WorldWideScience

Sample records for collider main dipoles

  1. Azimuthal coil size and field quality in the main CERN Large Hadron Collider dipoles

    Directory of Open Access Journals (Sweden)

    P. Ferracin

    2002-06-01

    Full Text Available Field quality in superconducting magnets strongly depends on the geometry of the coil. Fiberglass spacers (shims placed between the coil and the collars have been used to optimize magnetic and mechanical performances of superconducting magnets in large accelerators. A change in the shim thickness affects both the geometry of the coil and its state of compression (prestress under operational conditions. In this paper we develop a coupled magnetomechanical model of the main Large Hadron Collider dipole. This model allows us to evaluate the prestress dependence on the shim thickness and the map of deformations of the coil and the collars. Results of the model are compared to experimental measurements carried out in a dedicated experiment, where a magnet model has been reassembled 5 times with different shims. A good agreement is found between simulations and experimental data both on the mechanical behavior and on the field quality. We show that this approach allows us to improve this agreement with respect to models previously used in the literature. We finally evaluate the range of tunability that will be provided by shims during the production of the Large Hadron Collider main dipoles.

  2. Geometrical position of the Large Hadron Collider main dipole inside the cryostat

    CERN Document Server

    La China, M; Gubello, G; Hauviller, Claude; Scandale, Walter; Todesco, Ezio

    2002-01-01

    The superconducting dipole of the Large Hadron Collider (LHC) is a cylindrical structure made of a shrinking cylinder containing iron laminations and collared coils. This 15 m long structure, weighing about 28 t, is horizontally bent by 5 mrad. Its geometrical shape should be preserved, from the assembly phase to the operational condition at cryogenic temperature. When inserted in its cryostat, the dipole cold mass is supported by three posts also providing the thermal insulation. Sliding interfaces should minimize the interference between the dipole and the cryostat during cooling down and warming up. Indeed, a possible non-linear response of the sliding interface can detrimentally affect the final dipole shape. This paper presents the results of dedicated tests investigating interferences and of specific simulations with a 3D finite element model (FEM) describing the mechanical behaviour of the dipole inside the cryostat. Comparison between measurements and FEM simulations is also discussed.

  3. Correlation between magnetic field quality and mechanical components of the Large Hadron Collider main dipoles

    International Nuclear Information System (INIS)

    Bellesia, B.

    2006-12-01

    The 1234 superconducting dipoles of the Large Hadron Collider, working at a cryogenic temperature of 1.9 K, must guarantee a high quality magnetic field to steer the particles inside the beam pipe. Magnetic field measurements are a powerful way to detect assembly faults that could limit magnet performances. The aim of the thesis is the analysis of these measurements performed at room temperature during the production of the dipoles. In a large scale production the ideal situation is that all the magnets produced were identical. However all the components constituting a magnet are produced with certain tolerance and the assembly procedures are optimized during the production; due to these the reality drifts away from the ideal situation. We recollected geometrical data of the main components (superconducting cables, coil copper wedges and austenitic steel coil collars) and coupling them with adequate electro-magnetic models we reconstructed a multipolar field representation of the LHC dipoles defining their critical components and assembling procedures. This thesis is composed of 3 main parts: 1) influence of the geometry and of the assembling procedures of the dipoles on the quality of the magnetic field, 2) the use of measurement performed on the dipoles in the assembling step in order to solve production issues and to understand the behaviour of coils during the assembling step, and 3) a theoretical study of the uncertain harmonic components of the magnetic field in order to assess the dipole production

  4. Correlation between magnetic field quality and mechanical components of the Large Hadron Collider main dipoles

    Energy Technology Data Exchange (ETDEWEB)

    Bellesia, B

    2006-12-15

    The 1234 superconducting dipoles of the Large Hadron Collider, working at a cryogenic temperature of 1.9 K, must guarantee a high quality magnetic field to steer the particles inside the beam pipe. Magnetic field measurements are a powerful way to detect assembly faults that could limit magnet performances. The aim of the thesis is the analysis of these measurements performed at room temperature during the production of the dipoles. In a large scale production the ideal situation is that all the magnets produced were identical. However all the components constituting a magnet are produced with certain tolerance and the assembly procedures are optimized during the production; due to these the reality drifts away from the ideal situation. We recollected geometrical data of the main components (superconducting cables, coil copper wedges and austenitic steel coil collars) and coupling them with adequate electro-magnetic models we reconstructed a multipolar field representation of the LHC dipoles defining their critical components and assembling procedures. This thesis is composed of 3 main parts: 1) influence of the geometry and of the assembling procedures of the dipoles on the quality of the magnetic field, 2) the use of measurement performed on the dipoles in the assembling step in order to solve production issues and to understand the behaviour of coils during the assembling step, and 3) a theoretical study of the uncertain harmonic components of the magnetic field in order to assess the dipole production.

  5. Trends in Cable Magnetization and Persistent Currents during the Production of the Main Dipoles of the Large Hadron Collider

    CERN Document Server

    Bellesia, B; Granata, V; Le Naour, S; Oberli, L; Sanfilippo, S; Santoni, C; Scandale, Walter; Schwerg, N; Todesco, Ezio; Völlinger, C

    2005-01-01

    The production of more than 60% of superconducting cables for the main dipoles of the Large Hadron Collider has been completed. The results of the measurements of cable magnetization and the dependence on the manufacturers are presented. The strand magnetization produces field errors that have been measured in a large number of dipoles (approximately 100 to date) tested in cold conditions. We examine here the correlation between the available magnetic measurements and the large database of cable magnetization. The analysis is based on models documented elsewhere in the literature. Finally, a forecast of the persistent current effects to be expected in the LHC main dipoles is presented, and the more critical parameters for beam dynamics are singled out.

  6. submitter Training Behavior of the Main Dipoles in the Large Hadron Collider

    CERN Document Server

    Todesco, Ezio; Bajko, Marta; Bottura, Luca; Bruning, Oliver; De Rijk, Gijs; Fessia, Paolo; Hagen, Per; Naour, Sandrine Le; Modena, Michele; Perez, Juan Carlos; Rossi, Lucio; Schmidt, Rudiger; Siemko, Andrzej; Tock, Jean-Philippe; Tommasini, Davide; Verweij, Arjan; Willering, Gerard

    2017-01-01

    In 2015, the 1232 Nb-Ti dipole magnets in the Large Hadron Collider (LHC) have been commissioned to 7.8 T operational field, with 172 quenches. More than 80% of these quenches occurred in the magnets of one of the three cold mass assemblers (3000 series), confirming what was already observed in 2008. In this paper, the recent analysis carried out on the quench performance of the Large Hadron Collider dipole magnets is reported, including the individual reception tests and the 2008 and 2015 commissioning campaigns, to better understand the above-mentioned anomaly and give an outlook for future operation and possible increase of the operational field. The lower part of the quench probability spectrum is compatible with Gaussian distributions; therefore, the training curve can be fit through error functions. An essential ingredient in this analysis is the estimate of the error to be associated with the training data due to sampling of rare events, allowing to test different hypothesis. Using this approach, an es...

  7. Unbalanced Impedance of the Aperture Coils of Some LHC Main Dipole Magnets

    NARCIS (Netherlands)

    Ravaioli, Emanuele; Verweij, A.P.; ten Kate, Herman H.J.

    2013-01-01

    During the Large Hadron Collider operation in 2010 and 2011, it was observed that about 50% of the main dipole magnets exhibiting two apertures showed unbalanced dynamic-impedance behavior not well understood. When a main dipole circuit is switched off, voltage waves with a frequency of 28 Hz travel

  8. The Collider dipole magnet program

    International Nuclear Information System (INIS)

    Baldi, R.W.; Bailey, R.; Bever, D.; Bogart, L.; Gigg, G.; Packer, M.; Page, L.; Stranberg, N.

    1991-01-01

    The Superconducting Super Collider will consist of more large superconducting magnets than have been built to date. Over 12,000 superconducting magnets are required and more than 8,000 will be Collider dipoles. The dipole magnet program is on the critical path of the project and requires the optimized utilization of the Nation's resources - National Laboratories, Universities and Industry. General Dynamics and Westinghouse Electric Corporation have been chosen as the Leader and Follower companies for the design of producible magnets and the manufacturing of the SSC dipoles. Industry has the necessary experience, skills and facilities required to produce reliable and cost effective dipole magnets. At peak production, 10 CDMs per day, very large quantities (nearly 130 metric tonnes/day) of materials will have to be procured from companies nationwide and fabricated into defect-free magnets. A key element of the SSCL's strategy to produce the most efficient CDM program is to employ the Leader-Follower approach, with the Leader transferring technology from the laboratories to the Leader's facility, fully integrating the Follower in the producibility and tooling/factory design efforts, and assisting the Follower in magnet qualification tests. General Dynamics is ready to help build America's most powerful research tool. Management is in place, the facilities are ready for activation and resources are available for immediate assignment

  9. Technology transfer considerations for the collider dipole magnet

    International Nuclear Information System (INIS)

    Goodzeit, C.; Fischer, R.

    1991-03-01

    The R ampersand D program at the national laboratories has resulted in significant advances in design and fabrication methods for the Collider Dipole Magnets. The status of the transfer of the technology developed by the laboratories is reviewed. The continuation of the technology transfer program is discussed with a description of: (1) the relation of technology transfer activities to collider dipole product development; (2) content of the program relating to key magnet performance issues; and (3) methods to implement the program. 5 refs

  10. Open-Midplane Dipoles for a Muon Collider

    International Nuclear Information System (INIS)

    Weggel, R.; Gupta, R.; Kolonko, J.; Scanlan, R.; Cline, D.; Ding, X.; Anerella, M.; Kirk, H.; Palmer, B.; Schmalzle, J.

    2011-01-01

    For a muon collider with copious decay particles in the plane of the storage ring, open-midplane dipoles (OMD) may be preferable to tungsten-shielded cosine-theta dipoles of large aperture. The OMD should have its midplane completely free of material, so as to dodge the radiation from decaying muons. Analysis funded by a Phase I SBIR suggests that a field of 10-20 T should be feasible, with homogeneity of 1 x 10 -4 and energy deposition low enough for conduction cooling to 4.2 K helium. If funded, a Phase II SBIR would refine the analysis and build and test a proof-of-principle magnet. A Phase I SBIR has advanced the feasibility of open-midplane dipoles for the storage ring of a muon collider. A proposed Phase II SBIR would refine these predictions of stresses, deformations, field quality and energy deposition. Design optimizations would continue, leading to the fabrication and test, for the first time, of a proof-of-principle dipole of truly open-midplane design.

  11. SSC collider dipole magnet end mechanical design

    International Nuclear Information System (INIS)

    Delchamps, S.W.; Bossert, R.C.; Carson, J.; Ewald, K.; Fulton, H.; Kerby, J.; Koska, W.; Strait, J.; Wake, M.; Leung, K.K.

    1991-01-01

    This paper describes the mechanical design of the ends of Superconducting Super Collider dipole magnets to be constructed and tested at Fermilab. Coil end clamps, end yoke configuration, and end plate design are discussed. Loading of the end plate by axial Lorentz forces is discussed. Relevant data from 40 mm and 50 mm aperture model dipole magnets built and tested at Fermilab are presented. In particular, the apparent influence of end clamp design on the quench behavior of model SSC dipoles is described

  12. SSC collider dipole magnet end mechanical design

    International Nuclear Information System (INIS)

    Delchamps, S.W.; Bossert, R.C.; Carson, J.; Ewald, K.; Fulton, H.; Kerby, J.; Koska, W.; Strait, J.; Wake, S.M.; Leung, K.K.

    1991-05-01

    This paper describes the mechanical design of the ends of Superconducting Super Collider dipole magnets to be constructed and tested at Fermilab. Coil end clamps, end yoke configuration, and end plate design are discussed. Loading of the end plate by axial Lorentz forces is discussed. Relevant data from 40 mm and 50 mm aperture model dipole magnets built and tested at Fermilab are presented. In particular, the apparent influence of end clamp design on the quench behavior of model SSC dipoles is described. 8 refs., 3 figs

  13. Tolerable systematic errors in Really Large Hadron Collider dipoles

    International Nuclear Information System (INIS)

    Peggs, S.; Dell, F.

    1996-01-01

    Maximum allowable systematic harmonics for arc dipoles in a Really Large Hadron Collider are derived. The possibility of half cell lengths much greater than 100 meters is justified. A convenient analytical model evaluating horizontal tune shifts is developed, and tested against a sample high field collider

  14. Superconducting super collider second generation dipole magnet cryostat design

    International Nuclear Information System (INIS)

    Niemann, R.C.; Bossert, R.C.; Carson, J.A.; Engler, N.H.; Gonczy, J.D.; Larson, E.T.; Nicol, T.H.; Ohmori, T.

    1988-12-01

    The Superconducting Super Collider, a planned colliding beam particle physics research facility, requires /approximately/10,000 superconducting devices for the control of high energy particle beams. The /approximately/7,500 collider ring superconducting dipole magnets require cryostats that are functional, cryogenically efficient, mass producible and cost effective. A second generation cryostat design has been developed utilizing the experiences gained during the construction, installation and operation of several full length first generation dipole magnet models. The nature of the cryostat improvements is presented. Considered are the connections between the magnet cold mass and its supports, cryogenic supports, cold mass axial anchor, thermal shields, insulation, vacuum vessel and interconnections. The details of the improvements are enumerated and the abstracted results of available component and system evaluations are presented. 8 refs., 11 figs

  15. SSC [Superconducting Super Collider] dipole coil production tooling

    International Nuclear Information System (INIS)

    Carson, J.A.; Barczak, E.J.; Bossert, R.C.; Brandt, J.S.; Smith, G.A.

    1989-03-01

    Superconducting Super Collider dipole coils must be produced to high precision to ensure uniform prestress and even conductor distribution within the collared coil assembly. Tooling is being prepared at Fermilab for the production of high precision 1M and 16.6M SSC dipole coils suitable for mass production. The design and construction methods builds on the Tevatron tooling and production experience. Details of the design and construction methods and measured coil uniformity of 1M coils will be presented. 4 refs., 10 figs

  16. Transportation studies: 40-MM collider dipole magnets

    International Nuclear Information System (INIS)

    Daly, E.

    1992-01-01

    Several fully functional 40-mm Collider Dipole Magnets (CDM) were instrumented with accelerometers to monitor shock and vibration loads during transport. The magnets were measured with optical tooling telescopes before and after transport. Changes in mechanical alignment due to shipping and handling were determined. The mechanical stability of the cryogen lines were checked using the same method. Field quality and dipole angle were measured warm before and after transport to determine changes in these parameters. Power spectra were calculated for accelerometers located on the cold mass, vacuum vessel, and trailer bed. Where available, plots of field quality and dipole roll both before and after were created. Shipping loads measured were largest in the vertical direction, where most of the structural deformation of the magnet was evident. It was not clear that magnetic performance was affected by the shipping and handling environment

  17. Partial lifetime test of an SSC Collider dipole

    International Nuclear Information System (INIS)

    Wanderer, P.; Anerella, M.; Ganetis, G.

    1993-01-01

    Over a period of ten months, a 15 m-long, 50 mm-aperture superconducting SSC Collider dipole was taken through a series of thermal and power cycles to check for changes in performance. One quench below operating current was experienced during this period. Small changes in the coil preload and certain harmonics were observed

  18. Determination of AC Characteristics of Superconducting Dipole Magnets in the Large Hadron Collider Based on Experimental Results and Simulations

    CERN Document Server

    Ambjørndalen, Sara; Verweij, Arjan

    The Large Hadron Collider (LHC) utilizes high-field superconducting Main Dipole Magnets that bend the trajectory of the beam. The LHC ring is electrically divided into eight octants, each allocating a 7 km chain of 154 Main Dipole Magnets. Dedicated de- tection and protection systems prevent irreversible magnet damage caused by quenches. Quench is a local transition from the superconducting to the normal conducting state. Triggering of such systems, along with other failure scenarios, result in fast transient phenomena. In order to analyze the consequence of such electrical transients and failures in the dipole chain, one needs a circuit model that is validated against measurements. Currently, there exists an equivalent circuit of the Main Dipole Magnet resolved at an aperture level. Each aperture model takes into account the dynamic effects occurring in the magnets, trough a lossy-inductance model and parasitic capacitances to ground. At low frequencies the Main Dipole Magnet behaves as a linear inductor. Ca...

  19. A Non-Linear Finite Element Model for the LHC Main Dipole Coil Cross-Section

    CERN Document Server

    Pojer, M; Scandale, Walter

    2006-01-01

    The production of the dipole magnets for the Large Hadron Collider is at its final stage. Nevertheless, some mechanical instabilities are still observed for which no clear explanation has been found yet. A FE modelization of the dipole cold mass cross-section had already been developed at CERN, mainly for magnetic analysis, taking into account conductor blocks and a frictionless behavior. This paper describes a new ANSYS® model of the dipole coil cross-section, featuring individual turns inside conductor blocks, and implementing friction and the mechanical non-linear behavior of insulated cables. Preliminary results, comparison with measurements performed in industry and ongoing developments are discussed.

  20. Top quark electric dipole and Z gamma gamma couplings at a photon collider

    CERN Document Server

    Poulose, P

    2001-01-01

    Effect of the top quark electric dipole coupling and the Z gamma gamma coupling is studied in the pair production of top quark at a photon collider using CP-violating asymmetries. Our results show that with a photon collider of geometrical luminosity of 20 fb sup - sup 1 it is possible to put limits of the order of 0.1 on the Z gamma gamma coupling and about 2.5x10 sup - sup 1 sup 7 e cm on the top quark electric dipole coupling using these asymmetries.

  1. Adaptation of lessons learned from the Eurotunnel Project and CDM magnet production to super collider main ring installation

    International Nuclear Information System (INIS)

    Belding, J.; Di Domenico, P.; Gillin, J.; Hahn, W.; Naventi, R.; Nielsen, M.; Seely, M.; Hopkins, J.; Patterson, L.R.

    1994-01-01

    This paper will present preliminary findings from the Phase I Collider Installation contract studies performed by the Bechtel/General Dynamics/Belding Team related to the installation of technical systems for the SSC main ring north and south arcs. Specific focus is given to the adaptation of lessons learned during construction of the Eurotunnel, including equipment and personnel logistics and transportation. The incorporation of Collider Dipole Magnet manufacturing techniques and process methodologies as related to the handling and interconnection of main ring components is also discussed

  2. Bipolar and unipolar tests of 1.5m model SSC collider dipole magnets at Fermilab

    International Nuclear Information System (INIS)

    Lamm, M.J.; Ozelis, J.P.; Coulter, K.J.; Delchamps, S.; Jaffery, T.S.; Kinney, W.; Koska, W.; Strait, J.; Wake, M.; Fortunato, D.; Johnson, D.E.

    1991-05-01

    Tests have been performed at Fermilab on 1.5 m magnetic length model SSC collider dipoles using both bipolar and unipolar ramp cycles. Hysteresis energy loss due to superconductor and iron magnetization and eddy currents is measured and compared as a function of various ramp parameters. Additionally, magnetic field measurements have been performed for both unipolar and bipolar ramp cycles. Measurements such as these will be used to estimate the heat load during collider injection for the SSC High Energy Booster dipoles. 9 refs., 4 figs

  3. The Fermilab main injector dipole construction techniques and prototype magnet measurements

    International Nuclear Information System (INIS)

    Bleadon, M.; Brown, B.; Chester, N.; Desavouret, E.; Garvey, J.; Glass, H.; Harding, D.; Harfoush, F.; Holmes, S.; Humbert, J.; Kerby, J.; Knauf, A.; Kobliska, G.; Lipski, A.; Martin, P.; Mazur, P.; Orris, D.; Ostiguy, J.; Peggs, S.; Pachnik, J.; Pewitt, E.; Satti, J.; Schmidt, E.; Sim, J.; Snowdon, S.; Walbridge, D.

    1991-09-01

    The Fermilab Main Injector Project will provide 120--150 GeV Proton and Antiproton Beams for Fermilab Fixed Target Physics and Colliding Beams Physics use. A dipole magnet has been designed and prototypes constructed for the principal bending magnets of this new accelerator. The design considerations and fabrication techniques are described. Measurement results on prototypes are reported, emphasizing the field uniformity achieved in both body field and end field at excitation levels from injection at 0.1 T to full field of 1.7 T. 6 refs., 5 figs., 3 tabs

  4. Retraining of the 1232 Main Dipole Magnets in the LHC

    CERN Document Server

    Verweij, A; Bednarek, M; Bottura, L; Charifoulline, Z; Feher, S; Hagen, P; Modena, M; Le Naour, S; Romera, I; Siemko, A; Steckert, J; Tock, J Ph; Todesco, E; Willering, G; Wollmann, D

    2016-01-01

    The Large Hadron Collider (LHC) contains eight main dipole circuits, each of them with 154 dipole magnets powered in series. These 15-m-long magnets are wound from Nb-Ti superconducting Rutherford cables, and have active quench detection triggering heaters to quickly force the transition of the coil to the normal conducting state in case of a quench, and hence reduce the hot spot temperature. During the reception tests in 2002-2007, all these magnets have been trained up to at least 12 kA, corresponding to a beam energy of 7.1 TeV. After installation in the accelerator, the circuits have been operated at reduced currents of up to 6.8 kA, from 2010 to 2013, corresponding to a beam energy of 4 TeV. After the first long shutdown of 2013-2014, the LHC runs at 6.5 TeV, requiring a dipole magnet current of 11.0 kA. A significant number of training quenches were needed to bring the 1232 magnets up to this current. In this paper, the circuit behavior in case of a quench is presented, as well as the quench training as...

  5. Design of the multilayer insulation system for the Superconducting Super Collider 50mm dipole cryostat

    International Nuclear Information System (INIS)

    Boroski, W.N.; Nicol, T.H.; Schoo, C.J.

    1991-03-01

    The development of the multilayer insulation (MLI) system for the Superconducting Super Collider (SSC) 50 mm collider dipole cryostat is an ongoing extension of work conducted during the 40 mm cryostat program. While the basic design of the MLI system for the 50 mm cryostat resembles that of the 40 mm cryostat, results from measurements of MLI thermal performance below 80K have prompted a re-design of the MLI system for the 20K thermal radiation shield. Presented is the design of the MLI system for the 50 mm collider dipole cryostat, with discussion focusing on system performance, blanket geometry, cost-effective fabrication techniques, and built-in quality control measures that assure consistent thermal performance throughout the SSC accelerator. 16 refs., 8 figs., 2 tabs

  6. LHC main dipole magnet circuits: sustaining near-nominal beam energies

    CERN Document Server

    AUTHOR|(CDS)2085621; Auchmann, Bernhard; Knox, Andrew; O'Shea, Valentine

    2016-11-04

    Crossing the Franco-Swiss border, the Large Hadron Collider (LHC), designed to collide 7 TeV proton beams, is the world's largest and most powerful particle accelerator the operation of which was originally intended to commence in 2008. Unfortunately, due to an interconnect discontinuity in one of the main dipole circuit's 13 kA superconducting busbars, a catastrophic quench event occurred during initial magnet training, causing significant physical system damage. Furthermore, investigation into the cause found that such discontinuities were not only present in the circuit in question, but throughout the entire LHC. This prevented further magnet training and ultimately resulted in the maximum sustainable beam energy being limited to approximately half that of the design nominal, 3.5-4 TeV, for the first three years of operation (Run 1, 2009-2012) and a major consolidation campaign being scheduled for the first long shutdown (LS 1, 2012-2014). Throughout Run 1, a series of studies attempted to predict the amo...

  7. Retraining of the 1232 Main Dipole Magnets in the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Verweij, A. [CERN; Auchmann, B.; Bednarek, M.; Bottura, L.; Charifoulline, Z.; Feher, S. [Fermilab; Hagen, P.; Modena, M.; Le Naour, S.; Romera, I.; Siemko, A.; Steckert, J.; Tock, J. Ph; Todesco, E.; Willering, G.; Wollmann, D.

    2016-01-05

    The Large Hadron Collider (LHC) contains eight main dipole circuits, each of them with 154 dipole magnets powered in series. These 15-m-long magnets are wound from Nb-Ti superconducting Rutherford cables, and have active quench detection triggering heaters to quickly force the transition of the coil to the normal conducting state in case of a quench, and hence reduce the hot spot temperature. During the reception tests in 2002-2007, all these magnets have been trained up to at least 12 kA, corresponding to a beam energy of 7.1 TeV. After installation in the accelerator, the circuits have been operated at reduced currents of up to 6.8 kA, from 2010 to 2013, corresponding to a beam energy of 4 TeV. After the first long shutdown of 2013-2014, the LHC runs at 6.5 TeV, requiring a dipole magnet current of 11.0 kA. A significant number of training quenches were needed to bring the 1232 magnets up to this current. In this paper, the circuit behavior in case of a quench is presented, as well as the quench training as compared to the initial training during the reception tests of the individual magnets.

  8. Performance of the Main Dipole Magnet Circuits of the LHC during Commissioning

    CERN Document Server

    Verweij, A; Ballarino, A; Bellesia, B; Bordry, Frederick; Cantone, A; Casas Lino, M; Castaneda Serra, A; Castillo Trello, C; Catalan-Lasheras, N; Charifoulline, Z; Coelingh, G; Dahlerup-Petersen, K; D'Angelo, G; Denz, R; Fehér, S; Flora, R; Gruwé, M; Kain, V; Khomenko, B; Kirby, G; MacPherson, A; Marqueta Barbero, A; Mess, K H; Modena, M; Mompo, R; Montabonnet, V; le Naour, S; Nisbet, D; Parma, V; Pojer, M; Ponce, L; Raimondo, A; Redaelli, S; Reymond, H; Richter, D; de Rijk, G; Rijllart, A; Romera Ramirez, I; Saban, R; Sanfilippo, S; Schmidt, R; Siemko, A; Solfaroli Camillocci, M; Thurel, Y; Thiessen, H; Venturini-Delsolaro, W; Vergara Fernandez, A; Wolf, R; Zerlauth, M

    2008-01-01

    During hardware commissioning of the Large Hadron Collider (LHC), 8 main dipole circuits are tested at 1.9 K and up to their nominal current. Each dipole circuit contains 154 magnets of 15 m length, and has a total stored energy of up to 1.3 GJ. All magnets are wound from Nb-Ti superconducting Rutherford cables, and contain heaters to quickly force the transition to the normal conducting state in case of a quench, and hence reduce the hot spot temperature. In this paper the performance of the first three of these circuits is presented, focussing on quench detection, heater performance, operation of the cold bypass diodes, and magnet-to-magnet quench propagation. The results as measured on the entire circuits will be compared to the test results obtained during the reception tests of the individual magnets.

  9. Quench Protection Study of the Eurocircol 16 T cosθ Dipole for the Future Circular Collider (FCC)

    CERN Document Server

    AUTHOR|(CDS)2151660; Caiffi, Barbara; Fabbricatore, Pasquale; Farinon, Stefania; Salmi, Tiina-Mari; Sorbi, Massimo Leone; Stenvall, Antti; Volpini, Giovanni

    2017-01-01

    After LHC will be turned off, a new, more energetic machine will be needed in order to explore unknown regions of the high-energy physics. For this reason, the project Future Circular Collider (FCC) has started, with the goal of developing a 100 km circumference collider of 50 TeV proton beams. The Eurocircol collaboration is part of the FCC study under the European Community leadership, and it aims to develop a conceptual design of FCC within 2019. One of the main targets is to design a bending dipole able to reach 16 T operation magnetic field, in order to accomplish the size and energy constraints. Such a magnetic field can be reached using Nb$_{3}$Sn conductors at their highest performance. One option under exploration is the Cosθ dipole, by INFN of Milano and Genova. One of the aspects to be taken into consideration is the amount of conductor needed, because of the relatively high cost of superconducting cables involving Nb$_{3}$Sn. The amount of superconductor in the cross-section conductor area is a d...

  10. Design and analysis of the SSC [Superconducting Super Collider] dipole magnet suspension system

    International Nuclear Information System (INIS)

    Nicol, T.H.; Niemann, R.C.; Gonczy, J.D.

    1989-03-01

    The design of the suspension system for Superconducting Super Collider (SSC) dipole magnets has been driven by rigorous thermal and structural requirements. The current system, designed to meet those requirements, represents a significant departure from previous superconducting magnet suspension system designs. This paper will present a summary of the design and analysis of the vertical and lateral suspension as well as the axial anchor system employed in SSC dipole magnets. 5 refs., 9 figs., 4 tabs

  11. Tests of 1.5 meter model 50mm SSC collider dipoles at Fermilab

    International Nuclear Information System (INIS)

    Wake, M.; Bossert, R.; Carson, J.; Coulter, K.; Delchamps, S.; Gourlay, S.; Jaffery, T.S.; Kinney, W.; Koska, W.; Lamm, M.J.; Strait, J.; Sims, R.; Winters, M.

    1991-05-01

    A series of 50mm diameter 1.5m model magnets have been constructed. The test of these magnets gave convincing results concerning the design of the 50mm cross section of the SSC collider dipoles. 9 refs., 6 figs

  12. Model SSC [Superconducting Super Collider] dipole magnet cryostat assembly at Fermilab

    International Nuclear Information System (INIS)

    Niemann, R.C.

    1989-03-01

    The Superconducting Super Collider (SSC) magnet development program includes the design, fabrication and testing of full length model dipole magnets. A result of the program has been the development of a magnet cryostat design. The cryostat subsystems consist of cold mass connection-slide, suspension, thermal shields, insulation, vacuum vessel and interconnections. Design details are presented along with model magnet production experience. 6 refs., 13 figs

  13. Design Concept and Parameters of a 15 T $Nb_{3}Sn$ Dipole Demonstrator for a 100 TEV Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Zlobin, A. V. [Fermilab; Andreev, N. [Fermilab; Barzi, E. [Fermilab; Kashikhin, V. V. [Fermilab; Novitski, I. [Fermilab

    2015-06-01

    FNAL has started the development of a 15 T $Nb_{3}Sn$ dipole demonstrator for a 100 TeV scale hadron collider. This paper describes the design concept and parameters of the 15 T $Nb_{3}Sn$ dipole demonstrator. The dipole magnetic, mechanical and quench protection concept and parameters are presented and discussed.

  14. Superconducting dipole magnet requirements for the Fermilab Phase 3 upgrade, SSC high energy booster, and Fermilab independent collider

    International Nuclear Information System (INIS)

    Nicol, T.H.; Kerby, J.S.

    1989-09-01

    In July 1988 a small working group was formed to develop a conceptual design for a high field superconducting dipole magnet suitable for use in the Phase III upgrade at Fermilab. The Phase III upgrade calls for replacement of the existing Tevatron with higher field magnets to boost the energy of the fixed target program to 1.5 TeV and to add a 1.8 TeV collider program. As the work of this group evolved it became clear that the resulting design might be applicable to more than just the proposed upgrade. In particular, it seemed plausible that the work might be applicable to the high energy booster (HEB) for the SSC. At the Breckenridge Workshop in August 1989 interest in a third project began to surface, namely the revamping of an earlier proposal for a dedicated collider at Fermilab. We refer to this proposal as the FNAL Independent Collider. The requirements for the dipole magnets for this independent collider appear to be remarkably similar to those proposed for the Phase III upgrade and the SSC HEB. The purpose of this report is to compare the conceptual design of the dipoles developed for the Phase III proposal with the requirements of those for the SSC HEB, the FNAL Independent Collider, and a hybrid design which could serve the needs of both. The Phase III design will be used as the reference point for parameter scaling. 4 figs., 3 tabs

  15. Performance of initial full-length RHIC [Relativistic Heavy Ion Collider] dipoles

    International Nuclear Information System (INIS)

    Dahl, P.; Cottingham, J.; Garber, M.

    1987-01-01

    The first four full-length (9.7 m) R and D dipoles for the proposed Relativistic Heavy Ion Collider (RHIC) have been successfully tested. The magnets reached a quench plateau of approximately 4.5 T with very reasonable training - a field level comfortably above the design field of 3.45 T required for operation with beams of 100 GeV/amu gold nuclei. Measured field multipoles are considered to be quite acceptable for this series of R and D magnets

  16. Installation Strategy for the LHC Main Dipoles

    CERN Multimedia

    Fartoukh, Stephane David

    2004-01-01

    All positions in the LHC machine are not equivalent in terms of beam requirements on the geometry and the field quality of the main dipoles. In the presence of slightly or strongly out-of tolerance magnets, a well-defined installation strategy will therefore contribute to preserve or even optimize the performance of the machine. Based on the present status of the production, we have anticipated a list of potential issues (geometry, transfer function, field direction and random b3) which, combined by order of priority, have been taken into account to define a simple but efficient installation algorithm for the LHC main dipoles. Its output is a prescription for installing the available dipoles in sequence while reducing to an absolute minimum the number of holes required by geometry or FQ issues.

  17. Test results of BNL built 40-mm aperture, 17-m-long SSC collider dipole magnets

    International Nuclear Information System (INIS)

    Kuzminski, J.; Bush, T.; Coombes, R.; Devred, A.; DiMarco, J.; Goodzeit, C.; Puglisi, M.; Radusewicz, P.; Sanger, P.; Schermer, R.; Tompkins, J.C.; Wolf, Z.; Yu, Y.; Zheng, H.; Ogitsu, T.; Anerella, M.; Cottingham, J.; Ganetis, G.; Garber, M.; Gosh, A.; Greene, A.; Gupta, R.; Herrera, J.; Kahn, S.; Kelly, E.; Morgan, G.; Muratore, J.; Prodell, A.; Rehak, M.; Rohrer, E.P.; Sampson, W.; Shutt, R.; Thompson, P.; Wanderer, P.; Willen, E.; Bleadon, M.; Hanft, R.; Kuchnir, M.; Mantsch, P.; Mazur, P.O.; Orris, D.; Peterson, T.; Strait, J.; Royet, J.; Scanlan, R.; Taylor, C.

    1991-06-01

    Eleven 17 m long, 40 mm aperture SSC R ampersand D superconducting collider dipole magnets, built at BNL, have been extensively tested at BNL and Fermilab during 1990--91. Quench performance of these magnets and details of their mechanical behavior are presented. 7 refs., 5 figs

  18. Quench protection analysis integrated in the design of dipoles for the Future Circular Collider

    Directory of Open Access Journals (Sweden)

    Tiina Salmi

    2017-03-01

    Full Text Available The EuroCirCol collaboration is designing a 16 T Nb_{3}Sn dipole that can be used as the main bending magnet in a 100 km long 100 TeV hadron-hadron collider. For economic reasons, the magnets need to be as compact as possible, requiring optimization of the cable cross section in different magnetic field regions. This leads to very high stored energy density and poses serious challenges for the magnet protection in case of a quench, i.e., sudden loss of superconductivity in the winding. The magnet design therefore must account for the limitations set by quench protection from the earliest stages of the design. In this paper we describe how the aspect of quench protection has been accounted for in the process of developing different options for the 16 T dipole designs. We discuss the assumed safe values for hot spot temperatures and voltages, and the efficiency of the protection system. We describe the developed tools for the quench analysis, and how their usage in the magnet design will eventually ensure a secure magnet operation.

  19. Test results from recent 1.8-m SSC [Superconducting Super Collider] model dipoles

    International Nuclear Information System (INIS)

    Wanderer, P.; Cottingham, J.G.; Dahl, P.

    1988-01-01

    We report results from four 1.8 m-long dipoles built as part of the Superconducting Super Collider (SSC) RandD program. Except for length, these models have the features of the SSC design, which is based on a two-layer cosine theta coil with 4 cm aperture. As compared to the 17 m design length SSC dipoles, these 1.8 m magnets are a faster and more economical way of testing design changes in field shape, conductor support in the coil straight-section and ends, etc. The four magnets reported here all reach fields in excess of 7.5T with little training and have excellent field shape. 10 refs., 2 figs., 3 tabs

  20. Mechanical design and analysis of the 2D cross-section of the SSC collider dipole magnet

    International Nuclear Information System (INIS)

    Strait, J.; Kerby, J.; Bossert, R.; Carson, J.

    1991-05-01

    This paper describes the mechanical design of the two dimensional cross-section of the base-line collider dipole magnet for the Superconducting Super Collider. The components described here are the collar laminations, the tapered keys that lock the upper and lower collars, the yoke laminations, the cold mass shell. We describe in detail the shape of the outer surface of the collars which defines the yoke-collar interface, and the shape of the collar interior, which defines the conductor placement. Other features of the collar and yoke will be described in somewhat less detail. 20 refs., 12 figs. , 6 tabs

  1. Chromaticity decay due to superconducting dipoles on the injection plateau of the Large Hadron Collider

    Directory of Open Access Journals (Sweden)

    N. Aquilina

    2012-03-01

    Full Text Available It is well known that in a superconducting accelerator a significant chromaticity drift can be induced by the decay of the sextupolar component of the main dipoles. In this paper we give a brief overview of what was expected for the Large Hadron Collider (LHC on the grounds of magnetic measurements of individual dipoles carried out during the production. According to this analysis, the decay time constants were of the order of 200 s: since the injection in the LHC starts at least 30 minutes after the magnets are at constant current, the dynamic correction of this effect was not considered to be necessary. The first beam measurements of chromaticity showed significant decay even after a few hours. For this reason, a dynamic correction of decay on the injection plateau was implemented based on beam measurements. This means that during the injection plateau the sextupole correctors are powered with a varying current to cancel out the decay of the dipoles. This strategy has been implemented successfully. A similar phenomenon has been observed for the dependence of the decay amplitude on the powering history of the dipoles: according to magnetic measurements, also in this case time constants are of the order of 200 s and therefore no difference is expected between a one hour or a ten hours flattop. On the other hand, the beam measurements show a significant change of decay for these two conditions. For the moment there is no clue of the origin of these discrepancies. We give a complete overview of the two effects, and the modifications that have been done to the field model parameters to be able to obtain a final chromaticity correction within a few units.

  2. Structural performance of the first SSC [Superconducting Super Collider] Design B dipole magnet

    International Nuclear Information System (INIS)

    Nicol, T.H.

    1989-09-01

    The first Design B Superconducting Super Collider (SSC) dipole magnet has been successfully tested. This magnet was heavily instrumented with temperature and strain gage sensors in order to evaluate its adherence to design constraints and design calculations. The instrumentation and associated data acquisition system allowed monitoring of the magnet during cooldown, warmup, and quench testing. This paper will focus on the results obtained from structural measurements on the suspension system during normal and rapid cooldowns and during quench studies at full magnet current. 4 refs., 9 figs

  3. Performance of six 4.5 m SSC [Superconducting Super Collider] dipole model magnets

    International Nuclear Information System (INIS)

    Willen, E.; Dahl, P.; Cottingham, J.

    1986-01-01

    Six 4.5 m long dipole models for the proposed Superconducting Super Collider have been successfully tested. The magnets are cold-iron (and cold bore) 1-in-1 dipoles, wound with current density-graded high homogeneity NbTi cable in a two-layer cos θ coil of 40 mm inner diameter. The coil is prestressed by 15 mm wide stainless steel collars, and mounted in a circular, split iron yoke of 267 mm outer diameter, supported in a cylindrical yoke containment vessel. At 4.5 K the magnets reached a field of about 6.6 T with little training, or the short sample limit of the conductor, and in subcooled (2.6 - 2.4 K) liquid, 8 T was achieved. The allowed harmonics were close to the predicted values, and the unallowed harmonics small. The sextupole trim coil operated well above the required current with little training

  4. Advanced composite materials and processes for the manufacture of SSC (Superconducting Super Collider) and RHIC (Relativistic Heavy Ion Collider) superconducting magnets used at cryogenic temperatures in a high radiation environment

    Energy Technology Data Exchange (ETDEWEB)

    Sondericker, J.H.

    1989-01-01

    Presently, BNL work on superconducting magnets centers mainly on the development of 17 meter length dipoles for the Superconducting Super Collider Project, approved for construction at Waxahatchie, Texas and 9.7 meter dipoles and quadrupoles for the Relativistic Heavy Ion Collider, a BNL project to start construction next year. This paper will discuss the role of composites in the manufacture of magnets, their operational requirements in cryogenic and radiation environments, and the benefits derived from their use. 13 figs.

  5. Advanced composite materials and processes for the manufacture of SSC [Superconducting Super Collider] and RHIC [Relativistic Heavy Ion Collider] superconducting magnets used at cryogenic temperatures in a high radiation environment

    International Nuclear Information System (INIS)

    Sondericker, J.H.

    1989-01-01

    Presently, BNL work on superconducting magnets centers mainly on the development of 17 meter length dipoles for the Superconducting Super Collider Project, approved for construction at Waxahatchie, Texas and 9.7 meter dipoles and quadrupoles for the Relativistic Heavy Ion Collider, a BNL project to start construction next year. This paper will discuss the role of composites in the manufacture of magnets, their operational requirements in cryogenic and radiation environments, and the benefits derived from their use. 13 figs

  6. Team-based organization for Collider Dipole Magnet (CDM) development and production

    International Nuclear Information System (INIS)

    Packer, M.D.; Page, L.R.; Winters, G.C.

    1991-01-01

    The most influential factor in developing a magnet design and the manufacturing processing capable of mass producing Collider Dipole Magnets (CDMs) for the Superconducting Super Collider (SSC) is the work system or organization design. It is essential that design of the organization balances the demanding quality, schedule and cost aspects of the SSC program with the extraordinary technological challenges of the CDMs. The organization approach taken by the General Dynamics team is based on high employee involvement. This approach entails more widely distributed access to information, coordination and control of work, decision-making and rewards for overall performance. Implementation of this approach will apply team-based organizational concepts and proven methodologies such as concurrent engineering, work teams, skill-based pay and gainsharing. This paper focuses on the structural facets of the General Dynamics organization design to accomplish the CDM Program. Why this management approach is being taken, how it was developed and tuned for the CDM Program and how it will be incorporated in personnel staffing is described in this paper along with general operational characteristics. The issues of pay and gainsharing, while recognized as vital constituents of the overall design and effectiveness, are not discussed in this paper

  7. Test results from Fermilab 1.5 m model SSC collider dipole magnets

    International Nuclear Information System (INIS)

    Koska, W.; Bossert, R.; Carson, J.; Coulter, K.J.; Delchamps, S.; Gourlay, S.; Jaffery, T.S.; Kinney, W.; Lamm, M.J.; Ozelis, J.P.; Strait, J.; Wake, M.

    1991-09-01

    We will present results from tests of 1.5 m model SSC collider dipole magnets. These R ampersand D magnets are identical to the 15 m full length dipoles currently being assembled at Fermilab in all important aspects except length. Because of their small size they can be built faster and tested more extensively than the long magnets. The model magnets are used to optimize design parameters for, and to indicate the performance which can be expected from, the 15 m magnets. The are instrumented with voltage taps over the first two current blocks for quench localization and with several arrays of strain gauge transducers for the study of mechanical behavior. The stress at the poles of the inner and outer coils is monitored during construction and, along with end force and shell strain, during excitation. Magnetic measurements are made several times during each magnet's lifetime, including at operating temperature and field. We will report on studies of the quench performance, mechanical behavior and magnetic field of these magnets

  8. Nuclear DVCS at small x using color-dipole phenomenology

    International Nuclear Information System (INIS)

    Machado, Magno V.T.

    2009-01-01

    Using the high-energy color-dipole formalism, we study the coherent and incoherent nuclear DVCS process, γ * A→γX, in the small-x regime. We consider simple models for the elementary dipole-hadron scattering amplitude that capture the main features of the dependence on atomic number A, on energy and on momentum transfer t. Using the amplitudes obtained we make predictions for the nuclear DVCS cross section at the photon level in collider kinematics. (orig.)

  9. Results on Fermilab main injector dipole measurements

    International Nuclear Information System (INIS)

    Brown, B.C.; Baiod, R.; DiMarco, J.; Glass, H.D.; Harding, D.J.; Martin, P.S.; Mishra, S.; Mokhtarani, A.; Orris, D.F.; russell, O.A.; Tompkins, J.C.; Walbridge, D.G.C.

    1995-06-01

    Measurements of the Productions run of Fermilab Main Injector Dipole magnets is underway. Redundant strength measurements provide a set of data which one can fit to mechanical and magnetic properties of the assembly. Plots of the field contribution from the steel supplement the usual plots of transfer function (B/I) vs. I in providing insight into the measured results

  10. Construction of cold mass assembly for full-length dipoles for the SSC [Superconducting Super Collider] accelerator

    International Nuclear Information System (INIS)

    Dahl, P.; Cottingham, J.; Garber, M.

    1986-10-01

    Four of the initial six 17m long demonstration dipole magnets for the proposed Superconducting Super Collider have been constructed, and the first one is now being tested. This paper describes the magnet design and construction of the cold mass assembly. The magnets are cold iron (and cold bore) 1-in-1 dipoles, wound with partially keystoned current density-graded high homogeneity NbTi cable in a two-layer cos θ coil of 40 mm inner diameter. The magnetic length is 16.6 m. The coil is prestressed by 15 mm wide stainless steel collars, and mounted in a circular, split iron yoke of 267 mm outer diameter, supported by a cylindrical yoke (and helium) containment vessel of stainless steel. The magnet bore tube assembly incorporates superconducting sextupole trim coils produced by an industrial, automatic process akin to printed circuit fabrication

  11. A frequency response study of dipole magnet cold mass for the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Leung, K.K.; Nicol, T.

    1991-03-01

    This paper describes the technique for calculating the dynamic response of the Superconducting Super Collider (SSC) dipole magnet cold mass. Dynamic motion specification and beam location stability of the cold mass are not available at the present time. Dynamic response of the cold mass depends on measures excitation at the location of the magnet anchoring points on the other factors such as: (1) composite damping of the dipole magnet system, and (2) coupling effect of the cryogenic vessel, concrete slab, and soil to structure interactions. Nevertheless, the cold mass has the largest effect on the motion of the SSC machine. This dynamic analysis is based on response spectra analysis using the finite element method. An upper bond solution will result from this method of analysis, compared to the transient dynamic response method which involves step-by-step time integration from recorded accelerograms. Since no recorded ground motions are available for the SSC site, response spectra from another source shall be employed for the present analysis. 4 refs., 3 figs., 1 tab

  12. Collarless, close-in, shaped iron aperture designs for the SSC [Superconducting Super Collider] dipole

    International Nuclear Information System (INIS)

    Gupta, R.C.; Morgan, G.H.

    1989-01-01

    The nominal-design SSC (Superconducting Super Collider) dipole encloses the coil in an iron yoke having a circular aperture. The radial gap between the coil and the iron is about 15 mm to provide space for a strong annular collar around the coil, and also to reduce the effects of iron saturation on central field harmonics. The 15 mm gap also reduces the desirable dipole field contributed by the iron. The present paper gives a coil and aperture configuration in which the gap is reduced to 5 mm at the midplane, in which the aperture is shaped to reduce the unwanted effects of iron saturation. The transfer function is increased about 5% at 6.6 Tesla and the unwanted harmonics are within SSC tolerances at all field levels. These designs would require that the yoke and containment vessel absorb the stresses due to assembly and magnetic forces. A short magnet is being built with a close-in shaped iron aperture and existing coil geometry to assess the benefits of this concept. 7 refs., 3 figs., 6 tabs

  13. Mechanical design and analysis of the 2D cross-section of the SSC collider dipole magnet

    International Nuclear Information System (INIS)

    Strait, J.; Kerby, J.; Bossert, R.; Carson, J.; Spigo, G.; Turner, J.R.

    1991-05-01

    The 50 mm aperture collider dipole magnet uses stainless steel collars to position the conductors at the locations specified by the magnetic design and to prestress the coil to prevent conductor motion under excitation. The collars are supported by the vertically-split yoke and cold mass skin to reduce their deflection under excitation. The collar interior is designed to give the coil its required shape at the operating temperature taking into account all deflections that occur from assembly and cooldown. 13 refs., 2 figs., 1 tab

  14. Development of special machines for production of large number of superconducting coils for the spool correctors for the main dipole of LHC

    International Nuclear Information System (INIS)

    Puntambekar, A.M.; Karmarkar, M.G.

    2003-01-01

    Superconducting (Sc) spool correctors of different types namely Sextupole, (MCS) Decapole (MCD) and Octupole (MCO) are incorporated in each of the main dipole of Large Hadron Collider (LHC). In all 2464 MCS and 1232 MCDO magnets are required to equip all 1232 Dipoles of LHC. The coils wound from thin rectangular section Sc wires are the heart of magnet assembly and its performance for the field quality and cold quench training largely depends on the precise and robust construction of these coils. Under DAE-CERN collaboration CAT was entrusted with the responsibility of making these magnets for LHC. Starting with development of manual fixtures and prototyping using soldering, a more advances special Automatic Coils Winding and Ultrasonic Welding (USW) system for production of large no. of coils and magnets were built at CAT. The paper briefly describes the various developments in this area. (author)

  15. RHIC spin flipper AC dipole controller

    Energy Technology Data Exchange (ETDEWEB)

    Oddo, P.; Bai, M.; Dawson, C.; Gassner, D.; Harvey, M.; Hayes, T.; Mernick, K.; Minty, M.; Roser, T.; Severino, F.; Smith, K.

    2011-03-28

    The RHIC Spin Flipper's five high-Q AC dipoles which are driven by a swept frequency waveform require precise control of phase and amplitude during the sweep. This control is achieved using FPGA based feedback controllers. Multiple feedback loops are used to and dynamically tune the magnets. The current implementation and results will be presented. Work on a new spin flipper for RHIC (Relativistic Heavy Ion Collider) incorporating multiple dynamically tuned high-Q AC-dipoles has been developed for RHIC spin-physics experiments. A spin flipper is needed to cancel systematic errors by reversing the spin direction of the two colliding beams multiple times during a store. The spin flipper system consists of four DC-dipole magnets (spin rotators) and five AC-dipole magnets. Multiple AC-dipoles are needed to localize the driven coherent betatron oscillation inside the spin flipper. Operationally the AC-dipoles form two swept frequency bumps that minimize the effect of the AC-dipole dipoles outside of the spin flipper. Both AC bumps operate at the same frequency, but are phase shifted from each other. The AC-dipoles therefore require precise control over amplitude and phase making the implementation of the AC-dipole controller the central challenge.

  16. Dependence of Magnetic Field Quality on Collar Supplier and Dimensions in the Main LHC Dipole

    CERN Document Server

    Bellesia, B; Santoni, C; Todesco, E

    2006-01-01

    In order to keep the electro-magnetic forces and to minimize conductor movements, the superconducting coils of the main Large Hadron Collider dipoles are held in place by means of austenitic steel collars. Two suppliers provide the collars necessary for the whole LHC production, which has now reached more than 800 collared coils. In this paper we first assess if the different collar suppliers origin a noticeable difference in the magnetic field quality measured at room temperature. We then analyze the measurements of the collar dimensions carried out at the manufacturers, comparing them to the geometrical tolerances. Finally we use a magneto-static model to evaluate the expected spread in the field components induced by the actual collar dimensions. These spreads are compared to the magnetic measurements at room temperature over the magnet production in order to identify if the collars, rather than other components or assembly process, can account for the measured magnetic field effects. It has been found tha...

  17. Effective stress of a 4.2 K beam tube in a quenching collider 50 mm dipole magnet for the SSC

    International Nuclear Information System (INIS)

    Leung, K.K.; Shu, Q.S.; Snitchler, G.; Ku, K.; Zbasnik, J.

    1994-01-01

    Two mechanical design requirements are defined for the SSC Collider beam tube. First, the vacuum requirement (luminosity lifetime = 150 hrs). It requires the design of a pressure boundary within the cold mass vessel to provide a vacuum tunnel for the proton beam and to minimize the synchrotron radiation gas desorption with a suitable material. The Collider beam tube design is under an intensive activity to search for a material that will meet the luminosity requirement without a distributed pump or liner. Second is the tube wall's resistivity requirement (σ*t = 2E5 Ω). For a 4.2 K beam tube, the Cu thickness is 100 μm (RRR = 30,6.7 T, σ = 2E9Ω-m). The copper yield strength is relatively low in comparison to steel and, therefore, the design of the steel layer is governed by the copper layer yield stress limit. A beam tube subjected to eddy current load in a quenching dipole requires an optimum diameter design to provide maximum aperture and adequate cooling space for the liquid Helium flow to cool the beam tube. This paper presents a mechanical design procedure using an established finite element analysis and modelling method to produce a design with safety, matching the dipole cold mass vessel as designed by the ASME code, and to generate a steel tube wall thickness to ensure the copper coating stress below the yield stress limit in a quenching dipole

  18. Effective stress of a 4.2 K beam tube in a quenching collider 50 mm dipole magnet for the SSC

    International Nuclear Information System (INIS)

    Leung, K.; Shu, Q.; Snitchler, G.; Yu, K.; Zbasnik, J.

    1993-05-01

    Two mechanical design requirements are defined for the SSC Collider beam tube. First, the vacuum requirement (luminosity lifetime = 150 hrs). It requires the design of a pressure boundary within the cold mass vessel to provide a vacuum tunnel for the proton beam and to minimize the synchrotron radiation gas desorbtion with a suitable material. The Collider beam tube design is under an intensive activity to search for a material that will meet the luminosity requirement without a distributed pump or liner. Second is the tube wall's resistivity requirement (σ*t = 2E5 Ω -1 ). For a 4.2 K beam tube the Cu thickness is 100 μm (RRR=30,6.7 T, σ=2E9Ω -1 m -1 ). The copper yield strength is relatively low in comparison to steel and, therefore, the design of the steel layer is governed by the copper layer yield stress limit. A beam tube subjected to eddy current load in a quenching dipole requires an optimum diameter design to provide maximum aperture and adequate cooling space for the liquid Helium flow to cool the beam tube. This paper presents a mechanical design procedure using an established finite element analysis and modeling method to produce a design with safety, matching the dipole cold mass vessel as designed by the ASME code, and to generate a steel tube wall thickness to ensure the copper coating stress below the yield stress limit in a quenching dipole

  19. Comparison of electric dipole moments and the Large Hadron Collider for probing CP violation in triple boson vertices

    CERN Document Server

    Jung, Sunghoon

    2009-01-01

    CP violation from physics beyond the Standard Model may reside in triple boson vertices of the electroweak theory. We review the effective theory description and discuss how CP violating contributions to these vertices might be discerned by electric dipole moments (EDM) or diboson production at the Large Hadron Collider (LHC). Despite triple boson CP violating interactions entering EDMs only at the two-loop level, we find that EDM experiments are generally more powerful than the diboson processes. To give example to these general considerations we perform the comparison between EDMs and collider observables within supersymmetric theories that have heavy sfermions, such that substantive EDMs at the one-loop level are disallowed. EDMs generally remain more powerful probes, and next-generation EDM experiments may surpass even the most optimistic assumptions for LHC sensitivities.

  20. Quench protection test results and comparative simulations on the first 10 meter prototype dipoles for the Large Hadron Collider

    International Nuclear Information System (INIS)

    Rodriguez-Mateos, F.; Gerin, G.; Marquis, A.

    1996-01-01

    The first 10 meter long dipole prototypes made by European Industry within the framework of the R and D program for the Large Hadron Collider (LHC) have been tested at CERN. As a part of the test program, a series of quench protection tests have been carried out in order to qualify the basic protection scheme foreseen for the LHC dipoles (quench heaters and cold diodes). Results are presented on the quench heater performance, and on the maximum temperatures and voltages observed during quenches under the so-called machine conditions. Moreover, an update of the quench simulation package specially developed at CERN (QUABER 2) has been recently made. Details on this new version of QUABER are given. Simulation runs have been made specifically to validate the model with the results from the measurements on quench protection mentioned above

  1. A high luminosity superconducting mini collider for Phi meson production and particle beam physics

    International Nuclear Information System (INIS)

    Pellegrini, C.; Robin, D.; Cline, D.; Kolonko, J.; Anderson, C.; Barletta, W.; Chargin, A.; Cornacchia, M.; Dalbacka, G.; Halbach, K.; Lueng, E.; Kimball, F.; Madura, D.; Patterson, L.

    1991-01-01

    A 510MeV electron-positron collider has been proposed at UCLA to study particle beam physics and Phi-Meson physics, at luminosities larger than 10 32 cm -2 s -1 . The collider consists of a single compact superconducting storage ring (SMC), with bending field of 4 T and a current larger than 1 A. The authors discuss the main characteristics of this system and its major technical components: superconducting dipoles, RF, vacuum, injection

  2. Design of a Large Single-Aperture Dipole Magnet for HL-LHC Upgrade

    CERN Document Server

    Qingjin, Xu; Iio, Masami; Ogitsu, Toru; Sasaki, Kenichi; Yamamoto, Akira; Todesco, Ezio

    2013-01-01

    An upgrade of the low-beta insertion system for the ATLAS and Compact Muon Solenoid experiments is proposed in the high luminosity Large Hadron Collider upgrade project. It includes final beam focusing quadrupoles, beam separation and recombination dipoles, and larger aperture matching section quadrupoles. KEK is in charge of the conceptual design of the large aperture separation dipole D1. The latest design parameters are a main field of ~ 5 T at 1.9 K with Nb-Ti superconducting technology, a coil aperture of 160 mm, and a cos-theta one-layer coil with Large Hadron Collider dipole cable. Because the new D1 is expected to be operated in a very high radiation environment, radiation resistance and a cooling scheme are being carefully considered. The collaring-yoke structure is adopted to provide the mechanical support for the single-layer Nb-Ti coil. We summarize the design study of this magnet, including i) the very large iron saturation effect on field quality due to the large aperture and limited size of the...

  3. Field and structural analysis of 56 mm aperture dipole model magnets for the Large Hadron Collider

    International Nuclear Information System (INIS)

    Song, Naihao; Yamamoto, Akira; Shintomi, Takakazu; Hirabayashi, Hiromi; Yamaoka, Hiroshi; Terashima, A.

    1996-01-01

    A new dipole model magnet design has been made with an aperture of 56 mm according to re-optimization of the accelerator design for the Large Hadron Collider (LHC) to be built at CERN. A feature of symmetric/separate collar configuration in the new design proposed by KEK has been evaluated in terms of field quality and mechanical stability according to the process of the magnet fabrication, cool-down and excitations. The analysis has been carried out by using the finite element analysis code ANSYS, in linkage of field analysis with structural analysis. Effect of the deformation, due to electromagnetic force, on the field quality has been also investigated. Results of the analysis will be presented

  4. Dynamic imperfections and optimized feedback design in the Compact Linear Collider main linac

    Directory of Open Access Journals (Sweden)

    Peder Eliasson

    2008-05-01

    Full Text Available The Compact Linear Collider (CLIC main linac is sensitive to dynamic imperfections such as element jitter, injected beam jitter, and ground motion. These effects cause emittance growth that, in case of ground motion, has to be counteracted by a trajectory feedback system. The feedback system itself will, due to jitter effects and imperfect beam position monitors (BPMs, indirectly cause emittance growth. Fast and accurate simulations of both the direct and indirect effects are desirable, but due to the many elements of the CLIC main linac, simulations may become very time consuming. In this paper, an efficient way of simulating linear (or nearly linear dynamic effects is described. The method is also shown to facilitate the analytic determination of emittance growth caused by the different dynamic imperfections while using a trajectory feedback system. Emittance growth expressions are derived for quadrupole, accelerating structure, and beam jitter, for ground motion, and for noise in the feedback BPMs. Finally, it is shown how the method can be used to design a feedback system that is optimized for the optics of the machine and the ground motion spectrum of the particular site. This feedback system gives an emittance growth rate that is approximately 10 times lower than that of traditional trajectory feedbacks. The robustness of the optimized feedback system is studied for a number of additional imperfections, e.g., dipole corrector imperfections and faulty knowledge about the machine optics, with promising results.

  5. Dynamic imperfections and optimized feedback design in the Compact Linear Collider main linac

    Science.gov (United States)

    Eliasson, Peder

    2008-05-01

    The Compact Linear Collider (CLIC) main linac is sensitive to dynamic imperfections such as element jitter, injected beam jitter, and ground motion. These effects cause emittance growth that, in case of ground motion, has to be counteracted by a trajectory feedback system. The feedback system itself will, due to jitter effects and imperfect beam position monitors (BPMs), indirectly cause emittance growth. Fast and accurate simulations of both the direct and indirect effects are desirable, but due to the many elements of the CLIC main linac, simulations may become very time consuming. In this paper, an efficient way of simulating linear (or nearly linear) dynamic effects is described. The method is also shown to facilitate the analytic determination of emittance growth caused by the different dynamic imperfections while using a trajectory feedback system. Emittance growth expressions are derived for quadrupole, accelerating structure, and beam jitter, for ground motion, and for noise in the feedback BPMs. Finally, it is shown how the method can be used to design a feedback system that is optimized for the optics of the machine and the ground motion spectrum of the particular site. This feedback system gives an emittance growth rate that is approximately 10 times lower than that of traditional trajectory feedbacks. The robustness of the optimized feedback system is studied for a number of additional imperfections, e.g., dipole corrector imperfections and faulty knowledge about the machine optics, with promising results.

  6. Future Circular Colliders

    CERN Document Server

    AUTHOR|(CDS)2108454; Zimmermann, Frank

    2016-01-01

    In response to a request from the 2013 Update of the European Strategy for Particle Physics, the global Future Circular Collider (FCC) study is preparing the foundation for a next-generation large-scale accelerator infrastructure in the heart of Europe. The FCC study focuses on the design of a 100-TeV hadron collider (FCC-hh), to be accommodated in a new ∼100 km tunnel near Geneva. It also includes the design of a high-luminosity electron-positron collider (FCC-ee), which could be installed in the same tunnel as a potential intermediate step, and a lepton-hadron collider option (FCC-he). The scope of the FCC study comprises accelerators, technology, infrastructure, detector, physics, concepts for worldwide data services, international governance models, and implementation scenarios. Among the FCC core technologies figure 16-T dipole magnets, based on Nb$_{3}$Sn superconductor, for the FCC-hh hadron collider, and a highly efficient superconducting radiofrequency system for the FCC-ee lepton collider. The int...

  7. Future Circular Colliders

    CERN Document Server

    AUTHOR|(CDS)2108454; Zimmermann, Frank

    2016-01-01

    In response to a request from the 2013 Update of the European Strategy for Particle Physics, the global Future Circular Collider (FCC) study is preparing the foundation for a next-generation large-scale accelerator infrastructure in the heart of Europe. The FCC study focuses on the design of a 100-TeV hadron collider (FCC-hh), to be accommodated in a new ∼100 km tunnel near Geneva. It also includes the design of a high-luminosity electron-positron collider (FCC-ee), which could be installed in the same tunnel as a potential intermediate step, and a lepton-hadron collider option (FCC-he). The scope of the FCC study comprises accelerators, technology, infrastructure, detectors, physics, concepts for worldwide data services, international governance models, and implementation scenarios. Among the FCC core technologies figure 16-T dipole magnets, based on Nb$_{3}$Sn superconductor, for the FCC-hh hadron collider, and a highly efficient superconducting radiofrequency system for the FCC-ee lepton collider. The in...

  8. Status of the Future Circular Collider Study

    CERN Document Server

    AUTHOR|(CDS)2108454; Zimmermann, Frank

    2016-01-01

    Following the 2013 update of the European Strategy for Particle Physics, the international Future Circular Collider (FCC) Study has been launched by CERN as host institute. Its main purpose and long-term goal is to design an energyfrontier hadron collider (FCC-hh) with a centre-of-mass energy of about 100 TeV in a new 80–100 km tunnel. The FCC study also includes the design of a 90–350 GeV highluminosity lepton collider (FCC-ee) installed in the same tunnel, serving as Higgs, top and Z factory, as a potential intermediate step, as well as an electron-proton collider option (FCC-he). The physics cases for such machines are being assessed and concepts for experiments will be developed by the end of 2018, in time for the next update of the European Strategy for Particle Physics. This overview summarizes the status of machine designs and parameters, and it discusses the essential technical components being developed in the frame of the FCC study. Key elements are superconducting accelerator-dipole magnets wit...

  9. Industrial Learning Curves Series Production of the LHC Main Superconduting Dipoles

    CERN Document Server

    Fessia, Paolo; Rossi, Lucio

    2007-01-01

    By mid August 2006, 1160 of the 1232 of LHC main dipoles have been delivered to CERN by the three suppliers in charge of the production. The training of the staff, mostly hired just for this manufacture, and the improvement of the procedures with the acquired experience, naturally decrease the time necessary for the assembly of a unit. The aim of this paper is to apply methodologies like the cost-based learning curves and the time-based learning curves to the LHC Main Dipole production comparing the estimated learning percentage to the ones experienced in other industries. This type of analysis, already presented on 500 units is here extended to more than 1000 completed units. The work also tries to identify which type of industry presents the learning percentages that are the most similar to our case and to investigate the impact of the production strategy on the process efficiency.

  10. Modeling of the Voltage Waves in the LHC Main Dipole Circuits

    CERN Document Server

    Ravaioli, E; Formenti, F; Steckert, J; Thiesen, H; Verweij, A

    2012-01-01

    When a fast power abort is triggered in the LHC main dipole chain, voltage transients are generated at the output of the power converter and across the energy-extraction switches. The voltage waves propagate through the chain of 154 superconducting dipoles and can have undesired effects leading to spurious triggering of the quench protection system and firing of the quench heaters. The phase velocity of the waves travelling along the chain changes due to the inhomogeneous AC behavior of the dipoles. Furthermore, complex phenomena of reflection and superposition are present in the circuit. For these reasons analytical calculations are not sufficient for properly analyzing the circuit behavior after a fast power abort. The transients following the switch-off of the power converter and the opening of the switches are analyzed by means of a complete electrical model, developed with the Cadence© suite (PSpice© based). The model comprises all the electrical components of the circuit, additional components simula...

  11. Quench Heater Experiments on the LHC Main Superconducting Magnets

    OpenAIRE

    Rodríguez-Mateos, F; Pugnat, P; Sanfilippo, S; Schmidt, R; Siemko, A; Sonnemann, F

    2000-01-01

    In case of a quench in one of the main dipoles and quadrupoles of CERN's Large Hadron Collider (LHC), the magnet has to be protected against excessive temperatures and high voltages. In order to uniformly distribute the stored magnetic energy in the coils, heater strips installed in the magnet are fired after quench detection. Tests of different quench heater configurations were performed on various 1 m long model and 15 m long prototype dipole magnets, as well as on a 3 m long prototype quad...

  12. Thermal and structural performance of a single tube support post for the Superconducting Super Collider dipole magnet cryostat

    International Nuclear Information System (INIS)

    Boroski, W.N.; Nicol, T.H.; Ruschman, M.K.; Schoo, C.J.

    1993-07-01

    The reentrant support post currently incorporated in the Superconducting Super Collider (SSC) dipole cryostat has been shown to meet the structural and thermal requirements of the cryostat, both in prototype magnet assemblies and through component testing. However, the reentrant post design has two major drawbacks: tight dimensional control on all components, and cost driven by these tolerance constraints and a complex assembly procedure. A single tube support post has been developed as an alternative to the reentrant post design. Several prototype assemblies have been fabricated and subjected to structural testing. Compressive, tensile, and bending forces were applied to each assembly with deflection measured at several locations. A prototype support post has also been thermally evaluated in a heat leak measurement facility. Heat load to 4.2 K was measured with the intermediate post intercept operating at various temperatures while thermometers positioned along the conductive path of the post mapped thermal gradients. Results from these measurements indicate the single tube support post meets the design criteria for the SSC dipole magnet cryostat support system

  13. Collider baseline parameters: Milestone M1.5

    CERN Document Server

    Schulte, Daniel

    2016-01-01

    The deliverable D1.1 provided a preliminary specification of the layout and target operation parameters for the FCC-hh hadron collider concept. It serves as the basis for the studies in all work packages. Tis milestone summarises the outcome of the first studies of this design. The goal of the FCC hadron collider is to provide proton-proton collisions at a centre-of-mass energy of 100 TeV. The machine is compatible with ion beam operation. Assuming a nominal dipole field of 16 T, such a machine is based on a perimeter of 100 km. The machine is designed to accommodate two main proton experiments that are operated simultaneously. The machine delivers a peak luminosity of 5-30 x 1034 cm-2s-1. The layout allows for two additional special-purpose experiments.

  14. The 11 T Dipole for HL-LHC: Status and Plan

    CERN Document Server

    Savary, F; Bordini, B; Bottura, L; Chlachidze, G; Ramos, D; Izquierdo Bermudez, S; Karppinen, M; Lackner, F; Loffler, C H; Moron-Ballester, R; Nobrega, A; Perez, J C; Prin, H; Smekens, D; de Rijk, G; Redaelli, S; Rossi, L; Willering, G; Zlobin, A V; Giovannozzi, M

    2016-01-01

    The upgrade of the Large Hadron Collider (LHC) collimation system includes additional collimators in the LHC lattice. The longitudinal space for these collimators will be created by replacing some of the LHC main dipoles with shorter but stronger dipoles compatible with the LHC lattice and main systems. The project plan comprises the construction of two cryoassemblies containing each of the two 11-T dipoles of 5.5-m length for possible installation on either side of interaction point 2 of LHC in the years 2018-2019 for ion operation, and the installation of two cryoassemblies on either side of interaction point 7 of LHC in the years 2023-2024 for proton operation. The development program conducted in conjunction between the Fermilab and CERN magnet groups is progressing well. The development activities carried out on the side of Fermilab were concluded in the middle of 2015 with the fabrication and test of a 1-m-long two-in-one model and those on the CERN side are ramping up with the construction of 2-m-long ...

  15. Description of the Main Features of the Series Production of the LHC Main Dipole Magnets

    CERN Document Server

    Savary, F; Chevret, P; de Rijk, G; Fessia, P; Liénard, P; Miles, J; Modena, M; Rossi, L; Tommasini, D; Vlogaert, J; Bresson, D; Grunblatt, G; Decoene, JF; Bressani, F; Drago, G; Gagliardi, P; Eysselein, F; Gärtner, W; Lublow, P

    2008-01-01

    The series production of the LHC main dipole magnets was completed in November 2006. This paper presents the organization implemented at CERN and the milestones fixed to fullfil the technical requirements and to respect the master schedule of the machine installation. The CERN organization for the production follow-up, the quality assurance and the magnet testing, as well as the organization of the three main contractors will be described. A description of the design work and procurement of most of the specific heavy tooling and key components will be given with emphasis on the advantages and drawbacks.

  16. submitter Simulation of a quench event in the upgraded High-Luminosity LHC Main dipole circuit including the 11 T Nb$_{3}$Sn dipole magnets

    CERN Document Server

    Fernandez Navarro, Alejandro Manuel; Verweij, Arjan P; Bortot, Lorenzo; Mentink, Matthias; Prioli, Marco; Auchmann, Bernhard; Izquierdo Bermudez, Susana; Ravaioli, Emmanuele; Yammine, Samer

    2018-01-01

    To achieve the goal of increased luminosity, two out of eight main dipole circuits of the accelerator will be reconfigured in the coming LHC upgrade by replacing one standard 14.3-m long, Nb-Ti-based, 8.3 T dipole magnet by two 5.3-m long, Nb$_{3}$Sn-based, 11.2 T magnets (MBH). The modified dipole circuits will contain 153 Nb-Ti magnets and two MBH magnets. The latter will be connected to an additional trim power converter to compensate for the differences in the magnetic transfer functions. These modifications imply a number of challenges from the point of view of the circuit integrity, operation, and quench protection. In order to assess the circuit performance under different scenarios and to validate the circuit quench protection strategy, reliable and accurate numerical transient simulations have to be performed. We present the field/circuit coupling simulation of the reconfigured main dipole magnet chain following the introduction of the MBH magnets. 2-D distributed LEDET models of the MBH's have been ...

  17. Diagnostics of the Fermilab Tevatron using an AC dipole

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Ryoichi [Univ. of Texas, Austin, TX (United States)

    2008-08-01

    The Fermilab Tevatron is currently the world's highest energy colliding beam facility. Its counter-rotating proton and antiproton beams collide at 2 TeV center-of-mass. Delivery of such intense beam fluxes to experiments has required improved knowledge of the Tevatron's beam optical lattice. An oscillating dipole magnet, referred to as an AC dipole, is one of such a tool to non-destructively assess the optical properties of the synchrotron. We discusses development of an AC dipole system for the Tevatron, a fast-oscillating (f ~ 20 kHz) dipole magnet which can be adiabatically turned on and off to establish sustained coherent oscillations of the beam particles without affecting the transverse emittance. By utilizing an existing magnet and a higher power audio amplifier, the cost of the Tevatron AC dipole system became relatively inexpensive. We discuss corrections which must be applied to the driven oscillation measurements to obtain the proper interpretation of beam optical parameters from AC dipole studies. After successful operations of the Tevatron AC dipole system, AC dipole systems, similar to that in the Tevatron, will be build for the CERN LHC. We present several measurements of linear optical parameters (beta function and phase advance) for the Tevatron, as well as studies of non-linear perturbations from sextupole and octupole elements.

  18. Iron saturation control in RHIC dipole magnets

    International Nuclear Information System (INIS)

    Thompson, P.A.; Gupta, R.C.; Kahn, S.A.; Hahn, H.; Morgan, G.H.; Wanderer, P.J.; Willen, E.

    1991-01-01

    The Relativistic Heavy Ion Collider (RHIC) will require 360 dipoles of 80 mm bore. This paper discusses the field perturbations produced by the saturation of the yoke iron. Changes have been made to the yoke to reduce these perturbations, in particular, decapole -4 . Measurements and calculations for 6 series of dipole magnets are presented. 2 refs., 2 figs., 1 tab

  19. Design features of the SSC [Superconducting Super Collider] dipole magnet

    International Nuclear Information System (INIS)

    Willen, E.; Cottingham, J.; Ganetis, G.

    1989-01-01

    The main ring dipole for the SSC is specified as a high performance magnet that is required to provide a uniform, 6.6 T field in a 4 cm aperture at minimum cost. These design requirements have been addressed in an R ampersand D program in which the coil design, coil mechanical support, yoke and shell structure, trim coil and beam tube design, and a variety of new instrumentation, have been developed. The design of the magnet resulting from this intensive R ampersand D program, including various measurements from both 1.8 m and 17 m long models, is reviewed. 7 refs., 3 figs

  20. Raising the last LEP dipole

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    The last of the 3280 dipole magnets from the Large Electron-Positron (LEP) collider is seen on its journey to the surface on 12 February 2002. The LEP era, which began at CERN in 1989 and ended 2000, comes to an end.

  1. Towards Future Circular Colliders

    CERN Document Server

    AUTHOR|(CDS)2108454; Zimmermann, Frank

    2016-01-01

    The Large Hadron Collider (LHC) at CERN presently provides proton-proton collisions at a centre-of-mass (c.m.) energy of 13 TeV. The LHC design was started more than 30 years ago, and its physics programme will extend through the second half of the 2030’s. The global Future Circular Collider (FCC) study is now preparing for a post-LHC project. The FCC study focuses on the design of a 100-TeV hadron collider (FCC-hh) in a new ∼100 km tunnel. It also includes the design of a high-luminosity electron-positron collider (FCC-ee) as a potential intermediate step, and a lepton-hadron collider option (FCC-he). The scope of the FCC study comprises accelerators, technology, infrastructure, detectors, physics, concepts for worldwide data services, international governance models, and implementation scenarios. Among the FCC core technologies figure 16-T dipole magnets, based on $Nb_3Sn$ superconductor, for the FCC-hh hadron collider, and a highly efficient superconducting radiofrequency system for the FCC-ee lepton c...

  2. Dipoles for High-Energy LHC

    CERN Document Server

    Todesco, E; De Rijk, G; Rossi, L

    2014-01-01

    For the High Energy LHC, a study of a 33 TeV center of mass collider in the LHC tunnel, main dipoles of 20 T operational field are needed. In this paper we first review the conceptual design based on block coil proposed in the Malta workshop, addressing the issues related to coil fabrication and assembly. We then propose successive simplifications of this design, associating a cost estimate of the conductor. We then analyse a block layout for a 15 T magnet. Finally, we consider two layouts based on the D20 and HD2 short models built by LBL. A first analysis of the aspects related to protection of these challenging magnets is given.

  3. Modeling of random geometric errors in superconducting magnets with applications to the CERN Large Hadron Collider

    Directory of Open Access Journals (Sweden)

    P. Ferracin

    2000-12-01

    Full Text Available Estimates of random field-shape errors induced by cable mispositioning in superconducting magnets are presented and specific applications to the Large Hadron Collider (LHC main dipoles and quadrupoles are extensively discussed. Numerical simulations obtained with Monte Carlo methods are compared to analytic estimates and are used to interpret the experimental data for the LHC dipole and quadrupole prototypes. The proposed approach can predict the effect of magnet tolerances on geometric components of random field-shape errors, and it is a useful tool to monitor the obtained tolerances during magnet production.

  4. Superconducting super collider

    International Nuclear Information System (INIS)

    Limon, P.J.

    1987-01-01

    The Superconducting Super Collider is to be a 20 TeV per beam proton-proton accelerator and collider. Physically the SCC will be 52 miles in circumference and slightly oval in shape. The use of superconducting magnets instead of conventional cuts the circumference from 180 miles to the 52 miles. The operating cost of the SCC per year is estimated to be about $200-250 million. A detailed cost estimate of the project is roughly $3 billion in 1986 dollars. For the big collider ring, the technical cost are dominated by the magnet system. That is why one must focus on the cost and design of the magnets. Presently, the process of site selection is underway. The major R and D efforts concern superconducting dipoles. The magnets use niobium-titanium as a conductor stabilized in a copper matrix. 10 figures

  5. The Fermilab Main Injector dipole and quadrupole cooling design and bus connections

    International Nuclear Information System (INIS)

    Satti, J.A.

    1995-06-01

    The proposed system for connecting the low conductivity water (LCW) and the electrical power to the magnets is explained. This system requires minimum maintenance. Stainless steel headers supply LCW to local, secondary manifolds which regulate the flow to the dipole and to the copper bus which conduct both power and cooling water to the quadrupole. A combination of ceramic feedthroughs and thermoplastic hoses insulate the piping electrically from the copper bus system. The utilities for the Main Injector are grouped together at the outside wall of the tunnel leaving most of the enclosure space for servicing. Space above the headers is available for future accelerator expansion. The new dipoles have bolted electrical connections with flexible copper jumpers. Separate compression fittings are used for the water connections. Each dipole magnet has two water circuits in parallel designed to minimize thermal stresses and the number of insulators. Two electrical insulators are used in series because this design has been shown to minimize electrolyses problems and copper ion deposits inside the insulators. The design value of the temperature gradient of the LCW is 8 degrees C

  6. Measurements of ground motion and SSC dipole vibrations

    International Nuclear Information System (INIS)

    Parkhomchuk, V.V.; Shiltsev, V.D.; Weaver, H.J.

    1993-06-01

    The results of seismic ground measurements at the Superconducting Super Collider (SSC) site and investigations of vibrational properties of superconducting dipoles for the SSC are presented. Spectral analysis of the data obtained in the large frequency band from 0.05 Hz to 2000 Hz is done. Resonant behavior and the dipole-to-ground transform ratio are investigated. The influence of measured vibrations on SSC operations is considered

  7. Giant Primeval Magnetic Dipoles

    Science.gov (United States)

    Thompson, Christopher

    2017-07-01

    Macroscopic magnetic dipoles are considered cosmic dark matter. Permanent magnetism in relativistic field structures can involve some form of superconductivity, one example being current-carrying string loops (“springs”) with vanishing net tension. We derive the cross-section for free classical dipoles to collide, finding it depends weakly on orientation when mutual precession is rapid. The collision rate of “spring” loops with tension { T }˜ {10}-8{c}4/G in galactic halos approaches the measured rate of fast radio bursts (FRBs) if the loops compose most of the dark matter. A large superconducting dipole (LSD) with mass ˜1020 g and size ˜1 mm will form a ˜100 km magnetosphere moving through interstellar plasma. Although hydromagnetic drag is generally weak, it is strong enough to capture some LSDs into long-lived rings orbiting supermassive black holes (SMBHs) that form by the direct collapse of massive gas clouds. Repeated collisions near young SMBHs could dominate the global collision rate, thereby broadening the dipole mass spectrum. Colliding LSDs produce tiny, hot electromagnetic explosions. The accompanying paper shows that these explosions couple effectively to propagating low-frequency electromagnetic modes, with output peaking at 0.01-1 THz. We describe several constraints on, and predictions of, LSDs as cosmic dark matter. The shock formed by an infalling LSD triggers self-sustained thermonuclear burning in a C/O (ONeMg) white dwarf (WD) of mass ≳1 M ⊙ (1.3 M ⊙). The spark is generally located off the center of the WD. The rate of LSD-induced explosions matches the observed rate of Type Ia supernovae.

  8. Iron-free detector magnet options for the future circular collider

    CERN Document Server

    AUTHOR|(CDS)2092466; Dudarev, Alexey; Pais Da Silva, Helder Filipe; Rolando, Gabriella; Cure, Benoit; Gaddi, Andrea; Klyukhin, Slava; Gerwig, Hubert; Wagner, Udo; Ten Kate, Herman

    2016-01-01

    In this paper, several iron-free solenoid-based designs of a detector magnet for the future circular collider for hadron-hadron collisions (FCC-hh) are presented. The detector magnet designs for FCC-hh aim to provide bending power for particles over a wide pseudorapidity range (0 ≤ jηj ≤ 4). To achieve this goal, the main solenoidal detector magnet is combined with a forward magnet system, such as the previously presented force-and-torque-neutral dipole. Here, a solenoid-based alternative, the so-called balanced forward solenoid, is presented which comprises a larger inner solenoid for providing bending power to particles at jηj ≥ 2.5, in combination with a smaller balancing coil for ensuring that the net force and torque on each individual coil is minimized. The balanced forward solenoid is compared to the force-and-torqueneutral dipole and advantages and disadvantages are discussed. In addition, several conceptual solenoidbased detector magnet designs are shown, and quantitatively compared. The main...

  9. Public Lecture Collide@CERN Pro Helvetia | 23 July | Main Auditorium

    CERN Multimedia

    2015-01-01

    You are very warmly invited to the opening presentation of Fragment.In’s residency at CERN.   Fragment.In: Simon de Diesbach, Laura Perrenoud and Marc Dubois. 23 July 2015 - 7 p.m. Main Auditorium  The lecture will be followed by a drinks reception at 8.30 p.m. Doors open at 6.30 p.m.  Opening address by Rolf Heuer, CERN Director-General, Michel Vust, project leader at the Swiss Arts Council Pro Helvetia, and Monica Bello, Head of Arts@CERN. Fragment.In are the winners of Collide@CERN Pro Helvetia, formed by Laura Perrenoud, Simon de Diesbach, and Marc Dubois. They will present their artistic work along with their CERN scientific inspiration partner, who will present his/her scientific work. In their proposal, Fragment.In took a unique, original and creative approach to data visualization. We look forward to having them at CERN.  Fragment.In Collide@CERN is the three month residency programme providing artists with time and...

  10. SSC 50 MM collider dipole cryostat single tube support post conceptual design and analysis

    International Nuclear Information System (INIS)

    Nicol, T.H.

    1992-01-01

    Superconducting Super Collider (SSC) dipole magnet cold masses are connected to the cryostat vacuum vessel at five places equally spaced along their length. Five supports limit sag of the cold assembly due to its own weight to a level consistent with the final magnet alignment specifications. The design essentially consists of two composite tubes nested within each other as a means of maximizing the thermal path length. In addition it provides an ideal way to utilize materials best suited for the temperature range over which they must operate. Filament wound S-glass is used between 300K and 80K. Filament wound graphite fiber is used between 80K and 20K and between 20K and 4.5K. S-glass is a better thermal performer above approximately 40K. Graphite composites are ideally suited for operation below 40K. The designs for the 50 mm reentrant supports are well documented in the literature. The current design of the reentrant support has two major drawbacks. First, it requires very tight dimensional control on all components; composite tubes and metal attachment parts. Second, it is expensive, with cost being driven by both the tolerance constraints and by a complex assembly procedure. It seems clear that production magnets will require a support structure which is considerably less expensive than that which is currently used. It seems clear that a design alternate for reentrant support posts will be required for production dipoles primarily due to their cost. It seems less clear that injection molded composite materials are the ideal choice. This report describes the conceptual design for a support post whose function is identical to that of the current reentrant design, which requires very few modifications to surrounding cryostat components, is thermally equivalent to the current 50 mm support post, and is nearly equivalent structurally

  11. Comparison of electric dipole moments and the Large Hadron Collider for probing CP violation in triple boson vertices

    International Nuclear Information System (INIS)

    Jung, Sunghoon; Wells, James D.

    2009-01-01

    CP violation from physics beyond the standard model may reside in triple boson vertices of the electroweak theory. We review the effective theory description and discuss how CP-violating contributions to these vertices might be discerned by electric dipole moments (EDM) or diboson production at the LHC. Despite triple boson CP-violating interactions entering EDMs only at the two-loop level, we find that EDM experiments are generally more powerful than the diboson processes. To give an example to these general considerations we perform the comparison between EDMs and collider observables within supersymmetric theories that have heavy sfermions, such that substantive EDMs at the one-loop level are disallowed. EDMs generally remain more powerful probes, and next-generation EDM experiments may surpass even the most optimistic assumptions for LHC sensitivities.

  12. A Finite Element Model for Mechanical Analysis of LHC Main Dipole Magnet Coils

    CERN Document Server

    Pojer, Mirko; Scandale, Walter

    2007-01-01

    After years of studies and observations, the mechanical stability of the LHC main dipole magnets still remains an open issue. The robustness of these magnets has already been asserted and their reliability in operation is not far from being proven. However, anomalous mechanical behaviors sometimes observed are not yet completely understood. A finite element model, which has been recently developed at CERN, aims at providing an instrument for better explaining these anomalies. Cable modeling and contact between elements, friction and mechanical hysteresis are the key features of this model. The simulation of the hysteresis experienced by the coil during collaring, presented here, is the starting point for the representation of the whole life cycle of the dipole coil.

  13. Controlling multibunch beam breakup in TeV linear colliders

    International Nuclear Information System (INIS)

    Thompson, K.A.; Ruth, R.D.

    1989-01-01

    To obtain luminosities near 10 34 cm/sup /minus/2/sec/sup /minus/1/ in a TeV linear collider, it will probably be essential to accelerate many bunches per RF fill in order to increase the energy transfer efficiency. In this paper we study the transverse dynamics of multiple bunches in a linac, and we examine the effects of several methods of controlling the beam blow-up that would otherwise be induced by transverse dipole wake fields. The methods we study are: damping the transverse modes, adjusting the frequency of the dominant transverse modes so that bunches may be placed near zero-crossings of the transverse wake, and bunch-to-bunch variation of the transverse focusing. We study the utility of these cures in the main linacs of an example of a TeV collider. 16 refs., 4 figs., 2 tabs

  14. Mechanical stress analysis during a quench in CLIQ protected 16 T dipole magnets designed for the future circular collider

    Science.gov (United States)

    Zhao, Junjie; Prioli, Marco; Stenvall, Antti; Salmi, Tiina; Gao, Yuanwen; Caiffi, Barbara; Lorin, Clement; Marinozzi, Vittorio; Farinon, Stefania; Sorbi, Massimo

    2018-07-01

    Protecting the magnets in case of a quench is a challenge for the 16 T superconducting dipole magnets presently designed for the 100 TeV: Future Circular Collider (FCC). These magnets are driven to the foreseen technological limits in terms of critical current, mechanical strength and quench protection. The magnets are protected with CLIQ (Coupling-Loss Induced Quench) system, which is a recently developed quench protection method based on discharging a capacitor bank across part of the winding. The oscillation of the magnet currents and the dissipation of the high stored energy into the windings cause electrodynamic forces and thermal stresses, which may need to be considered in the magnet mechanical design. This paper focuses on mechanical stress analysis during a quench of the 16 T cos-θ and block type dipole magnets. A finite element model allowed studying the stress due to the non-uniform temperature and current distribution in the superconducting coils. Two different CLIQ configurations were considered for the cos-θ design and one for the block type magnet. The analyses of the mechanical behavior of two magnets during a quench without or with hot spot turn were separately carried out. The simulation results show that the stress related to a quench should be considered when designing a high field magnet.

  15. Removal of stored particle background via the electric dipole method in the KATRIN main spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Hilk, Daniel [Institut fuer Experimentelle Kernphysik, KIT, Karlsruhe (Germany); Collaboration: KATRIN-Collaboration

    2016-07-01

    The goal of the KArlsruhe TRItium Neutrino (KATRIN) experiment is to determine the effective mass of the electron anti neutrino by measuring the electron energy spectrum of tritium beta decay near the endpoint. The goal is to reach a sensitivity on the neutrino mass of 200 meV for which a low background level of 10{sup -2} counts per second is mandatory. Electrons from single radioactive decays of radon and tritium in the KATRIN main spectrometer with energies in the keV range can be magnetically stored for hours. While cooling down via ionization of residual gas molecules, they produce hundreds of secondary electrons, which can reach the detector and contribute to the background signals. In order to suppress this background component, several methods are investigated to remove stored electrons, such as the application of an electric dipole field and the application of magnetic pulses. This talk introduces the mechanism of background production due to stored electrons and their removal by the electric dipole method in the main spectrometer. In context of the spectrometer- and detector-commissioning phase in summer 2015, measurement results of the application of the electric dipole method are presented.

  16. Heater induced quenches in SSC [Superconducting Super Collider] model dipoles

    International Nuclear Information System (INIS)

    Hassenzahl, W.V.

    1986-10-01

    A 1-m long SSC dipole constructed at the Lawrence Berkeley laboratory was subjected to a series of heater induced quenches to determine: axial quench propagation velocities, transverse quench propagation, and conductor temperature rise. Quenches were produced by 3 heaters at different locations in the magnet and at several currents. The results of these studies are described and are compared to previously published theoretical studies of quenches on the SSC dipoles. These results are shown to be in agreement with the calculations of the program ''QUENCH'', which includes an increase of the quench velocity during the first few milliseconds of the quench

  17. Ultra-high-field magnets for future hadron colliders

    International Nuclear Information System (INIS)

    McIntyre, P.M.; Shen, W.

    1997-01-01

    Several new concepts in magnetic design and coil fabrication are being incorporated into designs for ultra-high field collider magnets: a 16 Tesla block-coil dual dipole, also using Nb 3 Sn cable, featuring simple pancake coil construction and face-loaded prestress geometry; a 330 T/m block-coil quadrupole; and a ∼ 20 Tesla pipe-geometry dual dipole, using A15 or BSCCO tape. Field design and fabrication issues are discussed for each magnet

  18. Achieving 99.9% proton spin-flip efficiency at higher energy with a small rf dipole

    CERN Document Server

    Leonova, M A; Gebel, R; Hinterberger, F; Krisch, A D; Lehrach, A; Lorentz, B; Maier, R; Morozov, V S; Prasuhn, D; Raymond, R S; Schnase, A; Stockhorst, H; Ulbrich, K; Wong, V K; 10.1103/PhysRevLett.93.224801

    2004-01-01

    We recently used a new ferrite rf dipole to study spin flipping of a 2.1 GeV/c vertically polarized proton beam stored in the COSY Cooler Synchrotron in Julich, Germany. We swept the rf dipole's frequency through an rf-induced spin resonance to flip the beam's polarization direction. After determining the resonance's frequency, we varied the frequency range, frequency ramp time, and number of flips. At the rf dipole's maximum strength and optimum frequency range and ramp time, we measured a spin-flip efficiency of 99.92+or-0.04%. This result, along with a similar 0.49 GeV/c IUCF result, indicates that, due to the Lorentz invariance of an rf dipole's transverse integral Bdl and the weak energy dependence of its spin-resonance strength, an only 35% stronger rf dipole should allow efficient spin flipping in the 100 GeV BNL RHIC Collider or even the 7 TeV CERN Large Hadron Collider.

  19. Design, fabrication and testing of a 56 mm bore twin-aperture 1 m long dipole magnet made with SSC type cable

    Energy Technology Data Exchange (ETDEWEB)

    Ostler, J.; Perini, D.; Russenschuck, S.; Siegel, N.; Siemko, A.; Trinquart, G.; Walckiers, L.; Weterings, W. [CERN, Geneva (Switzerland)

    1996-07-01

    In the framework of the LHC superconducting dipole magnet model program, a 56 mm bore, twin-aperture dipole model 1 m long, using existing cables of the standard SSC type, was launched to initiate studies of lower field magnets with smaller strand size cables for a 7 TeV collider. This model was designed, built, assembled and tested at CERN and reached a peak field of 9.7 T at 1.8 K. The paper reviews the main design principles, presents the fabrication and assembly procedures and finally discusses the overall test results.

  20. Design, fabrication and testing of a 56 mm bore twin-aperture 1 m long dipole magnet made with SSC type cable

    International Nuclear Information System (INIS)

    Ostler, J.; Perini, D.; Russenschuck, S.; Siegel, N.; Siemko, A.; Trinquart, G.; Walckiers, L.; Weterings, W.

    1996-01-01

    In the framework of the LHC superconducting dipole magnet model program, a 56 mm bore, twin-aperture dipole model 1 m long, using existing cables of the standard SSC type, was launched to initiate studies of lower field magnets with smaller strand size cables for a 7 TeV collider. This model was designed, built, assembled and tested at CERN and reached a peak field of 9.7 T at 1.8 K. The paper reviews the main design principles, presents the fabrication and assembly procedures and finally discusses the overall test results

  1. Review of quench simulations for the protection of LHC main dipole magnets

    OpenAIRE

    Sonnemann, F; Danner, A

    1999-01-01

    The simulation program QUABER [1] allows studying the quench process of superconducting magnets for the LHC. The performance of the protection system of the LHC main dipole magnets was simulated under various parameter dependencies at different magnet excitation currents. This simulation study was motivated to complement measurement results in order to help preparing and understanding experiments of the quench propagation and magnet protection. The influence of the quench propagation velocity...

  2. The design and manufacture of the Fermilab Main Injector Dipole Magnet

    International Nuclear Information System (INIS)

    Brown, B.C.; Chester, N.S.; Harding, D.J.; Martin, P.S.

    1992-03-01

    Fermilab's new Main Injector Ring (MIR) will replace the currently operating Main Ring to provide 150 GeV Proton and Antiproton beams for Tevetron injection, and rapid cycling, high intensity, 120 GeV Proton beams for Antiproton production. To produce and maintain the required high beam quality, high intensity, and high repetition rate, conventional dipole magnets with laminated iron core and water cooled copper conductor were chosen as the bending magnet. A new magnet design having low inductance, large copper cross section, and field uniformity sufficient for high intensity injection and efficient slow resonant extraction, is required to obtain the needed geometric aperture, dynamic aperture, and operational reliability. The current Main Injector Ring lattice design requires the use of 344 of these magnets. 216 of these magnets are to be 6 m long, and 128 are to be 4 m long

  3. Design considerations for a large aperture high field superconducting dipole

    International Nuclear Information System (INIS)

    Harfoush, F.; Ankenbrandt, C.; Harrison, M.; Kerby, J.; Koepke, K.; Mantsch, P.; Nicol, T.; Riddiford, A.; Theilacker, J.

    1989-03-01

    The final phase of the Fermilab upgrade proposal calls for a new ring of superconducting magnets to be placed in the existing Main Accelerator tunnel. The goal of this design study is to specify a high field dipole (HFD) that is capable of supporting fixed target operation (ramping, resonant extraction) at a field of 6.6T (1.5 Tev) and colliding beam physics at 8.0T (1.8 Tev). The magnetic field quality at high field is set by the large amplitude orbits associated with resonant extraction. The field quality must therefore be at least as good as the existing Tevatron magnets which fulfill these criteria. The high fields and large aperture of this magnet result in large forces on the coil and collar assemblies. Therefore, the cold mass design must be able to sustain these forces while providing sufficient cooling to the coils during 4.2 K fixed target operation, and a minimum heat load during 1.8 K collider operation. The design work is still in progress but a cosine-theta, cold-iron dipole with a 70mm inner diameter coil has been tentatively adopted. This report presents details on the conductor and cable parameters, coil cross-section, projected manufacturing tolerances, iron yoke design, and cold mass assembly. 4 refs., 5 figs., 1 tab

  4. Design considerations for a large aperture high field superconducting dipole

    Energy Technology Data Exchange (ETDEWEB)

    Harfoush, F.; Ankenbrandt, C.; Harrison, M.; Kerby, J.; Koepke, K.; Mantsch, P.; Nicol, T.; Riddiford, A.; Theilacker, J.

    1989-03-01

    The final phase of the Fermilab upgrade proposal calls for a new ring of superconducting magnets to be placed in the existing Main Accelerator tunnel. The goal of this design study is to specify a high field dipole (HFD) that is capable of supporting fixed target operation (ramping, resonant extraction) at a field of 6.6T (1.5 Tev) and colliding beam physics at 8.0T (1.8 Tev). The magnetic field quality at high field is set by the large amplitude orbits associated with resonant extraction. The field quality must therefore be at least as good as the existing Tevatron magnets which fulfill these criteria. The high fields and large aperture of this magnet result in large forces on the coil and collar assemblies. Therefore, the cold mass design must be able to sustain these forces while providing sufficient cooling to the coils during 4.2 K fixed target operation, and a minimum heat load during 1.8 K collider operation. The design work is still in progress but a cosine-theta, cold-iron dipole with a 70mm inner diameter coil has been tentatively adopted. This report presents details on the conductor and cable parameters, coil cross-section, projected manufacturing tolerances, iron yoke design, and cold mass assembly. 4 refs., 5 figs., 1 tab.

  5. Towards future circular colliders

    Science.gov (United States)

    Benedikt, Michael; Zimmermann, Frank

    2016-09-01

    The Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) presently provides proton-proton collisions at a center-of-mass (c.m.) energy of 13 TeV. The LHC design was started more than 30 years ago, and its physics program will extend through the second half of the 2030's. The global Future Circular Collider (FCC) study is now preparing for a post-LHC project. The FCC study focuses on the design of a 100-TeV hadron collider (FCC-hh) in a new ˜100 km tunnel. It also includes the design of a high-luminosity electron-positron collider (FCCee) as a potential intermediate step, and a lepton-hadron collider option (FCC-he). The scope of the FCC study comprises accelerators, technology, infrastructure, detectors, physics, concepts for worldwide data services, international governance models, and implementation scenarios. Among the FCC core technologies figure 16-T dipole magnets, based on Nb3 S n superconductor, for the FCC-hh hadron collider, and a highly-efficient superconducting radiofrequency system for the FCC-ee lepton collider. Following the FCC concept, the Institute of High Energy Physics (IHEP) in Beijing has initiated a parallel design study for an e + e - Higgs factory in China (CEPC), which is to be succeeded by a high-energy hadron collider (SPPC). At present a tunnel circumference of 54 km and a hadron collider c.m. energy of about 70 TeV are being considered. After a brief look at the LHC, this article reports the motivation and the present status of the FCC study, some of the primary design challenges and R&D subjects, as well as the emerging global collaboration.

  6. Future Hadron Colliders

    CERN Document Server

    Keil, Eberhard

    1998-01-01

    Plans for future hadron colliders are presented, and accelerator physics and engineering aspects common to these machines are discussed. The Tevatron is presented first, starting with a summary of the achievements in Run IB which finished in 1995, followed by performance predictions for Run II which will start in 1999, and the TeV33 project, aiming for a peak luminosity $L ~ 1 (nbs)^-1$. The next machine is the Large Hadron Collider LHC at CERN, planned to come into operation in 2005. The last set of machines are Very Large Hadron Colliders which might be constructed after the LHC. Three variants are presented: Two machines with a beam energy of 50 TeV, and dipole fields of 1.8 and 12.6 T in the arcs, and a machine with 100 TeV and 12 T. The discussion of accelerator physics aspects includes the beam-beam effect, bunch spacing and parasitic collisions, and the crossing angle. The discussion of the engineering aspects covers synchrotron radiation and stored energy in the beams, the power in the debris of the p...

  7. Progress on the Development of the $Nb_3Sn$ 11T Dipole for the High Luminosity Upgrade of LHC

    CERN Document Server

    Savary, Frederic; Bordini, Bernardo; Bottura, Luca; Fiscarelli, Lucio; Fleiter, Jerome; Foussat, Arnaud; Izquierdo Bermudez, Susana; Karppinen, Mikko; Lackner, Friedrich; Loffler, Christian H; Nilsson, Emelie; Perez, Juan Carlos; Prin, Herve; Principe, Rosario; Ramos, Delio; de Rijk, Gijs; Rossi, Lucio; Smekens, David; Sequeira Tavares, Sandra; Willering, Gerard; Zlobin, Alexander V

    2017-01-01

    The high-luminosity large hadron collider (LHC) project at CERN entered into the production phase in October 2015 after the completion of the design study phase. In the meantime, the development of the 11 T dipole needed for the upgrade of the collimation system of the machine made significant progress with very good performance of the first two-in-one magnet model of 2-m length made at CERN. The 11 T dipole, which is more powerful than the current main dipoles of LHC, can be made shorter with an equivalent integrated field. This will allow creating space for the installation of additional collimators in specific locations of the dispersion suppressor regions. Following tests carried out during heavy ions runs of LHC in the end of 2015, and a more recent review of the project budget, the installation plan for the 11 T dipole was revised. Consequently, one 11 T dipole full assembly containing two 11 T dipoles of 5.5-m length will be installed on either side of interaction point 7. These two units shall be inst...

  8. Status of superconducting magnets for the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Schermer, R.I.

    1993-09-01

    The arc sections of the High Energy Booster and the two Collider Rings will need more than 10,000, very large, superconducting dipole and quadrupole magnets. Development work on these magnets was carried out at US/DOE laboratories in a program that began in the mid 1980's. In 1991-1992, the technology was transferred to industry and twenty, full-length, Collider dipoles were successfully fabricated and tested. This program, along with HERA and Tevatron experience, has provided industry a data base to use in formulating detailed designs for the prototypes of the accelerator magnets, with an eye to reducing cost and enhancing producibility. Several model magnets from this latest phase of the industrial program have already been tested. The excessive ramp-rate sensitivity of the magnets is understood and solutions are under investigation

  9. Status of superconducting magnets for the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Schermer, R.I.

    1994-01-01

    The arc sections of the High Energy Booster and the two Collider Rings will need more than 10,000, very large, superconducting dipole and quadrupole magnets. Development work on these magnets was carried out at US/DOE laboratories in a program that began in the mid 1980's. In 1991--92, the technology was transferred to industry and twenty, full-length, Collider dipoles were successfully fabricated and tested. This program, along with HERA and Tevatron experience, has provided industry a data base to use in formulating detailed designs for the prototypes of the accelerator magnets, with an eye to reducing cost and enhancing producibility. Several model magnets from this latest phase of the industrial program have already been tested. The excessive ramp-rate sensitivity of the magnets is understood and solutions are under investigation

  10. Analytical formulas for dipole excitation cross sections of ions colliding with electrons

    International Nuclear Information System (INIS)

    Shevelko, V.P.

    1992-01-01

    Analytical formulas describing electron-impact induced dipole excitation of ions from threshold (E = ΔE) to high energies (E >> ΔE) are suggested. The formulas are based on the model dipole potential and are expressed in terms of McDonald functions. The results are compared with numerical calculations, other semiempirical formulas and experimental data

  11. Chromoelectric dipole moment of the top quark in models with vectorlike multiplets

    International Nuclear Information System (INIS)

    Ibrahim, Tarek; Nath, Pran

    2011-01-01

    The chromoelectric dipole moment of the top quark is calculated in a model with a vectorlike multiplet, which mixes with the third generation in an extension of the minimal supersymmetric standard model. Such mixings allow for new CP violating phases. Including these new CP phases, the chromoelectric dipole moment that generates an electric dipole of the top in this class of models is computed. The top chromoelectric dipole moment operator arises from loops involving the exchange of the W, the Z, as well as from the exchange involving the charginos, the neutralinos, the gluino, and the vectorlike multiplet and their superpartners. The analysis of the chromoelectric dipole moment operator of the top is more complicated than for the light quarks because the mass of the external fermion, in this case the top quark mass, cannot be ignored relative to the masses inside the loops. A numerical analysis is presented and it is shown that the contribution to the top electric dipole moment (EDM) could lie in the range (10 -19 -10 -18 ) ecm, consistent with the current limits on the EDM of the electron, the neutron and on atomic EDMs. A top EDM of size (10 -19 -10 -18 ) ecm could be accessible in collider experiments such as at the LHC and at the International Linear Collider.

  12. Application of the Learning Curve Analysis to the LHC Main Dipole Production First Assessment

    CERN Document Server

    Fessia, P; Rossi, L

    2006-01-01

    About two third of the LHC main dipoles have been delivered by the three suppliers charged of the production. The training of the staff, mostly hired just for this manufacture, and the natural improvement of the procedures with the acquired experience, decrease naturally the time necessary for the assembly of a unit. The aim of this paper is to apply methodologies like the cost-based learning curves and the time-based learning curves to the LHC Main Dipole comparing the estimated learning percentage to the ones experienced in other industries. This type of analysis, still in a preliminary phase and here applied to about 40% of the total production of the LHC magnets that will end by 2006, shows that our production has a relatively high learning percentage and it is similar to aerospace and complex machine tools for new models. Therefore with the LHC project, accelerator magnets seem to have reached industrial maturity and this production can be used as bench mark for other large scientific projects implying s...

  13. Double vector meson production in the International Linear Collider

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, F. [Universidade Federal de Sao Paulo, Departamento de Ciencias Exatas e da Terra, Diadema, SP (Brazil); Goncalves, V.P. [Universidade Federal de Pelotas, High and Medium Energy Group, Instituto de Fisica e Matematica, Caixa Postal 354, Pelotas, RS (Brazil); Moreira, B.D.; Navarra, F.S. [Universidade de Sao Paulo, Instituto de Fisica, C.P. 66318, Sao Paulo, SP (Brazil)

    2015-08-15

    In this paper we study double vector meson production in γγ interactions at high energies and estimate, using the color dipole picture, the main observables which can be probed at the International Linear Collider (ILC). The total γ(Q{sub 1}{sup 2}) + γ(Q{sub 2}{sup 2}) → V{sub 1} + V{sub 2} cross sections for V{sub i} = ρ, J/ψ, and Υ are computed and the energy and virtuality dependencies are studied in detail. Our results demonstrate that the experimental analysis of this process is feasible at the ILC and it can be useful to constrain the QCD dynamics at high energies. (orig.)

  14. Application of independent component analysis to ac dipole based optics measurement and correction at the Relativistic Heavy Ion Collider

    Directory of Open Access Journals (Sweden)

    X. Shen

    2013-11-01

    Full Text Available Correction of beta-beat is of great importance for performance improvement of high energy accelerators, like the Relativistic Hadron Ion Collider (RHIC. At RHIC, using the independent component analysis method, linear optical functions are extracted from the turn by turn beam position data of the ac dipole driven betatron oscillation. Despite the constraint of a limited number of available quadrupole correctors at RHIC, a global beta-beat correction scheme using a beta-beat response matrix method was developed and experimentally demonstrated. In both rings, a factor of 2 or better reduction of beta-beat was achieved within available beam time. At the same time, a new scheme of using horizontal closed orbit bump at sextupoles to correct beta-beat in the arcs was demonstrated in the Yellow ring of RHIC at beam energy of 255 GeV, and a peak beta-beat of approximately 7% was achieved.

  15. Superconducting Magnet Technology for Future High Energy Proton Colliders

    Science.gov (United States)

    Gourlay, Stephen

    2017-01-01

    Interest in high field dipoles has been given a boost by new proposals to build a high-energy proton-proton collider to follow the LHC and programs around the world are taking on the task to answer the need. Studies aiming toward future high-energy proton-proton colliders at the 100 TeV scale are now being organized. The LHC and current cost models are based on technology close to four decades old and point to a broad optimum of operation using dipoles with fields between 5 and 12T when site constraints, either geographical or political, are not a factor. Site geography constraints that limit the ring circumference can drive the required dipole field up to 20T, which is more than a factor of two beyond state-of-the-art. After a brief review of current progress, the talk will describe the challenges facing future development and present a roadmap for moving high field accelerator magnet technology forward. This work was supported by the Director, Office of Science, High Energy Physics, US Department of Energy, under contract No. DE-AC02-05CH11231.

  16. Status of the Next European Dipole (NED) activity of the collaborated accelerator research in Europe

    NARCIS (Netherlands)

    Devred, A.; Baudouy, B.; den Ouden, A.; Baynham, D.E.

    2005-01-01

    Plans for LHC upgrade and for the final focalization of linear colliders call for large aperture and/or high-performance dipole and quadrupole magnets that may be beyond the reach of conventional NbTi magnet technology. The Next European Dipole (NED) activity was launched on January 1st, 2004 to

  17. A damped and detuned accelerating structure for the main linacs of the compact linear collider

    CERN Document Server

    Khan, V

    2011-01-01

    Linear colliders are an option for lepton collision at several TeV. The Compact Linear Collider (CLIC) aims at electron and positron collisions at a centre of mass energy of 3 TeV. In CLIC, the main accelerating structures are designed to operate at an X-band frequency of 12 GHz with an accelerating gradient of 100 MV/m. Two significant issues in linear accelerators that can prevent high gradient being achieved are electrical breakdown and wakefields. The baseline design for the CLIC main linacs relies on a small aperture size to reduce the breakdown probability and a strong damping scheme to suppress the wakefields. The strong damping scheme may have a higher possibility of electrical breakdown. In this thesis an alternative design for the main accelerating structures of CLIC is studied and various aspects of this design are discussed. This design is known as a Damped and Detuned Structure (DDS) which relies on moderate damping and strong detuning of the higher order modes (HOMs). The broad idea of DDS is ba...

  18. Field quality of the end sections of SSC [Superconducting Super Collider] dipoles

    International Nuclear Information System (INIS)

    Hassenzahl, W.V.; Caspi, S.; Gilbert, W.; Helm, M.; Laslett, L.J.; Morgan, G.A.

    1986-09-01

    The central or two-dimensional field of a dipole magnet can be calculated with some precision. The fields at the end of the magnet, which are three-dimensional in nature, provide a more complicated problem. Starting with an end design that produced a relatively good end in terms of multipole components, a method of extending parts of the straight section was used to reduce the most important harmonics, the sextupole and decapole, to a negligible level. In addition, the effect of extending an iron yoke over the ends of a magnet was investigated and it was found to have little effect on the harmonics, though it will raise the dipole field. These results are encouraging as they imply that good ends can be developed with relative ease should the two dimensional cross-section of a dipole magnet such as the SSC have to be changed

  19. Magnetic Measurement of Alignment of Main LHC Dipoles and Associated Correctors

    CERN Document Server

    Bottura, L; Deferne, G; Schnizer, P; Sievers, P; Smirnov, N

    2002-01-01

    We discuss the method developed for the verification of alignment of magnetic elements contained in the LHC cryodipole cold mass during series tests at CERN. First, we outline motivations and requirements and then we focus on test strategy, equipment and procedures. Our goal is to express the magnetic field of the dipole and of its associated correctors w.r.t. the reference beam line, not accessible during cryogenic tests. To do so, we use traveling harmonic coil probes ("moles") that allow simultaneous measurement of the field and of the coil position. A laser tracker is used to relate these measurements to fiducials. In the dipole, the axis of the Quadrupole Configured Dipole (QCD) is used as an intermediate reference for the transfer. We provide details on the devices used for measurements in warm and cold conditions, some results from prototypes and pre-series dipoles and an assessment of the precision expected for the series tests.

  20. Late kinetic decoupling of light magnetic dipole dark matter

    International Nuclear Information System (INIS)

    Gondolo, Paolo; Kadota, Kenji

    2016-01-01

    We study the kinetic decoupling of light (≲10 GeV) magnetic dipole dark matter (DM). We find that present bounds from collider, direct DM searches, and structure formation allow magnetic dipole DM to remain in thermal equilibrium with the early universe plasma until as late as the electron-positron annihilation epoch. This late kinetic decoupling leads to a minimal mass for the earliest dark protohalos of thousands of solar masses, in contrast to the conventional weak scale DM scenario where they are of order 10 −6 solar masses.

  1. Detecting W/Z pairs and Higgs at high energy pp colliders: Main experimental issues

    International Nuclear Information System (INIS)

    Alverson, G.; Bengtsson, H.U.; Hauptman, J.

    1987-03-01

    The main detection issues implied by the search for W and Z 0 pairs and Higgs in a high energy pp collider context are discussed here. It includes: precise electron identification, missing energy measurement, multilepton recognition, sophisticated jet pattern recognition, and pile-up. The study uses, as much as possible, a ''realistic simulation of life.''

  2. Design and analysis of the tooling upgrade for the production of the superconductive main dipole magnet prototypes of LHC

    CERN Document Server

    AUTHOR|(CDS)2093638

    Design and analysis of the tooling upgrade for the production of the superconductive main dipole magnet prototypes of LHC Master of Science Thesis, 110 pages, 12 Appendix pages September 2013 Major: Design of machines and systems Examiner: Professor Reijo Kouhia Keywords: CERN, LHC, High Luminosity LHC project, superconductive dipole magnet, welding press, Nb$_{3}$Sn, pre-stress, Ar-inert gas furnace This thesis work has been carried out as a contribution to the development program of superconductive magnets within the LHC High Luminosity study. The thesis provides an insight to the steps that need to be taken in order to produce a superconductive magnet mainly focusing on mechanical assembly. Tooling upgrade is necessary for the production of the superconductive dipole magnet prototypes in near future. Major attention is given by the introduction of the welding assembly in chapter three. The structural compression is given by the so called shell stress defined by the thermal shrinkage of the weld. The associ...

  3. Influence of Austenitic Steel Collar Dimensions on Magnetic Field Harmonics in the LHC Main Dipole

    CERN Document Server

    Bellesia, B; Todesco, Ezio

    2005-01-01

    The influence of the geometry of the collars in the main LHC dipole on the magnetic field harmonics is analyzed. The study aims at finding if the collar geometry is the driving mechanism of field quality for some harmonics and if the two different collar suppliers give a special signature on the magnetic field. Data of more than 700 magnets of the LHC series dipoles are analyzed and discussed. The main result of the analysis is that the collar shape is the driving mechanism of the magnetic field harmonics only for b2 and a3 in one of the three Cold Mass Assemblers (Firm3), where only collars of the supplier S2 are used. Two independent observations support this fact: firstly, strong correlations between apertures of the same magnet as expected from the assembly procedure have been found. Secondly, the expected values based on the measured dimensions of the collars and on a magneto-static model agree with magnetic measurements both for the average and for the standard deviation.

  4. Superconductive technologies for the Large Hadron collider at CERN

    CERN Document Server

    Rossi, L

    2000-01-01

    The Large Hadron Collider (LHC) project is the largest plant based on superconductivity and cryogenics: 27 km of tunnel filled with superconducting magnets and other equipment that will be kept at 1.9 K. The dipole magnets have to generate a minimum magnetic field of 8.3 T to allow collisions of proton beams at an energy of 14 TeV in the centre of mass. The construction of LHC started in 1997 at CERN in Geneva and required 10 years of research and development on fine- filament NbTi superconducting wires and cables, on magnet technology and on He-II refrigerators. In particular the project needs the production of about 1000 tons of high-homogeneity NbTi with current densities of more than 2000 A mm/sup -2/ at 9 T and 1.9 K, with tight control also of all other cable properties such as magnetization, interstrand resistance and copper resistivity. The paper describes the main dipole magnets and reviews the most significant steps in the research and development, focusing on the issues related to the conductor, to...

  5. Electromagnetic and mechanical design of a 56 mm aperture mode dipole for the LHC

    International Nuclear Information System (INIS)

    Ahlbaeck, J.; Ikaeheimo, J.; Jaervi, J.

    1994-01-01

    The Large Hadron Collider (LHC) project is proposed as the future extension of the CERN accelerator complex. The LHC requires twin aperture superconducting dipoles of highest possible field to guide the proton beams in the existing LEP tunnel of 26.7 km circumference. This paper describes the electromagnetic and mechanical design of a 56 mm aperture model dipole for the LHC

  6. Status of 4-cm-aperture, 17-m-long SSC dipole magnet R ampersand D program at BNL

    International Nuclear Information System (INIS)

    Devred, A.; Bush, T.; Coombes, R.; DiMarco, J.; Goodzeit, C.; Kuzminski, J.; Puglisi, M.; Radusewicz, P.; Sanger, P.; Schermer, R.; Spigo, G.; Tompkins, J.; Turner, J.; Wolf, Z.; Yu, Y.; Zheng, H.; Ogitsu, T.; Anarella, M.; Cottingham, J.; Ganetis, G; Garber, M.; Ghosh, A.; Greene, A.; Gupta, R.; Herrera, J.; Kahn, S.; Kelly, E.; Meade, A.; Morgan, G.; Muratore, J.; Prodell, A.; Rehak, M.; Rohrer, E.P.; Sampson, W.; Shutt, R.; Thompson, P.; Wanderer, P.; Willen, E.; Bleadon, M.; Hanft, R.; Kuchnir, M.; Mantsch, P.; Mazur, P.O.; Orris, D.; Peterson, T.; Strait, J.; Royet, J.; Scanlan, R.; Taylor, C.

    1991-06-01

    Over the last year-and-a-half, several 4-cm-aperture, 17-m-long dipole magnet prototypes were built by Brookhaven National Laboratory (BNL) under contract with the Superconducting Super Collider (SSC) Laboratory. These prototypes are the last phase of a half-decade-long R ampersand D program, carried out in collaboration with Fermi National Accelerator Laboratory and Lawrence Berkeley Laboratory, and aimed at demonstrating the feasibility of the SSC main ring dipole magnets. They also prepare the way of the 5-cm-aperture dipole magnet program to be started soon. In this paper, we analyze the mechanical behavior of the BNL prototypes during cool-down and excitation, and we attempt to relate this behavior to the magnet features. The data reveal that the mechanical behavior is sensitive to the vertical collar-yoke interference, and that the magnets exhibited somewhat erratic changes in coil end-loading during cool-down. 9 refs., 6 figs

  7. Sensitivity on the Dipole Moments of the τ -Neutrino at e+e- Colliders: ILC and CLIC

    OpenAIRE

    Gutiérrez-Rodríguez, A.

    2014-01-01

    We study the sensitivity on the anomalous magnetic and electric dipole moments of the τ -neutrino at a high-energy and high-luminosity linear electron positron collider, such as the ILC or CLIC, through the reaction e+e-→νν̅γ . We obtain limits on the dipole moments at the future linear colliders energies. For integrated luminosities of 500 fb−1 and center of mass energies between 0.5 and 3 TeV, the future e+e- colliders may improve the existing limits by two or three orders of magnitude....

  8. Normal Conducting Separation Dipoles For The Lhc Beam Cleaning Insertions

    CERN Document Server

    Petrov, V; de Rijk, G; Gerard, D; Hans, O; Kalbreier, Willi; Kiselev, O; Protopopov, I V; Pupkov, Yu; Ramberger, S; Ruvinsky, E; Sukhanov, A

    2004-01-01

    In the Large Hadron Collider (LHC), two straight sections, IR3 and IR7, will be dedicated to beam cleaning [1]. These cleaning insertions will be equipped with normal conducting magnets. MBW magnets are dipole magnets used to increase the separation of the two beams. They have a core length of 3.4 m and a gap height of 52 mm and will operate at a magnetic field ranging from 0.09 T to 1.53 T. Limitations on the dimensions and total weight of the magnet resulted in a special design with a common yoke for the two beams. The orbits of the two beams will be separated horizontally by a distance between 194 mm and 224 mm in the gap of the magnet. The magnet was designed in collaboration between CERN and BINP. The report presents the main design issues and results of the pre-series acceptance tests including mechanical, electrical and magnetic field measurements. Index terms - LHC, normal conducting magnet, twin aperture design, separation dipole

  9. Energy Extraction Resistors for the Main Dipole and Quadrupole Circuits of the LHC

    CERN Document Server

    Dahlerup-Petersen, K; Popov, V; Sytchev, V V; Vasilev, L B; Zubko, V G

    2000-01-01

    When the LHC will be operating at its maximum beam energy, its superconducting dipole chains store a total magnetic energy of more than 11 GJ. At the same time, the QF and QD quadrupole circuits store a total energy of 400 MJ. Even with the sectorisation of each of the three principal power circuits into eight individually powered segments, the stored energy of a single circuit is considerable. During normal operation the energy in the dipole circuits is safely returned to the mains grid, using the thyristor-based, 'booster' unit of the power converters, operating in inversion. For the quadrupole chains, where the converter is of a mono-polar topology, the stored energy is dissipated into the resistive part of the warm d.c. power lines (busbars and cables) in a slow, controlled run-down. When a magnet quenches, however, such a slow energy transfer, taking 20 minutes from the rated LHC current, will not be possible. The 'cold' diode, taking over the magnet current in case of a quench, will not survive this slo...

  10. Properties of the superconductor in accelerator dipole magnets

    Science.gov (United States)

    Teravest, Derk

    Several aspects of the application of superconductors to high field dipole magnets for particle accelerators are discussed. The attention is focused on the 10 tesla (1 m model) magnet that is envisaged for the future Large Hadron Collider (LHC) accelerator. The basic motivation behind the study is the intention of employing superconductors to their utmost performance. An overview of practical supercomputers, their applications and their impact on high field dipole magnets used for particle accelerators, is presented. The LHC reference design for the dipole magnets is outlined. Several models were used to study the influence of a number of factors in the shape and in particular, the deviation from the shape that is due to the flux flow state. For the investigated extrinsic and intrinsic factors, a classification can be made with respect to the effect on the shape of the characteristic of a multifilamentary wire. The optimization of the coil structure for high field dipole magnets, with respect to the field quality is described. An analytical model for solid and hollow filaments, to calculate the effect of filament magnetization in the quality of the dipole field, is presented.

  11. Considerations on a Cost Model for High-Field Dipole Arc Magnets for FCC

    CERN Document Server

    AUTHOR|(CDS)2078700; Durante, Maria; Lorin, Clement; Martinez, Teresa; Ruuskanen, Janne; Salmi, Tiina; Sorbi, Massimo; Tommasini, Davide; Toral, Fernando

    2017-01-01

    In the frame of the European Circular Collider (EuroCirCol), a conceptual design study for a post-Large Hadron Collider (LHC) research infrastructure based on an energy-frontier 100 TeV circular hadron collider [1]–[3], a cost model for the high-field dipole arc magnets is being developed. The aim of the cost model in the initial design phase is to provide the basis for sound strategic decisions towards cost effective designs, in particular: (A) the technological choice of superconducting material and its cost, (B) the target performance of Nb$_{3}$Sn superconductor, (C) the choice of operating temperature (D) the relevant design margins and their importance for cost, (E) the nature and extent of grading, and (F) the aperture’s influence on cost. Within the EuroCirCol study three design options for the high field dipole arc magnets are under study: cos − θ [4], block [5], and common-coil [6]. Here, in the advanced design phase, a cost model helps to (1) identify the cost drivers and feed-back this info...

  12. Considerations on a Cost Model for High-Field Dipole Arc Magnets for FCC

    CERN Document Server

    AUTHOR|(CDS)2078700; Durante, Maria; Lorin, Clement; Martinez, Teresa; Ruuskanen, Janne; Salmi, Tiina; Sorbi, Massimo; Tommasini, Davide; Toral, Fernando

    2017-01-01

    In the frame of the European Circular Collider (EuroCirCol), a conceptual design study for a post-Large Hadron Collider (LHC) research infrastructure based on an energy-frontier 100 TeV circular hadron collider [1]–[3], a cost model for the high-field dipole arc magnets is being developed. The aim of the cost model in the initial design phase is to provide the basis for sound strategic decisions towards cost effective designs, in particular: (A) the technological choice of superconducting material and its cost, (B) the target performance of Nb3Sn superconductor, (C) the choice of operating temperature (D) the relevant design margins and their importance for cost, (E) the nature and extent of grading, and (F) the aperture’s influence on cost. Within the EuroCirCol study three design options for the high field dipole arc magnets are under study: cos − θ [4], block [5], and common-coil [6]. Here, in the advanced design phase, a cost model helps to (1) identify the cost drivers and feed-back this informati...

  13. Progress with High-Field Superconducting Magnets for High-Energy Colliders

    Science.gov (United States)

    Apollinari, Giorgio; Prestemon, Soren; Zlobin, Alexander V.

    2015-10-01

    One of the possible next steps for high-energy physics research relies on a high-energy hadron or muon collider. The energy of a circular collider is limited by the strength of bending dipoles, and its maximum luminosity is determined by the strength of final focus quadrupoles. For this reason, the high-energy physics and accelerator communities have shown much interest in higher-field and higher-gradient superconducting accelerator magnets. The maximum field of NbTi magnets used in all present high-energy machines, including the LHC, is limited to ˜10 T at 1.9 K. Fields above 10 T became possible with the use of Nb3Sn superconductors. Nb3Sn accelerator magnets can provide operating fields up to ˜15 T and can significantly increase the coil temperature margin. Accelerator magnets with operating fields above 15 T require high-temperature superconductors. This review discusses the status and main results of Nb3Sn accelerator magnet research and development and work toward 20-T magnets.

  14. High-Field Nb3Sn Cos-theta Dipole with Stress Management

    Energy Technology Data Exchange (ETDEWEB)

    Novitski, Igor [Fermilab; Carmichael, Justin [Fermilab; Kashikhin, Vadim V. [Fermilab; Zlobin, Alexander V. [Fermilab

    2017-01-01

    Cost-effective superconducting dipole magnets with operating fields up to 16 T are being considered for the LHC en-ergy upgrade (HE-LHC) and a Future Circular Collider (FCC). To demonstrate feasibility of 15 T accelerator quality dipole mag-nets, FNAL as a part of the US-MDP is developing a single-aper-ture Nb3Sn dipole demonstrator based on a 4-layer graded cos-theta coil with 60 mm aperture and cold iron yoke. In parallel, to explore the limit of the Nb3Sn accelerator magnet technology, op-timize magnet design and performance parameters, and reduce magnet cost, magnet design studies are also being performed to push the nominal bore field to 16 T in a 60-mm aperture cos-theta dipole. Results of these studies are reported and discussed in this paper.

  15. Study of top quark dipole interactions in t t \\xAF production associated with two heavy gauge bosons at the LHC

    Science.gov (United States)

    Etesami, Seyed Mohsen; Khatibi, Sara; Mohammadi Najafabadi, Mojtaba

    2018-04-01

    In this paper, we investigate the prospects of measuring the strong and weak dipole moments of the top quark at the Large Hadron Collider (LHC). Measurements of these couplings provide an excellent opportunity to probe new physics interactions as they have quite small magnitudes in the standard model. Our analyses are performed using the production cross sections of t t ¯W W and t t ¯Z Z processes in the same sign dilepton and four-lepton final states, respectively. The sensitivities to strong and weak top quark dipole interactions at the 95% confidence level for various integrated luminosity scenarios are derived and compared with other studies. To estimate the constraints, the main source of backgrounds and a realistic simulation of the detector response are considered.

  16. Second generation superconducting super collider dipole magnet cryostat design

    International Nuclear Information System (INIS)

    Niemann, R.C.; Bossert, R.C.; Carson, J.A.; Engler, N.H.; Gonczy, J.D.; Larson, E.T.; Nicol, T.H.; Ohmori, T.

    1988-12-01

    The SSC Magnet Development Program is developing accelerator dipole magnets in successive iterations. The initial iteration is complete with six full length model magnets and a thermal model having been built and tested. This initial experience along with the evolving SSC Magnet System Requirements have resulted in the second generation magnet cryostat design. It is this configuration that will be employed for the near term ongoing magnetic, thermal, string and accelerated life testing and will be the design considered for Phase I; i.e., Technology Orientation, of the SSC Magnet Industrialization Program. 5 refs., 7 figs., 1 tab

  17. 5cm aperture dipole studies

    International Nuclear Information System (INIS)

    McInturff, A.D.; Bossert, R.; Carson, J.; Fisk, H.E.; Hanft, R.; Kuchnir, M.; Lundy, R.; Mantech, P.; Strait, J.

    1986-01-01

    The results obtained during the evolution of the design, construction, and testing program of the design ''B'' dipole are presented here. Design ''B'' is one of the original three competing designs for the Superconducting Super Collider ''SSC'' arc dipoles. The final design parameters were as follows: air cored (less than a few percent of the magnetic field derived from any iron present), aluminum collared, two layered winding, 5.5T maximum operating field, and a 5 cm cold aperture. There have been fourteen 64 cm long 5 cm aperture model dipoles cold tested (at 4.3K and less) in this program so far. There was a half length full size (6m) mechanical analog (M-10) built and tested to check the cryostat's mechanical design under ramping and quench conditions. Several deviations from the ''Tevatron'' dipole fabrication technique were incorporated, for example the use of aluminum collars instead of stainless steel. The winding technique variations explored were ''dry welding,'' a technique with the cable covered with Kapton insulation only and ''wet winding'' where the Kapton was covered with a light coat of ''B'' stage epoxy. Test data include quench currents, field quality (Fourier multipole co-efficients), coil magnetization, conductor current performance, and coil loading. Quench current, loss per cycle, and harmonics were measured as a function of the magnitude and rate of change of the magnetic field, and helium bath temperature

  18. The Antiproton-Ion-Collider at FAIR

    International Nuclear Information System (INIS)

    Kruecken, R.; Fabbietti, L.; Faestemann, T.; Homolka, J.; Kienle, P.; Ring, P.; Suzuki, K.; Bosch, F.; Franzke, B.; Kozhuharov, Ch.; Litvinov, Y.; Nolden, F.; Cargnelli, M.; Fuhrmann, H.; Hirtl, A.; Marton, J.; Widmann, E.; Zmeskal, J.; Hayano, R. S.; Lenske, H.

    2006-01-01

    An antiproton-ion collider (AIC) has been proposed for the FAIR Project at Darmstadt to independently determine rms radii for protons and neutrons in stable and short lived nuclei by means of antiproton annihilation at medium energies. The AIC makes use of the ELISe electron ion collider complex to store, cool and collide antiprotons of 30 MeV energy with short lived radioactive ions in the NESR. The exotic nuclei are produced by projectile fragmentation or projectile fission and separated in the Super FRS. By detecting the loss of stored ions using the Schottky method the total absorption cross-section for antiprotons on the stored ions with mass A will be measured. Cross sections for the absorption on protons and neutrons, respectively, will be measured by the detection of residual nuclei with A-1 either by the Schottky method or by detecting them in recoil detectors after the first dipole stage of the NESR following the interaction zone. The absorption cross sections are in first order directly proportional to the mean square radii

  19. CP-violating top quark couplings at future linear $e^+e^-$ colliders

    CERN Document Server

    Bernreuther, Werner; Garcia Garcia, Ignacio; Perello Rosello, Martin; Poeschl, Roman; Richard, Francois; Ros, Eduardo; Vos, Marcel

    2017-01-01

    We study the potential of future lepton colliders to probe violation of the CP symmetry in the top quark sector. In certain extensions of the Standard Model, such as the two-Higgs-doublet model (2HDM), sizeable anomalous top quark dipole moments can arise, that may be revealed by a precise measurement of top quark pair production. We present results from detailed Monte Carlo studies for the ILC at 500 GeV and CLIC at 380 GeV and use parton level simulations to explore the potential of high-energy operation. We find that precise measurements in $e^+e^- \\rightarrow t \\bar{t}$ production with subsequent decay to lepton plus jets final states can provide sufficient sensitivity to detect Higgs-boson-induced CP violation in a viable two-Higgs-doublet model. The potential of a linear $e^+e^-$ collider to detect CP-violating electric and weak dipole form factors of the top quark exceeds the prospects of the HL-LHC by over an order of magnitude.

  20. CP-violating top quark couplings at future linear e^+e^- colliders

    Science.gov (United States)

    Bernreuther, W.; Chen, L.; García, I.; Perelló, M.; Poeschl, R.; Richard, F.; Ros, E.; Vos, M.

    2018-02-01

    We study the potential of future lepton colliders to probe violation of the CP symmetry in the top quark sector. In certain extensions of the Standard Model, such as the two-Higgs-doublet model (2HDM), sizeable anomalous top quark dipole moments can arise, which may be revealed by a precise measurement of top quark pair production. We present results from detailed Monte Carlo studies for the ILC at 500 GeV and CLIC at 380 GeV and use parton-level simulations to explore the potential of high-energy operation. We find that precise measurements in e^+e^- → t\\bar{t} production with subsequent decay to lepton plus jets final states can provide sufficient sensitivity to detect Higgs-boson-induced CP violation in a viable two-Higgs-doublet model. The potential of a linear e^+e^- collider to detect CP-violating electric and weak dipole form factors of the top quark exceeds the prospects of the HL-LHC by over an order of magnitude.

  1. Results of 3-dimensional structural FE-modeling of the coil end-regions of the LHC main dipoles

    CERN Document Server

    Hoeck, U; Schillo, M; Perini, D; Siegel, N

    2000-01-01

    The transition region between the straight part and the ends of the coils of the LHC model and prototype dipole magnets are often identified as the origin of training quenches. In order to study how the discontinuities in the material properties of these regions affect coil pre-stress and possibly gain more insight in the quench behavior, a program was set up at CERN to analyze by 3D-FEM these particular regions. The ACCEL team, who performed a similar analysis for the main quadrupoles of the Superconducting Supercollider SSC, is entrusted with this program. In this paper we report on the results of 3D-modeling and analysis of the coil return end region, including the complete coil mass, of a 1-m single bore model magnet. This magnet represents all relevant features of the "two-in-one" LHC main dipole design concerning the winding configuration, the collar pack, the yoke, and the outer shell representing the He-vessel. The transition region between coil ends and straight section is modeled by slicing the magn...

  2. Mechanical and electromagnetic analysis of 50 millimeter designs for the SSC dipole

    International Nuclear Information System (INIS)

    Jayakumar, J.; Leung, K.; Nobrega, F.; Orrell, D.; Sanger, P.; Snitchler, G.; Spigo, G.; Turner, J.; Goodzeit, C.; Gupta, R.; Kahn, S.; Morgan, G.; Willen, E.; Kerby, J.; Strait, J.; Schermer, R.

    1990-09-01

    Several designs for the Superconducting Super Collider dipole magnet have been analyzed. This note discusses the mechanical and electromagnetic features of each design. Electromagnetic and Mechanical analyses were performed using hand, computer programs and finite element techniques to evaluate the design. 10 refs., 6 figs., 3 tabs

  3. Elementary design of a 30 TeV on 30 TeV proton antiproton collider

    International Nuclear Information System (INIS)

    Kondo, Takahiko

    1984-01-01

    A crude conceptual design was made for a 30TeV on 30TeV antiproton-proton collider. The choice of energy and antiproton-proton (instead of PP) are somewhat arbitrary. The basic parameters of the main ring are listed in a table; the bending radius, ring radius and circumference are 11.1km, 14.4km, and 90.6km, respectively; 7680 dipole magnets with maximum field of 9 Tesla; 1280 quadrupole magnets with maximum gradient of 200Tesla/m. The development of high-field, low-heat loss dipoles and quadrupoles are essential, together with the consideration for their mass production method. On the other hand, the possibility of obtaining antiproton-proton luminosity exceeding 10 32 /cm 2 sec is suggested without any fundamental limitation. With such high luminosity, however, it should be pointed out that particle detectors must face their limitation due to extremely high rate, high multiplicity interaction, requiring large steps of detector research and development efforts. (Aoki, K.)

  4. Status of the Future Circular Collider Study

    Science.gov (United States)

    Benedikt, Michael

    2016-03-01

    Following the 2013 update of the European Strategy for Particle Physics, the international Future Circular Collider (FCC) Study has been launched by CERN as host institute, to design an energy frontier hadron collider (FCC-hh) in a new 80-100 km tunnel with a centre-of-mass energy of about 100 TeV, an order of magnitude beyond the LHC's, as a long-term goal. The FCC study also includes the design of a 90-350 GeV high-luminosity lepton collider (FCC-ee) installed in the same tunnel, serving as Higgs, top and Z factory, as a potential intermediate step, as well as an electron-proton collider option (FCC-he). The physics cases for such machines will be assessed and concepts for experiments will be developed in time for the next update of the European Strategy for Particle Physics by the end of 2018. The presentation will summarize the status of machine designs and parameters and discuss the essential technical components to be developed in the frame of the FCC study. Key elements are superconducting accelerator-dipole magnets with a field of 16 T for the hadron collider and high-power, high-efficiency RF systems for the lepton collider. In addition the unprecedented beam power presents special challenges for the hadron collider for all aspects of beam handling and machine protection. First conclusions of geological investigations and implementation studies will be presented. The status of the FCC collaboration and the further planning for the study will be outlined.

  5. Collider study on the loop-induced dark matter mediation

    International Nuclear Information System (INIS)

    Tsai, Yuhsin

    2016-01-01

    Collider experiments are one of the most promising ways to constrain Dark Matter (DM) interactions. For DM couplings involving light mediators, especially for the loop-mediated interactions, a meaningful interpretation of the results requires to go beyond effective field theory. In this note we discuss the study of the magnetic dipole interacting DM, focusing on a model with anarchic dark flavor structure. By including the momentum-dependent form factors that mediate the coupling – given by the Dark Penguin – in collider processes, we study bounds from monophoton, diphoton, and non-pointing photon searches at the LHC. We also compare our results to constraints from the direct detection experiments.

  6. Collider study on the loop-induced dark matter mediation

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Yuhsin, E-mail: yhtsai@umd.edu [Maryland Center for Fundamental Physics, University of Maryland, College Park, MD 20742 (United States)

    2016-06-21

    Collider experiments are one of the most promising ways to constrain Dark Matter (DM) interactions. For DM couplings involving light mediators, especially for the loop-mediated interactions, a meaningful interpretation of the results requires to go beyond effective field theory. In this note we discuss the study of the magnetic dipole interacting DM, focusing on a model with anarchic dark flavor structure. By including the momentum-dependent form factors that mediate the coupling – given by the Dark Penguin – in collider processes, we study bounds from monophoton, diphoton, and non-pointing photon searches at the LHC. We also compare our results to constraints from the direct detection experiments.

  7. Linear Colliders

    International Nuclear Information System (INIS)

    Alcaraz, J.

    2001-01-01

    After several years of study e''+ e''- linear colliders in the TeV range have emerged as the major and optimal high-energy physics projects for the post-LHC era. These notes summarize the present status form the main accelerator and detector features to their physics potential. The LHC era. These notes summarize the present status, from the main accelerator and detector features to their physics potential. The LHC is expected to provide first discoveries in the new energy domain, whereas an e''+ e''- linear collider in the 500 GeV-1 TeV will be able to complement it to an unprecedented level of precision in any possible areas: Higgs, signals beyond the SM and electroweak measurements. It is evident that the Linear Collider program will constitute a major step in the understanding of the nature of the new physics beyond the Standard Model. (Author) 22 refs

  8. CERN LHC dipole prototype success

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    In a crash programme, the first prototype superconducting dipole magnet for CERN's LHC protonproton collider was successfully powered for the first time at CERN on 14 April, eventually sailing to 9T, above the 8.65T nominal LHC field, before quenching for the third time. The next stage is to install the delicate measuring system for making comprehensive magnetic field maps in the 10 m long, 50 mm diameter twin-apertures of the magnet. These measurements will check that the required LHC field quality has been achieved at both the nominal and injection fields

  9. Design of a High Luminosity 100 TeV Proton Antiproton Collider

    Energy Technology Data Exchange (ETDEWEB)

    Oliveros Tuativa, Sandra Jimena [Univ. of Mississippi, Oxford, MS (United States)

    2017-04-01

    Currently new physics is being explored with the Large Hadron Collider at CERN and with Intensity Frontier programs at Fermilab and KEK. The energy scale for new physics is known to be in the multi-TeV range, signaling the need for a future collider which well surpasses this energy scale. A 10$^{\\,34}$ cm$^{-2}$ s$^{-1}$ luminosity 100 TeV proton-antiproton collider is explored with 7$\\times$ the energy of the LHC. The dipoles are 4.5\\,T to reduce cost. A proton-antiproton collider is selected as a future machine for several reasons. The cross section for many high mass states is 10 times higher in $p\\bar{p}$ than $pp$ collisions. Antiquarks for production can come directly from an antiproton rather than indirectly from gluon splitting. The higher cross sections reduce the synchrotron radiation in superconducting magnets and the number of events per bunch crossing, because lower beam currents can produce the same rare event rates. Events are also more centrally produced, allowing a more compact detector with less space between quadrupole triplets and a smaller $\\beta^{*}$ for higher luminosity. To adjust to antiproton beam losses (burn rate), a Fermilab-like antiproton source would be adapted to disperse the beam into 12 different momentum channels, using electrostatic septa, to increase antiproton momentum capture 12 times. At Fermilab, antiprotons were stochastically cooled in one Debuncher and one Accumulator ring. Because the stochastic cooling time scales as the number of particles, two options of 12 independent cooling systems are presented. One electron cooling ring might follow the stochastic cooling rings for antiproton stacking. Finally antiprotons in the collider ring would be recycled during runs without leaving the collider ring, by joining them to new bunches with snap bunch coalescence and synchrotron damping. These basic ideas are explored in this work on a future 100 TeV proton-antiproton collider and the main parameters are presented.

  10. Design of a High Luminosity 100 TeV Proton-Antiproton Collider

    Science.gov (United States)

    Oliveros Tautiva, Sandra Jimena

    Currently new physics is being explored with the Large Hadron Collider at CERN and with Intensity Frontier programs at Fermilab and KEK. The energy scale for new physics is known to be in the multi-TeV range, signaling the need for a future collider which well surpasses this energy scale. A 10 34 cm-2 s-1 luminosity 100 TeV proton-antiproton collider is explored with 7x the energy of the LHC. The dipoles are 4.5 T to reduce cost. A proton-antiproton collider is selected as a future machine for several reasons. The cross section for many high mass states is 10 times higher in pp than pp collisions. Antiquarks for production can come directly from an antiproton rather than indirectly from gluon splitting. The higher cross sections reduce the synchrotron radiation in superconducting magnets and the number of events per bunch crossing, because lower beam currents can produce the same rare event rates. Events are also more centrally produced, allowing a more compact detector with less space between quadrupole triplets and a smaller beta* for higher luminosity. To adjust to antiproton beam losses (burn rate), a Fermilab-like antiproton source would be adapted to disperse the beam into 12 different momentum channels, using electrostatic septa, to increase antiproton momentum capture 12 times. At Fermilab, antiprotons were stochastically cooled in one Debuncher and one Accumulator ring. Because the stochastic cooling time scales as the number of particles, two options of 12 independent cooling systems are presented. One electron cooling ring might follow the stochastic cooling rings for antiproton stacking. Finally antiprotons in the collider ring would be recycled during runs without leaving the collider ring, by joining them to new bunches with snap bunch coalescence and synchrotron damping. These basic ideas are explored in this work on a future 100 TeV proton-antiproton collider and the main parameters are presented.

  11. Correction of magnetization sextupole and decapole in a 5 centimeter bore SSC dipole using passive superconductor

    International Nuclear Information System (INIS)

    Green, M.A.

    1991-05-01

    Higher multipoles due to magnetization of the superconductor in four and five centimeter bore Superconducting Super Collider (SSC) superconducting dipole magnets have been observed. The use of passive superconductor to correct out the magnetization sextupole has been demonstrated on two dipoles built by the Lawrence Berkeley Laboratory (LBL). This reports shows how passive correction can be applied to the five centimeter SSC dipoles to remove sextupole and decapole caused by magnetization of the dipole superconductor. Two passive superconductor corrector options will be presented. The change in magnetization sextupole and decapole due to flux creep decay of the superconductor during injection can be partially compensated for using the passive superconductor. 9 refs; 5 figs

  12. A finite different field solver for dipole modes

    International Nuclear Information System (INIS)

    Nelson, E.M.

    1992-08-01

    A finite element field solver for dipole modes in axisymmetric structures has been written. The second-order elements used in this formulation yield accurate mode frequencies with no spurious modes. Quasi-periodic boundaries are included to allow travelling waves in periodic structures. The solver is useful in applications requiring precise frequency calculations such as detuned accelerator structures for linear colliders. Comparisons are made with measurements and with the popular but less accurate field solver URMEL

  13. Quench protection diodes for the large hadron collider LHC at CERN

    International Nuclear Information System (INIS)

    Hagedorn, D.; Naegele, W.

    1992-01-01

    For the quench protection of the main ring dipole and quadrupole magnets for the proposed Large Hadron Collider at CERN two lines of approach have been pursued for the realization of a suitable high current by-pass element and liquid helium temperature. Two commercially available diodes of the HERA type connected in parallel can easily meet the requirements if a sufficient good current sharing is imposed by current balancing elements. Design criteria for these current balancing elements are derived from individual diode characteristics. Single diode elements of thin base region, newly developed in industry, have been successfully tested. The results are promising and, if the diodes can be made with reproducible characteristics, they will provide the preferred solution especially in view of radiation hardness

  14. Heat leak testing of a superconducting RHIC dipole magnet at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    DeLalio, J.T.; Brown, D.P.; Sondericker, J.H.

    1993-01-01

    Brookhaven National Laboratory is currently performing heat load tests on a superconducting dipole magnet. The magnet is a prototype of the 360, 8 cm bore, arc dipole magnets that will be used in the Relativistic Heavy Ion Collider (RMC). An accurate measurement of the heat load is needed to eliminate cumulative errors when determining the REUC cryogenic system load requirements. The test setup consists of a dipole positioned between two quadrupoles in a common vacuum tank and heat shield. Piping and instrumentation are arranged to facilitate measurement of the heat load on the primary 4.6 K magnet load and the secondary 55 K heat shield load. Initial results suggest that the primary heat load is well below design allowances. The secondary load was found to be higher than estimated, but remained close to the budgeted amount. Overall, the dipole performed to specifications

  15. Opportunities with top quarks at future circular colliders

    CERN Document Server

    Fuks, Benjamin

    2014-01-01

    We describe various studies relevant for top physics at future circular collider projects currently under discussion. We show how highly-massive top-antitop systems produced in proton-proton collisions at a center-of-mass energy of 100 TeV could be observed and employed for constraining top dipole moments, investigate the reach of future proton-proton and electron-positron machines to top flavor-changing neutral interactions, and discuss top parton densities.

  16. UNK superconducting dipole development

    International Nuclear Information System (INIS)

    Ageev, A.I.; Andreev, N.I.; Balbekov, V.I.

    1987-01-01

    For choozing the design of superconducting dipoles (SCD) for the IHEP UNK the test results for SCD with warm and cold iron are given. The main parameters of dipoles are presented. The SCD designs are described. At present works on SP magnet simulation for UNK are carried out in two directions. Tests are conducted on a rig with a chain of series dipoles with a warm magnetic screen. The purpose of these tests is to study heat exchange and hydraulics in magnets, energy and helium evacuation in emergency magnet transition into normal conditions, simulation of possible cooling and heating schemes. Another direction involves production of short and full-scale dipole models with cold iron and their testing on rigs. The final choice of the dipole design for commercial production is planned for 1987

  17. Geometric and Magnetic Axes of the LHC Dipole

    CERN Document Server

    Bajko, M; Buzio, M; Deferne, G; Ferracin, P; García-Pérez, J; Scandale, Walter; Todesco, Ezio

    2001-01-01

    The 15-m long superconducting dipoles of the Large Hadron Collider (LHC) with two-in-one design are curved by about 5 mrad to follow the beam trajectory. They are supported on three cold feet to minimise the vertical sagitta induced by their 35 tonnes weight. The cold masses contain at both ends local multipolar correctors to compensate for the detrimental effect of persistent current during injection. We discuss how we measure and control the geometrical shape of the cold mass and the alignment of the associated correctors and how we identify the magnetic axis of the field-shape harmonics with respect to the expected beam reference orbit. We present results relative to prototype dipoles obtained both at room temperature and in operational conditions at 1.9 K.

  18. 3-D metrology applied to superconducting dipole magnets for LHC

    International Nuclear Information System (INIS)

    Dupont, M.; Missiaen, D.; Peguiron, L.

    1999-01-01

    The construction of the Large Hadron Collider (LHC) requires the manufacture of 1232 superconducting dipole magnets containing two beam channels in a common mechanical structure. These dipole magnets, which produce the required magnetic field to deflect the particles along a circular trajectory, have to be bent in their horizontal plane in order to ensure the largest mechanical aperture. Very tight tolerances on the geometry of these magnets have to be imposed during their fabrication in order to minimise, during operation, the possible losses of particles, which circulate in rather small channels and to ensure the alignment of the adjacent magnets in the ring tunnel. This necessitates a thorough metrological inspection of the magnet geometry and an accurate positioning of some of its components. This paper presents the measuring system and the developed methodology to realize these operations. The results on the first 15 m long dipole magnet are shown. (author)

  19. The LHC dipole test control architecture

    International Nuclear Information System (INIS)

    Gorskaya, E.; Samojlov, V.; Raimondo, A.; Rijllart, A.

    2003-01-01

    The next large accelerator project at CERN is the Large Hadron Collider, which is foreseen to be installed in the existing LEP tunnel, and scheduled to be commissioned in 2007. For this project, 1200 15-metre long dipole magnets need to be tested at CERN in warm and cold conditions on dedicated test benches that are under development. The final LHC dipole series test set-up will consist of 12 benches organized in 6 clusters of two benches sharing the largest and most expensive devices. This sharing is made possible by a deliberate de-phasing of the tests among magnets, ensuring an optimum use of resources, such as cryogenics and power equipment, without limiting the total throughput. An offered two-level control architecture includes: 1) the Test 'Master' that drives the test for a cluster; 2) the Resource 'Manager' that allocates common devices and central resources. The implementation of this architecture is done in the LabVIEW environment

  20. γ*γ* total cross section in the dipole picture of BFKL dynamics

    International Nuclear Information System (INIS)

    Boonekamp, Maarten; De Roeck, Albert; Royon, Christophe; Wallon, Samuel

    1999-01-01

    The total γ * γ * cross section is derived in the leading order QCD dipole picture of BFKL dynamics, and compared with the one from two-gluon exchange. The double leading logarithm approximation of the DGLAP cross section is found to be small in the phase space studied. Cross sections are calculated for realistic data samples at the e + e - collider LEP and a future high energy linear collider. Next to leading order corrections to the BFKL evolution have been determined phenomenologically, and are found to give very large corrections to the BFKL cross section, leading to a reduced sensitivity for observing BFKL effects

  1. γ*γ* total cross-section in the dipole picture of BFKL dynamics

    International Nuclear Information System (INIS)

    Boonekamp, M.; Royon, C.; Wallon, S.; Universite Pierre et Marie Curie, 75 - Paris

    1999-01-01

    The total γ * γ * cross-section is derived in the Leading Order QCD dipole picture of BFKL dynamics, and compared with the one from 2-gluon exchange. The Double Leading Logarithm approximation of the DGLAP cross-section is found to be small in the phase space studied. Cross sections are calculated for realistic data samples at the e + e - collider LEP and a future high energy linear collider. Next to Leading order corrections to the BFKL evolution have been determined phenomenologically, and are found to give very large corrections to the BFKL cross-section, leading to a reduced sensitivity for observing BFKL. (author)

  2. $\\gamma^{*}\\gamma^{*}$ total cross-section in the dipole picture of BFKL dynamics

    CERN Document Server

    Boonekamp, M; Royon, C; Wallon, S

    1999-01-01

    The total $\\gamma^*\\gamma^*$ cross-section is derived in the Leading Order QCD dipole picture of BFKL dynamics, and compared with the one from 2-gluon exchange. The Double Leading Logarithm approximation of the DGLAP cross-section is found to be small in the phase space studied. Cross sections are calculated for realistic data samples at the $e^+e^-$ collider LEP and a future high energy linear collider. Next to Leading order corrections to the BFKL evolution have been determined phenomenologically, and are found to give very large corrections to the BFKL cross-section, leading to a reduced sensitivity for observing BFKL.

  3. Status of design, development and test of the dipole magnets for the high energy booster

    International Nuclear Information System (INIS)

    Butler, J.M.; Boulios, G.; Finger, K.; Kaylor, L.; McConnon, A.; McConnon, S.; Osborne, S.; Sinnott, Z.; Pisz, F.; Swenson, C.

    1994-01-01

    Westinghouse Magnet Systems Division has a contract to design, develop, build and test the superconducting dipole magnets for the High Energy Booster. This paper covers the key requirements of the magnet and the design features to meet these requirements. Although similar to the Collider dipole magnets, there are some key differences in the functional requirements and design constraints which lead to design differences. Most significant is the requirement to prevent quench during bipolar operation at a ramp rate of 62 A/s compared to unipolar operation at 4 A/s for the Collider. Testing of 50 mm magnets made for the SSCL string test show that the design is sensitive to interstrand eddy currents and resultant heating at the higher ramp rate. The cryostat diameter is not constrained by the fixed distance between top and bottom rings as in the Collider. The authors are taking advantage of the additional space allowed. Emphasis in this paper is placed on the design differences and the reasons for them in both the cold mass and the cryostat. The cold testing requirements and plans for test facilities to carry out the tests are summarized

  4. SUPERCONDUCTING DIPOLE MAGNETS FOR THE LHC INSERTION REGIONS

    International Nuclear Information System (INIS)

    WILLEN, E.; ANERELLA, M.; COZZOLINO, J.; GANETIS, G.; GHOSH, A.; GUPTA, R.; HARRISON, M.; JAIN, A.; MARONE, A.; MURATORE, J.; PLATE, S.; SCHMALZLE, J.; WANDERER, P.; WU, K.C.

    2000-01-01

    Dipole bending magnets are required to change the horizontal separation of the two beams in the LHC. In Intersection Regions (IR) 1, 2, 5, and 8, the beams are brought into collision for the experiments located there. In IR4, the separation of the beams is increased to accommodate the machine's particle acceleration hardware. As part of the US contribution to the LHC Project, BNL is building the required superconducting magnets. Designs have been developed featuring a single aperture cold mass in a single cryostat, two single aperture cold masses in a single cryostat, and a dual aperture cold mass in a single cryostat. All configurations feature the 80 mm diameter, 10 m long superconducting coil design used in the main bending magnets of the Relativistic Heavy Ion Collider recently completed at Brookhaven. The magnets for the LHC, to be built at Brookhaven, are described and results from the program to build two dual aperture prototypes are presented

  5. Multiple transparency windows and Fano interferences induced by dipole-dipole couplings

    Science.gov (United States)

    Diniz, E. C.; Borges, H. S.; Villas-Boas, C. J.

    2018-04-01

    We investigate the optical properties of a two-level system (TLS) coupled to a one-dimensional array of N other TLSs with dipole-dipole coupling between the first neighbors. The first TLS is probed by a weak field, and we assume that it has a decay rate much greater than the decay rates of the other TLSs. For N =1 and in the limit of a Rabi frequency of a probe field much smaller than the dipole-dipole coupling, the optical response of the first TLS, i.e., its absorption and dispersion, is equivalent to that of a three-level atomic system in the configuration which allows one to observe the electromagnetically induced transparency (EIT) phenomenon. Thus, here we investigate an induced transparency phenomenon where the dipole-dipole coupling plays the same role as the control field in EIT in three-level atoms. We describe this physical phenomenon, named a dipole-induced transparency (DIT), and investigate how it scales with the number of coupled TLSs. In particular, we have shown that the number of TLSs coupled to the main TLS is exactly equal to the number of transparency windows. The ideas presented here are very general and can be implemented in different physical systems, such as an array of superconducting qubits, or an array of quantum dots, spin chains, optical lattices, etc.

  6. Parallel computation of transverse wakes in linear colliders

    International Nuclear Information System (INIS)

    Zhan, Xiaowei; Ko, Kwok.

    1996-11-01

    SLAC has proposed the detuned structure (DS) as one possible design to control the emittance growth of long bunch trains due to transverse wakefields in the Next Linear Collider (NLC). The DS consists of 206 cells with tapering from cell to cell of the order of few microns to provide Gaussian detuning of the dipole modes. The decoherence of these modes leads to two orders of magnitude reduction in wakefield experienced by the trailing bunch. To model such a large heterogeneous structure realistically is impractical with finite-difference codes using structured grids. The authors have calculated the wakefield in the DS on a parallel computer with a finite-element code using an unstructured grid. The parallel implementation issues are presented along with simulation results that include contributions from higher dipole bands and wall dissipation

  7. Effect of CSR shielding in the compact linear collider

    CERN Document Server

    Esberg, J; Apsimon, R; Schulte, D

    2014-01-01

    The Drive Beam complex of the Compact Linear Collider must use short bunches with a large charge making beam transport susceptible to unwanted effects of Coherent Synchrotron Radiation emitted in the dipole magnets. We present the effects of transporting the beam within a limited aperture which decreases the magnitude of the CSR wake. The effect, known as CSR shielding, eases the design of key components of the facility.

  8. A finite element field solver for dipole modes

    International Nuclear Information System (INIS)

    Nelson, E.M.

    1992-01-01

    A finite element field solver for dipole modes in axisymmetric structures has been written. The second-order elements used in this formulation yield accurate mode frequencies with no spurious modes. Quasi-periodic boundaries are included to allow travelling waves in periodic structures. The solver is useful in applications requiring precise frequency calculations such as detuned accelerator structures for linear colliders. Comparisons are made with measurements and with the popular but less accurate field solver URMEL. (author). 7 refs., 4 figs

  9. Choke-mode damped structure design for the Compact Linear Collider main linac

    CERN Document Server

    Zha, Hao; Grudiev, Alexej; Huang, Wenhui; Shi, Jiaru; Tang, Chuanxiang; Wuensch, Walter

    2012-01-01

    Choke-mode damped structures are being studied as an alternative design to waveguide damped structures for the main linac of the Compact Linear Collider (CLIC). Choke-mode structures have the potential for lower pulsed temperature rise and simpler and less expensive fabrication. An equivalent circuit model based on transmission line theory for higher-order-mode damping is presented. Using this model, a new choke geometry is proposed and the wakefield performance is verified using GDFIDL. This structure has a comparable wakefield damping effect to the baseline design which uses waveguide damping. A prototype structure with the same iris dimensions and accelerating gradient as the nominal CLIC design, but with the new choke geometry, has been designed for high-power tests. DOI: 10.1103/PhysRevSTAB.15.122003

  10. Sextupole correction magnets for the Large Hadron Collider

    CERN Document Server

    Meinke, R B; Senti, M; Op de Beeck, W J; De Ryck, C; MacKay, W W

    1999-01-01

    About 2500 superconducting sextupole corrector magnets (MCS) are needed for the Large Hadron Collider (LHC) at CERN to compensate persistent current sextupole fields of the main dipoles. The MCS is a cold bore magnet with iron yoke. The coils are made from a NbTi conductor, which is cooled to 1.9 K. In the original CERN design 6 individual sub-coils, made from a monolithic composite conductor, are assembled and spliced together to form the sextupole. The coils are individually wound around precision-machined central islands and stabilized with matching saddle pieces at both ends. The Advanced Magnet Lab, Inc. (AML) has produced an alternative design, which gives improved performance and reliability at reduced manufacturing cost. In the AML design, the magnet consists of three splice-free sub-coils, which are placed with an automated winding process into pockets of prefabricated G-11 support cylinders. Any assembly process of sub-coils with potential misalignment is eliminated. The AML magnet uses a Kapton-wra...

  11. Dynamic imperfections and optimized feedback design in the Compact Linear Collider main linac

    CERN Document Server

    Eliasson, Peder

    2008-01-01

    The Compact Linear Collider (CLIC) main linac is sensitive to dynamic imperfections such as element jitter, injected beam jitter, and ground motion. These effects cause emittance growth that, in case of ground motion, has to be counteracted by a trajectory feedback system. The feedback system itself will, due to jitter effects and imperfect beam position monitors (BPMs), indirectly cause emittance growth. Fast and accurate simulations of both the direct and indirect effects are desirable, but due to the many elements of the CLIC main linac, simulations may become very time consuming. In this paper, an efficient way of simulating linear (or nearly linear) dynamic effects is described. The method is also shown to facilitate the analytic determination of emittance growth caused by the different dynamic imperfections while using a trajectory feedback system. Emittance growth expressions are derived for quadrupole, accelerating structure, and beam jitter, for ground motion, and for noise in the feedback BPMs. Fina...

  12. The correction of linear lattice gradient errors using an AC dipole

    Energy Technology Data Exchange (ETDEWEB)

    Wang,G.; Bai, M.; Litvinenko, V.N.; Satogata, T.

    2009-05-04

    Precise measurement of optics from coherent betatron oscillations driven by ac dipoles have been demonstrated at RHIC and the Tevatron. For RHIC, the observed rms beta-beat is about 10%. Reduction of beta-beating is an essential component of performance optimization at high energy colliders. A scheme of optics correction was developed and tested in the RHIC 2008 run, using ac dipole optics for measurement and a few adjustable trim quadruples for correction. In this scheme, we first calculate the phase response matrix from the. measured phase advance, and then apply singular value decomposition (SVD) algorithm to the phase response matrix to find correction quadruple strengths. We present both simulation and some preliminary experimental results of this correction.

  13. Beam dynamics aspects of crab cavities in the CERN Large Hadron Collider

    CERN Document Server

    Sun, Y P; Barranco, J; Tomás, R; Weiler, T; Zimmermann, F; Calaga, R; Morita, A

    2009-01-01

    Modern colliders bring into collision a large number of bunches to achieve a high luminosity. The long-range beam-beam effects arising from parasitic encounters at such colliders are mitigated by introducing a crossing angle. Under these conditions, crab cavities (CC) can be used to restore effective head-on collisions and thereby to increase the geometric luminosity. Such crab cavities have been proposed for both linear and circular colliders. The crab cavities are rf cavities operated in a transverse dipole mode, which imparts on the beam particles a transverse kick that varies with the longitudinal position along the bunch. The use of crab cavities in the Large Hadron Collider (LHC) may not only raise the luminosity, but it could also complicate the beam dynamics, e.g., crab cavities might not only cancel synchrobetatron resonances excited by the crossing angle but they could also excite new ones, they could reduce the dynamic aperture for off-momentum particles, they could influence the aperture and orbit...

  14. Review of quench simulations for the protection of LHC main dipole magnets

    CERN Document Server

    Sonnemann, F

    1999-01-01

    The simulation program QUABER [1] allows studying the quench process of superconducting magnets for the LHC. The performance of the protection system of the LHC main dipole magnets was simulated under various parameter dependencies at different magnet excitation currents. This simulation study was motivated to complement measurement results in order to help preparing and understanding experiments of the quench propagation and magnet protection. The influence of the quench propagation velocity and the time for a quench propagation between adjacent turns was studied. The different copper plating cycles of the quench heater strips were simulated. Experimental measurement results [2] were used to calibrate the input parameters. The performance of the protection system for various quench detection thresholds was investigated and different failure modes of the system were considered. The maximum voltages and values of the quench load are discussed. The values given are obtained using conservatively chosen parameter...

  15. A computer-aided control system for automatic performance measurements on the LHC series dipoles

    International Nuclear Information System (INIS)

    Gorskaya, E.; Samojlov, V.; Raimondo, A.; Rijllart, A.

    2003-01-01

    The control system software (Test Master) for the Large Hadron Collider (LHC) magnet series measurements is presented. This system was developed at CERN to automate as many tests on the LHC magnets as possible. The Test Master software is the middle layer of the main software architecture developed by the LHC/IAS group for central supervision of all types of LHC dipole tests in the SM18 hall. It serves as a manager and scheduler for applications, controlling all measurements that are performed in a cluster of two test benches. The software was implemented in the LabVIEW environment. The information about the interactive user interface, the software architecture, communication protocols, file-configuration different types of commands and status files of the Test Master are described

  16. 2005 Final Report: New Technologies for Future Colliders

    International Nuclear Information System (INIS)

    Peter McIntyre; Al McInturff

    2005-01-01

    This document presents an annual report on our long-term R and D grant for development of new technology for future colliders. The organizing theme of our development is to develop a compact high-field collider dipole, utilizing wind-and-react Nb3Sn coil fabrication, stress management, conductor optimization, bladder preload, and flux plate suppression of magnetization multipoles. The development trail for this new technology began over four years ago with the successful testing of TAMU12, a NbTi model in which we put to a first test many of the construction details of the high-field design. We have built TAMU2, a mirror-geometry dipole containing a single coil module of the 3-module set required for the 14 Tesla design. This first Nb3Sn model was built using ITER conductor which carries much less current than high-performance conductor but enables us to prove in practice our reaction bake and impregnation strategies with ''free'' superconductor. TAMU2 has been shipped to LBNL for testing. Work is beginning on the construction of TAMU3, which will contain two coil modules of the 14 Tesla design. TAMU3 has a design field of 13.5 Tesla and will enable us to fully evaluate the issues of stress management that will be important to the full design. With the completion of TAMU2 and the construction of TAMU3 the Texas A and M group ''comes of age'' in the family of superconducting magnet R and D laboratories. We have completed the phase of developing core technologies and fixtures and entered the phase of building and testing a succession of model dipoles that each build incrementally upon a proven core design

  17. Further Development of the Sextupole Dipole Corrector (MSCB) Magnet for the LHC

    CERN Document Server

    Ang, Z; Bajko, M; Bottura, L; Coxill, D; Giloux, C; Ijspeert, Albert; Karppinen, M; Landgrebe, D; Walckiers, L

    2000-01-01

    Combined sextupole-dipole corrector magnets (MSCB) will be mounted in each half cell of the new Large Hadron Collider (LHC) being built at CERN. The dipole part, used for particle orbit corrections, will be powered individually and is designed for low current, originally 30 A but now 55 A. The sextupole part, used for chromaticity corrections, is connected via cold busbars in families of 12 or 13 magnets and is powered with 550 A. Several versions of this corrector magnet were tested as model magnets in order to develop the final design for the series. In the first design the coils are nested, with the dipole coil wound around the sextupole coil to obtain as short a magnet as possible, accepting the slight cross-talk between the coils due to persistent currents, and increased saturation effects. The design has evolved and an alternative design, in which the dipole and sextupole coils are separated, is now favored. Tests at 4.5 K and at 1.9 K were conducted to determine the training behavior, the field qualit...

  18. Results of magnetic field measurements of 40 mm aperture 17-m long SSC model collider dipole magnets

    International Nuclear Information System (INIS)

    Wanderer, P.; Anerella, M.; Cottingham, J.; Ganetis, G.; Garber, M.; Ghosh, A.; Greene, A.; Gupta, R.; Herrera, J.; Kahn, S.; Kelly, E.; Meade, A.; Morgan, G.; Muratore, J.; Prodell, A.; Rehak, M.; Rohrer, E.P.; Sampson, W.; Shutt, R.; Thompson, P.; Willen, E.; Bleadon, M.; Hanft, R.; Kuchnir, M.; Mantsch, P.; Mazur, P.O.; Orris, D.; Peterson, T.; Strait, J.; Royet, J.; Scanlan, R.; Taylor, C.; Bush, T.; Coombes, R.; Devred, A.; DiMarco, J.; Goodzeit, C.; Kuzminski, J.; Ogitsu, T.; Puglisi, M.; Radusewicz, P.; Sanger, P.; Schermer, R.; Tompkins, J.; Turner, J.; Wolf, Z.; Yu, Y.; Zheng, H.

    1991-01-01

    Magnetic field measurements have been made on twelve 17 m-long, 40 mm-aperture R ampersand D superconducting dipoles. Data on dipole field strength, multipole coefficients, and alignment have been obtained. The data indicate that the magnets as built are generally within the expectations for this design. 7 refs., 5 figs

  19. Recent electron-cloud simulation results for the main damping rings of the NLC and TESLA linear colliders

    International Nuclear Information System (INIS)

    Pivi, M.; Raubenheimer, T.O.; Furman, M.A.

    2003-01-01

    In the beam pipe of the Main Damping Ring (MDR) of the Next Linear Collider (NLC), ionization of residual gases and secondary emission give rise to an electron-cloud which stabilizes to equilibrium after few bunch trains. In this paper, we present recent computer simulation results for the main features of the electron cloud at the NLC and preliminary simulation results for the TESLA main damping rings, obtained with the code POSINST that has been developed at LBNL, and lately in collaboration with SLAC, over the past 7 years. Possible remedies to mitigate the effect are also discussed. We have recently included the possibility to simulate different magnetic field configurations in our code including solenoid, quadrupole, sextupole and wiggler

  20. Methods and results of modeling and transmission-line calculations of the superconducting dipole chains of CERN's LHC collider

    CERN Document Server

    Bourgeois, F

    2001-01-01

    Electrical modeling and simulation of the LHC magnet strings are being used to determine the key parameters that are needed for the design of the powering and energy extraction equipment. Poles and zeros of the Laplace expression approximating the Bode plot of the measured coil impedance are used to synthesize an R/L/C model of the magnet. Subsequently, this model is used to simulate the behavior of the LHC main dipole magnet string. Lumped transmission line behavior, impedance, resonance, propagation of the power supply ripple, ramping errors, energy extraction transients and their damping are presented in this paper. (3 refs).

  1. Physics at a future collider beyond the LHC and a TeV class linear collider

    CERN Multimedia

    CERN. Geneva

    2003-01-01

    After the LHC will have probed the physics at the TeV frontier, new generations of colliders capable of reaching into the multi-TeV energy domain will need to be considered. Concepts for both high energy e+e- linear colliders and muon storage rings have been proposed as well as hadron colliders. Highly challenging R&D programs are presently pursued to demonstrate their principles. The definition of a physics programme in the multi-TeV range still requires essential data that is likely to become available only after the first years of LHC operation and, possibly, also the results from a TeV-class linear collider. At present we have to envisage several possible scenarios for the fundamental questions to be addressed by collider experiments in the next decade, to guide the choices in the accelerator designs and parameters. After a brief review of the main accelerator projects and the present status of their R&D, I shall discuss the main signatures of the physics of possible relevance in relation to the e...

  2. Linear collider systems and costs

    International Nuclear Information System (INIS)

    Loew, G.A.

    1993-05-01

    The purpose of this paper is to examine some of the systems and sub-systems involved in so-called ''conventional'' e + e - linear colliders and to study how their design affects the overall cost of these machines. There are presently a total of at least six 500 GeV c. of m. linear collider projects under study in the world. Aside from TESLA (superconducting linac at 1.3 GHz) and CLIC (two-beam accelerator with main linac at 30GHz), the other four proposed e + e - linear colliders can be considered ''conventional'' in that their main linacs use the proven technique of driving room temperature accelerator sections with pulsed klystrons and modulators. The centrally distinguishing feature between these projects is their main linac rf frequency: 3 GHz for the DESY machine, 11.424 GHz for the SLAC and JLC machines, and 14 GHz for the VLEPP machine. The other systems, namely the electron and positron sources, preaccelerators, compressors, damping rings and final foci, are fairly similar from project to project. Probably more than 80% of the cost of these linear colliders will be incurred in the two main linacs facing each other and it is therefore in their design and construction that major savings or extra costs may be found

  3. CP-violating top quark couplings at future linear e{sup +}e{sup -} colliders

    Energy Technology Data Exchange (ETDEWEB)

    Bernreuther, W. [RWTH Aachen University, Institut fuer Theoretische Teilchenphysik und Kosmologie, Aachen (Germany); Chen, L. [RWTH Aachen University, Institut fuer Theoretische Teilchenphysik und Kosmologie, Aachen (Germany); Max-Planck-Institut fuer Physik, Muenchen (Germany); Garcia, I. [Instituto de Fisica Corpuscular (IFIC, UVEG/CSIC), Valencia (Spain); CERN, Geneva (Switzerland); Perello, M.; Ros, E.; Vos, M. [Instituto de Fisica Corpuscular (IFIC, UVEG/CSIC), Valencia (Spain); Poeschl, R.; Richard, F. [Centre Scientifique d' Orsay, Laboratoire de l' Accelerateur Lineaire (LAL), Orsay (France)

    2018-02-15

    We study the potential of future lepton colliders to probe violation of the CP symmetry in the top quark sector. In certain extensions of the Standard Model, such as the two-Higgs-doublet model (2HDM), sizeable anomalous top quark dipole moments can arise, which may be revealed by a precise measurement of top quark pair production. We present results from detailed Monte Carlo studies for the ILC at 500 GeV and CLIC at 380 GeV and use parton-level simulations to explore the potential of high-energy operation. We find that precise measurements in e{sup +}e{sup -} → t anti t production with subsequent decay to lepton plus jets final states can provide sufficient sensitivity to detect Higgs-boson-induced CP violation in a viable two-Higgs-doublet model. The potential of a linear e{sup +}e{sup -} collider to detect CP-violating electric and weak dipole form factors of the top quark exceeds the prospects of the HL-LHC by over an order of magnitude. (orig.)

  4. LHC dipole magnets start to roll off the production line

    CERN Multimedia

    2000-01-01

    The first pre-series LHC dipole magnet has been delivered to CERN, a further 1247 are due to be produced by 2005. Their production is the result of technology transfer from CERN to its suppliers. Fifteen metres long, thirty-tonnes in weight, and using several kilometres of superconducting cable, the magnet that has just arrived in hall 181 is a true colossus. It is the first pre-series dipole that will begin service in 2005 in the future Large Hadron Collider, LHC. Delivered by the French Alstom-Jeumont Industrie consortium, it is the first of 1248 magnets that will be manufactured over the coming five years. Needless to say, lavish attention has been devoted to this magnet by the engineers and technicians who accompanied it to CERN from Belfort in north east France. The task of the dipole magnets will be to steer the LHC's proton beams on a circular trajectory around the LHC's 27 kilometre circumference. A magnetic field of 8.33 Tesla is required to guide the protons, accelerated to an energy of 7 TeV, aroun...

  5. Colliding druthers

    International Nuclear Information System (INIS)

    Ankenbrandt, C.; Johnson, R.P.

    1977-01-01

    Recommendations are made to maximize the usefulness of the colliding beam facility of the Main Ring and Energy Doubler at the Fermilab accelerator. The advantages of the transposed crossing geometry over the kissing geometry are pointed out

  6. SDRC I-DEAS and RHIC (Relativistic Heavy Ion Collider)

    International Nuclear Information System (INIS)

    Goggin, C.M.

    1989-01-01

    In August 1984, Brookhaven National Laboratory submitted a proposal to the Department of Energy (DOE) for the construction of a Relativistic Heavy Ion Collider (RHIC). Since then funding has continued for the detailed design of RHIC. The hardware for RHIC consists of two concentric rings of superconducting magnets in a 2.4 mile circumference with six intersections. Bunches of ions will travel in opposite directions in each of the two rings and eventually collide head on at one of the six intersections. The hardware design involves complicated facilities for liquid helium cryogens, cryostat design, and pipe systems. The greatest challenge however is the ion beam position relative to the geometric center of the rings. There are three hundred and seventy-two dipole magnets that are ten meters long and weigh 4300 Kg (4.5 tons) each. Each dipole must be positioned in the ring to ± 0.5 mm. In addition, there are four hundred and ninety-two quadrupole magnets that must be positioned to ± 0.1 mm which is a total position error. This total position error includes all the surveying and part tolerance. To accomplish this task requires detailed planning and design of the cryostats which contain each magnet and the tunnel assembly throughout the 2.4 mile circumference. The IDEAS' software package provides a way to analyze this large scale problem. 11 figs

  7. PERSISTENT CURRENT EFFECT IN 15-16 T NB3SN ACCELERATOR DIPOLES AND ITS CORRECTION

    Energy Technology Data Exchange (ETDEWEB)

    Kashikhin, V. V. [Fermilab; Zlobin, A. V. [Fermilab

    2016-11-08

    Nb3Sn magnets with operating fields of 15-16 T are considered for the LHC Energy Doubler and a future Very High Energy pp Collider. Due to large coil volume, high critical current density and large superconducting (SC) filament size the persistent current effect is very large in Nb3Sn dipoles al low fields. This paper presents the results of analysis of the persistent current effect in the 15 T Nb3Sn dipole demonstrator being developed at FNAL, and describes different possibilities of its correction including passive SC wires, iron shims and coil geometry.

  8. Dissecting an LHC dipole

    CERN Multimedia

    2004-01-01

    The cold mass of a 15-metre main dipole magnet has some fifteen different components. All the main components are manufactured under CERN's direct responsibility. Four of them transit through CERN before being shipped to the dipole assembly contractors, namely the cable, which constitutes the magnet's superconducting core (see Bulletin 14/2004), the beam screens, the heat exchanger tubes and the cold bore beam tubes. The two latter components transit via Building 927 where they undergo part of the production process. The 58-mm diameter heat exchanger tubes will remove heat from the magnets using superfluid helium. The 53-mm diameter cold bore tubes will be placed under vacuum to allow the twin beams to circulate around the LHC.

  9. Polarization effects in the reaction of charm baryon production on colliding electron-positron beams

    International Nuclear Information System (INIS)

    Rekalo, M.P.; Korzh, A.P.; Barannik, V.P.

    1980-01-01

    To calculate energy and angular distributions of various decay products of charm baAyons, which are prodUced in reactions on colliding e + e - beams, it is necessary to know the differential cross sections of the e + e - → C+anti C process which correspond to different polarized states of produced C and anti C (C - charm baryon). These differential cross sections are calculated for a single-photon mechanism with respect to the contribution of the anapole and electric dipole form factors of C-baryon. Polarizations of colliding electron-positron beams are taken into account in a full volume

  10. Normal Conducting Separation Dipoles for the LHC Beam Cleaning Insertions

    CERN Document Server

    Bidon, S; Hans, O; Kalbreier, Willi; Kiselev, O; Petrov, V; Protopopov, I V; Pupkov, Yu A; Ramberger, S; de Rijk, G; Ruvinsky, E; Sukhanov, A

    2004-01-01

    In the Large Hadron Collider (LHC), two straight sections, IR3 and IR7, will be dedicated to beam cleaning. These cleaning insertions will be equipped with normal conducting magnets. MBW magnets are dipole magnets used to increase the separation of the two beams. They have a core length of 3.4 m and a gap height of 52 mm and will operate at a magnetic field ranging from 0.09 T to 1.53 T. Limitations on the dimensions and total weight of the magnet resulted in a special design with a common yoke for the two beams. The orbits of the two beams will be separated horizontally by a distance between 194 mm and 224 mm in the gap of the magnet. The magnet was designed in collaboration between CERN and BINP. The report presents the main design issues and results of the pre-series acceptance tests including mechanical, electrical and magnetic field measurements.

  11. The SSC dipole: Its conceptual origin and early design history

    International Nuclear Information System (INIS)

    Dahl, P.F.

    1992-05-01

    The magnet system for the Superconducting Super Collider will likely remain the most ambitions-and challenging-application of superconducting technology for the foreseeable future. The centerpiece of the system is the behemoth collider dipole magnet. Its design, still evolving in its detailed features, dates from the mid-1980's when it emerged as the winter in an early technical showdown that occupied the fledgling SSC project. In the present report we chronicle the origins and chief milestones in the development of certain SSC dipole design concepts. Unfortunately, the chronicle must remain incomplete, with the design not yet frozen as we go to press and still subject to important modifications as the SSC Laboratory settles in near its future home in Ellis County, Texas, hard on the heels of a wide-ranging design review in the closing days of the SSC Central Design Group in (CDG) Berkeley. Be that as it may, in what follows we concentrate on the early years in an attempt to recapitulate the birth of the dipole, taking as our point of departure the SSC Reference Designs Study (RDS) of 1984. In Section 3 we touch on the background for the various RDS options, including ISABELLE/CBA and the Tevatron. In Section 4 the narrative focuses on the two final protagonists, a high-field cosine theta (cos θ) magnet and a low-field superferric magnet. Section 5 recounts the circumstances surrounding the selection of a particular magnet ''style'' for further development, and the ups and downs of the first model magnets. We conclude with a smattering of progress highlights in refining the design during the final push under the reign of the CDG. Beyond that, the ongoing chronicle must be left for others to amplify and complete

  12. Features of 10-M-long, 50-MM-Twin-aperture LHC dipole magnet prototypes

    International Nuclear Information System (INIS)

    Devred, A.

    1998-03-01

    In 1991, the Laboratoire Europeen pour la Physique des particules (CERN) has launched the fabrication in industry of seven 10-m long, 50-mm-twin-aperture dipole magnet prototypes for the Large Hadron Collider (LHC). Three of these prototypes were built in Italy, in collaboration with the Istituto Nazionale di Fisica Nucleare (INFN, by Ansaldo Energia Spa, two were built in Germany by Noell GmbH, one was built in France by a consortium constituted by Jeumont Industries and GEC Alsthom, and the last one was built by a consortium constituted by Elin in Austria and Holec in the Netherlands. In this paper, we review the design and specific features of the seven LHC dipole magnet prototypes. (author)

  13. Beam-based measurements of persistent current decay in the Relativistic Heavy Ion Collider

    Directory of Open Access Journals (Sweden)

    W. Fischer

    2001-04-01

    Full Text Available The two rings of the Relativistic Heavy Ion Collider are equipped with superconducting dipole magnets. At injection, induced persistent currents in these magnets lead to a sextupole component. As the persistent currents decay with time, the horizontal and vertical chromaticities change. From magnet measurements of persistent current decays, chromaticity changes in the machine are estimated and compared with chromaticity measurements.

  14. Permanent Magnet Dipole for DIRAC Design Report

    CERN Document Server

    Vorozhtsov, Alexey

    2012-01-01

    Two dipole magnets including one spare unit are needed for the for the DIRAC experiment. The proposed design is a permanent magnet dipole. The design based on Sm2Co17 blocks assembled together with soft ferromagnetic pole tips. The magnet provides integrated field strength of 24.6 10-3 T×m inside the aperture of 60 mm. This Design Report summarizes the main magnetic and mechanic design parameters of the permanent dipole magnets.

  15. Status of the 16 T dipole development program for a future hadron collider

    NARCIS (Netherlands)

    Tommasini, Davide; Arbelaez, Diego; Auchmann, Bernhard; Bajas, Hugues; Bajko, Marta; Ballarino, Amalia; Barzi, Emanuela; Bellomo, Giovanni; Benedikt, Michael; Izquierdo Bermudez, Susana; Bordini, Bernardo; Bottura, Luca; Brouwer, Lucas; Buzio, Marco; Caiffi, Barbara; Caspi, Shlomo; Dhalle, Marc; Durante, Maria; De Rijk, Gijs; Fabbricatore, Pasquale; Farinon, Stefania; Ferracin, Paolo; Gao, Peng; Gourlay, Steve; Juchno, Mariusz; Kashikhin, Vadim; Lackner, Friedrich; Lorin, Clement; Marchevsky, Maxim; Marinozzi, Vittorio; Martinez, Teresa; Munilla, Javier; Novitski, Igor; Ogitsu, Toru; Ortwein, Rafal; Perez, Juan Carlos; Petrone, Carlo; Prestemon, Soren; Prioli, Marco; Rifflet, Jean Michel; Rochepault, Etienne; Russenschuck, Stephan; Salmi, Tiina; Savary, Frederic; Schoerling, Daniel; Segreti, Michel; Senatore, Carmine; Sorbi, Massimo; Stenvall, Antti; Todesco, Ezio; Toral, Fernando; Verweij, Arjan P.; Wessel, W.A.J.; Wolf, Felix; Zlobin, Alexander

    A next step of energy increase of hadron colliders beyond the LHC requires high-field superconducting magnets capable of providing a dipolar field in the range of 16 T in a 50 mm aperture with accelerator quality. These characteristics could meet the re-quirements for an upgrade of the LHC to twice

  16. A lattice with larger momentum compaction for the NLC main damping rings

    International Nuclear Information System (INIS)

    Wolski, Andrzej; Raubenheimer, Tor O.; Woodley, Mark; Wu, Juhao

    2004-01-01

    Previous lattice designs for the Next Linear Collider Main Damping Rings [1] have met the specifications for equilibrium emittance, damping rate and dynamic aperture. Concerns about the effects of the damping wiggler on the beam dynamics [2] led to the aim of reducing the total length of the wiggler to a minimum consistent with the required damping rate, so high-field dipoles were used to provide a significant energy loss in the arcs. However, recent work has shown that the wiggler effects may not be as bad as previously feared. Furthermore, other studies have suggested the need for an increased momentum compaction (by roughly a factor of four) to raise the thresholds of various collective effects. We have therefore developed a new lattice design in which we increase the momentum compaction by reducing the field strength in the arc dipoles, compensating the loss in damping rate by increasing the length of the wiggler. The new lattice again meets the specifications for emittance, damping rate and dynamic aperture, while having the benefit of significantly higher thresholds for a number of instabilities

  17. Room Temperature Magnetic Field Measurements as a Tool to Localize Inter-turns Electrical Short Circuits in the LHC Main Dipole coils

    CERN Document Server

    Bellesia, B; Todesco, E

    2006-01-01

    In this report the method for the localization of the electric shorts circuits in the main LHC dipoles using the magnetic measurements at room temperature is presented. The steps of the method are discussed, and two cases are studied in detail. A complete statistics of the 12 cases analyzed up to now is given.

  18. Development of an experimental 10 T Nb3Sn dipole magnet for the CERN LHC

    NARCIS (Netherlands)

    ten Kate, H.H.J.; den Ouden, A.; ter Avest, D.; Wessel, S.; Dubbeldam, R.; van Emden, W.; Daum, C.; Bona, M.; Perin, R.

    1991-01-01

    An experimental 1-m long twill aperture dipole magnet developed using a high-current Nb3Sn conductor in order to attain a magnetic field well beyond 10 T at 4.2 K is described. The emphasis in this Nb3Sn project is on the highest possible field within the known Large Hadron Collider (LHC)

  19. Multibunch beam breakup in high energy linear colliders

    International Nuclear Information System (INIS)

    Thompson, K.A.; Ruth, R.D.

    1989-03-01

    The SLAC design for a next-generation linear collider with center-of-mass energy of 0.5 to 1.0 TeV requires that multiple bunches (/approximately/10) be accelerated on each rf fill. At the beam intensity (/approximately/10 10 particles per bunch) and rf frequency (11--17 GHz) required, the beam would be highly unstable transversely. Using computer simulation and analytic models, we have studied several possible methods of controlling the transverse instability: using damped cavities to damp the transverse dipole modes; adjusting the frequency of the dominant transverse mode relative to the rf frequency, so that bunches are placed near zero crossings of the wake; introducing a cell-to-cell spread in the transverse dipole mode frequencies; and introducing a bunch-to-bunch variation in the transverse focusing. The best cure(s) to use depend on the bunch spacing, intensity, and other features of the final design. 8 refs., 3 figs

  20. "Towards a Future Linear Collider" and "The Linear Collider Studies at CERN"

    CERN Document Server

    CERN. Geneva

    2010-01-01

    During the week 18-22 October, more than 400 physicists will meet at CERN and in the CICG (International Conference Centre Geneva) to review the global progress towards a future linear collider. The 2010 International Workshop on Linear Colliders will study the physics, detectors and accelerator complex of a linear collider covering both the CLIC and ILC options. Among the topics presented and discussed will be the progress towards the CLIC Conceptual Design Report in 2011, the ILC Technical Design Report in 2012, physics and detector studies linked to these reports, and an increasing numbers of common working group activities. The seminar will give an overview of these topics and also CERN’s linear collider studies, focusing on current activities and initial plans for the period 2011-16. n.b: The Council Chamber is also reserved for this colloquium with a live transmission from the Main Auditorium.

  1. Field quality issues in iron-dominated dipoles at low fields

    International Nuclear Information System (INIS)

    Brown, B.C.

    1996-10-01

    In order to help assess the usable dynamic range of iron-dominated dipoles, field shape data at low field on several Fermi-lab accelerator dipole designs are presented. Emphasis is placed on the systematic and random values of the low field sextupole since it is the first ''allowed'' field error. The Main Injector dipoles provide four times smaller sextupole and more than 20 times less sextupole hysteresis than earlier designs for the Main Ring

  2. The dipole response of {sup 132}Sn

    Energy Technology Data Exchange (ETDEWEB)

    Schrock, Philipp; Aumann, Thomas; Johansen, Jacob; Schindler, Fabia [IKP, TU Darmstadt (Germany); Boretzky, Konstanze [GSI Helmholtzzentrum (Germany); Rossi, Dominic [Michigan State University (United States); Collaboration: R3B-Collaboration

    2015-07-01

    The Isovector Giant Dipole Resonance (IVGDR) is a well-known collective excitation in which all protons oscillate against all neutrons of a nucleus. In neutron-rich nuclei an additional low-lying dipole excitation occurs, often denoted as Pygmy Dipole Resonance (PDR). To study the PDR in exotic Sn-isotopes, an experiment has been successfully performed with the upgraded R{sup 3}B-LAND setup at GSI. The complete-kinematics measurement of all reaction participants allows for the reconstuction of the excitation energy and, hence, the extraction of the dipole strength. Presented are the main features of the experiment, the analysis concept and the current status of the analysis of the dipole response of the doubly-magic isotope {sup 132}Sn.

  3. Hadron collider luminosity limitations

    CERN Document Server

    Evans, Lyndon R

    1992-01-01

    The three colliders operated to date have taught us a great deal about the behaviour of both bunched and debunched beams in storage rings. The main luminosity limitations are now well enough understood that most of them can be stronglu attenuated or eliminated by approriate design precautions. Experience with the beam-beam interaction in both the SPS and the Tevatron allow us to predict the performance of the new generation of colliders with some degree of confidence. One of the main challenges that the accelerator physicist faces is the problem of the dynamic aperture limitations due to the lower field quality expected, imposed by economic and other constraints.

  4. Measurement of AC electrical characteristics of SSC superconducting dipole magnets

    International Nuclear Information System (INIS)

    Smedley, K.M.; Shafer, R.E.

    1992-01-01

    Experiments were conducted to measure the AC electrical characteristics of SSC superconducting dipole magnets over the frequency range of 0.1 Hz to 10 kHz. A magnet equivalent circuit representing the magnet DC inductance, eddy current losses, coil-to-ground and turn-to-turn capacitance, was synthesized from the experimental data. This magnet equivalent circuit can be used to predict the current ripple distribution along the superconducting magnet string and can provide dynamic information for the design of the collider current regulation loop

  5. Slice of LHC dipole wiring

    CERN Multimedia

    Dipole model slice made in 1994 by Ansaldo. The high magnetic fields needed for guiding particles around the Large Hadron Collider (LHC) ring are created by passing 12’500 amps of current through coils of superconducting wiring. At very low temperatures, superconductors have no electrical resistance and therefore no power loss. The LHC is the largest superconducting installation ever built. The magnetic field must also be extremely uniform. This means the current flowing in the coils has to be very precisely controlled. Indeed, nowhere before has such precision been achieved at such high currents. 50’000 tonnes of steel sheets are used to make the magnet yokes that keep the wiring firmly in place. The yokes constitute approximately 80% of the accelerator's weight and, placed side by side, stretch over 20 km!

  6. Calculation of the dispersion-dipole coefficients for interactions between H, He, and H2

    International Nuclear Information System (INIS)

    Bishop, D.M.; Pipin, J.

    1993-01-01

    Collisions between atoms and molecules create an induced dipole moment which, at long range separations, stems, in part, from the van der Waals interactions between the colliding species. This contribution is known as the dispersion dipole moment and is of the order R -7 , where R is the separation between particles. Although there have been several approximate calculations of the dispersion-dipole coefficients which govern this contribution, and are the counterparts to the van der Waals dispersion-energy coefficients, there have been few ab initio calculations. In this article we present highly accurate results, based on explicitly electron-correlated wave functions, for the dispersion-dipole coefficients pertaining to interactions between pairs chosen from H, He, and H 2 . We also obtain values with some of the currently used approximate formulas. A comparison shows that these values differ, in general, by a significant amount (∼20--∼40 %) from the accurate ones. We also tabulate values of the dipole--dipole-quadrupole polarizability tensor (B) for imaginary frequency (iω) for a range of frequencies appropriate to a 64-point Gauss--Legendre quadrature for H, He, and H 2 . These values were used in certain numerical integrations we made to verify our original results which had been obtained by analytic integration---they may, however, be useful in other contexts. For H--H 2 and H 2 --H 2 , these are the only ab initio calculations of the dispersion-dipole coefficients of which we are aware

  7. Collider Physics an Experimental Introduction

    International Nuclear Information System (INIS)

    Elvezio Pagliarone, Carmine

    2011-01-01

    This paper reviews shortly a small part of the contents of a set of lectures, presented at the XIV International School of Particles and Fields in Morelia, state of Michoacan, Mexico, during November 2010. The main goal of those lectures was to introduce students to some of the basic ideas and tools required for experimental and phenomenological analysis of collider data. In particular, after an introduction to the scientific motivations, that drives the construction of powerful accelerator complexes, and the need of reaching high center of mass energies and luminosities, some basic concept about collider particle detectors will be discussed. A status about the present running colliders and collider experiments as well as future plans and research and development is also given.

  8. Features of 10-M-long, 50-MM-Twin-aperture LHC dipole magnet prototypes

    Energy Technology Data Exchange (ETDEWEB)

    Devred, A. [CEA Saclay, 91 - Gif-sur-Yvette (France). Dept. d`Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l`Instrumentation Associee]|[CERN, Laboratoire Europeen pour la Physique des Particules, Geneva (Switzerland)

    1998-03-01

    In 1991, the Laboratoire Europeen pour la Physique des particules (CERN) has launched the fabrication in industry of seven 10-m long, 50-mm-twin-aperture dipole magnet prototypes for the Large Hadron Collider (LHC). Three of these prototypes were built in Italy, in collaboration with the Istituto Nazionale di Fisica Nucleare (INFN, by Ansaldo Energia Spa, two were built in Germany by Noell GmbH, one was built in France by a consortium constituted by Jeumont Industries and GEC Alsthom, and the last one was built by a consortium constituted by Elin in Austria and Holec in the Netherlands. In this paper, we review the design and specific features of the seven LHC dipole magnet prototypes. (author) 21 refs.

  9. Magnetic field of a dipole and the dipole-dipole interaction

    International Nuclear Information System (INIS)

    Kraftmakher, Yaakov

    2007-01-01

    With a data-acquisition system and sensors commercially available, it is easy to determine magnetic fields produced by permanent magnets and to study the dipole-dipole interaction for different separations and angular positions of the magnets. For sufficiently large distances, the results confirm the 1/R 3 law for the magnetic field and the 1/R 4 law for the interaction force between two dipoles, as well as their angular dependences

  10. Development of a single-layer Nb3Sn common coil dipole model

    Energy Technology Data Exchange (ETDEWEB)

    Igor Novitski et al.

    2002-12-13

    A high-field dipole magnet based on the common coil design was developed at Fermilab for a future Very Large Hadron Collider. A short model of this magnet with a design field of 11 T in two 40-mm apertures is being fabricated using the react-and-wind technique. In order to study and optimize the magnet design two 165-mm long mechanical models were assembled and tested. A technological model consisting of magnet straight section and ends was also fabricated in order to check the tooling and the winding and assembly procedures. This paper describes the design and technology of the common coil dipole magnet and summarizes the status of short model fabrication.The results of the mechanical model tests and comparison with FE mechanical analysis are also presented.

  11. Commissioning and First Operation of the Low-Beta Triplets and Their Electrical Feed Boxes at the Large Hadron Collider

    CERN Document Server

    Darve, C; Casas-Cubillos, J; Claudet, S; Feher, S; Ferlin, G; Kerby, J; Metral, L; Perin, A; Peterson, T; Prin, H; Rabehl, R; Vauthier, N; Wagner, U; van Weelderen, R

    2010-01-01

    The insertion regions located around the four interaction points of the Large Hadron Collider (LHC) are mainly composed of the low-b triplets, the separation dipoles and their respective electrical feed-boxes (DFBX). The low-b triplets are Nb-Ti superconductor quadrupole magnets, which operate at 215 T/m in superfluid helium at a temperature of 1.9 K. The commissioning and the first operation of these components have been performed. The thermo-mechanical behavior of the low-b triplets and DFBX were studied. Cooling and control systems were tuned to optimize the cryogenic operation of the insertion regions. Hardware commissioning also permitted to test the system response. This paper summarizes the performance results and the lessons learned.

  12. Controlling the crossing angle in the SSC [Superconducting Super Collider

    International Nuclear Information System (INIS)

    Garren, A.A.; Johnson, D.E.

    1989-04-01

    The colliding beams in the SSC must cross at a small angle, so that when the bunches pass each other away from the interaction point (IP), they are sufficiently separated to avoid disruptive beam-beam forces. However, the crossing angle is so small that the adjacent quadrupoles must be common to both beams. Only after passing through four common quadrupoles on each side of the IP, are the beams split by vertical dipoles into separate beamlines. In order to make the closed orbits of the two beams cross at a definite angle at the IP (within a range up to 150 μrad), a series of correction dipoles are placed in the insertions. If these dipoles are excited in such a way as to control the closed orbits alone, the dispersion will be mismatched, reaching values of up to 50 cm in the arcs. This mismatch is due to the closed orbit displacements in the interaction region (IR) quadrupoles, causing them to act as bending magnets. Therefore, both the closed orbit and dispersion must be matched simultaneously. Solutions to this problem are presented. 6 figs

  13. Quench propagation in the SSC dipole magnets

    International Nuclear Information System (INIS)

    Lopez, G.; Snitchler, G.

    1990-09-01

    The effects of quench propagation are modeled in 40mm and 50mm diameter collider dipole magnet designs. A comparative study of the cold diode (passive) and quench heater (active) protection schemes will be presented. The SSCQ modeling program accurately simulates the axial quench velocity and uses phenomenological time delays for turn-to-turn transverse propagation. The axial quench velocity is field dependent and consequently, each conductor's quench profile is tracked separately. No symmetry constraints are employed and the distribution of the temperatures along the conductor differs from the adiabatic approximation. A single magnet has a wide margin of self protection which suggests that passive protection schemes must be considered. 6 refs., 3 figs., 1 tab

  14. Colliding beam physics at Fermilab: interaction regions, beam storage, antiproton cooling, production, and colliding

    Energy Technology Data Exchange (ETDEWEB)

    Walker, J.K. (ed.)

    1977-01-01

    The purpose of the colliding beams experment department at Fermilab was to bring about collisions of the stored beams in the energy doubler/saver and main ring, and construct experimental areas with appropriate detectors. To explore the feasibility of using the main ring as a storage device, several studies were carried out to investigate beam growth, loss, and the backgrounds in detectors at possible intersection regions. This range of developments constituted the major topics at the 1977 Summer Study reported here. Emphasis in part one is on interaction regions, beam storage, antiproton cooling, production, and colliding. 40 papers from this part are included in the data base. (GHT)

  15. Shape Stability of the LHC Superconducting Dipole Mechanical Model and Experimental Investigations

    CERN Document Server

    La China, M; Scandale, Walter

    2006-01-01

    The aim of this work is the study of the geometry of the main superconducting dipole for the Large Hadron Collider from the manufacturing process throughout the pre-operative stages to predict the respect of the tight tolerance, imposed by the beam dynamic, in both nominal and chancy working conditions. Expected and unexpected situations have been approached through the development of dedicate models and tests with the purpose of evaluating their impact on magnet geometry. In our study we used structural models of different complexity for different purposes. For example we used analytical models in conjunction with the cold mass geometry database to simulate the overall effect of individual geometry corrections or to discriminate elastic from inelastic measured deformations. By means of finite element models, instead, we investigated the effect of mechanic loads as induced by road transport, or the effect of electro-magnetic forces arising in working conditions. As the assembly complexity prevents from deduci...

  16. Temperature Profiles During Quenches in LHC Superconducting Dipole Magnets Protected by Quench Heaters

    OpenAIRE

    Maroussov, V; Sanfilippo, S; Siemko, A

    1999-01-01

    The efficiency of the magnet protection by quench heaters was studied using a novel method which derives the temperature profile in a superconducting magnet during a quench from measured voltage signals. In several Large Hadron Collider single aperture dipole models, temperature profiles and temperature gradients in the magnet coil have been evaluated in the case of protection by different sets of quench heaters and different powering and protection parameters. The influence of the insulation...

  17. FCC-hh Hadron Collider - Parameter Scenarios and Staging Options

    CERN Document Server

    Benedikt, Michael; Schulte, Daniel; Zimmermann, F; Syphers, M J

    2015-01-01

    FCC-hh is a proposed future energy-frontier hadron collider, based on dipole magnets with a field around 16 T installed in a new tunnel with a circumference of about 100 km, which would provide proton collisions at a centre-of-mass energy of 100 TeV, as well as heavy-ion collisions at the equivalent energy. The FCC-hh should deliver a high integrated proton-proton luminosity at the level of several 100 fb−1 per year, or more. The challenges for operating FCC-hh with high beam current and at high luminosity include the heat load from synchrotron radiation in a cold environment, the radiation from collision debris around the interaction region, and machine protection. In this paper, starting from the FCC-hh design baseline parameters we explore different approaches for increasing the integrated luminosity, and discuss the impact of key individual pa- rameters, such as the turnaround time. We also present some injector considerations and options for early hadron-collider operation.

  18. Photon collider at TESLA

    International Nuclear Information System (INIS)

    Telnov, Valery

    2001-01-01

    High energy photon colliders (γγ, γe) based on backward Compton scattering of laser light is a very natural addition to e + e - linear colliders. In this report, we consider this option for the TESLA project. Recent study has shown that the horizontal emittance in the TESLA damping ring can be further decreased by a factor of four. In this case, the γγ luminosity in the high energy part of spectrum can reach about (1/3)L e + e - . Typical cross-sections of interesting processes in γγ collisions are higher than those in e + e - collisions by about one order of magnitude, so the number of events in γγ collisions will be more than that in e + e - collisions. Photon colliders can, certainly, give additional information and they are the best for the study of many phenomena. The main question is now the technical feasibility. The key new element in photon colliders is a very powerful laser system. An external optical cavity is a promising approach for the TESLA project. A free electron laser is another option. However, a more straightforward solution is ''an optical storage ring (optical trap)'' with a diode pumped solid state laser injector which is today technically feasible. This paper briefly reviews the status of a photon collider based on the linear collider TESLA, its possible parameters and existing problems

  19. The neutron electric dipole moment and the Weinberg's operator

    International Nuclear Information System (INIS)

    Li Chongsheng; Hu Bingquan

    1992-01-01

    After a summary of the predictions for the neutron electric dipole moment in a number of models of CP violation, the authors review mainly the recent developments associated with Weimberg's purely gluonic CP violation operator. Its implications on the neutron electric dipole moment in various models of CP violation are discussed. Inspired by Weimberg's work, several new mechanisms of generating large electric dipole moments of charged leptons and large electric and chromo-electric dipole moments of light quarks are recently proposed. Brief discussions on these new developments are also given

  20. Two-Layer 16 Tesla Cosθ Dipole Design for the FCC

    Energy Technology Data Exchange (ETDEWEB)

    Holik, Eddie Frank [Fermilab; Ambrosio, Giorgio [Fermilab; Apollinari, G. [Fermilab

    2018-02-13

    The Future Circular Collider or FCC is a study aimed at exploring the possibility to reach 100 TeV total collision energy which would require 16 tesla dipoles. Upon the conclusion of the High Luminosity Upgrade, the US LHC Accelerator Upgrade Pro-ject in collaboration with CERN will have extensive Nb3Sn magnet fabrication experience. This experience includes robust Nb3Sn conductor and insulation scheming, 2-layer cos2θ coil fabrication, and bladder-and-key structure and assembly. By making im-provements and modification to existing technology the feasibility of a two-layer 16 tesla dipole is investigated. Preliminary designs indicate that fields up to 16.6 tesla are feasible with conductor grading while satisfying the HE-LHC and FCC specifications. Key challenges include accommodating high-aspect ratio conductor, narrow wedge design, Nb3Sn conductor grading, and especially quench protection of a 16 tesla device.

  1. LHC dipoles: the countdown has begun

    CERN Document Server

    Patrice Loiez

    2002-01-01

    At the entrance to the fourth floor corridor of the LHC-MMS (Main Magnets and Superconductors) Group in building 30, the Director-General has unveiled an electronic information panel indicating the number of LHC dipoles still to be delivered and the days remaining to the deadline (30 June 2006). The panel was the idea of Lucio Rossi, leader of the MMS Group, which is responsible for the construction of the dipole magnets. The unveiling ceremony took place on the morning of Friday 11 October 2002, at the end of a drink held to celebrate with MMS group and the LHC top management the exceptional performance of the latest dipoles, built by the French consortium Alstom-Jeumont. They are the first dipoles to achieve a magnetic field of 9 tesla in one go without quenching, thus exceeding the nominal operating field of 8.3 tesla. The challenge is now to increase the production rate from 2 to 35 dipoles per month by 2004 in order to meet the deadline, while maintaining this quality. Photo 01: The Director-General Luci...

  2. Measurement of ac electrical characteristics of SSC dipole magnets at Brookhaven

    International Nuclear Information System (INIS)

    Smedley, K.

    1992-04-01

    The SSC collider is designed to have circumference of 87 km. The superconducting magnets along the collider ring are grouped into ten sectors. Each sector, a string of average length of 8.7 km,m is powered by one power source located near the center of the sector. Because of the alternating-current (ac) electrical characteristics of the magnets, the power supply ripple currents and transients form a time and space distribution in the magnet string which affects particle motions. Additionally, since the power supply load is a magnet string, the current regulation loop design is highly dependent upon the ac electrical characteristics of the magnets. A means is needed to accurately determine the ac electrical characteristics of the superconducting magnets. The ac characteristics of magnets will be used to predict the ripple distribution of the long string of superconducting magnets. Magnet ac characteristics can also provide necessary information for the regulation loop design. This paper presents a method for measuring the ac characteristics of superconducting magnets. Two collider dipole magnets, one superconducting and one at room temperature, were tested at Brookhaven National Lab

  3. The SSC dipole: Its conceptual origin and early design history

    International Nuclear Information System (INIS)

    Dahl, P.F.

    1990-06-01

    The magnet system for the Superconducting Super Collider will likely remain the most ambitious -- and challenging -- application of superconducting technology for the foreseeable future. The centerpiece of the system is the behemoth collider dipole magnet. Its design, still evolving in its detailed features, dates from the mid-1980's when it emerged as the winner in an early technical showdown that occupied the fledgling SSC project. However, some of its gross features can be traced back to three path-breaking superconducting accelerator initiatives under way a decade earlier -- on the East Coast, on the West Coast, and in the Midwest. Other features have a still earlier legacy. In the present report we chronicle the origins and chief milestones in the development of certain SSC dipole design concepts. Unfortunately, the chronicle must remain incomplete, with the design not yet frozen as we go to press and still subject to important modifications as the SSC Laboratory settles in near its future home in Ellis County, Texas, hard on the heels of a wide-ranging design review in the closing days of the SSC Central Design Group in (CDG) Berkeley. Be that as it may, in what follows we concentrate on the early years in an attempt to recapitulate the birth of the dipole, taking as our point of departure the SSC Reference Designs Study (RDS) of 1984. In Section 3 we touch on the background for the various RDS options, including ISABELLE/CBA and the Tevatron. In Section 4 the narrative focuses on the two final protagonists, a high-field cosine theta (cos θ) magnet and a low-field superferric magnet. Section 5 recounts the circumstances surrounding the selection of a particular magnet ''style'' for further development, and the ups and downs of the first model magnets. We conclude with a smattering of progress highlights in refining the design during the final push under the reign of the CDG

  4. Production Follow-Up of the LHC Main Dipoles through Magnetic Measurements at Room Temperature

    CERN Document Server

    Wildner, E; Remondino, Vittorio; Scandale, Walter; Todesco, Ezio; Völlinger, C

    2004-01-01

    In this paper we review the tools used for controlling the production of the LHC main dipoles through warm magnetic measurements. For the collared coil measurements, control limits are based on the statistics relative to the pre-series production. For the cold mass, the difference between collared coil and cold mass is considered, allowing a very stringent test. In both cases, measurements are split in straight part average, variations and coil ends contributions. Two different alarm levels exist in case the measured field is out of limits. The analysis can be carried out at the manufacturer and allows detection of anomalies in the measured magnetic field. These can be either due to wrong measurements or caused by assembly defects. Techniques used to work out information on the magnet assembly from the field harmonics are outlined. We summarize the experience gathered on about 180 collared coils and 120 cold masses, pointing out the bad cases and investigating the reliability of the measurements.

  5. Status of the quadrupoles for RHIC [Relativistic Heavy Ion Collider

    International Nuclear Information System (INIS)

    Thompson, P.A.; Cottingham, J.G.; Garber, M.

    1989-01-01

    The proposed Relativistic Heavy Ion Collider (RHIC) will require 408 regular arc quadrupoles. Two full size prototypes have been constructed and tested. The construction uses the single layer, collarless concept which has been successful in the RHIC dipoles. Both the magnets attained short sample current, which is 60% higher than the operating current. This corresponds to a gradient of 113 T/m with clear bore of 80 mm. The preliminary field measurements are in agreement with the calculations, with the exception of an unexpectedly large show sextupole. 2 refs., 5 figs., 1 tab

  6. Dipole-dipole interaction of dust grains in plasmas

    International Nuclear Information System (INIS)

    Tskhakaya, D.D.; Shukla, P.K.

    2005-01-01

    Complete screening of the negative dust grain charge by a cloud of trapped ions in plasmas is investigated. In the external electric field, the compound dust particle - 'dust grain + ion cloud' acquires a dipole moment due to displacement of the centers of positive and negative charges in the opposite directions. By analogy to the Van der Waals potential, the dipole-dipole interaction of the compound dust particles can have an attractive behavior. It is shown that the dipole-dipole attractive force can exceed the shadowing force that is connected with the reciprocal interception of ions by the neighboring dust grains

  7. A liquid nitrogen temperature SSC [Superconducting Super Collider

    International Nuclear Information System (INIS)

    McAshan, M.S.; VanderArend, P.

    1987-04-01

    Under the assumption that new developments in the science of superconductivity will lead to dipole magnets suitable for the SSC that have the same properties with regard to field, field quality, size and cost as those in the present conception of the collider, but operating at 77 K rather than 4.35 K; the initial cost of the collider facility is found to be less by $213 M out of the $2,000 M actual construction cost for the collider technical systems and the conventional facilities estimated in the Conceptual Design Report. EDI and contingency is not included in these figures. Operation at the higher temperature is not, however, an unequivocal advantage. The beam line vacuum system in the 77 K case presents problems that will require a larger magnet aperture for satisfactory solution. The costs of this together with the cost of the development and construction of the new vacuum system required is estimated to be $156 M. The net capital cost saving associated with the higher temperature operation is thus found to be $57 M or about 3% of the estimated cost. In addition it is estimated that the operating cost of the facility will under conditions be less by $27.5 M per year in the steady-state including an allowance for the greater availability of the simpler cryogenic system. 14 refs., 1 fig., 4 tabs

  8. Higgs-Mediated Electric Dipole Moments in the MSSM An Application to Baryogenesis and Higgs Searches

    CERN Document Server

    Pilaftsis, Apostolos

    2002-01-01

    We perform a comprehensive study of the dominant two- and higher-loop contributions to the Tl(205), neutron and muon electric dipole moments induced by Higgs bosons, third-generation quarks and squarks, charginos and gluinos in the Minimal Supersymmetric Standard Model (MSSM). We find that strong correlations exist among the contributing CP-violating operators, for large stop, gluino and chargino phases, and for a wide range of values of \\tan\\beta and charged Higgs-boson masses, giving rise to large suppressions of the Tl(205) and neutron electric dipole moments below their present experimental limits. Based on this observation, we discuss the constraints that the nonobservation of electric dipole moments imposes on the radiatively-generated CP-violating Higgs sector and on the mechanism of electroweak baryogenesis in the MSSM. We improve previously suggested benchmark scenarios of maximal CP violation for analyzing direct searches of CP-violating MSSM Higgs-bosons at high-energy colliders, and stress the imp...

  9. Deflection analysis for an SSC [Superconducting Super Collider] dipole magnet with two external supports

    International Nuclear Information System (INIS)

    Nicol, T.H.

    1987-01-01

    SSC dipole magnets are presently supported at five mounting locations coincident with the internal cold mass supports. There is growing interest in reducing the number of external supports from five to two for reasons of simplified installation and alignment and as a cost reduction measure. This reports examines the placement of two external supports required to minimize the deflection of the cold mass assembly

  10. Photoproduction of vector mesons in proton-proton ultraperipheral collisions at the CERN Large Hadron Collider

    Science.gov (United States)

    Xie, Ya-Ping; Chen, Xurong

    2018-05-01

    Photoproduction of vector mesons is computed with dipole model in proton-proton ultraperipheral collisions (UPCs) at the CERN Large Hadron Collider (LHC). The dipole model framework is employed in the calculations of vector mesons production in diffractive processes. Parameters of the bCGC model are refitted with the latest inclusive deep inelastic scattering experimental data. Employing the bCGC model and boosted Gaussian light-cone wave function for vector mesons, we obtain the prediction of rapidity distributions of J/ψ and ψ(2s) mesons in proton-proton ultraperipheral collisions at the LHC. The predictions give a good description of the experimental data of LHCb. Predictions of ϕ and ω mesons are also evaluated in this paper.

  11. Polarized Electrons for Linear Colliders

    International Nuclear Information System (INIS)

    Clendenin, J.

    2004-01-01

    Future electron-positron linear colliders require a highly polarized electron beam with a pulse structure that depends primarily on whether the acceleration utilizes warm or superconducting rf structures. The International Linear Collider (ILC) will use cold structures for the main linac. It is shown that a dc-biased polarized photoelectron source such as successfully used for the SLC can meet the charge requirements for the ILC micropulse with a polarization approaching 90%

  12. Direct amplitude detuning measurement with ac dipole

    Directory of Open Access Journals (Sweden)

    S. White

    2013-07-01

    Full Text Available In circular machines, nonlinear dynamics can impact parameters such as beam lifetime and could result in limitations on the performance reach of the accelerator. Assessing and understanding these effects in experiments is essential to confirm the accuracy of the magnetic model and improve the machine performance. A direct measurement of the machine nonlinearities can be obtained by characterizing the dependency of the tune as a function of the amplitude of oscillations (usually defined as amplitude detuning. The conventional technique is to excite the beam to large amplitudes with a single kick and derive the tune from turn-by-turn data acquired with beam position monitors. Although this provides a very precise tune measurement it has the significant disadvantage of being destructive. An alternative, nondestructive way of exciting large amplitude oscillations is to use an ac dipole. The perturbation Hamiltonian in the presence of an ac dipole excitation shows a distinct behavior compared to the free oscillations which should be correctly taken into account in the interpretation of experimental data. The use of an ac dipole for direct amplitude detuning measurement requires careful data processing allowing one to observe the natural tune of the machine; the feasibility of such a measurement is demonstrated using experimental data from the Large Hadron Collider. An experimental proof of the theoretical derivations based on measurements performed at injection energy is provided as well as an application of this technique at top energy using a large number of excitations on the same beam.

  13. New technology for future colliders. Final report

    International Nuclear Information System (INIS)

    Peter McIntyre

    2006-01-01

    This document presents an annual report on our long-term R and D grant for development of new technology for future colliders. The organizing theme of our development is to develop a compact high-field collider dipole, utilizing wind-and-react Nb3Sn coil fabrication, stress management, conductor optimization, bladder preload, and flux plate suppression of magnetization multipoles . The development trail for this new technology began over four years ago with the successful testing of TAMU12, a NbTi model in which we put to a first test many of the construction details of the high-field design. We have built TAMU2, a mirror-geometry dipole containing a single coil module of the 3-module set required for the 14 Tesla design. This first Nb3Sn model was built using ITER conductor which carries much less current than high-performance conductor but enables us to prove in practice our reaction bake and impregnation strategies with ''free'' superconductor. TAMU2 has been shipped to LBNL for testing. Work is beginning on the construction of TAMU3, which will contain two coil modules of the 14 Tesla design. TAMU3 has a design field of 13.5 Tesla, and will enable us to fully evaluate the issues of stress management that will be important to the full design. With the completion of TAMU2 and the construction of TAMU3 the Texas A and M group ''comes of age'' in the family of superconducting magnet R and D laboratories. We have completed the phase of developing core technologies and fixtures and entered the phase of building and testing a succession of TAMU3 model dipoles that each build incrementally upon a proven core design. TAMU3 provides a testbed in which we can build a succession of model dipoles in which each new model uses one new winding module coupled with one module from the previous model, and uses all of the same structural elements in successive models. This incremental development should enable us to keep to a minimum the time between the completion and testing of

  14. Colliders

    CERN Document Server

    Chou, Weiren

    2014-01-01

    The idea of colliding two particle beams to fully exploit the energy of accelerated particles was first proposed by Rolf Wideröe, who in 1943 applied for a patent on the collider concept and was awarded the patent in 1953. The first three colliders — AdA in Italy, CBX in the US, and VEP-1 in the then Soviet Union — came to operation about 50 years ago in the mid-1960s. A number of other colliders followed. Over the past decades, colliders defined the energy frontier in particle physics. Different types of colliers — proton–proton, proton–antiproton, electron–positron, electron–proton, electron-ion and ion-ion colliders — have played complementary roles in fully mapping out the constituents and forces in the Standard Model (SM). We are now at a point where all predicted SM constituents of matter and forces have been found, and all the latest ones were found at colliders. Colliders also play a critical role in advancing beam physics, accelerator research and technology development. It is timel...

  15. Efficient twin aperture magnets for the future circular $e^+/e^- $ collider

    CERN Document Server

    AUTHOR|(CDS)2078698

    2016-01-01

    We report preliminary designs for the arc dipoles and quadrupoles of the FCC-ee double-ring collider. After recalling cross sections and parameters of warm magnets used in previous large accelerators, we focus on twin aperture layouts, with a magnetic coupling between the gaps, which minimizes construction cost and reduces the electrical power required for operation. We also indicate how the designs presented may be further optimized so as to optimally address any further constraints related to beam physics, vacuum system, and electric power consumption.

  16. Field distributions and particle optics in main bending dipoles of Oak Ridge Spallation Neutron Source accumulator ring

    International Nuclear Information System (INIS)

    Wang, J.G.

    2013-01-01

    The SNS accumulator ring employs 32 electro-magnetic dipoles to bend proton beams. The dipoles are typical sector magnets with relatively large aperture and short length. Thus, how to correctly treat magnetic fringe fields in the devices remains as a question. We have performed 3D computer simulations to study magnetic field distributions in the dipoles. Further, we have analyzed particle optics based on the space-dependent curvature and focusing functions in the magnets. The effect of magnetic fringe fields on the particle motion, especially the focusing/defocusing and dispersion, is investigated. The lens parameters, including the second-order aberrations, are derived and compared with the design hard-edge parameters used in the ring lattice calculations

  17. Proton-Proton and Proton-Antiproton Colliders

    CERN Document Server

    Scandale, Walter

    2014-01-01

    In the last five decades, proton–proton and proton–antiproton colliders have been the most powerful tools for high energy physics investigations. They have also deeply catalyzed innovation in accelerator physics and technology. Among the large number of proposed colliders, only four have really succeeded in becoming operational: the ISR, the SppbarS, the Tevatron and the LHC. Another hadron collider, RHIC, originally conceived for ion–ion collisions, has also been operated part-time with polarized protons. Although a vast literature documenting them is available, this paper is intended to provide a quick synthesis of their main features and key performance.

  18. FEM Computations Concerning the Effect of Friction in Two LHC Main Dipole Structures

    CERN Document Server

    Bajko, M; Perini, D

    2000-01-01

    The mechanical behaviour of a dipole structure is considered when also friction is taken into account, studying its effect on different components and in different conditions. In particular the difference in behavior between a structure with aluminium collars and one with austenitic steel ones was studied.

  19. Dipole nano-laser: Theory and properties

    Energy Technology Data Exchange (ETDEWEB)

    Ghannam, T., E-mail: gtalal@hotmail.com [King Abdullah Institute for Nano-Technology, King Saud University, PO Box 2454, Riyadh 11451 (Saudi Arabia)

    2014-03-31

    In this paper we outline the main quantum properties of the system of nano-based laser called Dipole Nano-Laser emphasizing mainly on its ability to produce coherent light and for different configurations such as different embedding materials and subjecting it to an external classical electric field.

  20. The Influence of Train Leakage Currents on the LEP Dipole Field

    CERN Document Server

    Bravin, Enrico; Dehning, Bernd; Drees, A; Galbraith, Peter; Geitz, M A; Henrichsen, K N; Koratzinos, M; Mugnai, G

    1998-01-01

    The determination of the mass and the width of the Z boson at CERN's LEP accelerator, an e+e- storage ring with a circumference of approximately 27 kilometres, imposes heavy demands on the knowledge of the LEP counter-rotating electron and positron beam energies. The precision required is of the order of 1 MeV or »20 ppm frequency. Due to its size the LEP collider is influenced by various macroscopic and regional factors such as the position of the moon or seasonal changes of the rainfall in the area, as reported earlier. A new and not less surprising effect of the LEP energy was observed in 1995: railroad trains in the Geneva region perturb the dipole field. A parasitic flow of electricity, originating from the trains, travels along the LEP ground cable and the vacuum chamber, interacting with the dipole field. An account of the phenomenon with its explanation substantiated by dedicated measurements is presented.

  1. Quantum calculation of dipole excitation in fusion reaction

    International Nuclear Information System (INIS)

    Simenel, C.; Chomaz, Ph.; De France, G.

    2000-01-01

    The excitation of the giant dipole resonance by fusion is studied with N/Z asymmetry in the entrance channel. The TDHF solution exhibits a strong dipole vibration which can be associated with a giant vibration along the main axis of a fluctuating prolate shape. The consequences on the gamma-ray emission from hot compound nuclei are discussed. (author)

  2. Study of passive and active protection system for the SSC [Superconducting Super Collider] R ampersand D dipole magnet

    International Nuclear Information System (INIS)

    Lopez, G.; Snitchler, G.

    1990-06-01

    A comparative study of Passive versus Active Protection Systems is made using the computer programs SSC*, designed especially for this proposal. These programs track the quench evolution of each conductor independently, the axial quench velocity is given by a modified expression which correctly fits the experimental data, the phenomenological turn-to-turn transversal quench propagation is considered as an input parameter of the programs. The results of the simulations for a 40 mm dipole indicate that a single dipole is widely self-protected, which suggests that a Cold Diode Passive Protection System is a safe method to protect the magnet (no heaters are needed), and also that two or three magnets (Conceptual Design) will be a safe Active Protection System is the heater-time-delay to cause other quenching is sufficiently brief (τ h < 50 ms). Assuming the same turn-to-turn quench propagation for the 50 mm SSC R ampersand D Dipole Magnet, the predictions for this magnet will have much lower axial quench velocity and the above results will be still valid for this new magnet. 10 refs., 30 figs

  3. Performance of three 4.5 m dipoles for SSC reference design D

    International Nuclear Information System (INIS)

    Dahl, P.; Cottingham, J.; Fernow, R.

    1985-01-01

    Three 4.5 m long dipoles for Reference Design D of the proposed Superconducting Super Collider have been successfully tested. The magnets are cold-iron (and cold bore) 1-in-1 dipoles, wound with current density-graded high homogeneity NbTi cable in a two-layer cos theta coil of 40 mm inner diameter. The coil is prestressed by 15 mm wide stainless steel collars, and mounted in a circular, split iron yoke of 267 mm outer diameter, supported in a cylindrical yoke containment vessel. At 4.5 K the magnets reached a field of about 6.6T with little training, or the short sample limit of the conductor, and in subcooled (2.6 to 2.4 K) liquid, 8T was achieved. The allowed harmonics were close to the predicted values, and the unallowed harmonics small. The sextupole trim coil operated at eight times the required current without training

  4. Adsorption of hydrophobin on different self-assembled monolayers: the role of the hydrophobic dipole and the electric dipole.

    Science.gov (United States)

    Peng, Chunwang; Liu, Jie; Zhao, Daohui; Zhou, Jian

    2014-09-30

    In this work, the adsorptions of hydrophobin (HFBI) on four different self-assembled monolayers (SAMs) (i.e., CH3-SAM, OH-SAM, COOH-SAM, and NH2-SAM) were investigated by parallel tempering Monte Carlo and molecular dynamics simulations. Simulation results indicate that the orientation of HFBI adsorbed on neutral surfaces is dominated by a hydrophobic dipole. HFBI adsorbs on the hydrophobic CH3-SAM through its hydrophobic patch and adopts a nearly vertical hydrophobic dipole relative to the surface, while it is nearly horizontal when adsorbed on the hydrophilic OH-SAM. For charged SAM surfaces, HFBI adopts a nearly vertical electric dipole relative to the surface. HFBI has the narrowest orientation distribution on the CH3-SAM, and thus can form an ordered monolayer and reverse the wettability of the surface. For HFBI adsorption on charged SAMs, the adsorption strength weakens as the surface charge density increases. Compared with those on other SAMs, a larger area of the hydrophobic patch is exposed to the solution when HFBI adsorbs on the NH2-SAM. This leads to an increase of the hydrophobicity of the surface, which is consistent with the experimental results. The binding of HFBI to the CH3-SAM is mainly through hydrophobic interactions, while it is mediated through a hydration water layer near the surface for the OH-SAM. For the charged SAM surfaces, the adsorption is mainly induced by electrostatic interactions between the charged surfaces and the oppositely charged residues. The effect of a hydrophobic dipole on protein adsorption onto hydrophobic surfaces is similar to that of an electric dipole for charged surfaces. Therefore, the hydrophobic dipole may be applied to predict the probable orientations of protein adsorbed on hydrophobic surfaces.

  5. Parameters of the SLAC Next Linear Collider

    International Nuclear Information System (INIS)

    Raubenheimer, T.; Adolphsen, C.; Burke, D.

    1995-05-01

    In this paper, the authors present the parameters and layout of the Next Linear Collider (NLC). The NLC is the SLAC design of a future linear collider using X-band RF technology in the main linacs. The collider would have an initial center-of-mass energy of 0.5 TeV which would be upgraded to 1 TeV and then 1.5 TeV in two stages. The design luminosity is > 5 x 10 33 cm -2 sec -1 at 0.5 TeV and > 10 34 cm -2 sec -1 at 1.0 and 1.5 TeV. They briefly describe the components of the collider and the proposed energy upgrade scenario

  6. Black hole multiplicity at particle colliders (Do black holes radiate mainly on the brane?)

    International Nuclear Information System (INIS)

    Cavaglia, Marco

    2003-01-01

    If gravity becomes strong at the TeV scale, we may have the chance to produce black holes at particle colliders. In this Letter we revisit some phenomenological signatures of black hole production in TeV-gravity theories. We show that the bulk-to-brane ratio of black hole energy loss during the Hawking evaporation phase depends crucially on the black hole greybody factors and on the particle degrees of freedom. Since the greybody factors have not yet been calculated in the literature, and the particle content at trans-Planckian energies is not known, it is premature to claim that the black hole emits mainly on the brane. We also revisit the decay time and the multiplicity of the decay products of black hole evaporation. We give general formulae for black hole decay time and multiplicity. We find that the number of particles produced during the evaporation phase may be significantly lower than the average multiplicity which has been used in the past literature

  7. Analyzing the Anomalous Dipole Moment Type Couplings of Heavy Quarks with FCNC Interactions at the CLIC

    International Nuclear Information System (INIS)

    Senol, A.; Tasci, A. T.; Verep, C.

    2014-01-01

    We examine both anomalous magnetic and dipole moment type couplings of a heavy quark via its single production with subsequent dominant standard model decay modes at the compact linear collider (CLIC). The signal and background cross sections are analyzed for heavy quark masses 600 and 700 GeV. We make the analysis to delimitate these couplings as well as to find the attainable integrated luminosities for 3σ observation limit

  8. Results from a partial lifetime test of a 40 mm-aperture 17 mm SSC model dipole

    International Nuclear Information System (INIS)

    Radusewicz, P.; Devred, A.; Bush, T.; Coombes, R.; DiMarco, J.; Goodzeit, C.; Kuzminski, J.; Ogitsu, T.; Potter, J.; Puglisi, M.; Sanger, P.; Schermer, R.; Tompkins, J.; Yu, Y.; Zhao, Y.; Zheng, H.; Anerella, M.; Cottingham, J.; Ganetis, G.; Garber, M.; Ghosh, A.; Greene, A.; Gupta, R.; Jain, A.; Kahn, S.; Kelly, E.; Morgan, G.; Muratore, J.; Prodell, A.; Rehak, M.; Roher, E.P.; Sampson, W.; Shutt, R.; Thomas, R.; Thompson, P.; Wanderer, P.; Willen, E.; Bleadon, M.; Hanft, R.; Kuchnir, M.; Mantsch, P.; Mazur, P.O.; Orris, D.; Peterson, T.; Strait, J.; Royett, J.; Scanlan, R.; Taylor, C.

    1992-03-01

    A 40-mm-aperture, 17-m-long Superconducting Super Collider (SSC) model dipole was assembled at Brookhaven National Laboratory (BNL) and tested initially at Fermi National Accelerator Lab (FNAL) and later at BNL. At BNL an extended cycle test was devised to examine the magnet's performance through numerous cold tests and thermal cycles. This paper discusses the magnet's mechanical and quench performance and magnet field measurements during the tests

  9. ACOL dipoles

    International Nuclear Information System (INIS)

    Vlogaert, J.

    1987-01-01

    This paper describes the general design of ACOL dipoles, including the special injection area dipole. A list of mechanical, electrical and magnetic parameters and results of magnetic measurements are presented. Particular attention is paid to the proximity effects between quadrupoles and dipoles

  10. Thermo-electric Analysis of the Interconnection of the LHC main Superconducting Bus Bars

    CERN Document Server

    Granieri, P P; Casali, M; Bottura, L; Siemko, A

    2013-01-01

    Spurred by the question of the maximum allowable energy for the operation of the Large Hadron Collider (LHC), we have progressed in the understanding of the thermo-electric behavior of the 13 kA superconducting bus bars interconnecting its main magnets. A deep insight of the underlying mechanisms is required to ensure the protection of the accelerator against undesired effects of resistive transitions. This is especially important in case of defective interconnections which can jeopardize the operation of the whole LHC. In this paper we present a numerical model of the interconnections between the main dipole and quadrupole magnets, validated against experimental tests of an interconnection sample with a purposely built-in defect. We consider defective interconnections featuring a lack of bonding among the superconducting cables and the copper stabilizer components, such as those that could be present in the machine. We evaluate the critical defect length limiting the maximum allowable current for powering th...

  11. Coupled-resonator waveguide perfect transport single-photon by interatomic dipole-dipole interaction

    Science.gov (United States)

    Yan, Guo-an; Lu, Hua; Qiao, Hao-xue; Chen, Ai-xi; Wu, Wan-qing

    2018-06-01

    We theoretically investigate single-photon coherent transport in a one-dimensional coupled-resonator waveguide coupled to two quantum emitters with dipole-dipole interactions. The numerical simulations demonstrate that the transmission spectrum of the photon depends on the two atoms dipole-dipole interactions and the photon-atom couplings. The dipole-dipole interactions may change the dip positions in the spectra and the coupling strength may broaden the frequency band width in the transmission spectrum. We further demonstrate that the typical transmission spectra split into two dips due to the dipole-dipole interactions. This phenomenon may be used to manufacture new quantum waveguide devices.

  12. Strong dependence of ultracold chemical rates on electric dipole moments

    International Nuclear Information System (INIS)

    Quemener, Goulven; Bohn, John L.

    2010-01-01

    We use the quantum threshold laws combined with a classical capture model to provide an analytical estimate of the chemical quenching cross sections and rate coefficients of two colliding particles at ultralow temperatures. We apply this quantum threshold model (QT model) to indistinguishable fermionic polar molecules in an electric field. At ultracold temperatures and in weak electric fields, the cross sections and rate coefficients depend only weakly on the electric dipole moment d induced by the electric field. In stronger electric fields, the quenching processes scale as d 4(L+(1/2)) where L>0 is the orbital angular-momentum quantum number between the two colliding particles. For p-wave collisions (L=1) of indistinguishable fermionic polar molecules at ultracold temperatures, the quenching rate thus scales as d 6 . We also apply this model to pure two-dimensional collisions and find that chemical rates vanish as d -4 for ultracold indistinguishable fermions. This model provides a quick and intuitive way to estimate chemical rate coefficients of reactions occuring with high probability.

  13. Evaluation of the radiation field in the future circular collider detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00211473; Cerutti, Francesco; Ferrari, Alfredo; Riegler, Werner; Vlachoudis, Vasilis; CERN. Geneva. ATS Department

    2016-01-01

    The radiation load on a detector at a 100 TeV proton-proton collider, that is being investigated within the Future Circular Collider (FCC) study, is presented. A peak luminosity of 30 1034 cm−2s−1 and a total integrated luminosity of 30 ab−1 are assumed for these radiation studies. A first concept of the detector foresees the presence of central and forward sub-detectors that provide acceptance up to |η|=6 inside a magnetic field generated by the combination of a central solenoid and two forward dipoles. This layout has been modelled and relevant fluence and dose distributions have been calculated using the FLUKA Monte Carlo code. Distributions of fluence rates are discussed separately for charged particles, neutrons and pho- tons. Dose and 1 MeV neutron equivalent fluence, for the accumulated integrated luminosity, are presented. The peak values of these quantities in the different sub-detectors are highlighted, in order to define the radiation tolerance requirements for the choice of possible technol...

  14. Energy Extraction in the CERN Large Hadron Collider a Project Overview

    CERN Document Server

    Dahlerup-Petersen, K; Kazmine, B; Medvedko, A S; Sytchev, V V; Vasilev, L B

    2001-01-01

    In case of a resistive transition (quench), fast and reliable extraction of the magnetic energy, stored in the superconducting coils of the electromagnets of a particle collider, represents an important part of its magnet protection system. In general, the quench detectors, the quench heaters and the cold by-pass diodes across each magnet, together with the energy extraction facilities provide the required protection of the quenching superconductors against damage due to local energy dissipation. In CERN's LHC machine the energy stored in each of its eight superconducting dipole chains exceeds 1300 MJ. Following an opening of the extraction switches this energy will be absorbed in large extraction resistors located in the underground collider tunnel or adjacent galleries, during the exponential current decay. Also the sixteen, 13 kA quadrupole chains (QF, QD) and more than one hundred and fifty, 600 A circuits of the corrector magnets will be equipped with extraction systems. The extraction switch-gear is bas...

  15. Coil end design for the LHC dipole magnet

    International Nuclear Information System (INIS)

    Brandt, J.S.

    1996-01-01

    This paper describes the design of the coil ends for the Large Hadron Collider dipole magnets of the CERN European Laboratory for Particle Physics in Switzerland. This alternative to existing European designs was provided by Fermi National Accelerator Laboratory by agreement between CERN and the United States. The superconducting cable paths are determined from both magnetic and mechanical considerations. The coil end parts used to shape and constrain the conductors in the coil ends are designed using the developable surface, grouped end approach. This method allows the analysis of strain energy within the conductor groups, and the optimization of mechanical factors during the design. Design intent and implementation are discussed. Inner and outer coil design challenges and end analysis are detailed

  16. Enhanced and tunable electric dipole-dipole interactions near a planar metal film

    Science.gov (United States)

    Zhou, Lei-Ming; Yao, Pei-Jun; Zhao, Nan; Sun, Fang-Wen

    2017-08-01

    We investigate the enhanced electric dipole-dipole interaction of surface plasmon polaritons (SPPs) supported by a planar metal film waveguide. By taking two nitrogen-vacancy (NV) center electric dipoles in diamond as an example, both the coupling strength and collective relaxation of two dipoles are studied with the numerical Green Function method. Compared to two-dipole coupling on a planar surface, metal film provides stronger and tunable coupling coefficients. Enhancement of the interaction between coupled NV center dipoles could have applications in both quantum information and energy transfer investigation. Our investigation provides systematic results for experimental applications based on a dipole-dipole interaction mediated with SPPs on a planar metal film.

  17. Instrumentation status of the low-b magnet systems at the Large Hadron Collider (LHC)

    CERN Document Server

    Darve, C.; Casas-Cubillos, J.; Perin, A.; Vauthier, N.

    2011-01-01

    The low-beta magnet systems are located in the Large Hadron Collider (LHC) insertion regions around the four interaction points. They are the key elements in the beams focusing/defocusing process allowing proton collisions at luminosity up to 10**34/cm**2s. Those systems are a contribution of the US-LHC Accelerator project. The systems are mainly composed of the quadrupole magnets (triplets), the separation dipoles and their respective electrical feed-boxes (DFBX). The low-beta magnet systems operate in an environment of extreme radiation, high gradient magnetic field and high heat load to the cryogenic system due to the beam dynamic effect. Due to the severe environment, the robustness of the diagnostics is primordial for the operation of the triplets. The hardware commissioning phase of the LHC was completed in February 2010. In the sake of a safer and more user-friendly operation, several consolidations and instrumentation modifications were implemented during this commissioning phase. This paper presents ...

  18. Instrumentation Status of the Low-β Magnet Systems at the Large Hadron Collider (LHC)

    CERN Document Server

    Darve, C; Casas-Cubillos, J; Perin, A; Vauthier, N

    2011-01-01

    The low-β magnet systems are located in the Large Hadron Collider (LHC) insertion regions around the four interaction points. They are the key elements in the beams focusing/defocusing process allowing proton collisions at luminosity up to 1034cm-2s-1. Those systems are a contribution of the US-LHC Accelerator project. The systems are mainly composed of the quadrupole magnets (triplets), the separation dipoles and their respective electrical feed-boxes (DFBX). The low-β magnet systems operate in an environment of extreme radiation, high gradient magnetic field and high heat load to the cryogenic system due to the beam dynamic effect. Due to the severe environment, the robustness of the diagnostics is primordial for the operation of the triplets. The hardware commissioning phase of the LHC was completed in February 2010. In the sake of a safer and more user-friendly operation, several consolidations and instrumentation modifications were implemented during this commissioning phase. This paper presents the in...

  19. Impact of the Voltage Transients after a Fast Power Abort on the Quench Detection System in the LHC Main Dipole Chain

    CERN Document Server

    Ravaioli, E; Formenti, F; Montabonnet, V; Pojer, M; Schmidt, R; Siemko, A; Solfaroli Camillocci, A; Steckert, J; Thiesen, H; Verweij, A

    2012-01-01

    A Fast Power Abort in the LHC superconducting main dipole circuit consists in the switch-off of the power converter and the opening of the two energy-extraction switches. Each energy-extraction unit is composed of redundant electromechanical breakers, which are opened to force the current through an extraction resistor. When a switch is opened arcing occurs in the switch and a voltage of up to 1 kV builds up across the extraction resistor with a typical ramp rate of about 80 kV/s. The subsequent voltage transient propagates through the chain of 154 dipoles and superposes on the voltage waves caused by the switch-off of the power converter. The resulting effect caused intermittent triggering of the quench protection systems along with heater firings in the magnets when the transient occurred during a ramp of the current. A delay between power converter switch-off and opening of the energy-extraction switches was introduced to prevent this effect. Furthermore, the output filters of the power converters were mod...

  20. Beyond the Large Hadron Collider: A First Look at Cryogenics for CERN Future Circular Colliders

    Science.gov (United States)

    Lebrun, Philippe; Tavian, Laurent

    Following the first experimental discoveries at the Large Hadron Collider (LHC) and the recent update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. The study, conducted with the collaborative participation of interested institutes world-wide, considers several options for very high energy hadron-hadron, electron-positron and hadron-electron colliders to be installed in a quasi-circular underground tunnel in the Geneva basin, with a circumference of 80 km to 100 km. All these machines would make intensive use of advanced superconducting devices, i.e. high-field bending and focusing magnets and/or accelerating RF cavities, thus requiring large helium cryogenic systems operating at 4.5 K or below. Based on preliminary sets of parameters and layouts for the particle colliders under study, we discuss the main challenges of their cryogenic systems and present first estimates of the cryogenic refrigeration capacities required, with emphasis on the qualitative and quantitative steps to be accomplished with respect to the present state-of-the-art.

  1. Derivation of the electric dipole--dipole interaction as an electric hyperfine interaction

    International Nuclear Information System (INIS)

    Parker, G.W.

    1986-01-01

    The electric dipole--dipole interaction is derived by assuming that the electron and proton in hydrogen have intrinsic electric dipole moments that interact to give an electric hyperfine interaction. The electric field at the proton due to the electron's presumed dipole moment then gives rise to a contact type term for l = 0 and the normal dipole--dipole term for lnot =0. When combined with our previous derivation of the magnetic hyperfine interaction [Am. J. Phys. 52, 36 (1984)], which used a similar approach, these derivations provide a unified treatment of the interaction of electric and magnetic dipoles. As an application of these results, the product of the electron's and proton's dipole moments is estimated to be less than 10 -29 e 2 cm 2

  2. A New Chicane Experiment In PEP-II to Test Mitigations of the Electron Cloud Effect for Linear Colliders

    International Nuclear Information System (INIS)

    Pivi, M

    2008-01-01

    Beam instability caused by the electron cloud has been observed in positron and proton storage rings, and it is expected to be a limiting factor in the performance of future colliders [1-3]. The effect is expected to be particularly severe in magnetic field regions. To test possible mitigation methods in magnetic fields, we have installed a new 4-dipole chicane experiment in the PEP-II Low Energy Ring (LER) at SLAC with both bare and TiN-coated aluminum chambers. In particular, we have observed a large variation of the electron flux at the chamber wall as a function of the chicane dipole field. We infer this is a new high order resonance effect where the energy gained by the electrons in the positron beam depends on the phase of the electron cyclotron motion with respect to the bunch crossing, leading to a modulation of the secondary electron production. Presumably the cloud density is modulated as well and this resonance effect could be used to reduce its magnitude in future colliders. We present the experimental results obtained during January 2008 until the April final shut-down of the PEP-II machine

  3. Klystron switching power supplies for the Internation Linear Collider

    Energy Technology Data Exchange (ETDEWEB)

    Fraioli, Andrea; /Cassino U. /INFN, Pisa

    2009-12-01

    The International Linear Collider is a majestic High Energy Physics particle accelerator that will give physicists a new cosmic doorway to explore energy regimes beyond the reach of today's accelerators. ILC will complement the Large Hadron Collider (LHC), a proton-proton collider at the European Center for Nuclear Research (CERN) in Geneva, Switzerland, by producing electron-positron collisions at center of mass energy of about 500 GeV. In particular, the subject of this dissertation is the R&D for a solid state Marx Modulator and relative switching power supply for the International Linear Collider Main LINAC Radio Frequency stations.

  4. Magnetic field measurements of 1.5 meter model SSC collider dipole magnets at Fermilab

    International Nuclear Information System (INIS)

    Lamm, M.J.; Bleadon, M.; Coulter, K.J.; Delchamps, S.; Hanft, R.; Jaffery, T.S.; Kinney, W.; Koska, W.; Ozelis, J.P.; Strait, J.; Wake, M.; DiMarco, J.

    1991-09-01

    Magnetic field measurements have been performed at Fermilab on 1.5 m magnetic length model dipoles for the Superconducting Supercollider. Harmonic measurements are recorded at room temperature before and after the collared coil is assembled into the yoke and at liquid helium temperature. Measurements are made as a function of longitudinal position and excitation current. High field data are compared with room temperature measurements of both the collared coil and the completed yoked magnet and with the predicted fields for both the body of the magnet and the coil ends

  5. AutoDipole - Automated generation of dipole subtraction terms

    International Nuclear Information System (INIS)

    Hasegawa, K.; Uwer, P.

    2009-11-01

    We present an automated generation of the subtraction terms for next-to-leading order QCD calculations in the Catani-Seymour dipole formalism. For a given scattering process with n external particles our Mathematica package generates all dipole terms, allowing for bothmassless and massive dipoles. The numerical evaluation of the subtraction terms proceeds with MadGraph, which provides Fortran code for the necessary scattering amplitudes. Checks of the numerical stability are discussed. (orig.)

  6. AutoDipole - Automated generation of dipole subtraction terms

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, K.; Uwer, P. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Moch, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2009-11-15

    We present an automated generation of the subtraction terms for next-to-leading order QCD calculations in the Catani-Seymour dipole formalism. For a given scattering process with n external particles our Mathematica package generates all dipole terms, allowing for bothmassless and massive dipoles. The numerical evaluation of the subtraction terms proceeds with MadGraph, which provides Fortran code for the necessary scattering amplitudes. Checks of the numerical stability are discussed. (orig.)

  7. Numerical Integration of the Vlasov Equation of Two Colliding Beams

    CERN Document Server

    Zorzano-Mier, M P

    2000-01-01

    In a circular collider the motion of particles of one beam is strongly perturbed at the interaction points by the electro-magnetic field associated with the counter-rotating beam. For any two arbitrary initial particle distributions the time evolution of the two beams can be known by solving the coupled system of two Vlasov equations. This collective description is mandatory when the two beams have similar strengths, as in the case of LEP or LHC. The coherent modes excited by this beam-beam interaction can be a strong limitation for the operation of LHC. In this work, the coupled Vlasov equations of two colliding flat beams are solved numerically using a finite difference scheme. The results suggest that, for the collision of beams with equal tunes, the tune shift between the $\\sigma$- and $\\pi$- coherent dipole mode depends on the unperturbed tune $q$ because of the deformation that the so-called dynamic beta effect induces on the beam distribution. Only when the unperturbed tune $q\\rightarrow 0.25$ this tun...

  8. Fabrication of a prototype dipole for the SSC Low Energy Booster

    International Nuclear Information System (INIS)

    Spencer, C.M.

    1993-12-01

    The Low Energy Booster of the Superconducting Super Collider (SSC) will be a synchrotron containing 96 dipoles operating between 0.13 T and 1.35 T at 10 Hz. Each dipole's 1.865 m-long core is made from ∼2900 steel laminations (lams), each 52 x 66 cm and 0.635 mm thick. A need to minimize power supply costs and stringent field specifications led to a straight core with very tight mechanical tolerances of the order of 0.05 mm. To satisfy these tolerances, we decided to stack the core in a vertical position; i.e., with the laminations laid horizontally. We designed and built an unusual vertical stacking fixture that pivots into a horizontal position after all the laminations have been stacked and compressed and four support angles welded onto the laminations. The stacking fixture, our experience using it, and conclusions as to the merits of stacking such a long core vertically will be described. The methods of insulating and potting the pancake coils and their installation into the unsplittable core is also described

  9. Quality analysis of superconducting wire and cable for SSC dipole magnets

    International Nuclear Information System (INIS)

    Pollock, D.A.

    1992-01-01

    This paper reports that a critical component of the SSC collider dipole magnets is superconducting cable. The uniformity and reliability requirements for the dipoles place stringent demands on the cable. These needs have been defined as various contract requirements in the material specifications for NbTi alloy, superconducting wire and cable. A supplied qualification program is being started by the SSCL with industry to establish reliable sources of superconductor cable. Key to this qualification program is the establishment by industry of detailed process methods and controls for wire and cable manufacture. To monitor conductor performance, a computer database is being developed by the SSCL Magnet Systems Division Quality Assurance Department. The database is part of a program for ensuring superconductor uniformity by focusing on the understanding and control of variation. A statistical and graphical summary of current data for key performance variables will be presented in light of the specification requirement for uniformity. Superconductor material characteristics to be addressed will include Wire Critical Current (I c ), Copper Ratio (Cu:SC), Wire Diameter, Wire Piece Length, and Cable Dimensional Control

  10. MD 979: Beta-beating measurements on colliding beams

    CERN Document Server

    Goncalves Jorge, Patrik; Pieloni, Tatiana; Buffat, Xavier; Carlier, Felix Simon; Coello De Portugal - Martinez Vazquez, Jaime Maria; Fol, Elena; Langner, Andy Sven; Medina Medrano, Luis Eduardo; Olexa, Jakub; Tomas Garcia, Rogelio; Valuch, Daniel; Wegscheider, Andreas; CERN. Geneva. ATS Department

    2017-01-01

    The HL-LHC high brightness beams will give a large β-beating due to the head-on and long-range interactions since a beam-beam parameter of 0.01 per Interaction Point (IP) is expected. The β-heating induced by two head-on collision reaches 15%. A third IP, i.e. IP8, could bring the β-heating up to 24%. The aim of the Machine Development (MD) study was to test optics measurements with AC dipole and ADT on colliding beams at injection and to implement a correction of the β-heating due to to head-on collision in the two experiments IP1&5. Int his note, we summarize the first results of this test performed in the LHC.

  11. Cos-$\\theta$ design of dipole inserts made of ReBCO-Roebel or BSCCO-Rutherford cables

    CERN Document Server

    Lorin, C; Fazilleau, P; Pes, C; Rifflet, J M; Segreti, M; Ballarino, A; Bottura, L; Fleiter, J; Kirby, G; Rossi, L; Van Nugteren, J

    2015-01-01

    Next generation of dipole magnets with field higher than 16 T are considered for future particle colliders. To do so, combined-technology magnets - made of Nb-Ti, Nb$_{3}$Sn and HTS materials - have to be developed to reduce the cost of such a magnet. Therefore, in the framework of the EuCARD-2 project, many HTS dipole magnet designs have to be investigated so as to find the most effective design for the HTS insert in a graded magnet. This paper discusses the Cosθ option. A 5 T standalone configuration of the HTS accelerator magnet (the first goal of EuCARD2) appears to be achievable, whereas mechanical stress distribution shows that its use as insert in graded magnet is very challenging. This paves the way for alternative designs as the so-called slot or motor-like design, briefly introduced here.

  12. Ac loss measurement of SSC dipole magnets

    International Nuclear Information System (INIS)

    Delchamps, S.; Hanft, R.; Jaffery, T.; Kinney, W.; Koska, W.; Lamm, M.J.; Mazur, P.O.; Orris, D.; Ozelis, J.P.; Strait, J.; Wake, M.

    1992-09-01

    AC losses in full length and 1.5 m model SSC collider dipoles were successfully measured by the direct observation of energy flow into and out of magnets during a ramp cycle. The measurement was performed by using two double-integrating type digital volt meters (DVM's) for current and voltage measurement. Measurements were performed for six is m long ASST magnets and five 1.5 m long model magnets, inducting one 40 mm diameter magnet. There were large variations in the eddy current losses. Since these magnets use conductors with slight deviations in their internal structures and processing of the copper surface depending on the manufacturer, it is likely that there are differences in the contact resistance between strands. Correlation between the ramp rate dependence of the,quench current and the eddy current loss was evident

  13. Superconductivity: Its Role, Its Success and Its Setbacks in the Large Hadron Collider of CERN

    CERN Document Server

    Rossi, L

    2010-01-01

    The Large Hadron Collider - LHC, the particle accelerator at CERN, Geneva, is the largest and probably the most complex scientific instrument ever built. Superconductivity plays a key role because the accelerator is based on the reliable operation of almost 10,000 superconducting magnets cooled by 130 tonnes of helium at 1.9 and 4.2 K and containing a total stored magnetic energy of about 15,000 MJ (including detector magnets). The characteristics of the 1200 tonnes of high quality Nb-Ti cables have met the severe requests in terms of critical currents, magnetization and inter-strand resistance; the magnets are built with an unprecedented uniformity, about 0.01% of variation in field quality among the 1232 main dipoles which are 15 m in length and 30 tonnes in weight. The results of this 20 year long enterprise will be discussed together with problems faced during construction and commissioning and their remedies. Particular reference is made to the severe incident which occurred nine days after the spectacul...

  14. Constraints on exotic dipole-dipole couplings between electrons at the micron scale

    Science.gov (United States)

    Kotler, Shlomi; Ozeri, Roee; Jackson Kimball, Derek

    2015-05-01

    Until recently, the magnetic dipole-dipole coupling between electrons had not been directly observed experimentally. This is because at the atomic scale dipole-dipole coupling is dominated by the exchange interaction and at larger distances the dipole-dipole coupling is overwhelmed by ambient magnetic field noise. In spite of these challenges, the magnetic dipole-dipole interaction between two electron spins separated by 2.4 microns was recently measured using the valence electrons of trapped Strontium ions [S. Kotler, N. Akerman, N. Navon, Y. Glickman, and R. Ozeri, Nature 510, 376 (2014)]. We have used this measurement to directly constrain exotic dipole-dipole interactions between electrons at the micron scale. For light bosons (mass 0.1 eV), we find that coupling constants describing pseudoscalar and axial-vector mediated interactions must be | gPegPe/4 πℏc | <= 1 . 5 × 10-3 and | gAegAe/4 πℏc | <= 1 . 2 × 10-17 , respectively, at the 90% confidence level. These bounds significantly improve on previous constraints in this mass range: for example, the constraints on axial-vector interactions are six orders of magnitude stronger than electron-positron constraints based on positronium spectroscopy. Supported by the National Science Foundation, I-Core: the Israeli excellence center, and the European Research Council.

  15. Muon colliders

    International Nuclear Information System (INIS)

    Cline, David

    1995-01-01

    The increasing interest in the possibility of positive-negative muon colliders was reflected in the second workshop on the Physics Potential and Development of Muon Colliders, held in Sausalito, California, from 16-19 November, with some 60 attendees. It began with an overview of the particle physics goals, detector constraints, the muon collider and mu cooling, and source issues. The major issue confronting muon development is the possible luminosity achievable. Two collider energies were considered: 200 + 200 GeV and 2 + 2 TeV. The major particle physics goals are the detection of the higgs boson(s) for the lower energy collider, together with WW scattering and supersymmetric particle discovery. At the first such workshop, held in Napa, California, in 1992, it was estimated that a luminosity of some 10 30 and 3 x 10 32 cm -2 s -1 for the low and high energy collider might be achieved (papers from this meeting were published in the October issue of NIM). This was considered a somewhat conservative estimate at the time. At the Sausalito workshop the goal was to see if a luminosity of 10 32 to 10 34 for the two colliders might be achievable and usable by a detector. There were five working groups - physics, 200 + 200 GeV collider, 2 + 2 TeV collider, detector design and backgrounds, and muon cooling and production methods. Considerable progress was made in all these areas at the workshop.

  16. Evaluation of the transfer of heat from the coil of the LHC dipole magnet to Helium II

    International Nuclear Information System (INIS)

    Richter, D.; Sevred, A.; Fleiter, J.; Baudouy, B.; Devred, A.

    2007-01-01

    During operation of the Large Hadron Collider at CERN, heat will be generated inside the coils of its superconducting magnets as a consequence of ramping of magnetic field, and of the interaction of lost beam particles with the magnet mass. Heat has to be transferred from the conductor into the He II coolant and removed from the magnet environment. During the LHC R and D stage, this transfer has been extensively studied on simulated coil segments at CEA/Saclay, and by analyzing dynamic behavior of short model magnets at CERN. Owing to the importance of efficient cooling for the design of future superconducting accelerator magnets, study of heat transfer has been restored at CERN and in frame of the Next European Dipole Collaboration. The article features two recently performed works: 1) Attempt to analyse archived high ramp rate quench data of 1-m-long LHC model dipole magnets of the 2. generation. 2) Development of a method for direct measurement of heat transfer on segments of production LHC dipole magnet coils. (authors)

  17. arXiv Dipole portal to heavy neutral leptons

    CERN Document Server

    Magill, Gabriel; Pospelov, Maxim; Tsai, Yu-Dai

    We consider generic neutrino dipole portals between left-handed neutrinos, photons, and right-handed heavy neutral leptons (HNL) with Dirac masses. The dominance of this portal significantly alters the conventional phenomenology of HNLs. We derive a comprehensive set of constraints on the dipole portal to HNLs by utilizing data from LEP, LHC, MiniBooNE, LSND as well as observations of Supernova 1987A and consistency of the standard Big Bang Nucleosynthesis. We calculate projected sensitivities from the proposed high-intensity SHiP beam dump experiment, and the ongoing experiments at the Short-Baseline Neutrino facility at Fermilab. Dipole mediated Primakoff neutrino upscattering and Dalitz-like meson decays are found to be the main production mechanisms in most of the parametric regime under consideration. Proposed explanations of LSND and MiniBooNE anomalies based on HNLs with dipole-induced decays are found to be severely constrained, or to be tested in the future experiments.

  18. Future Circular Collider Study FCC-he Baseline Parameters

    CERN Document Server

    Bruning, Oliver; Klein, Max; Pellegrini, Dario; Schulte, Daniel; Zimmermann, Frank

    2017-01-01

    Initial considerations are presented on the FCC-he, the electron-hadron collider con guration within the Future Circular Collider study. This note considers arguments for the choice of the electron beam energy based on physics, ep scattering kinematics and cost. The default con guration for the electron accelerator, as for the LHeC, is chosen to be a multi-turn energy recovery linac external to the proton beam tunnel. The main accelerator parameters of the FCC-he are discussed, assuming the concurrent operation of ep with the 100TeV cms energy pp collider. These are compared with the LHeC design concept, for increased performance as for a Higgs facility using the HL-LHC, and also the high energy HE-LHC ep collider configuration. Initial estimates are also provided for the luminosity performance of electron-ion colliders for the 60 GeV electron ERL when combined with the LHC, the HE-LHC and the FCC ion beams.

  19. Permanent Electric Dipole-Dipole Interactions in Lyotropic Polypeptide Liquid Crystals

    OpenAIRE

    MORI, Norio; Norio, MORI; Research Associate, Department of Industrial Chemistry

    1981-01-01

    The interaction energy between two adjacent α-helical molecules was calculated taking into account for permanent electric dipoles locating orl the helical core of a polymer mainchain in order to explain the cholesteric structure of lyotropic polypeptide liquid crystals. It was concluded that the dipole-dipole interactions were responsible for the formation of the cholesteric structure.

  20. Inductive Soldering of the Junctions of the Main Superconducting Busbars of the LHC

    CERN Document Server

    Jacquemod, A; Schauf, F; Skoczen, Blazej; Tock, J P

    2004-01-01

    The Large Hadron Collider (LHC) is the next world-facility for the high energy physics community, presently under construction at CERN, Geneva. The LHC will bring into collisions intense beams of protons and ions. The main components of the LHC are the twin-aperture high-field superconducting cryomagnets that will be installed in the existing 26.7-km long tunnel. They are powered in series by superconducting Nb-Ti cables. Along the machine, about 60 000 joints between superconducting cables must be realised in-situ during the installation. Ten thousands of them, rated at 13 000 A, are involved in the powering scheme of the main dipoles and quadrupoles. To meet the requirements of the cryogenic budget, an electrical resistance at operating temperature (1.9 K) lower than 0.6 nW has to be achieved. The induction soldering technology was selected for this purpose. After a brief introduction to the LHC project, the constraints and requirements are listed. Then, the applied solution is detailed. The splices of the ...

  1. Fundamental Design Principles of Linear Collider Damping Rings, with an Application to CLIC

    CERN Document Server

    Potier, J P

    2000-01-01

    Damping Rings for Linear Colliders have to produce very small normalised emittances at a high repetition rate. A previous paper presented analytical expressions for the equilibrium emittance of an arc cell as a function of the deflection angle per dipole. In addition, an expression for the lattice parameters providing the minimum emittance, and a strategy to stay close to this, were proposed. This analytical approach is extended to the detailed design of Damping Rings, taking into account the straight sections and the damping wigglers. Complete rings, including wiggler and injection insections, were modelled with the MAD [1] program, and their performance was found to be in good agreement with the analytical calculation. With such an approach it is shown that a Damping Ring corresponding to the Compact Linear Collider (CLIC) parameters at 0.5 and 1 TeV centre-of-mass energy, and tunable for two different sets of emittance and injection repetition rate, can be designed using the same ring layout.

  2. The dark penguin shines light at colliders

    Energy Technology Data Exchange (ETDEWEB)

    Primulando, Reinard [Department of Physics and Astronomy, Johns Hopkins University,Baltimore, Maryland 21218 (United States); Salvioni, Ennio; Tsai, Yuhsin [Department of Physics, University of California Davis,Davis, California 95616 (United States)

    2015-07-07

    Collider experiments are one of the most promising ways to constrain Dark Matter (DM) interactions. For several types of DM-Standard Model couplings, a meaningful interpretation of the results requires to go beyond effective field theory, considering simplified models with light mediators. This is especially important in the case of loop-mediated interactions. In this paper we perform the first simplified model study of the magnetic dipole interacting DM, by including the one-loop momentum-dependent form factors that mediate the coupling — given by the Dark Penguin — in collider processes. We compute bounds from the monojet, monophoton, and diphoton searches at the 8 and 14 TeV LHC, and compare the results to those of direct and indirect detection experiments. Future searches at the 100 TeV hadron collider and at the ILC are also addressed. We find that the optimal search strategy requires loose cuts on the missing transverse energy, to capture the enhancement of the form factors near the threshold for on-shell production of the mediators. We consider both minimal models and models where an additional state beyond the DM is accessible. In the latter case, under the assumption of anarchic flavor structure in the dark sector, the LHC monophoton and diphoton searches will be able to set much stronger bounds than in the minimal scenario. A determination of the mass of the heavier dark fermion might be feasible using the M{sub T2} variable. In addition, if the Dark Penguin flavor structure is almost aligned with that of the DM mass, a displaced signal from the decay of the heavier dark fermion into the DM and photon can be observed. This allows us to set constraints on the mixings and couplings of the model from an existing search for non-pointing photons.

  3. The dark penguin shines light at colliders

    International Nuclear Information System (INIS)

    Primulando, Reinard; Salvioni, Ennio; Tsai, Yuhsin

    2015-01-01

    Collider experiments are one of the most promising ways to constrain Dark Matter (DM) interactions. For several types of DM-Standard Model couplings, a meaningful interpretation of the results requires to go beyond effective field theory, considering simplified models with light mediators. This is especially important in the case of loop-mediated interactions. In this paper we perform the first simplified model study of the magnetic dipole interacting DM, by including the one-loop momentum-dependent form factors that mediate the coupling — given by the Dark Penguin — in collider processes. We compute bounds from the monojet, monophoton, and diphoton searches at the 8 and 14 TeV LHC, and compare the results to those of direct and indirect detection experiments. Future searches at the 100 TeV hadron collider and at the ILC are also addressed. We find that the optimal search strategy requires loose cuts on the missing transverse energy, to capture the enhancement of the form factors near the threshold for on-shell production of the mediators. We consider both minimal models and models where an additional state beyond the DM is accessible. In the latter case, under the assumption of anarchic flavor structure in the dark sector, the LHC monophoton and diphoton searches will be able to set much stronger bounds than in the minimal scenario. A determination of the mass of the heavier dark fermion might be feasible using the M T2 variable. In addition, if the Dark Penguin flavor structure is almost aligned with that of the DM mass, a displaced signal from the decay of the heavier dark fermion into the DM and photon can be observed. This allows us to set constraints on the mixings and couplings of the model from an existing search for non-pointing photons.

  4. Heavy Higgs bosons at TeV e+e- colliders

    International Nuclear Information System (INIS)

    Djouadi, A.; Ohmann, P.

    1995-12-01

    We summarize the work done by the European working group on Higgs Particles for the Workshop 'Physics with e + e - Linear Colliders', Annecy-Gran Sasso-Hamburg, Feb.-Sept. 1995. The main focus will be on the physics possibilities at a second phase e + e - linear collider with a center of mass energy of ∝1.5 TeV. (orig.)

  5. The optimised sc dipole of SIS100 for series production

    Science.gov (United States)

    Roux, Christian; Mierau, Anna; Bleile, Alexander; Fischer, Egbert; Kaether, Florian; Körber, Boris; Schnizer, Pierre; Sugita, Kei; Szwangruber, Piotr

    2017-02-01

    At the international facility for antiproton and ion research (FAIR) in Darmstadt, Germany, an accelerator complex is developed for fundamental research in various fields of modern physics. In the SIS100 heavy-ion synchrotron, the main accelerator of FAIR, superconducting dipoles are used to bend the particle beam. The fast ramped dipoles are 3 m long super-ferric curved magnets operated at 4.5 K. The demands on field homogeneity required for sufficient beam stability are given by ΔB/B ≤ ±6 · 10-4. An intense measurement program of the First of Series (FoS) dipole showed excellent quench behavior and lower than expected AC losses yielding the main load on the SIS100 cryoplant. The FoS is capable to provide a field strength of 1.9 T. However, with sophisticated measurement systems slight distortions of the dipole field were detected. Those effects were tracked down to mechanical inaccuracies of the yoke proven by appropriate geometrical measurements and simulations. After a survey on alternative fabrication techniques a magnet with a new yoke was built with substantial changes to improve the mechanical accuracy. Its characteristics concerning cryogenic losses, cold geometry and the resulting magnetic-field quality are presented and an outlook on the series production of superconducting dipoles for SIS100 is given.

  6. Chromaticity compensation scheme for the Main Injector

    International Nuclear Information System (INIS)

    Bogacz, S.A.

    1993-05-01

    The current Main Injector lattice is studied in the context of full chromaticity compensation in the presence of the eddy current, saturation and the end-pack sextupole fields generated by the dipole magnets. Two families of correcting sextupole magnets are placed to compensate these fields and to adjust the chromaticity (in both planes) to some desired value. Variation of the dipole induced sextupole fields with the B-field (changing along a ramp) are modeled according to recent experimental measurements of the Main Injector dipole magnet Analysis of the required sextupole strengths is carried out along two realistic momentum ramps. The results of our calculation give quantitative insight into the requisite performance of the sextupole magnets

  7. The Multi-Purpose Detector (MPD) of the collider experiment

    Energy Technology Data Exchange (ETDEWEB)

    Golovatyuk, V.; Kekelidze, V.; Kolesnikov, V.; Rogachevsky, O. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Sorin, A. [Joint Institute for Nuclear Research, Dubna (Russian Federation); National Research Nuclear University (MEPhI), Moscow (Russian Federation)

    2016-08-15

    The project NICA (Nuclotron-based Ion Collider fAcility) is aimed to study dense baryonic matter in heavy-ion collisions in the energy range up to √(s{sub NN}) = 11 GeV with average luminosity of L = 10{sup 27} cm{sup -2}s{sup -1} (for {sup 197}Au{sup 79}). The experimental program at the NICA collider will be performed with the Multi-Purpose Detector (MPD). We report on the main physics objectives of the NICA heavy-ion program and present the main detector components. (orig.)

  8. Dipole-dipole van der Waals interaction in alkali halides

    International Nuclear Information System (INIS)

    Thakur, B.N.; Thakur, K.P.

    1978-01-01

    Values of van der Waals dipole-dipole constants and interaction energetics of alkali halides are reported using the recent data. The values obtained are somewhat larger than those of earlier workers. (orig.) [de

  9. Status of the 11 T Nb$_{3}$Sn Dipole Project for the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Savary, F.; et al.

    2015-01-01

    The planned upgrade of the LHC collimation system includes additional collimators in the LHC lattice. The longitudinal space for the collimators could be obtained by replacing some LHC main dipoles with shorter but stronger dipoles compatible with the LHC lattice and main systems. A joint development program with the goal of building a 5.5 m long two-in-one aperture Nb_3Sn dipole prototype suitable for installation in the LHC is being conducted by FNAL and CERN magnet groups. As part of the first phase of the program, 1 m long and 2 m long single aperture models are being built and tested, and the collared coils from these magnets will be assembled and tested in two-in-one configuration in both laboratories. In parallel with the short model magnet activities, the work has started on the production line in view of the scale-up to 5.5 m long prototype magnet. The development of the final cryo-assembly comprising two 5.5 m long 11 T dipole cold masses and the warm collimator in the middle, fully compatible with the LHC main systems and the existing machine interfaces, has also started at CERN. This paper summarizes the progress made at CERN and FNAL towards the construction of 5.5 m long 11 T Nb_3Sn dipole prototype and the present status of the activities related to the integration of the 11 T dipole and collimator in the LHC.

  10. Muon colliders

    International Nuclear Information System (INIS)

    Palmer, R.B.; Sessler, A.; Skrinsky, A.

    1996-01-01

    Muon Colliders have unique technical and physics advantages and disadvantages when compared with both hadron and electron machines. They should thus be regarded as complementary. Parameters are given of 4 TeV and 0.5 TeV high luminosity micro + micro - colliders, and of a 0.5 TeV lower luminosity demonstration machine. We discuss the various systems in such muon colliders, starting from the proton accelerator needed to generate the muons and proceeding through muon cooling, acceleration and storage in a collider ring. Problems of detector background are also discussed

  11. Parallel-fed planar dipole antenna arrays for low-observable platforms

    CERN Document Server

    Singh, Hema; Jha, Rakesh Mohan

    2016-01-01

    This book focuses on determination of scattering of parallel-fed planar dipole arrays in terms of reflection and transmission coefficients at different levels of the array system. In aerospace vehicles, the phased arrays are often in planar configuration. The radar cross section (RCS) of the vehicle is mainly due to its structure and the antennas mounted over it. There can be situation when the signatures due to antennas dominate over the structural RCS of the platform. This necessitates the study towards the reduction and control of antenna/ array RCS. The planar dipole array is considered as a stacked linear dipole array. A systematic, step-by-step approach is used to determine the RCS pattern including the finite dimensions of dipole antenna elements. The mutual impedance between the dipole elements for planar configuration is determined. The scattering till second-level of couplers in parallel feed network is taken into account. The phase shifters are modelled as delay line. All the couplers in the feed n...

  12. Magnetic dipole moment of a moving electric dipole

    OpenAIRE

    Hnizdo, V.

    2012-01-01

    The current density of a moving electric dipole is expressed as the sum of polarization and magnetization currents. The magnetic field due to the latter current is that of a magnetic dipole moment that is consistent with the relativistic transformations of the polarization and magnetization of macroscopic electrodynamics.

  13. Exploration of a High Luminosity 100 TeV Proton Antiproton Collider

    Energy Technology Data Exchange (ETDEWEB)

    Oliveros, Sandra J. [Univ. of Mississippi, Oxford, MS (United States); Summers, Don [Univ. of Mississippi, Oxford, MS (United States); Cremaldi, Lucien [Univ. of Mississippi, Oxford, MS (United States); Acosta, John [Univ. of Mississippi, Oxford, MS (United States); Neuffer, David [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2017-04-12

    New physics is being explored with the Large Hadron Collider at CERN and with Intensity Frontier programs at Fermilab and KEK. The energy scale for new physics is known to be in the multi-TeV range, signaling the need for a future collider which well surpasses this energy scale. We explore a 10$^{\\,34}$ cm$^{-2}$ s$^{-1}$ luminosity, 100 TeV $p\\bar{p}$ collider with 7$\\times$ the energy of the LHC but only 2$\\times$ as much NbTi superconductor, motivating the choice of 4.5 T single bore dipoles. The cross section for many high mass states is 10 times higher in $p\\bar{p}$ than $pp$ collisions. Antiquarks for production can come directly from an antiproton rather than indirectly from gluon splitting. The higher cross sections reduce the synchrotron radiation in superconducting magnets and the number of events per beam crossing, because lower beam currents can produce the same rare event rates. Events are more centrally produced, allowing a more compact detector with less space between quadrupole triplets and a smaller $\\beta^{*}$ for higher luminosity. A Fermilab-like $\\bar p$ source would disperse the beam into 12 momentum channels to capture more antiprotons. Because stochastic cooling time scales as the number of particles, 12 cooling ring sets would be used. Each set would include phase rotation to lower momentum spreads, equalize all momentum channels, and stochastically cool. One electron cooling ring would follow the stochastic cooling rings. Finally antiprotons would be recycled during runs without leaving the collider ring by joining them to new bunches with synchrotron damping.

  14. Inhibition of two-photon absorption due to dipole-dipole interaction in nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahi R. [Department of Physics and Astronomy, University of Western Ontario, London, N6A 3K7 (Canada)], E-mail: msingh@uwo.ca

    2008-07-21

    We have investigated the inhibition of two-photon absorption in photonic crystals doped with an ensemble of four-level nanoparticles. The particles are interacting with one another by the dipole-dipole interaction. Dipoles in nanoparticles are induced by a selected transition. Numerical simulations have been performed for an isotropic photonic crystal. Interesting phenomena have been predicted such as the inhibition of the two-photon absorption due to the dipole-dipole interaction. It has also been found that the inhibition effect can be switched on and off by tuning a decay resonance energy within the energy band of the crystal. A theory of dressed states has been used to explain the results.

  15. QPM Analysis of 205Tl Nuclear Excitations below the Giant Dipole Resonance

    Directory of Open Access Journals (Sweden)

    Benouaret N.

    2015-01-01

    Full Text Available We analysed our experimental recent findings of the dipole response of the odd-mass stable nucleus 205Tl within the quasi-particle phonon model. Using the phonon basis constructed for the neighbouring 204Hg and wave function configurations for 205Tl consisting of a mixture of quasiparticle ⊗ N-phonon configurations (N=0,1,2, only one group of fragmented dipole excited states has been reproduced at 5.5 MeV in comparison to the experimental distribution which shows a second group at about 5 MeV. The computed dipole transition strengths are mainly of E1 character which could be associated to the pygmy dipole resonance.

  16. QPM Analysis of 205Tl Nuclear Excitations below the Giant Dipole Resonance

    Science.gov (United States)

    Benouaret, N.; Beller, J.; Isaak, J.; Kelley, J. H.; Pai, H.; Pietralla, N.; Ponomarev, V. Yu.; Raut, R.; Romig, C.; Rusev, G.; Savran, D.; Scheck, M.; Schnorrenberger, L.; Sonnabend, K.; Tonchev, A. P.; Tornow, W.; Weller, H. R.; Zweidinger, M.

    2015-05-01

    We analysed our experimental recent findings of the dipole response of the odd-mass stable nucleus 205Tl within the quasi-particle phonon model. Using the phonon basis constructed for the neighbouring 204Hg and wave function configurations for 205Tl consisting of a mixture of quasiparticle ⊗ N-phonon configurations (N=0,1,2), only one group of fragmented dipole excited states has been reproduced at 5.5 MeV in comparison to the experimental distribution which shows a second group at about 5 MeV. The computed dipole transition strengths are mainly of E1 character which could be associated to the pygmy dipole resonance.

  17. Superconducting Super Collider project

    International Nuclear Information System (INIS)

    Perl, M.L.

    1986-04-01

    The scientific need for the Superconducting Super Collider (SSC) is outlined, along with the history of the development of the SSC concept. A brief technical description is given of each of the main points of the SSC conceptual design. The construction cost and construction schedule are discussed, followed by issues associated with the realization of the SSC. 8 refs., 3 figs., 3 tabs

  18. Collisional transfer of coherence by electric dipole-dipole interaction

    OpenAIRE

    Gough , W.

    1983-01-01

    An expression is derived for the contribution from dipole-dipole interaction to the intensity of sensitized fluorescence, from the results of a theory by Chiu. Tensor operator methods are used. The degree of polarization is deduced for certain particular cases.

  19. Development of the SSC [Superconducting Super Collider] trim coil beam tube assembly

    International Nuclear Information System (INIS)

    Skaritka, J.; Kelly, E.; Schneider, W.

    1987-01-01

    The Superconducting Super Collider uses ≅9600 dipole magnets. The magnets have been carefully designed to exhibit minimal magnetic field harmonics. However, because of superconductor magnetization effects, iron saturation and conductor/coil positioning errors, certain harmonic errors are possible and must be corrected by use of multipole correctors called trim coils. For the most efficient use of axial space in the magnet, and lowest possible current, a distributed internal correction coil design is planned. The trim coil assembly is secured to the beam tube, a uhv tube with special strength, size, conductivity and vacuum. The report details the SSC trim coil/beam tube assembly specifications, history, and ongoing development

  20. 2nd CERN-Fermilab Hadron Collider Physics Summer School

    CERN Document Server

    Gian Giudice; Ellis, Nick; Jakobs, Karl; Mage, Patricia; Seymour, Michael H; Spiropulu, Maria; Wilkinson, Guy; CERN-FNAL Summer School; Hadron Collider Physics Summer School

    2007-01-01

    For the past few years, experiments at the Fermilab Tevatron Collider have once again been exploring uncharted territory at the current energy frontier of particle physics. With CERN's LHC operations to start in 2007, a new era in the exploration of the fundamental laws of nature will begin. In anticipation of this era of discovery, Fermilab and CERN are jointly organizing a series of "Hadron Collider Physics Summer Schools", whose main goal is to offer a complete picture of both the theoretical and experimental aspects of hadron collider physics. Preparing young researchers to tackle the current and anticipated challenges at hadron colliders, and spreading the global knowledge required for a timely and competent exploitation of the LHC physics potential, are concerns equally shared by CERN, the LHC host laboratory, and by Fermilab, the home of the Tevatron and host of CMS's LHC Physics Center in the U.S. The CERN-Fermilab Hadron Collider Physics Summer School is targeted particularly at young postdocs in exp...

  1. Future Circular Collider Study (FCC) kick-off meeting | 12-15 February

    CERN Multimedia

    2014-01-01

    The kick-off meeting of the international "Future Circular Collider Study" (FCC) will take place in Geneva from 12 to 15 February 2014 at the University of Geneva, Unimail site. The programme and registration details can be found on the meeting's website. This meeting is the starting point of the five-year international "Future Circular Collider Study" (FCC). The main emphasis of the conceptual design study will be on a hadron collider with a centre-of-mass energy of the order of 100 TeV in a new tunnel with a 80-100 km circumference for the purposes of studying physics at the highest energies. The study will also include a lepton collider, as a potential intermediate step towards realisation of the hadron facility. Options for e-p scenarios will also be considered. The main purpose of this meeting is to discuss the study topics and to prepare international collaborations. The meeting is a public meeting with a registration deadline closing on Friday 31 Janua...

  2. SPS Dipole Multipactor Test and TEWave Diagnostics

    CERN Document Server

    Caspers, F; Edwards, P; Federmann, S; Holz, M; Taborelli, M

    2013-01-01

    Electron cloud accumulation in particle accelerators can be mitigated by coating the vacuum beam pipe with thin films of low secondary electron yield (SEY) material. The SEY of small coated samples are usually measured in the laboratory. To further test the properties of different coating materials, RF-induced multipacting in a coaxial waveguide configuration can be performed. The technique is applied to two main bending dipoles of the SPS, where the RF power is fed through a tungsten wire stretched along the vacuum chamber (6.4 m). A dipole with a bare stainless steel chamber shows a clear power threshold initiating an abrupt rise in reflected power and pressure. The effect is enhanced at RF frequencies corresponding to electron cyclotron resonances for given magnetic fields. Preliminary results show that the dipole with a carbon coated vacuum chamber does not exhibit any pressure rise or reflected RF power up to the maximum available input power. In the case of a large scale coating production this techniqu...

  3. Physics at Future Colliders

    CERN Document Server

    Ellis, John R.

    1999-01-01

    After a brief review of the Big Issues in particle physics, we discuss the contributions to resolving that could be made by various planned and proposed future colliders. These include future runs of LEP and the Fermilab Tevatron collider, B factories, RHIC, the LHC, a linear electron-positron collider, an electron-proton collider in the LEP/LHC tunnel, a muon collider and a future larger hadron collider (FLHC). The Higgs boson and supersymmetry are used as benchmarks for assessing their capabilities. The LHC has great capacities for precision measurements as well as exploration, but also shortcomings where the complementary strengths of a linear electron-positron collider would be invaluable. It is not too soon to study seriously possible subsequent colliders.

  4. Conceptual design of a high luminosity 510 MeV collider

    International Nuclear Information System (INIS)

    Pellegrini, C.; Robin, D.; Cornacchia, M.

    1991-01-01

    The authors discuss the magnetic lattice design of a high luminosity 510 MeV electron-positron collider, based on high field superconduction bending dipoles. The design criteria are flexibility in the choice of the tune and beta functions at the interaction point, horizontal emittance larger than 1 mm mrad to produce a luminosity larger than 10 32 cm -2 s -1 , large synchrotron radiation damping rate, and large momentum compaction. The RF system parameter are chosen to provide a short bunch length also when the beam energy spread is determined by the microwave instability. A satisfactory ring dynamic aperature, and a simultaneous small value of the horizontal and vertical beta function at the interaction point, the authors expect will be achieved by using Cornacchia-Halbach modified sextupoles

  5. Ion colliders

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, W.

    2011-12-01

    Ion colliders are research tools for high-energy nuclear physics, and are used to test the theory of Quantum Chromo Dynamics (QCD). The collisions of fully stripped high-energy ions create matter of a temperature and density that existed only microseconds after the Big Bang. Ion colliders can reach higher densities and temperatures than fixed target experiments although at a much lower luminosity. The first ion collider was the CERN Intersecting Storage Ring (ISR), which collided light ions [77Asb1, 81Bou1]. The BNL Relativistic Heavy Ion Collider (RHIC) is in operation since 2000 and has collided a number of species at numerous energies. The CERN Large Hadron Collider (LHC) started the heavy ion program in 2010. Table 1 shows all previous and the currently planned running modes for ISR, RHIC, and LHC. All three machines also collide protons, which are spin-polarized in RHIC. Ion colliders differ from proton or antiproton colliders in a number of ways: the preparation of the ions in the source and the pre-injector chain is limited by other effects than for protons; frequent changes in the collision energy and particle species, including asymmetric species, are typical; and the interaction of ions with each other and accelerator components is different from protons, which has implications for collision products, collimation, the beam dump, and intercepting instrumentation devices such a profile monitors. In the preparation for the collider use the charge state Z of the ions is successively increased to minimize the effects of space charge, intrabeam scattering (IBS), charge change effects (electron capture and stripping), and ion-impact desorption after beam loss. Low charge states reduce space charge, intrabeam scattering, and electron capture effects. High charge states reduce electron stripping, and make bending and acceleration more effective. Electron stripping at higher energies is generally more efficient. Table 2 shows the charge states and energies in the

  6. Ion colliders

    International Nuclear Information System (INIS)

    Fischer, W.

    2010-01-01

    Ion colliders are research tools for high-energy nuclear physics, and are used to test the theory of Quantum Chromo Dynamics (QCD). The collisions of fully stripped high-energy ions create matter of a temperature and density that existed only microseconds after the Big Bang. Ion colliders can reach higher densities and temperatures than fixed target experiments although at a much lower luminosity. The first ion collider was the CERN Intersecting Storage Ring (ISR), which collided light ions (77Asb1, 81Bou1). The BNL Relativistic Heavy Ion Collider (RHIC) is in operation since 2000 and has collided a number of species at numerous energies. The CERN Large Hadron Collider (LHC) started the heavy ion program in 2010. Table 1 shows all previous and the currently planned running modes for ISR, RHIC, and LHC. All three machines also collide protons, which are spin-polarized in RHIC. Ion colliders differ from proton or antiproton colliders in a number of ways: the preparation of the ions in the source and the pre-injector chain is limited by other effects than for protons; frequent changes in the collision energy and particle species, including asymmetric species, are typical; and the interaction of ions with each other and accelerator components is different from protons, which has implications for collision products, collimation, the beam dump, and intercepting instrumentation devices such a profile monitors. In the preparation for the collider use the charge state Z of the ions is successively increased to minimize the effects of space charge, intrabeam scattering (IBS), charge change effects (electron capture and stripping), and ion-impact desorption after beam loss. Low charge states reduce space charge, intrabeam scattering, and electron capture effects. High charge states reduce electron stripping, and make bending and acceleration more effective. Electron stripping at higher energies is generally more efficient. Table 2 shows the charge states and energies in the

  7. Installation of the ALICE dipole magnet

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    The large dipole magnet is installed on the ALICE detector at CERN. This magnet, which is cooled by demineralised water, will bend the path of muons that leave the huge rectangular solenoid (in the background). These muons are heavy electrons that interact less with matter, allowing them to traverse the main section of the detector.

  8. PROSPECTS FOR COLLIDERS AND COLLIDER PHYSICS TO THE 1 PEV ENERGY SCALE

    International Nuclear Information System (INIS)

    KING, B.J.

    2000-01-01

    A review is given of the prospects for future colliders and collider physics at the energy frontier. A proof-of-plausibility scenario is presented for maximizing the authors progress in elementary particle physics by extending the energy reach of hadron and lepton colliders as quickly and economically as might be technically and financially feasible. The scenario comprises 5 colliders beyond the LHC--one each of e + e - and hadron colliders and three μ + μ - colliders--and is able to hold to the historical rate of progress in the log-energy reach of hadron and lepton colliders, reaching the 1 PeV constituent mass scale by the early 2040's. The technical and fiscal requirements for the feasibility of the scenario are assessed and relevant long-term R and D projects are identified. Considerations of both cost and logistics seem to strongly favor housing most or all of the colliders in the scenario in a new world high energy physics laboratory

  9. PROSPECTS FOR COLLIDERS AND COLLIDER PHYSICS TO THE 1 PEV ENERGY SCALE

    Energy Technology Data Exchange (ETDEWEB)

    KING,B.J.

    2000-05-05

    A review is given of the prospects for future colliders and collider physics at the energy frontier. A proof-of-plausibility scenario is presented for maximizing the authors progress in elementary particle physics by extending the energy reach of hadron and lepton colliders as quickly and economically as might be technically and financially feasible. The scenario comprises 5 colliders beyond the LHC--one each of e{sup +}e{sup {minus}} and hadron colliders and three {mu}{sup +}{mu}{sup {minus}} colliders--and is able to hold to the historical rate of progress in the log-energy reach of hadron and lepton colliders, reaching the 1 PeV constituent mass scale by the early 2040's. The technical and fiscal requirements for the feasibility of the scenario are assessed and relevant long-term R and D projects are identified. Considerations of both cost and logistics seem to strongly favor housing most or all of the colliders in the scenario in a new world high energy physics laboratory.

  10. submitter Status of the EuCARD 5.4-T REBCO Dipole Magnet

    CERN Document Server

    Borgnolutti, F; Debray, F; Rifflet, J -M; De Rijk, G; Tixador, P; Tudela, J -M

    2016-01-01

    A 5.4-T REBCO insert dipole magnet is being built at CEA Saclay to study the viability of hybrid accelerator magnets made of high- and low-temperature superconductors to generate magnetic fields in the range of 20 T, which is a field level of interest for future circular colliders. In this paper, we present the electromechanical design of the insert. It is a mechanically more robust version of the baseline design, which was produced in the framework of the former EuCARD program. The fabrication of a prototype made with dummy coils is discussed, and the impact of persistent currents on the central magnetic field is estimated using a 2-D electromagnetic model

  11. Status and plans of the Compact Linear Collider Study

    CERN Document Server

    Doebert, Steffen

    2016-01-01

    The Compact Linear Collider (CLIC) project is exploring the possibility of constructing a multiTeV linear electron-positron collider for high-energy frontier physics studies beyond the LHC era. The CLIC concept is based on high-gradient normal-conducting accelerating structures. The RF power for the acceleration of the colliding beams is produced by a two-beam acceleration scheme, where power is extracted from a high current drive beam that runs parallel with the main linac. The key ongoing studies involve accelerator parameter optimisation, technical studies and component development, alignment and stability, and include a number of system performance studies in test-facilities around the world. The CLIC physics potential and main detector issues, as well as possible implementation staging, are being studied in parallel. A summary of the progress and status of the corresponding studies will be given, as well as an outline of the preparation and work towards developing a CLIC implementation plan by 2018/19

  12. Elementary isovector spin and orbital magnetic dipole modes revisited in the shell model

    International Nuclear Information System (INIS)

    Richter, A.

    1988-08-01

    A review is given on the status of mainly spin magnetic dipole modes in some sd- and fp-shell nuclei studied with inelastic electron and proton scattering, and by β + -decay. Particular emphasis is also placed on a fairly new, mainly orbital magnetic dipole mode investigated by high-resolution (e,e') and (p,p') scattering experiments on a series of fp-shell nuclei. Both modes are discussed in terms of the shell model with various effective interactions. (orig.)

  13. Academic Training: Physics at e+e- linear collider

    CERN Multimedia

    Françoise Benz

    2004-01-01

    15, 16, 17, 18, 19 November 2004-2005 ACADEMIC TRAINING PROGRAMME LECTURE SERIES from 11.00 to 12.00hrs - Main Auditorium, bldg. 500 Physics at e+e- linear collider K. DESCH / Desy, Hamburg, D Future e+e- Linear Colliders offer the potential to explore new physics at the TeV scale to very high precision. The lecture series introduces the possibilities of a TeV linear collider (the International Linear Collider, ILC) in the fields of Higgs physics, alternative Electro-weak Symmetry Breaking scenarios, Supersymmetry, Extra Dimensions, and more exotic models. Also the prospects for highly improved measurements of SM parameters such as the top quark mass and electro-weak gauge boson properties are discussed. The implications for the design of an appropriate detector are outlined and current R&D developments are explained. Particular emphasis will be given to the complementarity and intimate interplay of physics at the LHC and the ILC. The additional benefit of multi-TeV e+e- collisions as envisaged i...

  14. Dynamics of nonstationary dipole vortices

    DEFF Research Database (Denmark)

    Hesthaven, J.S.; Lynov, Jens-Peter; Nycander, J.

    1993-01-01

    The dynamics of tilted dipole vortices in the equivalent barotropic vorticity (or Hasegawa-Mima) equation is studied. A recent theory is compared with numerical simulations and found to describe the short time behavior of dipole vortices well. In the long time limit the dipoles are found to eithe...... disintegrate or relax toward a steady eastward propagating dipole vortex. This relaxation is a consequence of nonviscous enstrophy loss by the dipole vortex....

  15. Collider Scaling and Cost Estimation

    International Nuclear Information System (INIS)

    Palmer, R.B.

    1986-01-01

    This paper deals with collider cost and scaling. The main points of the discussion are the following ones: 1) scaling laws and cost estimation: accelerating gradient requirements, total stored RF energy considerations, peak power consideration, average power consumption; 2) cost optimization; 3) Bremsstrahlung considerations; 4) Focusing optics: conventional, laser focusing or super disruption. 13 refs

  16. The Stanford Linear Collider

    International Nuclear Information System (INIS)

    Emma, P.

    1995-01-01

    The Stanford Linear Collider (SLC) is the first and only high-energy e + e - linear collider in the world. Its most remarkable features are high intensity, submicron sized, polarized (e - ) beams at a single interaction point. The main challenges posed by these unique characteristics include machine-wide emittance preservation, consistent high intensity operation, polarized electron production and transport, and the achievement of a high degree of beam stability on all time scales. In addition to serving as an important machine for the study of Z 0 boson production and decay using polarized beams, the SLC is also an indispensable source of hands-on experience for future linear colliders. Each new year of operation has been highlighted with a marked improvement in performance. The most significant improvements for the 1994-95 run include new low impedance vacuum chambers for the damping rings, an upgrade to the optics and diagnostics of the final focus systems, and a higher degree of polarization from the electron source. As a result, the average luminosity has nearly doubled over the previous year with peaks approaching 10 30 cm -2 s -1 and an 80% electron polarization at the interaction point. These developments as well as the remaining identifiable performance limitations will be discussed

  17. Use of an elliptical aperture to control saturation in closely-coupled, cold iron, superconducting dipole magnets

    International Nuclear Information System (INIS)

    Morgan, G.

    1985-01-01

    The high fields permitted by superconducting windings result in saturation of closely-coupled iron in dipole and quadrupole beam transport magnets. Coupland suggested using a triangular cutout at the poles to reduce the change in the sextupole (b 2 ) term due to saturation. The use of an elliptical aperture in a close-coupled dipole for the Relativistic Heavy Ion Collider (RHIC) has been studied using the BNL computer program MDP (a version of GFUN). The ellipse aspect ratio was varied while holding the horizontal (minor) radius constant. The proper aspect ratio gives no shift in b 2 sue to saturation, and a reduction in the b 4 shift. A modification of the ellipse also reduces b 4 . The elliptical aperture introduces a large b 2 term at low field which must be compensated for by the coil design. A practical coil design which does this for the RHIC magnet is presented. 5 refs., 2 figs., 3 tabs

  18. Review of selected coil and collared-coil assembly data from 10-M-long, 50-MM-Twin-aperture LHC dipole magnet prototypes

    International Nuclear Information System (INIS)

    Devred, A.

    1999-02-01

    In 1991, the Laboratoire Europeen pour la Physique des Particules (CERN) has launched the fabrication in industry of seven 10 m long, 50 mm twin aperture dipole magnet prototypes for the Large Hadron Collider (LHC). The design and specific features of these magnets have been described elsewhere. In this paper, we review some of the coil and collared-coil assembly data and we analyze the influence of tooling imperfections on magnet assembly. (author)

  19. The dipole-dipole dispersion forces for small, intermediate and large distances

    International Nuclear Information System (INIS)

    Antonio, J.C.

    1986-10-01

    An improved expression is obtained for the dipole-dipole London dispersion force between closed shell atoms for small, intermediate and large distances compared with their linear dimensions. (Author) [pt

  20. System of coefficients for charged-particle beam linear transformation by a magnetic dipole element

    International Nuclear Information System (INIS)

    Tarantin, N.I.

    1979-01-01

    A new technique for consideration of dipole magnet ion-optical effect has been developed to study the problems of commutation and monochromatization of a charged particle beam. In a new form obtained are systematized coefficients of linear transformation (CLT) of the charged particle beam for radial and axial motions in a magnetic dipole element (MDE) including a dipole magnet and two gaps without magnetic field. Given is a method of graphic determination of MDE parameters and main CLT. The new form of coefficients and conditions of the transformations feasibility considerably facilitates the choice and calculation of dipole elements

  1. Sixth international workshop on linear colliders. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Urakawa, Junji [ed.

    1995-08-01

    The sixth international workshop on linear colliders (LC95) was held by KEK at Tsukuba Center for Institute. In the workshop 8 parallel working group were organized: WG1 (beam sources and injection linacs), WG2 (damping rings and bunch compressors), WG3 (a: RF sources and structures, b: superconducting cavities, c: two beam accelerators), WG4 (beam dynamics in main linacs), WG5 (final focus and integration regions), WG6 (beam instrumentation), WG7 (overall parameters and construction techniques), WG8 (gamma-gamma collider and miscellaneous). This issue compiles materials which were used in the workshop. (J.P.N.).

  2. Sixth international workshop on linear colliders. Proceedings

    International Nuclear Information System (INIS)

    Urakawa, Junji

    1995-08-01

    The sixth international workshop on linear colliders (LC95) was held by KEK at Tsukuba Center for Institute. In the workshop 8 parallel working group were organized: WG1 (beam sources and injection linacs), WG2 (damping rings and bunch compressors), WG3 (a: RF sources and structures, b: superconducting cavities, c: two beam accelerators), WG4 (beam dynamics in main linacs), WG5 (final focus and integration regions), WG6 (beam instrumentation), WG7 (overall parameters and construction techniques), WG8 (gamma-gamma collider and miscellaneous). This issue compiles materials which were used in the workshop. (J.P.N.)

  3. Thermo-electric analysis of the interconnection of the LHC main superconducting bus bars

    Science.gov (United States)

    Granieri, P. P.; Breschi, M.; Casali, M.; Bottura, L.; Siemko, A.

    2013-01-01

    Spurred by the question of the maximum allowable energy for the operation of the Large Hadron Collider (LHC), we have progressed in the understanding of the thermo-electric behavior of the 13 kA superconducting bus bars interconnecting its main magnets. A deep insight of the underlying mechanisms is required to ensure the protection of the accelerator against undesired effects of resistive transitions. This is especially important in case of defective interconnections which can jeopardize the operation of the whole LHC. In this paper we present a numerical model of the interconnections between the main dipole and quadrupole magnets, validated against experimental tests of an interconnection sample with a purposely built-in defect. We consider defective interconnections featuring a lack of bonding among the superconducting cables and the copper stabilizer components, such as those that could be present in the machine. We evaluate the critical defect length limiting the maximum allowable current for powering the magnets. We determine the dependence of the critical defect length on different parameters as the heat transfer towards the cooling helium bath, the quality of manufacturing, the operating conditions and the protection system parameters, and discuss the relevant mechanisms.

  4. Berkeley mini-collider

    International Nuclear Information System (INIS)

    Schroeder, L.S.

    1984-06-01

    The Berkeley Mini-Collider, a heavy-ion collider being planned to provide uranium-uranium collisions at T/sub cm/ less than or equal to 4 GeV/nucleon, is described. The central physics to be studied at these energies and our early ideas for a collider detector are presented

  5. Design considerations and expectations of a very large hadron collider

    International Nuclear Information System (INIS)

    Ruggiero, A.G.

    1996-01-01

    The ELOISATRON Project is a proton-proton collider at very high energy and very large luminosity. The main goal is to determine the ultimate performance that is possible to achieve with reasonable extrapolation of the present accelerator technology. A complete study and design of the collider requires that several steps of investigations are undertaken. The authors count five of such steps as outlined in the report

  6. Main channels of the decay of the giant dipole resonance in the 20,22Ne nuclei and isospin splitting of the giant dipole resonance in the 22Ne nucleus

    International Nuclear Information System (INIS)

    Varlamov, V.V.; Stepanov, M.E.

    2002-01-01

    Data published in the literature on various photonuclear reactions for the 20,22 Ne isotopes and for their natural mixture are analyzed with the aim of exploring special features of the decay of giant-dipole-resonance states in these two isotopes. With the aid of data on the abundances of the isotopes and on the energy reaction thresholds, the cross sections for the reactions 20,22 Ne[(γ, n) + (γ, np)] and 20,22 Ne[(γ, p) + (γ, np)] are broken down into the contributions from the one-nucleon reactions (γ, n) and (γ, p) and the contributions from the reactions (γ, np). The cross sections evaporation model used here to treat the deexcitation of residual nucle(γ, p) 19,21 F in the energy range E γ = 16.0-28.0 MeV and the cross sections for the reactions 20,22 Ne(γ, np) 18,20 F in the energy range E γ = 23.3-28.0 MeV are estimated. The behavior of the cross-section ratio r = σ(γ, p)/σ(γ, n) for the 22 Ne nucleus as a function of energy is analyzed, and the isospin components of the giant dipole resonance in the 22 Ne nucleus are identified. The contributions of the isospin components of the giant dipole resonance in the 22 Ne nucleus to the cross sections for various photonuclear reactions are determined on the basis of an analysis of the diagram of the excitation and decay of pure isospin states in the 22 Ne nucleus and in nuclei neighboring it, which are members of the corresponding isospin multiplets. The isospin splitting of the giant dipole resonance and the ratio of the intensities of the isospin components are determined to be ΔE = 4.57 ± 0.69 MeV and R = 0.24 ± 0.04, respectively

  7. Prospects for colliders and collider physics to the 1 PeV energy scale

    Science.gov (United States)

    King, Bruce J.

    2000-08-01

    A review is given of the prospects for future colliders and collider physics at the energy frontier. A proof-of-plausibility scenario is presented for maximizing our progress in elementary particle physics by extending the energy reach of hadron and lepton colliders as quickly and economically as might be technically and financially feasible. The scenario comprises 5 colliders beyond the LHC—one each of e+e- and hadron colliders and three μ+μ- colliders — and is able to hold to the historical rate of progress in the log-energy reach of hadron and lepton colliders, reaching the 1 PeV constituent mass scale by the early 2040's. The technical and fiscal requirements for the feasibility of the scenario are assessed and relevant long-term R&D projects are identified. Considerations of both cost and logistics seem to strongly favor housing most or all of the colliders in the scenario in a new world high energy physics laboratory.

  8. A test accelerator for the next linear collider

    International Nuclear Information System (INIS)

    Ruth, R.D.; Adolphsen, C.; Bane, K.; Boyce, R.F.; Burke, D.L.; Callin, R.; Caryotakis, G.; Cassel, R.; Clark, S.L.; Deruyter, H.; Fant, K.; Fuller, R.; Heifets, S.; Hoag, H.; Humphrey, R.; Kheifets, S.; Koontz, R.; Lavine, T.; Loew, G.A.; Menegat, A.; Miller, R.H.; Paterson, J.M.; Pearson, C.; Phillips, R.; Rifkin, J.; Spencer, J.; Tantawi, S.; Thompson, K.A.; Vlieks, A.; Vylet, V.; Wang, J.W.; Wilson, P.B.; Yeremian, A.; Youngman, B.; Kroll, N.M.; Nantista, C.

    1993-07-01

    At SLAC, the authors are pursuing the design of a Next Linear Collider (NLC) which would begin with a center-of-mass energy of 0.5 TeV, and be upgradable to at least 1.0 TeV. To achieve this high energy, they have been working on the development of a high-gradient 11.4-GHz (X-band) linear accelerator for the main linac of the collider. In this paper, they present the design of a open-quotes Next Linear Collider Test Acceleratorclose quotes (NLCTA). The goal of the NLCTA is to incorporate the new technologies of X-band accelerator structures, RF pulse compression systems and klystrons into a short linac which will then be a test bed for beam dynamics issues related to high-gradient acceleration

  9. Fragmentation of giant dipole resonance at finite temperature

    International Nuclear Information System (INIS)

    Vdovin, A.

    2005-01-01

    It is well known that the main part of a width of a collective giant resonance built on the ground state in heavy nuclei is due to coupling of one-phonon vibrational states with more complex ones like two phonon or two-particle - two-hole. So it seems natural that the same idea was also explored in studying of the formation and dependence on temperature of a width of giant resonances built on a compound nuclear state. The first microscopic calculations of a giant dipole resonance width at finite temperature have demonstrated its weak dependence on T whereas the experimental width Γ exp strongly increases up to T≤3 MeV. The observed thermal behaviour of Γ exp was attributed mainly to thermal fluctuations of a nuclear shape at finite T . However, further theoretical studies of the problem have shown a strengthening of the GDR spreading with T. We calculate a fragmentation of the giant dipole resonance in hot spherical nuclei within the approach based on the quasiparticle-phonon model extended to finite temperature in with the formalism of thermofield dynamics. The fragmentation of collective giant dipole vibrations at finite T is due to the coupling with 'two-thermal phonon' configurations. The energies and structures of thermal phonon states are calculated from the thermal RPA temperature dependence of the variance σ th of a theoretical E1 strength function and the experimental GDR width Γ exp in 120 Sn. The coupling of thermal phonons is determined by their fermionic structure. The variance σ th of the E1 strength function is found continuously increasing with temperature. The main reason of this behavior is the coupling of the dipole phonons with very low-lying particle-particle (hole-hole) thermal phonons. These phonons are noncollective ones and they appear only at T≠0. The calculated T dependence of σ th is quite similar to that of the experimental width Γ exp in 120 Sn and 208 Pb

  10. Ion Colliders

    CERN Document Server

    Fischer, W

    2014-01-01

    High-energy ion colliders are large research tools in nuclear physics to study the Quark-Gluon-Plasma (QGP). The range of collision energy and high luminosity are important design and operational considerations. The experiments also expect flexibility with frequent changes in the collision energy, detector fields, and ion species. Ion species range from protons, including polarized protons in RHIC, to heavy nuclei like gold, lead and uranium. Asymmetric collision combinations (e.g. protons against heavy ions) are also essential. For the creation, acceleration, and storage of bright intense ion beams, limits are set by space charge, charge change, and intrabeam scattering effects, as well as beam losses due to a variety of other phenomena. Currently, there are two operating ion colliders, the Relativistic Heavy Ion Collider (RHIC) at BNL, and the Large Hadron Collider (LHC) at CERN.

  11. Status of the Next European Dipole (NED) Activity of the Collaborated Accelerator Research in Europe (CARE) Project

    CERN Document Server

    Devred, Arnaud; Baynham, D Elwyn; Boutboul, T; Canfer, S; Chorowski, M; den Ouden, A; Fabbricatore, P; Farinon, S; Fessia, P; Fydrych, J; Félice, H; Greco, Michela; Greenhalgh, J; Leroy, D; Loveridge, P W; Michel, F; Oberli, L R; Pedrini, D; Polinski, J; Previtali, V; Quettier, L; Rifflet, J M; Rochford, J; Rondeaux, F; Sanz, S; Sgobba, Stefano; Sorbi, M; Toral-Fernandez, F; Van Weelderen, R; Vincent-Viry, O; Volpini, G; Védrine, P

    2005-01-01

    Plans for LHC upgrade and for the final focalization of linear colliders call for large aperture and/or high-performance dipole and quadrupole magnets that may be beyond the reach of conventional NbTi magnet technology. The Next European Dipole (NED) activity was launched on January 1st, 2004 to promote the development of high-performance, Nb$_{3}$Sn wires in collaboration with European industry (aiming at a non-copper critical current density of 1500 A/mm2 at 4.2 K and 15 T) and to assess the suitability of Nb$_{3}$Sn technology to the next generation of accelerator magnets (aiming at an aperture of 88 mm and a conductor peak field of 15 T). It is integrated within the Collaborated Accelerator Research in Europe (CARE) project, involves seven collaborators, and is partly funded by the European Union. We present here an overview of the NED activity and we report on the status of the various work packages it encompasses.

  12. Changes in earth's dipole.

    Science.gov (United States)

    Olson, Peter; Amit, Hagay

    2006-11-01

    The dipole moment of Earth's magnetic field has decreased by nearly 9% over the past 150 years and by about 30% over the past 2,000 years according to archeomagnetic measurements. Here, we explore the causes and the implications of this rapid change. Maps of the geomagnetic field on the core-mantle boundary derived from ground-based and satellite measurements reveal that most of the present episode of dipole moment decrease originates in the southern hemisphere. Weakening and equatorward advection of normal polarity magnetic field by the core flow, combined with proliferation and growth of regions where the magnetic polarity is reversed, are reducing the dipole moment on the core-mantle boundary. Growth of these reversed flux regions has occurred over the past century or longer and is associated with the expansion of the South Atlantic Anomaly, a low-intensity region in the geomagnetic field that presents a radiation hazard at satellite altitudes. We address the speculation that the present episode of dipole moment decrease is a precursor to the next geomagnetic polarity reversal. The paleomagnetic record contains a broad spectrum of dipole moment fluctuations with polarity reversals typically occurring during dipole moment lows. However, the dipole moment is stronger today than its long time average, indicating that polarity reversal is not likely unless the current episode of moment decrease continues for a thousand years or more.

  13. Electrically Small Magnetic Dipole Antennas with Magnetic Core

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Breinbjerg, Olav

    2010-01-01

    This work extends the theory of a spherical magnetic dipole antenna with magnetic core by numerical results for practical antenna configurations that excite higher-order modes besides the main TE10 spherical mode. The multiarm spherical helix (MSH) and the spherical split ring (SSR) antennas...

  14. Cancellations Between Two-Loop Contributions to the Electron Electric Dipole Moment with a CP-Violating Higgs Sector.

    Science.gov (United States)

    Bian, Ligong; Liu, Tao; Shu, Jing

    2015-07-10

    We present a class of cancellation conditions for suppressing the total contributions of Barr-Zee diagrams to the electron electric dipole moment (eEDM). Such a cancellation is of particular significance after the new eEDM upper limit was released by the ACME Collaboration, which strongly constrains the allowed magnitude of CP violation in Higgs couplings and hence the feasibility of electroweak baryogenesis (EWBG). Explicitly, if both the CP-odd Higgs-photon-photon (Z boson) and the CP-odd Higgs-electron-positron couplings are turned on, a cancellation may occur either between the contributions of a CP-mixing Higgs boson, with the other Higgs bosons being decoupled, or between the contributions of CP-even and CP-odd Higgs bosons. With a cancellation, large CP violation in the Higgs sector is still allowed, yielding successful EWBG. The reopened parameter regions would be probed by future neutron, mercury EDM measurements, and direct measurements of Higgs CP properties at the Large Hadron Collider Run II and future colliders.

  15. Development of a Roebel-cable-based cosθ dipole: design and windability of magnet ends

    CERN Document Server

    Lorin, Clément; Fazilleau, Philippe; Kirby, Glyn; Rossi, Lucio

    2016-01-01

    In the scope of the Future Circular Collider, work package 10, namely “Future Magnets”, of the EuCARD2 project aims at investigating accelerator quality magnets made of High Temperature Superconductors. The present paper deals with development of a cosθ dipole relying on Roebel cable technology. In the first part, we present in details the design of the dipole: the magnet generates 5 T in stand-alone mode with an overall current density of 684 A/mm². When operating in a background field of 13 T an extra field of 2 T can be provided by the cosθ insert due to mechanical limitations. A field increase up to 2.5 T is conceivable providing the addition of inner shell reinforcement that would reduce the magnet aperture from 40 mm to 30 mm. In the second part, winding tests of dummy Roebel cable are reported. They demonstrate the challenges stemming from the relative slippage of the cable tapes while winding that may be overcome by a lengthening of the longitudinal gap of the cable either by an increase of the...

  16. FNAL Booster intensity, extraction, and synchronization control for collider operation

    International Nuclear Information System (INIS)

    Ducar, R.J.; Lackey, J.R.; Tawzer, S.R.

    1987-03-01

    Booster operation for collider physics is considerably different than for fixed target operation. Various scenarios for collider physics, machine studies, and P-Bar targeting may require that the intensity vary from 5E10 PPP to 3E12 PPP at a 15 Hertz machine cycle rate. In addition to the normal Booster single turn extraction mode, collider operations require that the Booster inject into the Main Ring a small number of beam bunches for coalescing into a single high intensity bunch. These bunches must be synchronized such that the center bunch arrives in the RF bucket which corresponds to the zero phase of the coalescing cavity. The system implemented has the ability to deliver a precise fraction of the available 84 Booster beam bunches to Main Ring or to the P-Bar Debuncher via the newly installed AP-4 beam line for tune-up and studies. It is required that all of the various intensity and extraction scenarios be accommodated with minimal operator intervention

  17. Solitary excitations in discrete two-dimensional nonlinear Schrodinger models with dispersive dipole-dipole interactions

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Gaididei, Yuri Borisovich; Johansson, M.

    1998-01-01

    The dynamics of discrete two-dimensional nonlinear Schrodinger models with long-range dispersive interactions is investigated. In particular, we focus on the cases where the dispersion arises from a dipole-dipole interaction, assuming the dipole moments at each lattice site to be aligned either...

  18. Electron Cloud Effect in the Linear Colliders

    International Nuclear Information System (INIS)

    Pivi, M

    2004-01-01

    Beam induced multipacting, driven by the electric field of successive positively charged bunches, may arise from a resonant motion of electrons, generated by secondary emission, bouncing back and forth between opposite walls of the vacuum chamber. The electron-cloud effect (ECE) has been observed or is expected at many storage rings [1]. In the beam pipe of the Damping Ring (DR) of a linear collider, an electron cloud is produced initially by ionization of the residual gas and photoelectrons from the synchrotron radiation. The cloud is then sustained by secondary electron emission. This electron cloud can reach equilibrium after the passage of only a few bunches. The electron-cloud effect may be responsible for collective effects as fast coupled-bunch and single-bunch instability, emittance blow-up or incoherent tune shift when the bunch current exceeds a certain threshold, accompanied by a large number of electrons in the vacuum chamber. The ECE was identified as one of the most important R and D topics in the International Linear Collider Report [2]. Systematic studies on the possible electron-cloud effect have been initiated at SLAC for the GLC/NLC and TESLA linear colliders, with particular attention to the effect in the positron main damping ring (MDR) and the positron Low Emittance Transport which includes the bunch compressor system (BCS), the main linac, and the beam delivery system (BDS). We present recent computer simulation results for the main features of the electron cloud generation in both machine designs. Thus, single and coupled-bunch instability thresholds are estimated for the GLC/NLC design

  19. A new dipole index of the salinity anomalies of the tropical Indian Ocean.

    Science.gov (United States)

    Li, Junde; Liang, Chujin; Tang, Youmin; Dong, Changming; Chen, Dake; Liu, Xiaohui; Jin, Weifang

    2016-04-07

    With the increased interest in studying the sea surface salinity anomaly (SSSA) of the tropical Indian Ocean during the Indian Ocean Dipole (IOD), an index describing the dipole variability of the SSSA has been pursued recently. In this study, we first use a regional ocean model with a high spatial resolution to produce a high-quality salinity simulation during the period from 1982 to 2014, from which the SSSA dipole structure is identified for boreal autumn. On this basis, by further analysing the observed data, we define a dipole index of the SSSA between the central equatorial Indian Ocean (CEIO: 70°E-90°E, 5°S-5°N) and the region off the Sumatra-Java coast (SJC: 100°E-110°E, 13°S-3°S). Compared with previous SSSA dipole indices, this index has advantages in detecting the dipole signals and in characterizing their relationship to the sea surface temperature anomaly (SSTA) dipole variability. Finally, the mechanism of the SSSA dipole is investigated by dynamical diagnosis. It is found that anomalous zonal advection dominates the SSSA in the CEIO region, whereas the SSSA in the SJC region are mainly influenced by the anomalous surface freshwater flux. This SSSA dipole provides a positive feedback to the formation of the IOD events.

  20. Detectors for Linear Colliders: Physics Requirements and Experimental Conditions (1/4)

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    How is the anticipated physics program of a future e+e- collider shaping the R&D for new detectors in collider particle physics ? This presentation will review the main physics requirements and experimental conditions comparing to LHC and LEP. In particular, I shall discuss how e+e- experimentation is expected to change moving from LEP-2 up to multi-TeV energies.

  1. Asymmetric collider

    International Nuclear Information System (INIS)

    Bharadwaj, V.; Colestock, P.; Goderre, G.; Johnson, D.; Martin, P.; Holt, J.; Kaplan, D.

    1993-01-01

    The study of CP violation in beauty decay is one of the key challenges facing high energy physics. Much work has not yielded a definitive answer how this study might best be performed. However, one clear conclusion is that new accelerator facilities are needed. Proposals include experiments at asymmetric electron-positron colliders and in fixed-target and collider modes at LHC and SSC. Fixed-target and collider experiments at existing accelerators, while they might succeed in a first observation of the effect, will not be adequate to study it thoroughly. Giomataris has emphasized the potential of a new approach to the study of beauty CP violation: the asymmetric proton collider. Such a collider might be realized by the construction of a small storage ring intersecting an existing or soon-to-exist large synchrotron, or by arranging collisions between a large synchrotron and its injector. An experiment at such a collider can combine the advantages of fixed-target-like spectrometer geometry, facilitating triggering, particle identification and the instrumentation of a large acceptance, while the increased √s can provide a factor > 100 increase in beauty-production cross section compared to Tevatron or HERA fixed-target. Beams crossing at a non-zero angle can provide a small interaction region, permitting a first-level decay-vertex trigger to be implemented. To achieve large √s with a large Lorentz boost and high luminosity, the most favorable venue is the high-energy booster (HEB) at the SSC Laboratory, though the CERN SPS and Fermilab Tevatron are also worth considering

  2. Lepton dipole moments

    CERN Document Server

    Marciano, William J

    2010-01-01

    This book provides a self-contained description of the measurements of the magnetic dipole moments of the electron and muon, along with a discussion of the measurements of the fine structure constant, and the theory associated with magnetic and electric dipole moments. Also included are the searches for a permanent electric dipole moment of the electron, muon, neutron and atomic nuclei. The related topic of the transition moment for lepton flavor violating processes, such as neutrinoless muon or tauon decays, and the search for such processes are included as well. The papers, written by many o

  3. NLC. A test accelerator for the next linear collider

    International Nuclear Information System (INIS)

    Ruth, R.D.; Adolphsen, C.; Bane, K.; Boyce, R.F.; Burke, D.L.; Callin, R.; Caryotakis, G.; Cassel, R.; Clark, S.L.; Deruyter, H.; Fant, K.; Fuller, R.; Heifets, S.; Hoag, H.; Humphrey, R.; Kheifets, S.; Koontz, R.; Kroll, N.M.; Lavine, T.; Loew, G.A.; Menegat, A.; Miller, R.H.; Nantista, C.; Paterson, J.M.; Pearson, C.; Phillips, R.; Rifkin, J.; Spencer, J.; Tantawi, S.; Thompson, K.A.; Vlieks, A.; Vylet, V.; Wang, J.W.; Wilson, P.B.; Yeremian, A.; Youngman, B.

    1993-01-01

    At SLAC, we are pursuing the design of a Next Linear Collider (NLC) which would begin with a center-of-mass energy of 0.5 TeV, and be upgradable to at least 1.0 TeV. To achieve this high energy, we have been working on the development of a high-gradient 11.4-GHz (X-band) linear accelerator for the main linac of the collider. In this paper, we present the design of a 'Next Linear Collider Test Accelerator' (NLCTA). The goal of the NLCTA is to incorporate the new technologies of X-band accelerator structures, RF pulse compression systems and klystrons into a short linac which will then be a test bed for beam dynamics issues related to high-gradient acceleration. (orig.)

  4. Higher magnetic field multipoles generated by superconductor magnetization within a set of nested superconducting correction coils

    International Nuclear Information System (INIS)

    Green, M.A.

    1990-01-01

    Correction elements in colliding beam accelerators such as the Superconducting Super Collider (SSC) can be the source of undesirable higher magnetic field multipoles due to magnetization of the superconductor within the corrector. Quadrupole and sextupole correctors located within the main dipole will produce sextupole and decapole due to magnetization of the superconductor within the correction coils. Lumped nested correction coils can produce a large number of skew and normal magnetization multipoles which may have an adverse effect on a stored beam at injection into a high energy colliding beam machine such as the SSC. Multipole magnetization field components have been measured within the HERA storage ring dipole magnets. Calculations of these components using the SCMAG04 code, which agree substantially with the measured multipoles, are presented in the report. As a result, in the proposed continuous correction winding for the SSC, dipoles have been replaced with lumped correction elements every six dipole magnets (about 120 meters apart). Nested lumped correction elements will also produce undesirable higher magnetization multipoles. This report shows a method by which the higher multipole generated by nested correction elements can be identified. (author)

  5. Perspectives on large Linear Colliders

    International Nuclear Information System (INIS)

    Richter, B.

    1987-01-01

    The accelerator community now generally agrees that the Linear Collider is the most cost-effective technology for reaching much higher energies in the center-of-mass than can be attained in the largest of the e + e - storage rings, LEP. Indeed, even as the first linear collider, the SLC at SLAC, is getting ready to begin operations groups, at SLAC, Novosibirsk, CERN and KEK are doing R and D and conceptual design studies on a next generation machine in the 1 TeV energy region. In this perspectives talk I do not want to restrict my comments to any particular design, and so I will talk about a high-energy machine as the NLC, which is shorthand for the Next Linear Collider, and taken to mean a machine with a center-of-mass energy someplace in the 0.5 to 2 TeV energy range with sufficient luminosity to carry out a meaningful experimental program. I want to discuss three main items with you. The first is the interrelation of energy and luminosity requirements. These two items impose severe constraints on the accelerator builder. Next, I will give an introduction to linear collider design, concentrating on what goes on at the collision point, for still another constraint comes here from the beam-beam interaction which further restricts the choices available to the accelerator builder.Then, I want to give my impressions of the state of the technology available for building these kinds of machines within the next decade

  6. Physics at international linear collider (ILC)

    International Nuclear Information System (INIS)

    Yamamoto, Hitoshi

    2007-01-01

    International Linear Collider (ILC) is an electron-positron collider with the initial center-of-mass energy of 500 GeV which is upgradable to about 1 TeV later on. Its goal is to study the physics at TeV scale with unprecedented high sensitivities. The main topics include precision measurements of the Higgs particle properties, studies of supersymmetric particles and the underlying theoretical structure if supersymmetry turns out to be realized in nature, probing alternative possibilities for the origin of mass, and the cosmological connections thereof. In many channels, Higgs and leptonic sector in particular, ILC is substantially more sensitive than LHC, and is complementary to LHC overall. In this short article, we will have a quick look at the capabilities of ILC. (author)

  7. QCD for Collider Physics

    OpenAIRE

    Skands, Peter

    2011-01-01

    These lectures are directed at a level suitable for graduate students in experimental and theoretical High Energy Physics. They are intended to give an introduction to the theory and phenomenology of quantum chromodynamics (QCD) as it is used in collider physics applications. The aim is to bring the reader to a level where informed decisions can be made concerning different approaches and their uncertainties. The material is divided into four main areas: 1) fundamentals, 2) perturbative QCD, ...

  8. Field quality of LHC superconducting dipole magnets

    International Nuclear Information System (INIS)

    Mishra, R.K.

    2003-01-01

    The author reports here the main results of field measurements performed so far on the LHC superconducting dipoles at superfluid helium temperature. The main field strength at injection, collision conditions and higher order multipoles are discussed. Superconducting magnets exhibit additional field imperfections due to diamagnetic properties of superconducting cables, apart from geometric error, saturation of iron yoke and eddy currents error. Dynamic effects on field harmonics, such as field decay at injection and subsequent snap back are also discussed. (author)

  9. 1995 second modulator-klystron workshop: A modulator-klystron workshop for future linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This second workshop examined the present state of modulator design and attempted an extrapolation for future electron-positron linear colliders. These colliders are currently viewed as multikilometer-long accelerators consisting of a thousand or more RF sources with 500 to 1,000, or more, pulsed power systems. The workshop opened with two introductory talks that presented the current approaches to designing these linear colliders, the anticipated RF sources, and the design constraints for pulse power. The cost of main AC power is a major economic consideration for a future collider, consequently the workshop investigated efficient modulator designs. Techniques that effectively apply the art of power conversion, from the AC mains to the RF output, and specifically, designs that generate output pulses with very fast rise times as compared to the flattop. There were six sessions that involved one or more presentations based on problems specific to the design and production of thousands of modulator-klystron stations, followed by discussion and debate on the material.

  10. Status of 11 T 2-in-1 Nb$_3$Sn Dipole Development for LHC

    Energy Technology Data Exchange (ETDEWEB)

    Zlobin, Alexander [Fermilab; Andreev, Nicolai [Fermilab; Apollinari, Giorgio [Fermilab; Barzi, Emanuela [Fermilab; Bossert, Rodger [Fermilab; Buehler, Marc [Fermilab; Chlachidze, Guram [Fermilab; DiMarco, Joseph [Fermilab; Nobrega, Alfred [Fermilab; Novitski, Igor [Fermilab; Turrioni, Daniele [Fermilab; Velev, Gueorgui [Fermilab; Auchmann, Bernhard [CERN; Karppinen, Mikko [CERN; Rossi, Lucio [CERN; Smekens, David [CERN

    2014-07-01

    The LHC upgrade plans foresee installation of additional collimators in the LHC lattice. To provide the necessary longitudinal space for these collimators, shorter and stronger Nb3Sn dipoles compatible with the LHC lattice and main systems could be used. This paper describes the design and status of the twin-aperture Nb3Sn dipole being developed by FNAL and CERN for the LHC, and reports test results of two collared coils to be used in the first 1 m long twin-aperture dipole model.

  11. Magnetic Analysis of a Single-Aperture 11T Nb3Sn Demonstrator Dipole for LHC Upgrades

    Energy Technology Data Exchange (ETDEWEB)

    Auchmann, B. [CERN; Karppinen, M. [CERN; Kashikhin, V. [Fermilab; Zlobin, A. V. [Fermilab

    2012-05-01

    The planned upgrade of the LHC collimation system foresees additional collimators to be installed in the dispersion suppressor areas around points 2, 3, and 7. The necessary longitudinal space for the collimators could be provided by replacing some 8.33-T 15-m-long NbTi LHC main dipoles with shorter 11-T Nb3Sn dipoles compatible with the LHC lattice and main systems. To demonstrate this possibility, in 2011 Fermilab and CERN started a joint R&D program with the goal of building a 5.5-m-long tw in-aperture dipole prototype suitable for installation in the LHC by 2014. The first step of this program is the development of a 2-m-long single-aperture demonstration dipole with the nominal field of 11 T at the LHC nominal current of ~11.85 kA and 60-m m bore with ~20% margin. This paper presents the results of magnetic analysis of the single-aperture Nb3Sn demonstrator dipole for the LHC collimation system upgrade.

  12. A Correlation Study between Geometry of Collared Coils and Normal Quadrupole Multipole in the Main LHC Dipoles

    CERN Document Server

    Bertinelli, F; Berthollon-Vitte, S; Glaude, D; Vanenkov, I

    2006-01-01

    The quality control implemented at all LHC dipole assemblers includes precise mechanical measurements of the geometry of collared coils. A cross-analysis performed between mechanical and magnetic measurements data shows a correlation between collared coils outer dimensions and the normal quadrupole multipole (b2) for one dipole assembler. The profile geometry of the single collars - as determined from 3D measurements at the collar suppliers and CERN - could not account alone for the significant left – right aperture asymmetry observed. This triggered a deeper investigation on different elements of the geometry of single collars. The results of this work show that the relative positioning of the collaring holes, allowing a small bending deformation of collars under the effect of coil pre-stress, is an important effect that generates a b2 multipole at the limit of specification. The study has deepened the understanding of the factors affecting collared coil geometry and field quality. The precision of 3D m...

  13. A Simple Ultra-Wideband Magneto-Electric Dipole Antenna With High Gain

    Science.gov (United States)

    Shuai, Chen-yang; Wang, Guang-ming

    2017-12-01

    A simple ultra-wideband magneto-electric dipole antenna utilizing a differential-fed structure is designed. The antenna mainly comprises three parts, including a novel circular horned reflector, two vertical semicircular shorted patches as a magnetic dipole, and a horizontal U-shaped semicircular electric dipole. A differential feeding structure working as a perfect balun excites the designed antenna. The results of simulation have a good match with the ones of measurement. Results indicate that the designed antenna achieves a wide frequency bandwidth of 107 % which is 3.19 10.61 GHz, when VSWR is below 2. Via introducing the circular horned reflector, the designed antenna attains a steady and high gain of 12±1.5dBi. Moreover, settled broadside direction main beam, high front-to-back ratio, low cross polarization, and the symmetrical and relatively stable radiation patterns in the E-and H-plane are gotten in the impedance bandwidth range. In the practical applications, the proposed antenna that is dc grounded and has a simple structure satisfies the requirement of many outdoor antennas.

  14. Potential Remedies for the High Synchrotron-Radiation-Induced Heat Load for Future Highest-Energy-Proton Circular Colliders

    CERN Document Server

    AUTHOR|(CDS)2084568; Baglin, Vincent; Schaefers, Franz

    2015-01-01

    We propose a new method for handling the high synchrotron radiation (SR) induced heat load of future circular hadron colliders (like FCC-hh). FCC-hh are dominated by the production of SR, which causes a significant heat load on the accelerator walls. Removal of such a heat load in the cold part of the machine, as done in the Large Hadron Collider, will require more than 100 MW of electrical power and a major cooling system. We studied a totally different approach, identifying an accelerator beam screen whose illuminated surface is able to forward reflect most of the photons impinging onto it. Such a reflecting beam screen will transport a significant part of this heat load outside the cold dipoles. Then, in room temperature sections, it could be more efficiently dissipated. Here we will analyze the proposed solution and address its full compatibility with all other aspects an accelerator beam screen must fulfill to keep under control beam instabilities as caused by electron cloud formation, impedance, dynamic...

  15. Resonant Dipole Nanoantenna Arrays for Enhanced Terahertz Spectroscopy

    KAUST Repository

    Toma, A.

    2015-08-04

    Our recent studies on dipole nanoantenna arrays resonating in the terahertz frequency range (0.1 – 10 THz) will be presented. The main near- and far-field properties of these nanostructures will be shown and their application in enhanced terahertz spectroscopy of tiny quantities of nanomaterials will be discussed.

  16. Alignment Challenges for a Future Linear Collider

    CERN Document Server

    Durand, H; Stern, G

    2013-01-01

    The preservation of ultra-low emittances in the main linac and Beam Delivery System area is one of the main challenges for linear colliders. This requires alignment tolerances never achieved before at that scale, down to the micrometre level. As a matter of fact, in the LHC, the goal for the smoothing of the components was to obtain a 1σ deviation with respect to a smooth curve of 0.15 mm over a 150 m long sliding window, while for the CLIC project for example, it corresponds to 10 μm over a sliding window of 200 m in the Beam Delivery System area. Two complementary strategies are being studied to fulfil these requirements: the development and validation of long range alignment systems over a few hundreds of metres and short range alignment systems over a few metres. The studies undertaken, with associated tests setups and the latest results will be detailed, as well as their application for the alignment of both CLIC and ILC colliders.

  17. Linear colliders - prospects 1985

    International Nuclear Information System (INIS)

    Rees, J.

    1985-06-01

    We discuss the scaling laws of linear colliders and their consequences for accelerator design. We then report on the SLAC Linear Collider project and comment on experience gained on that project and its application to future colliders. 9 refs., 2 figs

  18. A Note on the Dipole Coordinates

    OpenAIRE

    Kageyama, Akira; Sugiyama, Tooru; Watanabe, Kunihiko; Sato, Tetsuya

    2004-01-01

    A couple of orthogonal coordinates for dipole geometry are proposed for numerical simulations of plasma geophysics in the Earth's dipole magnetic field. These coordinates have proper metric profiles along field lines in contrast to the standard dipole coordinate system that is commonly used in analytical studies for dipole geometry.

  19. Perspectives on large linear colliders

    International Nuclear Information System (INIS)

    Richter, B.

    1987-11-01

    Three main items in the design of large linear colliders are presented. The first is the interrelation of energy and luminosity requirements. These two items impose severe constraints on the accelerator builder who must design a machine to meet the needs of experimentl high energy physics rather than designing a machine for its own sake. An introduction is also given for linear collider design, concentrating on what goes on at the collision point, for still another constraint comes here from the beam-beam interaction which further restricts the choices available to the accelerator builder. The author also gives his impressions of the state of the technology available for building these kinds of machines within the next decade. The paper concludes with a brief recommendation for how we can all get on with the work faster, and hope to realize these machines sooner by working together. 10 refs., 9 figs

  20. Dipole compensation of the 176 MHz MYRRHA RFQ

    Energy Technology Data Exchange (ETDEWEB)

    Kuempel, Klaus; Podlech, Holger; Lenz, Christoph; Petry, Nils [IAP, University of Frankfurt, Frankfurt am Main (Germany); Bechtold, Alexander [NTG Neue Technologien GmbH und Co.KG, Gelnhausen (Germany); Zhang, Chuan [GSI Helmholtzzentrum, Darmstadt (Germany)

    2016-07-01

    The MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) Project is planned as an accelerator driven system (ADS) for the transmutation of long-living radioactive waste. For this project a cw 4-rod-RFQ with 176 MHz and a total length of about 4 m is required. It is supposed to accelerate protons from 30 keV up to 1.5 MeV*. One of the main tasks during the development of the RFQ is the very high reliability of the accelerator to limit the thermal stress inside the reactor. Another challenge was to compensate the dipole component of the MYRRHA-RFQ which is due to the design principle of 4-rod-RFQs. This dipole component is responsible for shifting the ideal beam axis from the geometrical center of the quadrupole downwards. Design studies with CST MICROWAVE STUDIO have shown that the dipole component can be almost completely compensated by widening the stems alternately so that the current paths of the lower electrodes are increased.

  1. Initial operation of the Tevatron collider

    International Nuclear Information System (INIS)

    Johnson, R.

    1987-03-01

    The Tevatron is now the highest energy proton synchrotron and the only accelerator made with superconducting magnets. Operating since 1983 as a fixed-target machine at energies up to 800 GeV, it has now been modified to operate as a 900 GeV antiproton-proton collider. This paper describes the initial operation of the machine in this mode. The new features of the Fermilab complex, including the antiproton source and the Main Ring injector with its two overpasses and new rf requirements, are discussed. Beam characteristics in the Tevatron (including lifetimes, emittances, luminosity, beam-beam tune shifts, backgrounds, and low beta complications), the coordination of the steps in the accelerator chain, and the commissioning history are also discussed. Finally, some plans for the improvement of the collider are presented

  2. Collider workshop

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    The promise of initial results after the start of operations at CERN's SPS proton-antiproton collider and the prospects for high energy hadron collisions at Fermilab (Tevatron) and Brookhaven (ISABELLE) provided a timely impetus for the recent Topical Workshop on Forward Collider Physics', held at Madison, Wisconsin, from 10-12 December. It became the second such workshop to be held, the first having been in 1979 at the College de France, Paris. The 100 or so participants had the chance to hear preliminary results from the UA1, UA4 and UA5 experiments at the CERN SPS collider, together with other new data, including that from proton-antiproton runs at the CERN Intersecting Storage Rings

  3. Towards a Muon Collider

    International Nuclear Information System (INIS)

    Eichten, E.

    2011-01-01

    A multi TeV Muon Collider is required for the full coverage of Terascale physics. The physics potential for a Muon Collider at ∼3 TeV and integrated luminosity of 1 ab -1 is outstanding. Particularly strong cases can be made if the new physics is SUSY or new strong dynamics. Furthermore, a staged Muon Collider can provide a Neutrino Factory to fully disentangle neutrino physics. If a narrow s-channel resonance state exists in the multi-TeV region, the physics program at a Muon Collider could begin with less than 10 31 cm -2 s -1 luminosity. Detailed studies of the physics case for a 1.5-4 TeV Muon Collider are just beginning. The goals of such studies are to: (1) identify benchmark physics processes; (2) study the physics dependence on beam parameters; (3) estimate detector backgrounds; and (4) compare the physics potential of a Muon Collider with those of the ILC, CLIC and upgrades to the LHC.

  4. Heavy-ion performance of the LHC and future colliders

    Energy Technology Data Exchange (ETDEWEB)

    Schaumann, Michaela

    2015-04-29

    In 2008 the Large Hadron Collider (LHC) and its experiments started operation at the European Centre of Nuclear Research (CERN) in Geneva with the main aim of finding or excluding the Higgs boson. Only four years later, on the 4th of July 2012, the discovery of a Higgs-like particle was proven and first published by the two main experiments ATLAS and CMS. Even though proton-proton collisions are the main operation mode of the LHC, it also acts as an heavy-ion collider. Here, the term ''heavy-ion collisions'' refers to the collision between fully stripped nuclei. While the major hardware system of the LHC is compatible with heavy-ion operation, the beam dynamics and performance limits of ion beams are quite different from those of protons. Because of the higher mass and charge of the ions, beam dynamic effects like intra-beam scattering and radiation damping are stronger. Also the electromagnetic cross-sections in the collisions are larger, leading to significantly faster intensity decay and thus shorter luminosity lifetimes. As the production cross-sections for various physics processes under study of the experiments are still small at energies reachable with the LHC and because the heavy-ion run time is limited to a few days per year, it is essential to obtain the highest possible collision rate, i.e. maximise the instantaneous luminosity, in order to obtain enough events and therefore low statistical errors. Within this thesis, the past performance of the LHC in lead-lead (Pb-Pb) collisions, at a centre-of-mass energy of 2.76 TeV per colliding nucleon pair, is analysed and potential luminosity limitations are identified. Tools are developed to predict future performance and techniques are presented to further increase the luminosity. Finally, a perspective on the future of high energy heavy-ion colliders is given.

  5. Testing of a Single 11 T $Nb_3Sn$ Dipole Coil Using a Dipole Mirror Structure

    Energy Technology Data Exchange (ETDEWEB)

    Zlobin, Alexander [Fermilab; Andreev, Nicolai [Fermilab; Barzi, Emanuela [Fermilab; Chlachidze, Guram [Fermilab; Kashikhin, Vadim [Fermilab; Nobrega, Alfred [Fermilab; Novitski, Igor [Fermilab; Turrioni, Daniele [Fermilab; Karppinen, Mikko [CERN; Smekens, David [CERN

    2014-07-01

    FNAL and CERN are developing an 11 T Nb3Sn dipole suitable for installation in the LHC. To optimize coil design parameters and fabrication process and study coil performance, a series of 1 m long dipole coils is being fabricated. One of the short coils has been tested using a dipole mirror structure. This paper describes the dipole mirror magnetic and mechanical designs, and reports coil parameters and test results.

  6. Dynamic Dipole-Dipole Interactions between Excitons in Quantum Dots of Different Sizes

    DEFF Research Database (Denmark)

    Matsueda, Hideaki; Leosson, Kristjan; Xu, Zhangcheng

    2005-01-01

    Micro-photoluminescence spectra of GaAs/AlGaAs coupled quantum dots (QDs) are given, and proposed to be analyzed by our resonance dynamic dipole-dipole interaction (RDDDI) model, based on parity inheritance and exchange of virtual photons among QDs of different sizes....

  7. Charged Hadron Multiplicity Distribution at Relativistic Heavy-Ion Colliders

    Directory of Open Access Journals (Sweden)

    Ashwini Kumar

    2013-01-01

    Full Text Available The present paper reviews facts and problems concerning charge hadron production in high energy collisions. Main emphasis is laid on the qualitative and quantitative description of general characteristics and properties observed for charged hadrons produced in such high energy collisions. Various features of available experimental data, for example, the variations of charged hadron multiplicity and pseudorapidity density with the mass number of colliding nuclei, center-of-mass energies, and the collision centrality obtained from heavy-ion collider experiments, are interpreted in the context of various theoretical concepts and their implications. Finally, several important scaling features observed in the measurements mainly at RHIC and LHC experiments are highlighted in the view of these models to draw some insight regarding the particle production mechanism in heavy-ion collisions.

  8. Estimate of the longitudinal and transverse impedances for the superconducting super collider

    International Nuclear Information System (INIS)

    Ng, K.Y.

    1984-01-01

    We try to estimate the longitudinal impedance per harmonic Z/sub L//n as well as the transverse impedance Z/sub T/ for the 20 TeV Superconducting Super Collider (SSC). Effects due to space charge, wall resistivity, bellows, monitor plates, synchrotron radiation are considered. The resulting Z/sub L//n and Z/sub T/ are plotted. Such a knowledge of Z/sub L//n and Z/sub T/ is necessary in computing the limits of many types of instabilities for the bunched beam. To be more specific, in our estimation, we consider the special case of an injection energy of 1 TeV and assume a maximum field of 5 Tesla in the SSC dipoles. In some cases, we also assume a 60 0 FODO cell structure consisting of 4 dipoles and 2 quadrupoles each with 2 long straight sections. The beampipe radius and beam radius are chosen as b = 1.0 in. and a = 0.05 cm respectively. Totally, the storage ring consists of 364 cells and has a mean radius of R = 17.38 km. Our results show that when monitor plates matched at both ends (such as the ones used in the Tevatron) are used, their effects dominate both Z/sub L//n and Z/sub T. 7 references, 5 figures

  9. Very high energy colliders

    International Nuclear Information System (INIS)

    Richter, B.

    1986-03-01

    The luminosity and energy requirements are considered for both proton colliders and electron-positron colliders. Some of the basic design equations for high energy linear electron colliders are summarized, as well as design constraints. A few examples are given of parameters for very high energy machines. 4 refs., 6 figs

  10. ColliderBit. A GAMBIT module for the calculation of high-energy collider observables and likelihoods

    Energy Technology Data Exchange (ETDEWEB)

    Balazs, Csaba [Monash University, School of Physics and Astronomy, Melbourne, VIC (Australia); Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale (Australia); Buckley, Andy [University of Glasgow, SUPA, School of Physics and Astronomy, Glasgow (United Kingdom); Dal, Lars A.; Krislock, Abram; Raklev, Are [University of Oslo, Department of Physics, Oslo (Norway); Farmer, Ben [AlbaNova University Centre, Oskar Klein Centre for Cosmoparticle Physics, Stockholm (Sweden); Jackson, Paul; Murnane, Daniel; White, Martin [Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale (Australia); University of Adelaide, Department of Physics, Adelaide, SA (Australia); Kvellestad, Anders [NORDITA, Stockholm (Sweden); Putze, Antje [Universite de Savoie, LAPTh, Annecy-le-Vieux (France); Rogan, Christopher [Harvard University, Department of Physics, Cambridge, MA (United States); Saavedra, Aldo [Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale (Australia); The University of Sydney, Faculty of Engineering and Information Technologies, Centre for Translational Data Science, School of Physics, Sydney, NSW (Australia); Scott, Pat [Imperial College London, Blackett Laboratory, Department of Physics, London (United Kingdom); Weniger, Christoph [University of Amsterdam, GRAPPA, Institute of Physics, Amsterdam (Netherlands); Collaboration: The GAMBIT Scanner Workgroup

    2017-11-15

    We describe ColliderBit, a new code for the calculation of high energy collider observables in theories of physics beyond the Standard Model (BSM). ColliderBit features a generic interface to BSM models, a unique parallelised Monte Carlo event generation scheme suitable for large-scale supercomputer applications, and a number of LHC analyses, covering a reasonable range of the BSM signatures currently sought by ATLAS and CMS. ColliderBit also calculates likelihoods for Higgs sector observables, and LEP searches for BSM particles. These features are provided by a combination of new code unique toColliderBit, and interfaces to existing state-of-the-art public codes. ColliderBit is both an important part of the GAMBIT framework for BSM inference, and a standalone tool for efficiently applying collider constraints to theories of new physics. (orig.)

  11. Proton-antiproton collider physics

    CERN Document Server

    Altarelli, Guido

    1989-01-01

    This volume reviews the physics studied at the CERN proton-antiproton collider during its first phase of operation, from the first physics run in 1981 to the last one at the end of 1985. The volume consists of a series of review articles written by physicists who are actively involved with the collider research program. The first article describes the proton-antiproton collider facility itself, including the antiproton source and its principle of operation based on stochastic cooling. The subsequent six articles deal with the various physics subjects studied at the collider. Each article descr

  12. Possible displacement of mercury's dipole

    International Nuclear Information System (INIS)

    Ng, K.H.; Beard, D.B.

    1979-01-01

    Earlier attempts to model the Hermean magnetospheric field based on a planet-centered magnetic multipole field have required the addition of a quadrupole moment to obtain a good fit to space vehicle observations. In this work we obtain an equally satisfactory fit by assuming a null quadrupole moment and least squares fitting of the displacement of the planetary dipole from the center of the planet. We find a best fit for a dipole displacement from the planet center of 0.033 R/sub m/ away from the solar direction, 0.025 R/sub m/ toward dawn in the magnetic equatorial plane, and 0.189 R/sub m/ northward along the magnetic dipole axis, where R/sub m/ is the planet radius. Therefore the presence of a magnetic quadrupole moment is not ruled out. The compressed dipole field more completely represents the field in the present work than in previous work where the intrinsic quadrupole field was not included in the magnetopause surface and field calculations. Moreover, we have corrected a programing error in previous work in the computation of dipole tilt lambda away from the sun. We find a slight increase for the planet dipole moment of 190γR/sub m/ 3 and a dipole tilt angle lambda away from the sun. We find a slight increase for the planet moment of 190γR/sub m/ 3 and a dipole tilt angle lambda of only 1.2 0 away from the sun. All other parameters are essentially unchanged

  13. submitter Influence of 3D Effects on Field Quality in the Straight Part of Accelerator Magnets for the High Luminosity Large Hadron Collider

    CERN Document Server

    Nilsson, Emelie; Todesco, Ezio; Enomoto, Shun; Farinon, Stefania; Fabbricatore, Pasquale; Nakamoto, Tatsushi; Sugano, Michinaka; Savary, Frederic

    2017-01-01

    A dedicated D1 beam separation dipole is currently being developed at KEK for the Large Hadron Collider Luminosity upgrade (HL-LHC). Four 150 mm aperture, 5.6 T magnetic field and 6.7 m long Nb-Ti magnets will replace resistive D1 dipoles. The development includes fabrication and testing of 2.2 m model magnets. The dipole has a single layer coil and thin spacers between coil and iron, giving a non-negligible impact of saturation on field quality at nominal field. The magnetic design of the straight section coil cross section is based on 2D optimization and a separate optimization concerns the coil ends. However, magnetic measurements of the short model showed a large difference (tens of units) between the sextupole harmonic in the straight part and the 2D calculation. This difference is correctly modelled only by a 3D analysis: 3D calculations show that the magnetic field quality in the straight part is influenced by the coil ends, even for the 6.7 m long magnets. The effect is even more remarkable in the sho...

  14. submitter Influence of 3D Effects on Field Quality in the Straight Part of Accelerator Magnets for the High Luminosity Large Hadron Collider

    CERN Document Server

    Nilsson, Emelie; Todesco, Ezio; Enomoto, Shun; Farinon, Stefania; Fabbricatore, Pasquale; Nakamoto, Tatsushi; Sugano, Michinaka; Savary, Frederic

    2018-01-01

    A dedicated D1 beam separation dipole is currently being developed at KEK for the Large Hadron Collider Luminosity upgrade (HL-LHC). Four 150 mm aperture, 5.6 T magnetic field and 6.7 m long Nb-Ti magnets will replace resistive D1 dipoles. The development includes fabrication and testing of 2.2 m model magnets. The dipole has a single layer coil and thin spacers between coil and iron, giving a non-negligible impact of saturation on field quality at nominal field. The magnetic design of the straight section coil cross section is based on 2D optimization and a separate optimization concerns the coil ends. However, magnetic measurements of the short model showed a large difference (tens of units) between the sextupole harmonic in the straight part and the 2D calculation. This difference is correctly modelled only by a 3D analysis: 3D calculations show that the magnetic field quality in the straight part is influenced by the coil ends, even for the 6.7 m long magnets. The effect is even more remarkable in the sho...

  15. Collider Physics

    OpenAIRE

    Zeppenfeld, D.

    1999-01-01

    These lectures are intended as a pedagogical introduction to physics at $e^+e^-$ and hadron colliders. A selection of processes is used to illustrate the strengths and capabilities of the different machines. The discussion includes $W$ pair production and chargino searches at $e^+e^-$ colliders, Drell-Yan events and the top quark search at the Tevatron, and Higgs searches at the LHC.

  16. Superconducting Magnet with the Minimum Steel Yoke for the Hadron Future Circular Collider Detector

    CERN Document Server

    Klyukhin, V I; Ball, A.; Curé, B.; Dudarev, A.; Gaddi, A.; Gerwig, H.; Mentink, M.; Da Silva, H. Pais; Rolando, G.; ten Kate, H. H. J.; Berriaud, C.P.

    2016-01-01

    The conceptual design study of a hadron Future Circular Collider (FCC-hh) with a center-of-mass energy of the order of 100 TeV in a new tunnel of 80-100 km circumference assumes the determination of the basic requirements for its detectors. A superconducting solenoid magnet of 12 m diameter inner bore with the central magnetic flux density of 6 T in combination with two superconducting dipole and two conventional toroid magnets is proposed for a FCC-hh experimental setup. The coil of 23.468 m long has seven 3.35 m long modules included into one cryostat. The steel yoke with a mass of 22.6 kt consists of two barrel layers of 0.5 m radial thickness, and the 0.7 m thick nose disk and four 0.6 m thick end-cap disks each side. The maximum outer diameter of the yoke is 17.7 m; the length is 62.6 m. The air gaps between the end-cap disks provide the installation of the muon chambers up to the pseudorapidity about \\pm 2.7. The superconducting dipole magnets allow measuring the charged particle momenta in the pseudora...

  17. Design and study of new cables for superconducting accelerator magnets: Synchrotron SIS 100 at GSI and NICA collider at JINR*

    International Nuclear Information System (INIS)

    Khodzhibagiyan, H G; Drobin, V M; Kovalenko, A D; Vladimirova, N M; Fischer, E; Pantsyrny, V I; Potanina, L V; Shikov, A K

    2010-01-01

    Recent data from the design of new optimized options of NbTi composite wires and hollow cables for fast cycling synchrotron SIS100 at GSI and NICA collider at JINR are presented. The SIS100 new cable is proposed to be used for manufacturing of single-layer coil for dipole magnet with maximal amplitude of pulsed magnetic field up to 2 T. The cable should provide continues pulsed operation at the current amplitude of I = 13 kA and magnetic field ramp rate of dB/dt = 4 T/s. The results of experimental study of energy losses in the new wire and cable samples for SIS100 magnets are presented. The design cable parameters for the NICA 4 T dipole magnet are fixed at the level of I = 17 kA and dB/dt = 1 T/s. The status of the work is presented and discussed.

  18. Dipoles at rest

    International Nuclear Information System (INIS)

    Griffiths, D.J.

    1992-01-01

    In a world populated by magnetic monopoles (as well as ordinary electric charges), there are two kinds of electric dipoles: those due to separated electric charges, and those due to current loops of magnetic charge. Similarly, there are two kinds of magnetic dipoles: those due to separated magnetic monopoles, and those due to electric current loops. This paper derives the potentials and fields of each of the four dipole species, and calculates the force, torque, energy, momentum, and angular momentum of each type, when placed (at rest) in a static external field (which may itself be produced by electric charges and currents, magnetic charges and currents, or all of these). Some implications and applications of the various results are discussed

  19. Some dipole shower studies

    Science.gov (United States)

    Cabouat, Baptiste; Sjöstrand, Torbjörn

    2018-03-01

    Parton showers have become a standard component in the description of high-energy collisions. Nowadays most final-state ones are of the dipole character, wherein a pair of partons branches into three, with energy and momentum preserved inside this subsystem. For initial-state showers a dipole picture is also possible and commonly used, but the older global-recoil strategy remains a valid alternative, wherein larger groups of partons share the energy-momentum preservation task. In this article we introduce and implement a dipole picture also for initial-state radiation in Pythia, and compare with the existing global-recoil one, and with data. For the case of Deeply Inelastic Scattering we can directly compare with matrix element expressions and show that the dipole picture gives a very good description over the whole phase space, at least for the first branching.

  20. Beam dynamics in the final focus section of the future linear collider

    CERN Document Server

    AUTHOR|(SzGeCERN)739431; TOMAS, Rogelio

    The exploration of new physics in the ``Tera electron-Volt''~(TeV) scale with precision measurements requires lepton colliders providing high luminosities to obtain enough statistics for the particle interaction analysis. In order to achieve design luminosity values, linear colliders feature nanometer beam spot sizes at the Interaction~Point~(IP).\\par In addition to several effects affecting the luminosity, three main issues to achieve the beam size demagnification in the Final Focus Section (FFS) of the accelerator are the chromaticity correction, the synchrotron radiation effects and the correction of the lattice errors.\\par This thesis considers two important aspects for linear colliders: push the limits of linear colliders design, in particular the chromaticity correction and the radiation effects at 3~TeV, and the instrumentation and experimental work on beam stabilization in a test facility.\\par The current linear collider projects, CLIC~\\cite{CLICdes} and ILC~\\cite{ILCdes}, have lattices designed using...

  1. Ionization of Rb Rydberg atoms in the attractive nsnp dipole-dipole potential

    International Nuclear Information System (INIS)

    Park, Hyunwook; Shuman, E. S.; Gallagher, T. F.

    2011-01-01

    We have observed the ionization of a cold gas of Rb Rydberg atoms which occurs when nsns van der Waals pairs of ns atoms of n≅ 40 on a weakly repulsive potential are transferred to an attractive dipole-dipole nsnp potential by a microwave transition. Comparing the measurements to a simple model shows that the initial 300-μK thermal velocity of the atoms plays an important role. Excitation to a repulsive dipole-dipole potential does not lead to more ionization on a 15-μs time scale than leaving the atoms in the weakly repulsive nsns state. This observation is slightly surprising since a radiative transition must occur to allow ionization in the latter case. Finally, by power broadening of the microwave transition, to allow transitions from the initial nsns state to the nsnp state over a broad range of internuclear spacings, it is possible to accelerate markedly the evolution to a plasma.

  2. Angle-dependent quantum Otto heat engine based on coherent dipole-dipole coupling

    Science.gov (United States)

    Su, Shan-He; Luo, Xiao-Qing; Chen, Jin-Can; Sun, Chang-Pu

    2016-08-01

    Electromagnetic interactions between molecules or within a molecule have been widely observed in biological systems and exhibit broad application for molecular structural studies. Quantum delocalization of molecular dipole moments has inspired researchers to explore new avenues to utilize this physical effect for energy harvesting devices. Herein, we propose a simple model of the angle-dependent quantum Otto heat engine which seeks to facilitate the conversion of heat to work. Unlike previous studies, the adiabatic processes are accomplished by varying only the directions of the magnetic field. We show that the heat engine continues to generate power when the angle relative to the vector r joining the centres of coupled dipoles departs from the magic angle θm where the static coupling vanishes. A significant improvement in the device performance has to be attributed to the presence of the quantum delocalized levels associated with the coherent dipole-dipole coupling. These results obtained may provide a promising model for the biomimetic design and fabrication of quantum energy generators.

  3. State of the Short Dipole Model Program for the LHC

    CERN Document Server

    Andreyev, N I; Kurtyka, T; Oberli, L R; Perini, D; Russenschuck, Stephan; Siegel, N; Siemko, A; Tommasini, D; Vanenkov, I; Walckiers, L

    1998-01-01

    Superconducting single and twin aperture 1-m long dipole magnets are currently being fabricated at CERN at a rate of about one per month in the framework of the short dipole model program for the LHC. The program allows to study performance improvements coming from refinements in design, components and assembly options and to accumulate statistics based on a small-scale production. The experience thus gained provides in turn feedback into the long magnet program in industry. In recent models initial quenching fields above 9 T have been obtained and after a short training the conductor limit at 2 K is reached, resulting in a central bore field exceeding 10 T. The paper describes the features of recent single aperture models, the results obtained during cold tests and the plans to ensure the continuation of a vigorous model program providing input for the fabrication of the main LHC dipoles.

  4. The large hadron collider project

    International Nuclear Information System (INIS)

    Maiani, L.

    1999-01-01

    Knowledge of the fundamental constituents of matter has greatly advanced, over the last decades. The standard theory of fundamental interactions presents us with a theoretically sound picture, which describes with great accuracy known physical phenomena on most diverse energy and distance scales. These range from 10 -16 cm, inside the nucleons, up to large-scale astrophysical bodies, including the early Universe at some nanosecond after the Big-Bang and temperatures of the order of 10 2 GeV. The picture is not yet completed, however, as we lack the observation of the Higgs boson, predicted in the 100-500 GeV range - a particle associated with the generation of particle masses and with the quantum fluctuations in the primordial Universe. In addition, the standard theory is expected to undergo a change of regime in the 10 3 GeV region, with the appearance of new families of particles, most likely associated with the onset of a new symmetry (supersymmetry). In 1994, the CERN Council approved the construction of the large hadron collider (LHC), a proton-proton collider of a new design to be installed in the existing LEP tunnel, with an energy of 7 TeV per beam and extremely large luminosity, of ∝10 34 cm -2 s -1 . Construction was started in 1996, with the additional support of the US, Japan, Russia, Canada and other European countries, making the LHC a really global project, the first one in particle physics. After a short review of the physics scenario, I report on the present status of the LHC construction. Special attention is given to technological problems such as the realization of the super-conducting dipoles, following an extensive R and D program with European industries. The construction of the large LHC detectors has required a vast R and D program by a large international community, to overcome the problems posed by the complexity of the collisions and by the large luminosity of the machine. (orig.)

  5. W-boson electric dipole moment

    International Nuclear Information System (INIS)

    He, X.; McKellar, B.H.J.

    1990-01-01

    The W-boson electric dipole moment is calculated in the SU(3) C xSU(2) L xU(1) Y model with several Higgs-boson doublets. Using the constraint on the CP-violating parameters from the experimental upper bound of the neutron electric dipole moment, we find that the W-boson electric dipole moment is constrained to be less than 10 -4

  6. Optimal control of orientation and entanglement for two dipole-dipole coupled quantum planar rotors.

    Science.gov (United States)

    Yu, Hongling; Ho, Tak-San; Rabitz, Herschel

    2018-05-09

    Optimal control simulations are performed for orientation and entanglement of two dipole-dipole coupled identical quantum rotors. The rotors at various fixed separations lie on a model non-interacting plane with an applied control field. It is shown that optimal control of orientation or entanglement represents two contrasting control scenarios. In particular, the maximally oriented state (MOS) of the two rotors has a zero entanglement entropy and is readily attainable at all rotor separations. Whereas, the contrasting maximally entangled state (MES) has a zero orientation expectation value and is most conveniently attainable at small separations where the dipole-dipole coupling is strong. It is demonstrated that the peak orientation expectation value attained by the MOS at large separations exhibits a long time revival pattern due to the small energy splittings arising form the extremely weak dipole-dipole coupling between the degenerate product states of the two free rotors. Moreover, it is found that the peak entanglement entropy value attained by the MES remains largely unchanged as the two rotors are transported to large separations after turning off the control field. Finally, optimal control simulations of transition dynamics between the MOS and the MES reveal the intricate interplay between orientation and entanglement.

  7. Photon-photon colliders

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1995-04-01

    Since the seminal work by Ginsburg, et at., the subject of giving the Next Linear Collider photon-photon capability, as well as electron-positron capability, has drawn much attention. A 1990 article by V.I. Teinov describes the situation at that time. In March 1994, the first workshop on this subject was held. This report briefly reviews the physics that can be achieved through the photon-photon channel and then focuses on the means of achieving such a collider. Also reviewed is the spectrum of backscattered Compton photons -- the best way of obtaining photons. We emphasize the spectrum actually obtained in a collider with both polarized electrons and photons (peaked at high energy and very different from a Compton spectrum). Luminosity is estimated for the presently considered colliders, and interaction and conversion-point geometries are described. Also specified are laser requirements (such as wavelength, peak power, and average power) and the lasers that might be employed. These include conventional and free-electron lasers. Finally, we describe the R ampersand D necessary to make either of these approaches viable and explore the use of the SLC as a test bed for a photon-photon collider of very high energy

  8. Translational Entanglement of Dipole-Dipole Interacting Atoms in Optical Lattices

    OpenAIRE

    Opatrny, T.; Deb, B.; Kurizki, G.

    2003-01-01

    We propose and investigate a realization of the position- and momentum-correlated Einstein-Podolsky-Rosen (EPR) states [Phys. Rev. 47, 777 (1935)] that have hitherto eluded detection. The realization involves atom pairs that are confined to adjacent sites of two mutually shifted optical lattices and are entangled via laser-induced dipole-dipole interactions. The EPR "paradox" with translational variables is then modified by lattice-diffraction effects, and can be verified to a high degree of ...

  9. Status Report on the Superconducting Dipole Magnet Production for the LHC

    CERN Document Server

    Bajko, M; Bellesia, B; Fessia, P; Hagen, P; Koutchouk, Jean-Pierre; Miles, J; Modena, M; Pojer,, M; Rossi, L; de Rijk, G; Savary, F; Todesco, E; Tommasini, D; Vlogaert, J; Völlinger, C; Wildner, E

    2007-01-01

    In August 2006, about 95 % of the production of the 1232 LHC superconducting dipole cold masses, whose coils are wound with Cu/Nb-Ti cables, is completed. One of the 3 manufacturers, having produced one third of the required magnets, completed its production in the end of 2005. The acceptance of the magnets takes place after the 1.9 K performance tests and has been issued for more then 1000 magnets so far. More then half of the dipole magnets are already installed in the tunnel. The paper reviews the main features of the dipoles, the most important steps of the manufacturing and the most critical operations. The quality control and the critical nonconformities that have led, for instance, to a swift campaign of investigations and repairs of few subcomponents (diode assembly, cold bore tube to welding flare fillet weld) are discussed. The status of the production and the performance of the tested dipoles will be presented. Finally the expected schedule for the completion of the production will be shown.

  10. Flavour and collider interplay for SUSY at LHC7

    International Nuclear Information System (INIS)

    Calibbi, L.; Hodgkinson, R.N.; Vives, O.; Jones Perez, J.; Masiero, A.

    2012-01-01

    The current 7 TeV run of the LHC experiment shall be able to probe gluino and squark masses up to values larger than 1 TeV. Assuming that hints for SUSY are found in the jets plus missing energy channel by the end of a 5 fb -1 run, we explore the flavour constraints on three models with a CMSSM-like spectrum: the CMSSM itself, a seesaw extension of the CMSSM, and Flavoured CMSSM. In particular, we focus on decays that might have been measured by the time the run is concluded, such as B s →μμ and μ→e γ. We also analyse constraints imposed by neutral meson bounds and electric dipole moments. The interplay between collider and flavour experiments is explored through the use of three benchmark scenarios, finding the flavour feedback useful in order to determine the model parameters and to test the consistency of the different models. (orig.)

  11. Dynamic dipole-dipole interactions between excitons in quantum dots of different sizes

    DEFF Research Database (Denmark)

    Matsueda, Hideaki; Leosson, Kristjan; Xu, Zhangcheng

    2004-01-01

    A model of the resonance dynamic dipole-dipole interaction between excitons confined in quantum dots (QDs) of different sizes at close enough distance is given in terms of parity inheritance and exchange of virtual photons. Microphotoluminescence spectra of GaAs-AlGaAs coupled QDs are proposed to...

  12. Multi-TeV muon colliders

    International Nuclear Information System (INIS)

    Neuffer, D.

    1986-01-01

    The possibility that muons may be used in a future generation of high-energy high-luminosity μ + μ - and μ - p colliders is presented. The problem of collecting and cooling high-intensity muon bunches is discussed and ionization cooling is described. High-energy collider scenarios are outlined; muon colliders may become superior to electron colliders in the multi-TeV energy range

  13. The development of colliders

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1997-03-01

    During the period of the 50's and the 60's colliders were developed. Prior to that time there were no colliders, and by 1965 a number of small devices had worked, good understanding had been achieved, and one could speculate, as Gersh Budker did, that in a few years 20% of high energy physics would come from colliders. His estimate was an under-estimate, for now essentially all of high energy physics comes from colliders. The author presents a brief review of that history: sketching the development of the concepts, the experiments, and the technological advances which made it all possible

  14. Top quark electric dipole moment in a minimal supersymmetric standard model extension with vectorlike multiplets

    International Nuclear Information System (INIS)

    Ibrahim, Tarek; Nath, Pran

    2010-01-01

    The electric dipole moment (EDM) of the top quark is calculated in a model with a vector like multiplet which mixes with the third generation in an extension of the minimal supersymmetric standard model. Such mixings allow for new CP violating phases. Including these new CP phases, the EDM of the top in this class of models is computed. The top EDM arises from loops involving the exchange of the W, the Z as well as from the exchange involving the charginos, the neutralinos, the gluino, and the vector like multiplet and their superpartners. The analysis of the EDM of the top is more complicated than for the light quarks because the mass of the external fermion, in this case the top quark mass cannot be ignored relative to the masses inside the loops. A numerical analysis is presented and it is shown that the top EDM could be close to 10 -19 ecm consistent with the current limits on the EDM of the electron, the neutron and on atomic EDMs. A top EDM of size 10 -19 ecm could be accessible in collider experiments such as the International Linear Collider.

  15. Alternative dipole magnets for ISABELLE

    Science.gov (United States)

    Taylor, C.; Althaus, R.; Caspi, S.; Gilbert, W.; Hassenzahl, W. V.; Meuser, R.; Rechen, J.; Warren, R.

    1982-05-01

    A dipole magnet, intended as a possible alternative for the ISABELLE main ring magnet, was designed. Three layers of FNAL Doubler/Saver conductor were used. Two 1.3-m-long models were built and tested, both with and without an iron core, and in both helium I and helium II. The training behavior, cyclic energy loss, point of quench initiation, and quench velocity were determined. A central field of 6.5 tesla was obtained in He I (4.4 K), and 7.6 tesla in He II (1.8K).

  16. Hadron-hadron colliders

    International Nuclear Information System (INIS)

    Month, M.; Weng, W.T.

    1983-01-01

    The objective is to investigate whether existing technology might be extrapolated to provide the conceptual framework for a major hadron-hadron collider facility for high energy physics experimentation for the remainder of this century. One contribution to this large effort is to formalize the methods and mathematical tools necessary. In this report, the main purpose is to introduce the student to basic design procedures. From these follow the fundamental characteristics of the facility: its performance capability, its size, and the nature and operating requirements on the accelerator components, and with this knowledge, we can determine the technology and resources needed to build the new facility

  17. Effect of intermolecular dipole-dipole interactions on interfacial supramolecular structures of C3-symmetric hexa-peri-hexabenzocoronene derivatives.

    Science.gov (United States)

    Mu, Zhongcheng; Shao, Qi; Ye, Jun; Zeng, Zebing; Zhao, Yang; Hng, Huey Hoon; Boey, Freddy Yin Chiang; Wu, Jishan; Chen, Xiaodong

    2011-02-15

    Two-dimensional (2D) supramolecular assemblies of a series of novel C(3)-symmetric hexa-peri-hexabenzocoronene (HBC) derivatives bearing different substituents adsorbed on highly oriented pyrolytic graphite were studied by using scanning tunneling microscopy at a solid-liquid interface. It was found that the intermolecular dipole-dipole interactions play a critical role in controlling the interfacial supramolecular assembly of these C(3)-symmetric HBC derivatives at the solid-liquid interface. The HBC molecule bearing three -CF(3) groups could form 2D honeycomb structures because of antiparallel dipole-dipole interactions, whereas HBC molecules bearing three -CN or -NO(2) groups could form hexagonal superstructures because of a special trimeric arrangement induced by dipole-dipole interactions and weak hydrogen bonding interactions ([C-H···NC-] or [C-H···O(2)N-]). Molecular mechanics and dynamics simulations were performed to reveal the physics behind the 2D structures as well as detailed functional group interactions. This work provides an example of how intermolecular dipole-dipole interactions could enable fine control over the self-assembly of disklike π-conjugated molecules.

  18. Tevatron Collider physics

    International Nuclear Information System (INIS)

    Eichten, E.J.

    1990-02-01

    The physics of hadron colliders is briefly reviewed. Issues for further study are presented. Particular attention is given to the physics opportunities for a high luminosity (≥ 100 pb -1 /experiment/run) Upgrade of the Tevatron Collider. 25 refs., 10 figs., 2 tabs

  19. Stanford's linear collider

    International Nuclear Information System (INIS)

    Southworth, B.

    1985-01-01

    The peak of the construction phase of the Stanford Linear Collider, SLC, to achieve 50 GeV electron-positron collisions has now been passed. The work remains on schedule to attempt colliding beams, initially at comparatively low luminosity, early in 1987. (orig./HSI).

  20. The LHC magnet system and its status of development

    Science.gov (United States)

    Bona, Maurizio; Perin, Romeo; Vlogaert, Jos

    1995-01-01

    CERN is preparing for the construction of a new high energy accelerator/collider, the Large Hadron Collider (LHC). This new facility will mainly consist of two superconducting magnetic beam channels, 27 km long, to be installed in the existing LEP tunnel. The magnetic system comprises about 1200 twin-aperture dipoles, 13.145 m long, with an operational field of 8.65 T, about 600 quadrupoles, 3 m long, and a very large number of other superconducting magnetic components. A general description of the system is given together with the main features of the design of the regular lattice magnets. The paper also describes the present state of the magnet R & D program. Results from short model work, as well as from full scale prototypes will be presented, including the recently tested 10 m long full-scale prototype dipole manufactured in industry.

  1. Correlation of superconductor strand, cable, and dipole critical currents in CBA magnets

    International Nuclear Information System (INIS)

    Tannenbaum, M.J.; Garber, M.; Sampson, W.B.

    1982-01-01

    A calibration between vendor critical current data for 0.0268'' diameter superconductor strand supplied to Fermilab, and the BNL 10 -12 Ωcm critical current specification is presented. Vendor critical current data for over 400 Fermilab type billets are shown, both as supplied by the vendor and converted to BNL units. Predictions of cable critical current are made using the sum of the critical currents of the 23 strands, where all strands from the same half billet are assigned the same critical current. The measured critical current shows excellent correlation to the predicted value and is approximately 14 +- 2 percent below it. Colliding Beam Accelerator (CBA) full length dipoles reach the conductor critical current limit, essentially without training. Magnet performance is predictable from the measured critical current of a short sample of cable to within 2%

  2. Alternate design concept for the SSC dipole magnet cryogenic support post

    International Nuclear Information System (INIS)

    Lipski, A.; Nicol, T.H.; Richardson, R.

    1991-03-01

    New materials and developments in the field of advanced composites have created the opportunity to take a fresh look into the design of the cryogenic supports for SSC collider dipole cryostats. Although the present reentrant post design meets the structural and thermal requirements, its assembly requires precision and proficiency. The objective of the proposed alternate concept is to reduce the overall cost of the support post by means of simplifying and optimizing its component design and assembly process. The present shrink fitted tube assembly may potentially be replaced by injection molded parts. New resin systems with lower thermal conductivity and high strength properties enable the utilization of automated production techniques such as injection molding and filament winding. This paper will provide analysis and design information for the alternate support post concept and compare its test performance and cost to the present support post. 3 refs., 12 figs., 4 tabs

  3. SLAC linear collider

    International Nuclear Information System (INIS)

    Richter, B.; Bell, R.A.; Brown, K.L.

    1980-06-01

    The SLAC LINEAR COLLIDER is designed to achieve an energy of 100 GeV in the electron-positron center-of-mass system by accelerating intense bunches of particles in the SLAC linac and transporting the electron and positron bunches in a special magnet system to a point where they are focused to a radius of about 2 microns and made to collide head on. The rationale for this new type of colliding beam system is discussed, the project is described, some of the novel accelerator physics issues involved are discussed, and some of the critical technical components are described

  4. Dynamics of a nonlinear dipole vortex

    DEFF Research Database (Denmark)

    Hesthaven, J.S.; Lynov, Jens-Peter; Nielsen, A.H.

    1995-01-01

    A localized stationary dipole solution to the Euler equations with a relationship between the vorticity and streamfunction given as omega=-psi+psi(3) is presented. By numerical integration of the Euler equations this dipole is shown to be unstable. However, the initially unstable dipole reorganiz...

  5. Electrostatic-Dipole (ED) Fusion Confinement Studies

    Science.gov (United States)

    Miley, George H.; Shrestha, Prajakti J.; Yang, Yang; Thomas, Robert

    2004-11-01

    The Electrostatic-Dipole (ED) concept significantly differs from a "pure" dipole confinement device [1] in that the charged particles are preferentially confined to the high-pressure region interior of the dipole coil by the assistance of a surrounding spherical electrostatic grid. In present ED experiments, a current carrying coil is embedded inside the grid of an IEC such as to produce a magnetic dipole field. Charged particles are injected axisymmetrically from an ion gun (or duo-plasmatron) into the center of the ED confinement grid/dipole ring where they oscillate along the magnetic field lines and pass the peak field region at the center of the dipole region. As particles begin accelerating away from the center region towards the outer electrostatic grid region, they encounter a strong electrostatic potential (order of 10's of kilovolts) retarding force. The particles then decelerate, reverse direction and re-enter the dipole field region where again magnetic confinement dominates. This process continues, emulating a complex harmonic oscillator motion. The resulting pressure profile averaged over the field curvature offers good plasma stability in the ED configuration. The basic concept and results from preliminary experiments will be described. [1] M.E. Mauel, et al. "Dipole Equilibrium and Stability," 18th IAEA Conference of Plasma Phys. and Control. Nuclear Fusion, Varenna, Italy 2000, IAEA-F1-CN-70/TH

  6. Production of high intensity electron bunches for the SLAC Linear Collider

    International Nuclear Information System (INIS)

    James, M.B.

    1987-08-01

    This thesis describes the design and performance of a high intensity electron injecfor for the SLAC Linear Collider. Motivation for the collider and the specifications for the injector are discussed. An analytic theory of the bunching and capture of electrons by rf fields is discussed in the limit of low space charge and small signal. The design and performance of SLAC's main injector are described to illustrate a successful application of this theory. The bunching and capture of electrons by rf fields are then discussed in the limit of high space charge and large signal, and a description of the design of the collider injector follows. In the limit of high space charge forces and large rf signals, the beam dynamics are considerably more complex and numerical simulations are required to predict particle motion. A computer code which models the longitudinal dynamics of electrons in the presence of space charge and rf fields is described. The results of the simulations, the resulting collider injector design and the various components which make up the collider injector are described. These include the gun, subharmonic bunchers, traveling-wave buncher and velocity-of-light accelerator section. Finally, the performance of the injector is described including the beam intensity, bunch length, transverse emittance and energy spectrum. While the final operating conditions differ somewaht from the design, the performance of the collider injector is in good agreement with the numerical simulations and meets all of the collider specifications. 28 refs

  7. Emittance and trajectory control in the main linacs of the NLC

    International Nuclear Information System (INIS)

    Assmann, R.; Adolphsen, C.; Bane, K.; Raubenheimer, T.O.; Thompson, K.

    1996-09-01

    The main linacs of the next generation of linear colliders need to accelerate the particle beams to energies of up to 750 GeV while maintaining very small emittances. This paper describes the main mechanisms of static emittance growth in the main linacs of the Next Linear Collider (NLC). The authors present detailed simulations of the trajectory and emittance control algorithms that are foreseen for the NLC. They show that the emittance growth in the main linacs can be corrected down to about 110%. That number is significantly better than required for the NLC design luminosity

  8. submitter Some Critical Collective Effects for the FCC-ee Collider

    CERN Document Server

    Belli, Eleonora; Migliorati, Mauro; Persichelli, Serena; Rumolo, Giovanni; Spataro, Bruno; Zobov, Mikhail

    2017-01-01

    In the framework of the Future Circular Collider (FCC) design studies at CERN [1], the high luminosity electron-positron collider FCC-ee is considered as a possible first step towards FCC-hh, a 100 TeV hadron collider in the same tunnel of about 100 km. Table 1 summarizes the main beam parameters at four different center-of-mass energies from 45.6 GeV (Z pole) to 175 GeV (top pair threshold). One of the major issues for such a kind of machine is represented by collective effects due to electromagnetic fields generated by the interaction of the beam with the vacuum chamber, which could produce instabilities, thus limiting the machine operation and performance. An impedance model is needed to study these instabilities, to predict their effects on the beam dynamics and to find a possible solution for their mitigation. Another critical aspect for the future lepton collider is represented by the electron cloud which will be discussed in the last section of this contribution, together with possible strategies to su...

  9. Beam-beam limit in e+e- circular colliders

    International Nuclear Information System (INIS)

    Ohmi, K.; Tawada, M.; Kamada, S.; Oide, K.; Cai, Y.; Qiang, J.

    2004-01-01

    Beam-beam effects limit the luminosity of circular colliders. Once the bunch population exceeds a threshold, the luminosity increases at a slower rate. This phenomenon is called the beam-beam limit. Onset of the beam-beam limit has been analyzed with various simulation methods based on the weak-strong and strong-strong models. We have observed that an incoherent phenomenon is mainly concerned in the beam-beam limit. The simulation have shown that equilibrium distributions of the two colliding beams are distorted from Gaussians when the luminosity is limited. The beam-beam limit is estimated to be ξ∼0.1 for a B factory with damping time of several thousand turns

  10. Muon collider progress

    Energy Technology Data Exchange (ETDEWEB)

    Noble, Robert J. FNAL

    1998-08-01

    Recent progress in the study of muon colliders is presented. An international collaboration consisting of over 100 individuals is involved in calculations and experiments to demonstrate the feasibility of this new type of lepton collider. Theoretical efforts are now concentrated on low-energy colliders in the 100 to 500 GeV center-of-mass energy range. Credible machine designs are emerging for much of a hypothetical complex from proton source to the final collider. Ionization cooling has been the most difficult part of the concept, and more powerful simulation tools are now in place to develop workable schemes. A collaboration proposal for a muon cooling experiment has been presented to the Fermilab Physics Advisory Committee, and a proposal for a targetry and pion collection channel experiment at Brookhaven National Laboratory is in preparation. Initial proton bunching and space-charge compensation experiments at existing hadron facilities have occurred to demonstrate proton driver feasibility.

  11. Heavy-ion performance of the LHC and future colliders

    CERN Document Server

    AUTHOR|(SzGeCERN)696614; Stahl, Achim; Jowett, John M

    2015-10-09

    In 2008 the Large Hadron Collider (LHC) and its experiments started operation at the European Centre of Nuclear Research (CERN) in Geneva with the main aim of finding or excluding the Higgs boson. Only four years later, on the 4th of July 2012, the discovery of a Higgs-like particle was proven and first published by the two main experiments ATLAS and CMS. Even though proton–proton collisions are the main operation mode of the LHC, it also acts as an heavy-ion collider. Here, the term “heavy-ion collisions” refers to the collision between fully stripped nuclei. While the major hardware system of the LHC is compatible with heavy-ion operation, the beam dynamics and performance limits of ion beams are quite different from those of protons. Because of the higher mass and charge of the ions, beam dynamic effects like intra-beam scattering and radiation damping are stronger. Also the electromagnetic cross-sections in the collisions are larger, leading to significantly faster intensity decay and thus shorter l...

  12. Testing of the large bore single aperture 1-meter superconducting dipoles made with phenolic inserts

    CERN Document Server

    Boschmann, H; Dubbeldam, R L; Kirby, G A; Lucas, J; Ostojic, R; Russenschuck, Stephan; Siemko, A; Taylor, T M; Vanenkov, I; Weterings, W

    1998-01-01

    Two identical single aperture 1-metre superconducting dipoles have been built in collaboration with HMA Power Systems and tested at CERN. The 87.8 mm aperture magnets feature a single layer coil wound using LHC main dipole outer layer cable, phenolic spacer type collars, and a keyed two part structural iron yoke. The magnets are designed as models of the D1 separation dipole in the LHC experimental insertions, whose nominal field is 4.5 T at 4.5 K. In this report we present the test results of the two magnets at 4.3 K and 1.9 K.

  13. Dipoles on a Two-leg Ladder

    DEFF Research Database (Denmark)

    Gammelmark, Søren; Zinner, Nikolaj Thomas

    2013-01-01

    We study polar molecules with long-range dipole-dipole interactions confined to move on a two-leg ladder for different orientations of the molecular dipole moments with respect to the ladder. Matrix product states are employed to calculate the many-body ground state of the system as function...... that there is a critical angle at which ordering disappears. This angle is slightly larger than the angle at which the dipoles are non-interacting along a single leg. This behavior should be observable using current experimental techniques....

  14. Preliminary design for a 20 TeV Collider in a deep tunnel at Fermilab

    International Nuclear Information System (INIS)

    1985-01-01

    The Reference Design Study for a 20 TeV Collider demonstrated the technical and cost feasibility of a 20 TeV superconducting collider facility. Based on magnets of 3T, 5T, and 6.5T the Main Ring of the Collider would have a circumference of 164 km, 113 km, or 90 km. There would be six collision regions, of which four would be developed intially. The 5T and 6.5T rings would have twelve major refrigeration stations, while the 3T design would have 24 major refrigeration stations

  15. Induced dipole-dipole coupling between two atoms at a migration resonance

    Science.gov (United States)

    Kaur, Maninder; Mian, Mahmood

    2018-05-01

    Results of numerical simulations for the resonant energy exchange phenomenon called Migration reaction between two cold Rydberg atoms are presented. The effect of spatial interatomic distance on the onset of peculiar coherent mechanism is investigated. Observation of Rabi-like population inversion oscillation at the resonance provides a clear signature of dipole induced exchange of electronic excitations between the atoms. Further we present the results for the dependence of expectation value of the interaction hamiltonian on the interatomic distance, which is responsible for energy exchange process. The results of this observation endorse the range of inter atomic distance within which the excitation exchange process occurs completely or partially. Migration process enhance the Rydberg-Rydberg interaction in the absence of an external field, under the condition of the zero permanent dipole moments. Our next observation sheds light on the fundamental mechanism of induced electric fields initiated by the oscillating dipoles in such energy exchange processes. We explore the dependence of induced electric field on the interatomic distance and angle between the dipoles highlighting the inverse power law dependence and anisotropic property of the field. We put forward an idea to utilise the coherent energy exchange process to build efficient and fast energy transfer channels by incorporating more atoms organised at successive distances with decreasing distance gradient.

  16. Electroweak symmetry breaking and collider signatures in the next-to-minimal composite Higgs model

    Science.gov (United States)

    Niehoff, Christoph; Stangl, Peter; Straub, David M.

    2017-04-01

    We conduct a detailed numerical analysis of the composite pseudo-Nambu-Goldstone Higgs model based on the next-to-minimal coset SO(6)/SO(5) ≅ SU(4)/Sp(4), featuring an additional SM singlet scalar in the spectrum, which we allow to mix with the Higgs boson. We identify regions in parameter space compatible with all current exper-imental constraints, including radiative electroweak symmetry breaking, flavour physics, and direct searches at colliders. We find the additional scalar, with a mass predicted to be below a TeV, to be virtually unconstrained by current LHC data, but potentially in reach of run 2 searches. Promising indirect searches include rare semi-leptonic B decays, CP violation in B s mixing, and the electric dipole moment of the neutron.

  17. Normal-Conducting Separation and Compensation Dipoles for the LHC Experimental Insertions

    CERN Document Server

    Ramberger, S; Cornuet, D; Gérard, D; Gurov, D; Hans, O; Kalbreier, Willi; Kiselev, O; Morozov, I; Ogurtsov, A; Petrov, V; de Rijk, G; Ruvinsky, E; Sukhanov, A; Zhilayev, K

    2006-01-01

    The experimental insertions of the LHC make use of normal-conducting magnets to provide for part of the beam separation and to compensate the effect of two large spectrometer dipoles. Three different types with respect to the length were designed and are based on the same type of lamination. The main type of magnet MBXW has a core length of 3.4 m while the MBXWT and MBXWS magnets are 1.5 m and 0.75 m long versions respectively. The magnet design was done in collaboration between CERN and BINP and the dipole magnets are produced by BINP. So far all three MBXWS magnets, all three MBXWT magnets and fifteen of twenty-nine MBXW magnets have been manufactured and delivered to CERN. The report presents the main design issues and results of the acceptance tests including mechanical, electrical and magnetic field measurements.

  18. Dipole-dipole interactions in a hot atomic vapor and in an ultracold gas of Rydberg atoms

    Science.gov (United States)

    Sautenkov, V. A.; Saakyan, S. A.; Bronin, S. Ya; Klyarfeld, A. B.; Zelener, B. B.; Zelener, B. V.

    2018-01-01

    In our paper ideal and non-ideal gas media of neutral atoms are analyzed. The first we discuss a dipole broadening of atomic transitions in excited dilute and dense metal vapors. Then the theoretical studies of the dipole-dipole interactions in dense ultracold gas of Rydberg atoms are considered. Possible future experiments on a base of our experimental arrangement are suggested.

  19. FEL based photon collider of TeV energy range

    International Nuclear Information System (INIS)

    Saldin, E.L.; Shnejdmiller, E.A.; Sarantsev, V.P.; Yurkov, M.V.

    1994-01-01

    Physical principles of operation of high energy photon linear colliders (PLC) based on the Compton backscattering of laser photons on high energy electrons are discussed. The main emphasis is put on the analysis of a possibility to construct the PLC with the center of mass energy 0.5-2 TeV. Free electron laser (FEL) is considered as a source of primary photons. Proposed FEL system consists of a tunable FEL oscillator (output power ∼ 1 - 10 MW) with subsequent amplification of the master signal in a FEL amplifier up to the power ∼ 3 x 10 11 W. The FEL parameters are optimized, restrictions on the electron beam and FEL magnetic system parameters are formulated and problems of technical realization are discussed. It is shown that the FEL technique provides the most suitable way to construct photon linear collider on the base of future generation linear collider. 22 refs., 10 figs., 2 tabs

  20. Academic Training Lecture: Higgs Boson Searches at Hadron Colliders

    CERN Multimedia

    HR Department

    2010-01-01

    Regular Programme 21, 22, 23 & 24 June 2010 from 11:00 to 12:00 - Main Auditorium, Bldg. 500-1-001 Higgs Boson Searches at Hadron Colliders by Dr. Karl Jakobs (University of Freiburg) In these Academic Training lectures, the phenomenology of Higgs bosons and search strategies at hadron colliders are discussed. After a brief introduction on Higgs bosons in the Standard Model and a discussion of present direct and indirect constraints on its mass the status of the theoretical cross section calculations for Higgs boson production at hadron colliders is reviewed. In the following lectures important experimental issues relevant for Higgs boson searches (trigger, measurements of leptons, jets and missing transverse energy) are presented. This is followed by a detailed discussion of the discovery potential for the Standard Model Higgs boson for both the Tevatron and the LHC experiments. In addition, various scenarios beyond the Standard Model, primarily the MSSM, are considered. Finally, the potential and ...

  1. Magnetisation of magnetite nanoparticles medium with dipol-dipol interaction

    International Nuclear Information System (INIS)

    Ali-zade, R. A.

    2005-01-01

    Full text: Magnetisation expression for magnetite nanoparticles medium with dipo-dipol interaction has been obtained. We suggested, that energy magnetic dipol-dipol interaction of magnetite nanopaticles is determined by: E d-d = - m 2 /4πμ 0 r 3 (cth x -1/x) 2 where x=mH/kT. This expression has been substituted in statistical sum of magnetite nanoparticles medium. Obtained statistical sum consists the production of two statistical sums. The first statistical sum described non-interacting magnetite nanoparticle medium and from this is obtained Langevan equation. Second statistical sum is: Z 2 -∫exp(Σm 2 /4π 0 r 3 (cth x -1/x) 2 ) dΩ 2 . The second statistical sum has been expanded in Taylor's set and taken into consideration first two terms. Integration has been carried out over all volume. In this case take into account that, number twice interactions of magnetite nanoparticles in unit volume is equal to N(N-1)/2 at N>>1 to N 2 /2. We obtain expressions for magnetisation and initial magnetic susceptibility of interacting magnetite nanoparticles medium take into account that Φ=-kT ln Z, M=-dΦ/dH, χ=dM/dH: M=M Sφm (cth x -1/x)+ 1/3 M S 2 φ m 2 (1μ 0 H) ln(VM S /kT).(cth x -1/x)(-xcsch 2 x+1/x) χ 0 =1/3 (m/kT)+ 1/27 M S 2 φ m 2 (1μ 0 )ln(VM S /kT).(m/kT) 2 . Second term in the magnetisation is sufficient at weak and middle magnetic fields. At large magnetic fields, it leads to zero. The second term of magnetisation has maximum at x=1.566. The values of experimental and calculated magnetic field corresponding to magnetisation maximum for magnetite nanoparticles medium (mean diameter of nanoparticle is 9.4 nm) are 1.19 10 4 A/m and 1.25 10 4 A/m respectively. Magnetic dipol-dipol interaction influence to magnetisation of magnetite nanoparticles. Magnetite nanoparticles lined along external magnetic fields line and formatted chains. Magnetisation of medium occurs by the 'parallel' mechanism method magnetisation of chains

  2. Electric dipole polarizability from first principles calculations

    International Nuclear Information System (INIS)

    Miorelli, M.; University of British Columbia, Vancouver, BC; Bacca, S.; University of Manitoba; Barnea, N.

    2016-01-01

    The electric dipole polarizability quantifies the low-energy behavior of the dipole strength and is related to critical observables such as the radii of the proton and neutron distributions. Its computation is challenging because most of the dipole strength lies in the scattering continuum. In our paper we combine integral transforms with the coupled-cluster method and compute the dipole polarizability using bound-state techniques. Furthermore, employing different interactions from chiral effective field theory, we confirm the strong correlation between the dipole polarizability and the charge radius, and study its dependence on three-nucleon forces. Finally, we find good agreement with data for the 4 He, 40 Ca, and 16 O nuclei, and predict the dipole polarizability for the rare nucleus 22 O.

  3. Extended equivalent dipole model for radiated emissions

    OpenAIRE

    Obiekezie, Chijioke S.

    2016-01-01

    This work is on the characterisation of radiated fields from electronic devices. An equivalent dipole approach is used. Previous work showed that this was an effective approach for single layer printed circuit boards where an infinite ground plane can be assumed. In this work, this approach is extended for the characterisation of more complex circuit boards or electronic systems.\\ud For complex electronic radiators with finite ground planes, the main challenge is characterising field diffract...

  4. A sum rule calculation of the neutron electric dipole moment from a quark chromoelectric dipole coupling

    International Nuclear Information System (INIS)

    Kogan, I.I.; Wyler, D.

    1992-01-01

    The neutron electric dipole moment (NEDM) from a quark chromoelectric dipole moment is calculated using a QCD sumrule approach. We demonstrate that leading contributions to the NEDM come from induced condensates (quark and quark-gluon condensate magnetic susceptibilities) which are also determined. Other possible contributions to the NEDM such as a quark electric dipole moment or a triple gluon operator are briefly discussed. (orig.)

  5. Automating dipole subtraction

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, K.; Moch, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Uwer, P. [Karlsruhe Univ. (T.H.) (Germany). Inst. fuer Theoretische Teilchenphysik

    2008-07-15

    We report on automating the Catani-Seymour dipole subtraction which is a general procedure to treat infrared divergences in real emission processes at next-to-leading order in QCD. The automatization rests on three essential steps: the creation of the dipole terms, the calculation of the color linked squared Born matrix elements, and the evaluation of different helicity amplitudes. The routines have been tested for a number of complex processes, such as the real emission process gg{yields}t anti tggg. (orig.)

  6. Automating dipole subtraction

    International Nuclear Information System (INIS)

    Hasegawa, K.; Moch, S.; Uwer, P.

    2008-07-01

    We report on automating the Catani-Seymour dipole subtraction which is a general procedure to treat infrared divergences in real emission processes at next-to-leading order in QCD. The automatization rests on three essential steps: the creation of the dipole terms, the calculation of the color linked squared Born matrix elements, and the evaluation of different helicity amplitudes. The routines have been tested for a number of complex processes, such as the real emission process gg→t anti tggg. (orig.)

  7. Automatic dipole subtraction

    International Nuclear Information System (INIS)

    Hasegawa, K.

    2008-01-01

    The Catani-Seymour dipole subtraction is a general procedure to treat infrared divergences in real emission processes at next-to-leading order in QCD. We automatized the procedure in a computer code. The code is useful especially for the processes with many parton legs. In this talk, we first explain the algorithm of the dipole subtraction and the whole structure of our code. After that we show the results for some processes where the infrared divergences of real emission processes are subtracted. (author)

  8. Quench Protection Studies of the 11-T $Nb_3Sn$ Dipole for LHC Upgrades

    CERN Document Server

    Izquierdo Bermudez, Susana; BAJAS, Hugues; Bajko, Marta; Bordini, Bernardo; Bottura, Luca; Chlachidze, Guram; Karppinen, Mikko; Rysti, Juho; Savary, Frederic; Willering, Gerard; Zlobin, Alexander

    2016-01-01

    The planned upgrade of the LHC collimation system foresees additional collimators to be installed in the dispersion suppressor areas. Fermilab and CERN are developing an 11 T Nb$_{3}$Sn dipole to replace some 8.33 T-15-m-long Nb-Ti LHC main dipoles providing longitudinal space for the collimators. In case of a quench, the large stored energy and the low copper stabilizer fraction make the protection of the 11 T Nb$_{3}$Sn dipoles challenging. This paper presents the results of quench protection analysis, including quench protection heater design and efficiency, quench propagation and coil heating. The numerical results are compared with the experimental data from the 2-m-long Nb$_{3}$Sn dipole models. The validated model is used to predict the current decay and hot spot temperature under operating conditions in the LHC and the presently foreseen magnet protection scheme is discussed.

  9. Design and Fabrication of a Single-Aperture 11T Nb3Sn Dipole Model for LHC Upgrades

    International Nuclear Information System (INIS)

    Andreev, N.; Apollinari, G.; Barzi, E.; Bossert, R.; Nobrega, F.; Novitski, I.; Turrioni, D.; Yamada, R.; Zlobin, A.V.; Auchmann, B.; Karppinen, M.

    2011-01-01

    The planned upgrade of the LHC collimation system includes additional collimators to be installed in the dispersion suppressor areas of points 2, 3 and 7. To provide the necessary longitudinal space for the collimators, a replacement of 8.33 T Nb-Ti LHC main dipoles with 11 T dipoles based on Nb 3 Sn superconductor compatible with the LHC lattice and main systems is being considered. To demonstrate this possibility FNAL and CERN have started a joint program to develop a 2 m long single-aperture dipole magnet with the nominal field of 11 T at ∼11.85 kA current and 60 mm bore. This paper describes the demonstrator magnet magnetic and mechanical designs and analysis, coil fabrication procedure. The Nb 3 Sn strand and cable parameters and test results are also reported.

  10. LHC collars - 12 million high technology gems

    CERN Multimedia

    2001-01-01

    Some 12 million steel collars will keep the LHC dipole magnet structures rigid. Their production has just begun. A huge job began last week: the high speed manufacturing of twelve million steel collars for the 1250 dipole magnets of the future Large Hadron Collider, LHC. The challenge is not only a matter of quantity: these collars are very high technology components because of the important role they play in the way the collider works. One of the main difficulties with the accelerator is that the magnetic field that keeps particles in orbit must have the same configuration and intensity in all the dipoles. But when the 8.33 tesla magnetic field is on -100.000 times the earth magnetic field - it produces a very strong force that can deform the 'soft' parts of the magnets, such as superconducting coils. The force loading one metre of dipole is almost comparable with the weight of a Boeing 747 - about 400 tonnes - so a huge deformation would occur without a mechanical component to keep the whole structure rigid...

  11. An Antiproton Ion Collider (AIC) for Measuring Neutron and Proton Distributions in Stable and Radioactive Nuclei

    International Nuclear Information System (INIS)

    Kienle, Paul

    2005-01-01

    An antiproton-ion collider is proposed to independently determine mean square radii for protons and neutrons in stable and short lived nuclei by means of antiproton absorption at medium energies. The experiment makes use of the electron ion collider complex (ELISE) of the GSI FAIR project with appropriate modifications of the electron ring to store, cool and collide antiprotons of 30 MeV energy with 740A MeV energy ions.The total absorption cross-section of antiprotons by the stored ions will be measured by detecting their loss by means of the Schottky noise spectroscopy method. Cross sections for the absorption on protons and neutrons, respectively, will be studied by detection of residual nuclei with A-1 either by the Schottky method or by analysing them in recoil detectors after the first dipole stage of the NESR following the interaction zone. With a measurement of the A-1 fragment momentum distribution, one can test the momentum wave functions of the annihilated neutron and proton, respectively. Furthermore by changing the incident ion energy the tails of neutron and proton distribution can be measured.The absorption cross section is at asymptotic energies in leading order proportional to the mean square radius of the nucleus. Predicted cross sections and luminosities show that the method is applicable to nuclei with production rates of about 105 s-1 or lower, depending on the lifetime of the ions in the NESR, and for half-lives down to 1 second

  12. Heavy-ion collisions at the dawn of the large hadron collider era

    International Nuclear Information System (INIS)

    Takahashi, J.

    2011-01-01

    In this paper I present a review of the main topics associated with the study of heavy-ion collisions, intended for students starting or interested in the field. It is impossible to summarize in a few pages the large amount of information that is available today, after a decade of operations of the Relativistic Heavy Ion Collider and the beginning of operations at the Large Hadron Collider. Thus, I had to choose some of the results and theories in order to present the main ideas and goals. All results presented here are from publicly available references, but some of the discussions and opinions are my personal view, where I have made that clear in the text (author)

  13. Open midplane designs based on sector coils in superconducting dipoles

    CERN Document Server

    Bruer, J

    2009-01-01

    This paper presents a study of the effects of opening up the midplane in conventional sector coil dipoles, also known as cosè-designs. The open midplane design is a candidate for the higher luminosity upgrade for the LHC, and also for the future beta beam project at CERN, which has the heat deposition mainly concentrated in the midplane of the dipoles. By opening up the midplane, the major part of the spray particles can be avoided, allowing the use of strong superconductive magnets. The aim of this study is to maintain good field quality after a gap in the midplane has been inserted. Short sample field and the electromagnetic force distribution will also be presented for some solutions.

  14. Development of cost-effective Nb3Sn conductors for the next generation hadron colliders

    International Nuclear Information System (INIS)

    Scanlan, R.M.; Dietderich, D.R.; Zeitlin, B.A.

    2001-01-01

    Significant progress has been made in demonstrating that reliable, efficient high field dipole magnets can be made with Nb 3 Sn superconductors. A key factor in determining whether these magnets will be a cost-effective solution for the next generation hadron collider is the conductor cost. Consequently, DOE initiated a conductor development program to demonstrate that Nb 3 Sn can be improved to reach a cost/performance value of $1.50/kA-m at 12T, 4.2K. The first phase of this program was initiated in Jan 2000, with the goal of improving the key properties of interest for accelerator dipole magnets--high critical current density and low magnetization. New world record critical current densities have been reported recently, and it appears that significant potential exists for further improvement. Although new techniques for compensating for magnetization effects have reduced the requirements somewhat, techniques for lowering the effective filament size while maintaining these high Jc values are a program priority. The next phase of this program is focused on reducing the conductor cost through substitution of lower cost raw materials and through process improvements. The cost drivers for materials and fabrication have been identified, and projects are being initiated to demonstrate cost reductions

  15. Collider signatures of flavorful Higgs bosons

    International Nuclear Information System (INIS)

    Altmannshofer, Wolfgang; Eby, Joshua; Gori, Stefania; Lotito, Matteo

    2016-01-01

    Motivated by our limited knowledge of the Higgs couplings to the first two generation fermions, we analyze the collider phenomenology of a class of two Higgs doublet models (2HDMs) with a nonstandard Yukawa sector. One Higgs doublet is mainly responsible for the masses of the weak gauge bosons and the third-generation fermions, while the second Higgs doublet provides mass for the lighter fermion generations. The characteristic collider signatures of this setup differ significantly from well-studied 2HDMs with natural flavor conservation, flavor alignment, or minimal flavor violation. New production mechanisms for the heavy scalar, pseudoscalar, and charged Higgs involving second-generation quarks can become dominant. The most interesting decay modes include H/A → cc,tc,μμ,τμ and H"± → cb,cs,μν. As a result, searches for low-mass dimuon resonances are currently among the best probes of the heavy Higgs bosons in this setup.

  16. Methods for the evaluation of quench temperature profiles and their application for LHC superconducting short dipole magnets

    Science.gov (United States)

    Sanfilippo, S.; Siemko, A.

    2000-08-01

    This paper presents a study of the thermal effects on quench performance for several large Hadron collider (LHC) single aperture short dipole models. The analysis is based on the temperature profile in a superconducting magnet evaluated after a quench. Peak temperatures and temperature gradients in the magnet coil are estimated for different thicknesses of insulation layer between the quench heaters and the coil and different powering and protection parameters. The results show clear correlation between the thermo-mechanical response of the magnet and quench performance. They also display that the optimisation of the position of quench heaters can reduce the decrease of training performance caused by the coexistence of a mechanical weak region and of a local temperature rise.

  17. International workshop on emittance preservation in linear colliders

    International Nuclear Information System (INIS)

    Urakawa, Junji; Oide, Katsunobu

    1993-09-01

    The extremely low emittances, which are the essential feature for any linear collider, are far beyond those of the present high-energy accelerators. Every part of the linear-collider accelerator complex is liable to blow up them to a fatal degree. Above all, the main linac is the most critical part, since it will have an unprecedented length, through which very highly populated bunches should be accelerated without a faint increase of emittances. A lot of efforts have been paid, mainly theoretically, to settle this problem at all institutes. Any convincing conclusions are not yet reached. Furthermore, there are six approaches of substantially different schemes (Tesla, DLC, JLC, NLC, VLEPP, CLIC), each requiring its own way to tackle the problem. In this workshop, many up-to-date R and D results were presented by each institute. Judging from what were discussed, we may well say that the R and D work has advanced to such a level that the different approaches are rather helping each other to reach more concrete results. (J.P.N.)

  18. Position and Momentum Entanglement of Dipole-Dipole Interacting Atoms in Optical Lattices

    Science.gov (United States)

    Opatrný, T.; Kolář, M.; Kurizki, G.

    We consider a possible realization of the position- and momentum-correlated atomic pairs that are confined to adjacent sites of two mutually shifted optical lattices and are entangled via laser-induced dipole-dipole interactions. The Einstein-Podolsky-Rosen (EPR) "paradox" [Einstein 1935] with translational variables is then modified by lattice-diffraction effects. We study a possible mechanism of creating such diatom entangled states by varying the effective mass of the atoms.

  19. Electric dipole moments reconsidered

    International Nuclear Information System (INIS)

    Rupertsberger, H.

    1989-01-01

    The electric dipole moments of elementary particles, atoms, molecules and their connection to the electric susceptibility are discussed for stationary states. Assuming rotational invariance it is emphasized that for such states only in the case of a parity and time reversal violating interaction the considered particles can obtain a nonvanishing expectation value for the electric dipole moment. 1 fig., 13 refs. (Author)

  20. Cryogenic studies for the proposed CERN large hadron electron collider (LHEC)

    Science.gov (United States)

    Haug, F.; LHeC Study Team, The

    2012-06-01

    The LHeC (Large Hadron electron Collider) is a proposed future colliding beam facility for lepton-nucleon scattering particle physics at CERN. A new 60 GeV electron accelerator will be added to the existing 27 km circumference 7 TeV LHC for collisions of electrons with protons and heavy ions. Two basic design options are being pursued. The first is a circular accelerator housed in the existing LHC tunnel which is referred to as the "Ring-Ring" version. Low field normal conducting magnets guide the particle beam while superconducting (SC) RF cavities cooled to 2 K are installed at two opposite locations at the LHC tunnel to accelerate the beams. For this version in addition a 10 GeV re-circulating SC injector will be installed. In total four refrigerators with cooling capacities between 1.2 kW and 3 kW @ 4.5 K are needed. The second option, referred to as the "Linac-Ring" version consists of a race-track re-circulating energyrecovery type machine with two 1 km long straight acceleration sections. The 944 high field 2 K SC cavities dissipate 30 kW at CW operation. Eight 10 kW @ 4.5 K refrigerators are proposed. The particle detector contains a combined SC solenoid and dipole forming the cold mass and an independent liquid argon calorimeter. Cooling is done with two individual small sized cryoplants; a 4.5 K helium, and a 87 K liquid nitrogen plant.

  1. Mighty Murines: Neutrino Physics at very high Energy Muon Colliders

    International Nuclear Information System (INIS)

    King, B.J.

    2000-01-01

    An overview is given of the potential for neutrino physics studies through parasitic use of the intense high energy neutrino beams that would be produced at future many-TeV muon colliders. Neutrino experiments clearly cannot compete with the collider physics. Except at the very highest energy muon colliders, the main thrust of the neutrino physics program would be to improve on the measurements from preceding neutrino experiments at lower energy muon colliders, particularly in the fields of B physics, quark mixing and CP violation. Muon colliders at the 10 TeV energy scale might already produce of order 10 8 B hadrons per year in a favorable and unique enough experimental environment to have some analytical capabilities beyond any of the currently operating or proposed B factories. The most important of the quark mixing measurements at these energies might well be the improved measurements of the important CKM matrix elements |V ub | and |V cb | and, possibly, the first measurements of |V td | in the process of flavor changing neutral current interactions involving a top quark loop. Muon colliders at the highest center-of-mass energies that have been conjectured, 100--1,000 TeV, would produce neutrino beams for neutrino-nucleon interaction experiments with maximum center-of-mass energies from 300--1,000 GeV. Such energies are close to, or beyond, the discovery reach of all colliders before the turn-on of the LHC. In particular, they are comparable to the 314 GeV center-of-mass energy for electron-proton scattering at the currently operating HERA collider and so HERA provides a convenient benchmark for the physics potential. It is shown that these ultimate terrestrial neutrino experiments, should they eventually come to pass, would have several orders of magnitude more luminosity than HERA. This would potentially open up the possibility for high statistics studies of any exotic particles, such as leptoquarks, that might have been previously discovered at these

  2. High-field dipoles for future accelerators

    International Nuclear Information System (INIS)

    Wipf, S.L.

    1984-09-01

    This report presents the concept for building superconducting accelerator dipoles with record high fields. Economic considerations favor the highest possible current density in the windings. Further discussion indicates that there is an optimal range of pinning strength for a superconducting material and that it is not likely for multifilamentary conductors to ever equal the potential performance of tape conductors. A dipole design with a tape-wound, inner high-field winding is suggested. Methods are detailed to avoid degradation caused by flux jumps and to overcome problems with the dipole ends. Concerns for force support structure and field precision are also addressed. An R and D program leading to a prototype 11-T dipole is outlined. Past and future importance of superconductivity to high-energy physics is evident from a short historical survey. Successful dipoles in the 10- to 20-T range will allow interesting options for upgrading present largest accelerators

  3. eγ and γγ colliders

    International Nuclear Information System (INIS)

    Watanabe, Isamu

    1994-01-01

    The results that can be expected by eγ and γγ colliders in future are summarized. eγ and γγ colliders have many fine possibilities, and are the economical selection for utilizing future e + e - colliders more effectively. eγ and γγ colliders were proposed by former USSR researchers at the beginning of 1980s, but recently, the prospect of realizing future e + e - collision type linear accelerator projects has become high, they have become to be considered seriously as the option of remodeling them. The high energy photon beam of eγ and γγ colliders is obtained by causing Compton reverse scattering, irradiating laser beam to the electron beam of e + e - accelerators. The production of γ-beam is explained. As for the physics noteworthy in eγ colliders, abnormal gauge coupling, the formation of Higgs particles, excited leptons, lepto-quark, supersymmetric particles and top quark are explained. As the physics noteworthy in γγ colliders, the formation of Higgs particles which is most interesting in γγ colliders, abnormal gauge coupling, top quark, Yukawa coupling, Higgs pair formation and other particles are enumerated. The linear e + e - accelerators of TeV range including JLC have the performance to be remodeled to eγ and γγ colliders, and the prospect of realizing them has become high. Their possibility of realization is discussed. (K.I.)

  4. Superconducting linear colliders

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The advantages of superconducting radiofrequency (SRF) for particle accelerators have been demonstrated by successful operation of systems in the TRISTAN and LEP electron-positron collider rings respectively at the Japanese KEK Laboratory and at CERN. If performance continues to improve and costs can be lowered, this would open an attractive option for a high luminosity TeV (1000 GeV) linear collider

  5. The development of colliders

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1993-02-01

    Don Kerst, Gersh Budker, and Bruno Touschek were the individuals, and the motivating force, which brought about the development of colliders, while the laboratories at which it happened were Stanford, MURA, the Cambridge Electron Accelerator, Orsay, Frascati, CERN, and Novosibirsk. These laboratories supported, during many years, this rather speculative activity. Of course, many hundreds of physicists contributed to the development of colliders but the men who started it, set it in the right direction, and forcefully made it happen, were Don, Gersh, and Bruno. Don was instrumental in the development of proton-proton colliders, while Bruno and Gersh spearheaded the development of electron-positron colliders. In this brief review of the history, I will sketch the development of the concepts, the experiments, and the technological developments which made possible the development of colliders. It may look as if the emphasis is on theoretical concepts, but that is really not the case, for in this field -- the physics of beams -- the theory and experiment go hand in hand; theoretical understanding and advances are almost always motivated by the need to explain experimental results or the desire to construct better experimental devices

  6. Spool pieces at the SSCL

    International Nuclear Information System (INIS)

    Clayton, T.; Cai, Y.; Smellie, R.; Stampke, S.

    1993-05-01

    The basic features of the Superconducting Super Collider lattice are the two beamlines formed by superconducting dipoles (7736) and quadrupoles (1564). The dipoles constraint two 20 TeV proton beams into counterrotating closed orbits of 86.2 km. The quadrupoles (FODO) require cryogenic cooling the LHe temperatures. This requirement isolates the main magnets from the outside world. The interface required, the spool, is a crucial component of superconducting lattice design and machine operation. There are over 1588 spools in the Super Collider. We present hear SSCL spool designs which consist of (1) housing for superconducting closed orbit and multipole correction magnets, (2) cryogenic function, magnet quench protection, system power, and instrumentation interfaces, and (3) cold to warm transitions for ware magnet and warm instrumentation drift spaces

  7. Electric dipole moments in natural supersymmetry

    Science.gov (United States)

    Nakai, Yuichiro; Reece, Matthew

    2017-08-01

    We discuss electric dipole moments (EDMs) in the framework of CP-violating natural supersymmetry (SUSY). Recent experimental results have significantly tightened constraints on the EDMs of electrons and of mercury, and substantial further progress is expected in the near future. We assess how these results constrain the parameter space of natural SUSY. In addition to our discussion of SUSY, we provide a set of general formulas for two-loop fermion EDMs, which can be applied to a wide range of models of new physics. In the SUSY context, the two-loop effects of stops and charginos respectively constrain the phases of A t μ and M 2 μ to be small in the natural part of parameter space. If the Higgs mass is lifted to 125 GeV by a new tree-level superpotential interaction and soft term with CP-violating phases, significant EDMs can arise from the two-loop effects of W bosons and tops. We compare the bounds arising from EDMs to those from other probes of new physics including colliders, b → sγ, and dark matter searches. Importantly, improvements in reach not only constrain higher masses, but require the phases to be significantly smaller in the natural parameter space at low mass. The required smallness of phases sharpens the CP problem of natural SUSY model building.

  8. Asymmetry of neoclassical transport by dipole electric field

    International Nuclear Information System (INIS)

    Wang Zhongtian; Wang Long

    2004-01-01

    Effects of dipole electric fields on neoclassical transport are studied. Large asymmetry in transport is created. The dipole fields, which are in a negative R-direction, reduce the ion drift, increase electron drift, and change the steps of excursion due to collisions. It is found that different levels of dipole field intensities have different types of transport. For the lowest level of the dipole field, the transport returns to the neoclassical one. For the highest level of the dipole field, the transport is turned to be the turbulence transport similar to the pseudo-classical transport. Experimental data may be corresponded to a large level of the dipole field intensity. (authors)

  9. Electroweak symmetry breaking and collider signatures in the next-to-minimal composite Higgs model

    Energy Technology Data Exchange (ETDEWEB)

    Niehoff, Christoph; Stangl, Peter; Straub, David M. [Excellence Cluster Universe, TUM,Boltzmannstr. 2, 85748 Garching (Germany)

    2017-04-20

    We conduct a detailed numerical analysis of the composite pseudo-Nambu-Goldstone Higgs model based on the next-to-minimal coset SO(6)/SO(5)≅SU(4)/Sp(4), featuring an additional SM singlet scalar in the spectrum, which we allow to mix with the Higgs boson. We identify regions in parameter space compatible with all current experimental constraints, including radiative electroweak symmetry breaking, flavour physics, and direct searches at colliders. We find the additional scalar, with a mass predicted to be below a TeV, to be virtually unconstrained by current LHC data, but potentially in reach of run 2 searches. Promising indirect searches include rare semi-leptonic B decays, C P violation in B{sub s} mixing, and the electric dipole moment of the neutron.

  10. Polarization electric dipole moment in nonaxial nuclei

    International Nuclear Information System (INIS)

    Denisov, V.Yu.; Davidovskaya, O.I.

    1996-01-01

    An expression for the macroscopic polarization electric dipole moment is obtained for nonaxial nuclei whose radii of the proton and neutron surfaces are related by a linear equation. Dipole transitions associated with the polarization electric dipole moment are analyzed for static and dynamical multipole deformations

  11. The influence of Indian Ocean Dipole (IOD) on biogeochemistry of ...

    Indian Academy of Sciences (India)

    Positive SST anomalies (SSTA) were found in the Arabian Sea (0.4 to 1.8 ... Keywords. Indian Ocean Dipole; biogeochemistry; carbon; chlorophyll; Arabian Sea; models. ... mainly control the strength of this source (Sarma ... of the CO2 evasion at the air–water interface (70 ..... tive SSHA due to asymmetric effect of upwelling.

  12. On-chip micromachined dipole antenna with parasitic radiator for mm-wave wireless systems

    KAUST Repository

    Sallam, Mai O.; Serry, Mohamed; Shamim, Atif; Sedky, Sherif; Soliman, Ezzeldin A.

    2016-01-01

    In this paper, we present a micromachined dipole antenna with parasitic radiator. The antenna is designed for operation at 60 GHz. It consists of two Ig/2 dipole radiators fed by coplanar strips waveguide. Two slightly shorter dipoles are placed in proximity to the main radiators. They act as parasitic dipole arms which increase the bandwidth of the antenna. Two versions of the same antenna topology are presented in this paper in which one uses a high resistivity silicon substrate while the other uses a low resistivity one. The proposed antenna was optimized using HFSS and the final design was simulated using both HFSS and CST for verifying the obtained results. Both simulators are in good agreement. They show that the antenna has very good radiation characteristics where its directivity is around 7.5 dBi. The addition of the parasitic arms increased the bandwidth of the antenna from 1.3 GHz (3.62 GHz) to 4.3 GHz (7.44 GHz) when designed on high (low) resistivity silicon substrate.

  13. On-chip micromachined dipole antenna with parasitic radiator for mm-wave wireless systems

    KAUST Repository

    Sallam, Mai O.

    2016-12-19

    In this paper, we present a micromachined dipole antenna with parasitic radiator. The antenna is designed for operation at 60 GHz. It consists of two Ig/2 dipole radiators fed by coplanar strips waveguide. Two slightly shorter dipoles are placed in proximity to the main radiators. They act as parasitic dipole arms which increase the bandwidth of the antenna. Two versions of the same antenna topology are presented in this paper in which one uses a high resistivity silicon substrate while the other uses a low resistivity one. The proposed antenna was optimized using HFSS and the final design was simulated using both HFSS and CST for verifying the obtained results. Both simulators are in good agreement. They show that the antenna has very good radiation characteristics where its directivity is around 7.5 dBi. The addition of the parasitic arms increased the bandwidth of the antenna from 1.3 GHz (3.62 GHz) to 4.3 GHz (7.44 GHz) when designed on high (low) resistivity silicon substrate.

  14. The Röntgen interaction and forces on dipoles in time-modulated optical fields

    Science.gov (United States)

    Sonnleitner, Matthias; Barnett, Stephen M.

    2017-12-01

    The Röntgen term is an often neglected contribution to the interaction between an atom and an electromagnetic field in the electric dipole approximation. In this work we discuss how this interaction term leads to a difference between the kinetic and canonical momentum of an atom which, in turn, leads to surprising radiation forces acting on the atom. We use a number of examples to explore the main features of this interaction, namely forces acting against the expected dipole force or accelerations perpendicular to the beam propagation axis.

  15. The rise of colliding beams

    International Nuclear Information System (INIS)

    Richter, B.

    1992-06-01

    It is a particular pleasure for me to have this opportunity to review for you the rise of colliding beams as the standard technology for high-energy-physics accelerators. My own career in science has been intimately tied up in the transition from the old fixed-target technique to colliding-beam work. I have led a kind of double life both as a machine builder and as an experimenter, taking part in building and using the first of the colliding-beam machines, the Princeton-Stanford Electron-Electron Collider, and building the most recent advance in the technology, the Stanford Linear Collider. The beginning was in 1958, and in the 34 years since there has been a succession of both electron and proton colliders that have increased the available center-of-mass energy for hard collisions by more than a factor of 1000. For the historians here, I regret to say that very little of this story can be found in the conventional literature. Standard operating procedure for the accelerator physics community has been publication in conference proceedings, which can be obtained with some difficulty, but even more of the critical papers are in internal laboratory reports that were circulated informally and that may not even have been preserved. In this presentation I shall review what happened based on my personal experiences and what literature is available. I can speak from considerable experience on the electron colliders, for that is the topic in which I was most intimately involved. On proton colliders my perspective is more than of an observer than of a participant, but I have dug into the literature and have been close to many of the participants

  16. Dedicating Fermilab's Collider

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-01-15

    It was a bold move to have a fullscale dedication ceremony for the new proton-antiproton Collider at the Fermilab Tevatron on 13 October, two days before the first collisions were seen. However the particles dutifully behaved as required, and over the following weekend the Collider delivered its goods at a total energy of 1600 GeV, significantly boosting the world record for laboratory collisions.

  17. A CAMAC-resident microprocessor used for field control of a dipole magnet

    International Nuclear Information System (INIS)

    Sharp, F.J.; Greiner, B.F.

    1990-01-01

    An inexpensive, self-contained microprocessor supporting an on-chip BASIC interpreter has been incorporated into a CAMAC auxiliary-crate controller, with an EEPROM and a terminal port. Used with an ASCII computer terminal, the intelligent auxiliary controller is a self-contained program-development system. One application for the intelligent auxiliary controller is closed-loop control of the analyzing dipoles at the negative-ion injector of the TASCC (tandem accelerator superconducting cyclotron) heavy-ion accelerators. A BASIC program stored in the EEPROM runs on power-up of the controller. The program reads control numbers from a CAMAC mailbox, converts the ASCII character string from a precision Hall-probe teslameter to a digital field reading, and writes a control number to the dipole controller. The program iterates until the dipole reaches the demand field, while updating another CAMAC mailbox with a field readback for the main control system. (orig.)

  18. Towards the International Linear Collider

    International Nuclear Information System (INIS)

    Lopez-Fernandez, Ricardo

    2006-01-01

    The broad physics potential of e+e- linear colliders was recognized by the high energy physics community right after the end of LEP in 2000. In 2007, the Large Hadron Collider (LHC) now under construction at CERN will obtain its first collisions. The LHC, colliding protons with protons at 14 TeV, will discover a standard model Higgs boson over the full potential mass range, and should be sensitive to new physics into the several TeV range. The program for the Linear Collider (LC) will be set in the context of the discoveries made at the LHC. All the proposals for a Linear Collider will extend the discoveries and provide a wealth of measurements that are essential for giving deeper understanding of their meaning, and pointing the way to further evolution of particle physics in the future. For the mexican groups is the right time to join such an effort

  19. Emittance Growth in the NLCTA First Chicane

    International Nuclear Information System (INIS)

    Sun, Yipeng

    2011-01-01

    In this paper, the emittance growth in the NLCTA (Next Linear Collider Test Accelerator) first chicane region is evaluated by simulation studies. It is demonstrated that the higher order fields of the chicane dipole magnet and the dipole corrector magnet (which is attached on the quadrupoles) are the main contributions for the emittance growth, especially for the case with a large initial emittance (γε 0 = 5 (micro)m for instance). These simulation results agree with the experimental observations.

  20. SLAC-Linac-Collider (SLC) Project

    International Nuclear Information System (INIS)

    Wiedemann, H.

    1981-02-01

    The proposed SLAC Linear Collider Project (SLC) and its features are described in this paper. In times of ever increasing costs for energy the electron storage ring principle is about to reach its practical limit. A new class of colliding beam beam facilities, the Linear Colliders, are getting more and more attractive and affordable at very high center-of-mass energies. The SLC is designed to be a poineer of this new class of colliding beam facilities and at the same time will serve as a valuable tool to explore the high energy physics at the level of 100 GeV in the center-of-mass system

  1. For Information: CERN-Fermilab2006 Hadron Collider Physics Summer School

    CERN Multimedia

    2006-01-01

    Applications are Now Open for the CERN-Fermilab2006 Hadron Collider Physics Summer School August 9-18, 2006 Please go to the school web site http://hcpss.fnal.gov/ and follow the links to the Application process. The APPLICATION DEADLINE IS APRIL 8, 2006. Successful applicants and support awards will be announced shortly thereafter. Also available on the web is the tentative academic program of the school. The main goal of the CERN-Fermilab Hadron Collider Physics Summer Schools is to offer students and young researchers a broad picture of both the theoretical and experimental aspects of hadron collider physics. The emphasis of the first school will be on the physics potential of the first years of data taking at the LHC, and on the experimental and theoretical tools needed to exploit that potential. A series of lectures and informal discussions will include an introduction to the theoretical and phenomenological framework of hadron collisions, and current theoretical models of frontier physics, as...

  2. Structure of dipole bands in 106In

    International Nuclear Information System (INIS)

    Deo, A. Y.; Palit, R.; Naik, Z.; Joshi, P. K.; Mazumdar, I.; Sihotra, S.; Mehta, D.; Kumar, S.; Chakrabarti, R.; Kshetri, R.; Jain, H. C.

    2009-01-01

    High spin states in neutron-deficient 106 In were investigated using 78 Se( 32 S,p3n) reaction at 125 MeV. The level scheme is extended up to 7 MeV of excitation energy for the negative parity states constituting four dipole bands, and the positive parity states which mainly exhibit single-particle excitations are extended up to 5 MeV. Projected deformed Hartree-Fock calculations were carried out to understand the configurations of different bands in this nucleus.

  3. Formation of dislocation dipoles in irradiated graphite

    International Nuclear Information System (INIS)

    Niwase, Keisuke

    2005-01-01

    Recently, we have proposed a dislocation dipole accumulation model to explain the irradiation-induced amorphization of graphite. However, the structure of dislocation dipole in the hexagonal networks is still an open question at the atomic-level. In this paper, we propose a possible formation process of the dislocation dipole

  4. Searching for dark matter at colliders

    Energy Technology Data Exchange (ETDEWEB)

    Richard, Francois [IN2P3/CNRS et Universite Paris-Sud 11 Centre Scientifique d' Orsay, Laboratoire de l' Accelerateur Lineaire, Orsay (France); Arcadi, Giorgio; Mambrini, Yann [Universite Paris-Sud, Laboratoire de Physique Theorique, Orsay (France)

    2015-04-01

    Dark Matter (DM) detection prospects at future e{sup +}e{sup -} colliders are reviewed under the assumption that DM particles are fermions of the Majorana or Dirac type. Although the discussion is quite general, one will keep in mind the recently proposed candidate based on an excess of energetic photons observed in the center of our Galaxy with the Fermi-LAT satellite. In the first part we will assume that DM interactions are mediated by vector bosons, Z or Z'. In the case of Z-boson Direct Detection limits force only axial couplings with the DM. This solution can be naturally accommodated by Majorana DM but is disfavored by the GC excess. Viable scenarios can be instead found in the case of Z' mediator. These scenarios can be tested at e{sup +}e{sup -} colliders through ISR events, e{sup +}e{sup -} → XX + γ. A sensitive background reduction can be achieved by using highly polarized beams. In the second part scalar particles, in particular Higgs particles, have been considered as mediators. The case of the SM Higgs mediator is excluded by limits on the invisible branching ratio of the Higgs. On the contrary particularly interesting is the case in which the DM interactions are mediated by the pseudoscalar state A in two Higgs-doublet model scenarios. In this last case the main collider signature is e{sup +}e{sup -} → HA, H → hh, A → XX. (orig.)

  5. Searching for dark matter at colliders

    International Nuclear Information System (INIS)

    Richard, Francois; Arcadi, Giorgio; Mambrini, Yann

    2015-01-01

    Dark Matter (DM) detection prospects at future e + e - colliders are reviewed under the assumption that DM particles are fermions of the Majorana or Dirac type. Although the discussion is quite general, one will keep in mind the recently proposed candidate based on an excess of energetic photons observed in the center of our Galaxy with the Fermi-LAT satellite. In the first part we will assume that DM interactions are mediated by vector bosons, Z or Z'. In the case of Z-boson Direct Detection limits force only axial couplings with the DM. This solution can be naturally accommodated by Majorana DM but is disfavored by the GC excess. Viable scenarios can be instead found in the case of Z' mediator. These scenarios can be tested at e + e - colliders through ISR events, e + e - → XX + γ. A sensitive background reduction can be achieved by using highly polarized beams. In the second part scalar particles, in particular Higgs particles, have been considered as mediators. The case of the SM Higgs mediator is excluded by limits on the invisible branching ratio of the Higgs. On the contrary particularly interesting is the case in which the DM interactions are mediated by the pseudoscalar state A in two Higgs-doublet model scenarios. In this last case the main collider signature is e + e - → HA, H → hh, A → XX. (orig.)

  6. CERN balances linear collider studies

    CERN Multimedia

    ILC Newsline

    2011-01-01

    The forces behind the two most mature proposals for a next-generation collider, the International Linear Collider (ILC) and the Compact Linear Collider (CLIC) study, have been steadily coming together, with scientists from both communities sharing ideas and information across the technology divide. In a support of cooperation between the two, CERN in Switzerland, where most CLIC research takes place, recently converted the project-specific position of CLIC Study Leader to the concept-based Linear Collider Study Leader.   The scientist who now holds this position, Steinar Stapnes, is charged with making the linear collider a viable option for CERN’s future, one that could include either CLIC or the ILC. The transition to more involve the ILC must be gradual, he said, and the redefinition of his post is a good start. Though not very much involved with superconducting radiofrequency (SRF) technology, where ILC researchers have made significant advances, CERN participates in many aspect...

  7. Backfire antennas with dipole elements

    DEFF Research Database (Denmark)

    Nielsen, Erik Dragø; Pontoppidan, Knud

    1970-01-01

    A method is set up for a theoretical investigation of arbitrary backfire antennas based upon dipole structures. The mutual impedance between the dipole elements of the antenna is taken into account, and the field radiated due to a surface wave reflector of finite extent is determined by calculating...

  8. Muon colliders and neutrino factories

    Energy Technology Data Exchange (ETDEWEB)

    Geer, S.; /Fermilab

    2010-09-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture and accelerate {Omicron}(10{sup 21}) muons/year. This development prepares the way for a new type of neutrino source (Neutrino Factory) and a new type of very high energy lepton-antilepton collider (Muon Collider). This article reviews the motivation, design and R&D for Neutrino Factories and Muon Colliders.

  9. Tevatron energy and luminosity upgrades beyond the Main Injector

    International Nuclear Information System (INIS)

    Amidei, D.; Kamon, T.; Lopez, J.; McIntyre, P.; White, J.

    1994-08-01

    The Fermilab Tevatron will be the world's highest energy hadron collider until the LHC is commissioned, it has the world's highest energy fixed target beams, and Fermilab will be the leading high energy physics laboratory in the US for the foreseeable future. Following the demise of the SSC, a number of possible upgrades to the Tevatron complex, beyond construction of the Main Injector, are being discussed. Using existing technology, it appears possible to increase the luminosity of the bar pp Collider to at least 10 33 cm -2 sec -1 (Tevatron-Star) and to increase the beam energy to 2 TeV (DiTevatron). Fixed target beam of energy about 1.5 TeV could also be delivered. Leaving the existing Tevatron in the tunnel and constructing bypasses around the collider halls would allow simultaneous 800 GeV fixed target and √s = 4 TeV collider operation. These upgrades would give Fermilab an exciting physics program which would be complementary to the LHC, and they would lay the groundwork for the construction of a possible post-LHC ultra-high energy hadron collider

  10. Discussion of parameters, lattices and beam stability for a 200-TeV low-field collider

    International Nuclear Information System (INIS)

    Neuffer, D.

    1996-03-01

    Recently, it has been suggested that improved technology and reduced costs in remotely-drilled small-diameter tunnels, coupled with improvements in robotic technology, may make the original concept of the ''desertron'' more realistic and affordable. In this concept, a long, small-diameter tunnel is drilled (<∼1m diameter ''sewer'' pipe) and filled with long, low-cost magnets, which are installed and serviced robotically. To obtain high-energy then requires low cost magnets, which are iron-dominated ''superferric'' magnets (B∼2 T). A large circumference is then required (∼1000 km for ∼100 TeV/beam). Table 1 shows parameters for a 200 TeV proton-proton collider, based on the premise of a large low-cost ring with super-ferric magnets. While outline designs for a low-cost ∼2T dipole have been initiated, an accelerator requires beam stability, which means quadrupole fields for focusing, as well as sextupoles for chromatic correction, and further design tolerances and correctors to obtain sufficiently linear fields. Previously we have developed initial lattices and dynamic motion discussions for the earlier 40 TeV incarnation of the superferric supercollider. In this note we apply those results to initiate discussions of the dynamic requirements of this 200 TeV collider

  11. The future e+e- colliders

    International Nuclear Information System (INIS)

    Voss, G.A.

    1990-01-01

    At present, the highest energy e + e - colliders are the SLC and LEP. In this paper their future improvement programs for increasing luminosity and/or energy, and the use of longitudinally polarized beams at the interaction point (IP) are discussed. An e + e - collider in the SSC tunnel does not seem to be an attractive option, on both technical and economical grounds, and with LEP, circular colliders have reached the sensible limit of size and cost. Linear colliders which have, in principle, no high energy limit, must overcome a new set of technical problems having to do with beam power limitations, emittance control, superstrong focusing at the IP, strong bunch-bunch interactions at the IP and related backgrounds

  12. Confinement improvement with magnetic levitation of a superconducting dipole

    International Nuclear Information System (INIS)

    Garnier, D.T.; Mauel, M.E.; Boxer, A.C.; Ellsworth, J.L.; Kesner, J.

    2009-01-01

    We report the first production of high beta plasma confined in a fully levitated laboratory dipole using neutral gas fuelling and electron cyclotron resonance heating. As compared with previous studies in which the internal coil was supported, levitation results in improved confinement that allows higher-density, higher-beta discharges to be maintained at significantly reduced gas fuelling. Contrary to previous supported dipole plasma results which had the stored energy consisting in a hot electron population, a significant plasma stored energy is shown to reside in the bulk plasma. By eliminating supports used in previous studies, cross-field transport becomes the main loss channel for both the hot and the background species. This leads to a significant improvement in bulk plasma confinement and a dramatic peaking of the density profile. Improved particle confinement assures stability of the hot electron component at reduced neutral pressure.

  13. Linear collider: a preview

    Energy Technology Data Exchange (ETDEWEB)

    Wiedemann, H.

    1981-11-01

    Since no linear colliders have been built yet it is difficult to know at what energy the linear cost scaling of linear colliders drops below the quadratic scaling of storage rings. There is, however, no doubt that a linear collider facility for a center of mass energy above say 500 GeV is significantly cheaper than an equivalent storage ring. In order to make the linear collider principle feasible at very high energies a number of problems have to be solved. There are two kinds of problems: one which is related to the feasibility of the principle and the other kind of problems is associated with minimizing the cost of constructing and operating such a facility. This lecture series describes the problems and possible solutions. Since the real test of a principle requires the construction of a prototype I will in the last chapter describe the SLC project at the Stanford Linear Accelerator Center.

  14. Linear collider: a preview

    International Nuclear Information System (INIS)

    Wiedemann, H.

    1981-11-01

    Since no linear colliders have been built yet it is difficult to know at what energy the linear cost scaling of linear colliders drops below the quadratic scaling of storage rings. There is, however, no doubt that a linear collider facility for a center of mass energy above say 500 GeV is significantly cheaper than an equivalent storage ring. In order to make the linear collider principle feasible at very high energies a number of problems have to be solved. There are two kinds of problems: one which is related to the feasibility of the principle and the other kind of problems is associated with minimizing the cost of constructing and operating such a facility. This lecture series describes the problems and possible solutions. Since the real test of a principle requires the construction of a prototype I will in the last chapter describe the SLC project at the Stanford Linear Accelerator Center

  15. Proposal for Translational Entanglement of Dipole-Dipole Interacting Atoms in Optical Lattices

    Science.gov (United States)

    Opatrný, Tomáš; Deb, Bimalendu; Kurizki, Gershon

    2003-06-01

    We propose and investigate a realization of the position- and momentum-correlated Einstein-Podolsky-Rosen (EPR) states [Phys. Rev. 47, 777 (1935)] that have hitherto eluded detection. The realization involves atom pairs that are confined to adjacent sites of two mutually shifted optical lattices and are entangled via laser-induced dipole-dipole interactions. The EPR “paradox” with translational variables is then modified by lattice-diffraction effects and can be verified to a high degree of accuracy in this scheme.

  16. High gradient experiment by accelerator test facility for Japan Linear Collider

    International Nuclear Information System (INIS)

    Takeda, Seishi; Akemoto, Mitsuo; Hayano, Hitoshi; Naito, Takashi; Matsumoto, Hiroshi

    1991-01-01

    For the e + e - linear colliders in TeV energy region such as the Japan Linear Collider (JLC), the accelerating gradient will be one of the important parameters affecting the over all design of main linacs. The gradient determines the accelerating structures, RF frequencies, peak power, AC power, total length and cost. High gradient experiment by using a traveling wave structure in S-band frequencies is presented. Discussions are given about the dependence of dark current and structure length. As one of the parameters indicating the quality of the structure, the multiplication factor η has been proposed

  17. Electric dipole moment of diatomic molecules

    International Nuclear Information System (INIS)

    Rosato, A.

    1983-01-01

    The electric dipole moment of some diatomic molecules is calculated using the Variational Cellular Method. The results obtained for the CO, HB, HF and LiH molecules are compared with other calculations and with experimental data. It is shown that there is strong dependence of the electric dipole moment with respect to the geometry of the cells. The possibility of fixing the geometry of the problem by giving the experimental value of the dipole moment is discussed. (Author) [pt

  18. Muon muon collider: Feasibility study

    International Nuclear Information System (INIS)

    1996-01-01

    A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10 35 cm -2 s -1 . The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice--the authors believe--to allow them to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potential and to evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring which has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design

  19. Dipole plasma in molecular crystals

    International Nuclear Information System (INIS)

    Kotel'nikov, Yu.E.; Kochelaev, B.I.

    1976-01-01

    Collective oscillations in a system of electric dipoles of molecular crystals are investigated. It has been proved in the exciton approximation that in an elementary cell of a molecular crystal with one molecule there may exist energy fluctuations of the ''dipole'' plasma, analogous to plasma oscillations in the charged Fermi liquid

  20. Droplet-model electric dipole moments

    International Nuclear Information System (INIS)

    Myers, W.D.; Swiatecki, W.J.

    1991-01-01

    Denisov's recent criticism of the droplet-model formula for the dipole moment of a deformed nucleus as derived by Dorso et al., it shown to be invalid. This helps to clarify the relation of theory to the measured dipole moments, as discussed in the review article by Aberg et al. (orig.)

  1. Zeroth-order design report for the next linear collider. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Raubenheimer, T.O. [ed.

    1996-05-01

    This Zeroth Order Design Report (ZDR) for the Next Linear Collider (NLC) has been completed as a feasibility study for a TeV-scale linear collider that incorporates a room-temperature accelerator powered by rf microwaves at 11.424 GHz--similar to that presently used in the SLC, but at four times the rf frequency. The purpose of this study is to examine the complete systems of such a collider, to understand how the parts fit together, and to make certain that every required piece has been included. The design presented here is not fully engineered in any sense, but to be assured that the NLC can be built, attention has been given to a number of critical components and issues that present special challenges. More engineering and development of a number of mechanical and electrical systems remain to be done, but the conclusion of this study is that indeed the NLC is technically feasible and can be expected to reach the performance levels required to perform research at the TeV energy scale. Volume one covers the following: the introduction; electron source; positron source; NLC damping rings; bunch compressors and prelinac; low-frequency linacs and compressors; main linacs; design and dynamics; and RF systems for main linacs.

  2. Zeroth-order design report for the next linear collider. Volume 1

    International Nuclear Information System (INIS)

    Raubenheimer, T.O.

    1996-05-01

    This Zeroth Order Design Report (ZDR) for the Next Linear Collider (NLC) has been completed as a feasibility study for a TeV-scale linear collider that incorporates a room-temperature accelerator powered by rf microwaves at 11.424 GHz--similar to that presently used in the SLC, but at four times the rf frequency. The purpose of this study is to examine the complete systems of such a collider, to understand how the parts fit together, and to make certain that every required piece has been included. The design presented here is not fully engineered in any sense, but to be assured that the NLC can be built, attention has been given to a number of critical components and issues that present special challenges. More engineering and development of a number of mechanical and electrical systems remain to be done, but the conclusion of this study is that indeed the NLC is technically feasible and can be expected to reach the performance levels required to perform research at the TeV energy scale. Volume one covers the following: the introduction; electron source; positron source; NLC damping rings; bunch compressors and prelinac; low-frequency linacs and compressors; main linacs; design and dynamics; and RF systems for main linacs

  3. Heavy leptons at hadron colliders

    International Nuclear Information System (INIS)

    Ohnemus, J.E.

    1987-01-01

    The recent advent of high energy hadron colliders capable of producing weak bosons has opened new vistas for particle physics research, including the search for a possible fourth generation heavy charged lepton, which is the primary topic of the thesis. Signals for identifying a new heavy lepton have been calculated and compared to Standard Model backgrounds. Results are presented for signals at the CERN collider, the Fermilab collider, and the proposed Superconducting Supercollider

  4. Comparison of electric dipole and magnetic dipole models for electromagnetic pulse generated by nuclear detonation in space

    International Nuclear Information System (INIS)

    Zhu Meng; Zhou Hui; Cheng Yinhui; Li Baozhong; Wu Wei; Li Jinxi; Ma Liang; Zhao Mo

    2013-01-01

    Electromagnetic pulse can be generated by the nuclear detonation in space via two radiation mechanisms. The electric dipole and magnetic dipole models were analyzed. The electric radiation in the far field generated by two models was calculated as well. Investigations show that in the case of one hundred TNT yield detonations, when electrons are emitted according to the Gaussian shape, two radiation models can give rise to the electric field in great distances with amplitudes of kV/m and tens of V/m, independently. Because the geomagnetic field in space is not strong and the electrons' angular motion is much weaker than the motion in the original direction, radiations from the magnetic dipole model are much weaker than those from the electric dipole model. (authors)

  5. Computing and data handling requirements for SSC [Superconducting Super Collider] and LHC [Large Hadron Collider] experiments

    International Nuclear Information System (INIS)

    Lankford, A.J.

    1990-05-01

    A number of issues for computing and data handling in the online in environment at future high-luminosity, high-energy colliders, such as the Superconducting Super Collider (SSC) and Large Hadron Collider (LHC), are outlined. Requirements for trigger processing, data acquisition, and online processing are discussed. Some aspects of possible solutions are sketched. 6 refs., 3 figs

  6. On the preference of cold RF technology for the international linear collider

    Energy Technology Data Exchange (ETDEWEB)

    Gamp, A.

    2005-07-01

    On August 20th 2004 the International Technology Recommendation Panel (ITRP) released its recommendation that the Linear Collider be based on Superconducting RF Technology. Following a request of the organizers of this conference we summarise in this article the arguments worked out and presented by the ITRP, which led to this recommendation. The main features of both RF-technologies, the favoured L-band RF system of the superconducting version of the Linear Collider and the X-band-technology anticipated for the normal-conducting alternative are briefly described. (orig.)

  7. Photoproduction at collider energies: from RHIC and HERA to the LHC

    CERN Document Server

    Baltz, A; Brodsky, S J; D'Enterria, D G; Dreyer, U; Engel, R; Frankfurt, L; Gorbunov, Y; Guzey, V; Hamilton, A; Klasen, M; Klein, S R; Kowalski, H; Levonian, S; Lourenço, C; Machado, M V T; Nachtmann, O; Nagy, Z; Nystrand, J; Piotrzkowski, K; Ramalhete, P; Savin, A; Scapparone, E; Schicker, R; Silvermyr, D; Strikman, M I; Valkárová, A; Vogt, R; Yilmaz, M; Enterria, David d'

    2007-01-01

    We present the mini-proceedings of the workshop on "Photoproduction at collider energies: from RHIC and HERA to the LHC" held at the European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*, Trento) from January 15 to 19, 2007. The workshop gathered both theorists and experimentalists to discuss the current status of investigations of high-energy photon-induced processes at different colliders (HERA, RHIC, and Tevatron) as well as preparations for extension of these studies at the LHC. The main physics topics covered were: (i) small-$x$ QCD in photoproduction studies with protons and in electromagnetic (aka. ultraperipheral) nucleus-nucleus collisions, (ii) hard diffraction physics at hadron colliders, and (iii) photon-photon collisions at very high energies: electroweak and beyond the Standard Model processes. These mini-proceedings consist of an introduction and short summaries of the talks presented at the meeting.

  8. Neutron Electric Dipole Moment Experiments

    OpenAIRE

    Peng, Jen-Chieh

    2008-01-01

    The neutron electric dipole moment (EDM) provides unique information on CP violation and physics beyond the Standard Model. We first review the history of experimental searches for neutron electric dipole moment. The status of future neutron EDM experiments, including experiments using ultra-cold neutrons produced in superfluid helium, will then be presented.

  9. COLLIDE Pro Helvetia Award

    CERN Multimedia

    2016-01-01

    The COLLIDE Pro Helvetia Award is run in partnership with Pro Helvetia, giving the opportunity to Swiss artists to do research at CERN for three months.   From left to right: Laura Perrenoud, Marc Dubois and Simon de Diesbach. The photo shows their VR Project, +2199. Fragment.In are the winning artists of COLLIDE Pro Helvetia. They came to CERN for two months in 2015, and will now continue their last month in the laboratory. Fragment.In is a Swiss based interaction design studio. They create innovative projects, interactive installations, video and game design. Read more about COLLIDE here.

  10. Higgs-photon associated production at hadron colliders

    International Nuclear Information System (INIS)

    Abbasabadi, A.; Repko, W.W.

    1997-01-01

    The authors present cross sections for the reactions p anti p → Hγ and pp → Hγ arising from the subprocess q anti q → Hγ. The calculation includes the complete one-loop contribution from all light quarks and is the main source of Higgs-photon associated production in hadron colliders. At Tevatron energies, the cross section is typically 0.1 fb or less, while at LHC energies it can exceed 1.0fb

  11. Electric dipole moment of diatomic molecules

    International Nuclear Information System (INIS)

    Rosato, A.

    1983-01-01

    The electric dipole moment of some diatomic molecules is calculated using the Variational Cellular Method. The results obtained for the molecules CO, HB, HF and LiH are compared with other calculations and with experimental data. It is shown that there is strong dependence of the electric dipole moment with respect to the geometry of the cells. It is discussed the possibility of fixing the geometry of the problem by giving the experimental value of the dipole moment. (Author) [pt

  12. Final Focus Systems in Linear Colliders

    International Nuclear Information System (INIS)

    Raubenheimer, Tor

    1998-01-01

    In colliding beam facilities, the ''final focus system'' must demagnify the beams to attain the very small spot sizes required at the interaction points. The first final focus system with local chromatic correction was developed for the Stanford Linear Collider where very large demagnifications were desired. This same conceptual design has been adopted by all the future linear collider designs as well as the SuperConducting Supercollider, the Stanford and KEK B-Factories, and the proposed Muon Collider. In this paper, the over-all layout, physics constraints, and optimization techniques relevant to the design of final focus systems for high-energy electron-positron linear colliders are reviewed. Finally, advanced concepts to avoid some of the limitations of these systems are discussed

  13. 6D “Garren” snake cooler and ring cooler for µ{sup ±} cooling of a muon collider

    Energy Technology Data Exchange (ETDEWEB)

    Ding, X., E-mail: xding@bnl.gov [UCLA, Los Angeles, CA 90095 (United States); Berg, J.S. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Cline, D. [UCLA, Los Angeles, CA 90095 (United States); Garren, Al [Particle Beam Lasers, Inc., Northridge, CA 91324 (United States); Kirk, H.G. [Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2014-12-21

    Six dimensional cooling of large emittance µ{sup +} and µ{sup −} beams is required in order to obtain the desired luminosity for a muon collider. In our previous study, we demonstrated that a 6D “Garren” ring cooler using both dipoles and solenoids in four 90{sup 0} achromatic arcs can give substantial cooling in all six phase space dimensions. In this paper, we describe the injection/extraction requirements of this four-sided ring. We also present the performance of an achromat-based 6D “Garren” snake cooler. The achromatic design permits the design to easily switch between a closed ring and a snaking geometry on injection or extraction from the ring.

  14. Injection of electrons by colliding laser pulses in a laser wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, M., E-mail: martin.hansson@fysik.lth.se; Aurand, B.; Ekerfelt, H.; Persson, A.; Lundh, O.

    2016-09-01

    To improve the stability and reproducibility of laser wakefield accelerators and to allow for future applications, controlling the injection of electrons is of great importance. This allows us to control the amount of charge in the beams of accelerated electrons and final energy of the electrons. Results are presented from a recent experiment on controlled injection using the scheme of colliding pulses and performed using the Lund multi-terawatt laser. Each laser pulse is split into two parts close to the interaction point. The main pulse is focused on a 2 mm diameter gas jet to drive a nonlinear plasma wave below threshold for self-trapping. The second pulse, containing only a fraction of the total laser energy, is focused to collide with the main pulse in the gas jet under an angle of 150°. Beams of accelerated electrons with low divergence and small energy spread are produced using this set-up. Control over the amount of accelerated charge is achieved by rotating the plane of polarization of the second pulse in relation to the main pulse. Furthermore, the peak energy of the electrons in the beams is controlled by moving the collision point along the optical axis of the main pulse, and thereby changing the acceleration length in the plasma. - Highlights: • Compact colliding pulse injection set-up used to produce low energy spread e-beams. • Beam charge controlled by rotating the polarization of injection pulse. • Peak energy controlled by point of collision to vary the acceleration length.

  15. Cancellation mechanism in the predictions of electric dipole moments

    Science.gov (United States)

    Bian, Ligong; Chen, Ning

    2017-06-01

    The interpretation of the baryon asymmetry of the Universe necessitates the C P violation beyond the Standard Model (SM). We present a general cancellation mechanism in the theoretical predictions of the electron electric dipole moments (EDM), quark chromo-EDMs, and Weinberg operators. A relative large C P violation in the Higgs sector is allowed by the current electron EDM constraint released by the ACME collaboration in 2013, and the recent 199Hg EDM experiment. The cancellation mechanism can be induced by the mass splitting of heavy Higgs bosons around ˜O (0.1 - 1 ) GeV , and the extent of the mass degeneracy determines the magnitude of the C P -violating phase. We explicate this point by investigating the C P -violating two-Higgs-doublet model and the minimal supersymmetric Standard Model. The cancellation mechanism is general when there are C P violation and mixing in the Higgs sector of new physics models. The C P -violating phases in this scenario can be excluded or detected by the projected 225Ra EDM experiments with precision reaching ˜10-28 e .cm , as well as the future colliders.

  16. Dual Aharonov-Casher effect and persistent dipole current

    International Nuclear Information System (INIS)

    Yi, J.; Jeon, G.S.; Choi, M.Y.

    1995-01-01

    An electric dipole moving in a magnetic field acquires a nontrivial quantum phase in the appropriate configuration. It is shown that this phase is manifested by the persistent dipole current induced on a ring pierced by a line of magnetic monopoles. Such a current depends on the statistics of the dipoles, which may have interesting implications for experiments. It is also pointed out that the dipole current cannot be self-sustained

  17. Particle electric dipole moments

    CERN Document Server

    Pendlebury, J M

    2000-01-01

    Measurements of particle electric dipole moments (EDMs) continue to put powerful constraints on theories of T-symmetry and CP-symmetry violation, which form currently one of the most prominent fields in particle physics. EDM measurements have been concentrated on neutral systems such as the neutron and atoms and molecules. These measurements allow one to deduce, in turn, the electric dipole moments of the fundamental fermions, that is, the lighter leptons and quarks and also those of some heavy nuclei.

  18. SLAC linear collider and a few ideas on future linear colliders

    International Nuclear Information System (INIS)

    Loew, G.A.

    1984-04-01

    This paper comes in two parts. The first part is a progress report on the SLAC Linear Collider (SLC) with emphasis on those systems which are of special interest to linear accelerator designers; it sets the stage for a number of contributed papers on specific topics which are also presented at this conference. The second part presents some ideas which are of interest to the design of future linear colliders of higher energies

  19. Beauty physics at e+ e- colliders

    International Nuclear Information System (INIS)

    Wormser, G.

    1989-09-01

    Beauty physics to be performed in the next decade at the resonances Y(4S) and Z 0 are compared. Large similarities are found in the physics program and the reconstruction techniques of Z 0 and asymmetric Y(4S) colliders. The physics potential of the latter is found to be superior at equal luminosity to a symmetric machine, provided a large enough boost (≥ 5). Z 0 machines will probably be the main source of the rich B S 0 physics during that period

  20. Visualizing dipole radiation

    International Nuclear Information System (INIS)

    Girwidz, Raimund V

    2016-01-01

    The Hertzian dipole is fundamental to the understanding of dipole radiation. It provides basic insights into the genesis of electromagnetic waves and lays the groundwork for an understanding of half-wave antennae and other types. Equations for the electric and magnetic fields of such a dipole can be derived mathematically. However these are very abstract descriptions. Interpreting these equations and understanding travelling electromagnetic waves are highly limited in that sense. Visualizations can be a valuable supplement that vividly present properties of electromagnetic fields and their propagation. The computer simulation presented below provides additional instructive illustrations for university lectures on electrodynamics, broadening the experience well beyond what is possible with abstract equations. This paper refers to a multimedia program for PCs, tablets and smartphones, and introduces and discusses several animated illustrations. Special features of multiple representations and combined illustrations will be used to provide insight into spatial and temporal characteristics of field distributions—which also draw attention to the flow of energy. These visualizations offer additional information, including the relationships between different representations that promote deeper understanding. Finally, some aspects are also illustrated that often remain unclear in lectures. (paper)