ . In this thesis, the solar wind plasma permeating interplanetary space is treated as a laboratory for reconnection physics. I present an exhaustive statistical approach to the identification of reconnection outflow jets in turbulent plasma and magnetic field time series data. This approach has been automated and characterized so that the resulting reconnection survey can be put in context with other related studies. The algorithm is shown to perform similarly to ad hoc studies in the inner heliosphere. Based on this technique, I present a survey of 138 outflow jets for the Voyager 2 spacecraft mission, including the most distant in situ evidence of reconnection discovered to date. Reconnection in the solar wind is shown to be strongly correlated with stream interactions and with solar activity. The solar wind magnetic field is found to be reconnecting via large, quasi-steady slow- mode magnetohydrodynamic structures as far out as the orbit of Neptune. The role of slow-mode shocks is explored and, in one instance, a well-developed reconnection structure is shown to be in good agreement with the Petschek theory for fast reconnection. This is the first reported example of a reconnection exhaust that satisfies the full jump conditions for a stationary slow-mode shock pair. A complete investigation into corotating stream interactions over the Voyager 2 mission has revealed that detectable reconnection structure occurs in about 23% of forced, global-scale current sheets. Contrary to previous studies, I find that signatures of this kind are most likely to be observed for current sheets where the magnetic field shear and the plasma-b are high. Evidence has been found
Magnetic Reconnection in MHD and Kinetic Turbulence
Loureiro, Nuno; Boldyrev, Stanislav
2017-10-01
Recent works have revisited the current understanding of Alfvénic turbulence to account for the role of magnetic reconnection. Theoretical arguments suggest that reconnection inevitably becomes important in the inertial range, at the scale where it becomes faster than the eddy turnover time. This leads to a transition to a new sub-inertial interval, suggesting a route to energy dissipation that is fundamentally different from that envisioned in the usual Kolmogorov-like phenomenology. These concepts can be extended to collisionless plasmas, where reconnection is enabled by electron inertia rather than resistivity. Although several different cases must then be considered, a common result is that the energy spectrum exhibits a scaling with the perpendicular wave number that scales between k⊥- 8 / 3 and k⊥- 3 , in favourable agreement with many numerical results and observations. Work supported by NSF-DOE Partnership in Basic Plasma Science and Engineering, Award No. DE-SC0016215, and by NSF CAREER Award No. 1654168 (NFL); and by NSF Grant NSF AGS- 1261659 and by the Vilas Associates Award of UWM (SB).
Corotating Magnetic Reconnection Site in Saturn’s Magnetosphere
Energy Technology Data Exchange (ETDEWEB)
Yao, Z. H.; Coates, A. J.; Ray, L. C.; Rae, I. J.; Jones, G. H.; Owen, C. J.; Dunn, W. R.; Lewis, G. R. [UCL Mullard Space Science Laboratory, Dorking RH5 6NT (United Kingdom); Grodent, D.; Radioti, A.; Gérard, J.-C. [Laboratoire de Physique Atmosphérique et Planétaire, STAR institute, Université de Liège, B-4000 Liège (Belgium); Dougherty, M. K. [Imperial College of Science, Technology and Medicine, Space and Atmospheric Physics Group, Department of Physics, London SW7 2BW (United Kingdom); Guo, R. L. [Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing (China); Pu, Z. Y. [School of Earth and Space Sciences, Peking University, Beijing (China); Waite, J. H., E-mail: z.yao@ucl.ac.uk [Southwest Research Institute, San Antonio, TX (United States)
2017-09-10
Using measurements from the Cassini spacecraft in Saturn’s magnetosphere, we propose a 3D physical picture of a corotating reconnection site, which can only be driven by an internally generated source. Our results demonstrate that the corotating magnetic reconnection can drive an expansion of the current sheet in Saturn’s magnetosphere and, consequently, can produce Fermi acceleration of electrons. This reconnection site lasted for longer than one of Saturn’s rotation period. The long-lasting and corotating natures of the magnetic reconnection site at Saturn suggest fundamentally different roles of magnetic reconnection in driving magnetospheric dynamics (e.g., the auroral precipitation) from the Earth. Our corotating reconnection picture could also potentially shed light on the fast rotating magnetized plasma environments in the solar system and beyond.
Numerical simulation of the structure of collisionless supercritical shocks
International Nuclear Information System (INIS)
Lipatov, A.S.
1990-01-01
Research on the structure of a collisionless shock wave and on acceleration of charged particles is important for analyzing the processes accompanying solar flares, and also for studying the shock waves which are excited in the interaction of the solar wind with planets, comets and interstellar gas, the mechanisms for the acceleration of cosmic rays, the processes accompanying magnetic field reconnection, explosion of Supernova. The study of the shock is also important for studying the processes in the active experiments in space. In the present report only supercritical shocks are considered, when partial ion reflection plays a controlling roll in shock formation. One- and two-dimensional simulations of the perpendicular shocks are presented. (R.P.) 33 refs.; 4 figs
Test-electron analysis of the magnetic reconnection topology
Borgogno, D.; Perona, A.; Grasso, D.
2017-12-01
Three-dimensional (3D) investigations of the magnetic reconnection field topology in space and laboratory plasmas have identified the abidance of magnetic coherent structures in the stochastic region, which develop during the nonlinear stage of the reconnection process. Further analytical and numerical analyses highlighted the efficacy of some of these structures in limiting the magnetic transport. The question then arises as to what is the possible role played by these patterns in the dynamics of the plasma particles populating the chaotic region. In order to explore this aspect, we provide a detailed description of the nonlinear 3D magnetic field topology in a collisionless magnetic reconnection event with a strong guide field. In parallel, we study the evolution of a population of test electrons in the guiding-center approximation all along the reconnection process. In particular, we focus on the nonlinear spatial redistribution of the initially thermal electrons and show how the electron dynamics in the stochastic region depends on the sign and on the value of their velocities. While the particles with the highest positive speed populate the coherent current structures that survive in the chaotic sea, the presence of the manifolds calculated in the stochastic region defines the confinement area for the electrons with the largest negative velocity. These results stress the link between the magnetic topology and the electron motion and contribute to the overall picture of a non-stationary fluid magnetic reconnection description in a geometry proper to physical systems where the effects of the curvature can be neglected.
Rapid reconnection in compressible plasma
International Nuclear Information System (INIS)
Heyn, M.F.; Semenov, V.S.
1996-01-01
A study of set-up, propagation, and interaction of non-linear and linear magnetohydrodynamic waves driven by magnetic reconnection is presented. The source term of the waves generated by magnetic reconnection is obtained explicitly in terms of the initial background conditions and the local reconnection electric field. The non-linear solution of the problem found earlier, serves as a basis for formulation and extensive investigation of the corresponding linear initial-boundary value problem of compressible magnetohydrodynamics. In plane geometry, the Green close-quote s function of the problem is obtained and its properties are discussed. For the numerical evaluation it turns out that a specific choice of the integration contour in the complex plane of phase velocities is much more effective than the convolution with the real Green close-quote s function. Many complex effects like intrinsic wave coupling, anisotropic propagation characteristics, generation of surface and side wave modes in a finite beta plasma are retained in this analysis. copyright 1996 American Institute of Physics
Is the Near-Earth Current Sheet Prior to Reconnection Unstable to Tearing Mode?
International Nuclear Information System (INIS)
Xin-Hua, Wei; Jin-Bin, Cao; Guo-Cheng, Zhou; Hui-Shan, Fu
2010-01-01
The tearing mode instability plays a key role in the triggering process of reconnection. The triggering collisionless tearing mode instability has been theoretically and numerically analyzed by many researchers. However, due to the difficulty in obtaining the observational wave number, it is still unknown whether the tearing mode instability can be excited in an actual plasma sheet prior to reconnection onset. Using the data from four Cluster satellites prior to a magnetospheric reconnection event on 13 September 2002, we utilized the wave telescope technique to obtain the wave number which corresponds to the peak of power spectral density. The wavelength is about 18R E and is consistent with previous theoretic and numerical results. After substituting the wave vector and other necessary parameters of the observed current sheet into the triggering condition of tearing mode instability, we find that the near-Earth current sheet prior to reconnection is unstable to tearing mode. (geophysics, astronomy, and astrophysics)
Electron Scale Structures and Magnetic Reconnection Signatures in the Turbulent Magnetosheath
Yordanova, E.; Voros, Z.; Varsani, A.; Graham, D. B.; Norgren, C.; Khotyaintsev, Yu. V.; Vaivads, A.; Eriksson, E.; Nakamura, R.; Lindqvist, P.-A.;
2016-01-01
Collisionless space plasma turbulence can generate reconnecting thin current sheets as suggested by recent results of numerical magnetohydrodynamic simulations. The Magnetospheric Multiscale (MMS) mission provides the first serious opportunity to verify whether small ion-electron-scale reconnection, generated by turbulence, resembles the reconnection events frequently observed in the magnetotail or at the magnetopause. Here we investigate field and particle observations obtained by the MMS fleet in the turbulent terrestrial magnetosheath behind quasi-parallel bow shock geometry. We observe multiple small-scale current sheets during the event and present a detailed look of one of the detected structures. The emergence of thin current sheets can lead to electron scale structures. Within these structures, we see signatures of ion demagnetization, electron jets, electron heating, and agyrotropy suggesting that MMS spacecraft observe reconnection at these scales.
Final report for the NSF/DOE partnership in basic plasma science grant DE-FG02-06ER54906 'Laser-driven collisionless shocks in the Large Plasma Device'
Energy Technology Data Exchange (ETDEWEB)
Niemann, Christoph [UCLA, CA (United States); Gekelman, W. [UCLA, CA (United States); Winske, D. [LANL, NM (United States); Larsen, D. [LLNL, CA (United States)
2012-12-14
We have performed several thousand high-energy laser shots in the LAPD to investigate the dynamics of an exploding laser-produced plasma in a large ambient magneto-plasma. Debris-ions expanding at super-Alfvenic velocity (up to MA=1.5) expel the ambient magnetic field, creating a large (> 20 cm) diamagnetic cavity. We observed field compressions of up to B/B{sub 0} = 1.5 at the edge of the bubble, consistent with the MHD jump conditions, as well as localized electron heating at the edge of the bubble. Two-dimensional hybrid simulations reproduce these measurements well and show that the majority of the ambient ions are energized by the magnetic piston to super-Alfvenic speeds and swept outside the bubble volume. Nonlinear shear-Alfven waves ({delta}B/B{sub 0} > 25%) are radiated from the cavity with a coupling efficiency of 70% from magnetic energy in the bubble to the wave. While the data is consistent with a weak magneto-sonic shock, the experiments were severely limited by the low ambient plasma densities (10{sup 12} cm{sup -3}). 2D hybrid simulations indicate that future experiments with the new LAPD plasma source and densities in excess of 10{sup 13} cm{sup -3} will drive full-blown collisionless shocks with MA>10 over several c/wpi and shocked Larmor radii. In a separate experiment at the LANL Trident laser facility we have performed a proof-of-principle experiment at higher densities to demonstrate key elements of collisionless shocks in laser-produced magnetized plasmas with important implications to NIF. Simultaneously we have upgraded the UCLA glass-laser system by adding two large amplitude disk amplifiers from the NOVA laser and boost the on-target energy from 30 J to up to 1 kJ, making this one of the world’s largest university-scale laser systems. We now have the infrastructure in place to perform novel and unique high-impact experiments on collision-less shocks at the LAPD.
International Nuclear Information System (INIS)
Niemann, Christoph; Gekelman, W.; Winske, D.; Larsen, D.
2012-01-01
We have performed several thousand high-energy laser shots in the LAPD to investigate the dynamics of an exploding laser-produced plasma in a large ambient magneto-plasma. Debris-ions expanding at super-Alfvenic velocity (up to MA=1.5) expel the ambient magnetic field, creating a large (> 20 cm) diamagnetic cavity. We observed field compressions of up to B/B 0 = 1.5 at the edge of the bubble, consistent with the MHD jump conditions, as well as localized electron heating at the edge of the bubble. Two-dimensional hybrid simulations reproduce these measurements well and show that the majority of the ambient ions are energized by the magnetic piston to super-Alfvenic speeds and swept outside the bubble volume. Nonlinear shear-Alfven waves (δB/B 0 > 25%) are radiated from the cavity with a coupling efficiency of 70% from magnetic energy in the bubble to the wave. While the data is consistent with a weak magneto-sonic shock, the experiments were severely limited by the low ambient plasma densities (10 12 cm -3 ). 2D hybrid simulations indicate that future experiments with the new LAPD plasma source and densities in excess of 10 13 cm -3 will drive full-blown collisionless shocks with MA>10 over several c/wpi and shocked Larmor radii. In a separate experiment at the LANL Trident laser facility we have performed a proof-of-principle experiment at higher densities to demonstrate key elements of collisionless shocks in laser-produced magnetized plasmas with important implications to NIF. Simultaneously we have upgraded the UCLA glass-laser system by adding two large amplitude disk amplifiers from the NOVA laser and boost the on-target energy from 30 J to up to 1 kJ, making this one of the world's largest university-scale laser systems. We now have the infrastructure in place to perform novel and unique high-impact experiments on collision-less shocks at the LAPD
Electric field with bipolar structure during magnetic reconnection without a guide field
Guo, Jun
2014-05-01
We present a study on the polarized electric field during the collisionless magnetic reconnection of antiparallel fields using two dimensional particle-in-cell simulations. The simulations demonstrate clearly that electron holes and electric field with bipolar structure are produced during magnetic reconnection without a guide field. The electric field with bipolar structure can be found near the X-line and on the separatrix and the plasma sheet boundary layer, which is consistent with the observations. These structures will elongate electron's time staying in the diffusion region. In addition, the electric fields with tripolar structures are also found in our simulation.
How Does the Electron Dynamics Affect the Global Reconnection Rate
Hesse, Michael
2012-01-01
The question of whether the microscale controls the macroscale or vice-versa remains one of the most challenging problems in plasmas. A particular topic of interest within this context is collisionless magnetic reconnection, where both points of views are espoused by different groups of researchers. This presentation will focus on this topic. We will begin by analyzing the properties of electron diffusion region dynamics both for guide field and anti-parallel reconnection, and how they can be scaled to different inflow conditions. As a next step, we will study typical temporal variations of the microscopic dynamics with the objective of understanding the potential for secular changes to the macroscopic system. The research will be based on a combination of analytical theory and numerical modeling.
On Collisionless Damping of Ion Acoustic Waves
DEFF Research Database (Denmark)
Jensen, Vagn Orla; Petersen, P.I.
1973-01-01
Exact theoretical treatments show that the damping of ion acoustic waves in collisionless plasmas does not vanish when the derivative of the undisturbed distribution function at the phase velocity equals zero.......Exact theoretical treatments show that the damping of ion acoustic waves in collisionless plasmas does not vanish when the derivative of the undisturbed distribution function at the phase velocity equals zero....
Vekstein, G.
2017-10-01
This is a tutorial-style selective review explaining basic concepts of forced magnetic reconnection. It is based on a celebrated model of forced reconnection suggested by J. B. Taylor. The standard magnetohydrodynamic (MHD) theory of this process has been pioneered by Hahm & Kulsrud (Phys. Fluids, vol. 28, 1985, p. 2412). Here we also discuss several more recent developments related to this problem. These include energetics of forced reconnection, its Hall-mediated regime, and nonlinear effects with the associated onset of the secondary tearing (plasmoid) instability.
Collisionless analogs of Riemann S ellipsoids with halo
International Nuclear Information System (INIS)
Abramyan, M.G.
1987-01-01
A spheroidal halo ensures equilibrium of the collisionless analogs of the Riemann S ellipsoids with oscillations of the particles along the direction of their rotation. Sequences of collisionless triaxial ellipsoids begin and end with dynamically stable members of collisionless embedded spheroids. Both liquid and collisionless Riemann S ellipsoids with weak halo have properties that resemble those of bars of SB galaxies
Universal collisionless transport of graphene
Link, Julia M.; Orth, Peter P.; Sheehy, Daniel E.; Schmalian, Jörg
2016-06-01
The impact of the electron-electron Coulomb interaction on the optical conductivity of graphene has led to a controversy that calls into question the universality of collisionless transport in this and other Dirac materials. Using a lattice calculation that avoids divergences present in previous nodal Dirac approaches, our work settles this controversy and obtains results in quantitative agreement with experiment over a wide frequency range. We also demonstrate that dimensional regularization methods agree, if the regularization of the theory in modified dimensions is correctly implemented. Tight-binding lattice and nodal Dirac theory calculations are shown to coincide at low energies even when the nonzero size of the atomic orbital wave function is included, conclusively demonstrating the universality of the optical conductivity of graphene.
Driving reconnection in sheared magnetic configurations with forced fluctuations
Pongkitiwanichakul, Peera; Makwana, Kirit D.; Ruffolo, David
2018-02-01
We investigate reconnection of magnetic field lines in sheared magnetic field configurations due to fluctuations driven by random forcing by means of numerical simulations. The simulations are performed with an incompressible, pseudo-spectral magnetohydrodynamics code in 2D where we take thick, resistively decaying, current-sheet like sheared magnetic configurations which do not reconnect spontaneously. We describe and test the forcing that is introduced in the momentum equation to drive fluctuations. It is found that the forcing does not change the rate of decay; however, it adds and removes energy faster in the presence of the magnetic shear structure compared to when it has decayed away. We observe that such a forcing can induce magnetic reconnection due to field line wandering leading to the formation of magnetic islands and O-points. These reconnecting field lines spread out as the current sheet decays with time. A semi-empirical formula is derived which reasonably explains the formation and spread of O-points. We find that reconnection spreads faster with stronger forcing and longer correlation time of forcing, while the wavenumber of forcing does not have a significant effect. When the field line wandering becomes large enough, the neighboring current sheets with opposite polarity start interacting, and then the magnetic field is rapidly annihilated. This work is useful to understand how forced fluctuations can drive reconnection in large scale current structures in space and astrophysical plasmas that are not susceptible to reconnection.
The physical foundation of the reconnection electric field
Hesse, M.; Liu, Y.-H.; Chen, L.-J.; Bessho, N.; Wang, S.; Burch, J. L.; Moretto, T.; Norgren, C.; Genestreti, K. J.; Phan, T. D.; Tenfjord, P.
2018-03-01
Magnetic reconnection is a key charged particle transport and energy conversion process in environments ranging from astrophysical systems to laboratory plasmas [Yamada et al., Rev. Mod. Phys. 82, 603-664 (2010)]. Magnetic reconnection facilitates plasma transport by establishing new connections of magnetic flux tubes, and it converts, often explosively, energy stored in the magnetic field to kinetic energy of charged particles [J. L. Burch and J. F. Drake, Am. Sci. 97, 392-299 (2009)]. The intensity of the magnetic reconnection process is measured by the reconnection electric field, which regulates the rate of flux tube connectivity changes. The change of magnetic connectivity occurs in the current layer of the diffusion zone, where the plasma transport is decoupled from the transport of magnetic flux. Here we report on computer simulations and analytic theory to provide a self-consistent understanding of the role of the reconnection electric field, which extends substantially beyond the simple change of magnetic connections. Rather, we find that the reconnection electric field is essential to maintain the current density in the diffusion region, which would otherwise be dissipated by a set of processes. Natural candidates for current dissipation are the average convection of current carriers away from the reconnection region by the outflow of accelerated particles, or the average rotation of the current density by the magnetic field reversal in the vicinity. Instead, we show here that the current dissipation is the result of thermal effects, underlying the statistical interaction of current-carrying particles with the adjacent magnetic field. We find that this interaction serves to redirect the directed acceleration of the reconnection electric field to thermal motion. This thermalization manifests itself in form of quasi-viscous terms in the thermal energy balance of the current layer. This collisionless viscosity, found in the pressure evolution equation
Experimental observation of 3-D, impulsive reconnection events in a laboratory plasma
Energy Technology Data Exchange (ETDEWEB)
Dorfman, S.; Ji, H.; Yamada, M.; Yoo, J.; Lawrence, E.; Myers, C.; Tharp, T. D. [Center for Magnetic Self-Organization, Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)
2014-01-15
Fast, impulsive reconnection is commonly observed in laboratory, space, and astrophysical plasmas. In this work, impulsive, local, 3-D reconnection is identified for the first time in a laboratory current sheet. The two-fluid, impulsive reconnection events observed on the Magnetic Reconnection Experiment (MRX) [Yamada et al., Phys Plasmas 4, 1936 (1997)] cannot be explained by 2-D models and are therefore fundamentally three-dimensional. Several signatures of flux ropes are identified with these events; 3-D high current density regions with O-point structure form during a slow buildup period that precedes a fast disruption of the reconnecting current layer. The observed drop in the reconnection current and spike in the reconnection rate during the disruption are due to ejection of these flux ropes from the layer. Underscoring the 3-D nature of the events, strong out-of-plane gradients in both the density and reconnecting magnetic field are found to play a key role in this process. Electromagnetic fluctuations in the lower hybrid frequency range are observed to peak at the disruption time; however, they are not the key physics responsible for the impulsive phenomena observed. Important features of the disruption dynamics cannot be explained by an anomalous resistivity model. An important discrepancy in the layer width and force balance between the collisionless regime of MRX and kinetic simulations is also revisited. The wider layers observed in MRX may be due to the formation of flux ropes with a wide range of sizes; consistent with this hypothesis, flux rope signatures are observed down to the smallest scales resolved by the diagnostics. Finally, a 3-D two-fluid model is proposed to explain how the observed out-of-plane variation may lead to a localized region of enhanced reconnection that spreads in the direction of the out-of-plane electron flow, ejecting flux ropes from the layer in a 3-D manner.
International Nuclear Information System (INIS)
Hahm, T.S.; Kulsrud, R.M.
1984-11-01
By studying a simple model problem, we examine the time evolution of magnetic field islands which are induced by perturbing the boundary surrounding an incompressible plasma with a resonant surface inside. We find that for sufficiently small boundary perturbations, the reconnection and island formation process occurs on the tearing mode time scale defined by Furth, Killeen, and Rosenbluth. For larger perturbations the time scale is that defined by Rutherford. The resulting asymptotic equilibrium is such that surface currents in the resonant region vanish. A detailed analytical picture of this reconnection process is presented
International Nuclear Information System (INIS)
Terasawa, T.
1984-01-01
One of the outstanding problems in space physics is to understand the physical mechanism which governs energy conversion process from magnetic to particle energies, a typical one being the reconnection mechanism. As a possible candidate process of the magnetic reconnection in space, tearing mode instability has been considered. In this paper are discussed selected topics related to the understanding of the tearing mode instability; the effect of the boundary condition, the resonant particle and current filamentation effects, vorticity excitation, and the Hall current effect. 31 refs, 12 figs
International Nuclear Information System (INIS)
Pare, V.K.
1983-01-01
Calculations with several different computer codes based on the resistive MHD equations have shown that (m = 1, n = 1) tearing modes in tokamak plasmas grow by magnetic reconnection. The observable behavior predicted by the codes has been confirmed in detail from the waveforms of signals from x-ray detectors and recently by x-ray tomographic imaging
Nanoflare heating model for collisionless solar corona
Indian Academy of Sciences (India)
Magnetic reconnection plays a significant role in heating the solar corona. When two oppositely directed magnetic fields come closer to form a current sheet, the current density of the plasma increases due to which magnetic reconnection and conversion of magnetic energy into thermal energy takes place. The present ...
Kohler, Susanna
2016-05-01
Because the Sun is so close, it makes an excellent laboratory to study processes we cant examinein distant stars. One openquestion is that of how solar magnetic fields rearrange themselves, producing the tremendous releases of energy we observe as solar flares and coronal mass ejections (CMEs).What is Magnetic Reconnection?Magnetic reconnection occurs when a magnetic field rearranges itself to move to a lower-energy state. As field lines of opposite polarity reconnect, magnetic energy is suddenly converted into thermal and kinetic energy.This processis believed to be behind the sudden releases of energy from the solar surface in the form of solar flares and CMEs. But there are many different models for how magnetic reconnection could occur in the magnetic field at the Suns surface, and we arent sure which one of these reconnection types is responsible for the events we see.Recently, however, several studies have been published presenting some of the first observational support of specific reconnection models. Taken together, these observations suggest that there are likely several different types of reconnection happening on the solar surface. Heres a closer look at two of these recent publications:A pre-eruption SDO image of a flaring region (b) looks remarkably similar to a 3D cartoon for typical breakout configuration (a). Click for a closer look! [Adapted from Chen et al. 2016]Study 1:Magnetic BreakoutLed by Yao Chen (Shandong University in China), a team of scientists has presented observations made by the Solar Dynamics Observatory (SDO) of a flare and CME event that appears to have been caused by magnetic breakout.In the magnetic breakout model, a series of loops in the Suns lower corona are confined by a surrounding larger loop structure called an arcade higher in the corona. As the lower loops push upward, reconnection occurs in the upper corona, removing the overlying, confining arcade. Without that extra confinement, the lower coronal loops expand upward
Onset of Fast Magnetic Reconnection via Subcritical Bifurcation
Directory of Open Access Journals (Sweden)
ZHIBIN eGUO
2015-04-01
Full Text Available We report a phase transition model for the onset of fast magnetic reconnection. By investigating the joint dynamics of streaming instability(i.e., current driven ion acoustic in this paper and current gradient driven whistler wave {color{blue} {prior to the onset of fast reconnection}}, we show that the nonlinear evolution of current sheet(CS can be described by a Landau-Ginzburg equation. The phase transition from slow reconnection to fast reconnection occurs at a critical thickness, $Delta_csimeq frac{2}{sqrt{pi}}left|frac{v_{the}}{v_c}right|d_e$, where $v_{the}$ is electron thermal velocity and $v_c$ is the velocity threshold of the streaming instability. For current driven ion acoustic, $Delta_c$ is $leq10d_e$. If the thickness of the CS is narrower than $Delta_c$, the CS subcritically bifurcates into a rough state, which facilitates breakage of the CS, and consequently initiates fast reconnection.
Introduction to Plasma Dynamo, Reconnection and Shocks
Energy Technology Data Exchange (ETDEWEB)
Intrator, Thomas P. [Los Alamos National Laboratory
2012-08-30
In our plasma universe, most of what we can observe is composed of ionized gas, or plasma. This plasma is a conducting fluid, which advects magnetic fields when it flows. Magnetic structure occurs from the smallest planetary to the largest cosmic scales. We introduce at a basic level some interesting features of non linear magnetohydrodynamics (MHD). For example, in our plasma universe, dynamo creates magnetic fields from gravitationally driven flow energy in an electrically conducting medium, and conversely magnetic reconnection annihilates magnetic field and accelerates particles. Shocks occur when flows move faster than the local velocity (sonic or Alfven speed) for the propagation of information. Both reconnection and shocks can accelerate particles, perhaps to gigantic energies, for example as observed with 10{sup 20} eV cosmic rays.
INTERCHANGE RECONNECTION AND CORONAL HOLE DYNAMICS
International Nuclear Information System (INIS)
Edmondson, J. K.; Antiochos, S. K.; DeVore, C. R.; Lynch, B. J.; Zurbuchen, T. H.
2010-01-01
We investigate the effect of magnetic reconnection between open and closed fields, often referred to as 'interchange' reconnection, on the dynamics and topology of coronal hole boundaries. The most important and most prevalent three-dimensional topology of the interchange process is that of a small-scale bipolar magnetic field interacting with a large-scale background field. We determine the evolution of such a magnetic topology by numerical solution of the fully three-dimensional MHD equations in spherical coordinates. First, we calculate the evolution of a small-scale bipole that initially is completely inside an open field region and then is driven across a coronal hole boundary by photospheric motions. Next the reverse situation is calculated in which the bipole is initially inside the closed region and driven toward the coronal hole boundary. In both cases, we find that the stress imparted by the photospheric motions results in deformation of the separatrix surface between the closed field of the bipole and the background field, leading to rapid current sheet formation and to efficient reconnection. When the bipole is inside the open field region, the reconnection is of the interchange type in that it exchanges open and closed fields. We examine, in detail, the topology of the field as the bipole moves across the coronal hole boundary and find that the field remains well connected throughout this process. Our results, therefore, provide essential support for the quasi-steady models of the open field, because in these models the open and closed flux are assumed to remain topologically distinct as the photosphere evolves. Our results also support the uniqueness hypothesis for open field regions as postulated by Antiochos et al. On the other hand, the results argue against models in which open flux is assumed to diffusively penetrate deeply inside the closed field region under a helmet streamer. We discuss the implications of this work for coronal observations.
Nonthermal Particle Acceleration in 3D Relativistic Magnetic Reconnection in Pair Plasma
Energy Technology Data Exchange (ETDEWEB)
Werner, Gregory R.; Uzdensky, Dmitri A., E-mail: Greg.Werner@colorado.edu [Center for Integrated Plasma Studies, Physics Department, University of Colorado, 390 UCB, Boulder, CO 80309 (United States)
2017-07-10
As a fundamental process converting magnetic to plasma energy in high-energy astrophysical plasmas, relativistic magnetic reconnection is a leading explanation for the acceleration of particles to the ultrarelativistic energies that are necessary to power nonthermal emission (especially X-rays and gamma-rays) in pulsar magnetospheres and pulsar wind nebulae, coronae and jets of accreting black holes, and gamma-ray bursts. An important objective of plasma astrophysics is therefore the characterization of nonthermal particle acceleration (NTPA) effected by reconnection. Reconnection-powered NTPA has been demonstrated over a wide range of physical conditions using large 2D kinetic simulations. However, its robustness in realistic 3D reconnection—in particular, whether the 3D relativistic drift-kink instability (RDKI) disrupts NTPA—has not been systematically investigated, although pioneering 3D simulations have observed NTPA in isolated cases. Here, we present the first comprehensive study of NTPA in 3D relativistic reconnection in collisionless electron–positron plasmas, characterizing NTPA as the strength of 3D effects is varied systematically via the length in the third dimension and the strength of the guide magnetic field. We find that, while the RDKI prominently perturbs 3D reconnecting current sheets, it does not suppress particle acceleration, even for zero guide field; fully 3D reconnection robustly and efficiently produces nonthermal power-law particle spectra closely resembling those obtained in 2D. This finding provides strong support for reconnection as the key mechanism powering high-energy flares in various astrophysical systems. We also show that strong guide fields significantly inhibit NTPA, slowing reconnection and limiting the energy available for plasma energization, yielding steeper and shorter power-law spectra.
Equilibrium distribution function in collisionless systems
International Nuclear Information System (INIS)
Pergamenshchik, V.M.
1988-01-01
Collisionless systems of a large number of N particles interacting by Coulomb forces are widely spread in cosmic and laboratory plasma. A statistical theory of equilibrium state of collisionless Coulomb systems which evolution obeys Vlasov equation is proposed. The developed formalism permits a sequential consideration of such distributed in one-particle six-dimensional phase space of a system and to obtain a simple result: equilibrium distribution function has the form of Fermi-Dirac distribution and doesn't depend on initial state factors
Imaging Observations of Magnetic Reconnection in a Solar Eruptive Flare
International Nuclear Information System (INIS)
Li, Y.; Ding, M. D.; Sun, X.; Qiu, J.; Priest, E. R.
2017-01-01
Solar flares are among the most energetic events in the solar atmosphere. It is widely accepted that flares are powered by magnetic reconnection in the corona. An eruptive flare is usually accompanied by a coronal mass ejection, both of which are probably driven by the eruption of a magnetic flux rope (MFR). Here we report an eruptive flare on 2016 March 23 observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory . The extreme-ultraviolet imaging observations exhibit the clear rise and eruption of an MFR. In particular, the observations reveal solid evidence of magnetic reconnection from both the corona and chromosphere during the flare. Moreover, weak reconnection is observed before the start of the flare. We find that the preflare weak reconnection is of tether-cutting type and helps the MFR to rise slowly. Induced by a further rise of the MFR, strong reconnection occurs in the rise phases of the flare, which is temporally related to the MFR eruption. We also find that the magnetic reconnection is more of 3D-type in the early phase, as manifested in a strong-to-weak shear transition in flare loops, and becomes more 2D-like in the later phase, as shown by the apparent rising motion of an arcade of flare loops.
Imaging Observations of Magnetic Reconnection in a Solar Eruptive Flare
Energy Technology Data Exchange (ETDEWEB)
Li, Y.; Ding, M. D. [School of Astronomy and Space Science, Nanjing University, Nanjing 210023 (China); Sun, X. [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States); Qiu, J. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Priest, E. R., E-mail: yingli@nju.edu.cn [School of Mathematics and Statistics, University of St Andrews, Fife KY16 9SS, Scotland (United Kingdom)
2017-02-01
Solar flares are among the most energetic events in the solar atmosphere. It is widely accepted that flares are powered by magnetic reconnection in the corona. An eruptive flare is usually accompanied by a coronal mass ejection, both of which are probably driven by the eruption of a magnetic flux rope (MFR). Here we report an eruptive flare on 2016 March 23 observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory . The extreme-ultraviolet imaging observations exhibit the clear rise and eruption of an MFR. In particular, the observations reveal solid evidence of magnetic reconnection from both the corona and chromosphere during the flare. Moreover, weak reconnection is observed before the start of the flare. We find that the preflare weak reconnection is of tether-cutting type and helps the MFR to rise slowly. Induced by a further rise of the MFR, strong reconnection occurs in the rise phases of the flare, which is temporally related to the MFR eruption. We also find that the magnetic reconnection is more of 3D-type in the early phase, as manifested in a strong-to-weak shear transition in flare loops, and becomes more 2D-like in the later phase, as shown by the apparent rising motion of an arcade of flare loops.
Magnetic reconnection in nontoroidal plasmas
International Nuclear Information System (INIS)
Boozer, Allen H.
2005-01-01
Magnetic reconnection is a major issue in solar and astrophysical plasmas. The mathematical result that the evolution of a magnetic field with only point nulls is always locally ideal limits the nature of reconnection in nontoroidal plasmas. Here it is shown that the exponentially increasing separation of neighboring magnetic field lines, which is generic, tends to produce rapid magnetic reconnection if the length of the field lines is greater than about 20 times the exponentiation, or Lyapunov, length
Application of PDSLin to the magnetic reconnection problem
Yuan, Xuefei
2013-01-01
Magnetic reconnection is a fundamental process in a magnetized plasma at both low and high magnetic Lundquist numbers (the ratio of the resistive diffusion time to the Alfvén wave transit time), which occurs in a wide variety of laboratory and space plasmas, e.g. magnetic fusion experiments, the solar corona and the Earth\\'s magnetotail. An implicit time advance for the two-fluid magnetic reconnection problem is known to be difficult because of the large condition number of the associated matrix. This is especially troublesome when the collisionless ion skin depth is large so that the Whistler waves, which cause the fast reconnection, dominate the physics (Yuan et al 2012 J. Comput. Phys. 231 5822-53). For small system sizes, a direct solver such as SuperLU can be employed to obtain an accurate solution as long as the condition number is bounded by the reciprocal of the floating-point machine precision. However, SuperLU scales effectively only to hundreds of processors or less. For larger system sizes, it has been shown that physics-based (Chacón and Knoll 2003 J. Comput. Phys. 188 573-92) or other preconditioners can be applied to provide adequate solver performance. In recent years, we have been developing a new algebraic hybrid linear solver, PDSLin (Parallel Domain decomposition Schur complement-based Linear solver) (Yamazaki and Li 2010 Proc. VECPAR pp 421-34 and Yamazaki et al 2011 Technical Report). In this work, we compare numerical results from a direct solver and the proposed hybrid solver for the magnetic reconnection problem and demonstrate that the new hybrid solver is scalable to thousands of processors while maintaining the same robustness as a direct solver. © 2013 IOP Publishing Ltd.
Application of PDSLin to the magnetic reconnection problem
Yuan, Xuefei; Li, Xiaoyesherry; Yamazaki, Ichitaro; Jardin, Stephen C.; Koniges, Alice E.; Keyes, David E.
2013-01-01
Magnetic reconnection is a fundamental process in a magnetized plasma at both low and high magnetic Lundquist numbers (the ratio of the resistive diffusion time to the Alfvén wave transit time), which occurs in a wide variety of laboratory and space plasmas, e.g. magnetic fusion experiments, the solar corona and the Earth's magnetotail. An implicit time advance for the two-fluid magnetic reconnection problem is known to be difficult because of the large condition number of the associated matrix. This is especially troublesome when the collisionless ion skin depth is large so that the Whistler waves, which cause the fast reconnection, dominate the physics (Yuan et al 2012 J. Comput. Phys. 231 5822-53). For small system sizes, a direct solver such as SuperLU can be employed to obtain an accurate solution as long as the condition number is bounded by the reciprocal of the floating-point machine precision. However, SuperLU scales effectively only to hundreds of processors or less. For larger system sizes, it has been shown that physics-based (Chacón and Knoll 2003 J. Comput. Phys. 188 573-92) or other preconditioners can be applied to provide adequate solver performance. In recent years, we have been developing a new algebraic hybrid linear solver, PDSLin (Parallel Domain decomposition Schur complement-based Linear solver) (Yamazaki and Li 2010 Proc. VECPAR pp 421-34 and Yamazaki et al 2011 Technical Report). In this work, we compare numerical results from a direct solver and the proposed hybrid solver for the magnetic reconnection problem and demonstrate that the new hybrid solver is scalable to thousands of processors while maintaining the same robustness as a direct solver. © 2013 IOP Publishing Ltd.
Fully kinetic simulations of magnetic reconnection in partially ionised gases
Innocenti, M. E.; Jiang, W.; Lapenta, G.; Markidis, S.
2016-12-01
Magnetic reconnection has been explored for decades as a way to convert magnetic energy into kinetic energy and heat and to accelerate particles in environments as different as the solar surface, planetary magnetospheres, the solar wind, accretion disks, laboratory plasmas. When studying reconnection via simulations, it is usually assumed that the plasma is fully ionised, as it is indeed the case in many of the above-mentioned cases. There are, however, exceptions, the most notable being the lower solar atmosphere. Small ionisation fractions are registered also in the warm neutral interstellar medium, in dense interstellar clouds, in protostellar and protoplanetary accreditation disks, in tokamak edge plasmas and in ad-hoc laboratory experiments [1]. We study here how magnetic reconnection is modified by the presence of a neutral background, i.e. when the majority of the gas is not ionised. The ionised plasma is simulated with the fully kinetic Particle-In-Cell (PIC) code iPic3D [2]. Collisions with the neutral background are introduced via a Monte Carlo plug-in. The standard Monte Carlo procedure [3] is employed to account for elastic, excitation and ionization electron-neutral collisions, as well as for elastic scattering and charge exchange ion-neutral collisions. Collisions with the background introduce resistivity in an otherwise collisionless plasma and modifications of the particle distribution functions: particles (and ions at a faster rate) tend to thermalise to the background. To pinpoint the consequences of this, we compare reconnection simulations with and without background. References [1] E E Lawrence et al. Physical review letters, 110(1):015001, 2013. [2] S Markidis et al. Mathematics and Computers in Simulation, 80(7):1509-1519, 2010. [3] K Nanbu. IEEE Transactions on plasma science, 28(3):971-990, 2000.
Super-Alfvénic Propagation and Damping of Reconnection Onset Signatures
SharmaÂ Pyakurel, P.; Shay, M. A.; Haggerty, C. C.; Parashar, T. N.; Drake, J. F.; Cassak, P. A.; Gary, S. Peter
2018-01-01
The quadrupolar out-of-plane Hall magnetic field generated during collisionless reconnection propagates away from the x line as a kinetic Alfvén wave (KAW). While it has been shown that this KAW carries substantial Poynting flux and propagates super-Alfvenically, how this KAW damps as it propagates away from the x line is not well understood. In this study, this damping is examined using kinetic particle-in-cell simulations of antiparallel symmetric magnetic reconnection in a one-dimensional current sheet equilibrium. In the reconnection simulations, the KAW wave vector has a typical magnitude comparable to an inverse fluid Larmor radius (effectively an inverse ion Larmor radius) and a direction of 85-89° relative to the local magnetic field. We find that the damping of the reconnection KAW is consistent with linear Landau damping results from a numerical Vlasov dispersion solver. This knowledge allows us to generalize our damping predictions to regions in the magnetotail and solar corona where the magnetic geometry can be approximated as a current sheet. For the magnetotail, the KAW from reconnection will not damp away before propagating the approximately 20 Earth radii associated with global magnetotail distances. For the solar corona, on the other hand, these KAWs will completely damp before reaching the distances comparable to the flare loop length.
Driven reconnection in magnetic fusion experiments
International Nuclear Information System (INIS)
Fitzpatrick, R.
1995-11-01
Error fields (i.e. small non-axisymmetric perturbations of the magnetic field due to coil misalignments, etc.) are a fact of life in magnetic fusion experiments. What effects do error fields have on plasma confinement? How can any detrimental effects be alleviated? These, and other, questions are explored in detail in this lecture using simple resistive magnetohydrodynamic (resistance MHD) arguments. Although the lecture concentrates on one particular type of magnetic fusion device, namely, the tokamak, the analysis is fairly general and could also be used to examine the effects of error fields on other types of device (e.g. Reversed Field Pinches, Stellerators, etc.)
Current sheets and pressure anisotropy in the reconnection exhaust
International Nuclear Information System (INIS)
Le, A.; Karimabadi, H.; Roytershteyn, V.; Egedal, J.; Ng, J.; Scudder, J.; Daughton, W.; Liu, Y.-H.
2014-01-01
A particle-in-cell simulation shows that the exhaust during anti-parallel reconnection in the collisionless regime contains a current sheet extending 100 inertial lengths from the X line. The current sheet is supported by electron pressure anisotropy near the X line and ion anisotropy farther downstream. Field-aligned electron currents flowing outside the magnetic separatrices feed the exhaust current sheet and generate the out-of-plane, or Hall, magnetic field. Existing models based on different mechanisms for each particle species provide good estimates for the levels of pressure anisotropy. The ion anisotropy, which is strong enough to reach the firehose instability threshold, is also important for overall force balance. It reduces the outflow speed of the plasma
Current sheets and pressure anisotropy in the reconnection exhaust
Energy Technology Data Exchange (ETDEWEB)
Le, A.; Karimabadi, H.; Roytershteyn, V. [SciberQuest, Inc., Del Mar, California 92014 (United States); Egedal, J. [University of Wisconsin–Madison, Madison, Wisconsin 53706 (United States); Ng, J. [PPPL, Princeton University, Princeton, New Jersey 08543 (United States); Scudder, J. [University of Iowa, Iowa City, Iowa 52242 (United States); Daughton, W.; Liu, Y.-H. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)
2014-01-15
A particle-in-cell simulation shows that the exhaust during anti-parallel reconnection in the collisionless regime contains a current sheet extending 100 inertial lengths from the X line. The current sheet is supported by electron pressure anisotropy near the X line and ion anisotropy farther downstream. Field-aligned electron currents flowing outside the magnetic separatrices feed the exhaust current sheet and generate the out-of-plane, or Hall, magnetic field. Existing models based on different mechanisms for each particle species provide good estimates for the levels of pressure anisotropy. The ion anisotropy, which is strong enough to reach the firehose instability threshold, is also important for overall force balance. It reduces the outflow speed of the plasma.
The microphysics of collisionless shock waves
DEFF Research Database (Denmark)
Marcowith, Alexandre; Bret, Antoine; Bykov, Andrei
2016-01-01
Collisionless shocks, that is shocks mediated by electromagnetic processes, are customary in space physics and in astrophysics. They are to be found in a great variety of objects and environments: magnetospheric and heliospheric shocks, supernova remnants, pulsar winds and their nebulæ, active ga...
Transition from Collisionless to Collisional MRI
International Nuclear Information System (INIS)
Sharma, Prateek; Hammett, Gregory W.; Quataert, Eliot
2003-01-01
Recent calculations by Quataert et al. (2002) found that the growth rates of the magnetorotational instability (MRI) in a collisionless plasma can differ significantly from those calculated using MHD. This can be important in hot accretion flows around compact objects. In this paper, we study the transition from the collisionless kinetic regime to the collisional MHD regime, mapping out the dependence of the MRI growth rate on collisionality. A kinetic closure scheme for a magnetized plasma is used that includes the effect of collisions via a BGK operator. The transition to MHD occurs as the mean free path becomes short compared to the parallel wavelength 2*/k(sub)||. In the weak magnetic field regime where the Alfven and MRI frequencies w are small compared to the sound wave frequency k(sub)||c(sub)0, the dynamics are still effectively collisionless even if omega << v, so long as the collision frequency v << k(sub)||c(sub)0; for an accretion flow this requires n less than or approximately equal to *(square root of b). The low collisionality regime not only modifies the MRI growth rate, but also introduces collisionless Landau or Barnes damping of long wavelength modes, which may be important for the nonlinear saturation of the MRI
Reconnections of Wave Vortex Lines
Berry, M. V.; Dennis, M. R.
2012-01-01
When wave vortices, that is nodal lines of a complex scalar wavefunction in space, approach transversely, their typical crossing and reconnection is a two-stage process incorporating two well-understood elementary events in which locally coplanar hyperbolas switch branches. The explicit description of this reconnection is a pedagogically useful…
Reconnecting to the biosphere.
Folke, Carl; Jansson, Asa; Rockström, Johan; Olsson, Per; Carpenter, Stephen R; Chapin, F Stuart; Crépin, Anne-Sophie; Daily, Gretchen; Danell, Kjell; Ebbesson, Jonas; Elmqvist, Thomas; Galaz, Victor; Moberg, Fredrik; Nilsson, Måns; Osterblom, Henrik; Ostrom, Elinor; Persson, Asa; Peterson, Garry; Polasky, Stephen; Steffen, Will; Walker, Brian; Westley, Frances
2011-11-01
Humanity has emerged as a major force in the operation of the biosphere, with a significant imprint on the Earth System, challenging social-ecological resilience. This new situation calls for a fundamental shift in perspectives, world views, and institutions. Human development and progress must be reconnected to the capacity of the biosphere and essential ecosystem services to be sustained. Governance challenges include a highly interconnected and faster world, cascading social-ecological interactions and planetary boundaries that create vulnerabilities but also opportunities for social-ecological change and transformation. Tipping points and thresholds highlight the importance of understanding and managing resilience. New modes of flexible governance are emerging. A central challenge is to reconnect these efforts to the changing preconditions for societal development as active stewards of the Earth System. We suggest that the Millennium Development Goals need to be reframed in such a planetary stewardship context combined with a call for a new social contract on global sustainability. The ongoing mind shift in human relations with Earth and its boundaries provides exciting opportunities for societal development in collaboration with the biosphere--a global sustainability agenda for humanity.
Laboratory studies of magnetized collisionless flows and shocks using accelerated plasmoids
Weber, T. E.; Smith, R. J.; Hsu, S. C.
2015-11-01
Magnetized collisionless shocks are thought to play a dominant role in the overall partition of energy throughout the universe, but have historically proven difficult to create in the laboratory. The Magnetized Shock Experiment (MSX) at LANL creates conditions similar to those found in both space and astrophysical shocks by accelerating hot (100s of eV during translation) dense (1022 - 1023 m-3) Field Reversed Configuration (FRC) plasmoids to high velocities (100s of km/s); resulting in β ~ 1, collisionless plasma flows with sonic and Alfvén Mach numbers of ~10. The FRC subsequently impacts a static target such as a strong parallel or anti-parallel (reconnection-wise) magnetic mirror, a solid obstacle, or neutral gas cloud to create shocks with characteristic length and time scales that are both large enough to observe yet small enough to fit within the experiment. This enables study of the complex interplay of kinetic and fluid processes that mediate cosmic shocks and can generate non-thermal distributions, produce density and magnetic field enhancements much greater than predicted by fluid theory, and accelerate particles. An overview of the experimental capabilities of MSX will be presented, including diagnostics, selected recent results, and future directions. Supported by the DOE Office of Fusion Energy Sciences under contract DE-AC52-06NA25369.
Using Field-Particle Correlations to Diagnose the Collisionless Damping of Plasma Turbulence
Howes, Gregory; Klein, Kristropher
2016-10-01
Plasma turbulence occurs ubiquitously throughout the heliosphere, yet our understanding of how turbulence governs energy transport and plasma heating remains incomplete, constituting a grand challenge problem in heliophysics. In weakly collisional heliospheric plasmas, such as the solar corona and solar wind, damping of the turbulent fluctuations occurs due to collisionless interactions between the electromagnetic fields and the individual plasma particles. A particular challenge in diagnosing this energy transfer is that spacecraft measurements are typically limited to a single point in space. Here we present an innovative field-particle correlation technique that can be used with single-point measurements to estimate the energization of the plasma particles due to the damping of the electromagnetic fields, providing vital new information about this how energy transfer is distributed as a function of particle velocity. This technique has the promise to transform our ability to diagnose the kinetic plasma physical mechanisms responsible for not only the damping of turbulence, but also the energy conversion in both collisionless magnetic reconnection and particle acceleration. The work has been supported by NSF CAREER Award AGS-1054061, NSF AGS-1331355, and DOE DE-SC0014599.
Global dynamics of magnetic reconnection in VINETA II
Energy Technology Data Exchange (ETDEWEB)
Bohlin, Hannes
2014-12-12
Magnetic reconnection is a fundamental plasma process where a change in field line connectivity occurs in a current sheet at the boundary between regions of opposing magnetic fields. In this process, energy stored in the magnetic field is converted into kinetic and thermal energy, which provides a source of plasma heating and energetic particles. Magnetic reconnection plays a key role in many space and laboratory plasma phenomena, e.g. solar flares, Earth's magnetopause dynamics and instabilities in tokamaks. A new linear device (VINETAII) has been designed for the study of the fundamental physical processes involved in magnetic reconnection. The plasma parameters are such that magnetic reconnection occurs in a collision-dominated regime. A plasma gun creates a localized current sheet, and magnetic reconnection is driven by modulating the plasma current and the magnetic field structure. The plasma current is shown to flow in response to a combination of an externally induced electric field and electrostatic fields in the plasma, and is highly affected by axial sheath boundary conditions. Further, the current is changed by an additional axial magnetic field (guide field), and the current sheet geometry was demonstrated to be set by a combination of magnetic mapping and cross-field plasma diffusion. With increasing distance from the plasma gun, magnetic mapping results in an increase of the current sheet length and a decrease of the width. The control parameter is the ratio of the guide field to the reconnection magnetic field strength. Cross-field plasma diffusion leads to a radial expansion of the current sheet at low guide fields. Plasma currents are also observed in the azimuthal plane and were found to originate from a combination of the field-aligned current component and the diamagnetic current generated by steep in-plane pressure gradients in combination with the guide field. The reconnection rate, defined via the inductive electric field, is shown to be
Interchange Slip-Running Reconnection and Sweeping SEP-Beams
Masson, S.; Aulanier, G.; Pariat, E.; Klein, K.-L.
2011-01-01
We present a new model to explain how particles, accelerated at a reconnection site that is not magnetically connected to the Earth, could eventually propagate along the well-connected open flux tube. Our model is based on the results of a low-beta resistive magnetohydrodynamics simulation of a three-dimensional line-tied and initially current-free bipole, that is embedded in a non-uniform open potential field. The topology of this configuration is that of an asymmetric coronal null-point, with a closed fan surface and an open outer spine. When driven by slow photospheric shearing motions, field lines, initially fully anchored below the fan dome, reconnect at the null point, and jump to the open magnetic domain. This is the standard interchange mode as sketched and calculated in 2D. The key result in 3D is that, reconnected open field lines located in the vicinity of the outer spine, keep reconnecting continuously, across an open quasi-separatrix layer, as previously identified for non-open-null-point reconnection. The apparent slipping motion of these field lines leads to form an extended narrow magnetic flux tube at high altitude. Because of the slip-running reconnection, we conjecture that if energetic particles would be travelling through, or be accelerated inside, the diffusion region, they would be successively injected along continuously reconnecting field lines that are connected farther and farther from the spine. At the scale of the full Sun, owing to the super-radial expansion of field lines below 3 solar radius, such energetic particles could easily be injected in field lines slipping over significant distances, and could eventually reach the distant flux tube that is well-connected to the Earth.
The Magnetic Reconnection Code: Center for Magnetic Reconnection Studies
Energy Technology Data Exchange (ETDEWEB)
Amitava Bhattacharjee
2007-04-20
Understanding magnetic reconnection is one of the principal challenges in plasma physics. Reconnection is a process by which magnetic fields reconfigure themselves, releasing energy that can be converted to particle energies and bulk flows. Thanks to the availability of sophisticated diagnostics in fusion and laboratory experiments, in situ probing of magnetospheric and solar wind plasmas, and X-ray emission measurements from solar and stellar plasmas, theoretical models of magnetic reconnection can now be constrained by stringent observational tests. The members of the CMRS comprise an interdisciplinary group drawn from applied mathematics, astrophysics, computer science, fluid dynamics, plasma physics, and space science communities.
Weakly Collisional and Collisionless Astrophysical Plasmas
DEFF Research Database (Denmark)
Berlok, Thomas
are used to study weakly collisional, stratified atmospheres which offer a useful model of the intracluster medium of galaxy clusters. Using linear theory and computer simulations, we study instabilities that feed off thermal and compositional gradients. We find that these instabilities lead to vigorous...... investigate helium mixing in the weakly collisional intracluster medium of galaxy clusters using Braginskii MHD. Secondly, we present a newly developed Vlasov-fluid code which can be used for studying fully collisionless plasmas such as the solar wind and hot accretions flows. The equations of Braginskii MHD...... associated with the ions and is thus well suited for studying collisionless plasmas. We have developed a new 2D-3V Vlasov-fluid code which works by evolving the phase-space density distribution of the ions while treating the electrons as an inertialess fluid. The code uses the particle-incell (PIC) method...
Hall current effects in dynamic magnetic reconnection solutions
International Nuclear Information System (INIS)
Craig, I.J.D.; Heerikhuisen, J.; Watson, P.G.
2003-01-01
The impact of Hall current contributions on flow driven planar magnetic merging solutions is discussed. The Hall current is important if the dimensionless Hall parameter (or normalized ion skin depth) satisfies c H >η, where η is the inverse Lundquist number for the plasma. A dynamic analysis of the problem shows, however, that the Hall current initially manifests itself, not by modifying the planar reconnection field, but by inducing a non-reconnecting perpendicular 'separator' component in the magnetic field. Only if the stronger condition c H 2 >η is satisfied can Hall currents be expected to affect the planar merging. These analytic predictions are then tested by performing a series of numerical experiments in periodic geometry, using the full system of planar magnetohydrodynamic (MHD) equations. The numerical results confirm that the nature of the merging changes dramatically when the Hall coupling satisfies c H 2 >η. In line with the analytic treatment of sheared reconnection, the coupling provided by the Hall term leads to the emergence of multiple current layers that can enhance the global Ohmic dissipation at the expense of the reconnection rate. However, the details of the dissipation depend critically on the symmetries of the simulation, and when the merging is 'head-on' (i.e., comprises fourfold symmetry) the reconnection rate can be enhanced
Preferential acceleration in collisionless supernova shocks
International Nuclear Information System (INIS)
Hainebach, K.; Eichler, D.; Schramm, D.
1979-01-01
The preferential acceleration and resulting cosmic ray abundance enhancements of heavy elements (relative to protons) are calculated in the collisionless supernova shock acceleration model described by Eichler in earlier work. Rapidly increasing enhancements up to several tens times solar ratios are obtained as a function of atomic weight over charge at the time of acceleration. For material typical of hot phase interstellar medium, good agreement is obtained with the observed abundance enhancements
Reconnection of magnetic field lines
International Nuclear Information System (INIS)
Heyn, M.F.; Gratton, F.T.; Gnavi, G.; Heindler, M.
1990-01-01
Magnetic field line diffusion in a plasma is studied on the basis of the non-linear boundary layer equations of dissipative, incompressible magnetohydrodynamics. Non-linear steady state solutions for a class of plasma parameters have been obtained which are consistent with the boundary conditions appropriate for reconnection. The solutions are self-consistent in connecting a stagnation point flow of a plasma with reconnecting magnetic field lines. The range of the validity of the solutions, their relation to other fluid models of reconnection, and their possible applications to space plasma configurations are pointed out. (Author)
Colour reconnection in WW events
D'Hondt, J
2003-01-01
Preliminary results are presented for a measurement of the kappa parameter used in the JETSET SK-I model of colour reconnection in W /sup +/W/sup -/ to qq'qq' events at LEP2. An update on the investigation of colour reconnection effects in hadronic decays of W pairs, using the particle flow in DELPHI is presented. A second method is based on the observation that two different m/sub W/ estimators have different sensitivity to the parametrised colour reconnection effect. Hence the difference between them is an observable with information content about kappa. (6 refs).
A poloidal non-uniformity of the collisionless parallel current in a tokamak plasma
Energy Technology Data Exchange (ETDEWEB)
Romannikov, A.; Fenzi-Bonizec, C
2005-07-01
The collisionless distortion of the ion (electron) distribution function at certain points on a magnetic surface is studied in the framework of a simple model of a large aspect ratio tokamak plasma. The flow velocity driven by this distortion is calculated. The possibility of an additional non-uniform collisionless parallel current density on a magnetic surface, other than the known neo-classical non-uniformity is shown. The difference between the parallel current density on the low and high field side of a magnetic surface is close to the neoclassical bootstrap current density. The first Tore-Supra experimental test indicates the possibility of the poloidal non-uniformity of the parallel current density. (authors)
Merger and reconnection of Weibel separated relativistic electron beam
Shukla, Chandrasekhar; Kumar, Atul; Das, Amita; Patel, Bhavesh G.
2018-02-01
The relativistic electron beam (REB) propagation in a plasma is fraught with beam plasma instabilities. The prominent amongst them is the collisionless Weibel destabilization which spatially separates the forward propagating REB and the return shielding currents. This results in the formation of REB current filaments which are typically of the size of electron skin depth during the linear stage of the instability. It has been observed that in the nonlinear stage, the size of filaments increases as they merge with each other. With the help of 2-D particle-in-cell simulations in the plane perpendicular to the REB propagation, it is shown that these mergers occur in two distinct nonlinear phases. In the first phase, the total magnetic energy increases. Subsequently, however, during the second phase, one observes a reduction in magnetic energy. It is shown that the transition from one nonlinear regime to another occurs when the typical current associated with individual filaments hits the Alfvén threshold. In the second nonlinear regime, therefore, the filaments can no longer permit any increase in current. Magnetic reconnection events then dissipate the excess current (and its associated magnetic energy) that would result from a merger process leading to the generation of energetic electron jets in the perpendicular plane. At later times when there are only few filaments left, the individual reconnection events can be clearly identified. It is observed that in between such events, the magnetic energy remains constant and shows a sudden drop as and when two filaments merge. The electron jets released in these reconnection events are thus responsible for the transverse heating which has been mentioned in some previous studies [Honda et al., Phys. Plasmas 7, 1302 (2000)].
International Nuclear Information System (INIS)
Shimizu, T.; Kondoh, K.; Ugai, M.; Shibata, K.
2009-01-01
Three-dimensional instability of the spontaneous fast magnetic reconnection is studied with magnetohydrodynamic (MHD) simulation, where the two-dimensional model of the spontaneous fast magnetic reconnection is destabilized in three dimension. Generally, in two-dimensional magnetic reconnection models, every plasma condition is assumed to be uniform in the sheet current direction. In such two-dimensional MHD simulations, the current sheet destabilized by the initial resistive disturbance can be developed to fast magnetic reconnection by a current driven anomalous resistivity. In this paper, the initial resistive disturbance includes a small amount of fluctuations in the sheet current direction, i.e., along the magnetic neutral line. The other conditions are the same as that of previous two-dimensional MHD studies for fast magnetic reconnection. Accordingly, we may expect that approximately two-dimensional fast magnetic reconnection occurs in the MHD simulation. In fact, the fast magnetic reconnection activated on the first stage of the simulation is two dimensional. However, on the subsequent stages, it spontaneously becomes three dimensional and is strongly localized in the sheet current direction. The resulting three-dimensional fast magnetic reconnection intermittently ejects three-dimensional magnetic loops. Such intermittent ejections of the three-dimensional loops are similar to the intermittent downflows observed in the solar flares. The ejection of the three-dimensional loops seems to be random but, numerically and theoretically, it is shown that the aspect ratio of the ejected loops is limited under a criterion.
Magnetic reconnection simulation using the 2.5D em [electromagnetic] direct implicit code AVANTI
International Nuclear Information System (INIS)
Hewett, D.W.; Francis, G.E.; Max, C.E.
1988-01-01
Collisionless reconnection of magnetic field lines depends upon electron inertia effects and details of the electron and ion distribution functions, thus requiring a kinetic description of both. Though traditional explicit PIC techniques provide this description in principle, they are severely limited in parameters by time step constraints. This parameter regime has been expanded by using the recently constructed 2.5 D electromagnetic code AVANTI in this work. The code runs stably with arbitrarily large Δt and is quite robust with respect to large fluctuations occurring due to small numbers of particles per cell. We have found several qualitatively new features. The reconnection process is found to occur in distinct stages: early spontaneous reconnection fed by the free energy of an initial anisotropy in the electron component, coalescence of the resulting small-scale filaments of electron current, accompanied by electron jetting, and oscillatory flow of electrons through the magnetic X-point, superposed on continuing nonlinear growth of ion-mediated reconnection. The time evolution of stage is strongly dependent on M i /m e . 12 refs., 6 figs
A Reconnection Switch to Trigger gamma-Ray Burst Jet Dissipation
International Nuclear Information System (INIS)
McKinney, Jonathan
2012-01-01
Prompt gamma-ray burst (GRB) emission requires some mechanism to dissipate an ultrarelativistic jet. Internal shocks or some form of electromagnetic dissipation are candidate mechanisms. Any mechanism needs to answer basic questions, such as what is the origin of variability, what radius does dissipation occur at, and how does efficient prompt emission occur. These mechanisms also need to be consistent with how ultrarelativistic jets form and stay baryon pure despite turbulence and electromagnetic reconnection near the compact object and despite stellar entrainment within the collapsar model. We use the latest magnetohydrodynamical models of ultrarelativistic jets to explore some of these questions in the context of electromagnetic dissipation due to the slow collisional and fast collisionless reconnection mechanisms, as often associated with Sweet-Parker and Petschek reconnection, respectively. For a highly magnetized ultrarelativistic jet and typical collapsar parameters, we find that significant electromagnetic dissipation may be avoided until it proceeds catastrophically near the jet photosphere at large radii (r ∼ 10 13 -10 14 cm), by which the jet obtains a high Lorentz factor (γ ∼ 100-1000), has a luminosity of L j ∼ 10 50 -10 51 erg s -1 , has observer variability timescales of order 1s (ranging from 0.001-10s), achieves γθ j ∼ 10-20 (for opening half-angle θ j ) and so is able to produce jet breaks, and has comparable energy available for both prompt and afterglow emission. A range of model parameters are investigated and simplified scaling laws are derived. This reconnection switch mechanism allows for highly efficient conversion of electromagnetic energy into prompt emission and associates the observed prompt GRB pulse temporal structure with dissipation timescales of some number of reconnecting current sheets embedded in the jet. We hope this work helps motivate the development of self-consistent radiative compressible relativistic
Plasma pressure tensor effects on reconnection: Hybrid and Hall-magnetohydrodynamics simulations
International Nuclear Information System (INIS)
Yin Lin; Winske, Dan
2003-01-01
Collisionless reconnection is studied using two-dimensional (2-D) hybrid (particle ions, massless fluid electrons) and Hall-magnetohydrodynamics (Hall-MHD) simulations. Both use the full electron pressure tensor instead of a localized resistivity in Ohm's law to initiate reconnection; an initial perturbation or boundary driving to the equilibrium is used. The initial configurations include one-dimensional (1-D) and 2-D current sheets both with and without a guide field. Electron dynamics from the two calculations are compared, and overall agreement is found between the calculations in both reconnection rate and global configuration [L. Yin et al., J. Geophys. Res. 106, 10761 (2001)]. It is shown that the electron drifts in the small-transverse-scale fields near the X point cause the electron motion to decouple from the ion motion, and that reconnection occurs due to electron viscous effects contained in the off-diagonal terms of the electron pressure tensor. Comparing the hybrid and Hall-MHD simulations shows that effects of the off-diagonal terms in the ion pressure tensor, i.e., the ion gyro-radius effects, are necessary in order to model correctly the ion out-of-plane motion. It is shown that these effects can be modeled efficiently in a particle Hall-MHD simulation in which particle ions are used in a predictor/corrector manner to implement ion gyro-radius corrections [L. Yin et al., Phys. Plasmas 9, 2575 (2002)]. For modeling reconnection in large systems, a new integrated approach is examined in which Hall-MHD calculations using a full electron pressure tensor model is embedded inside a MHD simulation. The embedded simulation of current sheet thinning and reconnection dynamics in a realistic 2-D magnetotail equilibrium exhibits smooth transitions of plasma and field quantities between the two regions, with small-scale physics represented well in the compressed current sheet and in the near-X-point region
A Reconnection Switch to Trigger gamma-Ray Burst Jet Dissipation
Energy Technology Data Exchange (ETDEWEB)
McKinney, Jonathan C.; Uzdensky, Dmitri A.
2012-03-14
Prompt gamma-ray burst (GRB) emission requires some mechanism to dissipate an ultrarelativistic jet. Internal shocks or some form of electromagnetic dissipation are candidate mechanisms. Any mechanism needs to answer basic questions, such as what is the origin of variability, what radius does dissipation occur at, and how does efficient prompt emission occur. These mechanisms also need to be consistent with how ultrarelativistic jets form and stay baryon pure despite turbulence and electromagnetic reconnection near the compact object and despite stellar entrainment within the collapsar model. We use the latest magnetohydrodynamical models of ultrarelativistic jets to explore some of these questions in the context of electromagnetic dissipation due to the slow collisional and fast collisionless reconnection mechanisms, as often associated with Sweet-Parker and Petschek reconnection, respectively. For a highly magnetized ultrarelativistic jet and typical collapsar parameters, we find that significant electromagnetic dissipation may be avoided until it proceeds catastrophically near the jet photosphere at large radii (r {approx} 10{sup 13}-10{sup 14}cm), by which the jet obtains a high Lorentz factor ({gamma} {approx} 100-1000), has a luminosity of L{sub j} {approx} 10{sup 50}-10{sup 51} erg s{sup -1}, has observer variability timescales of order 1s (ranging from 0.001-10s), achieves {gamma}{theta}{sub j} {approx} 10-20 (for opening half-angle {theta}{sub j}) and so is able to produce jet breaks, and has comparable energy available for both prompt and afterglow emission. A range of model parameters are investigated and simplified scaling laws are derived. This reconnection switch mechanism allows for highly efficient conversion of electromagnetic energy into prompt emission and associates the observed prompt GRB pulse temporal structure with dissipation timescales of some number of reconnecting current sheets embedded in the jet. We hope this work helps motivate the
Bulk ion acceleration and particle heating during magnetic reconnection in a laboratory plasma
Energy Technology Data Exchange (ETDEWEB)
Yoo, Jongsoo; Yamada, Masaaki; Ji, Hantao; Jara-Almonte, Jonathan; Myers, Clayton E. [Center for Magnetic Self-Organization, Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)
2014-05-15
Bulk ion acceleration and particle heating during magnetic reconnection are studied in the collisionless plasma of the Magnetic Reconnection Experiment (MRX). The plasma is in the two-fluid regime, where the motion of the ions is decoupled from that of the electrons within the ion diffusion region. The reconnection process studied here is quasi-symmetric since plasma parameters such as the magnitude of the reconnecting magnetic field, the plasma density, and temperature are compatible on each side of the current sheet. Our experimental data show that the in-plane (Hall) electric field plays a key role in ion heating and acceleration. The electrostatic potential that produces the in-plane electric field is established by electrons that are accelerated near the electron diffusion region. The in-plane profile of this electrostatic potential shows a “well” structure along the direction normal to the reconnection current sheet. This well becomes deeper and wider downstream as its boundary expands along the separatrices where the in-plane electric field is strongest. Since the in-plane electric field is 3–4 times larger than the out-of-plane reconnection electric field, it is the primary source of energy for the unmagnetized ions. With regard to ion acceleration, the Hall electric field causes ions near separatrices to be ballistically accelerated toward the outflow direction. Ion heating occurs as the accelerated ions travel into the high pressure downstream region. This downstream ion heating cannot be explained by classical, unmagnetized transport theory; instead, we conclude that ions are heated by re-magnetization of ions in the reconnection exhaust and collisions. Two-dimensional (2-D) simulations with the global geometry similar to MRX demonstrate downstream ion thermalization by the above mechanisms. Electrons are also significantly heated during reconnection. The electron temperature sharply increases across the separatrices and peaks just outside of the
Diagnostics of solar flare reconnection
Directory of Open Access Journals (Sweden)
M. Karlický
2004-01-01
Full Text Available We present new diagnostics of the solar flare reconnection, mainly based on the plasma radio emission. We propose that the high-frequency (600-2000 MHz slowly drifting pulsating structures map the flare magnetic field reconnection. These structures correspond to the radio emission from plasmoids which are formed in the extended current sheet due to tearing and coalescence processes. An increase of the frequency drift of the drifting structures is interpreted as an increase of the reconnection rate. Using this model, time scales of slowly drifting pulsating structure observed during the 12 April 2001 flare by the Trieste radiopolarimeter with high time resolution (1 ms are interpreted as a radio manifestation of electron beams accelerated in the multi-scale reconnection process. For short periods Fourier spectra of the observed structure have a power-law form with power-law indices in the 1.3-1.6 range. For comparison the 2-D MHD numerical modeling of the multi-scale reconnection is made and it is shown that Fourier spectrum of the reconnection dissipation power has also a power-law form, but with power-law index 2. Furthermore, we compute a time evolution of plasma parameters (density, magnetic field etc in the 2-D MHD model of the reconnection. Then assuming a plasma radio emission from locations, where the 'double-resonance' instability generates the upper-hybrid waves due to unstable distribution function of suprathermal electrons, we model radio spectra. Effects of the MHD turbulence are included. The resulting spectra are compared with those observed. It is found, that depending on model parameters the lace bursts and the decimetric spikes can be reproduced. Thus, it is shown that the model can be used for diagnostics of the flare reconnection process. We also point out possible radio signatures of reconnection outflow termination shocks. They are detected as type II-like herringbone structures in the 200-700 MHz frequency range. Finally
Rarefaction Shock Waves in Collisionless Plasma with Electronic Beam
Gurovich, Victor Ts.; Fel, Leonid G.
2011-01-01
We show that an electronic beam passing through the collisionless plasma of the "cold" ions and the "hot" Boltzmann electrons can give rise to the propagation of the supersonic ion-acoustic rarefaction shock waves. These waves are analogous to those predicted by Zeldovich [5] in gasodynamics and complementary to the ion-acoustic compression shock waves in collisionless plasma described by Sagdeev [3].
Landau fluid models of collisionless magnetohydrodynamics
International Nuclear Information System (INIS)
Snyder, P.B.; Hammett, G.W.; Dorland, W.
1997-01-01
A closed set of fluid moment equations including models of kinetic Landau damping is developed which describes the evolution of collisionless plasmas in the magnetohydrodynamic parameter regime. The model is fully electromagnetic and describes the dynamics of both compressional and shear Alfven waves, as well as ion acoustic waves. The model allows for separate parallel and perpendicular pressures p parallel and p perpendicular , and, unlike previous models such as Chew-Goldberger-Low theory, correctly predicts the instability threshold for the mirror instability. Both a simple 3 + 1 moment model and a more accurate 4 + 2 moment model are developed, and both could be useful for numerical simulations of astrophysical and fusion plasmas
Reconnection Scaling Experiment (RSX): Magnetic Reconnection in Linear Geometry
Intrator, T.; Sovinec, C.; Begay, D.; Wurden, G.; Furno, I.; Werley, C.; Fisher, M.; Vermare, L.; Fienup, W.
2001-10-01
The linear Reconnection Scaling Experiment (RSX) at LANL is a new experiment that can create MHD relevant plasmas to look at the physics of magnetic reconnection. This experiment can scale many relevant parameters because the guns that generate the plasma and current channels do not depend on equilibrium or force balance for startup. We describe the experiment and initial electrostatic and magnetic probe data. Two parallel current channels sweep down a long plasma column and probe data accumulated over many shots gives 3D movies of magnetic reconnection. Our first data tries to define an operating regime free from kink instabilities that might otherwise confuse the data and shot repeatability. We compare this with MHD 2 fluid NIMROD simulations of the single current channel kink stability boundary for a variety of experimental conditions.
Spatial characteristics of magnetotail reconnection
Genestreti, Kevin J.
We examine the properties of magnetic reconnection as it occurs in the Earth's magnetosphere, first focusing on the spatial characteristics of the near-Earth magnetotail reconnection site, then analyzing the properties of cold plasma that may affect reconnection at the dayside magnetopause. Two models are developed that empirically map the position and occurrence rate of the nightside ion diffusion region, which are based upon Geotail data (first model) and a combination of Geotail and Cluster data (second model). We use these empirical models to estimate that NASA's MMS mission will encounter the ion-scale reconnection site 11+/-4 times during its upcoming magnetotail survey phase. We also find that the occurrence of magnetotail reconnection is localized and asymmetric, with reconnection occurring most frequently at the duskside magnetotail neutral sheet near YGSM* = 5 RE. To determine the physics that governs this asymmetry and localization, we analyze the time history of the solar wind, the instantaneous properties of the magnetotail lobes and current sheet, as well as the geomagnetic activity levels, all for a larger set of Geotail and Cluster reconnection site observations. We find evidence in our own results and in the preexisting literature that localized (small DeltaY) reconnection sites initially form near YGSM* = 5 RE due to an asymmetry in the current sheet thickness. If the solar wind driving remains strong, then localized reconnection sites may expand in the +/-Y direction. The DeltaY extent of the reconnection site ap- pears to be positively correlated with the geomagnetic activity level, which is to be expected for a simplified "energy in equals energy out"-type picture of 3D reconnection. We develop two new methods for determining the temperatures of plasmas that are largely below the energy detection range of electrostatic analyzer instruments. The first method involves the direct application of a theoretical fit to the visible, high-energy portion
Dipolarization Fronts from Reconnection Onset
Sitnov, M. I.; Swisdak, M. M.; Merkin, V. G.; Buzulukova, N.; Moore, T. E.
2012-12-01
Dipolarization fronts observed in the magnetotail are often viewed as signatures of bursty magnetic reconnection. However, until recently spontaneous reconnection was considered to be fully prohibited in the magnetotail geometry because of the linear stability of the ion tearing mode. Recent theoretical studies showed that spontaneous reconnection could be possible in the magnetotail geometries with the accumulation of magnetic flux at the tailward end of the thin current sheet, a distinctive feature of the magnetotail prior to substorm onset. That result was confirmed by open-boundary full-particle simulations of 2D current sheet equilibria, where two magnetotails were separated by an equilibrium X-line and weak external electric field was imposed to nudge the system toward the instability threshold. To investigate the roles of the equilibrium X-line, driving electric field and other parameters in the reconnection onset process we performed a set of 2D PIC runs with different initial settings. The investigated parameter space includes the critical current sheet thickness, flux tube volume per unit magnetic flux and the north-south component of the magnetic field. Such an investigation is critically important for the implementation of kinetic reconnection onset criteria into global MHD codes. The results are compared with Geotail visualization of the magnetotail during substorms, as well as Cluster and THEMIS observations of dipolarization fronts.
Kinetic instabilities in plasmas: from electromagnetic fluctuations to collisionless shocks
International Nuclear Information System (INIS)
Ruyer, Charles
2014-01-01
-in-cell (PIC) simulations of the ion Weibel instability in uniform geometries, as well as shock-relevant non-uniform configurations. Moreover, they are found in correct agreement with a recent laser-driven plasma collision experiment. Along with this comparison, we pinpoint the important role of electron screening on the ion-Weibel dynamics, which may affect the results of simulations with artificially high electron mass. We subsequently address the shock propagation resulting from the magnetic Weibel turbulence generated in the upstream region. Generalizing the previous symmetric-beam model to the upstream region of the shock, the role of the magnetic turbulence in the shock-front has been analytically and self-consistently characterized. Comparison with simulations validates the model. The interaction of high-energy, ultra-high intensity lasers with dense plasmas is known to produce copious amounts of suprathermal particles. Their acceleration and subsequent transport trigger a variety of Weibel-like electromagnetic instabilities, acting as additional sources of slowing down and scattering. Their understanding is important for the many applications based upon the energy deposition and/or field generation of laser-driven particles. We investigate the ability of relativistic-intensity laser pulses to induce Weibel instability-mediated shocks in overdense plasma targets, as first proposed by Fiuza in 2012. By means of both linear theory and 2D PIC simulations, we demonstrated that in contrast to the standard astrophysical scenario previously addressed, the early-time magnetic fluctuations (Weibel instability) generated by the suprathermal electrons (and not ions) are strong enough to isotropize the target ions and, therefore, induce a collisionless electromagnetic shock. (author) [fr
Electron Jet of Asymmetric Reconnection
Khotyaintsev, Yu. V.; Graham, D. B.; Norgren, C.; Eriksson, E.; Li, W.; Johlander, A.; Vaivads, A.; Andre, M.; Pritchett, P. L.; Retino, A.;
2016-01-01
We present Magnetospheric Multiscale observations of an electron-scale current sheet and electron outflow jet for asymmetric reconnection with guide field at the subsolar magnetopause. The electron jet observed within the reconnection region has an electron Mach number of 0.35 and is associated with electron agyrotropy. The jet is unstable to an electrostatic instability which generates intense waves with E(sub parallel lines) amplitudes reaching up to 300 mV/m and potentials up to 20% of the electron thermal energy. We see evidence of interaction between the waves and the electron beam, leading to quick thermalization of the beam and stabilization of the instability. The wave phase speed is comparable to the ion thermal speed, suggesting that the instability is of Buneman type, and therefore introduces electron-ion drag and leads to braking of the electron flow. Our observations demonstrate that electrostatic turbulence plays an important role in the electron-scale physics of asymmetric reconnection.
Magnetohydrodynamic study for three-dimensional instability of the Petschek type magnetic reconnection
International Nuclear Information System (INIS)
Shimizu, T.; Kondoh, K.
2013-01-01
The 3D instability of the spontaneous fast magnetic reconnection process is studied with magnetohydrodynamics (MHD) simulations, where the 2D model of the spontaneous fast magnetic reconnection is destabilized in three dimension. As well known in many 2D numerical MHD studies, when a 1D current sheet is destabilized with the current-driven anomalous resistivity, the 2D Petschek type fast magnetic reconnection is established. This paper shows that the 2D Petschek type fast magnetic reconnection can be destabilized in three dimension by an initial resistive disturbance which includes a weak fluctuation in the sheet current direction, i.e., along the magnetic neutral line. The resulting 3D fast magnetic reconnection finally becomes intermittent and random through a 3D instability. In addition, it is also shown that the 3D instability is suppressed by the uniform resistivity. It suggests that the 3D instability is caused in the Petschek-type reconnection process which is characterized by a strongly localized magnetic diffusion region and the slow shock acceleration of the plasma jets and is suppressed in the Sweet-Parker type reconnection process
Dynamical efficiency of collisionless magnetized shocks in relativistic jets
Aloy, Miguel A.; Mimica, Petar
2011-09-01
The so-called internal shock model aims to explain the light-curves and spectra produced by non-thermal processes originated in the flow of blazars and gamma-ray bursts. A long standing question is whether the tenuous collisionless shocks, driven inside a relativistic flow, are efficient enough to explain the amount of energy observed as compared with the expected kinetic power of the outflow. In this work we study the dynamic efficiency of conversion of kinetic-to-thermal/magnetic energy of internal shocks in relativistic magnetized outflows. We find that the collision between shells with a non-zero relative velocity can yield either two oppositely moving shocks (in the frame where the contact surface is at rest), or a reverse shock and a forward rarefaction. For moderately magnetized shocks (magnetization σ ~= 0.1), the dynamic efficiency in a single two-shell interaction can be as large as 40%. Hence, the dynamic efficiency of moderately magnetized shocks is larger than in the corresponding unmagnetized two-shell interaction. We find that the efficiency is only weakly dependent on the Lorentz factor of the shells and, thus internal shocks in the magnetized flow of blazars and gamma-ray bursts are approximately equally efficient.
Hall MHD Modeling of Two-dimensional Reconnection: Application to MRX Experiment
International Nuclear Information System (INIS)
Lukin, V.S.; Jardin, S.C.
2003-01-01
Two-dimensional resistive Hall magnetohydrodynamics (MHD) code is used to investigate the dynamical evolution of driven reconnection in the Magnetic Reconnection Experiment (MRX). The initial conditions and dimensionless parameters of the simulation are set to be similar to the experimental values. We successfully reproduce many features of the time evolution of magnetic configurations for both co- and counter-helicity reconnection in MRX. The Hall effect is shown to be important during the early dynamic X-phase of MRX reconnection, while effectively negligible during the late ''steady-state'' Y-phase, when plasma heating takes place. Based on simple symmetry considerations, an experiment to directly measure the Hall effect in MRX configuration is proposed and numerical evidence for the expected outcome is given
Computer simulations of collisionless shock waves
International Nuclear Information System (INIS)
Leroy, M.M.
1984-01-01
A review of the contributions of particle computer simulations to the understanding of the physics of magnetic shock waves in collisionless plasmas is presented. The emphasis is on the relation between the computer simulation results, spacecraft observations of shocks in space, and related theories, rather than on technical aspects of the numerics. It is shown that much has been learned from the comparison of ISEE spacecraft observations of the terrestrial bow shock and particle computer simulations concerning the quasi-perpendicular, supercritical shock (ion scale structure, ion reflection mechanism and ultimate dissipation processes). Particle computer simulations have also had an appreciable prospective role in the investigation of the physics of quasi-parallel shocks, about which still little is known observationally. Moreover, these numerical techniques have helped to clarify the process of suprathermal ion rejection by the shock into the foreshock, and the subsequent evolution of the ions in the foreshock. 95 references
Entropy in Collisionless Self-gravitating Systems
Barnes, Eric; Williams, L.
2010-01-01
Collisionless systems, like simulated dark matter halos or gas-less elliptical galaxies, often times have properties suggesting that a common physical principle controls their evolution. For example, N-body simulations of dark matter halos present nearly scale-free density/velocity-cubed profiles. In an attempt to understand the origins of such relationships, we adopt a thermodynamics approach. While it is well-known that self-gravitating systems do not have physically realizable thermal equilibrium configurations, we are interested in the behavior of entropy as mechanical equilibrium is acheived. We will discuss entropy production in these systems from a kinetic theory point of view. This material is based upon work supported by the National Aeronautics and Space Administration under grant NNX07AG86G issued through the Science Mission Directorate.
Collisionless plasma expansion into a vacuum
International Nuclear Information System (INIS)
Denavit, J.
1979-01-01
Particle simulations of the expansion of a collisionless plasma into vacuum are presented. The cases of a single-electron-temperature plasma and of a two-electron-temperature plasma are considered. The results confirm the existence of an ion front and verify the general features of self-similar solutions behind this front. A cold electron front is clearly observed in the two-electron-temperatures case. The computations also show that for a finite electron-to-ion mass ratio, m/sub e//m/sub i/, the electron thermal velocity in the expansion region is not constant, but decreases approximately linearly with xi 0 -(γ-1) xi/2, and comparison with computer simulation results show that the constant γ-1 is proportional to (Zm/sub e//m/sub i/)atsup 1/2at, where Z is the ion charge number
Electrostatic effect for the collisionless tearing mode
International Nuclear Information System (INIS)
Hoshino, M.
1987-01-01
Electron dynamics has not been self-consistently considered in collisionless tearing mode theories to date because of the mathematical complexity of the Vlasov-Maxwell equations. We have found using computer simulations that electrostatic fields play an important role in the tearing mode. Vlasov theory, including the electrostatic field, is investigated for topologies with both antiparallel and nonantiparallel magnetic field lines. The electrostatic field influences the resonant current in the neutral sheet which is a non-MHD effect, and modifies the linear growth rate. At the magnetopause, where the field lines are not antiparallel, the electrostatic effect acts to raise the linear growth rate of the tearing mode. On the other hand, in the magnetotail, where magnetic field lines are antiparallel, the electrostatic effect reduces the tearing mode growth rate. copyright American Geophysical Union 1987
Collisionless relaxation in spiral galaxy models
Hohl, F.
1974-01-01
The increase in random kinetic energy of stars by rapidly fluctuating gravitational fields (collisionless or violent relaxation) in disk galaxy models is investigated for three interaction potentials of the stars corresponding to (1) point stars, (2) rod stars of length 2 kpc, and (3) uniform density spherical stars of radius 2 kpc. To stabilize the galaxy against the large scale bar forming instability, a fixed field corresponding to a central core or halo component of stars was added with the stars containing at most 20 percent of the total mass of the galaxy. Considerable heating occurred for both the point stars and the rod stars, whereas the use of spherical stars resulted in a very low heating rate. The use of spherical stars with the resulting low heating rate will be desirable for the study of large scale galactic stability or density wave propagation, since collective heating effects will no longer mask the phenomena under study.
Abreu, P
2002-01-01
The preliminary results on the search of colour reconnection effects (CR) from the four experiments at LEP, ALEPH, DELPHI, L3 and OPAL, are reviewed. Extreme models are excluded by studies of standard variables, and on going studies of a method first suggested by L3, the particle flow method (D. Duchesneau, (2001)), are yet inconclusive. (22 refs).
Vortex line topology during vortex tube reconnection
McGavin, P.; Pontin, D. I.
2018-05-01
This paper addresses reconnection of vortex tubes, with particular focus on the topology of the vortex lines (field lines of the vorticity). This analysis of vortex line topology reveals key features of the reconnection process, such as the generation of many small flux rings, formed when reconnection occurs in multiple locations in the vortex sheet between the tubes. Consideration of three-dimensional reconnection principles leads to a robust measurement of the reconnection rate, even once instabilities break the symmetry. It also allows us to identify internal reconnection of vortex lines within the individual vortex tubes. Finally, the introduction of a third vortex tube is shown to render the vortex reconnection process fully three-dimensional, leading to a fundamental change in the topological structure of the process. An additional interesting feature is the generation of vorticity null points.
On transition from Alfvén resonance to forced magnetic reconnection
International Nuclear Information System (INIS)
Luan, Q.; Wang, X.
2014-01-01
We revisit the transition from Alfvén resonance to forced magnetic reconnection with a focus on the property of their singularities. As the driven frequency tends to zero, the logarithmic singularity of Alfvén resonance shifts to the power-law singularity of forced reconnection, due to merging of the two resonance layers. The transition criterion depends on either kinetic effects or dissipations that resolve the singularity. As an example, a small but finite resistivity η is introduced to investigate the transition process. The transition threshold is then obtained as the driven frequency reaches a level of ∼O((η/k) 1/3 )
High fidelity kinetic modeling of magnetic reconnection in laboratory plasma
Stanier, A.; Daughton, W. S.
2017-12-01
Over the past decade, a great deal of progress has been made towards understanding the physics of magnetic reconnection in weakly collisional regimes of relevance to both fusion devices, and to space and astrophysical plasmas. However, there remain some outstanding unsolved problems in reconnection physics, such as the generation and influence of plasmoids (flux ropes) within reconnection layers, the development of magnetic turbulence, the role of current driven and streaming instabilities, and the influence of electron pressure anisotropy on the layer structure. Due to the importance of these questions, new laboratory reconnection experiments are being built to allow controlled and reproducible study of such questions with the simultaneous acquisition of high time resolution measurements at a large number of spatial points. These experiments include the FLARE facility at Princeton University and the T-REX experiment at the University of Wisconsin. To guide and interpret these new experiments, and to extrapolate the results to space applications, new investments in kinetic modeling tools are required. We have recently developed a cylindrical version of the VPIC Particle-In-Cell code with the capability to perform first-principles kinetic simulations that approach experimental device size with more realistic geometry and drive coils. This cylindrical version inherits much of the optimization work that has been done recently for the next generation many-cores architectures with wider vector registers, and achieves comparable conservation properties as the Cartesian code. Namely it features exact discrete charge conservation, and a so-called "energy-conserving" scheme where the energy is conserved in the limit of continuous time, i.e. without contribution from spatial discretization (Lewis, 1970). We will present initial results of modeling magnetic reconnection in the experiments mentioned above. Since the VPIC code is open source (https
"Diffusion" region of magnetic reconnection: electron orbits and the phase space mixing
Kropotkin, Alexey P.
2018-05-01
The nonlinear dynamics of electrons in the vicinity of magnetic field neutral lines during magnetic reconnection, deep inside the diffusion region where the electron motion is nonadiabatic, has been numerically analyzed. Test particle orbits are examined in that vicinity, for a prescribed planar two-dimensional magnetic field configuration and with a prescribed uniform electric field in the neutral line direction. On electron orbits, a strong particle acceleration occurs due to the reconnection electric field. Local instability of orbits in the neighborhood of the neutral line is pointed out. It combines with finiteness of orbits due to particle trapping by the magnetic field, and this should lead to the effect of mixing in the phase space, and the appearance of dynamical chaos. The latter may presumably be viewed as a mechanism producing finite conductivity in collisionless plasma near the neutral line. That conductivity is necessary to provide violation of the magnetic field frozen-in condition, i.e., for magnetic reconnection to occur in that region.
Final Technical Report: Magnetic Reconnection in High-Energy Laser-Produced Plasmas
Energy Technology Data Exchange (ETDEWEB)
Germaschewski, Kai [Univ. of New Hampshire, Durham, NH (United States); Fox, William [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Bhattacharjee, Amitava [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
2017-04-06
This report describes the final results from the DOE Grant DE-SC0007168, “Fast Magnetic Reconnection in HED Laser-Produced Plasmas.” The recent generation of laboratory high-energy-density physics facilities has opened significant physics opportunities for experimentally modeling astrophysical plasmas. The goal of this proposal is to use these new tools to study fundamental problems in plasma physics and plasma astrophysics. Fundamental topics in this area involve study of the generation, amplification, and fate of magnetic fields, which are observed to pervade the plasma universe and govern its evolution. This project combined experiments at DOE laser facilities with kinetic plasma simulation to study these processes. The primary original goal of the project was to study magnetic reconnection using a new experimental platform, colliding magnetized laser-produced plasmas. However through a series of fortuitous discoveries, the work broadened out to allow significant advancement on multiple topics in laboratory astrophysics, including magnetic reconnection, Weibel instability, and collisionless shocks.
Definition of spontaneous reconnection
International Nuclear Information System (INIS)
Schindler, K.
1984-01-01
The author discusses his view of driven versus spontaneous. There is a close link between ''spontaneous'' and ''instability.'' One of the prominent examples for instability is the thermal convection instability. Just to remind you, if you heat a fluid layer from below, it takes a certain Rayleigh number to make it unstable. Beyond the onset point you find qualitatively new features. That is called ''spontaneous,'' and this is a bit more than semantics. It's a new qualitative property that appears and it is spontaneous although we have an energy flux through the system. It's a misconception, to call this ''driven'' pointing at the energy flux through it. Of course, the convection would not exist without this energy flux. But what makes it ''spontaneous'' is that without any particular external signal, a new qualitative feature appears. And this is what is called an ''instability'' and ''spontaneous.'' From these considerations the author got a little reassured of what distinction should be made in the field of the magnetosphere. If we have a smooth energy transport into the magnetosphere and suddenly we have this qualitatively new feature (change of B-topology) coming up; then, using this terminology we don't have a choice other than calling this spontaneous or unstable, if you like. If we ''tell'' the system where it should make its neutral line and where it should make its plasmoids, then, it is driven. And this provides a very clear-cut observational distinction. The author emphasizes the difference he sees is a qualitative difference, not only a quantitative one
International Nuclear Information System (INIS)
Shimizu, T.; Kondo, K.; Ugai, M.; Shibata, K.
2009-01-01
Three-dimensional instability of the spontaneous fast magnetic reconnection is studied with magnetohydrodynamics (MHD) simulation, where the two-dimensional model of the spontaneous fast magnetic reconnection is destabilized in three dimensions. In two-dimensional models, every plasma condition is assumed to be uniform in the sheet current direction. In that case, it is well known that the two-dimensional fast magnetic reconnection can be caused by current-driven anomalous resistivity, when an initial resistive disturbance is locally put in a one-dimensional current sheet. In this paper, it is studied whether the two-dimensional fast magnetic reconnection can be destabilized or not when the initial resistive disturbance is three dimensional, i.e., that which has weak fluctuations in the sheet current direction. According to our study, the two-dimensional fast magnetic reconnection is developed to the three-dimensional intermittent fast magnetic reconnection which is strongly localized in the sheet current direction. The resulting fast magnetic reconnection repeats to randomly eject three-dimensional magnetic loops which are very similar to the intermittent downflows observed in solar flares. In fact, in some observations of solar flares, the current sheet seems to be approximately one dimensional, but the fast magnetic reconnection is strongly localized in the sheet current direction, i.e., fully three dimensional. In addition, the observed plasma downflows as snake-like curves. It is shown that those observed features are consistent with our numerical MHD study.
Nandakumar, Raja
2001-01-01
Colour reconnection is the final state interaction between quarks from different sources. It is not yet fully understood and is a source of systematic error for W-boson mass and width measurements in hadronic \\WW decays at LEP2. The methods of measuring this effect and the results of the 4 LEP experiments at $183\\gev\\leq\\rts\\leq 202\\gev$ will be presented.
Rapid reconnection of flux lines
International Nuclear Information System (INIS)
Samain, A.
1982-01-01
The rapid reconnection of flux lines in an incompressible fluid through a singular layer of the current density is discussed. It is shown that the liberated magnetic energy must partially appear in the form of plasma kinetic energy. A laminar structure of the flow is possible, but Alfven velocity must be achieved in eddies of growing size at the ends of the layer. The gross structure of the flow and the magnetic configuration may be obtained from variational principles. (author)
Multiscale Processes in Magnetic Reconnection
Surjalal Sharma, A.; Jain, Neeraj
The characteristic scales of the plasma processes in magnetic reconnection range from the elec-tron skin-depth to the magnetohydrodynamic (MHD) scale, and cross-scale coupling among them play a key role. Modeling these processes requires different physical models, viz. kinetic, electron-magnetohydrodynamics (EMHD), Hall-MHD, and MHD. The shortest scale processes are at the electron scale and these are modeled using an EMHD code, which provides many features of the multiscale behavior. In simulations using initial conditions consisting of pertur-bations with many scale sizes the reconnection takes place at many sites and the plasma flows from these interact with each other. This leads to thin current sheets with length less than 10 electron skin depths. The plasma flows also generate current sheets with multiple peaks, as observed by Cluster. The quadrupole structure of the magnetic field during reconnection starts on the electron scale and the interaction of inflow to the secondary sites and outflow from the dominant site generates a nested structure. In the outflow regions, the interaction of the electron outflows generated at the neighboring sites lead to the development of electron vortices. A signature of the nested structure of the Hall field is seen in Cluster observations, and more details of these features are expected from MMS.
Nonlinear theory of collisionless trapped ion modes
International Nuclear Information System (INIS)
Hahm, T.S.; Tang, W.M.
1996-01-01
A simplified two field nonlinear model for collisionless trapped-ion-mode turbulence has been derived from nonlinear bounce-averaged drift kinetic equations. The renormalized thermal diffusivity obtained from this analysis exhibits a Bohm-like scaling. A new nonlinearity associated with the neoclassical polarization density is found to introduce an isotope-dependent modification to this Bohm-like diffusivity. The asymptotic balance between the equilibrium variation and the finite banana width induced reduction of the fluctuation potential leads to the result that the radial correlation length decreases with increasing plasma current. Other important conclusions from the present analysis include the predictions that (i) the relative density fluctuation level δn/n 0 is lower than the conventional mixing length estimate, Δr/L n (ii) the ion temperature fluctuation level δT i /T i significantly exceeds the density fluctuation level δn/n 0 ; and (iii) the parallel ion velocity fluctuation level δv iparallel /v Ti is expected to be negligible
Collisionless microinstabilities in stellarators. II. Numerical simulations
International Nuclear Information System (INIS)
Proll, J. H. E.; Xanthopoulos, P.; Helander, P.
2013-01-01
Microinstabilities exhibit a rich variety of behavior in stellarators due to the many degrees of freedom in the magnetic geometry. It has recently been found that certain stellarators (quasi-isodynamic ones with maximum-J geometry) are partly resilient to trapped-particle instabilities, because fast-bouncing particles tend to extract energy from these modes near marginal stability. In reality, stellarators are never perfectly quasi-isodynamic, and the question thus arises whether they still benefit from enhanced stability. Here, the stability properties of Wendelstein 7-X and a more quasi-isodynamic configuration, QIPC, are investigated numerically and compared with the National Compact Stellarator Experiment and the DIII-D tokamak. In gyrokinetic simulations, performed with the gyrokinetic code GENE in the electrostatic and collisionless approximation, ion-temperature-gradient modes, trapped-electron modes, and mixed-type instabilities are studied. Wendelstein 7-X and QIPC exhibit significantly reduced growth rates for all simulations that include kinetic electrons, and the latter are indeed found to be stabilizing in the energy budget. These results suggest that imperfectly optimized stellarators can retain most of the stabilizing properties predicted for perfect maximum-J configurations
Parashar, T.; Yang, Y.; Chasapis, A.; Matthaeus, W. H.
2017-12-01
High resolution Magnetospheric Multiscale (MMS) plasma and magnetic field data obtained in the inhomogeneous turbulent magnetosheath directly reveals the exchanges of energy between electromagnetic, flow and random kinetic energy. The parameters that quantify these exchanges are based on standard manipulations of the collisionless Vlasov model of plasma dynamics [1], without appeal to viscous or other closures. No analysis of heat transport or heat conduction is carried out. Several intervals of burst mode data in the magnetosheath are considered. Time series of the work done by the electromagnetic field, and the pressure-stress interaction enable description of the pathways to dissipation in this low collisionality plasma. Using these examples we demonstrate that the pressure-stress interaction provides important information not readily revealed in other diagnostics concerning the physical processes that are observed. This method does not require any specific mechanism for its application such as reconnection or a selected mode, although with increased experience it will be useful in distinguishing among proposed possibilities. [1] Y. Yang et al, Phys. Plasmas 24, 072306 (2017); doi: 10.1063/1.4990421.
Energy Technology Data Exchange (ETDEWEB)
Falceta-Gonçalves, D. [SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom); Kowal, G. [Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Rua Arlindo Bettio, 1000, São Paulo, SP 03828-000 (Brazil)
2015-07-20
In this work we report on a numerical study of the cosmic magnetic field amplification due to collisionless plasma instabilities. The collisionless magnetohydrodynamic equations derived account for the pressure anisotropy that leads, in specific conditions, to the firehose and mirror instabilities. We study the time evolution of seed fields in turbulence under the influence of such instabilities. An approximate analytical time evolution of the magnetic field is provided. The numerical simulations and the analytical predictions are compared. We found that (i) amplification of the magnetic field was efficient in firehose-unstable turbulent regimes, but not in the mirror-unstable models; (ii) the growth rate of the magnetic energy density is much faster than the turbulent dynamo; and (iii) the efficient amplification occurs at small scales. The analytical prediction for the correlation between the growth timescales and pressure anisotropy is confirmed by the numerical simulations. These results reinforce the idea that pressure anisotropies—driven naturally in a turbulent collisionless medium, e.g., the intergalactic medium, could efficiently amplify the magnetic field in the early universe (post-recombination era), previous to the collapse of the first large-scale gravitational structures. This mechanism, though fast for the small-scale fields (∼kpc scales), is unable to provide relatively strong magnetic fields at large scales. Other mechanisms that were not accounted for here (e.g., collisional turbulence once instabilities are quenched, velocity shear, or gravitationally induced inflows of gas into galaxies and clusters) could operate afterward to build up large-scale coherent field structures in the long time evolution.
Model of magnetic reconnection in space and astrophysical plasmas
Energy Technology Data Exchange (ETDEWEB)
Boozer, Allen H. [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States)
2013-03-15
Maxwell's equations imply that exponentially smaller non-ideal effects than commonly assumed can give rapid magnetic reconnection in space and astrophysical plasmas. In an ideal evolution, magnetic field lines act as stretchable strings, which can become ever more entangled but cannot be cut. High entanglement makes the lines exponentially sensitive to small non-ideal changes in the magnetic field. The cause is well known in popular culture as the butterfly effect and in the theory of deterministic dynamical systems as a sensitive dependence on initial conditions, but the importance to magnetic reconnection is not generally recognized. Two-coordinate models are too constrained geometrically for the required entanglement, but otherwise the effect is general and can be studied in simple models. A simple model is introduced, which is periodic in the x and y Cartesian coordinates and bounded by perfectly conducting planes in z. Starting from a constant magnetic field in the z direction, reconnection is driven by a spatially smooth, bounded force. The model is complete and could be used to study the impulsive transfer of energy between the magnetic field and the ions and electrons using a kinetic plasma model.
Model of magnetic reconnection in space and astrophysical plasmas
International Nuclear Information System (INIS)
Boozer, Allen H.
2013-01-01
Maxwell's equations imply that exponentially smaller non-ideal effects than commonly assumed can give rapid magnetic reconnection in space and astrophysical plasmas. In an ideal evolution, magnetic field lines act as stretchable strings, which can become ever more entangled but cannot be cut. High entanglement makes the lines exponentially sensitive to small non-ideal changes in the magnetic field. The cause is well known in popular culture as the butterfly effect and in the theory of deterministic dynamical systems as a sensitive dependence on initial conditions, but the importance to magnetic reconnection is not generally recognized. Two-coordinate models are too constrained geometrically for the required entanglement, but otherwise the effect is general and can be studied in simple models. A simple model is introduced, which is periodic in the x and y Cartesian coordinates and bounded by perfectly conducting planes in z. Starting from a constant magnetic field in the z direction, reconnection is driven by a spatially smooth, bounded force. The model is complete and could be used to study the impulsive transfer of energy between the magnetic field and the ions and electrons using a kinetic plasma model.
Nonlinear simulation of magnetic reconnection with a drift kinetic electron model
International Nuclear Information System (INIS)
Zwingmann, W.; Ottaviani, M.
2004-01-01
The process of reconnection allows for a change of magnetic topology inside a plasma. It is an important process for eruptive phenomena in astrophysical plasma, and the sawtooth relaxation in laboratory plasma close to thermonuclear conditions. The sawtooth relaxation is associated with the collisionless electron tearing instability, caused by the electron inertia. A thorough treatment therefore requires a kinetic model for the electron dynamics. In this contribution, we report on the numerical simulation of the electron tearing instability by solving the Vlasov equation directly. The results confirm results of an early paper on the same subject, and extends them to smaller values of the collision skin depth d e = 0.25. Our results suggest a faster than exponential growth in the early nonlinear phase of the instability. We observe as well an asymmetry of the resulting fields. It seems, however, that the field structure becomes closer to the fluid case for small values of d e
Relation of astrophysical turbulence and magnetic reconnection
Energy Technology Data Exchange (ETDEWEB)
Lazarian, A. [Department of Astronomy, University of Wisconsin, 475 North Charter Street, Madison, Wisconsin 53706 (United States); Eyink, Gregory L. [Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Vishniac, E. T. [Department of Physics and Astronomy, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1 (Canada)
2012-01-15
Astrophysical fluids are generically turbulent and this must be taken into account for most transport processes. We discuss how the preexisting turbulence modifies magnetic reconnection and how magnetic reconnection affects the MHD turbulent cascade. We show the intrinsic interdependence and interrelation of magnetic turbulence and magnetic reconnection, in particular, that strong magnetic turbulence in 3D requires reconnection and 3D magnetic turbulence entails fast reconnection. We follow the approach in Eyink et al.[Astrophys. J. 743, 51 (2011)] to show that the expressions of fast magnetic reconnection in A. Lazarian and E. T. Vishniac [Astrophys. J. 517, 700 (1999)] can be recovered if Richardson diffusion of turbulent flows is used instead of ordinary Ohmic diffusion. This does not revive, however, the concept of magnetic turbulent diffusion which assumes that magnetic fields can be mixed up in a passive way down to a very small dissipation scales. On the contrary, we are dealing the reconnection of dynamically important magnetic field bundles which strongly resist bending and have well defined mean direction weakly perturbed by turbulence. We argue that in the presence of turbulence the very concept of flux-freezing requires modification. The diffusion that arises from magnetic turbulence can be called reconnection diffusion as it based on reconnection of magnetic field lines. The reconnection diffusion has important implications for the continuous transport processes in magnetized plasmas and for star formation. In addition, fast magnetic reconnection in turbulent media induces the First order Fermi acceleration of energetic particles, can explain solar flares and gamma ray bursts. However, the most dramatic consequence of these developments is the fact that the standard flux freezing concept must be radically modified in the presence of turbulence.
Gyrokinetic Electron and Fully Kinetic Ion Particle Simulation of Collisionless Plasma Dynamics
Energy Technology Data Exchange (ETDEWEB)
Yu Lin; Xueyi Wang; Liu Chen; Zhihong Lin
2009-08-11
Fully kinetic-particle simulations and hybrid simulations have been utilized for decades to investigate various fundamental plasma processes, such as magnetic reconnection, fast compressional waves, and wave-particle interaction. Nevertheless, due to disparate temporal and spatial scales between electrons and ions, existing fully kinetic-particle codes have to employ either unrealistically high electron-to-ion mass ratio, me/mi, or simulation domain limited to a few or a few ten's of the ion Larmor radii, or/and time much less than the global Alfven time scale in order to accommodate available computing resources. On the other hand, in the hybrid simulation, the ions are treated as fully kinetic particles but the electrons are treated as a massless fluid. The electron kinetic effects, e.g., wave-particle resonances and finite electron Larmor radius effects, are completely missing. Important physics, such as the electron transit time damping of fast compressional waves or the triggering mechanism of magnetic reconnection in collisionless plasmas is absent in the hybrid codes. Motivated by these considerations and noting that dynamics of interest to us has frequencies lower than the electron gyrofrequency, we planned to develop an innovative particle simulation model, gyrokinetic (GK) electrons and fully kinetic (FK) ions. In the GK-electron and FK-ion (GKe/FKi) particle simulation model, the rapid electron cyclotron motion is removed, while keeping finite electron Larmor radii, realistic me/mi ratio, wave-particle interactions, and off-diagonal components of electron pressure tensor. The computation power can thus be significantly improved over that of the full-particle codes. As planned in the project DE-FG02-05ER54826, we have finished the development of the new GK-electron and FK-ion scheme, finished its benchmark for a uniform plasma in 1-D, 2-D, and 3-D systems against linear waves obtained from analytical theories, and carried out a further convergence
Gyrokinetic Electron and Fully Kinetic Ion Particle Simulation of Collisionless Plasma Dynamics
International Nuclear Information System (INIS)
Lin, Yu; Wang, Xueyi; Chen, Liu; Lin, Zhihong
2009-01-01
Fully kinetic-particle simulations and hybrid simulations have been utilized for decades to investigate various fundamental plasma processes, such as magnetic reconnection, fast compressional waves, and wave-particle interaction. Nevertheless, due to disparate temporal and spatial scales between electrons and ions, existing fully kinetic-particle codes have to employ either unrealistically high electron-to-ion mass ratio, me/mi, or simulation domain limited to a few or a few ten's of the ion Larmor radii, or/and time much less than the global Alfven time scale in order to accommodate available computing resources. On the other hand, in the hybrid simulation, the ions are treated as fully kinetic particles but the electrons are treated as a massless fluid. The electron kinetic effects, e.g., wave-particle resonances and finite electron Larmor radius effects, are completely missing. Important physics, such as the electron transit time damping of fast compressional waves or the triggering mechanism of magnetic reconnection in collisionless plasmas is absent in the hybrid codes. Motivated by these considerations and noting that dynamics of interest to us has frequencies lower than the electron gyrofrequency, we planned to develop an innovative particle simulation model, gyrokinetic (GK) electrons and fully kinetic (FK) ions. In the GK-electron and FK-ion (GKe/FKi) particle simulation model, the rapid electron cyclotron motion is removed, while keeping finite electron Larmor radii, realistic me/mi ratio, wave-particle interactions, and off-diagonal components of electron pressure tensor. The computation power can thus be significantly improved over that of the full-particle codes. As planned in the project DE-FG02-05ER54826, we have finished the development of the new GK-electron and FK-ion scheme, finished its benchmark for a uniform plasma in 1-D, 2-D, and 3-D systems against linear waves obtained from analytical theories, and carried out a further convergence test
High-power laser experiments to study collisionless shock generation
Directory of Open Access Journals (Sweden)
Sakawa Y.
2013-11-01
Full Text Available A collisionless Weibel-instability mediated shock in a self-generated magnetic field is studied using two-dimensional particle-in-cell simulation [Kato and Takabe, Astophys. J. Lett. 681, L93 (2008]. It is predicted that the generation of the Weibel shock requires to use NIF-class high-power laser system. Collisionless electrostatic shocks are produced in counter-streaming plasmas using Gekko XII laser system [Kuramitsu et al., Phys. Rev. Lett. 106, 175002 (2011]. A NIF facility time proposal is approved to study the formation of the collisionless Weibel shock. OMEGA and OMEGA EP experiments have been started to study the plasma conditions of counter-streaming plasmas required for the NIF experiment using Thomson scattering and to develop proton radiography diagnostics.
Collisionless Weibel shocks: Full formation mechanism and timing
Energy Technology Data Exchange (ETDEWEB)
Bret, A. [ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain); Stockem, A. [GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisbon (Portugal); Institut für Theoretische Physik, Lehrstuhl IV: Weltraum- und Astrophysik, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Narayan, R. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-51 Cambridge, Massachusetts 02138 (United States); Silva, L. O. [GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisbon (Portugal)
2014-07-15
Collisionless shocks in plasmas play an important role in space physics (Earth's bow shock) and astrophysics (supernova remnants, relativistic jets, gamma-ray bursts, high energy cosmic rays). While the formation of a fluid shock through the steepening of a large amplitude sound wave has been understood for long, there is currently no detailed picture of the mechanism responsible for the formation of a collisionless shock. We unravel the physical mechanism at work and show that an electromagnetic Weibel shock always forms when two relativistic collisionless, initially unmagnetized, plasma shells encounter. The predicted shock formation time is in good agreement with 2D and 3D particle-in-cell simulations of counterstreaming pair plasmas. By predicting the shock formation time, experimental setups aiming at producing such shocks can be optimised to favourable conditions.
Collisionless emission of radiation by an inhomogeneous plasma
International Nuclear Information System (INIS)
Mejerovich, B.Eh.
1976-01-01
Collisionless emission of radiation by an inhomogeneous plasma due to the finite motion of charges in the field of external forces and collective interaction forces is studied. The intensity of the radiation is inversely proportional to the square of the transverse dimensions of the plasma. It apparently makes the main contribution to the radiation from a vacuum spark and other relativitstic beams compressed to a small size by collective interaction forces. The intensity of the collisionless radiation is calculated by taking into account Fermi statistics of the electrons. The spectral radiance in the low frequency range increases with frequency, reaches a maximum at the frequency of the finite motion of the emitters and then decreases. Measurement of collisionless radiation emission by a plasma compressed to a small size by the pinch effect is a natural way of diagnosing the plasma
Three-dimensional Oscillatory Magnetic Reconnection
International Nuclear Information System (INIS)
Thurgood, Jonathan O.; McLaughlin, James A.; Pontin, David I.
2017-01-01
Here we detail the dynamic evolution of localized reconnection regions about 3D magnetic null points using numerical simulation. We demonstrate for the first time that reconnection triggered by the localized collapse of a 3D null point that is due to an external magnetohydrodynamic (MHD) wave involves a self-generated oscillation, whereby the current sheet and outflow jets undergo a reconnection reversal process during which back-pressure formation at the jet heads acts to prise open the collapsed field before overshooting the equilibrium into an opposite-polarity configuration. The discovery that reconnection at fully 3D nulls can proceed naturally in a time-dependent and periodic fashion suggests that oscillatory reconnection mechanisms may play a role in explaining periodicity in astrophysical phenomena associated with magnetic reconnection, such as the observed quasi-periodicity of solar and stellar flare emission. Furthermore, we find that a consequence of oscillatory reconnection is the generation of a plethora of freely propagating MHD waves that escape the vicinity of the reconnection region.
Three-dimensional Oscillatory Magnetic Reconnection
Energy Technology Data Exchange (ETDEWEB)
Thurgood, Jonathan O.; McLaughlin, James A. [Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle upon Tyne, NE1 1ST (United Kingdom); Pontin, David I., E-mail: jonathan.thurgood@northumbria.ac.uk [Division of Mathematics, University of Dundee, Dundee, DD1 4HN (United Kingdom)
2017-07-20
Here we detail the dynamic evolution of localized reconnection regions about 3D magnetic null points using numerical simulation. We demonstrate for the first time that reconnection triggered by the localized collapse of a 3D null point that is due to an external magnetohydrodynamic (MHD) wave involves a self-generated oscillation, whereby the current sheet and outflow jets undergo a reconnection reversal process during which back-pressure formation at the jet heads acts to prise open the collapsed field before overshooting the equilibrium into an opposite-polarity configuration. The discovery that reconnection at fully 3D nulls can proceed naturally in a time-dependent and periodic fashion suggests that oscillatory reconnection mechanisms may play a role in explaining periodicity in astrophysical phenomena associated with magnetic reconnection, such as the observed quasi-periodicity of solar and stellar flare emission. Furthermore, we find that a consequence of oscillatory reconnection is the generation of a plethora of freely propagating MHD waves that escape the vicinity of the reconnection region.
From vortex reconnections to quantum turbulence
International Nuclear Information System (INIS)
Lipniacki, T.
2001-01-01
An alternative approach to quantum turbulence is proposed in order to derive the evolution equation for vortex line-length density. Special attention is paid to reconnections of vortex lines. The summed line-length change ΔS of two vortex lines resulting from the reconnection (in the presence of counterflow V ns ) can be approximated in the form: δS=-at 1/2 +bV ns 2 t 3/2 , with a>0, b≥0, at least until δS≤0. For steady-state turbulence, the average line-length change left angle ΔS right angle between reconnections has to be zero. If, for a given value of the counterflow, the line density is smaller than the equilibrium one, the reconnections occur less frequently and left angle ΔS right angle becomes positive and the line density grows until the equilibrium is restored. When the line-density is too large, the reconnections are more frequent, the lines shorten between reconnections and the line density gets smaller. The time derivative of the total line density is proportional to the reconnection frequency multiplied by the average line-length change due to a single reconnection. The evolution equation obtained in the proposed approach resembles the alternative Vinen equation. (orig.)
Collisionless kinetic-fluid model of zonal flows in toroidal plasmas
International Nuclear Information System (INIS)
Sugama, H.; Watanabe, T.-H.; Horton, W.
2006-12-01
A novel kinetic-fluid model is presented, which describes collisionless time evolution of zonal flows in tokamaks. In the new zonal-flow closure relations, the parallel heat fluxes are written by the sum of short- and long-time-evolution parts. The former part is given in the dissipative form of the parallel heat diffusion and relates to collisionless damping processes. The latter is derived from the long-time-averaged gyrocenter distribution and plays a major role in describing low-frequency or stationary zonal flows, for which the parallel heat fluxes are expressed in terms of the parallel flow as well as the nonlinear-source and initial-condition terms. It is shown analytically and numerically that, when applied to the zonal flow driven by either ion or electron temperature gradient turbulence, the kinetic-fluid equations including the new closure relations can reproduce the same long-time zonal-flow responses to the initial condition and to the turbulence source as those obtained from the gyrokinetic model. (author)
Relativistic reconnection in near critical Schwinger field
Schoeffler, Kevin; Grismayer, Thomas; Fonseca, Ricardo; Silva, Luis; Uzdensky, Dmitri
2017-10-01
Magnetic reconnection in relativistic pair plasma with QED radiation and pair-creation effects in the presence of strong magnetic fields is investigated using 2D particle-in-cell simulations. The simulations are performed with the QED module of the OSIRIS framework that includes photon emission by electrons and positrons and single photon decay into pairs (non-linear Breit-Wheeler). We investigate the effectiveness of reconnection as a pair- and gamma-ray production mechanism across a broad range of reconnecting magnetic fields, including those approaching the critical quantum (Schwinger) field, and we also explore how the radiative cooling and pair-production processes affect reconnection. We find that in the extreme field regime, the magnetic energy is mostly converted into radiation rather than into particle kinetic energy. This study is a first concrete step towards better understanding of magnetic reconnection as a possible mechanism powering gamma-ray flares in magnetar magnetospheres.
An Introduction to the Physics of Collisionless Shocks
International Nuclear Information System (INIS)
Russell, C.T.
2005-01-01
Collisionless shocks are important in astrophysical, heliospheric and magnetospheric settings. They deflect flows around obstacles; they heat the plasma, and they alter the properties of the flow as it intersects those obstacles. The physical processes occurring at collisionless shocks depend on the Mach number (strength) and beta (magnetic to thermal pressure) of the shocks and the direction of the magnetic field relative to the shock normal. Herein we review how the shock has been modeled in numerical simulations, the basic physical processes at work, including dissipation and thermalization, the electric potential drop at the shock, and the formation of the electron and ion foreshocks
Interplay between electric fields generated by reconnection and by secondary processes
Lapenta, G.; Innocenti, M. E.; Pucci, F.; Cazzola, E.; Berchem, J.; Newman, D. L.; El-Alaoui, M.; Walker, R. J.; Goldman, M. V.; Ergun, R.
2017-12-01
Reconnection regions are surrounded by several sources of free energy that push reconnection towards a turbulent regime: beams can drive streaming instabilities, currents can drive tearing like secondary instabilities, velocity and density shears can drive Kelvin-Helmholtz or Rayleigh-Taylor type of instabilities. The interaction between these instabilities can be very complex. For instance, from a kinetic point of view, instabilities resulting from shears are intermixed with drift-type instabilities, such as drift-kink, kink driven by relative species drift, lower hybrid modes of the electrostatic or electromagnetic type. In addition, the interaction with reconnection is two ways: reconnection causes the conditions for those instabilities to develop while the instabilities alter the progress of reconnection. Although MMS has observed features that can be associated with such instabilities: strong localized parallel electric fields (monopolar and bipolar), fluctuations in the drift range (lower hybrid, whistler), it has been difficult to determine which ones operate and how they differ depending on the symmetric and asymmetric reconnection configurations observed in the magnetotail and at the magnetopause, respectively. We present a comparison between the results of kinetic simulations obtained for typical magnetotail and the magnetopause configurations, using for each of them both analytical equilibria and results of global MHD simulations to initialize the iPIC3D simulations. By selecting what drivers (e.g. shear/no shear) are present, we can identify what instabilities develop and determine their effects on the progression of reconnection in the magnetotail and at the magnetopause. We focus especially on the role of drift waves and whistler instabilities, and discuss our results by comparing them with MMS observations.
Influence of Initial Vorticity Distribution on Axisymmetric Vortex Breakdown and Reconnection
Young, Larry A.
2007-01-01
An analytical treatment has been developed to study some of the axisymmetric vortex breakdown and reconnection fluid dynamic processes underlying body-vortex interactions that are frequently manifested in rotorcraft and propeller-driven fixed-wing aircraft wakes. In particular, the presence of negative vorticity in the inner core of a vortex filament (one example of which is examined in this paper) subsequent to "cutting" by a solid body has a profound influence on the vortex reconnection, leading to analog flow behavior similar to vortex breakdown phenomena described in the literature. Initial vorticity distributions (three specific examples which are examined) without an inner core of negative vorticity do not exhibit vortex breakdown and instead manifest diffusion-like properties while undergoing vortex reconnection. Though this work focuses on laminar vortical flow, this work is anticipated to provide valuable insight into rotary-wing aerodynamics as well as other types of vortical flow phenomena.
Diagnosis of Acceleration, Reconnection, Turbulence, and Heating
Dufor, Mikal T.; Jemiolo, Andrew J.; Keesee, Amy; Cassak, Paul; Tu, Weichao; Scime, Earl E.
2017-10-01
The DARTH (Diagnosis of Acceleration, Reconnection, Turbulence, and Heating) experiment is an intermediate-scale, experimental facility designed to study magnetic reconnection at and below the kinetic scale of ions and electrons. The experiment will have non-perturbative diagnostics with high temporal and three-dimensional spatial resolution, giving it the capability to investigate kinetic-scale physics. Of specific scientific interest are particle acceleration, plasma heating, turbulence and energy dissipation during reconnection. Here we will describe the magnetic field system and the two plasma guns used to create flux ropes that then merge through magnetic reconnection. We will also describe the key diagnostic systems: laser induced fluorescence (LIF) for ion vdf measurements, a 300 GHz microwave scattering system for sub-mm wavelength fluctuation measurements and a Thomson scattering laser for electron vdf measurements. The vacuum chamber is designed to provide unparalleled access for these particle diagnostics. The scientific goals of DARTH are to examine particle acceleration and heating during, the role of three-dimensional instabilities during reconnection, how reconnection ceases, and the role of impurities and asymmetries in reconnection. This work was supported by the by the O'Brien Energy Research Fund.
Hydrodynamics of ponderomotive interactions in a collisionless plasma
International Nuclear Information System (INIS)
Kono, M.; Skoric, M.M.; ter Haar, D.
1987-01-01
A hydrodynamic treatment of ponderomotive interactions in a collisionless plasma is presented and it is shown that consistent hydrodynamics leads to the correct expression for the solenoidal ponderomotive electron current density, a result previously thought to be derivable only in the framework of the warm-plasma kinetic theory
Highly Supersonic Ion Pulses in a Collisionless Magnetized Plasma
DEFF Research Database (Denmark)
Juul Rasmussen, Jens; Schrittwieser, R.
1982-01-01
The initial transient response of a collisionless plasma to a high positive voltage step is investigated. Four different pulses are observed. An electron plasma wave pulse is followed by an ion burst. The latter is overtaken and absorbed by a highly supersonic ion pulse. Thereafter, an ion...
Collisionless shocks and upstream waves and particles: Introductory remarks
International Nuclear Information System (INIS)
Kennel, C.F.
1981-01-01
We discuss more aspects of collisionless shock theory that might be pertinent to the problem of upstream waves and particles. It is hoped that our qualititive remarks may be a useful guide for the general reader as he goes through the detailed papers to come
Magnetic Reconnection in the Solar Chromosphere
Lukin, Vyacheslav S.; Ni, Lei; Murphy, Nicholas Arnold
2017-08-01
We report on the most recent efforts to accurately and self-consistently model magnetic reconnection processes in the context of the solar chromosphere. The solar chromosphere is a notoriously complex and highly dynamic boundary layer of the solar atmosphere where local variations in the plasma parameters can be of the order of the mean values. At the same time, the interdependence of the physical processes such as magnetic field evolution, local and global energy transfer between internal and electromagnetic plasma energy, radiation transport, plasma reactivity, and dissipation mechanisms make it a particularly difficult system to self-consistently model and understand. Several recent studies have focused on the micro-physics of multi-fluid magnetic reconnection at magnetic nulls in the weakly ionized plasma environment of the lower chromosphere[1-3]. Here, we extend the previous work by considering a range of spatial scales and magnetic field strengths in a configuration with component magnetic reconnection, i.e., for magnetic reconnection with a guide field. We show that in all cases the non-equilibrium reactivity of the plasma and the dynamic interaction among the plasma processes play important roles in determining the structure of the reconnection region. We also speculate as to the possible observables of chromospheric magnetic reconnection and the likely plasma conditions required for generation of Ellerman and IRIS bombs.[1] Leake, Lukin, Linton, and Meier, “Multi-fluid simulations of chromospheric magnetic reconnection in a weakly ionized reacting plasma,” ApJ 760 (2012).[2] Leake, Lukin, and Linton, “Magnetic reconnection in a weakly ionized plasma,” PoP 20 (2013).[3] Murphy and Lukin, “Asymmetric magnetic reconnection in weakly ionized chromospheric plasmas,” ApJ 805 (2015).[*Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National
Magnetic reconnection in the terrestrial magnetosphere
International Nuclear Information System (INIS)
Feldman, W.C.
1984-01-01
An overview is given of quantitative comparisons between measured phenomena in the terrestrial magnetosphere thought to be associated with magnetic reconnection, and related theoretical predictions based on Petschek's simple model. Although such a comparison cannot be comprehensive because of the extended nature of the process and the relatively few in situ multipoint measurements made to date, the agreement is impressive where comparisons have been possible. This result leaves little doubt that magnetic reconnection does indeed occur in the terrestrial magnetosphere. The maximum reconnection rate, expressed in terms of the inflow Mach number, M/sub A/, is measured to be M/sub A/ = 0.2 +- 0.1
Tripolar electric field Structure in guide field magnetic reconnection
S. Fu; S. Huang; M. Zhou; B. Ni; X. Deng
2018-01-01
It has been shown that the guide field substantially modifies the structure of the reconnection layer. For instance, the Hall magnetic and electric fields are distorted in guide field reconnection compared to reconnection without guide fields (i.e., anti-parallel reconnection). In this paper, we performed 2.5-D electromagnetic full particle simulation to study the electric field structures in magnetic reconnection under different initial guide fields (Bg). Once the amplit...
Waves and Instabilities in Collisionless Shocks
1984-04-01
occur in the electron foreshock and are driven by suprathermal electrons escaping into the region upstream of the shock. Both the ion-acoustic and...ULF waves occur in the ion foreshock and are associated with ions streaming into the region upstream of 11 the shock. The region downstream of the...the discussion of these waves it is useful to distinguish two regions, called the electron foreshock and the ion foreshock . Because the particles
Electron velocity distributions near collisionless shocks
International Nuclear Information System (INIS)
Feldman, W.C.
1984-01-01
Recent studies of the amount of electron heating and of the shapes of electron velocity distributions across shocks near the earth are reviewed. It is found that electron heating increases with increasing shock strength but is always less than the ion heating. The scale length of electron heating is also less than that for the ions. Electron velocity distributions show characteristic shapes which depend on the strength of the shocks. At the weaker shocks, electron heating is mostly perpendicular to the ambient magnetic field, bar B, and results in Gaussian-shaped velocity distributions at low-to-moderate energies. At the stronger shocks, parallel heating predominates resulting in flat-topped velocity distributions. A reasonable interpretation of these results indicates that at the weaker shocks electron heating is dominated by a tendency toward conservation of the magnetic moment. At the stronger fast-mode shocks, this heating is thought to be dominated by an acceleration parallel to bar B produced by the macroscopic shock electric field followed by beam driven plasma instabilities. Some contribution to the heating at the stronger shocks from conservation of the magnetic moment and cross-field current-driven instabilities cannot be ruled out. Although the heating at slow-mode shocks is also dominated by instabilities driven by magnetic field-aligned electron beams, their acceleration mechanism is not yet established
Particle acceleration at a reconnecting magnetic separator
Threlfall, J.; Neukirch, T.; Parnell, C. E.; Eradat Oskoui, S.
2015-02-01
Context. While the exact acceleration mechanism of energetic particles during solar flares is (as yet) unknown, magnetic reconnection plays a key role both in the release of stored magnetic energy of the solar corona and the magnetic restructuring during a flare. Recent work has shown that special field lines, called separators, are common sites of reconnection in 3D numerical experiments. To date, 3D separator reconnection sites have received little attention as particle accelerators. Aims: We investigate the effectiveness of separator reconnection as a particle acceleration mechanism for electrons and protons. Methods: We study the particle acceleration using a relativistic guiding-centre particle code in a time-dependent kinematic model of magnetic reconnection at a separator. Results: The effect upon particle behaviour of initial position, pitch angle, and initial kinetic energy are examined in detail, both for specific (single) particle examples and for large distributions of initial conditions. The separator reconnection model contains several free parameters, and we study the effect of changing these parameters upon particle acceleration, in particular in view of the final particle energy ranges that agree with observed energy spectra.
Electron acceleration by turbulent plasmoid reconnection
Zhou, X.; Büchner, J.; Widmer, F.; Muñoz, P. A.
2018-04-01
In space and astrophysical plasmas, like in planetary magnetospheres, as that of Mercury, energetic electrons are often found near current sheets, which hint at electron acceleration by magnetic reconnection. Unfortunately, electron acceleration by reconnection is not well understood yet, in particular, acceleration by turbulent plasmoid reconnection. We have investigated electron acceleration by turbulent plasmoid reconnection, described by MHD simulations, via test particle calculations. In order to avoid resolving all relevant turbulence scales down to the dissipation scales, a mean-field turbulence model is used to describe the turbulence of sub-grid scales and their effects via a turbulent electromotive force (EMF). The mean-field model describes the turbulent EMF as a function of the mean values of current density, vorticity, magnetic field as well as of the energy, cross-helicity, and residual helicity of the turbulence. We found that, mainly around X-points of turbulent reconnection, strongly enhanced localized EMFs most efficiently accelerated electrons and caused the formation of power-law spectra. Magnetic-field-aligned EMFs, caused by the turbulence, dominate the electron acceleration process. Scaling the acceleration processes to parameters of the Hermean magnetotail, electron energies up to 60 keV can be reached by turbulent plasmoid reconnection through the thermal plasma.
Stochastic sawtooth reconnection in ASDEX Upgrade
International Nuclear Information System (INIS)
Igochine, V.; Dumbrajs, O.; Zohm, H.; Flaws, A.
2007-01-01
In this paper we investigate non-complete sawtooth reconnection in the ASDEX Upgrade tokamak. Such reconnection phenomena are associated with internal m/n = 1/1 kink mode which does not vanish after the crash phase (as would be the case for complete reconnection). It is shown that this sawtooth cannot be fully described by pure m/n = 1/1 mode and that higher harmonics play an important role during the sawtooth crash phase. We employ the Hamiltonian formalism and reconstructed perturbations to model incomplete sawtooth reconnection. It is demonstrated that stochastization appears due to the excitation of low-order resonances which are present in the corresponding q-profiles inside the q = 1 surface which reflects the key role of the q 0 value. Depending on this value two completely different situations are possible for one and the same mode perturbations: (i) the resonant surfaces are present in the q-profile leading to stochasticity and sawtooth crash (q 0 ∼ 0.7 ± 0.1); (ii) the resonant surfaces are not present, which means no stochasticity in the system and no crash event (q 0 ∼ 0.9 ± 0.05). Accordingly the central safety factor value is always less than unity in the case of a non-complete sawtooth reconnection. Our investigations show that the stochastic model agrees well with the experimental observations and can be proposed as a promising candidate for an explanation of the sawtooth reconnection
Achieving fast reconnection in resistive MHD models via turbulent means
Directory of Open Access Journals (Sweden)
G. Lapenta
2012-04-01
Full Text Available Astrophysical fluids are generally turbulent and this preexisting turbulence must be taken into account for models of magnetic reconnection in astrophysical, solar or heliospheric environments. In addition, reconnection itself induces turbulence which provides an important feedback on the reconnection process. In this paper we discuss both the theoretical model and numerical evidence that magnetic reconnection becomes fast in the approximation of resistive MHD. We consider the relation between the Lazarian and Vishniac turbulent reconnection theory and Lapenta's numerical experiments testifying of the spontaneous onset of turbulent reconnection in systems which are initially laminar.
Numerical simulations of energy transfer in two collisionless interpenetrating plasmas
Directory of Open Access Journals (Sweden)
Davis S.
2013-11-01
Full Text Available Ion stream instabilities are essential for collisionless shock formation as seen in astrophysics. Weakly relativistic shocks are considered as candidates for sources of high energy cosmic rays. Laboratory experiments may provide a better understanding of this phenomenon. High intensity short pulse laser systems are opening possibilities for efficient ion acceleration to high energies. Their collision with a secondary target could be used for collisionless shock formation. In this paper, using particle-in-cell simulations we are studying interaction of a sub-relativistic, laser created proton beam with a secondary gas target. We show that the ion bunch initiates strong electron heating accompanied by the Weibel-like filamentation and ion energy losses. The energy repartition between ions, electrons and magnetic fields are investigated. This yields insight on the processes occurring in the interstellar medium (ISM and gamma-ray burst afterglows.
Evolution of velocity dispersion along cold collisionless flows
International Nuclear Information System (INIS)
Banik, Nilanjan; Sikivie, Pierre
2016-01-01
We found that the infall of cold dark matter onto a galaxy produces cold collisionless flows and caustics in its halo. If a signal is found in the cavity detector of dark matter axions, the flows will be readily apparent as peaks in the energy spectrum of photons from axion conversion, allowing the densities, velocity vectors and velocity dispersions of the flows to be determined. We also discuss the evolution of velocity dispersion along cold collisionless flows in one and two dimensions. A technique is presented for obtaining the leading behaviour of the velocity dispersion near caustics. The results are used to derive an upper limit on the energy dispersion of the Big Flow from the sharpness of its nearby caustic, and a prediction for the dispersions in its velocity components
Heating and generation of suprathermal particles at collisionless shocks
International Nuclear Information System (INIS)
Thomsen, M.F.
1985-01-01
Collisionless plasma shocks are different from ordinary collisional fluid shocks in several important respects. They do not in general heat the electrons and ions equally, nor do they produce Maxwellian velocity distributions downstream. Furthermore, they commonly generate suprathermal particles which propagate into the upstream region, giving advance warning of the presence of the shock and providing a ''seed'' population for further acceleration to high energies. Recent space observations and theory have revealed a great deal about the heating mechanisms which occur in collisionless shocks and about the origin of the various suprathermal particle populations which are found in association with them. An overview of the present understanding of these subjects is presented herein. 83 refs., 8 figs
How to Patch Active Plasma and Collisionless Sheath: Practical Guide
International Nuclear Information System (INIS)
Kaganovich, Igor D.
2002-01-01
Most plasmas have a very thin sheath compared with the plasma dimension. This necessitates separate calculations of the plasma and sheath. The Bohm criterion provides the boundary condition for calculation of plasma profiles. To calculate sheath properties, a value of electric field at the plasma-sheath interface has to be specified in addition to the Bohm criterion. The value of the boundary electric field and robust procedure to approximately patch plasma and collisionless sheath with a very good accuracy are reported
Zonal flow generation in collisionless trapped electron mode turbulence
International Nuclear Information System (INIS)
Anderson, J; Nordman, H; Singh, R; Weiland, J
2006-01-01
In the present work the generation of zonal flows in collisionless trapped electron mode (TEM) turbulence is studied analytically. A reduced model for TEM turbulence is utilized based on an advanced fluid model for reactive drift waves. An analytical expression for the zonal flow growth rate is derived and compared with the linear TEM growth, and its scaling with plasma parameters is examined for typical tokamak parameter values
Unequilibrium kinetic of collisionless boundary layers in binary plasmas
International Nuclear Information System (INIS)
Kotelnikov, V.A.; Nikolaev, F.A.; Cherepanov, V.V.
1985-01-01
Relaxation processes of kinetic nonequilibrium collisionless boundary layers near spherical charged full absorbing surfaces in binary low-temperature plasmas are investigated. The effect of magnetic field on relaxation processes was neglected. The dynamics of components of the ionized gas was treated near the boundary layer. The potential distribution and the space dependence of concentration were calculated numerically. These results agree well with the experimental data. (D.Gy.)
Numerical treatment of linearized equations describing inhomogeneous collisionless plasmas
International Nuclear Information System (INIS)
Lewis, H.R.
1979-01-01
The equations governing the small-signal response of spatially inhomogeneous collisionless plasmas have practical significance in physics, for example in controlled thermonuclear fusion research. Although the solutions are very complicated and the equations are different to solve numerically, effective methods for them are being developed which are applicable when the equilibrium involves only one nonignorable coordinate. The general theoretical framework probably will provide a basis for progress when there are two or three nonignorable coordinates
Magnetic field line reconnection experiments
International Nuclear Information System (INIS)
Gekelman, W.; Stenzel, R.L.; Wild, N.
1982-01-01
A laboratory experiment concerned with the basic physics of magnetic field line reconnection is discussed. Stimulated by important processes in space plasmas and anomalous transport in fusion plasmas the work addresses the following topics: Dynamic magnetic fields in a high beta plasma, magnetic turbulence, plasma dynamics and energy transport. First, the formation of magnetic neutral sheets, tearing and island coalescence are shown. Nonstationary magnetic fluctuations are statistically evaluated displaying the correlation tensor in the #betta#-k domain for mode identification. Then, the plasma properties are analyzed with particular emphasis on transport processes. Although the classical fluid flow across the separatrix can be observed, the fluctuation processes strongly modify the plasma dynamics. Direct measurements of the fluid force density and ion acceleration indicate the presence of an anomalous scattering process characterized by an effective scattering tensor. Turbulence also enhances the plasma resistivity by one to two orders of magnitude. Measurements of the three-dimensional electron distribution function using a novel energy analyzer exhibit the formation of runaway electrons in the current sheet. Associated micro-instabilities are observed. Finally, a macroscopic disruptive instability of the current sheet is observed. Excess magnetic field energy is converted at a double layer into particle kinetic energy and randomized through beam-plasma instabilities. These laboratory results are compared with related observations in space and fusion plasmas. (Auth.)
Return currents in solar flares - Collisionless effects
Rowland, H. L.; Vlahos, L.
1985-01-01
If the primary, precipitating electrons in a solar flare are unstable to beam plasma interactions, it is shown that strong Langmuir turbulence can seriously modify the way in which a return current is carried by the background plasma. In particular, the return (or reverse) current will not be carried by the bulk of the electrons, but by a small number of high velocity electrons. For beam/plasma densities greater than 0.01, this can reduce the effects of collisions on the return current. For higher density beams where the return current could be unstable to current driven instabilities, the effects of strong turbulence anomalous resistivity is shown to prevent the appearance of such instabilities. Again in this regime, how the return current is carried is determined by the beam generated strong turbulence.
Simulation study of MHD relaxation and reconnection processes in RFP plasma
International Nuclear Information System (INIS)
Kusano, Kanya; Kunimoto, Kaito; Suzuki, Yoshio; Tamano, Teruo; Sato, Tetsuya
1991-01-01
The authors have studied several nonlinear processes in RFP plasma through the use of 3D MHD simulations. In particular, they have shed light on: (1) dynamo and self-sustainment in reversed-field pinch (RFP), (2) phase locking process in MHD relaxation, and (3) the heating and acceleration in magnetic reconnection process. First, the contributions of the kink (m = 1) mode (linearly unstable) and of the m = 0 mode (driven by nonlinear coupling) to the dynamo are qualitatively evaluated using a high accuracy simulation. It is found that, if the free energy to drive kink instabilities is as small as that in the actual experimental plasma, the m = 0 modes, driven nonlinearly, play a more important role for the flux generation than the kink modes. Secondly, numerical simulations of the self-sustainment process in a RFP are performed. It is confirmed that the self-sustainment process is a coherent oscillating process composed of the MHD relaxation and the resistive diffusion processes. Toroidal phase locking process of kink modes is numerically observed in simulations of self-reversal and self-sustainment processes. It has characteristics similar to the slinky mode observed in the OHTE experiment. A detailed investigation reveals that nonlinear coupling between the most unstable two kink modes governs the entire dynamics in all kink modes and leads to the phase locking process. They find that reconnection can accelerate plasma over a local Alfven speed. This is a result of the fact that the magnetic field in the downstream area plays a similar role to de Laval nozzle. They also investigate the heating mechanisms in reconnection process. It is revealed that the viscous heating rate is as large as the joule heating rate in the reconnection process. This result implies that the viscous heating in the reconnection process is an important candidate for the mechanism to explain the RFP experiments where the ion temperatures is higher than the electron temperature
International Nuclear Information System (INIS)
Chang, C.S.; Miller, R.L.
1983-01-01
It has long been recognized that if an EBT-confined plasma could be maintained in the collisionless-ion regime, characterized by positive ambipolar potential and positive radial electric field, the particle loss rates could be reduced by a large factor. The extent to which the loss rate of energy could be reduced has not been as clearly determined, and has been investigated recently using a one-dimensional, time-dependent transport code developed for this purpose. We find that the energy confinement can be improved by roughly an order of magnitude by maintaining a positive radial electric field that increases monotonically with radius, giving a large ExB drift near the outer edge of the core plasma. The radial profiles of heat deposition required to sustain these equilibria will be presented, and scenarios for obtaining dynamical access to the equilibria will be discussed
Moving grids for magnetic reconnection via Newton-Krylov methods
Yuan, Xuefei; Jardin, Stephen C.; Keyes, David E.
2011-01-01
This paper presents a set of computationally efficient, adaptive grids for magnetic reconnection phenomenon where the current density can develop large gradients in the reconnection region. Four-field extended MagnetoHydroDynamics (MHD) equations
Magnetic Reconnection in Different Environments: Similarities and Differences
Hesse, Michael; Aunai, Nicolas; Kuznetsova, Masha; Zenitani, Seiji; Birn, Joachim
2014-01-01
Depending on the specific situation, magnetic reconnection may involve symmetric or asymmetric inflow regions. Asymmetric reconnection applies, for example, to reconnection at the Earth's magnetopause, whereas reconnection in the nightside magnetotail tends to involve more symmetric geometries. A combination of review and new results pertaining to magnetic reconnection is being presented. The focus is on three aspects: A basic, MHD-based, analysis of the role magnetic reconnection plays in the transport of energy, followed by an analysis of a kinetic model of time dependent reconnection in a symmetric current sheet, similar to what is typically being encountered in the magnetotail of the Earth. The third element is a review of recent results pertaining to the orientation of the reconnection line in asymmetric geometries, which are typical for the magnetopause of the Earth, as well as likely to occur at other planets.
Estimates of magnetotail reconnection rate based on IMAGE FUV and EISCAT measurements
Directory of Open Access Journals (Sweden)
N. Østgaard
2005-01-01
Full Text Available Dayside merging between the interplanetary and terrestrial magnetic fields couples the solar wind electric field to the Earth's magnetosphere, increases the magnetospheric convection and results in efficient transport of solar wind energy into the magnetosphere. Subsequent reconnection of the lobe magnetic field in the magnetotail transports energy into the closed magnetic field region. Combining global imaging and ground-based radar measurements, we estimate the reconnection rate in the magnetotail during two days of an EISCAT campaign in November-December 2000. Global images from the IMAGE FUV system guide us to identify ionospheric signatures of the open-closed field line boundary observed by the two EISCAT radars in Tromsø (VHF and on Svalbard (ESR. Continuous radar and optical monitoring of the open-closed field line boundary is used to determine the location, orientation and velocity of the open-closed boundary and the ion flow velocity perpendicular to this boundary. The magnetotail reconnection electric field is found to be a bursty process that oscillates between 0mV/m and 1mV/m with ~10-15min periods. These ULF oscillations are mainly due to the motion of the open-closed boundary. In situ measurements earthward of the reconnection site in the magnetotail by Geotail show similar oscillations in the duskward electric field. We also find that bursts of increased magnetotail reconnection do not necessarily have any associated auroral signatures. Finally, we find that the reconnection rate correlates poorly with the solar wind electric field. This indicates that the magnetotail reconnection is not directly driven, but is an internal magnetospheric process. Estimates of a coupling efficiency between the solar wind electric field and magnetotail reconnection only seem to be relevant as averages over long time intervals. The oscillation mode at 1mHz corresponds to the internal cavity mode with additional lower frequencies, 0.5 and 0.8m
Magnetic Reconnection in Extreme Astrophysical Environments
Uzdensky, Dmitri
Magnetic reconnection is a fundamental plasma physics process of breaking ideal-MHD's frozen-in constraints on magnetic field connectivity and of dramatic rearranging of the magnetic topol-ogy, which often leads to a violent release of the free magnetic energy. Reconnection has long been acknowledged to be of great importance in laboratory plasma physics (magnetic fusion) and in space and solar physics (responsible for solar flares and magnetospheric substorms). In addition, its importance in Astrophysics has been increasingly recognized in recent years. However, due to a great diversity of astrophysical environments, the fundamental physics of astrophysical magnetic reconnection can be quite different from that of the traditional recon-nection encountered in the solar system. In particular, environments like the solar corona and the magnetosphere are characterized by relatively low energy densities, where the plasma is ad-equately described as a mixture of electrons and ions whose numbers are conserved and where the dissipated magnetic energy basically stays with the plasma. In contrast, in many high-energy astrophysical phenomena the energy density is so large that photons play as important a role as electrons and ions and, in particular, radiation pressure and radiative cooling become dominant. In this talk I focus on the most extreme case of high-energy-density astrophysical reconnec-tion — reconnection of magnetar-strength (1014 - 1015 Gauss) magnetic fields, important for giant flares in soft-gamma repeaters (SGRs), and for rapid magnetic energy release in either the central engines or in the relativistic jets of Gamma Ray Bursts (GRBs). I outline the key relevant physical processes and present a new theoretical picture of magnetic reconnection in these environments. The corresponding magnetic energy density is so enormous that, when suddenly released, it inevitably heats the plasma to relativistic temperatures, resulting in co-pious production of electron
Magnetic field reconnection at the dayside magnetopause
International Nuclear Information System (INIS)
Rijnbeek, R.P.
1992-01-01
Magnetic field reconnection is a fundamental energy conversion process, and the energy liberated during this process gives rise to phenomena which can be observed in space and laboratory plasmas. At the dayside magnetopause reconnection results in a coupling between the solar wind and the magnetosphere. Manifestations of this include large disturbances in the magnetic field known as flux transfer events, and accelerated plasma flows along the magnetopause. Progress has been made in the development of a physical model incorporating such phenomena, aided by experimental data from various spacecraft missions
Bessho, N.; Chen, L. J.; Hesse, M.; Wang, S.
2017-12-01
In asymmetric reconnection with a guide field in the Earth's magnetopause, electron motion in the electron diffusion region (EDR) is largely affected by the guide field, the Hall electric field, and the reconnection electric field. The electron motion in the EDR is neither simple gyration around the guide field nor simple meandering motion across the current sheet. The combined meandering motion and gyration has essential effects on particle acceleration by the in-plane Hall electric field (existing only in the magnetospheric side) and the out-of-plane reconnection electric field. We analyze electron motion and crescent-shaped electron distribution functions in the EDR in asymmetric guide field reconnection, and perform 2-D particle-in-cell (PIC) simulations to elucidate the effect of reconnection electric field on electron distribution functions. Recently, we have analytically expressed the acceleration effect due to the reconnection electric field on electron crescent distribution functions in asymmetric reconnection without a guide field (Bessho et al., Phys. Plasmas, 24, 072903, 2017). We extend the theory to asymmetric guide field reconnection, and predict the crescent bulge in distribution functions. Assuming 1D approximation of field variations in the EDR, we derive the time period of oscillatory electron motion (meandering + gyration) in the EDR. The time period is expressed as a hybrid of the meandering period and the gyro period. Due to the guide field, electrons not only oscillate along crescent-shaped trajectories in the velocity plane perpendicular to the antiparallel magnetic fields, but also move along parabolic trajectories in the velocity plane coplanar with magnetic field. The trajectory in the velocity space gradually shifts to the acceleration direction by the reconnection electric field as multiple bounces continue. Due to the guide field, electron distributions for meandering particles are bounded by two paraboloids (or hyperboloids) in the
Improved theory of collisionless particle motion in stellarators
International Nuclear Information System (INIS)
Mynick, H.E.
1983-01-01
A theory of particle motion in stellarators is developed which, in contrast to previous work, is both realistic enough to account for collisionless detrapping, yet simple enough that most features of the orbits can be expressed in analytic, reasonably simple formulas. From the study of detrapping, a systematic, complete classification of possible orbit types emerges. The theory is valid for a class of stellarator configurations which contains the standard model traditionally envisaged, as well as somewhat more complex configurations recently found to have favorable transport properties. The reasons for the differences in transport between configurations are elucidated
Neoclassical transport caused by collisionless scattering across an asymmetric separatrix.
Dubin, Daniel H E; Driscoll, C F; Tsidulko, Yu A
2010-10-29
Plasma loss due to apparatus asymmetries is a ubiquitous phenomenon in magnetic plasma confinement. When the plasma equilibrium has locally trapped particle populations partitioned by a separatrix from one another and from passing particles, the asymmetry transport is enhanced. The trapped and passing particle populations react differently to the asymmetries, leading to the standard 1/ν and sqrt[ν] transport regimes of superbanana orbit theory as particles collisionally scatter from one orbit type to another. However, when the separatrix is itself asymmetric, particles can collisionlessly transit from trapped to passing and back, leading to enhanced transport.
Subcritical collisionless shock waves. [in earth space plasma
Mellott, M. M.
1985-01-01
The development history of theoretical accounts of low Mach number collisionless shock waves is related to recent observational advancements, with attention to weaker shocks in which shock steepening is limited by dispersion and/or anomalous resistivity and whose character is primarily determined by the dispersive properties of the ambient plasma. Attention has focused on nearly perpendicular shocks where dispersive scale lengths become small and the associated cross-field currents become strong enough to generate significant plasma wave turbulence. A number of oblique, low Mach number bow shocks have been studied on the basis of data from the ISEE dual spacecraft pair, allowing an accurate determination of shock scale lengths.
Reconnecting Youth. What Works Clearinghouse Intervention Report
What Works Clearinghouse, 2015
2015-01-01
"Reconnecting Youth" is an elective, credit-bearing course for students at risk of dropping out of school due to frequent absenteeism, low grades, or a history of dropping out. The curriculum focuses on building self-esteem, decision making, personal control, and interpersonal communication skills. The What Works Clearninghouse (WWC)…
Colour reconnection in DELPHI at LEP
International Nuclear Information System (INIS)
Abreu, P.
2003-01-01
The preliminary results of two different methods for the search of colour reconnection effects (CR), used in the DELPHI experiment at LEP are presented. The methods were found to be largely uncorrelated, and a combined likelihood for values of the κ strength parameter in the SK-I model is given
Electron heating and energy inventory during asymmetric reconnection in a laboratory plasma
Yoo, J.; Na, B.; Jara-Almonte, J.; Yamada, M.; Ji, H.; Roytershteyn, V.; Argall, M. R.; Fox, W.; Chen, L. J.
2017-12-01
Electron heating and the energy inventory during asymmetric reconnection are studied in the Magnetic Reconnection Experiment (MRX) [1]. In this plasma, the density ratio is about 8 across the current sheet. Typical features of asymmetric reconnection such as the large density gradients near the low-density-side separatrices, asymmetric in-plane electric field, and bipolar out-of-plane magnetic field are observed. Unlike the symmetric case [2], electrons are also heated near the low-density-side separatrices. The measured parallel electric field may explain the observed electron heating. Although large fluctuations driven by lower-hybrid drift instabilities are also observed near the low-density-side separatrices, laboratory measurements and numerical simulations reported here suggest that they do not play a major role in electron energization. The average electron temperature increase in the exhaust region is proportional to the incoming magnetic energy per an electron/ion pair but exceeds the scaling of the previous space observations [3]. This discrepancy is explained by differences in the boundary condition and system size. The profile of electron energy gain from the electric field shows that there is additional electron energy gain associated with the electron diamagnetic current besides a large energy gain near the X-line. This additional energy gain increases electron enthalpy, not the electron temperature. Finally, a quantitative analysis of the energy inventory during asymmetric reconnection is conducted. Unlike the symmetric case where the ion energy gain is about twice more than the electron energy gain [4], electrons and ions obtain a similar amount of energy during asymmetric reconnection. [1] J. Yoo et al., accepted for a publication in J. Geophys. Res. [2] J. Yoo et al., Phys. Plasmas 21, 055706 (2014). [3] T. Phan et al., Geophys. Res. Lett. 40, 4475 (2013). [4] M. Yamada et al., Nat. Comms. 5, 4474 (2014).
FORMATION AND RECONNECTION OF THREE-DIMENSIONAL CURRENT SHEETS IN THE SOLAR CORONA
International Nuclear Information System (INIS)
Edmondson, J. K.; Antiochos, S. K.; DeVore, C. R.; Zurbuchen, T. H.
2010-01-01
Current-sheet formation and magnetic reconnection are believed to be the basic physical processes responsible for much of the activity observed in astrophysical plasmas, such as the Sun's corona. We investigate these processes for a magnetic configuration consisting of a uniform background field and an embedded line dipole, a topology that is expected to be ubiquitous in the corona. This magnetic system is driven by a uniform horizontal flow applied at the line-tied photosphere. Although both the initial field and the driver are translationally symmetric, the resulting evolution is calculated using a fully three-dimensional (3D) magnetohydrodynamic simulation with adaptive mesh refinement that resolves the current sheet and reconnection dynamics in detail. The advantage of our approach is that it allows us to directly apply the vast body of knowledge gained from the many studies of two-dimensional (2D) reconnection to the fully 3D case. We find that a current sheet forms in close analogy to the classic Syrovatskii 2D mechanism, but the resulting evolution is different than expected. The current sheet is globally stable, showing no evidence for a disruption or a secondary instability even for aspect ratios as high as 80:1. The global evolution generally follows the standard Sweet-Parker 2D reconnection model except for an accelerated reconnection rate at a very thin current sheet, due to the tearing instability and the formation of magnetic islands. An interesting conclusion is that despite the formation of fully 3D structures at small scales, the system remains close to 2D at global scales. We discuss the implications of our results for observations of the solar corona.
International Nuclear Information System (INIS)
Wendel, D. E.; Olson, D. K.; Hesse, M.; Kuznetsova, M.; Adrian, M. L.; Aunai, N.; Karimabadi, H.; Daughton, W.
2013-01-01
We investigate the distribution of parallel electric fields and their relationship to the location and rate of magnetic reconnection in a large particle-in-cell simulation of 3D turbulent magnetic reconnection with open boundary conditions. The simulation's guide field geometry inhibits the formation of simple topological features such as null points. Therefore, we derive the location of potential changes in magnetic connectivity by finding the field lines that experience a large relative change between their endpoints, i.e., the quasi-separatrix layer. We find a good correspondence between the locus of changes in magnetic connectivity or the quasi-separatrix layer and the map of large gradients in the integrated parallel electric field (or quasi-potential). Furthermore, we investigate the distribution of the parallel electric field along the reconnecting field lines. We find the reconnection rate is controlled by only the low-amplitude, zeroth and first–order trends in the parallel electric field while the contribution from fluctuations of the parallel electric field, such as electron holes, is negligible. The results impact the determination of reconnection sites and reconnection rates in models and in situ spacecraft observations of 3D turbulent reconnection. It is difficult through direct observation to isolate the loci of the reconnection parallel electric field amidst the large amplitude fluctuations. However, we demonstrate that a positive slope of the running sum of the parallel electric field along the field line as a function of field line length indicates where reconnection is occurring along the field line
Collisionless shock experiments with lasers and observation of Weibel instabilities
Energy Technology Data Exchange (ETDEWEB)
Park, H.-S., E-mail: park1@llnl.gov; Huntington, C. M.; Fiuza, F.; Levy, M. C.; Pollock, B. B.; Remington, B. A.; Ross, J. S.; Ryutov, D. D.; Turnbull, D. P.; Weber, S. V. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Drake, R. P.; Kuranz, C. C. [University of Michigan, Ann Arbor, Michigan 48109 (United States); Froula, D. H.; Rosenberg, M. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14636 (United States); Gregori, G.; Meinecke, J. [University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Koenig, M. [LULI, Ecole Polytechnique, Palaiseau (France); Kugland, N. L. [Lam Research Corporation, Fremont, California 94538 (United States); Lamb, D. Q.; Tzeferacos, P. [University of Chicago, Chicago, California 94538 (United States); and others
2015-05-15
Astrophysical collisionless shocks are common in the universe, occurring in supernova remnants, gamma ray bursts, and protostellar jets. They appear in colliding plasma flows when the mean free path for ion-ion collisions is much larger than the system size. It is believed that such shocks could be mediated via the electromagnetic Weibel instability in astrophysical environments without pre-existing magnetic fields. Here, we present laboratory experiments using high-power lasers and investigate the dynamics of high-Mach-number collisionless shock formation in two interpenetrating plasma streams. Our recent proton-probe experiments on Omega show the characteristic filamentary structures of the Weibel instability that are electromagnetic in nature with an inferred magnetization level as high as ∼1% [C. M. Huntington et al., “Observation of magnetic field generation via the weibel instability in interpenetrating plasma flows,” Nat. Phys. 11, 173–176 (2015)]. These results imply that electromagnetic instabilities are significant in the interaction of astrophysical conditions.
Magnetic field amplification in interstellar collisionless shock waves
International Nuclear Information System (INIS)
Chevalier, R.A.
1977-01-01
It is stated that it is commonly assumed that a simple compression of the magnetic field occurs in interstellar shock waves. Recent space observations of the Earth's bow shock have shown that turbulent amplification of the magnetic field can occur in a collisionless shock. It is shown here that radio observations of Tycho's supernova remnant indicate the presence of a shock wave with such magnetic field amplification. There is at present no theory for the microinstabilities that give rise to turbulent amplification of the magnetic field. Despite the lack of theoretical understanding the possibility of field amplification in interstellar shock waves is here considered. In Tycho's supernova remnant there is evidence for the presence of a collisionless shock, and this is discussed. On the basis of observations of the Earth's bow shock, it is expected that turbulent magnetic field amplification occurs in the shock wave of this remnant, and this is supported by radio observations of the remnant. Consideration is given as to what extent the magnetic field is amplified in the shock wave on the basis of the non-thermal radio flux. (U.K.)
A Family of Vortices to Study Axisymmetric Vortex Breakdown and Reconnection
Young, Larry A.
2007-01-01
A new analytic model describing a family of vortices has been developed to study some of the axisymmetric vortex breakdown and reconnection fluid dynamic processes underlying body-vortex interactions that are frequently manifested in rotorcraft and propeller-driven fixed-wing aircraft wakes. The family of vortices incorporates a wide range of prescribed initial vorticity distributions -- including single or dual-core vorticity distributions. The result is analytical solutions for the vorticity and velocities for each member of the family of vortices. This model is of sufficient generality to further illustrate the dependence of vortex reconnection and breakdown on initial vorticity distribution as was suggested by earlier analytical work. This family of vortices, though laminar in nature, is anticipated to provide valuable insight into the vortical evolution of large-scale rotor and propeller wakes.
Stellar flare oscillations: evidence for oscillatory reconnection and evolution of MHD modes
Doyle, J. G.; Shetye, J.; Antonova, A. E.; Kolotkov, D. Y.; Srivastava, A. K.; Stangalini, M.; Gupta, G. R.; Avramova, A.; Mathioudakis, M.
2018-04-01
Here, we report on the detection of a range of quasi-periodic pulsations (20-120 s; QPPs) observed during flaring activity of several magnetically active dMe stars, namely AF Psc, CR Dra, GJ 3685A, Gl 65, SDSS J084425.9+513830, and SDSS J144738.47+035312.1 in the GALEX NUV filter. Based on a solar analogy, this work suggests that many of these flares may be triggered by external drivers creating a periodic reconnection in the flare current sheet or an impulsive energy release giving rise to an avalanche of periodic bursts that occur at time intervals that correspond to the detected periods, thus generating QPPs in their rising and peak phases. Some of these flares also show fast QPPs in their decay phase, indicating the presence of fast sausage mode oscillations either driven externally by periodic reconnection or intrinsically in the post-flare loop system during the flare energy release.
Experimental study of ion heating and acceleration during magnetic reconnection
Energy Technology Data Exchange (ETDEWEB)
Hsu, S.C.
2000-01-28
This dissertation reports an experimental study of ion heating and acceleration during magnetic reconnection, which is the annihilation and topological rearrangement of magnetic flux in a conductive plasma. Reconnection is invoked often to explain particle heating and acceleration in both laboratory and naturally occurring plasmas. However, a simultaneous account of reconnection and its associated energy conversion has been elusive due to the extreme inaccessibility of reconnection events, e.g. in the solar corona, the Earth's magnetosphere, or in fusion research plasmas. Experiments for this work were conducted on MRX (Magnetic Reconnection Experiment), which creates a plasma environment allowing the reconnection process to be isolated, reproduced, and diagnosed in detail. Key findings of this work are the identification of local ion heating during magnetic reconnection and the determination that non-classical effects must provide the heating mechanism. Measured ion flows are sub-Alfvenic and can provide only slight viscous heating, and classical ion-electron interactions can be neglected due to the very long energy equipartition time. The plasma resistivity in the reconnection layer is seen to be enhanced over the classical value, and the ion heating is observed to scale with the enhancement factor, suggesting a relationship between the magnetic energy dissipation mechanism and the ion heating mechanism. The observation of non-classical ion heating during reconnection has significant implications for understanding the role played by non-classical dissipation mechanisms in generating fast reconnection. The findings are relevant for many areas of space and laboratory plasma research, a prime example being the currently unsolved problem of solar coronal heating. In the process of performing this work, local measurements of ion temperature and flows in a well-characterized reconnection layer were obtained for the first time in either laboratory or observational
Experimental study of ion heating and acceleration during magnetic reconnection
International Nuclear Information System (INIS)
Hsu, S.C.
2000-01-01
This dissertation reports an experimental study of ion heating and acceleration during magnetic reconnection, which is the annihilation and topological rearrangement of magnetic flux in a conductive plasma. Reconnection is invoked often to explain particle heating and acceleration in both laboratory and naturally occurring plasmas. However, a simultaneous account of reconnection and its associated energy conversion has been elusive due to the extreme inaccessibility of reconnection events, e.g. in the solar corona, the Earth's magnetosphere, or in fusion research plasmas. Experiments for this work were conducted on MRX (Magnetic Reconnection Experiment), which creates a plasma environment allowing the reconnection process to be isolated, reproduced, and diagnosed in detail. Key findings of this work are the identification of local ion heating during magnetic reconnection and the determination that non-classical effects must provide the heating mechanism. Measured ion flows are sub-Alfvenic and can provide only slight viscous heating, and classical ion-electron interactions can be neglected due to the very long energy equipartition time. The plasma resistivity in the reconnection layer is seen to be enhanced over the classical value, and the ion heating is observed to scale with the enhancement factor, suggesting a relationship between the magnetic energy dissipation mechanism and the ion heating mechanism. The observation of non-classical ion heating during reconnection has significant implications for understanding the role played by non-classical dissipation mechanisms in generating fast reconnection. The findings are relevant for many areas of space and laboratory plasma research, a prime example being the currently unsolved problem of solar coronal heating. In the process of performing this work, local measurements of ion temperature and flows in a well-characterized reconnection layer were obtained for the first time in either laboratory or observational
Hermite Polynomials and the Inverse Problem for Collisionless Equilibria
Allanson, O.; Neukirch, T.; Troscheit, S.; Wilson, F.
2017-12-01
It is long established that Hermite polynomial expansions in either velocity or momentum space can elegantly encode the non-Maxwellian velocity-space structure of a collisionless plasma distribution function (DF). In particular, Hermite polynomials in the canonical momenta naturally arise in the consideration of the 'inverse problem in collisionless equilibria' (IPCE): "for a given macroscopic/fluid equilibrium, what are the self-consistent Vlasov-Maxwell equilibrium DFs?". This question is of particular interest for the equilibrium and stability properties of a given macroscopic configuration, e.g. a current sheet. It can be relatively straightforward to construct a formal solution to IPCE by a Hermite expansion method, but several important questions remain regarding the use of this method. We present recent work that considers the necessary conditions of non-negativity, convergence, and the existence of all moments of an equilibrium DF solution found for IPCE. We also establish meaningful analogies between the equations that link the microscopic and macrosopic descriptions of the Vlasov-Maxwell equilibrium, and those that solve the initial value problem for the heat equation. In the language of the heat equation, IPCE poses the pressure tensor as the 'present' heat distribution over an infinite domain, and the non-Maxwellian features of the DF as the 'past' distribution. We find sufficient conditions for the convergence of the Hermite series representation of the DF, and prove that the non-negativity of the DF can be dependent on the magnetisation of the plasma. For DFs that decay at least as quickly as exp(-v^2/4), we show non-negativity is guaranteed for at least a finite range of magnetisation values, as parameterised by the ratio of the Larmor radius to the gradient length scale. 1. O. Allanson, T. Neukirch, S. Troscheit & F. Wilson: From one-dimensional fields to Vlasov equilibria: theory and application of Hermite polynomials, Journal of Plasma Physics, 82
Localized Oscillatory Energy Conversion in Magnetopause Reconnection
Burch, J. L.; Ergun, R. E.; Cassak, P. A.; Webster, J. M.; Torbert, R. B.; Giles, B. L.; Dorelli, J. C.; Rager, A. C.; Hwang, K.-J.; Phan, T. D.; Genestreti, K. J.; Allen, R. C.; Chen, L.-J.; Wang, S.; Gershman, D.; Le Contel, O.; Russell, C. T.; Strangeway, R. J.; Wilder, F. D.; Graham, D. B.; Hesse, M.; Drake, J. F.; Swisdak, M.; Price, L. M.; Shay, M. A.; Lindqvist, P.-A.; Pollock, C. J.; Denton, R. E.; Newman, D. L.
2018-02-01
Data from the NASA Magnetospheric Multiscale mission are used to investigate asymmetric magnetic reconnection at the dayside boundary between the Earth's magnetosphere and the solar wind. High-resolution measurements of plasmas and fields are used to identify highly localized ( 15 electron Debye lengths) standing wave structures with large electric field amplitudes (up to 100 mV/m). These wave structures are associated with spatially oscillatory energy conversion, which appears as alternatingly positive and negative values of J · E. For small guide magnetic fields the wave structures occur in the electron stagnation region at the magnetosphere edge of the electron diffusion region. For larger guide fields the structures also occur near the reconnection X-line. This difference is explained in terms of channels for the out-of-plane current (agyrotropic electrons at the stagnation point and guide field-aligned electrons at the X-line).
General connected and reconnected fields in plasmas
Mahajan, Swadesh M.; Asenjo, Felipe A.
2018-02-01
For plasma dynamics, more encompassing than the magnetohydrodynamical (MHD) approximation, the foundational concepts of "magnetic reconnection" may require deep revisions because, in the larger dynamics, magnetic field is no longer connected to the fluid lines; it is replaced by more general fields (one for each plasma specie) that are weighted combination of the electromagnetic and the thermal-vortical fields. We study the two-fluid plasma dynamics plasma expressed in two different sets of variables: the two-fluid (2F) description in terms of individual fluid velocities, and the one-fluid (1F) variables comprising the plasma bulk motion and plasma current. In the 2F description, a Connection Theorem is readily established; we show that, for each specie, there exists a Generalized (Magnetofluid/Electro-Vortic) field that is frozen-in the fluid and consequently remains, forever, connected to the flow. This field is an expression of the unification of the electromagnetic, and fluid forces (kinematic and thermal) for each specie. Since the magnetic field, by itself, is not connected in the first place, its reconnection is never forbidden and does not require any external agency (like resistivity). In fact, a magnetic field reconnection (local destruction) must be interpreted simply as a consequence of the preservation of the dynamical structure of the unified field. In the 1F plasma description, however, it is shown that there is no exact physically meaningful Connection Theorem; a general and exact field does not exist, which remains connected to the bulk plasma flow. It is also shown that the helicity conservation and the existence of a Connected field follow from the same dynamical structure; the dynamics must be expressible as an ideal Ohm's law with a physical velocity. This new perspective, emerging from the analysis of the post MHD physics, must force us to reexamine the meaning as well as our understanding of magnetic reconnection.
Multi-megajoule magnetic reconnection experiment
International Nuclear Information System (INIS)
Degnan, J.H.; Baker, W.L.; Holmes, J.L.; Price, D.W.; Cowan, M.; Graham, J.D.; Lopez, E.A.; Ralph, D.; Roderick, N.F.
1990-01-01
An experiment to combine many medium energy, current co-axial gun discharges into two high energy, current discharges is discussed. Multiple sub-megampere DPF-like guns are directed radially inward. Their discharges combine via magnetic reconnection to form two several megampere co-axial discharges. Experimental results and relevant 2D simulations are discussed. Diagnostics include current, voltage, fast photography, neutron and x-ray detectors
Intermittent magnetic reconnection in TS-3 merging experiment
International Nuclear Information System (INIS)
Ono, Y.; Hayashi, Y.; Ii, T.; Tanabe, H.; Ito, S.; Kuwahata, A.; Ito, T.; Kamino, Y.; Yamada, T.; Inomoto, M.
2011-01-01
Ejection of current sheet with plasma mass causes impulsive and intermittent magnetic reconnection in the TS-3 spherical tokamak (ST) merging experiment. Under high guide toroidal field, the sheet resistivity is almost classical due to the sheet thickness much longer than the ion gyroradius. Large inflow flux and low current-sheet resistivity result in flux and plasma pileup followed by rapid growth of the current sheet. When the pileup exceeds a critical limit, the sheet is ejected mechanically from the squeezed X-point area. The reconnection (outflow) speed is slow during the flux/plasma pileup and is fast during the ejection, suggesting that intermittent reconnection similar to the solar flare increases the averaged reconnection speed. These transient effects enable the merging tokamaks to have the fast reconnection as well as the high-power reconnection heating, even when their current-sheet resistivity is low under high guide field.
Influence of pinches on magnetic reconnection in turbulent space plasmas
Olshevsky, Vyacheslav; Lapenta, Giovanni; Markidis, Stefano; Divin, Andrey
A generally accepted scenario of magnetic reconnection in space plasmas is the breakage of magnetic field lines in X-points. In laboratory, reconnection is widely studied in pinches, current channels embedded into twisted magnetic fields. No model of magnetic reconnection in space plasmas considers both null-points and pinches as peers. We have performed a particle-in-cell simulation of magnetic reconnection in a three-dimensional configuration where null-points are present nitially, and Z-pinches are formed during the simulation. The X-points are relatively stable, and no substantial energy dissipation is associated with them. On contrary, turbulent magnetic reconnection in the pinches causes the magnetic energy to decay at a rate of approximately 1.5 percent per ion gyro period. Current channels and twisted magnetic fields are ubiquitous in turbulent space plasmas, so pinches can be responsible for the observed high magnetic reconnection rates.
Plasmoid statistics in relativistic magnetic reconnection
Petropoulou, M.; Christie, I. M.; Sironi, L.; Giannios, D.
2018-04-01
Plasmoids, overdense blobs of plasma containing magnetic fields and high-energy particles, are a self-consistent outcome of the reconnection process in the relativistic regime. Recent two-dimensional particle-in-cell (PIC) simulations have shown that plasmoids can undergo a variety of processes (e.g. mergers, bulk acceleration, growth, and advection) within the reconnection layer. We developed a Monte Carlo code, benchmarked with the recent PIC simulations, to examine the effects of these processes on the steady-state size and momentum distributions of the plasmoid chain. The differential plasmoid size distribution is shown to be a power law, ranging from a few plasma skin depths to ˜0.1 of the reconnection layer's length. The power-law slope is shown to be linearly dependent upon the ratio of the plasmoid acceleration and growth rates, which slightly decreases with increasing plasma magnetization. We perform a detailed comparison of our results with those of recent PIC simulations and briefly discuss the astrophysical implications of our findings through the representative case of flaring events from blazar jets.
Radio Emissions from Magnetopause Reconnection Events
Fung, S. F.; Kunze, J.
2017-12-01
A new terrestrial radio emission has recently been identified and attributed to a source connected to the magnetopause magnetic reconnection process [Fung et al., 2013]. Known as the terrestrial myriametric radio burst (TMRB), the new emission was observed by both the IMAGE and Geotail spacecraft during a period of northward interplanetary magnetic field (IMF Bz >0) as a temporal and isolated burst of emission with perhaps well-defined or directed emission cones. Spectral and spin-modulation analyses showed that both the intensity and source direction of the emission are sensitive to the variability of the IMF. The strong control of the emission by the IMF suggests that the emission is connected to the magnetopause reconnection process. A number of potential TMRB events have now been identified by surveying all the dynamic spectrogram data obtained by the IMAGE, Geotail, Cluster, and Wind spacecraft in 5/2000-12/2005. This paper will present our analyses of how the spectral signatures and beaming characteristics of the emissions might depend on the IMF orientations, and thus their likelihood of being TMRBs. Special emphasis will be on events associated with northward and southward IMF in order to determine if TMRBs might be generally produced from magnetopause reconnection processes. Fung, S. F., K. Hashimoto, H. Kojima, S. A. Boardsen, L. N. Garcia, H. Matsumoto, J. L. Green, and B. W. Reinisch (2013), Terrestrial myriametric radio burst observed by IMAGE and Geotail satellites, J. Geophys. Res. Space Physics, 118, doi:10.1002/jgra.50149.
Why fast magnetic reconnection is so prevalent
Boozer, Allen H.
2018-02-01
Evolving magnetic fields are shown to generically reach a state of fast magnetic reconnection in which magnetic field line connections change and magnetic energy is released at an Alfvénic rate. This occurs even in plasmas with zero resistivity; only the finiteness of the mass of the lightest charged particle, an electron, is required. The speed and prevalence of Alfvénic or fast magnetic reconnection imply that its cause must be contained within the ideal evolution equation for magnetic fields, , where is the velocity of the magnetic field lines. For a generic , neighbouring magnetic field lines develop a separation that increases exponentially, as \\unicode[STIX]{x1D70E(\\ell ,t)}$ with the distance along a line. This exponentially enhances the sensitivity of the evolution to non-ideal effects. An analogous effect, the importance of stirring to produce a large-scale flow and enhance mixing, has been recognized by cooks through many millennia, but the importance of the large-scale flow to reconnection is customarily ignored. In part this is due to the sixty-year focus of recognition theory on two-coordinate models, which eliminate the exponential enhancement that is generic with three coordinates. A simple three-coordinate model is developed, which could be used to address many unanswered questions.
International Nuclear Information System (INIS)
Kulsrud, Russell; Ji Hantao; Fox, William; Yamada, Masaaki
2005-01-01
The role which resistivity plays in breaking magnetic field lines, heating the plasma, and plasma-field slippage during magnetic reconnection is discussed. Magnetic fluctuations are observed in the MRX (magnetic reconnection experiment) [M. Yamada, H. Ji, S. Hsu, T. Carter, R. Kulsrud, N. Bertz, F. Jobes, Y. Ono, and F. Perkins, Phys. Plasmas 4, 1936 (1997)] that are believed to provide resistive friction or wave resistivity. A localized linear theory has been proposed for their origin as an obliquely propagating lower hybrid drift instability. In this paper, the linear theory of the instability is summarized, and the resulting heating and slippage are calculated from quasilinear theory. Making use of measured amplitudes of the magnetic fluctuations in the MRX, the amount of these effects is estimated. Within the experimental uncertainties they are shown to be quite important for the magnetic reconnection process
International Nuclear Information System (INIS)
Russell Kulsrud; Hantao Ji; Will Fox; Masaaki Yamada
2005-01-01
The role which resistivity plays in breaking magnetic field lines, heating the plasma, and plasma field slippage during magnetic reconnection is discussed. Magnetic fluctuations are observed in the MRX (Magnetic Reconnection Experiment) that are believed to provide resistive friction or wave resistivity. A localized linear theory has been proposed for their origin as an obliquely propagating Lower Hybrid Drift Instability. In this paper, the linear theory of the instability is summarized, and the resulting heating and slippage are calculated from quasi-linear theory. Making use of measured amplitudes of the magnetic fluctuations in the MRX the amount of these effects is estimated. Within the experimental uncertainties they are shown to be quite important for the magnetic reconnection process
Transport scaling in the collisionless-detrapping regime in stellarators
International Nuclear Information System (INIS)
Crume, E.C. Jr.; Shaing, K.C.; Hirshman, S.P.; van Rij, W.I.
1987-09-01
Stellarator transport scalings with electric field, geometry, and collision frequency in the reactor-relevant collisionless-detrapping regime are determined from numerical solutions of the drift kinetic equation. A new geometrical scaling, proportional to ε/sub t/sup 3/2/ rather than ε/sub t/ε/sub h/sup 1/2/, is found, where ε/sub t/ is the inverse aspect ratio and ε/sub h/ is the helical ripple. With the new scaling, no reduction in energy confinement time is associated with large helical ripple, which provides design flexibility. Integral expressions for the particle and heat fluxes that are useful for transport simulations are given. 11 refs
Collisionless shocks in space plasmas structure and accelerated particles
Burgess, David
2015-01-01
Shock waves are an important feature of solar system plasmas, from the solar corona out to the edge of the heliosphere. This engaging introduction to collisionless shocks in space plasmas presents a comprehensive review of the physics governing different types of shocks and processes of particle acceleration, from fundamental principles to current research. Motivated by observations of planetary bow shocks, interplanetary shocks and the solar wind termination shock, it emphasises the physical theory underlying these shock waves. Readers will develop an understanding of the complex interplay between particle dynamics and the electric and magnetic fields that explains the observations of in situ spacecraft. Written by renowned experts in the field, this up-to-date text is the ideal companion for both graduate students new to heliospheric physics and researchers in astrophysics who wish to apply the lessons of solar system shocks to different astrophysical environments.
Nonlinear Weibel Instability and Turbulence in Strong Collisionless Shocks
International Nuclear Information System (INIS)
Medvedev, Mikhail M.
2008-01-01
This research project was devoted to studies of collisionless shocks, their properties, microphysics and plasma physics of underlying phenomena, such as Weibel instability and generation of small-scale fields at shocks, particle acceleration and transport in the generated random fields, radiation mechanisms from these fields in application to astrophysical phenomena and laboratory experiments (e.g., laser-plasma and beam-plasma interactions, the fast ignition and inertial confinement, etc.). Thus, this study is highly relevant to astrophysical sciences, the inertial confinement program and, in particular, the Fast Ignition concept, etc. It makes valuable contributions to the shock physics, nonlinear plasma theory, as well as to the basic plasma science, in general
Collisionless ion drag force on a spherical grain
International Nuclear Information System (INIS)
Hutchinson, I H
2006-01-01
The ion drag force on a spherical grain situated in a flowing collisionless plasma is obtained from the specialized coordinate electrostatic particle and thermals in cell simulation code (SCEPTIC) (Hutchinson 2002 Plasma Phys. Control. Fusion 44 1953, Hutchinson 2003 Plasma Phys. Control. Fusion 45 1477, Hutchinson 2005 Plasma Phys. Control. Fusion 47 71) and compared with recent analytic approximate treatments in the interesting and relevant case when the Debye length is only moderately larger than the sphere radius. There is a substantial complex structure in the results for transonic flows, which is explained in terms of the details of ion orbits. Naturally the prior analytic approximations miss this structure, and as a result they seriously underestimate the drag for speeds near the sound speed. An easy-to-evaluate expression for force is provided that fits the comprehensive results of the code. This expression, with minor modification, also fits the results even for Debye length much smaller than the sphere radius
Physics of Collisionless Shocks Space Plasma Shock Waves
Balogh, André
2013-01-01
The present book provides a contemporary systematic treatment of shock waves in high-temperature collisionless plasmas as are encountered in near Earth space and in Astrophysics. It consists of two parts. Part I develops the complete theory of shocks in dilute hot plasmas under the assumption of absence of collisions among the charged particles when the interaction is mediated solely by the self-consistent electromagnetic fields. Such shocks are naturally magnetised implying that the magnetic field plays an important role in their evolution and dynamics. This part treats both subcritical shocks, which dissipate flow energy by generating anomalous resistance or viscosity, and supercritical shocks. The main emphasis is, however, on super-critical shocks where the anomalous dissipation is insufficient to retard the upstream flow. These shocks, depending on the direction of the upstream magnetic field, are distinguished as quasi-perpendicular and quasi-parallel shocks which exhibit different behaviours, reflecti...
Collisional damping of Langmuir waves in the collisionless limit
International Nuclear Information System (INIS)
Auerbach, S.P.
1977-01-01
Linear Langmuir wave damping by collisions is studied in the limit of collision frequency ν approaching zero. In this limit, collisions are negligible, except in a region in velocity space, the boundary layer, centered about the phase velocity. If kappa, the ratio of the collisional equilibration time in the boundary layer to the Landau damping time, is small, the boundary layer width scales as ν/sup 1/3/, and the perturbed distribution function scales as ν/sup -1/3/. The damping rate is thus independent of ν, although essentially all the damping occurs in the collision-dominated boundary layer. Solution of the Fokker--Planck equation shows that the damping rate is precisely the Landau (collisionless) rate. The damping rate is independent of kappa, although the boundary layer thickness is not
Plasma heating in collisionless plasma at low plasma density
International Nuclear Information System (INIS)
Wulf, H.O.
1977-01-01
The high frequency heating of a collisionless, fully ionized low density plasma is investigated in the range: 2ωc 2 2 under pumping frequencies. A pulsed 1 MHz transmitter excites a fast standing, magneto-acoustical wave in the plasma, via the high frequency magnetic field of a Stix solenoid. The available modulation degrees are between 0.7 and 7.0%. As power consumption measurements show, there appears at all investigated pumping frequencies an effective energy transfer to the plasma that cannot be explained with the classical MHD models. Measurements with electrostatic probes and further with a miniature counter-field spectrometer yield an electron and ion temperature gain of two to three factors and 15-18, compared to the corresponding values in the initial plasma. (orig./HT) [de
Exact Turbulence Law in Collisionless Plasmas: Hybrid Simulations
Hellinger, P.; Verdini, A.; Landi, S.; Franci, L.; Matteini, L.
2017-12-01
An exact vectorial law for turbulence in homogeneous incompressible Hall-MHD is derived and tested in two-dimensional hybrid simulations of plasma turbulence. The simulations confirm the validity of the MHD exact law in the kinetic regime, the simulated turbulence exhibits a clear inertial range on large scales where the MHD cascade flux dominates. The simulation results also indicate that in the sub-ion range the cascade continues via the Hall term and that the total cascade rate tends to decrease at around the ion scales, especially in high-beta plasmas. This decrease is like owing to formation of non-thermal features, such as collisionless ion energization, that can not be retained in the Hall MHD approximation.
Ion acoustic eigenmodes in a collisionless bounded plasma:
International Nuclear Information System (INIS)
Kuhn, S.; Schupfer, N.; Santiago, M.A.M.; Assis, A.S. de
1990-01-01
This paper is based on an integral-equation method developed for solving the general linearized perturbation problem for a one-dimensional, uniform collisionless plasma with thin sheats, bounded by two planar electrodes. The underlying system of equations consists of a) the Vlasov equations for all particle species involved; b) Poisson's equation; c) the equation of total-current conservation; d) the particle boundary conditions at the left and right hand electrodes and e) the external-circuit equation. The method allows for very general equilibrium, boundary and external-circuit conditions. Using Laplace transformations in both time and space, it is set up to handle the complete initial value problem but also yields, as a by-product, the solution to the eigenmode problem. The only application to date of this method was to the Pierce Diode with a non-trivial external circuit, in which case the equation determining the complex eigenfrequencies ω n was found in analytic form. The said method is applied to ion-acoustic eigenmodes in a one-dimensional, collisionless bounded plasma consisting of non-drifting thermal electrons and a cold ion beam propagating through them. In this case, which is of relevance in the context of both Q- and DP-machines, the eigenfrequencies can no longer be obtained as solutions of an analytically explicit homogeneous system of linear integral equations. Via appropriate basis- set expansions of all perturbation functions involved, this system is transformed into a system of linear algebraic equations for the ω-dependent expansion coefficients, from which the eigenfrequencies can be obtained as the zeros of the'system determinant'. The results include studies on how the eigenfrequencies depend on plasma, boundary, as well as a comparison between these bounded-system ion-acoustic eigenmodes and their infinite-plasma counter-parts. (Author)
Energy Technology Data Exchange (ETDEWEB)
Zeng, Zhicheng; Chen, Bin; Goode, Philip R.; Cao, Wenda [Center for Solar-Terrestrial Research, New Jersey Institute of Technology, 323 Martin Luther King Boulevard, Newark, NJ 07102 (United States); Ji, Haisheng [Big Bear Solar Observatory, 40386 North Shore Lane, Big Bear City, CA 92314 (United States)
2016-03-01
Jets are ubiquitously present in both quiet and active regions on the Sun. They are widely believed to be driven by magnetic reconnection. A fan-spine structure has been frequently reported in some coronal jets and flares, and has been regarded as a signature of ongoing magnetic reconnection in a topology consisting of a magnetic null connected by a fan-like separatrix surface and a spine. However, for small-scale chromospheric jets, clear evidence of such structures is rather rare, although it has been implied in earlier works that showed an inverted-Y-shaped feature. Here we report high-resolution (0.″16) observations of a small-scale chromospheric jet obtained by the New Solar Telescope (NST) using 10830 Å filtergrams. Bi-directional flows were observed across the separatrix regions in the 10830 Å images, suggesting that the jet was produced due to magnetic reconnection. At the base of the jet, a fan-spine structure was clearly resolved by the NST, including the spine and the fan-like surface, as well as the loops before and after the reconnection. A major part of this fan-spine structure, with the exception of its bright footpoints and part of the base arc, was invisible in the extreme ultraviolet and soft X-ray images (observed by the Atmosphere Imaging Assembly and the X-Ray Telescope, respectively), indicating that the reconnection occurred in the upper chromosphere. Our observations suggest that the evolution of this chromospheric jet is consistent with a two-step reconnection scenario proposed by Török et al.
International Nuclear Information System (INIS)
Zeng, Zhicheng; Chen, Bin; Goode, Philip R.; Cao, Wenda; Ji, Haisheng
2016-01-01
Jets are ubiquitously present in both quiet and active regions on the Sun. They are widely believed to be driven by magnetic reconnection. A fan-spine structure has been frequently reported in some coronal jets and flares, and has been regarded as a signature of ongoing magnetic reconnection in a topology consisting of a magnetic null connected by a fan-like separatrix surface and a spine. However, for small-scale chromospheric jets, clear evidence of such structures is rather rare, although it has been implied in earlier works that showed an inverted-Y-shaped feature. Here we report high-resolution (0.″16) observations of a small-scale chromospheric jet obtained by the New Solar Telescope (NST) using 10830 Å filtergrams. Bi-directional flows were observed across the separatrix regions in the 10830 Å images, suggesting that the jet was produced due to magnetic reconnection. At the base of the jet, a fan-spine structure was clearly resolved by the NST, including the spine and the fan-like surface, as well as the loops before and after the reconnection. A major part of this fan-spine structure, with the exception of its bright footpoints and part of the base arc, was invisible in the extreme ultraviolet and soft X-ray images (observed by the Atmosphere Imaging Assembly and the X-Ray Telescope, respectively), indicating that the reconnection occurred in the upper chromosphere. Our observations suggest that the evolution of this chromospheric jet is consistent with a two-step reconnection scenario proposed by Török et al
Energy Technology Data Exchange (ETDEWEB)
Hou, Yijun; Zhang, Jun; Li, Ting; Yang, Shuhong; Li, Xiaohong, E-mail: yijunhou@nao.cas.cn, E-mail: zjun@nao.cas.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)
2017-10-10
Recent high-resolution observations from the Interface Region Imaging Spectrograph reveal bright wall-shaped structures in active regions (ARs), especially above sunspot light bridges. Their most prominent feature is the bright oscillating front in the 1400/1330 Å channel. These structures are named light walls and are often interpreted to be driven by p-mode waves. Above the light bridge of AR 12222 on 2014 December 06, we observed intermittent ejections superimposed on an oscillating light wall in the 1400 Å passband. At the base location of each ejection, the emission enhancement was detected in the Solar Dynamics Observatory 1600 Å channel. Thus, we suggest that in wall bases (light bridges), in addition to the leaked p-mode waves consistently driving the oscillating light wall, magnetic reconnection could happen intermittently at some locations and eject the heated plasma upward. Similarly, in the second event occurring in AR 12371 on 2015 June 16, a jet was simultaneously detected in addition to the light wall with a wave-shaped bright front above the light bridge. At the footpoint of this jet, lasting brightening was observed, implying magnetic reconnection at the base. We propose that in these events, two mechanisms, p-mode waves and magnetic reconnection, simultaneously play roles in the light bridge, and lead to the distinct kinetic features of the light walls and the ejection-like activities, respectively. To illustrate the two mechanisms and their resulting activities above light bridges, in this study we present a cartoon model.
Comparison of reconnection in magnetosphere and solar corona
Imada, Shinsuke; Hirai, Mariko; Isobe, Hiroaki; Oka, Mitsuo; Watanabe, Kyoko; Minoshima, Takashi
One of the most famous rapid energy conversion mechanisms in space is a magnetic reconnec-tion. The general concept of a magnetic reconnection is that the rapid energy conversion from magnetic field energy to thermal energy, kinetic energy or non-thermal particle energy. The understanding of rapid energy conversion rates from magnetic field energy to other energy is the fundamental and essential problem in the space physics. One of the important goals for studying magnetic reconnection is to answer what plasma condition/parameter controls the energy conversion rates. Earth's magnetotail has been paid much attention to discuss a mag-netic reconnection, because we can discuss magnetic reconnection characteristics in detail with direct in-situ observation. Recently, solar atmosphere has been focused as a space laboratory for magnetic reconnection because of its variety in plasma condition. So far considerable effort has been devoted toward understanding the energy conversion rates of magnetic reconnection, and various typical features associated with magnetic reconnection have been observed in the Earth's magnetotail and the solar corona. In this talk, we first introduce the variety of plasma condition/parameter in solar corona and Earth's magnetotail. Later, we discuss what plasma condition/parameter controls the energy conversion from magnetic field to especially non-thermal particle. To compare non-thermal electron and ion acceleration in magnetic reconnection, we used Hard X-ray (electron) /Neu-tron monitor (ion) for solar corona and Geotail in-situ measurement (electron and ion) for magnetoatil. We found both of electron and ion accelerations are roughly controlled by re-connection electric field (reconnection rate). However, some detail points are different in ion and electron acceleration. Further, we will discuss what is the major difference between solar corona and Earth's magnetotail for particle acceleration.
International Nuclear Information System (INIS)
Kadowaki, L. H. S.; Pino, E. M. de Gouveia Dal; Singh, C. B.
2015-01-01
Fast magnetic reconnection events can be a very powerful mechanism operating in the core region of microquasars and active galactic nuclei (AGNs). In earlier work, it has been suggested that the power released by fast reconnection events between the magnetic field lines lifting from the inner accretion disk region and the lines anchored into the central black hole could accelerate relativistic particles and produce the observed radio emission from microquasars and low luminosity AGNs (LLAGNs). Moreover, it has been proposed that the observed correlation between the radio emission and the mass of these sources, spanning 10 10 orders of magnitude in mass, might be related to this process. In the present work, we revisit this model comparing two different fast magnetic reconnection mechanisms, namely, fast reconnection driven by anomalous resistivity (AR) and by turbulence. We apply the scenario above to a much larger sample of sources (including also blazars, and gamma-ray bursts—GRBs), and find that LLAGNs and microquasars do confirm the trend above. Furthermore, when driven by turbulence, not only their radio but also their gamma-ray emission can be due to magnetic power released by fast reconnection, which may accelerate particles to relativistic velocities in the core region of these sources. Thus the turbulent-driven fast reconnection model is able to reproduce verywell the observed emission. On the other hand, the emission from blazars and GRBs does not follow the same trend as that of the LLAGNs and microquasars, indicating that the radio and gamma-ray emission in these cases is produced beyond the core, along the jet, by another population of relativistic particles, as expected
Magnetic Reconnection at a Three-dimensional Solar Null Point
DEFF Research Database (Denmark)
Frederiksen, Jacob Trier; Baumann, Gisela; Galsgaard, Klaus
2012-01-01
Using a specific solar null point reconnection case studied by Masson et al (2009; ApJ 700, 559) we investigate the dependence of the reconnection rate on boundary driving speed, numerical resolution, type of resistivity (constant or numerical), and assumed stratification (constant density or sol...
Tail reconnection in the global magnetospheric context: Vlasiator first results
Palmroth, Minna; Hoilijoki, Sanni; Juusola, Liisa; Pulkkinen, Tuija I.; Hietala, Heli; Pfau-Kempf, Yann; Ganse, Urs; von Alfthan, Sebastian; Vainio, Rami; Hesse, Michael
2017-11-01
The key dynamics of the magnetotail have been researched for decades and have been associated with either three-dimensional (3-D) plasma instabilities and/or magnetic reconnection. We apply a global hybrid-Vlasov code, Vlasiator, to simulate reconnection self-consistently in the ion kinetic scales in the noon-midnight meridional plane, including both dayside and nightside reconnection regions within the same simulation box. Our simulation represents a numerical experiment, which turns off the 3-D instabilities but models ion-scale reconnection physically accurately in 2-D. We demonstrate that many known tail dynamics are present in the simulation without a full description of 3-D instabilities or without the detailed description of the electrons. While multiple reconnection sites can coexist in the plasma sheet, one reconnection point can start a global reconfiguration process, in which magnetic field lines become detached and a plasmoid is released. As the simulation run features temporally steady solar wind input, this global reconfiguration is not associated with sudden changes in the solar wind. Further, we show that lobe density variations originating from dayside reconnection may play an important role in stabilising tail reconnection.
Reconnection in Solar Flares: Outstanding Questions Hiroaki Isobe ...
Indian Academy of Sciences (India)
Although the idea of magnetic reconnection for explaining the energy release in solar flares had been proposed many decades ago (Parker 1957; Sweet. 1958) it was after Yohkoh (Ogawara et al. 1991) observations that the reality of mag- netic reconnection occurring during solar flares was established. Examples of evi-.
Progress in the theory of magnetic reconnection phenomena
International Nuclear Information System (INIS)
Ottaviani, M.; Arcis, N.; Maget, P.; Zwingmann, W.; Grasso, D.; Militello, F.; Porcelli, F.
2004-01-01
Recent theoretical work on magnetic reconnection in hot plasma confinement devices is reviewed. The presentation highlights the common aspects of reconnection phenomena, and current research trends are emphasised. Progress in understanding the dynamics of slowly evolving modes of the tearing family, based on advanced analytic techniques and numerical simulation, as well as of faster modes that lead to internal disruptions, is reported. (authors)
Review of recent experiments on magnetic reconnection in laboratory plasmas
International Nuclear Information System (INIS)
Yamada, M.
1995-02-01
The present paper reviews recent laboratory experiments on magnetic reconnection. Examples will be drawn from electron current sheet experiments, merging spheromaks, and from high temperature tokamak plasmas with the Lundquist numbers exceeding 10 7 . These recent laboratory experiments create an environment which satisfies the criteria for MHD plasma and in which the global boundary conditions can be controlled externally. Experiments with fully three dimensional reconnection are now possible. In the most recent TFTR tokamak discharges, Motional Stark effect (MSE) data have verified the existence of a partial reconnection. In the experiment of spheromak merging, a new plasma acceleration parallel to the neutral line has been indicated. Together with the relationship of these observations to the analysis of magnetic reconnection in space and in solar flares, important physics issues such as global boundary conditions, local plasma parameters, merging angle of the field lines, and the 3-D aspects of the reconnection are discussed
Magnetic Reconnection Results on the Swarthmore Spheromak Experiment
Kornack, T. W.; Sollins, P. K.; Brown, M. R.
1997-11-01
Linear and 2D arrays of magnetic probes are used to study magnetic reconnection in the Swarthmore Spheromak Experiment (SSX). Opposing coaxial plasma guns form two identical spheromaks into adjacent 0.5 m diameter copper flux conservers. The flux conservers have symmetrical openings that allow the spheromaks to merge in a controlled manner. The stable equilibrium of the spheromaks provides a reservoir of magnetic flux for reconnection experiments. Currently, the magnetic configuration of the spheromaks allows the study of counter-helicity reconnection. Preliminary analysis will be presented and may include 2D B field movies of the reconnection region, measurement of the reconnection rate and comparison to the Sweet-Parker and standard Petschek models.
MAVEN Observations of Magnetic Reconnection on the Dayside Martian Magnetosphere
DiBraccio, Gina A.; Espley, Jared R.; Connerney, John E. P.; Brain, David A.; Halekas, Jasper S.; Mitchell, David L.; Harada, Yuki; Hara, Takuya
2015-04-01
The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission offers a unique opportunity to investigate the complex solar wind-planetary interaction at Mars. The Martian magnetosphere is formed as the interplanetary magnetic field (IMF) drapes around the planet's ionosphere and localized crustal magnetic fields. As the solar wind interacts with this induced magnetosphere, magnetic reconnection can occur at any location where a magnetic shear is present. Reconnection between the IMF and the induced and crustal fields facilitates a direct plasma exchange between the solar wind and the Martian ionosphere. Here we address the occurrence of magnetic reconnection on the dayside magnetosphere of Mars using MAVEN magnetic field and plasma data. When reconnection occurs on the dayside, a non-zero magnetic field component normal to the obstacle, B_N, will result. Using minimum variance analysis, we measure BN by transforming Magnetometer data into boundary-normal coordinates. Selected events are then further examined to identify plasma heating and energization, in the form of Alfvénic outflow jets, using Solar Wind Ion Analyzer measurements. Additionally, the topology of the crustal fields is validated from electron pitch angle distributions provided by the Solar Wind Electron Analyzer. To understand which parameters are responsible for the onset of reconnection, we test the dependency of the dimensionless reconnection rate, calculated from BN measurements, on magnetic field shear angle and plasma beta (the ratio of plasma pressure to magnetic pressure). We assess the global impact of reconnection on Mars' induced magnetosphere by combining analytical models with MAVEN observations to predict the regions where reconnection may occur. Using this approach we examine how IMF orientation and magnetosheath parameters affect reconnection on a global scale. With the aid of analytical models we are able to assess the role of reconnection on a global scale to better understand which
Particle Acceleration and Heating by Turbulent Reconnection
Vlahos, Loukas; Pisokas, Theophilos; Isliker, Heinz; Tsiolis, Vassilis; Anastasiadis, Anastasios
2016-08-01
Turbulent flows in the solar wind, large-scale current sheets, multiple current sheets, and shock waves lead to the formation of environments in which a dense network of current sheets is established and sustains “turbulent reconnection.” We constructed a 2D grid on which a number of randomly chosen grid points are acting as scatterers (I.e., magnetic clouds or current sheets). Our goal is to examine how test particles respond inside this large-scale collection of scatterers. We study the energy gain of individual particles, the evolution of their energy distribution, and their escape time distribution. We have developed a new method to estimate the transport coefficients from the dynamics of the interaction of the particles with the scatterers. Replacing the “magnetic clouds” with current sheets, we have proven that the energization processes can be more efficient depending on the strength of the effective electric fields inside the current sheets and their statistical properties. Using the estimated transport coefficients and solving the Fokker-Planck (FP) equation, we can recover the energy distribution of the particles only for the stochastic Fermi process. We have shown that the evolution of the particles inside a turbulent reconnecting volume is not a solution of the FP equation, since the interaction of the particles with the current sheets is “anomalous,” in contrast to the case of the second-order Fermi process.
PARTICLE ACCELERATION AND HEATING BY TURBULENT RECONNECTION
International Nuclear Information System (INIS)
Vlahos, Loukas; Pisokas, Theophilos; Isliker, Heinz; Tsiolis, Vassilis; Anastasiadis, Anastasios
2016-01-01
Turbulent flows in the solar wind, large-scale current sheets, multiple current sheets, and shock waves lead to the formation of environments in which a dense network of current sheets is established and sustains “turbulent reconnection.” We constructed a 2D grid on which a number of randomly chosen grid points are acting as scatterers (i.e., magnetic clouds or current sheets). Our goal is to examine how test particles respond inside this large-scale collection of scatterers. We study the energy gain of individual particles, the evolution of their energy distribution, and their escape time distribution. We have developed a new method to estimate the transport coefficients from the dynamics of the interaction of the particles with the scatterers. Replacing the “magnetic clouds” with current sheets, we have proven that the energization processes can be more efficient depending on the strength of the effective electric fields inside the current sheets and their statistical properties. Using the estimated transport coefficients and solving the Fokker–Planck (FP) equation, we can recover the energy distribution of the particles only for the stochastic Fermi process. We have shown that the evolution of the particles inside a turbulent reconnecting volume is not a solution of the FP equation, since the interaction of the particles with the current sheets is “anomalous,” in contrast to the case of the second-order Fermi process.
PARTICLE ACCELERATION AND HEATING BY TURBULENT RECONNECTION
Energy Technology Data Exchange (ETDEWEB)
Vlahos, Loukas; Pisokas, Theophilos; Isliker, Heinz; Tsiolis, Vassilis [Department of Physics, Aristotle University of Thessaloniki, GR-52124 Thessaloniki (Greece); Anastasiadis, Anastasios [Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, GR-15236 Penteli (Greece)
2016-08-10
Turbulent flows in the solar wind, large-scale current sheets, multiple current sheets, and shock waves lead to the formation of environments in which a dense network of current sheets is established and sustains “turbulent reconnection.” We constructed a 2D grid on which a number of randomly chosen grid points are acting as scatterers (i.e., magnetic clouds or current sheets). Our goal is to examine how test particles respond inside this large-scale collection of scatterers. We study the energy gain of individual particles, the evolution of their energy distribution, and their escape time distribution. We have developed a new method to estimate the transport coefficients from the dynamics of the interaction of the particles with the scatterers. Replacing the “magnetic clouds” with current sheets, we have proven that the energization processes can be more efficient depending on the strength of the effective electric fields inside the current sheets and their statistical properties. Using the estimated transport coefficients and solving the Fokker–Planck (FP) equation, we can recover the energy distribution of the particles only for the stochastic Fermi process. We have shown that the evolution of the particles inside a turbulent reconnecting volume is not a solution of the FP equation, since the interaction of the particles with the current sheets is “anomalous,” in contrast to the case of the second-order Fermi process.
Magnetic reconnection during eruptive magnetic flux ropes
Mei, Z. X.; Keppens, R.; Roussev, I. I.; Lin, J.
2017-08-01
Aims: We perform a three-dimensional (3D) high resolution numerical simulation in isothermal magnetohydrodynamics to study the magnetic reconnection process in a current sheet (CS) formed during an eruption of a twisted magnetic flux rope (MFR). Because the twist distribution violates the Kruskal-Shafranov condition, the kink instability occurs, and the MFR is distorted. The centre part of the MFR loses its equilibrium and erupts upward, which leads to the formation of a 3D CS underneath it. Methods: In order to study the magnetic reconnection inside the CS in detail, mesh refinement has been used to reduce the numerical diffusion and we estimate a Lundquist number S = 104 in the vicinity of the CS. Results: The refined mesh allows us to resolve fine structures inside the 3D CS: a bifurcating sheet structure signaling the 3D generalization of Petschek slow shocks, some distorted-cylindrical substructures due to the tearing mode instabilities, and two turbulence regions near the upper and the lower tips of the CS. The topological characteristics of the MFR depend sensitively on the observer's viewing angle: it presents as a sigmoid structure, an outwardly expanding MFR with helical distortion, or a flare-CS-coronal mass ejection symbiosis as in 2D flux-rope models when observed from the top, the front, or the side. The movie associated to Fig. 2 is available at http://www.aanda.org
FILAMENT INTERACTION MODELED BY FLUX ROPE RECONNECTION
International Nuclear Information System (INIS)
Toeroek, T.; Chandra, R.; Pariat, E.; Demoulin, P.; Schmieder, B.; Aulanier, G.; Linton, M. G.; Mandrini, C. H.
2011-01-01
Hα observations of solar active region NOAA 10501 on 2003 November 20 revealed a very uncommon dynamic process: during the development of a nearby flare, two adjacent elongated filaments approached each other, merged at their middle sections, and separated again, thereby forming stable configurations with new footpoint connections. The observed dynamic pattern is indicative of 'slingshot' reconnection between two magnetic flux ropes. We test this scenario by means of a three-dimensional zero β magnetohydrodynamic simulation, using a modified version of the coronal flux rope model by Titov and Demoulin as the initial condition for the magnetic field. To this end, a configuration is constructed that contains two flux ropes which are oriented side-by-side and are embedded in an ambient potential field. The choice of the magnetic orientation of the flux ropes and of the topology of the potential field is guided by the observations. Quasi-static boundary flows are then imposed to bring the middle sections of the flux ropes into contact. After sufficient driving, the ropes reconnect and two new flux ropes are formed, which now connect the former adjacent flux rope footpoints of opposite polarity. The corresponding evolution of filament material is modeled by calculating the positions of field line dips at all times. The dips follow the morphological evolution of the flux ropes, in qualitative agreement with the observed filaments.
Hall MHD reconnection in cometary magnetotail
International Nuclear Information System (INIS)
Jovanovic, Dusan; Shukla, Padma Kant; Morfill, Gregor
2005-01-01
The fine structure of cometary tails (swirls, loops and blobs) is studied in the framework of resistive magnetic reconnection without a guide field in a dusty plasma. For a high-beta plasma (β ∼ 1) consisting of electrons, ions, and immobile dust grains, a two-fluid description is used to study electromagnetic perturbations with the frequency below Ωi, propagating at an arbitrary angle, and including the effects of Hall current. A zero-order current associated with the anti-parallel magnetic configuration may exist even in the limit of zero plasma temperature in a dusty plasma due to a symmetry breaking between electrons and ions by dust grains that yields an E-vector x B-vector current. In the perturbed state, a new linear electromagnetic mode is found in dusty plasma which is evanescent below the Rao cut-off frequency and has the characteristic wavelength comparable to the ion skin depth, which enables the reconnection at short spatial scales. The role of the dust is found to be twofold, yielding a new mode outside of the current sheet and altering the continuity conditions at its edge by an inhomogeneous Doppler shift associated with the E-vector x B-vector current
Effect of magnetic reconnection in stellar plasma
Hammoud, M.; El Eid, M.; Darwish, M.
2017-06-01
An important phenomenon in Astrophysics is the process of magnetic reconnection (MGR), which is envisaged to understand the solar flares, coronal mass ejection, interaction of the solar wind with the Earth’s magnetic field (so called geomagnetic storm) and other phenomena. In addition, it plays a role in the formation of stars. MGR involves topological change of a set of magnetic field lines leading to a new equilibrium configuration of lower magnetic energy. The MGR is basically described in the framework of the Maxwell’s equations linked to Navier-Stockes equations. Nevertheless, many details are still not understood. In this paper, we investigate the MGR process in the framework of the Magnetohydrodynamic (MHD) model of a single conducting fluid using a modern powerful computational tool (OpenFOAM). We will show that the MGR process takes place only if resistivity exists. However, despite the high conductivity of the plasma, resistivity becomes effective in a very thin layer generating sharp gradients of the magnetic field, and thus accelerating the reconnection process. The net effect of MGR is that magnetic energy is converted into thermal and kinetic energies leading to heating and acceleration of charged particles. The Sun’s coronal ejection is an example of the MGR process.
A quasilinear formulation of turbulence driven current
Energy Technology Data Exchange (ETDEWEB)
McDevitt, C. J.; Tang, Xian-Zhu; Guo, Zehua [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)
2014-02-15
Non-inductive current drive mechanisms, such as the familiar neoclassical bootstrap current correspond to an essential component to the realization of steady state tokamak operation. In this work, we discuss a novel collisionless mechanism through which a mean plasma current may be driven in the presence of microturbulence. In analogy with the traditional neoclassical bootstrap current drive mechanism, in which the collisional equilibrium established between trapped and passing electrons results in the formation of a steady state plasma current, here we show that resonant scattering of electrons by drift wave microturbulence provides an additional means of determining the equilibrium between trapped and passing electrons. The resulting collisionless equilibrium is shown to result in the formation of an equilibrium current whose magnitude is a function of the thermodynamic forces. A mean field formulation is utilized to incorporate the above components into a unified framework through which both collisional as well as collisionless current drive mechanisms may be self-consistently treated. Utilizing a linearized Fokker-Planck collision operator, the plasma current in the presence of both collisions as well as turbulent stresses is computed, allowing for the relative strength of these two mechanisms to be quantified as a function of collisionality and fluctuation amplitude.
A quasilinear formulation of turbulence driven current
International Nuclear Information System (INIS)
McDevitt, C. J.; Tang, Xian-Zhu; Guo, Zehua
2014-01-01
Non-inductive current drive mechanisms, such as the familiar neoclassical bootstrap current correspond to an essential component to the realization of steady state tokamak operation. In this work, we discuss a novel collisionless mechanism through which a mean plasma current may be driven in the presence of microturbulence. In analogy with the traditional neoclassical bootstrap current drive mechanism, in which the collisional equilibrium established between trapped and passing electrons results in the formation of a steady state plasma current, here we show that resonant scattering of electrons by drift wave microturbulence provides an additional means of determining the equilibrium between trapped and passing electrons. The resulting collisionless equilibrium is shown to result in the formation of an equilibrium current whose magnitude is a function of the thermodynamic forces. A mean field formulation is utilized to incorporate the above components into a unified framework through which both collisional as well as collisionless current drive mechanisms may be self-consistently treated. Utilizing a linearized Fokker-Planck collision operator, the plasma current in the presence of both collisions as well as turbulent stresses is computed, allowing for the relative strength of these two mechanisms to be quantified as a function of collisionality and fluctuation amplitude
Hydromagnetic waves, turbulence, and collisionless processes in the interplanetary medium
International Nuclear Information System (INIS)
Barnes, A.
1983-01-01
The solar wind does not flow quietly. It seethes and undulates, fluctuating on time scales that range from the solar rotation period down to fractions of milliseconds. Most of the power in interplanetary waves and turbulence lies at hydromagnetic scales. These fluctuations are normally of large amplitude, containing enough energy to affect solar and galactic cosmic rays, and may be the remnants of a coronal turbulence field powerful enough to play a major role in accelerating the solar wind itself. The origin and evolution of interplanetary hydromagnetic waves and turbulence, and their influence on the large-scale dynamics of the solar wind are among the most fundamental questions of solar-terrestrial physics. First hydrodynamic waves and turbulences in the interplanetary medium are discussed in two sections, respectively. Because the length and time scales for hydromagnetic fluctuations are very much smaller than the corresponding Coulomb collision scales of the plasma ions and electrons, the interplanetary variations are modelled as fluctuations in a magnetohydrodynamic fluid. In the last section, collisionless phenomena are discussed. They are of qualitative significance. (Auth.)
First results of transcritical magnetized collisionless shock studies on MSX
Weber, T. E.; Smith, R. J.; Hutchinson, T. M.; Taylor, S. F.; Hsu, S. C.
2014-10-01
Magnetized collisionless shocks exhibit transitional length and time scales much shorter than can be created through collisional processes. They are common throughout the cosmos, but have historically proven difficult to create in the laboratory. The Magnetized Shock Experiment (MSX) at LANL produces super-Alfvénic shocks through the acceleration and subsequent stagnation of Field Reversed Configuration (FRC) plasmoids against a strong magnetic mirror and flux-conserving vacuum boundary. Plasma flows have been produced with sonic and Alfvén Mach numbers up to ~10 over a wide range of plasma beta with embedded perpendicular, oblique, and parallel magnetic field. Macroscopic ion skin-depth and long ion-gyroperiod enable diagnostic access to relevant shock physics using common methods. Variable plasmoid velocity, density, temperature, and magnetic field provide access to a wide range of shock conditions, and a campaign to study the physics of transcritical and supercritical shocks within the FRC plasmoid is currently underway. An overview of the experimental design, diagnostics suite, physics objectives, and recent results will be presented. Supported by DOE Office of Fusion Energy Sciences under DOE Contract DE-AC52-06NA25369.
Longitudinal sound waves in a collisionless, quasineutral plasma
Ramos, J. J.
2017-12-01
The time evolution of slow sound waves in a homogeneous, collisionless and quasineutral plasma, in particular their Landau damping, is investigated using the kinetic-magnetohydrodynamics formulation of Ramos (J. Plasma Phys. vol. 81, 2015 p. 905810325; vol. 82, 2016 p. 905820607). In this approach, the electric field is eliminated from a closed, hybrid fluid-kinetic system that ensures automatically the fulfilment of the charge neutrality condition. Considering the time dependence of a spatial-Fourier-mode linear perturbation with wavevector parallel to the equilibrium magnetic field, this can be cast as a second-order self-adjoint problem with a continuum spectrum of real and positive squared frequencies. Therefore, a conventional resolution of the identity with a continuum basis of singular normal modes is guaranteed, which simplifies significantly a Van Kampen-like treatment of the Landau damping. The explicit form of such singular normal modes is obtained, along with their orthogonality relations. These are used to derive the damped time evolution of the fluid moments of solutions of initial-value problems, for the most general kinds of initial conditions. The non-zero parallel electric field is not used explicitly in this analysis, but it is calculated from any given solution after the later has been obtained.
Investigations of electrostatic ion waves in a collisionless plasma
International Nuclear Information System (INIS)
Michelsen, P.
1980-06-01
The author reviews a series of publications concerning theoretical and experimental investigations of electrostatic ion waves in a collisionless plasma. The experimental work was performed in the Risoe Q-machine under various operational conditions. Besides a description of this machine and the diagnostic techniques used for the measurements, two kinds of electrostatic waves are treated, namely, ion-acoustic waves and ion-cyclotron waves. Due to the relative simplicity of the ion-acoustic waves, these were treated in detail in order to get a more general understanding of the behaviour of the propagation properties of electrostatic waves. The problem concerning the difficulties in describing waves excited at a certain position and propagating in space by a proper mathematical model was especially considered in depth. Furthermore, ion-acoustic waves were investigated which propagated in a plasma with a density gradient, and afterwards in a plasma with an ion beam. Finally, a study of the electrostatic ion-cyclotron waves was undertaken, and it was shown that these waves were unstable in a plasma traversed by an ion beam. (Auth.)
Particle injection and cosmic ray acceleration at collisionless parallel shocks
International Nuclear Information System (INIS)
Quest, K.B.
1987-01-01
The structure of collisionless parallel shocks is studied using one-dimensional hybrid simulations, with emphasis on particle injection into the first-order Fermi acceleration process. It is argued that for sufficiently high Mach number shocks, and in the absence of wave turbulence, the fluid firehose marginal stability condition will be exceeded at the interface between the upstream, unshocked, plasma and the heated plasma downstream. As a consequence, nonlinear, low-frequency, electromagnetic waves are generated and act to slow the plasma and provide dissipation for the shock. It is shown that large amplitude waves at the shock ramp scatter a small fraction of the upstream ions back into the upstream medium. These ions, in turn, resonantly generate the electromagnetic waves that are swept back into the shock. As these waves propagate through the shock they are compressed and amplified, allowing them to non-resonantly scatter the bulk of the plasma. Moreover, the compressed waves back-scatter a small fraction of the upstream ions, maintaining the shock structure in a quasi-steady state. The back-scattered ions are accelerated during the wave generation process to 2 to 4 times the ram energy and provide a likely seed population for cosmic rays. 49 refs., 7 figs
A new magnetic reconnection paradigm: Stochastic plasmoid chains
Loureiro, Nuno
2015-11-01
Recent analytical and numerical research in magnetic reconnection has converged on the notion that reconnection sites (current sheets) are unstable to the formation of multiple magnetic islands (plasmoids), provided that the system is sufficiently large (or, in other words, that the Lundquist number of the plasma is high). Nonlinearly, plasmoids come to define the reconnection geometry. Their nonlinear dynamics is rather complex and best thought of as new form of turbulence whose properties are determined by continuous plasmoid formation and their subsequent ejection from the sheet, as well as the interaction (coalescence) between plasmoids of different sizes. The existence of these stochastic plasmoid chains has powerful implications for several aspects of the reconnection process, from determining the reconnection rate to the details and efficiency of the energy conversion and dissipation. In addition, the plasmoid instability may also directly bear on the little understood problem of the reconnection trigger, or onset, i.e., the abrupt transition from a slow stage of energy accumulation to a fast (explosive) stage of energy release. This talk will first provide a brief overview of these recent developments in the reconnection field. I will then discuss recent work addressing the onset problem in the context of a forming current sheet which becomes progressively more unstable to the plasmoid instability. Work partially supported by Fundação para a Ciência e Tecnologia via Grants UID/FIS/50010/2013 and IF/00530/2013.
SCALING LAW OF RELATIVISTIC SWEET-PARKER-TYPE MAGNETIC RECONNECTION
International Nuclear Information System (INIS)
Takahashi, Hiroyuki R.; Kudoh, Takahiro; Masada, Youhei; Matsumoto, Jin
2011-01-01
Relativistic Sweet-Parker-type magnetic reconnection is investigated by relativistic resistive magnetohydrodynamic (RRMHD) simulations. As an initial setting, we assume anti-parallel magnetic fields and a spatially uniform resistivity. A perturbation imposed on the magnetic fields triggers magnetic reconnection around a current sheet, and the plasma inflows into the reconnection region. The inflows are then heated due to ohmic dissipation in the diffusion region and finally become relativistically hot outflows. The outflows are not accelerated to ultrarelativistic speeds (i.e., Lorentz factor ≅ 1), even when the magnetic energy dominates the thermal and rest mass energies in the inflow region. Most of the magnetic energy in the inflow region is converted into the thermal energy of the outflow during the reconnection process. The energy conversion from magnetic to thermal energy in the diffusion region results in an increase in the plasma inertia. This prevents the outflows from being accelerated to ultrarelativistic speeds. We find that the reconnection rate R obeys the scaling relation R≅S -0.5 , where S is the Lundquist number. This feature is the same as that of non-relativistic reconnection. Our results are consistent with the theoretical predictions of Lyubarsky for Sweet-Parker-type magnetic reconnection.
Experimental Investigation of the Neutral sheet Profile During Magnetic Reconnection
International Nuclear Information System (INIS)
Trintchouk, F.; Ji, H.; Yamada, M.; Kulsrud, R.; Hsu, S.; Carter, T.
1999-01-01
During magnetic reconnection, a ''neutral sheet'' current is induced, heating the plasma. The resultant plasma thermal pressure forms a stationary equilibrium with the opposing magnetic fields. The reconnection layer profile holds significant clues about the physical mechanisms which control reconnection. On the Magnetic Reconnection Experiment [M. Yamada et al., Phys. Plasmas 4, 1936 (1997)], a quasi steady-state and axisymmetric neutral sheet profile has been measured precisely using a magnetic probe array with spatial resolution equal to one quarter of the ion gyro-radius. It was found that the reconnecting field profile fits well with a Harris-type profile [E. G. Harris, Il Nuovo Cimento 23, 115 (1962)], B(x) approximately tanh(x/delta). This agreement is remarkable since the Harris theory does not take into account reconnection and associated electric fields and dissipation. An explanation for this agreement is presented. The sheet thickness delta is found to be approximately 0.4 times the ion skin depth, which agrees with a generalized Harris theory incorporating non-isothermal electron and ion temperatures and finite electric field. The detailed study of additional local features of the reconnection region is also presented
Total magnetic reconnection during a tokamak major disruption
International Nuclear Information System (INIS)
Goetz, J.A.
1990-09-01
Magnetic reconnection has long been considered to be the cause of sawtooth oscillations and major disruptions in tokamak experiments. Experimental confirmation of reconnection models has been hampered by the difficulty of direct measurement of reconnection, which would involve tracing field lines for many transits around the tokamak. Perhaps the most stringent test of reconnection in a tokamak involves measurement of the safety factor q. Reconnection arising from a single helical disturbance with mode numbers m and n should raise q to m/n everywhere inside of the original resonant surface. Total reconnection should also flatten the temperature and current density profiles inside of this surface. Disruptive instabilities have been studied in the Tokapole 2, a poloidal divertor tokamak. When Tokapole 2 is operated in the material limiter configuration, a major disruption results in current termination as in most tokamaks. However, when operated in the magnetic limiter configuration current termination is suppressed and major disruptions appear as giant sawtooth oscillations. The objective of this thesis is to determine if total reconnection is occurring during major disruptions. To accomplish this goal, the poloidal magnetic field has been directly measured in Tokapole 2 with internal magnetic coils. A full two-dimensional measurement over the central current channel has been done. From these measurements, the poloidal magnetic flux function is obtained and the magnetic surfaces are plotted. The flux-surface-averaged safety factor is obtained by integrating the local magnetic field line pitch over the experimentally obtained magnetic surface
Dependence of the dayside magnetopause reconnection rate on local conditions
Wang, Shan; Kistler, Lynn M.; Mouikis, Christopher G.; Petrinec, Steven M.
2015-08-01
We estimate the reconnection rates for eight dayside magnetopause reconnection events observed by the Cluster spacecraft and compare them with the predictions of the Cassak-Shay Formula (Rcs) Cassak and Shay (2007). The measured reconnection rate is determined by calculating the product of the inflow velocity and magnetic field in the magnetosheath inflow region. The predicted reconnection rate is calculated using the plasma parameters on both sides of the current layer, including the contributions of magnetosheath H+, magnetospheric hot H+ and O+, and magnetospheric cold ions. The measured reconnection rates show clear correlations with Rcs with an aspect ratio of 0.07. The O+ and cold ions can contribute up to ~30% of the mass density, which may reduce the reconnection rate for individual events. However, the variation of the reconnection rate is dominated by the variation of the magnetosheath parameters. In addition, we calculated the predicted reconnection rate using only magnetosheath parameters (Rsh). The correlation of the measured rate with Rsh was better than the correlation with Rcs, with an aspect ratio of 0.09. This might indicate deviations from the Cassak-Shay theory caused by the asymmetric reconnection structure and kinetic effects of different inflow populations. A better aspect ratio is expected to be between the ones determined using Rcs and Rsh. The aspect ratio does not show a clear dependence on the O+ concentration, likely because the O+ contribution is too small in these events. The aspect ratio also does not show a clear correlation with density asymmetry or guide field.
Electron magnetic reconnection without ion coupling in Earth's turbulent magnetosheath
Phan, T. D.; Eastwood, J. P.; Shay, M. A.; Drake, J. F.; Sonnerup, B. U. Ö.; Fujimoto, M.; Cassak, P. A.; Øieroset, M.; Burch, J. L.; Torbert, R. B.; Rager, A. C.; Dorelli, J. C.; Gershman, D. J.; Pollock, C.; Pyakurel, P. S.; Haggerty, C. C.; Khotyaintsev, Y.; Lavraud, B.; Saito, Y.; Oka, M.; Ergun, R. E.; Retino, A.; Le Contel, O.; Argall, M. R.; Giles, B. L.; Moore, T. E.; Wilder, F. D.; Strangeway, R. J.; Russell, C. T.; Lindqvist, P. A.; Magnes, W.
2018-05-01
Magnetic reconnection in current sheets is a magnetic-to-particle energy conversion process that is fundamental to many space and laboratory plasma systems. In the standard model of reconnection, this process occurs in a minuscule electron-scale diffusion region1,2. On larger scales, ions couple to the newly reconnected magnetic-field lines and are ejected away from the diffusion region in the form of bi-directional ion jets at the ion Alfvén speed3-5. Much of the energy conversion occurs in spatially extended ion exhausts downstream of the diffusion region6. In turbulent plasmas, which contain a large number of small-scale current sheets, reconnection has long been suggested to have a major role in the dissipation of turbulent energy at kinetic scales7-11. However, evidence for reconnection plasma jetting in small-scale turbulent plasmas has so far been lacking. Here we report observations made in Earth's turbulent magnetosheath region (downstream of the bow shock) of an electron-scale current sheet in which diverging bi-directional super-ion-Alfvénic electron jets, parallel electric fields and enhanced magnetic-to-particle energy conversion were detected. Contrary to the standard model of reconnection, the thin reconnecting current sheet was not embedded in a wider ion-scale current layer and no ion jets were detected. Observations of this and other similar, but unidirectional, electron jet events without signatures of ion reconnection reveal a form of reconnection that can drive turbulent energy transfer and dissipation in electron-scale current sheets without ion coupling.
MMS Encounters with Reconnection Diffusion Regions in the Earth's Magnetotail
Torbert, R. B.; Burch, J. L.; Argall, M. R.; Farrugia, C. J.; Alm, L.; Dors, I.; Payne, D.; Rogers, A. J.; Strangeway, R. J.; Phan, T.; Ergun, R.; Goodrich, K.; Lindqvist, P. A.; Khotyaintsev, Y. V.; Giles, B. L.; Rager, A. C.; Gershman, D. J.; Kletzing, C.
2017-12-01
The Magnetospheric Multiscale (MMS) fleet of four spacecraft traversed the Earth's magnetotail in May through August of 2017 with an apogee of 25 Re, and encountered diffusion regions characteristic of symmetric reconnection. This presentation will describe in-situ measurements of large electric fields, strong electron cross-tail and Hall currents, and electron velocity distributions (frequently crescent-shaped) that are commonly observed in these regions. Positive electromagnetic energy conversion is also typical. The characteristics of symmetric reconnection observations will be contrasted with those of asymmetric reconnection that MMS observed previously at the dayside magnetopause.
Helicity conservation under quantum reconnection of vortex rings.
Zuccher, Simone; Ricca, Renzo L
2015-12-01
Here we show that under quantum reconnection, simulated by using the three-dimensional Gross-Pitaevskii equation, self-helicity of a system of two interacting vortex rings remains conserved. By resolving the fine structure of the vortex cores, we demonstrate that the total length of the vortex system reaches a maximum at the reconnection time, while both writhe helicity and twist helicity remain separately unchanged throughout the process. Self-helicity is computed by two independent methods, and topological information is based on the extraction and analysis of geometric quantities such as writhe, total torsion, and intrinsic twist of the reconnecting vortex rings.
Process of magnetic reconnection as a source of longitudinal currents
International Nuclear Information System (INIS)
Sidneva, M.V.; Semenov, V.S.
1987-01-01
Variations in magnetic field and current system as applied to conditions in the Earth magnetospheric tail are calculated so as to show that three-dimensional reconnection leads inevitably to the appearance of a system of longitudinal currents. With reference to current layer of the magnetospheric tail the longitudinal currents appearing in the process of reconnection are directed to the Earth on the morning side and from Earth - on the evening side. The results presented suggest that magnetic reconnection can serve as a sourse of the Birkeland current loop of a substorm
Collisionless encounters and the origin of the lunar inclination.
Pahlevan, Kaveh; Morbidelli, Alessandro
2015-11-26
The Moon is generally thought to have formed from the debris ejected by the impact of a planet-sized object with the proto-Earth towards the end of planetary accretion. Models of the impact process predict that the lunar material was disaggregated into a circumplanetary disk and that lunar accretion subsequently placed the Moon in a near-equatorial orbit. Forward integration of the lunar orbit from this initial state predicts a modern inclination at least an order of magnitude smaller than the lunar value--a long-standing discrepancy known as the lunar inclination problem. Here we show that the modern lunar orbit provides a sensitive record of gravitational interactions with Earth-crossing planetesimals that were not yet accreted at the time of the Moon-forming event. The currently observed lunar orbit can naturally be reproduced via interaction with a small quantity of mass (corresponding to 0.0075-0.015 Earth masses eventually accreted to the Earth) carried by a few bodies, consistent with the constraints and models of late accretion. Although the encounter process has a stochastic element, the observed value of the lunar inclination is among the most likely outcomes for a wide range of parameters. The excitation of the lunar orbit is most readily reproduced via collisionless encounters of planetesimals with the Earth-Moon system with strong dissipation of tidal energy on the early Earth. This mechanism obviates the need for previously proposed (but idealized) excitation mechanisms, places the Moon-forming event in the context of the formation of Earth, and constrains the pristineness of the dynamical state of the Earth-Moon system.
Resistive instabilities and field line reconnection
International Nuclear Information System (INIS)
White, R.B.
1980-05-01
A review is given of the linear theory of reconnection for a plane current layer. The three basic modes are the Rippling Mode, the Gravitational Interchange Mode, and the Tearing Mode. A derivation is given of the magnetic field energy which provides the driving force for the tearing mode. The necessary concepts for the analysis of tearing modes in cylindrical geometry are introduced. The equations governing tearing mode evolution in a tokamak are expanded to lowest order in the inverse aspect ratio. The tearing mode in a toroidal device is closely related to the ideal magnetohydrodynamic kink mode, and this relationship is stressed in the derivations of the linear growth rates for modes with poloidal model number m > 2 and for the quite different m = 1 mode. The nonlinear theory of tearing mode development and the implications of this theory for the understanding of toroidal magnetic confinement devices is reviewed
Plasma Astrophysics, part II Reconnection and Flares
Somov, Boris V
2007-01-01
This well-illustrated monograph is devoted to classic fundamentals, current practice, and perspectives of modern plasma astrophysics. The first part is unique in covering all the basic principles and practical tools required for understanding and working in plasma astrophysics. The second part presents the physics of magnetic reconnection and flares of electromagnetic origin in space plasmas within the solar system; single and double stars, relativistic objects, accretion disks, and their coronae are also covered. This book is designed mainly for professional researchers in astrophysics. However, it will also be interesting and useful to graduate students in space sciences, geophysics, as well as advanced students in applied physics and mathematics seeking a unified view of plasma physics and fluid mechanics.
MESSENGER observations of magnetic reconnection in Mercury's magnetosphere.
Slavin, James A; Acuña, Mario H; Anderson, Brian J; Baker, Daniel N; Benna, Mehdi; Boardsen, Scott A; Gloeckler, George; Gold, Robert E; Ho, George C; Korth, Haje; Krimigis, Stamatios M; McNutt, Ralph L; Raines, Jim M; Sarantos, Menelaos; Schriver, David; Solomon, Sean C; Trávnícek, Pavel; Zurbuchen, Thomas H
2009-05-01
Solar wind energy transfer to planetary magnetospheres and ionospheres is controlled by magnetic reconnection, a process that determines the degree of connectivity between the interplanetary magnetic field (IMF) and a planet's magnetic field. During MESSENGER's second flyby of Mercury, a steady southward IMF was observed and the magnetopause was threaded by a strong magnetic field, indicating a reconnection rate ~10 times that typical at Earth. Moreover, a large flux transfer event was observed in the magnetosheath, and a plasmoid and multiple traveling compression regions were observed in Mercury's magnetotail, all products of reconnection. These observations indicate that Mercury's magnetosphere is much more responsive to IMF direction and dominated by the effects of reconnection than that of Earth or the other magnetized planets.
Magnetic reconnection and self-organized plasma systems
International Nuclear Information System (INIS)
Yamada, Masaaki; Ji, Hantao
2000-01-01
In this paper the recent results from the Magnetic Reconnection Experiment (MRX) at PPPL are discussed along with their relationship to observations from solar flares, the magnetosphere, and current carrying pinch discharges such as tokamaks, reversed field pinches, spheromaks and field reversed configurations. It is found that the reconnection speed decreases as the angle of merging field lines decreases, consistent with the well-established observation in the dayside magnetosphere. This observation can also provide a qualitative interpretation of a generally observed trend in pinch plasmas, namely that magnetic field diffuses (or reconnects) faster when magnetic shear is larger. A recently conceived research project, SPIRIT (Self-organized Plasma with Induction, Reconnection, and Injection Techniques), will also be discussed. (author)
Electron-Scale Measurements of Magnetic Reconnection in Space
Burch, J. L.; Torbert, R. B.; Phan, T. D.; Chen, L.-J.; Moore, T. E.; Ergun, R. E.; Eastwood, J. P.; Gershman, D. J.; Cassak, P. A.; Argall, M. R.;
2016-01-01
Magnetic reconnection is a fundamental physical process in plasmas whereby stored magnetic energy is converted into heat and kinetic energy of charged particles. Reconnection occurs in many astrophysical plasma environments and in laboratory plasmas. Using measurements with very high time resolution, NASA's Magnetospheric Multiscale (MMS) mission has found direct evidence for electron demagnetization and acceleration at sites along the sunward boundary of Earth's magnetosphere where the interplanetary magnetic field reconnects with the terrestrial magnetic field. We have (i) observed the conversion of magnetic energy to particle energy; (ii) measured the electric field and current, which together cause the dissipation of magnetic energy; and (iii) identified the electron population that carries the current as a result of demagnetization and acceleration within the reconnection diffusion/dissipation region.
Electron and ion distribution functions in magnetopause reconnection
Wang, S.; Chen, L. J.; Bessho, N.; Hesse, M.; Kistler, L. M.; Torbert, R. B.; Mouikis, C.; Pollock, C. J.
2015-12-01
We investigate electron and ion velocity distribution functions in dayside magnetopause reconnection events observed by the Cluster and MMS spacecraft. The goal is to build a spatial map of electron and ion distribution features to enable the indication of the spacecraft location in the reconnection structure, and to understand plasma energization processes. Distribution functions, together with electromagnetic field structures, plasma densities, and bulk velocities, are organized and compared with particle-in-cell simulation results to indicate the proximities to the reconnection X-line. Anisotropic features in the distributions of magnetospheric- and magnetosheath- origin electrons at different locations in the reconnection inflow and exhaust are identified. In particular, parallel electron heating is observed in both the magnetosheath and magnetosphere inflow regions. Possible effects of the guide field strength, waves, and upstream density and temperature asymmetries on the distribution features will be discussed.
Fast Magnetic Reconnection: Bridging Laboratory and Space Plasma Physics
Energy Technology Data Exchange (ETDEWEB)
Bhattacharjee, Amitava [University New Hampshire- Durham
2012-02-16
Recent developments in experimental and theoretical studies of magnetic reconnection hold promise for providing solutions to outstanding problems in laboratory and space plasma physics. Examples include sawtooth crashes in tokamaks, substorms in the Earth’s Magnetosphere, eruptive solar flares, and more recently, fast reconnection in laser-produced high energy density plasmas. In each of these examples, a common and long-standing challenge has been to explain why fast reconnection proceeds rapidly from a relatively quiescent state. In this talk, we demonstrate the advantages of viewing these problems and their solutions from a common perspective. We focus on some recent, surprising discoveries regarding the role of secondary plasmoid instabilities of thin current sheets. Nonlinearly, these instabilities lead to fast reconnection rates that are very weakly dependent on the Lundquist number of the plasma.
Experimental investigation of the trigger problem in magnetic reconnection
International Nuclear Information System (INIS)
Katz, Noam; Egedal, Jan; Fox, Will; Le, Ari; Vrublevskis, Arturs; Bonde, Jeff
2011-01-01
Magnetic reconnection releases magnetic energy not only in steady state, but also in time-dependent and often explosive events. Here, we investigate the trigger mechanism for this explosive release by using a toroidal experiment in the strong guide-field regime. We observe spontaneous reconnection events with exponentially growing reconnection rates, and we characterize the full 3D dynamics of these events using multiple internal probes. The reconnection is asymmetric: it begins at one toroidal location and propagates around in both directions. The spontaneous onset is facilitated by an interaction between the x-line current channel and a global mode, which appears in the electrostatic potential. It is this mode which breaks axisymmetry and enables a localized decrease in x-line current. We apply a simple model - which relies on ion polarization currents for current continuity - to reproduce the exponential growth and compute the growth rate. The result agrees well with the experimental growth rate.
International Nuclear Information System (INIS)
Vainer, B.V.; Nasel'skii, P.D.
1983-01-01
Equations for the correlation functions of fluctuations in the spectra of relativistic collisionless particles are obtained from the combined system of Einstein's equations and the Vlasov equation. It is shown that the interaction of high-frequency gravitational waves with collisionless particles leads to diffusion of their spectrum in the momentum space. The distortions in the spectrum of the microwave background radiation in a cosmological model with high-frequency gravitational waves are discussed. Bounds are obtained on the spectral characteristics of background gravitational waves
Collisionless damping of nonlinear dust ion acoustic wave due to dust charge fluctuation
International Nuclear Information System (INIS)
Ghosh, Samiran; Chaudhuri, Tushar K.; Sarkar, Susmita; Khan, Manoranjan; Gupta, M.R.
2002-01-01
A dissipation mechanism for the damping of the nonlinear dust ion acoustic wave in a collisionless dusty plasma consisting of nonthermal electrons, ions, and variable charge dust grains has been investigated. It is shown that the collisionless damping due to dust charge fluctuation causes the nonlinear dust ion acoustic wave propagation to be described by the damped Korteweg-de Vries equation. Due to the presence of nonthermal electrons, the dust ion acoustic wave admits both positive and negative potential and it suffers less damping than the dust acoustic wave, which admits only negative potential
Total magnetic reconnection during a tokamak major disruption
International Nuclear Information System (INIS)
Goetz, J.A.; Dexter, R.N.; Prager, S.C.
1990-07-01
The safety factor within a tokamak plasma has been measured during a major disruption. During the disruption, the central safety factor jumps from below one to above one, while the total current is unchanged. This implies that total reconnection has occurred. This observation is in contract to the absence of total reconnection observed during a sawtooth oscillation in the same device. 11 refs., 6 figs
MMS Observation of Magnetic Reconnection in the Turbulent Magnetosheath
Vörös, Z.; Yordanova, E.; Varsani, A.; Genestreti, K. J.; Khotyaintsev, Yu. V.; Li, W.; Graham, D. B.; Norgren, C.; Nakamura, R.; Narita, Y.; Plaschke, F.; Magnes, W.; Baumjohann, W.; Fischer, D.; Vaivads, A.; Eriksson, E.; Lindqvist, P.-A.; Marklund, G.; Ergun, R. E.; Leitner, M.; Leubner, M. P.; Strangeway, R. J.; Le Contel, O.; Pollock, C.; Giles, B. J.; Torbert, R. B.; Burch, J. L.; Avanov, L. A.; Dorelli, J. C.; Gershman, D. J.; Paterson, W. R.; Lavraud, B.; Saito, Y.
2017-11-01
In this paper we use the full armament of the MMS (Magnetospheric Multiscale) spacecraft to study magnetic reconnection in the turbulent magnetosheath downstream of a quasi-parallel bow shock. Contrarily to the magnetopause and magnetotail cases, only a few observations of reconnection in the magnetosheath have been reported. The case study in this paper presents, for the first time, both fluid-scale and kinetic-scale signatures of an ongoing reconnection in the turbulent magnetosheath. The spacecraft are crossing the reconnection inflow and outflow regions and the ion diffusion region (IDR). Inside the reconnection outflows D shape ion distributions are observed. Inside the IDR mixing of ion populations, crescent-like velocity distributions and ion accelerations are observed. One of the spacecraft skims the outer region of the electron diffusion region, where parallel electric fields, energy dissipation/conversion, electron pressure tensor agyrotropy, electron temperature anisotropy, and electron accelerations are observed. Some of the difficulties of the observations of magnetic reconnection in turbulent plasma are also outlined.
CRITICAL DIFFERENCES OF ASYMMETRIC MAGNETIC RECONNECTION FROM STANDARD MODELS
Energy Technology Data Exchange (ETDEWEB)
Nitta, S. [Hinode Science Project, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo, 181-8588 (Japan); Wada, T. [Tsukuba University of Technology, 4-3-15 Amakubo, Tsukuba, 305-8520 (Japan); Fuchida, T. [Graduate School of Science and Engineering, Ehime Univesity, 2-5 Bunkyo-cho, Matuyama, Ehime, 790-8577 (Japan); Kondoh, K., E-mail: nittasn@yahoo.co.jp, E-mail: tomohide.wada@gmail.com, E-mail: fuchida@sp.cosmos.ehime-u.ac.jp, E-mail: kondo@cosmos.ehime-u.ac.jp [Research Center for Space and Cosmic Evolution, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime, 790-8577 (Japan)
2016-09-01
We have clarified the structure of asymmetric magnetic reconnection in detail as the result of the spontaneous evolutionary process. The asymmetry is imposed as ratio k of the magnetic field strength in both sides of the initial current sheet (CS) in the isothermal equilibrium. The MHD simulation is carried out by the HLLD code for the long-term temporal evolution with very high spatial resolution. The resultant structure is drastically different from the symmetric case (e.g., the Petschek model) even for slight asymmetry k = 2. (1) The velocity distribution in the reconnection jet clearly shows a two-layered structure, i.e., the high-speed sub-layer in which the flow is almost field aligned and the acceleration sub-layer. (2) Higher beta side (HBS) plasma is caught in a lower beta side plasmoid. This suggests a new plasma mixing process in the reconnection events. (3) A new large strong fast shock in front of the plasmoid forms in the HBS. This can be a new particle acceleration site in the reconnection system. These critical properties that have not been reported in previous works suggest that we contribute to a better and more detailed knowledge of the reconnection of the standard model for the symmetric magnetic reconnection system.
Frequently Occurring Reconnection Jets from Sunspot Light Bridges
Tian, Hui; Yurchyshyn, Vasyl; Peter, Hardi; Solanki, Sami K.; Young, Peter R.; Ni, Lei; Cao, Wenda; Ji, Kaifan; Zhu, Yingjie; Zhang, Jingwen; Samanta, Tanmoy; Song, Yongliang; He, Jiansen; Wang, Linghua; Chen, Yajie
2018-02-01
Solid evidence of magnetic reconnection is rarely reported within sunspots, the darkest regions with the strongest magnetic fields and lowest temperatures in the solar atmosphere. Using the world’s largest solar telescope, the 1.6 m Goode Solar Telescope, we detect prevalent reconnection through frequently occurring fine-scale jets in the Hα line wings at light bridges, the bright lanes that may divide the dark sunspot core into multiple parts. Many jets have an inverted Y-shape, shown by models to be typical of reconnection in a unipolar field environment. Simultaneous spectral imaging data from the Interface Region Imaging Spectrograph show that the reconnection drives bidirectional flows up to 200 km s‑1, and that the weakly ionized plasma is heated by at least an order of magnitude up to ∼80,000 K. Such highly dynamic reconnection jets and efficient heating should be properly accounted for in future modeling efforts of sunspots. Our observations also reveal that the surge-like activity previously reported above light bridges in some chromospheric passbands such as the Hα core has two components: the ever-present short surges likely to be related to the upward leakage of magnetoacoustic waves from the photosphere, and the occasionally occurring long and fast surges that are obviously caused by the intermittent reconnection jets.
ASYMMETRIC MAGNETIC RECONNECTION IN WEAKLY IONIZED CHROMOSPHERIC PLASMAS
International Nuclear Information System (INIS)
Murphy, Nicholas A.; Lukin, Vyacheslav S.
2015-01-01
Realistic models of magnetic reconnection in the solar chromosphere must take into account that the plasma is partially ionized and that plasma conditions within any two magnetic flux bundles undergoing reconnection may not be the same. Asymmetric reconnection in the chromosphere may occur when newly emerged flux interacts with pre-existing, overlying flux. We present 2.5D simulations of asymmetric reconnection in weakly ionized, reacting plasmas where the magnetic field strengths, ion and neutral densities, and temperatures are different in each upstream region. The plasma and neutral components are evolved separately to allow non-equilibrium ionization. As in previous simulations of chromospheric reconnection, the current sheet thins to the scale of the neutral–ion mean free path and the ion and neutral outflows are strongly coupled. However, the ion and neutral inflows are asymmetrically decoupled. In cases with magnetic asymmetry, a net flow of neutrals through the current sheet from the weak-field (high-density) upstream region into the strong-field upstream region results from a neutral pressure gradient. Consequently, neutrals dragged along with the outflow are more likely to originate from the weak-field region. The Hall effect leads to the development of a characteristic quadrupole magnetic field modified by asymmetry, but the X-point geometry expected during Hall reconnection does not occur. All simulations show the development of plasmoids after an initial laminar phase
MAVEN observations of magnetic reconnection in the Martian magnetotail
Harada, Y.; Halekas, J. S.; McFadden, J. P.; Mitchell, D. L.; Mazelle, C. X.; Connerney, J. E. P.; Espley, J. R.; Larson, D. E.; Brain, D. A.; Andersson, L.; DiBraccio, G. A.; Collinson, G.; Livi, R.; Hara, T.; Ruhunusiri, S.; Jakosky, B. M.
2015-12-01
Magnetic reconnection is a fundamental process that changes magnetic field topology and converts magnetic energy into particle energy. Although reconnection may play a key role in controlling ion escape processes at Mars, the fundamental properties of local physics and global dynamics of magnetic reconnection in the Martian environment remain unclear owing to the lack of simultaneous measurements of ions, electrons, and magnetic fields by modern instrumentation. Here we present comprehensive MAVEN observations of reconnection signatures in the near-Mars magnetotail. The observed reconnection signatures include (i) Marsward bulk flows of H+, O+, and O2+ ions, (ii) counterstreaming ion beams along the current sheet normal direction, (iii) Hall magnetic fields, and (iv) trapped electrons with two-sided loss cones. The measured velocity distribution functions of different ion species exhibit mass-dependent characteristics which are qualitatively consistent with previous multi-species kinetic simulations and terrestrial tail observations. The MAVEN observations demonstrate that the near-Mars magnetotail provides a unique environment for studying multi-ion reconnection.
Rosenberg, M. J.
2016-10-01
Shock-driven laser inertial confinement fusion (ICF) implosions have demonstrated the presence of ion kinetic effects in ICF implosions and also have been used as a proton source to probe the strongly driven reconnection of MG magnetic fields in laser-generated plasmas. Ion kinetic effects arise during the shock-convergence phase of ICF implosions when the mean free path for ion-ion collisions (λii) approaches the size of the hot-fuel region (Rfuel) and may impact hot-spot formation and the possibility of ignition. To isolate and study ion kinetic effects, the ratio of N - K =λii /Rfuel was varied in D3He-filled, shock-driven implosions at the Omega Laser Facility and the National Ignition Facility, from hydrodynamic-like conditions (NK 0.01) to strongly kinetic conditions (NK 10). A strong trend of decreasing fusion yields relative to the predictions of hydrodynamic models is observed as NK increases from 0.1 to 10. Hydrodynamics simulations that include basic models of the kinetic effects that are likely to be present in these experiments-namely, ion diffusion and Knudsen-layer reduction of the fusion reactivity-are better able to capture the experimental results. This type of implosion has also been used as a source of monoenergetic 15-MeV protons to image magnetic fields driven to reconnect in laser-produced plasmas at conditions similar to those encountered at the Earth's magnetopause. These experiments demonstrate that for both symmetric and asymmetric magnetic-reconnection configurations, when plasma flows are much stronger than the nominal Alfvén speed, the rate of magnetic-flux annihilation is determined by the flow velocity and is largely insensitive to initial plasma conditions. This work was supported by the Department of Energy Grant Number DENA0001857.
Nonlocal collisionless and collisional electron transport in low temperature plasmas
Kaganovich, Igor
2009-10-01
The purpose of the talk is to describe recent advances in nonlocal electron kinetics in low-pressure plasmas. A distinctive property of partially ionized plasmas is that such plasmas are always in a non-equilibrium state: the electrons are not in thermal equilibrium with the neutral species and ions, and the electrons are also not in thermodynamic equilibrium within their own ensemble, which results in a significant departure of the electron velocity distribution function from a Maxwellian. These non-equilibrium conditions provide considerable freedom to choose optimal plasma parameters for applications, which make gas discharge plasmas remarkable tools for a variety of plasma applications, including plasma processing, discharge lighting, plasma propulsion, particle beam sources, and nanotechnology. Typical phenomena in such discharges include nonlocal electron kinetics, nonlocal electrodynamics with collisionless electron heating, and nonlinear processes in the sheaths and in the bounded plasmas. Significant progress in understanding the interaction of electromagnetic fields with real bounded plasma created by this field and the resulting changes in the structure of the applied electromagnetic field has been one of the major achievements of the last decade in this area of research [1-3]. We show on specific examples that this progress was made possible by synergy between full scale particle-in-cell simulations, analytical models, and experiments. In collaboration with Y. Raitses, A.V. Khrabrov, Princeton Plasma Physics Laboratory, Princeton, NJ, USA; V.I. Demidov, UES, Inc., 4401 Dayton-Xenia Rd., Beavercreek, OH 45322, USA and AFRL, Wright-Patterson AFB, OH 45433, USA; and D. Sydorenko, University of Alberta, Edmonton, Canada. [4pt] [1] D. Sydorenko, A. Smolyakov, I. Kaganovich, and Y. Raitses, IEEE Trans. Plasma Science 34, 895 (2006); Phys. Plasmas 13, 014501 (2006); 14 013508 (2007); 15, 053506 (2008). [0pt] [2] I. D. Kaganovich, Y. Raitses, D. Sydorenko, and
High-speed photography of a 'switch-on' collisionless shock
International Nuclear Information System (INIS)
El-Khalafawy, T.A.; El-Nicklawy, M.M.; Bashara, A.B.; El-Masry, M.A.; Rudnev, N.J.
1975-01-01
The paper presents the results of the investigation of a 'switch-on' shock profile and the measurement of the wave velocity in the collisionless regime employing high-speed photography. Data for the electron temperature (Tsub(e)) ahead of and behind the wave front are presented here, and a Table with estimated and measured characteristic physical quantities. (author)
Saturation regime of the collisionless drift instability in a hydrogen plasma column
International Nuclear Information System (INIS)
Boissier, R.
1982-09-01
The saturation regime of the collisionless drift instability is observed in a steady state hydrogen column. The steady state parameters are observed to relax around the average values. A quasilinear model is proposed to describe the dynamics of wave growth and density gradient decay
DICE/ColDICE: 6D collisionless phase space hydrodynamics using a lagrangian tesselation
Sousbie, Thierry
2018-01-01
DICE is a C++ template library designed to solve collisionless fluid dynamics in 6D phase space using massively parallel supercomputers via an hybrid OpenMP/MPI parallelization. ColDICE, based on DICE, implements a cosmological and physical VLASOV-POISSON solver for cold systems such as dark matter (CDM) dynamics.
Effects of radial envelope modulations on the collisionless trapped-electron mode in tokamak plasmas
Chen, Hao-Tian; Chen, Liu
2018-05-01
Adopting the ballooning-mode representation and including the effects of radial envelope modulations, we have derived the corresponding linear eigenmode equation for the collisionless trapped-electron mode in tokamak plasmas. Numerical solutions of the eigenmode equation indicate that finite radial envelope modulations can affect the linear stability properties both quantitatively and qualitatively via the significant modifications in the corresponding eigenmode structures.
Self-consistency constraints on turbulent magnetic transport and relaxation in collisionless plasma
International Nuclear Information System (INIS)
Terry, P.W.; Diamond, P.H.; Hahm, T.S.
1985-10-01
Novel constraints on collisionless relaxation and transport in drift-Alfven turbulence are reported. These constraints arise due to the consideration of mode coupling and incoherent fluctuations and the proper application of self-consistency conditions. The result that electrostatic fluctuations alone regulate transport in drift-Alfven turbulence follows directly. Quasilinear transport predictions are discussed in light of these constraints
Turbulence, Magnetic Reconnection in Turbulent Fluids and Energetic Particle Acceleration
Lazarian, A.; Vlahos, L.; Kowal, G.; Yan, H.; Beresnyak, A.; de Gouveia Dal Pino, E. M.
2012-11-01
Turbulence is ubiquitous in astrophysics. It radically changes many astrophysical phenomena, in particular, the propagation and acceleration of cosmic rays. We present the modern understanding of compressible magnetohydrodynamic (MHD) turbulence, in particular its decomposition into Alfvén, slow and fast modes, discuss the density structure of turbulent subsonic and supersonic media, as well as other relevant regimes of astrophysical turbulence. All this information is essential for understanding the energetic particle acceleration that we discuss further in the review. For instance, we show how fast and slow modes accelerate energetic particles through the second order Fermi acceleration, while density fluctuations generate magnetic fields in pre-shock regions enabling the first order Fermi acceleration of high energy cosmic rays. Very importantly, however, the first order Fermi cosmic ray acceleration is also possible in sites of magnetic reconnection. In the presence of turbulence this reconnection gets fast and we present numerical evidence supporting the predictions of the Lazarian and Vishniac (Astrophys. J. 517:700-718, 1999) model of fast reconnection. The efficiency of this process suggests that magnetic reconnection can release substantial amounts of energy in short periods of time. As the particle tracing numerical simulations show that the particles can be efficiently accelerated during the reconnection, we argue that the process of magnetic reconnection may be much more important for particle acceleration than it is currently accepted. In particular, we discuss the acceleration arising from reconnection as a possible origin of the anomalous cosmic rays measured by Voyagers as well as the origin cosmic ray excess in the direction of Heliotail.
Internal and External Reconnection Series Homologous Solar Flares
Sterling, Alphonse C.; Moore, Ronald L.
2001-01-01
Using data from the extreme ultraviolet imaging telescope (EIT) on SOHO and the soft X-ray telescope (SXT) on Yohkoh, we examine a series of morphologically homologous solar flares occurring in National Oceanic and Atmospheric Administration (NOAA) active region 8210 over May 1-2, 1998. An emerging flux region (EFR) impacted against a sunspot to the west and next to a coronal hole to the east is the source of the repeated flaring. An SXT sigmoid parallels the EFR's neutral line at the site of the initial flaring in soft X rays. In EIT each flaring episode begins with the formation of a crinkle pattern external to the EFR. These EIT crinkles move out from, and then in toward, the EFR with velocities approx. 20 km/ s. A shrinking and expansion of the width of the coronal hole coincides with the crinkle activity, and generation and evolution of a postflare loop system begins near the time of crinkle formation. Using a schematic based on magnetograms of the region, we suggest that these observations are consistent with the standard reconnection-based model for solar eruptions but are modified by the presence of the additional magnetic fields of the sunspot and coronal hole. In the schematic, internal reconnection begins inside of the EFR-associated fields, unleashing a flare, postflare loops, and a coronal mass ejection (CME). External reconnection, first occurring between the escaping CME and the coronal hole field and second occurring between fields formed as a result of the first external reconnection, results in the EIT crinkles and changes in the coronal hole boundary. By the end of the second external reconnection, the initial setup is reinstated; thus the sequence can repeat, resulting in morphologically homologous eruptions. Our inferred magnetic topology is similar to that suggested in the "breakout model" of eruptions although we cannot determine if our eruptions are released primarily by the breakout mechanism (external reconnection) or, alternatively
International Nuclear Information System (INIS)
Wang Yansong; Kulsrud, Russell; Ji, Hantao
2008-01-01
A local linear theory is proposed for a perpendicularly propagating drift instability driven by relative drifts between electrons and ions. The theory takes into account local cross-field current, pressure gradients, and modest collisions as in the Magnetic Reconnection Experiment [M. Yamada et al., Phys. Plasmas 4, 1936 (1997)]. The unstable waves have very small group velocities in the direction of the pressure gradient, but have a large phase velocity near the relative drift velocity between electrons and ions in the direction of the cross-field current. By taking into account the electron-ion collisions and applying the theory in the Harris sheet, we establish that this instability could be excited near the center of the Harris sheet and have enough e-foldings to grow to large amplitude before it propagates out of the unstable region. Comparing with the other magnetic reconnection related instabilities (lower-hybrid-drift instability, modified two-stream instability, etc.) studied previously, we believe the instability we found is a favorable candidate to produce anomalous resistivity because of its unique wave characteristics, such as electromagnetic component, large phase velocity, and small group velocity in the cross-current-layer direction.
Witnessing a Large-scale Slipping Magnetic Reconnection along a Dimming Channel during a Solar Flare
Energy Technology Data Exchange (ETDEWEB)
Jing, Ju; Lee, Jeongwoo; Xu, Yan; Liu, Chang; Wang, Haimin [Center for Solar-Terrestrial Research, New Jersey Institute of Technology, Newark, NJ 07102-1982 (United States); Liu, Rui [CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei 230026 (China); Cheung, Mark C. M. [Lockheed Martin Solar and Astrophysics Laboratory, Palo Alto, CA 94304 (United States); Zhu, Chunming, E-mail: ju.jing@njit.edu [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)
2017-06-20
We report the intriguing large-scale dynamic phenomena associated with the M6.5 flare (SOL2015-06-22T18:23) in NOAA active region 12371, observed by RHESSI , Fermi , and the Atmospheric Image Assembly (AIA) and Magnetic Imager (HMI) on the Solar Dynamics Observatory ( SDO ). The most interesting feature of this event is a third ribbon (R3) arising in the decay phase, propagating along a dimming channel (seen in EUV passbands) toward a neighboring sunspot. The propagation of R3 occurs in the presence of hard X-ray footpoint emission and is broadly visible at temperatures from 0.6 MK to over 10 MK through the differential emission measure analysis. The coronal loops then undergo an apparent slipping motion following the same path of R3, after a ∼80 minute delay. To understand the underlying physics, we investigate the magnetic configuration and the thermal structure of the flaring region. Our results are in favor of a slipping-type reconnection followed by the thermodynamic evolution of coronal loops. In comparison with those previously reported slipping reconnection events, this one proceeds across a particularly long distance (∼60 Mm) over a long period of time (∼50 minutes) and shows two clearly distinguished phases: the propagation of the footpoint brightening driven by nonthermal particle injection and the apparent slippage of loops governed by plasma heating and subsequent cooling.
International Nuclear Information System (INIS)
Wang, Y.; Kulsrud, R.; Ji, H.
2008-01-01
A local linear theory is proposed for a perpendicularly propagating drift instability driven by relative drifts between electrons and ions. The theory takes into account local cross-field current, pressure gradients and modest collisions as in the Magnetic Reconnection Experiment (MRX) (10). The unstable waves have very small group velocities in the direction of the pressure gradient, but have a large phase velocity near the relative drift velocity between electrons and ions in the direction of cross-field current. By taking into account the electron-ion collisions and applying the theory in the Harris sheet, we establish that this instability could be excited near the center of the Harris sheet and have enough efoldings to grow to large amplitude before it propagates out of the unstable region. Comparing with the other magnetic reconnection related instabilities (LHDI, MTSI et.) studied previously, we believe the instability we find is a favorable candidate to produce anomalous resistivity because of its unique wave characteristics, such as electromagnetic component, large phase velocity, and small group velocity in the cross current layer direction
Flux Rope Acceleration and Enhanced Magnetic Reconnection Rate
International Nuclear Information System (INIS)
C.Z. Cheng; Y. Ren; G.S. Choe; Y.-J. Moon
2003-01-01
A physical mechanism of flares, in particular for the flare rise phase, has emerged from our 2-1/2-dimensional resistive MHD simulations. The dynamical evolution of current-sheet formation and magnetic reconnection and flux-rope acceleration subject to continuous, slow increase of magnetic shear in the arcade are studied by employing a non-uniform anomalous resistivity in the reconnecting current sheet under gravity. The simulation results directly relate the flux rope's accelerated rising motion with an enhanced magnetic reconnection rate and thus an enhanced reconnection electric field in the current sheet during the flare rise phase. The simulation results provide good quantitative agreements with observations of the acceleration of flux rope, which manifests in the form of SXR ejecta or erupting filament or CMEs, in the low corona. Moreover, for the X-class flare events studied in this paper the peak reconnection electric field is about O(10 2 V/m) or larger, enough to accelerate p articles to over 100 keV in a field-aligned distance of 10 km. Nonthermal electrons thus generated can produce hard X-rays, consistent with impulsive HXR emission observed during the flare rise phase
The auroral and ionospheric flow signatures of dual lobe reconnection
Directory of Open Access Journals (Sweden)
S. M. Imber
2006-11-01
Full Text Available We present the first substantial evidence for the occurrence of dual lobe reconnection from ionospheric flows and auroral signatures. The process of dual lobe reconnection refers to an interplanetary magnetic field line reconnecting with lobe field lines in both the northern and southern hemispheres. Two bursts of sunward plasma flow across the noon portion of the open/closed field line boundary (OCB, indicating magnetic flux closure at the dayside, were observed in SuperDARN radar data during a period of strongly northward IMF. The OCB is identified from spacecraft, radar backscatter, and auroral observations. In order for dual lobe reconnection to take place, we estimate that the interplanetary magnetic field clock angle must be within ±10° of zero (North. The total flux crossing the OCB during each burst is small (1.8% and 0.6% of the flux contained within the polar cap for the two flows. A brightening of the noon portion of the northern auroral oval was observed as the clock angle passed through zero, and is thought to be due to enhanced precipitating particle fluxes due to the occurrence of reconnection at two locations along the field line. The number of solar wind protons captured by the flux closure process was estimated to be ~2.5×1030 (4 tonnes by mass, sufficient to populate the cold, dense plasma sheet observed following this interval.
Observations of significant flux closure by dual lobe reconnection
Directory of Open Access Journals (Sweden)
S. M. Imber
2007-07-01
Full Text Available We present an interval of dual lobe reconnection during which interplanetary magnetic field lines are captured by the magnetosphere by reconnecting at high latitudes in both the Northern and the Southern Hemispheres. This event was identified using measurements of the ionospheric convection flow and observations of the aurora using the SuperDARN radars and the IMAGE spacecraft. A cusp spot, characteristic of northward IMF, is clearly visible for a 30 min period enabling the ionospheric footprint of the Northern Hemisphere merging gap to be accurately determined. During the interval a strong burst of sunward flow across the dayside open/closed field line boundary (OCB is observed, which we interpret as the reconfiguration of the magnetosphere following a burst of reconnection. Noon-midnight and dawn-dusk keograms of the aurora show that the polar cap shrinks during the interval indicating that a large amount of flux was closed by the reconnection. Using the SuperDARN potential maps it is possible to calculate that the amount of flux closed during the interval is 0.13 GWb which represents approximately 10% of the pre-existing polar cap. The number of ions captured by the burst of dual lobe reconnection was calculated to be ~2.2×1031, more than sufficient to populate a cold, dense plasma sheet. That a dense plasma sheet was not subsequently observed is discussed in terms of subsequent changes in the IMF.
Tripolar electric field Structure in guide field magnetic reconnection
Fu, Song; Huang, Shiyong; Zhou, Meng; Ni, Binbin; Deng, Xiaohua
2018-03-01
It has been shown that the guide field substantially modifies the structure of the reconnection layer. For instance, the Hall magnetic and electric fields are distorted in guide field reconnection compared to reconnection without guide fields (i.e., anti-parallel reconnection). In this paper, we performed 2.5-D electromagnetic full particle simulation to study the electric field structures in magnetic reconnection under different initial guide fields (Bg). Once the amplitude of a guide field exceeds 0.3 times the asymptotic magnetic field B0, the traditional bipolar Hall electric field is clearly replaced by a tripolar electric field, which consists of a newly emerged electric field and the bipolar Hall electric field. The newly emerged electric field is a convective electric field about one ion inertial length away from the neutral sheet. It arises from the disappearance of the Hall electric field due to the substantial modification of the magnetic field and electric current by the imposed guide field. The peak magnitude of this new electric field increases linearly with the increment of guide field strength. Possible applications of these results to space observations are also discussed.
Tripolar electric field Structure in guide field magnetic reconnection
Directory of Open Access Journals (Sweden)
S. Fu
2018-03-01
Full Text Available It has been shown that the guide field substantially modifies the structure of the reconnection layer. For instance, the Hall magnetic and electric fields are distorted in guide field reconnection compared to reconnection without guide fields (i.e., anti-parallel reconnection. In this paper, we performed 2.5-D electromagnetic full particle simulation to study the electric field structures in magnetic reconnection under different initial guide fields (Bg. Once the amplitude of a guide field exceeds 0.3 times the asymptotic magnetic field B0, the traditional bipolar Hall electric field is clearly replaced by a tripolar electric field, which consists of a newly emerged electric field and the bipolar Hall electric field. The newly emerged electric field is a convective electric field about one ion inertial length away from the neutral sheet. It arises from the disappearance of the Hall electric field due to the substantial modification of the magnetic field and electric current by the imposed guide field. The peak magnitude of this new electric field increases linearly with the increment of guide field strength. Possible applications of these results to space observations are also discussed.
Ion-Scale Structure in Mercury's Magnetopause Reconnection Diffusion Region
Gershman, Daniel J.; Dorelli, John C.; DiBraccio, Gina A.; Raines, Jim M.; Slavin, James A.; Poh, Gangkai; Zurbuchen, Thomas H.
2016-01-01
The strength and time dependence of the electric field in a magnetopause diffusion region relate to the rate of magnetic reconnection between the solar wind and a planetary magnetic field. Here we use approximately 150 milliseconds measurements of energetic electrons from the Mercury Surface, Space Environment, GEochemistry, and Ranging (MESSENGER) spacecraft observed over Mercury's dayside polar cap boundary (PCB) to infer such small-scale changes in magnetic topology and reconnection rates. We provide the first direct measurement of open magnetic topology in flux transfer events at Mercury, structures thought to account for a significant portion of the open magnetic flux transport throughout the magnetosphere. In addition, variations in PCB latitude likely correspond to intermittent bursts of approximately 0.3 to 3 millivolts per meter reconnection electric fields separated by approximately 5 to10 seconds, resulting in average and peak normalized dayside reconnection rates of approximately 0.02 and approximately 0.2, respectively. These data demonstrate that structure in the magnetopause diffusion region at Mercury occurs at the smallest ion scales relevant to reconnection physics.
Diffusion tensor tractography reveals muscle reconnection during axolotl limb regeneration.
Directory of Open Access Journals (Sweden)
Cheng-Han Wu
Full Text Available Axolotls have amazing ability to regenerate their lost limbs. Our previous works showed that after amputation the remnant muscle ends remained at their original location whilst sending satellite cells into the regenerating parts to develop into early muscle fibers in the late differentiation stage. The parental and the newly formed muscle fibers were not connected until very late stage. The present study used non-invasive diffusion tensor imaging (DTI to monitor weekly axolotl upper arm muscles after amputation of their upper arms. DTI tractography showed that the regenerating muscle fibers became visible at 9-wpa (weeks post amputation, but a gap was observed between the regenerating and parental muscles. The gap was filled at 10-wpa, indicating reconnection of the fibers of both muscles. This was confirmed by histology. The DTI results indicate that 23% of the muscle fibers were reconnected at 10-wpa. In conclusion, DTI can be used to visualize axolotls' skeletal muscles and the results of muscle reconnection were in accordance with our previous findings. This non-invasive technique will allow researchers to identify the timeframe in which muscle fiber reconnection takes place and thus enable the study of the mechanisms underlying this reconnection.
Structure of reconnection boundary layers in incompressible MHD
International Nuclear Information System (INIS)
Sonnerup, B.U.Oe.; Wang, D.J.
1987-01-01
The incompressible MHD equations with nonvanishing viscosity and resistivity are simplified by use of the boundary layer approximation to describe the flow and magnetic field in the exit flow regions of magnetic field reconnection configurations when the reconnection rate is small. The conditions are derived under which self-similar solutions exist of the resulting boundary layer equations. For the case of zero viscosity and resistivity, the equations describing such self-similar layers are then solved in terms of quadratures, and the resulting flow and field configurations are described. Symmetric solutions, relevant, for example, to reconnection in the geomagnetic tail, as well as asymmetric solutions, relevant to reconnection at the earth's magnetopause, are found to exist. The nature of the external solutions to which the boundary layer solutions should be matched is discussed briefly, but the actual matching, which is to occur at Alfven-wave characteristic curves in the boundary layer solutions, is not carried out. Finally, it is argued that the solutions obtained may also be used to describe the structure of the intense vortex layers observed to occur at magnetic separatrices in computer simulations and in certain analytical models of the reconnection process
Magnetic Reconnection as Revealed by the Magnetospheric Multiscale Mission
Burch, J. L.; Torbert, R. B.; Moore, T. E.; Giles, B. L.; Phan, T.; Le Contel, O.; Webster, J.; Genestreti, K.; Ergun, R.; Chen, L. J.; Wang, S.; Dorelli, J.; Rager, A. C.; Graham, D.; Gershman, D. J.
2017-12-01
The NASA Magnetospheric Multiscale (MMS) mission has completed its prime mission observations and has now entered an extended mission phase. During the two-year prime mission MMS made fundamental advances in our understanding of magnetic reconnection as enabled by its unprecedentedly high-resolution plasma and field measurements, which were made from 4 identical spacecraft in tetrahedral formations ranging down to 7 km. The primary objective of MMS is to understand reconnection at the electron scale, and this objective was accomplished by detailed analysis of 32 electron diffusion regions at the dayside magnetopause and a significant number in the magnetotail, which are still being captured and analyzed. Significant interplay between theory and experiment has occurred throughout the mission leading to the discovery of agyrotropic "crescent-shaped" electron velocity-space distributions, which carry the out-of-plane current; the electron pressure tensor divergence, which produces the reconnection electric field; standing oblique whistler waves, which produce intense dissipation in sub-gyroscale regions near the X-line and electron stagnation point; beam-plasma interactions leading to whistler-mode and Langmuir waves; electromagnetic drift waves leading to corrugated magnetopause current sheets, and numerous other new reconnection-related phenomena. In this talk the many new aspects of reconnection discovered by MMS will be placed into context and used to evaluate our current level of understanding of this universally important space plasma phenomenon.
Reconnection and merging of positive streamers in air
Energy Technology Data Exchange (ETDEWEB)
Nijdam, S; Geurts, C G C; Van Veldhuizen, E M; Ebert, U, E-mail: s.nijdam@tue.n [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands)
2009-02-21
Pictures show that streamer or sprite discharge channels emerging from the same electrode sometimes seem to reconnect or merge though their heads carry electric charge of the same polarity; one might therefore suspect that reconnections are an artefact of the two-dimensional projection in the pictures. Here we use stereo photography to investigate the full three-dimensional structure of such events. We analyse reconnection, possibly an electrostatic effect in which a late thin streamer reconnects to an earlier thick streamer channel, and merging, a suggested photoionization effect in which two simultaneously propagating streamer heads merge into one new streamer. We use four different anode geometries (one tip, two tips, two asymmetric protrusions in a plate and a wire), placed 40 mm above a flat cathode plate in ambient air. A positive high voltage pulse is applied to the anode, creating a positive corona discharge. This discharge is studied with a fast ICCD camera, in many cases combined with optics to enable stereoscopic imaging. We find that reconnections as defined above occur frequently. Merging on the other hand was only observed at a pressure of 25 mbar and a tip separation of 2 mm, i.e. for a reduced tip distance of p{center_dot}d = 50 {mu}m bar. In this case the full width at half maximum of the streamer channel is more than 10 times as large as the tip separation. At higher pressures or with a wire anode, merging was not observed.
Reconnection and merging of positive streamers in air
International Nuclear Information System (INIS)
Nijdam, S; Geurts, C G C; Van Veldhuizen, E M; Ebert, U
2009-01-01
Pictures show that streamer or sprite discharge channels emerging from the same electrode sometimes seem to reconnect or merge though their heads carry electric charge of the same polarity; one might therefore suspect that reconnections are an artefact of the two-dimensional projection in the pictures. Here we use stereo photography to investigate the full three-dimensional structure of such events. We analyse reconnection, possibly an electrostatic effect in which a late thin streamer reconnects to an earlier thick streamer channel, and merging, a suggested photoionization effect in which two simultaneously propagating streamer heads merge into one new streamer. We use four different anode geometries (one tip, two tips, two asymmetric protrusions in a plate and a wire), placed 40 mm above a flat cathode plate in ambient air. A positive high voltage pulse is applied to the anode, creating a positive corona discharge. This discharge is studied with a fast ICCD camera, in many cases combined with optics to enable stereoscopic imaging. We find that reconnections as defined above occur frequently. Merging on the other hand was only observed at a pressure of 25 mbar and a tip separation of 2 mm, i.e. for a reduced tip distance of p·d = 50 μm bar. In this case the full width at half maximum of the streamer channel is more than 10 times as large as the tip separation. At higher pressures or with a wire anode, merging was not observed.
Ellerman bombs and UV bursts: reconnection at different atmospheric layers?
Hansteen, V. H.; Ortiz-Carbonell, A. N.; Rouppe van der Voort, L.
2017-12-01
The emergence of magnetic flux through the photosphere and into the outer solar atmosphere produces, amongst many other phenomena, the appearance of Ellerman bombs (EBs) in the photosphere. EBs are observed in the wings of H(alpha) and are highly likely to be due to reconnection in the photosphere, below the chromospheric canopy. However, signs of the reconnection process are also observed in several other spectral lines, typical of the chromosphere or transition region. An example are the UV bursts observed in the transition region lines of Si IV. In this work we analyze high cadence coordinated observations between the 1-m Swedish Solar Telescope and the IRIS spacecraft in order to study the possible relationship between reconnection events at different layers in the atmosphere, and in particular, the timing history between them. High cadence, high resolution H-alpha images from the SST provide us with the positions, timings and trajectories of Ellerman bombs in an emerging flux region. Simultaneous co-aligned IRIS slit-jaw images at 1400 and 1330 A and detailed Si IV spectra from the fast spectrograph raster allow us to study the transition region counterparts of those photospheric Ellerman bombs. Our main goal is to study whether there is a temporal relationship between the appearance of an EB and the appearance of a UV burst. Eventually we would like to investigate whether reconnection happens at discrete heights, or as a reconnection sheet spanning several layers at the same time.
Diffusive Shock Acceleration and Turbulent Reconnection
Garrel, Christian; Vlahos, Loukas; Isliker, Heinz; Pisokas, Theophilos
2018-05-01
Diffusive Shock Acceleration (DSA) cannot efficiently accelerate particles without the presence of self-consistently generated or pre-existing strong turbulence (δB/B ˜ 1) in the vicinity of the shock. The problem we address in this article is: if large amplitude magnetic disturbances are present upstream and downstream of a shock then Turbulent Reconnection (TR) will set in and will participate not only in the elastic scattering of particles but also in their heating and acceleration. We demonstrate that large amplitude magnetic disturbances and Unstable Current Sheets (UCS), spontaneously formed in the strong turbulence in the vicinity of a shock, can accelerate particles as efficiently as DSA in large scale systems and on long time scales. We start our analysis with "elastic" scatterers upstream and downstream and estimate the energy distribution of particles escaping from the shock, recovering the well known results from the DSA theory. Next we analyze the additional interaction of the particles with active scatterers (magnetic disturbances and UCS) upstream and downstream of the shock. We show that the asymptotic energy distribution of the particles accelerated by DSA/TR has very similar characteristics with the one due to DSA alone, but the synergy of DSA with TR is much more efficient: The acceleration time is an order of magnitude shorter and the maximum energy reached two orders of magnitude higher. We claim that DSA is the dominant acceleration mechanism in a short period before TR is established, and then strong turbulence will dominate the heating and acceleration of the particles. In other words, the shock serves as the mechanism to set up a strongly turbulent environment, in which the acceleration mechanism will ultimately be the synergy of DSA and TR.
Fire Hose Instability in the Multiple Magnetic Reconnection
Alexandrova, A.; Retino, A.; Divin, A. V.; Le Contel, O.; Matteini, L.; Breuillard, H.; Deca, J.; Catapano, F.; Cozzani, G.; Nakamura, R.; Panov, E. V.; Voros, Z.
2017-12-01
We present observations of multiple reconnection in the Earth's magnetotail. In particular, we observe an ion temperature anisotropy characterized by large temperature along the magnetic field, between the two active X-lines. The anisotropy is associated with right-hand polarized waves at frequencies lower than the ion cyclotron frequency and propagating obliquely to the background magnetic field. We show that the observed anisotropy and the wave properties are consistent with linear kinetic theory of fire hose instability. The observations are in agreement with the particle-in-cell simulations of multiple reconnection. The results suggest that the fire hose instability can develop during multiple reconnection as a consequence of the ion parallel anisotropy that is produced by counter-streaming ions trapped between the X-lines.
Evidence for magnetic field reconnection at the earth's magnetopause
Sonnerup, B. U. O.; Paschmann, G.; Papamastorakis, I.; Sckopke, N.; Haerendel, G.; Bame, S. J.; Asbridge, J. R.; Gosling, J. T.; Russell, C. T.
1981-01-01
Eleven Northern Hemisphere crossings of the dayside magnetopause by the ISEE spacecraft are examined to test the hypothesis that the large plasma flow speeds observed in the magnetopause and boundary layer are the result of the plasma acceleration intrinsic to the magnetic field reconnection process. In several cases energetic magnetospheric particles with the proper flow anisotropy, and in one case, reflected magnetosheath particles, were observed outside the magnetopause but adjacent to it. All results support the reconnection hypothesis. The energetic particles were also used to identify the outer separatrix surface, in one case of which is was possible to conclude from its location relative to the magnetopause that the reconnection site was in the vicinity of the equatorial plane rather than in the cusp. The electric field tangential to the magnetopause is inferred to be in the 0.4-2.8 mV/m range.
Limiting velocity of reconnection in a current layer
International Nuclear Information System (INIS)
Podgornyj, A.N.; Syrovatskij, S.I.
1981-01-01
Formation of a plasma current layer from a strong perturbation wave with the Mach magnetic number Msub(a)=1 is investigated numerically within the framework of magnetic hydrodynamics. It is shown that velocity of plasma flowing into the layer is established as small one as compared with the Alfven velocity. At the current layer boundary the Mach magnetic number Msub(a, c)=0.14-0.2. A great decrease in plasma velocity to the current layer results from the counterpressure of a magnetic field, intensity of which near the layer increases due to the storage of magnetic force lines which do not yet reconnect. Calculational results demonstrate the existence of limiting velocity of magnetic reconnection constituting tenth shares of the Mach magnetic number. Influence of this phenomenon on a character of reconnection in the Earth magnetosphere is discussed
Crab Flares and Magnetic Reconnection in Pulsar Winds
Harding, Alice K.
2012-01-01
The striped winds of rotation-powered pulsars are ideal sites for magnetic reconnection. The magnetic fields of the wind near the current sheet outside the light cylinder alternate polarity every pulsar period and eventually encounter a termination shock. Magnetic reconnection in the wind has been proposed as a mechanism for transferring energy from electromagnetic fields to particles upstream of the shock (the "sigma" problem), but it is not clear if, where and how this occurs. Fermi and AGILE have recently observed powerful gamma-ray flares from the Crab nebula, which challenge traditional models of acceleration at the termination shock. New simulations are revealing that magnetic reconnection may be instrumental in understanding the Crab flares and in resolving the "sigma" problem in pulsar wind nebulae.
Physical conditions in the reconnection layer in pulsar magnetospheres
Energy Technology Data Exchange (ETDEWEB)
Uzdensky, Dmitri A. [Center for Integrated Plasma Studies, Physics Department, University of Colorado, UCB 390, Boulder, CO 80309-0390 (United States); Spitkovsky, Anatoly, E-mail: uzdensky@colorado.edu, E-mail: anatoly@astro.princeton.edu [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)
2014-01-01
The magnetosphere of a rotating pulsar naturally develops a current sheet (CS) beyond the light cylinder (LC). Magnetic reconnection in this CS inevitably dissipates a nontrivial fraction of the pulsar spin-down power within a few LC radii. We develop a basic physical picture of reconnection in this environment and discuss its implications for the observed pulsed gamma-ray emission. We argue that reconnection proceeds in the plasmoid-dominated regime, via a hierarchical chain of multiple secondary islands/flux ropes. The inter-plasmoid reconnection layers are subject to strong synchrotron cooling, leading to significant plasma compression. Using the conditions of pressure balance across these current layers, the balance between the heating by magnetic energy dissipation and synchrotron cooling, and Ampere's law, we obtain simple estimates for key parameters of the layers—temperature, density, and layer thickness. In the comoving frame of the relativistic pulsar wind just outside of the equatorial CS, these basic parameters are uniquely determined by the strength of the reconnecting upstream magnetic field. For the case of the Crab pulsar, we find them to be of order 10 GeV, 10{sup 13} cm{sup –3}, and 10 cm, respectively. After accounting for the bulk Doppler boosting due to the pulsar wind, the synchrotron and inverse-Compton emission from the reconnecting CS can explain the observed pulsed high-energy (GeV) and very high energy (∼100 GeV) radiation, respectively. Also, we suggest that the rapid relative motions of the secondary plasmoids in the hierarchical chain may contribute to the production of the pulsar radio emission.
Observational Test of the Dayside Magnetopause Reconnection Rate
Wang, S.; Kistler, L. M.; Mouikis, C.
2014-12-01
In asymmetric reconnection, the reconnection rate (R) is expected to follow the Cassak-Shay formula with an aspect ratio of around 0.1. At the magnetopause, reconnection is asymmetric, with the dense shocked solar wind population on the magnetosheath side, and a normally hot and tenuous population on the magnetospheric side. However, the hot magnetospheric population can contain a significant O+ component that increases the mass density, and the magnetospheric population may also include a cold dense population of plasmaspheric origin. We perform a statistical study of 13 magnetopause reconnection events observed by Cluster to determine how the reconnection rate depends on these different populations. The events are mainly at high latitudes, due to the Cluster orbit. Our results show that the measured R generally follows the Cassak-Shay prediction when all populations are included. However, the predicted rate only considering the magnetosheath contribution also correlates well with the measured R. For individual events, cold ions can make a comparable contribution to the magnetosheath H+ when there are plasmaspheric drainage plumes; the contribution of the magnetospheric hot O+ can be up to ~30%. However, the variation of solar wind conditions has a larger effect on the variation in the reconnection rate. The aspect ratio does not vary systematically with the O+ content, and 0.1 is a reasonable estimation. The outflow velocity is around the hybrid Alfven speed, but there is not a strong correlation. This may be due to motion of the x-line, or effects of the magnetosheath shear flow.
Dynamics of Auroras Conjugate to the Dayside Reconnection Region.
Mende, S. B.; Frey, H. U.; Doolittle, J. H.
2006-12-01
During periods of northward IMF Bz, observations of the IMAGE satellite FUV instrument demonstrated the existence of an auroral footprint of the dayside lobe reconnection region. Under these conditions the dayside "reconnection spot" is a distinct feature being separated from the dayside auroral oval. In the IMAGE data, ~100 km spatial and 2 minutes temporal resolution, this feature appeared as a modest size, 200 to 500 km in diameter, diffuse spot which was present steadily while the IMF conditions lasted and the solar wind particle pressure was large enough to create a detectable signature. Based on this evidence, dayside reconnection observed with this resolution appears to be a steady state process. There have been several attempts to identify and study the "reconnection foot print aurora" with higher resolution from the ground. South Pole Station and the network of the US Automatic Geophysical Observatories (AGO-s) in Antarctica have all sky imagers that monitor the latitude region of interest (70 to 85 degrees geomagnetic) near midday during the Antarctic winter. In this paper we present sequences of auroral images that were taken during different conditions of Bz and therefore they are high spatial resolution detailed views of the auroras associated with reconnection. During negative Bz, auroras appear to be dynamic with poleward moving auroral forms that are clearly observed by ground based imagers with a ~few km spatial resolution. During positive Bz however the extremely high latitude aurora is much more stable and shows no preferential meridional motions. It should be noted that winter solstice conditions, needed for ground based observations, produce a dipole tilt in which reconnection is not expected to be symmetric and the auroral signatures might favor the opposite hemisphere.
Fast reconnection of magnetic fields in a plasma
International Nuclear Information System (INIS)
Hu, P.N.
1983-01-01
Reconnection process of magnetic fields in a plasma is analytically studied by perturbing the boundary conditions on a slab of incompressible plasma with a resonant surface inside. It is found, for small resistivity, that the reconnection takes place on Alfven time scale and continues into a slow time scale t 1 = eta/sup 1/3/t. Both time scales are faster than the usual tearing time scale. Furthermore, the plasma evolves globally from its initial equilibrium on the slow time scale and settles down to a different final equilibrium
Turbulence in Three Dimensional Simulations of Magnetopause Reconnection
Drake, J. F.; Price, L.; Swisdak, M.; Burch, J. L.; Cassak, P.; Dahlin, J. T.; Ergun, R.
2017-12-01
We present two- and three-dimensional particle-in-cell simulations of the 16 October 2015 MMS magnetopause reconnection event. While the two-dimensional simulation is laminar, turbulence develops at both the x-line and along the magnetic separatrices in the three-dimensional simulation. This turbulence is electromagnetic in nature, is characterized by a wavevector k given by kρ e ˜(m_e/m_i)0.25 with ρ e the electron Larmor radius, and appears to have the ion pressure gradient as its source of free energy. Taken together, these results suggest the instability is a variant of the lower-hybrid drift instability. The turbulence produces electric field fluctuations in the out-of-plane direction (the direction of the reconnection electric field) with an amplitude of around ± 10 mV/m, which is much greater than the reconnection electric field of around 0.1 mV/m. Such large values of the out-of-plane electric field have been identified in the MMS data. The turbulence in the simulation controls the scale lengths of the density profile and current layers in asymmetric reconnection, driving them closer to √ {ρ eρ_i } than the ρ e or de scalings seen in 2D reconnection simulations, where de is the electron inertial length. The turbulence is strong enough to make the magnetic field around the reconnection island chaotic and produces both anomalous resistivity and anomalous viscosity. Each contribute significantly to breaking the frozen-in condition in the electron diffusion region. The crescent-shaped features in velocity space seen both in MMS observations and in two-dimensional simulations survive, even in the turbulent environment of the three-dimensional system. We compare and contrast these results to a three-dimensional simulation of the 8 December 2015 MMS magnetopause reconnection event in which the reconnecting and out-of-plane guide fields are comparable. LHDI is still present in this event, although its appearance is modified by the presence of the guide
Endogenous magnetic reconnection and associated high energy plasma processes
Coppi, B.; Basu, B.
2018-02-01
An endogenous reconnection process involves a driving factor that lays inside the layer where a drastic change of magnetic field topology occurs. A process of this kind is shown to take place when an electron temperature gradient is present in a magnetically confined plasma and the evolving electron temperature fluctuations are anisotropic. The width of the reconnecting layer remains significant even when large macroscopic distances are considered. In view of the fact that there are plasmas in the Universe with considerable electron thermal energy contents this feature can be relied upon in order to produce generation or conversion of magnetic energy, high energy particle populations and momentum and angular momentum transport.
Development of Turbulent Magnetic Reconnection in a Magnetic Island
International Nuclear Information System (INIS)
Huang, Can; Lu, Quanming; Wang, Rongsheng; Wu, Mingyu; Lu, San; Wang, Shui; Guo, Fan
2017-01-01
In this paper, with two-dimensional particle-in-cell simulations, we report that the electron Kelvin–Helmholtz instability is unstable in the current layer associated with a large-scale magnetic island, which is formed in multiple X-line guide field reconnections. The current sheet is fragmented into many small current sheets with widths down to the order of the electron inertial length. Secondary magnetic reconnection then occurs in these fragmented current sheets, which leads to a turbulent state. The electrons are highly energized in such a process.
Scaling of Sweet-Parker reconnection with secondary islands
International Nuclear Information System (INIS)
Cassak, P. A.; Shay, M. A.; Drake, J. F.
2009-01-01
Sweet-Parker (collisional) magnetic reconnection at high Lundquist number is modified by secondary islands. Daughton et al. [Phys. Rev. Lett. 103, 065004 (2009)] suggested the Sweet-Parker model governs the fragmented current sheet segments. If true, the reconnection rate would increase by the square root of the number of secondary islands. High Lundquist number resistive magnetohydrodynamic simulations are presented which agree, in a time-averaged sense, with the predicted scaling. This result may have important implications for energy storage before a solar eruption and its subsequent release.
Simulation experiment on magnetic field reconnection processes in tokamak
International Nuclear Information System (INIS)
Kiwamoto, Y.
1982-01-01
Two experimental studies on magnetic field line reconnection processes relevant to tokamak physics are going on in Japan. In Yokohama National University, reconnection of poloidal magnetic field lines is studied by the author when reversing the toroidal current of a small toroidal plasma in a short period (typically less than 4 μsec). Interaction of two current carrying plasma (linear) columns is being studied by Kawashima and his coleagues in Institute of Space and Aeronautical Sciences. Mutual attraction and merging of the plasma columns and resulting plasma heating are reported. (author)
Electromagnetic Fluctuations during Fast Reconnection in a Laboratory Plasma
International Nuclear Information System (INIS)
Hantao Ji; Stephen Terry; Masaaki Yamada; Russell Kulsrud; Aleksey Kuritsyn; Yang Ren
2003-01-01
Clear evidence for a positive correlation is established between the magnitude of magnetic fluctuations in the lower-hybrid frequency range and enhancement of reconnection rates in a well-controlled laboratory plasma. The fluctuations belong to the right-hand polarized whistler wave branch, propagating obliquely to the reconnecting magnetic field, with a phase velocity comparable to the relative drift velocity between electrons and ions. The short coherence length and large variation along the propagation direction indicate their strongly nonlinear nature in three dimensions
Measurement of the Transverse Spitzer Resistivity during Collisional Magnetic Reconnection
International Nuclear Information System (INIS)
Trintchouk, F.; Yamada, M.; Ji, H.; Kulsrud, R.M.; Carter, T.A.
2000-01-01
Measurement of the transverse resistivity was carried out in a reconnecting current sheet where the mean free path for the Coulomb collision is smaller than the thickness of the sheet. In a collisional neutral sheet without a guide field, the transverse resistivity is directly related to the reconnection rate. A remarkable agreement is found between the measured resistivity and the classical value derived by L. Spitzer. In his calculation the transverse resistivity for the electrons is higher than the parallel resistivity by a factor of 1.96. The measured values have verified this theory to within 30% errors
The Child-Langmuir law and analytical theory of collisionless to collision-dominated sheaths
International Nuclear Information System (INIS)
Benilov, M S
2009-01-01
This paper is concerned with summarizing simple analytical models of space-charge sheaths and tracing their relation to the Child-Langmuir model of an ion sheath. The topics discussed include the Child-Langmuir law and model of a collisionless ion sheath, the Mott-Gurney law and model of a collision-dominated ion sheath, the Bohm model of a collisionless ion-electron sheath, the Su-Lam-Cohen model of a collision-dominated ion-electron sheath, ion sheaths with arbitrary collisionality, high-accuracy boundary conditions for the Child-Langmuir and Mott-Gurney models of an ion sheath and the mathematical sense of Child-Langmuir type models of an ion sheath from the point of view of modern theoretical physics.
ENTROPY PRODUCTION IN COLLISIONLESS SYSTEMS. I. LARGE PHASE-SPACE OCCUPATION NUMBERS
International Nuclear Information System (INIS)
Barnes, Eric I.; Williams, Liliya L. R.
2011-01-01
Certain thermal non-equilibrium situations, outside of the astrophysical realm, suggest that entropy production extrema, instead of entropy extrema, are related to stationary states. In an effort to better understand the evolution of collisionless self-gravitating systems, we investigate the role of entropy production and develop expressions for the entropy production rate in two particular statistical families that describe self-gravitating systems. From these entropy production descriptions, we derive the requirements for extremizing the entropy production rate in terms of specific forms for the relaxation function in the Boltzmann equation. We discuss some implications of these relaxation functions and point to future work that will further test this novel thermodynamic viewpoint of collisionless relaxation.
International Nuclear Information System (INIS)
Baryshev, Yu.V.; Morozov, V.N.
1988-01-01
It is shown that MHD turbulence can be generated by collisionless shock waves due to anisotropy of the pressure behind the front of the reverse sock at the hot spot of a powerful radio galaxy. The energy density of the MHD turbulence generated behind the shock front is estimated. Analysis of the theoretical studies and experimental data on collisionless shock waves in the solar wind indicates that an important part is played by streams of ions reflected by the shock fronts, the streams generating plasma and MHD turbulence in the region ahead of the front. The extension of these ideas to shock waves in powerful radio galaxies must be made with care because of the great difference between the parameters of the shock waves in the two cases
Plasma and energetic particle structure of a collisionless quasi-parallel shock
Kennel, C. F.; Scarf, F. L.; Coroniti, F. V.; Russell, C. T.; Smith, E. J.; Wenzel, K. P.; Reinhard, R.; Sanderson, T. R.; Feldman, W. C.; Parks, G. K.
1983-01-01
The quasi-parallel interplanetary shock of November 11-12, 1978 from both the collisionless shock and energetic particle points of view were studied using measurements of the interplanetary magnetic and electric fields, solar wind electrons, plasma and MHD waves, and intermediate and high energy ions obtained on ISEE-1, -2, and -3. The interplanetary environment through which the shock was propagating when it encountered the three spacecraft was characterized; the observations of this shock are documented and current theories of quasi-parallel shock structure and particle acceleration are tested. These observations tend to confirm present self consistent theories of first order Fermi acceleration by shocks and of collisionless shock dissipation involving firehouse instability.
Collisionless two-fluid theory of toroidal ηi stability
International Nuclear Information System (INIS)
Mondt, J.; Weiland, J.
1989-01-01
A collisionless two-fluid theory based on a fourteen-moment generalization of the 'double-adiabatic' equations is developed to lowest order in the Larmor radius parameter, and applied to derive the toroidal η i stability boundary for all values of the ratio of the density gradient scale length divided by the field curvature length. The present model is an improvement over existing collisional two-fluid models in view of the collisionless nature of the η i instability, while retaining the advantage over kinetic theory of the practability of mode-coupling simulations. The linear stability boundary, linear growth rate and real frequency agree fairly accurately with draft-kinetic theory
Collisionless damping of dust-acoustic waves in a charge varying dusty plasma with nonextensive ions
Energy Technology Data Exchange (ETDEWEB)
Amour, Rabia; Tribeche, Mouloud [Faculty of Physics, Theoretical Physics Laboratory (TPL), Plasma Physics Group (PPG), University of Bab-Ezzouar, USTHB, B.P. 32, El Alia, Algiers 16111 (Algeria)
2014-12-15
The charge variation induced nonlinear dust-acoustic wave damping in a charge varying dusty plasma with nonextensive ions is considered. It is shown that the collisionless damping due to dust charge fluctuation causes the nonlinear dust acoustic wave propagation to be described by a damped Korteweg-de Vries (dK-dV) equation the coefficients of which depend sensitively on the nonextensive parameter q. The damping term, solely due to the dust charge variation, is affected by the ion nonextensivity. For the sake of completeness, the possible effects of nonextensivity and collisionless damping on weakly nonlinear wave packets described by the dK-dV equation are succinctly outlined by deriving a nonlinear Schrödinger-like equation with a complex nonlinear coefficient.
Collisionless damping of dust-acoustic waves in a charge varying dusty plasma with nonextensive ions
International Nuclear Information System (INIS)
Amour, Rabia; Tribeche, Mouloud
2014-01-01
The charge variation induced nonlinear dust-acoustic wave damping in a charge varying dusty plasma with nonextensive ions is considered. It is shown that the collisionless damping due to dust charge fluctuation causes the nonlinear dust acoustic wave propagation to be described by a damped Korteweg-de Vries (dK-dV) equation the coefficients of which depend sensitively on the nonextensive parameter q. The damping term, solely due to the dust charge variation, is affected by the ion nonextensivity. For the sake of completeness, the possible effects of nonextensivity and collisionless damping on weakly nonlinear wave packets described by the dK-dV equation are succinctly outlined by deriving a nonlinear Schrödinger-like equation with a complex nonlinear coefficient
International Nuclear Information System (INIS)
Gonzalez, W.D.; Gonzalez, A.L.C.
1981-01-01
Some general expressions for the convection and parallel electric fields as well as for the energy transfer, due to magnetopause reconnection, are derived using a nose-reconnection model that takes into account the presence of the clefts. For the case of equal geomagnetic and magnetosheath field amplitudes, the expression for the power dissipated by the convection electric field reduces to the substorm parameter e widely discussed in the recent literature. This result suggests that magnetopause reconnection is defined at the nose with a tilted reconnection line, but that the convection electric field is related only to the dawn-dusk component of the reconnection electric field, as defined at high latitudes
Energy flux due to electromagnetic fluctuations during guide field magnetic reconnection
International Nuclear Information System (INIS)
Kuwahata, Akihiro; Inomoto, Michiaki; Ono, Yasushi; Yanai, Ryoma
2016-01-01
Large electromagnetic fluctuations inside the current sheet and large reconnection electric fields are observed during fast magnetic reconnection in the presence of a guide field. The fluctuations transport 2.5% of the dissipated magnetic energy from the reconnection region. Although the energy gains of the ions and electrons are approximately 60% and 12%, respectively, of the dissipated magnetic energy after the fast reconnection, the energy of fluctuations is not comparable to their energy gains. The fluctuations do not directly contribute to the energy conversion but might cause the fast reconnection leading to the rapid release of magnetic energy. (author)
International Nuclear Information System (INIS)
Rubinstein, J.; Laframboise, J.G.
1983-01-01
A theory is presented for current collection by electrostatic probes in a collisionless, Maxwellian plasma containing a uniform magnetic field B, where the probes are spheroids or finite cylinders whose axis of symmetry is aligned with B, or disks perpendicular to B. The theory yields upper-bound and adiabatic-limit currents for the attracted particle species. For the repelled species, it yields upper and lower bounds. This work is an extension of existing theory for spherical probes by Rubinstein and Laframboise
Diagnosing collisionless energy transfer using field-particle correlations: Vlasov-Poisson plasmas
Howes, Gregory G.; Klein, Kristopher G.; Li, Tak Chu
2017-02-01
Turbulence plays a key role in the conversion of the energy of large-scale fields and flows to plasma heat, impacting the macroscopic evolution of the heliosphere and other astrophysical plasma systems. Although we have long been able to make direct spacecraft measurements of all aspects of the electromagnetic field and plasma fluctuations in near-Earth space, our understanding of the physical mechanisms responsible for the damping of the turbulent fluctuations in heliospheric plasmas remains incomplete. Here we propose an innovative field-particle correlation technique that can be used to measure directly the secular energy transfer from fields to particles associated with collisionless damping of the turbulent fluctuations. Furthermore, this novel procedure yields information about the collisionless energy transfer as a function of particle velocity, providing vital new information that can help to identify the dominant collisionless mechanism governing the damping of the turbulent fluctuations. Kinetic plasma theory is used to devise the appropriate correlation to diagnose Landau damping, and the field-particle correlation technique is thoroughly illustrated using the simplified case of the Landau damping of Langmuir waves in a 1D-1V (one dimension in physical space and one dimension in velocity space) Vlasov-Poisson plasma. Generalizations necessary to apply the field-particle correlation technique to diagnose the collisionless damping of turbulent fluctuations in the solar wind are discussed, highlighting several caveats. This novel field-particle correlation technique is intended to be used as a primary analysis tool for measurements from current, upcoming and proposed spacecraft missions that are focused on the kinetic microphysics of weakly collisional heliospheric plasmas, including the Magnetospheric Multiscale (MMS), Solar Probe Plus, Solar Orbiter and Turbulence Heating ObserveR (THOR) missions.
Laser plasma physics in shock ignition – transition from collisional to collisionless absorption
Directory of Open Access Journals (Sweden)
Klimo O.
2013-11-01
Full Text Available Shock Ignition is considered as a relatively robust and efficient approach to inertial confinement fusion. A strong converging shock, which is used to ignite the fuel, is launched by a high power laser pulse with intensity in the range of 1015 − 1016 W/cm2 (at the wavelength of 351 nm. In the lower end of this intensity range the interaction is dominated by collisions while the parametric instabilities are playing a secondary role. This is manifested in a relatively weak reflectivity and efficient electron heating. The interaction is dominated by collective effects at the upper edge of the intensity range. The stimulated Brillouin and Raman scattering (SBS and SRS respectively take place in a less dense plasma and cavitation provides an efficient collisionless absorption mechanism. The transition from collisional to collisionless absorption in laser plasma interactions at higher intensities is studied here with the help of large scale one-dimensional Particle-in-Cell (PIC simulations. The relation between the collisional and collisionless processes is manifested in the energy spectrum of electrons transporting the absorbed laser energy and in the spectrum of the reflected laser light.
Modelling of ion thermal transport in ergodic region of collisionless toroidal plasma
International Nuclear Information System (INIS)
Kanno, Ryutaro; Nunami, Masanori; Satake, Shinsuke; Ohyabu, Nobuyoshi; Takamaru, Hisanori; Okamoto, Masao
2009-09-01
In recent tokamak experiments it has been found that so-called diffusion theory based on the 'diffusion of magnetic field lines' overestimates the radial energy transport in the ergodic region of the collisionless plasma affected by resonant magnetic perturbations (RMPs), though the RMPs induce chaotic behavior of the magnetic field lines. The result implies that the modelling of the transport should be reconsidered for low collisionality cases. A computer simulation study of transport in the ergodic region is required for understanding fundamental properties of collisionless ergodized-plasmas, estimating the transport coefficients, and reconstructing the modelling of the transport. In this paper, we report the simulation study of thermal transport in the ergodic region under the assumption of neglecting effects of an electric field, impurities and neutrals. Because of the simulations neglecting interactions with different particle-species and saving the computational time, we treat ions (protons) in our numerical-study of the transport. We find that the thermal diffusivity in the ergodic region is extremely small compared to the one predicted by the theory of field-line diffusion and that the diffusivity depends on both the collision frequency and the strength of RMPs even for the collisionless ergodized-plasma. (author)
Global and local disturbances in the magnetotail during reconnection
Directory of Open Access Journals (Sweden)
T. V. Laitinen
2007-05-01
Full Text Available We examine Cluster observations of a reconnection event at x_{GSM}=−15.7 R_{E} in the magnetotail on 11 October 2001, when Cluster recorded the current sheet for an extended period including the entire duration of the reconnection event. The onset of reconnection is associated with a sudden orientation change of the ambient magnetic field, which is also observed simultaneously by Goes-8 at geostationary orbit. Current sheet oscillations are observed both before reconnection and during it. The speed of the flapping motions is found to increase when the current sheet undergoes the transition from quiet to active state, as suggested by an earlier statistical result and now confirmed within one single event. Within the diffusion region both the tailward and earthward parts of the quadrupolar magnetic Hall structure are recorded as an x-line passes Cluster. We report the first observations of the Hall structure conforming to the kinks in the current sheet. This results in relatively strong fluctuations in B_{z}, which are shown to be the Hall signature tilted in the yz plane with the current sheet.
Electron Heating and Acceleration in a Reconnecting Magnetotail
El-Alaoui, M.; Zhou, M.; Lapenta, G.; Berchem, J.; Richard, R. L.; Schriver, D.; Walker, R. J.
2017-12-01
Electron heating and acceleration in the magnetotail have been investigated intensively. A major site for this process is the reconnection region. However, where and how the electrons are accelerated in a realistic three-dimensional X-line geometry is not fully understood. In this study, we employed a three-dimensional implicit particle-in-cell (iPIC3D) simulation and large-scale kinetic (LSK) simulation to address these problems. We modeled a magnetotail reconnection event observed by THEMIS in an iPIC3D simulation with initial and boundary conditions given by a global magnetohydrodynamic (MHD) simulation of Earth's magnetosphere. The iPIC3D simulation system includes the region of fast outflow emanating from the reconnection site that drives dipolarization fronts. We found that current sheet electrons exhibit elongated (cigar-shaped) velocity distributions with a higher parallel temperature. Using LSK we then followed millions of test electrons using the electromagnetic fields from iPIC3D. We found that magnetotail reconnection can generate power law spectra around the near-Earth X-line. A significant number of electrons with energies higher than 50 keV are produced. We identified several acceleration mechanisms at different locations that were responsible for energizing these electrons: non-adiabatic cross-tail drift, betatron and Fermi acceleration. Relative contributions to the energy gain of these high energy electrons from the different mechanisms will be discussed.
Magnetotail Reconnection and Flux Circulation: Jupiter and Saturn Compared
Jackman, C. M.; Vogt, M. F.; Slavin, J. A.; Cowley, S. W. H.; Boardsen, S. A.
2011-01-01
The Jovian magnetosphere has been visited by eight spacecraft, and the magnetometer data have been used to identify dozens of plasmoids and 250 field dipolarizations associated with magnetic reconnection in the tail [e.g. Vogt et al., 2010]. Since the arrival of the Cassini spacecraft at Saturn in 2004, the magnetometer instrument has also been used to identify reconnection signatures. The deepest magnetotail orbits were in 2006, and during this time 34 signatures of plasmoids were identified. In this study we compare the statistical properties of plasmoids at Jupiter and Saturn such as duration, size, location, and recurrence period. Such parameters can be influenced by many factors, including the different Dungey cycle timescales and cross-magnetospheric potential drops at the two planets. We present superposed epoch analyses of plasmoids at the two planets to determine their average properties and to infer their role in the reconfiguration of the nightside of the magnetosphere. We examine the contributions of plasmoids to the magnetic flux transfer cycle at both planets. At Jupiter, there is evidence of an extended interval after reconnection where the field remains northward (analogous to the terrestrial post-plasmoid plasma sheet). At Saturn we see a similar feature, and calculate the amount of flux closed on average in reconnection events, leading us to an estimation of the recurrence rate of plasmoid release.
Study of Local Reconnection Physics in a Laboratory Plasma
International Nuclear Information System (INIS)
Hantao Ji; Troy Carter; Scott Hsu; Masaaki Yamada
2001-01-01
A short review of physics results obtained in the Magnetic Reconnection Experiment (MRX) is given with an emphasis on the local features of magnetic reconnection in a controlled environment. Stable two-dimensional current sheets are formed and sustained by induction using two internal coils. The observed reconnection rates are found to be quantitatively consistent with a generalized Sweet-Parker model which incorporates compressibility, unbalanced upstream-downstream pressure, and the effective resistivity. The latter is significantly enhanced over its classical values in the low collisionality regime. Strong local ion heating is measured by an optical probe during the reconnection process, and at least half of the increased ion energy must be due to nonclassical processes, consistent with the resistivity enhancement. Characteristics of high-frequency electrostatic and electromagnetic fluctuations detected in the current sheet suggest presence of the lower-hybrid-drift-like waves with significant magnetic components. The detailed structures of the current sheet are measured and compared with Harris theory and two-fluid theory
Reconnection of magnetic lines in an ideal fluid
International Nuclear Information System (INIS)
Grad, H.
1978-04-01
The rate of reconnection of magnetic lines at an X-point, also growth of a ''tearing'' configuration have always been related to the presence of resistivity or other dissipative mechanisms. These phenomena, exhibiting nonconservation of magnetic line topology, are shown to occur in an ideal, nondissipative fluid, thereby violating beliefs, theorems, and calculations of over a century
Magnetic reconnection and precursor effect in coaxial discharge
International Nuclear Information System (INIS)
Masoud, M.M.; Soliman, H.M.; El-Khalafawy, T.A.
1988-01-01
A precursor pulse was observed ahead of the plasma sheath produced by a coaxial electrode discharge system. The velocity of the precursor pulse was 4x10 7 cmS -1 and the velocity of the plasma sheath was 6x10 6 cmS -1 . The precursor pulse was unaffected when an axial magnetic field of 6 K.G. was applied to the propagation chamber, while the plasma sheath velocity increased and downstream structure were changed. The precursor pulse was split, sometimes, into two or more peaks, had the same shape and structure of the original one. The rest gas was heated up to 20 e.V. when the precursor pulse was destructed. The precursor pulse propagation mechanism and parameters showed that it had a solitary wave structure and behaviour. A reversed magnetic field was detected, when the plasma sheath had diamagnetic properties, where magnetic reconnection took place. Magnetic reconnection was responsible for energy transfiguration and wave generation. This was due to acceleration mechanism of charged particles occurred by the induced electric field at the moment of magnetic reconnection. The detected induced electric field had a high field intensity and fast rise time pulse. Several instabilities were referred to magnetic reconnection and the precursor pulse observed was a result of such instabilities
Reconnection Mediated by Magnetic Fractures and the Solar Flare
Haerendel, Gerhard
2018-03-01
Reconnection of sheared magnetic fields is commonly treated by regarding the component perpendicular to the antiparallel components as a largely inert guide field. In this paper an alternative is proposed in which the free energy residing in the shear field is being converted prior to reconnection. This happens in high-density, dissipative current sheets bordering the reconnection site. A global scenario is presented in which low-intensity currents out of the photosphere are converging into the narrow, high-intensity currents at high altitude. This is enabled by the obliqueness of the latter. The very short timescale of the energy conversion causes a lateral propagation of the current sheets. In a quasi-stationary situation, it balances the reconnection rate, which turns out to be much lower than in guide-field approaches. Another important consequence of the obliqueness is the field-parallel emission of runaway electrons. Accelerated up to tens of keV, they are possibly important contributors to the production of hard X-rays during the impulsive phase of a flare, but only in areas of upward-directed currents. Quantitative evaluation of the model predicts various potentially observable properties, such as width and propagation speed of the generated flare ribbons, spatial dependences of the electron spectrum, size of the area of energy deposition, and successive decrease of the shear angle between conjugate footpoints. The presented theoretical model can account for the observed brightness asymmetry of flare ribbons with respect to the direction of the vertical currents.
MAGNETIC RECONNECTION IN NON-EQUILIBRIUM IONIZATION PLASMA
International Nuclear Information System (INIS)
Imada, S.; Shimizu, T.; Murakami, I.; Watanabe, T.; Hara, H.
2011-01-01
We have studied the effect of time-dependent ionization and the recombination processes on magnetic reconnection in the solar corona. Petschek-type steady reconnection, in which the magnetic energy is mainly converted at the slow-mode shocks, was assumed. We carried out the time-dependent ionization calculation in the magnetic reconnection structure. We only calculated the transient ionization of iron; the other species were assumed to be in ionization equilibrium. The intensity of line emissions at specific wavelengths was also calculated for comparison with Hinode or other observations in future. We found the following: (1) iron is mostly in non-equilibrium ionization in the reconnection region; (2) the intensity of line emission estimated by the time-dependent ionization calculation is significantly different from that determined from the ionization equilibrium assumption; (3) the effect of time-dependent ionization is sensitive to the electron density in the case where the electron density is less than 10 10 cm –3 ; (4) the effect of thermal conduction lessens the time-dependent ionization effect; and (5) the effect of radiative cooling is negligibly small even if we take into account time-dependent ionization.
Conditions for substorm onset by the fast reconnection mechanism
Directory of Open Access Journals (Sweden)
M. Ugai
2008-12-01
Full Text Available The fast reconnection mechanism, involving slow shocks and Alfvénic fast plasma jets, is most responsible for the explosive conversion of magnetic energy associated with geomagnetic substorms and solar flares. In this paper, the spontaneous fast reconnection model is applied to well-known phenomena of substorms. When the east-west width of the tail current sheet becomes 3–4 times larger than its north-south thickness, the fast reconnection mechanism can fully be established, which may lead to substorm onset. The resulting Alfvénic jet can exactly explain, both qualitatively and quantitatively, the in-situ satellite observations of the traveling compression regions (TCRs associated with large-scale plasmoids propagating down the tail. Also, the earthward fast reconnection jet causes drastic magnetic field dipolarization, so that the sheet current ahead of the magnetic loop of closed field lines suddenly turns its direction toward the loop footpoint and a large-scale current wedge is formed according to the growth of field-aligned currents. It is demonstrated that an MHD generator arises ahead of the magnetic loop and drives the current wedge to distinctly enhance the current density in a pair of thin layers of the loop footpoint, giving rise to drastic heating in the form of two ribbons.
Bursting reconnection of the two co-rotating current loops
Bulanov, Sergei; Sokolov, Igor; Sakai, Jun-Ichi
2000-10-01
Two parallel plasma filaments carrying electric current (current loops) are considered. The Ampere force induces the filaments' coalescence, which is accompanied by the reconnection of the poloidal magnetic field. Initially the loops rotate along the axii of symmetry. Each of the two loops would be in equilibrium in the absence of the other one. The dynamics of the reconnection is numerically simulated using high-resolution numerical scheme for low-resistive magneto-hydrodynamics. The results of numerical simulation are presented in the form of computer movies. The results show that the rotation strongly modifies the reconnection process, resulting in quasi-periodic (bursting) appearance and disappearance of a current sheet. Fast sliding motion of the plasma along the current sheet is a significant element of the complicated structure of reconnection (current-vortex sheet). The magnetic surfaces in the overal flow are strongly rippled by slow magnetosonic perturbations, so that the specific spiral structures form. This should result in the particle transport enhancement.
Color-reconnection in Z → 3 jets
International Nuclear Information System (INIS)
Rudolph, G.
2004-01-01
The electric charge distribution of gluon jets with a rapidity gap is sensitive to possible effects of color reordering in the final quark-gluon cascade. High statistics data from the ALEPH experiment at LEP-1 are used to test the predictions of different color reconnection models. (author)
Proxy and in-situ studies of dayside magnetopause reconnection
Energy Technology Data Exchange (ETDEWEB)
Scurry, L.; Russell, C.T. [California Univ., Los Angeles, CA (United States). Inst. of Geophysics and Planetary Physics; Gosling, J.T. [Los Alamos National Lab., NM (United States)
1992-12-01
The functional dependence of magnetic reconnection on solar wind parameters is examined utilizing the am geomagnetic index and satellite observations at the magnetopause. Several parameters in the solar wind are found to control geomagnetic activity. Reconnection is found to be most efficient when the interplanetary magnetic field is southward, although some activity remains when the IMF is horizontal and slightly northward. The reconnection efficiency increases with the solar wind dynamic pressure but decreases when the Mach number is greater than 7.5. These results are compared with the functional dependencies found by correlating solar wind and magnetosheath measurements with observations of accelerated tows at the magnetopause. Accelerated tows are found to occur most often when the interplanetary magnetic field is directed southward. However, accelerated flows do occur when the IMF is horizontal and northward. Accelerated flows are also affected by the magnetosheath beta such that higher beta inhibits their occurrence. The location of accelerated tows indicates that reconnection occurs mainly at the subsolar point.
Energy transfer by magnetopause reconnection and the substorm parameter epsilon
International Nuclear Information System (INIS)
Gonzalez-Alarcon, W.D.; Gonzalez, A.L.C. de.
1983-01-01
An expression for the magnetopause reconnection power based on the dawn-dusk component of the reconnection electric field, that reduces to the substorm parameter epsilon for the limit that involves equal geomagnetic (B sub(G)) and magnetosheath (B sub(M)) magnetic field amplitudes at the magnetopause, is contrasted with the expression based on the whole reconnection electric field vector obtained by Gonzalez. The correlation examples of this report show that this (more general) expression for the reconnection power seems to correlate with the empirical dissipation parameter U sub(T) from Akasofu, with slightly better correlation coefficients than those obtained from similar correlations between the parameter epsilon and U sub(T). Thus, these (better) correlations show up for the more familiar values of the ratio B sub(G) / B sub(M) > 1. Nevertheless, the (expected) relatively small difference that seems to exist between these correlation coefficients suggests that, for practical purposes, the parameter epsilon could be used as well (instead of the more general expression) in similar correlation studies due to its impler format. On the other hand, studies that refer mainly to the difference in the magnitudes of epsilon and of the more general expression are expected to give results with less negligible differences. (Author) [pt
Nakamura, T. K. M.; Nakamura, R.; Varsani, A.; Genestreti, K. J.; Baumjohann, W.; Liu, Y.-H.
2018-05-01
A remote sensing technique to infer the local reconnection electric field based on in situ multipoint spacecraft observation at the reconnection separatrix is proposed. In this technique, the increment of the reconnected magnetic flux is estimated by integrating the in-plane magnetic field during the sequential observation of the separatrix boundary by multipoint measurements. We tested this technique by applying it to virtual observations in a two-dimensional fully kinetic particle-in-cell simulation of magnetic reconnection without a guide field and confirmed that the estimated reconnection electric field indeed agrees well with the exact value computed at the X-line. We then applied this technique to an event observed by the Magnetospheric Multiscale mission when crossing an energetic plasma sheet boundary layer during an intense substorm. The estimated reconnection electric field for this event is nearly 1 order of magnitude higher than a typical value of magnetotail reconnection.
Simulations of Hall reconnection in partially ionized plasmas
Innocenti, Maria Elena; Jiang, Wei; Lapenta, Giovanni
2017-04-01
Magnetic reconnection occurs in the Hall, partially ionized regime in environments as diverse as molecular clouds, protostellar disks and regions of the solar chromosphere. While much is known about Hall reconnection in fully ionized plasmas, Hall reconnection in partially ionized plasmas is, in comparison, still relatively unexplored. This notwithstanding the fact that partial ionization is expected to affect fundamental processes in reconnection such as the transition from the slow, fluid to the fast, kinetic regime, the value of the reconnection rate and the dimensions of the diffusion regions [Malyshkin and Zweibel 2011 , Zweibel et al. 2011]. We present here the first, to our knowledge, fully kinetic simulations of Hall reconnection in partially ionized plasmas. The interaction of electrons and ions with the neutral background is realistically modelled via a Monte Carlo plug-in coded into the semi-implicit, fully kinetic code iPic3D [Markidis 2010]. We simulate a plasma with parameters compatible with the MRX experiments illustrated in Zweibel et al. 2011 and Lawrence et al. 2013, to be able to compare our simulation results with actual experiments. The gas and ion temperature is T=3 eV, the ion to electron temperature ratio is Tr=0.44, ion and electron thermal velocities are calculated accordingly resorting to a reduced mass ratio and a reduced value of the speed of light to reduce the computational costs of the simulations. The initial density of the plasma is set at n= 1.1 1014 cm-3 and is then left free to change during the simulation as a result of gas-plasma interaction. A set of simulations with initial ionisation percentage IP= 0.01, 0.1, 0.2, 0.6 is presented and compared with a reference simulation where no background gas is present (full ionization). In this first set of simulations, we assume to be able to externally control the initial relative densities of gas and plasma. Within this parameter range, the ion but not the electron population is
Two-stream instability in collisionless shocks and foreshock
International Nuclear Information System (INIS)
Dieckmann, M E; Eliasson, B; Shukla, P K; Sircombe, N J; Dendy, R O
2006-01-01
Shocks play a key role in plasma thermalization and particle acceleration in the near Earth space plasma, in astrophysical plasma and in laser plasma interactions. An accurate understanding of the physics of plasma shocks is thus of immense importance. We give an overview over some recent developments in particle-in-cell simulations of plasma shocks and foreshock dynamics. We focus on ion reflection by shocks and on the two-stream instabilities these beams can drive, and these are placed in the context of experimental observations, e.g. by the Cluster mission. We discuss how we may expand the insight gained from the observation of proton beam driven instabilities at near Earth plasma shocks to better understand their astrophysical counterparts, such as ion beam instabilities triggered by internal and external shocks in the relativistic jets of gamma ray bursts, shocks in the accretion discs of micro-quasars and supernova remnant shocks. It is discussed how and why the peak energy that can be reached by particles that are accelerated by two-stream instabilities increases from keV energies to GeV energies and beyond, as we increase the streaming speed to relativistic values, and why the particle energy spectrum sometimes resembles power law distributions
Two-stream instability in collisionless shocks and foreshock
Energy Technology Data Exchange (ETDEWEB)
Dieckmann, M E [Institute of Theoretical Physics IV and Centre for Plasma Science and Astrophysics, Ruhr-University Bochum, D-44780 Bochum (Germany); Eliasson, B [Institute of Theoretical Physics IV and Centre for Plasma Science and Astrophysics, Ruhr-University Bochum, D-44780 Bochum (Germany); Shukla, P K [Institute of Theoretical Physics IV and Centre for Plasma Science and Astrophysics, Ruhr-University Bochum, D-44780 Bochum (Germany); Sircombe, N J [Centre for Fusion, Space and Astrophysics, Department of Physics, Warwick University, Coventry CV4 7AL (United Kingdom); Dendy, R O [Centre for Fusion, Space and Astrophysics, Department of Physics, Warwick University, Coventry CV4 7AL (United Kingdom)
2006-12-15
Shocks play a key role in plasma thermalization and particle acceleration in the near Earth space plasma, in astrophysical plasma and in laser plasma interactions. An accurate understanding of the physics of plasma shocks is thus of immense importance. We give an overview over some recent developments in particle-in-cell simulations of plasma shocks and foreshock dynamics. We focus on ion reflection by shocks and on the two-stream instabilities these beams can drive, and these are placed in the context of experimental observations, e.g. by the Cluster mission. We discuss how we may expand the insight gained from the observation of proton beam driven instabilities at near Earth plasma shocks to better understand their astrophysical counterparts, such as ion beam instabilities triggered by internal and external shocks in the relativistic jets of gamma ray bursts, shocks in the accretion discs of micro-quasars and supernova remnant shocks. It is discussed how and why the peak energy that can be reached by particles that are accelerated by two-stream instabilities increases from keV energies to GeV energies and beyond, as we increase the streaming speed to relativistic values, and why the particle energy spectrum sometimes resembles power law distributions.
Observations of Reconnection Flows in a Flare on the Solar Disk
International Nuclear Information System (INIS)
Wang, Juntao; Simões, P. J. A.; Jeffrey, N. L. S.; Fletcher, L.; Wright, P. J.; Hannah, I. G.
2017-01-01
Magnetic reconnection is a well-accepted part of the theory of solar eruptive events, though the evidence is still circumstantial. Intrinsic to the reconnection picture of a solar eruptive event, particularly in the standard model for two-ribbon flares (CSHKP model), are an advective flow of magnetized plasma into the reconnection region, expansion of field above the reconnection region as a flux rope erupts, retraction of heated post-reconnection loops, and downflows of cooling plasma along those loops. We report on a unique set of Solar Dynamics Observatory /Atmospheric Imaging Assembly imaging and Hinode /EUV Imaging Spectrometer spectroscopic observations of the disk flare SOL2016-03-23T03:54 in which all four flows are present simultaneously. This includes spectroscopic evidence for a plasma upflow in association with large-scale expanding closed inflow field. The reconnection inflows are symmetric, and consistent with fast reconnection, and the post-reconnection loops show a clear cooling and deceleration as they retract. Observations of coronal reconnection flows are still rare, and most events are observed at the solar limb, obscured by complex foregrounds, making their relationship to the flare ribbons, cusp field, and arcades formed in the lower atmosphere difficult to interpret. The disk location and favorable perspective of this event have removed these ambiguities giving a clear picture of the reconnection dynamics.
Transient and intermittent magnetic reconnections in TS-3/UTST merging startup experiments
International Nuclear Information System (INIS)
Ono, Y.; Imazawa, R.; Imanaka, H.; Hayamizu, T.; Inomoto, M.; Sato, M.; Kawamori, E.; Ejiri, A.; Takase, Y.; Asai, T.; Takahashi, T.
2007-01-01
The high-power reconnection heating has been developed in the TS-3 merging experiments, leading us to a new pulsed high-beta spherical tokamak (ST) formation. Two ST plasmas were produced inductively by two or four PF coils without using any central solenoid (CS) coil and were merged together for MW-GW reconnection heating. The magnetic reconnection transformed the magnetic energy of reconnecting magnetic field through the outflow kinetic energy finally to the ion thermal energy, increasing the plasma beta of ST up to 0.5. A new finding is that ejection of current sheet (or plasmoid) causes high-speed merging/ reconnection as well as high-power heating. In the high-q ST merging, the sheet resistivity was almost classical due to the sheet thickness much longer than ion gyroradius. Large inflow flux and low current-sheet dissipation resulted in flux pileup followed by rapid growth of the current sheet. When the flux pileup exceeded a critical limit, the sheet was ejected mechanically from the squeezed X-point area. The reconnection (outflow) speed was slow during the flux pileup and was fast during the ejection, indicating that intermittent reconnection similar to the solar flare increased the averaged reconnection speed. These transient effects enable us to have the fast reconnection as well as the high-power reconnection heating, even if the merging high-q tokamaks have low current-sheet resistivity. (author)
Observations of Reconnection Flows in a Flare on the Solar Disk
Energy Technology Data Exchange (ETDEWEB)
Wang, Juntao; Simões, P. J. A.; Jeffrey, N. L. S.; Fletcher, L.; Wright, P. J.; Hannah, I. G., E-mail: j.wang.4@research.gla.ac.uk [SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom)
2017-09-20
Magnetic reconnection is a well-accepted part of the theory of solar eruptive events, though the evidence is still circumstantial. Intrinsic to the reconnection picture of a solar eruptive event, particularly in the standard model for two-ribbon flares (CSHKP model), are an advective flow of magnetized plasma into the reconnection region, expansion of field above the reconnection region as a flux rope erupts, retraction of heated post-reconnection loops, and downflows of cooling plasma along those loops. We report on a unique set of Solar Dynamics Observatory /Atmospheric Imaging Assembly imaging and Hinode /EUV Imaging Spectrometer spectroscopic observations of the disk flare SOL2016-03-23T03:54 in which all four flows are present simultaneously. This includes spectroscopic evidence for a plasma upflow in association with large-scale expanding closed inflow field. The reconnection inflows are symmetric, and consistent with fast reconnection, and the post-reconnection loops show a clear cooling and deceleration as they retract. Observations of coronal reconnection flows are still rare, and most events are observed at the solar limb, obscured by complex foregrounds, making their relationship to the flare ribbons, cusp field, and arcades formed in the lower atmosphere difficult to interpret. The disk location and favorable perspective of this event have removed these ambiguities giving a clear picture of the reconnection dynamics.
Theory and Simulations of Incomplete Reconnection During Sawteeth Due to Diamagnetic Effects
Beidler, Matthew Thomas
Tokamaks use magnetic fields to confine plasmas to achieve fusion; they are the leading approach proposed for the widespread production of fusion energy. The sawtooth crash in tokamaks limits the core temperature, adversely impacts confinement, and seeds disruptions. Adequate knowledge of the physics governing the sawtooth crash and a predictive capability of its ramifications has been elusive, including an understanding of incomplete reconnection, i.e., why sawteeth often cease prematurely before processing all available magnetic flux. In this dissertation, we introduce a model for incomplete reconnection in sawtooth crashes resulting from increasing diamagnetic effects in the nonlinear phase of magnetic reconnection. Physically, the reconnection inflow self-consistently convects the high pressure core of a tokamak toward the q=1 rational surface, thereby increasing the pressure gradient at the reconnection site. If the pressure gradient at the rational surface becomes large enough due to the self-consistent evolution, incomplete reconnection will occur due to diamagnetic effects becoming large enough to suppress reconnection. Predictions of this model are borne out in large-scale proof-of-principle two-fluid simulations of reconnection in a 2D slab geometry and are also consistent with data from the Mega Ampere Spherical Tokamak (MAST). Additionally, we present simulations from the 3D extended-MHD code M3D-C1 used to study the sawtooth crash in a 3D toroidal geometry for resistive-MHD and two-fluid models. This is the first study in a 3D tokamak geometry to show that the inclusion of two-fluid physics in the model equations is essential for recovering timescales more closely in line with experimental results compared to resistive-MHD and contrast the dynamics in the two models. We use a novel approach to sample the data in the plane of reconnection perpendicular to the (m,n)=(1,1) mode to carefully assess the reconnection physics. Using local measures of
Reconnecting with the past on social network sites
DEFF Research Database (Denmark)
Shklovski, Irina
we do not know why people seek out such ties and whether they benefit from them. This paper presents findings from a qualitative study of how people in Russia and Kazakhstan used SNSs for communication and relational maintenance. For many of the participants SNSs had offered an opportunity...... for reconnection with lapsed ties that brought about deeply emotional experiences of nostalgic remembrances and intimate exchanges of current status. In this process of reconnecting, they established connections not only with each other but also with a kind of past that was long gone. These ties were not expected...... to function as social resources or as active providers of support. In many ways, these ties explicitly lacked a purpose beyond emotional remembrance, as they were rarely re-integrated into daily life. Nevertheless, these ties remained connections to a past even as they at times became digital connections...
Particle acceleration and reconnection in the solar wind
Energy Technology Data Exchange (ETDEWEB)
Zank, G. P.; Hunana, P.; Mostafavi, P.; Le Roux, J. A.; Webb, G. M. [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama, Huntsville, AL 35805 (United States); Department of Space Science, University of Alabama, Huntsville, AL 35899 (United States); Khabarova, O. [Heliophysical Laboratory, IZMIRAN, Troitsk, Moscow 142190 (Russian Federation); Cummings, A. C.; Stone, E. C. [California Institute of Technology, Mail Code 290-17, Pasadena, CA 91125 (United States); Decker, R. B. [Johns Hopkins University/Applied Physics Lab., Laurel, MD 20723-6099 (United States)
2016-03-25
An emerging paradigm for the dissipation of magnetic turbulence in the supersonic solar wind is via localized quasi-2D small-scale magnetic island reconnection processes. An advection-diffusion transport equation for a nearly isotropic particle distribution describes particle transport and energization in a region of interacting magnetic islands [1; 2]. The dominant charged particle energization processes are 1) the electric field induced by quasi-2D magnetic island merging, and 2) magnetic island contraction. The acceleration of charged particles in a “sea of magnetic islands” in a super-Alfvénic flow, and the energization of particles by combined diffusive shock acceleration (DSA) and downstream magnetic island reconnection processes are discussed.
Ion distributions in a two-dimensional reconnection field geometry
International Nuclear Information System (INIS)
Curran, D.B.; Goertz, C.K.; Whelan, T.A.
1987-01-01
ISEE observations have shown trapped ion distributions in the magnetosphere along with streaming ion distributions in the magnetosheath. The more energetic ion beams are found to exist further away from the magnetopause than lower-energy ion beams. In order to understand these properties of the data, we have taken a simple two-dimensional reconnection model which contains a neutral line and an azimuthal electric field and compared its predictions with the experimental data of September 8, 1978. Our model explains trapped particles in the magnetosphere due to nonadiabatic mirroring in the magnetosheath and streaming ions in the magnetosheath due to energization at the magnetopause. The model also shows the higher-energy ions extending further into the magnetosheath, away from the magnetopause than the lower-energy ions. This suggests the ion data of September 8, 1978 are consistent with a reconnection geometry. Copyright American Geophysical Union 1987
Scales of guide field reconnection at the hydrogen mass ratio
International Nuclear Information System (INIS)
Lapenta, G.; Markidis, S.; Divin, A.; Goldman, M.; Newman, D.
2010-01-01
We analyze the signatures of component reconnection for a Harris current sheet with a guide field using the physical mass ratio of hydrogen. The study uses the fully kinetic particle in cell code IPIC3D to investigate the scaling with mass ratio of the following three main component reconnection features: electron density cavities along the separatrices, channels of fast electron flow within the cavities, and electron phase space holes due to the Buneman instability in the electron high speed channels. The width and strength of the electron holes and of the electron cavities are studied up the mass ratio proper of hydrogen, considering the effect of the simulation box size, and of the boundary conditions. The results compare favorably with the existing data from the Cluster and Themis missions and provide quantitative predictions for realistic conditions to be encountered by the planned magnetospheric multiscale mission.
Moving grids for magnetic reconnection via Newton-Krylov methods
Yuan, Xuefei
2011-01-01
This paper presents a set of computationally efficient, adaptive grids for magnetic reconnection phenomenon where the current density can develop large gradients in the reconnection region. Four-field extended MagnetoHydroDynamics (MHD) equations with hyperviscosity terms are transformed so that the curvilinear coordinates replace the Cartesian coordinates as the independent variables, and moving grids\\' velocities are also considered in this transformed system as a part of interpolating the physical solutions from the old grid to the new grid as time advances. The curvilinear coordinates derived from the current density through the Monge-Kantorovich (MK) optimization approach help to reduce the resolution requirements during the computation. © 2010 Elsevier B.V. All rights reserved.
Acceleration mechanisms flares, magnetic reconnection and shock waves
International Nuclear Information System (INIS)
Colgate, S.A.
1979-01-01
Several mechanisms are briefly discussed for the acceleration of particles in the astrophysical environment. Included are hydrodynamic acceleration, spherically convergent shocks, shock and a density gradient, coherent electromagnetic acceleration, the flux tube origin, symmetries and instabilities, reconnection, galactic flares, intergalactic acceleration, stochastic acceleration, and astrophysical shocks. It is noted that the supernova shock wave models still depend critically on the presupernova star structure and the assumption of highly compact presupernova models for type I supernovae. 37 references
ISEE observations of the magnetopause: Reconnection and the energy balance
International Nuclear Information System (INIS)
Paschmann, G.; Papamastorakis, I.; Sckopke, N.; Sonnerup, B.U.O.; Bame, S.J.; Russell, C.T.
1985-01-01
According to the usual magnetopause reconnection model, plasma flows across the magnetopause current sheet, which is a rotational discontinuity with a nonzero normal magnetic field component B/sub n/, from the magnetosheath into the magnetospheric boundary layer. As the plasma crosses the sheet, which has net current I, it is accelerated by the I x B/sub n/ force and flows toward the poles with speeds up to twice the Alfven speed
Near-Earth Reconnection Ejecta at Lunar Distances
Runov, A.; Angelopoulos, V.; Artemyev, A.; Lu, S.; Zhou, X.-Z.
2018-04-01
Near-Earth magnetotail reconnection leads to formation of earthward and tailward directed plasma outflows with an increased north-south magnetic field strength(|Bz|) at their leading edges. We refer to these regions of enhanced |Bz| and magnetic flux transport Ey as reconnection ejecta. They are composed of what have been previously referred to as earthward dipolarizing flux bundles (DFBs) and tailward rapid flux transport (RFT) events. Using two-point observations of magnetic and electric fields and particle fluxes by the Acceleration, Reconnection, Turbulence, and Electrodynamics of Moon's Interaction with the Sun probes orbiting around Moon at geocentric distances R ˜ 60RE, we statistically studied plasma moments and particle energy spectra in RFTs and compared them with those observed within DFBs in the near-Earth plasma sheet by the Time History of Events and Macroscale Interactions during Substorms probes. We found that the ion average temperatures and spectral slopes in RFTs at R ˜ 60RE are close to those in DFBs observed at 15 balance, the average RFT ion temperature corresponds to a lobe field BL˜20 nT. This leads us to suggest that the ion population within the tailward ejecta originated in the midtail plasma sheet at 20≤R≤30RE and propagated to the Acceleration, Reconnection, Turbulence, and Electrodynamics of Moon's Interaction with the Sun location without undergoing any further energy gain. Conversely, electron temperatures in DFBs at 15 < R < 25RE are a factor of 2.5 higher than those in RFTs at R ˜ 60RE.
Colour annealing - a toy model of colour reconnections
International Nuclear Information System (INIS)
Sandhoff, Marisa; Wuppertal U.; Skands, Peter; Fermilab
2005-01-01
We present a simple toy model for colour reconnections at the nonperturbative level. The model resembles an annealing-type algorithm and is applicable to any collider and process type, though we argue for a possible enhancement of the effect in hadron-hadron collisions. We present a simple application and study of the consequences for semileptonic t(bar t) events at the Tevatron
The dependence of cusp ion signatures on the reconnection rate
Directory of Open Access Journals (Sweden)
S. K. Morley
2003-04-01
Full Text Available The interpretation of structure in cusp ion dispersions is important for helping to understand the temporal and spatial structure of magnetopause reconnection. "Stepped" and "sawtooth" signatures have been shown to be caused by temporal variations in the reconnection rate under the same physical conditions for different satellite trajectories. The present paper shows that even for a single satellite path, a change in the amplitude of any reconnection pulses can alter the observed signature and even turn sawtooth into stepped forms and vice versa. On 20 August 1998, the Defense Meteorological Satellite Program (DMSP craft F-14 crossed the cusp just to the south of Longyearbyen, returning on the following orbit. The two passes by the DMSP F-14 satellites have very similar trajectories and the open-closed field line boundary (OCB crossings, as estimated from the SSJ/4 precipitating particle data and Polar UVI images, imply a similarly-shaped polar cap, yet the cusp ion dispersion signatures differ substantially. The cusp crossing at 08:54 UT displays a stepped ion dispersion previously considered to be typical of a meridional pass, whereas the crossing at 10:38 UT is a sawtooth form ion dispersion, previously considered typical of a satellite travelling longitudinally with respect to the OCB. It is shown that this change in dispersed ion signature is likely to be due to a change in the amplitude of the pulses in the reconnection rate, causing the stepped signature. Modelling of the low-energy ion cutoff under different conditions has reproduced the forms of signature observed.Key words. Ionosphere (particle precipitation Magnetospheric physics (energetic particles, precipitating, magnetopause, cusp and boundary layers
Colour annealing - a toy model of colour reconnections
Energy Technology Data Exchange (ETDEWEB)
Sandhoff, Marisa; /Wuppertal U.; Skands, Peter; /Fermilab
2005-12-01
We present a simple toy model for colour reconnections at the nonperturbative level. The model resembles an annealing-type algorithm and is applicable to any collider and process type, though we argue for a possible enhancement of the effect in hadron-hadron collisions. We present a simple application and study of the consequences for semileptonic t{bar t} events at the Tevatron.
MESSENGER Observations of Magnetic Reconnection in Mercury's Magnetosphere
Slavin. James A.
2009-01-01
During MESSENGER'S second flyby of Mercury on October 6,2008, very intense reconnection was observed between the planet's magnetic field and a steady southward interplanetary magnetic field (IMF). The dawn magnetopause was threaded by a strong magnetic field normal to its surface, approx.14 nT, that implies a rate of reconnection approx.10 times the typical rate at Earth and a cross-magnetospheric electric potential drop of approx.30 kV. The highest magnetic field observed during this second flyby, approx.160 nT, was found at the core of a large dayside flux transfer event (FTE). This FTE is estimated to contain magnetic flux equal to approx.5% that of Mercury's magnetic tail or approximately one order of magnitude higher fraction of the tail flux than is typically found for FTEs at Earth. Plasmoid and traveling compression region (TCR) signatures were observed throughout MESSENGER'S traversal of Mercury's magnetotail with a repetition rate comparable to the Dungey cycle time of approx.2 min. The TCR signatures changed from south-north, indicating tailward motion, to north-south, indicating sunward motion, at a distance approx.2.6 RM (where RM is Mercury's radius) behind the terminator indicating that the near-Mercury magnetotail neutral line was crossed at that point. Overall, these new MESSENGER observations suggest that magnetic reconnection at the dayside magnetopause is very intense relative to what is found at Earth and other planets, while reconnection in Mercury's tail is similar to that in other planetary magnetospheres, but with a very short Dungey cycle time.
Fast magnetic reconnection supported by sporadic small-scale Petschek-type shocks
International Nuclear Information System (INIS)
Shibayama, Takuya; Nakabou, Takashi; Kusano, Kanya; Miyoshi, Takahiro; Vekstein, Grigory
2015-01-01
Standard magnetohydrodynamic (MHD) theory predicts reconnection rate that is far too slow to account for a wide variety of reconnection events observed in space and laboratory plasmas. Therefore, it was commonly accepted that some non-MHD (kinetic) effects play a crucial role in fast reconnection. A recently renewed interest in simple MHD models is associated with the so-called plasmoid instability of reconnecting current sheets. Although it is now evident that this effect can significantly enhance the rate of reconnection, many details of the underlying multiple-plasmoid process still remain controversial. Here, we report results of a high-resolution computer simulation which demonstrate that fast albeit intermittent magnetic reconnection is sustained by numerous small-scale Petschek-type shocks spontaneously formed in the current sheet due to its plasmoid instability
Fast magnetic reconnection supported by sporadic small-scale Petschek-type shocks
Energy Technology Data Exchange (ETDEWEB)
Shibayama, Takuya, E-mail: shibayama@stelab.nagoya-u.ac.jp; Nakabou, Takashi [Institute for Space-Earth Environmental Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601 (Japan); Kusano, Kanya [Institute for Space-Earth Environmental Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601 (Japan); Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanazawa-ku, Yokohama, Kanagawa 236-0001 (Japan); Miyoshi, Takahiro [Department of Physical Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526 (Japan); Vekstein, Grigory [Jodrell Bank Centre for Astrophysics, University of Manchester, Manchester M13 9PL (United Kingdom)
2015-10-15
Standard magnetohydrodynamic (MHD) theory predicts reconnection rate that is far too slow to account for a wide variety of reconnection events observed in space and laboratory plasmas. Therefore, it was commonly accepted that some non-MHD (kinetic) effects play a crucial role in fast reconnection. A recently renewed interest in simple MHD models is associated with the so-called plasmoid instability of reconnecting current sheets. Although it is now evident that this effect can significantly enhance the rate of reconnection, many details of the underlying multiple-plasmoid process still remain controversial. Here, we report results of a high-resolution computer simulation which demonstrate that fast albeit intermittent magnetic reconnection is sustained by numerous small-scale Petschek-type shocks spontaneously formed in the current sheet due to its plasmoid instability.
Ergun, R. E.; Goodrich, K. A.; Wilder, F. D.; Holmes, J. C.; Stawarz, J. E.; Eriksson, S.; Sturner, A. P.; Malaspina, D. M.; Usanova, M. E.; Torbert, R. B.; Lindqvist, P.-A.; Khotyaintsev, Y.; Burch, J. L.; Strangeway, R. J.; Russell, C. T.; Pollock, C. J.; Giles, B. L.; Hesse, M.; Chen, L. J.; Lapenta, G.; Goldman, M. V.; Newman, D. L.; Schwartz, S. J.; Eastwood, J. P.; Phan, T. D.; Mozer, F. S.; Drake, J.; Shay, M. A.; Cassak, P. A.; Nakamura, R.; Marklund, G.
2016-06-01
We report observations from the Magnetospheric Multiscale satellites of parallel electric fields (E∥ ) associated with magnetic reconnection in the subsolar region of the Earth's magnetopause. E∥ events near the electron diffusion region have amplitudes on the order of 100 mV /m , which are significantly larger than those predicted for an antiparallel reconnection electric field. This Letter addresses specific types of E∥ events, which appear as large-amplitude, near unipolar spikes that are associated with tangled, reconnected magnetic fields. These E∥ events are primarily in or near a current layer near the separatrix and are interpreted to be double layers that may be responsible for secondary reconnection in tangled magnetic fields or flux ropes. These results are telling of the three-dimensional nature of magnetopause reconnection and indicate that magnetopause reconnection may be often patchy and/or drive turbulence along the separatrix that results in flux ropes and/or tangled magnetic fields.
Magnetic Reconnection and Particle Acceleration in the Solar Corona
Neukirch, Thomas
Reconnection plays a major role for the magnetic activity of the solar atmosphere, for example solar flares. An interesting open problem is how magnetic reconnection acts to redistribute the stored magnetic energy released during an eruption into other energy forms, e.g. gener-ating bulk flows, plasma heating and non-thermal energetic particles. In particular, finding a theoretical explanation for the observed acceleration of a large number of charged particles to high energies during solar flares is presently one of the most challenging problems in solar physics. One difficulty is the vast difference between the microscopic (kinetic) and the macro-scopic (MHD) scales involved. Whereas the phenomena observed to occur on large scales are reasonably well explained by the so-called standard model, this does not seem to be the case for the small-scale (kinetic) aspects of flares. Over the past years, observations, in particular by RHESSI, have provided evidence that a naive interpretation of the data in terms of the standard solar flare/thick target model is problematic. As a consequence, the role played by magnetic reconnection in the particle acceleration process during solar flares may have to be reconsidered.
Magnetic reconnection processes induced by a CME expansion
Directory of Open Access Journals (Sweden)
A. Bemporad
2008-10-01
Full Text Available On 10–11 December 2005 a slow CME occurred in the Western Hemisphere in between two coronal streamers. SOHO/MDI magnetograms show a multipolar magnetic configuration at the photosphere: a complex of active regions located at the CME source and two bipoles at the base of the lateral coronal streamers. White light observations reveal that the CME expansion affects both of them and induces the release of plasma within or close to the nearby streamers. These transient phenomena are possibly due to magnetic reconnections induced by the CME expansion and occurring inside the streamer current sheet or between the CME flanks and the streamer. These events have been observed by the SOHO/UVCS with the spectrometer slit centered at 1.8 R⊙ over about a full day. In this work we focus on the interaction between the CME and the streamer: the UVCS spectral interval included UV lines from ions at different temperatures of maximum formation such as O VI, Si XIII and Al Xi. These data gave us the opportunity to infer the evolution of plasma temperature and density at the reconnection site and adjacent regions. These are relevant to characterize secondary reconnection processes occurring during a CME development.
Small-Scale Dayside Magnetic Reconnection Analysis via MMS
Pritchard, K. R.; Burch, J. L.; Fuselier, S. A.; Webster, J.; Genestreti, K.; Torbert, R. B.; Rager, A. C.; Phan, T.; Argall, M. R.; Le Contel, O.; Russell, C. T.; Strangeway, R. J.; Giles, B. L.
2017-12-01
The Magnetospheric Multiscale (MMS) mission has the primary objective of understanding the physics of the reconnection electron diffusion region (EDR), where magnetic energy is transformed into particle energy. In this poster, we present data from an EDR encounter that occurred in late December 2016 at approximately 11:00 MLT with a moderate guide field. The spacecraft were in a tetrahedral formation with an average inter-spacecraft distance of approximately 7 kilometers. During this event electron crescent-shaped distributions were observed in the electron stagnation region as is typical for asymmetric reconnection. Based on the observed ion velocity jets, the spacecraft traveled just south of the EDR. Because of the close spacecraft separation, fairly accurate computation of the Hall, electron pressure divergence, and electron inertia components of the reconnection electric field could be made. In the region of the crescent distributions good agreement was observed, with the strongest component being the normal electric field and the most significant sources being electron pressure divergence and the Hall electric field. While the strongest currents were in the out-of-plane direction, the dissipation was strongest in the normal direction because of the larger magnitude of the normal electric field component. These results are discussed in light of recent 3D PIC simulations performed by other groups.
Intermittent bursts induced by double tearing mode reconnection
Wei, Lai; Wang, Zheng-Xiong
2014-06-01
Reversed magnetic shear (RMS) configuration is assumed to be the steady-state operation scenario for the future advanced tokamaks like International Thermonuclear Experimental Reactor. In this work, we numerically discover a phenomenon of violent intermittent bursts induced by self-organized double tearing mode (DTM) reconnection in the RMS configuration during the very long evolution, which may continuously lead to annular sawtooth crashes and thus badly impact the desired steady-state operation of the future advanced RMS tokamaks. The key process of the intermittent bursts in the off-axis region is similar to that of the typical sawtooth relaxation oscillation in the positive magnetic shear configuration. It is interestingly found that in the decay phase of the DTM reconnection, the zonal field significantly counteracts equilibrium field to make the magnetic shear between the two rational surfaces so weak that the residual self-generated vortices of the previous DTM burst are able to trigger a reverse DTM reconnection by curling the field lines.
Intermittent bursts induced by double tearing mode reconnection
International Nuclear Information System (INIS)
Wei, Lai; Wang, Zheng-Xiong
2014-01-01
Reversed magnetic shear (RMS) configuration is assumed to be the steady-state operation scenario for the future advanced tokamaks like International Thermonuclear Experimental Reactor. In this work, we numerically discover a phenomenon of violent intermittent bursts induced by self-organized double tearing mode (DTM) reconnection in the RMS configuration during the very long evolution, which may continuously lead to annular sawtooth crashes and thus badly impact the desired steady-state operation of the future advanced RMS tokamaks. The key process of the intermittent bursts in the off-axis region is similar to that of the typical sawtooth relaxation oscillation in the positive magnetic shear configuration. It is interestingly found that in the decay phase of the DTM reconnection, the zonal field significantly counteracts equilibrium field to make the magnetic shear between the two rational surfaces so weak that the residual self-generated vortices of the previous DTM burst are able to trigger a reverse DTM reconnection by curling the field lines
Intermittent bursts induced by double tearing mode reconnection
Energy Technology Data Exchange (ETDEWEB)
Wei, Lai; Wang, Zheng-Xiong, E-mail: zxwang@dlut.edu.cn [Key Laboratory of Materials Modification by Beams of the Ministry of Education, School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)
2014-06-15
Reversed magnetic shear (RMS) configuration is assumed to be the steady-state operation scenario for the future advanced tokamaks like International Thermonuclear Experimental Reactor. In this work, we numerically discover a phenomenon of violent intermittent bursts induced by self-organized double tearing mode (DTM) reconnection in the RMS configuration during the very long evolution, which may continuously lead to annular sawtooth crashes and thus badly impact the desired steady-state operation of the future advanced RMS tokamaks. The key process of the intermittent bursts in the off-axis region is similar to that of the typical sawtooth relaxation oscillation in the positive magnetic shear configuration. It is interestingly found that in the decay phase of the DTM reconnection, the zonal field significantly counteracts equilibrium field to make the magnetic shear between the two rational surfaces so weak that the residual self-generated vortices of the previous DTM burst are able to trigger a reverse DTM reconnection by curling the field lines.
International Nuclear Information System (INIS)
Hassanein, A.; Konkashbaev, I.
1999-01-01
The structure of a collisionless scrape-off-layer (SOL) plasma in tokamak reactors is being studied to define the electron distribution function and the corresponding sheath potential between the divertor plate and the edge plasma. The collisionless model is shown to be valid during the thermal phase of a plasma disruption, as well as during the newly desired low-recycling normal phase of operation with low-density, high-temperature, edge plasma conditions. An analytical solution is developed by solving the Fokker-Planck equation for electron distribution and balance in the SOL. The solution is in good agreement with numerical studies using Monte-Carlo methods. The analytical solutions provide an insight to the role of different physical and geometrical processes in a collisionless SOL during disruptions and during the enhanced phase of normal operation over a wide range of parameters
N-MODY: A Code for Collisionless N-body Simulations in Modified Newtonian Dynamics
Londrillo, Pasquale; Nipoti, Carlo
2011-02-01
N-MODY is a parallel particle-mesh code for collisionless N-body simulations in modified Newtonian dynamics (MOND). N-MODY is based on a numerical potential solver in spherical coordinates that solves the non-linear MOND field equation, and is ideally suited to simulate isolated stellar systems. N-MODY can be used also to compute the MOND potential of arbitrary static density distributions. A few applications of N-MODY indicate that some astrophysically relevant dynamical processes are profoundly different in MOND and in Newtonian gravity with dark matter.
Nonlinear phenomena in collisionless plasmas. Progress report, September 1, 1974--August 31, 1975
International Nuclear Information System (INIS)
Aamodt, R.E.
1975-01-01
The nonlinear evolution of unstable collective modes common to conventional mirror machines is being analyzed in order to evaluate measurable saturation amplitudes, spectrum properties, and concomitant particle loss rates. The nonlinear dispersion relation for the classic drift-cone mode, including nonlinear E x B VECTOR convective cells is presently being evaluated to find its self-saturation properties. Large amplitude rf heating mechanisms, localized mode nonlinearities, and propagation and amplification of transverse modes in collisionless inhomogeneous plasmas have also been partially evaluated. (U.S.)
A new formulation of theta pinch implosions - a collisionless wave model
International Nuclear Information System (INIS)
Tsui, K.H.
Previous work in theta pinch implosions is characterized by anomalous resistivity owing its origin to plasma instabilities. A diametrically opposite collisionless model is proposed here that consists of an inhomogeneous wave equation. The electron velocities are solved by guiding center approximation. This model offers qualitative explanations to various effects like experimental Alfven scaling law, Alfven penetration time, sheath thickness, shock formation, shock width, piston thickness, Alfven Mach number. Although collision is not essential, the plasma has an apparent resistivity with an effective collision frequency of roughly the same as those anomalous ones used in turbulent model. (Author) [pt
Electric sheath and presheath in a collisionless, finite ion temperature plasma
International Nuclear Information System (INIS)
Emmert, G.A.; Wieland, R.M.; Mense, A.T.; Davidson, J.N.
1980-01-01
The plasma-sheath equation for a collisionless plasma with arbitrary ion temperature in plane geometry is formulated. Outside the sheath, this equation is approximated by the plasma equation, for which an analytic solution for the electrostatic potential is obtained. In addition, the ion distribution function, the wall potential, and the ion energy and particle flux into the sheath are explicitly calculated. The plasma-sheath equation is also solved numerically with no approximation of the Debye length. The numerical results compare well with the analytical results when the Debye length is small
Charging-delay induced dust acoustic collisionless shock wave: Roles of negative ions
International Nuclear Information System (INIS)
Ghosh, Samiran; Bharuthram, R.; Khan, Manoranjan; Gupta, M. R.
2006-01-01
The effects of charging-delay and negative ions on nonlinear dust acoustic waves are investigated. It has been found that the charging-delay induced anomalous dissipation causes generation of dust acoustic collisionless shock waves in an electronegative dusty plasma. The small but finite amplitude wave is governed by a Korteweg-de Vries Burger equation in which the Burger term arises due to the charging-delay. Numerical investigations reveal that the charging-delay induced dissipation and shock strength decreases (increases) with the increase of negative ion concentration (temperature)
A model for precursor structure in supercritical perpendicular, collisionless shock waves
International Nuclear Information System (INIS)
Sherwell, D.; Cairns, R.A.
1978-01-01
Magnetosonic solitons may be given smooth increasing profiles by assuming the presence within the wave of a current distribution Jsub(y)(x) of trapped ions perpendicular to Bsub(z)(x) and the wave velocity Vsub(x). Suitable ions are found immediately upstream of perpendicular collisionless shock waves and these are coincident with the often observed 'foot' in magnetic field profiles of moderately supercritical shocks. The theory is applied to previous experiments by modelling Jsub(y)(x), where Jsub(y)(x) is observed, the profiles in the foot are reproduced and explained. Insight into a number of features of fast shocks is obtained. (author)
International Nuclear Information System (INIS)
Zakharov, V.U.
1993-01-01
An analytical method for the investigation of special types of dispersion relations is presented. In particular, analysis of the propagation of small-amplitude hydromagnetic waves in a collisionless plasma in a strong magnetic field leads to such dispersion relations. The fifth-degree dispersion relation corresponding to a particular case is considered. The necessary stability condition for a steady state and conditions for the degeneration of small-amplitude waves are derived. A comparison with other methods for the analysis of similar dispersion relations is also presented. (author)
Czech Academy of Sciences Publication Activity Database
Burgess, D.; Hellinger, Petr; Gingell, I.; Trávníček, Pavel M.
2016-01-01
Roč. 82, č. 4 (2016), 905820401/1-905820401/23 ISSN 0022-3778 Institutional support: RVO:68378289 Keywords : ion-acceleration * numerical simulations * bow shock * electron acceleration * cluster observations * self-reformation * magnetic-field * whistler waves * injection * nonstationarity Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.160, year: 2016 https://www.cambridge.org/core/ journals /journal-of-plasma-physics/article/microstructure-in-two-and-three-dimensional-hybrid-simulations-of-perpendicular-collisionless-shocks/F964EF89FB14A6504A49CFAD54970E2B
Ramirez, Artemio; Sumner, Erin M; Hayes, Jameson
2016-08-01
Social network sites (SNSs) such as Facebook function as both venues for reconnecting with associates from a user's past and sources of social information about them. Yet, little is known about what factors influence the initial decision to reconnect with a past associate. This oversight is significant given that SNSs and other platforms provide an abundance of social information that may be utilized for reaching such decisions. The present study investigated the links among relational reconnection, information seeking (IS) behavior, and individual- and relationship-level factors in user decisions to reconnect on Facebook. A national survey of 244 Facebook users reported on their most recent experience of receiving a friend request from someone with whom they had been out of contact for an extended period. Results indicated that uncertainty about the potential reconnection partner and forecast about the reconnection's potential reward level significantly predicted IS behavior (passive on both target and mutual friends' SNS pages as well as active). However, the emergence of their two-way interaction revealed that the forecasts moderated the IS-uncertainty link on three of the strategies (extractive, both passive approaches). Moreover, social anxiety, sociability, uncertainty about the partner, the forecast about the reconnection's reward level, and extractive and passive (target SNS pages) strategies significantly predicted user decisions to reconnect. Future directions for research on relational reconnection on SNSs are offered.
Hot magnetospheric O+ and cold ion behavior in magnetopause reconnection: Cluster observations
Wang, S.; Kistler, L. M.; Mouikis, C. G.; Liu, Y.; Genestreti, K. J.
2014-12-01
In reconnection, the presence of heavy ions like O+ increases the ion mass density reducing the fluid's Alfvén speed. In addition, it may modify the reconnection structure, which can also change the reconnection rate. However, because O+ ions have a larger Larmor radii than H+ ions at the same velocity, they may not be fully entrained in the reconnection flow and may have kinetic effects other than just increasing the mass density. In this study, for the first time, the ion velocity distribution functions of H+ and O+ from one magnetopause reconnection event with a strong guide field are analyzed to determine in detail the behavior of the different ion populations. We show that the hot magnetospheric O+ ions, along with the hot magnetospheric H+ ions almost fully participate in the reconnection exhaust flows. Finite Larmor radius effects are also apparent and control how far the ions extend on the magnetosheath side. Ion signatures consistent with heating after being picked up in the reconnection exhaust flow are observed in the H+ and O+ distribution functions. The dynamics of the cold magnetospheric ions depends on where they enter the reconnection region. If they enter the reconnection region at the downstream separatrix, they will be taken away by the magnetic field in an adiabatic way as analyzed by Drake et al. (2009a); if they enter close to the diffusion region, they behave as pick-up ions.
Inertial-Range Reconnection in Magnetohydrodynamic Turbulence and in the Solar Wind.
Lalescu, Cristian C; Shi, Yi-Kang; Eyink, Gregory L; Drivas, Theodore D; Vishniac, Ethan T; Lazarian, Alexander
2015-07-10
In situ spacecraft data on the solar wind show events identified as magnetic reconnection with wide outflows and extended "X lines," 10(3)-10(4) times ion scales. To understand the role of turbulence at these scales, we make a case study of an inertial-range reconnection event in a magnetohydrodynamic simulation. We observe stochastic wandering of field lines in space, breakdown of standard magnetic flux freezing due to Richardson dispersion, and a broadened reconnection zone containing many current sheets. The coarse-grain magnetic geometry is like large-scale reconnection in the solar wind, however, with a hyperbolic flux tube or apparent X line extending over integral length scales.
Urunkar, T. U.; Valkunde, A. T.; Vhanmore, B. D.; Gavade, K. M.; Patil, S. D.; Takale, M. V.
2018-05-01
It is quite known that critical power of the laser plays vital role in the propagation of Gaussian laser beam in collisionless plasma. The nonlinearity in dielectric constant considered herein is due to the ponderomotive force. In the present analysis, the interval of critical beam power has been explored to sustain the competition between diffraction and self-focusing of Gaussian laser beam during propagation in collisionless magnetized plasma. Differential equation for beam-width parameter has been established by using WKB and paraxial approximations under parabolic equation approach. The effect of critical power on the propagation of Gaussian laser beam has been presented graphically and discussed.
Radial transport in the Elmo Bumpy Torus in collisionless electron regimes
International Nuclear Information System (INIS)
Jaeger, E.F.; Hedrick, C.L.; Spong, D.A.
1979-01-01
One important area of disagreement between radial transport theory and the ELMO Bumpy Torus (EBT) experiment has been the degree of collisionality of the toroidal plasma electrons. Experiment shows relatively warm electrons (kTsub(e) approximately 300-600eV) and collisionless scaling, i.e. energy confinement increasing with temperature. But results of early one-dimensional (1-D), neoclassical transport models with radially inward pointing electric fields are limited to relatively cool electrons (kTsub(e) approximately 100-200eV) and collisional scaling. In this paper these early results are extended to include lowest-order effects of ion diffusion in regions where poloidal drift frequencies are small. The effects of direct, or non-diffusive, losses in such regions are neglected along with the effects of finite radial electric fields on electron transport coefficients and of self-consistent poloidal electric fields on ion transport coefficients. Results show that solutions in the collisionless electron regime do exist. Furthermore, when the effects of finite electron ring beta on magnetic fields near the plasma edge are included, these solutions occur at power levels consistent with experiment. (author)
Collisionless shock formation and the prompt acceleration of solar flare ions
Cargill, P. J.; Goodrich, C. C.; Vlahos, L.
1988-01-01
The formation mechanisms of collisionless shocks in solar flare plasmas are investigated. The priamry flare energy release is assumed to arise in the coronal portion of a flare loop as many small regions or 'hot spots' where the plasma beta locally exceeds unity. One dimensional hybrid numerical simulations show that the expansion of these 'hot spots' in a direction either perpendicular or oblique to the ambient magnetic field gives rise to collisionless shocks in a few Omega(i), where Omega(i) is the local ion cyclotron frequency. For solar parameters, this is less than 1 second. The local shocks are then subsequently able to accelerate particles to 10 MeV in less than 1 second by a combined drift-diffusive process. The formation mechanism may also give rise to energetic ions of 100 keV in the shock vicinity. The presence of these energetic ions is due either to ion heating or ion beam instabilities and they may act as a seed population for further acceleration. The prompt acceleration of ions inferred from the Gamma Ray Spectrometer on the Solar Maximum Mission can thus be explained by this mechanism.
Spontaneous magnetic fluctuations and collisionless regulation of the Earth's plasma sheet
Moya, P. S.; Espinoza, C.; Stepanova, M. V.; Antonova, E. E.; Valdivia, J. A.
2017-12-01
Even in the absence of instabilities, plasmas often exhibit inherent electromagnetic fluctuations which are present due to the thermal motion of charged particles, sometimes called thermal (quasi-thermal) noise. One of the fundamental and challenging problems of laboratory, space, and astrophysical plasma physics is the understanding of the relaxation processes of nearly collisionless plasmas, and the resultant state of electromagnetic plasma turbulence. The study of thermal fluctuations can be elegantly addressed by using the Fluctuation-Dissipation Theorem that describes the average amplitude of the fluctuations through correlations of the linear response of the media with the perturbations of the equilibrium state (the dissipation). Recently, it has been shown that solar wind plasma beta and temperature anisotropy observations are bounded by kinetic instabilities such as the ion cyclotron, mirror, and firehose instabilities. The magnetic fluctuations observed within the bounded area are consistent with the predictions of the Fluctuation-Dissipation theorem even far below the kinetic instability thresholds, with an enhancement of the fluctuation level near the thresholds. Here, for the very first time, using in-situ magnetic field and plasma data from the THEMIS spacecraft, we show that such regulation also occurs in the Earth's plasma sheet at the ion scales and that, regardless of the clear differences between the solar wind and the magnetosphere environments, spontaneous fluctuation and their collisionless regulation seem to be fundamental features of space and astrophysical plasmas, suggesting the universality of the processes.
Instabilities of collisionless current sheets revisited: The role of anisotropic heating
International Nuclear Information System (INIS)
Muñoz, P. A.; Kilian, P.; Büchner, J.
2014-01-01
In this work, we investigate the influence of the anisotropic heating on the spontaneous instability and evolution of thin Harris-type collisionless current sheets, embedded in antiparallel magnetic fields. In particular, we explore the influence of the macroparticle shape-function using a 2D version of the PIC code ACRONYM. We also investigate the role of the numerical collisionality due to the finite number of macroparticles in PIC codes. It is shown that it is appropriate to choose higher order shape functions of the macroparticles compared to a larger number of macroparticles per cell. This allows to estimate better the anisotropic electron heating due to the collisions of macroparticles in a PIC code. Temperature anisotropies can stabilize the tearing mode instability and trigger additional current sheet instabilities. We found a good agreement between the analytically derived threshold for the stabilization of the anisotropic tearing mode and other instabilities, either spontaneously developing or initially triggered ones. Numerical effects causing anisotropic heating at electron time scales become especially important for higher mass ratios (above m i /m e =180). If numerical effects are carefully taken into account, one can recover the theoretical estimated linear growth rates of the tearing instability of thin isotropic collisionless current sheets, also for higher mass ratios
International Nuclear Information System (INIS)
Cremaschini, Claudio; Miller, John C.; Tessarotto, Massimo
2011-01-01
A kinetic treatment is developed for collisionless magnetized plasmas occurring in high-temperature, low-density astrophysical accretion disks, such as are thought to be present in some radiatively inefficient accretion flows onto black holes. Quasi-stationary configurations are investigated, within the framework of a Vlasov-Maxwell description. The plasma is taken to be axisymmetric and subject to the action of slowly time-varying gravitational and electromagnetic fields. The magnetic field is assumed to be characterized by a family of locally nested but open magnetic surfaces. The slow collisionless dynamics of these plasmas is investigated, yielding a reduced gyrokinetic Vlasov equation for the kinetic distribution function. For doing this, an asymptotic quasi-stationary solution is first determined, represented by a generalized bi-Maxwellian distribution expressed in terms of the relevant adiabatic invariants. The existence of the solution is shown to depend on having suitable kinetic constraints and conditions leading to particle trapping phenomena. With this solution, one can treat temperature anisotropy, toroidal and poloidal flow velocities, and finite Larmor-radius effects. An asymptotic expansion for the distribution function permits analytic evaluation of all the relevant fluid fields. Basic theoretical features of the solution and their astrophysical implications are discussed. As an application, the possibility of describing the dynamics of slowly time-varying accretion flows and the self-generation of magnetic field by means of a ''kinetic dynamo effect'' are discussed. Both effects are shown to be related to intrinsically kinetic physical mechanisms.
Theoretical models of non-Maxwellian equilibria for one-dimensional collisionless plasmas
Allanson, O.; Neukirch, T.; Wilson, F.; Troscheit, S.
2016-12-01
It is ideal to use exact equilibrium solutions of the steady state Vlasov-Maxwell system to intialise collsionless simulations. However, exact equilibrium distribution functions (DFs) for a given macroscopic configuration are typically unknown, and it is common to resort to using `flow-shifted' Maxwellian DFs in their stead. These DFs may be consistent with a macrosopic system with the target number density and current density, but could well have inaccurate higher order moments. We present recent theoretical work on the `inverse problem in Vlasov-Maxwell equilibria', namely calculating an exact solution of the Vlasov equation for a specific given magnetic field. In particular, we focus on one-dimensional geometries in Cartesian (current sheets) coordinates.1. From 1D fields to Vlasov equilibria: Theory and application of Hermite Polynomials: (O. Allanson, T. Neukirch, S. Troscheit and F. Wilson, Journal of Plasma Physics, 82, 905820306 (2016) [28 pages, Open Access] )2. An exact collisionless equilibrium for the Force-Free Harris Sheet with low plasma beta: (O. Allanson, T. Neukirch, F. Wilson and S. Troscheit, Physics of Plasmas, 22, 102116 (2015) [11 pages, Open Access])3. Neutral and non-neutral collisionless plasma equilibria for twisted flux tubes: The Gold-Hoyle model in a background field (O. Allanson, F. Wilson and T. Neukirch, (2016)) (accepted, Physics of Plasmas)
International Nuclear Information System (INIS)
Prokopov, P A; Zakharov, Yu P; Tishchenko, V N; Shaikhislamov, I F; Boyarintsev, E L; Melekhov, A V; Ponomarenko, A G; Posukh, V G; Terekhin, V A
2016-01-01
Generation of Alfven waves propagating along external magnetic field B 0 and Collisionless Shock Waves propagating across B 0 are studied in experiments with laser- produced plasma and magnetized background plasma. The collisionless interaction of interpenetrating plasma flows takes place through a so-called Magnetic Laminar Mechanism (MLM) or Larmor Coupling. At the edge of diamagnetic cavity LP-ions produce induction electric field E φ which accelerates BP-ions while LP-ions rotate in opposite direction. The ions movement generates sheared azimuthal magnetic field B φ which could launches torsional Alfven wave. In previous experiments at KI-1 large scale facility a generation of strong perturbations propagating across B 0 with magnetosonic speed has been studied at a moderate value of interaction parameter δ∼0.3. In the present work we report on experiments at conditions of 5∼R2 and large Alfven-Mach number M A ∼10 in which strong transverse perturbations traveling at a scale of ∼1 m in background plasma at a density of ∼3*10 13 cm -3 is observed. At the same conditions but smaller M A ∼ 2 a generation, the structure and dynamic of Alfven wave with wavelength ∼0.5 m propagating along fields B 0 ∼100÷500 G for a distance of ∼2.5 m is studied. (paper)
Shojaei Ardakani, A.; Mouikis, C.; Kistler, L. M.; Torbert, R. B.; Roytershteyn, V.; Omelchenko, Y.
2017-12-01
A recent statistical study, using Cluster observations, showed that during substorms, a higher O+ content in the plasma sheet during the substorm growth phase, makes it more difficult to trigger reconnection [Liu et al, 2013]. In addition, they showed that, in contrast to predictions that the reconnection rate during the substorm expansion phase slows down in the presence of O+, the magnetotail unloading rate is actually faster when the O+ content is higher. This could be due to a faster local reconnection rate or due to reconnection occurring over a greater width in the tail when the O+ content of the plasma sheet is high. To address this question, we use reconnection events observed by Cluster that have different densities of O+ and we determine the local reconnection rate. For the calculation of the reconnection rate we use CODIF observations from the boundary layer/lobes around flow reversals where the distribution functions show signatures of the presence of cold plasma convecting towards the current sheet. In addition, we use timing analysis to deduce the movement of the x-line. This methodology will be compared with the estimation of the reconnection rate using results from fully kinetic and hybrid particle-in-cell simulations that model reconnection in the presence of O+ in both local geometry and in a model magnetotail equilibrium. Finally, we use the deduced local reconnection rate together with the total magnetotail pressure rate of change (from Liu et al., [2013]) to estimate the cross-tail extent of the reconnecting plasma sheet.
Czech Academy of Sciences Publication Activity Database
Gu, Yanjun; Klimo, Ondřej; Kumar, D.; Liu, Y.; Singh, Sushil K.; Esirkepov, T.Z.; Bulanov, S.V.; Weber, Stefan A.; Korn, Georg
2016-01-01
Roč. 93, č. 1 (2016), 1-6, č. článku 013203. ISSN 1539-3755 R&D Projects: GA MŠk EF15_008/0000162 Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 Keywords : plasma * acceleration Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.288, year: 2014
International Nuclear Information System (INIS)
Kaganovich, Igor D.; Polomarov, Oleg V.; Theodosiou, Constantine E.
2004-01-01
In low-pressure discharges, where the electron mean free path is larger or comparable with the discharge length, the electron dynamics is essentially nonlocal. Moreover, the electron energy distribution function (EEDF) deviates considerably from a Maxwellian. Therefore, an accurate kinetic description of the low-pressure discharges requires knowledge of the nonlocal conductivity operator and calculation of the non-Maxwellian EEDF. The previous treatments made use of simplifying assumptions: a uniform density profile and a Maxwellian EEDF. In the present study a self-consistent system of equations for the kinetic description of nonlocal, nonuniform, nearly collisionless plasmas of low-pressure discharges is reported. It consists of the nonlocal conductivity operator and the averaged kinetic equation for calculation of the non-Maxwellian EEDF. This system was applied to the calculation of collisionless heating in capacitively and inductively coupled plasmas. In particular, the importance of accounting for the nonuniform plasma density profile for computing the current density profile and the EEDF is demonstrated. The enhancement of collisionless heating due to the bounce resonance between the electron motion in the potential well and the external radio-frequency electric field is investigated. It is shown that a nonlinear and self-consistent treatment is necessary for the correct description of collisionless heating
Magnetic Reconnection at the Earliest Stage of Solar Flux Emergence
Tian, Hui; Zhu, Xiaoshuai; Peter, Hardi; Zhao, Jie; Samanta, Tanmoy; Chen, Yajie
2018-02-01
On 2016 September 20, the Interface Region Imaging Spectrograph observed an active region during its earliest emerging phase for almost 7 hr. The Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory observed continuous emergence of small-scale magnetic bipoles with a rate of ∼1016 Mx s‑1. The emergence of magnetic fluxes and interactions between different polarities lead to the frequent occurrence of ultraviolet (UV) bursts, which exhibit as intense transient brightenings in the 1400 Å images. In the meantime, discrete small patches with the same magnetic polarity tend to move together and merge, leading to the enhancement of the magnetic fields and thus the formation of pores (small sunspots) at some locations. The spectra of these UV bursts are characterized by the superposition of several chromospheric absorption lines on the greatly broadened profiles of some emission lines formed at typical transition region temperatures, suggesting heating of the local materials to a few tens of thousands of kelvin in the lower atmosphere by magnetic reconnection. Some bursts reveal blue- and redshifts of ∼100 km s‑1 at neighboring pixels, indicating the spatially resolved bidirectional reconnection outflows. Many such bursts appear to be associated with the cancellation of magnetic fluxes with a rate of the order of ∼1015 Mx s‑1. We also investigate the three-dimensional magnetic field topology through a magnetohydrostatic model and find that a small fraction of the bursts are associated with bald patches (magnetic dips). Finally, we find that almost all bursts are located in regions of large squashing factor at the height of ∼1 Mm, reinforcing our conclusion that these bursts are produced through reconnection in the lower atmosphere.
Particle acceleration via reconnection processes in the supersonic solar wind
International Nuclear Information System (INIS)
Zank, G. P.; Le Roux, J. A.; Webb, G. M.; Dosch, A.; Khabarova, O.
2014-01-01
An emerging paradigm for the dissipation of magnetic turbulence in the supersonic solar wind is via localized small-scale reconnection processes, essentially between quasi-2D interacting magnetic islands. Charged particles trapped in merging magnetic islands can be accelerated by the electric field generated by magnetic island merging and the contraction of magnetic islands. We derive a gyrophase-averaged transport equation for particles experiencing pitch-angle scattering and energization in a super-Alfvénic flowing plasma experiencing multiple small-scale reconnection events. A simpler advection-diffusion transport equation for a nearly isotropic particle distribution is derived. The dominant charged particle energization processes are (1) the electric field induced by quasi-2D magnetic island merging and (2) magnetic island contraction. The magnetic island topology ensures that charged particles are trapped in regions where they experience repeated interactions with the induced electric field or contracting magnetic islands. Steady-state solutions of the isotropic transport equation with only the induced electric field and a fixed source yield a power-law spectrum for the accelerated particles with index α = –(3 + M A )/2, where M A is the Alfvén Mach number. Considering only magnetic island contraction yields power-law-like solutions with index –3(1 + τ c /(8τ diff )), where τ c /τ diff is the ratio of timescales between magnetic island contraction and charged particle diffusion. The general solution is a power-law-like solution with an index that depends on the Alfvén Mach number and the timescale ratio τ diff /τ c . Observed power-law distributions of energetic particles observed in the quiet supersonic solar wind at 1 AU may be a consequence of particle acceleration associated with dissipative small-scale reconnection processes in a turbulent plasma, including the widely reported c –5 (c particle speed) spectra observed by Fisk and Gloeckler
Magnetic Reconnection in Strongly Magnetized Regions of the Low Solar Chromosphere
Ni, Lei; Lukin, Vyacheslav S.; Murphy, Nicholas A.; Lin, Jun
2018-01-01
Magnetic reconnection in strongly magnetized regions around the temperature minimum region of the low solar atmosphere is studied by employing MHD-based simulations of a partially ionized plasma within a reactive 2.5D multi-fluid model. It is shown that in the absence of magnetic nulls in a low β plasma, the ionized and neutral fluid flows are well-coupled throughout the reconnection region. However, non-equilibrium ionization–recombination dynamics play a critical role in determining the structure of the reconnection region, leading to much lower temperature increases and a faster magnetic reconnection rate as compared to simulations that assume plasma to be in ionization–recombination equilibrium. The rate of ionization of the neutral component of the plasma is always faster than recombination within the current sheet region even when the initial plasma β is as high as {β }0=1.46. When the reconnecting magnetic field is in excess of a kilogauss and the plasma β is lower than 0.0145, the initially weakly ionized plasmas can become fully ionized within the reconnection region and the current sheet can be strongly heated to above 2.5× {10}4 K, even as most of the collisionally dissipated magnetic energy is radiated away. The Hall effect increases the reconnection rate slightly, but in the absence of magnetic nulls it does not result in significant asymmetries or change the characteristics of the reconnection current sheet down to meter scales.
Search for Colour Singlet and Colour Reconnection Effects in Hadronic Z Decays at LEP
Achard, P; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Anderhub, H; Andreev, V P; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Baldew, S V; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brochu, F; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Chamizo-Llatas, M; Chang, Y H; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; de la Cruz, B; Cucciarelli, S; van Dalen, J A; De Asmundis, R; Déglon, P L; Debreczeni, J; Degré, A; Dehmelt, K; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Dionisi, C; Dittmar, M; Doria, A; Dova, M T; Duchesneau, D; Duda, M; Echenard, B; Eline, A; El-Hage, A; El-Mamouni, H; Engler, A; Eppling, F J; Extermann, P; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, M; Ferguson, T; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, F; Fisher, P H; Fisher, W; Fisk, I; Forconi, G; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gentile, S; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hirschfelder, J; Hofer, H; Hohlmann, M; Holzner, G; Hou, S R; Hu, Y; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Käfer, D; Kaur, M; Kienzle-Focacci, M N; Kim, J K; Kirkby, Jasper; Kittel, E W; Klimentov, A; König, A C; Kopal, M; Koutsenko, V F; Kräber, M H; Krämer, R W; Krüger, A; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Leiste, R; Levtchenko, M; Levchenko, P M; Li, C; Likhoded, S; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Luci, C; Luminari, L; Lustermann, W; Ma Wen Gan; Malgeri, L; Malinin, A; Maña, C; Mans, J; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Nagy, S; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Nisati, A; Novák, T; Nowak, H; Ofierzynski, R A; Organtini, G; Pal, I; Palomares, C; Paolucci, P; Paramatti, R; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pioppi, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Pothier, J; Prokofev, D; Prokofiev, D O; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Riemann, S; Riles, K; Roe, B P; Romero, L; Rosca, A; Rosier-Lees, S; Roth, S; Rosenbleck, C; Rubio, J A; Ruggiero, G; Rykaczewski, H; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Schäfer, C; Shchegelskii, V; Schopper, Herwig Franz; Schotanus, D J; Sciacca, C; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Son, D; Souga, C; Spillantini, P; Steuer, M; Stickland, D P; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Sushkov, S; Suter, H; Swain, J D; Szillási, Z; Tang, X W; Tarjan, P; Tauscher, Ludwig; Taylor, L; Tellili, B; Teyssier, D; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Ulbricht, J; Valente, E; Van de Walle, R T; Vásquez, R; Veszpremi, V; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Wadhwa, M; Wang, Q; Wang, X L; Wang, Z M; Weber, M; Wienemann, P; Wilkens, H; Wynhoff, S; Xia, L; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Yeh, S C; Zalite, A; Zalite, Yu; Zhang, Z P; Zhao, J; Zhu, G Y; Zhu, R Y; Zhuang, H L; Zichichi, A; Zimmermann, B; Zöller, M
2004-01-01
A search is performed in symmetric 3-jet hadronic Z decay events for evidence of colour singlet production or colour reconnection effects. Asymmetries in the angular separation of particles are found to be sensitive indicators of such effects. Upper limits on the level of colour singlet production and colour reconnection effects are established for a variety of models.
Jia, T.; Liang, J. J.; Li, X.-M.; Sha, J.
2018-01-01
The refraction and reconnection of internal solitary waves (ISWs) around the Dongsha Atoll (DSA) in the northern South China Sea (SCS) are investigated based on spaceborne synthetic aperture radar (SAR) observations and numerical simulations. In general, a long ISW front propagating from the deep basin of the northern SCS splits into northern and southern branches when it passes the DSA. In this study, the statistics of Envisat Advanced SAR (ASAR) images show that the northern and southern wave branches can reconnect behind the DSA, but the reconnection location varies. A previously developed nonlinear refraction model is set up to simulate the refraction and reconnection of the ISWs behind the DSA, and the model is used to evaluate the effects of ocean stratification, background currents, and incoming ISW characteristics at the DSA on the variation in reconnection locations. The results of the first realistic simulation agree with consecutive TerraSAR-X (TSX) images captured within 12 h of each other. Further sensitivity simulations show that ocean stratification, background currents, and initial wave amplitudes all affect the phase speeds of wave branches and therefore shift their reconnection locations while shapes and locations of incoming wave branches upstream of the DSA profoundly influence the subsequent propagation paths. This study clarifies the variation in reconnection locations of ISWs downstream of the DSA and reveals the important mechanisms governing the reconnection process, which can improve our understanding of the propagation of ISWs near the DSA.
2D numerical simulation of the resistive reconnection layer
International Nuclear Information System (INIS)
Uzdensky, D. A.; Kulsrud, R. M.
2000-01-01
In this paper the authors present a two-dimensional numerical simulation of a reconnection current layer in incompressible resistive magnetohydrodynamics with uniform resistivity in the limit of very large Lundquist numbers. They use realistic boundary conditions derived consistently from the outside magnetic field, and they also take into account the effect of the backpressure from flow into the separatrix region. They find that within a few Alfven times the system reaches a steady state consistent with the Sweet-Parker model, even if the initial state is Petschek-like
Numerical simulation of internal reconnection event in spherical tokamak
International Nuclear Information System (INIS)
Hayashi, Takaya; Mizuguchi, Naoki; Sato, Tetsuya
1999-07-01
Three-dimensional magnetohydrodynamic simulations are executed in a full toroidal geometry to clarify the physical mechanisms of the Internal Reconnection Event (IRE), which is observed in the spherical tokamak experiments. The simulation results reproduce several main properties of IRE. Comparison between the numerical results and experimental observation indicates fairly good agreements regarding nonlinear behavior, such as appearance of localized helical distortion, appearance of characteristic conical shape in the pressure profile during thermal quench, and subsequent appearance of the m=2/n=1 type helical distortion of the torus. (author)
Building on partnerships: reconnecting kids with nature for health benefits.
Kruger, Judy; Nelson, Kristen; Klein, Patti; McCurdy, Leyla Erk; Pride, Patti; Carrier Ady, Janet
2010-05-01
In April 2008, several federal and nonprofit agencies organized an informational Web-based meeting titled "Reconnecting Kids With Nature for Health Benefits." This online meeting was convened by the Society for Public Health Education and delivered to public health educators, health professionals, environmental educators, and land conservationists to raise awareness of national efforts to promote children's involvement in outdoor recreation. This article describes eight programs discussed at this meeting. For public health professionals, partnership with land-management agencies conducting such programs may be an effective way to increase physical activity levels among children.
Observations of magnetic flux ropes during magnetic reconnection in the Earth's magnetotail
Directory of Open Access Journals (Sweden)
A. L. Borg
2012-05-01
Full Text Available We present an investigation of magnetic flux ropes observed by the four Cluster spacecraft during periods of magnetic reconnection in the Earth's magnetotail. Using a list of 21 Cluster encounters with the reconnection process in the period 2001–2006 identified in Borg et al. (2012, we present the distribution and characteristics of the flux ropes. We find 27 flux ropes embedded in the reconnection outflows of only 11 of the 21 reconnection encounters. Reconnection processes associated with no flux rope observations were not distinguishable from those where flux ropes were observed. Only 7 of the 27 flux ropes show evidence of enhanced energetic electron flux above 50 keV, and there was no clear signature of the flux rope in the thermal particle measurements. We found no clear correlation between the flux rope core field and the prevailing IMF By direction.
Thick Escaping Magnetospheric Ion Layer in Magnetopause Reconnection with MMS Observations
Nagai, T.; Kitamura, N.; Hasagawa, H.; Shinohara, I.; Yokota, S.; Saito, Y.; Nakamura, R.; Giles, B. L.; Pollock, C.; Moore, T. E.;
2016-01-01
The structure of asymmetric magnetopause reconnection is explored with multiple point and high-time-resolution ion velocity distribution observations from the Magnetospheric Multiscale mission. On 9 September 2015, reconnection took place at the magnetopause, which separated the magnetosheath and the magnetosphere with a density ratio of 25:2. The magnetic field intensity was rather constant, even higher in the asymptotic magnetosheath. The reconnected field line region had a width of approximately 540 km. In this region, streaming and gyrating ions are discriminated. The large extension of the reconnected field line region toward the magnetosheath can be identified where a thick layer of escaping magnetospheric ions was formed. The scale of the magnetosheath side of the reconnected field line region relative to the scale of its magnetospheric side was 4.5:1.
GENESIS OF INTERPLANETARY INTERMITTENT TURBULENCE: A CASE STUDY OF ROPE–ROPE MAGNETIC RECONNECTION
Energy Technology Data Exchange (ETDEWEB)
Chian, Abraham C.-L.; Loew, Murray H. [Department of Biomedical Engineering, George Washington University, Washington, DC 20052 (United States); Feng, Heng Q. [Institute of Space Physics, Luoyang Normal University, Luoyang (China); Hu, Qiang [Department of Space Science and CSPAR, University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Miranda, Rodrigo A. [UnB-Gama Campus, and Plasma Physics Laboratory, Institute of Physics, University of Brasília (UnB), Brasília DF 70910-900 (Brazil); Muñoz, Pablo R. [Department of Physics and Astronomy, University of La Serena, Av. Juan Cisternas 1200, La Serena (Chile); Sibeck, David G. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Wu, De J., E-mail: abraham.chian@gmail.com [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)
2016-12-01
In a recent paper, the relation between current sheet, magnetic reconnection, and turbulence at the leading edge of an interplanetary coronal mass ejection was studied. We report here the observation of magnetic reconnection at the interface region of two interplanetary magnetic flux ropes. The front and rear boundary layers of three interplanetary magnetic flux ropes are identified, and the structures of magnetic flux ropes are reconstructed by the Grad–Shafranov method. A quantitative analysis of the reconnection condition and the degree of intermittency reveals that rope–rope magnetic reconnection is the most likely site for genesis of interplanetary intermittency turbulence in this event. The dynamic pressure pulse resulting from this reconnection triggers the onset of a geomagnetic storm.
Energy Technology Data Exchange (ETDEWEB)
Pucci, F.; Olshevsky, V.; Lapenta, G. [Center for Mathematical Plasma Astrophysics, Department Wiskunde, KU Leuven, 200B Celestijnenlaan, Leuven, B-3001 (Belgium); Servidio, S.; Malara, F. [Dipartimento di Fisica, Università della Calabria, I-87036 Cosenza (Italy); Sorriso-Valvo, L. [Nanotec-CNR, U.O.S. di Cosenza, Via P. Bucci, Cubo 31C, Arcavacata di Rende, I-87036 (Italy); Matthaeus, W. H. [Department of Physics and Astronomy, University of Delaware, 217 Sharp Lab, Newark, DE 19716 (United States); Goldman, M. V.; Newman, D. L., E-mail: francesco.pucci@kuleuven.be [University of Colorado, Boulder, CO 80309 (United States)
2017-05-20
The properties of the turbulence that develops in the outflows of magnetic reconnection have been investigated using self-consistent plasma simulations, in three dimensions. As commonly observed in space plasmas, magnetic reconnection is characterized by the presence of turbulence. Here we provide a direct comparison of our simulations with reported observations of reconnection events in the magnetotail, investigating the properties of the electromagnetic field and the energy conversion mechanisms. In particular, simulations show the development of a turbulent cascade consistent with spacecraft observations, statistics of the dissipation mechanisms in the turbulent outflows similar to the ones observed in reconnection jets in the magnetotail, and that the properties of turbulence vary as a function of the distance from the reconnecting X-line.
Role of magnetic reconnection phenomena in the reversed-field pinch
International Nuclear Information System (INIS)
Baker, D.A.
1983-01-01
The reversed-field pinch (RFP), an axisymmetric toroidal magnetic confinement experiment, has physics rich in the area commonly called field line reconnection or merging. This paper reviews the topics where reconnection plays a vital role: (a) RFP formation and the phenomenon of self-reversal, (b) RFP sustainment in which the RFP configuration has been shown to be capable of maintaining itself for times much longer than earlier predictions from classical resistive MHD theory, (c) steady state current drive in which dynamo action and associated reconnection processes give rise to the possibility of sustaining the configuration indefinitely by means of low frequency ac modulation of the toroidal and poloidal magnetic fields, (d) the effects of reconnection on the formation and evolution of the magnetic surfaces which are intimately related to the plasma containment properties. It appears that all phases of the RFP operation are intimately related to the reconnection and field regeneration processes similar to those encountered in space and astrophysics
Self-Organization by Stochastic Reconnection: The Mechanism Underlying CMEs/Flares
Antiochos, S. K.; Knizhnik, K. J.; DeVore, C. R.
2017-12-01
The largest explosions in the solar system are the giant CMEs/flares that produce the most dangerous space weather at Earth, yet may also have been essential for the origin of life. The root cause of CMEs/flares is that the lowest-lying magnetic field lines in the Sun's corona undergo the continual buildup of stress and free energy that can be released only through explosive ejection. We perform the first MHD simulations of a coronal-photospheric magnetic system that is driven by random photospheric convective flows and has a realistic geometry for the coronal field. Furthermore, our simulations accurately preserve the key constraint of magnetic helicity. We find that even though small-scale stress is injected randomly throughout the corona, the net result of "stochastic" coronal reconnection is a coherent stretching of the lowest-lying field lines. This highly counter-intuitive demonstration of self-organization - magnetic stress builds up locally rather than spreading out to a minimum energy state - is the fundamental mechanism responsible for the Sun's magnetic explosions and is likely to be a mechanism that is ubiquitous throughout space and laboratory plasmas. This work was supported in part by the NASA LWS and SR Programs.
International Nuclear Information System (INIS)
Huang Yimin; Bhattacharjee, A.
2010-01-01
The Sweet-Parker layer in a system that exceeds a critical value of the Lundquist number (S) is unstable to the plasmoid instability. In this paper, a numerical scaling study has been done with an island coalescing system driven by a low level of random noise. In the early stage, a primary Sweet-Parker layer forms between the two coalescing islands. The primary Sweet-Parker layer breaks into multiple plasmoids and even thinner current sheets through multiple levels of cascading if the Lundquist number is greater than a critical value S c ≅4x10 4 . As a result of the plasmoid instability, the system realizes a fast nonlinear reconnection rate that is nearly independent of S, and is only weakly dependent on the level of noise. The number of plasmoids in the linear regime is found to scales as S 3/8 , as predicted by an earlier asymptotic analysis [N. F. Loureiro et al., Phys. Plasmas 14, 100703 (2007)]. In the nonlinear regime, the number of plasmoids follows a steeper scaling, and is proportional to S. The thickness and length of current sheets are found to scale as S -1 , and the local current densities of current sheets scale as S -1 . Heuristic arguments are given in support of theses scaling relations.
Energy Technology Data Exchange (ETDEWEB)
Kowal, G [Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, Rua do Matao 1226, 05508-900, Sao Paulo (Brazil); Falceta-Goncalves, D A; Lazarian, A, E-mail: kowal@astro.iag.usp.br [Department of Astronomy, University of Wisconsin, 475 North Charter Street, Madison, WI 53706 (United States)
2011-05-15
In recent years, we have experienced increasing interest in the understanding of the physical properties of collisionless plasmas, mostly because of the large number of astrophysical environments (e.g. the intracluster medium (ICM)) containing magnetic fields that are strong enough to be coupled with the ionized gas and characterized by densities sufficiently low to prevent the pressure isotropization with respect to the magnetic line direction. Under these conditions, a new class of kinetic instabilities arises, such as firehose and mirror instabilities, which have been studied extensively in the literature. Their role in the turbulence evolution and cascade process in the presence of pressure anisotropy, however, is still unclear. In this work, we present the first statistical analysis of turbulence in collisionless plasmas using three-dimensional numerical simulations and solving double-isothermal magnetohydrodynamic equations with the Chew-Goldberger-Low laws closure (CGL-MHD). We study models with different initial conditions to account for the firehose and mirror instabilities and to obtain different turbulent regimes. We found that the CGL-MHD subsonic and supersonic turbulences show small differences compared to the MHD models in most cases. However, in the regimes of strong kinetic instabilities, the statistics, i.e. the probability distribution functions (PDFs) of density and velocity, are very different. In subsonic models, the instabilities cause an increase in the dispersion of density, while the dispersion of velocity is increased by a large factor in some cases. Moreover, the spectra of density and velocity show increased power at small scales explained by the high growth rate of the instabilities. Finally, we calculated the structure functions of velocity and density fluctuations in the local reference frame defined by the direction of magnetic lines. The results indicate that in some cases the instabilities significantly increase the anisotropy of
International Nuclear Information System (INIS)
Kowal, G; Falceta-Goncalves, D A; Lazarian, A
2011-01-01
In recent years, we have experienced increasing interest in the understanding of the physical properties of collisionless plasmas, mostly because of the large number of astrophysical environments (e.g. the intracluster medium (ICM)) containing magnetic fields that are strong enough to be coupled with the ionized gas and characterized by densities sufficiently low to prevent the pressure isotropization with respect to the magnetic line direction. Under these conditions, a new class of kinetic instabilities arises, such as firehose and mirror instabilities, which have been studied extensively in the literature. Their role in the turbulence evolution and cascade process in the presence of pressure anisotropy, however, is still unclear. In this work, we present the first statistical analysis of turbulence in collisionless plasmas using three-dimensional numerical simulations and solving double-isothermal magnetohydrodynamic equations with the Chew-Goldberger-Low laws closure (CGL-MHD). We study models with different initial conditions to account for the firehose and mirror instabilities and to obtain different turbulent regimes. We found that the CGL-MHD subsonic and supersonic turbulences show small differences compared to the MHD models in most cases. However, in the regimes of strong kinetic instabilities, the statistics, i.e. the probability distribution functions (PDFs) of density and velocity, are very different. In subsonic models, the instabilities cause an increase in the dispersion of density, while the dispersion of velocity is increased by a large factor in some cases. Moreover, the spectra of density and velocity show increased power at small scales explained by the high growth rate of the instabilities. Finally, we calculated the structure functions of velocity and density fluctuations in the local reference frame defined by the direction of magnetic lines. The results indicate that in some cases the instabilities significantly increase the anisotropy of
Directory of Open Access Journals (Sweden)
M. Pinnock
2003-07-01
Full Text Available Using ionospheric data from the SuperDARN radar network and a DMSP satellite we obtain a comprehensive description of the spatial and temporal pattern of day-side reconnection. During a period of southward interplanetary magnetic field (IMF, the data are used to determine the location of the ionospheric projection of the dayside magnetopause reconnection X-line. From the flow of plasma across the projected X-line, we derive the reconnection rate across 7 h of longitude and estimate it for the total length of the X-line footprint, which was found to be 10 h of longitude. Using the Tsyganenko 96 magnetic field model, the ionospheric data are mapped to the magnetopause, in order to provide an estimate of the extent of the reconnection X-line. This is found to be ~ 38 RE in extent, spanning the whole dayside magnetopause from dawn to dusk flank. Our results are compared with previously reported encounters by the Equator-S and Geotail spacecraft with a reconnecting magnetopause, near the dawn flank, for the same period. The SuperDARN observations allow the satellite data to be set in the context of the whole magnetopause reconnection X-line. The total potential associated with dayside reconnection was ~ 150 kV. The reconnection signatures detected by the Equator-S satellite mapped to a region in the ionosphere showing continuous flow across the polar cap boundary, but the reconnection rate was variable and showed a clear spatial variation, with a distinct minimum at 14:00 magnetic local time which was present throughout the 30-min study period.Key words. Magnetospheric physics (magnetopause, cusp and boundary layers; magnetosphere-ionoshere interactions – Space plasma physics (magnetic reconnection
Reconnecting fragmented sturgeon populations in North American rivers
Jager, Henriette; Parsley, Michael J.; Cech, Joseph J. Jr.; McLaughlin, R.L.; Forsythe, Patrick S.; Elliott, Robert S.
2016-01-01
The majority of large North American rivers are fragmented by dams that interrupt migrations of wide-ranging fishes like sturgeons. Reconnecting habitat is viewed as an important means of protecting sturgeon species in U.S. rivers because these species have lost between 5% and 60% of their historical ranges. Unfortunately, facilities designed to pass other fishes have rarely worked well for sturgeons. The most successful passage facilities were sized appropriately for sturgeons and accommodated bottom-oriented species. For upstream passage, facilities with large entrances, full-depth guidance systems, large lifts, or wide fishways without obstructions or tight turns worked well. However, facilitating upstream migration is only half the battle. Broader recovery for linked sturgeon populations requires safe “round-trip” passage involving multiple dams. The most successful downstream passage facilities included nature-like fishways, large canal bypasses, and bottom-draw sluice gates. We outline an adaptive approach to implementing passage that begins with temporary programs and structures and monitors success both at the scale of individual fish at individual dams and the scale of metapopulations in a river basin. The challenge will be to learn from past efforts and reconnect North American sturgeon populations in a way that promotes range expansion and facilitates population recovery.
Magnetic reconnection mediated by hyper-resistive plasmoid instability
Energy Technology Data Exchange (ETDEWEB)
Huang, Yi-Min; Bhattacharjee, A. [Center for Integrated Computation and Analysis of Reconnection and Turbulence, Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas, Max Planck-Princeton Center for Plasma Physics and Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Forbes, Terry G. [Space Science Center, University of New Hampshire, Durham, New Hampshire 03824 (United States)
2013-08-15
Magnetic reconnection mediated by the hyper-resistive plasmoid instability is studied with both linear analysis and nonlinear simulations. The linear growth rate is found to scale as S{sub H}{sup 1/6} with respect to the hyper-resistive Lundquist number S{sub H}≡L{sup 3}V{sub A}/η{sub H}, where L is the system size, V{sub A} is the Alfvén velocity, and η{sub H} is the hyper-resistivity. In the nonlinear regime, reconnection rate becomes nearly independent of S{sub H}, the number of plasmoids scales as S{sub H}{sup 1/2}, and the secondary current sheet length and width both scale as S{sub H}{sup −1/2}. These scalings are consistent with a heuristic argument assuming secondary current sheets are close to marginal stability. The distribution of plasmoids as a function of the enclosed flux ψ is found to obey a ψ{sup −1} power law over an extended range, followed by a rapid fall off for large plasmoids. These results are compared with those from resistive magnetohydrodynamic studies.
Utility reconnection services : a new threat to vulnerable consumers?
International Nuclear Information System (INIS)
Lott, S.
2002-10-01
The current status of deregulation or restructuring of the energy and telecommunications sector in Canada and the United States was examined along with its impact on low-income consumers. In particular, this report examined the electricity, natural gas and telephone utilities and the extent to which reconnection services have emerged in Canada. With deregulation and utility restructuring, investment and pricing decisions are made according to market forces and competition. The core functions of the utility are unbundled into generation, transmission and distribution functions. The main impact on residential consumers is that their source of supply may change. This report also examined the regulatory responses to utility reconnection services and the impact of market segmentation in the energy sector. It focused on Canada's legislative framework that protects vulnerable consumers. It also examined the federal regulatory role in energy and telecommunications, siting Ontario as an example. It was noted that the experience in the United States with market segmentation and its negative impact on vulnerable consumers should provide some warnings for Canada. 75 refs
Localized Electron Heating by Strong Guide-Field Magnetic Reconnection
Guo, Xuehan; Sugawara, Takumichi; Inomoto, Michiaki; Yamasaki, Kotaro; Ono, Yasushi; UTST Team
2015-11-01
Localized electron heating of magnetic reconnection was studied under strong guide-field (typically Bt 15Bp) using two merging spherical tokamak plasmas in Univ. Tokyo Spherical Tokamak (UTST) experiment. Our new slide-type two-dimensional Thomson scattering system documented for the first time the electron heating localized around the X-point. The region of high electron temperature, which is perpendicular to the magnetic field, was found to have a round shape with radius of 2 [cm]. Also, it was localized around the X-point and does not agree with that of energy dissipation term Et .jt . When we include a guide-field effect term Bt / (Bp + αBt) for Et .jt where α =√{ (vin2 +vout2) /v∥2 } , the energy dissipation area becomes localized around the X-point, suggesting that the electrons are accelerated by the reconnection electric field parallel to the magnetic field and thermalized around the X-point. This work was supported by JSPS A3 Foresight Program ``Innovative Tokamak Plasma Startup and Current Drive in Spherical Torus,'' a Grant-in-Aid from the Japan Society for the Promotion of Science (JSPS) Fellows 15J03758.
Breakout Reconnection Observed by the TESIS EUV Telescope
Reva, A. A.; Ulyanov, A. S.; Shestov, S. V.; Kuzin, S. V.
2016-01-01
We present experimental evidence of the coronal mass ejection (CME) breakout reconnection, observed by the TESIS EUV telescope. The telescope could observe solar corona up to 2 R⊙ from the Sun center in the Fe 171 Å line. Starting from 2009 April 8, TESIS observed an active region (AR) that had a quadrupolar structure with an X-point 0.5 R⊙ above photosphere. A magnetic field reconstructed from the Michelson Doppler Imager data also has a multipolar structure with an X-point above the AR. At 21:45 UT on April 9, the loops near the X-point started to move away from each other with a velocity of ≈7 km s-1. At 01:15 UT on April 10, a bright stripe appeared between the loops, and the flux in the GOES 0.5-4 Å channel increased. We interpret the loops’ sideways motion and the bright stripe as evidence of the breakout reconnection. At 01:45 UT, the loops below the X-point started to slowly move up. At 15:10 UT, the CME started to accelerate impulsively, while at the same time a flare arcade formed below the CME. After 15:50 UT, the CME moved with constant velocity. The CME evolution precisely followed the breakout model scenario.
BREAKOUT RECONNECTION OBSERVED BY THE TESIS EUV TELESCOPE
Energy Technology Data Exchange (ETDEWEB)
Reva, A. A.; Ulyanov, A. S.; Shestov, S. V.; Kuzin, S. V., E-mail: reva.antoine@gmail.com [Lebedev Physical Institute, Russian Academy of Sciences (Russian Federation)
2016-01-10
We present experimental evidence of the coronal mass ejection (CME) breakout reconnection, observed by the TESIS EUV telescope. The telescope could observe solar corona up to 2 R{sub ⊙} from the Sun center in the Fe 171 Å line. Starting from 2009 April 8, TESIS observed an active region (AR) that had a quadrupolar structure with an X-point 0.5 R{sub ⊙} above photosphere. A magnetic field reconstructed from the Michelson Doppler Imager data also has a multipolar structure with an X-point above the AR. At 21:45 UT on April 9, the loops near the X-point started to move away from each other with a velocity of ≈7 km s{sup −1}. At 01:15 UT on April 10, a bright stripe appeared between the loops, and the flux in the GOES 0.5–4 Å channel increased. We interpret the loops’ sideways motion and the bright stripe as evidence of the breakout reconnection. At 01:45 UT, the loops below the X-point started to slowly move up. At 15:10 UT, the CME started to accelerate impulsively, while at the same time a flare arcade formed below the CME. After 15:50 UT, the CME moved with constant velocity. The CME evolution precisely followed the breakout model scenario.