ESF collection effectiveness, a study in fine particle dynamics
International Nuclear Information System (INIS)
Winegardner, W.K.; Owczarski, P.C.
1985-04-01
The characterization and dynamic behavior of fine particles are the main subjects of an ongoing investigation of the particle collection effectiveness of the engineered safety feature (ESF) systems in nuclear power plants. This investigation is part of a larger study of the release of radionuclides to the environment from such plants during postulated accidents that are severe but extremely unlikely. The ESF systems are installed to prevent the occurrence of severe accidents or mitigate their consequences. Several of these engineered systems can serve as particle collection devices. This report focuses on the analytical models that were developed to predict particle behavior in two systems that were not specifically designed for particle retention: the ice compartments of ice condenser containment systems in Pressurized Water Reactors (PWRs) and the suppression pools of Boiling Water Reactors (BWRs). The following section summarizes the topics considered in the development of models and computer codes for estimating the particle retention effectiveness of these two ESF systems. After the summary this paper describes the two ESF systems in more detail and discusses the behavior of particles in both situations
Collective dynamics of particles from viscous to turbulent flows
2017-01-01
The book surveys the state-of-the-art methods that are currently available to model and simulate the presence of rigid particles in a fluid flow. For particles that are very small relative to the characteristic flow scales and move without interaction with other particles, effective equations of motion for particle tracking are formulated and applied (e.g. in gas-solid flows). For larger particles, for particles in liquid-solid flows and for particles that interact with each other or possibly modify the overall flow detailed model are presented. Special attention is given to the description of the approximate force coupling method (FCM) as a more general treatment for small particles, and derivations in the context of low Reynolds numbers for the particle motion as well as application at finite Reynolds numbers are provided. Other topics discussed in the book are the relation to higher resolution immersed boundary methods, possible extensions to non-spherical particles and examples of applications of such met...
Maity, Srimanta; Das, Amita; Kumar, Sandeep; Tiwari, Sanat Kumar
2018-04-01
The collective response of the plasma medium is well known and has been explored extensively in the context of dusty plasma medium. On the other hand, the individual particle response associated with the collisional character giving rise to the dissipative phenomena has not been explored adequately. In this paper, two-dimensional molecular dynamics simulation of dust particles interacting via Yukawa potential has been considered. It has been shown that disturbances induced in a dust crystal elicit both collective and single particle responses. Generation of a few particles moving at speeds considerably higher than acoustic and/or shock speed (excited by the external disturbance) is observed. This is an indication of a single particle response. Furthermore, as these individual energetic particles propagate, the dust crystal is observed to crack along their path. Initially when the energy is high, these particles generate secondary energetic particles by the collisional scattering process. However, ultimately as these particles slow down they excite a collective response in the dust medium at secondary locations in a region which is undisturbed by the primary external disturbance. The condition when the cracking of the crystal stops and collective excitations get initiated has been identified quantitatively. The trailing collective primary disturbances would thus often encounter a disturbed medium with secondary and tertiary collective perturbations, thereby suffering significant modification in its propagation. It is thus clear that there is an interesting interplay (other than mere dissipation) between the single particle and collective response which governs the dynamics of any disturbance introduced in the medium.
Levitation and dynamics of a collection of dust particles in a fully ionized plasma sheath
International Nuclear Information System (INIS)
Nitter, T.; Aslaksen, T.K.; Melandsoe, F.; Havnes, O.
1994-01-01
The authors have examined the dynamics of a collection of charged dust particles in the plasma sheath above a large body in a fully ionized space plasma when the radius of the large body is much larger than the sheath thickness. The dust particles are charged by the plasma, and the forces on the dust particles are assumed to be from the electric field in the sheath and from gravitation only. These forces will often act in opposite direction and may balance, making dust suspension and collection possible. The dust particles are supplied by injection or by electrostatic levitation. The ability of the sheath to collect dust particles, will be optimal for a certain combination of gravitation and plasma and dust particle parameters. In a dense dust sheath, the charges on the dust particles contribute significantly to the total space charge, and collective effects become important. These effects will reduce the magnitude of the sheath electric field strength and the charge on the dust particles. As dust particles are collected, the dust sheath is stretched and the largest dust particles may drop out, because the sheath is no longer able to suspend them. In a tenuous dust sheath, the inner layer, from the surface and about one Debye length thick, will be unstable for dust particle motion, and dust will not collect there. In a dense dust sheath, collective effects will decrease the thickness of this inner dust-free layer, making dust collection closer to the surface possible. By linearization of the force and current equations, they find the necessary and sufficient conditions which resemble those of planetary system bodies, but the results may also be of relevance to some laboratory plasmas
The measurement and modeling of alpha-particle-induced charge collection in dynamic memories
International Nuclear Information System (INIS)
Oldiges, P.J.
1989-01-01
This thesis addresses the problem of α-particle-induced charge collection in high-density dynamic random access memories. A novel technique for the measurement of charge collection in high-density memory cells and bit lines due to α-particle strikes was developed. The technique involves D.C. tests on simple test structures with an α-particle source on the device package as a lid. The advantages of this new measurement technique are: the method allows for in-situ measurements of charge collection on both MOS capacitors and bit lines found in present-day memories; the on-chip measurement technique minimizes errors due to external probes loading the device under test; the measurements can be controlled by a personal computer, with the data being able to be reduced on the same machine. Results obtained using this new measurement technique show that the charge collection is found to depend upon test-structure size and the configuration of its neighbors. Results of two-dimensional simulations of charge flow along the surface of an MOS capacitor from current injection due to an α-particle strike indicate that a spatial potential variation of 0.5V may occur between the point of current injection and capacitor edge for a 1M dRAM capacitor
International Nuclear Information System (INIS)
Garberoglio, Giovanni
2010-01-01
We present the results of computer simulations of methanol confined in carbon nanotubes. Different levels of confinement were identified as a function of the nanotube radius and characterized using a pair-distribution function adapted to the cylindrical geometry of these systems. Dynamical properties of methanol were also analysed as a function of the nanotube size, both at the level of single-particle and collective properties. We found that confinement in narrow carbon nanotubes strongly affects the dynamical properties of methanol with respect to the bulk phase, due to the strong interaction with the carbon nanotube. In the other cases, confined methanol shows properties quite similar to those of the bulk phase. These phenomena are related to the peculiar hydrogen bonded network of methanol and are compared to the behaviour of water confined in similar conditions. The effect of nanotube flexibility on the dynamical properties of confined methanol is also discussed.
Tran Hy, J
1998-01-01
This thesis describes some new studies of the effects of cubic nonlinearities arising from image-charge forces and octupole magnets on the transverse beam dynamics of proton synchrotrons and storage rings, and also a study of the damping of coherent oscillations using a feed-back damper. In the latter case, various corrective algorithms were modeled using linear one-turn maps. Kicks of fixed amplitude but appropriate sign were shown to provide linear damping and no coherent tune shift, though the rate predicted analytically was somewhat higher than that observed in simulations. This algorithm gave much faster damping (for equal power) than conventional proportional kicks, which damp exponentially. Two single-particle effects of the image-change force were investigated: distortion of the momentum dispersion function and amplitude dependence of the betatron tunes (resulting in tune spread). The former is calculated using transfer maps and the method of undetermined coefficients, the latter by solving the cubic ...
International Nuclear Information System (INIS)
Frew, J.D.
1979-01-01
Apparatus and a method for collecting particles formed by vaporisation during a high temperature treatment of steel (eg cutting or welding) are described in which gas is drawn from the area in which the treatment is taking place through a collector in which the particles are separated magnetically. The air may be drawn by an air ejector from a hood around the treatment area. The invention has particular application where the high temperature treatment is the laser cutting of the stainless steel wrapper around a nuclear fuel sub-assembly. (author)
A discrete particle model reproducing collective dynamics of a bee swarm.
Bernardi, Sara; Colombi, Annachiara; Scianna, Marco
2018-02-01
In this article, we present a microscopic discrete mathematical model describing collective dynamics of a bee swarm. More specifically, each bee is set to move according to individual strategies and social interactions, the former involving the desire to reach a target destination, the latter accounting for repulsive/attractive stimuli and for alignment processes. The insects tend in fact to remain sufficiently close to the rest of the population, while avoiding collisions, and they are able to track and synchronize their movement to the flight of a given set of neighbors within their visual field. The resulting collective behavior of the bee cloud therefore emerges from non-local short/long-range interactions. Differently from similar approaches present in the literature, we here test different alignment mechanisms (i.e., based either on an Euclidean or on a topological neighborhood metric), which have an impact also on the other social components characterizing insect behavior. A series of numerical realizations then shows the phenomenology of the swarm (in terms of pattern configuration, collective productive movement, and flight synchronization) in different regions of the space of free model parameters (i.e., strength of attractive/repulsive forces, extension of the interaction regions). In this respect, constraints in the possible variations of such coefficients are here given both by reasonable empirical observations and by analytical results on some stability characteristics of the defined pairwise interaction kernels, which have to assure a realistic crystalline configuration of the swarm. An analysis of the effect of unconscious random fluctuations of bee dynamics is also provided. Copyright © 2018 Elsevier Ltd. All rights reserved.
Brownian agents and active particles collective dynamics in the natural and social sciences
Schweitzer, Frank
2007-01-01
""This book lays out a vision for a coherent framework for understanding complex systems"" (from the foreword by J. Doyne Farmer). By developing the genuine idea of Brownian agents, the author combines concepts from informatics, such as multiagent systems, with approaches of statistical many-particle physics. This way, an efficient method for computer simulations of complex systems is developed which is also accessible to analytical investigations and quantitative predictions. The book demonstrates that Brownian agent models can be successfully applied in many different contexts, ranging from
Brownian Agents and Active Particles: Collective Dynamics in the Natural and Social Sciences
International Nuclear Information System (INIS)
McKane, Alan
2003-01-01
This is a book about the modelling of complex systems and, unlike many books on this subject, concentrates on the discussion of specific systems and gives practical methods for modelling and simulating them. This is not to say that the author does not devote space to the general philosophy and definition of complex systems and agent-based modelling, but the emphasis is definitely on the development of concrete methods for analysing them. This is, in my view, to be welcomed and I thoroughly recommend the book, especially to those with a theoretical physics background who will be very much at home with the language and techniques which are used. The author has developed a formalism for understanding complex systems which is based on the Langevin approach to the study of Brownian motion. This is a mesoscopic description; details of the interactions between the Brownian particle and the molecules of the surrounding fluid are replaced by a randomly fluctuating force. Thus all microscopic detail is replaced by a coarse-grained description which encapsulates the essence of the interactions at the finer level of description. In a similar way, the influences on Brownian agents in a multi-agent system are replaced by stochastic influences which sum up the effects of these interactions on a finer scale. Unlike Brownian particles, Brownian agents are not structureless particles, but instead have some internal states so that, for instance, they may react to changes in the environment or to the presence of other agents. Most of the book is concerned with developing the idea of Brownian agents using the techniques of statistical physics. This development parallels that for Brownian particles in physics, but the author then goes on to apply the technique to problems in biology, economics and the social sciences. This is a clear and well-written book which is a useful addition to the literature on complex systems. It will be interesting to see if the use of Brownian agents becomes
International Nuclear Information System (INIS)
Siemens, P.J.; Jensen, A.S.
1985-01-01
It is shown that the opening of the 3-quasiparticle continuum at 3Δ sets the energy scale for the enhancement of the effective mass near the Fermi surface of nuclei. The authors argue that the spreading width of single-particle states due to coupling with low-lying collective modes is qualitatively different from the two-body collision mechanism, and contributes little to the single-particle lifetime in the sense of the optical model. (orig.)
Collective nuclear dynamics. Proceedings
International Nuclear Information System (INIS)
Ivanyuk, F.A.
1994-01-01
The Fourth International school on nuclear physics was help on 29 Aug - 7 Sep, 1994 in Ukraine. The specialists discussed following subjects:liquid drop and the shell correction method; nuclear deformation energy and fission; nuclear structure at high spins, superdeformed states, structure of excited and exotic nuclei; nuclear fluid dynamics and large scale collective motion; order and chaos as they relate to the collective motion; quantum and interference phenomena in nuclear collisions; quasi-fission and multinucleon fragmentation effects; shell effects in non-nuclear systems; new nuclear facilities
Collective nuclear dynamics. Abstracts
International Nuclear Information System (INIS)
Abrosimov, V.I.; Kolomietz, V.M.
1994-01-01
The fourth International school on nuclear physics was help on 29 Aug - 7 Sep, 1994 in Ukraine. The specialists discussed following subjects: liquid drop and the shell correction method; nuclear deformation energy and fission; nuclear structure at high spins, superdeformed states, structure of excited and exotic nuclei; nuclear fluid dynamics and large scale collective motion; order and chaos as they relate to the collective motion; quantum and interference phenomena in nuclear collisions; quasi-fission and multinucleon fragmentation effects; shell effects in non-nuclear systems; new nuclear facilities
Collective nuclear dynamics. Proceedings.
Energy Technology Data Exchange (ETDEWEB)
Ivanyuk, F A [eds.
1994-12-31
The Fourth International school on nuclear physics was help on 29 Aug - 7 Sep, 1994 in Ukraine. The specialists discussed following subjects:liquid drop and the shell correction method; nuclear deformation energy and fission; nuclear structure at high spins, superdeformed states, structure of excited and exotic nuclei; nuclear fluid dynamics and large scale collective motion; order and chaos as they relate to the collective motion; quantum and interference phenomena in nuclear collisions; quasi-fission and multinucleon fragmentation effects; shell effects in non-nuclear systems; new nuclear facilities.
Phase space dynamics and collective variable fluctuations
International Nuclear Information System (INIS)
Benhassine, B.; Farine, M.; Idier, D.; Remaud, B.; Sebille, F.; Schuck, P.
1995-01-01
A dynamical study of collective variable fluctuations in heavy ion reactions is performed within the framework of the Boltzmann-Langevin theory. A general method to extract dispersions on collective variables from numerical simulations based on test particles models is presented and its validity is checked by comparison with analytical equilibrium results. (authors)
Phase space dynamics and collective variable fluctuations
Energy Technology Data Exchange (ETDEWEB)
Benhassine, B.; Farine, M.; Idier, D.; Remaud, B.; Sebille, F. [Laboratoire de Physique Nucleaire de Nantes, 44 (France); Schuck, P. [Institut des Sciences Nucleaires, 38 - Grenoble (France)
1995-12-31
A dynamical study of collective variable fluctuations in heavy ion reactions is performed within the framework of the Boltzmann-Langevin theory. A general method to extract dispersions on collective variables from numerical simulations based on test particles models is presented and its validity is checked by comparison with analytical equilibrium results. (authors) 10 refs.
International Nuclear Information System (INIS)
Valverde Ramirez, M.; Coury, J.R.; Goncalves, J.A.S.
2009-01-01
In recent years, many computational fluid dynamics (CFD) studies have appeared attempting to predict cyclone pressure drop and collection efficiency. While these studies have been able to predict pressure drop well, they have been only moderately successful in predicting collection efficiency. Part of the reason for this failure has been attributed to the relatively simple wall boundary conditions implemented in the commercially available CFD software, which are not capable of accurately describing the complex particle-wall interaction present in a cyclone. According, researches have proposed a number of different boundary conditions in order to improve the model performance. This work implemented the critical velocity boundary condition through a user defined function (UDF) in the Fluent software and compared its predictions both with experimental data and with the predictions obtained when using Fluent's built-in boundary conditions. Experimental data was obtained from eight laboratory scale cyclones with varying geometric ratios. The CFD simulations were made using the software Fluent 6.3.26. (author)
Particle acceleration by collective effects
International Nuclear Information System (INIS)
Keefe, D.
1976-01-01
Successful acceleration of protons and other ions has been achieved experimentally in this decade by a number of different collective methods. The attainment of very high accelerating fields has been established although so far the acceleration distance has been confined to only a few centimeters. Efforts are in progress to understand the accelerating mechanisms in detail and, as a result, to devise ways of extending considerably the acceleration distance. This paper is intended to review the current progress, expectations, and limitations of the different approaches. (author)
Particle acceleration by collective effects
International Nuclear Information System (INIS)
Keefe, D.
1976-09-01
Successful acceleration of protons and other ions has been achieved experimentally in this decade by a number of different collective methods. The attainment of very high accelerating fields has been established although so far the acceleration distance has been confined to only a few centimeters. Efforts are in progress to understand the accelerating mechanisms in detail and, as a result, to devise ways of extending considerably the acceleration distance. A review is given of the current progress, expectations, and limitations of the different approaches
Quaternions in collective dynamics
Degond, Pierre; Frouvelle, Amic; Merino-Aceituno, Sara; Trescases, Ariane
2017-01-01
We introduce a model of multi-agent dynamics for self-organised motion; individuals travel at a constant speed while trying to adopt the averaged body attitude of their neighbours. The body attitudes are represented through unitary quaternions. We prove the correspondance with the model presented in a previous work by the three first authors where the body attitudes are represented by rotation matrices. Differently from this previous work, the individual based model (IBM) introduced here is b...
Quaternions in collective dynamics
Degond, Pierre; Frouvelle, Amic; Merino-Aceituno, Sara; Trescases, Ariane
2018-01-01
We introduce a model of multi-agent dynamics for self-organised motion; individuals travel at a constant speed while trying to adopt the averaged body attitude of their neighbours. The body attitudes are represented through unitary quaternions. We prove the correspondance with the model presented in Ref. [16] where the body attitudes are represented by rotation matrices. Differently from this previous work, the individual based model (IBM) introduced here is based on nematic (rather than pola...
Nonlinear dynamics in particle accelerators
Dilão, Rui
1996-01-01
This book is an introductory course to accelerator physics at the level of graduate students. It has been written for a large audience which includes users of accelerator facilities, accelerator physicists and engineers, and undergraduates aiming to learn the basic principles of construction, operation and applications of accelerators.The new concepts of dynamical systems developed in the last twenty years give the theoretical setting to analyse the stability of particle beams in accelerator. In this book a common language to both accelerator physics and dynamical systems is integrated and dev
Particle Filter Tracking without Dynamics
Directory of Open Access Journals (Sweden)
Jaime Ortegon-Aguilar
2007-01-01
Full Text Available People tracking is an interesting topic in computer vision. It has applications in industrial areas such as surveillance or human-machine interaction. Particle Filters is a common algorithm for people tracking; challenging situations occur when the target's motion is poorly modelled or with unexpected motions. In this paper, an alternative to address people tracking is presented. The proposed algorithm is based in particle filters, but instead of using a dynamical model, it uses background subtraction to predict future locations of particles. The algorithm is able to track people in omnidirectional sequences with a low frame rate (one or two frames per second. Our approach can tackle unexpected discontinuities and changes in the direction of the motion. The main goal of the paper is to track people from laboratories, but it has applications in surveillance, mainly in controlled environments.
Dynamics of dense particle disks
International Nuclear Information System (INIS)
Araki, S.; Tremaine, S.; Toronto Univ., Canada)
1986-01-01
The present investigation of mechanical equilibrium and collisional transport processes in dense, differentially rotating particle disks is based on the Enskog (1922) theory of dense, hard sphere gases, with the single exception that the spheres are inelastic. The viscous instability suggested as a source of Saturn B ring structure does not arise in the models presented, although the ring may be subject to a phase transition analogous to the liquid-solid transition observed in molecular dynamics simulations of elastic hard spheres. In such a case, the ring would alternately exhibit zero-shear, or solid, and high shear, or liquid, zones. 29 references
Modelling of particles collection by vented limiters
International Nuclear Information System (INIS)
Tsitrone, E.; Pegourie, B.; Granata, G.
1995-01-01
This document deals with the use of vented limiters for the collection of neutral particles in Tore Supra. The model developed for experiments is presented together with its experimental validation. Some possible improvements to the present limiter are also proposed. (TEC). 5 refs., 3 figs
Hydrodynamic relaxations in dissipative particle dynamics
Hansen, J. S.; Greenfield, Michael L.; Dyre, Jeppe C.
2018-01-01
This paper studies the dynamics of relaxation phenomena in the standard dissipative particle dynamics (DPD) model [R. D. Groot and P. B. Warren, J. Chem. Phys. 107, 4423 (1997)]. Using fluctuating hydrodynamics as the framework of the investigation, we focus on the collective transverse and longitudinal dynamics. It is shown that classical hydrodynamic theory predicts the transverse dynamics at relatively low temperatures very well when compared to simulation data; however, the theory predictions are, on the same length scale, less accurate for higher temperatures. The agreement with hydrodynamics depends on the definition of the viscosity, and here we find that the transverse dynamics are independent of the dissipative and random shear force contributions to the stress. For high temperatures, the spectrum for the longitudinal dynamics is dominated by the Brillouin peak for large length scales and the relaxation is therefore governed by sound wave propagation and is athermal. This contrasts the results at lower temperatures and small length scale, where the thermal process is clearly present in the spectra. The DPD model, at least qualitatively, re-captures the underlying hydrodynamical mechanisms, and quantitative agreement is excellent at intermediate temperatures for the transverse dynamics.
Foundations of relational particle dynamics
International Nuclear Information System (INIS)
Anderson, Edward
2008-01-01
Relational particle dynamics include the dynamics of pure shape and cases in which absolute scale or absolute rotation are additionally meaningful. These are interesting as regards the absolute versus relative motion debate as well as the discussion of conceptual issues connected with the problem of time in quantum gravity. In spatial dimensions 1 and 2, the relative configuration spaces of shapes are n-spheres and complex projective spaces, from which knowledge I construct natural mechanics on these spaces. I also show that these coincide with Barbour's indirectly constructed relational dynamics by performing a full reduction on the latter. Then the identification of the configuration spaces as n-spheres and complex projective spaces, for which spaces much mathematics is available, significantly advances the understanding of Barbour's relational theory in spatial dimensions 1 and 2. I also provide the parallel study of a new theory for which the position and scale are purely relative but the orientation is absolute. The configuration space for this is an n-sphere regardless of the spatial dimension, which renders this theory a more tractable arena for investigation of implications of scale invariance than Barbour's theory itself
Alpha particle collective Thomson scattering in TFTR
International Nuclear Information System (INIS)
Machuzak, J.S.; Woskov, P.P.; Rhee, D.Y.; Gilmore, J.; Bindslev, H.
1993-01-01
A collective Thomson scattering diagnostic is being implemented on TFTR to measure alpha particle, energetic and thermal ion densities and velocity distributions. A 60 GHz, 0.1-1 kW gyrotron will be used as the transmitter source, and the scattering geometry will be perpendicular to the magnetic field in the extraordinary mode polarization. An enhanced scattered signal is anticipated from fluctuations in the lower hybrid frequency range with this scattering geometry. Millimeter wave collective Thomson scattering diagnostics have the advantage of larger scattering angles to decrease the amount of stray light, and long, high power, modulated pulses to obtain improved signal to noise through synchronous detection techniques
Power functional theory for the dynamic test particle limit
International Nuclear Information System (INIS)
Brader, Joseph M; Schmidt, Matthias
2015-01-01
For classical Brownian systems both in and out of equilibrium we extend the power functional formalism of Schmidt and Brader (2013 J. Chem. Phys. 138 214101) to mixtures of different types of particles. We apply the framework to develop an exact dynamical test particle theory for the self and distinct parts of the van Hove function, which characterize tagged and collective particle motion. The memory functions that induce non-Markovian dynamics are related to functional derivatives of the excess (over ideal) free power dissipation functional. The method offers an alternative to the recently found nonequilibrium Ornstein–Zernike relation for dynamic pair correlation functions. (paper)
Dynamically redundant particle components in mixtures
International Nuclear Information System (INIS)
Lukacs, B.; Martinas, K.
1984-10-01
Examples are shown for cases in which the number of different kinds of particles in a system is not necessarily equal to the number of particle degrees of freedom in thermodynamical sense, and at the same time, the observed dynamics of the evolution of the system does not indicate a definite number of degrees of freedeom. The possibility for introducing dynamically redundant particles is discussed. (author)
Nonlinear dynamics aspects of particle accelerators
International Nuclear Information System (INIS)
Jowett, J.M.; Turner, S.; Month, M.
1986-01-01
These proceedings contain the lectures presented at the named winter school. They deal with the application of dynamical systems to accelerator theory. Especially considered are the statistical description of charged-beam plasmas, integrable and nonintegrable Hamiltonian systems, single particle dynamics and nonlinear resonances in circular accelerators, nonlinear dynamics aspects of modern storage rings, nonlinear beam-beam resonances, synchro-betatron resonances, observations of the beam-beam interactions, the dynamics of the beam-beam interactions, beam-beam simulations, the perturbation method in nonlinear dynamics, theories of statistical equilibrium in electron-positron storage rings, nonlinear dissipative phenomena in electron storage rings, the dynamical aperture, the transition to chaos for area-preserving maps, special processors for particle tracking, algorithms for tracking of charged particles in circular accelerators, the breakdown of stability, and a personal perspective of nonlinear dynamics. (HSI)
Nonlinear dynamics aspects of particle accelerators. Proceedings
Energy Technology Data Exchange (ETDEWEB)
Jowett, J M; Turner, S; Month, M
1986-01-01
These proceedings contain the lectures presented at the named winter school. They deal with the application of dynamical systems to accelerator theory. Especially considered are the statistical description of charged-beam plasmas, integrable and nonintegrable Hamiltonian systems, single particle dynamics and nonlinear resonances in circular accelerators, nonlinear dynamics aspects of modern storage rings, nonlinear beam-beam resonances, synchro-betatron resonances, observations of the beam-beam interactions, the dynamics of the beam-beam interactions, beam-beam simulations, the perturbation method in nonlinear dynamics, theories of statistical equilibrium in electron-positron storage rings, nonlinear dissipative phenomena in electron storage rings, the dynamical aperture, the transition to chaos for area-preserving maps, special processors for particle tracking, algorithms for tracking of charged particles in circular accelerators, the breakdown of stability, and a personal perspective of nonlinear dynamics. (HSI).
Single particle dynamics in circular accelerators
International Nuclear Information System (INIS)
Ruth, R.D.
1986-10-01
The purpose of this paper is to introduce the reader to the theory associated with the transverse dynamics of single particle, in circular accelerators. The discussion begins with a review of Hamiltonian dynamics and canonical transformations. The case of a single particle in a circular accelerator is considered with a discussion of non-linear terms and chromaticity. The canonical perturbation theory is presented and nonlinear resonances are considered. Finally, the concept of renormalization and residue criterion are examined. (FI)
Computational plasticity algorithm for particle dynamics simulations
Krabbenhoft, K.; Lyamin, A. V.; Vignes, C.
2018-01-01
The problem of particle dynamics simulation is interpreted in the framework of computational plasticity leading to an algorithm which is mathematically indistinguishable from the common implicit scheme widely used in the finite element analysis of elastoplastic boundary value problems. This algorithm provides somewhat of a unification of two particle methods, the discrete element method and the contact dynamics method, which usually are thought of as being quite disparate. In particular, it is shown that the former appears as the special case where the time stepping is explicit while the use of implicit time stepping leads to the kind of schemes usually labelled contact dynamics methods. The framing of particle dynamics simulation within computational plasticity paves the way for new approaches similar (or identical) to those frequently employed in nonlinear finite element analysis. These include mixed implicit-explicit time stepping, dynamic relaxation and domain decomposition schemes.
Dynamics of neutral and charged aerosol particles
Energy Technology Data Exchange (ETDEWEB)
Leppae, J.
2012-07-01
Atmospheric aerosol particles have various climate effects and adverse health effects, which both depend on the size and number concentration of the particles. Freshly-formed particles are not large enough to impact neither health nor climate and they are most susceptible to removal by collisions with larger pre-existing particles. Consequently, the knowledge of both the formation and the growth rate of particles are crucially important when assessing the health and climate effects of atmospheric new particle formation. The purpose of this thesis is to increase our knowledge of the dynamics of neutral and charged aerosol particles with a specific interest towards the particle growth rate and processes affecting the aerosol charging state. A new model, Ion-UHMA, which simulates the dynamics of neutral and charged particles, was developed for this purpose. Simple analytical formulae that can be used to estimate the growth rate due to various processes were derived and used to study the effects of charged particles on the growth rate. It was found that the growth rate of a freshly-formed particle population due to condensation and coagulation could be significantly increased when a considerable fraction of the particles are charged. Finally, recent data-analysis methods that have been applied to the aerosol charging states obtained from the measurements were modified for a charge asymmetric framework. The methods were then tested on data obtained from aerosol dynamics simulations. The methods were found to be able to provide reasonable estimates on the growth rate and proportion of particles formed via ion-induced nucleation, provided that the growth rate is high enough and that the charged particles do not grow much more rapidly than the neutral ones. A simple procedure for estimating whether the methods are suitable for analysing data obtained in specific conditions was provided. In this thesis, the dynamics of neutral and charged aerosol particles were studied in
Dynamics of colloidal particles in ice
Spannuth, Melissa
2011-01-01
We use x-ray photon correlation spectroscopy (XPCS) to probe the dynamics of colloidal particles in polycrystalline ice. During freezing, the dendritic ice morphology and rejection of particles from the ice created regions of high particle density, where some of the colloids were forced into contact and formed disordered aggregates. The particles in these high density regions underwent ballistic motion, with a characteristic velocity that increased with temperature. This ballistic motion is coupled with both stretched and compressed exponential decays of the intensity autocorrelation function. We suggest that this behavior could result from ice grain boundary migration. © 2011 American Institute of Physics.
Towards better integrators for dissipative particle dynamics simulations
DEFF Research Database (Denmark)
Besold, Gerhard; Vattulainen, Ilpo Tapio; Karttunen, Mikko
2000-01-01
Coarse-grained models that preserve hydrodynamics provide a natural approach to study collective properties of soft-matter systems. Here, we demonstrate that commonly used integration schemes in dissipative particle dynamics give rise to pronounced artifacts in physical quantities such as the com...
Automated data collection in single particle electron microscopy
Tan, Yong Zi; Cheng, Anchi; Potter, Clinton S.; Carragher, Bridget
2016-01-01
Automated data collection is an integral part of modern workflows in single particle electron microscopy (EM) research. This review surveys the software packages available for automated single particle EM data collection. The degree of automation at each stage of data collection is evaluated, and the capabilities of the software packages are described. Finally, future trends in automation are discussed. PMID:26671944
Collected abstracts on particle beam diagnostic systems
International Nuclear Information System (INIS)
Hickok, R.L.
1979-01-01
This report contains a compilation of abstracts on work related to particle beam diagnostics for high temperature plasmas. The abstracts were gathered in early 1978 and represent the status of the various programs as of that date. It is not suggested that this is a comprehensive list of all the work that is going on in the development of particle beam diagnostics, but it does provide a representative view of the work in this field. For example, no abstracts were received from the U.S.S.R. even though they have considerable activity in particle beam diagnostics
Classical dynamics of particles and systems
Marion, Jerry B
1965-01-01
Classical Dynamics of Particles and Systems presents a modern and reasonably complete account of the classical mechanics of particles, systems of particles, and rigid bodies for physics students at the advanced undergraduate level. The book aims to present a modern treatment of classical mechanical systems in such a way that the transition to the quantum theory of physics can be made with the least possible difficulty; to acquaint the student with new mathematical techniques and provide sufficient practice in solving problems; and to impart to the student some degree of sophistication in handl
Studies of Fundamental Particle Dynamics in Microgravity
Rangel, Roger; Trolinger, James D.; Coimbra, Carlos F. M.; Witherow, William; Rogers, Jan; Rose, M. Franklin (Technical Monitor)
2001-01-01
This work summarizes theoretical and experimental concepts used to design the flight experiment mission for SHIVA - Spaceflight Holography Investigation in a Virtual Apparatus. SHIVA is a NASA project that exploits a unique, holography-based, diagnostics tool to understand the behavior of small particles subjected to transient accelerations. The flight experiments are designed for testing model equations, measuring g, g-jitter, and other microgravity phenomena. Data collection will also include experiments lying outside of the realm of existing theory. The regime under scrutiny is the low Reynolds number, Stokes regime or creeping flow, which covers particles and bubbles moving at very low velocity. The equations describing this important regime have been under development and investigation for over 100 years and yet a complete analytical solution of the general equation had remained elusive yielding only approximations and numerical solutions. In the course of the ongoing NASA NRA, the first analytical solution of the general equation was produced by members of the investigator team using the mathematics of fractional derivatives. This opened the way to an even more insightful and important investigation of the phenomena in microgravity. Recent results include interacting particles, particle-wall interactions, bubbles, and Reynolds numbers larger than unity. The Space Station provides an ideal environment for SHIVA. Limited ground experiments have already confirmed some aspects of the theory. In general the space environment is required for the overall experiment, especially for cases containing very heavy particles, very light particles, bubbles, collections of particles and for characterization of the space environment and its effect on particle experiments. Lightweight particles and bubbles typically rise too fast in a gravitational field and heavy particles sink too fast. In a microgravity environment, heavy and light particles can be studied side-by-side for
Collectivity and chaoticity in nuclear dynamics
International Nuclear Information System (INIS)
Zelevinsky, V.G.
1992-01-01
Collective and chaotic features of nuclear dynamics are discussed using simple criteria of complexity of wave functions and their coherence with respect to specific operators. Various physical phenomena are considered in this connection: - coherent interaction of collective modes; - fragmentation and spreading widths; - mixing of compound states and dynamical enhancement; - mean field as a smooth component of complicated dynamics; - coupling through continuum and collectivization of widths; - structure of giant resonances; - statistical properties of unstable states as generalization of canonical random matrix ensembles. (orig.)
Collection of large and small food particles by Bosmina
International Nuclear Information System (INIS)
Bleiwas, A.H.; Stokes, P.M.
1985-01-01
The rate of collection by Bosmina of large and small food particles was measured with 14 C-labeled algae and checked by visual observation. Bosmina collected and ingested a large alga, Cosmarium, about six times faster than a small one, Chlorella. This is consistent with the observation of DeMott and Kerfoot that Bosmina has two modes of feeding: small-particle filtering and large-particle grasping
Longitudinal collective echoes in coasting particle beams
Directory of Open Access Journals (Sweden)
Ahmed Al-Khateeb
2003-01-01
Full Text Available Longitudinal ballistic and collective beam echoes with diffusion effects are investigated theoretically. In the presence of the space-charge impedance, the collective echo amplitude is obtained as a closed form expression. In contrast to the ballistic case, the collective echo amplitude consists of one maximum at time t_{echo}. The echo amplitude grows up and damps down with a rate proportional to the Landau damping rate of space-charge waves. The effect of weak diffusion is found to modify the ballistic and the collective echo amplitudes in the same manner. This effect of diffusion was confirmed using a “noiseless,” grid-based simulation code. As a first application the amount of numerical diffusion in our simulation code was determined using the echo effect.
Dynamical stability of slip-stacking particles
Energy Technology Data Exchange (ETDEWEB)
Eldred, Jeffrey; Zwaska, Robert
2014-09-01
We study the stability of particles in slip-stacking configuration, used to nearly double proton beam intensity at Fermilab. We introduce universal area factors to calculate the available phase space area for any set of beam parameters without individual simulation. We find perturbative solutions for stable particle trajectories. We establish Booster beam quality requirements to achieve 97% slip-stacking efficiency. We show that slip-stacking dynamics directly correspond to the driven pendulum and to the system of two standing-wave traps moving with respect to each other.
Dynamic behaviors of laser ablated Si particles
International Nuclear Information System (INIS)
Ohyanagi, T.; Murakami, K.; Miyashita, A.; Yoda, O.
1995-01-01
The dynamics of laser-ablated Si particles produced by laser ablation have been investigated by time-and-space resolved X-ray absorption spectroscopy in a time scale ranging from 0 ns to 120 ns with a time resolution of 10 ns. Neutral and charged particles are observed through all X-ray absorption spectra. Assignments of transitions from 2s and 2p initial states to higher Rydberg states of Si atom and ions are achieved, and we experimentally determine the L II,III absorption edges of neutral Si atom (Si 0 ) and Si + , Si 2+ , Si 3+ and Si 4+ ions. The main ablated particles are found to be Si atom and Si ions in the initial stage of 0 ns to 120 ns. The relative amounts depend strongly on times and laser energy densities. We find that the spatial distributions of particles produced by laser ablation are changed with supersonic helium gas bombardment, but no cluster formation takes place. This suggests that a higher-density region of helium gas is formed at the top of the plume of ablated particles, and free expansion of particles is restrained by this helium cloud, and that it takes more than 120 ns to form Si clusters. (author)
Testing particle filters on convective scale dynamics
Haslehner, Mylene; Craig, George. C.; Janjic, Tijana
2014-05-01
Particle filters have been developed in recent years to deal with highly nonlinear dynamics and non Gaussian error statistics that also characterize data assimilation on convective scales. In this work we explore the use of the efficient particle filter (P.v. Leeuwen, 2011) for convective scale data assimilation application. The method is tested in idealized setting, on two stochastic models. The models were designed to reproduce some of the properties of convection, for example the rapid development and decay of convective clouds. The first model is a simple one-dimensional, discrete state birth-death model of clouds (Craig and Würsch, 2012). For this model, the efficient particle filter that includes nudging the variables shows significant improvement compared to Ensemble Kalman Filter and Sequential Importance Resampling (SIR) particle filter. The success of the combination of nudging and resampling, measured as RMS error with respect to the 'true state', is proportional to the nudging intensity. Significantly, even a very weak nudging intensity brings notable improvement over SIR. The second model is a modified version of a stochastic shallow water model (Würsch and Craig 2013), which contains more realistic dynamical characteristics of convective scale phenomena. Using the efficient particle filter and different combination of observations of the three field variables (wind, water 'height' and rain) allows the particle filter to be evaluated in comparison to a regime where only nudging is used. Sensitivity to the properties of the model error covariance is also considered. Finally, criteria are identified under which the efficient particle filter outperforms nudging alone. References: Craig, G. C. and M. Würsch, 2012: The impact of localization and observation averaging for convective-scale data assimilation in a simple stochastic model. Q. J. R. Meteorol. Soc.,139, 515-523. Van Leeuwen, P. J., 2011: Efficient non-linear data assimilation in geophysical
Dynamics of magnetic nano-particle assembly
International Nuclear Information System (INIS)
Kondratyev, V N
2010-01-01
Ferromagnetically coupled nano-particle assembly is analyzed accounting for inter- and intra- particle electronic structures within the randomly jumping interacting moments model including quantum fluctuations due to the discrete levels and disorder. At the magnetic jump anomalies caused by quantization the magnetic state equation and phase diagram are found to indicate an existence of spinodal regions and critical points. Arrays of magnetized nano-particles with multiple magnetic response anomalies are predicted to display some specific features. In a case of weak coupling such arrays exhibit the well-separated instability regions surrounding the anomaly positions. With increasing coupling we observe further structure modification, plausibly, of bifurcation type. At strong coupling the dynamical instability region become wide while the stable regime arises as a narrow islands at small disorders. It is shown that exploring correlations of magnetic noise amplitudes represents convenient analytical tool for quantitative definition, description and study of supermagnetism, as well as self-organized criticality.
Particle algorithms for population dynamics in flows
International Nuclear Information System (INIS)
Perlekar, Prasad; Toschi, Federico; Benzi, Roberto; Pigolotti, Simone
2011-01-01
We present and discuss particle based algorithms to numerically study the dynamics of population subjected to an advecting flow condition. We discuss few possible variants of the algorithms and compare them in a model compressible flow. A comparison against appropriate versions of the continuum stochastic Fisher equation (sFKPP) is also presented and discussed. The algorithms can be used to study populations genetics in fluid environments.
Synchronization and collective motion of globally coupled Brownian particles
International Nuclear Information System (INIS)
Sevilla, Francisco J; Heiblum-Robles, Alexandro; Dossetti, Victor
2014-01-01
In this work, we study a system of passive Brownian (non-self-propelled) particles in two dimensions, interacting only through a social-like force (velocity alignment in this case) that resembles Kuramoto's coupling among phase oscillators. We show that the kinematical stationary states of the system go from a phase in thermal equilibrium with no net flux of particles, to far-from-equilibrium phases exhibiting collective motion by increasing the coupling among particles. The mechanism that leads to the instability of the equilibrium phase relies on the competition between two time scales, namely, the mean collision time of the Brownian particles in a thermal bath and the time it takes for a particle to orient its direction of motion along the direction of motion of the group. Our results show a clear connection between collective motion and the Kuramoto model for synchronization, in our case, for the direction of motion of the particles. (paper)
Digital data collection in forest dynamics plots
Faith Inman-Narahari; Christian Giardina; Rebecca Ostertag; Susan Cordell; Lawren Sack
2010-01-01
Summary 1. Computers are widely used in all aspects of research but their application to in-field data collection for forest plots has rarely been evaluated. 2. We developed digital data collection methods using ESRI mapping software and ruggedized field computers to map and measure ~30 000 trees in two 4-ha forest dynamics plots in wet and dry...
Flue gas conditioning for improved particle collection in electrostatic precipitators
Energy Technology Data Exchange (ETDEWEB)
Durham, M.D.
1993-04-16
Several tasks have been completed in a program to evaluate additives to improve fine particle collection in electrostatic precipitators. Screening tests and laboratory evaluations of additives are summarized in this report. Over 20 additives were evaluated; four were found to improve flyash precipitation rates. The Insitec particle analyzer was also evaluated; test results show that the analyzer will provide accurate sizing and counting information for particles in the size range of [le] 10 [mu]m dia.
Master equations in the microscopic theory of nuclear collective dynamics
International Nuclear Information System (INIS)
Matsuo, M.; Sakata, F.; Marumori, T.; Zhuo, Y.
1988-07-01
In the first half of this paper, the authors describe briefly a recent theoretical approach where the mechanism of the large-amplitude dissipative collective motions can be investigated on the basis of the microscopic theory of nuclear collective dynamics. Namely, we derive the general coupled master equations which can disclose, in the framework of the TDHF theory, not only non-linear dynamics among the collective and the single-particle modes of motion but also microscopic dynamics responsible for the dissipative processes. In the latter half, the authors investigate, without relying on any statistical hypothesis, one possible microscopic origin which leads us to the transport equation of the Fokker-Planck type so that usefullness of the general framework is demonstrated. (author)
Numerical calculation of particle collection efficiency in an ...
Indian Academy of Sciences (India)
Theoretical and numerical research has been previously done on ESPs to predict the efficiency ... Lagrangian simulations of particle transport in wire–plate ESP were .... The collection efficiency can be defined as the ratio of the number of ...
Shock waves in collective field theories for many particle systems
Energy Technology Data Exchange (ETDEWEB)
Oki, F; Saito, T [Kyoto Prefectural Univ. of Medicine (Japan); Shigemoto, K
1980-10-01
We find shock wave solutions to collective field equations for quantum mechanical many particle system. Importance of the existence of a ''tension'' working on the surface of the shock-wave front is pointed out.
New trends in nuclear collective dynamics
International Nuclear Information System (INIS)
Abe, Yasuhisa; Horiuchi, Hisashi; Matsuyanagi, Kenichi
1992-01-01
New Trends in Nuclear Collective Dynamics comprises reviews by well-known researchers from international centers of nuclear physics. This overview of recent advances concentrates on - order amd chaos in finite quantum systems - dissipation in heavy-ion collions - collective motion in warm nuclei - time-dependent mean-field theory with collision terms - nuclear fission and multi-dimensional tunneling - large scale collective motion see hints under the relevent topics. (orig.) With 90 figs
Microscopic theory of nuclear collective dynamics
International Nuclear Information System (INIS)
Sakata, Fumihiko; Marumori, Toshio; Hashimoto, Yukio; Tsukuma, Hidehiko; Yamamoto, Yoshifumi; Iwasawa, Kazuo.
1990-10-01
A recent development of the INS-TSUKUBA joint research project on large-amplitude collective motion is summarized by putting special emphasis on an inter-relationship between quantum chaos and nuclear spectroscopy. Aiming at introducing various concepts used in this lecture, we start with recapitulating the semi-classical theory of nuclear collective dynamics formulated within the time-dependent Hartree-Fock (TDHF) theory. The central part of the semi-classical theory is provided by the self-consistent collective coordinate (SCC) method which has been developed to properly take account of the non-linear dynamics specific for the finite many-body quantum system. A decisive role of the level crossing dynamics on the order-to-chaos transition of collective motion is discussed in detail. Extending the basic idea of the semi-classical theory, we discuss a full quantum theory of nuclear collective dynamics which allows us to properly define a concept of the quantum integrability as well as the quantum chaoticity for each eigenfunction. The lecture is arranged so as to clearly show the similar structure between the semi-classical and quantum theories of nuclear collective dynamics. Using numerical calculations, we illustrate what the quantum chaos for each eigenfunction means and relate it to the usual definition of quantum chaos for nearest neighbor level spacing statistics based on the random matrix theory. (author)
Indeterminism in Classical Dynamics of Particle Motion
Eyink, Gregory; Vishniac, Ethan; Lalescu, Cristian; Aluie, Hussein; Kanov, Kalin; Burns, Randal; Meneveau, Charles; Szalay, Alex
2013-03-01
We show that ``God plays dice'' not only in quantum mechanics but also in the classical dynamics of particles advected by turbulent fluids. With a fixed deterministic flow velocity and an exactly known initial position, the particle motion is nevertheless completely unpredictable! In analogy with spontaneous magnetization in ferromagnets which persists as external field is taken to zero, the particle trajectories in turbulent flow remain random as external noise vanishes. The necessary ingredient is a rough advecting field with a power-law energy spectrum extending to smaller scales as noise is taken to zero. The physical mechanism of ``spontaneous stochasticity'' is the explosive dispersion of particle pairs proposed by L. F. Richardson in 1926, so the phenomenon should be observable in laboratory and natural turbulent flows. We present here the first empirical corroboration of these effects in high Reynolds-number numerical simulations of hydrodynamic and magnetohydrodynamic fluid turbulence. Since power-law spectra are seen in many other systems in condensed matter, geophysics and astrophysics, the phenomenon should occur rather widely. Fast reconnection in solar flares and other astrophysical systems can be explained by spontaneous stochasticity of magnetic field-line motion
The dynamics of small inertial particles in weakly stratified turbulence
van Aartrijk, M.; Clercx, H.J.H.
We present an overview of a numerical study on the small-scale dynamics and the large-scale dispersion of small inertial particles in stably stratified turbulence. Three types of particles are examined: fluid particles, light inertial particles (with particle-to-fluid density ratio 1Ͽp/Ͽf25) and
Directory of Open Access Journals (Sweden)
Caffiyar Mohamed Yousuff
2017-08-01
Full Text Available Recent advances in inertial microfluidics designs have enabled high throughput, label-free separation of cells for a variety of bioanalytical applications. Various device configurations have been proposed for binary separation with a focus on enhancing the separation distance between particle streams to improve the efficiency of separate particle collection. These configurations have not demonstrated scaling beyond 3 particle streams either because the channel width is a constraint at the collection outlets or particle streams would be too closely spaced to be collected separately. We propose a method to design collection outlets for inertial focusing and separation devices which can collect closely-spaced particle streams and easily scale to an arbitrary number of collection channels without constraining the outlet channel width, which is the usual cause of clogging or cell damage. According to our approach, collection outlets are a series of side-branching channels perpendicular to the main channel of egress. The width and length of the outlets can be chosen subject to constraints from the position of the particle streams and fluidic resistance ratio computed from fluid dynamics simulations. We show the efficacy of this approach by demonstrating a successful collection of upto 3 particle streams of 7μm, 10μm and 15μm fluorescent beads which have been focused and separated by a spiral inertial device with a separation distance of only 10μm -15μm. With a throughput of 1.8mL/min, we achieved collection efficiency exceeding 90% for each particle at the respective collection outlet. The flexibility to use wide collection channels also enabled us to fabricate the microfluidic device with an epoxy mold that was created using xurography, a low cost, and imprecise fabrication technique.
Moment approach to charged particle beam dynamics
International Nuclear Information System (INIS)
Channell, P.J.
1983-01-01
We have derived the hierarchy of moment equations that describes the dynamics of charged-particle beams in linear accelerators and can truncate the hierarchy at any level either by discarding higher moments or by a cumulant expansion discarding only correlation functions. We have developed a procedure for relating the density expansion linearly to the moments to any order. The relation of space-charge fields to the density has been derived; and an accurate, systematic, and computationally convenient expansion of the resultant integrals has been developed
IFR code for secondary particle dynamics
International Nuclear Information System (INIS)
Teague, M.R.; Yu, S.S.
1985-01-01
A numerical simulation has been constructed to obtain a detailed, quantitative estimate of the electromagnetic fields and currents existing in the Advanced Test Accelerator under conditions of laser guiding. The code treats the secondary electrons by particle simulation and the beam dynamics by a time-dependent envelope model. The simulation gives a fully relativistic description of secondary electrons moving in self-consistent electromagnetic fields. The calculations are made using coordinates t, x, y, z for the electrons and t, ct-z, r for the axisymmetric electromagnetic fields and currents. Code results, showing in particular current enhancement effects, will be given
Complete system of three-particle hyperspherical harmonics in collective variables
International Nuclear Information System (INIS)
Mukhtarova, M.I.; Ehfros, V.D.
1983-01-01
A complete system of three-particle hyperspherical harmonics (HH) is built in a simple closed form for arbitrary Values of L making use of collectiVe variables including Euler angles of the system. A method of expanding the HH product into HH series is presented. A number of formulas are derived for differentiating Jacobi polynomials. The obtained results are, in particular, usefUl for phenomenological analysis of three-particle reactions and for dynamical problems concerning three interacting atoms
Impedance technique for measuring dielectrophoretic collection of microbiological particles
Allsopp, D W E; Brown, A P; Betts, W B
1999-01-01
Measurement of the impedance change resulting from the collection of microbiological particles at coplanar electrodes is shown to be an effective and potentially quantitative method of detecting dielectrophoresis. Strong correlations between the frequency-dependent dielectrophoretic collection characteristics measured by impedance change and those observed using an established counting method based on image analysis have been obtained for Escherichia coli. In addition it is shown that the new electrical method can be used to sense dielectrophoretic collection of 19 nm diameter latex beads, particles too small to be resolved by conventional optical detection systems. (author)
Particle creation rate for dynamical black holes
Energy Technology Data Exchange (ETDEWEB)
Firouzjaee, Javad T. [School of Astronomy, Institute for Research in Fundamental Sciences (IPM), Tehran (Iran, Islamic Republic of); University of Oxford, Department of Physics (Astrophysics), Oxford (United Kingdom); Ellis, George F.R. [University of Cape Town, Mathematics and Applied Mathematics Department, Rondebosch (South Africa)
2016-11-15
We present the particle creation probability rate around a general black hole as an outcome of quantum fluctuations. Using the uncertainty principle for these fluctuation, we derive a new ultraviolet frequency cutoff for the radiation spectrum of a dynamical black hole. Using this frequency cutoff, we define the probability creation rate function for such black holes. We consider a dynamical Vaidya model and calculate the probability creation rate for this case when its horizon is in a slowly evolving phase. Our results show that one can expect the usual Hawking radiation emission process in the case of a dynamical black hole when it has a slowly evolving horizon. Moreover, calculating the probability rate for a dynamical black hole gives a measure of when Hawking radiation can be killed off by an incoming flux of matter or radiation. Our result strictly suggests that we have to revise the Hawking radiation expectation for primordial black holes that have grown substantially since they were created in the early universe. We also infer that this frequency cut off can be a parameter that shows the primordial black hole growth at the emission moment. (orig.)
Collective behaviour of self-propelling particles with conservative kinematic constraints
Ratushna, Valeriya Igorivna
2007-01-01
In this thesis I considered the dynamics of self-propelling particles (SPP). Flocking of living organisms like birds, fishes, ants, bacteria etc. is an area where the theory of the collective behaviour of SPP can be applied. One can often see how these animals develop coherent motion, amazing the
Instability in nuclear dynamics: loss of collectivity and multifragmentation
International Nuclear Information System (INIS)
Colonna, M.; Di Toro, M.; Guarnera, A.; Latora, V.; Smerzi, A.
1995-01-01
Two limiting cases of nuclear dynamics are analysed: the disappearing of giant collective motions in hot nuclei and the nuclear disassembly in violent heavy ion collisions. For collective vibration build on excited states we get a dramatic increase of the widths of hot Giant Dipole Resonances (GDR). As a consequence of the competition with particle evaporation we get a sharp quenching of giant photon emission. Pre-equilibrium effects on the GDR formation are also accounted for. At high temperature and low density the collective motions can become unstable leading to multifragmentation events in heavy ion collisions. We present a general procedure to identify instability regions and to get informations on the instability point. Some hints towards fully dynamical picture of multi-fragmentation processes are finally suggested. (author)
Collective motion of active Brownian particles with polar alignment.
Martín-Gómez, Aitor; Levis, Demian; Díaz-Guilera, Albert; Pagonabarraga, Ignacio
2018-04-04
We present a comprehensive computational study of the collective behavior emerging from the competition between self-propulsion, excluded volume interactions and velocity-alignment in a two-dimensional model of active particles. We consider an extension of the active brownian particles model where the self-propulsion direction of the particles aligns with the one of their neighbors. We analyze the onset of collective motion (flocking) in a low-density regime (10% surface area) and show that it is mainly controlled by the strength of velocity-alignment interactions: the competition between self-propulsion and crowding effects plays a minor role in the emergence of flocking. However, above the flocking threshold, the system presents a richer pattern formation scenario than analogous models without alignment interactions (active brownian particles) or excluded volume effects (Vicsek-like models). Depending on the parameter regime, the structure of the system is characterized by either a broad distribution of finite-sized polar clusters or the presence of an amorphous, highly fluctuating, large-scale traveling structure which can take a lane-like or band-like form (and usually a hybrid structure which is halfway in between both). We establish a phase diagram that summarizes collective behavior of polar active brownian particles and propose a generic mechanism to describe the complexity of the large-scale structures observed in systems of repulsive self-propelled particles.
International Nuclear Information System (INIS)
Takeda, H.; Saegusa, T.
2013-01-01
Now, in Japan, while metal casks are used for spent nuclear fuel storage, a practical use of concrete casks is under review because of its cost effectiveness and procurement easiness. In reviewing the practical use, stress corrosion cracking (SCC) of a canister container in the concrete cask becomes an issue and is needed to be resolved soon. A natural ventilation system is generally adopted for the storage facilities, especially in Japan where facilities are built near coasts so that the cooling air includes sea salt particles. Therefore, the occurrence of SCC is concerned when the sea salt particles adhere to welded parts of the canisters. In this study, we proposed a salt particle collection device with low pressure loss which does not interfere with the air flow into the building or the concrete casks. The device is composed of a stack of 10 parallel stainless steel plates, the air is free to circulate in the space between them. Pressure loss tests in a laboratory and salt particle collection tests in the field have been performed. It has been clarified that the pressure loss of the device is one-thirtieth to one-twentieth of that of a commercial filter and 40% of the particles in the air could be collected and the device would not influence the heat removal performance. Moreover, we evaluated the effect of electric field on the particle collection under supposing the particle charge. In the case of electric field over 10 3 kV/m the particle collection rate could be improved dramatically
Single-particle states vs. collective modes: friends or enemies ?
Otsuka, T.; Tsunoda, Y.; Togashi, T.; Shimizu, N.; Abe, T.
2018-05-01
The quantum self-organization is introduced as one of the major underlying mechanisms of the quantum many-body systems. In the case of atomic nuclei as an example, two types of the motion of nucleons, single-particle states and collective modes, dominate the structure of the nucleus. The collective mode arises as the balance between the effect of the mode-driving force (e.g., quadrupole force for the ellipsoidal deformation) and the resistance power against it. The single-particle energies are one of the sources to produce such resistance power: a coherent collective motion is more hindered by larger spacings between relevant single particle states. Thus, the single-particle state and the collective mode are "enemies" against each other. However, the nuclear forces are rich enough so as to enhance relevant collective mode by reducing the resistance power by changing single-particle energies for each eigenstate through monopole interactions. This will be verified with the concrete example taken from Zr isotopes. Thus, the quantum self-organization occurs: single-particle energies can be self-organized by (i) two quantum liquids, e.g., protons and neutrons, (ii) monopole interaction (to control resistance). In other words, atomic nuclei are not necessarily like simple rigid vases containing almost free nucleons, in contrast to the naïve Fermi liquid picture. Type II shell evolution is considered to be a simple visible case involving excitations across a (sub)magic gap. The quantum self-organization becomes more important in heavier nuclei where the number of active orbits and the number of active nucleons are larger.
Analysis of the dynamic interaction between SVOCs and airborne particles
DEFF Research Database (Denmark)
Liu, Cong; Shi, Shanshan; Weschler, Charles J.
2013-01-01
A proper quantitative understanding of the dynamic interaction between gas-phase semivolatile organic compounds (SVOCs) and airborne particles is important for human exposure assessment and risk evaluation. Questions regarding how to properly address gas/particle interactions have introduced...
An extended dissipative particle dynamics model
Cotter, C J
2003-01-01
The method of dissipative particle dynamics (DPD) was introduced by Hoogerbrugge & Koelman to study meso-scale material processes. The theoretical investigation of the DPD method was initiated by Espanol who used a Fokker-Planck formulation of the DPD method and applied the Mori-Zwanzig projection operator calculus to obtain the equations of hydrodynamics for DPD. A current limitation of DPD is that it requires a clear separation of scales between the resolved and unresolved processes. In this note, we suggest a simple extension of DPD that allows for inclusion of unresolved processes with exponentially decaying variance for any value of the decay rate. The main point of the extension is that it is as easy to implement as DPD in a numerical algorithm.
Flavor with a light dynamical "Higgs particle"
Alonso, R.; Merlo, L.; Rigolin, S.; Yepes, J.
2013-01-01
The Higgs-fermion couplings are sensitive probes of possible new physics behind a stable light Higgs particle. It is then essential to identify the flavour pattern of those interactions. We consider the case in which a strong dynamics lies behind a light Higgs, and explore the implications within the Minimal Flavour Violation ansatz. The dominant effects on flavour-changing Higgs-fermion couplings stem in this context from operators with mass dimension <6, and we analyze all relevant chiral operators up to that order, including loop-corrections induced by 4-dimensional ones. Bounds on the operator coefficients are derived from a plethora of low-energy flavour transitions, providing a guideline on which flavour-changing Higgs interactions may be open to experimental scrutiny. In particular, the coefficient of a genuinely CP-odd operator is only softly constrained and therefore its impact is potentially interesting.
Acoustofluidic particle dynamics: Beyond the Rayleigh limit.
Baasch, Thierry; Dual, Jürg
2018-01-01
In this work a numerical model to calculate the trajectories of multiple acoustically and hydrodynamically interacting spherical particles is presented. The acoustic forces are calculated by solving the fully coupled three-dimensional scattering problem using finite element software. The method is not restricted to single re-scattering events, mono- and dipole radiation, and long wavelengths with respect to the particle diameter, thus expanding current models. High frequency surface acoustic waves have been used in the one cell per well technology to focus individual cells in a two-dimensional wave-field. Sometimes the cells started forming clumps and it was not possible to focus on individual cells. Due to a lack of existing theory, this could not be fully investigated. Here, the authors use the full dynamic simulations to identify limiting factors of the one-cell-per-well technology. At first, the authors demonstrate good agreement of the numerical model with analytical results in the Rayleigh limiting case. A frequency dependent stability exchange between the pressure and velocity was then demonstrated. The numerical formulation presented in this work is relatively general and can be used for a multitude of different high frequency applications. It is a powerful tool in the analysis of microscale acoustofluidic devices and processes.
Viscosity measurement techniques in Dissipative Particle Dynamics
Boromand, Arman; Jamali, Safa; Maia, Joao M.
2015-11-01
In this study two main groups of viscosity measurement techniques are used to measure the viscosity of a simple fluid using Dissipative Particle Dynamics, DPD. In the first method, a microscopic definition of the pressure tensor is used in equilibrium and out of equilibrium to measure the zero-shear viscosity and shear viscosity, respectively. In the second method, a periodic Poiseuille flow and start-up transient shear flow is used and the shear viscosity is obtained from the velocity profiles by a numerical fitting procedure. Using the standard Lees-Edward boundary condition for DPD will result in incorrect velocity profiles at high values of the dissipative parameter. Although this issue was partially addressed in Chatterjee (2007), in this work we present further modifications (Lagrangian approach) to the original LE boundary condition (Eulerian approach) that will fix the deviation from the desired shear rate at high values of the dissipative parameter and decrease the noise to signal ratios in stress measurement while increases the accessible low shear rate window. Also, the thermostat effect of the dissipative and random forces is coupled to the dynamic response of the system and affects the transport properties like the viscosity and diffusion coefficient. We investigated thoroughly the dependency of viscosity measured by both Eulerian and Lagrangian methodologies, as well as numerical fitting procedures and found that all the methods are in quantitative agreement.
Adaptive-network models of collective dynamics
Zschaler, G.
2012-09-01
Complex systems can often be modelled as networks, in which their basic units are represented by abstract nodes and the interactions among them by abstract links. This network of interactions is the key to understanding emergent collective phenomena in such systems. In most cases, it is an adaptive network, which is defined by a feedback loop between the local dynamics of the individual units and the dynamical changes of the network structure itself. This feedback loop gives rise to many novel phenomena. Adaptive networks are a promising concept for the investigation of collective phenomena in different systems. However, they also present a challenge to existing modelling approaches and analytical descriptions due to the tight coupling between local and topological degrees of freedom. In this work, which is essentially my PhD thesis, I present a simple rule-based framework for the investigation of adaptive networks, using which a wide range of collective phenomena can be modelled and analysed from a common perspective. In this framework, a microscopic model is defined by the local interaction rules of small network motifs, which can be implemented in stochastic simulations straightforwardly. Moreover, an approximate emergent-level description in terms of macroscopic variables can be derived from the microscopic rules, which we use to analyse the system's collective and long-term behaviour by applying tools from dynamical systems theory. We discuss three adaptive-network models for different collective phenomena within our common framework. First, we propose a novel approach to collective motion in insect swarms, in which we consider the insects' adaptive interaction network instead of explicitly tracking their positions and velocities. We capture the experimentally observed onset of collective motion qualitatively in terms of a bifurcation in this non-spatial model. We find that three-body interactions are an essential ingredient for collective motion to emerge
Collective phenomena with energetic particles in fusion plasmas
International Nuclear Information System (INIS)
Breizman, B.N.; Berk, H.L.; Candy, J.
2001-01-01
Recent progress in the theory of collective modes driven by energetic particles, as well as interpretations of fast particle effects observed in fusion-related experiments, are described. New developments in linear theory include: (a) Alfven-mode frequency gap widening due to energetic trapped ions, (b) interpretation of JET results for plasma pressure effect on TAE modes, and (c) ''counter'' propagation of TAE modes due to trapped fast ion anisotropy. The new nonlinear results are: (a) theoretical explanation for the pitchfork splitting effect observed in TAE experiments on JET, (b) existence of coherent structures with strong frequency chirping due to kinetic instability, (c) self-consistent nonlinear theory for fishbone instabilities, and (d) intermittent quasilinear diffusion model for anomalous fast particle losses. (author)
Collective phenomena with energetic particles in fusion plasmas
International Nuclear Information System (INIS)
Breizman, B.N.; Berk, H.L.; Candy, J.
1999-01-01
Recent progress in the theory of collective modes driven by energetic particles, as well as interpretations of fast particle effects observed in fusion-related experiments, are described. New developments in linear theory include: (a) Alfven-mode frequency gap widening due to energetic trapped ions, (b) interpretation of JET results for plasma pressure effect on TAE modes, and (c) 'counter' propagation of TAE modes due to trapped fast ion anisotropy. The new nonlinear results are: (a) theoretical explanation for the pitchfork splitting effect observed in TAE experiments on JET, (b) existence of coherent structures with strong frequency chirping due to kinetic instability, (c) self-consistent nonlinear theory for fishbone instabilities, and (d) intermittent quasilinear diffusion model for anomalous fast particle losses. (author)
Dynamic self-organization in particle-laden channel flow
Geurts, Bernardus J.; Vreman, A.W.
2006-01-01
We study dynamic flow-structuring and mean-flow properties of turbulent particle-laden riser-flow at significant particle volume fractions of about 1.5%. We include particle–particle as well as particle–fluid interactions through inelastic collisions and drag forces, in a so-called four-way coupled
The dynamics of a charged particle
Rohrlich, Fritz
2008-01-01
Using physical arguments, I derive the physically correct equations of motion for a classical charged particle from the Lorentz-Abraham-Dirac equations (LAD) which are well known to be physically incorrect. Since a charged particle can classically not be a point particle because of the Coulomb field divergence, my derivation accounts for that by imposing a basic condition on the external force. That condition ensures that the particle's finite size charge distribution looks like a point charg...
Static and dynamic properties of smoothed dissipative particle dynamics
Alizadehrad, Davod; Fedosov, Dmitry A.
2018-03-01
In this paper, static and dynamic properties of the smoothed dissipative particle dynamics (SDPD) method are investigated. We study the effect of method parameters on SDPD fluid properties, such as structure, speed of sound, and transport coefficients, and show that a proper choice of parameters leads to a well-behaved and accurate fluid model. In particular, the speed of sound, the radial distribution function (RDF), shear-thinning of viscosity, the mean-squared displacement (〈R2 〉 ∝ t), and the Schmidt number (Sc ∼ O (103) - O (104)) can be controlled, such that the model exhibits a fluid-like behavior for a wide range of temperatures in simulations. Furthermore, in addition to the consideration of fluid density variations for fluid compressibility, a more challenging test of incompressibility is performed by considering the Poisson ratio and divergence of velocity field in an elongational flow. Finally, as an example of complex-fluid flow, we present the applicability and validity of the SDPD method with an appropriate choice of parameters for the simulation of cellular blood flow in irregular geometries. In conclusion, the results demonstrate that the SDPD method is able to approximate well a nearly incompressible fluid behavior, which includes hydrodynamic interactions and consistent thermal fluctuations, thereby providing, a powerful approach for simulations of complex mesoscopic systems.
Single-particle and collective states in transfer reactions
International Nuclear Information System (INIS)
Lhenry, I.; Suomijaervi, T.; Giai, N. van
1993-01-01
The possibility to excite collective states in transfer reactions induced by heavy ions is studied. Collective states are described within the Random Phase Approximation (RPA) and the collectivity is defined according to the number of configurations contributing to a given state. The particle transfer is described within the Distorted Wave Born Approximation (DWBA). Calculations are performed for two different stripping reactions: 207 Pb( 20 Ne, 19 Ne) 208 Pb and 59 Co( 20 Ne, 19 F) 60 Ni at 48 MeV/nucleon for which experimental data are available. The calculation shows that a sizeable fraction of collective strength can be excited in these reactions. The comparison with experiment shows that this parameter-free calculation qualitatively explains the data. (author) 19 refs.; 10 figs
Computational Fluid-Particle Dynamics for the Flame Synthesis of Alumina Particles
DEFF Research Database (Denmark)
Johannessen, Tue; Pratsinis, Sotirie E.; Livbjerg, Hans
2000-01-01
A mathematical model for the dynamics of particle growth during synthesis of ultra fine particles in diffusion flames is presented. The model includes the kinetics of particle coalescence and coagulation, and when combined with a calculation of the temperature, velocity and gas composition distri...
Collective dynamics in dense fluid mixtures
International Nuclear Information System (INIS)
Sinha, S.
1992-01-01
This thesis deals with the short wavelength collective dynamics of dense binary fluid mixtures. The analysis shows that at the level of linearized generalized hydrodynamics, the longitudinal modes of the system separates essentially into two parts - one involves the coupling of partial density fluctuations of the two species and the other involves coupling of longitudinal momentum and temperature fluctuations. The authors have shown that the coupling of longitudinal momentum and temperature fluctuations leads to an adequate description of sound propagation in such systems. In particular, they show that structural disorder controls the trapping of sound waves in dense mixtures. The coupling of the partial density fluctuations of the two species leads to a simple description of the partial dynamic structure factors. The results are in agreement with the molecular dynamics simulations of soft sphere mixtures. The partial density fluctuations are the slowest decaying fluctuations on molecular length scales and it turns out that nonlinear coupling of these slow modes leads to important corrections to the long time behavior of the time correlation functions determining the shear viscosity in dense mixtures
Antifouling paint particles: Sources, occurrence, composition and dynamics.
Soroldoni, Sanye; Castro, Ítalo Braga; Abreu, Fiamma; Duarte, Fabio Andrei; Choueri, Rodrigo Brasil; Möller, Osmar Olinto; Fillmann, Gilberto; Pinho, Grasiela Lopes Leães
2018-06-15
Sources, occurrence, composition and dynamics of antifouling paint particles (APPs) were assessed in Patos Lagoon estuary (PLE), Southern Brazil. Ten areas including boatyards, a marina and artisanal fishing harbors were identified in the estuarine system as potential sources of APPs. The APPs generated in these areas were highly heterogeneous considering the size, shape and composition. Based on an estimate of antifouling paint usage and amount of boats in each studied area, artisanal fishing harbors could be the main source of particles to PLE. However, relatively high amounts of APPs, which ranged from 130 to 40,300 μg g -1 , were detected in sediments collected in front of boatyards and a marina. The uneven distribution of APPs levels among the sediment samples were probably due to the presence of diffuse sources (fishing harbors) associated to "hotspots" (boatyards and marina) along the study area. Additionally, data of settling experiment indicate that size, shape and density of APPs, combined to local hydrodynamics, appears to contribute to the mobility of these residues within the estuary. In the main channel of PLE, smaller particles tend to be transported to adjacent coastal zone while particles tend to be deposited in the sediment surface of sheltered areas. Since different trace metals, and booster biocides were detected in APPs that were not correctly disposed, these particles can be considered as an important source of contamination to aquatic environments. The present data suggest that APPs represent an environmental problem for aquatic systems in Brazil, since the country lacks legislation in addition to inefficient control mechanisms. An improvement in boat maintenance processes are urgently needed to avoid this continuous release of APPs into the aquatic systems. Copyright © 2018 Elsevier Ltd. All rights reserved.
Petel, Oren E.; Ouellet, Simon
2017-07-01
The evolution of material strength within several dense particle suspensions impacted by a projectile is investigated and shown to be strongly dependent on the particle material in suspension. For stronger particles, such as silicon carbide, the shear strength of the fluid is shown to increase with the ballistic impact strength. For weaker particles, such as silica, the shear strength of the suspension is found to be independent of impact strength in this dynamic range of tests. A soft-capture technique is employed to collect ejecta samples of a silica-based shear thickening fluid, following a ballistic impact and penetration event. Ejecta samples that were collected from impacts at three different velocities are observed and compared to the benchmark particles using a Scanning Electron Microscope. The images show evidence of fractured and deformed silica particles recovered among the nominally 1 μm diameter monodisperse spheres. There is also evidence of particle fragments that appear to be the result of interparticle grinding. The trends observed in the shear strength estimates are interpreted with regards to the particle damage seen in the ejecta recovery experiments to develop a concept of the impact response of these fluids. The results suggest that particle slip through deformation is likely the dominant factor in limiting the transient impact strength of these fluids. Particularly, particle strength is important in the formation and collapse of dynamically jammed particle contact networks in the penetration process.
Particle ''swarm'' dynamics in triboelectric systems
International Nuclear Information System (INIS)
Vinay, Stephen J.; Jhon, Myung S.
2001-01-01
Using state-of-the-art flow/particle visualization and animation techniques, the time-dependent statistical distributions of charged-particle ''swarms'' exposed to external fields (both electrostatic and flow) are examined. We found that interparticle interaction and drag forces mainly influenced swarm dispersion in a Lagrangian reference frame, whereas the average particle trajectory was affected primarily by the external electric and flow fields
Dynamics and segregation of particles in a cyclone
International Nuclear Information System (INIS)
Mothes, H.
1982-01-01
In cyclone separator systems, the separation efficiency increases with increasing dust concentration, although the centripetal force, which is responsible for particle separation in a vortex, decreases with increasing particle concentration. This is demonstrated by laser-doppler-velocity-measurements. The measurements of separation efficiency together with the determination of particle size using stray radiation show that the effect of particle agglomeration is of major importance in the case of higher particle concentrations. Also smaller particles can be separated from the gas by agglomeration to larger particles, which can easily be separated. The calculations show that the improved separation at higher concentrations can be explained by this particle agglomeration effect. Finally different cyclone design models are discussed on the basis of the experimental results and the theoretical considerations on the particle dynamics in a cyclone. (orig./DG) [de
Constrained dynamics of an inertial particle in a turbulent flow
International Nuclear Information System (INIS)
Obligado, M; Baudet, C; Gagne, Y; Bourgoin, M
2011-01-01
Most of theoretical and numerical works for free advected particles in a turbulent flow, which only consider the drag force acting on the particles, fails to predict recent experimental results for the transport of finite size particles. These questions have motivated a series of experiments trying to emphasize the actual role of the drag force by imposing this one as an unambiguous leading forcing term acting on a particle in a turbulent background. This is achieved by considering the constrained dynamics of towed particles in a turbulent environment. In the present work, we focus on the influence of particles inertia on its velocity and acceleration Lagrangian statistics and energy spectral density. Our results are consistent with a filtering scenario resulting from the viscous response time of an inertial particle whose dynamics is coupled to the surrounding fluid via strong contribution of drag.
Formation and dynamic change of aerosol particles
International Nuclear Information System (INIS)
Kasahara, Mikio
1986-01-01
Processes of aerosol particle nucleation are roughly grouped into two types. In one, aerosol is produced as a result of dispersion of solid or liquid by mechanical force while in the other it is formed through phase transition from gas to solid or liquid due to cohesion caused by cooling, expansion or chemical reaction. This article reviews various aspects of aerosol particle nucleation through the latter type of processes and behaviors of the particles formed. Gas-to-particle conversion processes are divided into those of homogeneous and heterogeneous nucleation, and the former include homogeneous homomolecular and homogeneous heteromolecular nucleation processes. Here, homoneneous homomolecular nucleation is described centering on the theories proposed by Backer and Doring-Zeldovich-Volmer-Frenkel while homogeneous heteromolecular systems are outlined citing the theory developed by Kiang and Stauffer. Heterogeneous nucleation (or heterogeneous condensation) is discussed on the basis of the relationship between the mean free path of air molecules and the particle size. Various theories for particle formation and growth are listed and briefly outlined. Some of them are compared with experimental results. Models are cited to explain behaviors of aerosol particles after being formed. Also described is simulation of particle nucleation and growth in relation to atmospheric pollution and possible accidents of liquid-metal fast breeder reactors. (Nogami, K.)
Flue gas conditioning for improved particle collection in electrostatic precipitators
Energy Technology Data Exchange (ETDEWEB)
Durham, M.D.
1992-04-27
The purpose of this research program is to identify and evaluate a variety of additives capable of increasing particle cohesion which could be used for improving collection efficiency in an ESP. A three-phase screening process will be used to provide the, evaluation of many additives in a logical and cost-effective manner. The three step approach involves the following experimental setups: 1. Provide a preliminary screening in the laboratory by measuring the effects of various conditioning agents on reentrainment of flyash particles in an electric field operating at simulated flue gas conditions. 2. Evaluate the successful additives using a 100 acfm bench-scale ESP operating on actual flue gas. 3. Obtain the data required for scaling up the technology by testing the two or three most promising conditioning agents at the pilot scale.
submitter Introduction to Collective Effects in Particle Accelerators
Zimmermann, Frank
2016-01-01
The beam intensity and the beam brightness of particle accelerators or colliders operated for high - energy physics were, and are, often severely limited by “collective effects” (e.g.[1]). By contrast, new light sources, such as linac - based free electron lasers, may even rely on collective instabilities to accomplish their mission! The term “collective effects” refers to the interaction of beam particles with each other through a variety of processes, e.g. (1) non-delayed self-fields and image fields present even for constant perfectly conducting and magnetic boundaries (direct and indirect “space - charge effects”), (2) longer - lived electro-magnetic “wake fields” due to a finite chamber resistivity or geometric variation in the beam - pipe cross section, which typically affect later parts of the beam, (3) coherent synchrotron radiation, which on a curved trajectory may even influence earlier parts of the beam, giving rise to “non-causal” wake fields, otherwise not normally encountered...
Energetic Particles Dynamics in Mercury's Magnetosphere
Walsh, Brian M.; Ryou, A.S.; Sibeck, D. G.; Alexeev, I. I.
2013-01-01
We investigate the drift paths of energetic particles in Mercury's magnetosphere by tracing their motion through a model magnetic field. Test particle simulations solving the full Lorentz force show a quasi-trapped energetic particle population that gradient and curvature drift around the planet via "Shabansky" orbits, passing though high latitudes in the compressed dayside by equatorial latitudes on the nightside. Due to their large gyroradii, energetic H+ and Na+ ions will typically collide with the planet or the magnetopause and will not be able to complete a full drift orbit. These simulations provide direct comparison for recent spacecraft measurements from MESSENGER. Mercury's offset dipole results in an asymmetric loss cone and therefore an asymmetry in particle precipitation with more particles precipitating in the southern hemisphere. Since the planet lacks an atmosphere, precipitating particles will collide directly with the surface of the planet. The incident charged particles can kick up neutrals from the surface and have implications for the formation of the exosphere and weathering of the surface
Single-particle and collective excitations in Ni-63
Albers, M.; Zhu, S.; Janssens, R. V. F.; Gellanki, Jnaneswari; Ragnarsson, Ingemar; Alcorta, M.; Baugher, T.; Bertone, P. F.; Carpenter, M. P.; Chiara, C. J.; Chowdhury, P.; Deacon, A. N.; Gade, A.; DiGiovine, B.; Hoffman, C. R.
2013-01-01
A study of excited states in Ni-63 up to an excitation energy of 28 MeV and a probable spin of 57/2 was carried out with the Mg-26(Ca-48,2 alpha 3n gamma)Ni-63 reaction at beam energies between 275 and 320 MeV. Three collective bands, built upon states of single-particle character, were identified. For two of the three bands, the transition quadrupole moments were extracted, herewith quantifying the deformation at high spin. The results have been compared with shell-model and cranked Nilsson-...
Collective dynamics in dense Hg vapour
International Nuclear Information System (INIS)
Ishikawa, D; Inui, M; Matsuda, K; Tamura, K; Baron, A Q R; Tsutsui, S; Tanaka, Y; Ishikawa, T
2004-01-01
The dynamic structure factor, S(Q,ο), of dense Hg vapour has been measured by high resolution inelastic x-ray scattering for densities of 3.0, 2.1 and 1.0 g cm -3 corresponding to 0.52, 0.36 and 0.17 times the critical density, respectively, and for momentum transfers between 2.0 and 48 nm -1 . Analysis of the longitudinal current-current correlation function in the framework of generalized hydrodynamics reveals that the frequencies of the collective excitations increase faster with Q than estimated from the macroscopic speed of sound. The ratios of the frequencies were found to be 1.27 at 3.0 g cm -3 , 1.12 at 2.1 g cm -3 and 1.10 at 1.0 g cm -3 . The sound velocity obtained from the present experiments is well reproduced by a wavenumber dependent adiabatic sound velocity, which means that the collective modes remain in the spectra of dense Hg vapour. (letter to the editor)
Collective Dynamics in Physical and Social Networks
Isakov, Alexander
We study four systems where individual units come together to display a range of collective behavior. First, we consider a physical system of phase oscillators on a network that expands the Kuramoto model to include oscillator-network interactions and the presence of noise: using a Hebbian-like learning rule, oscillators that synchronize in turn strengthen their connections to each other. We find that the average degree of connectivity strongly affects rates of flipping between aligned and anti-aligned states, and that this result persists to the case of complex networks. Turning to a fully multi-player, multi-strategy evolutionary dynamics model of cooperating bacteria that change who they give resources to and take resources from, we find several regimes that give rise to high levels of collective structure in the resulting networks. In this setting, we also explore the conditions in which an intervention that affects cooperation itself (e.g. "seeding the network with defectors") can lead to wiping out an infection. We find a non-monotonic connection between the percent of disabled cooperation and cure rate, suggesting that in some regimes a limited perturbation can lead to total population collapse. At a larger scale, we study how the locomotor system recovers after amputation in fruit flies. Through experiment and a theoretical model of multi-legged motion controlled by neural oscillators, we find that proprioception plays a role in the ability of flies to control leg forces appropriately to recover from a large initial turning bias induced by the injury. Finally, at the human scale, we consider a social network in a traditional society in Africa to understand how social ties lead to group formation for collective action (stealth raids). We identify critical and distinct roles for both leadership (important for catalyzing a group) and friendship (important for final composition). We conclude with prospects for future work.
A simplectic formulation of relativistic particle dynamics
International Nuclear Information System (INIS)
Tulczyjew, W.M.
1976-12-01
Particle mechanics is formulated in terms of symplectic relations and infinitesimal symplectic relations. Generating functions of symplectic relations are shown to be classical counterparts of Green's functions of wave mechanics. (orig.) [de
A sympletic formulation of relativistic particle dynamics
International Nuclear Information System (INIS)
Tulczyjew, W.M.
1977-01-01
Particle mechanics is formulated in terms of sympletic relations and infinitesimal symplectic relations. Generating functions of symplectic relations are shown to be classical counterparts of Green's functions of wave mechanics. (author)
DYNAMIC PARTICLE SYSTEMS FOR OBJECT STRUCTURE EXTRACTION
Directory of Open Access Journals (Sweden)
Olivier Lavialle
2011-05-01
Full Text Available A new deformable model based on the use of a particle system is introduced. By defining the local behavior of each particle, the system behaves as an active contour model showing a variable topology and regularization properties. The efficiency of the particle system is illustrated by two applications: the first one concerns the use of the system as a skeleton extractor based on the propagation of particles inside a treeshaped object. Using this method, it is possible to generate a cartography of structures such as veins or channels. In a second illustration, the system avoids the problem of initialization of a piecewise cubic Bspline network used to straighten curved text lines.
Single Particle Linear and Nonlinear Dynamics
Energy Technology Data Exchange (ETDEWEB)
Cai, Y
2004-06-25
I will give a comprehensive review of existing particle tracking tools to assess long-term particle stability for small and large accelerators in the presence of realistic magnetic imperfections and machine misalignments. The emphasis will be on the tracking and analysis tools based upon the differential algebra, Lie operator, and ''polymorphism''. Using these tools, a uniform linear and non-linear analysis will be outlined as an application of the normal form.
Single Particle Linear and Nonlinear Dynamics
International Nuclear Information System (INIS)
Cai, Y
2004-01-01
I will give a comprehensive review of existing particle tracking tools to assess long-term particle stability for small and large accelerators in the presence of realistic magnetic imperfections and machine misalignments. The emphasis will be on the tracking and analysis tools based upon the differential algebra, Lie operator, and ''polymorphism''. Using these tools, a uniform linear and non-linear analysis will be outlined as an application of the normal form
Classical particle dynamics in the quantum space
International Nuclear Information System (INIS)
Dineykhan, M.; Namsrai, Kh.
1985-01-01
It is suggested that if space-time is quantized at small distances then even at the classical level the particle motion in whole space is complicated and described by a nonlinear equation. In the quantum space the Lagrangian function or energy of the particle consists of two parts: usual kinetic and rotation term determined by the square of the inner angular momentum-torsion torque origin of which is caused by quantum nature of space. Rotation energy and rotation motion of the particle disappear in the limit l→0, l is the value of the fundamental length. In the free particle case, in addition to the rectilinear motion the particle undergoes rotation given by the inner angular momentum. Different possible types of the particle motion are discussed. Thus, the scheme may shed light on the essence of the appearance of rotation or twisting, stochastic and turbulent types of motion in classical physics and, perhaps, on the notion of spin in quantum physics within the framework of quantum character of space-time at small distances
TFTR 60 GHz alpha particle collective Thomson Scattering diagnostic
International Nuclear Information System (INIS)
Machuzak, J.S.; Woskov, P.P.; Gilmore, J.; Bretz, N.L.; Park, H.K.; Bindslev, H.
1995-03-01
A 60 GHz gyrotron collective Thomson Scattering alpha particle diagnostic has been implemented for the D-T period on TFM. Gyrotron power of 0.1-1 kW in pulses of up to 1 second can be launched in X-mode. Efficient corrugated waveguides are used with antennaes and vacuum windows of the TFTR Microwave Scattering system. A multichannel synchronous detector receiver system and spectrum analyzer acquire the scattered signals. A 200 Megasample/sec digitizer is used to resolve fine structure in the frequency spectrum. By scattering nearly perpendicular to the magnetic field, this experiment will take advantage of an enhancement of the scattered signal which results from the interaction of the alpha particles with plasma resonances in the lower hybrid frequency range. Significant enhancements are expected, which will make these measurements possible with gyrotron power less than 1 kW, while maintaining an acceptable signal to noise ratio. We hope to extract alpha particle density and velocity distribution functions from the data. The D and T fuel densities and temperatures may also be obtainable by measurement of the respective ion cyclotron harmonic frequencies
A dynamic global and local combined particle swarm optimization algorithm
International Nuclear Information System (INIS)
Jiao Bin; Lian Zhigang; Chen Qunxian
2009-01-01
Particle swarm optimization (PSO) algorithm has been developing rapidly and many results have been reported. PSO algorithm has shown some important advantages by providing high speed of convergence in specific problems, but it has a tendency to get stuck in a near optimal solution and one may find it difficult to improve solution accuracy by fine tuning. This paper presents a dynamic global and local combined particle swarm optimization (DGLCPSO) algorithm to improve the performance of original PSO, in which all particles dynamically share the best information of the local particle, global particle and group particles. It is tested with a set of eight benchmark functions with different dimensions and compared with original PSO. Experimental results indicate that the DGLCPSO algorithm improves the search performance on the benchmark functions significantly, and shows the effectiveness of the algorithm to solve optimization problems.
Competition between collective and single particle excitations in nuclear structure description
International Nuclear Information System (INIS)
Petrovici, A.N.
1983-01-01
The microscopic description of the quadrupole collective dynamics in even krypton isotopes is presented. A microscopic calculation of Bohr's collective Hamiltonian is used to describe the collective motion in 76 Kr. A single-particle basis calculated in a deformed Woods-Saxon potential leads to the potential energy surface obtained by the Strutinsky renormalization procedure, and to the inertial functions determined in the cranking model approximation. The collective Schroedinger equation is solved numerically to analyse the low-energy, even parity states in 76 Kr. A good agreement between experiment and theory is obtained without specifically adjusting any parameter in the model for this nucleus. Some results regarding statical and dynamical characteristics of sup(74,78,80)Kr isotopes are also presented. The asymmetric rotor model with admixture of two quasiparticles is used to describe the sup(66,68,70)Ge and the sup(64,66)Zn isotopes. The interplay of collective and single particle motions is further investigated by magnetic moment measurements using the method of integral angular correlations perturbed by recoil into gas. The results involve g-factor measurements for 166 Ho, 68 Ge, 64 Zn, 66 Zn and 68 Ga nuclei. Finally, a discussion of further possible improvements and more general developments of the problems under investigation is given. (author)
Dynamics of a single particle in a horizontally shaken box
Drossel, Barbara; Prellberg, Thomas
1997-01-01
We study the dynamics of a particle in a horizontally and periodically shaken box as a function of the box parameters and the coefficient of restitution. For certain parameter values, the particle becomes regularly chattered at one of the walls, thereby loosing all its kinetic energy relative to that wall. The number of container oscillations between two chattering events depends in a fractal manner on the parameters of the system. In contrast to a vertically vibrated particle, for which chat...
Regular and stochastic particle motion in plasma dynamics
International Nuclear Information System (INIS)
Kaufman, A.N.
1979-08-01
A Hamiltonian formalism is presented for the study of charged-particle trajectories in the self-consistent field of the particles. The intention is to develop a general approach to plasma dynamics. Transformations of phase-space variables are used to separate out the regular, adiabatic motion from the irregular, stochastic trajectories. Several new techniques are included in this presentation
Dynamics and statistics of heavy particles in turbulent flows
Cencini, M.; Bec, J.; Biferale, L.; Boffetta, G.; Celani, A.; Lanotte, A.; Musacchio, S.; Toschi, F.
2006-01-01
We present the results of direct numerical simulations (DNS) of turbulent flows seeded with millions of passive inertial particles. The maximum Reynolds number is Re¿~ 200. We consider particles much heavier than the carrier flow in the limit when the Stokes drag force dominates their dynamical
Kawasaki dynamics with two types of particles : critical droplets
Hollander, den W.Th.F.; Nardi, F.R.; Troiani, A.
2012-01-01
This is the third in a series of three papers in which we study a two-dimensional lattice gas consisting of two types of particles subject to Kawasaki dynamics at low temperature in a large finite box with an open boundary. Each pair of particles occupying neighboring sites has a negative binding
Kawasaki dynamics with two types of particles : critical droplets
Hollander, den W.Th.F.; Nardi, F.R.; Troiani, A.
2012-01-01
This is the third in a series of three papers in which we study a two-dimensional lattice gas consisting of two types of particles subject to Kawasaki dynamics at low temperature in a large ¿nite box with an open boundary. Each pair of particles occupying neighboring sites has a negative binding
Nonlinear dynamics aspects of particle accelerators
International Nuclear Information System (INIS)
Araki, H.; Ehlers, J.; Hepp, K.; Kippenhahn, R.; Weidenmuller, A.; Zittartz, J.
1986-01-01
This book contains 18 selections. Some of the titles are: Integrable and Nonintegrable Hamiltonian Systems; Nonlinear Dynamics Aspects of Modern Storage Rings; Nonlinear Beam-Beam Resonances; Synchro-Betatron Resonances; Review of Beam-Beam Simulations; and Perturbation Method in Nonlinear Dynamics
Relativistic and separable classical hamiltonian particle dynamics
International Nuclear Information System (INIS)
Sazdjian, H.
1981-01-01
We show within the Hamiltonian formalism the existence of classical relativistic mechanics of N scalar particles interacting at a distance which satisfies the requirements of Poincare invariance, separability, world-line invariance and Einstein causality. The line of approach which is adopted here uses the methods of the theory of systems with constraints applied to manifestly covariant systems of particles. The study is limited to the case of scalar interactions remaining weak in the whole phase space and vanishing at large space-like separation distances of the particles. Poincare invariance requires the inclusion of many-body, up to N-body, potentials. Separability requires the use of individual or two-body variables and the construction of the total interaction from basic two-body interactions. Position variables of the particles are constructed in terms of the canonical variables of the theory according to the world-line invariance condition and the subsidiary conditions of the non-relativistic limit and separability. Positivity constraints on the interaction masses squared of the particles ensure that the velocities of the latter remain always smaller than the velocity of light
Dynamic wormholes with particle creation mechanism
Energy Technology Data Exchange (ETDEWEB)
Pan, Supriya; Chakraborty, Subenoy [Jadavpur University, Department of Mathematics, Kolkata (India)
2015-01-01
The present work deals with a spherically symmetric space-time which is asymptotically (at spatial infinity) FRW space-time and represents wormhole configuration: The matter component is divided into two parts - (a) dissipative but homogeneous and isotropic fluid, and (b) an inhomogeneous and anisotropic barotropic fluid. Evolving wormhole solutions are obtained when isotropic fluid is phantom in nature and there is a big rip singularity at the end. Here the dissipative phenomena is due to the particle creation mechanism in non-equilibrium thermodynamics. Using the process to be adiabatic, the dissipative pressure is expressed linearly to the particle creation rate. For two choices of the particle creation rate as a function of the Hubble parameter, the equation of state parameter of the isotropic fluid is constrained to be in the phantom domain, except in one choice, it is possible to have wormhole configuration with normal isotropic fluid. (orig.)
Measurements of multi-particle correlations and collective flow with the ATLAS detector
Bold, Tomasz; The ATLAS collaboration
2017-01-01
The measurement of flow harmonics of charged particles from v_2 to v_7 in Pb+Pb collisions in the wide range of transverse momentum and pseudorapidity provides not only a way to study the initial state of the nuclear collisions and soft particle collective dynamics, but also provides insight into jet quenching via the measurement of flow harmonics at high transverse momenta. The longitudinal fluctuations of the v_n and event-plane angles Psi_n are also presented. The longitudinal flow decorrelations have contributions from v_n-magnitude fluctuations and event plane twist. A four-particle correlator is used to separate these two effects. Results show both effects have a linear dependence on pseudorapidity separation from v_2 to v_5, and show a small but measurable variation with collision energy. While collectivity is well established in collisions involving heavy nuclei, its evidence in pp collisions is less clear. In order to assess the collective nature of multi-particle production, the correlation measurem...
Measurements of multi-particle correlations and collective flow with the ATLAS detector
Bold, Tomasz; The ATLAS collaboration
2017-01-01
The measurement of flow harmonics of charged particles from $v_2$ to $v_7$ in Pb+Pb collisions in the wide range of transverse momentum and pseudorapidity provides not only a way to study the initial state of the nuclear collisions and soft particle collective dynamics, but also provides insight into jet quenching via the measurement of flow harmonics at high transverse momenta. The longitudinal fluctuations of the $v_n$ and event-plane angles $\\Psi_n$ are also presented. The longitudinal flow decorrelations have contributions from $v_n$-magnitude fluctuations and event plane twist. A four-particle correlator is used to separate these two effects. Results show both effects have a linear dependence on pseudorapidity separation from $v_2$ to $v_5$, and show a small but measurable variation with collision energy. While collectivity is well established in collisions involving heavy nuclei, its evidence in pp collisions is less clear. In order to assess the collective nature of multi-particle production, the corre...
Relativistic three-particle dynamical equations: I. Theoretical development
International Nuclear Information System (INIS)
Adhikari, S.K.; Tomio, L.; Frederico, T.
1993-11-01
Starting from the two-particle Bethe-Salpeter equation in the ladder approximation and integrating over the time component of momentum, three dimensional scattering integral equations satisfying constrains of relativistic unitarity and covariance are rederived. These equations were first derived by Weinberg and by Blankenbecler and Sugar. These two-particle equations are shown to be related by a transformation of variables. Hence it is shown to perform and relate dynamical calculation using these two equations. Similarly, starting from the Bethe-Salpeter-Faddeev equation for the three-particle system and integrating over the time component of momentum, several three dimensional three-particle scattering equations satisfying constraints of relativistic unitary and covariance are derived. Two of these three-particle equations are related by a transformation of variables as in the two-particle case. The three-particle equations obtained are very practical and suitable for performing relativistic scattering calculations. (author)
Real-time visualization of dynamic particle contact failures
Energy Technology Data Exchange (ETDEWEB)
Parab, Niranjan D.; Hudspeth, Matthew; Claus, Ben; Guo, Zherui; Sun, Tao; Fezzaa, Kamel; Chen, Weinong W.
2017-01-01
Granular materials are widely used to resist impact and blast. Under these dynamic loadings, the constituent particles in the granular system fracture. To study the fracture mechanisms in brittle particles under dynamic compressive loading, a high speed X-ray phase contrast imaging setup was synchronized with a Kolsky bar apparatus. Controlled compressive loading was applied on two contacting particles using the Kolsky bar apparatus and fracture process was captured using the high speed X-ray imaging setup. Five different particles were investigated: soda-lime glass, polycrystalline silica (silicon dioxide), polycrystalline silicon, barium titanate glass, and yttrium stabilized zirconia. For both soda lime glass and polycrystalline silica particles, one of the particles fragmented explosively, thus breaking into many small pieces. For Silicon and barium titanate glass particles, a finite number of cracks were observed in one of the particles causing it to fracture. For yttrium stabilized zirconia particles, a single meridonial crack developed in one of the particles, breaking it into two parts.
Lagrangian particle method for compressible fluid dynamics
Samulyak, Roman; Wang, Xingyu; Chen, Hsin-Chiang
2018-06-01
A new Lagrangian particle method for solving Euler equations for compressible inviscid fluid or gas flows is proposed. Similar to smoothed particle hydrodynamics (SPH), the method represents fluid cells with Lagrangian particles and is suitable for the simulation of complex free surface/multiphase flows. The main contributions of our method, which is different from SPH in all other aspects, are (a) significant improvement of approximation of differential operators based on a polynomial fit via weighted least squares approximation and the convergence of prescribed order, (b) a second-order particle-based algorithm that reduces to the first-order upwind method at local extremal points, providing accuracy and long term stability, and (c) more accurate resolution of entropy discontinuities and states at free interfaces. While the method is consistent and convergent to a prescribed order, the conservation of momentum and energy is not exact and depends on the convergence order. The method is generalizable to coupled hyperbolic-elliptic systems. Numerical verification tests demonstrating the convergence order are presented as well as examples of complex multiphase flows.
Particle hopping vs. fluid-dynamical models for traffic flow
Energy Technology Data Exchange (ETDEWEB)
Nagel, K.
1995-12-31
Although particle hopping models have been introduced into traffic science in the 19509, their systematic use has only started recently. Two reasons for this are, that they are advantageous on modem computers, and that recent theoretical developments allow analytical understanding of their properties and therefore more confidence for their use. In principle, particle hopping models fit between microscopic models for driving and fluiddynamical models for traffic flow. In this sense, they also help closing the conceptual gap between these two. This paper shows connections between particle hopping models and traffic flow theory. It shows that the hydrodynamical limits of certain particle hopping models correspond to the Lighthill-Whitham theory for traffic flow, and that only slightly more complex particle hopping models produce already the correct traffic jam dynamics, consistent with recent fluid-dynamical models for traffic flow. By doing so, this paper establishes that, on the macroscopic level, particle hopping models are at least as good as fluid-dynamical models. Yet, particle hopping models have at least two advantages over fluid-dynamical models: they straightforwardly allow microscopic simulations, and they include stochasticity.
Dynamics of the Wigner crystal of composite particles
Shi, Junren; Ji, Wencheng
2018-03-01
Conventional wisdom has long held that a composite particle behaves just like an ordinary Newtonian particle. In this paper, we derive the effective dynamics of a type-I Wigner crystal of composite particles directly from its microscopic wave function. It indicates that the composite particles are subjected to a Berry curvature in the momentum space as well as an emergent dissipationless viscosity. While the dissipationless viscosity is the Chern-Simons field counterpart for the Wigner crystal, the Berry curvature is a feature not presented in the conventional composite fermion theory. Hence, contrary to general belief, composite particles follow the more general Sundaram-Niu dynamics instead of the ordinary Newtonian one. We show that the presence of the Berry curvature is an inevitable feature for a dynamics conforming to the dipole picture of composite particles and Kohn's theorem. Based on the dynamics, we determine the dispersions of magnetophonon excitations numerically. We find an emergent magnetoroton mode which signifies the composite-particle nature of the Wigner crystal. It occurs at frequencies much lower than the magnetic cyclotron frequency and has a vanishing oscillator strength in the long-wavelength limit.
Dynamical phases of attractive particles sliding on a structured surface
International Nuclear Information System (INIS)
Hasnain, J; Jungblut, S; Dellago, C
2015-01-01
Inspired by experiments on quartz crystal microbalance setups, we study the mobility of a monolayer of Lennard-Jones particles driven over a hexagonal external potential. We pay special attention to the changes in the dynamical phases that arise when the lattice constant of the external substrate potential and the Lennard-Jones interaction are mismatched. We find that if the average particle separation is such that the particles repel each other, or interact harmonically, the qualitative behavior of the system is akin to that of a monolayer of purely repulsive Yukawa particles. On the other hand, if the particles typically attract each other, the ensuing dynamical states are determined entirely by the relative strength of the Lennard-Jones interaction with respect to that of the external potential. (paper)
Dynamics of a jumping particle on a staircase profile
International Nuclear Information System (INIS)
Campos, J.; Romero-Valles, M.J.; Torres, P.J.; Veerman, J.J.P.
2007-01-01
We perform a detailed analysis of the dynamics of the descent of a particle bouncing down a staircase profile under the action of gravity. In order to get interesting dynamics we make a detail analysis of the case which the particle loses momentum in the direction orthogonal to the collision plane but preserves the tangential component of the momentum. We prove that in this case all orbits are bounded and show the existence and stability of periodic solutions. The interplay between loss and gain of energy due to impacts and free falling respectively generates a rich dynamics
Polymer nanocomposites: polymer and particle dynamics
Kim, Daniel
2012-01-01
Polymer nanocomposites containing nanoparticles smaller than the random coil size of their host polymer chains are known to exhibit unique properties, such as lower viscosity and glass transition temperature relative to the neat polymer melt. It has been hypothesized that these unusual properties result from fast diffusion of the nanostructures in the host polymer, which facilitates polymer chain relaxation by constraint release and other processes. In this study, the effects of addition of sterically stabilized inorganic nanoparticles to entangled cis-1,4-polyisoprene and polydimethylsiloxane on the overall rheology of nanocomposites are discussed. In addition, insights about the relaxation of the host polymer chains and transport properties of nanoparticles in entangled polymer nanocomposites are presented. The nanoparticles are found to act as effective plasticizers for their entangled linear hosts, and below a critical, chemistry and molecular-weight dependent particle volume fraction, lead to reduced viscosity, glass transition temperature, number of entanglements, and polymer relaxation time. We also find that the particle motions in the polymer host are hyperdiffusive and at the nanoparticle length scale, the polymer host acts like a simple, ideal fluid and the composites\\' viscosity rises with increasing particle concentration. © 2012 The Royal Society of Chemistry.
Adachi, K.; Gong, Z.; Bateman, A. P.; Martin, S. T.; Cirino, G. G.; Artaxo, P.; Sedlacek, A. J., III; Buseck, P. R.
2014-12-01
Single-particle analysis using transmission electron microscopy (TEM) shows composition and morphology of individual aerosol particles collected during the GoAmazon2014 campaign. These TEM results indicate aerosol types and mixing states, both of which are important for evaluating particle optical properties and cloud condensation nuclei activity. The samples were collected at the T3 site, which is located in the Amazon forest with influences from the urban pollution plume from Manaus. Samples were also collected from the T0 site, which is in the middle of the jungle with minimal to no influences of anthropogenic sources. The aerosol particles mainly originated from 1) anthropogenic pollution (e.g., nanosphere soot, sulfate), 2) biogenic emissions (e.g., primary biogenic particles, organic aerosols), and 3) long-range transport (e.g., sea salts). We found that the biogenic organic aerosol particles contain homogeneously distributed potassium. Particle viscosity is important for evaluating gas-particle interactions and atmospheric chemistry for the particles. Viscosity can be estimated from the rebounding behavior at controlled relative humidities, i.e., highly viscous particles display less rebound on a plate than low-viscosity particles. We collected 1) aerosol particles from a plate (non-rebounded), 2) those that had rebounded from the plate and were then captured onto an adjacent sampling plate, and 3) particles from ambient air using a separate impactor sampler. Preliminary results show that more than 90% of non-rebounded particles consisted of nanosphere soot with or without coatings. The coatings mostly consisted of organic matter. Although rebounded particles also contain nanosphere soot (number fraction 64-69%), they were mostly internally mixed with sulfate, organic matter, or their mixtures. TEM tilted images suggested that the rebounded particles were less deformed on the substrate, whereas the non-rebounded particles were more deformed, which could
Single-particle dynamics - RF acceleration
International Nuclear Information System (INIS)
Montague, B.W.
1977-01-01
In this paper the rf acceleration of both synchronous and non-synchronous particles is discussed and a simple linearized equation of small amplitude synchrotron oscillations is derived. Phase stability, the hamiltonian for synchrotron oscillations, oscillation amplitudes and adiabatic damping are then briefly discussed. The final sections of the paper contain a description of the basic principles of rf beam stacking in the longitudinal phase space of intersecting Storage Rings and a description of phase displacement acceleration which inspite of certain disadvantages, remains an attractive technique for proton storage rings. (B.D.)
Liquid markets and market liquids . Collective and single-asset dynamics in financial markets
Cuniberti, G.; Matassini, L.
2001-04-01
We characterize the collective phenomena of a liquid market. By interpreting the behavior of a no-arbitrage N asset market in terms of a particle system scenario, (thermo)dynamical-like properties can be extracted from the asset kinetics. In this scheme the mechanisms of the particle interaction can be widely investigated. We test the verisimilitude of our construction on two-decade stock market daily data (DAX30) and show the result obtained for the interaction potential among asset pairs.
Single-particle beam dynamics in Boomerang
International Nuclear Information System (INIS)
Jackson, Alan; Nishimura, Hiroshi
2003-01-01
We describe simulations of the beam dynamics in the storage ring (Boomerang), a 3-GeV third-generation light source being designed for the Australian Synchrotron Project[1]. The simulations were performed with the code Goemon[2]. They form the basis for design specifications for storage ring components (apertures, alignment tolerances, magnet quality, etc.), and for determining performance characteristics such as coupling and beam lifetime
Diffusion of particles over dynamically disordered lattice
Czech Academy of Sciences Publication Activity Database
Tarasenko, Alexander; Jastrabík, Lubomír
2011-01-01
Roč. 13, č. 6 (2011), s. 2300-2306 ISSN 1463-9076 R&D Projects: GA AV ČR KAN301370701; GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100522 Keywords : diffusion * Monte Carlo simulations * dynamic disordered lattice Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.573, year: 2011
Hydrodynamics in adaptive resolution particle simulations: Multiparticle collision dynamics
Energy Technology Data Exchange (ETDEWEB)
Alekseeva, Uliana, E-mail: Alekseeva@itc.rwth-aachen.de [Jülich Supercomputing Centre (JSC), Institute for Advanced Simulation (IAS), Forschungszentrum Jülich, D-52425 Jülich (Germany); German Research School for Simulation Sciences (GRS), Forschungszentrum Jülich, D-52425 Jülich (Germany); Winkler, Roland G., E-mail: r.winkler@fz-juelich.de [Theoretical Soft Matter and Biophysics, Institute for Advanced Simulation (IAS), Forschungszentrum Jülich, D-52425 Jülich (Germany); Sutmann, Godehard, E-mail: g.sutmann@fz-juelich.de [Jülich Supercomputing Centre (JSC), Institute for Advanced Simulation (IAS), Forschungszentrum Jülich, D-52425 Jülich (Germany); ICAMS, Ruhr-University Bochum, D-44801 Bochum (Germany)
2016-06-01
A new adaptive resolution technique for particle-based multi-level simulations of fluids is presented. In the approach, the representation of fluid and solvent particles is changed on the fly between an atomistic and a coarse-grained description. The present approach is based on a hybrid coupling of the multiparticle collision dynamics (MPC) method and molecular dynamics (MD), thereby coupling stochastic and deterministic particle-based methods. Hydrodynamics is examined by calculating velocity and current correlation functions for various mixed and coupled systems. We demonstrate that hydrodynamic properties of the mixed fluid are conserved by a suitable coupling of the two particle methods, and that the simulation results agree well with theoretical expectations.
Role of quantum statistics in multi-particle decay dynamics
Marchewka, Avi; Granot, Er'el
2015-04-01
The role of quantum statistics in the decay dynamics of a multi-particle state, which is suddenly released from a confining potential, is investigated. For an initially confined double particle state, the exact dynamics is presented for both bosons and fermions. The time-evolution of the probability to measure two-particle is evaluated and some counterintuitive features are discussed. For instance, it is shown that although there is a higher chance of finding the two bosons (as oppose to fermions, and even distinguishable particles) at the initial trap region, there is a higher chance (higher than fermions) of finding them on two opposite sides of the trap as if the repulsion between bosons is higher than the repulsion between fermions. The results are demonstrated by numerical simulations and are calculated analytically in the short-time approximation. Furthermore, experimental validation is suggested.
Role of quantum statistics in multi-particle decay dynamics
International Nuclear Information System (INIS)
Marchewka, Avi; Granot, Er’el
2015-01-01
The role of quantum statistics in the decay dynamics of a multi-particle state, which is suddenly released from a confining potential, is investigated. For an initially confined double particle state, the exact dynamics is presented for both bosons and fermions. The time-evolution of the probability to measure two-particle is evaluated and some counterintuitive features are discussed. For instance, it is shown that although there is a higher chance of finding the two bosons (as oppose to fermions, and even distinguishable particles) at the initial trap region, there is a higher chance (higher than fermions) of finding them on two opposite sides of the trap as if the repulsion between bosons is higher than the repulsion between fermions. The results are demonstrated by numerical simulations and are calculated analytically in the short-time approximation. Furthermore, experimental validation is suggested
Role of quantum statistics in multi-particle decay dynamics
Energy Technology Data Exchange (ETDEWEB)
Marchewka, Avi, E-mail: avi.marchewka@gmail.com [Galei Tchelet St 8 Herzliya (Israel); Granot, Er’el [Department of Electrical and Electronics Engineering, Ariel University, Ariel (Israel)
2015-04-15
The role of quantum statistics in the decay dynamics of a multi-particle state, which is suddenly released from a confining potential, is investigated. For an initially confined double particle state, the exact dynamics is presented for both bosons and fermions. The time-evolution of the probability to measure two-particle is evaluated and some counterintuitive features are discussed. For instance, it is shown that although there is a higher chance of finding the two bosons (as oppose to fermions, and even distinguishable particles) at the initial trap region, there is a higher chance (higher than fermions) of finding them on two opposite sides of the trap as if the repulsion between bosons is higher than the repulsion between fermions. The results are demonstrated by numerical simulations and are calculated analytically in the short-time approximation. Furthermore, experimental validation is suggested.
Aspects of a collective single-particle model
International Nuclear Information System (INIS)
Mutz, U.
1985-01-01
The successful application of time-reversal breaking wave functions in the framework of collective models based on a mean-field approach is for fermionic accesses known for a long while. In this thesis this concept is confirmed also for bosons. Especially in the study of some simple models the physical content of which is determined by the IBA model analytical model-solutions are found which are in a surprisingly well agreement with the exact IBA solutions and the experimental spectra. These solutions which describe the ground-state band are thereby dependent on geometrical shape parameters and of a simpler structure than those of the IBA model. Thereby the cranking model serves as an essential support. In order to obtain a better understanding of the cranking model it is tried to go beyond the mean-field approach. Thereby also the neighbourhood of the stationary point is studied. The approach consecuted here is based on the necessity of a variation after the projection. This is forced by the application of as simple wave functions as possible in the solution of the nuclear many-body problem by means of a symmetry breaking mean-field. Exactly performable is the projection however only in the case of the particle-number symmetry. The particle-number projection was applied to the study of the high spin excitations of 168 Hf. The two-quasiparticle band of this nucleus exhibits a rotational band with the moment of inertia of a rigid body. The speculation of a phase transition of the nuclear system from superfluid to normally fluid resulting from this is not confirmed in the theoretical study. The energy gap remains also in the two-quasiparticle band up to high angular momenta nearly undiminishedly. Especially it is shown that the energy-level scheme of a nucleus contains no information about phase transitions. (orig./HSI) [de
Dynamics of particles and fields. Final report
International Nuclear Information System (INIS)
Cahill, K.E.
1985-01-01
The principal objective of the proposed work is a better understanding of the internal and coordinate symmetries that characterize the interactions of the elementary particles. Their interactions - gravitational, weak, electromagnetic, and strong - seem to be well described by gauge theories, i.e., ones whose equations of motion are invariant under symmetry transformations that vary independently from point to point. The principal subject of the proposed research is the development of techniques for the numerical evaluation of path integrals, particularly those that occur in gauge theories. Other subjects of the proposed research are: quark confinement and other nonperturbative phenomena in field theory, gauge theories of compact and noncompact symmetry groups, supersymmetry, grand unification, the unification of the gravitational and electronuclear forces, and various topics in computer physics
Hierarchical silica particles by dynamic multicomponent assembly
DEFF Research Database (Denmark)
Wu, Z. W.; Hu, Q. Y.; Pang, J. B.
2005-01-01
Abstract: Aerosol-assisted assembly of mesoporous silica particles with hierarchically controllable pore structure has been prepared using cetyltrimethylammonium bromide (CTAB) and poly(propylene oxide) (PPO, H[OCH(CH3)CH2],OH) as co-templates. Addition of the hydrophobic PPO significantly...... influences the delicate hydrophilic-hydrophobic balance in the well-studied CTAB-silicate co-assembling system, resulting in various mesostructures (such as hexagonal, lamellar, and hierarchical structure). The co-assembly of CTAB, silicate clusters, and a low-molecular-weight PPO (average M-n 425) results...... in a uniform lamellar structure, while the use of a high-molecular-weight PPO (average M-n 2000), which is more hydrophobic, leads to the formation of hierarchical pore structure that contains meso-meso or meso-macro pore structure. The role of PPO additives on the mesostructure evolution in the CTAB...
Quantum Dynamics of Test Particle in Curved Space-Time
International Nuclear Information System (INIS)
Piechocki, W.
2002-01-01
To reveal the nature of space-time singularities of removable type we examine classical and quantum dynamics of a free particle in the Sitter type spacetimes. Consider space-times have different topologies otherwise are isometric. Our systems are integrable and we present analytic solutions of the classical dynamics. We quantize the systems by making use of the group theoretical method: we find an essentially self-adjoint representation of the algebra of observables integrable to the irreducible unitarity representation of the symmetry group of each consider gravitational system. The massless particle dynamics is obtained in the zero-mass limit of the massive case. Global properties of considered gravitational systems are of primary importance for the quantization procedure. Systems of a particle in space-times with removable singularities appear to be quantizable. We give specific proposal for extension of our analysis to space-times with essential type singularities. (author)
Cultural-based particle swarm for dynamic optimisation problems
Daneshyari, Moayed; Yen, Gary G.
2012-07-01
Many practical optimisation problems are with the existence of uncertainties, among which a significant number belong to the dynamic optimisation problem (DOP) category in which the fitness function changes through time. In this study, we propose the cultural-based particle swarm optimisation (PSO) to solve DOP problems. A cultural framework is adopted incorporating the required information from the PSO into five sections of the belief space, namely situational, temporal, domain, normative and spatial knowledge. The stored information will be adopted to detect the changes in the environment and assists response to the change through a diversity-based repulsion among particles and migration among swarms in the population space, and also helps in selecting the leading particles in three different levels, personal, swarm and global levels. Comparison of the proposed heuristics over several difficult dynamic benchmark problems demonstrates the better or equal performance with respect to most of other selected state-of-the-art dynamic PSO heuristics.
Single-particle dynamics - Hamiltonian formulation
International Nuclear Information System (INIS)
Montague, B.W.
1977-01-01
In this paper the Hamiltonian formalism is applied to the linear theory of accelerator dynamics. The reasons for the introduction of this method rather than the more straightforward use of second order differential equations of motion are briefly discussed. An outline of Lagrangian and Hamiltonian formalism is given, some properties of the Hamiltonian are discussed and canonical transformations are illustrated. The methods are demonstrated using elementary examples such as the simple pendulum and the procedures adopted to handle specific problems in accelerator theory are indicated. (B.D.)
Dynamical theory of anomalous particle transport
International Nuclear Information System (INIS)
Meiss, J.D.; Cary, J.R.; Escande, D.F.; MacKay, R.S.; Percival, I.C.; Tennyson, J.L.
1985-01-01
The quasi-linear theory of transport applies only in a restricted parameter range, which does not necessarily correspond to experimental conditions. Theories are developed which extend transport calculations to the regimes of marginal stochasticity and strong turbulence. Near the stochastic threshold the description of transport involves the leakage through destroyed invariant surfaces, and the dynamical scaling theory is used to obtain a universal form for transport coefficients. In the strong-turbulence regime, there is an adiabatic invariant which is preserved except near separatrices. Breakdown of this invariant leads to a new form for the diffusion coefficient. (author)
Single-Particle Quantum Dynamics in a Magnetic Lattice
Energy Technology Data Exchange (ETDEWEB)
Venturini, Marco
2001-02-01
We study the quantum dynamics of a spinless charged-particle propagating through a magnetic lattice in a transport line or storage ring. Starting from the Klein-Gordon equation and by applying the paraxial approximation, we derive a Schroedinger-like equation for the betatron motion. A suitable unitary transformation reduces the problem to that of a simple harmonic oscillator. As a result we are able to find an explicit expression for the particle wavefunction.
Collective Dynamics of Nonlinear and Disordered Systems
Radons, G; Just, W
2005-01-01
Phase transitions in disordered systems and related dynamical phenomena are a topic of intrinsically high interest in theoretical and experimental physics. This book presents a unified view, adopting concepts from each of the disjoint fields of disordered systems and nonlinear dynamics. Special attention is paid to the glass transition, from both experimental and theoretical viewpoints, to modern concepts of pattern formation, and to the application of the concepts of dynamical systems for understanding equilibrium and nonequilibrium properties of fluids and solids. The content is accessible to graduate students, but will also be of benefit to specialists, since the presentation extends as far as the topics of ongoing research work.
Investigation of transient dynamics of capillary assisted particle assembly yield
Energy Technology Data Exchange (ETDEWEB)
Virganavičius, D. [Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, Kaunas LT-51423 (Lithuania); Laboratory of Micro- and Nanotechnology, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Juodėnas, M. [Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, Kaunas LT-51423 (Lithuania); Tamulevičius, T., E-mail: tomas.tamulevicius@ktu.lt [Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, Kaunas LT-51423 (Lithuania); Department of Physics, Kaunas University of Technology, Studentų St. 50, Kaunas LT-51368 (Lithuania); Schift, H. [Laboratory of Micro- and Nanotechnology, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Tamulevičius, S. [Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, Kaunas LT-51423 (Lithuania); Department of Physics, Kaunas University of Technology, Studentų St. 50, Kaunas LT-51368 (Lithuania)
2017-06-01
Highlights: • Regular particles arrays were assembled by capillary force assisted deposition. • Deposition yield dynamics was investigated at different thermal velocity regimes. • Yield transient behavior was approximated with logistic function. • Pattern density influence for switching behavior was assessed. - Abstract: In this paper, the transient behavior of the particle assembly yield dynamics when switching from low yield to high yield deposition at different velocity and thermal regimes is investigated. Capillary force assisted particle assembly (CAPA) using colloidal suspension of green fluorescent 270 nm diameter polystyrene beads was performed on patterned poly (dimethyl siloxane) substrates using a custom-built deposition setup. Two types of patterns with different trapping site densities were used to assess CAPA process dynamics and the influence of pattern density and geometry on the deposition yield transitions. Closely packed 300 nm diameter circular pits ordered in hexagonal arrangement with 300 nm pitch, and 2 × 2 mm{sup 2} square pits with 2 μm spacing were used. 2-D regular structures of the deposited particles were investigated by means of optical fluorescence and scanning electron microscopy. The fluorescence micrographs were analyzed using a custom algorithm enabling to identify particles and calculate efficiency of the deposition performed at different regimes. Relationship between the spatial distribution of particles in transition zone and ambient conditions was evaluated and quantified by approximation of the yield profile with a logistic function.
Dirac particle in a box, and relativistic quantum Zeno dynamics
International Nuclear Information System (INIS)
Menon, Govind; Belyi, Sergey
2004-01-01
After developing a complete set of eigenfunctions for a Dirac particle restricted to a box, the quantum Zeno dynamics of a relativistic system is considered. The evolution of a continuously observed quantum mechanical system is governed by the theorem put forth by Misra and Sudarshan. One of the conditions for quantum Zeno dynamics to be manifest is that the Hamiltonian is semi-bounded. This Letter analyzes the effects of continuous observation of a particle whose time evolution is generated by the Dirac Hamiltonian. The theorem by Misra and Sudarshan is not applicable here since the Dirac operator is not semi-bounded
Impact of dynamic distribution of floc particles on flocculation effect
Institute of Scientific and Technical Information of China (English)
NAN Jun; HE Weipeng; Song Xinin; LI Guibai
2009-01-01
Polyaluminum chloride (PAC) was used as coagulant and suspended particles in kaolin water. Online instruments including turbidimeter and particle counter were used to monitor the flocculation process. An evaluation model for demonstrating the impact on the flocculation effect was established based on the multiple linear regression analysis method. The parameter of the index weight of channels quantitatively described how the variation of floc particle population in different size ranges cause the decrement of turbidity. The study showed that the floc particles in different size ranges contributed differently to the decrement of turbidity and that the index weight of channel could excellently indicate the impact degree of floc particles dynamic distribution on flocculation effect. Therefore, the parameter may significantly benefit the development of coagulation and sedimentation techniques as well as the optimal coagulant selection.
Dynamics of relativistic point particles as a problem with constraints
International Nuclear Information System (INIS)
Todorov, I.T.
1976-01-01
The relativistic n-particle dynamics is studied as a problem with constraints of the type (2phisub(i)=)msub(i)sup(2)-psub(i)sup(2)+PHIsub(i)=0, i=1,...,n, (C) where PHIsub(i) are Poincare invariant functions of the particles' coordinates, momenta and spin components; PHIsib(i) is assumed to vanish asymptotically when the i-th particle coordinates tend to infinity. In the two particle case it is assumed in addition that the Poisson bracket [phi 1 , phi 2 ] vanishes on the surface (C). That allows us to give a formulation of the theory, invariant with respect to the choice of the time-parameter on each trajectory. The quantization of the relative two-particle motion is also discussed. It is pointed out that the stationary Schrodinger equation obtained in this manner is a local quasipotential equation
Impact of dynamic distribution of floc particles on flocculation effect.
Nan, Jun; He, Weipeng; Song, Xinin; Li, Guibai
2009-01-01
Polyaluminum chloride (PAC) was used as coagulant and suspended particles in kaolin water. Online instruments including turbidimeter and particle counter were used to monitor the flocculation process. An evaluation model for demonstrating the impact on the flocculation effect was established based on the multiple linear regression analysis method. The parameter of the index weight of channels quantitatively described how the variation of floc particle population in different size ranges cause the decrement of turbidity. The study showed that the floc particles in different size ranges contributed differently to the decrease of turbidity and that the index weight of channel could excellently indicate the impact degree of floc particles dynamic distribution on flocculation effect. Therefore, the parameter may significantly benefit the development of coagulation and sedimentation techniques as well as the optimal coagulant selection.
Theoretical aspects of some collective instabilities in high-energy particle storage rings
International Nuclear Information System (INIS)
Ruggiero, F.
1986-01-01
After an introduction to single-particle dynamics, based on a unified Hamiltonian treatment of betatron and synchrotron oscillations, we consider two examples of collective instabilities which can limit the performances of high-energy storage rings: the transverse mode coupling instability, due to wake fields, and the incoherent beam-beam instability. Special emphasis is placed on the localization of the interactions between particles and surrounding structures, such as the accelerating RF cavities. We derive an exact invariant for the linearized synchrotron motion and, starting from the Vlasov equation, we discuss the coherent synchro-betatron resonances caused by localized impedance. Under suitable assumptions, we show that the effect of the beam-beam kicks in electron-positron machines can be described by new diffusive terms in a ''renormalized'' Fokker-Planck equation and is therefore equivalent to an additional source of noise for the betatron oscillations. (orig.)
Dynamic Simulation of Random Packing of Polydispersive Fine Particles
Ferraz, Carlos Handrey Araujo; Marques, Samuel Apolinário
2018-02-01
In this paper, we perform molecular dynamic (MD) simulations to study the two-dimensional packing process of both monosized and random size particles with radii ranging from 1.0 to 7.0 μm. The initial positions as well as the radii of five thousand fine particles were defined inside a rectangular box by using a random number generator. Both the translational and rotational movements of each particle were considered in the simulations. In order to deal with interacting fine particles, we take into account both the contact forces and the long-range dispersive forces. We account for normal and static/sliding tangential friction forces between particles and between particle and wall by means of a linear model approach, while the long-range dispersive forces are computed by using a Lennard-Jones-like potential. The packing processes were studied assuming different long-range interaction strengths. We carry out statistical calculations of the different quantities studied such as packing density, mean coordination number, kinetic energy, and radial distribution function as the system evolves over time. We find that the long-range dispersive forces can strongly influence the packing process dynamics as they might form large particle clusters, depending on the intensity of the long-range interaction strength.
Isospin effects on collective nuclear dynamics
Di Toro, M; Baran, V; Larionov, A B
1999-01-01
We suggest several ways to study properties of the symmetry term in the nuclear equation of state, EOS, from collective modes in beta-unstable nuclei. After a general discussion on compressibility and saturation density in asymmetric nuclear matter we show some predictions on the collective response based on the solution of generalized Landau dispersion relations. Isoscalar-isovector coupling, disappearance of collectivity and possibility of new instabilities in low and high density regions are discussed with accent on their relation to the symmetry term of effective forces. The onset of chemical plus mechanical instabilities in a dilute asymmetric nuclear matter is discussed with reference to new features in fragmentation reactions.
Stable schemes for dissipative particle dynamics with conserved energy
Energy Technology Data Exchange (ETDEWEB)
Stoltz, Gabriel, E-mail: stoltz@cermics.enpc.fr
2017-07-01
This article presents a new numerical scheme for the discretization of dissipative particle dynamics with conserved energy. The key idea is to reduce elementary pairwise stochastic dynamics (either fluctuation/dissipation or thermal conduction) to effective single-variable dynamics, and to approximate the solution of these dynamics with one step of a Metropolis–Hastings algorithm. This ensures by construction that no negative internal energies are encountered during the simulation, and hence allows to increase the admissible timesteps to integrate the dynamics, even for systems with small heat capacities. Stability is only limited by the Hamiltonian part of the dynamics, which suggests resorting to multiple timestep strategies where the stochastic part is integrated less frequently than the Hamiltonian one.
Simulation of dynamic magnetic particle capture and accumulation around a ferromagnetic wire
Energy Technology Data Exchange (ETDEWEB)
Choomphon-anomakhun, Natthaphon [Department of Physics, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330 (Thailand); Ebner, Armin D. [Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208 (United States); Natenapit, Mayuree [Department of Physics, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330 (Thailand); Ritter, James A. [Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208 (United States)
2017-04-15
A new approach for modeling high gradient magnetic separation (HGMS)-type systems during the time-dependent capture and accumulation of magnetic particles by a ferromagnetic wire was developed. This new approach assumes the fluid (slurry) viscosity, comprised of water and magnetic particles, is a function of the magnetic particle concentration in the fluid, with imposed maxima on both the particle concentration and fluid viscosity to avoid unrealistic limits. In 2-D, the unsteady-state Navier-Stokes equations for compressible fluid flow and the unsteady-state continuity equations applied separately to the water and magnetic particle phases in the slurry were solved simultaneously, along with the Laplace equations for the magnetic potential applied separately to the slurry and wire, to evaluate the velocities and concentrations around the wire in a narrow channel using COMSOL Multiphysics. The results from this model revealed very realistic magnetically attractive and repulsive zones forming in time around the wire. These collection zones formed their own impermeable viscous phase during accumulation that was also magnetic with its area and magnetism impacting locally both the fluid flow and magnetic fields around the wire. These collection zones increased with an increase in the applied magnetic field. For a given set of conditions, the capture ability peaked and then decreased to zero at infinite time during magnetic particle accumulation in the collection zones. Predictions of the collection efficiency from a steady-state, clean collector, trajectory model could not show this behavior; it also agreed only qualitatively with the dynamic model and then only at the early stages of collection and more so at a higher applied magnetic field. Also, the collection zones decreased in size when the accumulation regions included magnetic particle magnetization (realistic) compared to when they excluded it (unrealistic). Overall, this might be the first time a mathematical
Particle beam dynamics simulations using the POOMA framework
International Nuclear Information System (INIS)
Humphrey, W.; Ryne, R.; Cleland, T.; Cummings, J.; Habib, S.; Mark, G.; Ji Qiang
1998-01-01
A program for simulation of the dynamics of high intensity charged particle beams in linear particle accelerators has been developed in C++ using the POOMA Framework, for use on serial and parallel architectures. The code models the trajectories of charged particles through a sequence of different accelerator beamline elements such as drift chambers, quadrupole magnets, or RF cavities. An FFT-based particle-in-cell algorithm is used to solve the Poisson equation that models the Coulomb interactions of the particles. The code employs an object-oriented design with software abstractions for the particle beam, accelerator beamline, and beamline elements, using C++ templates to efficiently support both 2D and 3D capabilities in the same code base. The POOMA Framework, which encapsulates much of the effort required for parallel execution, provides particle and field classes, particle-field interaction capabilities, and parallel FFT algorithms. The performance of this application running serially and in parallel is compared to an existing HPF implementation, with the POOMA version seen to run four times faster than the HPF code
Nonlinear delta f Simulations of Collective Effects in Intense Charged Particle Beams
Hong Qi
2003-01-01
A nonlinear delta(f) particle simulation method based on the Vlasov-Maxwell equations has been recently developed to study collective processes in high-intensity beams, where space-charge and magnetic self-field effects play a critical role in determining the nonlinear beam dynamics. Implemented in the Beam Equilibrium, Stability and Transport (BEST) code [H. Qin, R.C. Davidson, and W.W. Lee, Physical Review -- Special Topics on Accelerator and Beams 3 (2000) 084401; 3 (2000) 109901.], the nonlinear delta(f) method provides a low-noise and self-consistent tool for simulating collective interactions and nonlinear dynamics of high-intensity beams in modern and next-generation accelerators and storage rings, such as the Spallation Neutron Source and heavy ion fusion drivers. A wide range of linear eigenmodes of high-intensity charged-particle beams can be systematically studied using the BEST code. Simulation results for the electron-proton two-stream instability in the Proton Storage Ring experiment [R. Macek, ...
On the relativistic particle dynamics in external gravitational fields
International Nuclear Information System (INIS)
Kuz'menkov, L.S.; Naumov, N.D.
1977-01-01
On the base of the Riemann metrics of an event space, leading to the Newton mechanics at nonrelativistic velocities and not obligatory weak gravitational fields relativistic particle dynamics in external gravitation fields has been considered. Found are trajectories, motion laws and light ray equations for the homogeneous and Newton fields
Peculiarity of the charged particles dynamics at the cyclotron resonances
International Nuclear Information System (INIS)
Buts, V.A.; Kuzmin, V.V.; Tolstoluzhsky, A.P.
2016-01-01
In this work the analysis was provided of the discrepancy between thresholds for appearance of the chaotic regime in the conditions of cyclotron resonances, obtained by analytical consideration of the particle dynamics, on the one hand, and by numerical investigation, on the other hand. The explanation is given for these threshold discrepancies.
Collective rotations of active particles interacting with obstacles
Mokhtari, Zahra; Aspelmeier, Timo; Zippelius, Annette
2017-10-01
We consider active particles in a heterogeneous medium, modeled by static, random obstacles. In accordance with the known tendency of active particles to cluster, we observe accumulation and crystallization of active particles around the obstacles which serve as nucleation sites. In the limit of high activity, the crystals start to rotate spontaneously, resembling a rotating rigid body. We trace the occurrence of these oscillations to the enhanced attraction of particles whose orientation points along the rotational velocity as compared to those whose orientation points in the opposite direction.
Physical dynamics of quasi-particles in nonlinear wave equations
Energy Technology Data Exchange (ETDEWEB)
Christov, Ivan [Department of Mathematics, Texas A and M University, College Station, TX 77843-3368 (United States)], E-mail: christov@alum.mit.edu; Christov, C.I. [Department of Mathematics, University of Louisiana at Lafayette, Lafayette, LA 70504-1010 (United States)], E-mail: christov@louisiana.edu
2008-02-04
By treating the centers of solitons as point particles and studying their discrete dynamics, we demonstrate a new approach to the quantization of the soliton solutions of the sine-Gordon equation, one of the first model nonlinear field equations. In particular, we show that a linear superposition of the non-interacting shapes of two solitons offers a qualitative (and to a good approximation quantitative) description of the true two-soliton solution, provided that the trajectories of the centers of the superimposed solitons are considered unknown. Via variational calculus, we establish that the dynamics of the quasi-particles obey a pseudo-Newtonian law, which includes cross-mass terms. The successful identification of the governing equations of the (discrete) quasi-particles from the (continuous) field equation shows that the proposed approach provides a basis for the passage from the continuous to a discrete description of the field.
Physical dynamics of quasi-particles in nonlinear wave equations
International Nuclear Information System (INIS)
Christov, Ivan; Christov, C.I.
2008-01-01
By treating the centers of solitons as point particles and studying their discrete dynamics, we demonstrate a new approach to the quantization of the soliton solutions of the sine-Gordon equation, one of the first model nonlinear field equations. In particular, we show that a linear superposition of the non-interacting shapes of two solitons offers a qualitative (and to a good approximation quantitative) description of the true two-soliton solution, provided that the trajectories of the centers of the superimposed solitons are considered unknown. Via variational calculus, we establish that the dynamics of the quasi-particles obey a pseudo-Newtonian law, which includes cross-mass terms. The successful identification of the governing equations of the (discrete) quasi-particles from the (continuous) field equation shows that the proposed approach provides a basis for the passage from the continuous to a discrete description of the field
Large Scale Brownian Dynamics of Confined Suspensions of Rigid Particles
Donev, Aleksandar; Sprinkle, Brennan; Balboa, Florencio; Patankar, Neelesh
2017-11-01
We introduce new numerical methods for simulating the dynamics of passive and active Brownian colloidal suspensions of particles of arbitrary shape sedimented near a bottom wall. The methods also apply for periodic (bulk) suspensions. Our methods scale linearly in the number of particles, and enable previously unprecedented simulations of tens to hundreds of thousands of particles. We demonstrate the accuracy and efficiency of our methods on a suspension of boomerang-shaped colloids. We also model recent experiments on active dynamics of uniform suspensions of spherical microrollers. This work was supported in part by the National Science Foundation under award DMS-1418706, and by the U.S. Department of Energy under award DE-SC0008271.
Investigating the settling dynamics of cohesive silt particles with particle-resolving simulations
Sun, Rui; Xiao, Heng; Sun, Honglei
2018-01-01
The settling of cohesive sediment is ubiquitous in aquatic environments, and the study of the settling process is important for both engineering and environmental reasons. In the settling process, the silt particles show behaviors that are different from non-cohesive particles due to the influence of inter-particle cohesive force. For instance, the flocs formed in the settling process of cohesive silt can loosen the packing, and thus the structural densities of cohesive silt beds are much smaller than that of non-cohesive sand beds. While there is a consensus that cohesive behaviors depend on the characteristics of sediment particles (e.g., Bond number, particle size distribution), little is known about the exact influence of these characteristics on the cohesive behaviors. In addition, since the cohesive behaviors of the silt are caused by the inter-particle cohesive forces, the motions of and the contacts among silt particles should be resolved to study these cohesive behaviors in the settling process. However, studies of the cohesive behaviors of silt particles in the settling process based on particle-resolving approach are still lacking. In the present work, three-dimensional settling process is investigated numerically by using CFD-DEM (Computational Fluid Dynamics-Discrete Element Method). The inter-particle collision force, the van der Waals force, and the fluid-particle interaction forces are considered. The numerical model is used to simulate the hindered settling process of silt based on the experimental setup in the literature. The results obtained in the simulations, including the structural densities of the beds, the characteristic lines, and the particle terminal velocity, are in good agreement with the experimental observations in the literature. To the authors' knowledge, this is the first time that the influences of non-dimensional Bond number and particle polydispersity on the structural densities of silt beds have been investigated separately
International Nuclear Information System (INIS)
Phillips, Carolyn L.; Anderson, Joshua A.; Glotzer, Sharon C.
2011-01-01
Highlights: → Molecular Dynamics codes implemented on GPUs have achieved two-order of magnitude computational accelerations. → Brownian Dynamics and Dissipative Particle Dynamics simulations require a large number of random numbers per time step. → We introduce a method for generating small batches of pseudorandom numbers distributed over many threads of calculations. → With this method, Dissipative Particle Dynamics is implemented on a GPU device without requiring thread-to-thread communication. - Abstract: Brownian Dynamics (BD), also known as Langevin Dynamics, and Dissipative Particle Dynamics (DPD) are implicit solvent methods commonly used in models of soft matter and biomolecular systems. The interaction of the numerous solvent particles with larger particles is coarse-grained as a Langevin thermostat is applied to individual particles or to particle pairs. The Langevin thermostat requires a pseudo-random number generator (PRNG) to generate the stochastic force applied to each particle or pair of neighboring particles during each time step in the integration of Newton's equations of motion. In a Single-Instruction-Multiple-Thread (SIMT) GPU parallel computing environment, small batches of random numbers must be generated over thousands of threads and millions of kernel calls. In this communication we introduce a one-PRNG-per-kernel-call-per-thread scheme, in which a micro-stream of pseudorandom numbers is generated in each thread and kernel call. These high quality, statistically robust micro-streams require no global memory for state storage, are more computationally efficient than other PRNG schemes in memory-bound kernels, and uniquely enable the DPD simulation method without requiring communication between threads.
Particle-based solid for nonsmooth multidomain dynamics
Nordberg, John; Servin, Martin
2018-04-01
A method for simulation of elastoplastic solids in multibody systems with nonsmooth and multidomain dynamics is developed. The solid is discretised into pseudo-particles using the meshfree moving least squares method for computing the strain tensor. The particle's strain and stress tensor variables are mapped to a compliant deformation constraint. The discretised solid model thus fit a unified framework for nonsmooth multidomain dynamics simulations including rigid multibodies with complex kinematic constraints such as articulation joints, unilateral contacts with dry friction, drivelines, and hydraulics. The nonsmooth formulation allows for impact impulses to propagate instantly between the rigid multibody and the solid. Plasticity is introduced through an associative perfectly plastic modified Drucker-Prager model. The elastic and plastic dynamics are verified for simple test systems, and the capability of simulating tracked terrain vehicles driving on a deformable terrain is demonstrated.
Electron Production and Collective Field Generation in Intense Particle Beams
International Nuclear Information System (INIS)
Molvik, A W; Vay, J; Cohen, R; Friedman, A; Lee, E; Verboncoeur, J; Covo, M K
2006-01-01
Electron cloud effects (ECEs) are increasingly recognized as important, but incompletely understood, dynamical phenomena, which can severely limit the performance of present electron colliders, the next generation of high-intensity rings, such as PEP-II upgrade, LHC, and the SNS, the SIS 100/200, or future high-intensity heavy ion accelerators such as envisioned in Heavy Ion Inertial Fusion (HIF). Deleterious effects include ion-electron instabilities, emittance growth, particle loss, increase in vacuum pressure, added heat load at the vacuum chamber walls, and interference with certain beam diagnostics. Extrapolation of present experience to significantly higher beam intensities is uncertain given the present level of understanding. With coordinated LDRD projects at LLNL and LBNL, we undertook a comprehensive R and D program including experiments, theory and simulations to better understand the phenomena, establish the essential parameters, and develop mitigating mechanisms. This LDRD project laid the essential groundwork for such a program. We developed insights into the essential processes, modeled the relevant physics, and implemented these models in computational production tools that can be used for self-consistent study of the effect on ion beams. We validated the models and tools through comparison with experimental data, including data from new diagnostics that we developed as part of this work and validated on the High-Current Experiment (HCX) at LBNL. We applied these models to High-Energy Physics (HEP) and other advanced accelerators. This project was highly successful, as evidenced by the two paragraphs above, and six paragraphs following that are taken from our 2003 proposal with minor editing that mostly consisted of changing the tense. Further benchmarks of outstanding performance are: we had 13 publications with 8 of them in refereed journals, our work was recognized by the accelerator and plasma physics communities by 8 invited papers and we have
Sparks, L. E.; Ramsey, G. H.; Daniel, B. E.
The results of pilot plant experiments of particulate collection by a venturi scrubber downstream from an electrostatic precipitator (ESP) are presented. The data, which cover a range of scrubber operating conditions and ESP efficiencies, show that particle collection by the venturi scrubber is not affected by the upstream ESP; i.e., for a given scrubber pressure drop, particle collection efficiency as a function of particle diameter is the same for both ESP on and ESP off. The experimental results are in excellent agreement with theoretical predictions. Order of magnitude cost estimates indicate that particle collection by ESP scrubber systems may be economically attractive when scrubbers must be used for SO x control.
Report of the working group on single-particle nonlinear dynamics
International Nuclear Information System (INIS)
Bazzani, A.; Bongini, L.; Corbett, J.; Dome, G.; Fedorova, A.; Freguglia, P.; Ng, K.; Ohmi, K.; Owen, H.; Papaphilippou, Y.; Robin, D.; Safranek, J.; Scandale, W.; Terebilo, A.; Turchetti, G.; Todesco, E.; Warnock, R.; Zeitlin, M.
1999-01-01
The Working Group on single-particle nonlinear dynamics has developed a set of tools to study nonlinear dynamics in a particle accelerator. The design of rings with large dynamic apertures is still far from automatic. The Working Group has concluded that nonlinear single-particle dynamics limits the performance of accelerators. (AIP) copyright 1999 American Institute of Physics
Blended particle filters for large-dimensional chaotic dynamical systems
Majda, Andrew J.; Qi, Di; Sapsis, Themistoklis P.
2014-01-01
A major challenge in contemporary data science is the development of statistically accurate particle filters to capture non-Gaussian features in large-dimensional chaotic dynamical systems. Blended particle filters that capture non-Gaussian features in an adaptively evolving low-dimensional subspace through particles interacting with evolving Gaussian statistics on the remaining portion of phase space are introduced here. These blended particle filters are constructed in this paper through a mathematical formalism involving conditional Gaussian mixtures combined with statistically nonlinear forecast models compatible with this structure developed recently with high skill for uncertainty quantification. Stringent test cases for filtering involving the 40-dimensional Lorenz 96 model with a 5-dimensional adaptive subspace for nonlinear blended filtering in various turbulent regimes with at least nine positive Lyapunov exponents are used here. These cases demonstrate the high skill of the blended particle filter algorithms in capturing both highly non-Gaussian dynamical features as well as crucial nonlinear statistics for accurate filtering in extreme filtering regimes with sparse infrequent high-quality observations. The formalism developed here is also useful for multiscale filtering of turbulent systems and a simple application is sketched below. PMID:24825886
Particle and Blood Cell Dynamics in Oscillatory Flows Final Report
International Nuclear Information System (INIS)
Restrepo, Juan M.
2008-01-01
Our aim has been to uncover fundamental aspects of the suspension and dislodgement of particles in wall-bounded oscillatory flows, in flows characterized by Reynolds numbers encompassing the situation found in rivers and near shores (and perhaps in some industrial processes). Our research tools are computational and our coverage of parameter space fairly broad. Computational means circumvent many complications that make the measurement of the dynamics of particles in a laboratory setting an impractical task, especially on the broad range of parameter space we plan to report upon. The impact of this work on the geophysical problem of sedimentation is boosted considerably by the fact that the proposed calculations can be considered ab-initio, in the sense that little to no modeling is done in generating dynamics of the particles and of the moving fluid: we use a three-dimensional Navier Stokes solver along with straightforward boundary conditions. Hence, to the extent that Navier Stokes is a model for an ideal incompressible isotropic Newtonian fluid, the calculations yield benchmark values for such things as the drag, buoyancy, and lift of particles, in a highly controlled environment. Our approach will be to make measurements of the lift, drag, and buoyancy of particles, by considering progressively more complex physical configurations and physics.
Collective dynamics in liquids: today and tomorrow
Directory of Open Access Journals (Sweden)
T.Bryk
2008-03-01
Full Text Available Within this context, the main idea of this Special issue was to bring together experimental, theoretical and simulation groups in order to present the recent developments in experimental techniques, new possibilities of experimental studies, different methods of analysing the experimental data, recently elaborated theoretical approaches and modern simulation techniques - all focused on collective processes in liquids. Fifteen research groups from Italy, Germany, France, Japan, Spain, Great Britain, United States, Korea and Ukraine report in this volume the current studies and small reviews of their experimental/theoretical methodology.
Nonlinear dynamics of charged particles in the magnetotail
Chen, James
1992-01-01
An important region of the earth's magnetosphere is the nightside magnetotail, which is believed to play a significant role in energy storage and release associated with substorms. The magnetotail contains a current sheet which separates regions of oppositely directed magnetic field. Particle motion in the collisionless magnetotail has been a long-standing problem. Recent research from the dynamical point of view has yielded considerable new insights into the fundamental properties of orbits and of particle distribution functions. A new framework of understanding magnetospheric plasma properties is emerging. Some novel predictions based directly on nonlinear dynamics have proved to be robust and in apparent good agreement with observation. The earth's magnetotail may serve as a paradigm, one accessible by in situ observation, of a broad class of boundary regions with embedded current sheets. This article reviews the nonlinear dynamics of charged particles in the magnetotail configuration. The emphasis is on the relationships between the dynamics and physical observables. At the end of the introduction, sections containing basic material are indicated.
Supersymmetry and pseudoclassical dynamics of particle with any spin
International Nuclear Information System (INIS)
Srivastava, P.P.
1976-12-01
The use of anticommuting c-numbers in describing physical systems and their simmetries has recently drawn much interest. Supersymmetry among bosons and fermions can be given an adequate formulation using them. Applications to Hamiltonian dynamics of electron adapting Dirac's method of handling singular Lagrangians were quite successful. An extension to particle of any spin following the systematic treatment of Casalbuoni et al. is discussed here. Formulation of Bargmann and Wigner for relativistic particle is obtained on quantization in self-consistent manner. It may be remarked that some of the Dirac brackets between anticommuting variables are required to go to commutators instead of anticommutators
A dynamic inertia weight particle swarm optimization algorithm
International Nuclear Information System (INIS)
Jiao Bin; Lian Zhigang; Gu Xingsheng
2008-01-01
Particle swarm optimization (PSO) algorithm has been developing rapidly and has been applied widely since it was introduced, as it is easily understood and realized. This paper presents an improved particle swarm optimization algorithm (IPSO) to improve the performance of standard PSO, which uses the dynamic inertia weight that decreases according to iterative generation increasing. It is tested with a set of 6 benchmark functions with 30, 50 and 150 different dimensions and compared with standard PSO. Experimental results indicate that the IPSO improves the search performance on the benchmark functions significantly
Investigation of transient dynamics of capillary assisted particle assembly yield
DEFF Research Database (Denmark)
Tamulevičius, S.; Virganavičius, D.; Juodėnas, M.
2017-01-01
diameter polystyrene beads was performed on patterned poly (dimethyl siloxane) substrates using a custom-built deposition setup. Two types of patterns with different trapping site densities were used to assess CAPA process dynamics and the influence of pattern density and geometry on the deposition yield....... The fluorescence micrographs were analyzed using a custom algorithm enabling to identify particles and calculate efficiency of the deposition performed at different regimes. Relationship between the spatial distribution of particles in transition zone and ambient conditions was evaluated and quantified...... by approximation of the yield profile with a logistic function....
Dynamic response function and large-amplitude dissipative collective motion
International Nuclear Information System (INIS)
Wu Xizhen; Zhuo Yizhong; Li Zhuxia; Sakata, Fumihiko.
1993-05-01
Aiming at exploring microscopic dynamics responsible for the dissipative large-amplitude collective motion, the dynamic response and correlation functions are introduced within the general theory of nuclear coupled-master equations. The theory is based on the microscopic theory of nuclear collective dynamics which has been developed within the time-dependent Hartree-Fock (TDHF) theory for disclosing complex structure of the TDHF-manifold. A systematic numerical method for calculating the dynamic response and correlation functions is proposed. By performing numerical calculation for a simple model Hamiltonian, it is pointed out that the dynamic response function gives an important information in understanding the large-amplitude dissipative collective motion which is described by an ensemble of trajectories within the TDHF-manifold. (author)
Ultrasonic Sorter for Handling and Collecting Dust or Soil Particles Separated by Size/Density
Gonzalez, I.; Pinto, A.
2018-04-01
A new device is proposed consisting of an endless screw attached to a small sorter actuated by ultrasounds where particles collect from soil or dust to be separated and collected in different reservoirs for their return to the Earth.
Bhattacharyya, Debankur; Paul, Shibashis; Ghosh, Shyamolina; Ray, Deb Shankar
2018-04-01
We consider the Brownian motion of a collection of particles each with an additional degree of freedom. The degree of freedom of a particle (or, in general, a molecule) can assume distinct values corresponding to certain states or conformations. The time evolution of the additional degree of freedom of a particle is guided by those of its neighbors as well as the temperature of the system. We show that the local averaging over these degrees of freedom results in emergence of a collective order in the dynamics in the form of selection or dominance of one of the isomers leading to a symmetry-broken state. Our statistical model captures the basic features of homochirality, e.g., autocatalysis and chiral inhibition.
New insights in particle dynamics from group cohomology
International Nuclear Information System (INIS)
Aldaya, V; Jaramillo, J L; Guerrero, J
2002-01-01
The dynamics of a particle moving in background electromagnetic and gravitational fields is revisited from a Lie group cohomological perspective. Physical constants characterizing the particle appear as central extension parameters of a group which is obtained from a centrally extended kinematical group (Poincare or Galilei) by making some subgroup local. The corresponding dynamics is generated by a vector field inside the kernel of a pre-symplectic form which is derived from the canonical left-invariant 1-form on the extended group. A non-relativistic limit is derived from the geodesic motion via an Inoenue-Wigner contraction. A deeper analysis of the cohomological structure reveals the possibility of a new force associated with a non-trivial mixing of gravity and electromagnetism leading to, in principle, testable predictions. (letter to the editor)
Dynamic bremsstrahlung from relativistic particles scattered by atom
International Nuclear Information System (INIS)
Astapenko, V.A.; Bujmistrov, V.M.; Krotov, Yu.A.; Mikhajlov, L.K.; Trakhtenberg, L.I.
1985-01-01
The bremsstrahlung cross section for a relativistic particle scattered by an atom is calculated. In contrast to the screening approximation usually employed, the influence of the atomic electron on the bremsstrahlung is taken into account exactly, viz., the atomic electron is considered as a moving particle interacting with the electromagnetic field and not only as the source of a static external field. Consequently, along with the static term which leads to the Bethe-Heitw,ler formula, a ne dynamic, term appears in the transition amplitude. The corresponding cross section, the dynamic bremsstrahlung cross section, in certain frequensy ranges and certain ranges of the directions of photon emission exceeds considerably the static bremsstrahlung cross section
Painleve singularity analysis applied to charged particle dynamics during reconnection
International Nuclear Information System (INIS)
Larson, J.W.
1992-01-01
For a plasma in the collisionless regime, test-particle modelling can lend some insight into the macroscopic behavior of the plasma, e.g. conductivity and heating. A common example for which this technique is used is a system with electric and magnetic fields given by B = δyx + zy + yz and E = εz, where δ, γ, and ε are constant parameters. This model can be used to model plasma behavior near neutral lines, (γ = 0), as well as current sheets (γ = 0, δ = 0). The integrability properties of the particle motion in such fields might affect the plasma's macroscopic behavior, and the author has asked the question open-quotes For what values of δ, γ, and ε is the system integrable?close quotes To answer this question, the author has employed Painleve singularity analysis, which is an examination of the singularity properties of a test particle's equations of motion in the complex time plane. This analysis has identified two field geometries for which the system's particle dynamics are integrable in terms of the second Painleve transcendent: the circular O-line case and the case of the neutral sheet configuration. These geometries yield particle dynamics that are integrable in the Liouville sense (i.e., there exist the proper number of integrals in involution) in an extended phase space which includes the time as a canonical coordinate, and this property is also true for nonzero γ. The singularity property tests also identified a large, dense set of X-line and O-line field geometries that yield dynamics that may possess the weak Painleve property. In the case of the X-line geometries, this result shows little relevance to the physical nature of the system, but the existence of a dense set of elliptical O-line geometries with this property may be related to the fact that for ε positive, one can construct asymptotic solutions in the limit t → ∞
Smoothed dissipative particle dynamics with angular momentum conservation
Energy Technology Data Exchange (ETDEWEB)
Müller, Kathrin, E-mail: k.mueller@fz-juelich.de; Fedosov, Dmitry A., E-mail: d.fedosov@fz-juelich.de; Gompper, Gerhard, E-mail: g.gompper@fz-juelich.de
2015-01-15
Smoothed dissipative particle dynamics (SDPD) combines two popular mesoscopic techniques, the smoothed particle hydrodynamics and dissipative particle dynamics (DPD) methods, and can be considered as an improved dissipative particle dynamics approach. Despite several advantages of the SDPD method over the conventional DPD model, the original formulation of SDPD by Español and Revenga (2003) [9], lacks angular momentum conservation, leading to unphysical results for problems where the conservation of angular momentum is essential. To overcome this limitation, we extend the SDPD method by introducing a particle spin variable such that local and global angular momentum conservation is restored. The new SDPD formulation (SDPD+a) is directly derived from the Navier–Stokes equation for fluids with spin, while thermal fluctuations are incorporated similarly to the DPD method. We test the new SDPD method and demonstrate that it properly reproduces fluid transport coefficients. Also, SDPD with angular momentum conservation is validated using two problems: (i) the Taylor–Couette flow with two immiscible fluids and (ii) a tank-treading vesicle in shear flow with a viscosity contrast between inner and outer fluids. For both problems, the new SDPD method leads to simulation predictions in agreement with the corresponding analytical theories, while the original SDPD method fails to capture properly physical characteristics of the systems due to violation of angular momentum conservation. In conclusion, the extended SDPD method with angular momentum conservation provides a new approach to tackle fluid problems such as multiphase flows and vesicle/cell suspensions, where the conservation of angular momentum is essential.
Auxiliary fields in the geometrical relativistic particle dynamics
International Nuclear Information System (INIS)
Amador, A; Bagatella, N; Rojas, E; Cordero, R
2008-01-01
We describe how to construct the dynamics of relativistic particles, following either timelike or null curves, by means of an auxiliary variables method instead of the standard theory of deformations for curves. There are interesting physical particle models governed by actions that involve higher order derivatives of the embedding functions of the worldline. We point out that the mechanical content of such models can be extracted wisely from a lower order action, which can be performed by implementing in the action a finite number of constraints that involve the geometrical relationship structures inherent to a curve and by using a covariant formalism. We emphasize our approach for null curves. For such systems, the natural time parameter is a pseudo-arclength whose properties resemble those of the standard proper time. We illustrate the formalism by applying it to some models for relativistic particles
Auxiliary fields in the geometrical relativistic particle dynamics
Energy Technology Data Exchange (ETDEWEB)
Amador, A; Bagatella, N; Rojas, E [Departamento de Fisica, Facultad de Fisica e Inteligencia Artificial, Universidad Veracruzana, 91000 Xalapa, Veracruz (Mexico); Cordero, R [Departamento de Fisica, Escuela Superior de Fisica y Matematicas del I.P.N, Edificio 9, 07738 Mexico D.F (Mexico)], E-mail: aramador@gmail.com, E-mail: nbagatella@uv.mx, E-mail: cordero@esfm.ipn.mx, E-mail: efrojas@uv.mx
2008-03-21
We describe how to construct the dynamics of relativistic particles, following either timelike or null curves, by means of an auxiliary variables method instead of the standard theory of deformations for curves. There are interesting physical particle models governed by actions that involve higher order derivatives of the embedding functions of the worldline. We point out that the mechanical content of such models can be extracted wisely from a lower order action, which can be performed by implementing in the action a finite number of constraints that involve the geometrical relationship structures inherent to a curve and by using a covariant formalism. We emphasize our approach for null curves. For such systems, the natural time parameter is a pseudo-arclength whose properties resemble those of the standard proper time. We illustrate the formalism by applying it to some models for relativistic particles.
Hybrid finite element and Brownian dynamics method for charged particles
Energy Technology Data Exchange (ETDEWEB)
Huber, Gary A., E-mail: ghuber@ucsd.edu; Miao, Yinglong [Howard Hughes Medical Institute, University of California San Diego, La Jolla, California 92093-0365 (United States); Zhou, Shenggao [Department of Mathematics and Mathematical Center for Interdiscipline Research, Soochow University, 1 Shizi Street, Suzhou, 215006 Jiangsu (China); Li, Bo [Department of Mathematics and Quantitative Biology Graduate Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0112 (United States); McCammon, J. Andrew [Howard Hughes Medical Institute, University of California San Diego, La Jolla, California 92093 (United States); Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0365 (United States); Department of Pharmacology, University of California San Diego, La Jolla, California 92093-0636 (United States)
2016-04-28
Diffusion is often the rate-determining step in many biological processes. Currently, the two main computational methods for studying diffusion are stochastic methods, such as Brownian dynamics, and continuum methods, such as the finite element method. A previous study introduced a new hybrid diffusion method that couples the strengths of each of these two methods, but was limited by the lack of interactions among the particles; the force on each particle had to be from an external field. This study further develops the method to allow charged particles. The method is derived for a general multidimensional system and is presented using a basic test case for a one-dimensional linear system with one charged species and a radially symmetric system with three charged species.
Bolhuis, Peter
Important reaction-diffusion processes, such as biochemical networks in living cells, or self-assembling soft matter, span many orders in length and time scales. In these systems, the reactants' spatial dynamics at mesoscopic length and time scales of microns and seconds is coupled to the reactions between the molecules at microscopic length and time scales of nanometers and milliseconds. This wide range of length and time scales makes these systems notoriously difficult to simulate. While mean-field rate equations cannot describe such processes, the mesoscopic Green's Function Reaction Dynamics (GFRD) method enables efficient simulation at the particle level provided the microscopic dynamics can be integrated out. Yet, many processes exhibit non-trivial microscopic dynamics that can qualitatively change the macroscopic behavior, calling for an atomistic, microscopic description. The recently developed multiscale Molecular Dynamics Green's Function Reaction Dynamics (MD-GFRD) approach combines GFRD for simulating the system at the mesocopic scale where particles are far apart, with microscopic Molecular (or Brownian) Dynamics, for simulating the system at the microscopic scale where reactants are in close proximity. The association and dissociation of particles are treated with rare event path sampling techniques. I will illustrate the efficiency of this method for patchy particle systems. Replacing the microscopic regime with a Markov State Model avoids the microscopic regime completely. The MSM is then pre-computed using advanced path-sampling techniques such as multistate transition interface sampling. I illustrate this approach on patchy particle systems that show multiple modes of binding. MD-GFRD is generic, and can be used to efficiently simulate reaction-diffusion systems at the particle level, including the orientational dynamics, opening up the possibility for large-scale simulations of e.g. protein signaling networks.
Single-particle tracking: applications to membrane dynamics.
Saxton, M J; Jacobson, K
1997-01-01
Measurements of trajectories of individual proteins or lipids in the plasma membrane of cells show a variety of types of motion. Brownian motion is observed, but many of the particles undergo non-Brownian motion, including directed motion, confined motion, and anomalous diffusion. The variety of motion leads to significant effects on the kinetics of reactions among membrane-bound species and requires a revision of existing views of membrane structure and dynamics.
Particle beam dynamics in a magnetically insulated coaxial diode
International Nuclear Information System (INIS)
Korenev, V.G.; Magda, I.I.; Sinitsin, V.G.
2015-01-01
The dynamics of charged particle beams emitted from a cathode into a smooth coaxial diode with magnetic insulation is studied with the aid of 3-D PIC simulation. The processes controlling space charge formation and its evolution in the diode are modeled for geometries typical of high-voltage millimeter wave magnetrons that are characterized by very high values of emission currents, hence high space charge densities.
A Facile Synthesis of Dynamic, Shape Changing Polymer Particles
Klinger, Daniel; Wang, Cynthia; Connal, Luke A.; Audus, Debra J.; Jang, Se Gyu; Kraemer, Stephan; Killops, Kato L.; Fredrickson, Glenn H.; Kramer, Edward J.; Hawker, Craig J.
2014-01-01
We herein report a new facile strategy to ellipsoidal block copolymer nanoparticles exhibiting a pH-triggered anistropic swelling profile. In a first step, elongated particles with an axially stacked lamellae structure are selectively prepared by utilizing functional surfactants to control the phase separation of symmetric PS-b-P2VP in dispersed droplets. In a second step, the dynamic shape change is realized by crosslinking the P2VP domains, hereby connecting glassy PS discs with pH-sensitiv...
Consistent treatment of one-body dynamics and collective fluctuations
International Nuclear Information System (INIS)
Pfitzner, A.
1986-09-01
We show how the residual coupling deltaV between collective and intrinsic motion induces correlations, which lead to fluctuations of the collective variables and to a redistribution of single-particle occupation numbers rho/sub α/. The evolution of rho/sub α/ and of the collective fluctuations is consistently described by a coupled system of equations, which accounts for the dependence of the transport coefficients on rho/sub α/, and for the dependence of the transition rates in the master equation on the collective variances. (author)
Cloud-particle galactic gas dynamics and star formation
International Nuclear Information System (INIS)
Roberts, W.W. Jr.
1983-01-01
Galactic gas dynamics, spiral structure, and star formation are discussed in the context of N-body computational studies based on a cloud-particle model of the interstellar medium. On the small scale, the interstellar medium appears to be cloud-dominated and supernova-perturbed. The cloud-particle model simulates cloud-cloud collisions, the formation of stellar associations, and supernova explosions as dominant local processes. On the large scale in response to a spiral galactic gravitational field, global density waves and galactic shocks develop with large-scale characteristics similar to those found in continuum gas dynamical studies. Both the system of gas clouds and the system of young stellar associations forming from the clouds share in the global spiral structure. However, with the attributes of neither assuming a continuum of gas (as in continuum gas dynamical studies) nor requiring a prescribed equation of state such as the isothermal condition so often employed, the cloud-particle picture retains much of the detail lost in earlier work: namely, the small-scale features and structures so important in understanding the local, turbulent state of the interstellar medium as well as the degree of raggedness often observed superposed on global spiral structure. (Auth.)
Using simulation to assess the opportunities of dynamic waste collection
Mes, Martijn R.K.; Bangsow, S.
2012-01-01
In this chapter, we illustrate the use of discrete event simulation to evaluate how dynamic planning methodologies can be best applied for the collection of waste from underground containers. We present a case study that took place at the waste collection company Twente Milieu, located in The
Using Simulation to Assess the Opportunities of Dynamic Waste Collection
Mes, Martijn R.K.
In this paper, we illustrate the use of discrete event simulation to evaluate how dynamic planning methodologies can be best applied for the collection of waste from underground containers. We present a case study that took place at the waste collection company Twente Milieu, located in The
Introduction to the Social and Psychological Dynamics of Collective Action
van Zomeren, Martijn; Iyer, Aarti
2009-01-01
Collective action is one of the core mechanisms of social change, and thus of major importance to social scientists, practitioners, and policy-makers. Our goal in editing this issue is to bring together recent advances on the social and psychological dynamics of collective action among members of
Self and collective dynamics of ordered star polymer solutions
Stellbrink, J; Monkenbusch, M; Richter, D; Ehlers, G; Schleger, P
2002-01-01
We investigated the dynamics of 18-arm polyisoprene star polymer solutions well above their overlap concentration c sup *. Combining neutron spin echo spectroscopy (NSE) and selective H/D labelling, we were able to separate inter- (collective) and intra-star (self) dynamics. Only at low Q-vectors do self and collective dynamics become discernible. Here, collective dynamics are found to be consistent with a colloidal approach resulting from star-star interactions. The collective short time diffusion coefficient D sub e sub f sub f is well described by the term D sub 0 /S(Q), with D sub 0 the diffusion coefficient at infinite dilution. At Q sub m , the peak position in the structure factor S(Q), no difference is observable between collective and self dynamics. For covering the slowed-down dynamics at Q sub m the time range of NSE was extended for the first time up to 350 ns using long wavelengths, lambda=19 A, at IN15 (ILL, Grenoble). We found that S(Q,t)/S(Q,0) relaxes into a concentration-dependent plateau. T...
Phillips, Carolyn L.; Anderson, Joshua A.; Glotzer, Sharon C.
2011-08-01
Brownian Dynamics (BD), also known as Langevin Dynamics, and Dissipative Particle Dynamics (DPD) are implicit solvent methods commonly used in models of soft matter and biomolecular systems. The interaction of the numerous solvent particles with larger particles is coarse-grained as a Langevin thermostat is applied to individual particles or to particle pairs. The Langevin thermostat requires a pseudo-random number generator (PRNG) to generate the stochastic force applied to each particle or pair of neighboring particles during each time step in the integration of Newton's equations of motion. In a Single-Instruction-Multiple-Thread (SIMT) GPU parallel computing environment, small batches of random numbers must be generated over thousands of threads and millions of kernel calls. In this communication we introduce a one-PRNG-per-kernel-call-per-thread scheme, in which a micro-stream of pseudorandom numbers is generated in each thread and kernel call. These high quality, statistically robust micro-streams require no global memory for state storage, are more computationally efficient than other PRNG schemes in memory-bound kernels, and uniquely enable the DPD simulation method without requiring communication between threads.
Measurements of particle dynamics in slow, dense granular Couette flow
Mueth, Daniel M.
2003-01-01
Experimental measurements of particle dynamics on the lower surface of a three-dimensional (3D) Couette cell containing monodisperse spheres are reported. The average radial density and velocity profiles are similar to those previously measured within the bulk and on the lower surface of the 3D cell filled with mustard seeds. Observations of the evolution of particle velocities over time reveal distinct motion events, intervals where previously stationary particles move for a short duration before jamming again. The cross correlation between the velocities of two particles at a given distance r from the moving wall reveals a characteristic length scale over which the particles are correlated. The autocorrelation of a single particle’s velocity reveals a characteristic time scale τ, which decreases with increasing distance from the inner moving wall. This may be attributed to the increasing rarity at which the discrete motion events occur and the reduced duration of those events at large r. The relationship between the rms azimuthal velocity fluctuations, δvθ(r), and average shear rate, γ˙(r), was found to be δvθ∝γ˙α with α=0.52±0.04. These observations are compared with other recent experiments and with the modified hydrodynamic model recently introduced by Bocquet et al.
Dynamics and mechanics of bed-load tracer particles
Directory of Open Access Journals (Sweden)
C. B. Phillips
2014-12-01
Full Text Available Understanding the mechanics of bed load at the flood scale is necessary to link hydrology to landscape evolution. Here we report on observations of the transport of coarse sediment tracer particles in a cobble-bedded alluvial river and a step-pool bedrock tributary, at the individual flood and multi-annual timescales. Tracer particle data for each survey are composed of measured displacement lengths for individual particles, and the number of tagged particles mobilized. For single floods we find that measured tracer particle displacement lengths are exponentially distributed; the number of mobile particles increases linearly with peak flood Shields stress, indicating partial bed load transport for all observed floods; and modal displacement distances scale linearly with excess shear velocity. These findings provide quantitative field support for a recently proposed modeling framework based on momentum conservation at the grain scale. Tracer displacement is weakly negatively correlated with particle size at the individual flood scale; however cumulative travel distance begins to show a stronger inverse relation to grain size when measured over many transport events. The observed spatial sorting of tracers approaches that of the river bed, and is consistent with size-selective deposition models and laboratory experiments. Tracer displacement data for the bedrock and alluvial channels collapse onto a single curve – despite more than an order of magnitude difference in channel slope – when variations of critical Shields stress and flow resistance between the two are accounted for. Results show how bed load dynamics may be predicted from a record of river stage, providing a direct link between climate and sediment transport.
DEFF Research Database (Denmark)
Lauros, J.; Sogachev, Andrey; Smolander, S.
2011-01-01
the atmospheric boundary layer during nucleation event days shows a highly dynamical picture, where particle formation is coupled with chemistry and turbulent transport. We have demonstrated the suitability of our turbulent mixing scheme in reproducing the most important characteristics of particle dynamics...... within the boundary layer. Deposition and particle flux simulations show that deposition affects noticeably only the smallest particles...
Collective and single-particle states at high excitation energy
International Nuclear Information System (INIS)
Van den Berg, A.M.; Van der Molen, H.K.T.; Harakeh, M.N.; Akimune, H.; Daito, I.; Fujimura, H.; Fujiwara, M.; Ihara, F.; Inomata, T.
2000-01-01
Complete text of publication follows. Damping of high-lying single-particle states was investigated by the study of proton decay from high-lying states in 91 Nb, populated by the 90 Zr(α,t) reaction with E α = 180 MeV. In addition to decay to the ground state of 90 Zr, semi-direct decay was observed to the low-lying (2 + and 3 - ) phonon states, confirming the conclusion from other experiments that these phonon states play an important role in the damping process of the single-particle states. Furthermore, the population and decay of Isobaric Analogue States of 91 Zr, which are located at an excitation energy of about 10 - 12 MeV in 91 Nb, has been studied in the same reaction. (author)
The stochastic dynamics of intermittent porescale particle motion
Dentz, Marco; Morales, Veronica; Puyguiraud, Alexandre; Gouze, Philippe; Willmann, Matthias; Holzner, Markus
2017-04-01
Numerical and experimental data for porescale particle dynamics show intermittent patterns in Lagrangian velocities and accelerations, which manifest in long time intervals of low and short durations of high velocities [1, 2]. This phenomenon is due to the spatial persistence of particle velocities on characteristic heterogeneity length scales. In order to systematically quantify these behaviors and extract the stochastic dynamics of particle motion, we focus on the analysis of Lagrangian velocities sampled equidistantly along trajectories [3]. This method removes the intermittency observed under isochrone sampling. The space-Lagrangian velocity series can be quantified by a Markov process that is continuous in distance along streamline. It is fully parameterized in terms of the flux-weighted Eulerian velocity PDF and the characteristic pore-length. The resulting stochastic particle motion describes a continuous time random walk (CTRW). This approach allows for the process based interpretation of experimental and numerical porescale velocity, acceleration and displacement data. It provides a framework for the characterization and upscaling of particle transport and dispersion from the pore to the Darcy-scale based on the medium geometry and Eulerian flow attributes. [1] P. De Anna, T. Le Borgne, M. Dentz, A.M. Tartakovsky, D. Bolster, and P. Davy, "Flow intermittency, dispersion, and correlated continuous time random walks in porous media," Phys. Rev. Lett. 110, 184502 (2013). [2] M. Holzner, V. L. Morales, M. Willmann, and M. Dentz, "Intermittent Lagrangian velocities and accelerations in three- dimensional porous medium flow," Phys. Rev. E 92, 013015 (2015). [3] M. Dentz, P. K. Kang, A. Comolli, T. Le Borgne, and D. R. Lester, "Continuous time random walks for the evolution of Lagrangian velocities," Phys. Rev. Fluids (2016).
International Nuclear Information System (INIS)
Sakata, F.; Marumori, T.; Hashimoto, Y.; Tsukuma, H.; Yamamoto, Y.; Terasaki, J.; Iwasawa, Y.; Itabashi, H.
1992-01-01
Since the research field of nuclear physics is expanding rapidly, it is becoming more imperative to develop the microscopie theory of nuclear matter physics which provides us with a unified understanding of diverse phenomena exhibited by nuclei. An estabishment of various stable mean-fields in nuclei allows us to develop the microscopie theory of nuclear collective dynamics within the mean-field approximation. The classical-level theory of nuclear collective dynamics is developed by exploiting the symplectic structure of the timedependent Hartree-Fock (TDHF)-manifold. The importance of exploring the single-particle dynamics, e.g. the level-crossing dynamics in connection with the classical order-to-chaos transition mechanism is pointed out. Since the classical-level theory os directly related to the full quantum mechanical boson expansion theory via the symplectic structure of the TDHF-manifold, the quantum theory of nuclear collective dynamics is developed at the dictation of what os developed on the classical-level theory. The quantum theory thus formulated enables us to introduce the quantum integrability and quantum chaoticity for individual eigenstates. The inter-relationship between the classical-level and quantum theories of nuclear collective dynamics might play a decisive role in developing the quantum theory of many-body problems. (orig.)
A dissipative particle dynamics method for arbitrarily complex geometries
Li, Zhen; Bian, Xin; Tang, Yu-Hang; Karniadakis, George Em
2018-02-01
Dissipative particle dynamics (DPD) is an effective Lagrangian method for modeling complex fluids in the mesoscale regime but so far it has been limited to relatively simple geometries. Here, we formulate a local detection method for DPD involving arbitrarily shaped geometric three-dimensional domains. By introducing an indicator variable of boundary volume fraction (BVF) for each fluid particle, the boundary of arbitrary-shape objects is detected on-the-fly for the moving fluid particles using only the local particle configuration. Therefore, this approach eliminates the need of an analytical description of the boundary and geometry of objects in DPD simulations and makes it possible to load the geometry of a system directly from experimental images or computer-aided designs/drawings. More specifically, the BVF of a fluid particle is defined by the weighted summation over its neighboring particles within a cutoff distance. Wall penetration is inferred from the value of the BVF and prevented by a predictor-corrector algorithm. The no-slip boundary condition is achieved by employing effective dissipative coefficients for liquid-solid interactions. Quantitative evaluations of the new method are performed for the plane Poiseuille flow, the plane Couette flow and the Wannier flow in a cylindrical domain and compared with their corresponding analytical solutions and (high-order) spectral element solution of the Navier-Stokes equations. We verify that the proposed method yields correct no-slip boundary conditions for velocity and generates negligible fluctuations of density and temperature in the vicinity of the wall surface. Moreover, we construct a very complex 3D geometry - the "Brown Pacman" microfluidic device - to explicitly demonstrate how to construct a DPD system with complex geometry directly from loading a graphical image. Subsequently, we simulate the flow of a surfactant solution through this complex microfluidic device using the new method. Its
Microscopic theory of dynamical subspace for large amplitude collective motion
International Nuclear Information System (INIS)
Sakata, Fumihiko; Marumori, Toshio; Ogura, Masanori.
1986-01-01
A full quantum theory appropriate for describing large amplitude collective motion is proposed by exploiting the basic idea of the semi-classical theory so far developed within the time-depedent Hartree-Fock theory. A central problem of the quantum theory is how to determine an optimal representation called a dynamical representation specific for the collective subspace where the large amplitude collective motion is replicated as precisely as possible. As an extension of the semi-classical theory where the concept of an approximate integral surface played an important role, the collective subspace is properly characterized by introducing a concept of an approximate invariant subspace of the Hamiltonian. (author)
Dynamics of a particle attracted by a magnetized wire
International Nuclear Information System (INIS)
Lawson, W.F. Jr.; Simons, W.H.; Treat, R.P.
1977-01-01
The dynamics of a particle attracted by a magnetized wire is studied for nonvanishing gravitational forces and a broad range of Stokes number K. The Newtonian equation of motion for the particle is integrated for 10 -2 2 , a range which includes conditions where the particle inertia cannot be ignored. Families of trajectories, typical of low and high K, reveal the dominance of viscous forces at low K, as expected, and show oscillatory approach to capture for high K, where inertia is significant. Capture distances in the interval 1< or =X/sub c/< or =8 are given as a function of three independent dimensionless parameters which measure the strengths of the magnetic, viscous, and gravitational forces. The range of conditions is established for which it is permissible to neglect, for the purpose of computing capture distances, both the inertia and the radially attractive short-range part of the magnetic force. The equation of motion in which the inertia and the short-range term are neglected is studied. An integral of this equation is found which extends the trajectory equations of Zebel and Luborsky to include the gravitational force. A general approach to the construction of the integral of motion shows how to find the trajectory equation for a particle moving in a more complicated incompressible viscous flow with higher multipole contributions to the magnetic field of force
Plasma Interaction and Energetic Particle Dynamics near Callisto
Liuzzo, L.; Simon, S.; Feyerabend, M.; Motschmann, U. M.
2017-12-01
Callisto's magnetic environment is characterized by a complex admixture of induction signals from its conducting subsurface ocean, the interaction of corotating Jovian magnetospheric plasma with the moon's ionosphere and induced dipole, and the non-linear coupling between the effects. In contrast to other Galilean moons, ion gyroradii near Callisto are comparable to its size, requiring a kinetic treatment of the interaction region near the moon. Thus, we apply the hybrid simulation code AIKEF to constrain the competing effects of plasma interaction and induction. We determine their influence on the magnetic field signatures measured by Galileo during various Callisto flybys. We use the magnetic field calculated by the model to investigate energetic particle dynamics and their effect on Callisto's environment. From this, we provide a map of global energetic particle precipitation onto Callisto's surface, which may contribute to the generation of its atmosphere.
The Effective Chiral Lagrangian for a Light Dynamical "Higgs Particle"
Alonso, R.; Merlo, L.; Rigolin, S.; Yepes, J.
2013-01-01
We generalize the basis of CP-even chiral effective operators describing a dynamical Higgs sector, to the case in which the Higgs-like particle is light. Gauge and gauge-Higgs operators are considered up to mass dimension five. This analysis completes the tool needed to explore at leading order the connection between linear realizations of the electroweak symmetry breaking mechanism - whose extreme case is the Standard Model - and non-linear realizations with a light Higgs-like particle present. It may also provide a model-independent guideline to explore which exotic gauge-Higgs couplings may be expected, and their relative strength to Higgsless observable amplitudes. With respect to fermions, the analysis is reduced by nature to the consideration of those flavour-conserving operators that can be written in terms of pure-gauge or gauge-Higgs ones via the equations of motion, but for the standard Yukawa-type couplings.
Collective modes in multiband superfluids and superconductors: Multiple dynamical classes
International Nuclear Information System (INIS)
Ota, Yukihiro; Machida, Masahiko; Koyama, Tomio; Aoki, Hideo
2011-01-01
One important way to characterize the states having a gauge symmetry spontaneously broken over multibands is to look at their collective excitation modes. We find that a three-band system has multiple Leggett modes with significantly different masses, which can be classified into different dynamical classes according to whether multiple interband Josephson currents add or cancel. This provides a way to dynamically characterize multiband superconductivity while the pairing symmetry is a static property.
Fractional dynamics of charged particles in magnetic fields
Coronel-Escamilla, A.; Gómez-Aguilar, J. F.; Alvarado-Méndez, E.; Guerrero-Ramírez, G. V.; Escobar-Jiménez, R. F.
2016-02-01
In many physical applications the electrons play a relevant role. For example, when a beam of electrons accelerated to relativistic velocities is used as an active medium to generate Free Electron Lasers (FEL), the electrons are bound to atoms, but move freely in a magnetic field. The relaxation time, longitudinal effects and transverse variations of the optical field are parameters that play an important role in the efficiency of this laser. The electron dynamics in a magnetic field is a means of radiation source for coupling to the electric field. The transverse motion of the electrons leads to either gain or loss energy from or to the field, depending on the position of the particle regarding the phase of the external radiation field. Due to the importance to know with great certainty the displacement of charged particles in a magnetic field, in this work we study the fractional dynamics of charged particles in magnetic fields. Newton’s second law is considered and the order of the fractional differential equation is (0;1]. Based on the Grünwald-Letnikov (GL) definition, the discretization of fractional differential equations is reported to get numerical simulations. Comparison between the numerical solutions obtained on Euler’s numerical method for the classical case and the GL definition in the fractional approach proves the good performance of the numerical scheme applied. Three application examples are shown: constant magnetic field, ramp magnetic field and harmonic magnetic field. In the first example the results obtained show bistability. Dissipative effects are observed in the system and the standard dynamic is recovered when the order of the fractional derivative is 1.
Fractional Dynamics Applications of Fractional Calculus to Dynamics of Particles, Fields and Media
Tarasov, Vasily E
2010-01-01
"Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media" presents applications of fractional calculus, integral and differential equations of non-integer orders in describing systems with long-time memory, non-local spatial and fractal properties. Mathematical models of fractal media and distributions, generalized dynamical systems and discrete maps, non-local statistical mechanics and kinetics, dynamics of open quantum systems, the hydrodynamics and electrodynamics of complex media with non-local properties and memory are considered. This book is intended to meet the needs of scientists and graduate students in physics, mechanics and applied mathematics who are interested in electrodynamics, statistical and condensed matter physics, quantum dynamics, complex media theories and kinetics, discrete maps and lattice models, and nonlinear dynamics and chaos. Dr. Vasily E. Tarasov is a Senior Research Associate at Nuclear Physics Institute of Moscow State University and...
Dynamical groups of a particle in a periodic potential
International Nuclear Information System (INIS)
Yusuf, M.
1992-09-01
Solving the Schroedinger non-relativistic equation of a particle moving under the influence of the potential V(θ) = ω(1 - cosθ) leads to us to the standard Mathieu equation. Jahnke-Emde's(1938), the periodic solutions are Mathieu functions of even order. With an approximation we study two important limiting cases, a simple quantum rotator and one-dimensional linear oscillator. We show the dynamical groups of these special, and a further study of the real problem connects us an Euclidean group of 2D. An IRR of matrix elements give us the energy levels. The interface between the E 2 and Bessel Functions is showed. (author). 7 refs
Explicit K-symplectic algorithms for charged particle dynamics
International Nuclear Information System (INIS)
He, Yang; Zhou, Zhaoqi; Sun, Yajuan; Liu, Jian; Qin, Hong
2017-01-01
We study the Lorentz force equation of charged particle dynamics by considering its K-symplectic structure. As the Hamiltonian of the system can be decomposed as four parts, we are able to construct the numerical methods that preserve the K-symplectic structure based on Hamiltonian splitting technique. The newly derived numerical methods are explicit, and are shown in numerical experiments to be stable over long-term simulation. The error convergency as well as the long term energy conservation of the numerical solutions is also analyzed by means of the Darboux transformation.
Explicit K-symplectic algorithms for charged particle dynamics
Energy Technology Data Exchange (ETDEWEB)
He, Yang [School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083 (China); Zhou, Zhaoqi [LSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, P.O. Box 2719, Beijing 100190 (China); Sun, Yajuan, E-mail: sunyj@lsec.cc.ac.cn [LSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, P.O. Box 2719, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Liu, Jian [Department of Modern Physics and School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (China); Key Laboratory of Geospace Environment, CAS, Hefei, Anhui 230026 (China); Qin, Hong [Department of Modern Physics and School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (China); Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States)
2017-02-12
We study the Lorentz force equation of charged particle dynamics by considering its K-symplectic structure. As the Hamiltonian of the system can be decomposed as four parts, we are able to construct the numerical methods that preserve the K-symplectic structure based on Hamiltonian splitting technique. The newly derived numerical methods are explicit, and are shown in numerical experiments to be stable over long-term simulation. The error convergency as well as the long term energy conservation of the numerical solutions is also analyzed by means of the Darboux transformation.
A Facile Synthesis of Dynamic, Shape Changing Polymer Particles
Klinger, Daniel; Wang, Cynthia; Connal, Luke A.; Audus, Debra J.; Jang, Se Gyu; Kraemer, Stephan; Killops, Kato L.; Fredrickson, Glenn H.; Kramer, Edward J.; Hawker, Craig J.
2014-01-01
We herein report a new facile strategy to ellipsoidal block copolymer nanoparticles exhibiting a pH-triggered anistropic swelling profile. In a first step, elongated particles with an axially stacked lamellae structure are selectively prepared by utilizing functional surfactants to control the phase separation of symmetric PS-b-P2VP in dispersed droplets. In a second step, the dynamic shape change is realized by crosslinking the P2VP domains, hereby connecting glassy PS discs with pH-sensitive hydrogel actuators. PMID:24700705
A facile synthesis of dynamic, shape-changing polymer particles.
Klinger, Daniel; Wang, Cynthia X; Connal, Luke A; Audus, Debra J; Jang, Se Gyu; Kraemer, Stephan; Killops, Kato L; Fredrickson, Glenn H; Kramer, Edward J; Hawker, Craig J
2014-07-01
We herein report a new facile strategy to ellipsoidal block copolymer nanoparticles that exhibit a pH-triggered anistropic swelling profile. In a first step, elongated particles with an axially stacked lamellae structure are selectively prepared by utilizing functional surfactants to control the phase separation of symmetric polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) in dispersed droplets. In a second step, the dynamic shape change is realized by cross-linking the P2VP domains, thereby connecting glassy PS discs with pH-sensitive hydrogel actuators. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Collective Dynamics of Intracellular Water in Living Cells
International Nuclear Information System (INIS)
Orecchini, A; Sebastiani, F; Paciaroni, A; Petrillo, C; Sacchetti, F; Jasnin, M; Francesco, A De; Zaccai, G; Moulin, M; Haertlein, M
2012-01-01
Water dynamics plays a fundamental role for the fulfillment of biological functions in living organisms. Decades of hydrated protein powder studies have revealed the peculiar dynamical properties of hydration water with respect to pure water, due to close coupling interactions with the macromolecule. In such a framework, we have studied coherent collective dynamics in protein and DNA hydration water. State-of-the-art neutron instrumentation has allowed us to observe the propagation of coherent density fluctuations within the hydration shell of the biomolecules. The corresponding dispersion curves resulted to be only slightly affected by the coupling with the macromolecules. Nevertheless, the effects of the interaction appeared as a marked increase of the mode damping factors, which suggested a destructuring of the water hydrogen-bond network. Such results were interpreted as the signature of a 'glassy' dynamical character of macromolecule hydration water, in agreement with indications from measurements of the density of vibrational states. Extending the investigations to living organisms at physiological conditions, we present here an in-vivo study of collective dynamics of intracellular water in Escherichia coli cells. The cells and water were fully deuterated to minimise the incoherent neutron scattering background. The water dynamics observed in the living cells is discussed in terms of the dynamics of pure bulk water and that of hydration water measured in powder samples.
The peculiarities of particle dynamics in the Fermi acceleration scheme
International Nuclear Information System (INIS)
Buts, V.A.
2015-01-01
With examples of discrete and distributed mathematical models of the Fermi acceleration mechanism, a usefulness, or even necessity, of taking into account of singular solutions is demonstrated. Also the role is shown of those parts of phase space where the uniqueness theorem conditions to form the dynamics of physical systems are broken. It was found that the dynamics of particles in discrete and distributed mathematical schemes of Fermi acceleration can be significantly different. The difference is due to the fact that the distributed model takes into account the effects of phase space where conditions do not correspond to those necessary for application of the uniqueness theorem. The role of singular solutions is under discussion as well.
Particle spin dynamics as the grassmann variant of classical mechanics
International Nuclear Information System (INIS)
Berezin, F.A.; Marinov, M.S.
1976-01-01
A generalization of the calssical mechanics is presented. The dynamical variables are assumed to be elements of an algebra with anticommuting generators (The Grassmann algebra). The action functional and the Poisson brackets are defined. The equations of motion are deduced from the variational principle. The dynamics is described also by means of the Liouville equation for the phase-space distribution. The canonical quantization lead phase-space path integral approach to the quantum theory is also formulated. The theory is applied to describe the particle spin. Classical description of the spin precession and of the spin-orbital forces is given. The phase-space distribution and the interaction with an external field are also considered
TEM study of soot, organic aerosol, and sea-salt particles collected during CalNex
Adachi, K.; Buseck, P. R.
2010-12-01
Anthropogenic aerosol particles are emitted in abundance from megacities. Those particles can have important effects on both human health and climate. In this study, aerosol particles having aerodynamic diameters between 50 and 300 nm were collected during the CalNex campaign at the Pasadena ground site from May 15 to June 15, 2010, ~15 km northeast of downtown Los Angeles. The samples were analyzed using transmission electron microscopes (TEMs) to characterize particle shapes and compositions. Most samples are dominated by soot, organic aerosol (OA), sulfate, sea salt, or combinations thereof. Sizes and amounts of OA particles increased during the afternoons, and most soot particles were internally mixed with OA and sulfate in the afternoons. The proportion of soot to other material in individual particles increased and soot particles were more compact during the nights and early mornings. Sea-salt particles were commonly internally mixed with other materials. They have high Na contents with lesser N, Mg, S, K, and Ca and almost no Cl, suggesting that the Cl was replaced by sulfate or nitrate in the atmosphere. There is less OA and more sea salt and sulfate in the CalNex samples than in the samples from Mexico City that were collected during the MILAGRO campaign. Our study indicates that compositions of internally mixed aerosol particles and shapes of soot particles change significantly within a day. These changes probably influence the estimates of their effects on human health and climate.
Complex dynamic and static structures in interconnected particle systems
International Nuclear Information System (INIS)
Kristiansen, Kai de Lange
2004-01-01
, and may also be a subject. for future studies. The diffusive behaviour of a cluster of a semi-large number spheres in a soft potential undergoes transitions in length scale from super diffusion via normal diffusion to sub diffusion. This analysis follows the motion of one sphere over a large time span. Knot theory can be used to get other measures of the collective behaviour, e.g. the linking number seems to be a promising measure and would be worth studying. This quantity represents the number of times the world lines from two spheres cross each other in a preferred direction of rotation. Random dense packing of spheres is a useful model for disordered and granular media. The monolayer of non-magnetic spheres in a ferro fluid is used to simulate this packing in 2D. Our experiments show packing structures similar to previous results. In 3D we have used a mechanical contraction method, paper 5, to simulate rapid sedimentation of binary mixture of spherical colloidal particles. The densities as function of sphere composition were found to be similar to results from the experiments. For a random dense packing it would be interesting to follow the idea of the excluded volume argument to explain quantitatively the density as function of size- and shape distributions. The mechanical contraction method seems to be ideal for doing these kinds of numerical calculations. The coordination number is difficult to find in a real system of colloidal particles, but is easily obtained in numerical simulations. Nucleation of a colloidal monolayer in all alternating electric field has been studied recently. The magnetic hole system may be used to show a similar behaviour in a magnetic field. With this system we can study the nucleation process from the beginning and also to investigate the nucleation rate. Preliminary experiments have also been done that show large differences in the behaviour in systems with only free spheres and systems with some obstacles or fixed spheres among the
Complex dynamic and static structures in interconnected particle systems
Energy Technology Data Exchange (ETDEWEB)
Kristiansen, Kai de Lange
2004-07-01
-Mandelbrot relation is not fully understood, and may also be a subject. for future studies. The diffusive behaviour of a cluster of a semi-large number spheres in a soft potential undergoes transitions in length scale from super diffusion via normal diffusion to sub diffusion. This analysis follows the motion of one sphere over a large time span. Knot theory can be used to get other measures of the collective behaviour, e.g. the linking number seems to be a promising measure and would be worth studying. This quantity represents the number of times the world lines from two spheres cross each other in a preferred direction of rotation. Random dense packing of spheres is a useful model for disordered and granular media. The monolayer of non-magnetic spheres in a ferro fluid is used to simulate this packing in 2D. Our experiments show packing structures similar to previous results. In 3D we have used a mechanical contraction method, paper 5, to simulate rapid sedimentation of binary mixture of spherical colloidal particles. The densities as function of sphere composition were found to be similar to results from the experiments. For a random dense packing it would be interesting to follow the idea of the excluded volume argument to explain quantitatively the density as function of size- and shape distributions. The mechanical contraction method seems to be ideal for doing these kinds of numerical calculations. The coordination number < C > is difficult to find in a real system of colloidal particles, but is easily obtained in numerical simulations. Nucleation of a colloidal monolayer in all alternating electric field has been studied recently. The magnetic hole system may be used to show a similar behaviour in a magnetic field. With this system we can study the nucleation process from the beginning and also to investigate the nucleation rate. Preliminary experiments have also been done that show large differences in the behaviour in systems with only free spheres and systems with some
López, María Laura; Borgnino, Laura; Ávila, Eldo E.
2018-05-01
This work studies the role of mineral particles collected in the region of Patagonia (Neuquén, Argentina) as ice nuclei particles (INPs) by immersion freezing mode. The particle immersion-freezing ability was analyzed under laboratory conditions by using an established drop-freezing technique. Mineralogical composition was characterized by using X-ray diffraction and electron micro probe analysis. Dynamic light scattering was used to determine the grain size distribution of particles, while the N2 adsorption and methylene blue adsorption methods were applied to determine their specific surface area. Water droplets of different volumes containing different concentrations of particles were cooled until droplets were frozen. For all the analyzed drop volumes, an increase in the freezing temperature of the drops was observed with increasing dust concentration. In the same way, the freezing temperature increased when the drop volume was increased at constant dust concentration. Both behaviors were linked to the availability of active sites in the particles. A plateau in the freezing temperature was observed at high suspension concentration for all the drop volumes. This plateau was related to the aggregation of the particles when the suspension concentration was increased and to the consequent decrease in the number of active sites. The active sites per unit of surface area were calculated and reported. For the studied range of temperature, results are in agreement with those reported for different sites and particles. From the chemical and morphological analysis of the particle components and the results obtained from the literature, it was concluded that even though montmorillonite was the main mineral in the collected sample, the accessory minerals deserve to be analyzed in detail in order to know if they could be responsible for the ability of the collected soil particles to act as INPs. Considering that the region of Patagonia has been identified as an important
Directory of Open Access Journals (Sweden)
Demongeot Jacques
2004-06-01
Full Text Available Abstract Background The transport of intra-cellular particles by microtubules is a major biological function. Under appropriate in vitro conditions, microtubule preparations behave as a 'complex' system and show 'emergent' phenomena. In particular, they form dissipative structures that self-organise over macroscopic distances by a combination of reaction and diffusion. Results Here, we show that self-organisation also gives rise to a collective transport of colloidal particles along a specific direction. Particles, such as polystyrene beads, chromosomes, nuclei, and vesicles are carried at speeds of several microns per minute. The process also results in the macroscopic self-organisation of these particles. After self-organisation is completed, they show the same pattern of organisation as the microtubules. Numerical simulations of a population of growing and shrinking microtubules, incorporating experimentally realistic reaction dynamics, predict self-organisation. They forecast that during self-organisation, macroscopic parallel arrays of oriented microtubules form which cross the reaction space in successive waves. Such travelling waves are capable of transporting colloidal particles. The fact that in the simulations, the aligned arrays move along the same direction and at the same speed as the particles move, suggest that this process forms the underlying mechanism for the observed transport properties. Conclusions This process constitutes a novel physical chemical mechanism by which chemical energy is converted into collective transport of colloidal particles along a given direction. Self-organisation of this type provides a new mechanism by which intra cellular particles such as chromosomes and vesicles can be displaced and simultaneously organised by microtubules. It is plausible that processes of this type occur in vivo.
Glade, Nicolas; Demongeot, Jacques; Tabony, James
2004-01-01
Background The transport of intra-cellular particles by microtubules is a major biological function. Under appropriate in vitro conditions, microtubule preparations behave as a 'complex' system and show 'emergent' phenomena. In particular, they form dissipative structures that self-organise over macroscopic distances by a combination of reaction and diffusion. Results Here, we show that self-organisation also gives rise to a collective transport of colloidal particles along a specific direction. Particles, such as polystyrene beads, chromosomes, nuclei, and vesicles are carried at speeds of several microns per minute. The process also results in the macroscopic self-organisation of these particles. After self-organisation is completed, they show the same pattern of organisation as the microtubules. Numerical simulations of a population of growing and shrinking microtubules, incorporating experimentally realistic reaction dynamics, predict self-organisation. They forecast that during self-organisation, macroscopic parallel arrays of oriented microtubules form which cross the reaction space in successive waves. Such travelling waves are capable of transporting colloidal particles. The fact that in the simulations, the aligned arrays move along the same direction and at the same speed as the particles move, suggest that this process forms the underlying mechanism for the observed transport properties. Conclusions This process constitutes a novel physical chemical mechanism by which chemical energy is converted into collective transport of colloidal particles along a given direction. Self-organisation of this type provides a new mechanism by which intra cellular particles such as chromosomes and vesicles can be displaced and simultaneously organised by microtubules. It is plausible that processes of this type occur in vivo. PMID:15176973
Studying protein assembly with reversible Brownian dynamics of patchy particles
International Nuclear Information System (INIS)
Klein, Heinrich C. R.; Schwarz, Ulrich S.
2014-01-01
Assembly of protein complexes like virus shells, the centriole, the nuclear pore complex, or the actin cytoskeleton is strongly determined by their spatial structure. Moreover, it is becoming increasingly clear that the reversible nature of protein assembly is also an essential element for their biological function. Here we introduce a computational approach for the Brownian dynamics of patchy particles with anisotropic assemblies and fully reversible reactions. Different particles stochastically associate and dissociate with microscopic reaction rates depending on their relative spatial positions. The translational and rotational diffusive properties of all protein complexes are evaluated on-the-fly. Because we focus on reversible assembly, we introduce a scheme which ensures detailed balance for patchy particles. We then show how the macroscopic rates follow from the microscopic ones. As an instructive example, we study the assembly of a pentameric ring structure, for which we find excellent agreement between simulation results and a macroscopic kinetic description without any adjustable parameters. This demonstrates that our approach correctly accounts for both the diffusive and reactive processes involved in protein assembly
Semiclassical transport of particles with dynamical spectral functions
International Nuclear Information System (INIS)
Cassing, W.; Juchem, S.
2000-01-01
The conventional transport of particles in the on-shell quasiparticle limit is extended to particles of finite life time by means of a spectral function A(X,P,M 2 ) for a particle moving in an area of complex self-energy Σ ret X =Re Σ ret X -iΓ X /2. Starting from the Kadanoff--Baym equations we derive in first-order gradient expansion equations of motion for testparticles with respect to their time evolution in X,P and M 2 . The off-shell propagation is demonstrated for a couple of model cases that simulate hadron-nucleus collisions. In case of nucleus-nucleus collisions the imaginary part of the hadron self-energy Γ X is determined by the local space-time dependent collision rate dynamically. A first application is presented for A+A reactions up to 95 A MeV, where the effects from the off-shell propagation of nucleons are discussed with respect to high energy proton spectra, high energy photon production as well as kaon yields in comparison to the available data from GANIL
Studying protein assembly with reversible Brownian dynamics of patchy particles
Energy Technology Data Exchange (ETDEWEB)
Klein, Heinrich C. R. [Institute for Theoretical Physics, Heidelberg University, 69120 Heidelberg (Germany); Schwarz, Ulrich S., E-mail: ulrich.schwarz@bioquant.uni-heidelberg.de [Institute for Theoretical Physics, Heidelberg University, 69120 Heidelberg (Germany); BioQuant, Heidelberg University, 69120 Heidelberg (Germany)
2014-05-14
Assembly of protein complexes like virus shells, the centriole, the nuclear pore complex, or the actin cytoskeleton is strongly determined by their spatial structure. Moreover, it is becoming increasingly clear that the reversible nature of protein assembly is also an essential element for their biological function. Here we introduce a computational approach for the Brownian dynamics of patchy particles with anisotropic assemblies and fully reversible reactions. Different particles stochastically associate and dissociate with microscopic reaction rates depending on their relative spatial positions. The translational and rotational diffusive properties of all protein complexes are evaluated on-the-fly. Because we focus on reversible assembly, we introduce a scheme which ensures detailed balance for patchy particles. We then show how the macroscopic rates follow from the microscopic ones. As an instructive example, we study the assembly of a pentameric ring structure, for which we find excellent agreement between simulation results and a macroscopic kinetic description without any adjustable parameters. This demonstrates that our approach correctly accounts for both the diffusive and reactive processes involved in protein assembly.
Modeling Dynamic Objects in Monte Carlo Particle Transport Calculations
International Nuclear Information System (INIS)
Yegin, G.
2008-01-01
In this study, the Multi-Geometry geometry modeling technique was improved in order to handle moving objects in a Monte Carlo particle transport calculation. In the Multi-Geometry technique, the geometry is a superposition of objects not surfaces. By using this feature, we developed a new algorithm which allows a user to make enable or disable geometry elements during particle transport. A disabled object can be ignored at a certain stage of a calculation and switching among identical copies of the same object located adjacent poins during a particle simulation corresponds to the movement of that object in space. We called this powerfull feature as Dynamic Multi-Geometry technique (DMG) which is used for the first time in Brachy Dose Monte Carlo code to simulate HDR brachytherapy treatment systems. Our results showed that having disabled objects in a geometry does not effect calculated dose values. This technique is also suitable to be used in other areas such as IMRT treatment planning systems
Vijaykumar, Adithya; Ouldridge, Thomas E.; ten Wolde, Pieter Rein; Bolhuis, Peter G.
2017-03-01
The modeling of complex reaction-diffusion processes in, for instance, cellular biochemical networks or self-assembling soft matter can be tremendously sped up by employing a multiscale algorithm which combines the mesoscopic Green's Function Reaction Dynamics (GFRD) method with explicit stochastic Brownian, Langevin, or deterministic molecular dynamics to treat reactants at the microscopic scale [A. Vijaykumar, P. G. Bolhuis, and P. R. ten Wolde, J. Chem. Phys. 143, 214102 (2015)]. Here we extend this multiscale MD-GFRD approach to include the orientational dynamics that is crucial to describe the anisotropic interactions often prevalent in biomolecular systems. We present the novel algorithm focusing on Brownian dynamics only, although the methodology is generic. We illustrate the novel algorithm using a simple patchy particle model. After validation of the algorithm, we discuss its performance. The rotational Brownian dynamics MD-GFRD multiscale method will open up the possibility for large scale simulations of protein signalling networks.
Large scale Brownian dynamics of confined suspensions of rigid particles
Sprinkle, Brennan; Balboa Usabiaga, Florencio; Patankar, Neelesh A.; Donev, Aleksandar
2017-12-01
We introduce methods for large-scale Brownian Dynamics (BD) simulation of many rigid particles of arbitrary shape suspended in a fluctuating fluid. Our method adds Brownian motion to the rigid multiblob method [F. Balboa Usabiaga et al., Commun. Appl. Math. Comput. Sci. 11(2), 217-296 (2016)] at a cost comparable to the cost of deterministic simulations. We demonstrate that we can efficiently generate deterministic and random displacements for many particles using preconditioned Krylov iterative methods, if kernel methods to efficiently compute the action of the Rotne-Prager-Yamakawa (RPY) mobility matrix and its "square" root are available for the given boundary conditions. These kernel operations can be computed with near linear scaling for periodic domains using the positively split Ewald method. Here we study particles partially confined by gravity above a no-slip bottom wall using a graphical processing unit implementation of the mobility matrix-vector product, combined with a preconditioned Lanczos iteration for generating Brownian displacements. We address a major challenge in large-scale BD simulations, capturing the stochastic drift term that arises because of the configuration-dependent mobility. Unlike the widely used Fixman midpoint scheme, our methods utilize random finite differences and do not require the solution of resistance problems or the computation of the action of the inverse square root of the RPY mobility matrix. We construct two temporal schemes which are viable for large-scale simulations, an Euler-Maruyama traction scheme and a trapezoidal slip scheme, which minimize the number of mobility problems to be solved per time step while capturing the required stochastic drift terms. We validate and compare these schemes numerically by modeling suspensions of boomerang-shaped particles sedimented near a bottom wall. Using the trapezoidal scheme, we investigate the steady-state active motion in dense suspensions of confined microrollers, whose
Zakhari, Monica E. A.; Anderson, Patrick D.; Hütter, Markus
2017-07-01
Open-porous deformable particles, often envisaged as sponges, are ubiquitous in biological and industrial systems (e.g., casein micelles in dairy products and microgels in cosmetics). The rich behavior of these suspensions is owing to the elasticity of the supporting network of the particle, and the viscosity of permeating solvent. Therefore, the rate-dependent size change of these particles depends on their structure, i.e., the permeability. This work aims at investigating the effect of the particle-size dynamics and the underlying particle structure, i.e., the particle permeability, on the transient and long-time behavior of suspensions of spongy particles in the absence of applied deformation, using the dynamic two-scale model developed by Hütter et al. [Farad. Discuss. 158, 407 (2012), 10.1039/c2fd20025b]. In the high-density limit, the transient behavior is found to be accelerated by the particle-size dynamics, even at average size changes as small as 1 % . The accelerated dynamics is evidenced by (i) the higher short-time diffusion coefficient as compared to elastic-particle systems and (ii) the accelerated formation of the stable fcc crystal structure. Furthermore, after long times, the particle-size dynamics of spongy particles is shown to result in lower stationary values of the energy and normal stresses as compared to elastic-particle systems. This dependence of the long-time behavior of these systems on the permeability, that essentially is a transport coefficient and hence must not affect the equilibrium properties, confirms that full equilibration has not been reached.
Dissolution of aerosol particles collected from nuclear facility plutonium production process
International Nuclear Information System (INIS)
Ning Xu; Martinez, Alex; Schappert, Michael; Montoya, D.P.; Martinez, Patrick; Tandon, Lav
2016-01-01
A simple, robust analytical chemistry method has been developed to dissolve plutonium containing particles in a complex matrix. The aerosol particles collected on Marple cascade impactor substrates were shown to be dissolved completely with an acid mixture of 12 M HNO 3 and 0.1 M HF. A pressurized closed vessel acid digestion technique was utilized to heat the samples at 130 deg C for 16 h to facilitate the digestion. The dissolution efficiency for plutonium particles was 99 %. The resulting particle digestate solution was suitable for trace elemental analysis and isotope composition determination, as well as radiochemistry measurements. (author)
Fluctuations of the single-particle density in nuclear dynamics
International Nuclear Information System (INIS)
Burgio, G.F.; Chomaz, P.; Randrup, J.
1991-01-01
In recent years semiclassical methods have been developed to study heavy-ion collisions in the framework of the Boltzmann-Uehling-Uhlenbeck theory, in which the collisionless mean field evolution has been augmented by a Pauli-blocked Nordheim collision term. Since these models describe the average dynamic trajectory, they cannot be applied to describe fluctuations of one-body observables, correlations in the emission of light particles and catastrophic processes like multifragmentation. The authors have developed a new method in order to include the stochastic part of the collision integral into BUU-type simulations of the nuclear dynamics. They apply this method to a two-dimensional gas of fermions on a torus, for which the time evolution of the mean trajectory and the associated correlation function are calculated; the variance of the phase-space occupancy follows closely the predictions of the corresponding Fokker-Planck equation and relaxes towards the appropriate quantum-statistical limit. The breaking of the translational and spherical symmetry in the model permits the study of unstable situations in phase-space. The introduction of the nonlinear one-body field allows them to explore dynamical instabilities and bifurcations. Therefore the model can be appropriate for studying nuclear multifragmentation
Impact of beam ions on α-particle measurements by collective Thomson scattering in ITER
DEFF Research Database (Denmark)
Egedal, J.; Bindslev, H.; Budny, R.V.
2005-01-01
Collective Thomson scattering (CTS) has been proposed as a viable diagnostic for characterizing fusion born a-distributions in ITER. However, the velocities of the planned 1 MeV deuterium heating beam ions in 1TER are similar to that of fusion born a-particles and may therefore mask the measureme......Collective Thomson scattering (CTS) has been proposed as a viable diagnostic for characterizing fusion born a-distributions in ITER. However, the velocities of the planned 1 MeV deuterium heating beam ions in 1TER are similar to that of fusion born a-particles and may therefore mask...... and the alpha-particles are calculated. Our investigations show that the CTS measurements of alpha-particles will not be masked by the presence of the beam ions in H-mode plasmas. In lower density reversed shear plasmas, only a part of the CTS alpha-particle spectrum will be perturbed....
Single particle dynamics of many-body systems described by Vlasov-Fokker-Planck equations
International Nuclear Information System (INIS)
Frank, T.D.
2003-01-01
Using Langevin equations we describe the random walk of single particles that belong to particle systems satisfying Vlasov-Fokker-Planck equations. In doing so, we show that Haissinski distributions of bunched particles in electron storage rings can be derived from a particle dynamics model
van Reenen, A.; Gao, Y.; de Jong, Arthur; Hulsen, M.A.; den Toonder, J.M.J.; Prins, M.W.J.
2014-01-01
Magnetic particles are widely used in biological research and bioanalytical applications. As the corresponding tools are progressively being miniaturized and integrated, the understanding of particle dynamics and the control of particles down to the level of single particles become important. Here,
The collective biology of the gene: Towards genetic dynamics engineering
International Nuclear Information System (INIS)
Chela-Flores, J.
1985-11-01
Chromatin dynamics is studied in terms of coupled vibrations (phonon pairing); this is shown to lead to a collective variable Δ, interpreted as a gene inhibition factor, which behaves as a biological switch turned off, not only by enzymatic action or metabolic energy, but also by means of an external probe:irradiation. We discuss the inactivation of the X chromosome and puffing. The relevance of being able to modulate Δ is emphasized, since it is equivalent to controlling chromatin dynamics without interfering with chromatin structure, unlike in the usual recombinant DNA techniques. (author)
Quantum theory of dynamical collective subspace for large-amplitude collective motion
International Nuclear Information System (INIS)
Sakata, Fumihiko; Marumori, Toshio; Ogura, Masanori.
1986-03-01
By placing emphasis on conceptual correspondence to the ''classical'' theory which has been developed within the framework of the time-dependent Hartree-Fock theory, a full quantum theory appropriate for describing large-amplitude collective motion is proposed. A central problem of the quantum theory is how to determine an optimal representation called a dynamical representation; the representation is specific for the collective subspace where the large-amplitude collective motion is replicated as satisfactorily as possible. As an extension of the classical theory where the concept of an approximate integral surface plays an important role, the dynamical representation is properly characterized by introducing a concept of an approximate invariant subspace of the Hamiltonian. (author)
Mineralogy of Interplanetary Dust Particles from the Comet Giacobini-Zinner Dust Stream Collections
Nakamura-Messenger, K.; Messenger, S.; Westphal, A. J.; Palma, R. L.
2015-01-01
The Draconoid meteor shower, originating from comet 21P/Giacobini-Zinner, is a low-velocity Earth-crossing dust stream that had a peak anticipated flux on Oct. 8, 2012. In response to this prediction, NASA performed dedicated stratospheric dust collections to target interplanetary dust particles (IDPs) from this comet stream on Oct 15-17, 2012 [3]. Twelve dust particles from this targeted collection were allocated to our coordinated analysis team for studies of noble gas (Univ. Minnesota, Minnesota State Univ.), SXRF and Fe-XANES (SSL Berkeley) and mineralogy/isotopes (JSC). Here we report a mineralogical study of 3 IDPs from the Draconoid collection..
Carrier dynamics in graphene. Ultrafast many-particle phenomena
Energy Technology Data Exchange (ETDEWEB)
Malic, E.; Brem, S.; Jago, R. [Department of Physics, Chalmers University of Technology, Goeteborg (Sweden); Winzer, T.; Wendler, F.; Knorr, A. [Institut fuer Theoretische Physik, Technische Universitaet Berlin (Germany); Mittendorff, M.; Koenig-Otto, J.C.; Schneider, H.; Helm, M.; Winnerl, S. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Ploetzing, T.; Neumaier, D. [Advanced Microelectronic Center Aachen, AMO GmbH, Aachen (Germany)
2017-11-15
Graphene is an ideal material to study fundamental Coulomb- and phonon-induced carrier scattering processes. Its remarkable gapless and linear band structure opens up new carrier relaxation channels. In particular, Auger scattering bridging the valence and the conduction band changes the number of charge carriers and gives rise to a significant carrier multiplication - an ultrafast many-particle phenomenon that is promising for the design of highly efficient photodetectors. Furthermore, the vanishing density of states at the Dirac point combined with ultrafast phonon-induced intraband scattering results in an accumulation of carriers and a population inversion suggesting the design of graphene-based terahertz lasers. Here, we review our work on the ultrafast carrier dynamics in graphene and Landau-quantized graphene is presented providing a microscopic view on the appearance of carrier multiplication and population inversion. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Charged beam dynamics, particle accelerators and free electron lasers
Dattoli, Giuseppe; Sabia, Elio; Artioli, Marcello
2017-01-01
Charged Beam Dynamics, Particle Accelerators and Free Electron Lasers summarises different topics in the field of accelerators and of Free Electron Laser (FEL) devices. It is intended as a reference manual for the different aspects of FEL devices, explaining how to design both a FEL device and the accelerator providing the driving beam. It covers both theoretical and experimental aspects, allowing researchers to attempt a first design of a FEL device in different operating conditions. It provides an analysis of what is already available, what is needed, and what the challenges are to determine new progress in this field. All chapters contain complements and exercises that are designed in such a way that the reader will gradually acquire self-confidence with the matter treated in the book.
Lorentz covariant canonical symplectic algorithms for dynamics of charged particles
Wang, Yulei; Liu, Jian; Qin, Hong
2016-12-01
In this paper, the Lorentz covariance of algorithms is introduced. Under Lorentz transformation, both the form and performance of a Lorentz covariant algorithm are invariant. To acquire the advantages of symplectic algorithms and Lorentz covariance, a general procedure for constructing Lorentz covariant canonical symplectic algorithms (LCCSAs) is provided, based on which an explicit LCCSA for dynamics of relativistic charged particles is built. LCCSA possesses Lorentz invariance as well as long-term numerical accuracy and stability, due to the preservation of a discrete symplectic structure and the Lorentz symmetry of the system. For situations with time-dependent electromagnetic fields, which are difficult to handle in traditional construction procedures of symplectic algorithms, LCCSA provides a perfect explicit canonical symplectic solution by implementing the discretization in 4-spacetime. We also show that LCCSA has built-in energy-based adaptive time steps, which can optimize the computation performance when the Lorentz factor varies.
Beam dynamics calculations and particle tracking using massively parallel processors
International Nuclear Information System (INIS)
Ryne, R.D.; Habib, S.
1995-01-01
During the past decade massively parallel processors (MPPs) have slowly gained acceptance within the scientific community. At present these machines typically contain a few hundred to one thousand off-the-shelf microprocessors and a total memory of up to 32 GBytes. The potential performance of these machines is illustrated by the fact that a month long job on a high end workstation might require only a few hours on an MPP. The acceptance of MPPs has been slow for a variety of reasons. For example, some algorithms are not easily parallelizable. Also, in the past these machines were difficult to program. But in recent years the development of Fortran-like languages such as CM Fortran and High Performance Fortran have made MPPs much easier to use. In the following we will describe how MPPs can be used for beam dynamics calculations and long term particle tracking
Micellar polymerization: Computer simulations by dissipative particle dynamics.
Shupanov, Ruslan; Chertovich, Alexander; Kos, Pavel
2018-07-15
Nowadays, micellar polymerization is widely used in different fields of industry and research, including modern living polymerization technique. However, this process has many variables and there is no comprehensive model to describe all features. This research presents simulation methodology which describes key properties of such reactions to take a guide through a variety of their modifications. Dissipative particle dynamics is used in addition to Monte Carlo scheme to simulate initiation, propagation, and termination events. Influence of initiation probability and different termination processes on final conversion and molecular-weight distribution are presented. We demonstrate that prolonged initiation leads to increasing in polymer average molecular weight, and surface termination events play major role in conversion limitation, in comparison with recombination. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
Classical mechanics systems of particles and Hamiltonian dynamics
Greiner, Walter
2010-01-01
This textbook Classical Mechanics provides a complete survey on all aspects of classical mechanics in theoretical physics. An enormous number of worked examples and problems show students how to apply the abstract principles to realistic problems. The textbook covers Newtonian mechanics in rotating coordinate systems, mechanics of systems of point particles, vibrating systems and mechanics of rigid bodies. It thoroughly introduces and explains the Lagrange and Hamilton equations and the Hamilton-Jacobi theory. A large section on nonlinear dynamics and chaotic behavior of systems takes Classical Mechanics to newest development in physics. The new edition is completely revised and updated. New exercises and new sections in canonical transformation and Hamiltonian theory have been added.
Three-dimensional particle tracking velocimetry using dynamic vision sensors
Borer, D.; Delbruck, T.; Rösgen, T.
2017-12-01
A fast-flow visualization method is presented based on tracking neutrally buoyant soap bubbles with a set of neuromorphic cameras. The "dynamic vision sensors" register only the changes in brightness with very low latency, capturing fast processes at a low data rate. The data consist of a stream of asynchronous events, each encoding the corresponding pixel position, the time instant of the event and the sign of the change in logarithmic intensity. The work uses three such synchronized cameras to perform 3D particle tracking in a medium sized wind tunnel. The data analysis relies on Kalman filters to associate the asynchronous events with individual tracers and to reconstruct the three-dimensional path and velocity based on calibrated sensor information.
Communications overlapping in fast multipole particle dynamics methods
International Nuclear Information System (INIS)
Kurzak, Jakub; Pettitt, B. Montgomery
2005-01-01
In molecular dynamics the fast multipole method (FMM) is an attractive alternative to Ewald summation for calculating electrostatic interactions due to the operation counts. However when applied to small particle systems and taken to many processors it has a high demand for interprocessor communication. In a distributed memory environment this demand severely limits applicability of the FMM to systems with O(10 K atoms). We present an algorithm that allows for fine grained overlap of communication and computation, while not sacrificing synchronization and determinism in the equations of motion. The method avoids contention in the communication subsystem making it feasible to use the FMM for smaller systems on larger numbers of processors. Our algorithm also facilitates application of multiple time stepping techniques within the FMM. We present scaling at a reasonably high level of accuracy compared with optimized Ewald methods
Biosensor based on measurements of the clustering dynamics of magnetic particles
DEFF Research Database (Denmark)
2014-01-01
Disclosed herein is a biosensor for optical detection of Brownian relaxation dynamics of magnetic particles measured by light transmission. The magnetic particles can be functionalized with biological ligands for the detection of target analytes in a sample.......Disclosed herein is a biosensor for optical detection of Brownian relaxation dynamics of magnetic particles measured by light transmission. The magnetic particles can be functionalized with biological ligands for the detection of target analytes in a sample....
Differences in particle size distributions collected by two wood dust samplers: preliminary findings
International Nuclear Information System (INIS)
Campopiano, A.; Olori, A.; Basili, F.; Ramires, D.; Zakrzewska, A.M.
2008-01-01
The International Agency for Research on Cancer (IARC) classification of wood dust as carcinogenic to humans, and the threshold limit value (TLV) of 5 mg/m 3 weighted over an 8-hour work day as defined by Italian legislation, have raised the issue of dust risk assessments in all woodworking environments. The aim is to characterize the particle size distribution for wood particles collected by two samplers used for collecting the inhalable fraction: the IOM sampler (Institute of Occupational Medicine, Edinburgh, Scotland) and the conical sampler also known in Italy as conetto. These two sampling heads were chosen mainly because the Italian conical sampler, used in the past for total dust sampling, is the most widely used by the Italian Prevention Services and analysis laboratories in general, whereas the IOM sampler was specifically designed to collect the inhalable fraction of airborne particles. The devices were placed side by side within the worker's breathing zone. In addition, another IOM sampler not connected to the personal sampling pump was placed on the same worker, thus functioning as a passive sampler capable of collecting projectile particles normally produced during processing. A Scanning Electron Microscope (SEM) coupled with energy dispersive X-ray spectrometry (EDAX) was used to count the number of particles collected on the sampling filters. The size of each particle identified by the SEM was determined by measuring its mean diameter. The SEM analysis revealed that the average size of the largest particles collected by the conetto sampler did not exceed 150 μm, whereas the size of particles collected by the IOM sampler was up to 350 μm. Indeed, the analysis of the filters of the passive IOM samplers showed that particles with mean diameters larger than 100 μm were collected, although the calculated percentage was very low (on average, approximately 1%). This does not mean that their gravimetric contribution is negligible; indeed, the weight of
Collective dynamics of protein hydration water by brillouin neutron spectroscopy.
Orecchini, Andrea; Paciaroni, Alessandro; De Francesco, Alessio; Petrillo, Caterina; Sacchetti, Francesco
2009-04-08
By a detailed experimental study of THz dynamics in the ribonuclease protein, we could detect the propagation of coherent collective density fluctuations within the protein hydration shell. The emerging picture indicates the presence of both a dispersing mode, traveling with a speed greater than 3000 m/s, and a nondispersing one, characterized by an almost constant energy of 6-7 meV. In agreement with molecular dynamics simulations [Phys. Rev. Lett. 2002, 89, 275501], the features of the dispersion curves closely resemble those observed in pure liquid water [Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 2004, 69, 061203]. On the contrary, the observed damping factors are much larger than in bulk water, with the dispersing mode becoming overdamped at Q = 0.6 A(-1) already. Such novel experimental findings are discussed as a dynamic signature of the disordering effect induced by the protein surface on the local structure of water.
McDermott, Danielle; Olson Reichhardt, Cynthia J; Reichhardt, Charles
2016-10-19
Using computer simulations, we study a two-dimensional system of sterically interacting self-mobile run-and-tumble disk-shaped particles with an underlying periodic quasi-one-dimensional asymmetric substrate, and show that a rich variety of collective active ratchet behaviors arise as a function of particle density, activity, substrate period, and the maximum force exerted by the substrate. The net dc drift, or ratchet transport flux, is nonmonotonic since it increases with increased activity but is diminished by the onset of self-clustering of the active particles. Increasing the particle density decreases the ratchet transport flux for shallow substrates but increases the ratchet transport flux for deep substrates due to collective hopping events. At the highest particle densities, the ratchet motion is destroyed by a self-jamming effect. We show that it is possible to realize reversals of the direction of the net dc drift in the deep substrate limit when multiple rows of active particles can be confined in each substrate minimum, permitting emergent particle-like excitations to appear that experience an inverted effective substrate potential. We map out a phase diagram of the forward and reverse ratchet effects as a function of the particle density, activity, and substrate properties.
International Nuclear Information System (INIS)
Basharov, A. M.
2011-01-01
The effective Hamiltonian describing resonant interaction of an ensemble of identical quantum particles with a photon-free vacuum electromagnetic field has been obtained with allowance for terms of second order in the coupling constant (the Stark interaction) by means of the perturbation theory on the basis of the unitary transformation of the system quantum state. It has been shown that in the Markov approximation the effective Hamiltonian terms of first order in the coupling constant are represented by the quantum Wiener process, whereas terms of second order are expressed by the quantum Poisson process. During the course of the investigation, it was established that the Stark interaction played a significant role in the ensemble dynamics, thus influencing the collective spontaneous decay of the ensemble of an appreciably high number of identical particles. Fundamental effects have been discovered, i.e., the excitation conservation in a sufficiently dense ensemble of identical particles and superradiance suppression in the collective decaying process of an excited ensemble with a determined number of particles.
The oceanographic toolbox for the collection of sinking and suspended marine particles
McDonnell, Andrew M. P.; Lam, Phoebe J.; Lamborg, Carl H.; Buesseler, Ken O.; Sanders, Richard; Riley, Jennifer S.; Marsay, Chris; Smith, Helen E. K.; Sargent, Elizabeth C.; Lampitt, Richard S.; Bishop, James K. B.
2015-04-01
Marine particles play a central role in controlling the transport, cycling, and inventories of many major elements and trace elements and isotopes throughout the oceans. Studies seeking to elucidate the biogeochemical roles of marine particles often require reliable ways to collect them from the ocean. Here, we review the oceanographic toolbox of techniques and instrumentation that are employed to collect both suspended and sinking particles. With these tools, it is possible to determine both the concentrations and vertical fluxes of important elements and individual particle types. We describe the various methods for quantifying the concentrations of particulate matter with in situ pumps, towed sampling devices, bottle collectors, and large volume capture devices. The uses of various types of flux collection platforms are discussed including surface tethered, neutrally buoyant, and bottom moored devices. We address the issues of sediment trap collection biases and the apparent inconsistencies that can arise due to differences in the temporal and spatial scales sampled by the various methodologies. Special attention is given to collection considerations made for the analysis of trace metals and isotopes, as these methodologies are of high importance to the ongoing GEOTRACES program which seeks to identify the processes and quantify fluxes that control the distributions of key trace elements and isotopes in the ocean. With the emergence of new particle collection methodologies and the continued reliance on traditional collection methods, it is imperative that we combine these multiple approaches in ways that will help improve their accuracy and precision while enhancing their utility in advancing understanding of the biogeochemical and ecological roles of marine particles.
Solving dynamic multi-objective problems with vector evaluated particle swarm optimisation
CSIR Research Space (South Africa)
Greeff, M
2008-06-01
Full Text Available Many optimisation problems are multi-objective and change dynamically. Many methods use a weighted average approach to the multiple objectives. This paper introduces the usage of the vector evaluated particle swarm optimiser (VEPSO) to solve dynamic...
Quasi-particle and collective magnetism: Rotation, pairing and blocking in high-K isomers
International Nuclear Information System (INIS)
Stone, N.J.; Stone, J.R.; Walker, P.M.; Bingham, C.R.
2013-01-01
For the first time, a wide range of collective magnetic g-factors g R , obtained from a novel analysis of experimental data for multi-quasi-particle configurations in high-K isomers, is shown to exhibit a striking systematic variation with the relative number of proton and neutron quasi-particles, N p −N n . Using the principle of additivity, the quasi-particle contribution to magnetism in high-K isomers of Lu–Re, Z=71–75, has been estimated. Based on these estimates, band-structure branching ratio data are used to explore the behavior of the collective contribution as the number and proton/neutron nature (N p , N n ), of the quasi-particle excitations, change. Basic ideas of pairing, its quenching by quasi-particle excitation and the consequent changes to moment of inertia and collective magnetism are discussed. Existing model calculations do not reproduce the observed g R variation adequately. The paired superfluid system of nucleons in these nuclei, and their excitations, present properties of general physics interest. The new-found systematic behavior of g R in multi-quasi-particle excitations of this unique system, showing variation from close to zero for multi-neutron states to above 0.5 for multi-proton states, opens a fresh window on these effects and raises the important question of just which nucleons contribute to the ‘collective’ properties of these nuclei
Bonanno, D.; China, S.; Fraund, M. W.; Pham, D.; Kulkarni, G.; Laskin, A.; Gilles, M. K.; Moffet, R.
2016-12-01
The Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) Campaign was carried out to gain a better understanding of the lifecycle of shallow clouds. The HISCALE experiment was designed to contrast two seasons, wet and dry, and determine their effect on atmospheric cloud and aerosol processes. The spring component to HISCALE was selected to characterize mixing state for particles collected onto substrates. Sampling was performed before and after rain events to obtain airborne soil organic particles (ASOP), which are ejected after rain events. The unique composition of the ASOP may affect optical properties and/or hygroscopic properties. The collection of particles took place at the Atmospheric Radiation Measurement Southern Great Plains (ARM SGP) field site. The Scanning Transmission X-Ray Microscope (STXM) was used to image the samples collected during the first HI-SCALE Campaign to determine the carbonaceous mixing state. Scanning Electron Microscopy Energy-dispersive X-ray (SEM/EDX) analysis is more sensitive to the inorganic makeup of particles, while STXM renders a more comprehensive analysis of the organics. Measurements such as nephelometry, Particle Soot Absorption Photometry (PSAP), and Aerosol Mass Spectrometry (AMS) from the ARM archive will be correlated with microscopy measurements. The primary focus is the relation between composition and morphology of ASOP with hygroscopicity and optical properties. Further investigation of these organic particles will be performed to provide a mixing state parameterization and aid in the advancement of current climate models.
Dynamics of Charged Particles and their Radiation Field
International Nuclear Information System (INIS)
Poisson, E
2006-01-01
an electron for very long times. Without radiation reaction, the motion of an electron in the trap is an epicycle that consists of a rapid (and small) cyclotron orbit superposed onto a slow (and large) magnetron orbit. Spohn shows that according to the Landau-Lifshitz equations, the radiation reaction produces a damping of the cyclotron motion. For reasonable laboratory situations this damping occurs over a time scale of the order of 0.1 second. This experiment might well be within technological reach. The presentation of the quantum theory is based on the nonrelativistic Abraham model, which upon quantization leads to the well-known Pauli-Fierz Hamiltonian of nonrelativistic quantum electrodynamics. This theory, an approximation to the fully relativistic version of QED, has a wide domain of validity that includes many aspects of quantum optics and laser-matter interactions. I first admit that I found Spohn's presentation to be tough going. Unlike the pair of delightful books by Cohen-Tannoudji, Dupont-Roc, and Grynberg, this is not a gentle introduction to the quantum theory of a charged particle coupled to its own electromagnetic field. Instead, Spohn proceeds rather quickly through the formulation of the theory (defining the Hamiltonian and the Hilbert space) and then presents some applications (for example, he constructs the ground states of the theory, he examines radiation processes, and he explores finite-temperature aspects). There is a lot of material in the eight chapters devoted to the quantum theory, but my insufficient preparation and the advanced nature of Spohn's presentation were significant obstacles. One of the most useful resources in Spohn's book are the historical notes and literature reviews that are inserted at the end of each chapter. I discovered a wealth of interesting articles by reading these, and I am grateful that the author made the effort to collect this information for the benefit of his readers. (book review)
Neutral particle dynamics in the Alcator C-Mod tokamak
International Nuclear Information System (INIS)
Niemczewski, A.P.
1995-08-01
This thesis presents an experimental study of neutral particle dynamics in the Alcator C-Mod tokamak. The primary diagnostic used is a set of six neutral pressure gauges, including special-purpose gauges built for in situ tokamak operation. While a low main chamber neutral pressure coincides with high plasma confinement regimes, high divertor pressure is required for heat and particle flux dispersion in future devices such as ITER. Thus we examine conditions that optimize divertor compression, defined here as a divertor-to-midplane pressure ratio. We find both pressures depend primarily on the edge plasma regimes defined by the scrape-off-layer heat transport. While the maximum divertor pressure is achieved at high core plasma densities corresponding to the detached divertor state, the maximum compression is achieved in the high-recycling regime. Variations in the divertor geometry have a weaker effect on the neutral pressures. For otherwise similar plasmas the divertor pressure and compression are maximum when the strike point is at the bottom of the vertical target plate. We introduce a simple flux balance model, which allows us to explain the divertor neutral pressure across a wide range of plasma densities. In particular, high pressure sustained in the detached divertor (despite a considerable drop in the recycling source) can be explained by scattering of neutrals off the cold plasma plugging the divertor throat. Because neutrals are confined in the divertor through scattering and ionization processes (provided the mean-free-paths are much shorter than a typical escape distance) tight mechanical baffling is unnecessary. The analysis suggests that two simple structural modifications may increase the divertor compression in Alcator C-Mod by a factor of about 5. Widening the divertor throat would increase the divertor recycling source, while closing leaks in the divertor structure would eliminate a significant neutral loss mechanism. 146 refs., 82 figs., 14 tabs
A particle based simulation model for glacier dynamics
Directory of Open Access Journals (Sweden)
J. A. Åström
2013-10-01
Full Text Available A particle-based computer simulation model was developed for investigating the dynamics of glaciers. In the model, large ice bodies are made of discrete elastic particles which are bound together by massless elastic beams. These beams can break, which induces brittle behaviour. At loads below fracture, beams may also break and reform with small probabilities to incorporate slowly deforming viscous behaviour in the model. This model has the advantage that it can simulate important physical processes such as ice calving and fracturing in a more realistic way than traditional continuum models. For benchmarking purposes the deformation of an ice block on a slip-free surface was compared to that of a similar block simulated with a Finite Element full-Stokes continuum model. Two simulations were performed: (1 calving of an ice block partially supported in water, similar to a grounded marine glacier terminus, and (2 fracturing of an ice block on an inclined plane of varying basal friction, which could represent transition to fast flow or surging. Despite several approximations, including restriction to two-dimensions and simplified water-ice interaction, the model was able to reproduce the size distributions of the debris observed in calving, which may be approximated by universal scaling laws. On a moderate slope, a large ice block was stable and quiescent as long as there was enough of friction against the substrate. For a critical length of frictional contact, global sliding began, and the model block disintegrated in a manner suggestive of a surging glacier. In this case the fragment size distribution produced was typical of a grinding process.
Neutral particle dynamics in the Alcator C-Mod tokamak
Energy Technology Data Exchange (ETDEWEB)
Niemczewski, Artur P. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
1995-08-01
This thesis presents an experimental study of neutral particle dynamics in the Alcator C-Mod tokamak. The primary diagnostic used is a set of six neutral pressure gauges, including special-purpose gauges built for in situ tokamak operation. While a low main chamber neutral pressure coincides with high plasma confinement regimes, high divertor pressure is required for heat and particle flux dispersion in future devices such as ITER. Thus we examine conditions that optimize divertor compression, defined here as a divertor-to-midplane pressure ratio. We find both pressures depend primarily on the edge plasma regimes defined by the scrape-off-layer heat transport. While the maximum divertor pressure is achieved at high core plasma densities corresponding to the detached divertor state, the maximum compression is achieved in the high-recycling regime. Variations in the divertor geometry have a weaker effect on the neutral pressures. For otherwise similar plasmas the divertor pressure and compression are maximum when the strike point is at the bottom of the vertical target plate. We introduce a simple flux balance model, which allows us to explain the divertor neutral pressure across a wide range of plasma densities. In particular, high pressure sustained in the detached divertor (despite a considerable drop in the recycling source) can be explained by scattering of neutrals off the cold plasma plugging the divertor throat. Because neutrals are confined in the divertor through scattering and ionization processes (provided the mean-free-paths are much shorter than a typical escape distance) tight mechanical baffling is unnecessary. The analysis suggests that two simple structural modifications may increase the divertor compression in Alcator C-Mod by a factor of about 5. Widening the divertor throat would increase the divertor recycling source, while closing leaks in the divertor structure would eliminate a significant neutral loss mechanism.
Elemental analysis of airborne fine particles collected at the roadside of an arterial road
International Nuclear Information System (INIS)
Hirabayashi, M.
2008-01-01
Airborne particulate matter was collected at the intersection of Industrial Road in Kawasaki-city, Kanagawa, Japan using a 12-stage low-pressure impactor. High concentrations of airborne particulate matter have been observed in this area. The collected samples were analyzed for 34 elements by instrumental neutron activation analysis (INAA), and data on the elemental concentrations were obtained. High concentrations of fine particles of As, Br, Sb, V, and Zn were observed. It was further observed that these fine particles were originated predominantly from the wear of tires and brakes, and not from automobile exhaust emissions. (author)
Collective emotion dynamics in chats with agents, moderators and Bots
Directory of Open Access Journals (Sweden)
M. Šuvakov
2014-09-01
Full Text Available Using agent-directed simulations, we investigate fluctuations in the collective emotional states on a chat network where agents interchange messages with a fixed number of moderators and emotional Bot. To design a realistic chat system, the interaction rules and some statistical parameters, as well as the agent's attributes, are inferred from the empirical chat channel Ubuntu. In the simulations, the Bot's emotion is fixed; the moderators tune the level of its activity by passing a fraction ε of messages to the Bot. At ε ≥ 0, the collective emotional state matching the Bot's emotion polarity gradually arises; the average growth rate of the dominant emotional charge serves as an order parameter. Due to self-organizing effects, the collective dynamics is more explosive when positive emotions arise by positive Bot than the onset of negative emotions in the presence of negative Bot at the same ε. Furthermore, when the emotions matching the Bot's emotion polarity are spread over the system, the underlying fractal processes exhibit higher persistence and stronger clustering of events than the processes spreading of emotion polarity opposite to the Bot's emotion. On the other hand, the relaxation dynamics is controlled by the external noise; the related nonextensive parameter, estimated from the statistics of returns, is virtually independent of the Bot's activity level and emotion contents.
Spiral Dynamics of Consciousness. Possibilities of Use by Collective Managers
Directory of Open Access Journals (Sweden)
Doronin Andrii V.
2014-03-01
Full Text Available The goal of the article is showing a possibility of solution of the problem of reduction of human efficiency in the information society by means of growth of psychological load. Methodological grounds of the study are ideas of the American psychologist Clare William Graves, who, while developing the Abraham Maslow theory, created a system theory of evolution development of human consciousness, which determines human behaviour. Based of systemisation of conclusions of C. Graves and his followers the article formulates a hypothesis about expediency of use of spiral dynamics ideas for identifying reserves of strengthening of influence of the collective manager upon labour behaviour of subordinates. Test of hypothesis shows that, apart from diagnostics of the sources of activation of individual labour behaviour, the theory of spiral dynamics allows identification of reserves of formation of collective consciousness and solidary labour force of a creative collective. Their use creates a basis of intensification of processes of intellectualisation of the organisation capital. In order to ensure these changes it is necessary to find mechanisms of changing external environment, which sets principally new tasks and requires principally new strategies of their solution.
Heredia Rivera, Birmania; Gerardo Rodriguez, Martín
2016-01-01
Particulate matter accumulated on car engine air-filters (CAFs) was examined in order to investigate the potential use of these devices as efficient samplers for collecting street level air that people are exposed to. The morphology, microstructure, and chemical composition of a variety of particles were studied using scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX). The particulate matter accumulated by the CAFs was studied in two categories; the first was of removed particles by friction, and the second consisted of particles retained on the filters. Larger particles with a diameter of 74–10 µm were observed in the first category. In the second one, the detected particles had a diameter between 16 and 0.7 µm. These particles exhibited different morphologies and composition, indicating mostly a soil origin. The elemental composition revealed the presence of three groups: mineral (clay and asphalt), metallic (mainly Fe), and biological particles (vegetal and animal debris). The palynological analysis showed the presence of pollen grains associated with urban plants. These results suggest that CAFs capture a mixture of atmospheric particles, which can be analyzed in order to monitor urban air. Thus, the continuous availability of large numbers of filters and the retroactivity associated to the car routes suggest that these CAFs are very useful for studying the high traffic zones within a city. PMID:27706087
Directory of Open Access Journals (Sweden)
Birmania Heredia Rivera
2016-10-01
Full Text Available Particulate matter accumulated on car engine air-filters (CAFs was examined in order to investigate the potential use of these devices as efficient samplers for collecting street level air that people are exposed to. The morphology, microstructure, and chemical composition of a variety of particles were studied using scanning electron microscopy (SEM and energy-dispersive X-ray (EDX. The particulate matter accumulated by the CAFs was studied in two categories; the first was of removed particles by friction, and the second consisted of particles retained on the filters. Larger particles with a diameter of 74–10 µm were observed in the first category. In the second one, the detected particles had a diameter between 16 and 0.7 µm. These particles exhibited different morphologies and composition, indicating mostly a soil origin. The elemental composition revealed the presence of three groups: mineral (clay and asphalt, metallic (mainly Fe, and biological particles (vegetal and animal debris. The palynological analysis showed the presence of pollen grains associated with urban plants. These results suggest that CAFs capture a mixture of atmospheric particles, which can be analyzed in order to monitor urban air. Thus, the continuous availability of large numbers of filters and the retroactivity associated to the car routes suggest that these CAFs are very useful for studying the high traffic zones within a city.
Muir, D. M.; Akeredolu, F.
The high collection efficiencies that are required nowadays to meet the stricter pollution control standards necessitate the use of high-energy scrubbers, such as the venturi scrubber, for the arrestment of fine particulate matter from exhaust gas streams. To achieve more energy-efficient particle collection, several venturi stages may be used in series. This paper is principally a theoretical investigation of the performance of a multiple-stage venturi scrubber, the main objective of the study being to establish the best venturi design configuration for any given set of operating conditions. A mathematical model is used to predict collection efficiency vs pressure drop relationships for particle sizes in the range 0.2-5.0 μm for one-, two-, three- and four-stage scrubbers. The theoretical predictions are borne out qualitatively by experimental work. The paper shows that the three-stage venturi produces the highest collection efficiencies over the normal operating range except for the collection of very fine particles at low pressure drops, when the single-stage venturi is best. The significant improvement in performance achieved by the three-stage venturi when compared with conventional single-stage operation increases as both the particle size and system pressure drop increase.
Collection strategy, inner morphology, and size distribution of dust particles in ASDEX Upgrade
Balden, M.; Endstrasser, N.; Humrickhouse, P. W.; Rohde, V.; Rasinski, M.; von Toussaint, U.; Elgeti, S.; Neu, R.; the ASDEX Upgrade Team
2014-07-01
The dust collection and analysis strategy in ASDEX Upgrade (AUG) is described. During five consecutive operation campaigns (2007-2011), Si collectors were installed, which were supported by filtered vacuum sampling and collection with adhesive tapes in 2009. The outer and inner morphology (e.g. shape) and elemental composition of the collected particles were analysed by scanning electron microscopy. The majority of the ˜50 000 analysed particles on the Si collectors of campaign 2009 contain tungsten—the plasma-facing material in AUG—and show basically two different types of outer appearance: spheroids and irregularly shaped particles. By far most of the W-dominated spheroids consist of a solid W core, i.e. solidified W droplets. A part of these particles is coated with a low-Z material; a process that seems to happen presumably in the far scrape-off layer plasma. In addition, some conglomerates of B, C and W appear as spherical particles after their contact with plasma. By far most of the particles classified as B-, C- and W-dominated irregularly shaped particles consist of the same conglomerate with varying fraction of embedded W in the B-C matrix and some porosity, which can exceed 50%. The fragile structures of many conglomerates confirm the absence of intensive plasma contact. Both the ablation and mobilization of conglomerate material and the production of W droplets are proposed to be triggered by arcing. The size distribution of each dust particle class is best described by a log-normal distribution allowing an extrapolation of the dust volume and surface area. The maximum in this distribution is observed above the resolution limit of 0.28 µm only for the W-dominated spheroids, at around 1 µm. The amount of W-containing dust is extrapolated to be less than 300 mg on the horizontal areas of AUG.
Collection strategy, inner morphology, and size distribution of dust particles in ASDEX Upgrade
International Nuclear Information System (INIS)
Balden, M.; Endstrasser, N.; Rohde, V.; Rasinski, M.; Von Toussaint, U.; Elgeti, S.; Neu, R.; Humrickhouse, P.W.
2014-01-01
The dust collection and analysis strategy in ASDEX Upgrade (AUG) is described. During five consecutive operation campaigns (2007–2011), Si collectors were installed, which were supported by filtered vacuum sampling and collection with adhesive tapes in 2009. The outer and inner morphology (e.g. shape) and elemental composition of the collected particles were analysed by scanning electron microscopy. The majority of the ∼50 000 analysed particles on the Si collectors of campaign 2009 contain tungsten—the plasma-facing material in AUG—and show basically two different types of outer appearance: spheroids and irregularly shaped particles. By far most of the W-dominated spheroids consist of a solid W core, i.e. solidified W droplets. A part of these particles is coated with a low-Z material; a process that seems to happen presumably in the far scrape-off layer plasma. In addition, some conglomerates of B, C and W appear as spherical particles after their contact with plasma. By far most of the particles classified as B-, C- and W-dominated irregularly shaped particles consist of the same conglomerate with varying fraction of embedded W in the B–C matrix and some porosity, which can exceed 50%. The fragile structures of many conglomerates confirm the absence of intensive plasma contact. Both the ablation and mobilization of conglomerate material and the production of W droplets are proposed to be triggered by arcing. The size distribution of each dust particle class is best described by a log-normal distribution allowing an extrapolation of the dust volume and surface area. The maximum in this distribution is observed above the resolution limit of 0.28 µm only for the W-dominated spheroids, at around 1 µm. The amount of W-containing dust is extrapolated to be less than 300 mg on the horizontal areas of AUG. (paper)
A simple objective method for determining a dynamic journal collection.
Bastille, J D; Mankin, C J
1980-10-01
In order to determine the content of a journal collection responsive to both user needs and space and dollar constraints, quantitative measures of the use of a 647-title collection have been related to space and cost requirements to develop objective criteria for a dynamic collection for the Treadwell Library at the Massachusetts General Hospital, a large medical research center. Data were collected for one calendar year (1977) and stored with the elements for each title's profile in a computerized file. To account for the effect of the bulk of the journal runs on the number of uses, raw use data have been adjusted using linear shelf space required for each title to produce a factor called density of use. Titles have been ranked by raw use and by density of use with space and cost requirements for each. Data have also been analyzed for five special categories of use. Given automated means of collecting and storing data, use measures should be collected continuously. Using raw use frequency ranking to relate use to space and costs seems sensible since a decision point cutoff can be chosen in terms of the potential interlibrary loans generated. But it places new titles at risk while protecting titles with long, little used runs. Basing decisions on density of use frequency ranking seems to produce a larger yield of titles with fewer potential interlibrary loans and to identify titles with overlong runs which may be pruned or converted to microform. The method developed is simple and practical. Its design will be improved to apply to data collected in 1980 for a continuous study of journal use. The problem addressed is essentially one of inventory control. Viewed as such it makes good financial sense to measure use as part of the routine operation of the library to provide information for effective management decisions.
Collective intelligence for control of distributed dynamical systems
Wolpert, D. H.; Wheeler, K. R.; Tumer, K.
2000-03-01
We consider the El Farol bar problem, also known as the minority game (W. B. Arthur, The American Economic Review, 84 (1994) 406; D. Challet and Y. C. Zhang, Physica A, 256 (1998) 514). We view it as an instance of the general problem of how to configure the nodal elements of a distributed dynamical system so that they do not "work at cross purposes", in that their collective dynamics avoids frustration and thereby achieves a provided global goal. We summarize a mathematical theory for such configuration applicable when (as in the bar problem) the global goal can be expressed as minimizing a global energy function and the nodes can be expressed as minimizers of local free energy functions. We show that a system designed with that theory performs nearly optimally for the bar problem.
International Nuclear Information System (INIS)
Nomura, K.; Vretenar, D.; Niksic, T.; Otsuka, T.; Shimizu, N.
2011-01-01
Microscopic energy density functionals have become a standard tool for nuclear structure calculations, providing an accurate global description of nuclear ground states and collective excitations. For spectroscopic applications, this framework has to be extended to account for collective correlations related to restoration of symmetries broken by the static mean field, and for fluctuations of collective variables. In this paper, we compare two approaches to five-dimensional quadrupole dynamics: the collective Hamiltonian for quadrupole vibrations and rotations and the interacting boson model (IBM). The two models are compared in a study of the evolution of nonaxial shapes in Pt isotopes. Starting from the binding energy surfaces of 192,194,196 Pt, calculated with a microscopic energy density functional, we analyze the resulting low-energy collective spectra obtained from the collective Hamiltonian, and the corresponding IBM Hamiltonian. The calculated excitation spectra and transition probabilities for the ground-state bands and the γ-vibration bands are compared to the corresponding sequences of experimental states.
Early-time particle dynamics and non-affine deformations during microstructure selection in solids
Energy Technology Data Exchange (ETDEWEB)
Sengupta, Surajit [Centre for Advanced Materials, Indian Association for the Cultivation of Science, 2A and 2B, Raja S C Mullick Road, Jadavpur, Kolkata 700032 (India); Rao, Madan [Raman Research Institute, C V Raman Avenue, Bangalore 560 080 (India); Bhattacharya, Jayee [S N Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 098 (India)
2011-07-27
Solid-solid transitions are invariably associated with groups of particles whose deformations cannot be expressed as an affine strain about a reference configuration. The dynamics of these non-affine zones (NAZ) determine the subsequent microstructure, i.e. the mesoscale patterning resulting from the structural transition. Here, we focus on early-time dynamics of individual particles within an NAZ associated with a nucleation event. We show that the early-time behavior of these particles have distinctive characteristics depending on the transition temperature. The dynamics is heterogeneous, consisting of a few active particles exhibiting complex intermittent jamming and flow in response to internal stresses generated during the transformation. At low temperatures, the dynamics of these active particles is ballistic and the structural transformation proceeds via string-like correlated movement of active particles, along ridges in the potential energy topography set up by inactive particles. On increasing temperature, the dynamics of active particles show an abrupt transition from ballistic to diffusive behavior with a diffusion coefficient which appears to be independent of temperature. This dynamical transition in the nature of the trajectories of particles is coincident with a discontinuous transition in the microstructure of the solid. Finally, we characterize this transition in terms of a dynamical order parameter in the space of trajectories and discuss its connection with the glass transition and rheology of soft and granular matter.
CECAM Workshop: Dissipative Particle Dynamics: Addressing Deficiencies and Establishing NewFrontiers
Czech Academy of Sciences Publication Activity Database
Brennan, J.K.; Lísal, Martin
2009-01-01
Roč. 35, č. 9 (2009), s. 766-769 ISSN 0892-7022. [CECAM Worskhop on the Dissipative Particle Dynamic Method (DPD). Lausanne, 16.07.2008-18.07.2008] Institutional research plan: CEZ:AV0Z40720504 Keywords : mesoscale * simulation * dissipative particle dynamics Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.028, year: 2009
Velocity and stress autocorrelation decay in isothermal dissipative particle dynamics
Chaudhri, Anuj; Lukes, Jennifer R.
2010-02-01
The velocity and stress autocorrelation decay in a dissipative particle dynamics ideal fluid model is analyzed in this paper. The autocorrelation functions are calculated at three different friction parameters and three different time steps using the well-known Groot/Warren algorithm and newer algorithms including self-consistent leap-frog, self-consistent velocity Verlet and Shardlow first and second order integrators. At low friction values, the velocity autocorrelation function decays exponentially at short times, shows slower-than exponential decay at intermediate times, and approaches zero at long times for all five integrators. As friction value increases, the deviation from exponential behavior occurs earlier and is more pronounced. At small time steps, all the integrators give identical decay profiles. As time step increases, there are qualitative and quantitative differences between the integrators. The stress correlation behavior is markedly different for the algorithms. The self-consistent velocity Verlet and the Shardlow algorithms show very similar stress autocorrelation decay with change in friction parameter, whereas the Groot/Warren and leap-frog schemes show variations at higher friction factors. Diffusion coefficients and shear viscosities are calculated using Green-Kubo integration of the velocity and stress autocorrelation functions. The diffusion coefficients match well-known theoretical results at low friction limits. Although the stress autocorrelation function is different for each integrator, fluctuates rapidly, and gives poor statistics for most of the cases, the calculated shear viscosities still fall within range of theoretical predictions and nonequilibrium studies.
Dissipative particle dynamics simulations for biological tissues: rheology and competition
International Nuclear Information System (INIS)
Basan, Markus; Prost, Jacques; Joanny, Jean-François; Elgeti, Jens
2011-01-01
In this work, we model biological tissues using a simple, mechanistic simulation based on dissipative particle dynamics. We investigate the continuum behavior of the simulated tissue and determine its dependence on the properties of the individual cell. Cells in our simulation adhere to each other, expand in volume, divide after reaching a specific size checkpoint and undergo apoptosis at a constant rate, leading to a steady-state homeostatic pressure in the tissue. We measure the dependence of the homeostatic state on the microscopic parameters of our model and show that homeostatic pressure, rather than the unconfined rate of cell division, determines the outcome of tissue competitions. Simulated cell aggregates are cohesive and round up due to the effect of tissue surface tension, which we measure for different tissues. Furthermore, mixtures of different cells unmix according to their adhesive properties. Using a variety of shear and creep simulations, we study tissue rheology by measuring yield stresses, shear viscosities, complex viscosities as well as the loss tangents as a function of model parameters. We find that cell division and apoptosis lead to a vanishing yield stress and fluid-like tissues. The effects of different adhesion strengths and levels of noise on the rheology of the tissue are also measured. In addition, we find that the level of cell division and apoptosis drives the diffusion of cells in the tissue. Finally, we present a method for measuring the compressibility of the tissue and its response to external stress via cell division and apoptosis
Artificial biomembrane morphology: a dissipative particle dynamics study.
Becton, Matthew; Averett, Rodney; Wang, Xianqiao
2017-09-18
Artificial membranes mimicking biological structures are rapidly breaking new ground in the areas of medicine and soft-matter physics. In this endeavor, we use dissipative particle dynamics simulation to investigate the morphology and behavior of lipid-based biomembranes under conditions of varied lipid density and self-interaction. Our results show that a less-than-normal initial lipid density does not create the traditional membrane; but instead results in the formation of a 'net', or at very low densities, a series of disparate 'clumps' similar to the micelles formed by lipids in nature. When the initial lipid density is high, a membrane forms, but due to the large number of lipids, the naturally formed membrane would be larger than the simulation box, leading to 'rippling' behavior as the excess repulsive force of the membrane interior overcomes the bending energy of the membrane. Once the density reaches a certain point however, 'bubbles' appear inside the membrane, reducing the rippling behavior and eventually generating a relatively flat, but thick, structure with micelles of water inside the membrane itself. Our simulations also demonstrate that the interaction parameter between individual lipids plays a significant role in the formation and behavior of lipid membrane assemblies, creating similar structures as the initial lipid density distribution. This work provides a comprehensive approach to the intricacies of lipid membranes, and offers a guideline to design biological or polymeric membranes through self-assembly processes as well as develop novel cellular manipulation and destruction techniques.
Boundaries Control Collective Dynamics of Inertial Self-Propelled Robots
Deblais, A.; Barois, T.; Guerin, T.; Delville, P. H.; Vaudaine, R.; Lintuvuori, J. S.; Boudet, J. F.; Baret, J. C.; Kellay, H.
2018-05-01
Simple ingredients, such as well-defined interactions and couplings for the velocity and orientation of self-propelled objects, are sufficient to produce complex collective behavior in assemblies of such entities. Here, we use assemblies of rodlike robots made motile through self-vibration. When confined in circular arenas, dilute assemblies of these rods act as a gas. Increasing the surface fraction leads to a collective behavior near the boundaries: polar clusters emerge while, in the bulk, gaslike behavior is retained. The coexistence between a gas and surface clusters is a direct consequence of inertial effects as shown by our simulations. A theoretical model, based on surface mediated transport accounts for this coexistence and illustrates the exact role of the boundaries. Our study paves the way towards the control of collective behavior: By using deformable but free to move arenas, we demonstrate that the surface induced clusters can lead to directed motion, while the topology of the surface states can be controlled by biasing the motility of the particles.
Dynamic behavior of microscale particles controlled by standing bulk acoustic waves
Energy Technology Data Exchange (ETDEWEB)
Greenhall, J.; Raeymaekers, B., E-mail: bart.raeymaekers@utah.edu [Department of Mechanical Engineering, University of Utah, Salt Lake City, Utah 84112 (United States); Guevara Vasquez, F. [Department of Mathematics, University of Utah, Salt Lake City, Utah 84112 (United States)
2014-10-06
We analyze the dynamic behavior of a spherical microparticle submerged in a fluid medium, driven to the node of a standing bulk acoustic wave created by two opposing transducers. We derive the dynamics of the fluid-particle system taking into account the acoustic radiation force and the time-dependent and time-independent drag force acting on the particle. Using this dynamic model, we characterize the transient and steady-state behavior of the fluid-particle system as a function of the particle and fluid properties and the transducer operating parameters. The results show that the settling time and percent overshoot of the particle trajectory are dependent on the ratio of the acoustic radiation force and time-independent damping force. In addition, we show that the particle oscillates around the node of the standing wave with an amplitude that depends on the ratio of the time-dependent drag forces and the particle inertia.
Geometry and dynamics of particle emission from strongly deformed nuclei
International Nuclear Information System (INIS)
Aleshin, V.P.
1995-01-01
By using our semiclassical approach to particle evaporation from deformed nuclei, we analyze the heuristic models of particle emission from deformed nuclei which are used in the codes GANES, ALICE, and EVAP. The calculations revealed that the heuristic models are reasonable for particle energy spectra but fail, at large deformations, to describe the angular distributions
Nuclear quantum many-body dynamics: from collective vibrations to heavy-ion collisions
International Nuclear Information System (INIS)
Simenel, Cedric
2012-01-01
This report gives a summary of my research on nuclear dynamics during the past ten years. The choice of this field has been motivated by the desire to understand the physics of complex systems obeying quantum mechanics. In particular, the interplay between collective motion and single-particle degrees of freedom is a source of complex and fascinating behaviours. For instance, giant resonances are characterised by a collective vibration of many nucleons, but their decay may occur by the emission of a single nucleon. Another example could be taken from the collision of nuclei where the transfer of few nucleons may have a strong impact on the formation of a compound system is non trivial. To describe these complex systems, one needs to solve the quantum many-body problem. The description of the dynamics of composite systems can be very challenging, especially when two such systems interact. An important goal of nuclear physics is to find a unified way to describe the dynamics of nuclear systems. Ultimately, the same theoretical model should be able to describe vibrations, rotations, fission, all the possible outcomes of heavy-ion collisions (elastic and inelastic scattering, particle transfer, fusion, and multifragmentation), and even the dynamics of neutron star crust. This desire for a global approach to nuclear dynamics has strongly influenced my research activities. In particular, all the numerical applications presented in this report have been obtained from few numerical codes solving equations derived from the same variational principle. Beside the quest for a unified model of nuclear dynamics, possible applications of heavy-ion collisions such as the formation of new nuclei is also a strong motivation for the experimental and theoretical studies of reaction mechanisms. This report is not a review article, but should be considered as a reading guide of the main papers my collaborators and myself have published. It also gives the opportunity to detail some
Sanlı, Ceyda; Saitoh, Kuniyasu; Luding, Stefan; van der Meer, Devaraj
2014-09-01
When a densely packed monolayer of macroscopic spheres floats on chaotic capillary Faraday waves, a coexistence of large scale convective motion and caging dynamics typical for glassy systems is observed. We subtract the convective mean flow using a coarse graining (homogenization) method and reveal subdiffusion for the caging time scales followed by a diffusive regime at later times. We apply the methods developed to study dynamic heterogeneity and show that the typical time and length scales of the fluctuations due to rearrangements of observed particle groups significantly increase when the system approaches its largest experimentally accessible packing concentration. To connect the system to the dynamic criticality literature, we fit power laws to our results. The resultant critical exponents are consistent with those found in densely packed suspensions of colloids.
Ro, Chul-Un; Kim, HyeKyeong; Oh, Keun-Young; Yea, Sun Kyung; Lee, Chong Bum; Jang, Meongdo; Van Grieken, René
2002-11-15
A recently developed single-particle analytical technique, called low-Z electron probe X-ray microanalysis (low-Z EPMA), was applied to characterize urban aerosol particles collected in three cities of Korea (Seoul, CheongJu, and ChunCheon) on single days in the winter of 1999. In this study, it is clearly demonstrated that the low-Z EPMA technique can provide detailed and quantitative information on the chemical composition of particles in the urban atmosphere. The collected aerosol particles were analyzed and classified on the basis of their chemical species. Various types of particles were identified, such as soil-derived, carbonaceous, marine-originated, and anthropogenic particles. In the sample collected in Seoul, carbonaceous, aluminosilicates, silicon dioxide, and calcium carbonate aerosol particles were abundantly encountered. In the CheongJu and ChunCheon samples, carbonaceous, aluminosilicates, reacted sea salts, and ammonium sulfate aerosol particles were often seen. However, in the CheongJu sample, ammonium sulfate particles were the most abundant in the fine fraction. Also, calcium sulfate and nitrate particles were significantly observed. In the ChunCheon sample, organic particles were the most abundant in the fine fraction. Also, sodium nitrate particles were seen at high levels. The ChunCheon sample seemed to be strongly influenced by sea-salt aerosols originating from the Yellow Sea, which is located about 115 km away from the city.
Dynamic model of elementary particles and the nature of mass and “electric” charge
Kreidik, Leonid G.; Institute of Mathematics & Physics, UTA; Shpenkov, George P.; Institute of Mathematics & Physics, UTA
2009-01-01
The physical model of elementary particles, based on the wave features of their behavior, is described here. Elementary particles are regarded as elementary dynamical structures of the microworld, interrelated with all levels of the Universe, i.e., inseparable from the structure of the Universe as a whole. Between any elementary particles and the ambient field of matter-space-time, as well as between elementary particles themselves, there exists an interchange of matter-space-time occurring b...
DUSTER: collection of meteoric CaO and carbon smoke particles in the upper stratosphere .
Della Corte, V.; Rietmeijer, F. J. M.; Rotundi, A.; Ferrari, M.; Palumbo, P.
Nanometer- to micrometer-size particles present in the upper stratosphere are a mixture of terrestrial and extra-terrestrial origins. They can be extraterrestrial particles condensed after meteor ablation. Meteoric dust in bolides is occasionally deposited into the lower stratosphere around 20 km altitude. Nanometer CaO and pure carbon smoke particles were collected at 38 km altitude in the upper stratosphere in the Arctic during June 2008 using DUSTER (Dust in the Upper Stratosphere Tracking Experiment and Retrieval), a balloon-borne instrument for the non-destructive collection of solid particles between 200 nm to 40 microns. We report the collection of micron sized CaCO_3 (calcite) grains. Their morphologies show evidence of melting and condensation after vaporization suggest at temperatures of approximately 3500 K. The formation environment of the collected grains was probably a dense dust cloud formed by the disintegration of a carbonaceous meteoroid during deceleration in the Earthï¿½ atmosphere. For the first time, DUSTER collected meteor ablation products that were presumably associated with the disintegration of a bolide crossing the Earth's atmosphere. The collected mostly CaO and pure carbon nanoparticles from the debris cloud of a fireball, included: 1) intact fragments; 2) quenched melted grains; and 3) vapor phase condensation products. The DUSTER project was funded by the Italian Space Agency (ASI), PRIN2008/MIUR (Ministero dell'Istruzione dell'Universitá e della Ricerca), PNRA 2013(Piano Nazionale Ricerca Antartide). CNES graciously provided this flight opportunity. We thank E. Zona and S. Inarta at the Laboratorio di Fisica Cosmica INAF, Osservatorio Astronomico di Capodimonte-Universitá di Napoli Parthenope. F.J.M.R. was supported by grant NNX07AI39G from the NASA Cosmochemistry Program. We thank three anonymous reviewers who assisted us in introducing our new instrument.
Nonlinear Delta-f Particle Simulations of Collective Effects in High-Intensity Bunched Beams
Qin, Hong; Hudson, Stuart R; Startsev, Edward
2005-01-01
The collective effects in high-intensity 3D bunched beams are described self-consistently by the nonlinear Vlasov-Maxwell equations.* The nonlinear delta-f method,** a particle simulation method for solving the nonlinear Vlasov-Maxwell equations, is being used to study the collective effects in high-intensity 3D bunched beams. The delta-f method, as a nonlinear perturbative scheme, splits the distribution function into equilibrium and perturbed parts. The perturbed distribution function is represented as a weighted summation over discrete particles, where the particle orbits are advanced by equations of motion in the focusing field and self-consistent fields, and the particle weights are advanced by the coupling between the perturbed fields and the zero-order distribution function. The nonlinear delta-f method exhibits minimal noise and accuracy problems in comparison with standard particle-in-cell simulations. A self-consistent 3D kinetic equilibrium is first established for high intensity bunched beams. The...
The thermal history of interplanetary dust particles collected in the Earth's stratosphere
Nier, A. O.; Schlutter, D. J.
1993-01-01
Fragments of 24 individual interplanetary dust particles (IDPs) collected in the Earth's stratosphere were obtained from NASA's Johnson Space Center collection and subjected to pulse-heating sequences to extract He and Ne and to learn about the thermal history of the particles. A motivation for the investigation was to see if the procedure would help distinguish between IDPs of asteroidal and cometary origin. The use of a sequence of short-duration heat pulses to perform the extractions is an improvement over the employment of a step-heating sequence, as was used in a previous investigation. The particles studied were fragments of larger parent IDPs, other fragments of which, in coordinated experiments, are undergoing studies of elemental and mineralogical composition in other laboratories. While the present investigation will provide useful temperature history data for the particles, the relatively large size of the parent IDPs (approximately 40 micrometers in diameter) resulted in high entry deceleration temperatures. This limited the usefulness of the study for distinguishing between particles of asteroidal and cometary origin.
International Nuclear Information System (INIS)
Yamada, M.; Iwasaka, Y.; Matsuki, A.; Trochkine, D.; Kim, Y. S.; Zhang, D.; Nagatani, T.; Shi, G.-Y.; Nagatani, M.; Nakata, H.; Shen, Z.; Chen, B.; Li, G.
2005-01-01
Free tropospheric aerosol particles were collected using a balloon-borne particle impactor in August of 2002 and March of 2003 at Dunhuang in northwestern China (40 o 00'N, 94 o 30'E), and the morphology and elemental composition of the aerosol particles were analyzed in order to understand the mixing state of coarse dust particles (diameter >1 μm) over the desert areas in the Asian continent in spring. Electron microscopic experiments on the particles revealed that dust particles were major constituents of coarse mode particles in the free troposphere over the Taklamakan Desert in spring and summer.Si-rich or Ca-rich particles are major components of dust particles collected in the free troposphere over dunhuang and the values of [number of Ca-rich particles]/[number of Si-rich particles] differs markedly between spring and summer, being about 0.3 in the spring of 2003 and about 1.0 in the summer of 2002 at heights 3-5 km above sea level. It is likely that the condition of the ground surface and the strength of vertical mixing in source areas of Asian dust are potential factors causing the difference in the chemical types of dust particles.Comparison of the elemental compositions of these particles with those of particles collected over Japan strongly suggests that these particles were chemically modified during their long-range transport in the free troposphere. Analysis of wind systems shows that both the predominating westerly wind in the free troposphere and the surface wind strongly controlled by the geographical structure of the Tarim Basin are important in the long-range transport of KOSA particles originating in the Taklamakan Desert
Plume particle collection and sizing from static firing of solid rocket motors
Sambamurthi, Jay K.
1995-01-01
A unique dart system has been designed and built at the NASA Marshall Space Flight Center to collect aluminum oxide plume particles from the plumes of large scale solid rocket motors, such as the space shuttle RSRM. The capability of this system to collect clean samples from both the vertically fired MNASA (18.3% scaled version of the RSRM) motors and the horizontally fired RSRM motor has been demonstrated. The particle mass averaged diameters, d43, measured from the samples for the different motors, ranged from 8 to 11 mu m and were independent of the dart collection surface and the motor burn time. The measured results agreed well with those calculated using the industry standard Hermsen's correlation within the standard deviation of the correlation . For each of the samples analyzed from both MNASA and RSRM motors, the distribution of the cumulative mass fraction of the plume oxide particles as a function of the particle diameter was best described by a monomodal log-normal distribution with a standard deviation of 0.13 - 0.15. This distribution agreed well with the theoretical prediction by Salita using the OD3P code for the RSRM motor at the nozzle exit plane.
Structures and dynamics in a two-dimensional dipolar dust particle system
Hou, X. N.; Liu, Y. H.; Kravchenko, O. V.; Lapushkina, T. A.; Azarova, O. A.; Chen, Z. Y.; Huang, F.
2018-05-01
The effects of electric dipole moment, the number of dipolar particles, and system temperature on the structures and dynamics of a dipolar dust particle system are studied by molecular dynamics simulations. The results show that the larger electric dipole moment is favorable for the formation of a long-chain structure, the larger number of dipolar dust particles promotes the formation of the multi-chain structure, and the higher system temperature can cause higher rotation frequency. The trajectories, mean square displacement (MSD), and the corresponding spectrum functions of the MSDs are also calculated to illustrate the dynamics of the dipolar dust particle system, which is also closely related to the growth of dust particles. Some simulations are qualitatively in agreement with our experiments and can provide a guide for the study on dust growth, especially on the large-sized particles.
Arasomwan, Martins Akugbe; Adewumi, Aderemi Oluyinka
2014-01-01
A new local search technique is proposed and used to improve the performance of particle swarm optimization algorithms by addressing the problem of premature convergence. In the proposed local search technique, a potential particle position in the solution search space is collectively constructed by a number of randomly selected particles in the swarm. The number of times the selection is made varies with the dimension of the optimization problem and each selected particle donates the value in the location of its randomly selected dimension from its personal best. After constructing the potential particle position, some local search is done around its neighbourhood in comparison with the current swarm global best position. It is then used to replace the global best particle position if it is found to be better; otherwise no replacement is made. Using some well-studied benchmark problems with low and high dimensions, numerical simulations were used to validate the performance of the improved algorithms. Comparisons were made with four different PSO variants, two of the variants implement different local search technique while the other two do not. Results show that the improved algorithms could obtain better quality solution while demonstrating better convergence velocity and precision, stability, robustness, and global-local search ability than the competing variants. PMID:24723827
Evidence for collective multi-particle correlations in pPb collisions
Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Lauwers, Jasper; Luyckx, Sten; Ochesanu, Silvia; Rougny, Romain; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Daci, Nadir; Heracleous, Natalie; Keaveney, James; Lowette, Steven; Maes, Michael; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Dobur, Didar; Favart, Laurent; Gay, Arnaud; Grebenyuk, Anastasia; Léonard, Alexandre; Mohammadi, Abdollah; Perniè, Luca; Randle-conde, Aidan; Reis, Thomas; Seva, Tomislav; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Zenoni, Florian; Adler, Volker; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Costantini, Silvia; Crucy, Shannon; Fagot, Alexis; Garcia, Guillaume; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Poyraz, Deniz; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bruno, Giacomo; Castello, Roberto; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jafari, Abideh; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Nuttens, Claude; Pagano, Davide; Perrini, Lucia; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Aldá Júnior, Walter Luiz; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Dos Reis Martins, Thiago; Molina, Jorge; Mora Herrera, Clemencia; Pol, Maria Elena; Rebello Teles, Patricia; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Malbouisson, Helena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santaolalla, Javier; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Bernardes, Cesar Augusto; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Aleksandrov, Aleksandar; Genchev, Vladimir; Hadjiiska, Roumyana; Iaydjiev, Plamen; Marinov, Andrey; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Cheng, Tongguang; Du, Ran; Jiang, Chun-Hua; Plestina, Roko; Romeo, Francesco; Tao, Junquan; Wang, Zheng; Asawatangtrakuldee, Chayanit; Ban, Yong; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Zhang, Fengwangdong; Zhang, Linlin; Zou, Wei; Avila, Carlos; Cabrera, Andrés; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Mekterovic, Darko; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Bodlak, Martin; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Ellithi Kamel, Ali; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Murumaa, Marion; Raidal, Martti; Tiko, Andres; Eerola, Paula; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Talvitie, Joonas; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Rander, John; Rosowsky, André; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Chapon, Emilien; Charlot, Claude; Dahms, Torsten; Dobrzynski, Ludwik; Filipovic, Nicolas; Florent, Alice; Granier de Cassagnac, Raphael; Mastrolorenzo, Luca; Miné, Philippe; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Ortona, Giacomo; Paganini, Pascal; Regnard, Simon; Salerno, Roberto; Sauvan, Jean-Baptiste; Sirois, Yves; Veelken, Christian; Yilmaz, Yetkin; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Aubin, Alexandre; Bloch, Daniel; Brom, Jean-Marie; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Goetzmann, Christophe; Le Bihan, Anne-Catherine; Skovpen, Kirill; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Beaupere, Nicolas; Bernet, Colin; Boudoul, Gaelle; Bouvier, Elvire; Brochet, Sébastien; Carrillo Montoya, Camilo Andres; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Courbon, Benoit; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Lethuillier, Morgan; Mirabito, Laurent; Pequegnot, Anne-Laure; Perries, Stephane; Ruiz Alvarez, José David; Sabes, David; Sgandurra, Louis; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Xiao, Hong; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Bontenackels, Michael; Edelhoff, Matthias; Feld, Lutz; Heister, Arno; Klein, Katja; Lipinski, Martin; Ostapchuk, Andrey; Preuten, Marius; Raupach, Frank; Sammet, Jan; Schael, Stefan; Schulte, Jan-Frederik; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Brodski, Michael; Dietz-Laursonn, Erik; Duchardt, Deborah; Erdmann, Martin; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klingebiel, Dennis; Knutzen, Simon; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Olschewski, Mark; Padeken, Klaas; Papacz, Paul; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Künsken, Andreas; Lingemann, Joschka; Nowack, Andreas; Nugent, Ian Michael; Pistone, Claudia; Pooth, Oliver; Stahl, Achim; Aldaya Martin, Maria; Asin, Ivan; Bartosik, Nazar; Behr, Joerg; Behrens, Ulf; Bell, Alan James; Bethani, Agni; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Choudhury, Somnath; Costanza, Francesco; Diez Pardos, Carmen; Dolinska, Ganna; Dooling, Samantha; Dorland, Tyler; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Flucke, Gero; Garay Garcia, Jasone; Geiser, Achim; Gizhko, Andrii; Gunnellini, Paolo; Hauk, Johannes; Hempel, Maria; Jung, Hannes; Kalogeropoulos, Alexis; Karacheban, Olena; Kasemann, Matthias; Katsas, Panagiotis; Kieseler, Jan; Kleinwort, Claus; Korol, Ievgen; Krücker, Dirk; Lange, Wolfgang; Leonard, Jessica; Lipka, Katerina; Lobanov, Artur; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Nayak, Aruna; Ntomari, Eleni; Perrey, Hanno; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Roland, Benoit; Ron, Elias; Sahin, Mehmet Özgür; Salfeld-Nebgen, Jakob; Saxena, Pooja; Schoerner-Sadenius, Thomas; Schröder, Matthias; Seitz, Claudia; Spannagel, Simon; Vargas Trevino, Andrea Del Rocio; Walsh, Roberval; Wissing, Christoph; Blobel, Volker; Centis Vignali, Matteo; Draeger, Arne-Rasmus; Erfle, Joachim; Garutti, Erika; Goebel, Kristin; Görner, Martin; Haller, Johannes; Hoffmann, Malte; Höing, Rebekka Sophie; Junkes, Alexandra; Kirschenmann, Henning; Klanner, Robert; Kogler, Roman; Lapsien, Tobias; Lenz, Teresa; Marchesini, Ivan; Marconi, Daniele; Ott, Jochen; Peiffer, Thomas; Perieanu, Adrian; Pietsch, Niklas; Poehlsen, Jennifer; Pöhlsen, Thomas; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Seidel, Markus; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Vanhoefer, Annika; Barth, Christian; Baus, Colin; Berger, Joram; Böser, Christian; Butz, Erik; Chwalek, Thorsten; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Feindt, Michael; Frensch, Felix; Giffels, Manuel; Gilbert, Andrew; Hartmann, Frank; Hauth, Thomas; Husemann, Ulrich; Katkov, Igor; Kornmayer, Andreas; Lobelle Pardo, Patricia; Mozer, Matthias Ulrich; Müller, Thomas; Müller, Thomas; Nürnberg, Andreas; Quast, Gunter; Rabbertz, Klaus; Röcker, Steffen; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weiler, Thomas; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Markou, Athanasios; Markou, Christos; Psallidas, Andreas; Topsis-Giotis, Iasonas; Agapitos, Antonis; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Stiliaris, Efstathios; Tziaferi, Eirini; Aslanoglou, Xenofon; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Strologas, John; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Makovec, Alajos; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Swain, Sanjay Kumar; Beri, Suman Bala; Bhatnagar, Vipin; Gupta, Ruchi; Bhawandeep, Bhawandeep; Kalsi, Amandeep Kaur; Kaur, Manjit; Kumar, Ramandeep; Mittal, Monika; Nishu, Nishu; Singh, Jasbir; Kumar, Ashok; Kumar, Arun; Ahuja, Sudha; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Varun; Banerjee, Sunanda; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Modak, Atanu; Mukherjee, Swagata; Roy, Debarati; Sarkar, Subir; Sharan, Manoj; Abdulsalam, Abdulla; Dutta, Dipanwita; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Banerjee, Sudeshna; Bhowmik, Sandeep; Chatterjee, Rajdeep Mohan; Dewanjee, Ram Krishna; Dugad, Shashikant; Ganguly, Sanmay; Ghosh, Saranya; Guchait, Monoranjan; Gurtu, Atul; Kole, Gouranga; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Sudhakar, Katta; Wickramage, Nadeesha; Sharma, Seema; Bakhshiansohi, Hamed; Behnamian, Hadi; Etesami, Seyed Mohsen; Fahim, Ali; Goldouzian, Reza; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; Cristella, Leonardo; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Selvaggi, Giovanna; Sharma, Archana; Silvestris, Lucia; Venditti, Rosamaria; Verwilligen, Piet; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Gallo, Elisabetta; Gonzi, Sandro; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Ferretti, Roberta; Ferro, Fabrizio; Lo Vetere, Maurizio; Robutti, Enrico; Tosi, Silvano; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Gerosa, Raffaele; Ghezzi, Alessio; Govoni, Pietro; Lucchini, Marco Toliman; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Marzocchi, Badder; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bisello, Dario; Carlin, Roberto; Checchia, Paolo; Dall'Osso, Martino; Dorigo, Tommaso; Dosselli, Umberto; Gasparini, Ugo; Gozzelino, Andrea; Lacaprara, Stefano; Margoni, Martino; Meneguzzo, Anna Teresa; Pazzini, Jacopo; Pegoraro, Matteo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Vanini, Sara; Ventura, Sandro; Zotto, Pierluigi; Zucchetta, Alberto; Zumerle, Gianni; Gabusi, Michele; Ratti, Sergio P; Re, Valerio; Riccardi, Cristina; Salvini, Paola; Vitulo, Paolo; Biasini, Maurizio; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Saha, Anirban; Santocchia, Attilio; Spiezia, Aniello; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fedi, Giacomo; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Moon, Chang-Seong; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Vernieri, Caterina; Barone, Luciano; Cavallari, Francesca; D'imperio, Giulia; Del Re, Daniele; Diemoz, Marcella; Jorda, Clara; Longo, Egidio; Margaroli, Fabrizio; Meridiani, Paolo; Micheli, Francesco; Organtini, Giovanni; Paramatti, Riccardo; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Soffi, Livia; Traczyk, Piotr; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Casasso, Stefano; Costa, Marco; Covarelli, Roberto; Degano, Alessandro; Demaria, Natale; Finco, Linda; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Potenza, Alberto; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Tamponi, Umberto; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; La Licata, Chiara; Marone, Matteo; Schizzi, Andrea; Umer, Tomo; Zanetti, Anna; Chang, Sunghyun; Kropivnitskaya, Anna; Nam, Soon-Kwon; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Kong, Dae Jung; Lee, Sangeun; Oh, Young Do; Park, Hyangkyu; Sakharov, Alexandre; Son, Dong-Chul; Kim, Tae Jeong; Ryu, Min Sang; Kim, Jae Yool; Moon, Dong Ho; Song, Sanghyeon; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Yongsun; Lee, Byounghoon; Lee, Kyong Sei; Park, Sung Keun; Roh, Youn; Yoo, Hwi Dong; Choi, Minkyoo; Kim, Ji Hyun; Park, Inkyu; Ryu, Geonmo; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Donghyun; Kwon, Eunhyang; Lee, Jongseok; Yu, Intae; Juodagalvis, Andrius; Komaragiri, Jyothsna Rani; Md Ali, Mohd Adli Bin; Wan Abdullah, Wan Ahmad Tajuddin; Casimiro Linares, Edgar; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Hernandez-Almada, Alberto; Lopez-Fernandez, Ricardo; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Reucroft, Steve; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Khan, Wajid Ali; Khurshid, Taimoor; Shoaib, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michał; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Lloret Iglesias, Lara; Nguyen, Federico; Rodrigues Antunes, Joao; Seixas, Joao; Vadruccio, Daniele; Varela, Joao; Vischia, Pietro; Afanasiev, Serguei; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Konoplyanikov, Viktor; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Skatchkov, Nikolai; Smirnov, Vitaly; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Kuznetsova, Ekaterina; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Semenov, Sergey; Spiridonov, Alexander; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Belyaev, Andrey; Boos, Edouard; Ershov, Alexander; Gribushin, Andrey; Kaminskiy, Alexandre; Kodolova, Olga; Korotkikh, Vladimir; Lokhtin, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Snigirev, Alexander; Vardanyan, Irina; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Ekmedzic, Marko; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Navarro De Martino, Eduardo; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; Albajar, Carmen; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Brun, Hugues; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Duarte Campderros, Jordi; Fernandez, Marcos; Gomez, Gervasio; Graziano, Alberto; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Benaglia, Andrea; Bendavid, Joshua; Benhabib, Lamia; Benitez, Jose F; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Bondu, Olivier; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Cerminara, Gianluca; Colafranceschi, Stefano; D'Alfonso, Mariarosaria; D'Enterria, David; Dabrowski, Anne; David Tinoco Mendes, Andre; De Guio, Federico; De Roeck, Albert; De Visscher, Simon; Di Marco, Emanuele; Dobson, Marc; Dordevic, Milos; Dorney, Brian; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Franzoni, Giovanni; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Girone, Maria; Glege, Frank; Guida, Roberto; Gundacker, Stefan; Guthoff, Moritz; Hammer, Josef; Hansen, Magnus; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Kousouris, Konstantinos; Krajczar, Krisztian; Lecoq, Paul; Lourenco, Carlos; Magini, Nicolo; Malgeri, Luca; Mannelli, Marcello; Marrouche, Jad; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moortgat, Filip; Morovic, Srecko; Mulders, Martijn; Orfanelli, Styliani; Orsini, Luciano; Pape, Luc; Perez, Emmanuelle; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pimiä, Martti; Piparo, Danilo; Plagge, Michael; Racz, Attila; Rolandi, Gigi; Rovere, Marco; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Steggemann, Jan; Stieger, Benjamin; Stoye, Markus; Takahashi, Yuta; Treille, Daniel; Tsirou, Andromachi; Veres, Gabor Istvan; Wardle, Nicholas; Wöhri, Hermine Katharina; Wollny, Heiner; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Renker, Dieter; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Buchmann, Marco-Andrea; Casal, Bruno; Chanon, Nicolas; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dünser, Marc; Eller, Philipp; Grab, Christoph; Hits, Dmitry; Hoss, Jan; Kasieczka, Gregor; Lustermann, Werner; Mangano, Boris; Marini, Andrea Carlo; Marionneau, Matthieu; Martinez Ruiz del Arbol, Pablo; Masciovecchio, Mario; Meister, Daniel; Mohr, Niklas; Musella, Pasquale; Nägeli, Christoph; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pauss, Felicitas; Perrozzi, Luca; Peruzzi, Marco; Quittnat, Milena; Rebane, Liis; Rossini, Marco; Starodumov, Andrei; Takahashi, Maiko; Theofilatos, Konstantinos; Wallny, Rainer; Weber, Hannsjoerg Artur; Amsler, Claude; Canelli, Maria Florencia; Chiochia, Vincenzo; De Cosa, Annapaola; Hinzmann, Andreas; Hreus, Tomas; Kilminster, Benjamin; Lange, Clemens; Ngadiuba, Jennifer; Pinna, Deborah; Robmann, Peter; Ronga, Frederic Jean; Taroni, Silvia; Yang, Yong; Cardaci, Marco; Chen, Kuan-Hsin; Ferro, Cristina; Kuo, Chia-Ming; Lin, Willis; Lu, Yun-Ju; Volpe, Roberta; Yu, Shin-Shan; Chang, Paoti; Chang, You-Hao; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Liu, Yueh-Feng; Lu, Rong-Shyang; Miñano Moya, Mercedes; Petrakou, Eleni; Tsai, Jui-fa; Tzeng, Yeng-Ming; Wilken, Rachel; Asavapibhop, Burin; Singh, Gurpreet; Srimanobhas, Norraphat; Suwonjandee, Narumon; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Mehmet; Zorbilmez, Caglar; Akin, Ilina Vasileva; Bilin, Bugra; Bilmis, Selcuk; Gamsizkan, Halil; Isildak, Bora; Karapinar, Guler; Ocalan, Kadir; Sekmen, Sezen; Surat, Ugur Emrah; Yalvac, Metin; Zeyrek, Mehmet; Albayrak, Elif Asli; Gülmez, Erhan; Kaya, Mithat; Kaya, Ozlem; Yetkin, Taylan; Cankocak, Kerem; Vardarlı, Fuat Ilkehan; Levchuk, Leonid; Sorokin, Pavel; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Meng, Zhaoxia; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Sakuma, Tai; Seif El Nasr-storey, Sarah; Senkin, Sergey; Smith, Vincent J; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Williams, Thomas; Womersley, William John; Worm, Steven; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Burton, Darren; Colling, David; Cripps, Nicholas; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Dunne, Patrick; Elwood, Adam; Ferguson, William; Fulcher, Jonathan; Futyan, David; Hall, Geoffrey; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Kenzie, Matthew; Lane, Rebecca; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Mathias, Bryn; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Raymond, David Mark; Rogerson, Samuel; Rose, Andrew; Seez, Christopher; Sharp, Peter; Tapper, Alexander; Vazquez Acosta, Monica; Virdee, Tejinder; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Dittmann, Jay; Hatakeyama, Kenichi; Kasmi, Azeddine; Liu, Hongxuan; Pastika, Nathaniel; Scarborough, Tara; Wu, Zhenbin; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Lawson, Philip; Richardson, Clint; Rohlf, James; St John, Jason; Sulak, Lawrence; Alimena, Juliette; Berry, Edmund; Bhattacharya, Saptaparna; Christopher, Grant; Cutts, David; Demiragli, Zeynep; Dhingra, Nitish; Ferapontov, Alexey; Garabedian, Alex; Heintz, Ulrich; Laird, Edward; Landsberg, Greg; Mao, Zaixing; Narain, Meenakshi; Sagir, Sinan; Sinthuprasith, Tutanon; Speer, Thomas; Swanson, Joshua; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Gardner, Michael; Ko, Winston; Lander, Richard; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Ricci-Tam, Francesca; Shalhout, Shalhout; Smith, John; Squires, Michael; Stolp, Dustin; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Cousins, Robert; Everaerts, Pieter; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Rakness, Gregory; Takasugi, Eric; Valuev, Vyacheslav; Weber, Matthias; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Hanson, Gail; Heilman, Jesse; Ivova Rikova, Mirena; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Luthra, Arun; Malberti, Martina; Olmedo Negrete, Manuel; Shrinivas, Amithabh; Sumowidagdo, Suharyo; Wimpenny, Stephen; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; D'Agnolo, Raffaele Tito; Holzner, André; Kelley, Ryan; Klein, Daniel; Letts, James; Macneill, Ian; Olivito, Dominick; Padhi, Sanjay; Palmer, Christopher; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Welke, Charles; Würthwein, Frank; Yagil, Avraham; Zevi Della Porta, Giovanni; Barge, Derek; Bradmiller-Feld, John; Campagnari, Claudio; Danielson, Thomas; Dishaw, Adam; Dutta, Valentina; Flowers, Kristen; Franco Sevilla, Manuel; Geffert, Paul; George, Christopher; Golf, Frank; Gouskos, Loukas; Incandela, Joe; Justus, Christopher; Mccoll, Nickolas; Mullin, Sam Daniel; Richman, Jeffrey; Stuart, David; To, Wing; West, Christopher; Yoo, Jaehyeok; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Duarte, Javier; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Pierini, Maurizio; Spiropulu, Maria; Vlimant, Jean-Roch; Wilkinson, Richard; Xie, Si; Zhu, Ren-Yuan; Azzolini, Virginia; Calamba, Aristotle; Carlson, Benjamin; Ferguson, Thomas; Iiyama, Yutaro; Paulini, Manfred; Russ, James; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Ford, William T; Gaz, Alessandro; Krohn, Michael; Luiggi Lopez, Eduardo; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Chaves, Jorge; Chu, Jennifer; Dittmer, Susan; Eggert, Nicholas; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Ryd, Anders; Salvati, Emmanuele; Skinnari, Louise; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hanlon, Jim; Hare, Daryl; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Klima, Boaz; Kreis, Benjamin; Kwan, Simon; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Tiehui; Lopes De Sá, Rafael; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Martinez Outschoorn, Verena Ingrid; Maruyama, Sho; Mason, David; McBride, Patricia; Merkel, Petra; Mishra, Kalanand; Mrenna, Stephen; Nahn, Steve; Newman-Holmes, Catherine; O'Dell, Vivian; Prokofyev, Oleg; Sexton-Kennedy, Elizabeth; Soha, Aron; Spalding, William J; Spiegel, Leonard; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitbeck, Andrew; Whitmore, Juliana; Yang, Fan; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Carver, Matthew; Curry, David; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Field, Richard D; Fisher, Matthew; Furic, Ivan-Kresimir; Hugon, Justin; Konigsberg, Jacobo; Korytov, Andrey; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Mei, Hualin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Rinkevicius, Aurelijus; Shchutska, Lesya; Snowball, Matthew; Sperka, David; Yelton, John; Zakaria, Mohammed; Hewamanage, Samantha; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Jordon Rowe; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Diamond, Brendan; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Hohlmann, Marcus; Kalakhety, Himali; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Berry, Douglas; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Kurt, Pelin; O'Brien, Christine; Sandoval Gonzalez, Irving Daniel; Silkworth, Christopher; Turner, Paul; Varelas, Nikos; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Haytmyradov, Maksat; Khristenko, Viktor; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Rahmat, Rahmat; Sen, Sercan; Tan, Ping; Tiras, Emrah; Wetzel, James; Yi, Kai; Anderson, Ian; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Fehling, David; Gritsan, Andrei; Maksimovic, Petar; Martin, Christopher; Swartz, Morris; Xiao, Meng; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Bruner, Christopher; Gray, Julia; Kenny III, Raymond Patrick; Majumder, Devdatta; Malek, Magdalena; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Sekaric, Jadranka; Stringer, Robert; Wang, Quan; Wood, Jeffrey Scott; Chakaberia, Irakli; Ivanov, Andrew; Kaadze, Ketino; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Saini, Lovedeep Kaur; Skhirtladze, Nikoloz; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Rebassoo, Finn; Wright, Douglas; Anelli, Christopher; Baden, Drew; Belloni, Alberto; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Jabeen, Shabnam; Kellogg, Richard G; Kolberg, Ted; Lu, Ying; Mignerey, Alice; Pedro, Kevin; Shin, Young Ho; Skuja, Andris; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Barbieri, Richard; Bierwagen, Katharina; Busza, Wit; Cali, Ivan Amos; Di Matteo, Leonardo; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Gulhan, Doga; Klute, Markus; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Stephans, George; Sumorok, Konstanty; Velicanu, Dragos; Veverka, Jan; Wyslouch, Bolek; Yang, Mingming; Zanetti, Marco; Zhukova, Victoria; Dahmes, Bryan; Gude, Alexander; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Nourbakhsh, Shervin; Rusack, Roger; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Gonzalez Suarez, Rebeca; Keller, Jason; Knowlton, Dan; Kravchenko, Ilya; Lazo-Flores, Jose; Meier, Frank; Ratnikov, Fedor; Snow, Gregory R; Zvada, Marian; Dolen, James; Godshalk, Andrew; Iashvili, Ia; Kharchilava, Avto; Kumar, Ashish; Rappoccio, Salvatore; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Zhang, Jinzhong; Hahn, Kristan Allan; Kubik, Andrew; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Sung, Kevin; Trovato, Marco; Velasco, Mayda; Won, Steven; Brinkerhoff, Andrew; Chan, Kwok Ming; Drozdetskiy, Alexey; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Lynch, Sean; Marinelli, Nancy; Musienko, Yuri; Pearson, Tessa; Planer, Michael; Ruchti, Randy; Smith, Geoffrey; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Antonelli, Louis; Brinson, Jessica; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Hart, Andrew; Hill, Christopher; Hughes, Richard; Kotov, Khristian; Ling, Ta-Yung; Luo, Wuming; Puigh, Darren; Rodenburg, Marissa; Winer, Brian L; Wolfe, Homer; Wulsin, Howard Wells; Driga, Olga; Elmer, Peter; Hardenbrook, Joshua; Hebda, Philip; Koay, Sue Ann; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Brownson, Eric; Malik, Sudhir; Mendez, Hector; Ramirez Vargas, Juan Eduardo; Barnes, Virgil E; Benedetti, Daniele; Bortoletto, Daniela; Gutay, Laszlo; Hu, Zhen; Jha, Manoj; Jones, Matthew; Jung, Kurt; Kress, Matthew; Leonardo, Nuno; Miller, David Harry; Neumeister, Norbert; Primavera, Federica; Radburn-Smith, Benjamin Charles; Shi, Xin; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Wang, Fuqiang; Xie, Wei; Xu, Lingshan; Zablocki, Jakub; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Ecklund, Karl Matthew; Geurts, Frank JM; Li, Wei; Michlin, Benjamin; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Galanti, Mario; Garcia-Bellido, Aran; Goldenzweig, Pablo; Han, Jiyeon; Harel, Amnon; Hindrichs, Otto; Khukhunaishvili, Aleko; Korjenevski, Sergey; Petrillo, Gianluca; Verzetti, Mauro; Vishnevskiy, Dmitry; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Mesropian, Christina; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Hughes, Elliot; Kaplan, Steven; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Salur, Sevil; Schnetzer, Steve; Sheffield, David; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Rose, Keith; Spanier, Stefan; York, Andrew; Bouhali, Othmane; Castaneda Hernandez, Alfredo; Dalchenko, Mykhailo; De Mattia, Marco; Dildick, Sven; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Krutelyov, Vyacheslav; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Patel, Rishi; Perloff, Alexx; Roe, Jeffrey; Rose, Anthony; Safonov, Alexei; Suarez, Indara; Tatarinov, Aysen; Ulmer, Keith; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Kovitanggoon, Kittikul; Kunori, Shuichi; Lee, Sung Won; Libeiro, Terence; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Greene, Senta; Gurrola, Alfredo; Johns, Willard; Maguire, Charles; Mao, Yaxian; Melo, Andrew; Sharma, Monika; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Lin, Chuanzhe; Neu, Christopher; Wolfe, Evan; Wood, John; Clarke, Christopher; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sturdy, Jared; Belknap, Donald; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Friis, Evan; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Lanaro, Armando; Lazaridis, Christos; Levine, Aaron; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ross, Ian; Sarangi, Tapas; Savin, Alexander; Smith, Wesley H; Taylor, Devin; Vuosalo, Carl; Woods, Nathaniel
2015-06-29
The second-order azimuthal anisotropy Fourier harmonics, $v_2$, are obtained in pPb and PbPb collisions over a wide pseudorapidity ($\\eta$) range based on correlations among six or more charged particles. The pPb data, corresponding to an integrated luminosity of 35 nb$^{-1}$, were collected during the 2013 LHC pPb run at a nucleon-nucleon center-of-mass energy of 5.02 TeV by the CMS experiment. A sample of semi-peripheral PbPb collision data at $\\sqrt{s_{\\mathrm{NN}}}$ = 2.76 TeV, corresponding to an integrated luminosity of 2.5 $\\mu$b$^{-1}$ and covering a similar range of particle multiplicities as the pPb data, is also analyzed for comparison. The six- and eight-particle cumulant and the Lee-Yang zeros methods are used to extract the $v_2$ coefficients, extending previous studies of two- and four-particle correlations. For both the pPb and PbPb systems, the $v_2$ values obtained with correlations among more than four particles are consistent with previously published four-particle results. These data supp...
Fundamentals of particle beam dynamics and phase space
International Nuclear Information System (INIS)
Weng, W.T.; Mane, S.R.
1991-01-01
This report discusses the following topics on synchrotron accelerators: Transverse motion---betatron oscillations; machine lattice; representation of a particle beam; and longitudinal motion---synchrotron oscillations
One- and two-particle correlation functions in the dynamical quantum cluster approach
International Nuclear Information System (INIS)
Hochkeppel, Stephan
2008-01-01
This thesis is dedicated to a theoretical study of the 1-band Hubbard model in the strong coupling limit. The investigation is based on the Dynamical Cluster Approximation (DCA) which systematically restores non-local corrections to the Dynamical Mean Field approximation (DMFA). The DCA is formulated in momentum space and is characterised by a patching of the Brillouin zone where momentum conservation is only recovered between two patches. The approximation works well if k-space correlation functions show a weak momentum dependence. In order to study the temperature and doping dependence of the spin- and charge excitation spectra, we explicitly extend the Dynamical Cluster Approximation to two-particle response functions. The full irreducible two-particle vertex with three momenta and frequencies is approximated by an effective vertex dependent on the momentum and frequency of the spin and/or charge excitations. The effective vertex is calculated by using the Quantum Monte Carlo method on the finite cluster whereas the analytical continuation of dynamical quantities is performed by a stochastic version of the maximum entropy method. A comparison with high temperature auxiliary field quantum Monte Carlo data serves as a benchmark for our approach to two-particle correlation functions. Our method can reproduce basic characteristics of the spin- and charge excitation spectrum. Near and beyond optimal doping, our results provide a consistent overall picture of the interplay between charge, spin and single-particle excitations: a collective spin mode emerges at optimal doping and sufficiently low temperatures in the spin response spectrum and exhibits the energy scale of the magnetic exchange interaction J. Simultaneously, the low energy single-particle excitations are characterised by a coherent quasiparticle with bandwidth J. The origin of the quasiparticle can be quite well understood in a picture of a more or less antiferromagnetic ordered background in which holes
Ryu, Duchwan; Liang, Faming; Mallick, Bani K.
2013-01-01
be modeled by a dynamic system which changes with time and location. In this article, we propose a radial basis function network-based dynamic model which is able to catch the nonlinearity of the data and propose to use the dynamically weighted particle
Summary report of the group on single-particle nonlinear dynamics
International Nuclear Information System (INIS)
Axinescu, S.; Bartolini, R.; Bazzani, A.
1996-10-01
This report summarizes the research on single-particle nonlinear beam dynamics. It discusses the following topics: analytical and semi-analytical tools; early prediction of the dynamic aperture; how the results are commonly presented; Is the mechanism of the dynamic aperture understand; ripple effects; and beam-beam effects
Dynamically warped theory space and collective supersymmetry breaking
International Nuclear Information System (INIS)
Carone, Christopher D.; Erlich, Joshua; Glover, Brian
2005-01-01
We study deconstructed gauge theories in which a warp factor emerges dynamically. We present nonsupersymmetric models in which the potential for the link fields has translational invariance, broken only by boundary effects that trigger an exponential profile of vacuum expectation values. The spectrum of physical states deviates exponentially from that of the continuum for large masses; we discuss the effects of such exponential towers on gauge coupling unification. We also present a supersymmetric example in which a warp factor is driven by Fayet-Iliopoulos terms. The model is peculiar in that it possesses a global supersymmetry that remains unbroken despite nonvanishing D-terms. Inclusion of gravity and/or additional messenger fields leads to the collective breaking of supersymmetry and to unusual phenomenology
Dynamics of heterogeneous oscillator ensembles in terms of collective variables
Pikovsky, Arkady; Rosenblum, Michael
2011-04-01
We consider general heterogeneous ensembles of phase oscillators, sine coupled to arbitrary external fields. Starting with the infinitely large ensembles, we extend the Watanabe-Strogatz theory, valid for identical oscillators, to cover the case of an arbitrary parameter distribution. The obtained equations yield the description of the ensemble dynamics in terms of collective variables and constants of motion. As a particular case of the general setup we consider hierarchically organized ensembles, consisting of a finite number of subpopulations, whereas the number of elements in a subpopulation can be both finite or infinite. Next, we link the Watanabe-Strogatz and Ott-Antonsen theories and demonstrate that the latter one corresponds to a particular choice of constants of motion. The approach is applied to the standard Kuramoto-Sakaguchi model, to its extension for the case of nonlinear coupling, and to the description of two interacting subpopulations, exhibiting a chimera state. With these examples we illustrate that, although the asymptotic dynamics can be found within the framework of the Ott-Antonsen theory, the transients depend on the constants of motion. The most dramatic effect is the dependence of the basins of attraction of different synchronous regimes on the initial configuration of phases.
Dynamic behavior of IREB in a collective ion acceleration experiment
International Nuclear Information System (INIS)
Fine, T.A.; Rhee, M.J.
1989-01-01
The authors report an experimental study of dynamic behavior of net current in conjunction with collective ion acceleration. In the presence of neutral gas, either puffed in or released from the anode foil, the IREB injected is subject to the charge and current neutralizations, resulting in a complicated time and space dependent beam distribution in the drift tube. To investigate the dynamic behavior of the current in the drift tube, typically a 0.5 MeV, 70 kA, 100 ns electron beam of 2.54 cm diam is injected through a foil anode into a drift tube of 15 cm diam. Reproducibility of experiment was improved by using a specially designed anode system with a foil changer which allowed the production of many shots of high current electron beam without disturbing the vacuum condition. The net currents were measured by a Rogowski coil built in the anode system, and a movable Faraday cup along the drift tube. The ions accelerated were diagnosed mainly by a Thomson spectrometer system placed at the end of the drift tube
Ultrafast Dynamics of Metallo-Dielectric Core-Shell Particles
Shan, X.
2008-01-01
Optical properties of metallic nano-structures have attracted a lot of attention in the past decades. In this thesis, we focus on nano-sized silica-core gold-shell particles, study the linear, nonlinear and acoustic vibrations of the particles. The linear optical properties in the visible range of
Dynamics of individual magnetic particles near a biosensor surface
van Ommering, K.
2010-01-01
The use of magnetic particles in biosensing is advantageous for transport of target molecules in the device, for assay integration, and for labeled detection. The particles generally have a size between 100 nm and 3 ¿m and are of a superparamagnetic nature, being composed of thousands of iron oxide
International Nuclear Information System (INIS)
Berkov, D.V.; Gorn, N.L.; Stock, D.
2007-01-01
For numerical studies of a ferrofluid dynamics we have developed a model which includes internal magnetic degrees of freedom of ferrofluid particles. Contrary to standard models, we take into account that the magnetocrystalline anisotropy of a ferrofluid particle material is finite, so that the particle moment is allowed to rotate with respect to the particle itself. Simulating magnetization relaxation of a ferrofluid after switching off the external field and comparing results with those obtained for rigid dipoles model, we demonstrate that for anisotropy typical for commonly used ferrofluid materials inclusion of 'magnetic' degrees of freedom is essential for a correct description of ferrofluid dynamics
Anisotropic biodegradable lipid coated particles for spatially dynamic protein presentation.
Meyer, Randall A; Mathew, Mohit P; Ben-Akiva, Elana; Sunshine, Joel C; Shmueli, Ron B; Ren, Qiuyin; Yarema, Kevin J; Green, Jordan J
2018-05-01
There has been growing interest in the use of particles coated with lipids for applications ranging from drug delivery, gene delivery, and diagnostic imaging to immunoengineering. To date, almost all particles with lipid coatings have been spherical despite emerging evidence that non-spherical shapes can provide important advantages including reduced non-specific elimination and increased target-specific binding. We combine control of core particle geometry with control of particle surface functionality by developing anisotropic, biodegradable ellipsoidal particles with lipid coatings. We demonstrate that these lipid coated ellipsoidal particles maintain advantageous properties of lipid polymer hybrid particles, such as the ability for modular protein conjugation to the particle surface using versatile bioorthogonal ligation reactions. In addition, they exhibit biomimetic membrane fluidity and demonstrate lateral diffusive properties characteristic of natural membrane proteins. These ellipsoidal particles simultaneously provide benefits of non-spherical particles in terms of stability and resistance to non-specific phagocytosis by macrophages as well as enhanced targeted binding. These biomaterials provide a novel and flexible platform for numerous biomedical applications. The research reported here documents the ability of non-spherical polymeric particles to be coated with lipids to form anisotropic biomimetic particles. In addition, we demonstrate that these lipid-coated biodegradable polymeric particles can be conjugated to a wide variety of biological molecules in a "click-like" fashion. This is of interest due to the multiple types of cellular mimicry enabled by this biomaterial based technology. These features include mimicry of the highly anisotropic shape exhibited by cells, surface presentation of membrane bound protein mimetics, and lateral diffusivity of membrane bound substrates comparable to that of a plasma membrane. This platform is demonstrated to
Molecular Dynamic Studies of Particle Wake Potentials in Plasmas
Ellis, Ian; Graziani, Frank; Glosli, James; Strozzi, David; Surh, Michael; Richards, David; Decyk, Viktor; Mori, Warren
2010-11-01
Fast Ignition studies require a detailed understanding of electron scattering, stopping, and energy deposition in plasmas with variable values for the number of particles within a Debye sphere. Presently there is disagreement in the literature concerning the proper description of these processes. Developing and validating proper descriptions requires studying the processes using first-principle electrostatic simulations and possibly including magnetic fields. We are using the particle-particle particle-mesh (P^3M) code ddcMD to perform these simulations. As a starting point in our study, we examined the wake of a particle passing through a plasma. In this poster, we compare the wake observed in 3D ddcMD simulations with that predicted by Vlasov theory and those observed in the electrostatic PIC code BEPS where the cell size was reduced to .03λD.
International Nuclear Information System (INIS)
Zhang Weigang
1999-01-01
A concept of correlative degree is proposed. Using the method of particle-group correlation's function, the effects of the particles with different correlative degrees on collective side ward flow are studied for 1.2A GeV Ar + Bal 2 collisions at the Bevalac stream chamber. The studies indicate that correlative degree is an important parameter on describing collective side ward flow properties. The minority of correlative particles (or fragments) with larger correlative degrees can produce the effect arising from the collective side ward flow, but the effect arising from high-order collective flow correlations can not be dominated by these minority of particles (or fragments). It is results from the collective contribution of the majority of collective particles (or fragments) with various correlative degrees
An oscillating dynamic model of collective cells in a monolayer
Lin, Shao-Zhen; Xue, Shi-Lei; Li, Bo; Feng, Xi-Qiao
2018-03-01
Periodic oscillations of collective cells occur in the morphogenesis and organogenesis of various tissues and organs. In this paper, an oscillating cytodynamic model is presented by integrating the chemomechanical interplay between the RhoA effector signaling pathway and cell deformation. We show that both an isolated cell and a cell aggregate can undergo spontaneous oscillations as a result of Hopf bifurcation, upon which the system evolves into a limit cycle of chemomechanical oscillations. The dynamic characteristics are tailored by the mechanical properties of cells (e.g., elasticity, contractility, and intercellular tension) and the chemical reactions involved in the RhoA effector signaling pathway. External forces are found to modulate the oscillation intensity of collective cells in the monolayer and to polarize their oscillations along the direction of external tension. The proposed cytodynamic model can recapitulate the prominent features of cell oscillations observed in a variety of experiments, including both isolated cells (e.g., spreading mouse embryonic fibroblasts, migrating amoeboid cells, and suspending 3T3 fibroblasts) and multicellular systems (e.g., Drosophila embryogenesis and oogenesis).
Quantum mean-field theory of collective dynamics and tunneling
International Nuclear Information System (INIS)
Negele, J.W.
1981-01-01
A fundamental problem in quantum many-body theory is formulation of a microscopic theory of collective motion. For self-bound, saturating systems like finite nuclei described in the context of nonrelativistic quantum mechanics with static interactions, the essential problem is how to formulate a systematic quantal theory in which the relevant collective variables and their dynamics arise directly and naturally from the Hamiltonian and the system under consideration. Significant progress has been made recently in formulating the quantum many-body problem in terms of an expansion about solutions to time-dependent mean-field equations. The essential ideas, principal results, and illustrative examples are summarized. An exact expression for an observable of interest is written using a functional integral representation for the evolution operator, and tractable time-dependent mean field equations are obtained by application of the stationary-phase approximation (SPA) to the functional integral. Corrections to the lowest-order theory may be systematically enumerated. 6 figures
Yordanova, Petya; Maier, Stefanie; Lang-Yona, Naama; Tamm, Alexandra; Meusel, Hannah; Pöschl, Ulrich; Weber, Bettina; Fröhlich-Nowoisky, Janine
2017-04-01
Atmospheric aerosol particles, including desert and soil dust as well as marine aerosols, are well known to act as ice nuclei (IN) and thus have been investigated in numerous ice nucleation studies. Based on their cloud condensation nuclei potential and their impacts on radiative properties of clouds (via scattering and absorption of solar radiation), aerosol particles may significantly affect the cloud and precipitation development. Atmospheric aerosols of the Eastern Mediterranean have been described to be dominated by desert dust, but only little is known on their composition and ice nucleating properties. In this study we investigated the ice nucleating ability of total suspended particles (TSP), collected at the remote site Agia Marina Xyliatou on Cyprus during a field campaign in April 2016. Airborne TSP samples containing air masses of various types such as African (Saharan) and Arabian dust and European and Middle Eastern pollution were collected on glass fiber filters at 24 h intervals. Sampling was performed ˜5 m above ground level and ˜521 m above sea level. During the sampling period, two major dust storms (PM 10max 118 μg/m3 and 66 μg/m3) and a rain event (rainfall amount: 3.4 mm) were documented. Chemical and physical characterizations of the particles were analyzed experimentally through filtration, thermal, chemical and enzyme treatments. Immersion freezing experiments were performed at relatively high subzero temperatures (-1 to -15˚ C) using the mono ice nucleation array. Preliminary results indicate that highest IN particle numbers (INPs) occurred during the second dust storm event with lower particle concentrations. Treatments at 60˚ C lead to a gradual IN deactivation, indicating the presence of biological INPs, which were observed to be larger than 300 kDa. Additional results originating from this study will be shown. Acknowledgement: This work was funded by the DFG Ice Nuclei Research Unit (INUIT).
Song, Dongxing; Jin, Hui; Jing, Dengwei; Wang, Xin
2018-03-01
Aggregation and migration of colloidal particles under the thermal gradient widely exists in nature and many industrial processes. In this study, dynamic properties of polydisperse colloidal particles in the presence of thermal gradient were studied by a modified Brownian dynamic model. Other than the traditional forces on colloidal particles, including Brownian force, hydrodynamic force, and electrostatic force from other particles, the electrostatic force from the asymmetric ionic diffusion layer under a thermal gradient has been considered and introduced into the Brownian dynamic model. The aggregation ratio of particles (R A), the balance time (t B) indicating the time threshold when {{R}A} becomes constant, the porosity ({{P}BA} ), fractal dimension (D f) and distributions of concentration (DISC) and aggregation (DISA) for the aggregated particles were discussed based on this model. The aggregated structures formed by polydisperse particles are less dense and the particles therein are loosely bonded. Also it showed a quite large compressibility as the increases of concentration and interparticle potential can significantly increase the fractal dimension. The thermal gradient can induce two competitive factors leading to a two-stage migration of particles. When t{{t}B} , the thermophoresis becomes dominant thus the migrations of particles are against the thermal gradient. The effect of thermophoresis on the aggregate structures was found to be similar to the effect of increasing particle concentration. This study demonstrates how the thermal gradient affects the aggregation of monodisperse and polydisperse particles and can be a guide for the biomimetics and precise control of colloid system under the thermal gradient. Moreover, our model can be easily extended to other more complex colloidal systems considering shear, temperature fluctuation, surfactant, etc.
Plume Particle Collection and Sizing from Static Firing of Solid Rocket Motors
Sambamurthi, Jay K.
1995-01-01
Thermal radiation from the plume of any solid rocket motor, containing aluminum as one of the propellant ingredients, is mainly from the microscopic, hot aluminum oxide particles in the plume. The plume radiation to the base components of the flight vehicle is primarily determined by the plume flowfield properties, the size distribution of the plume particles, and their optical properties. The optimum design of a vehicle base thermal protection system is dependent on the ability to accurately predict this intense thermal radiation using validated theoretical models. This article describes a successful effort to collect reasonably clean plume particle samples from the static firing of the flight simulation motor (FSM-4) on March 10, 1994 at the T-24 test bed at the Thiokol space operations facility as well as three 18.3% scaled MNASA motors tested at NASA/MSFC. Prior attempts to collect plume particles from the full-scale motor firings have been unsuccessful due to the extremely hostile thermal and acoustic environment in the vicinity of the motor nozzle.
From one to many: dynamic assembly and collective behavior of self-propelled colloidal motors.
Wang, Wei; Duan, Wentao; Ahmed, Suzanne; Sen, Ayusman; Mallouk, Thomas E
2015-07-21
The assembly of complex structures from simpler, individual units is a hallmark of biology. Examples include the pairing of DNA strands, the assembly of protein chains into quaternary structures, the formation of tissues and organs from cells, and the self-organization of bacterial colonies, flocks of birds, and human beings in cities. While the individual behaviors of biomolecules, bacteria, birds, and humans are governed by relatively simple rules, groups assembled from many individuals exhibit complex collective behaviors and functions that do not exist in the absence of the hierarchically organized structure. Self-assembly is a familiar concept to chemists who study the formation and properties of monolayers, crystals, and supramolecular structures. In chemical self-assembly, disorder evolves to order as the system approaches equilibrium. In contrast, living assemblies are typically characterized by two additional features: (1) the system constantly dissipates energy and is not at thermodynamic equilibrium; (2) the structure is dynamic and can transform or disassemble in response to stimuli or changing conditions. To distinguish them from equilibrium self-assembled structures, living (or nonliving) assemblies of objects with these characteristics are referred to as active matter. In this Account, we focus on the powered assembly and collective behavior of self-propelled colloids. These nano- and microparticles, also called nano- and micromotors or microswimmers, autonomously convert energy available in the environment (in the form of chemical, electromagnetic, acoustic, or thermal energy) into mechanical motion. Collections of these colloids are a form of synthetic active matter. Because of the analogy to living swimmers of similar size such as bacteria, the dynamic interactions and collective behavior of self-propelled colloids are interesting in the context of understanding biological active matter and in the development of new applications. The progression
Effect of indoor-generated airborne particles on radon progeny dynamics
Energy Technology Data Exchange (ETDEWEB)
Trassierra, C. Vargas [Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR (Italy); Stabile, L., E-mail: l.stabile@unicas.it [Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR (Italy); Cardellini, F.; Morawska, L. [National Institute of Ionizing Radiation Metrology (INMRI-ENEA), Rome (Italy); Buonanno, G. [Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR (Italy); International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane (Australia)
2016-08-15
Highlights: • Investigation of the interaction between particles and radon progeny dynamics. • Measurements of particles emitted by different indoor sources. • Tests performed in a controlled radon chamber. • Particle size strongly influences the radon progeny dynamics. • Particle surface area concentration is the key parameter of the radon-particle interaction. - Abstract: In order to investigate the interaction between radon progeny and particles, an experimental campaign was carried out in a radon chamber at the Italian National Institute of Ionizing Radiation Metrology, quantifying the amount of attached and unattached radon daughters present in air, as well as the equilibrium factor in the presence of particles generated through indoor sources. A fixed radon concentration was maintained, while particles were generated using incense sticks, mosquito coils and gas combustion. Aerosols were characterized in terms of particle concentrations and size distributions. Simultaneously, radon concentration and attached/unattached potential alpha energy concentration in the air were continuously monitored by two different devices, based on alpha spectroscopy techniques. The presence of particles was found to affect the attached fraction of radon decay products, in such a way that the particles acted as a sink for radionuclides. In terms of sources which emit large particles (e.g. incense, mosquito coils), which greatly increase particle surface area concentrations, the Equilibrium Factor was found to double with respect to the background level before particle generation sessions. On the contrary, the radon decay product dynamics were not influenced by gas combustion processes, mainly due to the small surface area of the particles emitted.
Energy dependence of collective flow of neutrons and charged particles in 197Au+197Au collisions
International Nuclear Information System (INIS)
Blaich, T.; Freiesleben, H.; Holzmann, R.; Keller, J.G.; Prokopowicz, W.; Schuetter, C.; Wajda, E.; Zude, E.
1994-01-01
Our contribution focusses on one particular aspect of collective flow of nuclear matter: the so-called ''squeeze-out'', i.e. the preferential emission of mid-rapidity particles perpendicular to the reaction plane. The data were taken for the system 197 Au + 197 Au at 400, 600 and 800 MeV/u. We cover two topics, the comparison of neutrons and protons, and the bombarding energy dependence of the neutrons' squeeze-out. (orig.)
Correlated particle dynamics in concentrated quasi-two-dimensional suspensions
International Nuclear Information System (INIS)
Diamant, H; Cui, B; Lin, B; Rice, S A
2005-01-01
We investigate theoretically and experimentally how the hydrodynamically correlated lateral motion of particles in a suspension confined between two surfaces is affected by the suspension concentration. Despite the long range of the correlations (decaying as 1/r 2 with the inter-particle distance r), the concentration effect is present only at short inter-particle distances for which the static pair correlation is nonuniform. This is in sharp contrast with the effect of hydrodynamic screening in unconfined suspensions, where increasing the concentration changes the prefactor of the large-distance correlation
Tailored long range forces on polarizable particles by collective scattering of broadband radiation
International Nuclear Information System (INIS)
Holzmann, D; Ritsch, H
2016-01-01
Collective coherent light scattering by polarizable particles creates surprisingly strong, long range inter-particle forces originating from interference of the light scattered by different particles. While for monochromatic laser beams this interaction decays with the inverse distance, we show here that in general the effective interaction range and geometry can be controlled by the illumination bandwidth and geometry. As generic example we study the modifications inter-particle forces within a 1D chain of atoms trapped in the field of a confined optical nanofiber mode. For two particles we find short range attraction as well as optical binding at multiple distances. The range of stable distances shrinks with increasing light bandwidth and for a very large bandwidth field as e.g. blackbody radiation. We find a strongly attractive potential up to a critical distance beyond which the force gets repulsive. Including multiple scattering can even lead to the appearance of a stable configuration at a large distance. Such broadband scattering forces should be observable contributions in ultra-cold atom interferometers or atomic clocks setups. They could be studied in detail in 1D geometries with ultra-cold atoms trapped along or within an optical nanofiber. Broadband radiation force interactions might also contribute in astrophysical scenarios as illuminated cold dust clouds. (paper)
A mesoscopic simulation of static and dynamic wetting using many-body dissipative particle dynamics
Ghorbani, Najmeh; Pishevar, Ahmadreza
2018-01-01
A many-body dissipative particle dynamics simulation is applied here to pave the way for investigating the behavior of mesoscale droplets after impact on horizontal solid substrates. First, hydrophobic and hydrophilic substrates are simulated through tuning the solid-liquid interfacial interaction parameters of an innovative conservative force model. The static contact angles are calculated on homogeneous and several patterned surfaces and compared with the predicted values by the Cassie's law in order to verify the model. The results properly evaluate the amount of increase in surface superhydrophobicity as a result of surface patterning. Then drop impact phenomenon is studied by calculating the spreading factor and dimensionless height versus dimensionless time and the comparisons made between the results and the experimental values for three different static contact angles. The results show the capability of the procedure in calculating the amount of maximum spreading factor, which is a significant concept in ink-jet printing and coating process.
Dynamics of particle sedimentation in the open NW Mediterranean Sea
International Nuclear Information System (INIS)
Miquel, J.C.; Fowler, S.W.; La Rosa, J.; Stemmann, L.; Chiaverini, J.; Chaabeni, Y.; Marty, J.C.
1999-01-01
As part of the DYFAMED program (DYnamique des Flux en MEDiterranee) the downward flux of particles, carbon and other elements has been studied in the open northwestern Mediterranean Sea since 1987. Also, during the last few years biological (primary) production using the in-situ 14 C incubation method has been measured and the vertical distribution of large particulate material and aggregates in the water column assessed by an underwater video profiler in order to relate sedimentation to surface production. The primary objective of the experiment is the observation and prediction of biogeochemical cycles of particles and associated compounds through long-term study in the central Ligurian Sea, where biological productivity ranges from oligotrophic to mesotrophic. Since these characteristics are observed over large areas of the ocean, the DYFAMED site can be considered as a model area. Particle flux is especially important in controlling the vertical transport and cycling of contaminants such as particle reactive radionuclides, metals and organochlorine compounds
Dynamic Load Balancing Based on Constrained K-D Tree Decomposition for Parallel Particle Tracing
Energy Technology Data Exchange (ETDEWEB)
Zhang, Jiang; Guo, Hanqi; Yuan, Xiaoru; Hong, Fan; Peterka, Tom
2018-01-01
Particle tracing is a fundamental technique in flow field data visualization. In this work, we present a novel dynamic load balancing method for parallel particle tracing. Specifically, we employ a constrained k-d tree decomposition approach to dynamically redistribute tasks among processes. Each process is initially assigned a regularly partitioned block along with duplicated ghost layer under the memory limit. During particle tracing, the k-d tree decomposition is dynamically performed by constraining the cutting planes in the overlap range of duplicated data. This ensures that each process is reassigned particles as even as possible, and on the other hand the new assigned particles for a process always locate in its block. Result shows good load balance and high efficiency of our method.
Non-perturbative particle dynamics in (2+1)-gravity
Bellini, A; Valtancoli, P
1995-01-01
We construct a non-perturbative, single-valued solution for the metric and the motion of two interacting particles in (2+1)-Gravity, by using a Coulomb gauge of conformal type. The method provides the mapping from multivalued ( minkowskian ) coordinates to single-valued ones, which solves the non-abelian monodromies due to particles's momenta and can be applied also to the general N-body case.
2007-02-01
This research combines Particle Image Velocimetry (PIV) and transparent soil to investigate the dynamic rigid block and soil interaction. In order to get a low viscosity pore fluid for the transparent soil, 12 different types of chemical solvents wer...
n-particle transverse correlation and collectivity for collisions 1.2 A GeV Ar + KCl
International Nuclear Information System (INIS)
Liu Qingjun; Jiang Yuzhen; Wang Shan; Liu Yiming; Fung, S.Y.; Chu, S.Y.
1993-01-01
A method of n-particle transverse correlation function for the study of collective flow is proposed, which extends both the study of n-particle azimuthal correlations and the estimation of collectivity to the study including the magnitudes as well as the azimuthal angles for all the n-particle transverse momentum vectors. This method is more sensitive to the collectivity of collective flow than the method based on multi-particle azimuthal correlations. Using the new method, n-particle transverse correlations are analyzed for collisions of 1.2 A GeV Ar + KCl in the Bevalac streamer chamber, and the results have been compared with a Monte-Carlo simulation, which show that the collectivity for this experiment is between 85% and 95%
Anikeenko, A. V.; Malenkov, G. G.; Naberukhin, Yu. I.
2018-03-01
We propose a new measure of collectivity of molecular motion in the liquid: the average vector of displacement of the particles, ⟨ΔR⟩, which initially have been localized within a sphere of radius Rsph and then have executed the diffusive motion during a time interval Δt. The more correlated the motion of the particles is, the longer will be the vector ⟨ΔR⟩. We visualize the picture of collective motions in molecular dynamics (MD) models of liquids by constructing the ⟨ΔR⟩ vectors and pinning them to the sites of the uniform grid which divides each of the edges of the model box into equal parts. MD models of liquid argon and water have been studied by this method. Qualitatively, the patterns of ⟨ΔR⟩ vectors are similar for these two liquids but differ in minor details. The most important result of our research is the revealing of the aggregates of ⟨ΔR⟩ vectors which have the form of extended flows which sometimes look like the parts of vortices. These vortex-like clusters of ⟨ΔR⟩ vectors have the mesoscopic size (of the order of 10 nm) and persist for tens of picoseconds. Dependence of the ⟨ΔR⟩ vector field on parameters Rsph, Δt, and on the model size has been investigated. This field in the models of liquids differs essentially from that in a random-walk model.
Cong, X C; Zhao, J J; Jing, Z; Wang, Q G; Ni, P F
2018-05-09
Recently, the problem of indoor particulate matter pollution has received much attention. An increasing number of epidemiological studies show that the concentration of atmospheric particulate matter has a significant effect on human health, even at very low concentrations. Most of these investigations have relied upon outdoor particle concentrations as surrogates of human exposures. However, considering that the concentration distribution of the indoor particulate matter is largely dependent on the extent to which these particles penetrate the building and on the degree of suspension in the indoor air, human exposures to particles of outdoor origin may not be equal to outdoor particle concentration levels. Therefore, it is critical to understand the relationship between the particle concentrations found outdoors and those found in indoor micro-environments. In this study, experiments were conducted using a naturally ventilated office located in Qingdao, China. The indoor and outdoor particle concentrations were measured at the same time using an optical counter with four size ranges. The particle size distribution ranged from 0.3 to 2.5 μm, and the experimental period was from April to September, 2016. Based on the experimental data, the dynamic and mass balance model based on time was used to estimate the penetration rate and deposition rate at air exchange rates of 0.03-0.25 h -1 . The values of the penetration rate and deposition velocity of indoor particles were determined to range from 0.45 to 0.82 h -1 and 1.71 to 2.82 m/h, respectively. In addition, the particulate pollution exposure in the indoor environment was analyzed to estimate the exposure hazard from indoor particulate matter pollution, which is important for human exposure to particles and associated health effects. The conclusions from this study can serve to provide a better understanding the dynamics and behaviors of airborne particle entering into buildings. And they will also highlight
Novotny, M.A.; Watanabe, Hiroshi; Ito, Nobuyasu
2010-01-01
The efficiency of dynamic Monte Carlo algorithms for off-lattice systems composed of particles is studied for the case of a single impurity particle. The theoretical efficiencies of the rejection-free method and of the Monte Carlo with Absorbing
Novotny, M.A.
2010-02-01
The efficiency of dynamic Monte Carlo algorithms for off-lattice systems composed of particles is studied for the case of a single impurity particle. The theoretical efficiencies of the rejection-free method and of the Monte Carlo with Absorbing Markov Chains method are given. Simulation results are presented to confirm the theoretical efficiencies. © 2010.
Dynamics of ballistically injected latex particles in living human endothelial cells
Li, Y.; Vanapalli Veera, V.S.A.R.; Vanapalli, Srinivas; Duits, Michael H.G.
2009-01-01
We studied the dynamics of ballistically injected latex particles (BIP) inside endothelial cells, using video particle tracking to measure the mean squared displacement (MSD) as a function of lag time. The MSD shows a plateau at short times and a linear behavior at longer times, indicating that the
Hollander, den W.Th.F.; Nardi, F.R.; Troiani, A.
2011-01-01
This is the second in a series of three papers in which we study a two-dimensional lattice gas consisting of two types of particles subject to Kawasaki dynamics at low temperature in a large finite box with an open boundary. Each pair of particles occupying neighboring sites has a negative binding
Metastability for Kawasaki dynamics at low temperature with two types of particles
Hollander, den W.Th.F.; Nardi, F.R.; Troiani, A.
2011-01-01
This is the fi??rst in a series of three papers in which we study a two-dimensional lattice gas consisting of two types of particles subject to Kawasaki dynamics at low temperature in a large fi??nite box with an open boundary. Each pair of particles occupying neighboring sites has a negative
Hollander, den W.Th.F.; Nardi, F.R.; Troiani, A.
2011-01-01
This is the second in a series of three papers in which we study a two-dimensional lattice gas consisting of two types of particles subject to Kawasaki dynamics at low temperature in a large finite box with an open boundary. Each pair of particles occupying neighboring sites has a negative binding
Large shear deformation of particle gels studied by Brownian Dynamics simulations
Rzepiela, A.A.; Opheusden, van J.H.J.; Vliet, van T.
2004-01-01
Brownian Dynamics (BD) simulations have been performed to study structure and rheology of particle gels under large shear deformation. The model incorporates soft spherical particles, and reversible flexible bond formation. Two different methods of shear deformation are discussed, namely affine and
DEFF Research Database (Denmark)
2014-01-01
Disclosed herein is a biosensor for optical detection of Brownian relaxation dynamics of magnetic particles measured by light transmission. The magnetic particles can be functionalized with biological ligands for the detection of target analytes in a sample. The setup may be implemented in a disc...
Charges collection induced in APS by heavy particles: influence of design parameters
International Nuclear Information System (INIS)
Belredon, Xavier
2003-01-01
We have studied the design parameters influence on heavy ions-induced charge collection physics in APS. The goal is to determine the key parameters for an optimised space environment 'particle detector' APS design. It appears that diffusion is the dominant charge collection mechanism in all the studied technology types, with a smaller magnitude in case of epitaxial technologies. Following proton irradiation, a delayed charge collection and loss of collected charges have been observed. These phenomena are explained by the combination of carriers diffusion and action of the traps generated in the device. Even if they cannot be avoid in space applications, these effects are reduced in case of epitaxial technologies. This work led to the design parameters definition of an optimized APS 'particle detector' and to its fabrication. The results obtained on this APS confirm the previous conclusions and let us define the detection range of such detectors from 0.03 to 50 MeV.cm 2 .mg -1 . (author) [fr
Particle size distribution of dust collected from Alcator C-MOD
International Nuclear Information System (INIS)
Gorman, S.V.; Carmack, W.J.; Hembree, P.B.
1998-01-01
There are important safety issues associated with tokamak dust, accumulated primarily from sputtering and disruptions. The dust may contain tritium, it may be activated, chemically toxic, and chemically reactive. The purpose of this paper is to present results from analyses of particulate collected from the Alcator C-MOD tokamak located at Massachusetts Institute of Technology (MIT) in Cambridge, Massachusetts. The sample obtained from C-MOD was not originally intended for examination outside of MIT. The sample was collected with the intent of performing only a composition analysis. However, MIT provided the INEEL with this sample for particle analysis. The sample was collected by vacuuming a section of the machine (covering approximately 1/3 of the machine surface) with a coarse fiber filter as the collection surface. The sample was then analyzed using an optical microscope, SEM microscope, Microtrac FRA particle size analyzer. The data fit a log-normal distribution. The count median diameter (CMD) of the samples ranged from 0.3 microm to 1.1 microm with geometric standard deviations (GSD) ranging from 2.8 to 5.2 and a mass median diameter (MMD) ranging from 7.22 to 176 microm
Lizana, L; Ambjörnsson, T
2009-11-01
We solve a nonequilibrium statistical-mechanics problem exactly, namely, the single-file dynamics of N hard-core interacting particles (the particles cannot pass each other) of size Delta diffusing in a one-dimensional system of finite length L with reflecting boundaries at the ends. We obtain an exact expression for the conditional probability density function rhoT(yT,t|yT,0) that a tagged particle T (T=1,...,N) is at position yT at time t given that it at time t=0 was at position yT,0. Using a Bethe ansatz we obtain the N -particle probability density function and, by integrating out the coordinates (and averaging over initial positions) of all particles but particle T , we arrive at an exact expression for rhoT(yT,t|yT,0) in terms of Jacobi polynomials or hypergeometric functions. Going beyond previous studies, we consider the asymptotic limit of large N , maintaining L finite, using a nonstandard asymptotic technique. We derive an exact expression for rhoT(yT,t|yT,0) for a tagged particle located roughly in the middle of the system, from which we find that there are three time regimes of interest for finite-sized systems: (A) for times much smaller than the collision time tparticle concentration and D is the diffusion constant for each particle, the tagged particle undergoes a normal diffusion; (B) for times much larger than the collision time t >taucoll but times smaller than the equilibrium time ttaue , rhoT(yT,t|yT,0) approaches a polynomial-type equilibrium probability density function. Notably, only regimes (A) and (B) are found in the previously considered infinite systems.
Particle dynamics during electronic sputtering of solid krypton
DEFF Research Database (Denmark)
Dutkiewicz, L.; Pedrys, R.; Schou, Jørgen
1995-01-01
We have modeled electronic sputtering of solid krypton by excimer production with molecular dynamics. Both excimer evolution in the solid and deexcitation processes have been incorporated in the simulation. The excimer dynamics in the lattice has been analyzed: the excimers formed near the surface...
Test Particle Energization and the Anisotropic Effects of Dynamical MHD Turbulence
González, C. A.; Dmitruk, P.; Mininni, P. D.; Matthaeus, W. H.
2017-11-01
In this paper, we analyze the effect of dynamical three-dimensional magnetohydrodynamic (MHD) turbulence on test particle acceleration and compare how this evolving system affects particle energization by current sheet interaction, as opposed to frozen-in-time fields. To do this, we analyze the ensemble particle acceleration for static electromagnetic fields extracted from direct numerical simulations of the MHD equations, and compare it with the dynamical fields. We show that a reduction in particle acceleration in the dynamical model results from particle trapping in field lines, which forces the particles to be advected by the flow and suppresses long exposures to the strong electric field gradients that take place between structures and generate (among other effects) an efficient particle acceleration in the static case. In addition, we analyze the effect of anisotropy caused by the mean magnetic field. It is well known that for sufficiently strong external fields, the system experiences a transition toward a two-dimensional flow. This causes an increment in the size of the coherent structures, resulting in a magnetized state of the particles and a reduction in particle energization.
Midander, Klara; Elihn, Karine; Wallén, Anna; Belova, Lyuba; Karlsson, Anna-Karin Borg; Wallinder, Inger Odnevall
2012-06-15
Continuous daily measurements of airborne particles were conducted during specific periods at an underground platform within the subway system of the city center of Stockholm, Sweden. Main emphasis was placed on number concentration, particle size distribution, soot content (analyzed as elemental and black carbon) and surface area concentration. Conventional measurements of mass concentrations were conducted in parallel as well as analysis of particle morphology, bulk- and surface composition. In addition, the presence of volatile and semi volatile organic compounds within freshly collected particle fractions of PM(10) and PM(2.5) were investigated and grouped according to functional groups. Similar periodic measurements were conducted at street level for comparison. The investigation clearly demonstrates a large dominance in number concentration of airborne nano-sized particles compared to coarse particles in the subway. Out of a mean particle number concentration of 12000 particles/cm(3) (7500 to 20000 particles/cm(3)), only 190 particles/cm(3) were larger than 250 nm. Soot particles from diesel exhaust, and metal-containing particles, primarily iron, were observed in the subway aerosol. Unique measurements on freshly collected subway particle size fractions of PM(10) and PM(2.5) identified several volatile and semi-volatile organic compounds, the presence of carcinogenic aromatic compounds and traces of flame retardants. This interdisciplinary and multi-analytical investigation aims to provide an improved understanding of reported adverse health effects induced by subway aerosols. Copyright © 2012 Elsevier B.V. All rights reserved.
Evolutionary Dynamics of Collective Action in Structured Populations
Santos, Marta Daniela de Almeida
The pervasiveness of cooperation in Nature is not easily explained. If evolution is characterized by competition and survival of the fittest, why should selfish individuals cooperate with each other? Evolutionary Game Theory (EGT) provides a suitable mathematical framework to study this problem, central to many areas of science. Conventionally, interactions between individuals are modeled in terms of one-shot, symmetric 2-Person Dilemmas of Cooperation, but many real-life situations involve decisions within groups with more than 2 individuals, which are best-dealt in the framework of N-Person games. In this Thesis, we investigate the evolutionary dynamics of two paradigmatic collective social dilemmas - the N-Person Prisoner's Dilemma (NPD) and the N-Person Snowdrift Game (NSG) on structured populations, modeled by networks with diverse topological properties. Cooperative strategies are just one example of the many traits that can be transmitted on social networks. Several recent studies based on empirical evidence from a medical database have suggested the existence of a 3 degrees of influence rule, according to which not only our "friends", but also our friends' friends, and our friends' friends' friends, have a non-trivial influence on our decisions. We investigate the degree of peer influence that emerges from the spread of cooperative strategies, opinions and diseases on populations with distinct underlying networks of contacts. Our results show that networks naturally entangle individuals into interactions of many-body nature and that for each network class considered different processes lead to identical degrees of influence. None
Interplay between collective and single particle excitations around neutron-rich doubly-magic nuclei
Directory of Open Access Journals (Sweden)
Leoni S.
2016-01-01
Full Text Available The excitation spectra of nuclei with one or two particles outside a doubly-magic core are expected to be dominated, at low energy, by the couplings between phonon excitations of the core and valence particles. A survey of the experimental situation is given for some nuclei lying in close proximity of neutron-rich doubly-magic systems, such as 47,49Ca, 133Sb and 210Bi. Data are obtained with various types of reactions (multinucleon transfer with heavy ions, cold neutron capture and neutron induced fission of 235U and 241Pu targets, with the employment of complex detection systems based on HPGe arrays. A comparison with theoretical calculations is also presented, in terms of large shell model calculations and of a phenomenological particle-phonon model. In the case of 133Sb, a new microscopic “hybrid” model is introduced: it is based on the coupling between core excitations (both collective and non-collective of the doubly-magic core and the valence nucleon, using the Skyrme effective interaction in a consistent way.
Interplay between collective and single particle excitations around neutron-rich doubly-magic nuclei
Leoni, S.
2016-05-01
The excitation spectra of nuclei with one or two particles outside a doubly-magic core are expected to be dominated, at low energy, by the couplings between phonon excitations of the core and valence particles. A survey of the experimental situation is given for some nuclei lying in close proximity of neutron-rich doubly-magic systems, such as 47,49Ca, 133Sb and 210Bi. Data are obtained with various types of reactions (multinucleon transfer with heavy ions, cold neutron capture and neutron induced fission of 235U and 241Pu targets), with the employment of complex detection systems based on HPGe arrays. A comparison with theoretical calculations is also presented, in terms of large shell model calculations and of a phenomenological particle-phonon model. In the case of 133Sb, a new microscopic "hybrid" model is introduced: it is based on the coupling between core excitations (both collective and non-collective) of the doubly-magic core and the valence nucleon, using the Skyrme effective interaction in a consistent way.
Particle Dynamics under Quasi-linear Interaction with Electromagnetic Waves
Energy Technology Data Exchange (ETDEWEB)
Castejon, F.; Eguilior, S.
2003-07-01
Langevin equations for quasi-linear wave particle interaction are obtained taking advantage of the unique vocal equivalence between Fokker-Plank equation and the former ones. Langevin equations are solved numerically and, hence, the evolution of a single particle embedded in an electromagnetic field in momentum space is obtained. The equations are relativistic and valid for any wave. It is also shown that the stochastic part of the equations is negligible in comparison with the deterministic term, except for the momentum to the resonance condition for the main parallel refractive index. (Author) 24 refs.
Particle Dynamics under Quasi-linear Interaction with Electromagnetic Waves
International Nuclear Information System (INIS)
Castejon, F.; Eguilior, S.
2003-01-01
Langevin equations for quasi-linear wave particle interaction are obtained taking advantage of the unique vocal equivalence between Fokker-Plank equation and the former ones. Langevin equations are solved numerically and, hence, the evolution of a single particle embedded in an electromagnetic field in momentum space is obtained. The equations are relativistic and valid for any wave. It is also shown that the stochastic part of the equations is negligible in comparison with the deterministic term, except for the momentum to the resonance condition for the main parallel refractive index. (Author) 24 refs
Search for multiply charged Heavy Stable Charged Particles in data collected with the CMS detector.
Veeraraghavan, Venkatesh
Several models of new physics yield particles that are massive, long-lived, and have an electric charge, $Q$, greater than that of the electron, $e$. A search for evidence of such particles was performed using 5.0~fb$^{-1}$ and 18.8~fb$^{-1}$ of proton-proton collision data collected at $\\sqrt{s}=7~$TeV and $\\sqrt{s}=8~$TeV, respectively, with the Compact Muon Solenoid detector at the Large Hadron Collider. The distinctive detector signatures of these particles are that they are slow-moving and highly ionizing. Ionization energy loss and time-of-flight measurements were made using the inner tracker and the muon system, respectively. The search is sensitive to $1e \\leq |Q| \\leq 8e$. Data were found to be consistent with standard model expectations and upper limits on the production cross section of these particles were computed using a Drell-Yan-like production model. Masses below 517, 687, 752, 791, 798, 778, 753, and 724~GeV are excluded for $|Q|=1e$, $2e$, $3e$, $4e$, $5e$, $6e$, $7e$, and $8e$, respectivel...
Search for multiply charged Heavy Stable Charged Particles in data collected with the CMS detector
Energy Technology Data Exchange (ETDEWEB)
Veeraraghavan, Venkatesh [Florida State Univ., Tallahassee, FL (United States)
2013-10-30
Several models of new physics yield particles that are massive, long-lived, and have an electric charge, Q, greater than that of the electron, e. A search for evidence of such particles was performed using 5.0 fb^{-1} and 18.8 fb^{-1} of proton-proton collision data collected at √s = 7 TeV and √s = 8 TeV, respectively, with the Compact Muon Solenoid detector at the Large Hadron Collider. The distinctive detector signatures of these particles are that they are slow-moving and highly ionizing. Ionization energy loss and time-of- flight measurements were made using the inner tracker and the muon system, respectively. The search is sensitive to 1e ≤ |Q| ≤ 8e. Data were found to be consistent with standard model expectations and upper limits on the production cross section of these particles were computed using a Drell-Yan-like production model. Masses below 517, 687, 752, 791, 798, 778, 753, and 724 GeV are excluded for |Q| = 1e, 2e, 3e, 4e, 5e, 6e, 7e, and 8e, respectively.
Brunetto, R.; Bonal, L.; Beck, P.; Dartois, E.; Dionnet, Z.; Djouadi, Z.; Füri, E.; Kakazu, Y.; Oudayer, P.; Quirico, E.; Engrand, C.
2014-07-01
HAYABUSA grains offer a unique perspective to better understand the link between asteroids and cosmomaterials available in the laboratory and to get an insight on the early stages of surface space weathering. The scientific objectives of our consortium are threefold: (i) the characterization of asteroidal surface processes (e.g., space weathering alteration); (ii) the assessment of parent-body alteration processes; (iii) the search for a possible association between S-type asteroids and micrometeorites. To this aim, our strategy is based on a combination of analytical techniques. Here we report a first series of results obtained through Visible-Infrared and Raman spectroscopy of three Itokawa particles (RA-QD02-0163, -0174, and -0213) collected by the Hayabusa spacecraft and provided by JAXA for our consortium. In a first step, our main objective was to collect maximum information without altering the particles. Reported results were thus obtained on the raw particles, both (i) in their original containers, and (ii) deposited on diamond windows. Raman and IR confocal spectra were acquired at the SMIS beamline of the French national synchrotron facility SOLEIL and at the Lyon Raman national facility using spots of 2 μ m for the Raman, and 10--20 μ m for the IR analyses. Point analyses and automatic mapping were performed. Analytical parameters (e.g., laser power on the sample) were optimized to prevent any damage. Diffuse reflectance spectra (i=45°, e=0°) in the visible and near-IR wavelengths were obtained with an IAS-CSNSM in-home system coupling a fiber spectrometer to an optical microscope, providing a 20-μ m spot on sample. In the case of particle -0163, Raman and IR results reveal a heterogeneous mixing of minerals, mostly olivine (Fo76), and Ca-rich (En50, Wo50) and Ca-poor (En85) pyroxenes. The modal distribution of these minerals is determined based on the spectral maps. The mineral compositions of -0163 are consistent with those previously reported on
International Nuclear Information System (INIS)
Kamberaj, Hiqmet
2015-01-01
In this paper, we present a new method based on swarm particle social intelligence for use in replica exchange molecular dynamics simulations. In this method, the replicas (representing the different system configurations) are allowed communicating with each other through the individual and social knowledge, in additional to considering them as a collection of real particles interacting through the Newtonian forces. The new method is based on the modification of the equations of motion in such way that the replicas are driven towards the global energy minimum. The method was tested for the Lennard-Jones clusters of N = 4, 5, and 6 atoms. Our results showed that the new method is more efficient than the conventional replica exchange method under the same practical conditions. In particular, the new method performed better on optimizing the distribution of the replicas among the thermostats with time and, in addition, ergodic convergence is observed to be faster. We also introduce a weighted histogram analysis method allowing analyzing the data from simulations by combining data from all of the replicas and rigorously removing the inserted bias
International Nuclear Information System (INIS)
Schoolcraft, Tracy A.; Constable, Gregory S.; Jackson, Bryan; Zhigilei, Leonid V.; Garrison, Barbara J.
2001-01-01
A series of molecular dynamics (MD) simulations are performed in order to provide qualitative information on the mechanisms of disintegration of aerosol particles as used in aerosol mass spectrometry. Three generic types of aerosol particles are considered: strongly absorbing particles with homogeneous composition, transparent particles with absorbing inclusion, and absorbing particles with transparent inclusion. To study the effect of the mechanical properties of the aerosol material on the disintegration process, the results for crystalline (brittle) and amorphous (ductile) particles are compared. For large laser fluences, nearly complete dissociation of the absorbing material is observed, whereas the nonabsorbing portions remain fairly intact. Because large fluences can cause photofragmentation of constituent molecules, multiple pulses at low laser fluence and/or lasers with different wavelengths are recommended for the best representative sampling of multicomponent aerosol particles in laser desorption/ionization (LDI) mass spectrometry
International Nuclear Information System (INIS)
Huang, Xiaobiao; Safranek, James
2014-01-01
Nonlinear dynamics optimization is carried out for a low emittance upgrade lattice of SPEAR3 in order to improve its dynamic aperture and Touschek lifetime. Two multi-objective optimization algorithms, a genetic algorithm and a particle swarm algorithm, are used for this study. The performance of the two algorithms are compared. The result shows that the particle swarm algorithm converges significantly faster to similar or better solutions than the genetic algorithm and it does not require seeding of good solutions in the initial population. These advantages of the particle swarm algorithm may make it more suitable for many accelerator optimization applications
Energy Technology Data Exchange (ETDEWEB)
Huang, Xiaobiao, E-mail: xiahuang@slac.stanford.edu; Safranek, James
2014-09-01
Nonlinear dynamics optimization is carried out for a low emittance upgrade lattice of SPEAR3 in order to improve its dynamic aperture and Touschek lifetime. Two multi-objective optimization algorithms, a genetic algorithm and a particle swarm algorithm, are used for this study. The performance of the two algorithms are compared. The result shows that the particle swarm algorithm converges significantly faster to similar or better solutions than the genetic algorithm and it does not require seeding of good solutions in the initial population. These advantages of the particle swarm algorithm may make it more suitable for many accelerator optimization applications.
International Nuclear Information System (INIS)
Jiang, Tianying; Zukoski, Charles F.
2014-01-01
For decades, attempts have been made to understand the formation of colloidal glasses and gels by linking suspension mechanics to particle properties where details of size, shape, and spatial dependencies of pair potentials present a bewildering array of variables that can be manipulated to achieve observed properties. Despite the range of variables that control suspension properties, one consistent observation is the remarkably similarity of flow properties observed as particle properties are varied. Understanding the underlying origins of the commonality in those behaviors (e.g., shear-thinning with increasing stress, diverging zero shear rate viscosity with increasing volume fraction, development of a dynamic yield stress plateau with increases in volume faction or strength of attraction, development of two characteristic relaxation times probed in linear viscoelasticity, the creation of a rubbery plateau modulus at high strain frequencies, and shear-thickening) remains a challenge. Recently, naïve mode coupling and dynamic localization theories have been developed to capture collective behavior giving rise to formation of colloidal glasses and gels. This approach characterizes suspension mechanics of strongly interacting particles in terms of sluggish long-range particle diffusion modulated by varying particle interactions and volume fraction. These theories capture the scaling of the modulus with the volume fraction and strength of interparticle attraction, the frequency dependence of the moduli at the onset of the gel/glass transition, together with the divergence of the zero shear rate viscosity and cessation of diffusivity for hard sphere systems as close packing is approached. In this study, we explore the generality of the predictions of dynamic localization theory for systems of particles composed of bimodal particle size distributions experiencing weak interactions. We find that the mechanical properties of these suspensions are well captured within
Energy Technology Data Exchange (ETDEWEB)
Jiang, Tianying; Zukoski, Charles F., E-mail: czukoski@illinois.edu [Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 (United States)
2014-09-01
For decades, attempts have been made to understand the formation of colloidal glasses and gels by linking suspension mechanics to particle properties where details of size, shape, and spatial dependencies of pair potentials present a bewildering array of variables that can be manipulated to achieve observed properties. Despite the range of variables that control suspension properties, one consistent observation is the remarkably similarity of flow properties observed as particle properties are varied. Understanding the underlying origins of the commonality in those behaviors (e.g., shear-thinning with increasing stress, diverging zero shear rate viscosity with increasing volume fraction, development of a dynamic yield stress plateau with increases in volume faction or strength of attraction, development of two characteristic relaxation times probed in linear viscoelasticity, the creation of a rubbery plateau modulus at high strain frequencies, and shear-thickening) remains a challenge. Recently, naïve mode coupling and dynamic localization theories have been developed to capture collective behavior giving rise to formation of colloidal glasses and gels. This approach characterizes suspension mechanics of strongly interacting particles in terms of sluggish long-range particle diffusion modulated by varying particle interactions and volume fraction. These theories capture the scaling of the modulus with the volume fraction and strength of interparticle attraction, the frequency dependence of the moduli at the onset of the gel/glass transition, together with the divergence of the zero shear rate viscosity and cessation of diffusivity for hard sphere systems as close packing is approached. In this study, we explore the generality of the predictions of dynamic localization theory for systems of particles composed of bimodal particle size distributions experiencing weak interactions. We find that the mechanical properties of these suspensions are well captured within
Dynamics of relative motion of test particles in general relativity
International Nuclear Information System (INIS)
Bazanski, S.L.
1977-01-01
Several variational principles which lead to the first and the second geodesic deviation equations, recently formulated by the author and used for the description of the relative motion of test particles in general relativity are presented. Relations between these principles are investigated and exhibited. The Hamilton-Jacobi equation is also studied for these generalized deviations and the conservation laws appearing here are discussed
Chaotic behavior appearing in dynamic motions of nanoscale particles
Energy Technology Data Exchange (ETDEWEB)
Ishikawa, M [Innovation Plaza Tokai, Japan Science and Technology Agency, 23-1 Ahara-cho, Minami-ku, Nagoya 457-0063 (Japan); Harada, R [Department of Physics, Aichi University of Education, Hirosawa 1, Igaya-cho, Kariya 448-8542 (Japan); Kato, M [Innovation Plaza Tokai, Japan Science and Technology Agency, 23-1 Ahara-cho, Minami-ku, Nagoya 457-0063 (Japan); Sasaki, N [Department of Applied Physics, Faculty of Science and Engineering, Seikei University, 3-3-1 Kichijoji Kitamachi, Musashino-shi, Tokyo 180-8633 (Japan); Miura, K [Innovation Plaza Tokai, Japan Science and Technology Agency, 23-1 Ahara-cho, Minami-ku, Nagoya 457-0063 (Japan)
2007-11-15
The case of one-directional motion, under which graphite and mica flakes are driven on an octamethylcyclotetrasiloxane (OMCTS) liquid surface, is presented. The dynamical forces needed to move these bodies increase linearly with the logarithm of scanning velocity, which are typical energy dissipation process. A transition from quasi-periodic to chaotic motions occurs in the dynamics of a graphite flake when its velocity is increased. The dynamics of graphite flakes pulled by the nanotip on an OMCTS liquid surface can be treated as that of a nanobody on a liquid. On the other hand, there do not appear chaotic motions in the dynamics of a mica flake because the contact area between a mica flake and an OMCTS liquid surface is larger than that between a graphite flake and an OMCTS liquid surface.
Chaotic behavior appearing in dynamic motions of nanoscale particles
International Nuclear Information System (INIS)
Ishikawa, M; Harada, R; Kato, M; Sasaki, N; Miura, K
2007-01-01
The case of one-directional motion, under which graphite and mica flakes are driven on an octamethylcyclotetrasiloxane (OMCTS) liquid surface, is presented. The dynamical forces needed to move these bodies increase linearly with the logarithm of scanning velocity, which are typical energy dissipation process. A transition from quasi-periodic to chaotic motions occurs in the dynamics of a graphite flake when its velocity is increased. The dynamics of graphite flakes pulled by the nanotip on an OMCTS liquid surface can be treated as that of a nanobody on a liquid. On the other hand, there do not appear chaotic motions in the dynamics of a mica flake because the contact area between a mica flake and an OMCTS liquid surface is larger than that between a graphite flake and an OMCTS liquid surface
Chaotic behavior appearing in dynamic motions of nanoscale particles
Ishikawa, M.; Harada, R.; Kato, M.; Sasaki, N.; Miura, K.
2007-11-01
The case of one-directional motion, under which graphite and mica flakes are driven on an octamethylcyclotetrasiloxane (OMCTS) liquid surface, is presented. The dynamical forces needed to move these bodies increase linearly with the logarithm of scanning velocity, which are typical energy dissipation process. A transition from quasi-periodic to chaotic motions occurs in the dynamics of a graphite flake when its velocity is increased. The dynamics of graphite flakes pulled by the nanotip on an OMCTS liquid surface can be treated as that of a nanobody on a liquid. On the other hand, there do not appear chaotic motions in the dynamics of a mica flake because the contact area between a mica flake and an OMCTS liquid surface is larger than that between a graphite flake and an OMCTS liquid surface.
Charge collection efficiency of GaAs detectors studied with low-energy heavy charged particles
Bates, R; Linhart, V; O'Shea, V; Pospísil, S; Raine, C; Smith, K; Sinor, M; Wilhelm, I
1999-01-01
Epitaxially grown GaAs layers have recently been produced with sufficient thickness and low enough free carrier concentration to permit their use as radiation detectors. Initial tests have shown that the epi-material behaves as a classical semiconductor as the depletion behaviour follows the square root dependency on the applied bias. This article presents the results of measurements of the growth of the active depletion depth with increasing bias using low-energy protons and alpha particles as probes for various depths and their comparison to values extrapolated from capacitance measurements. From the proton and alpha particle spectroscopic measurements, an active depth of detector material that collects 100% of the charge generated inside it was determined. The consistency of these results with independent capacitance measurements supports the idea that the GaAs epi-material behaves as a classical semiconductor. (author)
Energy Technology Data Exchange (ETDEWEB)
Durham, M.D.
1992-04-27
The purpose of this research program is to identify and evaluate a variety of additives capable of increasing particle cohesion which could be used for improving collection efficiency in an ESP. A three-phase screening process will be used to provide the, evaluation of many additives in a logical and cost-effective manner. The three step approach involves the following experimental setups: 1. Provide a preliminary screening in the laboratory by measuring the effects of various conditioning agents on reentrainment of flyash particles in an electric field operating at simulated flue gas conditions. 2. Evaluate the successful additives using a 100 acfm bench-scale ESP operating on actual flue gas. 3. Obtain the data required for scaling up the technology by testing the two or three most promising conditioning agents at the pilot scale.
DNA-magnetic Particle Binding Analysis by Dynamic and Electrophoretic Light Scattering.
Haddad, Yazan; Dostalova, Simona; Kudr, Jiri; Zitka, Ondrej; Heger, Zbynek; Adam, Vojtech
2017-11-09
Isolation of DNA using magnetic particles is a field of high importance in biotechnology and molecular biology research. This protocol describes the evaluation of DNA-magnetic particles binding via dynamic light scattering (DLS) and electrophoretic light scattering (ELS). Analysis by DLS provides valuable information on the physicochemical properties of particles including particle size, polydispersity, and zeta potential. The latter describes the surface charge of the particle which plays major role in electrostatic binding of materials such as DNA. Here, a comparative analysis exploits three chemical modifications of nanoparticles and microparticles and their effects on DNA binding and elution. Chemical modifications by branched polyethylenimine, tetraethyl orthosilicate and (3-aminopropyl)triethoxysilane are investigated. Since DNA exhibits a negative charge, it is expected that zeta potential of particle surface will decrease upon binding of DNA. Forming of clusters should also affect particle size. In order to investigate the efficiency of these particles in isolation and elution of DNA, the particles are mixed with DNA in low pH (~6), high ionic strength and dehydration environment. Particles are washed on magnet and then DNA is eluted by Tris-HCl buffer (pH = 8). DNA copy number is estimated using quantitative polymerase chain reaction (PCR). Zeta potential, particle size, polydispersity and quantitative PCR data are evaluated and compared. DLS is an insightful and supporting method of analysis that adds a new perspective to the process of screening of particles for DNA isolation.
Magnetic Dynamics of Fine Particles Studied by Inelastic Neutron Scattering
DEFF Research Database (Denmark)
Hansen, Mikkel Fougt; Bødker, Franz; Mørup, Steen
2000-01-01
We give an introduction to inelastic neutron scattering and the dynamic scattering function for magnetic nanoparticles. Differences between ferromagnetic and antiferromagnetic nanoparticles are discussed and we give a review of recent results on ferromagnetic Fe nanoparticles and canted antiferro......We give an introduction to inelastic neutron scattering and the dynamic scattering function for magnetic nanoparticles. Differences between ferromagnetic and antiferromagnetic nanoparticles are discussed and we give a review of recent results on ferromagnetic Fe nanoparticles and canted...
International Nuclear Information System (INIS)
El-Samman, H.
1986-03-01
A Multidetector system such as multiplicity filter, set-up for energy γ energy γ correlation measurements and 12 and 14 element modular sum-spectrometers has been built with hexagonal cross-section NaI (T1) detectors. This system is used in studies of continuum γ-ray spectra at high angular momentum to determine the collective J band (2) and effective J eff (2) dynamic moments of inertia in 54≤Z≤60 transitional nuclei. Comparisons between our measurements and calculations in a cranking Nilsson-Strutinsky model show that 128,130 Ba have a pure collective behaviour with pure prolate (γ =0 deg) deformation at high spin while 118,122 Xe are triaxial (γ = 33 deg) with moderate deformation (ε = 0.25). We demonstrate the existence of a secondary minimum at larger deformation (ε = 0.35) in the potential energy surfaces of 128,130 Ba. This minimum is associated with the alignment of h 9/2 and i 13/2 neutrons and produces a shape change in the bariums. The influence of the odd proton in the A = 120 region is also demonstrated by the shape change from triaxial to prolate we observed in 123 Cs at high frequency. Informations on deformation and particle alignement are obtained from measurements of J eff (2) in Xe, Ba, Ce and Nd isotopes. A direct comparison of J band (2) and J eff (2) shows that collective motion and particle alignment participate for about 50 % each in the total increase of angular momentum [fr
Energy Technology Data Exchange (ETDEWEB)
Spellings, Matthew [Chemical Engineering, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109 (United States); Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109 (United States); Marson, Ryan L. [Materials Science & Engineering, University of Michigan, 2300 Hayward St., Ann Arbor, MI 48109 (United States); Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109 (United States); Anderson, Joshua A. [Chemical Engineering, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109 (United States); Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109 (United States); Glotzer, Sharon C., E-mail: sglotzer@umich.edu [Chemical Engineering, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109 (United States); Materials Science & Engineering, University of Michigan, 2300 Hayward St., Ann Arbor, MI 48109 (United States); Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109 (United States)
2017-04-01
Faceted shapes, such as polyhedra, are commonly found in systems of nanoscale, colloidal, and granular particles. Many interesting physical phenomena, like crystal nucleation and growth, vacancy motion, and glassy dynamics are challenging to model in these systems because they require detailed dynamical information at the individual particle level. Within the granular materials community the Discrete Element Method has been used extensively to model systems of anisotropic particles under gravity, with friction. We provide an implementation of this method intended for simulation of hard, faceted nanoparticles, with a conservative Weeks–Chandler–Andersen (WCA) interparticle potential, coupled to a thermodynamic ensemble. This method is a natural extension of classical molecular dynamics and enables rigorous thermodynamic calculations for faceted particles.
Abdullaev, Sadrilla
2014-01-01
This is the first book to systematically consider the modern aspects of chaotic dynamics of magnetic field lines and charged particles in magnetically confined fusion plasmas. The analytical models describing the generic features of equilibrium magnetic fields and magnetic perturbations in modern fusion devices are presented. It describes mathematical and physical aspects of onset of chaos, generic properties of the structure of stochastic magnetic fields, transport of charged particles in tokamaks induced by magnetic perturbations, new aspects of particle turbulent transport, etc. The presentation is based on the classical and new unique mathematical tools of Hamiltonian dynamics, like the action--angle formalism, classical perturbation theory, canonical transformations of variables, symplectic mappings, the Poincaré-Melnikov integrals. They are extensively used for analytical studies as well as for numerical simulations of magnetic field lines, particle dynamics, their spatial structures and statisti...
Energy Technology Data Exchange (ETDEWEB)
Pereloma, Elena V., E-mail: elenap@uow.edu.au [School of Mechanical, Materials and Mechatronics Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); UOW Electron Microscopy Centre, University of Wollongong, Wollongong, NSW 2500 (Australia); Mannan, Parvez [School of Mechanical, Materials and Mechatronics Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Casillas, Gilberto [UOW Electron Microscopy Centre, University of Wollongong, Wollongong, NSW 2500 (Australia); Saleh, Ahmed A. [School of Mechanical, Materials and Mechatronics Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia)
2017-03-15
For the first time, a combination of scanning transmission electron microscopy and electron back-scattering diffraction is used to elucidate the early stages of particle stimulated recrystallisation at Nb carbides in Ni-30wt.%Fe alloy subjected to high temperature plane strain compression. While particles with sizes even below 1 μm were found to induce dynamic or metadynamic recrystallisation, only a small fraction of coarse particles served as nucleation sites. - Highlights: • The early stages of particle stimulated recrystallisation at Nb carbides are elucidated • A combination of transmission electron microscopy and electron back scattering diffraction used • Particles below 1 μm size could induce dynamic or metadynamic recrystallization.
International Nuclear Information System (INIS)
Pereloma, Elena V.; Mannan, Parvez; Casillas, Gilberto; Saleh, Ahmed A.
2017-01-01
For the first time, a combination of scanning transmission electron microscopy and electron back-scattering diffraction is used to elucidate the early stages of particle stimulated recrystallisation at Nb carbides in Ni-30wt.%Fe alloy subjected to high temperature plane strain compression. While particles with sizes even below 1 μm were found to induce dynamic or metadynamic recrystallisation, only a small fraction of coarse particles served as nucleation sites. - Highlights: • The early stages of particle stimulated recrystallisation at Nb carbides are elucidated • A combination of transmission electron microscopy and electron back scattering diffraction used • Particles below 1 μm size could induce dynamic or metadynamic recrystallization
Quantitative Measures of Chaotic Charged Particle Dynamics in the Magnetotail
Holland, D. L.; Martin, R. F., Jr.; Burris, C.
2017-12-01
It has long been noted that the motion of charged particles in magnetotail-like magnetic fields is chaotic, however, efforts to quantify the degree of chaos have had conflicting conclusions. In this paper we re-examine the question by focusing on quantitative measures of chaos. We first examine the percentage of orbits that enter the chaotic region of phase space and the average trapping time of those particles. We then examine the average exponential divergence rate (AEDR) of the chaotic particles between their first and last crossing of the mid-plane. We show that at resonant energies where the underlying phase space has a high degree of symmetry, only a small number of particle enter the chaotic region, but they are trapped for long periods of time and the time asymptotic value of the AEDR is very close to the average value of the AEDR. At the off-resonant energies where the phase space is highly asymmetric, the majority of the particle enter the chaotic region for fairly short periods of time and the time asymptotic value of the AEDR is much smaller than the average value. The root cause is that in the resonant case, the longest-lived orbits tend interact with the current many times and sample the entire chaotic region, whereas in the non-resonant case the longest-lived orbits only interact with the current sheet a small number of times but have very long mirrorings where the motion is nearly regular. Additionally we use an ad-hoc model where we model the current sheet as a Lorentz scattering system with each interaction with the current sheet being considered as a "collision". We find that the average kick per collision is greatest at off-resonant energies. Finally, we propose a chaos parameter as the product of the AEDR times the average chaotic particle trapping time times the percentage of orbits that are chaotic. We find that this takes on peak values at the resonant energies.
Transverse energy per charged particle in heavy-ion collisions: Role of collective flow
Kumar Tiwari, Swatantra; Sahoo, Raghunath
2018-03-01
The ratio of (pseudo)rapidity density of transverse energy and the (pseudo)rapidity density of charged particles, which is a measure of the mean transverse energy per particle, is an important observable in high energy heavy-ion collisions. This ratio reveals information about the mechanism of particle production and the freeze-out criteria. Its collision energy and centrality dependence is almost similar to the chemical freeze-out temperature until top Relativistic Heavy-Ion Collider (RHIC) energy. The Large Hadron Collider (LHC) measurement at √{s_{NN}} = 2.76 TeV brings up new challenges towards understanding the phenomena like gluon saturation and role of collective flow, etc. being prevalent at high energies, which could contribute to the above observable. Statistical Hadron Gas Model (SHGM) with a static fireball approximation has been successful in describing both the centrality and energy dependence until top RHIC energies. However, the SHGM predictions for higher energies lie well below the LHC data. In order to understand this, we have incorporated collective flow in an excluded-volume SHGM (EV-SHGM). Our studies suggest that the collective flow plays an important role in describing E T/ N ch and it could be one of the possible parameters to explain the rise observed in E T/ N ch from RHIC to LHC energies. Predictions are made for E T/ N ch , participant pair normalized-transverse energy per unit rapidity and the Bjorken energy density for Pb+Pb collisions at √{s_{NN}} = 5.02 TeV at the Large Hadron Collider.
A 3-D model of tumor progression based on complex automata driven by particle dynamics.
Wcisło, Rafał; Dzwinel, Witold; Yuen, David A; Dudek, Arkadiusz Z
2009-12-01
The dynamics of a growing tumor involving mechanical remodeling of healthy tissue and vasculature is neglected in most of the existing tumor models. This is due to the lack of efficient computational framework allowing for simulation of mechanical interactions. Meanwhile, just these interactions trigger critical changes in tumor growth dynamics and are responsible for its volumetric and directional progression. We describe here a novel 3-D model of tumor growth, which combines particle dynamics with cellular automata concept. The particles represent both tissue cells and fragments of the vascular network. They interact with their closest neighbors via semi-harmonic central forces simulating mechanical resistance of the cell walls. The particle dynamics is governed by both the Newtonian laws of motion and the cellular automata rules. These rules can represent cell life-cycle and other biological interactions involving smaller spatio-temporal scales. We show that our complex automata, particle based model can reproduce realistic 3-D dynamics of the entire system consisting of the tumor, normal tissue cells, blood vessels and blood flow. It can explain phenomena such as the inward cell motion in avascular tumor, stabilization of tumor growth by the external pressure, tumor vascularization due to the process of angiogenesis, trapping of healthy cells by invading tumor, and influence of external (boundary) conditions on the direction of tumor progression. We conclude that the particle model can serve as a general framework for designing advanced multiscale models of tumor dynamics and it is very competitive to the modeling approaches presented before.
Topological defects control collective dynamics in neural progenitor cell cultures
Kawaguchi, Kyogo; Kageyama, Ryoichiro; Sano, Masaki
2017-04-01
Cultured stem cells have become a standard platform not only for regenerative medicine and developmental biology but also for biophysical studies. Yet, the characterization of cultured stem cells at the level of morphology and of the macroscopic patterns resulting from cell-to-cell interactions remains largely qualitative. Here we report on the collective dynamics of cultured murine neural progenitor cells (NPCs), which are multipotent stem cells that give rise to cells in the central nervous system. At low densities, NPCs moved randomly in an amoeba-like fashion. However, NPCs at high density elongated and aligned their shapes with one another, gliding at relatively high velocities. Although the direction of motion of individual cells reversed stochastically along the axes of alignment, the cells were capable of forming an aligned pattern up to length scales similar to that of the migratory stream observed in the adult brain. The two-dimensional order of alignment within the culture showed a liquid-crystalline pattern containing interspersed topological defects with winding numbers of +1/2 and -1/2 (half-integer due to the nematic feature that arises from the head-tail symmetry of cell-to-cell interaction). We identified rapid cell accumulation at +1/2 defects and the formation of three-dimensional mounds. Imaging at the single-cell level around the defects allowed us to quantify the velocity field and the evolving cell density; cells not only concentrate at +1/2 defects, but also escape from -1/2 defects. We propose a generic mechanism for the instability in cell density around the defects that arises from the interplay between the anisotropic friction and the active force field.
Liao, Jin; Brock, Charles A.; Murphy, Daniel M.; Sueper, Donna T.; Welti, André; Middlebrook, Ann M.
2017-10-01
A light-scattering module was coupled to an airborne, compact time-of-flight aerosol mass spectrometer (LS-AMS) to investigate collection efficiency (CE) while obtaining nonrefractory aerosol chemical composition measurements during the Southeast Nexus (SENEX) campaign. In this instrument, particles scatter light from an internal laser beam and trigger saving individual particle mass spectra. Nearly all of the single-particle data with mass spectra that were triggered by scattered light signals were from particles larger than ˜ 280 nm in vacuum aerodynamic diameter. Over 33 000 particles are characterized as either prompt (27 %), delayed (15 %), or null (58 %), according to the time and intensity of their total mass spectral signals. The particle mass from single-particle spectra is proportional to that derived from the light-scattering diameter (dva-LS) but not to that from the particle time-of-flight (PToF) diameter (dva-MS) from the time of the maximum mass spectral signal. The total mass spectral signal from delayed particles was about 80 % of that from prompt ones for the same dva-LS. Both field and laboratory data indicate that the relative intensities of various ions in the prompt spectra show more fragmentation compared to the delayed spectra. The particles with a delayed mass spectral signal likely bounced off the vaporizer and vaporized later on another surface within the confines of the ionization source. Because delayed particles are detected by the mass spectrometer later than expected from their dva-LS size, they can affect the interpretation of particle size (PToF) mass distributions, especially at larger sizes. The CE, measured by the average number or mass fractions of particles optically detected that had measurable mass spectra, varied significantly (0.2-0.9) in different air masses. The measured CE agreed well with a previous parameterization when CE > 0.5 for acidic particles but was sometimes lower than the minimum parameterized CE of 0.5.
Hot gas path component cooling system having a particle collection chamber
Miranda, Carlos Miguel; Lacy, Benjamin Paul
2018-02-20
A cooling system for a hot gas path component includes a substrate having an outer surface and an inner surface. The inner surface defines at least one interior space. A passage is formed in the substrate between the outer surface and the inner surface. An access passage is formed in the substrate and extends from the outer surface to the inner space. The access passage is formed at a first acute angle to the passage and includes a particle collection chamber. The access passage is configured to channel a cooling fluid to the passage. Furthermore, the passage is configured to channel the cooling fluid therethrough to cool the substrate.
Dynamics of collisional particles in a fluctuating magnetic field
International Nuclear Information System (INIS)
Spineanu, F.; Vlad, M.
1995-01-01
The equations of motion of a test particle in a stochastic magnetic field and interacting through collisions with a plasma are Langevin-type equations. Under reasonable assumptions on the statistical properties of the random processes (field and collisional velocity fluctuations), we perform an analytical calculation of the mean-square displacement (MSD) of the particle. The basic nonlinearity in the problem (Lagrangian argument of the random field) yields complicated averages, which we carry out using a functional formalism. The result is expressed as a series, and we find the conditions for its convergence, i.e. the limits of validity of our approach (essentially, we must restrict attention to non-chaotic regimes). Further, employing realistic bounds (spectral cut-off and limited time of observation), we derive an explicit formula for the MSD. We show that from this unique expression, we can obtain several previously known results. (author)
Energy Technology Data Exchange (ETDEWEB)
Sakata, Fumihiko [Tokyo Univ., Tanashi (Japan). Inst. for Nuclear Study; Yamamoto, Yoshifumi; Marumori, Toshio; Iida, Shinji; Tsukuma, Hidehiko
1989-11-01
It is the purpose of the present paper to study 'global structure' of the state space of an N-body interacting fermion system, which exhibits regular, transient and stochastic phases depending on strength of the interaction. An optimum representation called a dynamical representation plays an essential role in this investigation. The concept of the dynamical representation has been introduced in the quantum theory of dynamical subspace in our previous paper, in order to determine self-consistently an optimum collective subspace as well as an optimum collective Hamiltonian. In the theory, furthermore, dynamical conditions called separability and stability conditions have been provided in order to identify the optimum collective subspace as an approximate invariant subspace of the Hamiltonian. Physical meaning of these conditions are clarified from a viewpoint to relate breaking of them with bifurcation of the collectivity and an onset of quantum chaos from the regular collective motion, by illustrating the general idea with numerical results obtained for a simple soluble model. It turns out that the onset of the stochastic phase is associated with dissolution of the quantum numbers to specify the collective subspace and this dissolution is induced by the breaking of the separability condition in the dynamical representation. (author).
Patterns, transitions and the role of leaders in the collective dynamics of a simple robotic flock
International Nuclear Information System (INIS)
Tarcai, Norbert; Virágh, Csaba; Ábel, Dániel; Nagy, Máté; Vásárhelyi, Gábor; Vicsek, Tamás; Várkonyi, Péter L
2011-01-01
We have developed an experimental setup of very simple self-propelled robots to observe collective motion emerging as a result of inelastic collisions only. A circular pool and commercial RC boats were the basis of our first setup, where we demonstrated that jamming, clustering, disordered and ordered motion are all present in such a simple experiment and showed that the noise level has a fundamental role in the generation of collective dynamics. Critical noise ranges and the transition characteristics between the different collective patterns were also examined. In our second experiment we used a real-time tracking system and a few steerable model boats to introduce intelligent leaders into the flock. We demonstrated that even a very small portion of guiding members can determine group direction and enhance ordering through inelastic collisions. We also showed that noise can facilitate and speed up ordering with leaders. Our work was extended with an agent-based simulation model, too, and close similarity between real and simulation results was observed. The simulation results show clear statistical evidence of three states and negative correlation between density and ordered motion due to the onset of jamming. Our experiments confirm the different theoretical studies and simulation results in the literature on the subject of collision-based, noise-dependent and leader-driven self-propelled particle systems
Stochastic dynamics of resistive switching: fluctuations lead to optimal particle number
International Nuclear Information System (INIS)
Radtke, Paul K; Schimansky-Geier, Lutz; Hazel, Andrew L; Straube, Arthur V
2017-01-01
Resistive switching (RS) is one of the foremost candidates for building novel types of non-volatile random access memories. Any practical implementation of such a memory cell calls for a strong miniaturization, at which point fluctuations start playing a role that cannot be neglected. A detailed understanding of switching mechanisms and reliability is essential. For this reason, we formulate a particle model based on the stochastic motion of oxygen vacancies. It allows us to investigate fluctuations in the resistance states of a switch with two active zones. The vacancies’ dynamics are governed by a master equation. Upon the application of a voltage pulse, the vacancies travel collectively through the switch. By deriving a generalized Burgers equation we can interpret this collective motion as nonlinear traveling waves, and numerically verify this result. Further, we define binary logical states by means of the underlying vacancy distributions, and establish a framework of writing and reading such memory element with voltage pulses. Considerations about the discriminability of these operations under fluctuations together with the markedness of the RS effect itself lead to the conclusion, that an intermediate vacancy number is optimal for performance. (paper)
Stochastic dynamics of resistive switching: fluctuations lead to optimal particle number
Radtke, Paul K.; Hazel, Andrew L.; Straube, Arthur V.; Schimansky-Geier, Lutz
2017-09-01
Resistive switching (RS) is one of the foremost candidates for building novel types of non-volatile random access memories. Any practical implementation of such a memory cell calls for a strong miniaturization, at which point fluctuations start playing a role that cannot be neglected. A detailed understanding of switching mechanisms and reliability is essential. For this reason, we formulate a particle model based on the stochastic motion of oxygen vacancies. It allows us to investigate fluctuations in the resistance states of a switch with two active zones. The vacancies’ dynamics are governed by a master equation. Upon the application of a voltage pulse, the vacancies travel collectively through the switch. By deriving a generalized Burgers equation we can interpret this collective motion as nonlinear traveling waves, and numerically verify this result. Further, we define binary logical states by means of the underlying vacancy distributions, and establish a framework of writing and reading such memory element with voltage pulses. Considerations about the discriminability of these operations under fluctuations together with the markedness of the RS effect itself lead to the conclusion, that an intermediate vacancy number is optimal for performance.
Liu, F.; Chen, S.; Lin, Q.; Wang, X. D.; Cao, J. X.
2018-01-01
The xonotlite crystals were synthesized via the hydrothermal synthesis manner from CaO and SiO2 as the raw materials with their Si/Ca molar ratio of 1.0. Comparative dynamics analysis on xonotlite spherical particles synthesized via hydrothermal synthesis process was explored in this paper. The accuracy of the dynamic equation of xonotlite spherical particles was verified by two methods, one was comparing the production rate of the xonotlite products calculated by the dynamic equation with the experimental values, and the other was comparing the apparent activation energies calculated by the dynamic equation with that calculated by the Kondo model. The results indicated that the production rates of the xonotlite spherical particles calculated by the dynamic equation were in good agreement with the experimental values and the apparent activation energy of the xonotlite spherical particles calculated by dynamic equation (84 kJ·mol-1) was close to that calculated by Kondo model (77 kJ·mol-1), verifying the high accuracy of the dynamic equation.
Calculation of particle dynamics in CI-10 cyclotron
International Nuclear Information System (INIS)
Samsonov, E.V.; Karamysheva, G.A.; Vorozhtsov, S.B.
1999-01-01
The calculations of beam dynamic characteristics of High-Intensity Cyclotron-Injector CI-10 for deuteron beam of 15 MeV energy are presented. Analytical estimations of space charge effects are given. In order to increase the intensity of the accelerator beam some ideas about the cyclotron design modification are given too. (author)
International Nuclear Information System (INIS)
Akhiezer, A.I.; Truten', V.I.; Shul'ga, N.F.
1991-01-01
A crystal has a regular structure, therefore every motion in such a structure seems to be regular. However, it is not actually so and even in perfect crystals the particle motion may be either regular or chaotic. Everything depends on the number of integrals of motion determining a particle trajectory. The character of particle motion in a crystal, i.e. its regularity or chaoticity, affects many physical processes accompanying the particle's motion. In this paper we shall consider the effect of dynamic chaos on the coherent radiation of fast particles in a crystal. We also consider the validity conditions of coherent radiation theory results, the role of the second and higher Born approximations in the radiation theory of fast particles in crystals, the continuous string approximation in this theory, the coherent radiation in the model of random strings, and the multiple scattering effect on the coherent radiation. (author)
Model-free inference of direct network interactions from nonlinear collective dynamics.
Casadiego, Jose; Nitzan, Mor; Hallerberg, Sarah; Timme, Marc
2017-12-19
The topology of interactions in network dynamical systems fundamentally underlies their function. Accelerating technological progress creates massively available data about collective nonlinear dynamics in physical, biological, and technological systems. Detecting direct interaction patterns from those dynamics still constitutes a major open problem. In particular, current nonlinear dynamics approaches mostly require to know a priori a model of the (often high dimensional) system dynamics. Here we develop a model-independent framework for inferring direct interactions solely from recording the nonlinear collective dynamics generated. Introducing an explicit dependency matrix in combination with a block-orthogonal regression algorithm, the approach works reliably across many dynamical regimes, including transient dynamics toward steady states, periodic and non-periodic dynamics, and chaos. Together with its capabilities to reveal network (two point) as well as hypernetwork (e.g., three point) interactions, this framework may thus open up nonlinear dynamics options of inferring direct interaction patterns across systems where no model is known.
Energy Technology Data Exchange (ETDEWEB)
Durham, M.D.
1993-04-16
Several tasks have been completed in a program to evaluate additives to improve fine particle collection in electrostatic precipitators. Screening tests and laboratory evaluations of additives are summarized in this report. Over 20 additives were evaluated; four were found to improve flyash precipitation rates. The Insitec particle analyzer was also evaluated; test results show that the analyzer will provide accurate sizing and counting information for particles in the size range of {le} 10 {mu}m dia.
International Nuclear Information System (INIS)
Ooe, Hiroko; Seki, Riki; Ikeda, Nagao
1988-01-01
The radioactivity released by the reactor accident at Chernobyl was detected in surface air at Tsukuba, Japan. Gamma-spectrometry of airborne dust collected using aerodynamic separation showed higher concentrations of radionuclides in fine particles. The particle-size distribution of radionuclides changed with time. (author)
Particle dynamics inside a quasi-isochronous storage ring
International Nuclear Information System (INIS)
Ng, K.Y.; Bai, M.; Brabson, B.; Chu, C.M.; Kang, X.; Jeon, D.; Lee, S.Y.; Riabko, A.; Zhao, X.
1996-10-01
Quasi-isochronous α-like bucket can be important in providing ultra short bunches. the instability of a bunch inside the bucket is found to be severely affected by rf phase modulation. The synchrotron tune drops to zero at the bucket edge very rapidly, indicating the possibility of a thick chaotic layer due to overlapping of resonance islands. The approach to chaos comes from a sequence of bifurcation into 2:1 parametric resonances. When quantum excitation is included in addition to radiation damping, the instability is worsened. the steady-state particle distribution in the longitudinal phase space is Gaussian in the phase coordinate and non-Gaussian in the momentum coordinate, unless the bunch is small. The size of the bunch is governed only bye the ''thermal energy'' E th = D 2 /2A, where D and A are, respectively, the normalized diffusion and damping coefficients. The quantum lifetime of the particle bunch, for the D and A that have been enhanced by the smallness of the phase- slip factor, is studied and turns out to be much longer than expected. Phase modulation tends to enhance quantum diffusion at high frequencies, but leads to stochastic resonances instead at low frequencies
Dynamical theory of hadrons based upon extended particle picture
International Nuclear Information System (INIS)
Hara, Osamu
1980-01-01
An extended particle model of hadrons is discussed on the basis of the assumption that the hadrons correspond to the respective eigenstates of the internal motion of extended bodies which are considered as deformable spheres for simplicity. Such three-dimensionally extended bodies have several remarkable features. The first point is that it is allowed to make half-integer spin. The internal motion of the bodies can be described in terms of quark-like excitons. But the great difference is that these quark-like excitons obey Bose statistics. Therefore in this model, there is no positive reason to introduce the degree of freedom of color at least from the symmetry reason. The second point is that the triality must be restricted to zero. Therefore, the particles with fractional charge do not appear, and the confinement is automatic. It is assumed that the interaction among hadrons takes place due to the coupling of current carried by excited quark-like excitons. All hadron interactions are described in terms of a single coupling constant characterizing the coupling between current and intermediate field. Once the interaction Hamiltonian is given, it is straight forward to calculate scattering amplitude. High energy charge exchange scattering and the decay width of higher resonances can be understood. (Kako, I.)
Computational Fluid and Particle Dynamics in the Human Respiratory System
Tu, Jiyuan; Ahmadi, Goodarz
2013-01-01
Traditional research methodologies in the human respiratory system have always been challenging due to their invasive nature. Recent advances in medical imaging and computational fluid dynamics (CFD) have accelerated this research. This book compiles and details recent advances in the modelling of the respiratory system for researchers, engineers, scientists, and health practitioners. It breaks down the complexities of this field and provides both students and scientists with an introduction and starting point to the physiology of the respiratory system, fluid dynamics and advanced CFD modeling tools. In addition to a brief introduction to the physics of the respiratory system and an overview of computational methods, the book contains best-practice guidelines for establishing high-quality computational models and simulations. Inspiration for new simulations can be gained through innovative case studies as well as hands-on practice using pre-made computational code. Last but not least, students and researcher...
Dynamics and Thermodynamics of Many Particle Cold Atom Systems
2016-05-05
simulate their dynamics far from equilibrium . It is likely that these ideas will find many applications in many areas of physics, quantum chemistry and...focus of this proposal was theoretical research on various non- equilibrium phenomena in isolated quantum systems and applications to experimental setups...theoretical research on various non- equilibrium phenomena in isolated quantum systems and applications to experimental setups largely to cold atoms
Classically dynamical behaviour of single particle in heavy nuclei
International Nuclear Information System (INIS)
Gu Jianzhong; Zhuo Yizhong; Wu Xizhen
1998-01-01
A detailed analysis of the classically dynamical behaviour of a nucleon in heavy nuclei in terms of the TCSM (two-center shell model) is presented. Poincare section is a convenient and reliable criterion to judge the regularity (or chaoticity) of a classical system. The numerical calculations in this work are carried out for a nucleon in 238 U. The Poincare section map and the Poincare surface of section for different conditions are presented
Magnetic resonance phenomena in dynamics of relativistic particles
International Nuclear Information System (INIS)
Ternov, I.M.; Bordovitsyn, V.A.
1987-01-01
A relativistic generalization of Rabi's formula for magnetic resonance is given. On this basis, we consider fast and slow passage through resonance. We define a magnetic resonance exterior field as usual, using unit vectors of a Cartesian coordinate system, a homogeneous magnetic field, and the amplitude of a rotating magnetic field. For the description of spin dynamics we use the Bargmann-Michel-Telegdi equation
[Investigations in dynamics of gauge theories in theoretical particle physics
International Nuclear Information System (INIS)
1993-01-01
The major theme of the theoretical physics research conducted under DOE support over the past several years has been within the rubric of the standard model, and concerned the interplay between symmetries and dynamics. The research was thus carried out mostly in the context of gauge field theories, and usually in the presence of chiral fermions. Dynamical symmetry breaking was examined both from the point of view of perturbation theory, as well as from non-perturbative techniques associated with certain characteristic features of specific theories. Among the topics of research were: the implications of abelian and non-abelian anomalies on the spectrum and possible dynamical symmetry breaking in any theory, topological and conformal properties of quantum fields in two and higher dimensions, the breaking of global chiral symmetries by vector-like gauge theories such as QCD, the phenomenological implications of a strongly interacting Higgs sector in the standard model, and the application of soliton ideas to the physics to be explored at the SSC
Holzinger, Dennis; Koch, Iris; Burgard, Stefan; Ehresmann, Arno
2015-07-28
An approach for a remotely controllable transport of magnetic micro- and/or nanoparticles above a topographically flat exchange-bias (EB) thin film system, magnetically patterned into parallel stripe domains, is presented where the particle manipulation is achieved by sub-mT external magnetic field pulses. Superparamagnetic core-shell particles are moved stepwise by the dynamic transformation of the particles' magnetic potential energy landscape due to the external magnetic field pulses without affecting the magnetic state of the thin film system. The magnetic particle velocity is adjustable in the range of 1-100 μm/s by the design of the substrate's magnetic field landscape (MFL), the particle-substrate distance, and the magnitude of the applied external magnetic field pulses. The agglomeration of magnetic particles is avoided by the intrinsic magnetostatic repulsion of particles due to the parallel alignment of the particles' magnetic moments perpendicular to the transport direction and parallel to the surface normal of the substrate during the particle motion. The transport mechanism is modeled by a quantitative theory based on the precise knowledge of the sample's MFL and the particle-substrate distance.
TDHF and fluid dynamics of nuclear collective motions
International Nuclear Information System (INIS)
Di Nardo, M.; Di Toro, M.; Giansiracusa, G.; Lombardo, U.; Russo, G.
1983-01-01
The nuclear fluid dynamical equations are derived from a mean field description of the nuclear dynamics. Simple approximate solutions, corresponding to generalized scaling modes, are worked out for rotations and vibrations, with the evaluation of inertial parameters and flow patterns. Giant resonances are shown to be quite well described within an irrotational ansatz, which is equivalent to a lowest multipoles (up to lsub(max)=2) distortion of the momentum distribution. The physical meaning of a higher order truncation of the TDHF-Fluid-Dynamics chain is finally discussed with its implication on low lying states and on some description of the Landau damping. (author)
Dynamics and transport of laser-accelerated particle beams
International Nuclear Information System (INIS)
Becker, Stefan
2010-01-01
The subject of this thesis is the investigation and optimization of beam transport elements in the context of the steadily growing field of laser-driven particle acceleration. The first topic is the examination of the free vacuum expansion of an electron beam at high current density. It could be shown that particle tracking codes which are commonly used for the calculation of space charge effects will generate substantial artifacts in the regime considered here. The artifacts occurring hitherto predominantly involve insufficient prerequisites for the Lorentz transformation, the application of inadequate initial conditions and non negligible retardation artifacts. A part of this thesis is dedicated to the development of a calculation approach which uses a more adequate ansatz calculating space charge effects for laser-accelerated electron beams. It can also be used to validate further approaches for the calculation of space charge effects. The next elements considered are miniature magnetic quadrupole devices for the focusing of charged particle beams. General problems involved with their miniaturization concern distorting higher order field components. If these distorting components cannot be controlled, the field of applications is very limited. In this thesis a new method for the characterization and compensation of the distorting components was developed, which might become a standard method when assembling these permanent magnet multipole devices. The newly developed characterization method has been validated at the Mainz Microtron (MAMI) electron accelerator. Now that we can ensure optimum performance, the first application of permanent magnet quadrupole devices in conjunction with laser-accelerated ion beams is presented. The experiment was carried out at the Z-Petawatt laser system at Sandia National Laboratories. A promising application for laser-accelerated electron beams is the FEL in a university-scale size. The first discussion of all relevant aspects
Dynamics and transport of laser-accelerated particle beams
Energy Technology Data Exchange (ETDEWEB)
Becker, Stefan
2010-04-19
The subject of this thesis is the investigation and optimization of beam transport elements in the context of the steadily growing field of laser-driven particle acceleration. The first topic is the examination of the free vacuum expansion of an electron beam at high current density. It could be shown that particle tracking codes which are commonly used for the calculation of space charge effects will generate substantial artifacts in the regime considered here. The artifacts occurring hitherto predominantly involve insufficient prerequisites for the Lorentz transformation, the application of inadequate initial conditions and non negligible retardation artifacts. A part of this thesis is dedicated to the development of a calculation approach which uses a more adequate ansatz calculating space charge effects for laser-accelerated electron beams. It can also be used to validate further approaches for the calculation of space charge effects. The next elements considered are miniature magnetic quadrupole devices for the focusing of charged particle beams. General problems involved with their miniaturization concern distorting higher order field components. If these distorting components cannot be controlled, the field of applications is very limited. In this thesis a new method for the characterization and compensation of the distorting components was developed, which might become a standard method when assembling these permanent magnet multipole devices. The newly developed characterization method has been validated at the Mainz Microtron (MAMI) electron accelerator. Now that we can ensure optimum performance, the first application of permanent magnet quadrupole devices in conjunction with laser-accelerated ion beams is presented. The experiment was carried out at the Z-Petawatt laser system at Sandia National Laboratories. A promising application for laser-accelerated electron beams is the FEL in a university-scale size. The first discussion of all relevant aspects
International Nuclear Information System (INIS)
Gustavsson, K; Mehlig, B; Meneguz, E; Reeks, M
2012-01-01
We have performed numerical simulations of inertial particles in random model flows in the white-noise limit (at zero Kubo number, Ku = 0) and at finite Kubo numbers. Our results for the moments of relative inertial-particle velocities are in good agreement with recent theoretical results (Gustavsson and Mehlig 2011a) based on the formation of phase-space singularities in the inertial-particle dynamics (caustics). We discuss the relation between three recent approaches describing the dynamics and spatial distribution of inertial particles suspended in turbulent flows: caustic formation, real-space singularities of the deformation tensor and random uncorrelated motion. We discuss how the phase- and real-space singularities are related. Their formation is well understood in terms of a local theory. We summarise the implications for random uncorrelated motion. (paper)
Goss, Natasha R.; Mladenov, Natalie; Seibold, Christine M.; Chowanski, Kurt; Seitz, Leslie; Wellemeyer, T. Barret; Williams, Mark W.
2013-12-01
Atmospheric wet and dry deposition are important sources of carbon for remote alpine lakes and soils. The carbon inputs from dry deposition in alpine National Atmospheric Deposition Program (NADP) collectors, including aeolian dust and biological material, are not well constrained due to difficulties in retaining particulate matter in the collectors. Here, we developed and tested a marble insert for dry deposition collection at the Niwot Ridge Long Term Ecological Research Station (NWT LTER) Soddie site (3345 m) between 24 May and 8 November 2011. We conducted laboratory tests of the insert's effect on particulate matter (PM) mass and non-purgeable organic carbon (DOC) and found that the insert did not significantly change either measurement. Thus, the insert may enable dry deposition collection of PM and DOC at NADP sites. We then developed a method for enumerating the collected wet and dry deposition with the Flow Cytometer and Microscope (FlowCAM), a dynamic-image particle analysis tool. The FlowCAM has the potential to establish morphology, which affects particle settling and retention, through particle diameter and aspect ratio. Particle images were used to track the abundance of pollen grains over time. Qualitative image examination revealed that most particles were biological in nature, such as intact algal cells and pollen. Dry deposition loading to the Soddie site as determined by FlowCAM measurements was highly variable, ranging from 100 to >230 g ha-1 d-1 in June-August 2011 and peaking in late June. No significant difference in diameter or aspect ratio was found between wet and dry deposition, suggesting fundamental similarities between those deposition types. Although FlowCAM statistics and identification of particle types proved insightful, our total-particle enumeration method had a high variance and underestimated the total number of particles when compared to imaging of relatively large volumes (60-125 mL) from a single sample. We recommend use of
Quantum dynamics of a particle in a tracking chamber
International Nuclear Information System (INIS)
Figari, Rodolfo; INFN, Napoli; Teta, Alessandro
2014-01-01
In the original formulation of quantum mechanics the existence of a precise border between a microscopic world, governed by quantum mechanics, and a macroscopic world, described by classical mechanics was assumed. Modern theoretical and experimental physics has moved that border several times, carefully investigating its definition and making available to observation larger and larger quantum systems. The present book examines a paradigmatic case of the transition from quantum to classical behavior: A quantum particle is revealed in a tracking chamber as a trajectory obeying the laws of classical mechanics. The authors provide here a purely quantum-mechanical description of this behavior, thus helping to illuminate the nature of the border between the quantum and the classical.
Chiral Rayleigh particles discrimination in dynamic dual optical traps
International Nuclear Information System (INIS)
Carretero, Luis; Acebal, Pablo; Blaya, Salvador
2017-01-01
Highlights: • A chiral optical conveyor belt for enantiomeric separation of nanopar-ticles is numerically demonstrated. • Chiral resolution has been theoretically analyzed for chiral spheres immersed in water. • Electromagnetic fields have been designed for obtaining Chiral selective optical tweezers to separate enantiomers in different spatial regions. - Abstract: A chiral optical conveyor belt for enantiomeric separation of nanoparticles is numerically demonstrated by using different types of counter propagating elliptical Laguerre Gaussian beams with different beam waist and topological charge. The analysis of chiral resolution has been made for particles immersed in water demonstrating that in the analyzed conditions one type of enantiomer is trapped in a deep potential and the others are transported by the chiral conveyor toward another trap located in a different geometrical region.
Particle dynamics in a wave with variable amplitude
International Nuclear Information System (INIS)
Cary, J.R.
1990-01-01
The analysis of the phase evolution between separatrix crossings has been published in Physics D. The analysis of diffusion due to separatrix crossing in a resonance with a slow temporal variation has been written up and published in Physica D. A new method of solving the problem of transport of charged particles through a spatially-dependent accelerating structure was found. This method essentially relies on the use of a nonmonotonically increasing time variable in the analysis. Advances in the use of Hamilton-Jacobi methods to obtain invariant surfaces of accelerators have been made. A two-dimensional Hamilton-Jacobi solver was improved by including the Broyden update method for calculating the Jacobian. 20 refs., 6 figs
Optical particle trapping and dynamic manipulation using spatial light modulation
DEFF Research Database (Denmark)
Eriksen, René Lynge
suitable for optical trapping. A phaseonly spatial light modulator (SLM) is used for the phase encoding of the laser beam. The SLM is controlled directly from a standard computer where phase information is represented as gray-scale image information. Experimentally, both linear and angular movements......This thesis deals with the spatial phase-control of light and its application for optical trapping and manipulation of micron-scale objects. Utilizing the radiation pressure, light exerts on dielectric micron-scale particles, functionality of optical tweezers can be obtained. Multiple intensity...... compression factors of two, which is not achievable with binary phase encoding, have been successfully demonstrated. In addition, the GPC method has been miniaturized and implemented in a planar optical platform and shown to work acceptably, with relatively high visibility. Furthermore, the GPC method has...
Collisional dynamics of perturbed particle disks in the solar system
Roberts, W. W.; Stewart, G. R.
1987-01-01
Investigations of the collisional evolution of particulate disks subject to the gravitational perturbation of a more massive particle orbiting within the disk are underway. Both numerical N-body simulations using a novel collision algorithm and analytical kinetic theory are being employed to extend our understanding of perturbed disks in planetary rings and during the formation of the solar system. Particular problems proposed for investigation are: (1) The development and testing of general criteria for a small moonlet to clear a gap and produce observable morphological features in planetary rings; (2) The development of detailed models of collisional damping of the wavy edges observed on the Encke division of Saturn's A ring; and (3) The determination of the extent of runaway growth of the few largest planetesimals during the early stages of planetary accretion.
Wave-particle dualism of spiral waves dynamics.
Biktasheva, I V; Biktashev, V N
2003-02-01
We demonstrate and explain a wave-particle dualism of such classical macroscopic phenomena as spiral waves in active media. That means although spiral waves appear as nonlocal processes involving the whole medium, they respond to small perturbations as effectively localized entities. The dualism appears as an emergent property of a nonlinear field and is mathematically expressed in terms of the spiral waves response functions, which are essentially nonzero only in the vicinity of the spiral wave core. Knowledge of the response functions allows quantitatively accurate prediction of the spiral wave drift due to small perturbations of any nature, which makes them as fundamental characteristics for spiral waves as mass is for the condensed matter.
Quantum dynamics of a particle in a tracking chamber
Figari, Rodolfo
2014-01-01
In the original formulation of quantum mechanics the existence of a precise border between a microscopic world, governed by quantum mechanics, and a macroscopic world, described by classical mechanics was assumed. Modern theoretical and experimental physics has moved that border several times, carefully investigating its definition and making available to observation larger and larger quantum systems. The present book examines a paradigmatic case of the transition from quantum to classical behavior: A quantum particle is revealed in a tracking chamber as a trajectory obeying the laws of classical mechanics. The authors provide here a purely quantum-mechanical description of this behavior, thus helping to illuminate the nature of the border between the quantum and the classical.
Structure and dynamics of particle-accumulation in thermocapillary liquid bridges
International Nuclear Information System (INIS)
Kuhlmann, Hendrik C; Mukin, Roman V; Sano, Tomoaki; Ueno, Ichiro
2014-01-01
The accumulation of small mono-disperse heavy particles in thermocapillary liquid bridges is investigated experimentally and numerically. We consider particle accumulation near the center of the toroidal vortex, the so-called toroidal core of particles (COP), and the particle-depletion zone near the axis of the liquid bridge. Based on the acceleration and deceleration of the tangential flow along the thermocapillary free surface it is argued that the interaction of the particles with the free surface is of key importance for the fast particle accumulation within a few characteristic momentum diffusion times. The experimentally determined particle-accumulation times are compared with time-scale estimates for accumulation due to either particle free-surface interaction or due to inertia of particles which are heavier than the liquid. We show that the experimental accumulation times are compatible with the accumulation times predicted by the particle–free-surface interaction (PSI) while the time-scale estimates based on the inertia of the particles are too large to explain the fast de-mixing observed in experiments. The shape of the COP resembles certain KAM tori of the incompressible flow of a hydrothermal wave. Two scenarios are proposed to explain the structure and the dynamics of the COP depending on the existence or non-existence of suitable KAM structures. The shape of the experimental particle-depletion zone agrees well with the release surface which is defined by the particle–free-surface interaction process. The favorable comparison of the dynamics and structure of experimental and numerical accumulation patterns provides strong evidence for the existence and relevance of the PSI as the most rapid physical accumulation mechanism. (paper)
Topological defect and quasi-particle dynamics in charge density waves
International Nuclear Information System (INIS)
Hayashi, Masahiko; Ebisawa, Hiromichi
2010-01-01
The dynamics of topological defects (dislocations) in charge density waves (CDW's) is largely affected by the quasi-particle dynamics in the cores of the dislocations. The dislocations mediate the conversion of the electron number between condensate and quasi-particle sub-systems. This is especially important in the sliding conduction of CDW. In this work we propose a simple model, which is obtained by extending the Ginzburg-Landau theory partially taking into account the quasi-particle dynamics in the sense of two-fluid model. We perform the numerical simulation of sliding conduction of CDW based on our model. Using this model we may clarify the detailed process of dislocation nucleation and annihilation near the contacts.
Collective transport of Lennard–Jones particles through one-dimensional periodic potentials
International Nuclear Information System (INIS)
He Jian-hui; Wen Jia-le; Chen Pei-rong; Zheng Dong-qin; Zhong Wei-rong
2017-01-01
The surrounding media in which transport occurs contains various kinds of fields, such as particle potentials and external potentials. One of the important questions is how elements work and how position and momentum are redistributed in the diffusion under these conditions. For enriching Fick’s law, ordinary non-equilibrium statistical physics can be used to understand the complex process. This study attempts to discuss particle transport in the one-dimensional channel under external potential fields. Two kinds of potentials—the potential well and barrier—which do not change the potential in total, are built during the diffusion process. There are quite distinct phenomena because of the different one-dimensional periodic potentials. By the combination of a Monte Carlo method and molecular dynamics, we meticulously explore why an external potential field impacts transport by the subsection and statistical method. Besides, one piece of evidence of the Maxwell velocity distribution is confirmed under the assumption of local equilibrium. The simple model is based on the key concept that relates the flux to sectional statistics of position and momentum and could be referenced in similar transport problems. (rapid communication)
Simultaneous measurements of bulk moduli and particle dynamics in a sheared colloidal glass
Massa, Michael V.; Eisenmann, Christoph; Kim, Chanjoong; Weitz, David A.
2007-03-01
We present a novel study of glassy colloidal systems, using a stress-controlled rheometer in conjunction with a confocal microscope. This experimental setup combines the measurement of bulk moduli, using conventional rheology, with the ability to track the motion of individual particles, through confocal microscopy techniques. We explore the response of the system to applied shear, by simultaneously monitoring the macroscopic relaxation and microscopic particle dynamics, under conditions from the quiescent glass to a shear-melted liquid.
Directory of Open Access Journals (Sweden)
V. N. Manoharan
2011-09-01
Full Text Available Digital holographic microscopy (DHM can measure the 3D positions as well as the scattering properties of colloidal particles in a single 2D image. We describe DHM and our analysis of recorded holograms with exact scattering solutions, which permit the measurement of 3D particle positions with ∼10 nm precision and millisecond time resolution, and discuss studies of the Brownian dynamics of clusters of spheres with DHM.
Dynamics of coupled field solitons: A collective coordinate approach
Indian Academy of Sciences (India)
of the coupled fields with local inhomogeneity like a delta function potential .... The derivation of the collective action for the motion of the vortex centres .... We can define collective forces on solitons if we look at the above equations as F1 =.
Steady-state and dynamic models for particle engulfment during solidification
Tao, Yutao; Yeckel, Andrew; Derby, Jeffrey J.
2016-06-01
Steady-state and dynamic models are developed to study the physical mechanisms that determine the pushing or engulfment of a solid particle at a moving solid-liquid interface. The mathematical model formulation rigorously accounts for energy and momentum conservation, while faithfully representing the interfacial phenomena affecting solidification phase change and particle motion. A numerical solution approach is developed using the Galerkin finite element method and elliptic mesh generation in an arbitrary Lagrangian-Eulerian implementation, thus allowing for a rigorous representation of forces and dynamics previously inaccessible by approaches using analytical approximations. We demonstrate that this model accurately computes the solidification interface shape while simultaneously resolving thin fluid layers around the particle that arise from premelting during particle engulfment. We reinterpret the significance of premelting via the definition an unambiguous critical velocity for engulfment from steady-state analysis and bifurcation theory. We also explore the complicated transient behaviors that underlie the steady states of this system and posit the significance of dynamical behavior on engulfment events for many systems. We critically examine the onset of engulfment by comparing our computational predictions to those obtained using the analytical model of Rempel and Worster [29]. We assert that, while the accurate calculation of van der Waals repulsive forces remains an open issue, the computational model developed here provides a clear benefit over prior models for computing particle drag forces and other phenomena needed for the faithful simulation of particle engulfment.
Particle-in-Cell Code BEAMPATH for Beam Dynamics Simulations in Linear Accelerators and Beamlines
International Nuclear Information System (INIS)
Batygin, Y.
2004-01-01
A code library BEAMPATH for 2 - dimensional and 3 - dimensional space charge dominated beam dynamics study in linear particle accelerators and beam transport lines is developed. The program is used for particle-in-cell simulation of axial-symmetric, quadrupole-symmetric and z-uniform beams in a channel containing RF gaps, radio-frequency quadrupoles, multipole lenses, solenoids and bending magnets. The programming method includes hierarchical program design using program-independent modules and a flexible combination of modules to provide the most effective version of the structure for every specific case of simulation. Numerical techniques as well as the results of beam dynamics studies are presented
Particle-in-Cell Code BEAMPATH for Beam Dynamics Simulations in Linear Accelerators and Beamlines
Energy Technology Data Exchange (ETDEWEB)
Batygin, Y.
2004-10-28
A code library BEAMPATH for 2 - dimensional and 3 - dimensional space charge dominated beam dynamics study in linear particle accelerators and beam transport lines is developed. The program is used for particle-in-cell simulation of axial-symmetric, quadrupole-symmetric and z-uniform beams in a channel containing RF gaps, radio-frequency quadrupoles, multipole lenses, solenoids and bending magnets. The programming method includes hierarchical program design using program-independent modules and a flexible combination of modules to provide the most effective version of the structure for every specific case of simulation. Numerical techniques as well as the results of beam dynamics studies are presented.
International Nuclear Information System (INIS)
Surma, I.V.; Shvedunov, V.I.
1993-01-01
The paper presents modification results of the program for simulation of particle dynamics in cyclic accelerators with RTMTRACE linear gap. The program was modified with regard for the effect of space charge effect on particle dynamics. Calculation results of particle dynamics in 1 MeV energy continuous-duty accelerator with 10 kw beam were used to develop continuous powerful commercial accelerator. 3 refs., 2 figs
Dynamics of Small Inertia-Free Spheroidal Particles in a Turbulent Channel Flow
Challabotla, Niranjan Reddy; Zhao, Lihao; Andersson, Helge I.; Department of Energy; Process Engineering Team
2015-11-01
The study of small non-spherical particles suspended in turbulent fluid flows is of interest in view of the potential applications in industry and the environment. In the present work, we investigated the dynamics of inertia-free spheroidal particles suspended in fully-developed turbulent channel flow at Re τ = 180 by using the direct numerical simulations (DNS) for the Eulerian fluid phase coupled with the Lagrangian point-particle tracking. We considered inertia-free spheroidal particles with a wide range of aspect ratios from 0.01 to 50, i.e. from flat disks to long rods. Although the spheroids passively translate along with the fluid, the particle orientation and rotation strongly depend on the particle shape. The flattest disks were preferentially aligned with their symmetry axis normal to the wall, whereas the longest rods aligned parallel to the wall. Strong mean rotational spin was observed for spherical particles and this has been damped with increasing asphericity both for rod-like and disk-like spheroids. The anisotropic mean and fluctuating fluid vorticity resulted in particle spin anisotropies which exhibited a complex dependence on the particle asphericty. The Research Council of Norway, Notur and COST Action FP1005 are gratefully acknowledged.
Particle Dynamics around Weakly Magnetized Reissner-Nordström Black Hole
International Nuclear Information System (INIS)
Jamil, Mubasher; Majeed, Bushra; Hussain, Saqib
2015-01-01
Considering the geometry of Reissner-Nordström (RN) black hole immersed in magnetic field, we have studied the dynamics of neutral and charged particles. A collision of particles in the inner stable circular orbit is considered and the conditions for the escape of colliding particles from the vicinity of black hole are given. The trajectories of the escaping particle are discussed. Also, the velocity required for this escape is calculated. It is observed that there is more than one stable region if magnetic field is present in the accretion disk of black hole, so the stability of ISCO increases in the presence of magnetic field. Effect of magnetic field on the angular motion of neutral and charged particles is observed graphically.
Dynamic forces on agglomerated particles caused by high-intensity ultrasound.
Knoop, Claas; Fritsching, Udo
2014-03-01
In this paper the acoustic forces on particles and agglomerates caused by high-intensity ultrasound in gaseous atmosphere are derived by means of computational fluid dynamics (CFD). Sound induced forces cause an oscillating stress scenario where the primary particles of an agglomerate are alternatingly pressed together and torn apart with the frequency of the applied wave. A comparison of the calculated acoustic forces with respect to the inter particle adhesion forces from Van-der-Waals and liquid bridge interactions reveals that the separation forces may reach the same order of magnitude for 80 μm sized SiO2-particles. Hence, with finite probability acoustically agitated gases may de-agglomerate/disperse solid agglomerate structures. This effect is confirmed by dispersion experiments in an acoustic particle levitation setup. Copyright © 2013 Elsevier B.V. All rights reserved.
Dynamics of particles accelerated by head-on collisions of two magnetized plasma shocks
Takeuchi, Satoshi
2018-02-01
A kinetic model of the head-on collision of two magnetized plasma shocks is analyzed theoretically and in numerical calculations. When two plasmas with anti-parallel magnetic fields collide, they generate magnetic reconnection and form a motional electric field at the front of the collision region. This field accelerates the particles sandwiched between both shock fronts to extremely high energy. As they accelerate, the particles are bent by the transverse magnetic field crossing the magnetic neutral sheet, and their energy gains are reduced. In the numerical calculations, the dynamics of many test particles were modeled through the relativistic equations of motion. The attainable energy gain was obtained by multiplying three parameters: the propagation speed of the shock, the magnitude of the magnetic field, and the acceleration time of the test particle. This mechanism for generating high-energy particles is applicable over a wide range of spatial scales, from laboratory to interstellar plasmas.
Dynamics of a particle with friction and delay
Monteiro Marques, Manuel D. P.; Dzonou, Raoul
2018-03-01
We are interested in the motion of a simple mechanical system having a finite number of degrees of freedom subjected to a unilateral constraint with dry friction and delay effects (with maximal duration τ > 0). At the contact point, we characterize the friction by a Coulomb law associated with a friction cone. Starting from a formulation of the problem that was given by Jean-Jacques Moreau in the form of a second-order differential inclusion in the sense of measures, we consider a sweeping process algorithm that converges towards a solution to the dynamical contact problem. The mathematical machinery as well as the general plan of the existence proof may seem much too heavy in order to treat just this simple case, but they have proved useful in more complex settings. xml:lang="fr"
Particle physics and dark energy. Beyond classical dynamics
International Nuclear Information System (INIS)
Garny, Mathias
2008-01-01
In this work, quantum corrections to classical equations of motion are investigated for dynamical models of dark energy featuring a time-evolving quintessence scalar field. Employing effective quantum field theory, the robustness of tracker quintessence potentials against quantum corrections as well as their impact on cosmological observables are discussed. Furthermore, it is demonstrated that a rolling quintessence field can also play an important role for baryogenesis in the early universe. The macroscopic time-evolution of scalar quantum fields can be described from first principles within nonequilibrium quantum field theory based on Kadanoff-Baym equations derived from the 2PI effective action. A framework for the nonperturbative renormalization of Kadanoff-Baym equations is provided. Renormalized Kadanoff-Baym equations are proposed and their finiteness is shown for a special case. (orig.)
Particle physics and dark energy. Beyond classical dynamics
Energy Technology Data Exchange (ETDEWEB)
Garny, Mathias
2008-10-24
In this work, quantum corrections to classical equations of motion are investigated for dynamical models of dark energy featuring a time-evolving quintessence scalar field. Employing effective quantum field theory, the robustness of tracker quintessence potentials against quantum corrections as well as their impact on cosmological observables are discussed. Furthermore, it is demonstrated that a rolling quintessence field can also play an important role for baryogenesis in the early universe. The macroscopic time-evolution of scalar quantum fields can be described from first principles within nonequilibrium quantum field theory based on Kadanoff-Baym equations derived from the 2PI effective action. A framework for the nonperturbative renormalization of Kadanoff-Baym equations is provided. Renormalized Kadanoff-Baym equations are proposed and their finiteness is shown for a special case. (orig.)
International Nuclear Information System (INIS)
Liu Moubin; Meakin, Paul; Huang Hai
2007-01-01
Multiphase fluid motion in unsaturated fractures and fracture networks involves complicated fluid dynamics, which is difficult to model using grid-based continuum methods. In this paper, the application of dissipative particle dynamics (DPD), a relatively new mesoscale method to simulate fluid motion in unsaturated fractures is described. Unlike the conventional DPD method that employs a purely repulsive conservative (non-dissipative) particle-particle interaction to simulate the behavior of gases, we used conservative particle-particle interactions that combine short-range repulsive and long-range attractive interactions. This new conservative particle-particle interaction allows the behavior of multiphase systems consisting of gases, liquids and solids to be simulated. Our simulation results demonstrate that, for a fracture with flat parallel walls, the DPD method with the new interaction potential function is able to reproduce the hydrodynamic behavior of fully saturated flow, and various unsaturated flow modes including thin film flow, wetting and non-wetting flow. During simulations of flow through a fracture junction, the fracture junction can be fully or partially saturated depending on the wetting property of the fluid, the injection rate and the geometry of the fracture junction. Flow mode switching from a fully saturated flow to a thin film flow can also be observed in the fracture junction
Energy Technology Data Exchange (ETDEWEB)
Haemmerling, Jens; Gutkin, Boris; Guhr, Thomas, E-mail: jens.haemmerling@uni-due.d [Universitaet Duisburg-Essen, Lotharstrasse 1, 47048 Duisburg (Germany)
2010-07-02
We study the emergence of collective dynamics in the integrable Hamiltonian system of two finite ensembles of coupled harmonic oscillators. After identification of a collective degree of freedom, the Hamiltonian is mapped onto a model of Caldeira-Leggett type, where the collective coordinate is coupled to an internal bath of phonons. In contrast to the usual Caldeira-Leggett model, the bath in the present case is part of the system. We derive an equation of motion for the collective coordinate which takes the form of a damped harmonic oscillator. We show that the distribution of quantum transition strengths induced by the collective mode is determined by its classical dynamics.
International Nuclear Information System (INIS)
Haemmerling, Jens; Gutkin, Boris; Guhr, Thomas
2010-01-01
We study the emergence of collective dynamics in the integrable Hamiltonian system of two finite ensembles of coupled harmonic oscillators. After identification of a collective degree of freedom, the Hamiltonian is mapped onto a model of Caldeira-Leggett type, where the collective coordinate is coupled to an internal bath of phonons. In contrast to the usual Caldeira-Leggett model, the bath in the present case is part of the system. We derive an equation of motion for the collective coordinate which takes the form of a damped harmonic oscillator. We show that the distribution of quantum transition strengths induced by the collective mode is determined by its classical dynamics.
Evolution of Single Particle and Collective properties in the Neutron-Rich Mg Isotopes
Reiter, P; Wiens, A; Fitting, J; Lauer, M; Van duppen, P L E; Finke, F
2002-01-01
We propose to study the single particle and collective properties of the neutron-rich Mg isotopes in transfer reactions and Coulomb excitation using REX-ISOLDE and MINIBALL. From the Coulomb excitation measurement precise and largely model independent B( E2 ; 0$^{+}_{g.s.}\\rightarrow$ 2$^{+}_{1}$ ) will be determined for the even-even isotopes. For the odd isotopes the distribution of the E2 strength over a few low-lying states will be measured. The sign of the M1/E2 mixing ratio, extracted from angular distributions, is characteristic of the sign of the deformation, as is the resulting level scheme. The neutron-pickup channel in the transfer reactions will allow for a determination of the single particle properties (spin, parity, spectroscopic factors) of these nuclei. This information will give new insights in changes of nuclear structure in the vicinity of the island of deformation around $^{32}$Mg. A total of 24 shifts of REX beam time is requested.
Online collective action dynamics of the crowd in social media
Agarwal, Nitin; Wigand, Rolf T
2014-01-01
This book explores and explains collective action in the new generation of Information and Communication Technologies (ICT) enabled by Web 2.0, also referred to as social media, and its capacity to help critical decision and policy making.
Numerical simulation of heavy ion charge generation and collection dynamics
International Nuclear Information System (INIS)
Dussault, H.; Howard, J.W. Jr.; Block, R.C.; Stapor, W.J.; Knudson, A.R.
1993-01-01
This paper describes a complete simulation approach to investigating the physics of heavy-ion charge generation and collection during a single event transient in a PN diode. The simulations explore the effects of different ion track models, applied biases, background dopings, and LET on the transient responses of a PN diode. The simulation results show that ion track structure and charge collection via diffusion-dominated processes play important roles in determining device transient responses. The simulations show no evidence of rapid charge collection in excess of that deposited in the device depletion region in typical funneling time frames (i.e., by time to peak current or in less than 500 ps). Further, the simulations clearly show that the device transient responses are not simple functions of the ion's incident LET. The simulation results imply that future studies and experiments should consider the effects of ion track structure in addition to LET and extend transient charge collection times to insure that reported charge collection efficiencies include diffusion-dominated collection processes
Self-modulated dynamics of a relativistic charged particle beam in plasma wake field excitation
Energy Technology Data Exchange (ETDEWEB)
Akhter, T.; Fedele, R. [Dipartimento di Fisica ‘Ettore Pancini’, Università di Napoli Federico II and INFN Sezione di Napoli, Napoli (Italy); Nicola, S. De [CNR-SPIN and INFN Sezione di Napoli, Napoli (Italy); Tanjia, F. [Dipartimento di Fisica ‘Ettore Pancini’, Università di Napoli Federico II and INFN Sezione di Napoli, Napoli (Italy); Jovanović, D. [Institute of Physics, University of Belgrade, Belgrade (Serbia); Mannan, A. [Department of Physics, Jahangirnagar University, Savar, Dhaka (Bangladesh)
2016-09-01
The self-modulated dynamics of a relativistic charged particle beam is provided within the context of the theory of plasma wake field excitation. The self-consistent description of the beam dynamics is provided by coupling the Vlasov equation with a Poisson-type equation relating the plasma wake potential to the beam density. An analysis of the beam envelope self-modulation is then carried out and the criteria for the occurrence of the instability are discussed thereby.
Study on the dynamics of charged particles in a rarefied gas of thermonuclear reactor injector
International Nuclear Information System (INIS)
Afanas'ev, P.N.; Svistunov, Yu.A.; Sidorov, V.P.; Udovichenko, S.Yu.
1987-01-01
The motion of an ion beam directly beyond the source is considered in the assumption of homogeneous density of rarefied gas along the injector. Using numerical simulation the dynamics of fast particles in plasma electric field, created by the beam as a result of gas neutral atom ionization, is investigated. It is shown that stationary ambipolar electric field of ''plasma lens'' can affect considerably the beam transverse dynamics
Statistics and dynamics of strongly collective nuclear processes
International Nuclear Information System (INIS)
Blocki, J.
1985-01-01
A short introduction to the published and not yet published papers is presented. Two methods of the dynamical calculations - a classical and a selfconsistent quantum mechanical (TDHF) one are discussed. The most interesting results are presented. All the limitations in the use of both methods are also given. 26 refs. (author)
Measuring and Modeling Behavioral Decision Dynamics in Collective Evacuation
2014-02-10
1303.4629. 15. Leskovec J, Backstrom L, Kleinberg J (2009) Meme -tracking and the dynamics of the news cycle. Proc 15th ACM SIGKDD : 497505. 16. Leskovec J...2011) Memes online: Extracted, subtracted, injected, and recollected. Proc 5th Int AAAI Conf on Weblogs and Social Media : 353–360. 21. Watts DJ (2002) A
A molecular dynamics study of energetic particle bombardment on diamond
International Nuclear Information System (INIS)
Li Rongbin; Dai Yongbing; Hu Xiaojun; Shen Hesheng; He Xianchang
2003-01-01
Molecular dynamic simulations, utilizing the Tersoff many-body potential, are used to investigate the microscopic processes of a single boron atom with an energy of 500 eV implanted into the diamond (001) 2 x 1 reconstructed surface. By calculating the variation of the mean coordination number with time, the lifetime of a thermal spike created by B bombardment is about 0.18 ps. Formation of the split-interstitial composed of projectile and lattice atom (B-C) is observed. The total potential energy of the system decreases about 0.56 eV with a stable B split-interstitial existing in diamond. Lattice relaxations in the diamond (001) 2 x 1 reconstructed surface or near surface of the simulated have been discussed, and the results show that the outermost layer atoms tend to move inward and other atoms move outward, while the interplanar distance between the outermost layer and the second layer has been shortened by 15%, compared with its starting interplanar distance. Stress distribution in the calculated diamond configuration is inhomogeneous. After boron implanted into diamond with an energy of 500 eV, there is an excess of compressively stressed atoms in the lattice, which induces the total stress being compressive
Measurement of collective dynamical mass of Dirac fermions in graphene.
Yoon, Hosang; Forsythe, Carlos; Wang, Lei; Tombros, Nikolaos; Watanabe, Kenji; Taniguchi, Takashi; Hone, James; Kim, Philip; Ham, Donhee
2014-08-01
Individual electrons in graphene behave as massless quasiparticles. Unexpectedly, it is inferred from plasmonic investigations that electrons in graphene must exhibit a non-zero mass when collectively excited. The inertial acceleration of the electron collective mass is essential to explain the behaviour of plasmons in this material, and may be directly measured by accelerating it with a time-varying voltage and quantifying the phase delay of the resulting current. This voltage-current phase relation would manifest as a kinetic inductance, representing the reluctance of the collective mass to accelerate. However, at optical (infrared) frequencies, phase measurements of current are generally difficult, and, at microwave frequencies, the inertial phase delay has been buried under electron scattering. Therefore, to date, the collective mass in graphene has defied unequivocal measurement. Here, we directly and precisely measure the kinetic inductance, and therefore the collective mass, by combining device engineering that reduces electron scattering and sensitive microwave phase measurements. Specifically, the encapsulation of graphene between hexagonal boron nitride layers, one-dimensional edge contacts and a proximate top gate configured as microwave ground together enable the inertial phase delay to be resolved from the electron scattering. Beside its fundamental importance, the kinetic inductance is found to be orders of magnitude larger than the magnetic inductance, which may be utilized to miniaturize radiofrequency integrated circuits. Moreover, its bias dependency heralds a solid-state voltage-controlled inductor to complement the prevalent voltage-controlled capacitor.
Directory of Open Access Journals (Sweden)
W. Reid
2013-03-01
Full Text Available A technique for collecting aerosol particles between altitudes of 17 and 85 km is described. Spin-stabilized collection probes are ejected from a sounding rocket allowing for multi-point measurements. Each probe is equipped with 110 collection samples that are 3 mm in diameter. The collection samples are one of three types: standard transmission electron microscopy carbon grids, glass fibre filter paper or silicone gel. Collection samples are exposed over a 50 m to 5 km height range with a total of 45 separate ranges. Post-flight electron microscopy will give size-resolved information on particle number, shape and elemental composition. Each collection probe is equipped with a suite of sensors to capture the probe's status during the fall. Parachute recovery systems along with GPS-based localization will ensure that each probe can be located and recovered for post-flight analysis.
Dynamics of particle loading in deep-bed filter. Transport, deposition and reentrainment
Directory of Open Access Journals (Sweden)
Przekop Rafał
2016-09-01
Full Text Available Deep bed filtration is an effective method of submicron and micron particle removal from the fluid stream. There is an extensive body of literature regarding particle deposition in filters, often using the classical continuum approach. However, the approach is not convenient for studying the influence of particle deposition on filter performance (filtration efficiency, pressure drop when non-steady state boundary conditions have to be introduced. For the purposes of this work the lattice-Boltzmann model describes fluid dynamics, while the solid particle motion is modeled by the Brownian dynamics. For aggregates the effect of their structure on displacement is taken into account. The possibility of particles rebound from the surface of collector or reentrainment of deposits to fluid stream is calculated by energy balanced oscillatory model derived from adhesion theory. The results show the evolution of filtration efficiency and pressure drop of filters with different internal structure described by the size of pores. The size of resuspended aggregates and volume distribution of deposits in filter were also analyzed. The model enables prediction of dynamic filter behavior. It can be a very useful tool for designing filter structures which optimize maximum lifetime with the acceptable values of filtration efficiency and pressure drop.
Dynamics of many-body localization in the presence of particle loss
van Nieuwenburg, EPL; Yago Malo, J.; Daley, AJ; Fischer, MH
2018-01-01
At long times, residual couplings to the environment become relevant even in the most isolated experiments, a crucial difficulty for the study of fundamental aspects of many-body dynamics. A particular example is many-body localization in a cold-atom setting, where incoherent photon scattering introduces both dephasing and particle loss. Whereas dephasing has been studied in detail and is known to destroy localization already on the level of non-interacting particles, the effect of particle loss is less well understood. A difficulty arises due to the ‘non-local’ nature of the loss process, complicating standard numerical tools using matrix product decomposition. Utilizing symmetries of the Lindbladian dynamics, we investigate the particle loss on both the dynamics of observables, as well as the structure of the density matrix and the individual states. We find that particle loss in the presence of interactions leads to dissipation and a strong suppression of the (operator space) entanglement entropy. Our approach allows for the study of the interplay of dephasing and loss for pure and mixed initial states to long times, which is important for future experiments using controlled coupling of the environment.
Drummond, Jen; Davies-Colley, Rob; Stott, Rebecca; Sukias, James; Nagels, John; Sharp, Alice; Packman, Aaron
2014-05-01
Transport dynamics of microbial cells and organic fine particles are important to stream ecology and biogeochemistry. Cells and particles continuously deposit and resuspend during downstream transport owing to a variety of processes including gravitational settling, interactions with in-stream structures or biofilms at the sediment-water interface, and hyporheic exchange and filtration within underlying sediments. Deposited cells and particles are also resuspended following increases in streamflow. Fine particle retention influences biogeochemical processing of substrates and nutrients (C, N, P), while remobilization of pathogenic microbes during flood events presents a hazard to downstream uses such as water supplies and recreation. We are conducting studies to gain insights into the dynamics of fine particles and microbes in streams, with a campaign of experiments and modeling. The results improve understanding of fine sediment transport, carbon cycling, nutrient spiraling, and microbial hazards in streams. We developed a stochastic model to describe the transport and retention of fine particles and microbes in rivers that accounts for hyporheic exchange and transport through porewaters, reversible filtration within the streambed, and microbial inactivation in the water column and subsurface. This model framework is an advance over previous work in that it incorporates detailed transport and retention processes that are amenable to measurement. Solute, particle, and microbial transport were observed both locally within sediment and at the whole-stream scale. A multi-tracer whole-stream injection experiment compared the transport and retention of a conservative solute, fluorescent fine particles, and the fecal indicator bacterium Escherichia coli. Retention occurred within both the underlying sediment bed and stands of submerged macrophytes. The results demonstrate that the combination of local measurements, whole-stream tracer experiments, and advanced modeling
Brownian Dynamics of a Suspension of Particles with Constrained Voronoi Cell Volumes
Singh, John P.; Walsh, Stuart D. C.; Koch, Donald L.
2015-01-01
© 2015 American Chemical Society. Solvent-free polymer-grafted nanoparticle fluids consist of inorganic core particles fluidized by polymers tethered to their surfaces. The attachment of the suspending fluid to the particle surface creates a strong penalty for local variations in the fluid volume surrounding the particles. As a model of such a suspension we perform Brownian dynamics of an equilibrium system consisting of hard spheres which experience a many-particle potential proportional to the variance of the Voronoi volumes surrounding each particle (E = α(Vi-V0)^{2}). The coefficient of proportionality α can be varied such that pure hard sphere dynamics is recovered as α → 0, while an incompressible array of hairy particles is obtained as α →. As α is increased the distribution of Voronoi volumes becomes narrower, the mean coordination number of the particle increases and the variance in the number of nearest neighbors decreases. The nearest neighbor peaks in the pair distribution function are suppressed and shifted to larger radial separations as the constraint acts to maintain relatively uniform interstitial regions. The structure factor of the model suspension satisfies S(k=0) → 0 as α → in accordance with expectation for a single component (particle plus tethered fluid) incompressible system. The tracer diffusivity of the particles is reduced by the volume constraint and goes to zero at φ 0.52, indicating an earlier glass transition than has been observed in hard sphere suspensions. The total pressure of the suspension grows in proportion to (αkBT)^{1/2} as the strength of the volume-constraint potential grows. This stress arises primarily from the interparticle potential forces, while the hard-sphere collisional contribution to the stress is suppressed by the volume constraint.
Brownian Dynamics of a Suspension of Particles with Constrained Voronoi Cell Volumes
Singh, John P.
2015-06-23
© 2015 American Chemical Society. Solvent-free polymer-grafted nanoparticle fluids consist of inorganic core particles fluidized by polymers tethered to their surfaces. The attachment of the suspending fluid to the particle surface creates a strong penalty for local variations in the fluid volume surrounding the particles. As a model of such a suspension we perform Brownian dynamics of an equilibrium system consisting of hard spheres which experience a many-particle potential proportional to the variance of the Voronoi volumes surrounding each particle (E = α(Vi-V0)^{2}). The coefficient of proportionality α can be varied such that pure hard sphere dynamics is recovered as α → 0, while an incompressible array of hairy particles is obtained as α →. As α is increased the distribution of Voronoi volumes becomes narrower, the mean coordination number of the particle increases and the variance in the number of nearest neighbors decreases. The nearest neighbor peaks in the pair distribution function are suppressed and shifted to larger radial separations as the constraint acts to maintain relatively uniform interstitial regions. The structure factor of the model suspension satisfies S(k=0) → 0 as α → in accordance with expectation for a single component (particle plus tethered fluid) incompressible system. The tracer diffusivity of the particles is reduced by the volume constraint and goes to zero at φ 0.52, indicating an earlier glass transition than has been observed in hard sphere suspensions. The total pressure of the suspension grows in proportion to (αkBT)^{1/2} as the strength of the volume-constraint potential grows. This stress arises primarily from the interparticle potential forces, while the hard-sphere collisional contribution to the stress is suppressed by the volume constraint.
Collective motion of groups of self-propelled particles following interacting leaders
Ferdinandy, B.; Ozogány, K.; Vicsek, T.
2017-08-01
In order to keep their cohesiveness during locomotion gregarious animals must make collective decisions. Many species boast complex societies with multiple levels of communities. A common case is when two dominant levels exist, one corresponding to leaders and the other consisting of followers. In this paper we study the collective motion of such two-level assemblies of self-propelled particles. We present a model adapted from one originally proposed to describe the movement of cells resulting in a smoothly varying coherent motion. We shall use the terminology corresponding to large groups of some mammals where leaders and followers form a group called a harem. We study the emergence (self-organization) of sub-groups within a herd during locomotion by computer simulations. The resulting processes are compared with our prior observations of a Przewalski horse herd (Hortobágy, Hungary) which we use as results from a published case study. We find that the model reproduces key features of a herd composed of harems moving on open ground, including fights for followers between leaders and bachelor groups (group of leaders without followers). One of our findings, however, does not agree with the observations. While in our model the emerging group size distribution is normal, the group size distribution of the observed herd based on historical data have been found to follow lognormal distribution. We argue that this indicates that the formation (and the size) of the harems must involve a more complex social topology than simple spatial-distance based interactions.
van Zomeren, Martijn; Leach, Colin Wayne; Spears, Russell
To explain the psychology behind individuals' motivation to participate in collective action against collective disadvantage (e.g., protest marches), the authors introduce a dynamic dual pathway model of approach coping that integrates many common explanations of collective action (i.e., group
Individual and collective stock dynamics: intra-day seasonalities
International Nuclear Information System (INIS)
Allez, Romain; Bouchaud, Jean-Philippe
2011-01-01
We establish several new stylized facts concerning the intra-day seasonalities of stock dynamics. Beyond the well-known U-shaped pattern of the volatility, we find that the average correlation between stocks increases throughout the day, leading to a smaller relative dispersion between stocks. Somewhat paradoxically, the kurtosis (a measure of volatility surprises) reaches a minimum at the open of the market, when the volatility is at its peak. We confirm that the dispersion kurtosis is a markedly decreasing function of the index return. This means that during large market swings, the idiosyncratic component of the stock dynamics becomes sub-dominant. In a nutshell, the early hours of trading are dominated by idiosyncratic or sector-specific effects with little surprises, whereas the influence of the market factor increases throughout the day, and surprises become more frequent.
Collective dynamics of simple liquids: A mode-coupling description
Directory of Open Access Journals (Sweden)
W.Schirmacher
2008-03-01
Full Text Available We use the mode-coupling theory (MCT, which has been highly successful in accounting for the anomalous relaxation behaviour near the liquid-to-glass transition, for describing the dynamics of simple (i.e. monatomic liquids away from the glass formation regime. We find that the dynamical structure factor predicted by MCT compares well to experimental findings and results of computer simulations. The memory function exhibits a two-step decay as found frequently in experimental and simulation data. The long-time relaxation regime, in which the relaxation rate strongly depends on the density and is identified as the α relaxation. At high density this process leads the glass instability. The short-time relaxation rate is fairly independent of density.
Particle dynamics study in the wake of Kerguelen Island using thorium isotopes
International Nuclear Information System (INIS)
Venchiarutti, C.; Jeandel, C.; Roy-Barman, M.
2008-01-01
In the context of the Kerguelen Ocean and Plateau compared Study (KEOPS, 19 January-13 February 2005), particle dynamics were investigated using thorium isotope measurements over and off the Kerguelen plateau. Dissolved and particulate 230 Th and 232 Th samples were collected at nine stations. Dissolved excess 230 Th concentrations ( 230 Th(xs)) vary from 0.5 to 20.8 fg/kg and particulate 230 Th(xs) concentrations from 0.1 to 10.0 fg/kg. Dissolved and particulate 232 Th concentration ranges are 16.8-450.2 pg/kg and 3.8-502.8 pg/kg, respectively. The 230 Th(xs) concentrations increase linearly with depth down to the bottom at most of the plateau stations and down to 1000 m at the off-plateau stations. This linear trend is observed down to the bottom (1550 m) at Kerfix, the open-ocean 'upstream' station located west of the Kerguelen plateau. A simple reversible scavenging model applied to these data allowed the estimation of adsorption rate constant (k 1 ≅ 0.2-0.8 year -1 ), desorption rate constant (k -1 ) ≅ 1-8 year -1 ) and partition coefficients (average K = 0.16 ± 0.07). Calculated particle settling velocities S deduced from this simple model are ca. 500 m/year at most of the plateau stations and 800 m/year at all the off-plateau stations. The plateau settling velocities are relatively low for such a productive site, compared to the surrounding HNLC areas. The difference might reflect the fact that lateral advection is neglected in this model. Taking this advection into account allows the reconstruction of the observed 230 Th(xs) linear distributions, but only if faster settling velocities are considered. This implies that the 1 D model strongly underestimates the settling velocity of the particles. In the deep layers, the occurrence of intense boundary scavenging along the escarpment due to bottom sediment re-suspension and interaction with a nepheloid layer, yielding a removal of similar to 50% of the Th stock along the northwestward transect, is
Collective dynamics in liquid lithium, sodium, and aluminum
International Nuclear Information System (INIS)
Singh, Shaminder; Tankeshwar, K.
2003-01-01
Inelastic x-ray scattering data of liquid Li, Na, and Al for dynamical structure factors have been analyzed by proposing a semiempirical model. The model is based on the extension of the hydrodynamic model to the viscoelastic region so that it satisfies the first four nonvanishing sum rules. It has been found that the semiempirical model fits well with the x-ray scattering data for liquid metals investigated here. The physical meaning of the parameters is also discussed
Particle Image Velocimetry and Computational Fluid Dynamics Analysis of Fuel Cell Manifold
DEFF Research Database (Denmark)
Lebæk, Jesper; Blazniak Andreasen, Marcin; Andresen, Henrik Assenholm
2010-01-01
The inlet effect on the manifold flow in a fuel cell stack was investigated by means of numerical methods (computational fluid dynamics) and experimental methods (particle image velocimetry). At a simulated high current density situation the flow field was mapped on a 70 cell simulated cathode...
Improvement of the Stokesian Dynamics method for systems with finite number of particles
Ichiki, K.
2002-01-01
An improvement of the Stokesian Dynamics method for many-particle systems is presented. A direct calculation of the hydrodynamic interaction is used rather than imposing periodic boundary conditions. The two major diculties concern the accuracy and the speed of calculations. The accuracy discussed
Czech Academy of Sciences Publication Activity Database
Larentzos, J.P.; Brennan, J.K.; Moore, J.D.; Lísal, Martin; Mattson, w.D.
2014-01-01
Roč. 185, č. 7 (2014), s. 1987-1998 ISSN 0010-4655 Grant - others:ARL(US) W911NF-10-2-0039 Institutional support: RVO:67985858 Keywords : dissipative particle dynamics * shardlow splitting algorithm * numerical integration Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.112, year: 2014
Explicit symplectic algorithms based on generating functions for charged particle dynamics
Zhang, Ruili; Qin, Hong; Tang, Yifa; Liu, Jian; He, Yang; Xiao, Jianyuan
2016-07-01
Dynamics of a charged particle in the canonical coordinates is a Hamiltonian system, and the well-known symplectic algorithm has been regarded as the de facto method for numerical integration of Hamiltonian systems due to its long-term accuracy and fidelity. For long-term simulations with high efficiency, explicit symplectic algorithms are desirable. However, it is generally believed that explicit symplectic algorithms are only available for sum-separable Hamiltonians, and this restriction limits the application of explicit symplectic algorithms to charged particle dynamics. To overcome this difficulty, we combine the familiar sum-split method and a generating function method to construct second- and third-order explicit symplectic algorithms for dynamics of charged particle. The generating function method is designed to generate explicit symplectic algorithms for product-separable Hamiltonian with form of H (x ,p ) =pif (x ) or H (x ,p ) =xig (p ) . Applied to the simulations of charged particle dynamics, the explicit symplectic algorithms based on generating functions demonstrate superiorities in conservation and efficiency.
Investigation of interface boundary occurring during cold gas-dynamic spraying of metallic particles
Bolesta, A V; Sharafutdinov, M R; Tolochko, B P
2001-01-01
An interface boundary occurring during cold gas dynamic spraying of aluminum particles on a nickel substrate has been studied by the method of X-ray grazing diffraction. Presence of boundary phase of the intermetallic compound Ni sub 3 Al was found.
International Nuclear Information System (INIS)
Speliotopoulos, A.D.; Chiao, Raymond Y.
2004-01-01
The coupling of gravity to matter is explored in the linearized gravity limit. The usual derivation of gravity-matter couplings within the quantum-field-theoretic framework is reviewed. A number of inconsistencies between this derivation of the couplings and the known results of tidal effects on test particles according to classical general relativity are pointed out. As a step towards resolving these inconsistencies, a general laboratory frame fixed on the worldline of an observer is constructed. In this frame, the dynamics of nonrelativistic test particles in the linearized gravity limit is studied, and their Hamiltonian dynamics is derived. It is shown that for stationary metrics this Hamiltonian reduces to the usual Hamiltonian for nonrelativistic particles undergoing geodesic motion. For nonstationary metrics with long-wavelength gravitational waves present (GWs), it reduces to the Hamiltonian for a nonrelativistic particle undergoing geodesic deviation motion. Arbitrary-wavelength GWs couple to the test particle through a vector-potential-like field N a , the net result of the tidal forces that the GW induces in the system, namely, a local velocity field on the system induced by tidal effects, as seen by an observer in the general laboratory frame. Effective electric and magnetic fields, which are related to the electric and magnetic parts of the Weyl tensor, are constructed from N a that obey equations of the same form as Maxwell's equations. A gedankin gravitational Aharonov-Bohm-type experiment using N a to measure the interference of quantum test particles is presented
Chaos and nonlinear dynamics of single-particle orbits in a magnetotaillike magnetic field
Chen, J.; Palmadesso, P. J.
1986-01-01
The properties of charged-particle motion in Hamiltonian dynamics are studied in a magnetotaillike magnetic field configuration. It is shown by numerical integration of the equation of motion that the system is generally nonintegrable and that the particle motion can be classified into three distinct types of orbits: bounded integrable orbits, unbounded stochastic orbits, and unbounded transient orbits. It is also shown that different regions of the phase space exhibit qualitatively different responses to external influences. The concept of 'differential memory' in single-particle distributions is proposed. Physical implications for the dynamical properties of the magnetotail plasmas and the possible generation of non-Maxwellian features in the distribution functions are discussed.
A simple dynamic subgrid-scale model for LES of particle-laden turbulence
Park, George Ilhwan; Bassenne, Maxime; Urzay, Javier; Moin, Parviz
2017-04-01
In this study, a dynamic model for large-eddy simulations is proposed in order to describe the motion of small inertial particles in turbulent flows. The model is simple, involves no significant computational overhead, contains no adjustable parameters, and is flexible enough to be deployed in any type of flow solvers and grids, including unstructured setups. The approach is based on the use of elliptic differential filters to model the subgrid-scale velocity. The only model parameter, which is related to the nominal filter width, is determined dynamically by imposing consistency constraints on the estimated subgrid energetics. The performance of the model is tested in large-eddy simulations of homogeneous-isotropic turbulence laden with particles, where improved agreement with direct numerical simulation results is observed in the dispersed-phase statistics, including particle acceleration, local carrier-phase velocity, and preferential-concentration metrics.
Ha, Seung-Yeal; Xiao, Qinghua; Zhang, Xiongtao
2018-04-01
We study the dynamics of infinitely many Cucker-Smale (C-S) flocking particles under the interplay of random communication and incompressible fluids. For the dynamics of an ensemble of flocking particles, we use the kinetic Cucker-Smale-Fokker-Planck (CS-FP) equation with a degenerate diffusion, whereas for the fluid component, we use the incompressible Navier-Stokes (N-S) equations. These two subsystems are coupled via the drag force. For this coupled model, we present the global existence of weak and strong solutions in Rd (d = 2 , 3). Under the extra regularity assumptions of the initial data, the unique solvability of strong solutions is also established in R2. In a large coupling regime and periodic spatial domain T2 : =R2 /Z2, we show that the velocities of C-S particles and fluids are asymptotically aligned to two constant velocities which may be different.
A New Class of Particle Filters for Random Dynamic Systems with Unknown Statistics
Directory of Open Access Journals (Sweden)
Joaquín Míguez
2004-11-01
Full Text Available In recent years, particle filtering has become a powerful tool for tracking signals and time-varying parameters of random dynamic systems. These methods require a mathematical representation of the dynamics of the system evolution, together with assumptions of probabilistic models. In this paper, we present a new class of particle filtering methods that do not assume explicit mathematical forms of the probability distributions of the noise in the system. As a consequence, the proposed techniques are simpler, more robust, and more flexible than standard particle filters. Apart from the theoretical development of specific methods in the new class, we provide computer simulation results that demonstrate the performance of the algorithms in the problem of autonomous positioning of a vehicle in a 2-dimensional space.
Dynamic behavior of a solid particle bed in a liquid pool
International Nuclear Information System (INIS)
Liu Ping; Yasunaka, Satoshi; Matsumoto, Tatsuya; Morita, Koji; Fukuda, Kenji; Yamano, Hidemasa; Tobita, Yoshiharu
2007-01-01
Dynamic behavior of solid particle beds in a liquid pool against pressure transients was investigated to model the mobility of core materials in a postulated disrupted core of a liquid metal fast reactor. A series of experiments was performed with a particle bed of different bed heights, comprising different monotype solid particles, where variable initial pressures of the originally pressurized nitrogen gas were adopted as the pressure sources. Computational simulations of the experiments were performed using SIMMER-III, a fast reactor safety analysis code. Comparisons between simulated and experimental results show that the physical model for multiphase flows used in the SIMMER-III code can reasonably represent the transient behaviors of pool multiphase flows with rich solid phases, as observed in the current experiments. This demonstrates the basic validity of the SIMMER-III code on simulating the dynamic behaviors induced by pressure transients in a low-energy disrupted core of a liquid metal fast reactor with rich solid phases
Collective farmers marketing inititatives, Diversity, Contextuality and Dynamics
Renting, H.; Schermer, M.; Oostindië, H.A.
2011-01-01
Collective action by farmers has played an important role in the history of European agriculture. During the twentieth century, the foundation of agricultural marketing co-operatives contributed in many countries to better market access, increased farm incomes and rural employment. However, European
Phase space fluctuations and dynamics of fluctuations of collective variables
Energy Technology Data Exchange (ETDEWEB)
Benhassine, B.; Farine, M.; Idier, D.; Remaud, B.; Sebille, F. (Lab. de Physique Nucleaire, IN2P3/CNRS, 44 - Nantes (France) Nantes Univ., 44 (France)); Hernandez, E.S. (Dept. de Fisica, Ciudad Universitaria, Buenos Aires (Argentina))
1992-08-03
Within the framework of theoretical approaches based on stochastic transport equation of one-body distribution function, a numerical treatment of the fluctuations of collective observables is studied and checked in comparison with analytical results either at equilibrium or close to it. (orig.).
Phase space fluctuations and dynamics of fluctuations of collective variables
International Nuclear Information System (INIS)
Benhassine, B.; Farine, M.; Idier, D.; Remaud, B.; Sebille, F.; Hernandez, E.S.
1992-01-01
Within the framework of theoretical approaches based on stochastic transport equation of one-body distribution function, a numerical treatment of the fluctuations of collective observables is studied and checked in comparison with analytical results either at equilibrium or close to it. (orig.)
Wigglers and single-particle dynamics in the NLC damping rings
International Nuclear Information System (INIS)
Venturini, Marco; Wolski, Andrzej; Dragt, Alex
2003-01-01
Wiggler insertions are expected to occupy a significant portion of the lattice of the Next Linear Collider (NLC) Main Damping Rings (MDR) and have a noticeable impact on the single-particle beam dynamics. Starting from a realistic 3D representation of the magnetic fields we calculate the transfer maps for the wigglers, accounting for linear and nonlinear effects, and we study the beam dynamics with particular attention paid to the Dynamic Aperture(DA). A DA reduction is observed but appears to remain within acceptable limits
Truccolo, Wilson
2016-11-01
This review presents a perspective on capturing collective dynamics in recorded neuronal ensembles based on multivariate point process models, inference of low-dimensional dynamics and coarse graining of spatiotemporal measurements. A general probabilistic framework for continuous time point processes reviewed, with an emphasis on multivariate nonlinear Hawkes processes with exogenous inputs. A point process generalized linear model (PP-GLM) framework for the estimation of discrete time multivariate nonlinear Hawkes processes is described. The approach is illustrated with the modeling of collective dynamics in neocortical neuronal ensembles recorded in human and non-human primates, and prediction of single-neuron spiking. A complementary approach to capture collective dynamics based on low-dimensional dynamics ("order parameters") inferred via latent state-space models with point process observations is presented. The approach is illustrated by inferring and decoding low-dimensional dynamics in primate motor cortex during naturalistic reach and grasp movements. Finally, we briefly review hypothesis tests based on conditional inference and spatiotemporal coarse graining for assessing collective dynamics in recorded neuronal ensembles. Published by Elsevier Ltd.
International Nuclear Information System (INIS)
Bourdier, A.
1999-01-01
This work concerns mainly the dynamics of a charged particle in an electromagnetic wave. It is a first step in elaborating a more general model permitting to predict the wave-particle interaction. We show how deriving a first integral gives an idea on how to create an electron current in a cold electron plasma. We present results which can be used to test the 2D and 3D Vlasov-Maxwell codes being built up in CEA-DAM. These codes will allow the calcination of the magnetic field created by an electromagnetic wave like the one due to the inverse Faraday effect when a circularly polarized wave drives the electrons of a plasma into circular orbits. (author)
International Nuclear Information System (INIS)
Werley, K.A.
1989-01-01
A high-speed (160m/s) beam (0.14 x 0.86m) of liquid-lithium droplets passing through the divertor region(s) below (and above) the main plasma has the potential to replace and out-perform ''conventional'' solid divertor plates in both heat and particle removal. In addition to superior heat-collection properties, the lithium beam would: remove impurities; require low power to circulate the lithium; exhibit low-recycle divertor operation compatible with lower-hybrid current drive, H-mode plasma confinement, and no flow reversal in the edge plasma; be insensitive to plasma shifts; and finally protect solid structures from the plasma thermal energy for those disruptions that deposit energy preferentially into the divertor while simultaneously being rapidly re-established after a major disruption. Scoping calculations identifying the beam configuration and the droplet dynamics, including formation, MHD effects, gravitational effects, thermal response and hydrodynamics, are presented. Limitations and uncertainties are also discussed. 20 refs., 6 figs., 3 tabs
Diffusive real-time dynamics of a particle with Berry curvature
Misaki, Kou; Miyashita, Seiji; Nagaosa, Naoto
2018-02-01
We study theoretically the influence of Berry phase on the real-time dynamics of the single particle focusing on the diffusive dynamics, i.e., the time dependence of the distribution function. Our model can be applied to the real-time dynamics of intraband relaxation and diffusion of optically excited excitons, trions, or particle-hole pair. We found that the dynamics at the early stage is deeply influenced by the Berry curvature in real space (B ), momentum space (Ω ), and also the crossed space between these two (C ). For example, it is found that Ω induces the rotation of the wave packet and causes the time dependence of the mean square displacement of the particle to be linear in time t at the initial stage; it is qualitatively different from the t3 dependence in the absence of the Berry curvature. It is also found that Ω and C modify the characteristic time scale of the thermal equilibration of momentum distribution. Moreover, the dynamics under various combinations of B ,Ω , and C shows singular behaviors such as the critical slowing down or speeding up of the momentum equilibration and the reversals of the direction of rotations. The relevance of our model for time-resolved experiments in transition metal dichalcogenides is also discussed.
Energy Technology Data Exchange (ETDEWEB)
Park, Dae Woong [Korea Testing and Research Institute, Kwachun (Korea, Republic of)
2015-03-15
A centrifuge works on the principle that particles with different densities will separate at a rate proportional to the centrifugal force during high-speed rotation. Dense particles are quickly precipitated, and particles with relatively smaller densities are precipitated more slowly. A decanter-type centrifuge is used to remove, concentrate, and dehydrate sludge in a water treatment process. This is a core technology for measuring the sludge conveyance efficiency improvement. In this study, a smoothed particle hydro-dynamic analysis was performed for a decanter centrifuge used to convey sludge to evaluate the efficiency improvement. This analysis was applied to both the original centrifugal model and the design change model, which was a ball-plate rail model, to evaluate the sludge transfer efficiency.
On the reduced dynamics of a subset of interacting bosonic particles
Gessner, Manuel; Buchleitner, Andreas
2018-03-01
The quantum dynamics of a subset of interacting bosons in a subspace of fixed particle number is described in terms of symmetrized many-particle states. A suitable partial trace operation over the von Neumann equation of an N-particle system produces a hierarchical expansion for the subdynamics of M ≤ N particles. Truncating this hierarchy with a pure product state ansatz yields the general, nonlinear coherent mean-field equation of motion. In the special case of a contact interaction potential, this reproduces the Gross-Pitaevskii equation. To account for incoherent effects on top of the mean-field evolution, we discuss possible extensions towards a second-order perturbation theory that accounts for interaction-induced decoherence in form of a nonlinear Lindblad-type master equation.
International Nuclear Information System (INIS)
Park, Dae Woong
2015-01-01
A centrifuge works on the principle that particles with different densities will separate at a rate proportional to the centrifugal force during high-speed rotation. Dense particles are quickly precipitated, and particles with relatively smaller densities are precipitated more slowly. A decanter-type centrifuge is used to remove, concentrate, and dehydrate sludge in a water treatment process. This is a core technology for measuring the sludge conveyance efficiency improvement. In this study, a smoothed particle hydro-dynamic analysis was performed for a decanter centrifuge used to convey sludge to evaluate the efficiency improvement. This analysis was applied to both the original centrifugal model and the design change model, which was a ball-plate rail model, to evaluate the sludge transfer efficiency.
Directory of Open Access Journals (Sweden)
Alderman Steven L.
2015-01-01
Full Text Available The relatively volatile nature of the particulate matter fraction of e-cigarette aerosols presents an experimental challenge with regard to particle size distribution measure-ments. This is particularly true for instruments requiring a high degree of aerosol dilution. This was illustrated in a previous study, where average particle diameters in the 10-50 nm range were determined by a high-dilution, electrical mobility method. Total particulate matter (TPM masses calculated based on those diameters were orders of magnitude smaller than gravimetrically determined TPM. This discrepancy was believed to result from almost complete particle evaporation at the dilution levels of the electrical mobility analysis. The same study described a spectral transmission measurement of e-cigarette particle size in an undiluted state, and reported particles from 210-380 nm count median diameter. Observed particle number concentrations were in the 109 particles/cm3 range. Additional particle size measurements described here also found e-cigarette particle size to be in the 260-320 nm count median diameter range. Cambridge filter pads have been used for decades to determine TPM yields of tobacco burning cigarettes, and collection of e-cigarette TPM by fibrous filters is predicted to be a highly efficient process over a wide range of filtration flow rates. The results presented in this work provide support for this hypothesis.
Ryu, Duchwan
2013-03-01
The sea surface temperature (SST) is an important factor of the earth climate system. A deep understanding of SST is essential for climate monitoring and prediction. In general, SST follows a nonlinear pattern in both time and location and can be modeled by a dynamic system which changes with time and location. In this article, we propose a radial basis function network-based dynamic model which is able to catch the nonlinearity of the data and propose to use the dynamically weighted particle filter to estimate the parameters of the dynamic model. We analyze the SST observed in the Caribbean Islands area after a hurricane using the proposed dynamic model. Comparing to the traditional grid-based approach that requires a supercomputer due to its high computational demand, our approach requires much less CPU time and makes real-time forecasting of SST doable on a personal computer. Supplementary materials for this article are available online. © 2013 American Statistical Association.
International Nuclear Information System (INIS)
Jia, Kun; Mei, Deqing; Meng, Jianxin; Yang, Keji
2014-01-01
Ultrasonic manipulation has become an attractive method for surface-sensitive objects in micro-technology. Related phenomena, such as radiation force, multiple scattering, and acoustic streaming, have been widely studied. However, in current studies, the behavior of micro-particles in potential force fields is always analyzed in a quasi-static manner. We developed a dynamic model of a dilute micro-particle in the commonly used two-dimensional ultrasonic manipulation system to provide a systemic and quantitative analysis of the transient properties of particle movement. In this model, the acoustic streaming and hydrodynamic forces, omitted in previous work, were both considered. The trajectory of a spherical silica particle with different initial conditions was derived by numerically solving the established nonlinear differential integral equation system, which was then validated experimentally. The envelope of the experimental data on the x-axis showed good agreement with the theoretical calculation, and the greater influence on the y-axis of the deviation between the actual sound field and the ideal distribution employed in our dynamic model could account for the differences in displacement in that direction. Finally, the influence of particle size on its movement and the effect of acoustic streaming on calculating the hydrodynamic forces for an isolated particle with motion relative to the fluid were analyzed theoretically. It was found that the ultrasonic manipulation system will translate from an under-damped system to an over-damped system with a decrease in particle size and the micro-scale acoustic streaming velocity was negligible when calculating the hydrodynamic forces on the particle in the ultrasonic manipulation system.
Jia, Kun; Mei, Deqing; Meng, Jianxin; Yang, Keji
2014-10-01
Ultrasonic manipulation has become an attractive method for surface-sensitive objects in micro-technology. Related phenomena, such as radiation force, multiple scattering, and acoustic streaming, have been widely studied. However, in current studies, the behavior of micro-particles in potential force fields is always analyzed in a quasi-static manner. We developed a dynamic model of a dilute micro-particle in the commonly used two-dimensional ultrasonic manipulation system to provide a systemic and quantitative analysis of the transient properties of particle movement. In this model, the acoustic streaming and hydrodynamic forces, omitted in previous work, were both considered. The trajectory of a spherical silica particle with different initial conditions was derived by numerically solving the established nonlinear differential integral equation system, which was then validated experimentally. The envelope of the experimental data on the x-axis showed good agreement with the theoretical calculation, and the greater influence on the y-axis of the deviation between the actual sound field and the ideal distribution employed in our dynamic model could account for the differences in displacement in that direction. Finally, the influence of particle size on its movement and the effect of acoustic streaming on calculating the hydrodynamic forces for an isolated particle with motion relative to the fluid were analyzed theoretically. It was found that the ultrasonic manipulation system will translate from an under-damped system to an over-damped system with a decrease in particle size and the micro-scale acoustic streaming velocity was negligible when calculating the hydrodynamic forces on the particle in the ultrasonic manipulation system.
Relativistic two-and three-particle scattering equations using instant and light-front dynamics
International Nuclear Information System (INIS)
Adhikari, S.K.; Tomio, L.; Frederico, T.
1992-01-01
Starting from the Bethe-Salpeter equation for two particles in the ladder approximation and integrating over the time component of momentum we derive three dimensional scattering integral equations satisfying constraints of unitarity and relativity, both employing the light-front and instant-form variables. The equations we arrive at are those first derived by Weinberg and by Blankenbecler and Sugar, and are shown to be related by a transformation of variables. Hence we show how to perform and relate identical dynamical calculation using these two equations. We extends this procedure to the case of three particles interacting via two-particle separable potentials. Using light-front and instant form variables we suggest a couple of three dimensional three-particle scattering equations satisfying constraints of two and three-particle unitarity and relativity. The three-particle light-front equation is shown to be approximately related by a transformation of variables to one of the instant-form three-particle equations. (author)
Digital stereo-holographic microscopy for studying three-dimensional particle dynamics
Byeon, Hyeokjun; Go, Taesik; Lee, Sang Joon
2018-06-01
A digital stereo-holographic microscopy (DsHM) with two viewing angles is proposed to measure 3D information of microscale particles. This approach includes two volumetric recordings and numerical reconstruction, and it involves the combination of separately reconstructed holograms. The 3D positional information of a particle was determined by searching the center of the overlapped reconstructed volume. After confirming the proposed technique using static spherical particles, the 3D information of moving particles suspended in a Hagen-Poiseiulle flow was successfully obtained. Moreover, the 3D information of nonspherical particles, including ellipsoidal particles and red blood cells, were measured using the proposed technique. In addition to 3D positional information, the orientation and shape of the test samples were obtained from the plane images by slicing the overlapped volume perpendicular to the directions of the image recordings. This DsHM technique will be useful in analyzing the 3D dynamic behavior of various nonspherical particles, which cannot be measured by conventional digital holographic microscopy.
Ofner, Johannes; Kasper-Giebl, Anneliese; Kistler, Magdalena; Matzl, Julia; Schauer, Gerhard; Hitzenberger, Regina; Lohninger, Johann; Lendl, Bernhard
2014-05-01
Size classified aerosol samples were collected using low pressure impactors in July 2013 at the high alpine background site Sonnnblick. The Sonnblick Observatory is located in the Austrian Alps, at the summit of Sonnblick 3100 m asl. Sampling was performed in parallel on the platform of the Observatory and after the aerosol inlet. The inlet is constructed as a whole air inlet and is operated at an overall sampling flow of 137 lpm and heated to 30 °C. Size cuts of the eight stage low pressure impactors were from 0.1 to 12.8 µm a.d.. Alumina foils were used as sample substrates for the impactor stages. In addition to the size classified aerosol sampling overall aerosol mass (Sharp Monitor 5030, Thermo Scientific) and number concentrations (TSI, CPC 3022a; TCC-3, Klotz) were determined. A Horiba LabRam 800HR Raman microscope was used for vibrational mapping of an area of about 100 µm x 100 µm of the alumina foils at a resolution of about 0.5 µm. The Raman microscope is equipped with a laser with an excitation wavelength of 532 nm and a grating with 300 gr/mm. Both optical images and the related chemical images were combined and a chemometric investigation of the combined images was done using the software package Imagelab (Epina Software Labs). Based on the well-known environment, a basic assignment of Raman signals of single particles is possible at a sufficient certainty. Main aerosol constituents e.g. like sulfates, black carbon and mineral particles could be identified. First results of the chemical imaging of size-segregated aerosol, collected at the Sonnblick Observatory, will be discussed with respect to standardized long-term measurements at the sampling station. Further, advantages and disadvantages of chemical imaging with subsequent chemometric investigation of the single images will be discussed and compared to the established methods of aerosol analysis. The chemometric analysis of the dataset is focused on mixing and variation of single compounds at
Jung, Hae-Jin; Kim, BoWha; Malek, Md Abdul; Koo, Yong Sung; Jung, Jong Hoon; Son, Youn-Suk; Kim, Jo-Chun; Kim, HyeKyoung; Ro, Chul-Un
2012-04-30
Previous studies have reported the major chemical species of underground subway particles to be Fe-containing species that are generated from wear and friction processes at rail-wheel-brake and catenaries-pantographs interfaces. To examine chemical composition of Fe-containing particles in more details, floor dusts were collected at five sampling locations of an underground subway station. Size-segregated floor dusts were separated into magnetic and non-magnetic fractions using a permanent magnet. Using X-ray diffraction (XRD) and scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDX), iron metal, which is relatively harmless, was found to be the dominating chemical species in the floor dusts of the subway stations can be controlled by removing magnetic indoor particles using magnets. In addition, airborne subway particles, most of which were smaller than 10 μm, were collected using permanent magnets at two underground subway stations, namely Jegi and Yangjae stations, in Seoul, Korea. XRD and SEM/EDX analyses showed that most of the magnetic aerosol particles collected at Jegi station was iron metal, whereas those at Yangjae station contained a small amount of Fe mixed with Na, Mg, Al, Si, S, Ca, and C. The difference in composition of the Fe-containing particles between the two subway stations was attributed to the different ballast tracks used. Copyright © 2012 Elsevier B.V. All rights reserved.
Directory of Open Access Journals (Sweden)
Darrah K. Sleeth
2016-03-01
Full Text Available Extrathoracic deposition of inhaled particles (i.e., in the head and throat is an important exposure route for many hazardous materials. Current best practices for exposure assessment of aerosols in the workplace involve particle size selective sampling methods based on particle penetration into the human respiratory tract (i.e., inhalable or respirable sampling. However, the International Organization for Standardization (ISO has recently adopted particle deposition sampling conventions (ISO 13138, including conventions for extrathoracic (ET deposition into the anterior nasal passage (ET1 and the posterior nasal and oral passages (ET2. For this study, polyurethane foam was used as a collection substrate inside an inhalable aerosol sampler to provide an estimate of extrathoracic particle deposition. Aerosols of fused aluminum oxide (five sizes, 4.9 µm–44.3 µm were used as a test dust in a low speed (0.2 m/s wind tunnel. Samplers were placed on a rotating mannequin inside the wind tunnel to simulate orientation-averaged personal sampling. Collection efficiency data for the foam insert matched well to the extrathoracic deposition convention for the particle sizes tested. The concept of using a foam insert to match a particle deposition sampling convention was explored in this study and shows promise for future use as a sampling device.
Sleeth, Darrah K; Balthaser, Susan A; Collingwood, Scott; Larson, Rodney R
2016-03-07
Extrathoracic deposition of inhaled particles (i.e., in the head and throat) is an important exposure route for many hazardous materials. Current best practices for exposure assessment of aerosols in the workplace involve particle size selective sampling methods based on particle penetration into the human respiratory tract (i.e., inhalable or respirable sampling). However, the International Organization for Standardization (ISO) has recently adopted particle deposition sampling conventions (ISO 13138), including conventions for extrathoracic (ET) deposition into the anterior nasal passage (ET₁) and the posterior nasal and oral passages (ET₂). For this study, polyurethane foam was used as a collection substrate inside an inhalable aerosol sampler to provide an estimate of extrathoracic particle deposition. Aerosols of fused aluminum oxide (five sizes, 4.9 µm-44.3 µm) were used as a test dust in a low speed (0.2 m/s) wind tunnel. Samplers were placed on a rotating mannequin inside the wind tunnel to simulate orientation-averaged personal sampling. Collection efficiency data for the foam insert matched well to the extrathoracic deposition convention for the particle sizes tested. The concept of using a foam insert to match a particle deposition sampling convention was explored in this study and shows promise for future use as a sampling device.
Physics of microswimmers—single particle motion and collective behavior: a review
International Nuclear Information System (INIS)
Elgeti, J; Winkler, R G; Gompper, G
2015-01-01
Locomotion and transport of microorganisms in fluids is an essential aspect of life. Search for food, orientation toward light, spreading of off-spring, and the formation of colonies are only possible due to locomotion. Swimming at the microscale occurs at low Reynolds numbers, where fluid friction and viscosity dominates over inertia. Here, evolution achieved propulsion mechanisms, which overcome and even exploit drag. Prominent propulsion mechanisms are rotating helical flagella, exploited by many bacteria, and snake-like or whip-like motion of eukaryotic flagella, utilized by sperm and algae. For artificial microswimmers, alternative concepts to convert chemical energy or heat into directed motion can be employed, which are potentially more efficient. The dynamics of microswimmers comprises many facets, which are all required to achieve locomotion. In this article, we review the physics of locomotion of biological and synthetic microswimmers, and the collective behavior of their assemblies. Starting from individual microswimmers, we describe the various propulsion mechanism of biological and synthetic systems and address the hydrodynamic aspects of swimming. This comprises synchronization and the concerted beating of flagella and cilia. In addition, the swimming behavior next to surfaces is examined. Finally, collective and cooperate phenomena of various types of isotropic and anisotropic swimmers with and without hydrodynamic interactions are discussed. (report on progress)
Nakao, Hiroya; Yasui, Sho; Ota, Masashi; Arai, Kensuke; Kawamura, Yoji
2018-04-01
A general phase reduction method for a network of coupled dynamical elements exhibiting collective oscillations, which is applicable to arbitrary networks of heterogeneous dynamical elements, is developed. A set of coupled adjoint equations for phase sensitivity functions, which characterize the phase response of the collective oscillation to small perturbations applied to individual elements, is derived. Using the phase sensitivity functions, collective oscillation of the network under weak perturbation can be described approximately by a one-dimensional phase equation. As an example, mutual synchronization between a pair of collectively oscillating networks of excitable and oscillatory FitzHugh-Nagumo elements with random coupling is studied.
Collective Behavior of Hair, and Ponytail Shape and Dynamics
Ball, Robin
I will discuss how we can build a mathematical model of the behaviour of a bundle of hair, comparing the results with experimental studies of the shape and dynamics of human ponytails. We treat the individual fibers as elastic filaments with random intrinsic curvature, in which the balance of bending elasticity, gravity, orientational disorder and inertia is recast as a differential equation for the envelope of the fibre bundle. The static elements of this work were first reported in R.E. Goldstein, P.B. Warren and R.C. Ball, Physical Review Letters 108, 078101 (2012). The compressibility of the bundle enters through an ``equation of state'' whose empirical form is shown to arise from a Confined Helix Model, in which the constraint of the surrounding hair is on a given fibre is represented as a confining cylinder. Using this model we find the ponytail shape is well fit with only one adjustable parameter, which is the degree to which the confining cylinders over fill space. The dynamics of driven vertical ponytail motion is well reproduced provided we introduce some damping, and we find the level of damping required is consistent with that arising from viscous drag of the lateral motion of the hair fibres through the interstitial air. Most of our match with experiment is achieved by approximating the fibre density of the ponytail to to be uniform across its cross-section, and to vary only length-wise. However we show that detail near the exit from a confining clamp (aka hairband) is only captured by computing the full cross-sectional variation. The work reported is joint with RE Goldstein (Cambridge UK) and PB Warren (Unilever Research).
Measuring and modeling behavioral decision dynamics in collective evacuation.
Directory of Open Access Journals (Sweden)
Jean M Carlson
Full Text Available Identifying and quantifying factors influencing human decision making remains an outstanding challenge, impacting the performance and predictability of social and technological systems. In many cases, system failures are traced to human factors including congestion, overload, miscommunication, and delays. Here we report results of a behavioral network science experiment, targeting decision making in a natural disaster. In a controlled laboratory setting, our results quantify several key factors influencing individual evacuation decision making in a controlled laboratory setting. The experiment includes tensions between broadcast and peer-to-peer information, and contrasts the effects of temporal urgency associated with the imminence of the disaster and the effects of limited shelter capacity for evacuees. Based on empirical measurements of the cumulative rate of evacuations as a function of the instantaneous disaster likelihood, we develop a quantitative model for decision making that captures remarkably well the main features of observed collective behavior across many different scenarios. Moreover, this model captures the sensitivity of individual- and population-level decision behaviors to external pressures, and systematic deviations from the model provide meaningful estimates of variability in the collective response. Identification of robust methods for quantifying human decisions in the face of risk has implications for policy in disasters and other threat scenarios, specifically the development and testing of robust strategies for training and control of evacuations that account for human behavior and network topologies.
International Nuclear Information System (INIS)
Holmes, Thomas D.; Guilmette, Raymond A.; Cheng, Yung-Sung; Parkhurst, MaryAnn; Hoover, Mark D.
2009-01-01
The Capstone Depleted Uranium Aerosol Study was undertaken to obtain aerosol samples resulting from a kinetic-energy cartridge with a large-caliber depleted uranium (DU) penetrator striking an Abrams or Bradley test vehicle. The sampling strategy was designed to (1) optimize the performance of the samplers and maintain their integrity in the extreme environment created during perforation of an armored vehicle by a DU penetrator, (2) collect aerosols as a function of time post-impact, and (3) obtain size-classified samples for analysis of chemical composition, particle morphology, and solubility in lung fluid. This paper describes the experimental setup and sampling methodologies used to achieve these objectives. Custom-designed arrays of sampling heads were secured to the inside of the target in locations approximating the breathing zones of the vehicle commander, loader, gunner, and driver. Each array was designed to support nine filter cassettes and nine cascade impactors mounted with quick-disconnect fittings. Shielding and sampler placement strategies were used to minimize sampler loss caused by the penetrator impact and the resulting fragments of eroded penetrator and perforated armor. A cyclone train was used to collect larger quantities of DU aerosol for chemical composition and solubility. A moving filter sample was used to obtain semicontinuous samples for depleted uranium concentration determination. Control for the air samplers was provided by five remotely located valve control and pressure monitoring units located inside and around the test vehicle. These units were connected to a computer interface chassis and controlled using a customized LabVIEW engineering computer control program. The aerosol sampling arrays and control systems for the Capstone study provided the needed aerosol samples for physicochemical analysis, and the resultant data were used for risk assessment of exposure to DU aerosol
Csordás, András; Graham, Robert; Szépfalusy, Péter
1997-01-01
The Bogoliubov equations of the quasi-particle excitations in a weakly interacting trapped Bose-condensate are solved in the WKB approximation in an isotropic harmonic trap, determining the discrete quasi-particle energies and wave functions by torus (Bohr-Sommerfeld) quantization of the integrable classical quasi-particle dynamics. The results are used to calculate the position and strengths of the peaks in the dynamic structure function which can be observed by off-resonance inelastic light...
Magnetic dynamics of small alpha-Fe2O3 and NiO particles
DEFF Research Database (Denmark)
Lefmann, K.; Bødker, Franz; Hansen, Mikkel Fougt
1999-01-01
particles, we observed a clear double peak in the energy distribution of the antiferromagnetic signal, in addition to a quasi-elastic peak. We interpret the double peak to respresent collective magnetic excitations. Broadening of the central quasi-elastic peak with increasing temprature is interpreted...
International Nuclear Information System (INIS)
Antipov, S.A.; Nagaitsev, S.; Valishev, A.
2017-01-01
Fermilab is constructing the Integrable Optics Test Accelerator (IOTA) as the centerpiece of the Accelerator R and D Program towards high-intensity circular machines. One of the factors limiting the beam intensity in present circular accelerators is collective instabilities, which can be suppressed by a spread of betatron frequencies (tunes) through the Landau damping mechanism or by an external damper, if the instability is slow enough. The spread is usually created by octupole magnets, which introduce the tune dependence on the amplitude and, in some cases, by a chromatic spread (tune dependence on particle's momentum). The introduction of octupoles usually has both beneficial (improved Landau damping) and harmful properties, such as a resonant behavior and a reduction of the dynamic aperture. One of the research goals at the IOTA ring is to achieve a large betatron tune spread, while retaining a large dynamic aperture, using conventional octupole magnets in a special but realistic accelerator configuration. The configuration, although not integrable by design, approximates an autonomous 2D Hamiltonian system. In this paper, we present results of computer simulations of an electron beam in the IOTA by particle tracking and the Frequency Map Analysis. The results show that the ring's octupole magnets can be configured to provide a betatron tune shift of 0.08 (for particles at large amplitudes) with the dynamical aperture of over 20 beam sigma for a 150-MeV electron beam. The influence of the synchrotron motion, lattice errors, and magnet imperfections is insignificant for the parameters and levels of tolerances set by the design of the ring. The described octupole insert could be beneficial for enhancing Landau damping in high intensity machines.
Antipov, S. A.; Nagaitsev, S.; Valishev, A.
2017-04-01
Fermilab is constructing the Integrable Optics Test Accelerator (IOTA) as the centerpiece of the Accelerator R&D Program towards high-intensity circular machines. One of the factors limiting the beam intensity in present circular accelerators is collective instabilities, which can be suppressed by a spread of betatron frequencies (tunes) through the Landau damping mechanism or by an external damper, if the instability is slow enough. The spread is usually created by octupole magnets, which introduce the tune dependence on the amplitude and, in some cases, by a chromatic spread (tune dependence on particle's momentum). The introduction of octupoles usually has both beneficial (improved Landau damping) and harmful properties, such as a resonant behavior and a reduction of the dynamic aperture. One of the research goals at the IOTA ring is to achieve a large betatron tune spread, while retaining a large dynamic aperture, using conventional octupole magnets in a special but realistic accelerator configuration. The configuration, although not integrable by design, approximates an autonomous 2D Hamiltonian system. In this paper, we present results of computer simulations of an electron beam in the IOTA by particle tracking and the Frequency Map Analysis. The results show that the ring's octupole magnets can be configured to provide a betatron tune shift of 0.08 (for particles at large amplitudes) with the dynamical aperture of over 20 beam sigma for a 150-MeV electron beam. The influence of the synchrotron motion, lattice errors, and magnet imperfections is insignificant for the parameters and levels of tolerances set by the design of the ring. The described octupole insert could be beneficial for enhancing Landau damping in high intensity machines.
Energy Technology Data Exchange (ETDEWEB)
Antipov, S. A.; Nagaitsev, S.; Valishev, A.
2017-04-01
Fermilab is constructing the Integrable Optics Test Accelerator (IOTA) as the centerpiece of the Accelerator R&D Program towards high-intensity circular machines. One of the factors limiting the beam intensity in present circular accelerators is collective instabilities, which can be suppressed by a spread of betatron frequencies (tunes) through the Landau damping mechanism or by an external damper, if the instability is slow enough. The spread is usually created by octupole magnets, which introduce the tune dependence on the amplitude and, in some cases, by a chromatic spread (tune dependence on particle's momentum). The introduction of octupoles usually lead to a resonant behavior and a reduction of the dynamic aperture. One of the goals of the IOTA research program is to achieve a high betatron tune spread, while retaining a large dynamic aperture using conventional octupole magnets in a special but realistic accelerator configuration. In this report, we present results of computer simulations of an electron beam in the IOTA by particle tracking and the Frequency Map Analysis. The results show that the ring's octupole magnets can be configured to provide a betatron tune shift of 0.08 (for particles at large amplitudes) with the dynamical aperture of over 20 beam sigma for a 150-MeV electron beam. The influence of the synchrotron motion, lattice errors, and magnet imperfections is insignificant for the parameters and levels of tolerances set by the design of the ring. The described octupole insert could be beneficial for suppression of space-charge induced instabilities in high intensity machines.
Dynamics of Individual and Collective Agricultural Adaptation to Water Scarcity
Burchfield, E. K.; Gilligan, J. M.
2016-12-01
Drought and water scarcity are challenging agricultural systems around the world. We draw on extensive field-work conducted with paddy farmers in rural Sri Lanka to study adaptations to water scarcity, including switching to less water-intensive crops, farming collectively on shared land, and turning to groundwater by digging wells. We explore how variability in climate affects agricultural decision-making at the community and individual levels using three decision-making heuristics, each characterized by an objective function: risk-averse expected utility, regret-adjusted expected utility, and prospect theory loss-aversion. We also assess how the introduction of individualized access to irrigation water with wells affects long-standing community-based drought mitigation practices. Results suggest that the growth of well-irrigation may produce sudden disruptions to community-based adaptations, but that this depends on the mental models farmers use to think about risk and make decisions under uncertainty.
Moreno Chaparro, Nicolas; Vignal, Philippe; Li, Jun; Calo, Victor M.
2013-01-01
A variational multi scale approach to model blood flow through arteries is proposed. A finite element discretization to represent the coarse scales (macro size), is coupled to smoothed dissipative particle dynamics that captures the fine scale features (micro scale). Blood is assumed to be incompressible, and flow is described through the Navier Stokes equation. The proposed cou- pling is tested with two benchmark problems, in fully coupled systems. Further refinements of the model can be incorporated in order to explicitly include blood constituents and non-Newtonian behavior. The suggested algorithm can be used with any particle-based method able to solve the Navier-Stokes equation.
Dynamical properties of a particle in a time-dependent double-well potential
International Nuclear Information System (INIS)
Leonel, Edson D; McClintock, P V E
2004-01-01
Some chaotic properties of a classical particle interacting with a time-dependent double-square-well potential are studied. The dynamics of the system is characterized using a two-dimensional nonlinear area-preserving map. Scaling arguments are used to study the chaotic sea in the low-energy domain. It is shown that the distributions of successive reflections and of corresponding successive reflection times obey power laws with the same exponent. If one or both wells move randomly, the particle experiences the phenomenon of Fermi acceleration in the sense that it has unlimited energy growth
Numerical Simulation of a Tumor Growth Dynamics Model Using Particle Swarm Optimization.
Wang, Zhijun; Wang, Qing
Tumor cell growth models involve high-dimensional parameter spaces that require computationally tractable methods to solve. To address a proposed tumor growth dynamics mathematical model, an instance of the particle swarm optimization method was implemented to speed up the search process in the multi-dimensional parameter space to find optimal parameter values that fit experimental data from mice cancel cells. The fitness function, which measures the difference between calculated results and experimental data, was minimized in the numerical simulation process. The results and search efficiency of the particle swarm optimization method were compared to those from other evolutional methods such as genetic algorithms.
Moreno Chaparro, Nicolas
2013-06-01
A variational multi scale approach to model blood flow through arteries is proposed. A finite element discretization to represent the coarse scales (macro size), is coupled to smoothed dissipative particle dynamics that captures the fine scale features (micro scale). Blood is assumed to be incompressible, and flow is described through the Navier Stokes equation. The proposed cou- pling is tested with two benchmark problems, in fully coupled systems. Further refinements of the model can be incorporated in order to explicitly include blood constituents and non-Newtonian behavior. The suggested algorithm can be used with any particle-based method able to solve the Navier-Stokes equation.
Zhao, Yinjian
2017-09-01
Aiming at a high simulation accuracy, a Particle-Particle (PP) Coulombic molecular dynamics model is implemented to study the electron-ion temperature relaxation. In this model, the Coulomb's law is directly applied in a bounded system with two cutoffs at both short and long length scales. By increasing the range between the two cutoffs, it is found that the relaxation rate deviates from the BPS theory and approaches the LS theory and the GMS theory. Also, the effective minimum and maximum impact parameters (bmin* and bmax*) are obtained. For the simulated plasma condition, bmin* is about 6.352 times smaller than the Landau length (bC), and bmax* is about 2 times larger than the Debye length (λD), where bC and λD are used in the LS theory. Surprisingly, the effective relaxation time obtained from the PP model is very close to the LS theory and the GMS theory, even though the effective Coulomb logarithm is two times greater than the one used in the LS theory. Besides, this work shows that the PP model (commonly known as computationally expensive) is becoming practicable via GPU parallel computing techniques.
Dynamics of a spherical particle in an acoustic field: A multiscale approach
International Nuclear Information System (INIS)
Xie, Jin-Han; Vanneste, Jacques
2014-01-01
A rigid spherical particle in an acoustic wave field oscillates at the wave period but has also a mean motion on a longer time scale. The dynamics of this mean motion is crucial for numerous applications of acoustic microfluidics, including particle manipulation and flow visualisation. It is controlled by four physical effects: acoustic (radiation) pressure, streaming, inertia, and viscous drag. In this paper, we carry out a systematic multiscale analysis of the problem in order to assess the relative importance of these effects depending on the parameters of the system that include wave amplitude, wavelength, sound speed, sphere radius, and viscosity. We identify two distinguished regimes characterised by a balance among three of the four effects, and we derive the equations that govern the mean particle motion in each regime. This recovers and organises classical results by King [“On the acoustic radiation pressure on spheres,” Proc. R. Soc. A 147, 212–240 (1934)], Gor'kov [“On the forces acting on a small particle in an acoustical field in an ideal fluid,” Sov. Phys. 6, 773–775 (1962)], and Doinikov [“Acoustic radiation pressure on a rigid sphere in a viscous fluid,” Proc. R. Soc. London A 447, 447–466 (1994)], clarifies the range of validity of these results, and reveals a new nonlinear dynamical regime. In this regime, the mean motion of the particle remains intimately coupled to that of the surrounding fluid, and while viscosity affects the fluid motion, it plays no part in the acoustic pressure. Simplified equations, valid when only two physical effects control the particle motion, are also derived. They are used to obtain sufficient conditions for the particle to behave as a passive tracer of the Lagrangian-mean fluid motion
International Nuclear Information System (INIS)
Lee, Song Hi
2010-01-01
We presented a molecular dynamics (MD) simulation study of friction behavior between two very massive Brownian particles (BPs) oriented along the z axis with BP centers at -R 12 /2 and R 12 /2 in a Lennard-Jones solvent as a function of the inter-particle separation, R 12 . In order to fix the BPs in space an MD simulation method with the mass of the BP as 10 90 g/mol was employed in which the total momentum of the system was conserved. The cross friction coefficients of x- and y-components are nearly insensitive to R 12 but that of z-component varies with R 12 in good accord with the simple hydrodynamic approximation. On the other hand, the self-friction coefficients are estimated as a very small difference from the single particle friction coefficients, ξ 0 , at all inter-particle separations which agrees with the simple hydrodynamic approximation. Consequently ξ (-) xx is nearly independent of R 12 and equal to its asymptotic value of twice the single particle friction coefficient, and the other relative friction, ξ (-) zz , is in good agreement with the simple hydrodynamic approximation. Molecular theory of Brownian motion of a single heavy particle in a fluid had received a considerable attention in earlier years. After molecular dynamics (MD) simulation technique was utilized, this subject has been widely studied by a variety of MD simulation methods. The common issues here were about the long time behavior of the force and velocity autocorrelation functions, the system size dependent friction coefficient of a massive Brownian particle, and test of the Stokes-Einstein law
Interaction dynamics of two diffusing particles: contact times and influence of nearby surfaces.
Tränkle, B; Ruh, D; Rohrbach, A
2016-03-14
Interactions of diffusing particles are governed by hydrodynamics on different length and timescales. The local hydrodynamics can be influenced substantially by simple interfaces. Here, we investigate the interaction dynamics of two micron-sized spheres close to plane interfaces to mimic more complex biological systems or microfluidic environments. Using scanned line optical tweezers and fast 3D interferometric particle tracking, we are able to track the motion of each bead with precisions of a few nanometers and at a rate of 10 kilohertz. From the recorded trajectories, all spatial and temporal information is accessible. This way, we measure diffusion coefficients for two coupling particles at varying distances h to one or two glass interfaces. We analyze their coupling strength and length by cross-correlation analysis relative to h and find a significant decrease in the coupling length when a second particle diffuses nearby. By analysing the times the particles are in close contact, we find that the influence of nearby surfaces and interaction potentials reduce the diffusivity strongly, although we found that the diffusivity hardly affects the contact times and the binding probability between the particles. All experimental results are compared to a theoretical model, which is based on the number of possible diffusion paths following the Catalan numbers and a diffusion probability, which is biased by the spheres' surface potential. The theoretical and experimental results agree very well and therefore enable a better understanding of hydrodynamically coupled interaction processes.
Dynamic and thermal behaviour of quasi-particles in superfluid 3He-B. Ch. 10
International Nuclear Information System (INIS)
Guenault, A.M.; Pickett, G.R.
1990-01-01
In superfluid 3 He-B, the quasi-particle gas is particularly accessible to experimental study of quasi-particle dynamics. The authors discuss some of their own experiments in this field. In section 2 the experimental methods are outlined briefly. Then experiments are introduced which can be made with vibrating-wire resonators. They can be used as detectors of the thermal background quasi-particles, which means that they can be used as thermometers. They can be used as quasiparticle sources, i.e. they can be used as heaters; and they can be used as detectors of directed quasi-particle beams, which leads to the possibility of the use of two wires together as source and detector in a beam spectrometer. This logical order is largely followed in this chapter. In section 3 the thermal behavior of the quasi-particle gas is discussed, including the use of the damping of a resonator as a thermometer, leading to experiments on boundary conductance and on bulk ballistic thermal transport. Section 4 covers the onset of dissipation in a strongly driven wire resonator, in particular the Landau critical velocity and pair-breaking effects, together with a discussion of supercritical dissipation. This leads, in section 5, to some early results of the ballistic quasi-particle galvanometer. This latter field is a rapidly developing one and some possible intriguing experiments for the future are discussed in section 6. (author). 30 refs.; 17 figs.; 1 tab
Computational fluid dynamics (CFD) simulation of a newly designed passive particle sampler.
Sajjadi, H; Tavakoli, B; Ahmadi, G; Dhaniyala, S; Harner, T; Holsen, T M
2016-07-01
In this work a series of computational fluid dynamics (CFD) simulations were performed to predict the deposition of particles on a newly designed passive dry deposition (Pas-DD) sampler. The sampler uses a parallel plate design and a conventional polyurethane foam (PUF) disk as the deposition surface. The deposition of particles with sizes between 0.5 and 10 μm was investigated for two different geometries of the Pas-DD sampler for different wind speeds and various angles of attack. To evaluate the mean flow field, the k-ɛ turbulence model was used and turbulent fluctuating velocities were generated using the discrete random walk (DRW) model. The CFD software ANSYS-FLUENT was used for performing the numerical simulations. It was found that the deposition velocity increased with particle size or wind speed. The modeled deposition velocities were in general agreement with the experimental measurements and they increased when flow entered the sampler with a non-zero angle of attack. The particle-size dependent deposition velocity was also dependent on the geometry of the leading edge of the sampler; deposition velocities were more dependent on particle size and wind speeds for the sampler without the bend in the leading edge of the deposition plate, compared to a flat plate design. Foam roughness was also found to have a small impact on particle deposition. Copyright © 2016 Elsevier Ltd. All rights reserved.
Application of chaos theory to the particle dynamics of asymmetry-induced transport
Eggleston, D. L.
2018-03-01
The techniques of chaos theory are employed in an effort to better understand the complex single-particle dynamics of asymmetry-induced transport in non-neutral plasmas. The dynamical equations are re-conceptualized as describing time-independent trajectories in a four-dimensional space consisting of the radius r, rotating frame angle ψ, axial position z, and axial velocity v. Results include the identification of an integral of the motion, fixed-point analysis of the dynamical equations, the construction and interpretation of Poincaré sections to visualize the dynamics, and, for the case of chaotic motion, numerical calculation of the largest Lyapunov exponent. Chaotic cases are shown to be associated with the overlap of resonance islands formed by the applied asymmetry.
Collectivity, evil and the dynamics of moral value.
Backström, Joel; Nykänen, Hannes
2016-08-01
The paper aims at making explicit and question the dominant conception that morality is a matter of values and valuation. This conception is usually taken as the self-evident frame of analysis, both in ethical theorizing and in everyday life and also in most discussions of ethics in medical contexts (e.g. in debates about 'values-based practice'). We argue that the dominant conception is deeply flawed insofar as it implies a repression of the fundamental importance of I-you relationships. As a consequence of this repression, what are commonly taken to be 'personal' and even 'individualist' moral outlooks are, in fact, merely the reverse side of collective norms and values, just as 'particularism' in ethics is not a real alternative to 'universalism', but rather both are variations on the same repressive theme. In showing this, we also outline the sense in which the moral relationship between an 'I' and a 'you' has an altogether different 'grammar' or sense. © 2015 John Wiley & Sons, Ltd.
High Dynamic Velocity Range Particle Image Velocimetry Using Multiple Pulse Separation Imaging
Directory of Open Access Journals (Sweden)
Tadhg S. O’Donovan
2010-12-01
Full Text Available The dynamic velocity range of particle image velocimetry (PIV is determined by the maximum and minimum resolvable particle displacement. Various techniques have extended the dynamic range, however flows with a wide velocity range (e.g., impinging jets still challenge PIV algorithms. A new technique is presented to increase the dynamic velocity range by over an order of magnitude. The multiple pulse separation (MPS technique (i records series of double-frame exposures with different pulse separations, (ii processes the fields using conventional multi-grid algorithms, and (iii yields a composite velocity field with a locally optimized pulse separation. A robust criterion determines the local optimum pulse separation, accounting for correlation strength and measurement uncertainty. Validation experiments are performed in an impinging jet flow, using laser-Doppler velocimetry as reference measurement. The precision of mean flow and turbulence quantities is significantly improved compared to conventional PIV, due to the increase in dynamic range. In a wide range of applications, MPS PIV is a robust approach to increase the dynamic velocity range without restricting the vector evaluation methods.
High dynamic velocity range particle image velocimetry using multiple pulse separation imaging.
Persoons, Tim; O'Donovan, Tadhg S
2011-01-01
The dynamic velocity range of particle image velocimetry (PIV) is determined by the maximum and minimum resolvable particle displacement. Various techniques have extended the dynamic range, however flows with a wide velocity range (e.g., impinging jets) still challenge PIV algorithms. A new technique is presented to increase the dynamic velocity range by over an order of magnitude. The multiple pulse separation (MPS) technique (i) records series of double-frame exposures with different pulse separations, (ii) processes the fields using conventional multi-grid algorithms, and (iii) yields a composite velocity field with a locally optimized pulse separation. A robust criterion determines the local optimum pulse separation, accounting for correlation strength and measurement uncertainty. Validation experiments are performed in an impinging jet flow, using laser-Doppler velocimetry as reference measurement. The precision of mean flow and turbulence quantities is significantly improved compared to conventional PIV, due to the increase in dynamic range. In a wide range of applications, MPS PIV is a robust approach to increase the dynamic velocity range without restricting the vector evaluation methods.
Social influence and the collective dynamics of opinion formation.
Moussaïd, Mehdi; Kämmer, Juliane E; Analytis, Pantelis P; Neth, Hansjörg
2013-01-01
Social influence is the process by which individuals adapt their opinion, revise their beliefs, or change their behavior as a result of social interactions with other people. In our strongly interconnected society, social influence plays a prominent role in many self-organized phenomena such as herding in cultural markets, the spread of ideas and innovations, and the amplification of fears during epidemics. Yet, the mechanisms of opinion formation remain poorly understood, and existing physics-based models lack systematic empirical validation. Here, we report two controlled experiments showing how participants answering factual questions revise their initial judgments after being exposed to the opinion and confidence level of others. Based on the observation of 59 experimental subjects exposed to peer-opinion for 15 different items, we draw an influence map that describes the strength of peer influence during interactions. A simple process model derived from our observations demonstrates how opinions in a group of interacting people can converge or split over repeated interactions. In particular, we identify two major attractors of opinion: (i) the expert effect, induced by the presence of a highly confident individual in the group, and (ii) the majority effect, caused by the presence of a critical mass of laypeople sharing similar opinions. Additional simulations reveal the existence of a tipping point at which one attractor will dominate over the other, driving collective opinion in a given direction. These findings have implications for understanding the mechanisms of public opinion formation and managing conflicting situations in which self-confident and better informed minorities challenge the views of a large uninformed majority.
Energy Technology Data Exchange (ETDEWEB)
Jung, Hae-Jin; Kim, BoWha; Malek, Md Abdul [Department of Chemistry, Inha University, 253, Yonghyun-dong, Nam-gu, Incheon 402-751 (Korea, Republic of); Koo, Yong Sung; Jung, Jong Hoon [Department of Physics, Inha University, 253, Yonghyun-dong, Nam-gu, Incheon 402-751 (Korea, Republic of); Son, Youn-Suk [Department of Advanced Technology Fusion, Konkuk University, Seoul 143-701 (Korea, Republic of); Kim, Jo-Chun [Department of Advanced Technology Fusion, Konkuk University, Seoul 143-701 (Korea, Republic of); Department of Environmental Engineering, Konkuk University, Seoul 143-701 (Korea, Republic of); Kim, HyeKyoung [Department of Chemistry, Inha University, 253, Yonghyun-dong, Nam-gu, Incheon 402-751 (Korea, Republic of); Ro, Chul-Un, E-mail: curo@inha.ac.kr [Department of Chemistry, Inha University, 253, Yonghyun-dong, Nam-gu, Incheon 402-751 (Korea, Republic of)
2012-04-30
Highlights: Black-Right-Pointing-Pointer We examined chemical species of floor dusts and airborne magnetic subway particles collected at underground subway stations. Black-Right-Pointing-Pointer XRD, SEM/EDX, and VSM measurements provided information on their major iron species, which is relatively harmless iron metal. Black-Right-Pointing-Pointer PM levels at underground subway stations can be controlled by removing magnetic indoor particles using magnets. - Abstract: Previous studies have reported the major chemical species of underground subway particles to be Fe-containing species that are generated from wear and friction processes at rail-wheel-brake and catenaries-pantographs interfaces. To examine chemical composition of Fe-containing particles in more details, floor dusts were collected at five sampling locations of an underground subway station. Size-segregated floor dusts were separated into magnetic and non-magnetic fractions using a permanent magnet. Using X-ray diffraction (XRD) and scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDX), iron metal, which is relatively harmless, was found to be the dominating chemical species in the floor dusts of the <25 {mu}m size fractions with minor fractions of Mg, Al, Si, Ca, S, and C. From SEM analysis, the floor dusts of the <25 {mu}m size fractions collected on railroad ties appeared to be smaller than 10 {mu}m, indicating that their characteristics should somewhat reflect the characteristics of airborne particles in the tunnel and the platform. As most floor dusts are magnetic, PM levels at underground subway stations can be controlled by removing magnetic indoor particles using magnets. In addition, airborne subway particles, most of which were smaller than 10 {mu}m, were collected using permanent magnets at two underground subway stations, namely Jegi and Yangjae stations, in Seoul, Korea. XRD and SEM/EDX analyses showed that most of the magnetic aerosol particles collected at Jegi
International Nuclear Information System (INIS)
Jung, Hae-Jin; Kim, BoWha; Malek, Md Abdul; Koo, Yong Sung; Jung, Jong Hoon; Son, Youn-Suk; Kim, Jo-Chun; Kim, HyeKyoung; Ro, Chul-Un
2012-01-01
Highlights: ► We examined chemical species of floor dusts and airborne magnetic subway particles collected at underground subway stations. ► XRD, SEM/EDX, and VSM measurements provided information on their major iron species, which is relatively harmless iron metal. ► PM levels at underground subway stations can be controlled by removing magnetic indoor particles using magnets. - Abstract: Previous studies have reported the major chemical species of underground subway particles to be Fe-containing species that are generated from wear and friction processes at rail–wheel–brake and catenaries–pantographs interfaces. To examine chemical composition of Fe-containing particles in more details, floor dusts were collected at five sampling locations of an underground subway station. Size-segregated floor dusts were separated into magnetic and non-magnetic fractions using a permanent magnet. Using X-ray diffraction (XRD) and scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDX), iron metal, which is relatively harmless, was found to be the dominating chemical species in the floor dusts of the <25 μm size fractions with minor fractions of Mg, Al, Si, Ca, S, and C. From SEM analysis, the floor dusts of the <25 μm size fractions collected on railroad ties appeared to be smaller than 10 μm, indicating that their characteristics should somewhat reflect the characteristics of airborne particles in the tunnel and the platform. As most floor dusts are magnetic, PM levels at underground subway stations can be controlled by removing magnetic indoor particles using magnets. In addition, airborne subway particles, most of which were smaller than 10 μm, were collected using permanent magnets at two underground subway stations, namely Jegi and Yangjae stations, in Seoul, Korea. XRD and SEM/EDX analyses showed that most of the magnetic aerosol particles collected at Jegi station was iron metal, whereas those at Yangjae station contained a small amount
Algorithmic Information Dynamics of Persistent Patterns and Colliding Particles in the Game of Life
Zenil, Hector
2018-02-18
We demonstrate the way to apply and exploit the concept of \\\\textit{algorithmic information dynamics} in the characterization and classification of dynamic and persistent patterns, motifs and colliding particles in, without loss of generalization, Conway\\'s Game of Life (GoL) cellular automaton as a case study. We analyze the distribution of prevailing motifs that occur in GoL from the perspective of algorithmic probability. We demonstrate how the tools introduced are an alternative to computable measures such as entropy and compression algorithms which are often nonsensitive to small changes and features of non-statistical nature in the study of evolving complex systems and their emergent structures.