WorldWideScience

Sample records for collective io model

  1. Io

    International Nuclear Information System (INIS)

    Nash, D.B.; Yoder, C.F.; Carr, M.H.; Gradie, J.; Hunten, D.M.

    1986-01-01

    The present work reviews the history of Io studies and describes the current level of understanding of Io's physics, chemistry, geology, orbital dynamics, and geophysics. Consideration is given to the satellite's internal, superficial, atmospheric, plasma, and magnetospheric properties and how they interrelate. A pictorial map of Io's surface based on Voyager 1 and 2 images is presented. It is found that Io's surface color and spectra are dominated by sulfur compounds which may include various sulfur allotropes. Volcanic processes yielding three kinds of surface features (vent regions, plains, and mountains) dominate Io's surface geology. The Io plasma torus corotates with Jupiter's magnetic field in the plane of Jupiter's centrifugal equator centered at Io's orbital radius

  2. Energy-Neutral Data Collection Rate Control for IoT Animal Behavior Monitors

    Directory of Open Access Journals (Sweden)

    Jay Wilhelm

    2017-11-01

    Full Text Available Energy-neutral operation (ENO is a major concern for Internet of things (IoT sensor systems. Animals can be tagged with IoT sensors to monitor their movement and behavior. These sensors wirelessly upload collected data and can receive parameters to change their operation. Typically, the behavior monitors are powered by a battery where the system relies upon harvesting solar radiation for sustainable operation. Solar panels typically are used as the harvesting mechanism and can have a level of uncertainty regarding consistent energy delivery due to factors such as adverse weather, foliage, time of day, and individual animal behavior. The variability of available energy inevitably creates a trade-off in the rate at which data can be collected with respect to incoming and stored energy. The objective of this research was to investigate and simulate methods and parameters that can control the data collection rate of an IoT behavior monitor to achieve sustained operation with unknown and random energy harvesting. Analysis and development of a control system were performed by creating a software model of energy consumption and then simulating using different initial conditions and random energy harvesting rates for evaluation. The contribution of this effort was the exploration into the usage of a discrete-time gain scheduled Proportional–Integral–Derivative (PID that was tuned to a specific device configuration, using battery state of charge as an input, and found to maintain a battery level set-point, reject small solar harvesting energy disturbances, and maintain a consistent data collection rate throughout the day.

  3. Development of Parkinson Patient Generated Data Collection Platform Using FHIR and IoT Devices.

    Science.gov (United States)

    Kim, Dae-Young; Hwang, Sun-Ho; Kim, Min-Gyu; Song, Joon-Hyun; Lee, Sin-Woong; Kim, Il Kon

    2017-01-01

    Internet of Things (IoT) devices can be effectively used in cases where continuous observation of patients is required, such as Parkinson's disease. This is due to the characteristics of the IoT (Internet of Things), which allows data to be measured and transmitted at any time, anywhere. In this study, we developed a health data collection platform that stores and transmits the foot pressure data of Parkinson patients using FHIR (Fast Healthcare Interoperability Resources). The platform can be used to collect the foot pressure of a large number of Parkinson's patients. Based on the accumulated data, it is possible to identify abnormal behaviors such as walking pattern, tilt and instability of stride length in patients with Parkinson's disease. Based on the results of this study, accurate diagnosis and treatment of Parkinson's disease can be made.

  4. Energy Efficient IoT Data Collection in Smart Cities Exploiting D2D Communications.

    Science.gov (United States)

    Orsino, Antonino; Araniti, Giuseppe; Militano, Leonardo; Alonso-Zarate, Jesus; Molinaro, Antonella; Iera, Antonio

    2016-06-08

    Fifth Generation (5G) wireless systems are expected to connect an avalanche of "smart" objects disseminated from the largest "Smart City" to the smallest "Smart Home". In this vision, Long Term Evolution-Advanced (LTE-A) is deemed to play a fundamental role in the Internet of Things (IoT) arena providing a large coherent infrastructure and a wide wireless connectivity to the devices. However, since LTE-A was originally designed to support high data rates and large data size, novel solutions are required to enable an efficient use of radio resources to convey small data packets typically exchanged by IoT applications in "smart" environments. On the other hand, the typically high energy consumption required by cellular communications is a serious obstacle to large scale IoT deployments under cellular connectivity as in the case of Smart City scenarios. Network-assisted Device-to-Device (D2D) communications are considered as a viable solution to reduce the energy consumption for the devices. The particular approach presented in this paper consists in appointing one of the IoT smart devices as a collector of all data from a cluster of objects using D2D links, thus acting as an aggregator toward the eNodeB. By smartly adapting the Modulation and Coding Scheme (MCS) on the communication links, we will show it is possible to maximize the radio resource utilization as a function of the total amount of data to be sent. A further benefit that we will highlight is the possibility to reduce the transmission power when a more robust MCS is adopted. A comprehensive performance evaluation in a wide set of scenarios will testify the achievable gains in terms of energy efficiency and resource utilization in the envisaged D2D-based IoT data collection.

  5. Energy Efficient IoT Data Collection in Smart Cities Exploiting D2D Communications

    Directory of Open Access Journals (Sweden)

    Antonino Orsino

    2016-06-01

    Full Text Available Fifth Generation (5G wireless systems are expected to connect an avalanche of “smart” objects disseminated from the largest “Smart City” to the smallest “Smart Home”. In this vision, Long Term Evolution-Advanced (LTE-A is deemed to play a fundamental role in the Internet of Things (IoT arena providing a large coherent infrastructure and a wide wireless connectivity to the devices. However, since LTE-A was originally designed to support high data rates and large data size, novel solutions are required to enable an efficient use of radio resources to convey small data packets typically exchanged by IoT applications in “smart” environments. On the other hand, the typically high energy consumption required by cellular communications is a serious obstacle to large scale IoT deployments under cellular connectivity as in the case of Smart City scenarios. Network-assisted Device-to-Device (D2D communications are considered as a viable solution to reduce the energy consumption for the devices. The particular approach presented in this paper consists in appointing one of the IoT smart devices as a collector of all data from a cluster of objects using D2D links, thus acting as an aggregator toward the eNodeB. By smartly adapting the Modulation and Coding Scheme (MCS on the communication links, we will show it is possible to maximize the radio resource utilization as a function of the total amount of data to be sent. A further benefit that we will highlight is the possibility to reduce the transmission power when a more robust MCS is adopted. A comprehensive performance evaluation in a wide set of scenarios will testify the achievable gains in terms of energy efficiency and resource utilization in the envisaged D2D-based IoT data collection.

  6. Spatiotemporal Stochastic Modeling of IoT Enabled Cellular Networks: Scalability and Stability Analysis

    KAUST Repository

    Gharbieh, Mohammad; Elsawy, Hesham; Bader, Ahmed; Alouini, Mohamed-Slim

    2017-01-01

    The Internet of Things (IoT) is large-scale by nature, which is manifested by the massive number of connected devices as well as their vast spatial existence. Cellular networks, which provide ubiquitous, reliable, and efficient wireless access, will play fundamental rule in delivering the first-mile access for the data tsunami to be generated by the IoT. However, cellular networks may have scalability problems to provide uplink connectivity to massive numbers of connected things. To characterize the scalability of cellular uplink in the context of IoT networks, this paper develops a traffic-aware spatiotemporal mathematical model for IoT devices supported by cellular uplink connectivity. The developed model is based on stochastic geometry and queueing theory to account for the traffic requirement per IoT device, the different transmission strategies, and the mutual interference between the IoT devices. To this end, the developed model is utilized to characterize the extent to which cellular networks can accommodate IoT traffic as well as to assess and compare three different transmission strategies that incorporate a combination of transmission persistency, backoff, and power-ramping. The analysis and the results clearly illustrate the scalability problem imposed by IoT on cellular network and offer insights into effective scenarios for each transmission strategy.

  7. Spatiotemporal Stochastic Modeling of IoT Enabled Cellular Networks: Scalability and Stability Analysis

    KAUST Repository

    Gharbieh, Mohammad

    2017-05-02

    The Internet of Things (IoT) is large-scale by nature, which is manifested by the massive number of connected devices as well as their vast spatial existence. Cellular networks, which provide ubiquitous, reliable, and efficient wireless access, will play fundamental rule in delivering the first-mile access for the data tsunami to be generated by the IoT. However, cellular networks may have scalability problems to provide uplink connectivity to massive numbers of connected things. To characterize the scalability of cellular uplink in the context of IoT networks, this paper develops a traffic-aware spatiotemporal mathematical model for IoT devices supported by cellular uplink connectivity. The developed model is based on stochastic geometry and queueing theory to account for the traffic requirement per IoT device, the different transmission strategies, and the mutual interference between the IoT devices. To this end, the developed model is utilized to characterize the extent to which cellular networks can accommodate IoT traffic as well as to assess and compare three different transmission strategies that incorporate a combination of transmission persistency, backoff, and power-ramping. The analysis and the results clearly illustrate the scalability problem imposed by IoT on cellular network and offer insights into effective scenarios for each transmission strategy.

  8. Using a 2D Model of the Io Plasma Torus to Investigate the Effects of Density Variations on the Morphology and Intensity of the Io Footprint

    Science.gov (United States)

    Payan, A. P.; Rajendar, A.; Paty, C. S.; Bonfond, B.; Crary, F.

    2012-12-01

    Io is the primary source of plasma in the Jovian magnetosphere, continuously releasing approximately 1 ton/s of SO2 from volcanic eruptions. The interaction of Io with Jupiter's magnetosphere is strongly influenced by the density structure of the resulting plasma torus and the position of Io relative to the center of the torus [Bonfond et al. 2008]. This unusual interaction produces a complex auroral feature on Jupiter's ionosphere known as the Io footprint. Hubble Space Telescope (HST) observations of Jupiter's far-UV aurora during spring 2007 showed an increased number of isolated auroral blobs along with a continuous expansion of Jupiter's main auroral oval over a few months. These blobs were associated with several large injections of hot plasma between 9 and 27 Jovian radii. These events coincided with a large volcanic eruption of the Tvashtar Paterae on Io, as observed by the New Horizons spacecraft [Spencer et al., 2007]. This, in turn, may have resulted in a significant increase in the plasma torus density. Besides, on June 7th, 2007, the Io footprint momentarily became so faint that it disappeared under a diffuse patch of emission remaining from an injection blob [Bonfond et al., 2012]. The goal of the present study is to examine the relationship between the increased density of the plasma torus and the dimming of the Io footprint. We implement a 2D model of the Io plasma torus that treats the variable-density torus as being composed of discrete layers of uniform density. As the co-rotating plasma in the plasma torus impinges on Io, Alfvén waves are launched at a pushback angle obtained from Gurnett and Goertz [1981]. The waves propagate inside the plasma torus through reflection and refraction at density discontinuities where they lose some of their initial energy. Using the above model, we can track the Alfvén wave fronts in the plasma torus and determine the longitude at which they exit the torus along with the corresponding remaining energy. Since

  9. A Resource Service Model in the Industrial IoT System Based on Transparent Computing.

    Science.gov (United States)

    Li, Weimin; Wang, Bin; Sheng, Jinfang; Dong, Ke; Li, Zitong; Hu, Yixiang

    2018-03-26

    The Internet of Things (IoT) has received a lot of attention, especially in industrial scenarios. One of the typical applications is the intelligent mine, which actually constructs the Six-Hedge underground systems with IoT platforms. Based on a case study of the Six Systems in the underground metal mine, this paper summarizes the main challenges of industrial IoT from the aspects of heterogeneity in devices and resources, security, reliability, deployment and maintenance costs. Then, a novel resource service model for the industrial IoT applications based on Transparent Computing (TC) is presented, which supports centralized management of all resources including operating system (OS), programs and data on the server-side for the IoT devices, thus offering an effective, reliable, secure and cross-OS IoT service and reducing the costs of IoT system deployment and maintenance. The model has five layers: sensing layer, aggregation layer, network layer, service and storage layer and interface and management layer. We also present a detailed analysis on the system architecture and key technologies of the model. Finally, the efficiency of the model is shown by an experiment prototype system.

  10. A Framework to Implement IoT Network Performance Modelling Techniques for Network Solution Selection

    Directory of Open Access Journals (Sweden)

    Declan T. Delaney

    2016-12-01

    Full Text Available No single network solution for Internet of Things (IoT networks can provide the required level of Quality of Service (QoS for all applications in all environments. This leads to an increasing number of solutions created to fit particular scenarios. Given the increasing number and complexity of solutions available, it becomes difficult for an application developer to choose the solution which is best suited for an application. This article introduces a framework which autonomously chooses the best solution for the application given the current deployed environment. The framework utilises a performance model to predict the expected performance of a particular solution in a given environment. The framework can then choose an apt solution for the application from a set of available solutions. This article presents the framework with a set of models built using data collected from simulation. The modelling technique can determine with up to 85% accuracy the solution which performs the best for a particular performance metric given a set of solutions. The article highlights the fractured and disjointed practice currently in place for examining and comparing communication solutions and aims to open a discussion on harmonising testing procedures so that different solutions can be directly compared and offers a framework to achieve this within IoT networks.

  11. A Framework to Implement IoT Network Performance Modelling Techniques for Network Solution Selection.

    Science.gov (United States)

    Delaney, Declan T; O'Hare, Gregory M P

    2016-12-01

    No single network solution for Internet of Things (IoT) networks can provide the required level of Quality of Service (QoS) for all applications in all environments. This leads to an increasing number of solutions created to fit particular scenarios. Given the increasing number and complexity of solutions available, it becomes difficult for an application developer to choose the solution which is best suited for an application. This article introduces a framework which autonomously chooses the best solution for the application given the current deployed environment. The framework utilises a performance model to predict the expected performance of a particular solution in a given environment. The framework can then choose an apt solution for the application from a set of available solutions. This article presents the framework with a set of models built using data collected from simulation. The modelling technique can determine with up to 85% accuracy the solution which performs the best for a particular performance metric given a set of solutions. The article highlights the fractured and disjointed practice currently in place for examining and comparing communication solutions and aims to open a discussion on harmonising testing procedures so that different solutions can be directly compared and offers a framework to achieve this within IoT networks.

  12. Access Control Mechanism for IoT Environments Based on Modelling Communication Procedures as Resources

    OpenAIRE

    Luis Cruz-Piris; Diego Rivera; Ivan Marsa-Maestre; Enrique de la Hoz; Juan R. Velasco

    2018-01-01

    Internet growth has generated new types of services where the use of sensors and actuators is especially remarkable. These services compose what is known as the Internet of Things (IoT). One of the biggest current challenges is obtaining a safe and easy access control scheme for the data managed in these services. We propose integrating IoT devices in an access control system designed for Web-based services by modelling certain IoT communication elements as resources. This would allow us to o...

  13. (a,k)-Anonymous Scheme for Privacy-Preserving Data Collection in IoT-based Healthcare Services Systems.

    Science.gov (United States)

    Li, Hongtao; Guo, Feng; Zhang, Wenyin; Wang, Jie; Xing, Jinsheng

    2018-02-14

    The widely use of IoT technologies in healthcare services has pushed forward medical intelligence level of services. However, it also brings potential privacy threat to the data collection. In healthcare services system, health and medical data that contains privacy information are often transmitted among networks, and such privacy information should be protected. Therefore, there is a need for privacy-preserving data collection (PPDC) scheme to protect clients (patients) data. We adopt (a,k)-anonymity model as privacy pretection scheme for data collection, and propose a novel anonymity-based PPDC method for healthcare services in this paper. The threat model is analyzed in the client-server-to-user (CS2U) model. On client-side, we utilize (a,k)-anonymity notion to generate anonymous tuples which can resist possible attack, and adopt a bottom-up clustering method to create clusters that satisfy a base privacy level of (a 1 ,k 1 )-anonymity. On server-side, we reduce the communication cost through generalization technology, and compress (a 1 ,k 1 )-anonymous data through an UPGMA-based cluster combination method to make the data meet the deeper level of privacy (a 2 ,k 2 )-anonymity (a 1  ≥ a 2 , k 2  ≥ k 1 ). Theoretical analysis and experimental results prove that our scheme is effective in privacy-preserving and data quality.

  14. Capability-based Access Control Delegation Model on the Federated IoT Network

    DEFF Research Database (Denmark)

    Anggorojati, Bayu; Mahalle, Parikshit N.; Prasad, Neeli R.

    2012-01-01

    Flexibility is an important property for general access control system and especially in the Internet of Things (IoT), which can be achieved by access or authority delegation. Delegation mechanisms in access control that have been studied until now have been intended mainly for a system that has...... no resource constraint, such as a web-based system, which is not very suitable for a highly pervasive system such as IoT. To this end, this paper presents an access delegation method with security considerations based on Capability-based Context Aware Access Control (CCAAC) model intended for federated...... machine-to-machine communication or IoT networks. The main idea of our proposed model is that the access delegation is realized by means of a capability propagation mechanism, and incorporating the context information as well as secure capability propagation under federated IoT environments. By using...

  15. Tractable Stochastic Geometry Model for IoT Access in LTE Networks

    KAUST Repository

    Gharbieh, Mohammad; Elsawy, Hesham; Bader, Ahmed; Alouini, Mohamed-Slim

    2017-01-01

    The Internet of Things (IoT) is large-scale by nature. This is not only manifested by the large number of connected devices, but also by the high volumes of traffic that must be accommodated. Cellular networks are indeed a natural candidate for the data tsunami the IoT is expected to generate in conjunction with legacy human-type traffic. However, the random access process for scheduling request represents a major bottleneck to support IoT via LTE cellular networks. Accordingly, this paper develops a mathematical framework to model and study the random access channel (RACH) scalability to accommodate IoT traffic. The developed model is based on stochastic geometry and discrete time Markov chains (DTMC) to account for different access strategies and possible sources of inter-cell and intra-cell interferences. To this end, the developed model is utilized to assess and compare three different access strategies, which incorporate a combination of transmission persistency, back-off, and power ramping. The analysis and the results showcased herewith clearly illustrate the vulnerability of the random access procedure as the IoT intensity grows. Finally, the paper offers insights into effective scenarios for each transmission strategy in terms of IoT intensity and RACH detection thresholds.

  16. Tractable Stochastic Geometry Model for IoT Access in LTE Networks

    KAUST Repository

    Gharbieh, Mohammad

    2017-02-07

    The Internet of Things (IoT) is large-scale by nature. This is not only manifested by the large number of connected devices, but also by the high volumes of traffic that must be accommodated. Cellular networks are indeed a natural candidate for the data tsunami the IoT is expected to generate in conjunction with legacy human-type traffic. However, the random access process for scheduling request represents a major bottleneck to support IoT via LTE cellular networks. Accordingly, this paper develops a mathematical framework to model and study the random access channel (RACH) scalability to accommodate IoT traffic. The developed model is based on stochastic geometry and discrete time Markov chains (DTMC) to account for different access strategies and possible sources of inter-cell and intra-cell interferences. To this end, the developed model is utilized to assess and compare three different access strategies, which incorporate a combination of transmission persistency, back-off, and power ramping. The analysis and the results showcased herewith clearly illustrate the vulnerability of the random access procedure as the IoT intensity grows. Finally, the paper offers insights into effective scenarios for each transmission strategy in terms of IoT intensity and RACH detection thresholds.

  17. Sensor-Based Optimization Model for Air Quality Improvement in Home IoT.

    Science.gov (United States)

    Kim, Jonghyuk; Hwangbo, Hyunwoo

    2018-03-23

    We introduce current home Internet of Things (IoT) technology and present research on its various forms and applications in real life. In addition, we describe IoT marketing strategies as well as specific modeling techniques for improving air quality, a key home IoT service. To this end, we summarize the latest research on sensor-based home IoT, studies on indoor air quality, and technical studies on random data generation. In addition, we develop an air quality improvement model that can be readily applied to the market by acquiring initial analytical data and building infrastructures using spectrum/density analysis and the natural cubic spline method. Accordingly, we generate related data based on user behavioral values. We integrate the logic into the existing home IoT system to enable users to easily access the system through the Web or mobile applications. We expect that the present introduction of a practical marketing application method will contribute to enhancing the expansion of the home IoT market.

  18. Sensor-Based Optimization Model for Air Quality Improvement in Home IoT

    Directory of Open Access Journals (Sweden)

    Jonghyuk Kim

    2018-03-01

    Full Text Available We introduce current home Internet of Things (IoT technology and present research on its various forms and applications in real life. In addition, we describe IoT marketing strategies as well as specific modeling techniques for improving air quality, a key home IoT service. To this end, we summarize the latest research on sensor-based home IoT, studies on indoor air quality, and technical studies on random data generation. In addition, we develop an air quality improvement model that can be readily applied to the market by acquiring initial analytical data and building infrastructures using spectrum/density analysis and the natural cubic spline method. Accordingly, we generate related data based on user behavioral values. We integrate the logic into the existing home IoT system to enable users to easily access the system through the Web or mobile applications. We expect that the present introduction of a practical marketing application method will contribute to enhancing the expansion of the home IoT market.

  19. Futures Business Models for an IoT Enabled Healthcare Sector: A Causal Layered Analysis Perspective

    Directory of Open Access Journals (Sweden)

    Julius Francis Gomes

    2016-12-01

    Full Text Available Purpose: To facilitate futures business research by proposing a novel way to combine business models as a conceptual tool with futures research techniques. Design: A futures perspective is adopted to foresight business models of the Internet of Things (IoT enabled healthcare sector by using business models as a futures business research tool. In doing so, business models is coupled with one of the most prominent foresight methodologies, Causal Layered Analysis (CLA. Qualitative analysis provides deeper understanding of the phenomenon through the layers of CLA; litany, social causes, worldview and myth. Findings: It is di cult to predict the far future for a technology oriented sector like healthcare. This paper presents three scenarios for short-, medium- and long-term future. Based on these scenarios we also present a set of business model elements for different future time frames. This paper shows a way to combine business models with CLA, a foresight methodology; in order to apply business models in futures business research. Besides offering early results for futures business research, this study proposes a conceptual space to work with individual business models for managerial stakeholders. Originality / Value: Much research on business models has offered conceptualization of the phenomenon, innovation through business model and transformation of business models. However, existing literature does not o er much on using business model as a futures research tool. Enabled by futures thinking, we collected key business model elements and building blocks for the futures market and ana- lyzed them through the CLA framework.

  20. IoT-based user-driven service modeling environment for a smart space management system.

    Science.gov (United States)

    Choi, Hoan-Suk; Rhee, Woo-Seop

    2014-11-20

    The existing Internet environment has been extended to the Internet of Things (IoT) as an emerging new paradigm. The IoT connects various physical entities. These entities have communication capability and deploy the observed information to various service areas such as building management, energy-saving systems, surveillance services, and smart homes. These services are designed and developed by professional service providers. Moreover, users' needs have become more complicated and personalized with the spread of user-participation services such as social media and blogging. Therefore, some active users want to create their own services to satisfy their needs, but the existing IoT service-creation environment is difficult for the non-technical user because it requires a programming capability to create a service. To solve this problem, we propose the IoT-based user-driven service modeling environment to provide an easy way to create IoT services. Also, the proposed environment deploys the defined service to another user. Through the personalization and customization of the defined service, the value and dissemination of the service is increased. This environment also provides the ontology-based context-information processing that produces and describes the context information for the IoT-based user-driven service.

  1. Mountains on Io: High-resolution Galileo observations, initial interpretations, and formation models

    Science.gov (United States)

    Turtle, E.P.; Jaeger, W.L.; Keszthelyi, L.P.; McEwen, A.S.; Milazzo, M.; Moore, J.; Phillips, C.B.; Radebaugh, J.; Simonelli, D.; Chuang, F.; Schuster, P.; Alexander, D.D.A.; Capraro, K.; Chang, S.-H.; Chen, A.C.; Clark, J.; Conner, D.L.; Culver, A.; Handley, T.H.; Jensen, D.N.; Knight, D.D.; LaVoie, S.K.; McAuley, M.; Mego, V.; Montoya, O.; Mortensen, H.B.; Noland, S.J.; Patel, R.R.; Pauro, T.M.; Stanley, C.L.; Steinwand, D.J.; Thaller, T.F.; Woncik, P.J.; Yagi, G.M.; Yoshimizu, J.R.; Alvarez Del Castillo, E.M.; Beyer, R.; Branston, D.; Fishburn, M.B.; Muller, Birgit; Ragan, R.; Samarasinha, N.; Anger, C.D.; Cunningham, C.; Little, B.; Arriola, S.; Carr, M.H.; Asphaug, E.; Morrison, D.; Rages, K.; Banfield, D.; Bell, M.; Burns, J.A.; Carcich, B.; Clark, B.; Currier, N.; Dauber, I.; Gierasch, P.J.; Helfenstein, P.; Mann, M.; Othman, O.; Rossier, L.; Solomon, N.; Sullivan, R.; Thomas, P.C.; Veverka, J.; Becker, T.; Edwards, K.; Gaddis, L.; Kirk, R.; Lee, E.; Rosanova, T.; Sucharski, R.M.; Beebe, R.F.; Simon, A.; Belton, M.J.S.; Bender, K.; Fagents, S.; Figueredo, P.; Greeley, R.; Homan, K.; Kadel, S.; Kerr, J.; Klemaszewski, J.; Lo, E.; Schwarz, W.; Williams, D.; Williams, K.; Bierhaus, B.; Brooks, S.; Chapman, C.R.; Merline, B.; Keller, J.; Tamblyn, P.; Bouchez, A.; Dyundian, U.; Ingersoll, A.P.; Showman, A.; Spitale, J.; Stewart, S.; Vasavada, A.; Breneman, H.H.; Cunningham, W.F.; Johnson, T.V.; Jones, T.J.; Kaufman, J.M.; Klaasen, K.P.; Levanas, G.; Magee, K.P.; Meredith, M.K.; Orton, G.S.; Senske, D.A.; West, A.; Winther, D.; Collins, G.; Fripp, W.J.; Head, J. W.; Pappalardo, R.; Pratt, S.; Prockter, L.; Spaun, N.; Colvin, T.; Davies, M.; DeJong, E.M.; Hall, J.; Suzuki, S.; Gorjian, Z.; Denk, T.; Giese, B.; Koehler, U.; Neukum, G.; Oberst, J.; Roatsch, T.; Tost, W.; Wagner, R.; Dieter, N.; Durda, D.; Geissler, P.; Greenberg, R.J.; Hoppa, G.; Plassman, J.; Tufts, R.; Fanale, F.P.; Granahan, J.C.

    2001-01-01

    During three close flybys in late 1999 and early 2000 the Galileo spacecraft ac-quired new observations of the mountains that tower above Io's surface. These images have revealed surprising variety in the mountains' morphologies. They range from jagged peaks several kilometers high to lower, rounded structures. Some are very smooth, others are covered by numerous parallel ridges. Many mountains have margins that are collapsing outward in large landslides or series of slump blocks, but a few have steep, scalloped scarps. From these observations we can gain insight into the structure and material properties of Io's crust as well as into the erosional processes acting on Io. We have also investigated formation mechanisms proposed for these structures using finite-element analysis. Mountain formation might be initiated by global compression due to the high rate of global subsidence associated with Io's high resurfacing rate; however, our models demonstrate that this hypothesis lacks a mechanism for isolating the mountains. The large fraction (???40%) of mountains that are associated with paterae suggests that in some cases these features are tectonically related. Therefore we have also simulated the stresses induced in Io's crust by a combination of a thermal upwelling in the mantle with global lithospheric compression and have shown that this can focus compressional stresses. If this mechanism is responsible for some of Io's mountains, it could also explain the common association of mountains with paterae. Copyright 2001 by the American Geophysical Union.

  2. Small-World and Scale-Free Network Models for IoT Systems

    Directory of Open Access Journals (Sweden)

    Insoo Sohn

    2017-01-01

    Full Text Available It is expected that Internet of Things (IoT revolution will enable new solutions and business for consumers and entrepreneurs by connecting billions of physical world devices with varying capabilities. However, for successful realization of IoT, challenges such as heterogeneous connectivity, ubiquitous coverage, reduced network and device complexity, enhanced power savings, and enhanced resource management have to be solved. All these challenges are heavily impacted by the IoT network topology supported by massive number of connected devices. Small-world networks and scale-free networks are important complex network models with massive number of nodes and have been actively used to study the network topology of brain networks, social networks, and wireless networks. These models, also, have been applied to IoT networks to enhance synchronization, error tolerance, and more. However, due to interdisciplinary nature of the network science, with heavy emphasis on graph theory, it is not easy to study the various tools provided by complex network models. Therefore, in this paper, we attempt to introduce basic concepts of graph theory, including small-world networks and scale-free networks, and provide system models that can be easily implemented to be used as a powerful tool in solving various research problems related to IoT.

  3. A Model of Socially Connected Web Objects for IoT Applications

    Directory of Open Access Journals (Sweden)

    Sajjad Ali

    2018-01-01

    Full Text Available The Internet of Things (IoT is evolving with the connected objects at an unprecedented rate, bringing about enormous opportunities for the future IoT applications as well as challenges. One of the major challenges is to handle the complexity generated by the interconnection of billions of objects. However, Social Internet of Things (SIoT, emerging from the conglomeration of IoT and social networks, has realized an efficient way to facilitate the development of complex future IoT applications. Nevertheless, to fully utilize the benefits of SIoT, a platform that can provide efficient services using social relations among heterogeneous objects is highly required. The web objects enabled IoT environment promotes SIoT features by enabling virtualization using virtual objects and supporting the modularity with microservices. To realize SIoT services, this article proposes an architecture that provides a foundation for the development of lightweight microservices based on socially connected web objects. To efficiently discover web objects and reduce the complexity of service provisioning processes, a social relationship model is presented. To realize the interoperable service operations, a semantic ontology model has been developed. Finally, to evaluate the proposed design, a prototype has been implemented based on a use case scenario.

  4. Spatiotemporal access model based on reputation for the sensing layer of the IoT.

    Science.gov (United States)

    Guo, Yunchuan; Yin, Lihua; Li, Chao; Qian, Junyan

    2014-01-01

    Access control is a key technology in providing security in the Internet of Things (IoT). The mainstream security approach proposed for the sensing layer of the IoT concentrates only on authentication while ignoring the more general models. Unreliable communications and resource constraints make the traditional access control techniques barely meet the requirements of the sensing layer of the IoT. In this paper, we propose a model that combines space and time with reputation to control access to the information within the sensing layer of the IoT. This model is called spatiotemporal access control based on reputation (STRAC). STRAC uses a lattice-based approach to decrease the size of policy bases. To solve the problem caused by unreliable communications, we propose both nondeterministic authorizations and stochastic authorizations. To more precisely manage the reputation of nodes, we propose two new mechanisms to update the reputation of nodes. These new approaches are the authority-based update mechanism (AUM) and the election-based update mechanism (EUM). We show how the model checker UPPAAL can be used to analyze the spatiotemporal access control model of an application. Finally, we also implement a prototype system to demonstrate the efficiency of our model.

  5. Spatiotemporal Access Model Based on Reputation for the Sensing Layer of the IoT

    Directory of Open Access Journals (Sweden)

    Yunchuan Guo

    2014-01-01

    Full Text Available Access control is a key technology in providing security in the Internet of Things (IoT. The mainstream security approach proposed for the sensing layer of the IoT concentrates only on authentication while ignoring the more general models. Unreliable communications and resource constraints make the traditional access control techniques barely meet the requirements of the sensing layer of the IoT. In this paper, we propose a model that combines space and time with reputation to control access to the information within the sensing layer of the IoT. This model is called spatiotemporal access control based on reputation (STRAC. STRAC uses a lattice-based approach to decrease the size of policy bases. To solve the problem caused by unreliable communications, we propose both nondeterministic authorizations and stochastic authorizations. To more precisely manage the reputation of nodes, we propose two new mechanisms to update the reputation of nodes. These new approaches are the authority-based update mechanism (AUM and the election-based update mechanism (EUM. We show how the model checker UPPAAL can be used to analyze the spatiotemporal access control model of an application. Finally, we also implement a prototype system to demonstrate the efficiency of our model.

  6. Modeling IoT-based solutions using human-centric wireless sensor networks.

    Science.gov (United States)

    Monares, Álvaro; Ochoa, Sergio F; Santos, Rodrigo; Orozco, Javier; Meseguer, Roc

    2014-08-25

    The Internet of Things (IoT) has inspired solutions that are already available for addressing problems in various application scenarios, such as healthcare, security, emergency support and tourism. However, there is no clear approach to modeling these systems and envisioning their capabilities at the design time. Therefore, the process of designing these systems is ad hoc and its real impact is evaluated once the solution is already implemented, which is risky and expensive. This paper proposes a modeling approach that uses human-centric wireless sensor networks to specify and evaluate models of IoT-based systems at the time of design, avoiding the need to spend time and effort on early implementations of immature designs. It allows designers to focus on the system design, leaving the implementation decisions for a next phase. The article illustrates the usefulness of this proposal through a running example, showing the design of an IoT-based solution to support the first responses during medium-sized or large urban incidents. The case study used in the proposal evaluation is based on a real train crash. The proposed modeling approach can be used to design IoT-based systems for other application scenarios, e.g., to support security operatives or monitor chronic patients in their homes.

  7. Modeling IoT-Based Solutions Using Human-Centric Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Álvaro Monares

    2014-08-01

    Full Text Available The Internet of Things (IoT has inspired solutions that are already available for addressing problems in various application scenarios, such as healthcare, security, emergency support and tourism. However, there is no clear approach to modeling these systems and envisioning their capabilities at the design time. Therefore, the process of designing these systems is ad hoc and its real impact is evaluated once the solution is already implemented, which is risky and expensive. This paper proposes a modeling approach that uses human-centric wireless sensor networks to specify and evaluate models of IoT-based systems at the time of design, avoiding the need to spend time and effort on early implementations of immature designs. It allows designers to focus on the system design, leaving the implementation decisions for a next phase. The article illustrates the usefulness of this proposal through a running example, showing the design of an IoT-based solution to support the first responses during medium-sized or large urban incidents. The case study used in the proposal evaluation is based on a real train crash. The proposed modeling approach can be used to design IoT-based systems for other application scenarios, e.g., to support security operatives or monitor chronic patients in their homes.

  8. Futures Business Models for an IoT Enabled Healthcare Sector: A Causal Layered Analysis Perspective

    OpenAIRE

    Julius Francis Gomes; Sara Moqaddemerad

    2016-01-01

    Purpose: To facilitate futures business research by proposing a novel way to combine business models as a conceptual tool with futures research techniques. Design: A futures perspective is adopted to foresight business models of the Internet of Things (IoT) enabled healthcare sector by using business models as a futures business research tool. In doing so, business models is coupled with one of the most prominent foresight methodologies, Causal Layered Analysis (CLA). Qualitative analysis...

  9. Access Control Mechanism for IoT Environments Based on Modelling Communication Procedures as Resources.

    Science.gov (United States)

    Cruz-Piris, Luis; Rivera, Diego; Marsa-Maestre, Ivan; de la Hoz, Enrique; Velasco, Juan R

    2018-03-20

    Internet growth has generated new types of services where the use of sensors and actuators is especially remarkable. These services compose what is known as the Internet of Things (IoT). One of the biggest current challenges is obtaining a safe and easy access control scheme for the data managed in these services. We propose integrating IoT devices in an access control system designed for Web-based services by modelling certain IoT communication elements as resources. This would allow us to obtain a unified access control scheme between heterogeneous devices (IoT devices, Internet-based services, etc.). To achieve this, we have analysed the most relevant communication protocols for these kinds of environments and then we have proposed a methodology which allows the modelling of communication actions as resources. Then, we can protect these resources using access control mechanisms. The validation of our proposal has been carried out by selecting a communication protocol based on message exchange, specifically Message Queuing Telemetry Transport (MQTT). As an access control scheme, we have selected User-Managed Access (UMA), an existing Open Authorization (OAuth) 2.0 profile originally developed for the protection of Internet services. We have performed tests focused on validating the proposed solution in terms of the correctness of the access control system. Finally, we have evaluated the energy consumption overhead when using our proposal.

  10. Access Control Mechanism for IoT Environments Based on Modelling Communication Procedures as Resources

    Directory of Open Access Journals (Sweden)

    Luis Cruz-Piris

    2018-03-01

    Full Text Available Internet growth has generated new types of services where the use of sensors and actuators is especially remarkable. These services compose what is known as the Internet of Things (IoT. One of the biggest current challenges is obtaining a safe and easy access control scheme for the data managed in these services. We propose integrating IoT devices in an access control system designed for Web-based services by modelling certain IoT communication elements as resources. This would allow us to obtain a unified access control scheme between heterogeneous devices (IoT devices, Internet-based services, etc.. To achieve this, we have analysed the most relevant communication protocols for these kinds of environments and then we have proposed a methodology which allows the modelling of communication actions as resources. Then, we can protect these resources using access control mechanisms. The validation of our proposal has been carried out by selecting a communication protocol based on message exchange, specifically Message Queuing Telemetry Transport (MQTT. As an access control scheme, we have selected User-Managed Access (UMA, an existing Open Authorization (OAuth 2.0 profile originally developed for the protection of Internet services. We have performed tests focused on validating the proposed solution in terms of the correctness of the access control system. Finally, we have evaluated the energy consumption overhead when using our proposal.

  11. Access Control Mechanism for IoT Environments Based on Modelling Communication Procedures as Resources

    Science.gov (United States)

    2018-01-01

    Internet growth has generated new types of services where the use of sensors and actuators is especially remarkable. These services compose what is known as the Internet of Things (IoT). One of the biggest current challenges is obtaining a safe and easy access control scheme for the data managed in these services. We propose integrating IoT devices in an access control system designed for Web-based services by modelling certain IoT communication elements as resources. This would allow us to obtain a unified access control scheme between heterogeneous devices (IoT devices, Internet-based services, etc.). To achieve this, we have analysed the most relevant communication protocols for these kinds of environments and then we have proposed a methodology which allows the modelling of communication actions as resources. Then, we can protect these resources using access control mechanisms. The validation of our proposal has been carried out by selecting a communication protocol based on message exchange, specifically Message Queuing Telemetry Transport (MQTT). As an access control scheme, we have selected User-Managed Access (UMA), an existing Open Authorization (OAuth) 2.0 profile originally developed for the protection of Internet services. We have performed tests focused on validating the proposed solution in terms of the correctness of the access control system. Finally, we have evaluated the energy consumption overhead when using our proposal. PMID:29558406

  12. Volcanism on Io

    Science.gov (United States)

    Davies, Ashley Gerard

    2014-03-01

    Preface; Introduction; Part I. Io, 1610 to 1995: Galileo to Galileo: 1. Io, 1610-1979; 2. Between Voyager and Galileo: 1979-95; 3. Galileo at Io; Part II. Planetary Volcanism: Evolution and Composition: 4. Io and Earth: formation, evolution, and interior structure; 5. Magmas and volatiles; Part III. Observing and Modeling Volcanic Activity: 6. Observations: thermal remote sensing of volcanic activity; 7. Models of effusive eruption processes; 8. Thermal evolution of volcanic eruptions; Part IV. Galileo at Io: the Volcanic Bestiary: 9. The view from Galileo; 10. The lava lake at Pele; 11. Pillan and Tvashtar: lava fountains and flows; 12. Prometheus and Amirani: Effusive activity and insulated flows; 13. Loki Patera: Io's powerhouse; 14. Other volcanoes and eruptions; Part V. Volcanism on Io: The Global View: 15. Geomorphology: paterae, shields, flows and mountains; 16. Volcanic plumes; 17. Hot spots; Part VI. Io after Galileo: 18. Volcanism on Io: a post-Galileo view; 19. The future of Io observations; Appendix 1; Appendix 2; References; Index.

  13. Energy Modeling of IoT Mobile Terminals on WiFi Environmental Impacts †.

    Science.gov (United States)

    Sun, Yuxia; Chen, Junxian; Tang, Yong; Chen, Yanjia

    2018-05-28

    With the popularity of various IoT mobile terminals such as mobile phones and sensors, the energy problems of IoT mobile terminals have attracted increasingly more attention. In this paper, we explore the impacts of some important factors of WiFi environments on the energy consumption of mobile phones, which are typical IoT end devices. The factors involve the WiFi signal strength under good signal conditions, the type and the amount of protocol packets that are initiated by WiFi APs (Access Points) to maintain basic network communication with the phones. Controlled experiments are conducted to quantitatively study the phone energy impacts by the above WiFi environmental factors. To describe such impacts, we construct a time-based signal strength-aware energy model and packet type/amount-aware energy models. The models constructed in the paper corroborate the following user experience on phone energy consumption: (1) a phone's energy is drawn faster under higher WiFi signal strengths than under lower ones even in normal signal conditions; (2) phones consume energy faster in a public WiFi network than in a private one even in the basic phone state. The energy modeling methods proposed in the paper enable ordinary developers to analyze phone energy draw conveniently by utilizing inexpensive power meters as measurement tools. The modeling methods are general and are able to be used for phones of any type and any platform.

  14. Study on Batch Culture Growth Model for Lactococcus lactis IO-1

    OpenAIRE

    Ishizaki, Ayaaki; Ohta, Tomomi; Kobayashi, Genta; 石崎, 文彬; 太田, 智美; 小林, 元太

    1991-01-01

    L-lactate fermentation employing Lactncoccus lactis IO-1 demonstrated a typical end product inhibition. By numerical analysis of fermentation results of the batch culture of this microorganism, the specific rates for cell growth, substrate consumption and product formation were clearly expressed by the end product inhibition formulae. All constants for those formulae were determined by the fermentation results. A mathematical model for batch culture growth of this microorganism in which the n...

  15. A Reference Model for Monitoring IoT WSN-Based Applications.

    Science.gov (United States)

    Capella, Juan Vicente; Campelo, José Carlos; Bonastre, Alberto; Ors, Rafael

    2016-10-30

    The Internet of Things (IoT) is, at this moment, one of the most promising technologies that has arisen for decades. Wireless Sensor Networks (WSNs) are one of the main pillars for many IoT applications, insofar as they require to obtain context-awareness information. The bibliography shows many difficulties in their real implementation that have prevented its massive deployment. Additionally, in IoT environments where data producers and data consumers are not directly related, compatibility and certification issues become fundamental. Both problems would profit from accurate knowledge of the internal behavior of WSNs that must be obtained by the utilization of appropriate tools. There are many ad-hoc proposals with no common structure or methodology, and intended to monitor a particular WSN. To overcome this problem, this paper proposes a structured three-layer reference model for WSN Monitoring Platforms (WSN-MP), which offers a standard environment for the design of new monitoring platforms to debug, verify and certify a WSN's behavior and performance, and applicable to every WSN. This model also allows the comparative analysis of the current proposals for monitoring the operation of WSNs. Following this methodology, it is possible to achieve a standardization of WSN-MP, promoting new research areas in order to solve the problems of each layer.

  16. Benthic boundary layer. IOS observational and modelling programme

    International Nuclear Information System (INIS)

    Saunders, P.M.; Richards, K.J.

    1985-01-01

    Near bottom currents, measured at three sites in the N.E. Atlantic, reveal the eddying characteristics of the flow. Eddies develop, migrate and decay in ways best revealed by numerical modelling simulations. Eddies control the thickness of the bottom mixed layer by accumulating and thickening or spreading and thinning the bottom waters. At the boundaries of eddies benthic fronts form providing a path for upward displacement of the bottom water. An experiment designed to estimate vertical diffusivity is performed. The flux of heat into the bottom of the Iberian basin through Discovery Gap is deduced from year long current measurements. The flux is supposed balanced by geothermal heating through the sea floor and diapycnal diffusion in the water. A diffusivity of 1.5 to 4 cm 2 s -1 is derived for the bottom few hundred meters of the deep ocean. Experiments to estimate horizontal diffusivity are described. If a tracer is discharged from the sea bed the volume of sea water in which it is found increases with time and after 20 years will fill an ocean basin of side 1000 km to a depth of only 1 to 2 km. (author)

  17. Terrestrial Lava Lake Physical Parameter Estimation Using a Silicate Cooling Model - Implications for a Return to the Volcanic Moon, Io

    Science.gov (United States)

    Davies, Ashley

    2010-05-01

    Active lava lakes are open volcanic systems, where lava circulates between a magma chamber and the surface. Rare on Earth, lava lakes may be common on Io, the highly volcanic moon of Jupiter (see [1]). Lava lakes are important targets for future missions to Io [2, 3] as they provide excellent targets at which to measure lava eruption temperature (see [2] for other targets). With this in mind, hand-held infrared imagers were used to collect in-situ thermal emission data from the anorthoclase phonolite lava lake at Erebus volcano (Antarctica) in December 2005 [1, 3] and the basalt lava lake at Erta'Ale volcano (Ethiopia) in September 2009. These data have been analysed to establish surface temperature and area distributions and the integrated thermal emission spectra for each lava lake. These spectra have been used to test models developed for analysis of remote sensing data of lava lakes and lava flows on both Earth and Io, where no ground-truth exists. The silicate cooling model [4] assumes, for the lava lake model variant, that the existing surface crust has been created at a fixed rate. Model output consists of a synthesized thermal emission spectrum, estimate of surface age range, and a rate of surface crust area formation. The cooling model provides accurate reproductions of actual thermal spectra and the total emitting area to within a few percent of actual emitting area. Despite different composition lavas, the integrated thermal emission spectra from the two terrestrial lava lakes studied are very similar in shape, and, importantly, bear a striking similarity to spectra of Pele, a feature on Io that has been proposed to be a persistent, active lava lake [1]. The 2005 Erebus lava lake had an area of ~820 m2 and a measured surface temperature distribution of 1090 K to 575 K with a broad peak from 730 K to 850 K [5]. Total heat loss was estimated to be 23.5 MW [5]. The model fit yielded an area of ~820 m2, temperatures from 1475 K to 699 K, and an average

  18. A time-dependent anisotropic plasma chemistry model of the Io plasma torus

    Science.gov (United States)

    Arridge, C. S.

    2016-12-01

    The physics of the Io plasma torus is typically modelled using one box neutral-plasma chemistry models, often referred to as neutral cloud theory models (e.g., Barbosa 1994; Delamere and Bagenal 2003). These models incorporate electron impact and photoionisation, charge exchange, molecular dissociation/recombination reactions, atomic radiatiative losses and Coulomb collisional heating. Isotropic Maxwellian distributions are usually assumed in the implementation of these models. Observationally a population of suprathermal electrons has been identified in the plasma torus and theoretically they have been shown to be important in reproducing the observed ionisation balance in the torus (e.g., Barbosa 1994). In this paper we describe an anisotropic plasma chemistry model for the Io torus that is inspired by ion cyclotron wave observations (Huddleston et al. 1994; Leisner et al. 2011), ion anisotropies due to pick up (Wilson et al. 2008), and theoretical ideas on the maintenance of the suprathermal electron population (Barbosa 1994). We present both steady state calculations and also time varying solutions (e.g., Delamere et al. 2004) where increases in the neutral source rate in the torus generates perturbations in ion anisotropies that subsequently decay over a timescale much longer than the duration of the initial perturbation. We also present a method for incorporating uncertainties in reaction rates into the model.

  19. Coupled model of INM-IO global ocean model, CICE sea ice model and SCM OIAS framework

    Science.gov (United States)

    Bayburin, Ruslan; Rashit, Ibrayev; Konstantin, Ushakov; Vladimir, Kalmykov; Gleb, Dyakonov

    2015-04-01

    Status of coupled Arctic model of ocean and sea ice is presented. Model consists of INM IO global ocean component of high resolution, Los Alamos National Laboratory CICE sea ice model and a framework SCM OIAS for the ocean-ice-atmosphere-land coupled modeling on massively-parallel architectures. Model is currently under development at the Institute of Numerical Mathematics (INM), Hydrometeorological Center (HMC) and P.P. Shirshov Institute of Oceanology (IO). Model is aimed at modeling of intra-annual variability of hydrodynamics in Arctic and. The computational characteristics of the world ocean-sea ice coupled model governed by SCM OIAS are presented. The model is parallelized using MPI technologies and currently can use efficiently up to 5000 cores. Details of programming implementation, computational configuration and physical phenomena parametrization are analyzed in terms of intercoupling complex. Results of five year computational experiment of sea ice, snow and ocean state evolution in Arctic region on tripole grid with horizontal resolution of 3-5 kilometers, closed by atmospheric forcing field from repeating "normal" annual course taken from CORE1 experiment data base are presented and analyzed in terms of the state of vorticity and warm Atlantic water expansion.

  20. IO strategies and data services for petascale data sets from a global cloud resolving model

    International Nuclear Information System (INIS)

    Schuchardt, K L; Palmer, B J; Daily, J A; Elsethagen, T O; Koontz, A S

    2007-01-01

    Global cloud resolving models at resolutions of 4km or less create significant challenges for simulation output, data storage, data management, and post-simulation analysis and visualization. To support efficient model output as well as data analysis, new methods for IO and data organization must be evaluated. The model we are supporting, the Global Cloud Resolving Model being developed at Colorado State University, uses a geodesic grid. The non-monotonic nature of the grid's coordinate variables requires enhancements to existing data processing tools and community standards for describing and manipulating grids. The resolution, size and extent of the data suggest the need for parallel analysis tools and allow for the possibility of new techniques in data mining, filtering and comparison to observations. We describe the challenges posed by various aspects of data generation, management, and analysis, our work exploring IO strategies for the model, and a preliminary architecture, web portal, and tool enhancements which, when complete, will enable broad community access to the data sets in familiar ways to the community

  1. Improving UWB-Based Localization in IoT Scenarios with Statistical Models of Distance Error.

    Science.gov (United States)

    Monica, Stefania; Ferrari, Gianluigi

    2018-05-17

    Interest in the Internet of Things (IoT) is rapidly increasing, as the number of connected devices is exponentially growing. One of the application scenarios envisaged for IoT technologies involves indoor localization and context awareness. In this paper, we focus on a localization approach that relies on a particular type of communication technology, namely Ultra Wide Band (UWB). UWB technology is an attractive choice for indoor localization, owing to its high accuracy. Since localization algorithms typically rely on estimated inter-node distances, the goal of this paper is to evaluate the improvement brought by a simple (linear) statistical model of the distance error. On the basis of an extensive experimental measurement campaign, we propose a general analytical framework, based on a Least Square (LS) method, to derive a novel statistical model for the range estimation error between a pair of UWB nodes. The proposed statistical model is then applied to improve the performance of a few illustrative localization algorithms in various realistic scenarios. The obtained experimental results show that the use of the proposed statistical model improves the accuracy of the considered localization algorithms with a reduction of the localization error up to 66%.

  2. Modeling Remote I/O versus Staging Tradeoff in Multi-Data Center Computing

    International Nuclear Information System (INIS)

    Suslu, Ibrahim H

    2014-01-01

    In multi-data center computing, data to be processed is not always local to the computation. This is a major challenge especially for data-intensive Cloud computing applications, since large amount of data would need to be either moved the local sites (staging) or accessed remotely over the network (remote I/O). Cloud application developers generally chose between staging and remote I/O intuitively without making any scientific comparison specific to their application data access patterns since there is no generic model available that they can use. In this paper, we propose a generic model for the Cloud application developers which would help them to choose the most appropriate data access mechanism for their specific application workloads. We define the parameters that potentially affect the end-to-end performance of the multi-data center Cloud applications which need to access large datasets over the network. To test and validate our models, we implemented a series of synthetic benchmark applications to simulate the most common data access patterns encountered in Cloud applications. We show that our model provides promising results in different settings with different parameters, such as network bandwidth, server and client capabilities, and data access ratio

  3. A comprehensive model of ion diffusion and charge exchange in the cold Io torus

    Science.gov (United States)

    Barbosa, D. D.; Moreno, M. A.

    1988-01-01

    A comprehensive analytic model of radial diffusion in the cold Io torus is developed. The model involves a generalized molecular cloud theory of SO2 and its dissociation fragments SO, O2, S, and O, which are formed at a relatively large rate by solar UV photodissociation of SO2. The key component of the new theory is SO, which can react with S(+) through a near-resonant charge exchange process that is exothermic. This provides a mechanism for the rapid depletion of singly ionized sulfur in the cold torus and can account for the large decrease in the total flux tube content inward of Io's orbit. The model is used to demonstrate quantitatively the effects of radial diffusion in a charge exchange environment that acts as a combined source and sink for ions in various charge states. A detailed quantitative explanation for the O(2+) component of the cold torus is given, and insight is derived into the workings of the so-called plasma 'ribbon'.

  4. A Location-Based Interactive Model of Internet of Things and Cloud (IoT-Cloud) for Mobile Cloud Computing Applications.

    Science.gov (United States)

    Dinh, Thanh; Kim, Younghan; Lee, Hyukjoon

    2017-03-01

    This paper presents a location-based interactive model of Internet of Things (IoT) and cloud integration (IoT-cloud) for mobile cloud computing applications, in comparison with the periodic sensing model. In the latter, sensing collections are performed without awareness of sensing demands. Sensors are required to report their sensing data periodically regardless of whether or not there are demands for their sensing services. This leads to unnecessary energy loss due to redundant transmission. In the proposed model, IoT-cloud provides sensing services on demand based on interest and location of mobile users. By taking advantages of the cloud as a coordinator, sensing scheduling of sensors is controlled by the cloud, which knows when and where mobile users request for sensing services. Therefore, when there is no demand, sensors are put into an inactive mode to save energy. Through extensive analysis and experimental results, we show that the location-based model achieves a significant improvement in terms of network lifetime compared to the periodic model.

  5. A Location-Based Interactive Model of Internet of Things and Cloud (IoT-Cloud for Mobile Cloud Computing Applications

    Directory of Open Access Journals (Sweden)

    Thanh Dinh

    2017-03-01

    Full Text Available This paper presents a location-based interactive model of Internet of Things (IoT and cloud integration (IoT-cloud for mobile cloud computing applications, in comparison with the periodic sensing model. In the latter, sensing collections are performed without awareness of sensing demands. Sensors are required to report their sensing data periodically regardless of whether or not there are demands for their sensing services. This leads to unnecessary energy loss due to redundant transmission. In the proposed model, IoT-cloud provides sensing services on demand based on interest and location of mobile users. By taking advantages of the cloud as a coordinator, sensing scheduling of sensors is controlled by the cloud, which knows when and where mobile users request for sensing services. Therefore, when there is no demand, sensors are put into an inactive mode to save energy. Through extensive analysis and experimental results, we show that the location-based model achieves a significant improvement in terms of network lifetime compared to the periodic model.

  6. A Location-Based Interactive Model of Internet of Things and Cloud (IoT-Cloud) for Mobile Cloud Computing Applications †

    Science.gov (United States)

    Dinh, Thanh; Kim, Younghan; Lee, Hyukjoon

    2017-01-01

    This paper presents a location-based interactive model of Internet of Things (IoT) and cloud integration (IoT-cloud) for mobile cloud computing applications, in comparison with the periodic sensing model. In the latter, sensing collections are performed without awareness of sensing demands. Sensors are required to report their sensing data periodically regardless of whether or not there are demands for their sensing services. This leads to unnecessary energy loss due to redundant transmission. In the proposed model, IoT-cloud provides sensing services on demand based on interest and location of mobile users. By taking advantages of the cloud as a coordinator, sensing scheduling of sensors is controlled by the cloud, which knows when and where mobile users request for sensing services. Therefore, when there is no demand, sensors are put into an inactive mode to save energy. Through extensive analysis and experimental results, we show that the location-based model achieves a significant improvement in terms of network lifetime compared to the periodic model. PMID:28257067

  7. Increased Tidal Dissipation Using Advanced Rheological Models: Implications for Io and Tidally Active Exoplanets

    Science.gov (United States)

    Renaud, Joe P.; Henning, Wade G.

    2018-04-01

    The advanced rheological models of Andrade and Sundberg & Cooper are compared to the traditional Maxwell model to understand how each affects the tidal dissipation of heat within rocky bodies. We find both Andrade and Sundberg–Cooper rheologies can produce at least 10× the tidal heating compared to a traditional Maxwell model for a warm (1400–1600 K) Io-like satellite. Sundberg–Cooper can cause even larger dissipation around a critical temperature and frequency. These models allow cooler planets to stay tidally active in the face of orbital perturbations—a condition we term “tidal resilience.” This has implications for the time evolution of tidally active worlds and the long-term equilibria they fall into. For instance, if Io’s interior is better modeled by the Andrade or Sundberg–Cooper rheologies, the number of possible resonance-forming scenarios that still produce a hot, modern Io is expanded, and these scenarios do not require an early formation of the Laplace resonance. The two primary empirical parameters that define the Andrade anelasticity are examined in several phase spaces to provide guidance on how their uncertainties impact tidal outcomes, as laboratory studies continue to constrain their real values. We provide detailed reference tables on the fully general equations required for others to insert the models of Andrade and Sundberg–Cooper into standard tidal formulae. Lastly, we show that advanced rheologies can greatly impact the heating of short-period exoplanets and exomoons, while the properties of tidal resilience could mean a greater number of tidally active worlds among all extrasolar systems.

  8. Spatial Distribution of Volcanic Hotspots and Paterae on Io: Implications for Tidal Heating Models and Magmatic Pathways

    Science.gov (United States)

    Hamilton, C. W.; Beggan, C. D.; Lopes, R.; Williams, D. A.; Radenbaugh, J.

    2011-01-01

    Io, the innermost of Jupiter's Galilean satellites, is the most volcanically active body in the Solar. System. Io's global mean heat flow is approximately 2 W/square m, which is approximately 20 times larger than on Earth. High surface temperatures concentrate within "hotspots" and, to date, 172 Ionian hotspots have been identified by spacecraft and Earth-based telescopes. The Laplace resonance between Io, Europa, and Ganymede maintains these satellites in noncircular orbits and causes displacement of their tidal bulges as the overhead position of Jupiter changes for each moon. Gravitational interactions between Jupiter and Io dominate the orbital evolution of the Laplacian system and generate enormous heat within to as tidal energy is dissipated. If this energy were transferred out of Io at the same rate as it is generated, then the associated surface heat flux would be 2.24 +/- 0.45 W/square m. This estimate is in good agreement with observed global heat flow, but to better constrain tidal dissipation mechanisms and infer how thermal energy is transferred to Io's surface, it is critical to closely examine the spatial distribution of volcanic features. End-member tidal dissipation models either consider that heating occurs completely in the mantle, or completely in the asthenosphere. Mixed models typically favor one-third mantle and two-thirds asthenosphere heating. Recent models also consider the effects of mantle-asthenosphere boundary permeability and asthenospheric instabilities. Deep-mantle heating models predict maximum surface heat flux near the poles, whereas asthenosphere heating models predict maxima near the equator-particularly in the Sub-Jovian and Anti-Jovian hemispheres, with smaller maxima occurring at orbit tangent longitudes. Previous studies have examined the global distribution of Ionian hotspots and patera (i.e., irregular or complex craters with scalloped edges that are generally interpreted to be volcanic calderas), but in this study, we

  9. A Model of Socially Connected Web Objects for IoT Applications

    OpenAIRE

    Ali, Sajjad; Kibria, Muhammad Golam; Jarwar, Muhammad Aslam; Lee, Hoon Ki; Chong, Ilyoung

    2018-01-01

    The Internet of Things (IoT) is evolving with the connected objects at an unprecedented rate, bringing about enormous opportunities for the future IoT applications as well as challenges. One of the major challenges is to handle the complexity generated by the interconnection of billions of objects. However, Social Internet of Things (SIoT), emerging from the conglomeration of IoT and social networks, has realized an efficient way to facilitate the development of complex future IoT application...

  10. The algebraic collective model

    International Nuclear Information System (INIS)

    Rowe, D.J.; Turner, P.S.

    2005-01-01

    A recently proposed computationally tractable version of the Bohr collective model is developed to the extent that we are now justified in describing it as an algebraic collective model. The model has an SU(1,1)xSO(5) algebraic structure and a continuous set of exactly solvable limits. Moreover, it provides bases for mixed symmetry collective model calculations. However, unlike the standard realization of SU(1,1), used for computing beta wave functions and their matrix elements in a spherical basis, the algebraic collective model makes use of an SU(1,1) algebra that generates wave functions appropriate for deformed nuclei with intrinsic quadrupole moments ranging from zero to any large value. A previous paper focused on the SO(5) wave functions, as SO(5) (hyper-)spherical harmonics, and computation of their matrix elements. This paper gives analytical expressions for the beta matrix elements needed in applications of the model and illustrative results to show the remarkable gain in efficiency that is achieved by using such a basis in collective model calculations for deformed nuclei

  11. Io's Magnetospheric Interaction: An MHD Model with Day-Night Asymmetry

    Science.gov (United States)

    Kabin, K.; Combi, M. R.; Gombosi, T. I.; DeZeeuw, D. L.; Hansen, K. C.; Powell, K. G.

    2001-01-01

    In this paper we present the results of all improved three-dimensional MHD model for Io's interaction with Jupiter's magnetosphere. We have included the day-night asymmetry into the spatial distribution of our mass-loading, which allowed us to reproduce several smaller features or the Galileo December 1995 data set. The calculation is performed using our newly modified description of the pick-up processes that accounts for the effects of the corotational electric field existing in the Jovian magnetosphere. This change in the formulation of the source terms for the MHD equations resulted in significant improvements in the comparison with the Galileo measurements. We briefly discuss the limitations of our model and possible future improvements.

  12. Constructing a multi-sided business model for a smart horizontal IoT service platform

    NARCIS (Netherlands)

    Berkers, F.; Roelands, M.; Bomhof, F.; Bachet, T.; Van Rijn, M.; Koers, W.

    2013-01-01

    In order to realize a viable business ecosystem in the Internet of Things (IoT), we investigated how a smart horizontal IoT service platform can bring value and economies of scale to all required ecosystem stakeholders. By means of an example application domain case, this paper constructs a

  13. Defining the stack for service delivery models and interoperability in the internet of things: A practical case with OpenIoT-VDK

    OpenAIRE

    Serrano, M.; Quoc, H.N.M.; Phuoc, D.L.; Hauswirth, M.; Soldatos, J.; Kefalakis, N.; Jayaraman, P.P.; Zaslavsky, A.

    2015-01-01

    This paper introduces the stack for service delivery models and interoperability in the Internet of Things. The main characteristics and functional layers of the IoT stack are described. The applicability of the IoT stack is described based on particular use cases and deployed pilots. The validation of the IoT stack in terms of functionality and adaptation at different IoT particular areas is based on the Virtual Development Kit (VDK) developed and implemented within the framework of the Open...

  14. Top-Down Delivery of IoT-based Applications for Seniors Behavior Change Capturing Exploiting a Model-Driven Approach

    OpenAIRE

    Fiore, Alessandro; Caione, Adriana; Mainetti, Luca; Manco, Luigi; Vergallo, Roberto

    2018-01-01

    Developing Internet of Things (IoT) requires expertise and considerable skills in different fields in order to cover all the involved heterogeneous technologies, communication formats and protocols. Developers and experts ask for new solutions that speed up the prototyping of IoT applications. One of these solutions is Web of Topics (WoX) middleware, a model-driven Cloud platform that aims to ease IoT applications developing, introducing a strong semantic abstraction of the IoT concepts. In W...

  15. CaPTHUS scoring model in primary hyperparathyroidism: can it eliminate the need for ioPTH testing?

    Science.gov (United States)

    Elfenbein, Dawn M; Weber, Sara; Schneider, David F; Sippel, Rebecca S; Chen, Herbert

    2015-04-01

    The CaPTHUS model was reported to have a positive predictive value of 100 % to correctly predict single-gland disease in patients with primary hyperparathyroidism, thus obviating the need for intraoperative parathyroid hormone (ioPTH) testing. We sought to apply the CaPTHUS scoring model in our patient population and assess its utility in predicting long-term biochemical cure. We retrospective reviewed all parathyroidectomies for primary hyperparathyroidism performed at our university hospital from 2003 to 2012. We routinely perform ioPTH testing. Biochemical cure was defined as a normal calcium level at 6 months. A total of 1,421 patients met the inclusion criteria: 78 % of patients had a single adenoma at the time of surgery, 98 % had a normal serum calcium at 1 week postoperatively, and 96 % had a normal serum calcium level 6 months postoperatively. Using the CaPTHUS scoring model, 307 patients (22.5 %) had a score of ≥ 3, with a positive predictive value of 91 % for single adenoma. A CaPTHUS score of ≥ 3 had a positive predictive value of 98 % for biochemical cure at 1 week as well as at 6 months. In our population, where ioPTH testing is used routinely to guide use of bilateral exploration, patients with a preoperative CaPTHUS score of ≥ 3 had good long-term biochemical cure rates. However, the model only predicted adenoma in 91 % of cases. If minimally invasive parathyroidectomy without ioPTH testing had been done for these patients, the cure rate would have dropped from 98 % to an unacceptable 89 %. Even in these patients with high CaPTHUS scores, multigland disease is present in almost 10 %, and ioPTH testing is necessary.

  16. Supporting Analysis and Audit of Collaborative OAIS’s by use of an Outer OAIS – Inner OAIS (OO-IO) Model

    DEFF Research Database (Denmark)

    Zierau, Eld; McGovern, Nancy

    2014-01-01

    the known threats to digital content through time. The main purpose of the paper is to present an Outer OAIS-Inner OAIS (OO-IO) Model that can support the analysis and audit of collaborative interactions between multiple OAIS’s to enable distributed digital preservation. The paper provides extensive...... explanations and diagrams to demonstrate the ability of the OO-IO model to address distributed digital preservation conformance with the Open Archival Information System (OAIS) Reference Model. It is argued that the OO-IO model contributes a necessary extension to the literature of the digital preservation...... community to address the analysis and audit necessary for distributed digital preservation....

  17. The generalized collective model

    International Nuclear Information System (INIS)

    Troltenier, D.

    1992-07-01

    In this thesis a new way of proceeding, basing on the method of the finite elements, for the solution of the collective Schroedinger equation in the framework of the Generalized Collective Model was presented. The numerically reachable accuracy was illustrated by the comparison to analytically known solutions by means of numerous examples. Furthermore the potential-energy surfaces of the 182-196 Hg, 242-248 Cm, and 242-246 Pu isotopes were determined by the fitting of the parameters of the Gneuss-Greiner potential to the experimental data. In the Hg isotopes a shape consistency of nearly spherical and oblate deformations is shown, while the Cm and Pu isotopes possess an essentially equal remaining prolate deformation. By means of the pseudo-symplectic model the potential-energy surfaces of 24 Mg, 190 Pt, and 238 U were microscopically calculated. Using a deformation-independent kinetic energy so the collective excitation spectra and the electrical properties (B(E2), B(E4) values, quadrupole moments) of these nuclei were calculated and compared with the experiment. Finally an analytic relation between the (g R -Z/A) value and the quadrupole moment was derived. The study of the experimental data of the 166-170 Er isotopes shows an in the framework of the measurement accuracy a sufficient agreement with this relation. Furthermore it is by this relation possible to determine the effective magnetic dipole moment parameter-freely. (orig./HSI) [de

  18. Programming iOS 6

    CERN Document Server

    Neuburg, Matt

    2013-01-01

    Get a solid grounding in all the fundamentals of Cocoa Touch, and avoid problems during iPhone and iPad app development. With this revised and expanded edition, you'll dig into Cocoa and learn how to work effectively with Objective-C and Xcode. This book covers iOS 6 in a rigorous, orderly fashion-ideal whether you're approaching iOS for the first time or need a reference to bolster existing skills. Learn about features introduced with iOS 6, including Objective-C language advances, autosynthesis, autolayout, new view controller rotation rules, unwind segues, state restoration, styled text, and collection views. * Learn Objective-C language details and object-oriented programming concepts * Understand the anatomy of an Xcode project and all the stages of its lifecycle * Grasp key Cocoa concepts such as relationships between classes, receiving events, and model-view-controller architecture * Learn how views and layers are managed, drawn, composited, and animated * Become familiar with view controllers and thei...

  19. Io's theothermal (sulfur) - Lithosphere cycle inferred from sulfur solubility modeling of Pele's magma supply

    Science.gov (United States)

    Battaglia, Steven M.; Stewart, Michael A.; Kieffer, Susan W.

    2014-06-01

    Surface deposits of volatile compounds such as water (Earth) or sulfur (Io) on volcanically active bodies suggest that a magmatic distillation process works to concentrate volatiles in surface reservoirs. On Earth, this is the combined hydrologic and tectonic cycle. On Io, sulfurous compounds are transferred from the interior to the surface reservoirs through a combination of a mantle-sourced magmatic system, vertical cycling of the lithosphere, and a sulfur-dominated crustal thermal system that we here call the "theothermal" system. We present a geochemical analysis of this process using previously inferred temperature and oxygen fugacity constraints of Pele's basaltic magma to determine the behavior of sulfur in the ionian magmas. Sulfate to sulfide ratios of Pele's magma are -4.084 ± 0.6 and -6.442 ± 0.7 log10 units, comparable to or lower than those of mid-ocean ridge basalts. This reflects the similarity of Io's oxidation state with Earth's depleted mantle as previously suggested by Zolotov and Fegley (Zolotov, M.Y., Fegley, B. [2000]. Geophys. Res. Lett. 27, 2789-2792). Our calculated limits of sulfur solubility in melts from Pele's patera (˜1100-1140 ppm) are also comparable to terrestrial mid-ocean ridge basalts, reflecting a compositional similarity of mantle sources. We propose that the excess sulfur obvious on Io's surface comes from two sources: (1) an insoluble sulfide liquid phase in the magma and (2) theothermal near-surface recycling.

  20. Lower Bounds for Sorted Geometric Queries in the I/O Model

    DEFF Research Database (Denmark)

    Afshani, Peyman; Zeh, Norbert

    2012-01-01

    . This is highly relevant in an I/O context because storing a massive data set in a superlinear-space data structure is often infeasible. We also prove that answering queries using I/Os requires space, where N is the input size, B is the block size, and M is the size of the main memory. This bound is unlikely...... to be optimal and in fact we can show that, for a particular class of “persistence-based” data structures, the space lower bound can be improved to Ω(N2 / MO(1)). Both these lower bounds are a first step towards understanding the complexity of sorted geometric query problems. All our lower bounds assume...

  1. Generating process model collections

    NARCIS (Netherlands)

    Yan, Z.; Dijkman, R.M.; Grefen, P.W.P.J.

    2017-01-01

    Business process management plays an important role in the management of organizations. More and more organizations describe their operations as business processes. It is common for organizations to have collections of thousands of business processes, but for reasons of confidentiality these

  2. On I/O Virtualization Management

    Science.gov (United States)

    Danciu, Vitalian A.; Metzker, Martin G.

    The quick adoption of virtualization technology in general and the advent of the Cloud business model entail new requirements on the structure and the configuration of back-end I/O systems. Several approaches to virtualization of I/O links are being introduced, which aim at implementing a more flexible I/O channel configuration without compromising performance. While previously the management of I/O devices could be limited to basic technical requirments (e.g. the establishment and termination of fixed-point links), the additional flexibility carries in its wake additional management requirements on the representation and control of I/O sub-systems.

  3. Microscopic collective models of nuclei

    International Nuclear Information System (INIS)

    Lovas, Rezsoe

    1985-01-01

    Microscopic Rosensteel-Rowe theory of the nuclear collective motion is described. The theoretical insufficiency of the usual microscopic establishment of the collective model is pointed. The new model treating exactly the degrees of freedom separates the coordinates describing the collective motion and the internal coordinates by a consistent way. Group theoretical methods analyzing the symmetry properties of the total Hamiltonian are used defining the collective subspaces transforming as irreducible representations of the group formed by the collective operators. Recent calculations show that although the results of the usual collective model are approximately correct and similar to those of the new microscopic collective model, the underlying philosophy of the old model is essentially erroneous. (D.Gy.)

  4. DMIA: A MALWARE DETECTION SYSTEM ON IOS PLATFORM

    OpenAIRE

    Hongliang Liang; Yilun Xie; Yan Song

    2016-01-01

    iOS is a popular operating system on Apple’s smartphones, and recent security events have shown the possibility of stealing the users' privacy in iOS without being detected, such as XcodeGhost. So, we present the design and implementation of a malware vetting system, called DMIA. DMIA first collects runtime information of an app and then distinguish between malicious and normal apps by a novel machine learning model. We evaluated DMIA with 1000 apps from the official App Store. The results of...

  5. Securing IoT Devices at CERN

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    CERN has more than 1000 Internet of Things (IoT) devices, which are connected to the office network. We have been doing the research to find all vulnerable IoT devices in CERN and mitigated them. We are currently working on detecting IoT devices automatically and, moreover, identifying the manufacturer, model and the running firmware version. This will help the CERN Computer Security Team to spot vulnerable devices and to show the security risks associated with them.

  6. Erosional scarps on Io

    International Nuclear Information System (INIS)

    McCauley, J.F.; Soderblom, L.A.; Smith, B.A.

    1979-01-01

    Irregular or fretted scarps on Io as revealed during the voyager 1 mission are similar to those found on Earth and Mars. A sapping mechanism involving liquid SO 2 is proposed to explain these complexly eroded terrains on Io. (author)

  7. Medical Image Segmentation for Mobile Electronic Patient Charts Using Numerical Modeling of IoT

    Directory of Open Access Journals (Sweden)

    Seung-Hoon Chae

    2014-01-01

    Full Text Available Internet of Things (IoT brings telemedicine a new chance. This enables the specialist to consult the patient’s condition despite the fact that they are in different places. Medical image segmentation is needed for analysis, storage, and protection of medical image in telemedicine. Therefore, a variety of methods have been researched for fast and accurate medical image segmentation. Performing segmentation in various organs, the accurate judgment of the region is needed in medical image. However, the removal of region occurs by the lack of information to determine the region in a small region. In this paper, we researched how to reconstruct segmentation region in a small region in order to improve the segmentation results. We generated predicted segmentation of slices using volume data with linear equation and proposed improvement method for small regions using the predicted segmentation. In order to verify the performance of the proposed method, lung region by chest CT images was segmented. As a result of experiments, volume data segmentation accuracy rose from 0.978 to 0.981 and from 0.281 to 0.187 with a standard deviation improvement confirmed.

  8. Conceptual Model for Smart Cities: Irrigation and Highway Lamps using IoT

    Directory of Open Access Journals (Sweden)

    Vijender Kumar Solanki

    2017-03-01

    Full Text Available Keeping in mind the need to preserve energy as well as utilize the available at its best the need was felt to develop a module that would be able to sort out the problem where resources such as water and electricity were wasted, in urban as well as rural area. Resource (electricity was wasted as beside the point operation of Highway and High Mast Lamp; while wastage of water followed by improper trends and methodologies imparted for watering of city park, road side plantation and highway plantation. Thus as per Energy survey statistics of a City (Lucknow, India it was found that major portion of resources (water and electricity were being wasted due to negligent activities of officials who were in charge of resource management. So to facilitate energy saving trends and to completely modernize it to autonomous system, module below is proposed which incorporates modern technological peripheral and has its base ingrained in IoT (Internet of Things which when put into consideration would result in large scale resource and energy saving.This developed module incorporates the peripherals such as Arduino, Texas Instruments ultra low power kits etc. in accordance with software technology including Lab View which help to monitor as well as control the various operation from the base station, located far away from the site. Lab View Interface interacts with all the module located at various city parks, subways and highway lighting modules. Later below in several section a detailed pattern and application frame has been put up.

  9. Cyber and Physical Security Vulnerability Assessment for IoT-Based Smart Homes.

    Science.gov (United States)

    Ali, Bako; Awad, Ali Ismail

    2018-03-08

    The Internet of Things (IoT) is an emerging paradigm focusing on the connection of devices, objects, or "things" to each other, to the Internet, and to users. IoT technology is anticipated to become an essential requirement in the development of smart homes, as it offers convenience and efficiency to home residents so that they can achieve better quality of life. Application of the IoT model to smart homes, by connecting objects to the Internet, poses new security and privacy challenges in terms of the confidentiality, authenticity, and integrity of the data sensed, collected, and exchanged by the IoT objects. These challenges make smart homes extremely vulnerable to different types of security attacks, resulting in IoT-based smart homes being insecure. Therefore, it is necessary to identify the possible security risks to develop a complete picture of the security status of smart homes. This article applies the operationally critical threat, asset, and vulnerability evaluation (OCTAVE) methodology, known as OCTAVE Allegro, to assess the security risks of smart homes. The OCTAVE Allegro method focuses on information assets and considers different information containers such as databases, physical papers, and humans. The key goals of this study are to highlight the various security vulnerabilities of IoT-based smart homes, to present the risks on home inhabitants, and to propose approaches to mitigating the identified risks. The research findings can be used as a foundation for improving the security requirements of IoT-based smart homes.

  10. A Harmonized Perspective on Transportation Management in Smart Cities: The Novel IoT-Driven Environment for Road Traffic Modeling.

    Science.gov (United States)

    Masek, Pavel; Masek, Jan; Frantik, Petr; Fujdiak, Radek; Ometov, Aleksandr; Hosek, Jiri; Andreev, Sergey; Mlynek, Petr; Misurec, Jiri

    2016-11-08

    The unprecedented growth of today's cities together with increased population mobility are fueling the avalanche in the numbers of vehicles on the roads. This development led to the new challenges for the traffic management, including the mitigation of road congestion, accidents, and air pollution. Over the last decade, researchers have been focusing their efforts on leveraging the recent advances in sensing, communications, and dynamic adaptive technologies to prepare the deployed road traffic management systems (TMS) for resolving these important challenges in future smart cities. However, the existing solutions may still be insufficient to construct a reliable and secure TMS that is capable of handling the anticipated influx of the population and vehicles in urban areas. Along these lines, this work systematically outlines a perspective on a novel modular environment for traffic modeling, which allows to recreate the examined road networks in their full resemblance. Our developed solution is targeted to incorporate the progress in the Internet of Things (IoT) technologies, where low-power, embedded devices integrate as part of a next-generation TMS. To mimic the real traffic conditions, we recreated and evaluated a practical traffic scenario built after a complex road intersection within a large European city.

  11. A Harmonized Perspective on Transportation Management in Smart Cities: The Novel IoT-Driven Environment for Road Traffic Modeling

    Directory of Open Access Journals (Sweden)

    Pavel Masek

    2016-11-01

    Full Text Available The unprecedented growth of today’s cities together with increased population mobility are fueling the avalanche in the numbers of vehicles on the roads. This development led to the new challenges for the traffic management, including the mitigation of road congestion, accidents, and air pollution. Over the last decade, researchers have been focusing their efforts on leveraging the recent advances in sensing, communications, and dynamic adaptive technologies to prepare the deployed road traffic management systems (TMS for resolving these important challenges in future smart cities. However, the existing solutions may still be insufficient to construct a reliable and secure TMS that is capable of handling the anticipated influx of the population and vehicles in urban areas. Along these lines, this work systematically outlines a perspective on a novel modular environment for traffic modeling, which allows to recreate the examined road networks in their full resemblance. Our developed solution is targeted to incorporate the progress in the Internet of Things (IoT technologies, where low-power, embedded devices integrate as part of a next-generation TMS. To mimic the real traffic conditions, we recreated and evaluated a practical traffic scenario built after a complex road intersection within a large European city.

  12. Learning and Model-checking Networks of I/O Automata

    DEFF Research Database (Denmark)

    Mao, Hua; Jaeger, Manfred

    2012-01-01

    We introduce a new statistical relational learning (SRL) approach in which models for structured data, especially network data, are constructed as networks of communicating nite probabilistic automata. Leveraging existing automata learning methods from the area of grammatical inference, we can...... learn generic models for network entities in the form of automata templates. As is characteristic for SRL techniques, the abstraction level aorded by learning generic templates enables one to apply the learned model to new domains. A main benet of learning models based on nite automata lies in the fact...

  13. Semantic Model of Variability and Capabilities of IoT Applications for Embedded Software Ecosystems

    DEFF Research Database (Denmark)

    Tomlein, Matus; Grønbæk, Kaj

    2016-01-01

    reasoning to resolve context requirements. We present the implications on the architecture of the ecosystem and the concepts defined in the model. Finally, we discuss the evaluation of the model and its benefits and liabilities. Although the approach results in more complex descriptions of applications, we...

  14. Volcanic features of Io

    International Nuclear Information System (INIS)

    Carr, M.H.; Masursky, H.; Strom, R.G.; Terrile, R.J.

    1979-01-01

    The volcanic features of Io as detected during the Voyager mission are discussed. The volcanic activity is apparently higher than on any other body in the Solar System. Its volcanic landforms are compared with features on Earth to indicate the type of volcanism present on Io. (U.K.)

  15. A multi-domain trust management model for supporting RFID applications of IoT.

    Directory of Open Access Journals (Sweden)

    Xu Wu

    Full Text Available The use of RFID technology in complex and distributed environments often leads to a multi-domain RFID system, in which trust establishment among entities from heterogeneous domains without past interaction or prior agreed policy, is a challenge. The current trust management mechanisms in the literature do not meet the specific requirements in multi-domain RFID systems. Therefore, this paper analyzes the special challenges on trust management in multi-domain RFID systems, and identifies the implications and the requirements of the challenges on the solutions to the trust management of multi-domain RFID systems. A multi-domain trust management model is proposed, which provides a hierarchical trust management framework include a diversity of trust evaluation and establishment approaches. The simulation results and analysis show that the proposed method has excellent ability to deal with the trust relationships, better security, and higher accuracy rate.

  16. Convergence Guaranteed Nonlinear Constraint Model Predictive Control via I/O Linearization

    Directory of Open Access Journals (Sweden)

    Xiaobing Kong

    2013-01-01

    Full Text Available Constituting reliable optimal solution is a key issue for the nonlinear constrained model predictive control. Input-output feedback linearization is a popular method in nonlinear control. By using an input-output feedback linearizing controller, the original linear input constraints will change to nonlinear constraints and sometimes the constraints are state dependent. This paper presents an iterative quadratic program (IQP routine on the continuous-time system. To guarantee its convergence, another iterative approach is incorporated. The proposed algorithm can reach a feasible solution over the entire prediction horizon. Simulation results on both a numerical example and the continuous stirred tank reactors (CSTR demonstrate the effectiveness of the proposed method.

  17. Zabezpečení platformy iOS

    OpenAIRE

    Nidl, Michal

    2014-01-01

    This bachelor's thesis is focused on security of operating system iOS from Apple. The thesis is divided into six chapters. The first chapter describes iOS and Apple company. The second chapter deals with iOS security architecture in terms of security model and security mechanisms. The third chapter deals with the security of iOS applications and options of their testing. The fourth chapter describes software attacks against iOS in the form of malware and exploitation. The fifth chapter descri...

  18. From BPM to IoT

    OpenAIRE

    Cherrier , Sylvain; Deshpande , Varun

    2017-01-01

    International audience; IoT’s presence is increasingly felt. There are already more connected devices to the internet than total human population and sales are starting to rise. As there is extensive research ongoing in order to propose a global architecture to build IoT applications, the domain will rise as soon as a common solution will be widespread. Further, we would need to integrate IoT applications into the legacy data processing solutions. Business Process Model, for example, is a com...

  19. Multiscale periodic structure in the Io wake

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P R; Wright, A N

    1989-06-08

    The decametric radio emissions from Jupiter are known to be influenced by the Galilean satellite Io. It is believed that the structure in these emissions is associated with the Alfven-wave wake downstream of Io. However, recent studies have shown that the structure of the wake cannot be as simple as originally thought. Here we present preliminary results from an eigenmode synthesis of the Alfven waves launched by Io, and find that several important periodicities emerge. Observations of the decametric emissions reveal fine, medium-and large-scale structure. The simulation we present here can provide structure on each of these scales, unlike earlier models. (author).

  20. Road to Io

    International Nuclear Information System (INIS)

    Chang, T.

    1989-01-01

    The potential study of Io by the Galileo mission is discussed. The mission, which is scheduled for launch from the Space Shuttle in 1989, is expected to fly 20 to 100 times closer to the Galilean moons of Jupiter than the Voyager missions. Topics which the mission hopes to address include volcanism, tidal forces and continental drift on Io, and the torus of charged particles that accompanies Io on its orbit of Jupiter. The Venus-earth-earth gravity assist route of the mission and the NIR mapping spectrometer aboard Galileo are considered

  1. Io after Galileo

    International Nuclear Information System (INIS)

    Lopes, Rosaly M C; Williams, David A

    2005-01-01

    Io, the volcanically active innermost large moon of Jupiter, was a target of intense study during the recently completed NASA Galileo mission to Jupiter (1989-2003). Galileo's suite of instruments obtained unprecedented observations of Io, including high spatial resolution imaging in the visible and infrared. This paper reviews the insights gained about Io's surface, atmosphere and space environment during the Galileo mission. Io is thought to have a large Fe-FeS core, whose radius is slightly less than half the radius of Io and whose mass is 20% of the moon. The lack of an intrinsic magnetic field implies that the core is either completely solid or completely liquid. The mantle of Io appears to undergo a high degree of partial melting (20-50% molten) that produces ultramafic lavas dominated by Mg-rich orthopyroxene in an apparent 'mushy magma ocean', suggesting an undifferentiated mantle. The crust of Io is thought to be rigid, 20-30 km thick, cold away from volcanic heat sources and composed of mafic to ultramafic silicates. Tidal flexing due to Io's orbital resonance produces ∼100 m tides at the surface, generating heat that powers Io's volcanism. Silicate volcanism appears to be dominant at most hot spots, although secondary sulfur volcanism may be important in some areas. The key discoveries of the Galileo era at Io were: (1) the detection of high-temperature volcanism (ultramafic, superheated mafic or 'ceramic'); (2) the detection of both S 2 and SO 2 gas in Ionian plumes; (3) the distinction between eruption styles, including between Pelean plumes (originating from central vents) and Promethean plumes (originating from silicate lava flow fronts); (4) the relationship between mountains and paterae, which indicates that many paterae are formed as magma preferentially ascends along tectonic faults associated with mountain building; (5) the lack of detection of an intrinsic magnetic field; (6) a new estimate of global heat flow; and (7) increased understanding

  2. Using Formal Grammars to Predict I/O Behaviors in HPC: The Omnisc'IO Approach

    Energy Technology Data Exchange (ETDEWEB)

    Dorier, Matthieu; Ibrahim, Shadi; Antoniu, Gabriel; Ross, Rob

    2016-08-01

    The increasing gap between the computation performance of post-petascale machines and the performance of their I/O subsystem has motivated many I/O optimizations including prefetching, caching, and scheduling. In order to further improve these techniques, modeling and predicting spatial and temporal I/O patterns of HPC applications as they run has become crucial. In this paper we present Omnisc'IO, an approach that builds a grammar-based model of the I/O behavior of HPC applications and uses it to predict when future I/O operations will occur, and where and how much data will be accessed. To infer grammars, Omnisc'IO is based on StarSequitur, a novel algorithm extending Nevill-Manning's Sequitur algorithm. Omnisc'IO is transparently integrated into the POSIX and MPI I/O stacks and does not require any modification in applications or higher-level I/O libraries. It works without any prior knowledge of the application and converges to accurate predictions of any N future I/O operations within a couple of iterations. Its implementation is efficient in both computation time and memory footprint.

  3. IOs as Social Sites

    DEFF Research Database (Denmark)

    Park, Susan M.; Vetterlein, Antje

    Norms research has made significant inroads into examining their emergence and influence in international relations, while recognizing international organizations (IOs) as key social sites for norms to be created and/or disseminated. This paper interrogates how IOs as “organizational platforms......” (Finnemore 1996) influence the norm building process. Going beyond state-centric approaches to norm construction, it argues that the process of taking up a norm by an IO does affect the norm’s power. A norm’s strength is determined by the extent to which it is uncontested and taken for granted as appropriate...... the norm building process in this way provides insight into the effect of IOs as social sites in strengthening a norm....

  4. Embodied energy of construction materials: integrating human and capital energy into an IO-based hybrid model.

    Science.gov (United States)

    Dixit, Manish K; Culp, Charles H; Fernandez-Solis, Jose L

    2015-02-03

    Buildings alone consume approximately 40% of the annual global energy and contribute indirectly to the increasing concentration of atmospheric carbon. The total life cycle energy use of a building is composed of embodied and operating energy. Embodied energy includes all energy required to manufacture and transport building materials, and construct, maintain, and demolish a building. For a systemic energy and carbon assessment of buildings, it is critical to use a whole life cycle approach, which takes into account the embodied as well as operating energy. Whereas the calculation of a building's operating energy is straightforward, there is a lack of a complete embodied energy calculation method. Although an input-output-based (IO-based) hybrid method could provide a complete and consistent embodied energy calculation, there are unresolved issues, such as an overdependence on price data and exclusion of the energy of human labor and capital inputs. This paper proposes a method for calculating and integrating the energy of labor and capital input into an IO-based hybrid method. The results demonstrate that the IO-based hybrid method can provide relatively complete results. Also, to avoid errors, the total amount of human and capital energy should not be excluded from the calculation.

  5. IoTFLiP: IoT-based flipped learning platform for medical education

    Directory of Open Access Journals (Sweden)

    Maqbool Ali

    2017-08-01

    Full Text Available Case-Based Learning (CBL has become an effective pedagogy for student-centered learning in medical education, which is founded on persistent patient cases. Flippped learning and Internet of Things (IoTs concepts have gained significant attention in recent years. Using these concepts in conjunction with CBL can improve learning ability by providing real evolutionary medical cases. It also enables students to build confidence in their decision making, and efficiently enhances teamwork in the learing environment. We propose an IoT-based Flip Learning Platform, called IoTFLiP, where an IoT infrastructure is exploited to support flipped case-based learning in a cloud environment with state of the art security and privacy measures for personalized medical data. It also provides support for application delivery in private, public, and hybrid approaches. The proposed platform is an extension of our Interactive Case-Based Flipped Learning Tool (ICBFLT, which has been developed based on current CBL practices. ICBFLT formulates summaries of CBL cases through synergy between students' and medical expert knowledge. The low cost and reduced size of sensor device, support of IoTs, and recent flipped learning advancements can enhance medical students' academic and practical experiences. In order to demonstrate a working scenario for the proposed IoTFLiP platform, real-time data from IoTs gadgets is collected to generate a real-world case for a medical student using ICBFLT.

  6. IoT-based flood embankments monitoring system

    Science.gov (United States)

    Michta, E.; Szulim, R.; Sojka-Piotrowska, A.; Piotrowski, K.

    2017-08-01

    In the paper a concept of flood embankments monitoring system based on using Internet of Things approach and Cloud Computing technologies will be presented. The proposed system consists of sensors, IoT nodes, Gateways and Cloud based services. Nodes communicates with the sensors measuring certain physical parameters describing the state of the embankments and communicates with the Gateways. Gateways are specialized active devices responsible for direct communication with the nodes, collecting sensor data, preprocess the data, applying local rules and communicate with the Cloud Services using communication API delivered by cloud services providers. Architecture of all of the system components will be proposed consisting IoT devices functionalities description, their communication model, software modules and services bases on using a public cloud computing platform like Microsoft Azure will be proposed. The most important aspects of maintaining the communication in a secure way will be shown.

  7. Flood simulation and verification with IoT sensors

    Science.gov (United States)

    Chang, Che-Hao; Hsu, Chih-Tsung; Wu, Shiang-Jen; Huang, Sue-Wei

    2017-04-01

    2D flood dynamic simulation is a vivid tool to demonstrate the possible expose area that sustain impact of high rise of water level. Along with progress in high resolution digital terrain model, the simulation results are quite convinced yet not proved to be close to what is really happened. Due to the dynamic and uncertain essence, the expose area usually could not be well defined during a flood event. Recent development in IoT sensors bring a low power and long distance communication which help us to collect real time flood depths. With these time series of flood depths at different locations, we are capable of verifying the simulation results corresponding to the flood event. 16 flood gauges with IoT specification as well as two flood events in Annan district, Tainan city, Taiwan are examined in this study. During the event in 11, June, 2016, 12 flood gauges works well and 8 of them provide observation match to simulation.

  8. Volcanic eruptions on Io

    Science.gov (United States)

    Strom, R. G.; Schneider, N. M.; Terrile, R. J.; Hansen, C.; Cook, A. F.

    1981-01-01

    Nine eruption plumes which were observed during the Voyager 1 encounter with Io are discussed. During the Voyager 2 encounter, four months later, eight of the eruptions were still active although the largest became inactive sometime between the two encounters. Plumes range in height from 60 to over 300 km with corresponding ejection velocities of 0.5 to 1.0 km/s and plume sources are located on several plains and consist of fissures or calderas. The shape and brightness distribution together with the pattern of the surface deposition on a plume 3 is simulated by a ballistic model with a constant ejection velocity of 0.5 km/s and ejection angles which vary from 0-55 deg. The distribution of active and recent eruptions is concentrated in the equatorial regions and indicates that volcanic activity is more frequent and intense in the equatorial regions than in the polar regions. Due to the geologic setting of certain plume sources and large reservoirs of volatiles required for the active eruptions, it is concluded that sulfur volcanism rather than silicate volcanism is the most likely driving mechanism for the eruption plumes.

  9. An Intelligence Collection Management Model.

    Science.gov (United States)

    1984-06-01

    classification of inteligence collection requirements in terms of. the a-.- metnodo"c, .ev--e in Chaster Five. 116 APPgENDIX A A METHOD OF RANKING...of Artificial Intelligence Tools and Technigues to!TN’X n~l is n rs aa~emfft-.3-ufnyva: ’A TZ Ashby W. Ecss. An Introduction to Cybernetics. New York

  10. The atmosphere and ionosphere of Io

    International Nuclear Information System (INIS)

    McElroy, M.B.; Yung, Y.L.

    1975-01-01

    A variety of models for Io's atmosphere, ionosphere, surface, and environment are developed and discussed in the context of recent observational data. The sodium emission detected by Brown appears to require a collisional excitation process in Io's atmosphere, and the extended sodium emission measured by Trafton et al. may require scattering of the planetary radiation by an extended sodium cloud. The sodium is presumably present initially in bound form on Io's surface and may be released by the sputtering mechanism suggested by Matson et al. The ionosphere detected by the radio occultation experiment on Pioneer 10 could be attributed to photoionization of atmospheric sodium if Io's atmosphere could sustain significant vertical motions, of order 1 s/sup -1/ directed up during the day, down at night. Vertical motions of this magnitude could be driven by condensation of atmospheric NH 3 . The total density of gas at Io's surface appears to lie in the range 10 10 -10 12 molecules cm/sup -3/. Corpuscular ionization could play an additional role for the ionosphere. In this case the sateSe should exhibit an exceedingly bright, approx.10 kR, airglow at Lα. The incomplete hydrogen torus observed by Judge and Carlson in the vicinity of Io requires a large supply of hydrogen from the satellite's atmosphere. The escape flux should be of order 10 11 cm/sup -2/ s/sup -1/ and could be maintained by photolysis of atmospheric NH 3 . The observed geometry of the hydrogen torus appears to require a surprisingly short lifetime, approx.10 5 s, for neutral hydrogen near Io's orbit, and may indicate the presence of a large flux, approx.10 9 cm/sup -2/ s/sup -1/, of low-energy protons in Jupiter's magnetosphere. Implications of the hydrogen torus for the energy and mass balance of Jupiter's magnetosphere are discussed briefly, and observational programs are identified which might illuminate present uncertainties in our understanding of Io

  11. Building IoT Applications with Raspberry Pi and Low Power IQRF Communication Modules

    Directory of Open Access Journals (Sweden)

    Isidro Calvo

    2016-09-01

    Full Text Available Typical Internet of Things (IoT applications involve collecting information automatically from diverse geographically-distributed smart sensors and concentrating the information into more powerful computers. The Raspberry Pi platform has become a very interesting choice for IoT applications for several reasons: (1 good computing power/cost ratio; (2 high availability; it has become a de facto hardware standard; and (3 ease of use; it is based on operating systems with a big community of users. In IoT applications, data are frequently carried by means of wireless sensor networks in which energy consumption is a key issue. Energy consumption is especially relevant for smart sensors that are scattered over wide geographical areas and may need to work unattended on batteries for long intervals of time. In this scenario, it is convenient to ease the construction of IoT applications while keeping energy consumption to a minimum at the sensors. This work proposes a possible gateway implementation with specific technologies. It solves the following research question: how to build gateways for IoT applications with Raspberry Pi and low power IQRF communication modules. The following contributions are presented: (1 one architecture for IoT gateways that integrates data from sensor nodes into a higher level application based on low-cost/low-energy technologies; (2 bindings in Java and C that ease the construction of IoT applications; (3 an empirical model that describes the consumption of the communications at the nodes (smart sensors and allows scaling their batteries; and (4 validation of the proposed energy model at the battery-operated nodes.

  12. IoT Security Techniques Based on Machine Learning

    OpenAIRE

    Xiao, Liang; Wan, Xiaoyue; Lu, Xiaozhen; Zhang, Yanyong; Wu, Di

    2018-01-01

    Internet of things (IoT) that integrate a variety of devices into networks to provide advanced and intelligent services have to protect user privacy and address attacks such as spoofing attacks, denial of service attacks, jamming and eavesdropping. In this article, we investigate the attack model for IoT systems, and review the IoT security solutions based on machine learning techniques including supervised learning, unsupervised learning and reinforcement learning. We focus on the machine le...

  13. Cyber and Physical Security Vulnerability Assessment for IoT-Based Smart Homes

    Directory of Open Access Journals (Sweden)

    Bako Ali

    2018-03-01

    Full Text Available The Internet of Things (IoT is an emerging paradigm focusing on the connection of devices, objects, or “things” to each other, to the Internet, and to users. IoT technology is anticipated to become an essential requirement in the development of smart homes, as it offers convenience and efficiency to home residents so that they can achieve better quality of life. Application of the IoT model to smart homes, by connecting objects to the Internet, poses new security and privacy challenges in terms of the confidentiality, authenticity, and integrity of the data sensed, collected, and exchanged by the IoT objects. These challenges make smart homes extremely vulnerable to different types of security attacks, resulting in IoT-based smart homes being insecure. Therefore, it is necessary to identify the possible security risks to develop a complete picture of the security status of smart homes. This article applies the operationally critical threat, asset, and vulnerability evaluation (OCTAVE methodology, known as OCTAVE Allegro, to assess the security risks of smart homes. The OCTAVE Allegro method focuses on information assets and considers different information containers such as databases, physical papers, and humans. The key goals of this study are to highlight the various security vulnerabilities of IoT-based smart homes, to present the risks on home inhabitants, and to propose approaches to mitigating the identified risks. The research findings can be used as a foundation for improving the security requirements of IoT-based smart homes.

  14. Cyber and Physical Security Vulnerability Assessment for IoT-Based Smart Homes

    Science.gov (United States)

    2018-01-01

    The Internet of Things (IoT) is an emerging paradigm focusing on the connection of devices, objects, or “things” to each other, to the Internet, and to users. IoT technology is anticipated to become an essential requirement in the development of smart homes, as it offers convenience and efficiency to home residents so that they can achieve better quality of life. Application of the IoT model to smart homes, by connecting objects to the Internet, poses new security and privacy challenges in terms of the confidentiality, authenticity, and integrity of the data sensed, collected, and exchanged by the IoT objects. These challenges make smart homes extremely vulnerable to different types of security attacks, resulting in IoT-based smart homes being insecure. Therefore, it is necessary to identify the possible security risks to develop a complete picture of the security status of smart homes. This article applies the operationally critical threat, asset, and vulnerability evaluation (OCTAVE) methodology, known as OCTAVE Allegro, to assess the security risks of smart homes. The OCTAVE Allegro method focuses on information assets and considers different information containers such as databases, physical papers, and humans. The key goals of this study are to highlight the various security vulnerabilities of IoT-based smart homes, to present the risks on home inhabitants, and to propose approaches to mitigating the identified risks. The research findings can be used as a foundation for improving the security requirements of IoT-based smart homes. PMID:29518023

  15. Instructor/Operator Station (IOS) Design Guide.

    Science.gov (United States)

    1988-02-01

    INSTRUTOR /OPERATOR STATION (IOS) AI O...The three functional categories also define three different users in terms of jobs and qualifications (if the functions have been allocated to manual ...function manually (e.g., collect the data S required from schedules, printed course outlines and telephone calls to training and facility managers).

  16. FabIO

    DEFF Research Database (Denmark)

    Bergbäck Knudsen, Erik; Sørensen, Henning O.; Wright, Jonathan P.

    2013-01-01

    FabIO is a Python module written for easy and transparent reading of raw two-dimensional data from various X-ray detectors. The module provides a function for reading any image and returning a fabioimage object which contains both metadata (header information) and the raw data. All fabioimage...

  17. Collective vs atomic models of the hadrons

    International Nuclear Information System (INIS)

    Stokar, S.

    1983-02-01

    We examine the relationship between heavy and light quark systems. Using a Bogoliubov-Valatin transformation we show how to interpolate continuously between heavy quark atomic models and light quark collective models of the hadrons. (author)

  18. An Eruption on Io

    Science.gov (United States)

    2007-01-01

    The first images returned to Earth by New Horizons during its close encounter with Jupiter feature the Galilean moon Io, snapped with the Long Range Reconnaissance Imager (LORRI) at 0840 UTC on February 26, while the moon was 2.5 million miles (4 million kilometers) from the spacecraft. Io is intensely heated by its tidal interaction with Jupiter and is thus extremely volcanically active. That activity is evident in these images, which reveal an enormous dust plume, more than 150 miles high, erupting from the volcano Tvashtar. The plume appears as an umbrella-shaped feature of the edge of Io's disk in the 11 o'clock position in the right image, which is a long-exposure (20-millisecond) frame designed specifically to look for plumes like this. The bright spots at 2 o'clock are high mountains catching the setting sun; beyond them the night side of Io can be seen, faintly illuminated by light reflected from Jupiter itself. The left image is a shorter exposure -- 3 milliseconds -- designed to look at surface features. In this frame, the Tvashtar volcano shows as a dark spot, also at 11 o'clock, surrounded by a large dark ring, where an area larger than Texas has been covered by fallout from the giant eruption. This is the clearest view yet of a plume from Tvashtar, one of Io's most active volcanoes. Ground-based telescopes and the Galileo Jupiter orbiter first spotted volcanic heat radiation from Tvashtar in November 1999, and the Cassini spacecraft saw a large plume when it flew past Jupiter in December 2000. The Keck telescope in Hawaii picked up renewed heat radiation from Tvashtar in spring 2006, and just two weeks ago the Hubble Space Telescope saw the Tvashtar plume in ultraviolet images designed to support the New Horizons flyby. Most of those images will be stored onboard the spacecraft for downlink to Earth in March and April.

  19. Understanding I/O workload characteristics of a Peta-scale storage system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Youngjae [ORNL; Gunasekaran, Raghul [ORNL

    2015-01-01

    Understanding workload characteristics is critical for optimizing and improving the performance of current systems and software, and architecting new storage systems based on observed workload patterns. In this paper, we characterize the I/O workloads of scientific applications of one of the world s fastest high performance computing (HPC) storage cluster, Spider, at the Oak Ridge Leadership Computing Facility (OLCF). OLCF flagship petascale simulation platform, Titan, and other large HPC clusters, in total over 250 thousands compute cores, depend on Spider for their I/O needs. We characterize the system utilization, the demands of reads and writes, idle time, storage space utilization, and the distribution of read requests to write requests for the Peta-scale Storage Systems. From this study, we develop synthesized workloads, and we show that the read and write I/O bandwidth usage as well as the inter-arrival time of requests can be modeled as a Pareto distribution. We also study the I/O load imbalance problems using I/O performance data collected from the Spider storage system.

  20. IoT gateway architecture

    OpenAIRE

    Leleika, Paulius

    2017-01-01

    This paper provides an overview of HTTP, CoAP, AMQP, DDS, MQTT, XMPP communication protocols. The main IoT problem is that IoT devices uses many different communication protocols and devices cannot communicate with each other directly. IoT gateway helps to solve that problem. This paper also identifies requirements for IoT gateway software. Provides solution for communication between devices which are using different messaging architectures. Presents security aspects and ways to secure IoT ga...

  1. Modelling collective cell migration of neural crest.

    Science.gov (United States)

    Szabó, András; Mayor, Roberto

    2016-10-01

    Collective cell migration has emerged in the recent decade as an important phenomenon in cell and developmental biology and can be defined as the coordinated and cooperative movement of groups of cells. Most studies concentrate on tightly connected epithelial tissues, even though collective migration does not require a constant physical contact. Movement of mesenchymal cells is more independent, making their emergent collective behaviour less intuitive and therefore lending importance to computational modelling. Here we focus on such modelling efforts that aim to understand the collective migration of neural crest cells, a mesenchymal embryonic population that migrates large distances as a group during early vertebrate development. By comparing different models of neural crest migration, we emphasize the similarity and complementary nature of these approaches and suggest a future direction for the field. The principles derived from neural crest modelling could aid understanding the collective migration of other mesenchymal cell types. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. IO and OI. II

    DEFF Research Database (Denmark)

    Engelfriet, Joost; Schmidt, Erik Meineche

    1978-01-01

    In Part 1 of this paper (J. Comput. System Sci. 15, Number 3 (1977)) we presented a fixed point characterization of the (IO and OI) context-free tree languages. We showed that a context-free tree grammar can be viewed as a system of regular equations over a tree language substitution algebra. In ....... In this part we shall use these results to obtain a theory of systems of context-free equations over arbitrary continuous algebras. We refer to the Introduction of Part 1 for a description of the contents of this part.......In Part 1 of this paper (J. Comput. System Sci. 15, Number 3 (1977)) we presented a fixed point characterization of the (IO and OI) context-free tree languages. We showed that a context-free tree grammar can be viewed as a system of regular equations over a tree language substitution algebra...

  3. An Optimizing Compiler for Petascale I/O on Leadership Class Architectures

    Energy Technology Data Exchange (ETDEWEB)

    Choudhary, Alok [Northwestern Univ., Evanston, IL (United States); Kandemir, Mahmut [Pennsylvania State Univ., State College, PA (United States)

    2015-03-18

    In high-performance computing systems, parallel I/O architectures usually have very complex hierarchies with multiple layers that collectively constitute an I/O stack, including high-level I/O libraries such as PnetCDF and HDF5, I/O middleware such as MPI-IO, and parallel file systems such as PVFS and Lustre. Our project explored automated instrumentation and compiler support for I/O intensive applications. Our project made significant progress towards understanding the complex I/O hierarchies of high-performance storage systems (including storage caches, HDDs, and SSDs), and designing and implementing state-of-the-art compiler/runtime system technology that targets I/O intensive HPC applications that target leadership class machine. This final report summarizes the major achievements of the project and also points out promising future directions.

  4. Io's Pele Hemisphere

    Science.gov (United States)

    1996-01-01

    Jupiter's moon Io with Pele prominently in view. The inset images are from the Voyager 1 (top) and 2 (bottom) spacecraft using the violet, blue, and orange filters. The large image is from Galileo, using the violet, green, and red filters. The colors in the Galileo image are closer to what the human eye would see. With the filters used in the Solid State Imaging system on Galileo, it is clear now that some of the recent volcanic deposits on Io are indeed very red, a point not resolved by Voyager. Scientists speculate that the red deposits are a form of Sulfur produced in volcanic eruptions on Io. Note the rapid changes seen in the shape of the distal (far from the vent) plume deposits from Pele between Voyagers 1 (April, 1979) and 2 (July, 1979). The Galileo image was obtained by the imaging system on board the spacecraft in June, 1996. North is to the top.The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA'is Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  5. Memoised Garbage Collection for Software Model Checking

    NARCIS (Netherlands)

    Nguyen, V.Y.; Ruys, T.C.; Kowalewski, S.; Philippou, A.

    Virtual machine based software model checkers like JPF and MoonWalker spend up to half of their veri��?cation time on garbage collection. This is no surprise as after nearly each transition the heap has to be cleaned from garbage. To improve this, this paper presents the Memoised Garbage Collection

  6. Modeling Charge Collection in Detector Arrays

    Science.gov (United States)

    Hardage, Donna (Technical Monitor); Pickel, J. C.

    2003-01-01

    A detector array charge collection model has been developed for use as an engineering tool to aid in the design of optical sensor missions for operation in the space radiation environment. This model is an enhancement of the prototype array charge collection model that was developed for the Next Generation Space Telescope (NGST) program. The primary enhancements were accounting for drift-assisted diffusion by Monte Carlo modeling techniques and implementing the modeling approaches in a windows-based code. The modeling is concerned with integrated charge collection within discrete pixels in the focal plane array (FPA), with high fidelity spatial resolution. It is applicable to all detector geometries including monolithc charge coupled devices (CCDs), Active Pixel Sensors (APS) and hybrid FPA geometries based on a detector array bump-bonded to a readout integrated circuit (ROIC).

  7. Modeling and simulation of blood collection systems.

    Science.gov (United States)

    Alfonso, Edgar; Xie, Xiaolan; Augusto, Vincent; Garraud, Olivier

    2012-03-01

    This paper addresses the modeling and simulation of blood collection systems in France for both fixed site and mobile blood collection with walk in whole blood donors and scheduled plasma and platelet donors. Petri net models are first proposed to precisely describe different blood collection processes, donor behaviors, their material/human resource requirements and relevant regulations. Petri net models are then enriched with quantitative modeling of donor arrivals, donor behaviors, activity times and resource capacity. Relevant performance indicators are defined. The resulting simulation models can be straightforwardly implemented with any simulation language. Numerical experiments are performed to show how the simulation models can be used to select, for different walk in donor arrival patterns, appropriate human resource planning and donor appointment strategies.

  8. An ARM-Compliant Architecture for User Privacy in Smart Cities: SMARTIE—Quality by Design in the IoT

    Directory of Open Access Journals (Sweden)

    V. Beltran

    2017-01-01

    Full Text Available Much has been said about the benefits that the Internet of Things (IoT will bring to citizens’ life. Countless smart objects will be soon offering autonomous behavior in smart environments by sensing the physical world around us, collecting information about us, and taking proactive actions (many times without our consent with the ultimate goal of improving our wellness. Without a strong guarantee on user privacy, the IoT may sound scary for many citizens. Indeed, the IoT-Architecture Reference Model (IoT-ARM is a European effort for promoting IoT quality aspects such as security and privacy. This paper paves the way to the adoption of reference architectures by describing the application of the IoT-ARM within a European-funded project, SMARTIE. The SMARTIE architecture has been designed to empower citizens to take control of their IoT devices and privacy, while guaranteeing scalability for large deployments in smart cities.

  9. Logistic Model to Support Service Modularity for the Promotion of Reusability in a Web Objects-Enabled IoT Environment.

    Science.gov (United States)

    Kibria, Muhammad Golam; Ali, Sajjad; Jarwar, Muhammad Aslam; Kumar, Sunil; Chong, Ilyoung

    2017-09-22

    Due to a very large number of connected virtual objects in the surrounding environment, intelligent service features in the Internet of Things requires the reuse of existing virtual objects and composite virtual objects. If a new virtual object is created for each new service request, then the number of virtual object would increase exponentially. The Web of Objects applies the principle of service modularity in terms of virtual objects and composite virtual objects. Service modularity is a key concept in the Web Objects-Enabled Internet of Things (IoT) environment which allows for the reuse of existing virtual objects and composite virtual objects in heterogeneous ontologies. In the case of similar service requests occurring at the same, or different locations, the already-instantiated virtual objects and their composites that exist in the same, or different ontologies can be reused. In this case, similar types of virtual objects and composite virtual objects are searched and matched. Their reuse avoids duplication under similar circumstances, and reduces the time it takes to search and instantiate them from their repositories, where similar functionalities are provided by similar types of virtual objects and their composites. Controlling and maintaining a virtual object means controlling and maintaining a real-world object in the real world. Even though the functional costs of virtual objects are just a fraction of those for deploying and maintaining real-world objects, this article focuses on reusing virtual objects and composite virtual objects, as well as discusses similarity matching of virtual objects and composite virtual objects. This article proposes a logistic model that supports service modularity for the promotion of reusability in the Web Objects-enabled IoT environment. Necessary functional components and a flowchart of an algorithm for reusing composite virtual objects are discussed. Also, to realize the service modularity, a use case scenario is

  10. Collective models of transition nuclei Pt. 2

    International Nuclear Information System (INIS)

    Dombradi, Zs.

    1982-01-01

    The models describing the even-odd and odd-odd transition nuclei (nuclei of moderate ground state deformation) are reviewed. The nuclear core is described by models of even-even nuclei, and the interaction of a single particle and the core is added. Different models of particle-core coupling (phenomenological models, collective models, nuclear field theory, interacting boson-fermion model, vibration nucleon cluster model) and their results are discussed. New developments like dynamical supersymmetry and new research trends are summarized. (D.Gy.)

  11. Designing the IoT sandbox

    NARCIS (Netherlands)

    Frens, Joep; Funk, Mathias; van Hout, Bastiaan; Le Blanc, Joep

    2018-01-01

    This pictorial describes the design and design process of the IoT Sandbox: a (scale model of a) smart home equipped with actuators and a modular interface that controls the interactive aspects of the smart home. This modular interface can 'grow" together with the house it controls whereby it offers

  12. IoT for Smart Living

    Indian Academy of Sciences (India)

    Professor. Robert Bosch Centre for Cyber-Physical Systems, ... Develop Information models/Knowledge structures to capture “Cities” to enable Intelligent apps. IoT Technology is now easily accessible for anyone to experiment with. Build very ...

  13. The Structure and Composition of Io's Atmosphere

    Science.gov (United States)

    Smyth, W. H.; Marconi, M. L.

    2011-12-01

    Io's atmosphere is thought to be generated principally by sublimation on the dayside and by multiple volcanoes scattered throughout its surface and more concentrated near the equator. While SO2 seems to be the principle product of these sources, many other chemical species are placed into the atmosphere by these sources, including substantial amounts of SO and S2 as well as smaller but observationally significant amounts of Na bearing molecules. These species in turn interact strongly with the torus plasma generating additional species such as O2, S, O, and Na. The strong interaction of the torus plasma with the neutral atmosphere not only exerts a profound effect on the composition of Io's atmosphere but also strongly affects the dynamics and thermodynamics of Io's atmosphere, particularly at higher altitudes. In addition, as Io orbits Jupiter, the change in location of the sublimation region and the eclipse of Io as it passes through Jupiter's shadow result in substantial variation in the atmosphere. A complex time-dependent three-dimensional atmosphere with strong spatial compositional variation is created. Here we extend the two-dimensional multispecies Navier-Stokes model of Smyth and Wong (2004) to three-dimensions, include two volcanic sources similar to Pele and Loki, and include the effect of Io's movement around Jupiter on sublimation. The effects of the torus plasma are also included as in Smyth and Wong. We will present the overall composition and structure of the atmosphere, O to S ratios in the upper atmosphere, and discuss a potential issue with the O2 abundance. Smyth, W.H. and M.C. Wong, Icarus 171, 171-182, 2004.

  14. Empirical questions for collective-behaviour modelling

    Indian Academy of Sciences (India)

    2015-02-04

    Feb 4, 2015 ... The collective behaviour of groups of social animals has been an active topic of study across many disciplines, and has a long history of modelling. Classical models have been successful in capturing the large-scale patterns formed by animal aggregations, but fare less well in accounting for details, ...

  15. Volcanic eruption plumes on Io

    International Nuclear Information System (INIS)

    Strom, R.G.; Terrile, R.J.; Masursky, H.; Hansen, C.

    1979-01-01

    The detection of an umbrella-shaped plume extending about 280 km above the bright limb of Io was one of the most important discoveries made during the Voyager 1 encounter with the jovian system. This discovery proves that Io is volcanically active at present, and the number and magnitude of these eruptions indicate that Io is the most volcanically active body so far discovered in the Solar System. Preliminary analyses of these eruptive plumes are presented. (U.K.)

  16. Modeling collective cell migration in geometric confinement

    Science.gov (United States)

    Tarle, Victoria; Gauquelin, Estelle; Vedula, S. R. K.; D'Alessandro, Joseph; Lim, C. T.; Ladoux, Benoit; Gov, Nir S.

    2017-06-01

    Monolayer expansion has generated great interest as a model system to study collective cell migration. During such an expansion the culture front often develops ‘fingers’, which we have recently modeled using a proposed feedback between the curvature of the monolayer’s leading edge and the outward motility of the edge cells. We show that this model is able to explain the puzzling observed increase of collective cellular migration speed of a monolayer expanding into thin stripes, as well as describe the behavior within different confining geometries that were recently observed in experiments. These comparisons give support to the model and emphasize the role played by the edge cells and the edge shape during collective cell motion.

  17. Critical analysis of algebraic collective models

    International Nuclear Information System (INIS)

    Moshinsky, M.

    1986-01-01

    The author shall understand by algebraic collective models all those based on specific Lie algebras, whether the latter are suggested through simple shell model considerations like in the case of the Interacting Boson Approximation (IBA), or have a detailed microscopic foundation like the symplectic model. To analyze these models critically, it is convenient to take a simple conceptual example of them in which all steps can be implemented analytically or through elementary numerical analysis. In this note he takes as an example the symplectic model in a two dimensional space i.e. based on a sp(4,R) Lie algebra, and show how through its complete discussion we can get a clearer understanding of the structure of algebraic collective models of nuclei. In particular he discusses the association of Hamiltonians, related to maximal subalgebras of our basic Lie algebra, with specific types of spectra, and the connections between spectra and shapes

  18. Green IoT: An Investigation on Energy Saving Practices for 2020 and Beyond

    OpenAIRE

    Arshad, R.; Zahoor, S.; Shah, M.A.; Wahid, A.; Yu, Hongnian

    2017-01-01

    Internet of Things (IoT) is an emerging concept which aims to connect billions of devices with each other. The IoT devices sense, collect and transmit important information from their surroundings. This exchange of very large amount of information amongst billions of devices creates a massive energy need. Green IoT envisions the concept of reducing the energy consumption of IoT devices and making the environment safe. Inspired by achieving a sustainable environment for IoT, we first give the ...

  19. Io Pele plume

    Science.gov (United States)

    2000-01-01

    Voyager 1 took this narrow-angle camera image on 5 March 1979 from a distance of 450,000 kilometers. At this geometry, the camera looks straight down through a volcanic plume at one of Io's most active volcanos, Pele. The large heart-shaped feature is the region where Pele's plume falls to the surface. At the center of the 'heart' is the small dark fissure that is the source of the eruption. The Voyager Project is managed by the Jet Propulsion Laboratory for NASA's Office of Space Science.

  20. Java I/O

    CERN Document Server

    Harold, Elliotte Rusty

    2006-01-01

    All of Java's Input/Output (I/O) facilities are based on streams, which provide simple ways to read and write data of different types. Java provides many different kinds of streams, each with its own application. The universe of streams is divided into four largecategories: input streams and output streams, for reading and writing binary data; and readers and writers, for reading and writing textual (character) data. You're almost certainly familiar with the basic kinds of streams--but did you know that there's a CipherInputStream for reading encrypted data? And a ZipOutputStream for automati

  1. An Intelligent Improvement of Internet-Wide Scan Engine for Fast Discovery of Vulnerable IoT Devices

    Directory of Open Access Journals (Sweden)

    Hwankuk Kim

    2018-05-01

    Full Text Available Since 2016, Mirai and Persirai malware have infected hundreds of thousands of Internet of Things (IoT devices and created a massive IoT botnet, which caused distributed denial of service (DDoS attacks. IoT malware targets vulnerable IoT devices, which are vulnerable to security risks. Techniques are needed to prevent IoT devices from being exploited by attackers. However, unlike high-performance PCs, IoT devices are lightweight, low-power, and low-cost, having performance limitations regarding processing and memory, which makes it difficult to install security and anti-malware programs. Recently, several studies have been attempted to quickly search for vulnerable internet-connected devices to solve this real issue. Issues yet to be studied still exist regarding these types of internet-wide scan technologies, such as filtering by security devices and a shortage of collected operating system (OS information. This paper proposes an intelligent internet-wide scan model that improves IP state scanning with advanced internet protocol (IP randomization, reactive protocol (port scanning, and OS fingerprinting scanning, applying k* algorithm in order to find vulnerable IoT devices. Additionally, we describe the experiment’s results compared to the existing internet-wide scan technologies, such as ZMap and Shodan. As a result, the proposed model experimentally shows improved performance. Although we improved the ZMap, the throughput per minute (TPM performance is similar to ZMap without degrading the IP scan throughput and the performance of generating a single IP address is about 118% better than ZMap. In the protocol scan performance experiments, it is about 129% better than the Censys based ZMap, and the performance of OS fingerprinting is better than ZMap, with about 50% accuracy.

  2. Locust Collective Motion and Its Modeling.

    Directory of Open Access Journals (Sweden)

    Gil Ariel

    2015-12-01

    Full Text Available Over the past decade, technological advances in experimental and animal tracking techniques have motivated a renewed theoretical interest in animal collective motion and, in particular, locust swarming. This review offers a comprehensive biological background followed by comparative analysis of recent models of locust collective motion, in particular locust marching, their settings, and underlying assumptions. We describe a wide range of recent modeling and simulation approaches, from discrete agent-based models of self-propelled particles to continuous models of integro-differential equations, aimed at describing and analyzing the fascinating phenomenon of locust collective motion. These modeling efforts have a dual role: The first views locusts as a quintessential example of animal collective motion. As such, they aim at abstraction and coarse-graining, often utilizing the tools of statistical physics. The second, which originates from a more biological perspective, views locust swarming as a scientific problem of its own exceptional merit. The main goal should, thus, be the analysis and prediction of natural swarm dynamics. We discuss the properties of swarm dynamics using the tools of statistical physics, as well as the implications for laboratory experiments and natural swarms. Finally, we stress the importance of a combined-interdisciplinary, biological-theoretical effort in successfully confronting the challenges that locusts pose at both the theoretical and practical levels.

  3. Mob control models of threshold collective behavior

    CERN Document Server

    Breer, Vladimir V; Rogatkin, Andrey D

    2017-01-01

    This book presents mathematical models of mob control with threshold (conformity) collective decision-making of the agents. Based on the results of analysis of the interconnection between the micro- and macromodels of active network structures, it considers the static (deterministic, stochastic and game-theoretic) and dynamic (discrete- and continuous-time) models of mob control, and highlights models of informational confrontation. Many of the results are applicable not only to mob control problems, but also to control problems arising in social groups, online social networks, etc. Aimed at researchers and practitioners, it is also a valuable resource for undergraduate and postgraduate students as well as doctoral candidates specializing in the field of collective behavior modeling.

  4. I/O in the ATLAS multithreaded framework

    CERN Document Server

    Cranshaw, Jack; The ATLAS collaboration; Nowak, Marcin

    2018-01-01

    Scalable multithreading poses challenges to I/O, and the performance of a thread-safe I/O strategy may depend upon many factors, including I/O latencies, whether tasks are CPU- or I/O-intensive, and thread count. In a multithreaded framework, an I/O infrastructure must efficiently supply event data to and collect it from many threads processing multiple events in flight. In particular, on-demand reading from multiple threads may challenge caching strategies that were developed for serial processing and may need to be enhanced. This I/O infrastructure must also address how to read, make available, and propagate in-file metadata and other non-event data needed as context for event processing. We describe the design and scheduling of I/O components in the ATLAS multithreaded control framework, AthenaMT, for both event and non-event I/O. We discuss issues associated with exploiting the multithreading capabilities of our underlying persistence technology, ROOT, in a manner harmonious with the ATLAS framework’s o...

  5. Modelling of particles collection by vented limiters

    International Nuclear Information System (INIS)

    Tsitrone, E.; Pegourie, B.; Granata, G.

    1995-01-01

    This document deals with the use of vented limiters for the collection of neutral particles in Tore Supra. The model developed for experiments is presented together with its experimental validation. Some possible improvements to the present limiter are also proposed. (TEC). 5 refs., 3 figs

  6. Empirical questions for collective-behaviour modelling

    Indian Academy of Sciences (India)

    The collective behaviour of groups of social animals has been an active topic of study ... Models have been successful at reproducing qualitative features of ... quantitative and detailed empirical results for a range of animal systems. ... standard method [23], the redundant information recorded by the cameras can be used to.

  7. Topographic evidence for shield volcanism on Io

    International Nuclear Information System (INIS)

    Moore, J.M.; Mcewen, A.S.; Albin, E.F.; Greeley, R.

    1986-01-01

    Similarities between terrestrial shield volcanoes and a volcano on Io observed in Voyager I imagery of the satellite at 30 0 S, 246 0 W are delineated. A photoclinometry model was used to numerically estimate the slope based on the Minnaert photometric function. The slope values are accurate to within 10 deg on the sun-facing slope and 1 deg on the shadow side. As found with shield volcanoes, the feature has a central edifice, 40-50 km in diameter, and a broad, elliptical base, 77 x 90 km across. The summit of the Io volcano is 2.2-2.8 km above the surrounding plane and contains a caldera about 5 km in diameter. The similarity in shape between basaltic terrestrial shield volcanoes and the Io volcano indicates that the Io feature may also be composed of basalt. The composition could be sulfur if the heat flow was under 0.05 W/sq m, as it might have been in later stages of formation. 9 references

  8. Adaptive-network models of collective dynamics

    Science.gov (United States)

    Zschaler, G.

    2012-09-01

    Complex systems can often be modelled as networks, in which their basic units are represented by abstract nodes and the interactions among them by abstract links. This network of interactions is the key to understanding emergent collective phenomena in such systems. In most cases, it is an adaptive network, which is defined by a feedback loop between the local dynamics of the individual units and the dynamical changes of the network structure itself. This feedback loop gives rise to many novel phenomena. Adaptive networks are a promising concept for the investigation of collective phenomena in different systems. However, they also present a challenge to existing modelling approaches and analytical descriptions due to the tight coupling between local and topological degrees of freedom. In this work, which is essentially my PhD thesis, I present a simple rule-based framework for the investigation of adaptive networks, using which a wide range of collective phenomena can be modelled and analysed from a common perspective. In this framework, a microscopic model is defined by the local interaction rules of small network motifs, which can be implemented in stochastic simulations straightforwardly. Moreover, an approximate emergent-level description in terms of macroscopic variables can be derived from the microscopic rules, which we use to analyse the system's collective and long-term behaviour by applying tools from dynamical systems theory. We discuss three adaptive-network models for different collective phenomena within our common framework. First, we propose a novel approach to collective motion in insect swarms, in which we consider the insects' adaptive interaction network instead of explicitly tracking their positions and velocities. We capture the experimentally observed onset of collective motion qualitatively in terms of a bifurcation in this non-spatial model. We find that three-body interactions are an essential ingredient for collective motion to emerge

  9. Adopting the Essence Framework to Derive a Practice Library for the Development of IoT Systems

    NARCIS (Netherlands)

    Giray, Görkem; Tekinerdogan, B.; Tüzün, E.

    2018-01-01

    The Internet of Things (IoT) is a global network of smart devices which enables these objects to collect and exchange data. Research in the IoT is still progressing, and it is now being applied in various domains. One of the key observations is that the development of IoT systems is not trivial and

  10. Network Security Issues in The Internet of Things (IoT)

    OpenAIRE

    Millar, Stuart

    2016-01-01

    This paper surveys a broad range of other research works in order to discuss network security issues in the Internet of Things (IoT). We begin with setting the scene generally with an outline of IoT, followed by a discussion of IoT layer models and topologies. After this, IoT standardization efforts and protocols are analysed, before we discuss in depth vulnerabilities, attacks and mitigations with regard IoT. It is concluded that ample research and narrative exists for protocols and vulnerab...

  11. Economics of Internet of Things (IoT): An Information Market Approach

    OpenAIRE

    Niyato, D.; Lu, X.; Wang, P.; Kim, D. I.; Han, Z.

    2015-01-01

    Internet of things (IoT) has been proposed to be a new paradigm of connecting devices and providing services to various applications, e.g., transportation, energy, smart city, and healthcare. In this paper, we focus on an important issue, i.e., economics of IoT, that can have a great impact to the success of IoT applications. In particular, we adopt and present the information economics approach with its applications in IoT. We first review existing economic models developed for IoT services....

  12. A post-Galileo view of Io's interior

    Science.gov (United States)

    Keszthelyi, L.; Jaeger, W.L.; Turtle, E.P.; Milazzo, M.; Radebaugh, J.

    2004-01-01

    We present a self-consistent model for the interior of Io, taking the recent Galileo data into account. In this model, Io has a completely molten core, substantially molten mantle, and a very cold lithosphere. Heat from magmatic activity can mobilize volatile compounds such as SO2 in the lithosphere, and the movement of such cryogenic fluids may be important in the formation of surface features including sapping scarps and paterae. ?? Published by Elsevier Inc.

  13. Penerapan Action RPG pada Perangkat Mobile Berbasiskan iOS

    Directory of Open Access Journals (Sweden)

    Budi Yulianto

    2011-12-01

    Full Text Available Mobile games develop along with technological developments. Gaming applications by applying special graphics technologies optimizes any mobile device. The purpose of this study is to design an Action RPG game application by applying Cocos2d technology to be implemented on mobile devices based on IOS operating system. This study performs data collecting and analyzing, interface designing, application implementation, and application evaluation using the Waterfall Model. Data collection is withdrawn from several surveys related to user needs and similar games. Progressing the study, gameplay design is performed using UML, the data storage structure, and interface design. The study results in an Action RPG game application that is implemented on mobile devices. The results showes that Action RPG games can be developed by incorporating elements of art, graphics, and stories that enhance user's interests. 

  14. Algebraic formulation of collective models. I. The mass quadrupole collective model

    International Nuclear Information System (INIS)

    Rosensteel, G.; Rowe, D.J.

    1979-01-01

    This paper is the first in a series of three which together present a microscopic formulation of the Bohr--Mottelson (BM) collective model of the nucleus. In this article the mass quadrupole collective (MQC) model is defined and shown to be a generalization of the BM model. The MQC model eliminates the small oscillation assumption of BM and also yields the rotational and CM (3) submodels by holonomic constraints on the MQC configuration space. In addition, the MQC model is demonstrated to be an algebraic model, so that the state space of the MQC model carries an irrep of a Lie algebra of microscopic observables, the MQC algebra. An infinite class of new collective models is then given by the various inequivalent irreps of this algebra. A microscopic embedding of the BM model is achieved by decomposing the representation of the MQC algebra on many-particle state space into its irreducible components. In the second paper this decomposition is studied in detail. The third paper presents the symplectic model, which provides the realization of the collective model in the harmonic oscillator shell model

  15. A collective model for transitional nuclei

    International Nuclear Information System (INIS)

    Bernus, L. von; Kappatsch, A.; Rezwani, V.; Scheid, W.; Schneider, U.; Sedlmayr, M.; Sedlmayr, R.

    1975-01-01

    The paper consists of the following sections: 1. Introduction; 2. The model (The quadrupole co-ordinates, the potential energy surface, the Hamilton operator, quadrupole moments, B(E2)-values and rms-radii); 3. The diagonalization of the collective Hamilton operator (The eigen-states of the five-dimensional oscillator, classification of the basis: R(5) is contained in R(3) and R(5) is contained in R(4) = SU(2) x SU(2), calculation of the matrix elements of H, convergence of the numerical procedure); 4. Application of the model (General remarks, typical spectra, selected spectra, conclusions); 5. The coupling of the giant-resonance states with the low-energy spectrum (The Hamilton operator, hydrodynamical model for the GR, the interaction Hamilton operator Hsub(DQ), the basis states for diagonalization, the dipole operator and the γ-absorption cross-section, results); 6. Summary. (author)

  16. The sympletic collective model and its submodels

    International Nuclear Information System (INIS)

    Santos Avancini, S. dos.

    1986-01-01

    A review the sympletic collective model (SCM), emphasizing the mathematical and physical content of the model is done. Since the SCM is not computationally viable, a detailed discussion of the properties and relationships of the SCM submodels both, in a spherical and in a deformed harmonic oscillator basis is presented. It is shown that the deformed basis is an optimal one, from an analysis of the variational models, variation before projection (VBP) and variation after projection (VAP). To demonstrate that a calculation in the deformed basis is feasible, the submodel Sp paral. (1,R) x Sp perpend. (1,R) to calculate matrix elements of the operators of physical interest in 8 Be is considered. The Sp (1,R) x Sp 1 (1,R) is the simplest submodel which contains the states of VBP and VAP. (author) [pt

  17. Enabling IoT ecosystems through platform interoperability

    OpenAIRE

    Bröring, Arne; Schmid, Stefan; Schindhelm, Corina-Kim; Khelil, Abdelmajid; Kabisch, Sebastian; Kramer, Denis; Le Phuoc, Danh; Mitic, Jelena; Anicic, Darko; Teniente López, Ernest

    2017-01-01

    Today, the Internet of Things (IoT) comprises vertically oriented platforms for things. Developers who want to use them need to negotiate access individually and adapt to the platform-specific API and information models. Having to perform these actions for each platform often outweighs the possible gains from adapting applications to multiple platforms. This fragmentation of the IoT and the missing interoperability result in high entry barriers for developers and prevent the emergence of broa...

  18. Design and testing of RapidIO application and verification model%RapidIO应用系统及其验证模型的设计与测试

    Institute of Scientific and Technical Information of China (English)

    梁光胜; 刘倩茹; 姚海洋

    2011-01-01

    Aiming at the problem existed in the traditional interconnection of embedded system, a scheme of RapidIO application and verification model, which can be used for the communication in the embedded system, is proposed. Based on the IP Core and Cyclone serial FPGA of Ahera Company, this scheme builds communication system of Serial RapidIO (SRIO) whose functions are verified. The structure and operation principle of RapidIO application and verification model are elaborated, which give a solution to the improvement of communication rate in the embedded system.%针对传统嵌入式系统中互连通信的问题.提出一种可用于嵌入式系统内部通信的基于RapidIO的应用系统及其验证模型。该方案采/8Ahera公司的IP核和Cyclone系列FPGA,建立了串行RapidIO(SRIO)4g-口通信系统,并对其功能进行验证。详细分析了RapidIO应用系统及其验证模型的功能结构和运行原理.为提高嵌入式系统内部模块的通信速率提供了解决方案。

  19. Collective effects in microscopic transport models

    International Nuclear Information System (INIS)

    Greiner, Carsten

    2003-01-01

    We give a reminder on the major inputs of microscopic hadronic transport models and on the physics aims when describing various aspects of relativistic heavy ion collisions at SPS energies. We then first stress that the situation of particle ratios being reproduced by a statistical description does not necessarily mean a clear hint for the existence of a fully isotropic momentum distribution at hydrochemical freeze-out. Second, a short discussion on the status of strangeness production is given. Third we demonstrate the importance of a new collective mechanism for producing (strange) antibaryons within a hardonic description, which guarantees sufficiently fast chemical equilibration

  20. On possible life on Jupiter's satellite Io

    Science.gov (United States)

    Vidmachenko, A. P.

    2018-05-01

    Some of the satellites of Jupiter may well be suitable both for mastering, and for finding possible traces of life there. Among them such satellite like Io - nearest Galilean satellite of Jupiter, and one of the most volcanically active bodies in the solar system. Warming of the mantle is caused by a powerful tidal force from the side of Jupiter. This leads to the heating of some parts of the mantle to a temperature above 1800 K, with an average surface temperature of about 140 K. But under its surface can be safe and even comfortable shelters, where life could once have come from the outside (even in a very primitive form), and could survive to this day. Moreover, according to some model's assumptions, Io could sometime be formed in another part of the Solar system, where the water could exist. Note that on neighboring Galilean satellites now exist significant amounts of water .

  1. Models for wind turbines - a collection

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, G.C.; Hansen, M.H. (eds.); Baumgart, A.

    2002-02-01

    This report is a collection of notes which were intended to be short communications. Main target of the work presented is to supply new approaches to stability investigations of wind turbines. The authors opinion is that an efficient, systematic stability analysis can not be performed for large systems of differential equations (i.e. the order of the differential equations > 100), because numerical 'effects' in the solution of the equations of motion as initial value problem, eigenvalue problem or whatsoever become predominant. It is therefore necessary to find models which are reduced to the elementary coordinates but which can still describe the physical processes under consideration with sufficiently good accuracy. Such models are presented. (au)

  2. Semantic Interoperability in Heterogeneous IoT Infrastructure for Healthcare

    Directory of Open Access Journals (Sweden)

    Sohail Jabbar

    2017-01-01

    Full Text Available Interoperability remains a significant burden to the developers of Internet of Things’ Systems. This is due to the fact that the IoT devices are highly heterogeneous in terms of underlying communication protocols, data formats, and technologies. Secondly due to lack of worldwide acceptable standards, interoperability tools remain limited. In this paper, we proposed an IoT based Semantic Interoperability Model (IoT-SIM to provide Semantic Interoperability among heterogeneous IoT devices in healthcare domain. Physicians communicate their patients with heterogeneous IoT devices to monitor their current health status. Information between physician and patient is semantically annotated and communicated in a meaningful way. A lightweight model for semantic annotation of data using heterogeneous devices in IoT is proposed to provide annotations for data. Resource Description Framework (RDF is a semantic web framework that is used to relate things using triples to make it semantically meaningful. RDF annotated patients’ data has made it semantically interoperable. SPARQL query is used to extract records from RDF graph. For simulation of system, we used Tableau, Gruff-6.2.0, and Mysql tools.

  3. The Holistic Targeting (HOT) methodology as the means to improve Information Operations (IO) target development and prioritization

    OpenAIRE

    Ieva, Christopher S.

    2008-01-01

    Prioritization. In response to this challenge, this study proposes five recommendations to enhance IO integration into the Joint Targeting Cycle: the use of interim IO Joint Munitions Effectiveness Manual (JMEM) techniques to better forecast cognitive effects, the adoption of the Measure of Worth (MOW) model to assess IO effects, the HOT methodology to develop and prioritize IO targets, the use of compendium software facilitate targeting problem understanding and the network analysis to...

  4. Turning Internet of Things(IoT) into Internet of Vulnerabilities (IoV) : IoT Botnets

    OpenAIRE

    Angrishi, Kishore

    2017-01-01

    Internet of Things (IoT) is the next big evolutionary step in the world of internet. The main intention behind the IoT is to enable safer living and risk mitigation on different levels of life. With the advent of IoT botnets, the view towards IoT devices has changed from enabler of enhanced living into Internet of vulnerabilities for cyber criminals. IoT botnets has exposed two different glaring issues, 1) A large number of IoT devices are accessible over public Internet. 2) Security (if cons...

  5. Studi atas Pemanfaatan Blockchain bagi Internet of Things (IoT

    Directory of Open Access Journals (Sweden)

    Lathifah Arief

    2017-08-01

    Full Text Available Ekosistem Internet of Things (IoT berkembang dengan sangat cepat dan diperkirakan akan menghubungkan 5-20 miliar perangkat pada tahun 2020. Data yang dihimpun dari perangkat ini akan mencapai jumlah yang sangat besar. Saat ini, ekosistem IoT pada umumnya menggunakan model sistem terpusat. Model tersebut memiliki beberapa kelemahan, seperti biaya pemeliharaan yang relatif tinggi, Sistem terdistribusi dapat menjadi alternatif solusi. Blockchain, teknologi ledger terditribusi, memungkinkan transaksi peer-to-peer tanpa perlu adanya perantara pihak ketiga yang terpercaya. Paper ini bertujuan untuk mengeksplorasi potensi pengintegrasian Blockchain ke dalam ekosistem IoT. Hasil penelitian berupa model dan use-case pemanfaatan Blockchain dalam IoT.

  6. iOS 6 foundations

    CERN Document Server

    Feiler, Jesse

    2013-01-01

    A practical introduction for using iOS 6 to create universal apps If you have prior experience programming in an object-oriented language and are eager to start building universal apps for iPad and iPhone (including the iPod touch), then this is the book for you! Using the latest version of iOS (iOS 6) along with the latest version of Xcode (Xcode 4.5), this book is a practical introduction rather than just a catalog of components. Full-color and packed with groundbreaking, innovative designs, this book teaches you how to create eye-catching, unique apps. Teaches you the va

  7. Cross-Layer Energy Optimization for IoT Environments: Technical Advances and Opportunities

    Directory of Open Access Journals (Sweden)

    Kirshna Kumar

    2017-12-01

    Full Text Available Energy efficiency is a significant characteristic of battery-run devices such as sensors, RFID and mobile phones. In the present scenario, this is the most prominent requirement that must be served while introducing a communication protocol for an IoT environment. IoT network success and performance enhancement depend heavily on optimization of energy consumption that enhance the lifetime of IoT nodes and the network. In this context, this paper presents a comprehensive review on energy efficiency techniques used in IoT environments. The techniques proposed by researchers have been categorized based on five different layers of the energy architecture of IoT. These five layers are named as sensing, local processing and storage, network/communication, cloud processing and storage, and application. Specifically, the significance of energy efficiency in IoT environments is highlighted. A taxonomy is presented for the classification of related literature on energy efficient techniques in IoT environments. Following the taxonomy, a critical review of literature is performed focusing on major functional models, strengths and weaknesses. Open research challenges related to energy efficiency in IoT are identified as future research directions in the area. The survey should benefit IoT industry practitioners and researchers, in terms of augmenting the understanding of energy efficiency and its IoT-related trends and issues.

  8. Rutes amb iOS

    OpenAIRE

    Nofuentes Azcárate, Pedro

    2011-01-01

    Projecte de l'implementació d'una aplicació per registrar i gestionar recorreguts basada al sistema operatiu iOS amb la possibilitat de sincronitzar amb un servei web sobre la plataforma Google App Engine. Proyecto de implementación de una aplicación para registrar y gestionar recorridos basada en el sistema operativo iOS con la posibilidad de sincronizar con un servicio web sobre la plataforma Google App Engine. Implementation project for an application to record and manage routes, bas...

  9. iOS 5 Essentials

    CERN Document Server

    Daniel, Steven F

    2012-01-01

    Each chapter will take you through a new major feature of iOS 5. You will learn how to integrate each feature into your applications. If you ever wanted to learn about the latest features of iOS 5 and learn how to incorporate Twitter, iCloud and Core Image framework effects functionality into your applications, then this book is for you. You should have a good knowledge of programming experience with Objective-C, and have used Xcode 4. iPhone programming experience is not required.

  10. Students versus IoT Security

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    What happens when you introduce students to IoT security for the first time? In this talk I will tell you about my first experience with IoT Security and the thought process behind the decisions I made.

  11. Human reliability data collection and modelling

    International Nuclear Information System (INIS)

    1991-09-01

    The main purpose of this document is to review and outline the current state-of-the-art of the Human Reliability Assessment (HRA) used for quantitative assessment of nuclear power plants safe and economical operation. Another objective is to consider Human Performance Indicators (HPI) which can alert plant manager and regulator to departures from states of normal and acceptable operation. These two objectives are met in the three sections of this report. The first objective has been divided into two areas, based on the location of the human actions being considered. That is, the modelling and data collection associated with control room actions are addressed first in chapter 1 while actions outside the control room (including maintenance) are addressed in chapter 2. Both chapters 1 and 2 present a brief outline of the current status of HRA for these areas, and major outstanding issues. Chapter 3 discusses HPI. Such performance indicators can signal, at various levels, changes in factors which influence human performance. The final section of this report consists of papers presented by the participants of the Technical Committee Meeting. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  12. Dangoraižio projektavimo ypatumai

    Directory of Open Access Journals (Sweden)

    Robertas Volvačiovas

    2011-06-01

    Full Text Available Santrauka. Straipsnyje išskiriami pagrindiniai dangoraižio įgyvendinimo ir gyvavimo etapai, aptariamas dangoraižio projektavimo etapas, dangoraižio techninio projekto (TP ir darbo projekto (DP sudėtis, išskiriamos pagrindinės dangoraižių problemos, iškylančios projektavimo etape, ir pateikiami sprendimo būdai.Straipsnis lietuvių kalba

  13. IoT-Based Car's Parking Monitoring System

    OpenAIRE

    Dwiputra Albertus Ega; Khoswanto Handry; Sutjiadi Raymond; Lim Resmana

    2018-01-01

    Internet-of-things-based technologies have advanced so much and helped public necessities. The use of IoT at a parking lot will help vehicle users to know the availability of a parking location through smartphones. This IoT-based parking system is created by using controllers, sensors, servers and cloud. Controllers and sensors will be placed on the ceiling of each parking slots to detect the presence of a car. Server collect the results of the sensors and store them in Cloud. System test is ...

  14. Heat flow from Io /JI/

    Science.gov (United States)

    Matson, D. L.; Ransford, G. A.; Johnson, T. V.

    1981-01-01

    The existing ground-based measurements of Io's thermal emission at infrared wavelengths of 8.4, 10.6, and 21 microns have been reexamined. Present in these data is the signature of hot spots, presumably similar to the hot spots seen by the IRIS experiment on Voyager. It is possible to extract from these data the total amount of power radiated. Since the hot spots are believed to be a result of deep-seated activity in Io and since the remainder of Io's surface is an extraordinarily poor thermal conductor, the power radiated by the hot spots is essentially the total heat flow. The analysis yields a heat flow of 2 + or - 1 W/sq m. This value is tremendously large in comparison to the average heat flow of the earth (0.06 W/sq m) and the moon (0.02 W/sq m), but is characteristic of active geothermal areas on the earth. A heat flow this large requires that the interior of Io be at least partially molten on a global scale.

  15. IOS SAFETY APPLICATION FOR UITM

    Directory of Open Access Journals (Sweden)

    MOHAMAD FAHMI HUSSIN

    2016-04-01

    Full Text Available This paper presents an iOS application, which is developed, to ensure that every task related to safety and health such as inspection, deviation analysis and accident reporting becomes more simple and easier. Normally, these three (3 tasks are done separately and the data are saved in different ways. These situations make the tasks become complicated and consume a lot of time. Therefore, this application is developed to overcome all the problems that occurred. The main objective of this application is to allow the user to handle inspection checklist, deviation analysis and accident reporting efficiently by using iOS devices such as iPhone and iPad. Hence, using iOS device, instead of using a lot of paper, can do all the tasks. Using Xcode SDK, which is the software that is used to develop iOS application, developed this application. Xcode use Objective-C as the programming language, which is quite similar with other programming languages such as C and C++. The final result of this project is that this application can handle all the three (3 tasks and the form or the findings can be emailed to the Safety and Health Officer (SHO. This application will reduce time consume to conduct safety inspection, deviation and reporting tasks as well as avoid delay that might happen while using the traditional method.

  16. Learning iOS forensics

    CERN Document Server

    Epifani, Mattia

    2015-01-01

    If you are a digital forensics examiner daily involved in the acquisition and analysis of mobile devices and want to have a complete overview of how to perform your work on iOS devices, this book is definitely for you.

  17. uFlip: Understanding Flash IO Patterns

    DEFF Research Database (Denmark)

    Bouganim, Luc; Jonsson, Bjørn; Bonnet, Philippe

    2009-01-01

    want to establish what kind of IOs should be favored (or avoided) when designing algorithms and architectures for flash-based systems. In this paper, we focus on flash IO patterns, that capture relevant distribution of IOs in time and space, and our goal is to quantify their performance. We define uFLIP...

  18. Evidence of a global magma ocean in Io's interior.

    Science.gov (United States)

    Khurana, Krishan K; Jia, Xianzhe; Kivelson, Margaret G; Nimmo, Francis; Schubert, Gerald; Russell, Christopher T

    2011-06-03

    Extensive volcanism and high-temperature lavas hint at a global magma reservoir in Io, but no direct evidence has been available. We exploited Jupiter's rotating magnetic field as a sounding signal and show that the magnetometer data collected by the Galileo spacecraft near Io provide evidence of electromagnetic induction from a global conducting layer. We demonstrate that a completely solid mantle provides insufficient response to explain the magnetometer observations, but a global subsurface magma layer with a thickness of over 50 kilometers and a rock melt fraction of 20% or more is fully consistent with the observations. We also place a stronger upper limit of about 110 nanoteslas (surface equatorial field) on the dynamo dipolar field generated inside Io.

  19. Attack tree analysis for insider threats on the IoT using isabelle

    DEFF Research Database (Denmark)

    Kammüller, Florian; Nurse, Jason R. C.; Probst, Christian W.

    2016-01-01

    The Internet-of-Things (IoT) aims at integrating small devices around humans. The threat from human insiders in "regular" organisations is real; in a fully-connected world of the IoT, organisations face a substantially more severe security challenge due to unexpected access possibilities and info....... On the classified IoT attack examples, we show how this logical approach can be used to make the models more precise and to analyse the previously identified Insider IoT attacks using Isabelle attack trees....

  20. Towards Blockchain-based Auditable Storage and Sharing of IoT Data

    OpenAIRE

    Shafagh, Hossein; Burkhalter, Lukas; Hithnawi, Anwar; Duquennoy, Simon

    2017-01-01

    Today the cloud plays a central role in storing, processing, and distributing data. Despite contributing to the rapid development of IoT applications, the current IoT cloud-centric architecture has led into a myriad of isolated data silos that hinders the full potential of holistic data-driven analytics within the IoT. In this paper, we present a blockchain-based design for the IoT that brings a distributed access control and data management. We depart from the current trust model that delega...

  1. IoT-based Asset Management System for Healthcare-related Industries

    Directory of Open Access Journals (Sweden)

    Lee Carman Ka Man

    2015-11-01

    Full Text Available The healthcare industry has been focusing efforts on optimizing inventory management procedures through the incorporation of Information and Communication Technology, in the form of tracking devices and data mining, to establish ideal inventory models. In this paper, a roadmap is developed towards a technological assessment of the Internet of Things (IoT in the healthcare industry, 2010–2020. According to the roadmap, an IoT-based healthcare asset management system (IoT-HAMS is proposed and developed based on Artificial Neural Network (ANN and Fuzzy Logic (FL, incorporating IoT technologies for asset management to optimize the supply of resources.

  2. An Intelligent and Secure Health Monitoring Scheme Using IoT Sensor Based on Cloud Computing

    Directory of Open Access Journals (Sweden)

    Jin-Xin Hu

    2017-01-01

    Full Text Available Internet of Things (IoT is the network of physical objects where information and communication technology connect multiple embedded devices to the Internet for collecting and exchanging data. An important advancement is the ability to connect such devices to large resource pools such as cloud. The integration of embedded devices and cloud servers offers wide applicability of IoT to many areas of our life. With the aging population increasing every day, embedded devices with cloud server can provide the elderly with more flexible service without the need to visit hospitals. Despite the advantages of the sensor-cloud model, it still has various security threats. Therefore, the design and integration of security issues, like authentication and data confidentiality for ensuring the elderly’s privacy, need to be taken into consideration. In this paper, an intelligent and secure health monitoring scheme using IoT sensor based on cloud computing and cryptography is proposed. The proposed scheme achieves authentication and provides essential security requirements.

  3. High performance parallel I/O

    CERN Document Server

    Prabhat

    2014-01-01

    Gain Critical Insight into the Parallel I/O EcosystemParallel I/O is an integral component of modern high performance computing (HPC), especially in storing and processing very large datasets to facilitate scientific discovery. Revealing the state of the art in this field, High Performance Parallel I/O draws on insights from leading practitioners, researchers, software architects, developers, and scientists who shed light on the parallel I/O ecosystem.The first part of the book explains how large-scale HPC facilities scope, configure, and operate systems, with an emphasis on choices of I/O har

  4. A Proof-of-Concept for Semantically Interoperable Federation of IoT Experimentation Facilities.

    Science.gov (United States)

    Lanza, Jorge; Sanchez, Luis; Gomez, David; Elsaleh, Tarek; Steinke, Ronald; Cirillo, Flavio

    2016-06-29

    The Internet-of-Things (IoT) is unanimously identified as one of the main pillars of future smart scenarios. The potential of IoT technologies and deployments has been already demonstrated in a number of different application areas, including transport, energy, safety and healthcare. However, despite the growing number of IoT deployments, the majority of IoT applications tend to be self-contained, thereby forming application silos. A lightweight data centric integration and combination of these silos presents several challenges that still need to be addressed. Indeed, the ability to combine and synthesize data streams and services from diverse IoT platforms and testbeds, holds the promise to increase the potentiality of smart applications in terms of size, scope and targeted business context. In this article, a proof-of-concept implementation that federates two different IoT experimentation facilities by means of semantic-based technologies will be described. The specification and design of the implemented system and information models will be described together with the practical details of the developments carried out and its integration with the existing IoT platforms supporting the aforementioned testbeds. Overall, the system described in this paper demonstrates that it is possible to open new horizons in the development of IoT applications and experiments at a global scale, that transcend the (silo) boundaries of individual deployments, based on the semantic interconnection and interoperability of diverse IoT platforms and testbeds.

  5. A Proof-of-Concept for Semantically Interoperable Federation of IoT Experimentation Facilities

    Directory of Open Access Journals (Sweden)

    Jorge Lanza

    2016-06-01

    Full Text Available The Internet-of-Things (IoT is unanimously identified as one of the main pillars of future smart scenarios. The potential of IoT technologies and deployments has been already demonstrated in a number of different application areas, including transport, energy, safety and healthcare. However, despite the growing number of IoT deployments, the majority of IoT applications tend to be self-contained, thereby forming application silos. A lightweight data centric integration and combination of these silos presents several challenges that still need to be addressed. Indeed, the ability to combine and synthesize data streams and services from diverse IoT platforms and testbeds, holds the promise to increase the potentiality of smart applications in terms of size, scope and targeted business context. In this article, a proof-of-concept implementation that federates two different IoT experimentation facilities by means of semantic-based technologies will be described. The specification and design of the implemented system and information models will be described together with the practical details of the developments carried out and its integration with the existing IoT platforms supporting the aforementioned testbeds. Overall, the system described in this paper demonstrates that it is possible to open new horizons in the development of IoT applications and experiments at a global scale, that transcend the (silo boundaries of individual deployments, based on the semantic interconnection and interoperability of diverse IoT platforms and testbeds.

  6. I/O load balancing for big data HPC applications

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Arnab K. [Virginia Polytechnic Institute and State University; Goyal, Arpit [Virginia Polytechnic Institute and State University; Wang, Feiyi [ORNL; Oral, H Sarp [ORNL; Butt, Ali R. [Virginia Tech, Blacksburg, VA; Brim, Michael J. [ORNL; Srinivasa, Sangeetha B. [Virginia Polytechnic Institute and State University

    2018-01-01

    High Performance Computing (HPC) big data problems require efficient distributed storage systems. However, at scale, such storage systems often experience load imbalance and resource contention due to two factors: the bursty nature of scientific application I/O; and the complex I/O path that is without centralized arbitration and control. For example, the extant Lustre parallel file system-that supports many HPC centers-comprises numerous components connected via custom network topologies, and serves varying demands of a large number of users and applications. Consequently, some storage servers can be more loaded than others, which creates bottlenecks and reduces overall application I/O performance. Existing solutions typically focus on per application load balancing, and thus are not as effective given their lack of a global view of the system. In this paper, we propose a data-driven approach to load balance the I/O servers at scale, targeted at Lustre deployments. To this end, we design a global mapper on Lustre Metadata Server, which gathers runtime statistics from key storage components on the I/O path, and applies Markov chain modeling and a minimum-cost maximum-flow algorithm to decide where data should be placed. Evaluation using a realistic system simulator and a real setup shows that our approach yields better load balancing, which in turn can improve end-to-end performance.

  7. TDA's validity to study 18O collectivity in terms of collective pair model

    International Nuclear Information System (INIS)

    Gao Yuanyi; Vitturi, A.; Catara, F.; Sambataro, M.

    1991-01-01

    Conclusion proved that if the authors calculate 18 O collective spectra in terms of the Collective Pair Model, the authors can get the positive low laying levels of 18 O which are of the particle particle pair, independent on the excitation of hole within closed shell. 1 - low laying levels are of non-collective 3 particle 1 hole states. 1 - fourth level is of collective 3 particle 1 hole states. 3 - low laying levels are of collective 3 particle 1 hole states. 1 - , 3 - low laying levels agree very well with the experiment data. Hence the TDA is sufficient for the calculations of 1 - ,3 - collective low levels of 18 O

  8. Models for wind turbines - a collection

    DEFF Research Database (Denmark)

    2002-01-01

    This report is a collection of notes which were intended to be short communications. Main target of the work presented is to supply new approaches to stability investigations of wind turbines. The author's opinion is that an efficient, systematicstability analysis can not be performed for large...

  9. Boson models of quadrupole collective motion

    International Nuclear Information System (INIS)

    Zelevinskij, V.G.

    1985-01-01

    The subject of the lecture is the low-lying excitations of even-even (e-e) spherical nuclei. The predominant role of the quadrupole mode, which determines the structure of spectra and transitions, is obvious on the background of shell periodicity and pair correlations. Typical E2-transitions are strengthened Ω ∼ A 2/3 times in comparison with single particle evaluations. Together with the regularity of the whole picture it gives evidence about collectivization of quadrupole motion. The collective states are combined in bands, where the transition probability are especially great; frequencies ω of the strengthened transitions are small in comparison with pair separation energies of 2 E-bar ∼ 2 MeV. Thus, the description of low-lying excitations of spherical nuclei has to be based on three principles: collectivity (Ω >> 1), adiabaticity (τ ≡ ω/2E-bar << 1) and quadrupole symmetry

  10. Collaborative Working Architecture for IoT-Based Applications.

    Science.gov (United States)

    Mora, Higinio; Signes-Pont, María Teresa; Gil, David; Johnsson, Magnus

    2018-05-23

    The new sensing applications need enhanced computing capabilities to handle the requirements of complex and huge data processing. The Internet of Things (IoT) concept brings processing and communication features to devices. In addition, the Cloud Computing paradigm provides resources and infrastructures for performing the computations and outsourcing the work from the IoT devices. This scenario opens new opportunities for designing advanced IoT-based applications, however, there is still much research to be done to properly gear all the systems for working together. This work proposes a collaborative model and an architecture to take advantage of the available computing resources. The resulting architecture involves a novel network design with different levels which combines sensing and processing capabilities based on the Mobile Cloud Computing (MCC) paradigm. An experiment is included to demonstrate that this approach can be used in diverse real applications. The results show the flexibility of the architecture to perform complex computational tasks of advanced applications.

  11. Development of eStudent iOS mobile application

    Directory of Open Access Journals (Sweden)

    Mladjan Antic

    2013-01-01

    Full Text Available Abstract— iOS is the Apple mobile operating system, for Apple mobile devices. Initially developed for iPhone, and later for iPod Touch, iPad, AppleTV. The Metropolitan University has a Web application titled eStudent, which enables students by Web to get information about their marks for all subjects, their financies, exam scheduling, professors and assistents, and send exam registration and feedback about teaching, etc. This paper explains the development of the mobile application eStudent on the iOS platform. This application enables students whenever they want, by using their iPhone mobile phone, to get access to the information from the eStudent Web application, and to present it on their iPhone User Interface (UI. This paper explains in details software requirements analysis, system architecture, system modelling, and UI of the eStudent iOS mobile application.

  12. Latitudinal oscillations of plasma within the Io torus

    Science.gov (United States)

    Cummings, W. D.; Dessler, A. J.; Hill, T. W.

    1980-01-01

    The equilibrium latitude and the period of oscillations about this equilibrium latitude are calculated for a plasma in a centrifugally dominated tilted dipole magnetic field representing Jupiter's inner magnetosphere. It is found that for a hot plasma the equilibrium latitude in the magnetic equator, for a cold plasma it is the centrifugal equator, and for a warm plasma it is somewhere in between. An illustrative model is adopted in which atoms are sputtered from the Jupiter-facing hemisphere of Io and escape Io's gravity to be subsequently ionized some distance from Io. Finally, it is shown that ionization generally does not occur at the equilibrium altitude, and that the resulting latitudinal oscillations provide an explanation for the irregularities in electron concentration within the torus, as reported by the radioastronomy experiment aboard Voyager I.

  13. Collective behaviour in hydrodynamic and microscopic models

    International Nuclear Information System (INIS)

    Maruhn, J.A.; Buchwald, G.; Csernai, L.P.; Graebner, G; Kruse, H.; Stoecker, H.; Subramanian, P.R.; Greiner, W.

    1981-01-01

    In this talk I give an overview of theoretical calculations shedding light on collective effects in high-energy heavy-ion reactions. The identification of experimental signatures of such effects is of great importance, since compressions and some degree of local equilibration are prerequisites for the formation of exotic states of nuclear matter and, in general, the measurement of nuclear matter properties far from equilibrium. (orig.)

  14. An Optimizing Compiler for Petascale I/O on Leadership-Class Architectures

    Energy Technology Data Exchange (ETDEWEB)

    Kandemir, Mahmut Taylan [PSU; Choudary, Alok [Northwestern; Thakur, Rajeev [ANL

    2014-03-01

    In high-performance computing (HPC), parallel I/O architectures usually have very complex hierarchies with multiple layers that collectively constitute an I/O stack, including high-level I/O libraries such as PnetCDF and HDF5, I/O middleware such as MPI-IO, and parallel file systems such as PVFS and Lustre. Our DOE project explored automated instrumentation and compiler support for I/O intensive applications. Our project made significant progress towards understanding the complex I/O hierarchies of high-performance storage systems (including storage caches, HDDs, and SSDs), and designing and implementing state-of-the-art compiler/runtime system technology that targets I/O intensive HPC applications that target leadership class machine. This final report summarizes the major achievements of the project and also points out promising future directions Two new sections in this report compared to the previous report are IOGenie and SSD/NVM-specific optimizations.

  15. Explosive Volcanism in Io's Lava Lakes - The Key To Constraining Eruption Temperature?

    Science.gov (United States)

    Davies, A. G.; Keszthelyi, L. P.; McEwen, A. S.

    2010-12-01

    Active lava lakes are open volcanic systems, where lava circulates between a magma chamber and the surface. Rare on Earth, lava lakes may be common on Io, the highly volcanic jovian moon (e.g., [1]). Io’s low atmospheric pressure means that activity within Io’s lava lakes may be explosive, exposing lava at near-liquid temperatures (currently poorly constrained for Io). Lava lakes are therefore important targets for future missions to Io [2, 3]. With this in mind, hand-held infrared imagers were used to collect thermal emission data from the phonolite Erebus (Antarctica) lava lake [4] and the basalt lava lake at Erta’Ale (Ethiopia). Temperature-area distributions and the integrated thermal emission spectra for each lava lake were determined from the data. These calculated spectra have been used to test models developed for analysis of remote sensing data of lava lakes and lava flows on both Earth and Io, where no ground-truth exists. The silicate cooling model [5] assumes, for the lava lake model variant, that the existing surface crust has been created at a fixed rate. Model output consists of a synthesized thermal emission spectrum, estimate of surface age range, and a rate of surface crust area formation. The cooling model provides accurate reproductions of actual thermal spectra and the total emitting area to within a few percent of actual emitting area. Model resurfacing rates broadly agree with observed behaviour at both lakes. Despite different composition lavas, the short-wavelength infrared thermal emission spectra from the two terrestrial lava lakes studied are very similar in shape, and, importantly, bear a striking similarity to spectra of Pele, an Io volcano that has been proposed to be a persistent, active lava lake [6] and which is the source of a 300-km high dust and gas plume. Our study of the cooling of the hottest lava exposed at Erta’Ale yields constraints on the ability of multispectral imagers to determine eruption temperature. We find

  16. Debt Collection Models and Their Using in Practice

    Directory of Open Access Journals (Sweden)

    Anna Wodyńska

    2007-01-01

    Full Text Available An important element of a companys credit policy is its attitude to collecting due receivables. A company tries to establish the rules of collecting the said amount within the standards that are applied in a company. Depending on the organizational structure of a company, its scope of activity, common practices and, in particular, the credit policy assumed by a company, enterprises use internal, external or mixed debt collection models. Internal debt collection model assumes conducting debt collection activities within the organizational structure of a creditor company. External debt collection consists of ordering debt collection activities at a specialised company that handles debt service (outsourcing, which is connected with acting on behalf and account of the ordering party, but it also consists of receivables trading. The choice of proper debt collection model is not easy, due to, among others, high costs of the process as well as necessary expertise knowledge in the said scope; and the products offered on the market, although they seem similar, do differ substantially among one another. Regardless of the debt collection model, it shall be remembered that debt collection shall be run in a manner that ensures consolidation of entrepreneurs good name and their market position. The debt collection procedure binding in a company shall serve to work out a cooperation model with clients that are based on buyers reliability.

  17. Linear modeling of nonlinear systems using artificial neural networks based on I/O data and its application in power plant boiler modeling

    International Nuclear Information System (INIS)

    Ghaffari, A.; Nikkhah Bahrami, M.; Mohammadzaheri, M.

    2005-01-01

    In this paper a new method for linear modeling of nonlinear systems is presented. The method is based on the design of an artificial neural network with two layers. The network is trained only according to the input-output data of the system. The weights of connections in this network, represents the coefficients of the transfer function. For systems with linear behavior the method of least square error represents the best linear model of the system. However, for nonlinear systems, such as some subsystems in power plants boilers LSE does not represent the best linear approximation of the system, necessarily. In this paper a new linear modeling method is presented and applied to some subsystems in a power plant boiler. Comparison between the transfer function obtained in this way and by least square error method,shows that the neural network method gives better linear models for these nonlinear systems

  18. Pair shell model description of collective motions

    International Nuclear Information System (INIS)

    Chen Hsitseng; Feng Dahsuan

    1996-01-01

    The shell model in the pair basis has been reviewed with a case study of four particles in a spherical single-j shell. By analyzing the wave functions according to their pair components, the novel concept of the optimum pairs was developed which led to the proposal of a generalized pair mean-field method to solve the many-body problem. The salient feature of the method is its ability to handle within the framework of the spherical shell model a rotational system where the usual strong configuration mixing complexity is so simplified that it is now possible to obtain analytically the band head energies and the moments of inertia. We have also examined the effects of pair truncation on rotation and found the slow convergence of adding higher spin pairs. Finally, we found that when the SDI and Q .Q interactions are of equal strengths, the optimum pair approximation is still valid. (orig.)

  19. Constructing Multidatabase Collections Using Extended ODMG Object Model

    Directory of Open Access Journals (Sweden)

    Adrian Skehill Mark Roantree

    1999-11-01

    Full Text Available Collections are an important feature in database systems. They provide us with the ability to group objects of interest together, and then to manipulate them in the required fashion. The OASIS project is focused on the construction a multidatabase prototype which uses the ODMG model and a canonical model. As part of this work we have extended the base model to provide a more powerful collection mechanism, and to permit the construction of a federated collection, a collection of heterogenous objects taken from distributed data sources

  20. Volcanic Origin of Alkali Halides on Io

    Science.gov (United States)

    Schaefer, L.; Fegley, B., Jr.

    2003-01-01

    The recent observation of NaCl (gas) on Io confirms our earlier prediction that NaCl is produced volcanically. Here we extend our calculations by modeling thermochemical equilibrium of O, S, Li, Na, K, Rb, Cs, F, Cl, Br, and I as a function of temperature and pressure in a Pele-like volcanic gas with O/S/Na/Cl/K = 1.518/1/0.05/0.04/0.005 and CI chondritic ratios of the other (as yet unobserved) alkalis and halogens. For reference, the nominal temperature and pressure for Pele is 1760 plus or minus 210 K and 0.01 bars based on Galileo data and modeling.

  1. Remarks on the microscopic derivation of the collective model

    International Nuclear Information System (INIS)

    Toyoda, T.; Wildermuth, K.

    1984-01-01

    The rotational part of the phenomenological collective model of Bohr and Mottelson and others is derived microscopically, starting with the Schrodinger equation written in projection form and introducing a new set of 'relative Euler angles'. In order to derive the local Schrodinger equation of the collective model, it is assumed that the intrinsic wave functions give strong peaking properties to the overlapping kernels

  2. Modeling crowdsourcing as collective problem solving

    Science.gov (United States)

    Guazzini, Andrea; Vilone, Daniele; Donati, Camillo; Nardi, Annalisa; Levnajić, Zoran

    2015-11-01

    Crowdsourcing is a process of accumulating the ideas, thoughts or information from many independent participants, with aim to find the best solution for a given challenge. Modern information technologies allow for massive number of subjects to be involved in a more or less spontaneous way. Still, the full potentials of crowdsourcing are yet to be reached. We introduce a modeling framework through which we study the effectiveness of crowdsourcing in relation to the level of collectivism in facing the problem. Our findings reveal an intricate relationship between the number of participants and the difficulty of the problem, indicating the optimal size of the crowdsourced group. We discuss our results in the context of modern utilization of crowdsourcing.

  3. The Io Volcano Observer (IVO) for NASA Discovery 2015

    Science.gov (United States)

    McEwen, Alfred S.; Turtle, Elizabeth P.; Thomas, Nicolas

    2015-04-01

    IVO was first proposed as a NASA Discovery mission in 2010, powered by the Advanced Sterling Radioisotope Generators (ASRGs) to provide a compact spacecraft that points and settles quickly. The 2015 IVO uses advanced lightweight solar arrays and a 1-dimensional pivot to achieve similar observing flexibility during a set of fast (~18 km/s) flybys of Io. The John Hopkins University Applied Physics Lab (APL) leads mission implementation, with heritage from MESSENGER, New Horizons, and the Van Allen Probes. All science objectives from the Io Observer New Frontiers concept recommended in the 2011 Decadal Survey are addressed by IVO. There are 5 instruments plus gravity science: Narrow- and wide-angle cameras (NAC and WAC), Dual fluxgate magnetometers (DMAG), a thermal mapper (TMAP, from DLR), and particle environment package for Io (PEPI) consisting of an ion and neutral mass spectrometer (INMS, from UBE) and a plasma ion analyzer (PIA, from IRF). A student collaboration hotspot mapper (HOTMAP) is an option. The NAC and TMAP are on a ± 90° pivot for off-nadir targeting during encounters and for distant monitoring. The DMAG sensors are on the end and middle of 3.8-m boom and collect data continuously. WAC and HOTMAP are mounted on the S/C nadir deck, and observe during ±20 minutes of each Io closest approach, except orbits I0 and I2. PEPI is mounted on the S/C structure with the INMS field of view in the ram direction when the S/C nadir deck points at Io, and the PIA and has a large (hemispheric) field of view that will often include the upstream direction. Gravity science requires pointing the high-gain antenna at Earth during the I0 and I2 encounters. IVO launches in 2021 and arrives at Jupiter in early 2026. A close Io flyby (I0) ~1.5 hrs. after Jupiter orbit insertion lowers the orbit period, followed by 8 additional encounters achieving the suite of science objectives. The highly elliptical orbit with perijove near Io is inclined >40° to Jupiter's orbital plane

  4. EDGE TECHNOLOGIES IN IoT AND APPLICATION SCENARIO OF RFID BASED IoT

    OpenAIRE

    Dharam Gami *, Asst. Prof. Dhaval Nimavat, Asst. Prof. Shubham Sharma

    2016-01-01

    Internet of Things possesses the power to change the era. IoT will offer an advance connectivity between objects which will change the face of machine-to-machine communication. IoT will connect autonomous systems, devices and heterogeneous machines and make them communicate without human interactions. Many technologies will play significant role in IoT implementation. In this paper, we aim to describe the candidate of edge technologies in IoT and demonstrate how RFID based IoT system will loo...

  5. IoT Architectural Framework: Connection and Integration Framework for IoT Systems

    OpenAIRE

    Uviase, Onoriode; Kotonya, Gerald

    2018-01-01

    The proliferation of the Internet of Things (IoT) has since seen a growing interest in architectural design and adaptive frameworks to promote the connection between heterogeneous IoT devices and IoT systems. The most widely favoured software architecture in IoT is the Service Oriented Architecture (SOA), which aims to provide a loosely coupled systems to leverage the use and reuse of IoT services at the middle-ware layer, to minimise system integration problems. However, despite the flexibil...

  6. Behavioural informatics for improving water hygiene practice based on IoT environment.

    Science.gov (United States)

    Fu, Yang; Wu, Wenyan

    2018-02-01

    The development of Internet of Things (IoT) and latest Information and Communication Technologies (ICT) have changed the nature of healthcare monitoring and health behaviour intervention in many applications. Water hygiene and water conservation behaviour intervention as important influence factors to human health are gaining much attentions for improving sustained sanitation practice. Based on face-to-face delivery, typical behaviour intervention method is costly and hardly to provide all day access to personalised intervention guidance and feedbacks. In this study, we presented a behavioural information system and water use behaviour model using IoT platform. Using Expanded Theory of Planned Behaviour (ETPB) and adopted structure equation model, this study offers a solution for understanding the behaviour intervention mechanism and methodology for developing empirical model. A case study of behaviour intervention model is presented by utilising residential water conservation behaviour data collected in China. Results suggested that cultural differences have significant influences on the understanding of intervention drivers, promoting projects and increasing awareness, which could improve the behaviour intervention efficiency and further facilitate the improvement of water hygiene practice. The performance evaluation of water saving dimension is discussed as well in the paper. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Case Study: IoT Data Integration for Higher Education Institution

    Directory of Open Access Journals (Sweden)

    Pinka Krišjānis

    2016-12-01

    Full Text Available Nowadays the Internet of Things (IoT is one of the most trending technologies. It is expected that by year 2020 there will be 50 billion of Internet-connected devices. Fields like smart cities and smart homes largely rely on IoT phenomena by using a wide variety of sensors for data collection, analysis and corresponding actions. The paper describes how this trending and relatively new technology is applied at Riga Technical University for educational purposes.

  8. Understanding Information Hiding in iOS

    OpenAIRE

    Caviglione, Luca; Mazurczyk, Wojciech

    2014-01-01

    The Apple operating system (iOS) has so far proved resistant to information-hiding techniques, which help attackers covertly communicate. However, Siri - a native iOS service that controls iPhones and iPads via voice commands - could change this trend.

  9. Sesame IO Library User Manual Version 8

    Energy Technology Data Exchange (ETDEWEB)

    Abhold, Hilary [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Young, Ginger Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-15

    This document is a user manual for SES_IO, a low-level library for reading and writing sesame files. The purpose of the SES_IO library is to provide a simple user interface for accessing and creating sesame files that does not change across sesame format type (such as binary, ascii, and xml).

  10. iOS app development for dummies

    CERN Document Server

    Feiler, Jesse

    2014-01-01

    If you've got incredible iOS ideas, get this book and bring them to life! iOS 7 represents the most significant update to Apple's mobile operating system since the first iPhone was released, and even the most seasoned app developers are looking for information on how to take advantage of the latest iOS 7 features in their app designs. That's where iOS App Development For Dummies comes in! Whether you're a programming hobbyist wanting to build an app for fun or a professional developer looking to expand into the iOS market, this book will walk you through the fundamentals of building a univer

  11. Does Io's ionosphere influence Jupiter's radio bursts.

    Science.gov (United States)

    Webster, D. L.; Alksne, A. Y.; Whitten, R. C.

    1972-01-01

    Goldreich and Lynden-Bell's theory of Jupiter's Io-correlated decametric radiation sets a lower limit to Io's conductivity, high enough to carry the current associated with the radiated power. Dermott's analysis of conductivities of rocks and ice shows no such conductivity at Io's temperature. However, we show that if Io has even a small atmosphere, say of methane as suggested by Binder and Cruikshank, or of argon or nitrogen, it will have an ionosphere with adequate conductivity to meet the above criterion. A requirement for higher conductivity was found by Goldreich and Lynden-Bell on the basis of motion of magnetic lines past Io. This requirement appears to us unnecessary in view of experiments which prove that motion of the lines is not the source of the electromotance.

  12. Volcanic eruptions on Io: Heat flow, resurfacing, and lava composition

    Science.gov (United States)

    Blaney, Diana L.; Johnson, Torrence V.; Matson, Dennis L.; Veeder, Glenn J.

    1995-01-01

    We model an infrared outburst on Io as being due to a large, erupting lava flow which increased its area at a rate of 1.5 x 10(exp 5)/sq m and cooled from 1225 to 555 K over the 2.583-hr period of observation. The inferred effusion rate of 3 x 10(exp 5) cu m/sec for this eruption is very high, but is not unprece- dented on the Earth and is similar to the high eruption rates suggested for early lunar volcanism. Eruptions occur approxi- mately 6% of the time on Io. These eruptions provide ample resurfacing to explain Io's lack of impact craters. We suggest that the large total radiometric heat flow, 10(exp 14) W, and the size and temperature distribution of the thermal anomalies (McEwen et al. 1992; Veeder et al. 1994) can be accounted for by a series of silicate lava flows in various stages of cooling. We propose that the whole suite of Io's currently observed thermal anomalies was produced by multiple, high-eruptive-rate silicate flows within the past century.

  13. Field theory of large amplitude collective motion. A schematic model

    International Nuclear Information System (INIS)

    Reinhardt, H.

    1978-01-01

    By using path integral methods the equation for large amplitude collective motion for a schematic two-level model is derived. The original fermion theory is reformulated in terms of a collective (Bose) field. The classical equation of motion for the collective field coincides with the time-dependent Hartree-Fock equation. Its classical solution is quantized by means of the field-theoretical generalization of the WKB method. (author)

  14. Active Volcanic Eruptions on Io

    Science.gov (United States)

    1996-01-01

    Six views of the volcanic plume named Prometheus, as seen against Io's disk and near the bright limb (edge) of the satellite by the SSI camera on the Galileo spacecraft during its second (G2) orbit of Jupiter. North is to the top of each frame. To the south-southeast of Prometheus is another bright spot that appears to be an active plume erupting from a feature named Culann Patera. Prometheus was active 17 years ago during both Voyager flybys, but no activity was detected by Voyager at Culann. Both of these plumes were seen to glow in the dark in an eclipse image acquired by the imaging camera during Galileo's first (G1) orbit, and hot spots at these locations were detected by Galileo's Near-Infrared Mapping Spectrometer.The plumes are thought to be driven by heating sulfur dioxide in Io's subsurface into an expanding fluid or 'geyser'. The long-lived nature of these eruptions requires that a substantial supply of sulfur dioxide must be available in Io's subsurface, similar to groundwater. Sulfur dioxide gas condenses into small particles of 'snow' in the expanding plume, and the small particles scatter light and appear bright at short wavelengths. The images shown here were acquired through the shortest-wavelength filter (violet) of the Galileo camera. Prometheus is about 300 km wide and 75 km high and Culann is about 150 km wide and less than 50 km high. The images were acquired on September 4, 1996 at a range of 2,000,000 km (20 km/pixel resolution). Prometheus is named after the Greek fire god and Culann is named after the Celtic smith god.The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can

  15. Patient participation in collective healthcare decision making: the Dutch model

    NARCIS (Netherlands)

    van de Bovenkamp, H.; Trappenburg, M.J.; Grit, K.

    2010-01-01

    Objective To study whether the Dutch participation model is a good model of participation. Background Patient participation is on the agenda, both on the individual and the collective level. In this study, we focus on the latter by looking at the Dutch model in which patient organizations are

  16. Patient participation in collective healthcare decision making: the Dutch model

    NARCIS (Netherlands)

    van de Bovenkamp, H.M.; Trappenburg, M.J.; Grit, K.J.

    2010-01-01

    Objective  To study whether the Dutch participation model is a good model of participation. Background  Patient participation is on the agenda, both on the individual and the collective level. In this study, we focus on the latter by looking at the Dutch model in which patient organizations are

  17. Patient participation in collective healthcare decision making: the Dutch model

    NARCIS (Netherlands)

    Bovenkamp, H. van de; Trappenburg, M.J.; Grit, K. J.

    2009-01-01

    Objective To study whether the Dutch participation model is a good model of participation. Background Patient participation is on the agenda, both on the individual and the collective level. In this study, we focus on the latter by looking at the Dutch model in which patient organizations are

  18. Pele Plume Deposit on Io

    Science.gov (United States)

    1997-01-01

    The varied effects of Ionian volcanism can be seen in this false color infrared composite image of Io's trailing hemisphere. Low resolution color data from Galileo's first orbit (June, 1996) have been combined with a higher resolution clear filter picture taken on the third orbit (November, 1996) of the spacecraft around Jupiter.A diffuse ring of bright red material encircles Pele, the site of an ongoing, high velocity volcanic eruption. Pele's plume is nearly invisible, except in back-lit photographs, but its deposits indicate energetic ejection of sulfurous materials out to distances more than 600 kilometers from the central vent. Another bright red deposit lies adjacent to Marduk, also a currently active ediface. High temperature hot spots have been detected at both these locations, due to the eruption of molten material in lava flows or lava lakes. Bright red deposits on Io darken and disappear within years or decades of deposition, so the presence of bright red materials marks the sites of recent volcanism.This composite was created from data obtained by the Solid State Imaging (CCD) system aboard NASA's Galileo spacecraft. The region imaged is centered on 15 degrees South, 224 degrees West, and is almost 2400 kilometers across. The finest details that can be discerned in this picture are about 3 kilometers across. North is towards the top of the picture and the sun illuminates the surface from the west.The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  19. Supporting SME Collecting Organisations: A Business Model Framework for Digital Heritage Collections

    Directory of Open Access Journals (Sweden)

    Darren Peacock

    2009-08-01

    Full Text Available Increasing numbers of heritage collecting organisations such as archives, galleries, libraries and museums are moving towards the provision of digital content and services based on the collections they hold. The collections sector in Australia is characterised by a diverse range of often very small organisations, many of which are struggling with the transition to digital service delivery. One major reason for this struggle is the lack of suitable underlying business models for these organisations as they attempt to achieve a sustainable digital presence. The diverse characteristics of organisations within the collections sector make it difficult, if not impossible, to identify a single business model suitable for all organisations. We argue in this paper that the development of a flexible e-business model framework is a more useful strategy for achieving this goal. This paper presents a preliminary framework based on the literature, utilising the Core + Complement (C+ Business Model Framework for Content Providers initially developed by Krueger et al. (2003 and outlines how the framework will be refined and investigated empirically in future research within the Australian collections sector.

  20. Model of Collective Fish Behavior with Hydrodynamic Interactions

    Science.gov (United States)

    Filella, Audrey; Nadal, François; Sire, Clément; Kanso, Eva; Eloy, Christophe

    2018-05-01

    Fish schooling is often modeled with self-propelled particles subject to phenomenological behavioral rules. Although fish are known to sense and exploit flow features, these models usually neglect hydrodynamics. Here, we propose a novel model that couples behavioral rules with far-field hydrodynamic interactions. We show that (1) a new "collective turning" phase emerges, (2) on average, individuals swim faster thanks to the fluid, and (3) the flow enhances behavioral noise. The results of this model suggest that hydrodynamic effects should be considered to fully understand the collective dynamics of fish.

  1. Cyber and Physical Security Vulnerability Assessment for IoT-Based Smart Homes

    OpenAIRE

    Bako Ali; Ali Ismail Awad

    2018-01-01

    The Internet of Things (IoT) is an emerging paradigm focusing on the connection of devices, objects, or “things” to each other, to the Internet, and to users. IoT technology is anticipated to become an essential requirement in the development of smart homes, as it offers convenience and efficiency to home residents so that they can achieve better quality of life. Application of the IoT model to smart homes, by connecting objects to the Internet, poses new security and privacy challenges in te...

  2. Modeling and simulation of the SDC data collection chip

    International Nuclear Information System (INIS)

    Hughes, E.; Haney, M.; Golin, E.; Jones, L.; Knapp, D.; Tharakan, G.; Downing, R.

    1992-01-01

    This paper describes modeling and simulation of the Data Collection Chip (DCC) design for the Solenoidal Detector Collaboration (SDC). Models of the DCC written in Verilog and VHDL are described, and results are presented. The models have been simulated to study queue depth requirements and to compare control feedback alternatives. Insight into the management of models and simulation tools is given. Finally, techniques useful in the design process for data acquisition systems are discussed

  3. Quadrupole collective dynamics from energy density functionals: Collective Hamiltonian and the interacting boson model

    International Nuclear Information System (INIS)

    Nomura, K.; Vretenar, D.; Niksic, T.; Otsuka, T.; Shimizu, N.

    2011-01-01

    Microscopic energy density functionals have become a standard tool for nuclear structure calculations, providing an accurate global description of nuclear ground states and collective excitations. For spectroscopic applications, this framework has to be extended to account for collective correlations related to restoration of symmetries broken by the static mean field, and for fluctuations of collective variables. In this paper, we compare two approaches to five-dimensional quadrupole dynamics: the collective Hamiltonian for quadrupole vibrations and rotations and the interacting boson model (IBM). The two models are compared in a study of the evolution of nonaxial shapes in Pt isotopes. Starting from the binding energy surfaces of 192,194,196 Pt, calculated with a microscopic energy density functional, we analyze the resulting low-energy collective spectra obtained from the collective Hamiltonian, and the corresponding IBM Hamiltonian. The calculated excitation spectra and transition probabilities for the ground-state bands and the γ-vibration bands are compared to the corresponding sequences of experimental states.

  4. Power through Things: Following Traces of Collective Intelligence in Internet of Things

    Directory of Open Access Journals (Sweden)

    Monika Mačiulienė

    2014-10-01

    Full Text Available Purpose – it is becoming increasingly difficult to ignore the input Internet of Things (IoT has to offer in development of public, business and other societal structures. Therefore, paper seeks to determine the current state of knowledge in the field of IoT terms of wisdom creation and emergence of collective intelligence. First, we discuss concept of collective intelligence, then we define phenomena of IoT and identify areas of its application. Later, the author reviews how intelligent outputs of IoT are defined in scientific literature. These findings of theoretical investigation may shed some light on research field that is promising but still very vague.Design/methodology/approach – this article provides a general overview of IoT concept and its growing relation to collective intelligence. Methods of document analysis and content analysis were applied. Theoretical analysis enabled recognition of IoT phenomena in relation to wisdom creation and emergence of collective intelligence.Findings – general overview of the field revealed that new understanding of collective intelligence surfaces. Often intelligent behavior and decisions emerge from ever increasing cooperation between ‘things’ and humans. The variety of new concepts and authors trying to describe relationship of ‘things’ with each other and humans when creating intelligent outcomes revealed that this field is still in its very infancy and still needs considerable amount of industry and scientific efforts to be understood and executed.Research limitations – although the paper has successfully demonstrated that IoT provides vast amounts of data for people to process and create knowledge this could be considered only as initial phase in studying the field. IoT and its intelligent outcomes need more investigations in terms of real life case studies and industry reviews in order to create valid definitions, models and future guidelines. Practical implications – this

  5. Human‐Centric IoT Networks

    DEFF Research Database (Denmark)

    Mihovska, Albena Dimitrova; Prasad, Ramjee; Pejanovic, Milica

    2017-01-01

    The current Internet of things (IoT) concept is characterized with billions and billions of devices interworking through a myriad of technologies for the delivery of smart personalized services and applications. At the center of these is the human user who drives his/her own interconnected cluster....... This concept has also been introduced elsewhere as “human center sensing (HCS).” The vision pushed by the authors of this chapter for the IoT beyond 2050 is one of the large‐scale and dense HCS connectivities, the complexity of which can be used to extract new IoT value proposition....

  6. Internet of Things (IoT Platform for Structure Health Monitoring

    Directory of Open Access Journals (Sweden)

    Ahmed Abdelgawad

    2017-01-01

    Full Text Available Increase in the demand for reliable structural health information led to the development of Structural Health Monitoring (SHM. Prediction of upcoming accidents and estimation of useful life span of a structure are facilitated through SHM. While data sensing is the core of any SHM, tracking the data anytime anywhere is a prevailing challenge. With the advancement in information technology, the concept of Internet of Things (IoT has made it possible to integrate SHM with Internet to track data anytime anywhere. In this paper, a SHM platform embedded with IoT is proposed to detect the size and location of damage in structures. The proposed platform consists of a Wi-Fi module, a Raspberry Pi, an Analog to Digital Converter (ADC, a Digital to Analog Converter (DAC, a buffer, and piezoelectric (PZT sensors. The piezoelectric sensors are mounted as a pair in the structure. Data collected from the piezoelectric sensors will be used to detect the size and location of damage using a proposed mathematical model. Implemented on a Raspberry Pi, the proposed mathematical model will estimate the size and location of structural damage, if any, and upload the data to Internet. This data will be stored and can be checked remotely from any mobile device. The system has been validated using a real test bed in the lab.

  7. Modeling collective emotions: a stochastic approach based on Brownian agents

    International Nuclear Information System (INIS)

    Schweitzer, F.

    2010-01-01

    We develop a agent-based framework to model the emergence of collective emotions, which is applied to online communities. Agents individual emotions are described by their valence and arousal. Using the concept of Brownian agents, these variables change according to a stochastic dynamics, which also considers the feedback from online communication. Agents generate emotional information, which is stored and distributed in a field modeling the online medium. This field affects the emotional states of agents in a non-linear manner. We derive conditions for the emergence of collective emotions, observable in a bimodal valence distribution. Dependent on a saturated or a super linear feedback between the information field and the agent's arousal, we further identify scenarios where collective emotions only appear once or in a repeated manner. The analytical results are illustrated by agent-based computer simulations. Our framework provides testable hypotheses about the emergence of collective emotions, which can be verified by data from online communities. (author)

  8. Understanding IoT systems: a life cycle approach

    NARCIS (Netherlands)

    Rahman, Leila Fatmasari; Ozcelebi, Tanir; Lukkien, Johan

    2018-01-01

    Internet of Things (IoT) systems and the corresponding network architectures are complex due to distributed services on many IoT devices collaboratively fulfilling common goals of IoT applications. System requirements for different types of IoT application domains are still not well-established. The

  9. On the energy crisis in the Io plasma torus

    Science.gov (United States)

    Smith, Robert A.; Bagenal, Fran; Cheng, Andrew F.; Strobel, Darrell

    1988-01-01

    Recent calculations of the energy balance of the Io plasma torus show that the observed UV and EUV radiation cannot be maintained solely via energy input by the ion pickup mechanism. Current theoretical models of the torus must be modified to include non-local energy input. It is argued that the required energy may be supplied by inward diffusion of energetic heavy ions with energies less than about 20 keV.

  10. IoT Contextual Factors on Healthcare.

    Science.gov (United States)

    Michalakis, Konstantinos; Caridakis, George

    2017-01-01

    With the emergence of the Internet of Things, new services in healthcare will be available and existing systems will be integrated in the IoT framework, providing automated medical supervision and efficient medical treatment. Context awareness plays a critical role in realizing the vision of the IoT, providing rich contextual information that can help the system act more efficiently. Since context in healthcare has its unique characteristics, it is necessary to define an appropriate context aware framework for healthcare IoT applications. We identify this context as perceived in healthcare applications and describe the context aware procedures. We also present an architecture that connects the sensors that measure biometric data with the sensory networks of the environment and the various IoT middleware that reside in the geographical area. Finally, we discuss the challenges for the realization of this vision.

  11. Perception Management: A Core IO Capability

    National Research Council Canada - National Science Library

    Zaman, Khyber

    2007-01-01

    This thesis postulates that in today's media environment, with adversaries skillfully using propaganda to skirt nations' resolve, Perception Management is key to military success and should be an Information Operations (IO) Core Capability...

  12. Two Word CAMAC I/O module

    International Nuclear Information System (INIS)

    Barker, L.L.

    1981-05-01

    This note describes the 2 Word I/O subsystem and details its operating characteristics. SLAC drawings in the 926-306 series support this device and should be referenced for construction and connection details

  13. AntibIoTic: Protecting IoT Devices Against DDoS Attacks

    DEFF Research Database (Denmark)

    De Donno, Michele; Dragoni, Nicola; Giaretta, Alberto

    2018-01-01

    The 2016 is remembered as the year that showed to the world how dangerous Distributed Denial of Service attacks can be. Gauge of the disruptiveness of DDoS attacks is the number of bots involved: the bigger the botnet, the more powerful the attack. This character, along with the increasing...... availability of connected and insecure IoT devices, makes DDoS and IoT the perfect pair for the malware industry. In this paper we present the main idea behind AntibIoTic, a palliative solution to prevent DDoS attacks perpetrated through IoT devices....

  14. U(6)-phonon model of nuclear collective motion

    International Nuclear Information System (INIS)

    Ganev, H.G.

    2015-01-01

    The U(6)-phonon model of nuclear collective motion with the semi-direct product structure [HW(21)]U(6) is obtained as a hydrodynamic (macroscopic) limit of the fully microscopic proton–neutron symplectic model (PNSM) with Sp(12, R) dynamical group. The phonon structure of the [HW(21)]U(6) model enables it to simultaneously include the giant monopole and quadrupole, as well as dipole resonances and their coupling to the low-lying collective states. The U(6) intrinsic structure of the [HW(21)]U(6) model, from the other side, gives a framework for the simultaneous shell-model interpretation of the ground state band and the other excited low-lying collective bands. It follows then that the states of the whole nuclear Hilbert space which can be put into one-to-one correspondence with those of a 21-dimensional oscillator with an intrinsic (base) U(6) structure. The latter can be determined in such a way that it is compatible with the proton–neutron structure of the nucleus. The macroscopic limit of the Sp(12, R) algebra, therefore, provides a rigorous mechanism for implementing the unified model ideas of coupling the valence particles to the core collective degrees of freedom within a fully microscopic framework without introducing redundant variables or violating the Pauli principle. (author)

  15. Mathematical models in marketing a collection of abstracts

    CERN Document Server

    Funke, Ursula H

    1976-01-01

    Mathematical models can be classified in a number of ways, e.g., static and dynamic; deterministic and stochastic; linear and nonlinear; individual and aggregate; descriptive, predictive, and normative; according to the mathematical technique applied or according to the problem area in which they are used. In marketing, the level of sophistication of the mathe­ matical models varies considerably, so that a nurnber of models will be meaningful to a marketing specialist without an extensive mathematical background. To make it easier for the nontechnical user we have chosen to classify the models included in this collection according to the major marketing problem areas in which they are applied. Since the emphasis lies on mathematical models, we shall not as a rule present statistical models, flow chart models, computer models, or the empirical testing aspects of these theories. We have also excluded competitive bidding, inventory and transportation models since these areas do not form the core of ·the market...

  16. Major shell centroids in the symplectic collective model

    International Nuclear Information System (INIS)

    Draayer, J.P.; Rosensteel, G.; Tulane Univ., New Orleans, LA

    1983-01-01

    Analytic expressions are given for the major shell centroids of the collective potential V(#betta#, #betta#) and the shape observable #betta# 2 in the Sp(3,R) symplectic model. The tools of statistical spectroscopy are shown to be useful, firstly, in translating a requirement that the underlying shell structure be preserved into constraints on the parameters of the collective potential and, secondly, in giving a reasonable estimate for a truncation of the infinite dimensional symplectic model space from experimental B(E2) transition strengths. Results based on the centroid information are shown to compare favorably with results from exact calculations in the case of 20 Ne. (orig.)

  17. Enhancing Privacy in Wearable IoT through a Provenance Architecture

    Directory of Open Access Journals (Sweden)

    Richard K. Lomotey

    2018-04-01

    Full Text Available The Internet of Things (IoT is inspired by network interconnectedness of humans, objects, and cloud services to facilitate new use cases and new business models across multiple enterprise domains including healthcare. This creates the need for continuous data streaming in IoT architectures which are mainly designed following the broadcast model. The model facilitates IoT devices to sense and deliver information to other nodes (e.g., cloud, physical objects, etc. that are interested in the information. However, this is a recipe for privacy breaches since sensitive data, such as personal vitals from wearables, can be delivered to undesired sniffing nodes. In order to protect users’ privacy and manufacturers’ IP, as well as detecting and blocking malicious activity, this research paper proposes privacy-oriented IoT architecture following the provenance technique. This ensures that the IoT data will only be delivered to the nodes that subscribe to receive the information. Using the provenance technique to ensure high transparency, the work is able to provide trace routes for digital audit trail. Several empirical evaluations are conducted in a real-world wearable IoT ecosystem to prove the superiority of the proposed work.

  18. Aplikasi Rekomendasi Pola Makan Berbasis iOS

    Directory of Open Access Journals (Sweden)

    Afan Galih Salman

    2012-12-01

    Full Text Available The goal for implementing this system is to help users manage and track history about their eat pattern, choose proper food for body’s need, and pick restaurants. Methodology used for this research contains three parts, which is analysis, design, and literature study. In requirement analysis, we do some interview withnutritionist and food provider, analysis iOS user, compare with same kind of application, and identify components that we need. In design method, we use Unified Modelling Language approach, ERD design, and user interface design. The result is a food planning mobile application with iOS platform. This application canhelp user manage and track their eat pattern, help user choose balanced food that suitable for their body, and inform user where they can get food they plan to eat.

  19. Characterization of Io's volcanic activity by infrared polarimetry

    International Nuclear Information System (INIS)

    Goguen, J.D.; Sinton, W.M.

    1985-01-01

    The thermal emission from Io's volcanic hot spots is linearly polarized.Infrared measurements at 4.76 micrometers show disk-integrated polarization as large as 1.6 percent. The degree and position angle of linear polarization vary with Io's rotation in a manner characteristic of emission from a small number of hot spots. A model incorporating three hot spots best fits the data. The largest of these hot spots lies to the northeast of Loki Patera, as mapped from Voyager, and the other spot on the trailing hemisphere is near Ra Patera. The hot spot on the leading hemisphere corresponds to no named feature on the Voyager maps. The value determined for the index of refraction of the emitting surface is a lower bound; it is similar to that of terrestrial basalts and is somewhat less than that of sulfur. 25 references

  20. The collective model of nuclei and its applications

    International Nuclear Information System (INIS)

    Frank H, A.; Castanos G, O.H.

    1975-01-01

    The concepts of collective coordinates, the establishment of Hamiltonian collectives through the model of the drop of liquid or through the symmetry arguments and of the operators in these variables are discussed in this study. The passage of the laboratory system to the principal axis system is discussed thoroughly with the symmetries produced by this transformation, considering a drop in two dimensions. It is also observed that the deformed nuclei have some properties that can be described through the rotation-vibration and symmetric rotor models. The rotation-vibration model concerns the nuclei with axially symmetric deformations in the basic state and its importance is due to the fact that it can predict the nuclear spectrum at low energies. The asymmetric rotor model assumes the existence of triaxial nuclei and considers their collective movements. This model can be modified taking into consideration that vibrations β can also appear. Finally there is a comparison between the two models and the models are also compared with the experiment. (author)

  1. Distributed service-based approach for sensor data fusion in IoT environments.

    Science.gov (United States)

    Rodríguez-Valenzuela, Sandra; Holgado-Terriza, Juan A; Gutiérrez-Guerrero, José M; Muros-Cobos, Jesús L

    2014-10-15

    The Internet of Things (IoT) enables the communication among smart objects promoting the pervasive presence around us of a variety of things or objects that are able to interact and cooperate jointly to reach common goals. IoT objects can obtain data from their context, such as the home, office, industry or body. These data can be combined to obtain new and more complex information applying data fusion processes. However, to apply data fusion algorithms in IoT environments, the full system must deal with distributed nodes, decentralized communication and support scalability and nodes dynamicity, among others restrictions. In this paper, a novel method to manage data acquisition and fusion based on a distributed service composition model is presented, improving the data treatment in IoT pervasive environments.

  2. ATLAS I/O Performance Optimization in As-Deployed Environments

    CERN Document Server

    Maier, Thomas; The ATLAS collaboration; Bhimji, Wahid; Elmsheuser, Johannes; van Gemmeren, Peter; Malon, David; Krumnack, Nils

    2015-01-01

    I/O is a fundamental determinant in the overall performance of physics analysis and other data-intensive scientific computing. It is, further, crucial to effective resource delivery by the facilities and infrastructure that support data-intensive science. To understand I/O performance, clean measurements in controlled environments are essential, but effective optimization requires as well an understanding of the complicated realities of as-deployed environments. These include a spectrum of local and wide-area data delivery and resilience models, heterogeneous storage systems, matches and mismatches between data organization and access patterns, multi-user considerations that may help or hinder individual job performance, and more. The ATLAS experiment has organized an interdisciplinary working group of I/O, persistence, analysis framework, distributed infrastructure, site deployment, and external experts to understand and improve I/O performance in preparation for Run 2 of the Large Hadron Collider. The adopt...

  3. Internet of things (IoT) in 5G mobile technologies

    CERN Document Server

    Mastorakis, George; Batalla, Jordi

    2016-01-01

    This book reports on the latest advances in the modeling, analysis and efficient management of information in Internet of Things (IoT) applications in the context of 5G access technologies. It presents cutting-edge applications made possible by the implementation of femtocell networks and millimeter wave communications solutions, examining them from the perspective of the universally and constantly connected IoT. Moreover, it describes novel architectural approaches to the IoT and presents the new framework possibilities offered by 5G mobile networks, including middleware requirements, node-centrality and the location of extensive functionalities at the edge. By providing researchers and professionals with a timely snapshot of emerging mobile communication systems, and highlighting the main pitfalls and potential solutions, the book fills an important gap in the literature and will foster the further developments of 5G hosting IoT devices.

  4. Comparing the Atmospheric Losses at Io and Europa

    Science.gov (United States)

    Dols, V. J.; Bagenal, F.; Crary, F. J.; Cassidy, T.

    2017-12-01

    At Io and Europa, the interaction of the Jovian plasma with the moon atmosphere leads to a significant loss of atomic/molecular neutrals and ions to space. The processes that lead to atmospheric escape are diverse: atmospheric sputtering, molecular dissociation, molecular ion recombination, Jeans escape etc. Each process leads to neutrals escaping at different velocities (i.e. electron impact dissociation leads to very slow atomic neutrals, sputtering might eject faster molecular neutrals). Some neutrals will be ejected out of the Jovian system; others will form extended neutral clouds along the orbit of the moons. These atomic/molecular extended neutral clouds are probably the main source of plasma for the Jovian magnetosphere. They are difficult to observe directly thus their composition and density are still poorly constrained. A future modeling of the formation of these extended clouds requires an estimate of their atmospheric sources. We estimate the atmospheric losses at Io and Europa for each loss process with a multi-species chemistry model, using a prescribed atmospheric distribution consistent with the observations. We compare the neutral losses at Io and Europa.

  5. Vibrational collective model for spheric even-even nuclei

    International Nuclear Information System (INIS)

    Cruz, M.T.F. da.

    1985-01-01

    A review is made on the evidences of collective motions in spherical even-even nuclei. The several multipole transitions occuring in such a nuclei are discussed. Some hypothesis which are necessary in order to build-up the model are presented. (L.C.) [pt

  6. Building and Sustaining Digital Collections: Models for Libraries and Museums.

    Science.gov (United States)

    Council on Library and Information Resources, Washington, DC.

    In February 2001, the Council on Library and Information Resources (CLIR) and the National Initiative for a Networked Cultural Heritage (NINCH) convened a meeting to discuss how museums and libraries are building digital collections and what business models are available to sustain them. A group of museum and library senior executives met with…

  7. Emergent collective decision-making: Control, model and behavior

    Science.gov (United States)

    Shen, Tian

    In this dissertation we study emergent collective decision-making in social groups with time-varying interactions and heterogeneously informed individuals. First we analyze a nonlinear dynamical systems model motivated by animal collective motion with heterogeneously informed subpopulations, to examine the role of uninformed individuals. We find through formal analysis that adding uninformed individuals in a group increases the likelihood of a collective decision. Secondly, we propose a model for human shared decision-making with continuous-time feedback and where individuals have little information about the true preferences of other group members. We study model equilibria using bifurcation analysis to understand how the model predicts decisions based on the critical threshold parameters that represent an individual's tradeoff between social and environmental influences. Thirdly, we analyze continuous-time data of pairs of human subjects performing an experimental shared tracking task using our second proposed model in order to understand transient behavior and the decision-making process. We fit the model to data and show that it reproduces a wide range of human behaviors surprisingly well, suggesting that the model may have captured the mechanisms of observed behaviors. Finally, we study human behavior from a game-theoretic perspective by modeling the aforementioned tracking task as a repeated game with incomplete information. We show that the majority of the players are able to converge to playing Nash equilibrium strategies. We then suggest with simulations that the mean field evolution of strategies in the population resemble replicator dynamics, indicating that the individual strategies may be myopic. Decisions form the basis of control and problems involving deciding collectively between alternatives are ubiquitous in nature and in engineering. Understanding how multi-agent systems make decisions among alternatives also provides insight for designing

  8. There is no I/O like no I/O

    International Nuclear Information System (INIS)

    Johnston, T.Y.

    1985-01-01

    On most computer systems the most common cause of performance degradation is I/O contention. This paper will examine some efforts that can be taken in a VM environment to reduce I/O or its effect at both the global and local levels

  9. AP-IO: asynchronous pipeline I/O for hiding periodic output cost in CFD simulation.

    Science.gov (United States)

    Xiaoguang, Ren; Xinhai, Xu

    2014-01-01

    Computational fluid dynamics (CFD) simulation often needs to periodically output intermediate results to files in the form of snapshots for visualization or restart, which seriously impacts the performance. In this paper, we present asynchronous pipeline I/O (AP-IO) optimization scheme for the periodically snapshot output on the basis of asynchronous I/O and CFD application characteristics. In AP-IO, dedicated background I/O processes or threads are in charge of handling the file write in pipeline mode, therefore the write overhead can be hidden with more calculation than classic asynchronous I/O. We design the framework of AP-IO and implement it in OpenFOAM, providing CFD users with a user-friendly interface. Experimental results on the Tianhe-2 supercomputer demonstrate that AP-IO can achieve a good optimization effect for the periodical snapshot output in CFD application, and the effect is especially better for massively parallel CFD simulations, which can reduce the total execution time up to about 40%.

  10. AP-IO: Asynchronous Pipeline I/O for Hiding Periodic Output Cost in CFD Simulation

    Directory of Open Access Journals (Sweden)

    Ren Xiaoguang

    2014-01-01

    Full Text Available Computational fluid dynamics (CFD simulation often needs to periodically output intermediate results to files in the form of snapshots for visualization or restart, which seriously impacts the performance. In this paper, we present asynchronous pipeline I/O (AP-IO optimization scheme for the periodically snapshot output on the basis of asynchronous I/O and CFD application characteristics. In AP-IO, dedicated background I/O processes or threads are in charge of handling the file write in pipeline mode, therefore the write overhead can be hidden with more calculation than classic asynchronous I/O. We design the framework of AP-IO and implement it in OpenFOAM, providing CFD users with a user-friendly interface. Experimental results on the Tianhe-2 supercomputer demonstrate that AP-IO can achieve a good optimization effect for the periodical snapshot output in CFD application, and the effect is especially better for massively parallel CFD simulations, which can reduce the total execution time up to about 40%.

  11. Forecasting rain events - Meteorological models or collective intelligence?

    Science.gov (United States)

    Arazy, Ofer; Halfon, Noam; Malkinson, Dan

    2015-04-01

    Collective intelligence is shared (or group) intelligence that emerges from the collective efforts of many individuals. Collective intelligence is the aggregate of individual contributions: from simple collective decision making to more sophisticated aggregations such as in crowdsourcing and peer-production systems. In particular, collective intelligence could be used in making predictions about future events, for example by using prediction markets to forecast election results, stock prices, or the outcomes of sport events. To date, there is little research regarding the use of collective intelligence for prediction of weather forecasting. The objective of this study is to investigate the extent to which collective intelligence could be utilized to accurately predict weather events, and in particular rainfall. Our analyses employ metrics of group intelligence, as well as compare the accuracy of groups' predictions against the predictions of the standard model used by the National Meteorological Services. We report on preliminary results from a study conducted over the 2013-2014 and 2014-2015 winters. We have built a web site that allows people to make predictions on precipitation levels on certain locations. During each competition participants were allowed to enter their precipitation forecasts (i.e. 'bets') at three locations and these locations changed between competitions. A precipitation competition was defined as a 48-96 hour period (depending on the expected weather conditions), bets were open 24-48 hours prior to the competition, and during betting period participants were allowed to change their bets with no limitation. In order to explore the effect of transparency, betting mechanisms varied across study's sites: full transparency (participants able to see each other's bets); partial transparency (participants see the group's average bet); and no transparency (no information of others' bets is made available). Several interesting findings emerged from

  12. A Microscopic Quantal Model for Nuclear Collective Rotation

    International Nuclear Information System (INIS)

    Gulshani, P.

    2007-01-01

    A microscopic, quantal model to describe nuclear collective rotation in two dimensions is derived from the many-nucleon Schrodinger equation. The Schrodinger equation is transformed to a body-fixed frame to decompose the Hamiltonian into a sum of intrinsic and rotational components plus a Coriolis-centrifugal coupling term. This Hamiltonian (H) is expressed in terms of space-fixed-frame particle coordinates and momenta by using commutator of H with a rotation angle. A unified-rotational-model type wavefunction is used to obtain an intrinsic Schrodinger equation in terms of angular momentum quantum number and two-body operators. A Hartree-Fock mean-field representation of this equation is then obtained and, by means of a unitary transformation, is reduced to a form resembling that of the conventional semi-classical cranking model when exchange terms and intrinsic spurious collective excitation are ignored

  13. On effective temperature in network models of collective behavior

    International Nuclear Information System (INIS)

    Porfiri, Maurizio; Ariel, Gil

    2016-01-01

    Collective behavior of self-propelled units is studied analytically within the Vectorial Network Model (VNM), a mean-field approximation of the well-known Vicsek model. We propose a dynamical systems framework to study the stochastic dynamics of the VNM in the presence of general additive noise. We establish that a single parameter, which is a linear function of the circular mean of the noise, controls the macroscopic phase of the system—ordered or disordered. By establishing a fluctuation–dissipation relation, we posit that this parameter can be regarded as an effective temperature of collective behavior. The exact critical temperature is obtained analytically for systems with small connectivity, equivalent to low-density ensembles of self-propelled units. Numerical simulations are conducted to demonstrate the applicability of this new notion of effective temperature to the Vicsek model. The identification of an effective temperature of collective behavior is an important step toward understanding order–disorder phase transitions, informing consistent coarse-graining techniques and explaining the physics underlying the emergence of collective phenomena.

  14. A Practical Evaluation of a High-Security Energy-Efficient Gateway for IoT Fog Computing Applications.

    Science.gov (United States)

    Suárez-Albela, Manuel; Fernández-Caramés, Tiago M; Fraga-Lamas, Paula; Castedo, Luis

    2017-08-29

    Fog computing extends cloud computing to the edge of a network enabling new Internet of Things (IoT) applications and services, which may involve critical data that require privacy and security. In an IoT fog computing system, three elements can be distinguished: IoT nodes that collect data, the cloud, and interconnected IoT gateways that exchange messages with the IoT nodes and with the cloud. This article focuses on securing IoT gateways, which are assumed to be constrained in terms of computational resources, but that are able to offload some processing from the cloud and to reduce the latency in the responses to the IoT nodes. However, it is usually taken for granted that IoT gateways have direct access to the electrical grid, which is not always the case: in mission-critical applications like natural disaster relief or environmental monitoring, it is common to deploy IoT nodes and gateways in large areas where electricity comes from solar or wind energy that charge the batteries that power every device. In this article, how to secure IoT gateway communications while minimizing power consumption is analyzed. The throughput and power consumption of Rivest-Shamir-Adleman (RSA) and Elliptic Curve Cryptography (ECC) are considered, since they are really popular, but have not been thoroughly analyzed when applied to IoT scenarios. Moreover, the most widespread Transport Layer Security (TLS) cipher suites use RSA as the main public key-exchange algorithm, but the key sizes needed are not practical for most IoT devices and cannot be scaled to high security levels. In contrast, ECC represents a much lighter and scalable alternative. Thus, RSA and ECC are compared for equivalent security levels, and power consumption and data throughput are measured using a testbed of IoT gateways. The measurements obtained indicate that, in the specific fog computing scenario proposed, ECC is clearly a much better alternative than RSA, obtaining energy consumption reductions of up to

  15. A Practical Evaluation of a High-Security Energy-Efficient Gateway for IoT Fog Computing Applications

    Science.gov (United States)

    Castedo, Luis

    2017-01-01

    Fog computing extends cloud computing to the edge of a network enabling new Internet of Things (IoT) applications and services, which may involve critical data that require privacy and security. In an IoT fog computing system, three elements can be distinguished: IoT nodes that collect data, the cloud, and interconnected IoT gateways that exchange messages with the IoT nodes and with the cloud. This article focuses on securing IoT gateways, which are assumed to be constrained in terms of computational resources, but that are able to offload some processing from the cloud and to reduce the latency in the responses to the IoT nodes. However, it is usually taken for granted that IoT gateways have direct access to the electrical grid, which is not always the case: in mission-critical applications like natural disaster relief or environmental monitoring, it is common to deploy IoT nodes and gateways in large areas where electricity comes from solar or wind energy that charge the batteries that power every device. In this article, how to secure IoT gateway communications while minimizing power consumption is analyzed. The throughput and power consumption of Rivest–Shamir–Adleman (RSA) and Elliptic Curve Cryptography (ECC) are considered, since they are really popular, but have not been thoroughly analyzed when applied to IoT scenarios. Moreover, the most widespread Transport Layer Security (TLS) cipher suites use RSA as the main public key-exchange algorithm, but the key sizes needed are not practical for most IoT devices and cannot be scaled to high security levels. In contrast, ECC represents a much lighter and scalable alternative. Thus, RSA and ECC are compared for equivalent security levels, and power consumption and data throughput are measured using a testbed of IoT gateways. The measurements obtained indicate that, in the specific fog computing scenario proposed, ECC is clearly a much better alternative than RSA, obtaining energy consumption reductions of up

  16. IoT Service Clustering for Dynamic Service Matchmaking.

    Science.gov (United States)

    Zhao, Shuai; Yu, Le; Cheng, Bo; Chen, Junliang

    2017-07-27

    As the adoption of service-oriented paradigms in the IoT (Internet of Things) environment, real-world devices will open their capabilities through service interfaces, which enable other functional entities to interact with them. In an IoT application, it is indispensable to find suitable services for satisfying users' requirements or replacing the unavailable services. However, from the perspective of performance, it is inappropriate to find desired services from the service repository online directly. Instead, clustering services offline according to their similarity and matchmaking or discovering service online in limited clusters is necessary. This paper proposes a multidimensional model-based approach to measure the similarity between IoT services. Then, density-peaks-based clustering is employed to gather similar services together according to the result of similarity measurement. Based on the service clustering, the algorithms of dynamic service matchmaking, discovery, and replacement will be performed efficiently. Evaluating experiments are conducted to validate the performance of proposed approaches, and the results are promising.

  17. Validez de un modelo basado en los costes de transacción para identificar los beneficios de los SIIO Validity of a model based on the transaction costs to identify the benefits from IOS

    Directory of Open Access Journals (Sweden)

    Piercarlo Maggiolini

    2002-12-01

    Full Text Available El objetivo principal de este trabajo de investigación es verificar la validez de un modelo basado en los costes de transacción, para evaluar el impacto de la introducción y uso de los Sistemas de Información Interorganizativos (SIIO en las empresas. Se propone un modelo que considera diferentes tipos de beneficios, y después, a modo exploratorio, se aplica a la identificación de los beneficios obtenidos por el uso de Sistemas de Intercambio Electrónico de Datos (EDI en un grupo de empresas del sector de bienes de gran consumo. La verificación del modelo propuesto en una tecnología "clásica" ha permitido confirmar la utilidad del mismo para identificar los beneficios y especialmente aquellos situados a nivel interorganizativo.The main objective of this research work is the verification of the validity of a model based on the transaction costs, to be used for the impact evaluation of the introduction and use of Interorganizational Information Systems (IOS in companies. This model which has been proposed takes into consideration different kinds of benefits, and later in an exploratory way, it is applied to the benefits identification in using Electronic Data Interchange Systems (EDI in some enterprises within the mass consumer industry. The verification of the proposed model on a "classic" technology has allowed to confirm its usefulness for the identification of the benefits and mainly for those placed at the interorganizative level.

  18. Io's Active Eruption Plumes: Insights from HST

    Science.gov (United States)

    Jessup, K. L.; Spencer, J. R.

    2011-10-01

    Taking advantage of the available data, we recently [10] completed a detailed analysis of the spectral signature of Io's Pele-type Tvashtar plume as imaged by the HST Wide Field and Planetary Camera 2 (HST/WFPC2) via absorption during Jupiter transit and via reflected sunlight in 2007, as well as HST/WFPC2 observations of the 1997 eruption of Io's Prometheus-type Pillan plume (Fig. 1). These observations were obtained in the 0.24-0.42 μm range, where the plumes gas absorption and aerosol scattering properties are most conspicuous. By completing a detailed analysis of these observations, several key aspects of the reflectance and the absorption properties of the two plumes have been revealed. Additionally, by considering the analysis of the HST imaging data in light of previously published spectral analysis of Io's Prometheus and Pele-type plumes several trends in the plume properties have been determined, allowing us to define the relative significance of each plume on the rate of re-surfacing occurring on Io and providing the measurements needed to better assess the role the volcanoes play in the stability of Io's tenuous atmosphere.

  19. Collective excitability in a mesoscopic neuronal model of epileptic activity

    Science.gov (United States)

    Jedynak, Maciej; Pons, Antonio J.; Garcia-Ojalvo, Jordi

    2018-01-01

    At the mesoscopic scale, the brain can be understood as a collection of interacting neuronal oscillators, but the extent to which its sustained activity is due to coupling among brain areas is still unclear. Here we address this issue in a simplified situation by examining the effect of coupling between two cortical columns described via Jansen-Rit neural mass models. Our results show that coupling between the two neuronal populations gives rise to stochastic initiations of sustained collective activity, which can be interpreted as epileptic events. For large enough coupling strengths, termination of these events results mainly from the emergence of synchronization between the columns, and thus it is controlled by coupling instead of noise. Stochastic triggering and noise-independent durations are characteristic of excitable dynamics, and thus we interpret our results in terms of collective excitability.

  20. A Clustering K-Anonymity Privacy-Preserving Method for Wearable IoT Devices

    Directory of Open Access Journals (Sweden)

    Fang Liu

    2018-01-01

    Full Text Available Wearable technology is one of the greatest applications of the Internet of Things. The popularity of wearable devices has led to a massive scale of personal (user-specific data. Generally, data holders (manufacturers of wearable devices are willing to share these data with others to get benefits. However, significant privacy concerns would arise when sharing the data with the third party in an improper manner. In this paper, we first propose a specific threat model about the data sharing process of wearable devices’ data. Then we propose a K-anonymity method based on clustering to preserve privacy of wearable IoT devices’ data and guarantee the usability of the collected data. Experiment results demonstrate the effectiveness of the proposed method.

  1. Decoupling Analysis of China’s Product Sector Output and Its Embodied Carbon Emissions—An Empirical Study Based on Non-Competitive I-O and Tapio Decoupling Model

    Directory of Open Access Journals (Sweden)

    Jianbo Hu

    2017-05-01

    Full Text Available This paper uses the non-competitive I-O model and the Tapio decoupling model to comprehensively analyze the decoupling relationship between the output of the product sector in China and its embodied carbon emissions under trade openness. For this purpose, the Chinese input and output data in 2002, 2005, 2007, 2010, and 2012 are used. This approach is beneficial to identify the direct mechanism for the increased carbon emission in China from a micro perspective and provides a new perspective for the subsequent study about low-carbon economy. The obtained empirical results are as follows: (1 From overall perspective, the decoupling elasticity between the output of the product sector and its embodied carbon emissions decreased. Output and embodied carbon emissions showed a growth link from 2002 to 2005 and a weak decoupling relationship for the rest of the study period. (2 Among the 28 industries in the product sector, the increased growth rate of output in more and more product sectors was no longer accompanied by large CO2 emissions. The number of industries with strong decoupling relationships between output and embodied carbon emissions increased. (3 From the perspective of three industries, the output and embodied carbon emissions in the second and third industries exhibited a growth link only from 2002 to 2005; the three industries presented weak or strong decoupling for the rest of the study period. Through empirical analysis, this paper mainly through the construction of ecological and environmental protection of low carbon agriculture, low carbon cycle industrial system, as well as intensive and efficient service industry to reduce the carbon emissions of China’s product sector.

  2. iOS app development portable genius

    CERN Document Server

    Wentk, Richard

    2012-01-01

    The essential skills and technologies needed for iOS development in one handy guide! The unprecedented popularity of iOS devices, such as the iPhone, iPad, and iPod touch, has led to a development boom. If you’re eager to become part of the action, then this is the book for you! Packed with must-have information on iOS development, this handy guide covers Objective-C, Xcode, Frameworks, and sound design principles and explains how to upload an app to the app store and integrate apps with the latest advances that Apple offers developers. The featured tips and tricks will get you up and ru

  3. Professional iOS database application programming

    CERN Document Server

    Alessi, Patrick

    2013-01-01

    Updated and revised coverage that includes the latest versions of iOS and Xcode Whether you're a novice or experienced developer, you will want to dive into this updated resource on database application programming for the iPhone and iPad. Packed with more than 50 percent new and revised material - including completely rebuilt code, screenshots, and full coverage of new features pertaining to database programming and enterprise integration in iOS 6 - this must-have book intends to continue the precedent set by the previous edition by helping thousands of developers master database

  4. iOS application security analysis

    OpenAIRE

    Βλάχος, Κωνσταντίνος Γ.; Vlachos, Konstantinos G.

    2017-01-01

    The purpose of this research is to explain the nature of the Apple iOS applications and provide all the available Open Source tools for analyzing them, starting from decrypting any application’s binary downloaded from the AppStore to reverse engineering it and even altering the flow of its running process on the actual device. We start introducing the basic theory of the iOS operating system and its applications including the security mechanisms incorporated by Apple that are a...

  5. Intrusion Detection System In IoT

    OpenAIRE

    Nygaard, Frederik

    2017-01-01

    Intrusion detection detects misbehaving nodes in a network. In Internet of Things(IoT), IPv6 Routing for Low-Power and Lossy Networks (RPL) is the standard routing protocol. In IoT, devices commonly have low energy, storage and memory, which is why the implemented intrusion algorithm in this thesis will try to minimize the usage of these resources. IDS for RPL-networks have been implemented before, but the use of resources or the number of packets sent was too high to be successful when findi...

  6. The German power market. Data collection for model analysis

    Energy Technology Data Exchange (ETDEWEB)

    Munksgaard, J.; Alsted Pedersen, K.; Ramskov, J.

    2000-09-01

    In the present project the market scenario for analysing market imperfections has been the Northern European power market, i.e. a market including Germany as well. Consequently, one of the tasks in the project has been to collect data for Germany in order to develop the empirical basis of the ELEPHANT model. In that perspective the aim of this report is to document the data collected for Gemany, to specify the data sources used and further to lay stress on the assumptions which have been made when data have not been available. By doing so, transparency in model results is improved. Further, a basis for discussing the quality of data as well as a framework for future revisions and updating of data have been established. The data collected for Germany have been given by the exogenous variables defined by the ELEPHANT model. In that way data collection is a priori given by the specification of the model. The model includes more than 30 exogenous variables specified at a very detailed level. These variables include among others data on energy demand, detailed power production data and data on energy taxes and CO{sub 2} emission targets. This points to the fact that many kinds of data sources have been used. However, due to lack of data sources not all relevant data have been collected. One area in which lack of data has been significant is demand reactions to changes in energy prices, i.e. the different kinds of demand elasticities used in the production and consumer utility functions in the model. Concerning elasticities for German demand reactions no data sources have been available at all. Another area of data problems is combined heat and power production (so-called CHP production), in which only very aggregated data have been available. Lack of data or poor quality of data (e.g., data not up to date or data not detailed enough) has led to the use of appropriate assumptions and short cuts in order to establish the entire data basis for the model. We describe the

  7. The German power market. Data collection for model analysis

    International Nuclear Information System (INIS)

    Munksgaard, J.; Alsted Pedersen, K.; Ramskov, J.

    2000-09-01

    In the present project the market scenario for analysing market imperfections has been the Northern European power market, i.e. a market including Germany as well. Consequently, one of the tasks in the project has been to collect data for Germany in order to develop the empirical basis of the ELEPHANT model. In that perspective the aim of this report is to document the data collected for Gemany, to specify the data sources used and further to lay stress on the assumptions which have been made when data have not been available. By doing so, transparency in model results is improved. Further, a basis for discussing the quality of data as well as a framework for future revisions and updating of data have been established. The data collected for Germany have been given by the exogenous variables defined by the ELEPHANT model. In that way data collection is a priori given by the specification of the model. The model includes more than 30 exogenous variables specified at a very detailed level. These variables include among others data on energy demand, detailed power production data and data on energy taxes and CO 2 emission targets. This points to the fact that many kinds of data sources have been used. However, due to lack of data sources not all relevant data have been collected. One area in which lack of data has been significant is demand reactions to changes in energy prices, i.e. the different kinds of demand elasticities used in the production and consumer utility functions in the model. Concerning elasticities for German demand reactions no data sources have been available at all. Another area of data problems is combined heat and power production (so-called CHP production), in which only very aggregated data have been available. Lack of data or poor quality of data (e.g., data not up to date or data not detailed enough) has led to the use of appropriate assumptions and short cuts in order to establish the entire data basis for the model. We describe the

  8. Layout-Aware I/O Scheduling for Terabits Data Movement

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Youngjae [ORNL; Atchley, Scott [ORNL; Vallee, Geoffroy R [ORNL; Shipman, Galen M [ORNL

    2013-01-01

    Many science facilities, such as the Department of Energy s Leadership Computing Facilities and experimental facilities including the Spallation Neutron Source, Stanford Linear Accelerator Center, and Advanced Photon Source, produce massive amounts of experimental and simulation data. These data are often shared among the facilities and with collaborating institutions. Moving large datasets over the wide- area network (WAN) is a major problem inhibiting collaboration. Next- generation, terabit-networks will help alleviate the problem, however, the parallel storage systems on the end-system hosts at these institutions can become a bottleneck for terabit data movement. The parallel storage system (PFS) is shared by simulation systems, experimental systems, analysis and visualization clusters, in addition to wide-area data movers. These competing uses often induce temporary, but significant, I/O load imbalances on the storage system, which impact the performance of all the users. The problem is a serious concern because some resources are more expensive (e.g. super computers) or have time-critical deadlines (e.g. experimental data from a light source), but parallel file systems handle all requests fairly even if some storage servers are under heavy load. This paper investigates the problem of competing workloads accessing the parallel file system and how the performance of wide-area data movement can be improved in these environments. First, we study the I/O load imbalance problems using actual I/O performance data collected from the Spider storage system at the Oak Ridge Leadership Computing Facility. Second, we present I/O optimization solutions with layout-awareness on end-system hosts for bulk data movement. With our evaluation, we show that our I/O optimization techniques can avoid the I/O congested disk groups, improving storage I/O times on parallel storage systems for terabit data movement.

  9. In-Network Data Processing in Software-Defined IoT with a Programmable Data Plane

    Directory of Open Access Journals (Sweden)

    Ki-Wook Kim

    2018-01-01

    Full Text Available Making an SDN data plane flexible enough to satisfy the various requirements of heterogeneous IoT applications is very desirable in terms of software-defined IoT (SD-IoT networking. Network devices with a programmable data plane provide an ability to dynamically add new packet- and data-processing procedures to IoT applications. The previously proposed solutions for the addition of the programmability feature to the SDN data plane provide extensibility for the packet-forwarding operations of new protocols, but IoT applications need a more flexible programmability for in-network data-processing operations (e.g., the sensing-data aggregation from thousands of sensor nodes. Moreover, some IoT models such as OMG DDS, oneM2M, and Eclipse SCADA use the publish-subscribe model that is difficult to represent using the operations of the existing message-centric data-plane models. We introduce a new in-network data-processing scheme for the SD-IoT data plane that defines an event-driven data-processing model that can express a variety of in-network data-processing cases in the SD-IoT environment. Also, the proposed model comprises a language for the programming of the data-processing procedures, while a flexible data-plane structure that can install and execute the programs at runtime is additionally presented. We demonstrate the flexibility of the proposed scheme by using sample programs in a number of example SD-IoT cases.

  10. Grabens on Io: Evidence for Extensional Tectonics

    Science.gov (United States)

    Hoogenboom, T.; Schenk, P.

    2012-12-01

    Io may well be the most geologically active body in the solar system. A variety of volcanic features have been identified, including a few fissure eruptions, but tectonism is generally assumed to be limited to compression driven mountain formation (Schenk et al., 2001). A wide range of structural features can also be identified including scarps, lineaments, faults, and circular depressions (pits and patera rims). Narrow curvilinear graben (elongated, relatively depressed crustal unit or block that is bounded by faults on its sides) are also scattered across Io's volcanic plains. These features are dwarfed by the more prominent neighboring volcanoes and mountains, and have been largely ignored in the literature. Although they are likely to be extensional in origin, their relationship to local or global stress fields is unknown. We have mapped the locations, length and width of graben on Io using all available Voyager and Galileo images with a resolution better than 5 km. We compare the locations of graben with existing volcanic centers, paterae and mountain data to determine the degree of correlation between these geologic features and major topographic variations (basins/swells) in our global topographic map of Io (White et al., 2011). Graben are best observed in > 1-2 km low-sun angle images. Approximately 300 images were converted from ISIS to ArcMap format to allow easy comparison with the geological map of Io (Williams et al., 2012) along with previous higher resolution structural mapping of local areas (e.g. Crown et al., 1992). We have located >45 graben to date. Typically 1-3 kilometers across, some of these features can stretch for over 500 kilometers in length. Their formation may be related to global tidal stresses or local deformation. Io's orbit is eccentric and its solid surface experiences daily tides of up to ˜0.1 km, leading to repetitive surface strains of 10-4 or greater. These tides flex and stress the lithosphere and can cause it to fracture

  11. Reproducibility and Variability of I/O Performance on BG/Q: Lessons Learned from a Data Aggregation Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Tessier, Francois [Argonne National Lab. (ANL), Argonne, IL (United States); Vishwanath, Venkatram [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-11-28

    Reading and writing data efficiently from different tiers of storage is necessary for most scientific simulations to achieve good performance at scale. Many software solutions have been developed to decrease the I/O bottleneck. One wellknown strategy, in the context of collective I/O operations, is the two-phase I/O scheme. This strategy consists of selecting a subset of processes to aggregate contiguous pieces of data before performing reads/writes. In our previous work, we implemented the two-phase I/O scheme with a MPI-based topology-aware algorithm. Our algorithm showed very good performance at scale compared to the standard I/O libraries such as POSIX I/O and MPI I/O. However, the algorithm had several limitations hindering a satisfying reproducibility of our experiments. In this paper, we extend our work by 1) identifying the obstacles we face to reproduce our experiments and 2) discovering solutions that reduce the unpredictability of our results.

  12. Modular HPC I/O characterization with Darshan

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, Shane; Carns, Philip; Harms, Kevin; Ross, Robert; Lockwood, Glenn K.; Wright, Nicholas J.

    2016-11-13

    Contemporary high-performance computing (HPC) applications encompass a broad range of distinct I/O strategies and are often executed on a number of different compute platforms in their lifetime. These large-scale HPC platforms employ increasingly complex I/O subsystems to provide a suitable level of I/O performance to applications. Tuning I/O workloads for such a system is nontrivial, and the results generally are not portable to other HPC systems. I/O profiling tools can help to address this challenge, but most existing tools only instrument specific components within the I/O subsystem that provide a limited perspective on I/O performance. The increasing diversity of scientific applications and computing platforms calls for greater flexibililty and scope in I/O characterization.

  13. Hearables in hearing care: discovering usage patterns through IoT devices

    DEFF Research Database (Denmark)

    Johansen, Benjamin; Flet-Berliac, Yannis Paul Raymond; Korzepa, Maciej Jan

    2017-01-01

    Hearables are on the rise as next generation wearables, capable of streaming audio, modifying soundscapes or functioning as biometric sensors. The recent introduction of IoT (Internet of things) connected hearing aids o er new opportunities for hearables to collect QS quantified self data...

  14. Electron distribution functions in Io plasma torus

    International Nuclear Information System (INIS)

    Boev, A.G.

    2003-01-01

    Electron distribution functions measured by the Voyager 1 in different shares of the Io plasma torus are explained. It is proved that their suprathermal tails are formed by the electrical field induced by the 'Jupiter wind'. The Maxwellian parts of all these spectra characterize thermal equilibrium populations of electrons and the radiation of exited ions

  15. Io with Loki Plume on Bright Limb

    Science.gov (United States)

    1990-01-01

    Voyager 1 image of Io showing active plume of Loki on limb. Heart-shaped feature southeast of Loki consists of fallout deposits from active plume Pele. The images that make up this mosaic were taken from an average distance of approximately 490,000 kilometers (340,000 miles).

  16. NIMS Observation of Hotspots on Io

    Science.gov (United States)

    1996-01-01

    Io has been imaged by the Near Infrared Mapping Spectrometer (NIMS) on Galileo. The image on the right shows for the first time the distribution of volcanic hotspots on the surface of Io, as seen by NIMS. Three of these hotspots are new discoveries, only detectable with the NIMS instrument. This image was taken during the G1 encounter on June 29 1996. The image on the left shows the same view of Io as seen by the Voyager spacecraft in 1979. At least one dozen hotspots have been identified from this NIMS image. Most of the hotspot locations can be matched with volcanic features on the surface of Io, including the vent area of the active Prometheus plume.The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.

  17. IoT-Based Smart Garbage System for Efficient Food Waste Management

    Directory of Open Access Journals (Sweden)

    Insung Hong

    2014-01-01

    Full Text Available Owing to a paradigm shift toward Internet of Things (IoT, researches into IoT services have been conducted in a wide range of fields. As a major application field of IoT, waste management has become one such issue. The absence of efficient waste management has caused serious environmental problems and cost issues. Therefore, in this paper, an IoT-based smart garbage system (SGS is proposed to reduce the amount of food waste. In an SGS, battery-based smart garbage bins (SGBs exchange information with each other using wireless mesh networks, and a router and server collect and analyze the information for service provisioning. Furthermore, the SGS includes various IoT techniques considering user convenience and increases the battery lifetime through two types of energy-efficient operations of the SGBs: stand-alone operation and cooperation-based operation. The proposed SGS had been operated as a pilot project in Gangnam district, Seoul, Republic of Korea, for a one-year period. The experiment showed that the average amount of food waste could be reduced by 33%.

  18. IoT-based smart garbage system for efficient food waste management.

    Science.gov (United States)

    Hong, Insung; Park, Sunghoi; Lee, Beomseok; Lee, Jaekeun; Jeong, Daebeom; Park, Sehyun

    2014-01-01

    Owing to a paradigm shift toward Internet of Things (IoT), researches into IoT services have been conducted in a wide range of fields. As a major application field of IoT, waste management has become one such issue. The absence of efficient waste management has caused serious environmental problems and cost issues. Therefore, in this paper, an IoT-based smart garbage system (SGS) is proposed to reduce the amount of food waste. In an SGS, battery-based smart garbage bins (SGBs) exchange information with each other using wireless mesh networks, and a router and server collect and analyze the information for service provisioning. Furthermore, the SGS includes various IoT techniques considering user convenience and increases the battery lifetime through two types of energy-efficient operations of the SGBs: stand-alone operation and cooperation-based operation. The proposed SGS had been operated as a pilot project in Gangnam district, Seoul, Republic of Korea, for a one-year period. The experiment showed that the average amount of food waste could be reduced by 33%.

  19. Nanosatellites constellation as an IoT communication platform for near equatorial countries

    Science.gov (United States)

    Narayanasamy, A.; Ahmad, Y. A.; Othman, M.

    2017-11-01

    Anytime, anywhere access for real-time intelligence by Internet of Things (IoT) is changing the way that the whole world will operate as it moves toward data driven technologies. Over the next five years, IoT related devices going to have a dramatic breakthrough in current and new applications, not just on increased efficiency and cost reduction on current system, but it also will make trillion-dollar revenue generation and improve customer satisfaction. IoT communications is the networking of intelligent devices which enables data collection from remote assets. It covers a broad range of technologies and applications which connect to the physical world while allowing key information to be transferred automatically. The current terrestrial wireless communications technologies used to enable this connectivity include GSM, GPRS, 3G, LTE, WIFI, WiMAX and LoRa. These connections occur short to medium range distance however, none of them can cover a whole country or continent and the networks are getting congested with the multiplication of IoT devices. In this study, we discuss a conceptual design of a nanosatellite constellation those can provide a space-based communication platform for IoT devices for near Equatorial countries. The constellation design i.e. the orbital plane and number of satellites and launch deployment concepts are presented.

  20. IoT-Based Smart Garbage System for Efficient Food Waste Management

    Science.gov (United States)

    Lee, Jaekeun

    2014-01-01

    Owing to a paradigm shift toward Internet of Things (IoT), researches into IoT services have been conducted in a wide range of fields. As a major application field of IoT, waste management has become one such issue. The absence of efficient waste management has caused serious environmental problems and cost issues. Therefore, in this paper, an IoT-based smart garbage system (SGS) is proposed to reduce the amount of food waste. In an SGS, battery-based smart garbage bins (SGBs) exchange information with each other using wireless mesh networks, and a router and server collect and analyze the information for service provisioning. Furthermore, the SGS includes various IoT techniques considering user convenience and increases the battery lifetime through two types of energy-efficient operations of the SGBs: stand-alone operation and cooperation-based operation. The proposed SGS had been operated as a pilot project in Gangnam district, Seoul, Republic of Korea, for a one-year period. The experiment showed that the average amount of food waste could be reduced by 33%. PMID:25258730

  1. Measuring and modeling behavioral decision dynamics in collective evacuation.

    Directory of Open Access Journals (Sweden)

    Jean M Carlson

    Full Text Available Identifying and quantifying factors influencing human decision making remains an outstanding challenge, impacting the performance and predictability of social and technological systems. In many cases, system failures are traced to human factors including congestion, overload, miscommunication, and delays. Here we report results of a behavioral network science experiment, targeting decision making in a natural disaster. In a controlled laboratory setting, our results quantify several key factors influencing individual evacuation decision making in a controlled laboratory setting. The experiment includes tensions between broadcast and peer-to-peer information, and contrasts the effects of temporal urgency associated with the imminence of the disaster and the effects of limited shelter capacity for evacuees. Based on empirical measurements of the cumulative rate of evacuations as a function of the instantaneous disaster likelihood, we develop a quantitative model for decision making that captures remarkably well the main features of observed collective behavior across many different scenarios. Moreover, this model captures the sensitivity of individual- and population-level decision behaviors to external pressures, and systematic deviations from the model provide meaningful estimates of variability in the collective response. Identification of robust methods for quantifying human decisions in the face of risk has implications for policy in disasters and other threat scenarios, specifically the development and testing of robust strategies for training and control of evacuations that account for human behavior and network topologies.

  2. Modelling Influence and Opinion Evolution in Online Collective Behaviour.

    Directory of Open Access Journals (Sweden)

    Corentin Vande Kerckhove

    Full Text Available Opinion evolution and judgment revision are mediated through social influence. Based on a large crowdsourced in vitro experiment (n = 861, it is shown how a consensus model can be used to predict opinion evolution in online collective behaviour. It is the first time the predictive power of a quantitative model of opinion dynamics is tested against a real dataset. Unlike previous research on the topic, the model was validated on data which did not serve to calibrate it. This avoids to favor more complex models over more simple ones and prevents overfitting. The model is parametrized by the influenceability of each individual, a factor representing to what extent individuals incorporate external judgments. The prediction accuracy depends on prior knowledge on the participants' past behaviour. Several situations reflecting data availability are compared. When the data is scarce, the data from previous participants is used to predict how a new participant will behave. Judgment revision includes unpredictable variations which limit the potential for prediction. A first measure of unpredictability is proposed. The measure is based on a specific control experiment. More than two thirds of the prediction errors are found to occur due to unpredictability of the human judgment revision process rather than to model imperfection.

  3. Hubble Captures Volcanic Eruption Plume From Io

    Science.gov (United States)

    1997-01-01

    The Hubble Space Telescope has snapped a picture of a 400-km-high (250-mile-high) plume of gas and dust from a volcanic eruption on Io, Jupiter's large innermost moon.Io was passing in front of Jupiter when this image was taken by the Wide Field and Planetary Camera 2 in July 1996. The plume appears as an orange patch just off the edge of Io in the eight o'clock position, against the blue background of Jupiter's clouds. Io's volcanic eruptions blasts material hundreds of kilometers into space in giant plumes of gas and dust. In this image, material must have been blown out of the volcano at more than 2,000 mph to form a plume of this size, which is the largest yet seen on Io.Until now, these plumes have only been seen by spacecraft near Jupiter, and their detection from the Earth-orbiting Hubble Space Telescope opens up new opportunities for long-term studies of these remarkable phenomena.The plume seen here is from Pele, one of Io's most powerful volcanos. Pele's eruptions have been seen before. In March 1979, the Voyager 1 spacecraft recorded a 300-km-high eruption cloud from Pele. But the volcano was inactive when the Voyager 2 spacecraft flew by Jupiter in July 1979. This Hubble observation is the first glimpse of a Pele eruption plume since the Voyager expeditions.Io's volcanic plumes are much taller than those produced by terrestrial volcanos because of a combination of factors. The moon's thin atmosphere offers no resistance to the expanding volcanic gases; its weak gravity (one-sixth that of Earth) allows material to climb higher before falling; and its biggest volcanos are more powerful than most of Earth's volcanos.This image is a contrast-enhanced composite of an ultraviolet image (2600 Angstrom wavelength), shown in blue, and a violet image (4100 Angstrom wavelength), shown in orange. The orange color probably occurs because of the absorption and/or scattering of ultraviolet light in the plume. This light from Jupiter passes through the plume and is

  4. Choosing your IoT programming framework : architectural aspects

    NARCIS (Netherlands)

    Rahman, L.F.; Ozcelebi, T.; Lukkien, J.J.

    2016-01-01

    The Internet of Things (IoT) is turning into practice. To drive innovations, it is crucial that programmers have means to develop IoT applications in the form of IoT programming frameworks. These are toolkits to develop applications according to a certain style or method and that let developers

  5. Synthesizing Knowledge on Internet of Things (IoT)

    DEFF Research Database (Denmark)

    Liu, Fei; Tan, Chee-Wee; Lim, Eric T. K.

    2016-01-01

    Research on Internet of Things (IoT) has been booming for past couple of years due to technological advances and its potential for application. Nonetheless, the rapid growth of IoT articles as well as the heterogeneous nature of IoT pose challenges in synthesizing prior research on the phenomenon...

  6. Can we scan the supernova model space for collective oscillations?

    International Nuclear Information System (INIS)

    Pehlivan, Y.; Subaşı, A. L.; Birol, S.; Ghazanfari, N.; Yuksel, H.; Balantekin, A. B.; Kajino, Toshitaka

    2016-01-01

    Collective neutrino oscillations in a core collapse supernova is a many-body phenomenon which can transform the neutrino energy spectra through emergent effects. One example of this behavior is the neutrino spectral swaps in which neutrinos of different flavors partially or completely exchange their spectra. In this talk, we address the question of how model dependent this behavior is. In particular, we demonstrate that these swaps may be independent of the mean field approximation that is typically employed in numerical treatments by showing an example of a spectral swap in the exact many-body picture.

  7. Collective gradient sensing and chemotaxis: modeling and recent developments

    Science.gov (United States)

    Camley, Brian A.

    2018-06-01

    Cells measure a vast variety of signals, from their environment’s stiffness to chemical concentrations and gradients; physical principles strongly limit how accurately they can do this. However, when many cells work together, they can cooperate to exceed the accuracy of any single cell. In this topical review, I will discuss the experimental evidence showing that cells collectively sense gradients of many signal types, and the models and physical principles involved. I also propose new routes by which experiments and theory can expand our understanding of these problems.

  8. NIMS: hotspots on Io during G2

    Science.gov (United States)

    1996-01-01

    The Near Infrared Mapping Spectrometer (NIMS) on the Galileo spacecraft imaged Io at high spectral resolution at a range of 439,000 km (275,000 miles) during the G2 encounter on 7 September 1996. This image shows (on the right) Io as seen in the infrared by NIMS. The image on the left shows the same view from Voyager in 1979. This NIMS image can be compared to the NIMS images from the G1 orbit (June 1996) to monitor changes on Io. The NIMS image is at 4.9 microns, showing thermal emissions from the hotspots. The brightness of the pixels is a function of size and temperature.At least 10 hotspots have been identified and can be matched with surface features. An accurate determination of the position of the hotspot in the vicinity of Shamash Patera is pending. Hotspots are seen in the vicinity of Prometheus, Volund and Marduk, all sites of volcanic plume activity during the Galileo encounters, and also of active plumes in 1979. Temperatures and areas have been calculated for the hotspots shown. Temperatures range from 828 K (1031 F) to 210 K (- 81.4 F). The lowest temperature is significantly higher than the Io background (non-hotspot) surface temperature of about 100 K (-279 F). Hotspot areas range from 6.5 square km (2.5 sq miles) to 40,000 sq km (15,400 sq miles). The hottest hotspots have smallest areas, and the cooler hotspots have the largest areas. NIMS is continuing to observe Io to monitor volcanic activity throughout the Galileo mission.The Galileo mission is managed by the Jet Propulsion Laboratory for NASA's Office of Space Science, Washington, D.C.This image and other images and data received from Galileo are posted on the Galileo mission home page on the World Wide Web at http://galileo.jpl.nasa.gov.

  9. Volcanism on Jupiter's moon Io and its relation to interior processes

    Science.gov (United States)

    Hamilton, Christopher

    2013-04-01

    Jupiter's moon Io is the most volcanically active body in the Solar System and offers insight into processes of tidal heating, melt generation, and magma ascent. Investigating these processes contributes to a better understanding of Io's geologic history, internal structure, and tidal dissipation mechanisms, as well as to understanding similar processes operating on other tidally-heated worlds (e.g., Europa, Enceladus, and some exoplanets). Four recent developments provide new observational constraints that prompt re-examination of the relationships between Io's surficial geology and interior structure. These developments include: (1) completion of the first 1:15,000,000 scale geologic map of Io based on a synthesis of Voyager and Galileo data; (2) re-interpretation of Galileo magnetometer data, which suggests that Io has a globally continuous subsurface magma ocean; (3) new global surveys of the power output from volcanic centers on Io; and (4) identification of an offset between volcano concentrations and surface heat flux maxima predicted by solid body tidal heating models. In this study, the spatial distributions of volcanic hotspots and paterae on Io are characterized using distance-based clustering techniques and nearest neighbor statistics. Distance-based clustering results support a dominant role for asthenospheric heating within Io, but show a 30-60° eastward offset in volcano concentrations relative to locations of predicted surface heat flux maxima. The observed asymmetry in volcano concentrations, with respect to the tidal axis, cannot be explained by existing solid body tidal heating models. However, identification of a global magma ocean within Io raises the intriguing possibility that a fluid tidal response—analogous to the heating of icy satellites by fluid tidal dissipation in their liquid oceans—may modify Io's thermal budget and locations of enhanced volcanism. The population density of volcanoes is greatest near the equator, which also

  10. Simple model for multiple-choice collective decision making.

    Science.gov (United States)

    Lee, Ching Hua; Lucas, Andrew

    2014-11-01

    We describe a simple model of heterogeneous, interacting agents making decisions between n≥2 discrete choices. For a special class of interactions, our model is the mean field description of random field Potts-like models and is effectively solved by finding the extrema of the average energy E per agent. In these cases, by studying the propagation of decision changes via avalanches, we argue that macroscopic dynamics is well captured by a gradient flow along E. We focus on the permutation symmetric case, where all n choices are (on average) the same, and spontaneous symmetry breaking (SSB) arises purely from cooperative social interactions. As examples, we show that bimodal heterogeneity naturally provides a mechanism for the spontaneous formation of hierarchies between decisions and that SSB is a preferred instability to discontinuous phase transitions between two symmetric points. Beyond the mean field limit, exponentially many stable equilibria emerge when we place this model on a graph of finite mean degree. We conclude with speculation on decision making with persistent collective oscillations. Throughout the paper, we emphasize analogies between methods of solution to our model and common intuition from diverse areas of physics, including statistical physics and electromagnetism.

  11. An oscillating dynamic model of collective cells in a monolayer

    Science.gov (United States)

    Lin, Shao-Zhen; Xue, Shi-Lei; Li, Bo; Feng, Xi-Qiao

    2018-03-01

    Periodic oscillations of collective cells occur in the morphogenesis and organogenesis of various tissues and organs. In this paper, an oscillating cytodynamic model is presented by integrating the chemomechanical interplay between the RhoA effector signaling pathway and cell deformation. We show that both an isolated cell and a cell aggregate can undergo spontaneous oscillations as a result of Hopf bifurcation, upon which the system evolves into a limit cycle of chemomechanical oscillations. The dynamic characteristics are tailored by the mechanical properties of cells (e.g., elasticity, contractility, and intercellular tension) and the chemical reactions involved in the RhoA effector signaling pathway. External forces are found to modulate the oscillation intensity of collective cells in the monolayer and to polarize their oscillations along the direction of external tension. The proposed cytodynamic model can recapitulate the prominent features of cell oscillations observed in a variety of experiments, including both isolated cells (e.g., spreading mouse embryonic fibroblasts, migrating amoeboid cells, and suspending 3T3 fibroblasts) and multicellular systems (e.g., Drosophila embryogenesis and oogenesis).

  12. Collective signaling behavior in a networked-oscillator model

    Science.gov (United States)

    Liu, Z.-H.; Hui, P. M.

    2007-09-01

    We propose and study the collective behavior of a model of networked signaling objects that incorporates several ingredients of real-life systems. These ingredients include spatial inhomogeneity with grouping of signaling objects, signal attenuation with distance, and delayed and impulsive coupling between non-identical signaling objects. Depending on the coupling strength and/or time-delay effect, the model exhibits completely, partially, and locally collective signaling behavior. In particular, a correlated signaling (CS) behavior is observed in which there exist time durations when nearly a constant fraction of oscillators in the system are in the signaling state. These time durations are much longer than the duration of a spike when a single oscillator signals, and they are separated by regular intervals in which nearly all oscillators are silent. Such CS behavior is similar to that observed in biological systems such as fireflies, cicadas, crickets, and frogs. The robustness of the CS behavior against noise is also studied. It is found that properly adjusting the coupling strength and noise level could enhance the correlated behavior.

  13. How to Improve Fault Tolerance in Disaster Predictions: A Case Study about Flash Floods Using IoT, ML and Real Data.

    Science.gov (United States)

    Furquim, Gustavo; Filho, Geraldo P R; Jalali, Roozbeh; Pessin, Gustavo; Pazzi, Richard W; Ueyama, Jó

    2018-03-19

    The rise in the number and intensity of natural disasters is a serious problem that affects the whole world. The consequences of these disasters are significantly worse when they occur in urban districts because of the casualties and extent of the damage to goods and property that is caused. Until now feasible methods of dealing with this have included the use of wireless sensor networks (WSNs) for data collection and machine-learning (ML) techniques for forecasting natural disasters. However, there have recently been some promising new innovations in technology which have supplemented the task of monitoring the environment and carrying out the forecasting. One of these schemes involves adopting IP-based (Internet Protocol) sensor networks, by using emerging patterns for IoT. In light of this, in this study, an attempt has been made to set out and describe the results achieved by SENDI (System for dEtecting and forecasting Natural Disasters based on IoT). SENDI is a fault-tolerant system based on IoT, ML and WSN for the detection and forecasting of natural disasters and the issuing of alerts. The system was modeled by means of ns-3 and data collected by a real-world WSN installed in the town of São Carlos - Brazil, which carries out the data collection from rivers in the region. The fault-tolerance is embedded in the system by anticipating the risk of communication breakdowns and the destruction of the nodes during disasters. It operates by adding intelligence to the nodes to carry out the data distribution and forecasting, even in extreme situations. A case study is also included for flash flood forecasting and this makes use of the ns-3 SENDI model and data collected by WSN.

  14. How to Improve Fault Tolerance in Disaster Predictions: A Case Study about Flash Floods Using IoT, ML and Real Data

    Science.gov (United States)

    Furquim, Gustavo; Filho, Geraldo P. R.; Pessin, Gustavo; Pazzi, Richard W.

    2018-01-01

    The rise in the number and intensity of natural disasters is a serious problem that affects the whole world. The consequences of these disasters are significantly worse when they occur in urban districts because of the casualties and extent of the damage to goods and property that is caused. Until now feasible methods of dealing with this have included the use of wireless sensor networks (WSNs) for data collection and machine-learning (ML) techniques for forecasting natural disasters. However, there have recently been some promising new innovations in technology which have supplemented the task of monitoring the environment and carrying out the forecasting. One of these schemes involves adopting IP-based (Internet Protocol) sensor networks, by using emerging patterns for IoT. In light of this, in this study, an attempt has been made to set out and describe the results achieved by SENDI (System for dEtecting and forecasting Natural Disasters based on IoT). SENDI is a fault-tolerant system based on IoT, ML and WSN for the detection and forecasting of natural disasters and the issuing of alerts. The system was modeled by means of ns-3 and data collected by a real-world WSN installed in the town of São Carlos - Brazil, which carries out the data collection from rivers in the region. The fault-tolerance is embedded in the system by anticipating the risk of communication breakdowns and the destruction of the nodes during disasters. It operates by adding intelligence to the nodes to carry out the data distribution and forecasting, even in extreme situations. A case study is also included for flash flood forecasting and this makes use of the ns-3 SENDI model and data collected by WSN. PMID:29562657

  15. How to Improve Fault Tolerance in Disaster Predictions: A Case Study about Flash Floods Using IoT, ML and Real Data

    Directory of Open Access Journals (Sweden)

    Gustavo Furquim

    2018-03-01

    Full Text Available The rise in the number and intensity of natural disasters is a serious problem that affects the whole world. The consequences of these disasters are significantly worse when they occur in urban districts because of the casualties and extent of the damage to goods and property that is caused. Until now feasible methods of dealing with this have included the use of wireless sensor networks (WSNs for data collection and machine-learning (ML techniques for forecasting natural disasters. However, there have recently been some promising new innovations in technology which have supplemented the task of monitoring the environment and carrying out the forecasting. One of these schemes involves adopting IP-based (Internet Protocol sensor networks, by using emerging patterns for IoT. In light of this, in this study, an attempt has been made to set out and describe the results achieved by SENDI (System for dEtecting and forecasting Natural Disasters based on IoT. SENDI is a fault-tolerant system based on IoT, ML and WSN for the detection and forecasting of natural disasters and the issuing of alerts. The system was modeled by means of ns-3 and data collected by a real-world WSN installed in the town of São Carlos - Brazil, which carries out the data collection from rivers in the region. The fault-tolerance is embedded in the system by anticipating the risk of communication breakdowns and the destruction of the nodes during disasters. It operates by adding intelligence to the nodes to carry out the data distribution and forecasting, even in extreme situations. A case study is also included for flash flood forecasting and this makes use of the ns-3 SENDI model and data collected by WSN.

  16. Aspects of a collective single-particle model

    International Nuclear Information System (INIS)

    Mutz, U.

    1985-01-01

    The successful application of time-reversal breaking wave functions in the framework of collective models based on a mean-field approach is for fermionic accesses known for a long while. In this thesis this concept is confirmed also for bosons. Especially in the study of some simple models the physical content of which is determined by the IBA model analytical model-solutions are found which are in a surprisingly well agreement with the exact IBA solutions and the experimental spectra. These solutions which describe the ground-state band are thereby dependent on geometrical shape parameters and of a simpler structure than those of the IBA model. Thereby the cranking model serves as an essential support. In order to obtain a better understanding of the cranking model it is tried to go beyond the mean-field approach. Thereby also the neighbourhood of the stationary point is studied. The approach consecuted here is based on the necessity of a variation after the projection. This is forced by the application of as simple wave functions as possible in the solution of the nuclear many-body problem by means of a symmetry breaking mean-field. Exactly performable is the projection however only in the case of the particle-number symmetry. The particle-number projection was applied to the study of the high spin excitations of 168 Hf. The two-quasiparticle band of this nucleus exhibits a rotational band with the moment of inertia of a rigid body. The speculation of a phase transition of the nuclear system from superfluid to normally fluid resulting from this is not confirmed in the theoretical study. The energy gap remains also in the two-quasiparticle band up to high angular momenta nearly undiminishedly. Especially it is shown that the energy-level scheme of a nucleus contains no information about phase transitions. (orig./HSI) [de

  17. Data Compatibility to Enhance Sustainable Capabilities for Autonomous Analytics in IoT

    Directory of Open Access Journals (Sweden)

    Kaleem Razzaq Malik

    2017-05-01

    Full Text Available The collection of raw data is based on sensors embedded in devices or the environment for real-time data extraction. Nowadays, the Internet of Things (IoT environment is used to support autonomous data collection by reducing human involvement. It is hard to analyze such data, especially when working with the sensors in a real-time environment. On using data analytics in IoT with the help of RDF, many issues can be resolved. Resultant data will have a better chance of quality analytics by reforming data into the semantical annotation. Industrial correspondence through data will be improved by the induction of semantics at large due to efficient data capturing, whereas one popular medium of sensors’ data storage is Relational Database (RDB. This study provides a complete automated mechanism to transform from loosely structured data stored in RDB into RDF. These data are obtained from sensors in semantically annotated RDF stores. The given study comprises methodology for improving compatibility by introducing bidirectional transformation between classical DB and RDF data stores to enhance the sustainable capabilities of IoT systems for autonomous analytics. Two case studies, one on weather and another on heart-rate measurement collections through IoT sensors, are used to show the transformation process in operation.

  18. Ranking System for IoT Industry Platform

    OpenAIRE

    Mukherjee, Somshree

    2016-01-01

    The Internet of Things (IoT) has seen a huge growth spurt in the last few years which has resulted in the need for more standardised IoT technology. Because of this, numerous IoT platforms have sprung up that offer a variety of features and use different technologies which may not necessarily be compliant with each other or with other technologies. Companies that wish to enter theIoT market are in constant need to find the most suitable IoT platform for their business and have a certain set o...

  19. Klasifikace v oblasti IoT

    OpenAIRE

    Flégl, Jaroslav

    2017-01-01

    This bachelor thesis is focused on classification of IoT. The aim of this thesis is classifying and categorizing IoT using systematic literature review. Several steps are needed to fulfill this aim. First part of this thesis focuses on defining IoT. Top ten companies, which invest the most to IoT are introduced with their view on IoT. Then follows characterization of classification and categorization including differences between them. Second part focuses on describing SLR. First of all the p...

  20. IoT-Based Car's Parking Monitoring System

    Directory of Open Access Journals (Sweden)

    Dwiputra Albertus Ega

    2018-01-01

    Full Text Available Internet-of-things-based technologies have advanced so much and helped public necessities. The use of IoT at a parking lot will help vehicle users to know the availability of a parking location through smartphones. This IoT-based parking system is created by using controllers, sensors, servers and cloud. Controllers and sensors will be placed on the ceiling of each parking slots to detect the presence of a car. Server collect the results of the sensors and store them in Cloud. System test is conducted by installing three sensor circuits and server in a parking lot. The tests consist of measuring time that required for data transmission and the rate of success of data transmission from the parking lot to the Cloud. Based on above tests, it is observed that the sensor circuit and Radio Frequency Identification are able to transmit the parking lot data without error. This system require maximum 1 min to update parking lot data. The process of obtaining data until the data being stored in Cloud takes 12 s and the process of acquiring parking condition data from Cloud to smartphone takes 30 s. The accuracy level of parking lot data transfer is 100 %.

  1. An IoT Project for Vital Signs Monitoring

    Directory of Open Access Journals (Sweden)

    Felician ALECU

    2017-01-01

    Full Text Available Nowadays, the Internet of Things (IoT projects are very popular and they are developed for numerous fields. In order to detect various medical problems on time, it is required to monitor the subjects either human or non-human. This could be used on regular or specific activities, like sport or work. It is necessary to determine the factors that could lead to medical problems. Another important aspect is to quantify the factors, to monitor them, to collect data and to make the proper interpretation. This could be achieved using dedicated sensors, controlled by an application embedded on a development board. When a dangerous value is reached, the system has to inform the subject (if human or someone else (if non-human. This paper presents an Arduino based IoT project used for monitoring the vital signs for human and non-human and the results based on its usage. The paper details the hardware and software components of this project.

  2. Visualization and parallel I/O at extreme scale

    International Nuclear Information System (INIS)

    Ross, R B; Peterka, T; Shen, H-W; Hong, Y; Ma, K-L; Yu, H; Moreland, K

    2008-01-01

    In our efforts to solve ever more challenging problems through computational techniques, the scale of our compute systems continues to grow. As we approach petascale, it becomes increasingly important that all the resources in the system be used as efficiently as possible, not just the floating-point units. Because of hardware, software, and usability challenges, storage resources are often one of the most poorly used and performing components of today's compute systems. This situation can be especially true in the case of the analysis phases of scientific workflows. In this paper we discuss the impact of large-scale data on visual analysis operations and examine a collection of approaches to I/O in the visual analysis process. First we examine the performance of volume rendering on a leadership-computing platform and assess the relative cost of I/O, rendering, and compositing operations. Next we analyze the performance implications of eliminating preprocessing from this example workflow. Then we describe a technique that uses data reorganization to improve access times for data-intensive volume rendering

  3. Coulomb thermal properties and stability of the Io plasma torus

    Science.gov (United States)

    Barbosa, D. D.; Coroniti, F. V.; Eviatar, A.

    1983-01-01

    Coulomb collisional energy exchange rates are computed for a model of the Io plasma torus consisting of newly created pickup ions, a background of thermally degraded intermediary ions, and a population of cooler electrons. The electrons are collisionally heated by both the pickup ions and background ions and are cooled by electron impact excitation of plasma ions which radiate in the EUV. It is found that a relative concentration of S III pickup ions forbidden S III/electrons = 0.1 with a temperature of 340 eV can deliver energy to the electrons at a rate of 3 x 10 to the -13th erg/cu cm per sec, sufficient to power the EUV emissions in the Io torus. The model predicts a background ion temperature Ti of about 53 eV and an electron temperature Te of about 5.5 eV on the basis of steady-state energy balance relations at Coulomb rates. The model also predicts electron temperature fluctuations at the 30 percent level on a time scale of less than 11 hours, consistent with recent observations of this phenomenon.

  4. Optimization of Wireless Node Discovery in an IoT Network

    DEFF Research Database (Denmark)

    Vasilev, Vladislav; Iliev, Georgi; Poulkov, Vladimir

    2015-01-01

    in the decrease in discovery costs. The proposed model covers well the dynamics of the complex sensor network, such as the one that maybe employed in an Internet of Things (IoT) scenario, where nodes need to act autonomously during the communication process. We apply the Lotka-Voltera model to increase...

  5. Toward Exascale Seismic Imaging: Taming Workflow and I/O Issues

    Science.gov (United States)

    Lefebvre, M. P.; Bozdag, E.; Lei, W.; Rusmanugroho, H.; Smith, J. A.; Tromp, J.; Yuan, Y.

    2013-12-01

    Providing a better understanding of the physics and chemistry of Earth's interior through numerical simulations has always required tremendous computational resources. Post-petascale supercomputers are now available to solve complex scientific problems that were thought unreachable a few decades ago. They also bring a cohort of concerns on how to obtain optimum performance. Several issues are currently being investigated by the HPC community. To name a few, we can list energy consumption, fault resilience, scalability of the current parallel paradigms, large workflow management, I/O performance and feature extraction with large datasets. For this presentation, we focus on the last three issues. In the context of seismic imaging, in particular for simulations based on adjoint methods, workflows are well defined. They consist of a few collective steps (e.g., mesh generation or model updates) and of a large number of independent steps (e.g., forward and adjoint simulations of each seismic event, pre- and postprocessing of seismic traces). The greater goal is to reduce the time to solution, that is, obtaining a more precise representation of the subsurface as fast as possible. This brings us to consider both the workflow in its entirety and the parts composing it. The usual approach is to speedup the purely computational parts by code tuning in order to reach higher FLOPS and better memory usage. This still remains an important concern, but larger scale experiments show that the imaging workflow suffers from a severe I/O bottleneck. This limitation occurs both for purely computational data and seismic time series. The latter are dealt with by the introduction of a new Adaptable Seismic Data Format (ASDF). In both cases, a parallel I/O library, ORNL's ADIOS, is used to drastically lessen the weight of disk access. Moreover, parallel visualization tools, such as VisIt, are able to take advantage of the metadata included in our ADIOS outputs to extract features and

  6. A new model for the collective beam-beam interaction

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, J.A.; Sobol, A.V. [New Mexico Univ., Albuquerque, NM (United States); Vogt, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2006-09-15

    The Collective Beam-Beam interaction is studied in the framework of maps with a ''kick-lattice'' model in 4-D phase space. A novel approach to the classical method of averaging is used to derive an approximate map which is equivalent to a flow within the averaging approximation. The flow equation is a continuous-time Vlasov equation which we call the averaged Vlasov equation, the new model of this paper. The power of this approach is evidenced by the fact that the averaged Vlasov equation has exact equilibria and the associated lineralized equations have uncoupled azimuthal Fourier modes. The equation for the Fourier modes leads to a Fredholm integral equation of the third kind and the setting is ready-made for the development of a weakly nonlinear theory to study the coupling of the {pi} and {sigma} modes. The {pi} and {sigma} modes are calculated from the third kind integral equation and results are compared with the kick-lattice model. (orig.)

  7. A new model for the collective beam-beam interaction

    International Nuclear Information System (INIS)

    Ellison, J.A.; Sobol, A.V.; Vogt, M.

    2006-09-01

    The Collective Beam-Beam interaction is studied in the framework of maps with a ''kick-lattice'' model in 4-D phase space. A novel approach to the classical method of averaging is used to derive an approximate map which is equivalent to a flow within the averaging approximation. The flow equation is a continuous-time Vlasov equation which we call the averaged Vlasov equation, the new model of this paper. The power of this approach is evidenced by the fact that the averaged Vlasov equation has exact equilibria and the associated lineralized equations have uncoupled azimuthal Fourier modes. The equation for the Fourier modes leads to a Fredholm integral equation of the third kind and the setting is ready-made for the development of a weakly nonlinear theory to study the coupling of the π and σ modes. The π and σ modes are calculated from the third kind integral equation and results are compared with the kick-lattice model. (orig.)

  8. Ergonomics-inspired Reshaping and Exploration of Collections of Models

    KAUST Repository

    Zheng, Youyi

    2015-06-22

    This paper examines the following question: given a collection of man-made shapes, e.g., chairs, can we effectively explore and rank the shapes with respect to a given human body – in terms of how well a candidate shape fits the specified human body? Answering this question requires identifying which shapes are more suitable for a prescribed body, and how to alter the input geometry to better fit the shapes to a given human body. The problem links physical proportions of the human body and its interaction with object geometry, which is often expressed as ergonomics guidelines. We present an interactive system that allows users to explore shapes using different avatar poses, while, at the same time providing interactive previews of how to alter the shapes to fit the user-specified body and pose. We achieve this by first constructing a fuzzy shape-to-body map from the ergonomic guidelines to multi-contacts geometric constraints; and then, proposing a novel contact-preserving deformation paradigm to realize a reshaping to adapt the input shape. We evaluate our method on collections of models from different categories and validate the results through a user study.

  9. Leveraging Fog Computing for Scalable IoT Datacenter Using Spine-Leaf Network Topology

    Directory of Open Access Journals (Sweden)

    K. C. Okafor

    2017-01-01

    Full Text Available With the Internet of Everything (IoE paradigm that gathers almost every object online, huge traffic workload, bandwidth, security, and latency issues remain a concern for IoT users in today’s world. Besides, the scalability requirements found in the current IoT data processing (in the cloud can hardly be used for applications such as assisted living systems, Big Data analytic solutions, and smart embedded applications. This paper proposes an extended cloud IoT model that optimizes bandwidth while allowing edge devices (Internet-connected objects/devices to smartly process data without relying on a cloud network. Its integration with a massively scaled spine-leaf (SL network topology is highlighted. This is contrasted with a legacy multitier layered architecture housing network services and routing policies. The perspective offered in this paper explains how low-latency and bandwidth intensive applications can transfer data to the cloud (and then back to the edge application without impacting QoS performance. Consequently, a spine-leaf Fog computing network (SL-FCN is presented for reducing latency and network congestion issues in a highly distributed and multilayer virtualized IoT datacenter environment. This approach is cost-effective as it maximizes bandwidth while maintaining redundancy and resiliency against failures in mission critical applications.

  10. mIoT Slice for 5G Systems: Design and Performance Evaluation.

    Science.gov (United States)

    Trivisonno, Riccardo; Condoluci, Massimo; An, Xueli; Mahmoodi, Toktam

    2018-02-21

    Network slicing is a key feature of the upcoming 5G networks allowing the design and deployment of customized communication systems to integrate services provided by vertical industries. In this context, massive Internet of Things (mIoT) is regarded as a compelling use case, both for its relevance from business perspective, and for the technical challenges it poses to network design. With their envisaged massive deployment of devices requiring sporadic connectivity and small data transmission, yet Quality of Service (QoS) constrained, mIoT services will need an ad-hoc end-to-end (E2E) slice, i.e., both access and core network with enhanced Control and User planes (CP/UP). After revising the key requirements of mIoT and identifying major shortcomings of previous generation networks, this paper presents and evaluates an E2E mIoT network slicing solution, featuring a new connectivity model overcoming the load limitations of legacy systems. Unique in its kind, this paper addresses mIoT requirements from an end-to-end perspective highlighting and solving, unlike most prior related work, the connectivity challenges posed to the core network. Results demonstrate that the proposed solution, reducing CP signaling and optimizing UP resource utilization, is a suitable candidate for next generation network standards to efficiently handle massive device deployment.

  11. iOS cloud development dor dummies

    CERN Document Server

    Goldstein, Neal

    2012-01-01

    Want to create robust, data-driven, iOS cloud apps? This book makes it easier! Apple's mobile operating system (iOS) supports iPhones, iPads, iPods and other Apple devices, and while even beginners can now develop apps to run just on these devices themselves, sometimes you want to create an app with more heft. Applications such as live weather reports or multi-player games require a lot of data to be pulled from outside—often from cloud-based Web Services, such as Google or Amazon. This book, written by application development experts Sujee Maniyam and Neal Goldstein, shows you how to we

  12. Use of new components in ios5

    OpenAIRE

    Cvenkel, Gašper

    2012-01-01

    Technological development of mobile technology is very fast now days, which contribute to increasing number of smart phones available on the market. Those phones are driven by different operating systems, which are developing, getting new features and upgrades. That is one of the reasons to introduce new features of iOS 5 (iCloud, Storyboard, Notification Center), compare them with competition and present pros and cons. The very rapid development is also reflected by the fact, that it is alre...

  13. IoT E-business applications

    OpenAIRE

    Radu BUCEA-MANEA-TONIS; Rocsana B. Manea Tonis

    2017-01-01

    “Internet of things” (IoT) will develop soon an ecosystem of internet-connected things, that facilitate the mobile commerce experiences and the client need to be informed all the time. It will be associated with a feeling of freedom and capacity of doing very easy what was considered difficult in the past. Nevertheless, these opportunities will not be capitalized upon without overcoming a series of obstacles, including addressing consumer privacy concerns, the long replacement cycles of du...

  14. Galileo observations of volcanic plumes on Io

    Science.gov (United States)

    Geissler, P.E.; McMillan, M.T.

    2008-01-01

    Io's volcanic plumes erupt in a dazzling variety of sizes, shapes, colors and opacities. In general, the plumes fall into two classes, representing distinct source gas temperatures. Most of the Galileo imaging observations were of the smaller, more numerous Prometheus-type plumes that are produced when hot flows of silicate lava impinge on volatile surface ices of SO2. Few detections were made of the giant, Pele-type plumes that vent high temperature, sulfur-rich gases from the interior of Io; this was partly because of the insensitivity of Galileo's camera to ultraviolet wavelengths. Both gas and dust spout from plumes of each class. Favorably located gas plumes were detected during eclipse, when Io was in Jupiter's shadow. Dense dust columns were imaged in daylight above several Prometheus-type eruptions, reaching heights typically less than 100 km. Comparisons between eclipse observations, sunlit images, and the record of surface changes show that these optically thick dust columns are much smaller in stature than the corresponding gas plumes but are adequate to produce the observed surface deposits. Mie scattering calculations suggest that these conspicuous dust plumes are made up of coarse grained “ash” particles with radii on the order of 100 nm, and total masses on the order of 106 kg per plume. Long exposure images of Thor in sunlight show a faint outer envelope apparently populated by particles small enough to be carried along with the gas flow, perhaps formed by condensation of sulfurous “snowflakes” as suggested by the plasma instrumentation aboard Galileo as it flew through Thor's plume [Frank, L.A., Paterson, W.R., 2002. J. Geophys. Res. (Space Phys.) 107, doi:10.1029/2002JA009240. 31-1]. If so, the total mass of these fine, nearly invisible particles may be comparable to the mass of the gas, and could account for much of Io's rapid resurfacing.

  15. Automatic Integration of IoT Devices

    OpenAIRE

    Pêgo, Pedro Ruben Januário

    2016-01-01

    During the last years a new concept has gained prominence in the technology world. With an increasingly dominant role in our days, Internet of Things (IoT) is a technological revolution that is changing our lives. The imagination is the limit for the new devices that may appear in the market. This phenomenon is derived from both, the technological evolution and the growing acceptance of this type of products in our social life. Faced with a fast growth, an increasing diversity ...

  16. I/O Performance Characterization of Lustre and NASA Applications on Pleiades

    Science.gov (United States)

    Saini, Subhash; Rappleye, Jason; Chang, Johnny; Barker, David Peter; Biswas, Rupak; Mehrotra, Piyush

    2012-01-01

    In this paper we study the performance of the Lustre file system using five scientific and engineering applications representative of NASA workload on large-scale supercomputing systems such as NASA s Pleiades. In order to facilitate the collection of Lustre performance metrics, we have developed a software tool that exports a wide variety of client and server-side metrics using SGI's Performance Co-Pilot (PCP), and generates a human readable report on key metrics at the end of a batch job. These performance metrics are (a) amount of data read and written, (b) number of files opened and closed, and (c) remote procedure call (RPC) size distribution (4 KB to 1024 KB, in powers of 2) for I/O operations. RPC size distribution measures the efficiency of the Lustre client and can pinpoint problems such as small write sizes, disk fragmentation, etc. These extracted statistics are useful in determining the I/O pattern of the application and can assist in identifying possible improvements for users applications. Information on the number of file operations enables a scientist to optimize the I/O performance of their applications. Amount of I/O data helps users choose the optimal stripe size and stripe count to enhance I/O performance. In this paper, we demonstrate the usefulness of this tool on Pleiades for five production quality NASA scientific and engineering applications. We compare the latency of read and write operations under Lustre to that with NFS by tracing system calls and signals. We also investigate the read and write policies and study the effect of page cache size on I/O operations. We examine the performance impact of Lustre stripe size and stripe count along with performance evaluation of file per process and single shared file accessed by all the processes for NASA workload using parameterized IOR benchmark.

  17. Transforming Monograph Collections with a Model of Collections as a Service

    Science.gov (United States)

    Way, Doug

    2017-01-01

    Financial pressures, changes in scholarly communications, the rise of online content, and the ability to easily share materials have provided libraries the opportunity to rethink their collections practices. This article provides an overview of these changes and outlines a framework for viewing collections as a service. It describes how libraries…

  18. Stability of sulfur slopes on Io

    Science.gov (United States)

    Clow, G. D.; Carr, M. H.

    1980-01-01

    The mechanical properties of elemental sulfur are such that the upper crust of Io cannot be primarily sulfur. For heat flows in the range 100-1000 ergs/sq cm sec sulfur becomes ductile within several hundred meters of the surface and would prevent the formation of calderas with depths greater than this. However, the one caldera for which precise depth data are available is 2 km deep, and this value may be typical. A study of the mechanical equilibrium of simple slopes shows that the depth to the zone of rapid ductile flow strongly controls the maximum heights for sulfur slopes. Sulfur scarps with heights greater than 1 km will fail for all heat flows greater than 180 ergs/sq cm sec and slope angles greater than 22.5 deg. The observed relief on Io is inconsistent with that anticipated for a predominantly sulfur crust. However, a silicate crust with several percent sulfur included satisfies both the mechanical constraints and the observed presence of sulfur on Io.

  19. AirPrint Forensics: Recovering the Contents and Metadata of Printed Documents from iOS Devices

    Directory of Open Access Journals (Sweden)

    Luis Gómez-Miralles

    2015-01-01

    data they may store, opens new opportunities in the field of computer forensics. In 2010, version 4 of the iOS operating system introduced AirPrint, a simple and driverless wireless printing functionality supported by hundreds of printer models from all major vendors. This paper describes the traces left in the iOS device when AirPrint is used and presents a method for recovering content and metadata of documents that have been printed.

  20. Two-body potentials in the collective model

    International Nuclear Information System (INIS)

    Draayer, J.P.; Rosensteel, G.; Arizona State Univ., Tempe

    1982-01-01

    The question, 'How well can a 1+2-body shell-model interaction represent a many-body potential.', is addressed by optimally expanding the (1+2+3)-body potential β 3 cos 3γ and the (1+2+3+4)-body potential β 4 of the Bohr-Mottelson collective model in terms of (1+2)-body operators. It is found that the correlation of β 4 with its approximation is greater than 97% throughout the sd shell. Although β 3 cos 3γ is also well approximated in the first half of the sd shell where it has more than 80% correlation with its approximation, the correlation drops abruptly at 28 Si to 50% and remains low in the second half of the shell. The approximations are primarily sums of the various components of the quadrupole-quadrupole interaction connecting different major oscillator shells. The results suggest that axially-symmetric deformation can be represented by simple (1+2)-body operators, whereas asymmetric shapes require non-simple 3-body terms. (orig.)

  1. Reliable IoT Storage: Minimizing Bandwidth Use in Storage Without Newcomer Nodes

    DEFF Research Database (Denmark)

    Zhao, Xiaobo; Lucani Rötter, Daniel Enrique; Shen, Xiaohong

    2018-01-01

    This letter characterizes the optimal policies for bandwidth use and storage for the problem of distributed storage in Internet of Things (IoT) scenarios, where lost nodes cannot be replaced by new nodes as is typically assumed in Data Center and Cloud scenarios. We develop an information flow...... model that captures the overall process of data transmission between IoT devices, from the initial preparation stage (generating redundancy from the original data) to the different repair stages with fewer and fewer devices. Our numerical results show that in a system with 10 nodes, the proposed optimal...

  2. Programmatic access to logical models in the Cell Collective modeling environment via a REST API.

    Science.gov (United States)

    Kowal, Bryan M; Schreier, Travis R; Dauer, Joseph T; Helikar, Tomáš

    2016-01-01

    Cell Collective (www.cellcollective.org) is a web-based interactive environment for constructing, simulating and analyzing logical models of biological systems. Herein, we present a Web service to access models, annotations, and simulation data in the Cell Collective platform through the Representational State Transfer (REST) Application Programming Interface (API). The REST API provides a convenient method for obtaining Cell Collective data through almost any programming language. To ensure easy processing of the retrieved data, the request output from the API is available in a standard JSON format. The Cell Collective REST API is freely available at http://thecellcollective.org/tccapi. All public models in Cell Collective are available through the REST API. For users interested in creating and accessing their own models through the REST API first need to create an account in Cell Collective (http://thecellcollective.org). thelikar2@unl.edu. Technical user documentation: https://goo.gl/U52GWo. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Secure Access Control and Authority Delegation Based on Capability and Context Awareness for Federated IoT

    DEFF Research Database (Denmark)

    Anggorojati, Bayu; Mahalle, Parikshit N.; Prasad, Neeli R.

    2013-01-01

    Access control is a critical functionality in Internet of Things (IoT), and it is particularly promising to make access control secure, efficient and generic in a distributed environment. Another an important property of access control system in the IoT is flexibility which can be achieved...... by access or authority delegation. Delegation mechanisms in access control that have been studied until now have been intended mainly for a system that has no resource constraint, such as a web-based system, which is not very suitable for a highly pervasive system such as IoT. This chapter presents...... the Capability-based Context Aware Access Control (CCAAC) model including the authority delegation method, along with specification and protocol evaluation intended for federated Machine-to-Machine (M2M)/IoT. By using the identity and capability-based access control approach together with the contextual...

  4. A Lightweight I/O Scheme to Facilitate Spatial and Temporal Queries of Scientific Data Analytics

    Science.gov (United States)

    Tian, Yuan; Liu, Zhuo; Klasky, Scott; Wang, Bin; Abbasi, Hasan; Zhou, Shujia; Podhorszki, Norbert; Clune, Tom; Logan, Jeremy; Yu, Weikuan

    2013-01-01

    In the era of petascale computing, more scientific applications are being deployed on leadership scale computing platforms to enhance the scientific productivity. Many I/O techniques have been designed to address the growing I/O bottleneck on large-scale systems by handling massive scientific data in a holistic manner. While such techniques have been leveraged in a wide range of applications, they have not been shown as adequate for many mission critical applications, particularly in data post-processing stage. One of the examples is that some scientific applications generate datasets composed of a vast amount of small data elements that are organized along many spatial and temporal dimensions but require sophisticated data analytics on one or more dimensions. Including such dimensional knowledge into data organization can be beneficial to the efficiency of data post-processing, which is often missing from exiting I/O techniques. In this study, we propose a novel I/O scheme named STAR (Spatial and Temporal AggRegation) to enable high performance data queries for scientific analytics. STAR is able to dive into the massive data, identify the spatial and temporal relationships among data variables, and accordingly organize them into an optimized multi-dimensional data structure before storing to the storage. This technique not only facilitates the common access patterns of data analytics, but also further reduces the application turnaround time. In particular, STAR is able to enable efficient data queries along the time dimension, a practice common in scientific analytics but not yet supported by existing I/O techniques. In our case study with a critical climate modeling application GEOS-5, the experimental results on Jaguar supercomputer demonstrate an improvement up to 73 times for the read performance compared to the original I/O method.

  5. Challenges when bringing IoT into Industrial Automation

    OpenAIRE

    Lennvall, Tomas; Gidlund, Mikael; Åkerberg, Johan

    2017-01-01

    The Internet of Things (IoT) is captivating the society because of its potential to rapidly transform businesses and people’s lives. It is widely believed that IoT will also transform the industrial automation business in terms of improved productivity, less cost, flexibility, and increased revenues. Hence, there are some challenges that needs to be addressed when IoT is introduced to the industrial automation domain. This paperaims to present realistic requirements and highlights identified ...

  6. IoT-Forensics Meets Privacy: Towards Cooperative Digital Investigations

    OpenAIRE

    Ana Nieto; Ruben Rios; Javier Lopez

    2018-01-01

    IoT-Forensics is a novel paradigm for the acquisition of electronic evidence whose operation is conditioned by the peculiarities of the Internet of Things (IoT) context. As a branch of computer forensics, this discipline respects the most basic forensic principles of preservation, traceability, documentation, and authorization. The digital witness approach also promotes such principles in the context of the IoT while allowing personal devices to cooperate in digital investigations by voluntar...

  7. Benchmarking Distributed Stream Processing Platforms for IoT Applications

    OpenAIRE

    Shukla, Anshu; Simmhan, Yogesh

    2016-01-01

    Internet of Things (IoT) is a technology paradigm where millions of sensors monitor, and help inform or manage, physical, envi- ronmental and human systems in real-time. The inherent closed-loop re- sponsiveness and decision making of IoT applications makes them ideal candidates for using low latency and scalable stream processing plat- forms. Distributed Stream Processing Systems (DSPS) are becoming es- sential components of any IoT stack, but the efficacy and performance of contemporary DSP...

  8. A Step Towards Checking Security in IoT

    Directory of Open Access Journals (Sweden)

    Chiara Bodei

    2016-08-01

    Full Text Available The Internet of Things (IoT is smartifying our everyday life. Our starting point is IoT-LySa, a calculus for describing IoT systems, and its static analysis, which will be presented at Coordination 2016. We extend the mentioned proposal in order to begin an investigation about security issues, in particular for the static verification of secrecy and some other security properties.

  9. A Step Towards Checking Security in IoT

    OpenAIRE

    Bodei, Chiara; Degano, Pierpaolo; Ferrari, Gian-Luigi; Galletta, Letterio

    2016-01-01

    The Internet of Things (IoT) is smartifying our everyday life. Our starting point is IoT-LySa, a calculus for describing IoT systems, and its static analysis, which will be presented at Coordination 2016. We extend the mentioned proposal in order to begin an investigation about security issues, in particular for the static verification of secrecy and some other security properties.

  10. Sensitive Information Tracking in Commodity IoT

    OpenAIRE

    Celik, Z. Berkay; Babun, Leonardo; Sikder, Amit K.; Aksu, Hidayet; Tan, Gang; McDaniel, Patrick; Uluagac, A. Selcuk

    2018-01-01

    Broadly defined as the Internet of Things (IoT), the growth of commodity devices that integrate physical processes with digital connectivity has had profound effects on society--smart homes, personal monitoring devices, enhanced manufacturing and other IoT apps have changed the way we live, play, and work. Yet extant IoT platforms provide few means of evaluating the use (and potential avenues for misuse) of sensitive information. Thus, consumers and organizations have little information to as...

  11. Xamarin mobile application development for iOS

    CERN Document Server

    Johnson, Paul F

    2013-01-01

    This book is a standard tutorial aimed at teaching you everything you need to know about iOS app development using Xamarin.This book is written for those who are new to iOS app development as well as more experienced developers who just need a quick reference book. It is assumed that you are already comfortable using C#. Those teaching iOS to new students will also find this book invaluable as a form of reference material.

  12. Application development with Parse using iOS SDK

    CERN Document Server

    Birani, Bhanu

    2013-01-01

    A practical guide, featuring step-by-step instructions showing you how to use Parse iOS, and handle your data on cloud.If you are a developer who wants to build your applications instantly using Parse iOS as a back end application development, this book is ideal for you. This book will help you to understand Parse, featuring examples to help you get familiar with the concepts of Parse iOS.

  13. Multiple Independent File Parallel I/O with HDF5

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M. C.

    2016-07-13

    The HDF5 library has supported the I/O requirements of HPC codes at Lawrence Livermore National Labs (LLNL) since the late 90’s. In particular, HDF5 used in the Multiple Independent File (MIF) parallel I/O paradigm has supported LLNL code’s scalable I/O requirements and has recently been gainfully used at scales as large as O(106) parallel tasks.

  14. IoT interoperability : a hub-based approach

    OpenAIRE

    Blackstock, Michael; Lea, Rodger

    2014-01-01

    Interoperability in the Internet of Things is critical for emerging services and applications. In this paper we advocate the use of IoT ‘hubs’ to aggregate things using web protocols, and suggest a staged approach to interoperability. In the context of a UK government funded project involving 8 IoT projects to address cross-domain IoT interoperability, we introduce the HyperCat IoT catalogue specification. We then describe the tools and techniques we developed to adapt an existing data portal...

  15. Strong tidal dissipation in Io and Jupiter from astrometric observations.

    Science.gov (United States)

    Lainey, Valéry; Arlot, Jean-Eudes; Karatekin, Ozgür; Van Hoolst, Tim

    2009-06-18

    Io is the volcanically most active body in the Solar System and has a large surface heat flux. The geological activity is thought to be the result of tides raised by Jupiter, but it is not known whether the current tidal heat production is sufficiently high to generate the observed surface heat flow. Io's tidal heat comes from the orbital energy of the Io-Jupiter system (resulting in orbital acceleration), whereas dissipation of energy in Jupiter causes Io's orbital motion to decelerate. Here we report a determination of the tidal dissipation in Io and Jupiter through its effect on the orbital motions of the Galilean moons. Our results show that the rate of internal energy dissipation in Io (k(2)/Q = 0.015 +/- 0.003, where k(2) is the Love number and Q is the quality factor) is in good agreement with the observed surface heat flow, and suggest that Io is close to thermal equilibrium. Dissipation in Jupiter (k(2)/Q = (1.102 +/- 0.203) x 10(-5)) is close to the upper bound of its average value expected from the long-term evolution of the system, and dissipation in extrasolar planets may be higher than presently assumed. The measured secular accelerations indicate that Io is evolving inwards, towards Jupiter, and that the three innermost Galilean moons (Io, Europa and Ganymede) are evolving out of the exact Laplace resonance.

  16. On Model Design for Simulation of Collective Intelligence

    NARCIS (Netherlands)

    Schut, M.C.

    2010-01-01

    The study of collective intelligence (CI) systems is increasingly gaining interest in a variety of research and application domains. Those domains range from existing research areas such as computer networks and collective robotics to upcoming areas of agent-based and insect-based computing; also

  17. Human‐Centric IoT Networks

    DEFF Research Database (Denmark)

    Mihovska, Albena Dimitrova; Prasad, Ramjee; Pejanovic, Milica

    2017-01-01

    The current Internet of things (IoT) concept is characterized with billions and billions of devices interworking through a myriad of technologies for the delivery of smart personalized services and applications. At the center of these is the human user who drives his/her own interconnected cluster....... It can be expected in the future that the number of such clusters will grow exponentially, leading to an ultradense environment of interconnected devices belonging to the same or different clusters with the human user as the center point for the information being sensed, gathered, and processed...

  18. Neutral hydrogen in elliptical and IO galaxies

    International Nuclear Information System (INIS)

    Bottinelli, L.; Gouguenheim, L.

    1979-01-01

    New HI detections have been obtained using the Nancay radiotelescope for NGC 2974 and 3962. These results and the large scale distribution obtained for NGC 3962 indicate that the HI-rich elliptical galaxies exhibit common properties which are not easily explained by accretion of an intergalactic cloud. The field aroud NGC 1052 has been mapped and there is an HI connection with the neighbouring galaxies. The HI content of several IO galaxies indicates that the galaxies which are members of groups are relatively HI-rich; this could be produced by additional HI coming from companion galaxies [fr

  19. Flujo de control en iOS Flow control in iOS

    Directory of Open Access Journals (Sweden)

    Franklin Hernández Castro

    2012-11-01

    Full Text Available El objetivo de este artículo es explicar los flujos de control que se usan en la programación de las aplicaciones en iOS, con el fin de resumir los aspectos más relevantes que se deben tomar en cuenta para programar una tarea a ser realizada por un dispositivo móvil del tipo iPhone o iPad. Debido a que el ambiente iOS es estrictamente orientado a objetos (OOP, los flujos de control no son obvios; además, los estándares de la firma Apple® definen patrones de diseño en el sistema que son altamente recomendados en este tipo de diseño. En este artículo se introducen algunos de ellos.This paper explain the control flows that are used by programming applications in iOS, trying to summarize the most important aspects to be considered by programming mobile devices like iPhone and iPad. Because iOS environment, is strictly a object-oriented one(OOP, control flows are not obvious, besides Apple® use design patterns highly recommended in this type of programming. Here we introduces some of them.

  20. An ARM-Compliant Architecture for User Privacy in Smart Cities: SMARTIE—Quality by Design in the IoT

    OpenAIRE

    Beltran, V.; Skarmeta, A. F.; Ruiz, P. M.

    2017-01-01

    Much has been said about the benefits that the Internet of Things (IoT) will bring to citizens’ life. Countless smart objects will be soon offering autonomous behavior in smart environments by sensing the physical world around us, collecting information about us, and taking proactive actions (many times without our consent) with the ultimate goal of improving our wellness. Without a strong guarantee on user privacy, the IoT may sound scary for many citizens. Indeed, the IoT-Architecture Refer...

  1. Data-Filtering System to Avoid Total Data Distortion in IoT Networking

    Directory of Open Access Journals (Sweden)

    Dae-Young Kim

    2017-01-01

    Full Text Available In the Internet of Things (IoT networking, numerous objects are connected to a network. They sense events and deliver the sensed information to the cloud. A lot of data is generated in the IoT network, and servers in the cloud gather the sensed data from the objects. Then, the servers analyze the collected data and provide proper intelligent services to users through the results of the analysis. When the server analyzes the collected data, if there exists malfunctioning data, distortional results of the analysis will be generated. The distortional results lead to misdirection of the intelligent services, leading to poor user experience. In the analysis for intelligent services in IoT, malfunctioning data should be avoided because integrity of the collected data is crucial. Therefore, this paper proposes a data-filtering system for the server in the cloud. The proposed data-filtering system is placed in front of the server and firstly receives the sensed data from the objects. It employs the naïve Bayesian classifier and, by learning, classifies the malfunctioning data from among the collected data. Data with integrity is delivered to the server for analysis. Because the proposed system filters the malfunctioning data, the server can obtain accurate analysis results and reduce computing load. The performance of the proposed data-filtering system is evaluated through computer simulation. Through the simulation results, the efficiency of the proposed data-filtering system is shown.

  2. Measuring Collective Efficacy: A Multilevel Measurement Model for Nested Data

    Science.gov (United States)

    Matsueda, Ross L.; Drakulich, Kevin M.

    2016-01-01

    This article specifies a multilevel measurement model for survey response when data are nested. The model includes a test-retest model of reliability, a confirmatory factor model of inter-item reliability with item-specific bias effects, an individual-level model of the biasing effects due to respondent characteristics, and a neighborhood-level…

  3. On the Users’ Acceptance of IoT Systems: A Theoretical Approach

    Directory of Open Access Journals (Sweden)

    Rino Falcone

    2018-03-01

    Full Text Available In the next future the IoT system will introduce extraordinary changes in our daily life. We will communicate with our domestic appliances to inform them about our preferences and goals and they will develop initiative and autonomy to be put at our service. But are we sure that we can afford all the automation they could offer? Are we able to manage it? Is it compatible with our cognitive attitudes and our actual and real goals? In this paper, we face the question of the IoT from the point of view of the user. We start analyzing which reasons undermine the acceptance of IoT systems and then we propose a possible solution. The first contribution of this work is the level characterization of the autonomy a user can grant to an IoT device. The second contribution is a theoretical model to deal with users and to stimulate users’ acceptance. By the means of simulation, we show how the model works and we prove that it leads the system to an optimal solution.

  4. Mathematical modelling approach to collective decision-making

    OpenAIRE

    Zabzina, Natalia

    2017-01-01

    In everyday situations individuals make decisions. For example, a tourist usually chooses a crowded or recommended restaurant to have dinner. Perhaps it is an individual decision, but the observed pattern of decision-making is a collective phenomenon. Collective behaviour emerges from the local interactions that give rise to a complex pattern at the group level. In our example, the recommendations or simple copying the choices of others make a crowded restaurant even more crowded. The rules o...

  5. Management of solar energy in microgrids using IoT-based dependable control

    OpenAIRE

    Phung, Manh Duong; De La Villefromoy, Michel; Ha, Quang

    2017-01-01

    Solar energy generation requires efficient monitoring and management in moving towards technologies for net-zero energy buildings. This paper presents a dependable control system based on the Internet of Things (IoT) to control and manage the energy flow of renewable energy collected by solar panels within a microgrid. Data for optimal control include not only measurements from local sensors but also meteorological information retrieved in real-time from online sources. For system fault toler...

  6. Centralized Duplicate Removal Video Storage System with Privacy Preservation in IoT.

    Science.gov (United States)

    Yan, Hongyang; Li, Xuan; Wang, Yu; Jia, Chunfu

    2018-06-04

    In recent years, the Internet of Things (IoT) has found wide application and attracted much attention. Since most of the end-terminals in IoT have limited capabilities for storage and computing, it has become a trend to outsource the data from local to cloud computing. To further reduce the communication bandwidth and storage space, data deduplication has been widely adopted to eliminate the redundant data. However, since data collected in IoT are sensitive and closely related to users' personal information, the privacy protection of users' information becomes a challenge. As the channels, like the wireless channels between the terminals and the cloud servers in IoT, are public and the cloud servers are not fully trusted, data have to be encrypted before being uploaded to the cloud. However, encryption makes the performance of deduplication by the cloud server difficult because the ciphertext will be different even if the underlying plaintext is identical. In this paper, we build a centralized privacy-preserving duplicate removal storage system, which supports both file-level and block-level deduplication. In order to avoid the leakage of statistical information of data, Intel Software Guard Extensions (SGX) technology is utilized to protect the deduplication process on the cloud server. The results of the experimental analysis demonstrate that the new scheme can significantly improve the deduplication efficiency and enhance the security. It is envisioned that the duplicated removal system with privacy preservation will be of great use in the centralized storage environment of IoT.

  7. Reverse Engineering and Security Evaluation of Commercial Tags for RFID-Based IoT Applications.

    Science.gov (United States)

    Fernández-Caramés, Tiago M; Fraga-Lamas, Paula; Suárez-Albela, Manuel; Castedo, Luis

    2016-12-24

    The Internet of Things (IoT) is a distributed system of physical objects that requires the seamless integration of hardware (e.g., sensors, actuators, electronics) and network communications in order to collect and exchange data. IoT smart objects need to be somehow identified to determine the origin of the data and to automatically detect the elements around us. One of the best positioned technologies to perform identification is RFID (Radio Frequency Identification), which in the last years has gained a lot of popularity in applications like access control, payment cards or logistics. Despite its popularity, RFID security has not been properly handled in numerous applications. To foster security in such applications, this article includes three main contributions. First, in order to establish the basics, a detailed review of the most common flaws found in RFID-based IoT systems is provided, including the latest attacks described in the literature. Second, a novel methodology that eases the detection and mitigation of such flaws is presented. Third, the latest RFID security tools are analyzed and the methodology proposed is applied through one of them (Proxmark 3) to validate it. Thus, the methodology is tested in different scenarios where tags are commonly used for identification. In such systems it was possible to clone transponders, extract information, and even emulate both tags and readers. Therefore, it is shown that the methodology proposed is useful for auditing security and reverse engineering RFID communications in IoT applications. It must be noted that, although this paper is aimed at fostering RFID communications security in IoT applications, the methodology can be applied to any RFID communications protocol.

  8. Reverse Engineering and Security Evaluation of Commercial Tags for RFID-Based IoT Applications

    Directory of Open Access Journals (Sweden)

    Tiago M. Fernández-Caramés

    2016-12-01

    Full Text Available The Internet of Things (IoT is a distributed system of physical objects that requires the seamless integration of hardware (e.g., sensors, actuators, electronics and network communications in order to collect and exchange data. IoT smart objects need to be somehow identified to determine the origin of the data and to automatically detect the elements around us. One of the best positioned technologies to perform identification is RFID (Radio Frequency Identification, which in the last years has gained a lot of popularity in applications like access control, payment cards or logistics. Despite its popularity, RFID security has not been properly handled in numerous applications. To foster security in such applications, this article includes three main contributions. First, in order to establish the basics, a detailed review of the most common flaws found in RFID-based IoT systems is provided, including the latest attacks described in the literature. Second, a novel methodology that eases the detection and mitigation of such flaws is presented. Third, the latest RFID security tools are analyzed and the methodology proposed is applied through one of them (Proxmark 3 to validate it. Thus, the methodology is tested in different scenarios where tags are commonly used for identification. In such systems it was possible to clone transponders, extract information, and even emulate both tags and readers. Therefore, it is shown that the methodology proposed is useful for auditing security and reverse engineering RFID communications in IoT applications. It must be noted that, although this paper is aimed at fostering RFID communications security in IoT applications, the methodology can be applied to any RFID communications protocol.

  9. Centralized Duplicate Removal Video Storage System with Privacy Preservation in IoT

    Directory of Open Access Journals (Sweden)

    Hongyang Yan

    2018-06-01

    Full Text Available In recent years, the Internet of Things (IoT has found wide application and attracted much attention. Since most of the end-terminals in IoT have limited capabilities for storage and computing, it has become a trend to outsource the data from local to cloud computing. To further reduce the communication bandwidth and storage space, data deduplication has been widely adopted to eliminate the redundant data. However, since data collected in IoT are sensitive and closely related to users’ personal information, the privacy protection of users’ information becomes a challenge. As the channels, like the wireless channels between the terminals and the cloud servers in IoT, are public and the cloud servers are not fully trusted, data have to be encrypted before being uploaded to the cloud. However, encryption makes the performance of deduplication by the cloud server difficult because the ciphertext will be different even if the underlying plaintext is identical. In this paper, we build a centralized privacy-preserving duplicate removal storage system, which supports both file-level and block-level deduplication. In order to avoid the leakage of statistical information of data, Intel Software Guard Extensions (SGX technology is utilized to protect the deduplication process on the cloud server. The results of the experimental analysis demonstrate that the new scheme can significantly improve the deduplication efficiency and enhance the security. It is envisioned that the duplicated removal system with privacy preservation will be of great use in the centralized storage environment of IoT.

  10. Reverse Engineering and Security Evaluation of Commercial Tags for RFID-Based IoT Applications

    Science.gov (United States)

    Fernández-Caramés, Tiago M.; Fraga-Lamas, Paula; Suárez-Albela, Manuel; Castedo, Luis

    2016-01-01

    The Internet of Things (IoT) is a distributed system of physical objects that requires the seamless integration of hardware (e.g., sensors, actuators, electronics) and network communications in order to collect and exchange data. IoT smart objects need to be somehow identified to determine the origin of the data and to automatically detect the elements around us. One of the best positioned technologies to perform identification is RFID (Radio Frequency Identification), which in the last years has gained a lot of popularity in applications like access control, payment cards or logistics. Despite its popularity, RFID security has not been properly handled in numerous applications. To foster security in such applications, this article includes three main contributions. First, in order to establish the basics, a detailed review of the most common flaws found in RFID-based IoT systems is provided, including the latest attacks described in the literature. Second, a novel methodology that eases the detection and mitigation of such flaws is presented. Third, the latest RFID security tools are analyzed and the methodology proposed is applied through one of them (Proxmark 3) to validate it. Thus, the methodology is tested in different scenarios where tags are commonly used for identification. In such systems it was possible to clone transponders, extract information, and even emulate both tags and readers. Therefore, it is shown that the methodology proposed is useful for auditing security and reverse engineering RFID communications in IoT applications. It must be noted that, although this paper is aimed at fostering RFID communications security in IoT applications, the methodology can be applied to any RFID communications protocol. PMID:28029119

  11. Development of IoT-based Urban Sinkhole and Road Collapse Monitoring System

    Science.gov (United States)

    Jung, B.; Bang, E.; Lee, H. J.; Jeong, S. W.; Ryu, D.; Kim, S. W.; Kim, B. K.; Yum, B. W.; Lee, I. H.

    2015-12-01

    The consortium of Korean government-funded research institutes is developing IoT- (Internet of things) based underground safety monitoring and alerting system to manage risks arisen from land subsidence and road collapses in metropolitan areas in South Korea. The system consists of four major functional units: subsurface monitoring sensors sending data directly through the internet, centralized servers capable of collecting and processing big data, computational modules providing physical and statistical models for predicting high-risk areas, and geologic information service platforms visualizing underground safety maps for the public. The target urban area will be regionally covered by multi-sensors monitoring soil and groundwater conditions, and by high resolution satellite InSAR images filtering vertical land movements in a centimeter scale. Integrity of buried water supply and sewer lines are also monitored for the possibility of underground cavity formation. Once high-risk area is predicted, more tangible surveying methods such as ground penetrating radar (GPR) and resistivity survey can be applied for locating the cavities. Additionally, laboratory and field experiments are performed to understand overall road collapsing mechanism from the initial cavity creation to its progressive development depending on soil types, degree of compaction, and groundwater condition. Acquired results will update existing fully-coupled hydromechanical models for more accurate prediction of the collapsing-vulnerable area. Preliminary laboratory experiments show that the upward propagation of subsurface cavity is closely related to the soil properties, such as sand-clay ratios and moisture contents, and groundwater dynamics.

  12. A survey of IoT cloud platforms

    Directory of Open Access Journals (Sweden)

    Partha Pratim Ray

    2016-12-01

    Full Text Available Internet of Things (IoT envisages overall merging of several “things” while utilizing internet as the backbone of the communication system to establish a smart interaction between people and surrounding objects. Cloud, being the crucial component of IoT, provides valuable application specific services in many application domains. A number of IoT cloud providers are currently emerging into the market to leverage suitable and specific IoT based services. In spite of huge possible involvement of these IoT clouds, no standard cum comparative analytical study has been found across the literature databases. This article surveys popular IoT cloud platforms in light of solving several service domains such as application development, device management, system management, heterogeneity management, data management, tools for analysis, deployment, monitoring, visualization, and research. A comparison is presented for overall dissemination of IoT clouds according to their applicability. Further, few challenges are also described that the researchers should take on in near future. Ultimately, the goal of this article is to provide detailed knowledge about the existing IoT cloud service providers and their pros and cons in concrete form.

  13. Analysis of DDoS-capable IoT malwares

    DEFF Research Database (Denmark)

    De Donno, Michele; Dragoni, Nicola; Giaretta, Alberto

    2017-01-01

    to the top Distributed Denial of Service (DDoS) attacks, making them more powerful and easier to achieve than ever. This paper aims at provide an up-to-date picture of DDoS attacks in the specific subject of the IoT, studying how these attacks work and considering the most common families in the IoT context...

  14. Sabatilles : Adaptació a iOS

    OpenAIRE

    Cots Sanfeliu, Jordi

    2015-01-01

    Adaptació del conte en format paper Sabatilles a aplicació en iOS per a dispositius mòbils d'Apple. Adaptación del cuento en formato papel Sabatilles a aplicación en iOS para dispositivos móviles de Apple. Bachelor thesis for the Computer Science program.

  15. Remote I/O : fast access to distant storage.

    Energy Technology Data Exchange (ETDEWEB)

    Foster, I.; Kohr, D., Jr.; Krishnaiyer, R.; Mogill, J.

    1997-12-17

    As high-speed networks make it easier to use distributed resources, it becomes increasingly common that applications and their data are not colocated. Users have traditionally addressed this problem by manually staging data to and from remote computers. We argue instead for a new remote I/O paradigm in which programs use familiar parallel I/O interfaces to access remote file systems. In addition to simplifying remote execution, remote I/O can improve performance relative to staging by overlapping computation and data transfer or by reducing communication requirements. However, remote I/O also introduces new technical challenges in the areas of portability, performance, and integration with distributed computing systems. We propose techniques designed to address these challenges and describe a remote I/O library called RIO that we have developed to evaluate the effectiveness of these techniques. RIO addresses issues of portability by adopting the quasi-standard MPI-IO interface and by defining a RIO device and RIO server within the ADIO abstract I/O device architecture. It addresses performance issues by providing traditional I/O optimizations such as asynchronous operations and through implementation techniques such as buffering and message forwarding to off load communication overheads. RIO uses the Nexus communication library to obtain access to configuration and security mechanisms provided by the Globus wide area computing tool kit. Microbenchmarks and application experiments demonstrate that our techniques achieve acceptable performance in most situations and can improve turnaround time relative to staging.

  16. Interaction between users and IoT clusters

    DEFF Research Database (Denmark)

    Shinde, Gitanjali; Olesen, Henning

    2015-01-01

    The Internet of Things (IoT) is paving the way for a vast number of objects in our environment to react, respond and work autonomously as and when required and as per their capability, role and position. They will be able to announce and offer their services to the users, and together this will e......The Internet of Things (IoT) is paving the way for a vast number of objects in our environment to react, respond and work autonomously as and when required and as per their capability, role and position. They will be able to announce and offer their services to the users, and together...... this will enable the vision of an "Internet of People, Things and Services" (IoPTS). Application areas for IoT include smart cities, smart homes, environmental control, security & emergency, retail, logistics, industrial control, smart farming, and e-Health. All the IoT objects are organized in clusters, which...... framework that is needed to realize IoPTS. In particular, we focus on the interaction between the users and the IoT clusters, where the user profile (role, privileges, and preferences) should be matched with the services offered by the IoT cluster, including the initial set-up, access control...

  17. On Energy Efficiency of Prioritized IoT Systems

    KAUST Repository

    Alabbasi, Abdulrahman; Shihada, Basem; Cavdar, Cicek

    2018-01-01

    The inevitable deployment of 5G and the Internet of Things (IoT) sheds the light on the importance of the energy efficiency (EE) performance of Device-to- Device (DD) communication systems. In this work, we address a potential IoT application, where

  18. Performance analysis of routing protocols for IoT

    Science.gov (United States)

    Manda, Sridhar; Nalini, N.

    2018-04-01

    Internet of Things (IoT) is an arrangement of advancements that are between disciplinary. It is utilized to have compelling combination of both physical and computerized things. With IoT physical things can have personal virtual identities and participate in distributed computing. Realization of IoT needs the usage of sensors based on the sector for which IoT is integrated. For instance, in healthcare domain, IoT needs to have integration with wearable sensors used by patients. As sensor devices produce huge amount of data, often called big data, there should be efficient routing protocols in place. To the extent remote systems is worried there are some current protocols, for example, OLSR, DSR and AODV. It additionally tosses light into Trust based routing protocol for low-power and lossy systems (TRPL) for IoT. These are broadly utilized remote directing protocols. As IoT is developing round the corner, it is basic to investigate routing protocols that and evaluate their execution regarding throughput, end to end delay, and directing overhead. The execution experiences can help in settling on very much educated choices while incorporating remote systems with IoT. In this paper, we analyzed different routing protocols and their performance is compared. It is found that AODV showed better performance than other routing protocols aforementioned.

  19. Documentation of the Brookhaven energy I-O and I-O/BESOM linkage

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, J T

    1978-08-01

    This paper documents the BNL input-output model and its linkage with the BNL linear activity analysis model, BESOM. Linking of the I-O and the linear programming (LP) models permits assessment of economy-wide impacts of future technological changes in both the energy sector and elsewhere in the economy as well as impacts arising from a wide range of government energy policies. This paper describes the development and structure of the current version of the BNL I-O model presently in use and the structural modifications of a capital-investment routine, and a balance-of-payments routine that have been incorporated. Also, the structure and solution techniques for the linked I-O/LP model are described.

  20. Future of IoT Networks: A Survey

    Directory of Open Access Journals (Sweden)

    Suk Kyu Lee

    2017-10-01

    Full Text Available The introduction of mobile devices has changed our daily lives. They enable users to obtain information even in a nomadic environment and provide information without limitations. A decade after the introduction of this technology, we are now facing the next innovation that will change our daily lives. With the introduction of the Internet of Things (IoT, our communication ability will not be restricted to only mobile devices. Rather, it will expand to all things with which we coexist. Many studies have discussed IoT-related services and platforms. However, there are only limited discussions about the IoT network. In this paper, we will thoroughly analyze the technical details about the IoT network. Based on our survey of papers, we will provide insight about the future IoT network and the crucial components that will enable it.

  1. Desain dan Aplikasi Internet of Thing (IoT untuk Smart Grid Power Sistem

    Directory of Open Access Journals (Sweden)

    Nur Asyik Hidayatullah

    2017-04-01

    Full Text Available Jaringan listrik cerdas atau yang lebih dikenal dengan istilah Smart Grid merupakan salah satu bentuk transformasi dan reformasi teknologi di industri ketenagalistrikan. Smart Grid adalah jaringan energi listrik modern yang secara cerdas dapat mengintegrasikan jaringan listrik dengan perangkat komunikasi yang mendukung pembangkit dan jaringan transmisi distribusi listrik menjadi lebih atraktif, komunikatif dan berkualitas. Smart Grid juga mampu untuk mencegah dan mengisolasi gangguan dengan cepat serta menyajikan informasi data kelistrikan secara real time. Sedangkan Internet of Thing (IoT adalah sebuah metode yang bertujuan untuk memaksimalkan manfaat dari konektivitas internet untuk melakukan transfer dan pemrosesan data-data atau informasi melalui sebuah jaringan internet secara nirkabel, virtual dan otonom. IoT secara teknis dapat mendorong dalam mengembangkan jaringan smart grid dengan mengintegrasikan insfrastruktur utama power sistem mulai dari sisi pembangkit sampai dengan konsumen akhir melalui wireless sensor network secara otomatis. Dengan pemanfaatan IoT diharapkan dapat meningkatkan keandalan sistem informasi dari jaringan listrik serta meningkatkan efisiensi terhadap insfrastruktur listrik yang sudah tersedia. Artikel ini akan menyajikan konsep teknologi smart grid, internet of thing dan membahas model desain dan aplikasi IoT di jaringan smart grid.

  2. SACA: Self-Aware Communication Architecture for IoT Using Mobile Fog Servers

    Directory of Open Access Journals (Sweden)

    Vishal Sharma

    2017-01-01

    Full Text Available Internet of things (IoT aims at bringing together large business enterprise solutions and architectures for handling the huge amount of data generated by millions of devices. For this aim, IoT is necessary to connect various devices and provide a common platform for storage and retrieval of information without fail. However, the success of IoT depends on the novelty of network and its capability in sustaining the increasing demand by users. In this paper, a self-aware communication architecture (SACA is proposed for sustainable networking over IoT devices. The proposed approach employs the concept of mobile fog servers which make relay using the train and unmanned aerial vehicle (UAV networks. The problem is presented based on Wald’s maximum model, which is resolved by the application of a distributed node management (DNM system and state dependency formulations. The proposed approach is capable of providing prolonged connectivity by increasing the network reliability and sustainability even in the case of failures. The effectiveness of the proposed approach is demonstrated through numerical and network simulations in terms of significant gains attained with lesser delay and fewer packet losses. The proposed approach is also evaluated against Sybil, wormhole, and DDoS attacks for analyzing its sustainability and probability of connectivity in unfavorable conditions.

  3. Real-time volume rendering of digital medical images on an iOS device

    Science.gov (United States)

    Noon, Christian; Holub, Joseph; Winer, Eliot

    2013-03-01

    Performing high quality 3D visualizations on mobile devices, while tantalizingly close in many areas, is still a quite difficult task. This is especially true for 3D volume rendering of digital medical images. Allowing this would empower medical personnel a powerful tool to diagnose and treat patients and train the next generation of physicians. This research focuses on performing real time volume rendering of digital medical images on iOS devices using custom developed GPU shaders for orthogonal texture slicing. An interactive volume renderer was designed and developed with several new features including dynamic modification of render resolutions, an incremental render loop, a shader-based clipping algorithm to support OpenGL ES 2.0, and an internal backface culling algorithm for properly sorting rendered geometry with alpha blending. The application was developed using several application programming interfaces (APIs) such as OpenSceneGraph (OSG) as the primary graphics renderer coupled with iOS Cocoa Touch for user interaction, and DCMTK for DICOM I/O. The developed application rendered volume datasets over 450 slices up to 50-60 frames per second, depending on the specific model of the iOS device. All rendering is done locally on the device so no Internet connection is required.

  4. Hybrid Modelling of Individual Movement and Collective Behaviour

    KAUST Repository

    Franz, Benjamin; Erban, Radek

    2013-01-01

    Mathematical models of dispersal in biological systems are often written in terms of partial differential equations (PDEs) which describe the time evolution of population-level variables (concentrations, densities). A more detailed modelling

  5. Collective (Team) Learning Process Models: A Conceptual Review

    Science.gov (United States)

    Knapp, Randall

    2010-01-01

    Teams have become a key resource for learning and accomplishing work in organizations. The development of collective learning in specific contexts is not well understood, yet has become critical to organizational success. The purpose of this conceptual review is to inform human resource development (HRD) practice about specific team behaviors and…

  6. Ergonomics-inspired Reshaping and Exploration of Collections of Models

    KAUST Repository

    Zheng, Youyi; Liu, Han; Dorsey, Julie; Mitra, Niloy J.

    2015-01-01

    This paper examines the following question: given a collection of man-made shapes, e.g., chairs, can we effectively explore and rank the shapes with respect to a given human body – in terms of how well a candidate shape fits the specified human body

  7. Hybrid Modelling of Individual Movement and Collective Behaviour

    KAUST Repository

    Franz, Benjamin

    2013-01-01

    Mathematical models of dispersal in biological systems are often written in terms of partial differential equations (PDEs) which describe the time evolution of population-level variables (concentrations, densities). A more detailed modelling approach is given by individual-based (agent-based) models which describe the behaviour of each organism. In recent years, an intermediate modelling methodology - hybrid modelling - has been applied to a number of biological systems. These hybrid models couple an individual-based description of cells/animals with a PDE-model of their environment. In this chapter, we overview hybrid models in the literature with the focus on the mathematical challenges of this modelling approach. The detailed analysis is presented using the example of chemotaxis, where cells move according to extracellular chemicals that can be altered by the cells themselves. In this case, individual-based models of cells are coupled with PDEs for extracellular chemical signals. Travelling waves in these hybrid models are investigated. In particular, we show that in contrary to the PDEs, hybrid chemotaxis models only develop a transient travelling wave. © 2013 Springer-Verlag Berlin Heidelberg.

  8. Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    OpenAIRE

    Vermesan, Ovidiu; Bröring, Arne; Tragos, Elias; Serrano, Martin; Bacciu, Davide; Chessa, Stefano; Gallicchio, Claudio; Micheli, Alessio; Dragone, Mauro; Saffiotti, Alessandro; Simoens, Pieter; Cavallo, Filippo; Bahr, Roy

    2017-01-01

    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different a...

  9. Real-time Medical Emergency Response System: Exploiting IoT and Big Data for Public Health.

    Science.gov (United States)

    Rathore, M Mazhar; Ahmad, Awais; Paul, Anand; Wan, Jiafu; Zhang, Daqiang

    2016-12-01

    Healthy people are important for any nation's development. Use of the Internet of Things (IoT)-based body area networks (BANs) is increasing for continuous monitoring and medical healthcare in order to perform real-time actions in case of emergencies. However, in the case of monitoring the health of all citizens or people in a country, the millions of sensors attached to human bodies generate massive volume of heterogeneous data, called "Big Data." Processing Big Data and performing real-time actions in critical situations is a challenging task. Therefore, in order to address such issues, we propose a Real-time Medical Emergency Response System that involves IoT-based medical sensors deployed on the human body. Moreover, the proposed system consists of the data analysis building, called "Intelligent Building," depicted by the proposed layered architecture and implementation model, and it is responsible for analysis and decision-making. The data collected from millions of body-attached sensors is forwarded to Intelligent Building for processing and for performing necessary actions using various units such as collection, Hadoop Processing (HPU), and analysis and decision. The feasibility and efficiency of the proposed system are evaluated by implementing the system on Hadoop using an UBUNTU 14.04 LTS coreTMi5 machine. Various medical sensory datasets and real-time network traffic are considered for evaluating the efficiency of the system. The results show that the proposed system has the capability of efficiently processing WBAN sensory data from millions of users in order to perform real-time responses in case of emergencies.

  10. Towards multi-layer interoperability of heterogeneous IoT platforms : the INTER-IoT approach

    NARCIS (Netherlands)

    Fortino, Giancarlo; Savaglio, Claudio; Palau, Carlos E.; de Puga, Jara Suarez; Ghanza, Maria; Paprzycki, Marcin; Montesinos, Miguel; Liotta, Antonio; Llop, Miguel; Gravina, R.; Palau, C.E.; Manso, M.; Liotta, A.; Fortino, G.

    2018-01-01

    Open interoperability delivers on the promise of enabling vendors and developers to interact and interoperate, without interfering with anyone’s ability to compete by delivering a superior product and experience. In the absence of global IoT standards, the INTER-IoT voluntary approach will support

  11. Internet of things and bariatric surgery follow-up: Comparative study of standard and IoT follow-up.

    Science.gov (United States)

    Vilallonga, Ramon; Lecube, Albert; Fort, José Manuel; Boleko, Maria Angeles; Hidalgo, Marta; Armengol, Manel

    2013-09-01

    Follow-up of obese patient is difficult. There is no literature related to patient follow-up that incorporates the concept of Internet of Things (IoT), use of WiFi, Internet, or portable devices for this purpose. This prospective observational study commenced in June 2011. Patients were prospectively offered to participate in the IoT study group, in which they received a WiFi scale (Withing®, Paris) that provides instant WiFi data to the patient and surgeon. Other patients were admitted to the standard follow-up group at the outpatient clinic. A total of 33 patients were included in our study (ten in the IoT group). Twelve patients did not have WiFi at home, ten lacked of computer knowledge, and seven preferred standard for follow-up. All patients underwent different surgical procedures. There were no complications. Excess weight loss (EWL) was similar in both groups. More than 90% of patients were satisfied. In the IoT group, patients considered it valuable in saving time, and considered seeing their evolution graphics extremely motivating. IoT technology can monitor medical parameters remotely and collect data. A WiFi scale can facilitate preoperative and follow-up. Standard follow-up in a classical outpatient clinic setting with the surgeon was preferred globally.

  12. Recent European Challenges and the Danish Collective Agreement Model

    DEFF Research Database (Denmark)

    Larsen, Trine Pernille; Navrbjerg, Steen Erik

    are related to the new forms of cross-border collaboration and negotiations taking place within multi-national corporations (MNC's). This research paper examines a series of challenges facing the collective bargaining systems in Denmark, Estonia, Northern Ireland and Sweden. These countries represent four...... distinct labour market systems with different traditions of social dialogue and allow comparison of how different EU member states handled the recent challenges caused by the increased European integration....

  13. Galileo SSI Observations of Volcanic Activity at Tvashtar Catena, Io

    Science.gov (United States)

    Milazzo, M. P.; Keszthely, L. P.; Radebaugh, J.; Davies, A. G.; Turtle, E. P.; Geissler, P.; Klaasen, K. P.; McEwen, A. S.

    2005-01-01

    Introduction: We report on the analysis of the Galileo SSI's observations of the volcanic activity at Tvashtar Catena, Io as discussed by Milazzo et al. Galileo's Solid State Imager (SSI) observed Tvashtar Catena (63 deg N, 120 deg W) four times between November 1999 and October 2001, providing a unique look at the distinctive high latitude volcanism on Io. The November 1999 observation spatially resolved, for the first time, an active extraterrestrial fissure eruption. The brightness temperature of the lavas at the November 1999 fissure eruption was 1300 K. The second observation (orbit I27, February 2000) showed a large (approx. 500 sq km) region with many, small spots of hot, active lava. The third observation was taken in conjunction with a Cassini observation in December 2000 and showed a Pele-like plume deposition ring, while the Cassini images revealed a 400 km high Pele-type plume above the Catena. The final Galileo SSI observation of Tvashtar was acquired in October 2001, and all obvious (to SSI) activity had ceased, although data from Galileo's Near Infrared Mapping Spectrometer (NIMS) indicated that there was still significant thermal emission from the Tvashtar region. We have concentrated on analyzing the style of eruption during orbit I27 (February 2000). Comparison with a lava flow cooling model indicates that the behavior of the Tvashtar eruption during I27 does not match that of "simple" advancing lava flows. Instead, it may be an active lava lake or a complex set of lava flows with episodic, overlapping (in time and space) eruptions.

  14. Automatic extraction of process categories from process model collections

    NARCIS (Netherlands)

    Malinova, M.; Dijkman, R.M.; Mendling, J.; Lohmann, N.; Song, M.; Wohed, P.

    2014-01-01

    Many organizations build up their business process management activities in an incremental way. As a result, there is no overarching structure defined at the beginning. However, as business process modeling initiatives often yield hundreds to thousands of process models, there is a growing need for

  15. Hash-chain-based authentication for IoT

    Directory of Open Access Journals (Sweden)

    Antonio PINTO

    2016-12-01

    Full Text Available The number of everyday interconnected devices continues to increase and constitute the Internet of Things (IoT. Things are small computers equipped with sensors and wireless communications capabilities that are driven by energy constraints, since they use batteries and may be required to operate over long periods of time. The majority of these devices perform data collection. The collected data is stored on-line using web-services that, sometimes, operate without any special considerations regarding security and privacy. The current work proposes a modified hash-chain authentication mechanism that, with the help of a smartphone, can authenticate each interaction of the devices with a REST web-service using One Time Passwords (OTP while using open wireless networks. Moreover, the proposed authentication mechanism adheres to the stateless, HTTP-like behavior expected of REST web-services, even allowing the caching of server authentication replies within a predefined time window. No other known web-service authentication mechanism operates in such manner.

  16. An IoT-cloud Based Wearable ECG Monitoring System for Smart Healthcare.

    Science.gov (United States)

    Yang, Zhe; Zhou, Qihao; Lei, Lei; Zheng, Kan; Xiang, Wei

    2016-12-01

    Public healthcare has been paid an increasing attention given the exponential growth human population and medical expenses. It is well known that an effective health monitoring system can detect abnormalities of health conditions in time and make diagnoses according to the gleaned data. As a vital approach to diagnose heart diseases, ECG monitoring is widely studied and applied. However, nearly all existing portable ECG monitoring systems cannot work without a mobile application, which is responsible for data collection and display. In this paper, we propose a new method for ECG monitoring based on Internet-of-Things (IoT) techniques. ECG data are gathered using a wearable monitoring node and are transmitted directly to the IoT cloud using Wi-Fi. Both the HTTP and MQTT protocols are employed in the IoT cloud in order to provide visual and timely ECG data to users. Nearly all smart terminals with a web browser can acquire ECG data conveniently, which has greatly alleviated the cross-platform issue. Experiments are carried out on healthy volunteers in order to verify the reliability of the entire system. Experimental results reveal that the proposed system is reliable in collecting and displaying real-time ECG data, which can aid in the primary diagnosis of certain heart diseases.

  17. Performance Analysis of Dual-Polarized Massive MIMO System with Human-Care IoT Devices for Cellular Networks

    Directory of Open Access Journals (Sweden)

    Jun-Ki Hong

    2018-01-01

    Full Text Available The performance analysis of the dual-polarized massive multiple-input multiple-output (MIMO system with Internet of things (IoT devices is studied when outdoor human-care IoT devices are connected to a cellular network via a dual-polarized massive MIMO system. The research background of the performance analysis of dual-polarized massive MIMO system with IoT devices is that recently the data usage of outdoor human-care IoT devices has increased. Therefore, the outdoor human-care IoT devices are necessary to connect with 5G cellular networks which can expect 1000 times higher performance compared with 4G cellular networks. Moreover, in order to guarantee the safety of the patient for emergency cases, a human-care Iot device must be connected to cellular networks which offer more stable communication for outdoors compared to short-range communication technologies such as Wi-Fi, Zigbee, and Bluetooth. To analyze the performance of the dual-polarized massive MIMO system for human-care IoT devices, a dual-polarized MIMO spatial channel model (SCM is proposed which considers depolarization effect between the dual-polarized transmit-antennas and the receive-antennas. The simulation results show that the performance of the dual-polarized massive MIMO system is improved about 16% to 92% for 20 to 150 IoT devices compared to conventional single-polarized massive MIMO system for identical size of the transmit array.

  18. Modeling and analysis of collective management of water resources

    Directory of Open Access Journals (Sweden)

    A. Tilmant

    2007-01-01

    Full Text Available Integrated Water Resources Management (IWRM recommends, among other things, that the management of water resources systems be carried out at the lowest appropriate level in order to increase the transparency, acceptability and efficiency of the decision-making process. Empowering water users and stakeholders transforms the decision-making process by enlarging the number of point of views that must be considered as well as the set of rules through which decisions are taken. This paper investigates the impact of different group decision-making approaches on the operating policies of a water resource. To achieve this, the water resource allocation problem is formulated as an optimization problem which seeks to maximize the aggregated satisfaction of various water users corresponding to different approaches to collective choice, namely the utilitarian and the egalitarian ones. The optimal operating policies are then used in simulation and compared. The concepts are illustrated with a multipurpose reservoir in Chile. The analysis of simulation results reveals that if this reservoir were to be managed by its water users, both approaches to collective choice would yield significantly different operating policies. The paper concludes that the transfer of management to water users must be carefully implemented if a reasonable trade-off between equity and efficiency is to be achieved.

  19. Endogenous Crisis Waves: Stochastic Model with Synchronized Collective Behavior

    Science.gov (United States)

    Gualdi, Stanislao; Bouchaud, Jean-Philippe; Cencetti, Giulia; Tarzia, Marco; Zamponi, Francesco

    2015-02-01

    We propose a simple framework to understand commonly observed crisis waves in macroeconomic agent-based models, which is also relevant to a variety of other physical or biological situations where synchronization occurs. We compute exactly the phase diagram of the model and the location of the synchronization transition in parameter space. Many modifications and extensions can be studied, confirming that the synchronization transition is extremely robust against various sources of noise or imperfections.

  20. IoT Platforms: Analysis for Building Projects

    Directory of Open Access Journals (Sweden)

    Rusu Liviu DUMITRU

    2017-01-01

    Full Text Available This paper presents a general survey of IoT platforms in terms of features for IoT project de-velopers. I will briefly summarize the state of knowledge in terms of technology regarding “In-ternet of Things” first steps in developing this technology, history, trends, sensors and micro-controllers used. I have evaluated a number of 5 IoT platforms in terms of the features needed to develop a IoT project. I have listed those components that are most appreciated by IoT pro-ject developers and the results have been highlighted in a comparative analysis of these plat-forms from the point of view of IoT project developers and which are strictly necessary as a de-velopment environment for an IoT project based. I’ve also considered the users' views of such platforms in terms of functionality, advantages, disadvantages and dangers presented by this technology.

  1. RapidIO as a multi-purpose interconnect

    Science.gov (United States)

    Baymani, Simaolhoda; Alexopoulos, Konstantinos; Valat, Sébastien

    2017-10-01

    RapidIO (http://rapidio.org/) technology is a packet-switched high-performance fabric, which has been under active development since 1997. Originally meant to be a front side bus, it developed into a system level interconnect which is today used in all 4G/LTE base stations world wide. RapidIO is often used in embedded systems that require high reliability, low latency and scalability in a heterogeneous environment - features that are highly interesting for several use cases, such as data analytics and data acquisition (DAQ) networks. We will present the results of evaluating RapidIO in a data analytics environment, from setup to benchmark. Specifically, we will share the experience of running ROOT and Hadoop on top of RapidIO. To demonstrate the multi-purpose characteristics of RapidIO, we will also present the results of investigating RapidIO as a technology for high-speed DAQ networks using a generic multi-protocol event-building emulation tool. In addition we will present lessons learned from implementing native ports of CERN applications to RapidIO.

  2. BIM and IoT: A Synopsis from GIS Perspective

    Science.gov (United States)

    Isikdag, U.

    2015-10-01

    Internet-of-Things (IoT) focuses on enabling communication between all devices, things that are existent in real life or that are virtual. Building Information Models (BIMs) and Building Information Modelling is a hype that has been the buzzword of the construction industry for last 15 years. BIMs emerged as a result of a push by the software companies, to tackle the problems of inefficient information exchange between different software and to enable true interoperability. In BIM approach most up-to-date an accurate models of a building are stored in shared central databases during the design and the construction of a project and at post-construction stages. GIS based city monitoring / city management applications require the fusion of information acquired from multiple resources, BIMs, City Models and Sensors. This paper focuses on providing a method for facilitating the GIS based fusion of information residing in digital building "Models" and information acquired from the city objects i.e. "Things". Once this information fusion is accomplished, many fields ranging from Emergency Response, Urban Surveillance, Urban Monitoring to Smart Buildings will have potential benefits.

  3. Nuclear collective rotation in the SU3 model, 2

    International Nuclear Information System (INIS)

    Kinouchi, Shin-ichi; Kishimoto, Teruo; Kammuri, Tetsuo.

    1989-05-01

    The collective rotation of a nuclear system with the SU 3 Hamiltonian is described by the quantal dynamical nuclear field theory. An angular frequency in the Coriolis interaction of the driving Hamiltonian is replaced by a total angular momentum operator divided by the corresponding moment of inertia. We consider here the low spin states for a triaxial intrinsic configuration. The rotational effect is taken into account by using the effective quadrupole and angular momentum operators, whose expressions are different depending on whether they refer to the laboratory frame or the body-fixed one. Effective forms of the total Hamiltonian and the particle angular momentum are compared with the exact SU 3 energy and the rotor's angular momentum, respectively. In order to dissolve the disagreement for the effective operators, the perturbing interaction should be supplemented by a residual part of the quadrupole-quadrupole interaction, which restores the rotational invariance of the intrinsic Hamiltonian. (author)

  4. Acting in solidarity : Testing an extended dual pathway model of collective action by bystander group members

    NARCIS (Netherlands)

    Saab, Rim; Tausch, Nicole; Spears, Russell; Cheung, Wing-Yee

    We examined predictors of collective action among bystander group members in solidarity with a disadvantaged group by extending the dual pathway model of collective action, which proposes one efficacy-based and one emotion-based path to collective action (Van Zomeren, Spears, Fischer, & Leach,

  5. Protesters as "passionate economists" : A dynamic dual pathway model of approach coping with collective disadvantage

    NARCIS (Netherlands)

    van Zomeren, Martijn; Leach, Colin Wayne; Spears, Russell

    To explain the psychology behind individuals' motivation to participate in collective action against collective disadvantage (e.g., protest marches), the authors introduce a dynamic dual pathway model of approach coping that integrates many common explanations of collective action (i.e., group

  6. TMACS I/O termination point listing. Revision 1

    International Nuclear Information System (INIS)

    Scaief, C.C. III.

    1994-01-01

    This document provides a listing of all analog and discrete input/output (I/O) points connected to the Tank Monitor and Control System (TMACS). The list also provides other information such as the point tag name, termination location, description, drawing references and other parameters. The purpose is to define each point's unique tag name and to cross reference the point with other associated information that may be necessary for activities such as maintenance, calibration, diagnostics, or design changes. It provides a list in one document of all I/O points that would otherwise only be available by referring to all I/O termination drawings

  7. Knowledge driven discovery for opportunistic IoT networking.

    OpenAIRE

    Pozza, Riccardo

    2015-01-01

    So far, the Internet of Things (IoT) has been concerned with the objective of connecting every-thing, or any object to the Internet world. By collaborating towards the creation of new services, the IoT has introduced the opportunity to add smartness to our cities, homes, buildings and healthcare systems, as well as businesses and products. In many scenarios, objects or IoT devices are not always statically deployed, but they may be free to move around being carried by people or vehicles, whil...

  8. TMACS I/O termination point listing. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Scaief, C.C. III

    1994-09-13

    This document provides a listing of all analog and discrete input/output (I/O) points connected to the Tank Monitor and Control System (TMACS). The list also provides other information such as the point tag name, termination location, description, drawing references and other parameters. The purpose is to define each point`s unique tag name and to cross reference the point with other associated information that may be necessary for activities such as maintenance, calibration, diagnostics, or design changes. It provides a list in one document of all I/O points that would otherwise only be available by referring to all I/O termination drawings.

  9. OS X and iOS Kernel Programming

    CERN Document Server

    Halvorsen, Ole Henry

    2011-01-01

    OS X and iOS Kernel Programming combines essential operating system and kernel architecture knowledge with a highly practical approach that will help you write effective kernel-level code. You'll learn fundamental concepts such as memory management and thread synchronization, as well as the I/O Kit framework. You'll also learn how to write your own kernel-level extensions, such as device drivers for USB and Thunderbolt devices, including networking, storage and audio drivers. OS X and iOS Kernel Programming provides an incisive and complete introduction to the XNU kernel, which runs iPhones, i

  10. RubyMotion iOS develoment essentials

    CERN Document Server

    Nalwaya, Abhishek

    2013-01-01

    This is a step-by-step book that builds on your knowledge by adding to an example app over the course of each chapter. Each topic uses example code that can be compiled and tested to show how things work practically instead of just telling you the theory. Complicated tasks are broken down into easy to follow steps with clear explanations of what each line of code is doing.Whether you are a novice to iOS development or looking for a simpler alternative to Objective-C; with RubyMotion iOS Development Essentials, you will become a pro at writing great iOS apps

  11. Beginning Swift games development for iOS

    CERN Document Server

    Goodwill, James

    2015-01-01

    Game apps are one of the most popular categories in the Apple iTunes App Store. Well, the introduction of the new Swift programming language will make game development even more appealing and easier to existing and future iOS app developers. In response, James Goodwill, Wesley Matlock and Apress introduce you to this book, Beginning Swift Games Development for iOS. In this book, you'll learn the fundamental elements of the new Swift language as applied to game development for iOS. In part 1, you'll start with a basic 2D game idea and build the game throughout the book introducing each Sprit

  12. Design of Compressed Sensing Algorithm for Coal Mine IoT Moving Measurement Data Based on a Multi-Hop Network and Total Variation

    Directory of Open Access Journals (Sweden)

    Gang Wang

    2018-05-01

    Full Text Available As the application of a coal mine Internet of Things (IoT, mobile measurement devices, such as intelligent mine lamps, cause moving measurement data to be increased. How to transmit these large amounts of mobile measurement data effectively has become an urgent problem. This paper presents a compressed sensing algorithm for the large amount of coal mine IoT moving measurement data based on a multi-hop network and total variation. By taking gas data in mobile measurement data as an example, two network models for the transmission of gas data flow, namely single-hop and multi-hop transmission modes, are investigated in depth, and a gas data compressed sensing collection model is built based on a multi-hop network. To utilize the sparse characteristics of gas data, the concept of total variation is introduced and a high-efficiency gas data compression and reconstruction method based on Total Variation Sparsity based on Multi-Hop (TVS-MH is proposed. According to the simulation results, by using the proposed method, the moving measurement data flow from an underground distributed mobile network can be acquired and transmitted efficiently.

  13. Design of Compressed Sensing Algorithm for Coal Mine IoT Moving Measurement Data Based on a Multi-Hop Network and Total Variation.

    Science.gov (United States)

    Wang, Gang; Zhao, Zhikai; Ning, Yongjie

    2018-05-28

    As the application of a coal mine Internet of Things (IoT), mobile measurement devices, such as intelligent mine lamps, cause moving measurement data to be increased. How to transmit these large amounts of mobile measurement data effectively has become an urgent problem. This paper presents a compressed sensing algorithm for the large amount of coal mine IoT moving measurement data based on a multi-hop network and total variation. By taking gas data in mobile measurement data as an example, two network models for the transmission of gas data flow, namely single-hop and multi-hop transmission modes, are investigated in depth, and a gas data compressed sensing collection model is built based on a multi-hop network. To utilize the sparse characteristics of gas data, the concept of total variation is introduced and a high-efficiency gas data compression and reconstruction method based on Total Variation Sparsity based on Multi-Hop (TVS-MH) is proposed. According to the simulation results, by using the proposed method, the moving measurement data flow from an underground distributed mobile network can be acquired and transmitted efficiently.

  14. Volterra representation enables modeling of complex synaptic nonlinear dynamics in large-scale simulations.

    Science.gov (United States)

    Hu, Eric Y; Bouteiller, Jean-Marie C; Song, Dong; Baudry, Michel; Berger, Theodore W

    2015-01-01

    Chemical synapses are comprised of a wide collection of intricate signaling pathways involving complex dynamics. These mechanisms are often reduced to simple spikes or exponential representations in order to enable computer simulations at higher spatial levels of complexity. However, these representations cannot capture important nonlinear dynamics found in synaptic transmission. Here, we propose an input-output (IO) synapse model capable of generating complex nonlinear dynamics while maintaining low computational complexity. This IO synapse model is an extension of a detailed mechanistic glutamatergic synapse model capable of capturing the input-output relationships of the mechanistic model using the Volterra functional power series. We demonstrate that the IO synapse model is able to successfully track the nonlinear dynamics of the synapse up to the third order with high accuracy. We also evaluate the accuracy of the IO synapse model at different input frequencies and compared its performance with that of kinetic models in compartmental neuron models. Our results demonstrate that the IO synapse model is capable of efficiently replicating complex nonlinear dynamics that were represented in the original mechanistic model and provide a method to replicate complex and diverse synaptic transmission within neuron network simulations.

  15. Approximate Sensory Data Collection: A Survey.

    Science.gov (United States)

    Cheng, Siyao; Cai, Zhipeng; Li, Jianzhong

    2017-03-10

    With the rapid development of the Internet of Things (IoTs), wireless sensor networks (WSNs) and related techniques, the amount of sensory data manifests an explosive growth. In some applications of IoTs and WSNs, the size of sensory data has already exceeded several petabytes annually, which brings too many troubles and challenges for the data collection, which is a primary operation in IoTs and WSNs. Since the exact data collection is not affordable for many WSN and IoT systems due to the limitations on bandwidth and energy, many approximate data collection algorithms have been proposed in the last decade. This survey reviews the state of the art of approximatedatacollectionalgorithms. Weclassifythemintothreecategories: themodel-basedones, the compressive sensing based ones, and the query-driven ones. For each category of algorithms, the advantages and disadvantages are elaborated, some challenges and unsolved problems are pointed out, and the research prospects are forecasted.

  16. Approximate Sensory Data Collection: A Survey

    Directory of Open Access Journals (Sweden)

    Siyao Cheng

    2017-03-01

    Full Text Available With the rapid development of the Internet of Things (IoTs, wireless sensor networks (WSNs and related techniques, the amount of sensory data manifests an explosive growth. In some applications of IoTs and WSNs, the size of sensory data has already exceeded several petabytes annually, which brings too many troubles and challenges for the data collection, which is a primary operation in IoTs and WSNs. Since the exact data collection is not affordable for many WSN and IoT systems due to the limitations on bandwidth and energy, many approximate data collection algorithms have been proposed in the last decade. This survey reviews the state of the art of approximatedatacollectionalgorithms. Weclassifythemintothreecategories: themodel-basedones, the compressive sensing based ones, and the query-driven ones. For each category of algorithms, the advantages and disadvantages are elaborated, some challenges and unsolved problems are pointed out, and the research prospects are forecasted.

  17. Extreme Worlds of the Outer Solar System: Dynamic Processes on Uranus & Io

    Science.gov (United States)

    Kleer, Katherine Rebecca de

    system outliers through studies of Uranus' atmosphere and rings and of Io's thermal activity. I show that Uranus' rings are spectrally flat in the near-infrared, setting them apart from all other ring systems in the solar system. I investigate the vertical profile of species in Uranus' atmosphere, and demonstrate evidence for seasonal trends in the upper atmosphere on decadal timescales. Based on a large high-cadence dataset of Io's volcanism obtained with adaptive optics over 100 nights, I show that the thermal timelines of Io's volcanoes indicate at least two distinct classes of eruption. The asymmetric spatial distribution of Io's volcanic heat flow suggests additional mechanisms at work modulating the effects of tidal heating. I present the detection of one of the most powerful eruptions ever seen on Io, which I use to derive a eruption temperature of >1300 K, consistent with a highly mafic magma composition. Geophysical modeling of the thermal timeline of Loki Patera, a distinctive volcanic feature on Io, indicates low lava thermal conductivities also consistent with a highly-mafic silicate composition. Ultra-high-resolution thermal mapping of this patera reveals a multi-phase volcanic resurfacing process that hints at the plumbing system underlying this massive volcanic feature. The results presented here are founded on near-infrared observations of unprecedented resolution in the spatial, spectral, and temporal domains. The interpretation of the data utilizes rigorous statistical techniques to draw meaningful conclusions. In addition to the scientific impact of the findings, this work therefore also pioneers specific ground-based telescope capabilities and analysis tools, and demonstrates their utility to solar system science. Chapter 2 presents the first high-resolution spectra of Uranus' rings. Chapter 3 introduces Markov Chain Monte Carlo simulations into ice giant atmospheric radiative transfer model- ing, permitting a rigorous analysis of parameter

  18. Pricing Models and Payment Schemes for Library Collections.

    Science.gov (United States)

    Stern, David

    2002-01-01

    Discusses new pricing and payment options for libraries in light of online products. Topics include alternative cost models rather than traditional subscriptions; use-based pricing; changes in scholarly communication due to information technology; methods to determine appropriate charges for different organizations; consortial plans; funding; and…

  19. BIM and IoT: A Synopsis from GIS Perspective

    Directory of Open Access Journals (Sweden)

    U. Isikdag

    2015-10-01

    Full Text Available Internet-of-Things (IoT focuses on enabling communication between all devices, things that are existent in real life or that are virtual. Building Information Models (BIMs and Building Information Modelling is a hype that has been the buzzword of the construction industry for last 15 years. BIMs emerged as a result of a push by the software companies, to tackle the problems of inefficient information exchange between different software and to enable true interoperability. In BIM approach most up-to-date an accurate models of a building are stored in shared central databases during the design and the construction of a project and at post-construction stages. GIS based city monitoring / city management applications require the fusion of information acquired from multiple resources, BIMs, City Models and Sensors. This paper focuses on providing a method for facilitating the GIS based fusion of information residing in digital building “Models” and information acquired from the city objects i.e. “Things”. Once this information fusion is accomplished, many fields ranging from Emergency Response, Urban Surveillance, Urban Monitoring to Smart Buildings will have potential benefits.

  20. Gateway-Assisted Retransmission for Lightweight and Reliable IoT Communications.

    Science.gov (United States)

    Chang, Hui-Ling; Wang, Cheng-Gang; Wu, Mong-Ting; Tsai, Meng-Hsun; Lin, Chia-Ying

    2016-09-22

    Message Queuing Telemetry Transport for Sensor Networks (MQTT-SN) and Constrained Application Protocol (CoAP) are two protocols supporting publish/subscribe models for IoT devices to publish messages to interested subscribers. Retransmission mechanisms are introduced to compensate for the lack of data reliability. If the device does not receive the acknowledgement (ACK) before retransmission timeout (RTO) expires, the device will retransmit data. Setting an appropriate RTO is important because the delay may be large or retransmission may be too frequent when the RTO is inappropriate. We propose a Gateway-assisted CoAP (GaCoAP) to dynamically compute RTO for devices. Simulation models are proposed to investigate the performance of GaCoAP compared with four other methods. The experiment results show that GaCoAP is more suitable for IoT devices.

  1. Gateway-Assisted Retransmission for Lightweight and Reliable IoT Communications

    Directory of Open Access Journals (Sweden)

    Hui-Ling Chang

    2016-09-01

    Full Text Available Message Queuing Telemetry Transport for Sensor Networks (MQTT-SN and Constrained Application Protocol (CoAP are two protocols supporting publish/subscribe models for IoT devices to publish messages to interested subscribers. Retransmission mechanisms are introduced to compensate for the lack of data reliability. If the device does not receive the acknowledgement (ACK before retransmission timeout (RTO expires, the device will retransmit data. Setting an appropriate RTO is important because the delay may be large or retransmission may be too frequent when the RTO is inappropriate. We propose a Gateway-assisted CoAP (GaCoAP to dynamically compute RTO for devices. Simulation models are proposed to investigate the performance of GaCoAP compared with four other methods. The experiment results show that GaCoAP is more suitable for IoT devices.

  2. Enabling Secure XMPP Communications in Federated IoT Clouds Through XEP 0027 and SAML/SASL SSO.

    Science.gov (United States)

    Celesti, Antonio; Fazio, Maria; Villari, Massimo

    2017-02-07

    Nowadays, in the panorama of Internet of Things (IoT), finding a right compromise between interactivity and security is not trivial at all. Currently, most of pervasive communication technologies are designed to work locally. As a consequence, the development of large-scale Internet services and applications is not so easy for IoT Cloud providers. The main issue is that both IoT architectures and services have started as simple but they are becoming more and more complex. Consequently, the web service technology is often inappropriate. Recently, many operators in both academia and industry fields are considering the possibility to adopt the eXtensible Messaging and Presence Protocol (XMPP) for the implementation of IoT Cloud communication systems. In fact, XMPP offers many advantages in term of real-time capabilities, efficient data distribution, service discovery and inter-domain communication compared to other technologies. Nevertheless, the protocol lacks of native security, data confidentiality and trustworthy federation features. In this paper, considering an XMPP-based IoT Cloud architectural model, we discuss how can be possible to enforce message signing/encryption and Single-Sign On (SSO) authentication respectively for secure inter-module and inter-domain communications in a federated environment. Experiments prove that security mechanisms introduce an acceptable overhead, considering the obvious advantages achieved in terms of data trustiness and privacy.

  3. Enabling Secure XMPP Communications in Federated IoT Clouds Through XEP 0027 and SAML/SASL SSO

    Directory of Open Access Journals (Sweden)

    Antonio Celesti

    2017-02-01

    Full Text Available Nowadays, in the panorama of Internet of Things (IoT, finding a right compromise between interactivity and security is not trivial at all. Currently, most of pervasive communication technologies are designed to work locally. As a consequence, the development of large-scale Internet services and applications is not so easy for IoT Cloud providers. The main issue is that both IoT architectures and services have started as simple but they are becoming more and more complex. Consequently, the web service technology is often inappropriate. Recently, many operators in both academia and industry fields are considering the possibility to adopt the eXtensible Messaging and Presence Protocol (XMPP for the implementation of IoT Cloud communication systems. In fact, XMPP offers many advantages in term of real-time capabilities, efficient data distribution, service discovery and inter-domain communication compared to other technologies. Nevertheless, the protocol lacks of native security, data confidentiality and trustworthy federation features. In this paper, considering an XMPP-based IoT Cloud architectural model, we discuss how can be possible to enforce message signing/encryption and Single-Sign On (SSO authentication respectively for secure inter-module and inter-domain communications in a federated environment. Experiments prove that security mechanisms introduce an acceptable overhead, considering the obvious advantages achieved in terms of data trustiness and privacy.

  4. Enabling Secure XMPP Communications in Federated IoT Clouds Through XEP 0027 and SAML/SASL SSO

    Science.gov (United States)

    Celesti, Antonio; Fazio, Maria; Villari, Massimo

    2017-01-01

    Nowadays, in the panorama of Internet of Things (IoT), finding a right compromise between interactivity and security is not trivial at all. Currently, most of pervasive communication technologies are designed to work locally. As a consequence, the development of large-scale Internet services and applications is not so easy for IoT Cloud providers. The main issue is that both IoT architectures and services have started as simple but they are becoming more and more complex. Consequently, the web service technology is often inappropriate. Recently, many operators in both academia and industry fields are considering the possibility to adopt the eXtensible Messaging and Presence Protocol (XMPP) for the implementation of IoT Cloud communication systems. In fact, XMPP offers many advantages in term of real-time capabilities, efficient data distribution, service discovery and inter-domain communication compared to other technologies. Nevertheless, the protocol lacks of native security, data confidentiality and trustworthy federation features. In this paper, considering an XMPP-based IoT Cloud architectural model, we discuss how can be possible to enforce message signing/encryption and Single-Sign On (SSO) authentication respectively for secure inter-module and inter-domain communications in a federated environment. Experiments prove that security mechanisms introduce an acceptable overhead, considering the obvious advantages achieved in terms of data trustiness and privacy. PMID:28178214

  5. Spin alignment and collective moment of inertia of the basic rotational band in the cranking model

    International Nuclear Information System (INIS)

    Tanaka, Yoshihide

    1982-01-01

    By making an attempt to separate the intrinsic particle and collective rotational motions in the cranking model, the spin alignment and the collective moment of inertia characterizing the basic rotational bands are defined, and are investigated by using a simple i sub(13/2) shell model. The result of the calculation indicates that the collective moment of inertia decreases under the presence of the quasiparticles which are responsible for the increase of the spin alignment of the band. (author)

  6. Towards IoT platforms’ integration : Semantic Translations between W3C SSN and ETSI SAREF

    NARCIS (Netherlands)

    Moreira, João Luiz; Daniele, L.M.; Ferreira Pires, Luis; van Sinderen, Marten J.; Wasielewska, Katarzyna; Szmeja, Pawel; Pawlowski, Wieslaw; Ganzha, Maria; Paprzycki, Marcin

    2017-01-01

    Several IoT ontologies have been developed lately to improve the semantic interoperability of IoT solutions. The most popular of these ontologies, the W3C Semantic Sensor Network (SSN), is considered an ontological foundation for diverse IoT initiatives, particularly OpenIoT. With characteristics

  7. The Haskell Programmer's Guide to the IO Monad : Don't Panic

    NARCIS (Netherlands)

    Klinger, S.

    2005-01-01

    Now, that you have started with Haskell, have you written a program doing IO yet, like reading a file or writing on the terminal? Then you have used the IO monad—but do you understand how it works? The standard explanation is, that the IO monad hides the non-functional IO actions —which do have side

  8. iOS 7 programming pushing the limits

    CERN Document Server

    Napier, Rob

    2014-01-01

    Get ready to create killer apps for iPad and iPhone on the new iOS 7! With Apple's introduction of iOS 7, demand for developers who know the new iOS will be high. You need in-depth information about the new characteristics and capabilities of iOS 7, and that's what you'll find in this book. If you have experience with C or C++, this guide will show you how to create amazing apps for iPhone, iPad, and iPod touch. You'll also learn to maximize your programs for mobile devices using iPhone SDK 7.0. Advanced topics such as security services, running on multiple iPlatforms, and local networking w

  9. New upper limits for atmospheric constituents on Io

    Science.gov (United States)

    Fink, U.; Larson, H. P.; Gautier, T. N., III

    1976-01-01

    A spectrum of Io from 0.86 to 2.7 microns with a resolution of 3.36 per cm and a signal to rms noise ratio of 120 is presented. No absorptions due to any atmospheric constituents on Io could be found in the spectrum. Upper limits of 0.12 cm-atm for NH3, 0.12 cm-atm for CH4, 0.4 cm-atm for N2O, and 24 cm-atm for H2S were determined. Laboratory spectra of ammonia frosts as a function of temperature were compared with the spectrum of Io and showed this frost not to be present at the surface of Io. A search for possible resonance lines of carbon, silicon, and sulfur, as well as the 1.08-micron line of helium, proved negative. Upper emission limits of 60, 18, 27, and 60 kilorayleighs, respectively, were established for these lines.

  10. Volcanogenic Sulfur on Earth and Io: Composition and Spectroscopy

    Science.gov (United States)

    Kargel, J.S.; Delmelle, P.; Nash, D.B.

    1999-01-01

    The causes of Io's variegated surface, especially the roles of sulfur, and the geochemical history of sulfur compounds on Io are not well understood. Suspecting that minor impurities in sulfur might be important, we have investigated the major and trace element chemistry and spectroscopic reflectance of natural sulfur from a variety of terrestrial volcanic-hydrothermal environments. Evidence suggests that Io may be substantially coated with impure sulfur. On Earth, a few tenths of a percent to a few percent of chalcophile trace elements (e.g., As and Se) comonly occur in sulfur and appear to stabilize material of yellow, brown, orange, and red hues, which may persist even at low temperatures. Percentage levels of chalcophile impurities are reasonably expected to occur on Io in vapor sublimate deposits and flows derived from such deposits. Such impurities join a host of other mechanisms that might explain Io's reds and yellows. Two-tenths to two percent opaque crystalline impurities, particularly pyrite (FeS2), commonly produces green, gray, and black volcanic sulfur on Earth and might explain areas of Io having deposits of these colors. Pyrite produces a broad absorption near 1 ??m that gradually diminishes out to 1.6 ??m - similar but not identical to the spectrum of Io seen in Galileo NIMS data. Percentage amounts of carbonaceous impurities and tens of percent SiO2 (as silicates) also strongly affect the spectral properties of Earth's sulfur. Io's broad absorption between 0.52 and 0.64 ??m remains unexplained by these data but could be due to sodium sulfides, as suggested previously by others, or to As, Se, or other impurities. These impurities and others, such as P and Cl (which could exist on Io's surface in amounts over 1% that of sulfur), greatly alter the molecular structure of molten and solid sulfur. Minor impurities could impact Io's geology, such as the morphology of sulfur lava flows and the ability of sulfur to sustain high relief. We have not found

  11. BRC/IoP standard importance in packaging quality assurance

    Directory of Open Access Journals (Sweden)

    Agnieszka Kawecka

    2014-10-01

    Full Text Available BRC/IoP (British Retail Consortium / Institute of Packaging is the only industry standard dedicated entrepreneurs operating in the packaging industry, primarily intended for contact with food. The requirements of the BRC / IoP guarantee the safety of packaging and fulfillment of all legal and hygienic requirements. The article presents the main features of the standard, the basic requirements contained in the document and the results of research on the implementation of quality management systems, including standard BRC / IoP and the actions that are required checklists. It is noticeable that there is little interest in certification BRC / IoP, due to low awareness of the standard, despite the fulfillment of some of the basic requirements of the surveyed companies.

  12. Prototype of a Laser-Induced Fluorescence Ground-Based Instrument for Measurements of Atmospheric Iodine Monoxide (IO)

    Science.gov (United States)

    Thurlow, M. E.; Co, D. T.; Hanisco, T. F.; Lapson, L. B.; Anderson, J. G.

    2008-12-01

    High abundances of iodine monoxide (IO) are known to exist and to participate in local photochemistry of the marine boundary layer: (1) IO participates in depletion episodes of O3 and in the removal of mercury in the Arctic polar spring by enhancing atomic Br mixing ratios. Recent observations and computer simulations suggest that mercury sequestration is closely tied to halogen photochemistry and that gaseous atomic Hg depletion can be enhanced significantly by the presence of small amounts of iodine-containing compounds. (2) IO and higher- order iodine oxides are involved in the formation of new particles in coastal marine environments. Studies using smog chamber experiments simulating coastal atmospheric conditions have demonstrated that new particles can form from condensable iodine-containing vapors and that their concentrations over the open ocean are sufficient to influence marine particle formation. (3) IO has also been shown to affect the oxidizing capacity of the troposphere by altering the partitioning of NO2/NO and HO2/HO and by activating chlorine and bromine in sea salt aerosols. In the stratosphere, these same processes can lead to enhanced ozone loss rates. Detailed photochemical models that include iodine photochemistry, however, are hampered by the lack of observational data. The distribution of IO in vertical, horizontal, and temporal coordinates is unknown, so the impact of IO on global photochemistry cannot be predicted. The resolution of these important scientific issues requires an in situ IO instrument. A fully functional nanosecond Nd:YAG-pumped Ti:Sapphire laser system and a prototype IO ground-based instrument have been built in our lab. With the current setup, the laser system was situated 10 m from the field station, and the laser light was coupled via an optical fiber. With the use of highly efficient fluorescence detection optics and photon counting techniques, sensitivities of better than 0.1 ppt in 1 s for IO was achieved in the

  13. Application of Majoritarian Element to Improve IoT Communication

    Directory of Open Access Journals (Sweden)

    Tornike Dvali

    2016-06-01

    Full Text Available The work introduces the circle of the basic ideas and methods of error-free recovery of the binary signal to the multichannel digital technology based on the model of formal (artificial neuron and aims to contribute to the further development of this theo-ry of reliability. The work is useful for reservation or for exchange of a highly valuable information. During communication be-tween machines, connection related problems could occur and this work will be of a great help for machines to choose right channel for connection. Work also is a successful attempt of figuring out binary signal error recovery probability of minimum highest value. Moreover, binary channels optimization problems addressed by using threshold model and exploring three differ-ent approaches. In the future, this work will be used in Internet of Things (IoT for the exact communication between machines. Work will be used with threshold model for minimizing errors in the communication between things.

  14. On the relation between the interacting boson model of Arima and Iachello and the collective model of Bohr and Mottelson

    International Nuclear Information System (INIS)

    Assenbaum, H.J.; Weiguny, A.

    1982-01-01

    The generator coordinate method is used to relate the interacting boson model of Arima and Iachello and the collective model of Bohr and Mottelson through an isometric transformation. It associates complex parameters to the original boson operators whereas the ultimate collective variables are real. The absolute squares of the collective wave functions can be given a direct probability interpretation. The lowest order Bohr-Mottelson hamiltonian is obtained in the harmonic approximation to the interacting boson model; unharmonic coupling terms render the collective potential to be velocity-dependent. (orig.)

  15. Integrating Facebook iOS SDK with your application

    CERN Document Server

    Macrì, Giuseppe

    2013-01-01

    A tutorial-based guide with chapters focusing on learning and embedding crucial Facebook features.If you are a developer who wishes to develop and monetize your apps on the App store, then this is the book for you. This book assumes you have basic knowledge of iOS programming using Objective-C and XCode, however, prior knowledge of Facebook iOS SDK is not required.

  16. Identification of radio emission from the Io flux tube

    International Nuclear Information System (INIS)

    Riddle, A.C.

    1983-01-01

    Many theories and observations suggest that Jovian decametric radio emission is generated in flux tubes that pass close to Io's orbit. However, comparison of theory and observation is hindered by lack of knowledge as to which specific flux tube is responsible for a particular emission. In this note, emission from the instantaneous Io flux tube is identified. This makes possible a mapping of emissions onto the causative flux tubes for a significant range of Jovian longitudes (240 0 --360 0 )

  17. Proof of Concept of Home IoT Connected Vehicles

    OpenAIRE

    Kim, Younsun; Oh, Hyunggoy; Kang, Sungho

    2017-01-01

    The way in which we interact with our cars is changing, driven by the increased use of mobile devices, cloud-based services, and advanced automotive technology. In particular, the requirements and market demand for the Internet of Things (IoT) device-connected vehicles will continuously increase. In addition, the advances in cloud computing and IoT have provided a promising opportunity for developing vehicular software and services in the automotive domain. In this paper, we introduce the con...

  18. Security Framework for the Web of IoT Platforms

    OpenAIRE

    Atarah, Ivan Akoribila

    2017-01-01

    Connected devices of IoT platforms are known to produce, process and exchange vast amounts of data, most of it sensitive or personal, that need to be protected. However, achieving minimal data protection requirements such as confidentiality, integrity, availability and non-repudiation in IoT platforms is a non-trivial issue. For one reason, the trillions of interacting devices provide larger attack surfaces. Secondly, high levels of personal and private data sharing in this ubiquitous and het...

  19. 5G IoT Industry Verticals and Network Requirements

    OpenAIRE

    Condoluci, Massimo; Lema Rosas, Maria Angel; Mahmoodi, Toktam; Dohler, Michael

    2017-01-01

    The effective provisioning of industry verticals over the next-to-come 5G systems opens novel business opportunities for telco operators especially when considering the integration of Internet of Things (IoT) devices as enablers of business cases based on remote sensing and control. This chapter highlights the main features of IoT verticals with particular attention on healthcare, smart cities, industry automation and entertainment business cases. The aim of this Chapter is to derive the requ...

  20. SMART-ITEM: IoT-Enabled Smart Living

    OpenAIRE

    Kor, A; Pattinson, C; Yanovsky, M; Kharchenko, V

    2017-01-01

    The main goal of this proposed project is to harness the emerging IoT technology to empower elderly population to self-manage their own health, stay active, healthy, and independent as long as possible within a smart and secured living environment. An integrated open-sourced IoT ecosystem will be developed. It will encompass the entire data lifecycle which involves the following processes: data acquisition, data transportation; data integration, processing, manipulation and computation; visua...

  1. Practical comparison of distributed ledger technologies for IoT

    Science.gov (United States)

    Red, Val A.

    2017-05-01

    Existing distributed ledger implementations - specifically, several blockchain implementations - embody a cacophony of divergent capabilities augmenting innovations of cryptographic hashes, consensus mechanisms, and asymmetric cryptography in a wide variety of applications. Whether specifically designed for cryptocurrency or otherwise, several distributed ledgers rely upon modular mechanisms such as consensus or smart contracts. These components, however, can vary substantially among implementations; differences involving proof-of-work, practical byzantine fault tolerance, and other consensus approaches exemplify distinct distributed ledger variations. Such divergence results in unique combinations of modules, performance, latency, and fault tolerance. As implementations continue to develop rapidly due to the emerging nature of blockchain technologies, this paper encapsulates a snapshot of sensor and internet of things (IoT) specific implementations of blockchain as of the end of 2016. Several technical risks and divergent approaches preclude standardization of a blockchain for sensors and IoT in the foreseeable future; such issues will be assessed alongside the practicality of IoT applications among Hyperledger, Iota, and Ethereum distributed ledger implementations suggested for IoT. This paper contributes a comparison of existing distributed ledger implementations intended for practical sensor and IoT utilization. A baseline for characterizing distributed ledger implementations in the context of IoT and sensors is proposed. Technical approaches and performance are compared considering IoT size, weight, and power limitations. Consensus and smart contracts, if applied, are also analyzed for the respective implementations' practicality and security. Overall, the maturity of distributed ledgers with respect to sensor and IoT applicability will be analyzed for enterprise interoperability.

  2. Volcanism on Io: The Galileo NIMS Io Thermal Emission Database (NITED)

    Science.gov (United States)

    Davies, A. G.; Veeder, G. J.; Matson, D. L.; Johnson, T. V.

    2011-12-01

    In order to determine the magnitude of thermal emission from Io's volcanoes and variability with time at local, regional and global scales, we have calculated the 4.7 or 5 μm radiant flux for every hot spot in every Galileo Near Infrared Mapping Spectrometer (NIMS) observation obtained during the Galileo mission between June 1996 and October 2001. The resulting database contains over 1000 measurements of radiant flux, corrected for emission angle, range to target, and, where necessary, incident sunlight. Io's volcanoes produce the most voluminous and most powerful eruptions in the Solar System [1] and NIMS was the ideal instrument for measuring thermal emission from these volcanoes (see [1, 2]). NIMS covered the infrared from 0.7 to 5.2 μm, so measurement of hot spot thermal emission at ~5 μm was possible even in daytime observations. As part of a campaign to quantify magnitude and variability of volcanic thermal emission [1, 3-5] we examined the entire NIMS dataset (196 observations). The resulting NIMS Io Thermal Emission Database (NITED) allows the charting of 5-μm thermal emission at individual volcanoes, identifying individual eruption episodes, and enabling the comparison of activity at different hot spots [e.g., 6] and different regions of Io. Some ionian hot spots were detected only once or twice by NIMS (e.g., Ah Peku Patera, seen during I32), but most were detected many times (e.g., Culann, Tupan and Zamama, [6]). For example, the database contains over 40 observations of Loki Patera (some at high emission angle, and two partial observations). There are 55 observations of Pele. The 27 nighttime observations of Pele show a remarkably steady 5-μm radiant flux of 35 ± 12 GW/μm. There are 34 observations of Pillan, which erupted violently in 1997. Although in many observations low spatial resolution makes it difficult to separate hot spot pairs such as Susanoo Patera and Mulungu Patera; Tawhaki Patera and Hi'iaka Patera; and Janus Patera and Kanehekili

  3. An Application-Driven Modular IoT Architecture

    Directory of Open Access Journals (Sweden)

    Kumar Yelamarthi

    2017-01-01

    Full Text Available Building upon the advancements in the recent years, a new paradigm in technology has emerged in Internet of Things (IoT. IoT has allowed for communication with the surrounding environment through a multitude of sensors and actuators, yet operating on limited energy. Several researchers have presented IoT architectures for respective applications, often challenged by requiring major updates for adoption to a different application. Further, this comes with several uncertainties such as type of computational device required at the edge, mode of wireless connectivity required, methods to obtain power efficiency, and not ensuring rapid deployment. This paper starts with providing a horizontal overview of each layer in IoT architecture and options for different applications. Then it presents a broad application-driven modular architecture, which can be easily customized for rapid deployment. This paper presents the diverse hardware used in several IoT layers such as sensors, embedded processors, wireless transceivers, internet gateway, and application management cloud server. Later, this paper presents implementation results for diverse applications including healthcare, structural health monitoring, agriculture, and indoor tour guide systems. It is hoped that this research will assist the potential user to easily choose IoT hardware and software as it pertains to their respective needs.

  4. TRIO: Burst Buffer Based I/O Orchestration

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Teng [Auburn University; Oral, H Sarp [ORNL; Pritchard, Michael [Auburn University; Wang, Bin [Auburn University; Yu, Weikuan [Auburn University

    2015-01-01

    The growing computing power on leadership HPC systems is often accompanied by ever-escalating failure rates. Checkpointing is a common defensive mechanism used by scientific applications for failure recovery. However, directly writing the large and bursty checkpointing dataset to parallel filesystem can incur significant I/O contention on storage servers. Such contention in turn degrades the raw bandwidth utilization of storage servers and prolongs the average job I/O time of concurrent applications. Recently burst buffer has been proposed as an intermediate layer to absorb the bursty I/O traffic from compute nodes to storage backend. But an I/O orchestration mechanism is still desired to efficiently move checkpointing data from bursty buffers to storage backend. In this paper, we propose a burst buffer based I/O orchestration framework, named TRIO, to intercept and reshape the bursty writes for better sequential write traffic to storage severs. Meanwhile, TRIO coordinates the flushing orders among concurrent burst buffers to alleviate the contention on storage server bandwidth. Our experimental results reveal that TRIO can deliver 30.5% higher bandwidth and reduce the average job I/O time by 37% on average for data-intensive applications in various checkpointing scenarios.

  5. A Federated Capability-based Access Control Mechanism for Internet of Things (IoTs)

    OpenAIRE

    Xu, Ronghua; Chen, Yu; Blasch, Erik; Chen, Genshe

    2018-01-01

    The prevalence of Internet of Things (IoTs) allows heterogeneous embedded smart devices to collaboratively provide intelligent services with or without human intervention. While leveraging the large-scale IoT-based applications like Smart Gird and Smart Cities, IoT also incurs more concerns on privacy and security. Among the top security challenges that IoTs face is that access authorization is critical in resource and information protection over IoTs. Traditional access control approaches, l...

  6. IoTA: IoT Automated SIP-based Emergency Call Triggering System for general eHealth purposes

    OpenAIRE

    Andriopoulou, F; Orphanoudakis, T; Dagiuklas, A

    2017-01-01

    The expansion of Internet of Things (IoT) and the evolution in communication technologies have enabled homes, cars even whole cities to be network connected. However, during an emergency incident, IoT devices have not been used to trigger emergency calls directly to healthcare providers mainly due to their constrained capabilities and lack of support session-oriented communications. Moreover, emergency services are currently offered by public safety stakeholders that do not support call trigg...

  7. High-Throughput and Low-Latency Network Communication with NetIO

    Science.gov (United States)

    Schumacher, Jörn; Plessl, Christian; Vandelli, Wainer

    2017-10-01

    HPC network technologies like Infiniband, TrueScale or OmniPath provide low- latency and high-throughput communication between hosts, which makes them attractive options for data-acquisition systems in large-scale high-energy physics experiments. Like HPC networks, DAQ networks are local and include a well specified number of systems. Unfortunately traditional network communication APIs for HPC clusters like MPI or PGAS exclusively target the HPC community and are not suited well for DAQ applications. It is possible to build distributed DAQ applications using low-level system APIs like Infiniband Verbs, but it requires a non-negligible effort and expert knowledge. At the same time, message services like ZeroMQ have gained popularity in the HEP community. They make it possible to build distributed applications with a high-level approach and provide good performance. Unfortunately, their usage usually limits developers to TCP/IP- based networks. While it is possible to operate a TCP/IP stack on top of Infiniband and OmniPath, this approach may not be very efficient compared to a direct use of native APIs. NetIO is a simple, novel asynchronous message service that can operate on Ethernet, Infiniband and similar network fabrics. In this paper the design and implementation of NetIO is presented and described, and its use is evaluated in comparison to other approaches. NetIO supports different high-level programming models and typical workloads of HEP applications. The ATLAS FELIX project [1] successfully uses NetIO as its central communication platform. The architecture of NetIO is described in this paper, including the user-level API and the internal data-flow design. The paper includes a performance evaluation of NetIO including throughput and latency measurements. The performance is compared against the state-of-the- art ZeroMQ message service. Performance measurements are performed in a lab environment with Ethernet and FDR Infiniband networks.

  8. Monitoring Io's Volcanic Activity in the Visible and Infrared from JUICE - It's All About (Eruption) Style

    Science.gov (United States)

    Davies, A. G.; Matson, D.; McEwen, A. S.; Keszthelyi, L. P.

    2012-12-01

    The European Space Agency's Jupiter Icy Moons Explorer (JUICE) will provide many opportunities for long-range monitoring of Io's extraordinary silicate, high-temperature volcanic activity [1, 2]. A considerable amount of valuable work can be performed even with relatively low-spatial-resolution observations [2]. Techniques developed from the examination and analysis of Galileo Near Infrared Mapping Spectrometer (NIMS) data, as well as observations of terrestrial silicate volcanic activity, allows the identification of likely eruption style [2] at many locations where the entire eruption is sub-pixel. Good temporal coverage, especially for episodic eruptions (including high-energy "outburst" eruptions), is important for modelling purposes. With opportunities to observe Io on a regular basis (hours-days) during cruise/orbital reduction phases, a visible-to-near-infrared mapping spectrometer (covering ~0.4-5.5 μm) is the best instrument to chart the magnitude and variability of Io's volcanic activity, allowing comparison with an existing and constantly expanding set of Io observations [e.g. 1, 3]. The eruption temperature of Io's dominant silicate lava, a constraint on interior composition and conditions, is a major unanswered question in the wake of the Galileo mission [1]. A careful approach to instrument design is needed to ensure that observations by both imager and IR spectrometer on JUICE are capable of determining lava eruption temperature [e.g., 4] in low spatial resolution data. With an ideal thermal target (e.g., an outburst eruption, or the proposed lava lake at Pele) the imager should obtain multi-spectral data in a rapid sequence to allow stability of the thermal source to be quantified. Observations by imager and spectrometer have to be contemporaneous and unsaturated. References: [1] Davies, A. (2007) "Volcanism on Io", Cam. Univ. Press. [2] Davies, A. et al. (2010) JVGR, 194, 75-99. [3] Veeder, G. et al. (2012) Icarus, 219, 701-722. [4] Davies, A. et

  9. Differential barometric-based positioning technique for indoor elevation measurement in IoT medical applications.

    Science.gov (United States)

    Wang, Hua; Wen, Yingyou; Zhao, Dazhe

    2017-07-20

    Medical applications have begun to benefit from Internet of Things (IoT) technology through the introduction of wearable devices. Several medical applications require accurate patient location as various changes affect pressure parameters inside the body. This study aims to develop a system to measure indoor altitude for IoT medical applications. We propose a differential barometric-based positioning system to estimate the altitude between a reference sensor and a localizing sensor connected to the human body. The differential barometric altimetry model is introduced to estimate indoor elevations and eliminate environmental artifacts. In addition, a Gaussian filter processing is adopted to remove noise from the elevation measurements. The proposed system is then investigated through extensive experiments, using various evaluation criteria. The results indicate that the proposed system yielded good accuracy with reduced implementation complexity and fewer costs. The proposed system is resilient compared to other indoor localization approaches, even when numerous environmental artifacts in indoor environments are present.

  10. Analysing I/O bottlenecks in LHC data analysis on grid storage resources

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    We describe recent I/O testing frameworks that we have developed and applied within the UK GridPP Collaboration, the ATLAS experiment and the DPM team, for a variety of distinct purposes. These include benchmarking vendor supplied storage products, discovering scaling limits of SRM solutions, tuning of storage systems for experiment data analysis, evaluating file access protocols, and exploring IO read patterns of experiment software and their underlying event data models. With multiple grid sites now dealing with petabytes of data, such studies are becoming increasingly essential. We describe how the tests build, and improve, on previous work and contrast how the use-cases differ. We also detail the results obtained and the implications for storage hardware, middleware and experiment software.

  11. Analysing I/O bottlenecks in LHC data analysis on grid storage resources

    International Nuclear Information System (INIS)

    Bhimji, W; Clark, P; Doidge, M; Hellmich, M P; Skipsey, S; Vukotic, I

    2012-01-01

    We describe recent I/O testing frameworks that we have developed and applied within the UK GridPP Collaboration, the ATLAS experiment and the DPM team, for a variety of distinct purposes. These include benchmarking vendor supplied storage products, discovering scaling limits of SRM solutions, tuning of storage systems for experiment data analysis, evaluating file access protocols, and exploring I/O read patterns of experiment software and their underlying event data models. With multiple grid sites now dealing with petabytes of data, such studies are becoming essential. We describe how the tests build, and improve, on previous work and contrast how the use-cases differ. We also detail the results obtained and the implications for storage hardware, middleware and experiment software.

  12. Design, implementation, and evaluation of an Internet of Things (IoT) network system for restaurant food waste management.

    Science.gov (United States)

    Wen, Zongguo; Hu, Shuhan; De Clercq, Djavan; Beck, M Bruce; Zhang, Hua; Zhang, Huanan; Fei, Fan; Liu, Jianguo

    2018-03-01

    Catering companies around the world generate tremendous amounts of waste; those in China are no exception. The paper discusses the design, implementation, and evaluation of a sensor-based Internet of Things (IoT) network technology for improving the management of restaurant food waste (RFW) in the city of Suzhou, China. This IoT-based system encompasses the generation, collection, transportation and final disposal of RFW. The Suzhou case study comprised four steps: (1) examination of the required functionality of an IoT-enabled system in the specific context of Suzhou; (2) configuration of the system architecture, both software and hardware components, according to the identified functionality; (3) installation of the components of the IoT system at the facilities of the stakeholders across the RFW generation-collection-transportation-disposal value chain; and (4) evaluation of the performance of the entire system, based on data from three years of operation. The results show that the system had a strong impact. Positive results include: (1) better management of RFW generation, as evidenced by a 20.5% increase in RFW collected via official channels and a 207% increase in the number of RFW generators under official contract; (2) better law enforcement in response to RFW malpractice, enabled by the monitoring capabilities of the IoT system; and (3) an overall reduction in illicit RFW activities and better process optimization across the RFW value chain. Negative results include: (1) Radio-frequency identification (RFID) tags need to be renewed often due to the frequent handling of waste bins, thus increasing operating costs; (2) dynamic/automatic weight sensors had a higher degree of error than the more time-consuming static/manual weighing method; and (3) there were disagreements between the city's government agencies about how to interpret data from the IoT system, which led to some inefficiencies in management. In sum, the Suzhou IoT system enabled data

  13. FIRE - Flyby of Io with Repeat Encounters: A conceptual design for a New Frontiers mission to Io

    Science.gov (United States)

    Suer, Terry-Ann; Padovan, Sebastiano; Whitten, Jennifer L.; Potter, Ross W. K.; Shkolyar, Svetlana; Cable, Morgan; Walker, Catherine; Szalay, Jamey; Parker, Charles; Cumbers, John; Gentry, Diana; Harrison, Tanya; Naidu, Shantanu; Trammell, Harold J.; Reimuller, Jason; Budney, Charles J.; Lowes, Leslie L.

    2017-09-01

    A conceptual design is presented for a low complexity, heritage-based flyby mission to Io, Jupiter's innermost Galilean satellite and the most volcanically active body in the Solar System. The design addresses the 2011 Decadal Survey's recommendation for a New Frontiers class mission to Io and is based upon the result of the June 2012 NASA-JPL Planetary Science Summer School. A science payload is proposed to investigate the link between the structure of Io's interior, its volcanic activity, its surface composition, and its tectonics. A study of Io's atmospheric processes and Io's role in the Jovian magnetosphere is also planned. The instrument suite includes a visible/near-IR imager, a magnetic field and plasma suite, a dust analyzer, and a gimbaled high gain antenna to perform radio science. Payload activity and spacecraft operations would be powered by three Advanced Stirling Radioisotope Generators (ASRG). The primary mission includes 10 flybys with close-encounter altitudes as low as 100 km. The mission risks are mitigated by ensuring that relevant components are radiation tolerant and by using redundancy and flight-proven parts in the design. The spacecraft would be launched on an Atlas V rocket with a delta-v of 1.3 km/s. Three gravity assists (Venus, Earth, Earth) would be used to reach the Jupiter system in a 6-year cruise. The resulting concept demonstrates the rich scientific return of a flyby mission to Io.

  14. High-performance file I/O in Java : existing approaches and bulk I/O extensions.

    Energy Technology Data Exchange (ETDEWEB)

    Bonachea, D.; Dickens, P.; Thakur, R.; Mathematics and Computer Science; Univ. of California at Berkeley; Illinois Institute of Technology

    2001-07-01

    There is a growing interest in using Java as the language for developing high-performance computing applications. To be successful in the high-performance computing domain, however, Java must not only be able to provide high computational performance, but also high-performance I/O. In this paper, we first examine several approaches that attempt to provide high-performance I/O in Java - many of which are not obvious at first glance - and evaluate their performance on two parallel machines, the IBM SP and the SGI Origin2000. We then propose extensions to the Java I/O library that address the deficiencies in the Java I/O API and improve performance dramatically. The extensions add bulk (array) I/O operations to Java, thereby removing much of the overhead currently associated with array I/O in Java. We have implemented the extensions in two ways: in a standard JVM using the Java Native Interface (JNI) and in a high-performance parallel dialect of Java called Titanium. We describe the two implementations and present performance results that demonstrate the benefits of the proposed extensions.

  15. A new stereo topographic map of Io: Implications for geology from global to local scales

    Science.gov (United States)

    White, Oliver L.; Schenk, Paul M.; Nimmo, Francis; Hoogenboom, Trudi

    2014-06-01

    We use Voyager and Galileo stereo pairs to construct the most complete stereo digital elevation model (DEM) of Io assembled to date, controlled using Galileo limb profiles. Given the difficulty of applying these two techniques to Io due to its anomalous surface albedo properties, we have experimented extensively with the relevant procedures in order to generate what we consider to be the most reliable DEMs. Our final stereo DEM covers ~75% of the globe, and we have identified a partial system of longitudinally arranged alternating basins and swells that correlates well to the distribution of mountain and volcano concentrations. We consider the correlation of swells to volcano concentrations and basins to mountain concentrations, to imply a heat flow distribution across Io that is consistent with the asthenospheric tidal heating model of Tackley et al. (2001). The stereo DEM reveals topographic signatures of regional-scale features including Loki Patera, Ra Patera, and the Tvashtar Paterae complex, in addition to previously unrecognized features including an ~1000 km diameter depression and a >2000 km long topographic arc comprising mountainous and layered plains material.

  16. HUBBLE CLICKS IMAGES OF IO SWEEPING ACROSS JUPITER

    Science.gov (United States)

    2002-01-01

    While hunting for volcanic plumes on Io, NASA's Hubble Space Telescope captured these images of the volatile moon sweeping across the giant face of Jupiter. Only a few weeks before these dramatic images were taken, the orbiting telescope snapped a portrait of one of Io's volcanoes spewing sulfur dioxide 'snow.' These stunning images of the planetary duo are being released to commemorate the ninth anniversary of the Hubble telescope's launch on April 24, 1990. All of these images were taken with the Wide Field and Planetary Camera 2. The three overlapping snapshots show in crisp detail Io passing above Jupiter's turbulent clouds. The close-up picture of Io (bottom right) reveal a 120-mile-high (200-kilometer) plume of sulfur dioxide 'snow' emanating from Pillan, one of the moon's active volcanoes. 'Other observations have inferred sulfur dioxide 'snow' in Io's plumes, but this image offers direct observational evidence for sulfur dioxide 'snow' in an Io plume,' explains John R. Spencer of Lowell Observatory in Flagstaff, Ariz. A Trip Around Jupiter The three snapshots of the volcanic moon rounding Jupiter were taken over a 1.8-hour time span. Io is roughly the size of Earth's moon but 2,000 times farther away. In two of the images, Io appears to be skimming Jupiter's cloud tops, but it's actually 310,000 miles (500,000 kilometers) away. Io zips around Jupiter in 1.8 days, whereas the moon circles Earth every 28 days. The conspicuous black spot on Jupiter is Io's shadow and is about the size of the moon itself (2,262 miles or 3,640 kilometers across). This shadow sails across the face of Jupiter at 38,000 mph (17 kilometers per second). The smallest details visible on Io and Jupiter measure 93 miles (150 kilometers) across, or about the size of Connecticut. These images were further sharpened through image reconstruction techniques. The view is so crisp that one would have to stand on Io to see this much detail on Jupiter with the naked eye. The bright patches on Io

  17. Model for the separate collection of packaging waste in Portuguese low-performing recycling regions.

    Science.gov (United States)

    Oliveira, V; Sousa, V; Vaz, J M; Dias-Ferreira, C

    2018-06-15

    Separate collection of packaging waste (glass; plastic/metals; paper/cardboard), is currently a widespread practice throughout Europe. It enables the recovery of good quality recyclable materials. However, separate collection performance are quite heterogeneous, with some countries reaching higher levels than others. In the present work, separate collection of packaging waste has been evaluated in a low-performance recycling region in Portugal in order to investigate which factors are most affecting the performance in bring-bank collection system. The variability of separate collection yields (kg per inhabitant per year) among 42 municipalities was scrutinized for the year 2015 against possible explanatory factors. A total of 14 possible explanatory factors were analysed, falling into two groups: socio-economic/demographic and waste collection service related. Regression models were built in an attempt to evaluate the individual effect of each factor on separate collection yields and predict changes on the collection yields by acting on those factors. The best model obtained is capable to explain 73% of the variation found in the separate collection yields. The model includes the following statistically significant indicators affecting the success of separate collection yields: i) inhabitants per bring-bank; ii) relative accessibility to bring-banks; iii) degree of urbanization; iv) number of school years attended; and v) area. The model presented in this work was developed specifically for the bring-bank system, has an explanatory power and quantifies the impact of each factor on separate collection yields. It can therefore be used as a support tool by local and regional waste management authorities in the definition of future strategies to increase collection of recyclables of good quality and to achieve national and regional targets. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Backtracking search algorithm in CVRP models for efficient solid waste collection and route optimization.

    Science.gov (United States)

    Akhtar, Mahmuda; Hannan, M A; Begum, R A; Basri, Hassan; Scavino, Edgar

    2017-03-01

    Waste collection is an important part of waste management that involves different issues, including environmental, economic, and social, among others. Waste collection optimization can reduce the waste collection budget and environmental emissions by reducing the collection route distance. This paper presents a modified Backtracking Search Algorithm (BSA) in capacitated vehicle routing problem (CVRP) models with the smart bin concept to find the best optimized waste collection route solutions. The objective function minimizes the sum of the waste collection route distances. The study introduces the concept of the threshold waste level (TWL) of waste bins to reduce the number of bins to be emptied by finding an optimal range, thus minimizing the distance. A scheduling model is also introduced to compare the feasibility of the proposed model with that of the conventional collection system in terms of travel distance, collected waste, fuel consumption, fuel cost, efficiency and CO 2 emission. The optimal TWL was found to be between 70% and 75% of the fill level of waste collection nodes and had the maximum tightness value for different problem cases. The obtained results for four days show a 36.80% distance reduction for 91.40% of the total waste collection, which eventually increases the average waste collection efficiency by 36.78% and reduces the fuel consumption, fuel cost and CO 2 emission by 50%, 47.77% and 44.68%, respectively. Thus, the proposed optimization model can be considered a viable tool for optimizing waste collection routes to reduce economic costs and environmental impacts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Government information collections in the networked environment new issues and models

    CERN Document Server

    Cheverie, Joan F

    2013-01-01

    This insightful book explores the challenging issues related to effective access to government information.Amidst all the chaos of today's dynamic information transition period, the only constants related to government information are change and inconsistency, yet with Government Information Collections in the Networked Environment: New Issues and Models, you will defeat the challenging issues and take advantage of the opportunities that networked government information collections have to offer. This valuable book gives you a fresh opportunity to rethink collecting activities and to

  20. Data Gathering and Energy Transfer Dilemma in UAV-Assisted Flying Access Network for IoT.

    Science.gov (United States)

    Arabi, Sara; Sabir, Essaid; Elbiaze, Halima; Sadik, Mohamed

    2018-05-11

    Recently, Unmanned Aerial Vehicles (UAVs) have emerged as an alternative solution to assist wireless networks, thanks to numerous advantages they offer in comparison to terrestrial fixed base stations. For instance, a UAV can be used to embed a flying base station providing an on-demand nomadic access to network services. A UAV can also be used to wirelessly recharge out-of-battery ground devices. In this paper, we aim to deal with both data collection and recharging depleted ground Internet-of-Things (IoT) devices through a UAV station used as a flying base station. To extend the network lifetime, we present a novel use of UAV with energy harvesting module and wireless recharging capabilities. However, the UAV is used as an energy source to empower depleted IoT devices. On one hand, the UAV charges depleted ground IoT devices under three policies: (1) low-battery first scheme; (2) high-battery first scheme; and (3) random scheme. On the other hand, the UAV station collects data from IoT devices that have sufficient energy to transmit their packets, and in the same phase, the UAV exploits the Radio Frequency (RF) signals transmitted by IoT devices to extract and harvest energy. Furthermore, and as the UAV station has a limited coverage time due to its energy constraints, we propose and investigate an efficient trade-off between ground users recharging time and data gathering time. Furthermore, we suggest to control and optimize the UAV trajectory in order to complete its travel within a minimum time, while minimizing the energy spent and/or enhancing the network lifetime. Extensive numerical results and simulations show how the system behaves under different scenarios and using various metrics in which we examine the added value of UAV with energy harvesting module.

  1. Data Gathering and Energy Transfer Dilemma in UAV-Assisted Flying Access Network for IoT

    Directory of Open Access Journals (Sweden)

    Sara Arabi

    2018-05-01

    Full Text Available Recently, Unmanned Aerial Vehicles (UAVs have emerged as an alternative solution to assist wireless networks, thanks to numerous advantages they offer in comparison to terrestrial fixed base stations. For instance, a UAV can be used to embed a flying base station providing an on-demand nomadic access to network services. A UAV can also be used to wirelessly recharge out-of-battery ground devices. In this paper, we aim to deal with both data collection and recharging depleted ground Internet-of-Things (IoT devices through a UAV station used as a flying base station. To extend the network lifetime, we present a novel use of UAV with energy harvesting module and wireless recharging capabilities. However, the UAV is used as an energy source to empower depleted IoT devices. On one hand, the UAV charges depleted ground IoT devices under three policies: (1 low-battery first scheme; (2 high-battery first scheme; and (3 random scheme. On the other hand, the UAV station collects data from IoT devices that have sufficient energy to transmit their packets, and in the same phase, the UAV exploits the Radio Frequency (RF signals transmitted by IoT devices to extract and harvest energy. Furthermore, and as the UAV station has a limited coverage time due to its energy constraints, we propose and investigate an efficient trade-off between ground users recharging time and data gathering time. Furthermore, we suggest to control and optimize the UAV trajectory in order to complete its travel within a minimum time, while minimizing the energy spent and/or enhancing the network lifetime. Extensive numerical results and simulations show how the system behaves under different scenarios and using various metrics in which we examine the added value of UAV with energy harvesting module.

  2. Analysis of impulse oscillometric measures of lung function and respiratory system model parameters in small airway-impaired and healthy children over a 2-year period

    Directory of Open Access Journals (Sweden)

    Nava Pat

    2011-03-01

    Full Text Available Abstract Background Is Impulse Oscillometry System (IOS a valuable tool to measure respiratory system function in Children? Asthma (A is the most prevalent chronic respiratory disease in children. Therefore, early and accurate assessment of respiratory function is of tremendous clinical interest in diagnosis, monitoring and treatment of respiratory conditions in this subpopulation. IOS has been successfully used to measure lung function in children with a high degree of sensitivity and specificity to small airway impairments (SAI and asthma. IOS measures of airway function and equivalent electrical circuit models of the human respiratory system have been developed to quantify the severity of these conditions. Previously, we have evaluated several known respiratory models based on the Mead's model and more parsimonious versions based on fitting IOS data known as extended RIC (eRIC and augmented RIC (aRIC models have emerged, which offer advantages over earlier models. Methods IOS data from twenty-six children were collected and compared during pre-bronchodilation (pre-B and post- bronchodilation (post-B conditions over a period of 2 years. Results and Discussion Are the IOS and model parameters capable of differentiating between healthy children and children with respiratory system distress? Children were classified into two main categories: Healthy (H and Small Airway-Impaired (SAI. The IOS measures and respiratory model parameters analyzed differed consistently between H and SAI children. SAI children showed smaller trend of "growth" and larger trend of bronchodilator responses than H children. The two model parameters: peripheral compliance (Cp and peripheral resistance (Rp tracked IOS indices of small airway function well. Cp was a more sensitive index than Rp. Both eRIC and aRIC Cps and the IOS Reactance Area, AX, (also known as the "Goldman Triangle" showed good correlations. Conclusions What are the most useful IOS and model parameters? In

  3. K2 Au(IO3)5 and β-KAu(IO3)4: Polar Materials with Strong SHG Responses Originating from Synergistic Effect of AuO4 and IO3 Units.

    Science.gov (United States)

    Xu, Xiang; Hu, Chun-Li; Li, Bing-Xuan; Mao, Jiang-Gao

    2016-01-26

    Two new polar potassium gold iodates, namely, K2 Au(IO3)5 (Cmc21) and β-KAu(IO3)4 (C2), have been synthesized and structurally characterized. Both compounds feature zero-dimensional polar [Au(IO3)4](-) units composed of an AuO4 square-planar unit coordinated by four IO3(-) ions in a monodentate fashion. In β-KAu(IO3)4, isolated [Au(IO3)4](-) ions are separated by K(+) ions, whereas in K2 Au(IO3)5, isolated [Au(IO3)4](-) ions and non-coordinated IO3(-) units are separated by K(+) ions. Both compounds are thermally stable up to 400 °C and exhibit high transmittance in the NIR region (λ=800-2500 nm) with measured optical band gaps of 2.65 eV for K2 Au(IO3 )5 and 2.75 eV for β-KAu(IO3)4. Powder second-harmonic generation measurements by using λ=2.05 μm laser radiation indicate that K2 Au(IO3)5 and β-KAu(IO3)4 are both phase-matchable materials with strong SHG responses of approximately 1.0 and 1.3 times that of KTiOPO4, respectively. Theoretical calculations based on DFT methods confirm that such strong SHG responses originate from a synergistic effect of the AuO4 and IO3 units. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Seven challenges for model-driven data collection in experimental and observational studies

    Directory of Open Access Journals (Sweden)

    J. Lessler

    2015-03-01

    Full Text Available Infectious disease models are both concise statements of hypotheses and powerful techniques for creating tools from hypotheses and theories. As such, they have tremendous potential for guiding data collection in experimental and observational studies, leading to more efficient testing of hypotheses and more robust study designs. In numerous instances, infectious disease models have played a key role in informing data collection, including the Garki project studying malaria, the response to the 2009 pandemic of H1N1 influenza in the United Kingdom and studies of T-cell immunodynamics in mammals. However, such synergies remain the exception rather than the rule; and a close marriage of dynamic modeling and empirical data collection is far from the norm in infectious disease research. Overcoming the challenges to using models to inform data collection has the potential to accelerate innovation and to improve practice in how we deal with infectious disease threats.

  5. Collectivity in heavy nuclei in the shell model Monte Carlo approach

    International Nuclear Information System (INIS)

    Özen, C.; Alhassid, Y.; Nakada, H.

    2014-01-01

    The microscopic description of collectivity in heavy nuclei in the framework of the configuration-interaction shell model has been a major challenge. The size of the model space required for the description of heavy nuclei prohibits the use of conventional diagonalization methods. We have overcome this difficulty by using the shell model Monte Carlo (SMMC) method, which can treat model spaces that are many orders of magnitude larger than those that can be treated by conventional methods. We identify a thermal observable that can distinguish between vibrational and rotational collectivity and use it to describe the crossover from vibrational to rotational collectivity in families of even-even rare-earth isotopes. We calculate the state densities in these nuclei and find them to be in close agreement with experimental data. We also calculate the collective enhancement factors of the corresponding level densities and find that their decay with excitation energy is correlated with the pairing and shape phase transitions. (author)

  6. Network Function Virtualization (NFV) based architecture to address connectivity, interoperability and manageability challenges in Internet of Things (IoT)

    Science.gov (United States)

    Haseeb, Shariq; Hashim, Aisha Hassan A.; Khalifa, Othman O.; Faris Ismail, Ahmad

    2017-11-01

    IoT aims to interconnect sensors and actuators built into devices (also known as Things) in order for them to share data and control each other to improve existing processes for making people’s life better. IoT aims to connect between all physical devices like fridges, cars, utilities, buildings and cities so that they can take advantage of small pieces of information collected by each one of these devices and derive more complex decisions. However, these devices are heterogeneous in nature because of various vendor support, connectivity options and protocol suit. Heterogeneity of such devices makes it difficult for them to leverage on each other’s capabilities in the traditional IoT architecture. This paper highlights the effects of heterogeneity challenges on connectivity, interoperability, management in greater details. It also surveys some of the existing solutions adopted in the core network to solve the challenges of massive IoT deployments. Finally, the paper proposes a new architecture based on NFV to address the problems.

  7. A General Cross-Layer Cloud Scheduling Framework for Multiple IoT Computer Tasks.

    Science.gov (United States)

    Wu, Guanlin; Bao, Weidong; Zhu, Xiaomin; Zhang, Xiongtao

    2018-05-23

    The diversity of IoT services and applications brings enormous challenges to improving the performance of multiple computer tasks' scheduling in cross-layer cloud computing systems. Unfortunately, the commonly-employed frameworks fail to adapt to the new patterns on the cross-layer cloud. To solve this issue, we design a new computer task scheduling framework for multiple IoT services in cross-layer cloud computing systems. Specifically, we first analyze the features of the cross-layer cloud and computer tasks. Then, we design the scheduling framework based on the analysis and present detailed models to illustrate the procedures of using the framework. With the proposed framework, the IoT services deployed in cross-layer cloud computing systems can dynamically select suitable algorithms and use resources more effectively to finish computer tasks with different objectives. Finally, the algorithms are given based on the framework, and extensive experiments are also given to validate its effectiveness, as well as its superiority.

  8. Minimizing I/O Costs of Multi-Dimensional Queries with BitmapIndices

    Energy Technology Data Exchange (ETDEWEB)

    Rotem, Doron; Stockinger, Kurt; Wu, Kesheng

    2006-03-30

    Bitmap indices have been widely used in scientific applications and commercial systems for processing complex,multi-dimensional queries where traditional tree-based indices would not work efficiently. A common approach for reducing the size of a bitmap index for high cardinality attributes is to group ranges of values of an attribute into bins and then build a bitmap for each bin rather than a bitmap for each value of the attribute. Binning reduces storage costs,however, results of queries based on bins often require additional filtering for discarding it false positives, i.e., records in the result that do not satisfy the query constraints. This additional filtering,also known as ''candidate checking,'' requires access to the base data on disk and involves significant I/O costs. This paper studies strategies for minimizing the I/O costs for ''candidate checking'' for multi-dimensional queries. This is done by determining the number of bins allocated for each dimension and then placing bin boundaries in optimal locations. Our algorithms use knowledge of data distribution and query workload. We derive several analytical results concerning optimal bin allocation for a probabilistic query model. Our experimental evaluation with real life data shows an average I/O cost improvement of at least a factor of 10 for multi-dimensional queries on datasets from two different applications. Our experiments also indicate that the speedup increases with the number of query dimensions.

  9. Game Theory Models for the Verification of the Collective Behaviour of Autonomous Cars

    OpenAIRE

    Varga, László Z.

    2017-01-01

    The collective of autonomous cars is expected to generate almost optimal traffic. In this position paper we discuss the multi-agent models and the verification results of the collective behaviour of autonomous cars. We argue that non-cooperative autonomous adaptation cannot guarantee optimal behaviour. The conjecture is that intention aware adaptation with a constraint on simultaneous decision making has the potential to avoid unwanted behaviour. The online routing game model is expected to b...

  10. Landform Degradation and Slope Processes on Io: The Galileo View

    Science.gov (United States)

    Moore, Jeffrey M.; Sullivan, Robert J.; Chuang, Frank C.; Head, James W., III; McEwen, Alfred S.; Milazzo, Moses P.; Nixon, Brian E.; Pappalardo, Robert T.; Schenk, Paul M.; Turtle, Elizabeth P.; hide

    2001-01-01

    The Galileo mission has revealed remarkable evidence of mass movement and landform degradation on Io. We recognize four major slope types observed on a number of intermediate resolution (250 m/pixel) images and several additional textures on very high resolution (10 m/pixel) images. Slopes and scarps on Io often show evidence of erosion, seen in the simplest form as alcove-carving slumps and slides at all scales. Many of the mass movement deposits on Io are probably mostly the consequence of block release and brittle slope failure. Sputtering plays no significant role. Sapping as envisioned by McCauley et al. remains viable. We speculate that alcove-lined canyons seen in one observation and lobed deposits seen along the bases of scarps in several locations may reflect the plastic deformation and 'glacial' flow of interstitial volatiles (e.g., SO2) heated by locally high geothermal energy to mobilize the volatile. The appearance of some slopes and near-slope surface textures seen in very high resolution images is consistent with erosion from sublimation-degradation. However, a suitable volatile (e.g., H2S) that can sublimate fast enough to alter Io's youthful surface has not been identified. Disaggregation from chemical decomposition of solid S2O and other polysulfur oxides may conceivably operate on Io. This mechanism could degrade landforms in a manner that resembles degradation from sublimation, and at a rate that can compete with resurfacing.

  11. On the road to secure and privacy-preserving IoT ecosystems

    OpenAIRE

    Hernández Serrano, Juan; Muñoz Tapia, José Luis; Bröring, Arne; Esparza Martín, Óscar; Mikkelsen, Lars; Schwarzott, Wolfgang; León Abarca, Olga; Zibuschka, Jan

    2017-01-01

    The Internet of Things (IoT) is on the rise. Today, various IoT platforms are already available, giving access to myriads of things. Initiatives such as BIG IoT are bringing those IoT platforms together in order to form ecosystems. BIG IoT aims to facilitate cross-platform and cross-domain application developments and establish centralized marketplaces to allow resource monetization. This combination of multi-platform applications, heterogeneity of the IoT, as well as enabling marketing and a...

  12. Discovery of gaseous S2 in Io's Pele plume.

    Science.gov (United States)

    Spencer, J R; Jessup, K L; McGrath, M A; Ballester, G E; Yelle, R

    2000-05-19

    Spectroscopy of Io's Pele plume against Jupiter by the Hubble Space Telescope in October 1999 revealed absorption due to S2 gas, with a column density of 1.0 +/- 0.2 x 10(16) per square centimeter, and probably also SO(2) gas with a column density of 7 +/- 3 x 10(16) per square centimeter. This SO2/S2 ratio (3 to 12) is expected from equilibration with silicate magmas near the quartz-fayalite-magnetite or wüstite-magnetite buffers. Condensed S3 and S4, probable coloring agents in Pele's red plume deposits, may form by polymerization of the S2, which is unstable to ultraviolet photolysis. Diffuse red deposits near other Io volcanoes suggest that venting and polymerization of S2 gas is a widespread feature of Io volcanism.

  13. Tractable policy management framework for IoT

    Science.gov (United States)

    Goynugur, Emre; de Mel, Geeth; Sensoy, Murat; Calo, Seraphin

    2017-05-01

    Due to the advancement in the technology, hype of connected devices (hence forth referred to as IoT) in support of automating the functionality of many domains, be it intelligent manufacturing or smart homes, have become a reality. However, with the proliferation of such connected and interconnected devices, efficiently and effectively managing networks manually becomes an impractical, if not an impossible task. This is because devices have their own obligations and prohibitions in context, and humans are not equip to maintain a bird's-eye-view of the state. Traditionally, policies are used to address the issue, but in the IoT arena, one requires a policy framework in which the language can provide sufficient amount of expressiveness along with efficient reasoning procedures to automate the management. In this work we present our initial work into creating a scalable knowledge-based policy framework for IoT and demonstrate its applicability through a smart home application.

  14. First Mile Challenges for Large-Scale IoT

    KAUST Repository

    Bader, Ahmed

    2017-03-16

    The Internet of Things is large-scale by nature. This is not only manifested by the large number of connected devices, but also by the sheer scale of spatial traffic intensity that must be accommodated, primarily in the uplink direction. To that end, cellular networks are indeed a strong first mile candidate to accommodate the data tsunami to be generated by the IoT. However, IoT devices are required in the cellular paradigm to undergo random access procedures as a precursor to resource allocation. Such procedures impose a major bottleneck that hinders cellular networks\\' ability to support large-scale IoT. In this article, we shed light on the random access dilemma and present a case study based on experimental data as well as system-level simulations. Accordingly, a case is built for the latent need to revisit random access procedures. A call for action is motivated by listing a few potential remedies and recommendations.

  15. I/O routing in a multidimensional torus network

    Science.gov (United States)

    Chen, Dong; Eisley, Noel A.; Heidelberger, Philip

    2018-04-24

    A method, system and computer program product are disclosed for routing data packet in a computing system comprising a multidimensional torus compute node network including a multitude of compute nodes, and an I/O node network including a plurality of I/O nodes. In one embodiment, the method comprises assigning to each of the data packets a destination address identifying one of the compute nodes; providing each of the data packets with a toio value; routing the data packets through the compute node network to the destination addresses of the data packets; and when each of the data packets reaches the destination address assigned to said each data packet, routing said each data packet to one of the I/O nodes if the toio value of said each data packet is a specified value. In one embodiment, each of the data packets is also provided with an ioreturn value used to route the data packets through the compute node network.

  16. Effects of Intraosseous Tibial vs. Intravenous Vasopressin in a Hypovolemic Cardiac Arrest Model

    Directory of Open Access Journals (Sweden)

    Justin Fulkerson, MSN

    2016-03-01

    Full Text Available Introduction: This study compared the effects of vasopressin via tibial intraosseous (IO and intravenous (IV routes on maximum plasma concentration (Cmax, the time to maximum concentration (Tmax, return of spontaneous circulation (ROSC, and time to ROSC in a hypovolemic cardiac arrest model. Methods: This study was a randomized prospective, between-subjects experimental design. A computer program randomly assigned 28 Yorkshire swine to one of four groups: IV (n=7, IO tibia (n=7, cardiopulmonary resuscitation (CPR + defibrillation (n=7, and a control group that received just CPR (n=7. Ventricular fibrillation was induced, and subjects remained in arrest for two minutes. CPR was initiated and 40 units of vasopressin were administered via IO or IV routes. Blood samples were collected at 0.5, 1, 1.5, 2, 2.5, 3, and 4 minutes. CPR and defibrillation were initiated for 20 minutes or until ROSC was achieved. We measured vasopressin concentrations using highperformance liquid chromatography. Results: There was no significant difference between the IO and IV groups relative to achieving ROSC (p=1.0 but a significant difference between the IV compared to the CPR+ defibrillation group (p=0.031 and IV compared to the CPR-only group (p=0.001. There was a significant difference between the IO group compared to the CPR+ defibrillation group (p=0.031 and IO compared to the CPR-only group (p=0.001. There was no significant difference between the CPR + defibrillation group and the CPR group (p=0.127. There was no significant difference in Cmax between the IO and IV groups (p=0.079. The mean ± standard deviation of Cmax of the IO group was 58,709±25,463pg/mL compared to the IV group, which was 106,198±62,135pg/mL. There was no significant difference in mean Tmax between the groups (p=0.084. There were no significant differences in odds of ROSC between the tibial IO and IV groups. Conclusion: Prompt access to the vascular system using the IO route can circumvent

  17. Proof of Concept of Home IoT Connected Vehicles.

    Science.gov (United States)

    Kim, Younsun; Oh, Hyunggoy; Kang, Sungho

    2017-06-05

    The way in which we interact with our cars is changing, driven by the increased use of mobile devices, cloud-based services, and advanced automotive technology. In particular, the requirements and market demand for the Internet of Things (IoT) device-connected vehicles will continuously increase. In addition, the advances in cloud computing and IoT have provided a promising opportunity for developing vehicular software and services in the automotive domain. In this paper, we introduce the concept of a home IoT connected vehicle with a voice-based virtual personal assistant comprised of a vehicle agent and a home agent. The proposed concept is evaluated by implementing a smartphone linked with home IoT devices that are connected to an infotainment system for the vehicle, a smartphone-based natural language interface input device, and cloud-based home IoT devices for the home. The home-to-vehicle connected service scenarios that aim to reduce the inconvenience due to simple and repetitive tasks by improving the urban mobility efficiency in IoT environments are substantiated by analyzing real vehicle testing and lifestyle research. Remarkable benefits are derived by making repetitive routine tasks one task that is executed by a command and by executing essential tasks automatically, without any request. However, it should be used with authorized permission, applied without any error at the right time, and applied under limited conditions to sense the habitants' intention correctly and to gain the required trust regarding the remote execution of tasks.

  18. The Method of System Test using I/O Stimulator

    International Nuclear Information System (INIS)

    Kim, Jang Yeol; Lee, Dong Young; Kim, Chang Hoi

    2016-01-01

    In general, the software development life cycle consists of the requirement phase, design phase, implementation phase, testing phase, integration phase (software-software integration, software-hardware integration), installation phase, and operation and maintenance phase. The fundamental parts to the testing phase are component test, software integration test, software hardware integration test, and system test. Among these tests, we focused in particular on system test using I/O stimulator. The system test operates the functionality, performance, and interface because system testing falls within the scope of black box testing, which should not require knowledge of the inner design of the code or logic. The purpose of developing a system test using a I/O stimulator is to save time and effort from the functionality and performance tests. We developed an I/O stimulator for the burning system test based on the operational scenario. The hardware, software, and manmachine- interface (MMI) are fundamental parts to the I/O stimulator. Signal sources from the I/O stimulator contain analog input, analog output, digital input, digital output, a Programmable Power Supply, an RS232C Serial interface and a dual port Ethernet interface. While automation cannot reproduce everything that a software engineer can do, it can be extremely useful for the system test. However, it does require the test criteria and a well-developed test suite of the testing scripts in order to be useful. In this study, we developed a multipurpose and cost-efficient I/O stimulator using LabVIEW program instead of the testing scripts

  19. Proof of Concept of Home IoT Connected Vehicles

    Science.gov (United States)

    Kim, Younsun; Oh, Hyunggoy; Kang, Sungho

    2017-01-01

    The way in which we interact with our cars is changing, driven by the increased use of mobile devices, cloud-based services, and advanced automotive technology. In particular, the requirements and market demand for the Internet of Things (IoT) device-connected vehicles will continuously increase. In addition, the advances in cloud computing and IoT have provided a promising opportunity for developing vehicular software and services in the automotive domain. In this paper, we introduce the concept of a home IoT connected vehicle with a voice-based virtual personal assistant comprised of a vehicle agent and a home agent. The proposed concept is evaluated by implementing a smartphone linked with home IoT devices that are connected to an infotainment system for the vehicle, a smartphone-based natural language interface input device, and cloud-based home IoT devices for the home. The home-to-vehicle connected service scenarios that aim to reduce the inconvenience due to simple and repetitive tasks by improving the urban mobility efficiency in IoT environments are substantiated by analyzing real vehicle testing and lifestyle research. Remarkable benefits are derived by making repetitive routine tasks one task that is executed by a command and by executing essential tasks automatically, without any request. However, it should be used with authorized permission, applied without any error at the right time, and applied under limited conditions to sense the habitants’ intention correctly and to gain the required trust regarding the remote execution of tasks. PMID:28587246

  20. The Method of System Test using I/O Stimulator

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jang Yeol; Lee, Dong Young; Kim, Chang Hoi [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In general, the software development life cycle consists of the requirement phase, design phase, implementation phase, testing phase, integration phase (software-software integration, software-hardware integration), installation phase, and operation and maintenance phase. The fundamental parts to the testing phase are component test, software integration test, software hardware integration test, and system test. Among these tests, we focused in particular on system test using I/O stimulator. The system test operates the functionality, performance, and interface because system testing falls within the scope of black box testing, which should not require knowledge of the inner design of the code or logic. The purpose of developing a system test using a I/O stimulator is to save time and effort from the functionality and performance tests. We developed an I/O stimulator for the burning system test based on the operational scenario. The hardware, software, and manmachine- interface (MMI) are fundamental parts to the I/O stimulator. Signal sources from the I/O stimulator contain analog input, analog output, digital input, digital output, a Programmable Power Supply, an RS232C Serial interface and a dual port Ethernet interface. While automation cannot reproduce everything that a software engineer can do, it can be extremely useful for the system test. However, it does require the test criteria and a well-developed test suite of the testing scripts in order to be useful. In this study, we developed a multipurpose and cost-efficient I/O stimulator using LabVIEW program instead of the testing scripts.

  1. Acting in solidarity: Testing an extended dual pathway model of collective action by bystander group members.

    Science.gov (United States)

    Saab, Rim; Tausch, Nicole; Spears, Russell; Cheung, Wing-Yee

    2015-09-01

    We examined predictors of collective action among bystander group members in solidarity with a disadvantaged group by extending the dual pathway model of collective action, which proposes one efficacy-based and one emotion-based path to collective action (Van Zomeren, Spears, Fischer, & Leach, 2004). Based on two proposed functions of social identity performance (Klein, Spears, & Reicher, 2007), we distinguished between the efficacy of collective action at consolidating the identity of a protest movement and its efficacy at achieving social change (political efficacy). We expected identity consolidation efficacy to positively predict collective action tendencies directly and indirectly via political efficacy. We also expected collective action tendencies to be positively predicted by moral outrage and by sympathy in response to disadvantaged outgroup's suffering. These hypotheses were supported in two surveys examining intentions to protest for Palestine in Britain (Study 1), and intentions to attend the June 4th vigil in Hong Kong to commemorate the Tiananmen massacre among a sample of Hong Kong citizens (Study 2). The contributions of these findings to research on the dual pathway model of collective action and the different functions of collective action are discussed. © 2014 The British Psychological Society.

  2. Lyman Alpha Camera for Io's SO2 atmosphere and Europa's water plumes

    Science.gov (United States)

    McEwen, Alfred S.; Sandel, Bill; Schneider, Nick

    2014-05-01

    absorption. Also, the radiation-induced noise is lower at Europa, permitting longer exposure times and imaging at closer range. This is a very simple instrument with no moving parts, a mass of 4 kg (plus 1.7 kg radiation shielding), and it needs 4 W power. It has no special accommodation requirements and would simply collect data in ride-along mode during point-and-stare sequences. Feaga, L.M., et al. (2009) Io's dayside SO2 atmosphere, Icarus 201, 570-584 (2009). Feldman, P.D., et al., (2000) Lyman-α imaging of the SO2 distribution on Io, Geophys. Res. Lett., 27, 1787-1790. McEwen, A.S. et al. (2014) Io Volcano Observer (IVO): Budget travel to the outer Solar System. Acta Astronautica 93, 539-544. Roth, L. et al. (2014) Transient water vapor at Europa's south pole. Science 343, 171. Sandel, B., et al. (2000) The Extreme Ultraviolet Imager investigation for the IMAGE mission. Space Sci. Rev. 91, 197-242.

  3. Instant OpenCV for iOS

    CERN Document Server

    Kornyakov, Kirill

    2013-01-01

    Filled with practical, step-by-step instructions and clear explanations for the most important and useful tasks. This book uses a very practical approach, with each recipe and their associated sample projects or examples focusing on a particular aspect of the technology.This book is intended for OpenCV developers who are interested in porting their applications to the iOS platform. Basic experience with OpenCV, computer vision, Objective C, and other iOS tools is encouraged.

  4. An iOS implementation of the Shannon switching game

    OpenAIRE

    Macík, Miroslav

    2013-01-01

    Shannon switching game is a logical graph game for two players. The game was created by American mathematician Claude Shannon. iOS is an operating system designed for iPhone cellular phone, iPod music player and iPad tablet. The thesis describes existing implementations of the game and also specific implementation for iOS operating system created as a part of this work. This implementation allows you to play against virtual opponent and also supports multiplayer game consisting of two players...

  5. Academic Optimism and Collective Responsibility: An Organizational Model of the Dynamics of Student Achievement

    Science.gov (United States)

    Wu, Jason H.

    2013-01-01

    This study was designed to examine the construct of academic optimism and its relationship with collective responsibility in a sample of Taiwan elementary schools. The construct of academic optimism was tested using confirmatory factor analysis, and the whole structural model was tested with a structural equation modeling analysis. The data were…

  6. Specification and Aggregation Errors in Environmentally Extended Input-Output Models

    NARCIS (Netherlands)

    Bouwmeester, Maaike C.; Oosterhaven, Jan

    This article considers the specification and aggregation errors that arise from estimating embodied emissions and embodied water use with environmentally extended national input-output (IO) models, instead of with an environmentally extended international IO model. Model specification errors result

  7. Measurements of IO in the Tropical Marine Boundary Layer using Laser-Induced Fluorescence Spectroscopy

    Science.gov (United States)

    Walker, H.; Ingham, T.; Heard, D. E.

    2012-12-01

    Halogenated short-lived substances (VSLS) are emitted from the oceans by marine species such as macroalgae and phytoplankton and contribute to halogen loading in the troposphere and lower stratosphere. Transport of halogenated VSLS into the stratosphere occurs mainly in the tropics, where ascending warm air carries them aloft, and leads to catalytic depletion of stratospheric ozone on a global scale and formation of the Antarctic ozone hole. The tropical marine environment is therefore an important region in which to study the effects of these short-lived halogen species on ozone depletion. The SHIVA (Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere) project combines ship-borne, aircraft-based and ground-based measurements in and over the South China Sea and the Sulu Sea, and around the coast of Malaysian Borneo, to reduce uncertainties in the amount of halogenated VSLS reaching the stratosphere, the associated ozone depletion, and the effects of a changing climate on these processes. In this work we present measurements of IO radicals made onboard the German research vessel Sonne during SHIVA, between Singapore and Manila. IO is formed via photolysis of iodine-containing source gases (e.g. I2, CH3I) to produce I atoms, which react with ozone. It is therefore an important species to consider when assessing the impacts of halogen chemistry on ozone depletion. Measurements of IO were made over a two-week period by the University of Leeds Laser-Induced Fluorescence (LIF) instrument, which excites IO radicals at λ ~ 445 nm and detects the resultant fluorescence at λ ~ 512 nm. A suite of supporting gas- and aqueous-phase measurements were also made, including concentrations of halocarbons (e.g. CHBr3, CH3I), trace pollutant gases (e.g. CO, O3, NOx), and biological parameters (e.g. abundance and speciation of phytoplankton). Preliminary data analysis indicates that IO was detected above the instrumental limit of detection (0.3 pptv for a 30 minute averaging

  8. Models of municipal solid waste generation and collection costs applicable to all municipalities in Thailand

    Directory of Open Access Journals (Sweden)

    Chira Bureecam

    2015-08-01

    Full Text Available The aim of this paper is to identify and measure the variables which influence municipal solid waste (MSW generation and collection costs in Thai municipality. The empirical analysis is based on the information derived from a survey conducted in a sample size of 570 municipalities across the country. The results from the MSW generation model indicate that the population density, the household size and the size of municipality are the significant determinant of waste generation. Meanwhile, with regards to the MSW collection cost model, the results showed some existence of positive in the volume of MSW collected, population density, the distance between the center of municipality to the disposal site the hazardous sorting and the size of municipality whereas, there were no evidence of the frequency of collection and the ratio of recycled material to waste generation on cost.

  9. A continuous time model of the bandwagon effect in collective action

    OpenAIRE

    Arieh Gavious; Shlomo Mizrahi

    2001-01-01

    The paper offers a complex and systematic model of the bandwagon effect in collective action using continuous time equations. The model treats the bandwagon effect as a process influenced by ratio between the mobilization efforts of social activists and the resources invested by the government to counteract this activity. The complex modeling approach makes it possible to identify the conditions for specific types of the bandwagon effect, and determines the scope of that effect. Relying on ce...

  10. Modeling collective animal behavior with a cognitive perspective: a methodological framework.

    Directory of Open Access Journals (Sweden)

    Sebastian Weitz

    Full Text Available The last decades have seen an increasing interest in modeling collective animal behavior. Some studies try to reproduce as accurately as possible the collective dynamics and patterns observed in several animal groups with biologically plausible, individual behavioral rules. The objective is then essentially to demonstrate that the observed collective features may be the result of self-organizing processes involving quite simple individual behaviors. Other studies concentrate on the objective of establishing or enriching links between collective behavior researches and cognitive or physiological ones, which then requires that each individual rule be carefully validated. Here we discuss the methodological consequences of this additional requirement. Using the example of corpse clustering in ants, we first illustrate that it may be impossible to discriminate among alternative individual rules by considering only observational data collected at the group level. Six individual behavioral models are described: They are clearly distinct in terms of individual behaviors, they all reproduce satisfactorily the collective dynamics and distribution patterns observed in experiments, and we show theoretically that it is strictly impossible to discriminate two of these models even in the limit of an infinite amount of data whatever the accuracy level. A set of methodological steps are then listed and discussed as practical ways to partially overcome this problem. They involve complementary experimental protocols specifically designed to address the behavioral rules successively, conserving group-level data for the overall model validation. In this context, we highlight the importance of maintaining a sharp distinction between model enunciation, with explicit references to validated biological concepts, and formal translation of these concepts in terms of quantitative state variables and fittable functional dependences. Illustrative examples are provided of the

  11. Juno-UVS observation of the Io footprint: Influence of Io's local environment and passage into eclipse on the strength of the interaction

    Science.gov (United States)

    Hue, V.; Gladstone, R.; Greathouse, T. K.; Versteeg, M.; Bonfond, B.; Saur, J.; Davis, M. W.; Roth, L.; Grodent, D. C.; Gerard, J. C. M. C.; Kammer, J.; Bolton, S. J.; Levin, S.; Connerney, J. E. P.

    2017-12-01

    The Juno mission offers an unprecedented opportunity to study Jupiter, from its internal structure to its magnetospheric environment. Juno-UVS is a UV spectrograph with a bandpass of 70vantage point above the poles. In particular, UVS has observed the instantaneous Io footprint and extended tail as Io enters into eclipse. This observation may better constrain whether the atmosphere of Io is sustained via volcanic activity or sublimation. Among other processes, the modulation of Io's footprint brightness correlates to the strength of the interaction between the Io plasma torus and its ionosphere, which, in turn, is likely to be affected by the atmospheric collapse. UVS observed the Io footprint during two eclipses that occurred on PJ1 and PJ3, and one additional eclipse observation is planned during PJ9 (24 Oct. 2017). We present how the electrodynamic coupling between Io and Jupiter is influenced by changes in Io's local environment, e.g. Io's passage in and out of eclipse and Io's traverse of the magnetodisc plasma sheet.

  12. Building IoT Services for Aging in Place Using Standard-Based IoT Platforms and Heterogeneous IoT Products.

    Science.gov (United States)

    Fattah, Sheik Mohammad Mostakim; Sung, Nak-Myoung; Ahn, Il-Yeup; Ryu, Minwoo; Yun, Jaeseok

    2017-10-11

    An aging population and human longevity is a global trend. Many developed countries are struggling with the yearly increasing healthcare cost that dominantly affects their economy. At the same time, people living with old adults suffering from a progressive brain disorder such as Alzheimer's disease are enduring even more stress and depression than those patients while caring for them. Accordingly, seniors' ability to live independently and comfortably in their current home for as long as possible has been crucial to reduce the societal cost for caregiving and thus give family members peace of mind, called 'aging in place' (AIP). In this paper we present a way of building AIP services using standard-based IoT platforms and heterogeneous IoT products. An AIP service platform is designed and created by combining previous standard-based IoT platforms in a collaborative way. A service composition tool is also created that allows people to create AIP services in an efficient way. To show practical usability of our proposed system, we choose a service scenario for medication compliance and implement a prototype service which could give old adults medication reminder appropriately at the right time (i.e., when it is time to need to take pills) through light and speaker at home but also wrist band and smartphone even outside the home.

  13. Building IoT Services for Aging in Place Using Standard-Based IoT Platforms and Heterogeneous IoT Products

    Directory of Open Access Journals (Sweden)

    Sheik Mohammad Mostakim Fattah

    2017-10-01

    Full Text Available An aging population and human longevity is a global trend. Many developed countries are struggling with the yearly increasing healthcare cost that dominantly affects their economy. At the same time, people living with old adults suffering from a progressive brain disorder such as Alzheimer’s disease are enduring even more stress and depression than those patients while caring for them. Accordingly, seniors’ ability to live independently and comfortably in their current home for as long as possible has been crucial to reduce the societal cost for caregiving and thus give family members peace of mind, called ‘aging in place’ (AIP. In this paper we present a way of building AIP services using standard-based IoT platforms and heterogeneous IoT products. An AIP service platform is designed and created by combining previous standard-based IoT platforms in a collaborative way. A service composition tool is also created that allows people to create AIP services in an efficient way. To show practical usability of our proposed system, we choose a service scenario for medication compliance and implement a prototype service which could give old adults medication reminder appropriately at the right time (i.e., when it is time to need to take pills through light and speaker at home but also wrist band and smartphone even outside the home.

  14. Internet of Robotic Things – Converging Sensing/Actuating, Hyperconnectivity, Artificial Intelligence and IoT Platforms

    OpenAIRE

    Vermesan, Ovidiu; Bröring, Arne; Tragos, Elias Z.; Serrano, Martin; Bacciu, Davide; Chessa, Stefano; Gallicchio, Claudio; Micheli, Alessio; Dragone, Mauro; Saffiotti, Alessandro; Simoens, Pieter; Cavallo, Filippo; Bahr, Roy

    2017-01-01

    The Internet of Things (IoT) concept is evolving rapidly and influencing new developments in various application domains, such as the Internet of Mobile Things (IoMT), Autonomous Internet of Things (A-IoT), Autonomous System of Things (ASoT), Internet of Autonomous Things (IoAT), Internet of Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc. that are progressing/advancing by using IoT technology. The IoT influence represents new development and deployment challenges in diffe...

  15. Improving Snow Modeling by Assimilating Observational Data Collected by Citizen Scientists

    Science.gov (United States)

    Crumley, R. L.; Hill, D. F.; Arendt, A. A.; Wikstrom Jones, K.; Wolken, G. J.; Setiawan, L.

    2017-12-01

    Modeling seasonal snow pack in alpine environments includes a multiplicity of challenges caused by a lack of spatially extensive and temporally continuous observational datasets. This is partially due to the difficulty of collecting measurements in harsh, remote environments where extreme gradients in topography exist, accompanied by large model domains and inclement weather. Engaging snow enthusiasts, snow professionals, and community members to participate in the process of data collection may address some of these challenges. In this study, we use SnowModel to estimate seasonal snow water equivalence (SWE) in the Thompson Pass region of Alaska while incorporating snow depth measurements collected by citizen scientists. We develop a modeling approach to assimilate hundreds of snow depth measurements from participants in the Community Snow Observations (CSO) project (www.communitysnowobs.org). The CSO project includes a mobile application where participants record and submit geo-located snow depth measurements while working and recreating in the study area. These snow depth measurements are randomly located within the model grid at irregular time intervals over the span of four months in the 2017 water year. This snow depth observation dataset is converted into a SWE dataset by employing an empirically-based, bulk density and SWE estimation method. We then assimilate this data using SnowAssim, a sub-model within SnowModel, to constrain the SWE output by the observed data. Multiple model runs are designed to represent an array of output scenarios during the assimilation process. An effort to present model output uncertainties is included, as well as quantification of the pre- and post-assimilation divergence in modeled SWE. Early results reveal pre-assimilation SWE estimations are consistently greater than the post-assimilation estimations, and the magnitude of divergence increases throughout the snow pack evolution period. This research has implications beyond the

  16. Greater Baltimore Open Air: an Internet of Things (IoT) approach to citizen science and community-driven climate, air quality, and urban heat island monitoring

    Science.gov (United States)

    Scott, A.; Kelley, C.; Azdoud, Y.; Ambikapathi, R.; Hobson, M.; Lehman, A.; Ghugare, P.; He, C.; Zaitchik, B. F.; Waugh, D.; McCormack, M.; Baja, K.

    2017-12-01

    Anthropogenic activities alter the urban surface and surface atmosphere, generating heat and pollutants that have known detrimental impacts on health. Monitoring these environmental variables in urban environments is made difficult by the spatial heterogeneity of urban environments, meaning that two nearby locations may have significantly different temperatures, humidities, or gas concentrations. Thus, urban monitoring often requires more densely placed monitors than current standards or budgets allow. Recent advances in low-cost sensors and Internet of Things (IoT) enabled hardware offer possible solutions. We present an autonomous wireless, open-source, IoT-enabled environmental monitor called a WeatherCube, developed for the Greater Baltimore Open Air project, funded in part by the EPA SmartCity Challenge. The WeatherCube is suitable for urban monitoring and capable of measuring meteorological variables (temperature and humidity) as well as air quality (ozone, nitrogen dioxide, and sulfur dioxide). The WeatherCube devices were built in collaboration with Johns Hopkins University, local government, and community members, including through an innovative job training program. Monitors are hosted by community partners and libraries throughout Baltimore city and surrounding communities. We present the first wave of data collected by the Greater Baltimore Open Air project and compare it to data collected by the Maryland Department of the Environment (MDE). Additionally, we will provide an overview of our experience engaging with the local makers, citizen scientists, and environmental groups to improve their urban environmental monitoring. By developing low-cost devices tailored for urban environmental monitoring, we present an innovative model for both conducting research and community outreach.

  17. IoT-Forensics Meets Privacy: Towards Cooperative Digital Investigations.

    Science.gov (United States)

    Nieto, Ana; Rios, Ruben; Lopez, Javier

    2018-02-07

    IoT-Forensics is a novel paradigm for the acquisition of electronic evidence whose operation is conditioned by the peculiarities of the Internet of Things (IoT) context. As a branch of computer forensics, this discipline respects the most basic forensic principles of preservation, traceability, documentation, and authorization. The digital witness approach also promotes such principles in the context of the IoT while allowing personal devices to cooperate in digital investigations by voluntarily providing electronic evidence to the authorities. However, this solution is highly dependent on the willingness of citizens to collaborate and they may be reluctant to do so if the sensitive information within their personal devices is not sufficiently protected when shared with the investigators. In this paper, we provide the digital witness approach with a methodology that enables citizens to share their data with some privacy guarantees. We apply the PRoFIT methodology, originally defined for IoT-Forensics environments, to the digital witness approach in order to unleash its full potential. Finally, we show the feasibility of a PRoFIT-compliant digital witness with two use cases.

  18. An IoT architecture for cloud connected electric vehicles

    NARCIS (Netherlands)

    Ramamurthy, P.

    2015-01-01

    This report presents the EV-user scenario as an use-case of a hyper-connected environment. The need for efforts on standardisation in the IoT world is explained with a detailed view of the software architecture to achieve it.

  19. Learn Unity 4 for iOS game development

    CERN Document Server

    Chu, Philip

    2013-01-01

    The only book on Unity 4 game development The only up-to-date book on Unity for iOS Philip Chu is the author of a very popular online Unity tutorial, frequently recommended on sites like StackOverflow

  20. Cassini-VIMS at Jupiter: Solar occultation measurements using Io

    Science.gov (United States)

    Formisano, V.; D'Aversa, E.; Bellucci, G.; Baines, K.H.; Bibring, J.-P.; Brown, R.H.; Buratti, B.J.; Capaccioni, F.; Cerroni, P.; Clark, R.N.; Coradini, A.; Cruikshank, D.P.; Drossart, P.; Jaumann, R.; Langevin, Y.; Matson, D.L.; McCord, T.B.; Mennella, V.; Nelson, R.M.; Nicholson, P.D.; Sicardy, B.; Sotin, Christophe; Chamberlain, M.C.; Hansen, G.; Hibbits, K.; Showalter, M.; Filacchione, G.

    2003-01-01

    We report unusual and somewhat unexpected observations of the jovian satellite Io, showing strong methane absorption bands. These observations were made by the Cassini VIMS experiment during the Jupiter flyby of December/January 2000/2001. The explanation is straightforward: Entering or exiting from Jupiter's shadow during an eclipse, Io is illuminated by solar light which has transited the atmosphere of Jupiter. This light, therefore becomes imprinted with the spectral signature of Jupiter's upper atmosphere, which includes strong atmospheric methane absorption bands. Intercepting solar light refracted by the jovian atmosphere, Io essentially becomes a "miffor" for solar occultation events of Jupiter. The thickness of the layer where refracted solar light is observed is so large (more than 3000 km at Io's orbit), that we can foresee a nearly continuous multi-year period of similar events at Saturn, utilizing the large and bright ring system. During Cassini's 4-year nominal mission, this probing tecnique should reveal information of Saturn's atmosphere over a large range of southern latitudes and times. ?? 2003 Elsevier Inc. All rights reserved.

  1. Stakeholder Management in IOS projects : Lessons from a case study

    NARCIS (Netherlands)

    Boonstra, Albert

    2006-01-01

    Implementing an effective inter-organizational system (IOS) requires significant organizational as well as technical changes. These will affect stakeholders with varying degrees of power and with varying degrees of interest in the system – yet promoters depend on them if the project is to succeed.

  2. NIMS: hotspots on Io during G2 (continued)

    Science.gov (United States)

    1997-01-01

    This is another Near Infrared Mapping Spectrometer (NIMS) image of Io, taken during the G2 encounter in September 1996. This is a dayside image of Io (on the right) against the clouds of Jupiter (the blue background). On the left is a Voyager mosaic of Io with the same viewing geometry for comparison purposes. This NIMS data set has been processed to highlight the positions of hot spots on the surface of Io. At least 11 can be seen. Two of the hotspots are newly discovered by the NIMS instrument. Others correspond to sites of plume eruptions and volcanic calderas and volcanic flows. This image can be compared with the SSI image P-47971 released on October 23, 1996, which was taken almost exactly the same position.The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.

  3. IoT-Forensics Meets Privacy: Towards Cooperative Digital Investigations

    Directory of Open Access Journals (Sweden)

    Ana Nieto

    2018-02-01

    Full Text Available IoT-Forensics is a novel paradigm for the acquisition of electronic evidence whose operation is conditioned by the peculiarities of the Internet of Things (IoT context. As a branch of computer forensics, this discipline respects the most basic forensic principles of preservation, traceability, documentation, and authorization. The digital witness approach also promotes such principles in the context of the IoT while allowing personal devices to cooperate in digital investigations by voluntarily providing electronic evidence to the authorities. However, this solution is highly dependent on the willingness of citizens to collaborate and they may be reluctant to do so if the sensitive information within their personal devices is not sufficiently protected when shared with the investigators. In this paper, we provide the digital witness approach with a methodology that enables citizens to share their data with some privacy guarantees. We apply the PRoFIT methodology, originally defined for IoT-Forensics environments, to the digital witness approach in order to unleash its full potential. Finally, we show the feasibility of a PRoFIT-compliant digital witness with two use cases.

  4. Creating Feedback Channels With Optical Communications For Information Operations (IO)

    Science.gov (United States)

    2016-06-01

    amphibious operations. Optical communications technologies, direct marketing principles , and current IO shortfalls are explored to determine whether...technology. First, these concepts are applied to show covert amphibious operations. Optical communications technologies, direct marketing principles , and...power, as per Appendix A. A major portion of the marketing campaign comes in the form of advertising. The correlating principles of advertising in

  5. IoT-Forensics Meets Privacy: Towards Cooperative Digital Investigations

    Science.gov (United States)

    Lopez, Javier

    2018-01-01

    IoT-Forensics is a novel paradigm for the acquisition of electronic evidence whose operation is conditioned by the peculiarities of the Internet of Things (IoT) context. As a branch of computer forensics, this discipline respects the most basic forensic principles of preservation, traceability, documentation, and authorization. The digital witness approach also promotes such principles in the context of the IoT while allowing personal devices to cooperate in digital investigations by voluntarily providing electronic evidence to the authorities. However, this solution is highly dependent on the willingness of citizens to collaborate and they may be reluctant to do so if the sensitive information within their personal devices is not sufficiently protected when shared with the investigators. In this paper, we provide the digital witness approach with a methodology that enables citizens to share their data with some privacy guarantees. We apply the PRoFIT methodology, originally defined for IoT-Forensics environments, to the digital witness approach in order to unleash its full potential. Finally, we show the feasibility of a PRoFIT-compliant digital witness with two use cases. PMID:29414864

  6. Application-Tailored I/O with Streamline

    NARCIS (Netherlands)

    de Bruijn, W.J.; Bos, H.J.; Bal, H.E.

    2011-01-01

    Streamline is a stream-based OS communication subsystem that spans from peripheral hardware to userspace processes. It improves performance of I/O-bound applications (such as webservers and streaming media applications) by constructing tailor-made I/O paths through the operating system for each

  7. UbiCompass: An IoT Interaction Concept

    Directory of Open Access Journals (Sweden)

    Günter Alce

    2018-01-01

    Full Text Available Lately, different wearable form factors have reached the consumer domain. Wearables enable at-a-glance access to information and can continually sense the surrounding environment. Internet of Things (IoT researchers have focused on the main enabling factors: the integration of several technologies and communication solutions. Less effort has been devoted to exploring how not-so-tech-savvy end users can discover and directly interact with the numerous connected things predicted by the IoT vision. This paper presents a novel IoT interaction concept called UbiCompass. A functional, smartwatch face prototype of the UbiCompass was developed and integrated with an existing smart home system, in which five different connected devices could be controlled using simple interaction. It was then compared to a traditional smartphone mobile application in a controlled experiment. The results show statistically significant differences in favor of the proposed concept. This highlights the potential the UbiCompass has as an IoT interaction concept.

  8. Interoperability for smart appliances in the IoT world

    NARCIS (Netherlands)

    Daniele, L.; Solanki, M.; Hartog, F. den; Roes, J.

    2016-01-01

    Household appliances are set to become highly intelligent, smart and networked devices in the near future. Systematically deployed on the Internet of Things (IoT), they would be able to form complete energy consuming, producing, and managing ecosystems. Smart systems are technically very

  9. Secure and Efficient Access Control Scheme for Wireless Sensor Networks in the Cross-Domain Context of the IoT

    Directory of Open Access Journals (Sweden)

    Ming Luo

    2018-01-01

    Full Text Available Nowadays wireless sensor network (WSN is increasingly being used in the Internet of Things (IoT for data collection, and design of an access control scheme that allows an Internet user as part of IoT to access the WSN becomes a hot topic. A lot of access control schemes have been proposed for the WSNs in the context of the IoT. Nevertheless, almost all of these schemes assume that communication nodes in different network domains share common system parameters, which is not suitable for cross-domain IoT environment in practical situations. To solve this shortcoming, we propose a more secure and efficient access control scheme for wireless sensor networks in the cross-domain context of the Internet of Things, which allows an Internet user in a certificateless cryptography (CLC environment to communicate with a sensor node in an identity-based cryptography (IBC environment with different system parameters. Moreover, our proposed scheme achieves known session-specific temporary information security (KSSTIS that most of access control schemes cannot satisfy. Performance analysis is given to show that our scheme is well suited for wireless sensor networks in the cross-domain context of the IoT.

  10. Advanced I/O for large-scale scientific applications

    International Nuclear Information System (INIS)

    Klasky, Scott; Schwan, Karsten; Oldfield, Ron A.; Lofstead, Gerald F. II

    2010-01-01

    As scientific simulations scale to use petascale machines and beyond, the data volumes generated pose a dual problem. First, with increasing machine sizes, the careful tuning of IO routines becomes more and more important to keep the time spent in IO acceptable. It is not uncommon, for instance, to have 20% of an application's runtime spent performing IO in a 'tuned' system. Careful management of the IO routines can move that to 5% or even less in some cases. Second, the data volumes are so large, on the order of 10s to 100s of TB, that trying to discover the scientifically valid contributions requires assistance at runtime to both organize and annotate the data. Waiting for offline processing is not feasible due both to the impact on the IO system and the time required. To reduce this load and improve the ability of scientists to use the large amounts of data being produced, new techniques for data management are required. First, there is a need for techniques for efficient movement of data from the compute space to storage. These techniques should understand the underlying system infrastructure and adapt to changing system conditions. Technologies include aggregation networks, data staging nodes for a closer parity to the IO subsystem, and autonomic IO routines that can detect system bottlenecks and choose different approaches, such as splitting the output into multiple targets, staggering output processes. Such methods must be end-to-end, meaning that even with properly managed asynchronous techniques, it is still essential to properly manage the later synchronous interaction with the storage system to maintain acceptable performance. Second, for the data being generated, annotations and other metadata must be incorporated to help the scientist understand output data for the simulation run as a whole, to select data and data features without concern for what files or other storage technologies were employed. All of these features should be attained while

  11. Mathematical Analysis for Non-reciprocal-interaction-based Model of Collective Behavior

    Science.gov (United States)

    Kano, Takeshi; Osuka, Koichi; Kawakatsu, Toshihiro; Ishiguro, Akio

    2017-12-01

    In many natural and social systems, collective behaviors emerge as a consequence of non-reciprocal interaction between their constituents. As a first step towards understanding the core principle that underlies these phenomena, we previously proposed a minimal model of collective behavior based on non-reciprocal interactions by drawing inspiration from friendship formation in human society, and demonstrated via simulations that various non-trivial patterns emerge by changing parameters. In this study, a mathematical analysis of the proposed model wherein the system size is small is performed. Through the analysis, the mechanism of the transition between several patterns is elucidated.

  12. Global Distribution of Active Volcanism on Io as Known at the End of the Galileo Mission

    Science.gov (United States)

    Lopes, Rosaly M. C.; Kamp. Lucas W.; Smythe, W. D.; Radebaugh, J.; Turtle, E.; Perry, J.; Bruno, B.

    2004-01-01

    Hot spots are manifestations of Io s mechanism of internal heating and heat transfer. Therefore, the global distribution of hot spots and their power output has important implications for how Io is losing heat. The end of the Galileo mission is an opportune time to revisit studies of the distribution of hot spots on Io, and to investigate the distribution of their power output.

  13. Uncovering the Images and Meanings of International Organizations (IOs) in Higher Education Research

    Science.gov (United States)

    Shahjahan, Riyad A.; Madden, Meggan

    2015-01-01

    Employing Stuart Hall's concept of representation, we examine how international organizations (IOs) are presented in the higher education literature. This paper examines how IOs, such as the World Bank, OECD, and UNESCO, are conceptualized and represented by higher education researchers. We focus on three main representations of IOs in the higher…

  14. IAACaaS: IoT Application-Scoped Access Control as a Service

    Directory of Open Access Journals (Sweden)

    Álvaro Alonso

    2017-10-01

    Full Text Available access control is a key element when guaranteeing the security of online services. However, devices that make the Internet of Things have some special requirements that foster new approaches to access control mechanisms. Their low computing capabilities impose limitations that make traditional paradigms not directly applicable to sensors and actuators. In this paper, we propose a dynamic, scalable, IoT-ready model that is based on the OAuth 2.0 protocol and that allows the complete delegation of authorization, so that an as a service access control mechanism is provided. Multiple tenants are also supported by means of application-scoped authorization policies, whose roles and permissions are fine-grained enough to provide the desired flexibility of configuration. Besides, OAuth 2.0 ensures interoperability with the rest of the Internet, yet preserving the computing constraints of IoT devices, because its tokens provide all the necessary information to perform authorization. The proposed model has been fully implemented in an open-source solution and also deeply validated in the scope of FIWARE, a European project with thousands of users, the goal of which is to provide a framework for developing smart applications and services for the future Internet. We provide the details of the deployed infrastructure and offer the analysis of a sample smart city setup that takes advantage of the model. We conclude that the proposed solution enables a new access control as a service paradigm that satisfies the special requirements of IoT devices in terms of performance, scalability and interoperability.

  15. Modeling the efficiency of a magnetic needle for collecting magnetic cells

    International Nuclear Information System (INIS)

    Butler, Kimberly S; Lovato, Debbie M; Larson, Richard S; Adolphi, Natalie L; Bryant, H C; Flynn, Edward R

    2014-01-01

    As new magnetic nanoparticle-based technologies are developed and new target cells are identified, there is a critical need to understand the features important for magnetic isolation of specific cells in fluids, an increasingly important tool in disease research and diagnosis. To investigate magnetic cell collection, cell-sized spherical microparticles, coated with superparamagnetic nanoparticles, were suspended in (1) glycerine–water solutions, chosen to approximate the range of viscosities of bone marrow, and (2) water in which 3, 5, 10 and 100% of the total suspended microspheres are coated with magnetic nanoparticles, to model collection of rare magnetic nanoparticle-coated cells from a mixture of cells in a fluid. The magnetic microspheres were collected on a magnetic needle, and we demonstrate that the collection efficiency versus time can be modeled using a simple, heuristically-derived function, with three physically-significant parameters. The function enables experimentally-obtained collection efficiencies to be scaled to extract the effective drag of the suspending medium. The results of this analysis demonstrate that the effective drag scales linearly with fluid viscosity, as expected. Surprisingly, increasing the number of non-magnetic microspheres in the suspending fluid results increases the collection of magnetic microspheres, corresponding to a decrease in the effective drag of the medium. (paper)

  16. Modeling the efficiency of a magnetic needle for collecting magnetic cells

    Science.gov (United States)

    Butler, Kimberly S.; Adolphi, Natalie L.; Bryant, H. C.; Lovato, Debbie M.; Larson, Richard S.; Flynn, Edward R.

    2014-07-01

    As new magnetic nanoparticle-based technologies are developed and new target cells are identified, there is a critical need to understand the features important for magnetic isolation of specific cells in fluids, an increasingly important tool in disease research and diagnosis. To investigate magnetic cell collection, cell-sized spherical microparticles, coated with superparamagnetic nanoparticles, were suspended in (1) glycerine-water solutions, chosen to approximate the range of viscosities of bone marrow, and (2) water in which 3, 5, 10 and 100% of the total suspended microspheres are coated with magnetic nanoparticles, to model collection of rare magnetic nanoparticle-coated cells from a mixture of cells in a fluid. The magnetic microspheres were collected on a magnetic needle, and we demonstrate that the collection efficiency versus time can be modeled using a simple, heuristically-derived function, with three physically-significant parameters. The function enables experimentally-obtained collection efficiencies to be scaled to extract the effective drag of the suspending medium. The results of this analysis demonstrate that the effective drag scales linearly with fluid viscosity, as expected. Surprisingly, increasing the number of non-magnetic microspheres in the suspending fluid results increases the collection of magnetic microspheres, corresponding to a decrease in the effective drag of the medium.

  17. Virtual model of an automated system for the storage of collected waste

    Directory of Open Access Journals (Sweden)

    Enciu George

    2017-01-01

    Full Text Available One of the problems identified in waste collection integrated systems is the storage space. The design process of an automated system for the storage of collected waste includes finding solutions for the optimal exploitation of the limited storage space, seen that the equipment for the loading, identification, transport and transfer of the waste covers most of the available space inside the integrated collection system. In the present paper a three-dimensional model of an automated storage system designed by the authors for a business partner is presented. The storage system can be used for the following types of waste: plastic and glass recipients, aluminium cans, paper, cardboard and WEEE (waste electrical and electronic equipment. Special attention has been given to the transfer subsystem, specific for the storage system, which should be able to transfer different types and shapes of waste. The described virtual model of the automated system for the storage of collected waste will be part of the virtual model of the entire integrated waste collection system as requested by the beneficiary.

  18. IoT-B&B: Edge-Based NFV for IoT Devices with CPE Crowdsourcing

    Directory of Open Access Journals (Sweden)

    He Zhu

    2018-01-01

    Full Text Available For embracing the ubiquitous Internet-of-Things (IoT devices, edge computing and Network Function Virtualization (NFV have been enabled in branch offices and homes in the form of virtual Customer-Premises Equipment (vCPE. A Service Provider (SP deploys vCPE instances as Virtual Network Functions (VNFs on top of generic physical Customer-Premises Equipment (pCPE to ease administration. Upon a usage surge of IoT devices at a certain part of the network, vCPU, memory, and other resource limitations of a single pCPE node make it difficult to add new services handling the high demand. In this paper, we present IoT-B&B, a novel architecture featuring resource sharing of pCPE nodes. When a pCPE node has sharable resources available, the SP will utilize its free resources as a “bed-and-breakfast” place to deploy vCPE instances in need. A placement algorithm is also presented to assign vCPE instances to a cost-efficient pCPE node. By keeping vCPE instances at the network edge, their costs of hosting are reduced. Meanwhile, the transmission latencies are maintained at acceptable levels for processing real-time data burst from IoT devices. The traffic load to the remote, centralized cloud can be substantially reduced.

  19. Internet of Tangible Things (IoTT: Challenges and Opportunities for Tangible Interaction with IoT

    Directory of Open Access Journals (Sweden)

    Leonardo Angelini

    2018-01-01

    Full Text Available In the Internet of Things era, an increasing number of everyday objects are able to offer innovative services to the user. However, most of these devices provide only smartphone or web user interfaces. As a result, the interaction is disconnected from the physical world, decreasing the user experience and increasing the risk of user alienation from the physical world. We argue that tangible interaction can counteract this trend and this article discusses the potential benefits and the still open challenges of tangible interaction applied to the Internet of Things. After an analysis of open challenges for Human-Computer Interaction in IoT, we summarize current trends in tangible interaction and extrapolate eight tangible interaction properties that could be exploited for designing novel interactions with IoT objects. Through a systematic review of tangible interaction applied to IoT, we show what has been already explored in the systems that pioneered the field and the future explorations that still have to be conducted. In order to guide future work in this field, we propose a design card set for supporting the generation of tangible interfaces for IoT objects. The card set has been evaluated during a workshop with 21 people and the results are discussed.

  20. SDL - The IoT Language

    OpenAIRE

    Sherratt, Edel; Ober, Ileana; Gaudin, Emmanuel; Fonseca Casas, Pau; Kristoffersen, Finn

    2015-01-01

    International audience; Interconnected smart devices constitute a large and rapidly growing element of the contemporary Internet. A smart thing can be as simple as a web-enabled device that collects and transmits sensor data to a repository for analysis, or as complex as a web-enabled system to monitor and manage a smart home. Smart things present marvellous opportunities, but when they participate in complex systems, they challenge our ability to manage risk and ensure reliability. SDL, the ...

  1. Exploring the dynamics of collective cognition using a computational model of cognitive dissonance

    Science.gov (United States)

    Smart, Paul R.; Sycara, Katia; Richardson, Darren P.

    2013-05-01

    The socially-distributed nature of cognitive processing in a variety of organizational settings means that there is increasing scientific interest in the factors that affect collective cognition. In military coalitions, for example, there is a need to understand how factors such as communication network topology, trust, cultural differences and the potential for miscommunication affects the ability of distributed teams to generate high quality plans, to formulate effective decisions and to develop shared situation awareness. The current paper presents a computational model and associated simulation capability for performing in silico experimental analyses of collective sensemaking. This model can be used in combination with the results of human experimental studies in order to improve our understanding of the factors that influence collective sensemaking processes.

  2. Modeling Urban Scenarios & Experiments: Fort Indiantown Gap Data Collections Summary and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Archer, Daniel E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bandstra, Mark S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Davidson, Gregory G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cleveland, Steven L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Garishvili, Irakli [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hornback, Donald E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Johnson, Jeffrey O. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McLean, M. S. Lance [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Nicholson, Andrew D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Patton, Bruce W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Peplow, Douglas E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Plionis, Alexander A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Quiter, Brian J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ray, Will R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rowe, Andrew J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Swinney, Mathew W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Willis, Michael J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-10-01

    This report summarizes experimental radiation detector, contextual sensor, weather, and global positioning system (GPS) data collected to inform and validate a comprehensive, operational radiation transport modeling framework to evaluate radiation detector system and algorithm performance. This framework will be used to study the influence of systematic effects (such as geometry, background activity, background variability, environmental shielding, etc.) on detector responses and algorithm performance using synthetic time series data. This work consists of performing data collection campaigns at a canonical, controlled environment for complete radiological characterization to help construct and benchmark a high-fidelity model with quantified system geometries, detector response functions, and source terms for background and threat objects. This data also provides an archival, benchmark dataset that can be used by the radiation detection community. The data reported here spans four data collection campaigns conducted between May 2015 and September 2016.

  3. Dynamical Modeling of Collective Behavior from Pigeon Flight Data: Flock Cohesion and Dispersion

    Science.gov (United States)

    Xu, Xiao-Ke; Small, Michael

    2012-01-01

    Several models of flocking have been promoted based on simulations with qualitatively naturalistic behavior. In this paper we provide the first direct application of computational modeling methods to infer flocking behavior from experimental field data. We show that this approach is able to infer general rules for interaction, or lack of interaction, among members of a flock or, more generally, any community. Using experimental field measurements of homing pigeons in flight we demonstrate the existence of a basic distance dependent attraction/repulsion relationship and show that this rule is sufficient to explain collective behavior observed in nature. Positional data of individuals over time are used as input data to a computational algorithm capable of building complex nonlinear functions that can represent the system behavior. Topological nearest neighbor interactions are considered to characterize the components within this model. The efficacy of this method is demonstrated with simulated noisy data generated from the classical (two dimensional) Vicsek model. When applied to experimental data from homing pigeon flights we show that the more complex three dimensional models are capable of simulating trajectories, as well as exhibiting realistic collective dynamics. The simulations of the reconstructed models are used to extract properties of the collective behavior in pigeons, and how it is affected by changing the initial conditions of the system. Our results demonstrate that this approach may be applied to construct models capable of simulating trajectories and collective dynamics using experimental field measurements of herd movement. From these models, the behavior of the individual agents (animals) may be inferred. PMID:22479176

  4. Dynamical modeling of collective behavior from pigeon flight data: flock cohesion and dispersion.

    Directory of Open Access Journals (Sweden)

    Graciano Dieck Kattas

    Full Text Available Several models of flocking have been promoted based on simulations with qualitatively naturalistic behavior. In this paper we provide the first direct application of computational modeling methods to infer flocking behavior from experimental field data. We show that this approach is able to infer general rules for interaction, or lack of interaction, among members of a flock or, more generally, any community. Using experimental field measurements of homing pigeons in flight we demonstrate the existence of a basic distance dependent attraction/repulsion relationship and show that this rule is sufficient to explain collective behavior observed in nature. Positional data of individuals over time are used as input data to a computational algorithm capable of building complex nonlinear functions that can represent the system behavior. Topological nearest neighbor interactions are considered to characterize the components within this model. The efficacy of this method is demonstrated with simulated noisy data generated from the classical (two dimensional Vicsek model. When applied to experimental data from homing pigeon flights we show that the more complex three dimensional models are capable of simulating trajectories, as well as exhibiting realistic collective dynamics. The simulations of the reconstructed models are used to extract properties of the collective behavior in pigeons, and how it is affected by changing the initial conditions of the system. Our results demonstrate that this approach may be applied to construct models capable of simulating trajectories and collective dynamics using experimental field measurements of herd movement. From these models, the behavior of the individual agents (animals may be inferred.

  5. TIDAL HEATING IN A MAGMA OCEAN WITHIN JUPITER’S MOON Io

    International Nuclear Information System (INIS)

    Tyler, Robert H.; Henning, Wade G.; Hamilton, Christopher W.

    2015-01-01

    Active volcanism observed on Io is thought to be driven by the temporally periodic, spatially differential projection of Jupiter's gravitational field over the moon. Previous theoretical estimates of the tidal heat have all treated Io as essentially a solid, with fluids addressed only through adjustment of rheological parameters rather than through appropriate extension of the dynamics. These previous estimates of the tidal response and associated heat generation on Io are therefore incomplete and possibly erroneous because dynamical aspects of the fluid behavior are not permitted in the modeling approach. Here we address this by modeling the partial-melt asthenosphere as a global layer of fluid governed by the Laplace Tidal Equations. Solutions for the tidal response are then compared with solutions obtained following the traditional solid-material approach. It is found that the tidal heat in the solid can match that of the average observed heat flux (nominally 2.25 W m −2 ), though only over a very restricted range of plausible parameters, and that the distribution of the solid tidal heat flux cannot readily explain a longitudinal shift in the observed (inferred) low-latitude heat fluxes. The tidal heat in the fluid reaches that observed over a wider range of plausible parameters, and can also readily provide the longitudinal offset. Finally, expected feedbacks and coupling between the solid/fluid tides are discussed. Most broadly, the results suggest that both solid and fluid tidal-response estimates must be considered in exoplanet studies, particularly where orbital migration under tidal dissipation is addressed

  6. A collection of mathematical models for dispersion in surface water and groundwater

    International Nuclear Information System (INIS)

    Codell, R.B.; Key, K.T.; Whelan, G.

    1982-06-01

    This report represents a collection of some of the manual procedures and simple computer programs used by the Hydrologic Engineering Section of the Division of Engineering, Office of Nuclear Reactor Regulation, for computing the fate of routinely or accidentally released radionuclides in surface water and groundwater. All models are straightforward simulations of dispersion with constant coefficients in simple geometries

  7. 1 Arc-second Digital Elevation Models (DEMs) - USGS National Map 3DEP Downloadable Data Collection

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This is a tiled collection of the 3D Elevation Program (3DEP) and is 1 arc-second (approximately 30 m) resolution.The elevations in this Digital Elevation Model...

  8. A methodology for collection and analysis of human error data based on a cognitive model: IDA

    International Nuclear Information System (INIS)

    Shen, S.-H.; Smidts, C.; Mosleh, A.

    1997-01-01

    This paper presents a model-based human error taxonomy and data collection. The underlying model, IDA (described in two companion papers), is a cognitive model of behavior developed for analysis of the actions of nuclear power plant operating crew during abnormal situations. The taxonomy is established with reference to three external reference points (i.e. plant status, procedures, and crew) and four reference points internal to the model (i.e. information collected, diagnosis, decision, action). The taxonomy helps the analyst: (1) recognize errors as such; (2) categorize the error in terms of generic characteristics such as 'error in selection of problem solving strategies' and (3) identify the root causes of the error. The data collection methodology is summarized in post event operator interview and analysis summary forms. The root cause analysis methodology is illustrated using a subset of an actual event. Statistics, which extract generic characteristics of error prone behaviors and error prone situations are presented. Finally, applications of the human error data collection are reviewed. A primary benefit of this methodology is to define better symptom-based and other auxiliary procedures with associated training to minimize or preclude certain human errors. It also helps in design of control rooms, and in assessment of human error probabilities in the probabilistic risk assessment framework. (orig.)

  9. Modelling collective foraging by means of individual behaviour rules in honey-bees

    NARCIS (Netherlands)

    Vries, Han de; Biesmeijer, J.C.

    1998-01-01

    An individual-oriented model is constructed which simulates the collective foraging behaviour of a colony of honey-bees, Apis mellifera. Each bee follows the same set of behavioural rules. Each rule consists of a set of conditions followed by the behavioural act to be performed if the

  10. Modelling collective foraging by means of individual behaviour rules in honey-bees

    NARCIS (Netherlands)

    de Vries, H; Biesmeijer, JC

    1998-01-01

    An individual-oriented model is constructed which simulates the collective foraging behaviour of a colony of honey-bees, Apis mellifera. Each bee follows the same set of behavioural rules. Each rule consists of a set of conditions followed by the behavioural act to be performed if the conditions are

  11. Connected car: Engines diagnostic via Internet of Things (IoT)

    Science.gov (United States)

    Hamid, A. F. A.; Rahman, M. T. A.; Khan, S. F.; Adom, A. H.; Rahim, M. A.; Rahim, N. A.; Ismail, M. H. N.; Norizan, A.

    2017-10-01

    This paper is about an experiment for performing engines diagnostic using wireless sensing Internet of Thing (IoT). The study is to overcome problem of current standard On Board Diagnosis (OBD-II) data acquisition method that only can be perform in offline or wired method. From this paper it show a method to determined how the data from engines can be collected, make the data can be easily understand by human and sending data over the wireless internet connection via platform of IOT. This study is separate into three stages that is CAN-bus data collection, CAN data conversion and send data to cloud storage. Every stage is experimented with a two different method and consist five data parameter that is Revolution per Minute (RPM), Manifold Air Pressure (MAP), load-fuel, barometric pressure and engine temperature. The experiment use Arduino Uno as microcontroller, CAN-bus converter and ESP8266 wifi board as transfer medium for data to internet.

  12. Development of model for analysing respective collections of intended hematopoietic stem cells and harvests of unintended mature cells in apheresis for autologous hematopoietic stem cell collection.

    Science.gov (United States)

    Hequet, O; Le, Q H; Rodriguez, J; Dubost, P; Revesz, D; Clerc, A; Rigal, D; Salles, G; Coiffier, B

    2014-04-01

    Hematopoietic stem cells (HSCs) required to perform peripheral hematopoietic autologous stem cell transplantation (APBSCT) can be collected by processing several blood volumes (BVs) in leukapheresis sessions. However, this may cause granulocyte harvest in graft and decrease in patient's platelet blood level. Both consequences may induce disturbances in patient. One apheresis team's current purpose is to improve HSC collection by increasing HSC collection and prevent increase in granulocyte and platelet harvests. Before improving HSC collection it seemed important to know more about the way to harvest these types of cells. The purpose of our study was to develop a simple model for analysing respective collections of intended CD34+ cells among HSC (designated here as HSC) and harvests of unintended platelets or granulocytes among mature cells (designated here as mature cells) considering the number of BVs processed and factors likely to influence cell collection or harvest. For this, we processed 1, 2 and 3 BVs in 59 leukapheresis sessions and analysed corresponding collections and harvests with a referent device (COBE Spectra). First we analysed the amounts of HSC collected and mature cells harvested and second the evolution of the respective shares of HSC and mature cells collected or harvested throughout the BV processes. HSC collections and mature cell harvests increased globally (pcollections and harvests, which showed that only pre-leukapheresis blood levels (CD34+cells and platelets) influenced both cell collections and harvests (CD34+cells and platelets) (pcollections and mature unintended cells harvests (pcollections or unintended mature cell harvests were pre-leukapheresis blood cell levels. Our model was meant to assist apheresis teams in analysing shares of HSC collected and mature cells harvested with new devices or with new types of HSC mobilization. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. User Requirements for Internet Of Things (IoT) Applications : An Observational study

    OpenAIRE

    Namirimu, Victoria

    2015-01-01

    Context. Internet of Things (IoT) is a new trending phase of technology. IoT refers to communication and connectivity between things such as technological devices, actuators, sensors, and people or processes with unique identifiers. The importance of IoT is to improve the daily living standards of an average user. IoT is made for the people and used by the people for many reasons such as improved health, business innovations, and personal health trackers. Examples of IoT applications and serv...

  14. IoT European Large-Scale Pilots – Integration, Experimentation and Testing

    OpenAIRE

    Guillén, Sergio Gustavo; Sala, Pilar; Fico, Giuseppe; Arredondo, Maria Teresa; Cano, Alicia; Posada, Jorge; Gutierrez, Germán; Palau, Carlos; Votis, Konstantinos; Verdouw, Cor N.; Wolfert, Sjaak; Beers, George; Sundmaeker, Harald; Chatzikostas, Grigoris; Ziegler, Sébastien

    2017-01-01

    The IoT European Large-Scale Pilots Programme includes the innovation consortia that are collaborating to foster the deployment of IoT solutions in Europe through the integration of advanced IoT technologies across the value chain, demonstration of multiple IoT applications at scale and in a usage context, and as close as possible to operational conditions. The programme projects are targeted, goal-driven initiatives that propose IoT approaches to specific real-life industrial/societal challe...

  15. Internet of Things (IoT) Applicability in a Metropolitan City

    OpenAIRE

    Dr. D Mohammed

    2015-01-01

    Internet of Things (IoT)is defined here as a network of interconnected objects. These objects can include several technological systems. This paper examines the wireless communication systems and IoT sensors. IoT is technically feasible today, allowing people and things to be connected anytime, anyplace, with anything and anyone. IoT privacy is a concern but security solutions exist today to solve these issues. A proposal is made to use secure IoT solutions in supporting the metropolitan need...

  16. HOCOMOCO: a comprehensive collection of human transcription factor binding sites models

    Science.gov (United States)

    Kulakovskiy, Ivan V.; Medvedeva, Yulia A.; Schaefer, Ulf; Kasianov, Artem S.; Vorontsov, Ilya E.; Bajic, Vladimir B.; Makeev, Vsevolod J.

    2013-01-01

    Transcription factor (TF) binding site (TFBS) models are crucial for computational reconstruction of transcription regulatory networks. In existing repositories, a TF often has several models (also called binding profiles or motifs), obtained from different experimental data. Having a single TFBS model for a TF is more pragmatic for practical applications. We show that integration of TFBS data from various types of experiments into a single model typically results in the improved model quality probably due to partial correction of source specific technique bias. We present the Homo sapiens comprehensive model collection (HOCOMOCO, http://autosome.ru/HOCOMOCO/, http://cbrc.kaust.edu.sa/hocomoco/) containing carefully hand-curated TFBS models constructed by integration of binding sequences obtained by both low- and high-throughput methods. To construct position weight matrices to represent these TFBS models, we used ChIPMunk software in four computational modes, including newly developed periodic positional prior mode associated with DNA helix pitch. We selected only one TFBS model per TF, unless there was a clear experimental evidence for two rather distinct TFBS models. We assigned a quality rating to each model. HOCOMOCO contains 426 systematically curated TFBS models for 401 human TFs, where 172 models are based on more than one data source. PMID:23175603

  17. HOCOMOCO: A comprehensive collection of human transcription factor binding sites models

    KAUST Repository

    Kulakovskiy, Ivan V.; Medvedeva, Yulia A.; Schaefer, Ulf; Kasianov, Artem S.; Vorontsov, Ilya E.; Bajic, Vladimir B.; Makeev, Vsevolod J.

    2012-01-01

    Transcription factor (TF) binding site (TFBS) models are crucial for computational reconstruction of transcription regulatory networks. In existing repositories, a TF often has several models (also called binding profiles or motifs), obtained from different experimental data. Having a single TFBS model for a TF is more pragmatic for practical applications. We show that integration of TFBS data from various types of experiments into a single model typically results in the improved model quality probably due to partial correction of source specific technique bias. We present the Homo sapiens comprehensive model collection (HOCOMOCO, http://autosome.ru/HOCOMOCO/, http://cbrc.kaust.edu.sa/ hocomoco/) containing carefully hand-curated TFBS models constructed by integration of binding sequences obtained by both low- and high-throughput methods. To construct position weight matrices to represent these TFBS models, we used ChIPMunk software in four computational modes, including newly developed periodic positional prior mode associated with DNA helix pitch. We selected only one TFBS model per TF, unless there was a clear experimental evidence for two rather distinct TFBS models. We assigned a quality rating to each model. HOCOMOCO contains 426 systematically curated TFBS models for 401 human TFs, where 172 models are based on more than one data source. The Author(s) 2012.

  18. HOCOMOCO: A comprehensive collection of human transcription factor binding sites models

    KAUST Repository

    Kulakovskiy, Ivan V.

    2012-11-21

    Transcription factor (TF) binding site (TFBS) models are crucial for computational reconstruction of transcription regulatory networks. In existing repositories, a TF often has several models (also called binding profiles or motifs), obtained from different experimental data. Having a single TFBS model for a TF is more pragmatic for practical applications. We show that integration of TFBS data from various types of experiments into a single model typically results in the improved model quality probably due to partial correction of source specific technique bias. We present the Homo sapiens comprehensive model collection (HOCOMOCO, http://autosome.ru/HOCOMOCO/, http://cbrc.kaust.edu.sa/ hocomoco/) containing carefully hand-curated TFBS models constructed by integration of binding sequences obtained by both low- and high-throughput methods. To construct position weight matrices to represent these TFBS models, we used ChIPMunk software in four computational modes, including newly developed periodic positional prior mode associated with DNA helix pitch. We selected only one TFBS model per TF, unless there was a clear experimental evidence for two rather distinct TFBS models. We assigned a quality rating to each model. HOCOMOCO contains 426 systematically curated TFBS models for 401 human TFs, where 172 models are based on more than one data source. The Author(s) 2012.

  19. Dynamic Group Management Scheme for Sustainable and Secure Information Sensing in IoT

    Directory of Open Access Journals (Sweden)

    Hyungjoo Kim

    2016-10-01

    Full Text Available The services provided to users in the environment associated with the Internet of Things (hereinafter referred to as IoT begin with the information collected from sensors. It is imperative to transmit high-quality sensor data for providing better services. It is also required to collect data only from those authenticated sensors. Moreover, it is imperative to collect high-quality data on a sustainable and continuous basis in order to provide services anytime and anywhere in the IoT environment. Therefore, high-quality, authenticated sensor networks should be constructed. The most prominent routing protocol to enhance the energy consumption efficiency for the sustainable data collection in a sensor network is the LEACH routing protocol. The LEACH routing protocol transmits sensor data by measuring the energy of sensors and allocating sensor groups dynamically. However, these sensor networks have vulnerabilities such as key leakage, eavesdropping, replay attack and relay attack, given the nature of wireless network communication. A large number of security techniques have been studied in order to solve these vulnerabilities. Nonetheless, these studies still cannot support the dynamic sensor group allocation of the LEACH routing protocol. Furthermore, they are not suitable for the sensor nodes whose hardware computing ability and energy resources are limited. Therefore, this paper proposed a group sensor communication protocol that utilizes only the four fundamental arithmetic operations and logical operation for the sensor node authentication and secure data transmission. Through the security analysis, this paper verified that the proposed scheme was secure to the vulnerabilities resulting from the nature of wireless network communication. Moreover, this paper verified through the performance analysis that the proposed scheme could be utilized efficiently.

  20. Surface changes on Io during the Galileo mission

    Science.gov (United States)

    Geissler, P.; McEwen, A.; Phillips, C.; Keszthelyi, L.; Spencer, J.

    2004-01-01

    A careful survey of Galileo SSI global monitoring images revealed more than 80 apparent surface changes that took place on Io during the 5 year period of observation, ranging from giant plume deposits to subtle changes in the color or albedo of Patera surfaces. Explosive volcanic activity was discovered at four previously unrecognized centers: an unnamed patera to the south of Karei that produced a Pele-sized red ring, a patera to the west of Zal that produced a small circular bright deposit, a large orange ring detected near the north pole of Io, and a small bright ring near Io's south pole. Only a handful of Io's many active volcanoes produced large scale explosive eruptions, and several of these erupted repeatedly, leaving at least 83% of Io's surface unaltered throughout the Galileo mission. Most of the hot spots detected from SSI, NIMS and ground-based thermal observations caused no noticeable surface changes greater than 10 km in extent over the five year period. Surface changes were found at every location where active plumes were identified, including Acala which was never seen in sunlight and was only detected through auroral emissions during eclipse. Two types of plumes are distinguished on the basis of the size and color of their deposits, confirming post-Voyager suggestions by McEwen and Soderblom [Icarus 55 (1983) 191]. Smaller plumes produce near-circular rings typically 150-200 km in radius that are white or yellow in color unless contaminated with silicates, and frequently coat their surroundings with frosts of fine-grained SO2. The larger plumes are much less numerous, limited to a half dozen examples, and produce oval, orange or red, sulfur-rich rings with maximum radii in the north-south direction that are typically in the range from 500 to 550 km. Both types of plumes can be either episodic or quasi-continuous over a five year period. Repeated eruptions of the smaller SO2-rich plumes likely contribute significantly to Io's resurfacing rate