WorldWideScience

Sample records for collaborative distributed scientific

  1. Social Networking Adapted for Distributed Scientific Collaboration

    Science.gov (United States)

    Karimabadi, Homa

    2012-01-01

    Share is a social networking site with novel, specially designed feature sets to enable simultaneous remote collaboration and sharing of large data sets among scientists. The site will include not only the standard features found on popular consumer-oriented social networking sites such as Facebook and Myspace, but also a number of powerful tools to extend its functionality to a science collaboration site. A Virtual Observatory is a promising technology for making data accessible from various missions and instruments through a Web browser. Sci-Share augments services provided by Virtual Observatories by enabling distributed collaboration and sharing of downloaded and/or processed data among scientists. This will, in turn, increase science returns from NASA missions. Sci-Share also enables better utilization of NASA s high-performance computing resources by providing an easy and central mechanism to access and share large files on users space or those saved on mass storage. The most common means of remote scientific collaboration today remains the trio of e-mail for electronic communication, FTP for file sharing, and personalized Web sites for dissemination of papers and research results. Each of these tools has well-known limitations. Sci-Share transforms the social networking paradigm into a scientific collaboration environment by offering powerful tools for cooperative discourse and digital content sharing. Sci-Share differentiates itself by serving as an online repository for users digital content with the following unique features: a) Sharing of any file type, any size, from anywhere; b) Creation of projects and groups for controlled sharing; c) Module for sharing files on HPC (High Performance Computing) sites; d) Universal accessibility of staged files as embedded links on other sites (e.g. Facebook) and tools (e.g. e-mail); e) Drag-and-drop transfer of large files, replacing awkward e-mail attachments (and file size limitations); f) Enterprise-level data and

  2. Collaboration in scientific practice

    DEFF Research Database (Denmark)

    Wagenknecht, Susann

    2014-01-01

    This monograph investigates the collaborative creation of scientific knowledge in research groups. To do so, I combine philosophical analysis with a first-hand comparative case study of two research groups in experimental science. Qualitative data are gained through observation and interviews......, and I combine empirical insights with existing approaches to knowledge creation in philosophy of science and social epistemology. On the basis of my empirically-grounded analysis I make several conceptual contributions. I study scientific collaboration as the interaction of scientists within research...... to their publication. Specifically, I suggest epistemic difference and the porosity of social structure as two conceptual leitmotifs in the study of group collaboration. With epistemic difference, I emphasize the value of socio-cognitive heterogeneity in group collaboration. With porosity, I underline the fact...

  3. Sci-Share: Social Networking Adapted for Distributed Scientific Collaboration, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Our goal is to develop a social networking site with novel, specially designed feature sets to enable simultaneous remote collaboration and sharing of large data...

  4. Preparing undergraduates for the future of scientific collaboration: Benefits, challenges and technological solutions in Distributed REU Sites

    Science.gov (United States)

    Hubenthal, M.; Anagnos, T.

    2012-12-01

    As research problems increasingly require multi-disciplinary approaches they naturally foster scientific collaborations between geographically distributed colleagues. This increasing trend in scientific research, the rapid evolution of communication technology, cognitive research into distance education, and the current generation of undergraduate students' eagerness to embrace and use technology, increases the relevance of distributed REU sites. Like traditional REU sites that host a cohort of students in one geographic location, distributed REU sites also seek to attract, nurture, and retain students in a STEM career pipeline. Distributed REU sites are unique in that some or all of the interns are geographically distributed during the research period. This arrangement allows the REU site to capitalize on distributed scientific resources such as field sites, research facilities, or human capital. At their core, distributed REU sites are fundamentally constructed of elements that have proven to be effective components of any undergraduate research experience. They also strive to develop and employ specialized programming that leverages collaboration tools through a cyberinfrastructure to enable interns to develop meaningful social and academic relationships with one another. Since 2006 the IRIS Consortium and NEES have facilitated separate, NSF funded, distributed REU Sites. Implementation and evaluations of these programs have revealed a number of successes and benefits. Longitudinal tracking indicates that distributed REU Sites are at least as successful as traditional sites in attracting, nurturing, and retaining students in a STEM career pipeline. A distributed arrangement also offers benefits over a traditional REU site, such as the flexibility to place interns at a variety of institutions with mentors making only an annual commitment to participate. This ensures that all mentors are eager to participate and are concerned with their intern's growth. It also

  5. Network effects on scientific collaborations.

    Directory of Open Access Journals (Sweden)

    Shahadat Uddin

    Full Text Available BACKGROUND: The analysis of co-authorship network aims at exploring the impact of network structure on the outcome of scientific collaborations and research publications. However, little is known about what network properties are associated with authors who have increased number of joint publications and are being cited highly. METHODOLOGY/PRINCIPAL FINDINGS: Measures of social network analysis, for example network centrality and tie strength, have been utilized extensively in current co-authorship literature to explore different behavioural patterns of co-authorship networks. Using three SNA measures (i.e., degree centrality, closeness centrality and betweenness centrality, we explore scientific collaboration networks to understand factors influencing performance (i.e., citation count and formation (tie strength between authors of such networks. A citation count is the number of times an article is cited by other articles. We use co-authorship dataset of the research field of 'steel structure' for the year 2005 to 2009. To measure the strength of scientific collaboration between two authors, we consider the number of articles co-authored by them. In this study, we examine how citation count of a scientific publication is influenced by different centrality measures of its co-author(s in a co-authorship network. We further analyze the impact of the network positions of authors on the strength of their scientific collaborations. We use both correlation and regression methods for data analysis leading to statistical validation. We identify that citation count of a research article is positively correlated with the degree centrality and betweenness centrality values of its co-author(s. Also, we reveal that degree centrality and betweenness centrality values of authors in a co-authorship network are positively correlated with the strength of their scientific collaborations. CONCLUSIONS/SIGNIFICANCE: Authors' network positions in co

  6. Enabling distributed collaborative science

    DEFF Research Database (Denmark)

    Hudson, T.; Sonnenwald, Diane H.; Maglaughlin, K.

    2000-01-01

    To enable collaboration over distance, a collaborative environment that uses a specialized scientific instrument called a nanoManipulator is evaluated. The nanoManipulator incorporates visualization and force feedback technology to allow scientists to see, feel, and modify biological samples bein...

  7. Mapping the research on scientific collaboration

    Institute of Scientific and Technical Information of China (English)

    HOU Jianhua; CHEN Chaomei; YAN Jianxin

    2010-01-01

    The aim of this paper was to identify the trends and hot topics in the study of scientific collaboration via scientometric analysis.Information visualization and knowledge domain visualization techniques were adopted to determine how the study of scientific collaboration has evolved.A total of 1,455 articles on scientific cooperation published between 1993 and 2007 were retrieved from the SCI,SSCI and A&HCI databases with a topic search of scientific collaboration or scientific cooperation for the analysis.By using CiteSpace,the knowledge bases,research foci,and research fronts in the field of scientific collaboration were studied.The results indicated that research fronts and research foci are highly consistent in terms of the concept,origin,measurement,and theory of scientific collaboration.It also revealed that research fronts included scientific collaboration networks,international scientific collaboration,social network analysis and techniques,and applications of bibliometrical indicators,webmetrics,and health care related areas.

  8. Scientific collaboration: genuine and false motivators

    Directory of Open Access Journals (Sweden)

    VOLPATO, G. L.

    2013-12-01

    Full Text Available Here, I emphasize the need for collaborative research among scientists. Such collaboration should aim to address the genuine integrative need to build knowledge rather than searching for visibility based on the international prestige of a collaborator, increased productivity, or funding. Scientists must provide a valid and honest counterpart, such as a solid scientific proposal and performance, and avoid opportunistic motivators.

  9. Global scientific collaboration in COPD research

    Directory of Open Access Journals (Sweden)

    Su YB

    2017-01-01

    Full Text Available Yanbing Su,1 Chao Long,2 Qi Yu,1 Juan Zhang,1 Daisy Wu,3 Zhiguang Duan1 1School of Management, Shanxi Medical University, Taiyuan, People’s Republic of China; 2School of Medicine, Stanford University, Palo Alto, CA, 3Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA Purpose: This study aimed to investigate the multiple collaboration types, quantitatively evaluate the publication trends and review the performance of institutions or countries (regions across the world in COPD research.Materials and methods: Scientometric methods and social network analysis were used to survey the development of publication trends and understand current collaboration in the field of COPD research based on the Web of Science publications during the past 18 years.Results: The number of publications developed through different collaboration types has increased. Growth trends indicate that the percentage of papers authored through multinational and domestic multi-institutional collaboration (DMIC have also increased. However, the percentage of intra-institutional collaboration and single-authored (SA studies has reduced. The papers that produced the highest academic impact result from international collaboration. The second highest academic impact papers are produced by DMIC. Out of the three, the papers that are produced by SA studies have the least amount of impact upon the scientific community. A handful of internationally renowned institutions not only take the leading role in the development of the research within their country (region but also play a crucial role in international research collaboration in COPD. Both the amount of papers produced and the amount of cooperation that occurs in each study are disproportionally distributed between high-income countries (regions and low-income countries (regions. Growing attention has been generated toward research on COPD from more and more different

  10. International scientific collaboration in nonproliferation

    International Nuclear Information System (INIS)

    Travelli, A.

    1998-01-01

    International collaboration is a vital component of every serious nonproliferation effort. Several examples of the experiences that the Argonne Arms Control and Nonproliferation Program has had in this area are given and, in the process, important components of the program come to light. Some of the main principles that the program has learned to follow while pursuing international collaboration projects are shared, as are the pitfalls that the program has learned to avoid. (author)

  11. Collaborative e-Science Experiments and Scientific Workflows

    NARCIS (Netherlands)

    Belloum, A.; Inda, M.A.; Vasunin, D.; Korkhov, V.; Zhao, Z.; Rauwerda, H.; Breit, T.M.; Bubak, M.; Hertzberger, L.O.

    2011-01-01

    Recent advances in Internet and grid technologies have greatly enhanced scientific experiments' life cycle. In addition to compute- and data-intensive tasks, large-scale collaborations involving geographically distributed scientists and e-infrastructure are now possible. Scientific workflows, which

  12. Communications fabric for scientific collaboration

    International Nuclear Information System (INIS)

    Stillerman, J.; Baron, D.; Fredian, T.; Greenwald, M.; Schulzrinne, H.

    2008-01-01

    Today's fusion experiments are geographically and institutionally dispersed collaborations. This makes the need for good remote collaboration tools particularly acute. Informal interactions between scientists are particularly important and hard to realize with traditional communications approaches. We are testing existing packages based on the IETF SIP (session initiation protocol) standard and integrating them into our applications to address these issues. Development of additional tools may be needed to provide better integration and enhanced functionality. By providing a spectrum of tools encompassing instant messaging, voice, video, presence, event notification and application sharing, we hope to overcome technical hurdles and a natural reluctance, among researchers, to interact with colleagues who are not on site. Existing web pages, which support integrated and shared workspaces, such as electronic logbooks, code and experimental run management, records of presentations and publications, personnel databases, and physical site maps will be 'communications enabled', so that just as currently there are 'mailto' links we will be able to have 'speak to:', 'instant message to:', 'video to:', and 'share with:' links. Mechanisms will be provided for session portability; a conference might be moved from a hard phone to a soft phone so that video or application sharing could be enabled. This paper discusses our ongoing efforts in these areas, including a prototype implementation of some of these tools

  13. Communications fabric for scientific collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Stillerman, J. [MIT Plasma Science and Fusion Center, NW17-268 Cambridge, MA 02139 (United States)], E-mail: jas@psfc.mit.edu; Baron, D. [MIT Information Services and Technology, Cambridge, MA 02139 (United States); Fredian, T.; Greenwald, M. [MIT Plasma Science and Fusion Center, NW17-268 Cambridge, MA 02139 (United States); Schulzrinne, H. [Columbia University Computer Science Department, New York, NY 10027 (United States)

    2008-04-15

    Today's fusion experiments are geographically and institutionally dispersed collaborations. This makes the need for good remote collaboration tools particularly acute. Informal interactions between scientists are particularly important and hard to realize with traditional communications approaches. We are testing existing packages based on the IETF SIP (session initiation protocol) standard and integrating them into our applications to address these issues. Development of additional tools may be needed to provide better integration and enhanced functionality. By providing a spectrum of tools encompassing instant messaging, voice, video, presence, event notification and application sharing, we hope to overcome technical hurdles and a natural reluctance, among researchers, to interact with colleagues who are not on site. Existing web pages, which support integrated and shared workspaces, such as electronic logbooks, code and experimental run management, records of presentations and publications, personnel databases, and physical site maps will be 'communications enabled', so that just as currently there are 'mailto' links we will be able to have 'speak to:', 'instant message to:', 'video to:', and 'share with:' links. Mechanisms will be provided for session portability; a conference might be moved from a hard phone to a soft phone so that video or application sharing could be enabled. This paper discusses our ongoing efforts in these areas, including a prototype implementation of some of these tools.

  14. Scientific collaboration and collective knowledge new essays

    CERN Document Server

    Mayo-Wilson, Conor; Weisberg, Michael

    2018-01-01

    Descartes once argued that, with sufficient effort and skill, a single scientist could uncover fundamental truths about our world. Contemporary science proves the limits of this claim. From synthesizing the human genome to predicting the effects of climate change, some current scientific research requires the collaboration of hundreds (if not thousands) of scientists with various specializations. Additionally, the majority of published scientific research is now co-authored, including more than 80% of articles in the natural sciences, meaning small collaborative teams have become the norm in science. This volume is the first to address critical philosophical questions regarding how collective scientific research could be organized differently and how it should be organized. For example, should scientists be required to share knowledge with competing research teams? How can universities and grant-giving institutions promote successful collaborations? When hundreds of researchers contribute to a discovery, how ...

  15. Autonomy vs. dependency of scientific collaboration in scientific performance

    Energy Technology Data Exchange (ETDEWEB)

    Chinchilla-Rodriguez, Z.; Miguel, S.; Perianes-Rodriguez, A.; Ovalle-Perandones, M.A.; Olmeda-Gomez, C.

    2016-07-01

    This article explores the capacity of Latin America in the generation of scientific knowledge and its visibility at the global level. The novelty of the contribution lies in the decomposition of leadership, plus its combination with the results of performance indicators. We compare the normalized citation of all output against the leading output, as well as scientific excellence (Chinchilla, et al. 2016a; 2016b), technological impact and the trends in collaboration types and normalized citation. The main goal is to determine to what extent the main Latin American producers of scientific output depend on collaboration to heighten research performance in terms of citation; or to the contrary, whether there is enough autonomy and capacity to leverage its competitiveness through the design of research and development agendas. To the best of our knowledge this is the first study adopting this approach at the country level within the field of N&N. (Author)

  16. An emerging view of scientific collaboration

    DEFF Research Database (Denmark)

    Hara, Noriko; Solomon, Paul; Kim, Seung Lye

    2003-01-01

    Collaboration is often a critical aspect of scientific research, which is dominated by complex problems, rapidly changing technology, dynamic growth of knowledge, and highly specialized areas of expertise. An individual scientist can seldom provide all of the expertise and resources necessary...

  17. Role of Scientific Societies in International Collaboration

    Science.gov (United States)

    Fucugauchi, J. U.

    2007-12-01

    Geophysical research increasingly requires global multidisciplinary approaches. Understanding how deeply interrelated are Earth components and processes, population growth, increased needs of mineral and energy resources, global impact of human activities, and view of our planet as an interconnected system emphasizes the need of international cooperation. International research collaboration has an immense potential and is needed for further development of Earth science research and education. The Union Session is planned to provide a forum for analysis and discussion of the status of research and education of geosciences in developing countries, international collaboration programs and new initiatives for promoting and strengthening scientific cooperation. A theme of particular relevance in the analyses and discussions is the role of scientific societies in international collaboration. Societies organize meetings, publish journals and books and promote cooperation through academic exchange activities. They may further assist communities in developing countries in providing and facilitating access to scientific literature, attendance to international meetings, short and long-term stays and student and young researcher mobility. What else can be done? This is a complex subject and scientific societies may not be seen independently from the many factors involved in research and education. Developing countries present additional challenges resulting from limited economic resources and social and political problems, while urgently requiring improved educational and research programs. Needed are in-depth analyses of infrastructure and human resources, and identification of major problems and needs. What are the major limitations and needs in research and postgraduate education in developing countries? What and how should international collaboration do? What are the roles of individuals, academic institutions, funding agencies, scientific societies? Here we attempt to

  18. Addressing contrasting cognitive models in scientific collaboration

    Science.gov (United States)

    Diviacco, P.

    2012-04-01

    If the social aspects of scientific communities and their internal dynamics is starting to be recognized and acknowledged in the everyday lives of scientists, it is rather difficult for them to find tools that could support their activities consistently with this perspective. Issues span from gathering researchers to mutual awareness, from information sharing to building meaning, with the last one being particularly critical in research fields as the geo-sciences, that deal with the reconstruction of unique, often non-reproducible, and contingent processes. Reasoning here is, in fact, mainly abductive, allowing multiple and concurrent explanations for the same phenomenon to coexist. Scientists bias one hypothesis over another not only on strictly logical but also on sociological motivations. Following a vision, scientists tend to evolve and isolate themselves from other scientists creating communities characterized by different cognitive models, so that after some time these become incompatible and scientists stop understanding each other. We address these problems as a communication issue so that the classic distinction into three levels (syntactic, semantic and pragmatic) can be used. At the syntactic level, we highlight non-technical obstacles that condition interoperability and data availability and transparency. At the semantic level, possible incompatibilities of cognitive models are particularly evident, so that using ontologies, cross-domain reconciliation should be applied. This is a very difficult task to perform since the projection of knowledge by scientists, in the designated community, is political and thus can create a lot of tension. The strategy we propose to overcome these issues pertains to pragmatics, in the sense that it is intended to acknowledge the cultural and personal factors each partner brings into the collaboration and is based on the idea that meaning should remain a flexible and contingent representation of possibly divergent views

  19. Collaborative Windows – A User Interface Concept for Distributed Collaboration

    DEFF Research Database (Denmark)

    Esbensen, Morten

    2016-01-01

    where close collaboration and frequent meetings drive the work. One way to achieve this way of working is to implement the Scrum software development framework. Implementing Scrum in globalized context however, requires transforming the Scrum development methods to a distributed setup and extensive use...... of collaboration technologies. In this dissertation, I explore how novel collaboration technologies can support closely coupled distributed work such as that in distributed Scrum. This research is based on three different studies: an ethnographic field study of distributed Scrum between Danish and Indian software...

  20. ICTP: A Successful Model of International Scientific Collaboration

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The importance of international scientific collaboration in the changing world where the centre of gravity of fundamental research may be moving towards the east and the south is addressed. The unique role of ICTP in supporting global science is highlighted.

  1. Evaluation of Remote Collaborative Manipulation for Scientific Data Analysis

    OpenAIRE

    Fleury , Cédric; Duval , Thierry; Gouranton , Valérie; Steed , Anthony

    2012-01-01

    International audience; In the context of scientific data analysis, we propose to compare a remote collaborative manipulation technique with a single user manipulation technique. The manipulation task consists in positioning a clipping plane in order to perform cross-sections of scientific data which show several points of interest located inside this data. For the remote collaborative manipulation, we have chosen to use the 3-hand manipulation technique proposed by Aguerreche et al. which is...

  2. Managing Operating Procedures in Distributed Collaborative Projects

    Science.gov (United States)

    Hool, A.; Beuzelin Ollivier, M.-G.; Roubert, F.

    2013-04-01

    In recent years, large distributed collaborative projects have become very prominent in scientific research, allowing exchanges between laboratories located in different institutions and countries and between various domains of competence. Particularly the work on nanotoxicity - a field which has only been under investigation for a few years and is still lacking regulatory framework - highlighted the need for well-controlled methods, as well as rules for the handling and disposal of used materials. To obtain comparable and reproducible results of experiments conducted in a distributed context, the standardisation and proper documentation of the applied methods is crucial. The European project NanoDiaRA, whose aim is to develop nanoparticles and biomarkers for the early diagnosis of inflammatory disease, faces this situation as it involves 15 European partners and brings together different scientific cultures and professional backgrounds. Protocols especially developed for Superparamagnetic Iron Oxide Nanoparticles and a management system were designed and implemented within the NanoDiaRA project to fulfil those needs. The main goals were the establishment of standardised Standard Operating Procedures assuring transparency and reproducibility and the provision of access to these protocols to every project partner, as well as their clear allocation to carry out precise measurements and production steps.

  3. Managing Operating Procedures in Distributed Collaborative Projects

    International Nuclear Information System (INIS)

    Hool, A; Ollivier, M-G Beuzelin; Roubert, F

    2013-01-01

    In recent years, large distributed collaborative projects have become very prominent in scientific research, allowing exchanges between laboratories located in different institutions and countries and between various domains of competence. Particularly the work on nanotoxicity – a field which has only been under investigation for a few years and is still lacking regulatory framework – highlighted the need for well-controlled methods, as well as rules for the handling and disposal of used materials. To obtain comparable and reproducible results of experiments conducted in a distributed context, the standardisation and proper documentation of the applied methods is crucial. The European project NanoDiaRA, whose aim is to develop nanoparticles and biomarkers for the early diagnosis of inflammatory disease, faces this situation as it involves 15 European partners and brings together different scientific cultures and professional backgrounds. Protocols especially developed for Superparamagnetic Iron Oxide Nanoparticles and a management system were designed and implemented within the NanoDiaRA project to fulfil those needs. The main goals were the establishment of standardised Standard Operating Procedures assuring transparency and reproducibility and the provision of access to these protocols to every project partner, as well as their clear allocation to carry out precise measurements and production steps.

  4. Distributed user interfaces usability and collaboration

    CERN Document Server

    Lozano, María D; Tesoriero, Ricardo; Penichet, Victor MR

    2013-01-01

    Written by international researchers in the field of Distributed User Interfaces (DUIs), this book brings together important contributions regarding collaboration and usability in Distributed User Interface settings. Throughout the thirteen chapters authors address key questions concerning how collaboration can be improved by using DUIs, including: in which situations a DUI is suitable to ease the collaboration among users; how usability standards can be used to evaluate the usability of systems based on DUIs; and accurately describe case studies and prototypes implementing these concerns

  5. Collaboration and Productivity in Scientific Synthesis

    Science.gov (United States)

    Hampton, Stephanie E.; Parker, John N.

    2011-01-01

    Scientific synthesis has transformed ecological research and presents opportunities for advancements across the sciences; to date, however, little is known about the antecedents of success in synthesis. Building on findings from 10 years of detailed research on social interactions in synthesis groups at the National Center for Ecological Analysis…

  6. A Distributional Representation Model For Collaborative Filtering

    OpenAIRE

    Junlin, Zhang; Heng, Cai; Tongwen, Huang; Huiping, Xue

    2015-01-01

    In this paper, we propose a very concise deep learning approach for collaborative filtering that jointly models distributional representation for users and items. The proposed framework obtains better performance when compared against current state-of-art algorithms and that made the distributional representation model a promising direction for further research in the collaborative filtering.

  7. A Complexity Approach to Evaluating National Scientific Systems through International Scientific Collaborations

    Science.gov (United States)

    Zelnio, Ryan J.

    2013-01-01

    This dissertation seeks to contribute to a fuller understanding of how international scientific collaboration has affected national scientific systems. It does this by developing three methodological approaches grounded in social complexity theory and applying them to the evaluation of national scientific systems. The first methodology identifies…

  8. Responsibility for scientific misconduct in collaborative papers.

    Science.gov (United States)

    Helgesson, Gert; Eriksson, Stefan

    2017-12-08

    This paper concerns the responsibility of co-authors in cases of scientific misconduct. Arguments in research integrity guidelines and in the bioethics literature concerning authorship responsibilities are discussed. It is argued that it is unreasonable to claim that for every case where a research paper is found to be fraudulent, each author is morally responsible for all aspects of that paper, or that one particular author has such a responsibility. It is further argued that it is more constructive to specify what task responsibilities come with different roles in a project and describe what kinds of situations or events call for some kind of action, and what the appropriate actions might be.

  9. CERN, flagship of European scientific collaboration

    CERN Multimedia

    Staff Association

    2015-01-01

    The creation of CERN in 1954 had its roots in a resurgent postwar Europe and the willingness to share resources to create a joint fundamental physics laboratory integrating all countries of the Old Continent. This humanistic vision has been driven by several Nobel Prize laureates. The Organization then embodied the very definition of "science for peace". Basic science is not subject in principle to the concept of utility. Nevertheless, very many of the benefits are the direct or indirect spinoffs of this research, even if they were not the primary objective of the researcher. Fundamental research in science attracts the innovators of tomorrow By its policy of knowledge transfer, CERN has always contributed to the training of hundreds of students, postgraduates and teachers of the scientific community. Through its own developments and through its policy of technology transfer, CERN has provided the economic and industrial world with some of its more important current advanced technologies...

  10. Gender differences in scientific collaborations: Women are more egalitarian than men.

    Directory of Open Access Journals (Sweden)

    Eduardo B Araújo

    Full Text Available By analyzing a unique dataset of more than 270,000 scientists, we discovered substantial gender differences in scientific collaborations. While men are more likely to collaborate with other men, women are more egalitarian. This is consistently observed over all fields and regardless of the number of collaborators a scientist has. The only exception is observed in the field of engineering, where this gender bias disappears with increasing number of collaborators. We also found that the distribution of the number of collaborators follows a truncated power law with a cut-off that is gender dependent and related to the gender differences in the number of published papers. Considering interdisciplinary research, our analysis shows that men and women behave similarly across fields, except in the case of natural sciences, where women with many collaborators are more likely to have collaborators from other fields.

  11. The EGS Data Collaboration Platform: Enabling Scientific Discovery

    Energy Technology Data Exchange (ETDEWEB)

    Weers, Jonathan D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Johnston, Henry [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Huggins, Jay V [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-14

    Collaboration in the digital age has been stifled in recent years. Reasonable responses to legitimate security concerns have created a virtual landscape of silos and fortified castles incapable of sharing information efficiently. This trend is unfortunately opposed to the geothermal scientific community's migration toward larger, more collaborative projects. To facilitate efficient sharing of information between team members from multiple national labs, universities, and private organizations, the 'EGS Collab' team has developed a universally accessible, secure data collaboration platform and has fully integrated it with the U.S. Department of Energy's (DOE) Geothermal Data Repository (GDR) and the National Geothermal Data System (NGDS). This paper will explore some of the challenges of collaboration in the modern digital age, highlight strategies for active data management, and discuss the integration of the EGS Collab data management platform with the GDR to enable scientific discovery through the timely dissemination of information.

  12. Practices and Strategies of Distributed Knowledge Collaboration

    Science.gov (United States)

    Kudaravalli, Srinivas

    2010-01-01

    Information Technology is enabling large-scale, distributed collaboration across many different kinds of boundaries. Researchers have used the label new organizational forms to describe such collaborations and suggested that they are better able to meet the demands of flexibility, speed and adaptability that characterize the knowledge economy.…

  13. Science and society: The benefits of scientific collaboration

    CERN Multimedia

    2003-01-01

    The guest speaker at the next Science and Society symposium is no stranger to CERN. He is, in fact, Sir Chris Llewellyn Smith, Director General of CERN from 1994 to 1998. His topic is one with which he is particularly familiar, having "lived" it throughout his time at CERN: international scientific collaboration and its advantages. International scientific collaboration is essential in a wide range of areas and for a large number of reasons: scientific problems have no frontiers; certain subjects are so complex that they require the expertise of numerous countries; certain types of research, such as that carried out at CERN, cannot be pursued by one nation on its own. However, scientific collaboration is not only beneficial to science itself. This is the point Chris Llewellyn Smith intends to demonstrate in his address. Scientific collaboration can help to build bridges between societies and act as a spur to the development of certain countries. It can even help to diminish conflicts in certain cases. The his...

  14. High Performance Data Distribution for Scientific Community

    Science.gov (United States)

    Tirado, Juan M.; Higuero, Daniel; Carretero, Jesus

    2010-05-01

    Institutions such as NASA, ESA or JAXA find solutions to distribute data from their missions to the scientific community, and their long term archives. This is a complex problem, as it includes a vast amount of data, several geographically distributed archives, heterogeneous architectures with heterogeneous networks, and users spread around the world. We propose a novel architecture (HIDDRA) that solves this problem aiming to reduce user intervention in data acquisition and processing. HIDDRA is a modular system that provides a highly efficient parallel multiprotocol download engine, using a publish/subscribe policy which helps the final user to obtain data of interest transparently. Our system can deal simultaneously with multiple protocols (HTTP,HTTPS, FTP, GridFTP among others) to obtain the maximum bandwidth, reducing the workload in data server and increasing flexibility. It can also provide high reliability and fault tolerance, as several sources of data can be used to perform one file download. HIDDRA architecture can be arranged into a data distribution network deployed on several sites that can cooperate to provide former features. HIDDRA has been addressed by the 2009 e-IRG Report on Data Management as a promising initiative for data interoperability. Our first prototype has been evaluated in collaboration with the ESAC centre in Villafranca del Castillo (Spain) that shows a high scalability and performance, opening a wide spectrum of opportunities. Some preliminary results have been published in the Journal of Astrophysics and Space Science [1]. [1] D. Higuero, J.M. Tirado, J. Carretero, F. Félix, and A. de La Fuente. HIDDRA: a highly independent data distribution and retrieval architecture for space observation missions. Astrophysics and Space Science, 321(3):169-175, 2009

  15. Zebrafish in Brazilian Science: Scientific Production, Impact, and Collaboration.

    Science.gov (United States)

    Gheno, Ediane Maria; Rosemberg, Denis Broock; Souza, Diogo Onofre; Calabró, Luciana

    2016-06-01

    By means of scientometric indicators, this study investigated the characteristics of scientific production and research collaboration involving zebrafish (Danio rerio) in Brazilian Science indexed by the Web of Science (WoS). Citation data were collected from the WoS and data regarding Impact Factor (IF) were gathered from journals in the Journal Citation Reports. Collaboration was evaluated according to coauthorship data, creating representative nets with VOSviewer. Zebrafish has attained remarkable importance as an experimental model organism in recent years and an increase in scientific production with zebrafish is observed in Brazil and around the world. The citation impact of the worldwide scientific production is superior when compared to the Brazilian scientific production. However, the citation impact of the Brazilian scientific production is consistently increasing. Brazil does not follow the international trends with regard to publication research fields. The state of Rio Grande do Sul has the greatest number of articles and the institution with the largest number of publications is Pontifícia Universidade Católica do Rio Grande do Sul. Journals' average IF is higher in Brazilian publications with international coauthorship, and around 90% of articles are collaborative. The Brazilian institutions presenting the greatest number of collaborations are Pontifícia Universidade Católica do Rio Grande do Sul, Universidade Federal do Rio Grande do Sul, Fundação Universidade Federal de Rio Grande, and Universidade de São Paulo. These data indicate that Brazilian research using zebrafish presents a growth in terms of number of publications, citation impact, and collaborative work.

  16. A social epistemology of research groups collaboration in scientific practice

    CERN Document Server

    Wagenknecht, Susann

    2016-01-01

    This book investigates how collaborative scientific practice yields scientific knowledge. At a time when most of today’s scientific knowledge is created in research groups, the author reconsiders the social character of science to address the question of whether collaboratively created knowledge should be considered as collective achievement, and if so, in which sense. Combining philosophical analysis with qualitative empirical inquiry, this book provides a comparative case study of mono- and interdisciplinary research groups, offering insight into the day-to-day practice of scientists. The book includes field observations and interviews with scientists to present an empirically-grounded perspective on much-debated questions concerning research groups’ division of labor, relations of epistemic dependence and trust.

  17. Scientific Collaboration and Coauthors in Life Science Journal Articles

    Directory of Open Access Journals (Sweden)

    Ya-hsiu Fu

    2002-12-01

    Full Text Available It is common to conduct collaborative research in science and technology. In particular, the development of big science, Internet, and globalization facilitated the scientific collaboration. This study used two databases, Web of Science and Journal Citation Reports as data sources. From the analysis of 320 papers in 16 journals in life sciences, the results showed that there is no significant correlation between the impact factor of journals and the number of authors. Moreover, there is no correlation of authors and the cited times, either. The number of authors and cited times in most papers are under 10 persons and 25 times, respectively.[Article content in Chinese

  18. [Interagency collaboration in Spanish scientific production in nursing: social network analysis].

    Science.gov (United States)

    Almero-Canet, Amparo; López-Ferrer, Mayte; Sales-Orts, Rafael

    2013-01-01

    The objectives of this paper are to analyze the Spanish scientific production in nursing, define its temporal evolution, its geographical and institutional distribution, and observe the interinstitutional collaboration. We analyze a comprehensive sample of Spanish scientific production in the nursing area extracted from the multidisciplinary database SciVerse Scopus. The nursing scientific production grows along time. The collaboration rate is 3.7 authors per paper and 61% of the authors only publish one paper. Barcelona and Madrid are the provinces with highest number of authors. Most belong to the hospitalary environment, followed closely by authors belonging to the university. The most institutions that collaborate, sharing authorship of articles are: University of Barcelona, Autonomous University of Barcelona and Clinic Hospital of Barcelona. The nursing scientific production has been increasing since her incorporation at the university. The collaboration rate found is higher than found for other papers. It shows a low decrease of occasional authors. It discusses the outlook of scientific collaboration in nursing in Spain, at the level of institutions by co-authorship of papers, through a network graph. It observes their distribution, importance and interactions or lack thereof. There is a strong need to use international databases for research, care and teaching, in addition to the national specialized information resources. Professionals are encouraged to normalization of the paper's signature, both, surnames and institutions to which they belong. It confirms the limited cooperation with foreign institutions, although there is an increasing trend of collaboration between Spanish authors in this discipline. It is observed, clearly defined three interinstitutional collaboration patterns. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  19. Analysing Scientific Collaborations of New Zealand Institutions using Scopus Bibliometric Data

    OpenAIRE

    Aref, Samin; Friggens, David; Hendy, Shaun

    2017-01-01

    Scientific collaborations are among the main enablers of development in small national science systems. Although analysing scientific collaborations is a well-established subject in scientometrics, evaluations of scientific collaborations within a country remain speculative with studies based on a limited number of fields or using data too inadequate to be representative of collaborations at a national level. This study represents a unique view on the collaborative aspect of scientific activi...

  20. Training Students in Distributed Collaboration: Experiences from Two Pilot Projects.

    Science.gov (United States)

    Munkvold, Bjorn Erik; Line, Lars

    Distributed collaboration supported by different forms of information and communication technologies (ICT) is becoming increasingly widespread. Effective realization of technology supported, distributed collaboration requires learning and careful attention to both technological and organizational aspects of the collaboration. Despite increasing…

  1. CUMULVS: Collaborative infrastructure for developing distributed simulations

    Energy Technology Data Exchange (ETDEWEB)

    Kohl, J.A.; Papadopoulos, P.M.; Geist, G.A. II

    1997-03-01

    The CUMULVS software environment provides remote collaboration among scientists by allowing them to dynamically attach to, view, and steer a running simulation. Users can interactively examine intermediate results on demand, saving effort for long-running applications gone awry. In addition, it provides fault tolerance to distributed applications via user-directed checkpointing, heterogeneous task migration and automatic restart. This talk describes CUMULVS and how this tool benefits scientists developing large distributed applications.

  2. [Health-related scientific and technological capabilities and university-industry research collaboration].

    Science.gov (United States)

    Britto, Jorge; Vargas, Marco Antônio; Gadelha, Carlos Augusto Grabois; Costa, Laís Silveira

    2012-12-01

    To examine recent developments in health-related scientific capabilities, the impact of lines of incentives on reducing regional scientific imbalances, and university-industry research collaboration in Brazil. Data were obtained from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (Brazilian National Council for Scientific and Technological Development) databases for the years 2000 to 2010. There were assessed indicators of resource mobilization, research network structuring, and knowledge transfer between science and industry initiatives. Based on the regional distribution map of health-related scientific and technological capabilities there were identified patterns of scientific capabilities and science-industry collaboration. There was relative spatial deconcentration of health research groups and more than 6% of them worked in six areas of knowledge areas: medicine, collective health, dentistry, veterinary medicine, ecology and physical education. Lines of incentives that were adopted from 2000 to 2009 contributed to reducing regional scientific imbalances and improving preexisting capabilities or, alternatively, encouraging spatial decentralization of these capabilities. Health-related scientific and technological capabilities remain highly spatially concentrated in Brazil and incentive policies have contributed to reduce to some extent these imbalances.

  3. Mobility and International Collaboration: Case of the Mexican Scientific Diaspora.

    Directory of Open Access Journals (Sweden)

    Rafael Marmolejo-Leyva

    Full Text Available We use a data set of Mexican researchers working abroad that are included in the Mexican National System of Researchers (SNI. Our diaspora sample includes 479 researchers, most of them holding postdoctoral positions in mainly seven countries: USA, Great Britain, Germany, France, Spain, Canada and Brazil. Their research output and impact is explored in order to determine their patterns of production, mobility and scientific collaboration as compared with previous studies of the SNI researchers in the periods 1991-2001 and 2003-2009. Our findings confirm that mobility has a strong impact on their international scientific collaboration. We found no substantial influence among the researchers that got their PhD degrees abroad from those trained in Mexican universities. There are significant differences among the areas of knowledge studied: biological sciences, physics and engineering have better production and impact rates than mathematics, geosciences, medicine, agrosciences, chemistry, social sciences and humanities. We found a slight gender difference in research production but Mexican female scientists are underrepresented in our diaspora sample. These findings would have policy implications for the recently established program that will open new academic positions for young Mexican scientists.

  4. Scientific Collaborations: How Do We Measure the Return on Relationships?

    Science.gov (United States)

    Fair, Jeanne M.; Stokes, Martha Mangum; Pennington, Deana; Mendenhall, Ian H.

    2016-01-01

    Emerging infectious diseases (EIDs), the majority of which are zoonotic, represent a tremendous challenge for public health and biosurveillance infrastructure across the globe. Due to the complexity of zoonotic pathogens, it is essential that research and response to EIDs be a transdisciplinary effort. And while crisis and circumstance may be the initial catalyst for responding to an outbreak, we provide examples of how transdisciplinary scientific collectives, which are organized and solidified in advance of crises, can transform the way the world responds to outbreaks and in some cases could even prevent one from occurring (1). Current methods for assessing whether a cooperative engagement between countries is producing measurable and sustainable value is based on the ideas of return on investment and do not consider the inherent importance of relationships. In this article, we apply the idea of return on relationships (ROR) and propose a method for measuring ROR, using a system dynamics modeling framework commonly used in epidemiology. Tracking the numerous and diverse scientific collaborations that emerged from a training workshop for biosurveillance of bats held in Singapore in 2014, we apply a methodology for visualizing and measuring the relationship networks and outcomes that result. Additionally, the collaborative, multidisciplinary network that coalesced in response to the Hantavirus outbreak in New Mexico is 1993 is discussed as an example of the long-term benefits of ROR. PMID:26913278

  5. Mobility and International Collaboration: Case of the Mexican Scientific Diaspora.

    Science.gov (United States)

    Marmolejo-Leyva, Rafael; Perez-Angon, Miguel Angel; Russell, Jane M

    2015-01-01

    We use a data set of Mexican researchers working abroad that are included in the Mexican National System of Researchers (SNI). Our diaspora sample includes 479 researchers, most of them holding postdoctoral positions in mainly seven countries: USA, Great Britain, Germany, France, Spain, Canada and Brazil. Their research output and impact is explored in order to determine their patterns of production, mobility and scientific collaboration as compared with previous studies of the SNI researchers in the periods 1991-2001 and 2003-2009. Our findings confirm that mobility has a strong impact on their international scientific collaboration. We found no substantial influence among the researchers that got their PhD degrees abroad from those trained in Mexican universities. There are significant differences among the areas of knowledge studied: biological sciences, physics and engineering have better production and impact rates than mathematics, geosciences, medicine, agrosciences, chemistry, social sciences and humanities. We found a slight gender difference in research production but Mexican female scientists are underrepresented in our diaspora sample. These findings would have policy implications for the recently established program that will open new academic positions for young Mexican scientists.

  6. Distributed Collaborative Learning Communities Enabled by Information Communication Technology

    NARCIS (Netherlands)

    H.L. Alvarez (Heidi Lee)

    2006-01-01

    textabstractHow and why can Information Communication Technology (ICT) contribute to enhancing learning in distributed Collaborative Learning Communities (CLCs)? Drawing from relevant theories concerned with phenomenon of ICT enabled distributed collaborative learning, this book identifies gaps in

  7. Distribution of authorship in a scientific work.

    Science.gov (United States)

    Petroianu, Andy

    2012-01-01

    To publish became almost compulsory in Medicine. There is no doubt about the importance of publishing research, but the ordering of its authors is not easy. The lack of internationally accepted criteria led to the establishment of several groups or conventions particularized medical and scientific sectors. To present numerical method to establish rule of value to people who carried out the research, and whether or not incorporated as authors. The proposed score is based on the needs of each step when conducting a scientific work. They were divided into topics in which the main ones were: 1) scientific criteria for authorship; 2) create the idea that originated the work and develop hypotheses; 3) structure the method of work; 4) guiding the work; 5) write the manuscript; 6) coordinate the group that carried out the work; 7) reviewing the literature; 8) suggestions incorporated into the work; 9) to solve fundamental problems of labor; 10) to collect data; 11) presentation at scientific meetings; 12 ) lead the job and raise funds; 13) providing patients or material; 14) to do the routine needs; 15) specific fee to participate; 16) criteria for ranking the authors; 17) honorary author; 18) usurpation of the main authorship, 19) acknowledgments . It is important to emphasize that, to prevent major conflicts, the group that is willing to conduct a scientific work should establish at the outset, as objectively as possible, the criteria to be adopted for distribution of authorship. The subjective criteria here proposed avoid interference and prevent conflicts of interest.

  8. Relation work in collocated and distributed collaboration

    DEFF Research Database (Denmark)

    Christensen, Lars Rune; Jensen, Rasmus Eskild; Bjørn, Pernille

    2014-01-01

    Creating social ties are important for collaborative work; however, in geographically distributed organizations e.g. global software development, making social ties requires extra work: Relation work. We find that characteristics of relation work as based upon shared history and experiences......, emergent in personal and often humorous situations. Relation work is intertwined with other activities such as articulation work and it is rhythmic by following the work patterns of the participants. By comparing how relation work is conducted in collocated and geographically distributed settings we...... in this paper identify basic differences in relation work. Whereas collocated relation work is spontaneous, place-centric, and yet mobile, relation work in a distributed setting is semi-spontaneous, technology-mediated, and requires extra efforts....

  9. Distributed analysis with PROOF in ATLAS collaboration

    International Nuclear Information System (INIS)

    Panitkin, S Y; Ernst, M; Ito, H; Maeno, T; Majewski, S; Rind, O; Tarrade, F; Wenaus, T; Ye, S; Benjamin, D; Montoya, G Carillo; Guan, W; Mellado, B; Xu, N; Cranmer, K; Shibata, A

    2010-01-01

    The Parallel ROOT Facility - PROOF is a distributed analysis system which allows to exploit inherent event level parallelism of high energy physics data. PROOF can be configured to work with centralized storage systems, but it is especially effective together with distributed local storage systems - like Xrootd, when data are distributed over computing nodes. It works efficiently on different types of hardware and scales well from a multi-core laptop to large computing farms. From that point of view it is well suited for both large central analysis facilities and Tier 3 type analysis farms. PROOF can be used in interactive or batch like regimes. The interactive regime allows the user to work with typically distributed data from the ROOT command prompt and get a real time feedback on analysis progress and intermediate results. We will discuss our experience with PROOF in the context of ATLAS Collaboration distributed analysis. In particular we will discuss PROOF performance in various analysis scenarios and in multi-user, multi-session environments. We will also describe PROOF integration with the ATLAS distributed data management system and prospects of running PROOF on geographically distributed analysis farms.

  10. Distributed analysis with PROOF in ATLAS collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Panitkin, S Y; Ernst, M; Ito, H; Maeno, T; Majewski, S; Rind, O; Tarrade, F; Wenaus, T; Ye, S [Brookhaven National Laboratory, Upton, NY 11973 (United States); Benjamin, D [Duke University, Durham, NC 27708 (United States); Montoya, G Carillo; Guan, W; Mellado, B; Xu, N [University of Wisconsin-Madison, Madison, WI 53706 (United States); Cranmer, K; Shibata, A [New York University, New York, NY 10003 (United States)

    2010-04-01

    The Parallel ROOT Facility - PROOF is a distributed analysis system which allows to exploit inherent event level parallelism of high energy physics data. PROOF can be configured to work with centralized storage systems, but it is especially effective together with distributed local storage systems - like Xrootd, when data are distributed over computing nodes. It works efficiently on different types of hardware and scales well from a multi-core laptop to large computing farms. From that point of view it is well suited for both large central analysis facilities and Tier 3 type analysis farms. PROOF can be used in interactive or batch like regimes. The interactive regime allows the user to work with typically distributed data from the ROOT command prompt and get a real time feedback on analysis progress and intermediate results. We will discuss our experience with PROOF in the context of ATLAS Collaboration distributed analysis. In particular we will discuss PROOF performance in various analysis scenarios and in multi-user, multi-session environments. We will also describe PROOF integration with the ATLAS distributed data management system and prospects of running PROOF on geographically distributed analysis farms.

  11. [Scientific collaboration and article citations: practices in medical journals].

    Science.gov (United States)

    Bador, Pascal; Lafouge, Thierry

    2012-01-01

    In order to characterize scientific collaboration the best way is to study co-signature of articles. Two indicators are interesting: number of authors and international character. The objective is to study correlation between these two indicators and citation number. We selected two pharmacy and medicine journals in order to compare practices. We used a sample of about 800 articles published in 2002-2005 for which we collected citations up to 2010. We transformed numeric variables, authors number and citation number, into qualitative variables. "Authors" and "Citations" variables are not independent. Less cited articles are often published by one author or a very small team while international character of articles generally increases citation number. This micro-analysis also allowed us to better understand publication practices. © 2012 Société Française de Pharmacologie et de Thérapeutique.

  12. Scientific collaboration in the Danish-German border region of Southern Jutland-Schleswig

    DEFF Research Database (Denmark)

    Makkonen, Teemu

    2015-01-01

    This paper investigates the geographical and organizational patterns of scientific collaboration, in terms of co-authored scientific articles, in the Danish-German border region of Southern Jutland-Schleswig. The motivation behind the approach lies in the fact that scientific collaboration...... of co-authored publications and, thus, the knowledge infrastructure of the border region can be considered as weakly integrated....

  13. Internet-centric collaborative design in a distributed environment

    International Nuclear Information System (INIS)

    Kim, Hyun; Kim, Hyoung Sun; Do, Nam Chul; Lee, Jae Yeol; Lee, Joo Haeng; Myong, Jae Hyong

    2001-01-01

    Recently, advanced information technologies including internet-related technology and distributed object technology have opened new possibilities for collaborative designs. In this paper, we discuss computer supports for collaborative design in a distributed environment. The proposed system is the internet-centric system composed of an engineering framework, collaborative virtual workspace and engineering service. It allows the distributed designers to more efficiently and collaboratively work their engineering tasks throughout the design process

  14. Scientific Collaborations: How do we Measure the Return on Relationships?

    Directory of Open Access Journals (Sweden)

    Jeanne Marie Fair

    2016-02-01

    Full Text Available Emerging infectious diseases (EIDs are a challenge for public health and biosurveillance infrastructure across the globe. These etiological agents, which cause EIDs, are primarily of zoonotic origin. Due to the complexity of zoonotic pathogens, research and response to EIDs must be a transdisciplinary effort. While crisis and circumstance may be the catalyst for responding to an outbreak, we can use the example of how transdisciplinary scientific collectives can be organized more in advance of crises, and therefore become transformative and perhaps even avert crisis (Pennington et al., 2013. Leading indicators that a cooperative engagement is producing value and is sustainable are based on the ideas of return of investment and do not regard the inherent importance of relationships. In this article, we apply the idea of return of relationships (ROR and propose a method for measuring the return of relationships, using a systems dynamics modeling framework commonly used in epidemiology. Using the scientific collaboration that emerged from the Hanta Virus outbreak of 1993 in North America and a training workshop for biosurveillance of bats held in Singapore in 2014, we apply a methodology for visualizing and measuring the relationship networks and outcomes.

  15. Study on Dynamic Evolution and the Structure of Transnational Scientific Collaborative Network——Taking Knowledge Management as an Example

    Directory of Open Access Journals (Sweden)

    Xu Yuchan

    2017-06-01

    Full Text Available [Purpose/significance] This paper aims to understand the evolution characteristics and the structure of transnational scientific collaborative network of knowledge management, and find the shortage and advantage of China. [Method/process] Through analytical methods of statistics, ecology, scientometrics and geography, the article conducted a systematic analysis on the evolution characteristics and the structure of transnational scientific collaborative network of knowledge management which was composed of the literature on knowledge management from SSCI-E and SCI database in the Web of Science during 2001-2015. [Result/conclusion] International collaborative participants are mainly distributed in Asia, Australia, and Europe and the United States. Bilateral cooperation is the main mode of international cooperation in the knowledge management. USA and UK play leading roles in the international collaborative network of knowledge management. USA is the main partner nation. China is America’s most important partner, and its leading ability is out of step with its scientific productivity.

  16. Co-authorship Patterns in East Asia in the Light of Regional Scientific Collaboration

    DEFF Research Database (Denmark)

    Li, Jizhen; Xiong, Hongru; Zhang, Si

    2012-01-01

    The article presents findings on scientific articles collaboration from 1985-2008 within ASEAN, China, Japna and South Korea. The study shows that regional collaboration has increased and that diffreneces between countries is decreasing.......The article presents findings on scientific articles collaboration from 1985-2008 within ASEAN, China, Japna and South Korea. The study shows that regional collaboration has increased and that diffreneces between countries is decreasing....

  17. ESO and Chile: 10 Years of Productive Scientific Collaboration

    Science.gov (United States)

    2006-06-01

    ceremony, along with ambassadors in Chile of ESO members States, and representatives of the Chilean government and the scientific community. To review the impact of the numerous projects financed over the last decade, ESO presented the book "10 Years Exploring the Universe", based on the reports of the beneficiaries of the ESO-Chile fund. Since the beginning, the ESO-Chile fund has granted over 2.5 million euros to finance post-doc and astronomy professors for main Chilean universities, development of research infrastructure, organisation of scientific congresses, workshops for science teachers, and astronomy outreach programmes for the public. In addition to the 400,000 euros given annually by ESO to the ESO-Chile Joint Committee, around 550,000 euros are granted every year to finance regional collaboration programmes, fellowships for students in Chilean universities, and the development of radio astronomy through the ALMA-Chile Committee. In total, apart form the 10 percent of the observing time at all ESO telescopes, ESO contributes annually with 950,000 euros for the promotion of astronomy and scientific culture in Chile. The growth of astronomy and related sciences in Chile in the last years has been outstanding. According to a study by the Chilean Academy of Science in 2005, the number of astronomers has doubled over the last 20 years and there has been an 8-fold increase in the number of scientific publications. It is gratifying to see that 100 percent of the observing time granted by international observatories in Chile is actually used by the national community. The same study stated that astronomy could be the first scientific discipline in Chile with the standards of a developed country, with additional benefits in terms of technological improvement and growth of human resources. The English edition of the book "10 Years Exploring the Universe" is available here. The Spanish edition can be downloaded here.

  18. Proximity and scientific collaboration : Evidence from the global wine industry

    NARCIS (Netherlands)

    Cassi, Lorenzo; Morrison, Andrea; Rabellotti, Roberta

    2015-01-01

    International collaboration among researchers is a far from linear and straightforward process. Scientometric studies provide a good way of understanding why and how international research collaboration occurs and what are its costs and benefits. Our study investigates patterns of international

  19. Implications of Scientific Collaboration Networks on Studies of Aquatic Vertebrates in the Brazilian Amazon.

    Science.gov (United States)

    Salinero, María Celeste; Michalski, Fernanda

    2016-01-01

    The quantity of wildlife extracted from the Amazon has increased in the past decades as a consequence of an increase in human population density and income growth. To evaluate the spatial distribution of studies on subsistence and/or commercial hunting conducted in the Brazilian Amazon, we selected eight mid-sized and large-bodied aquatic vertebrate species with a history of human exploitation in the region. We used a combination of searches in the gray and scientific literature from the past 24 years to provide an updated distributional map of studies on the target species. We calculated the distances between the study sites and the locations of the research institutes/universities that the first and last authors of the same study were affiliated to. For the period of 1990 to 2014, we found 105 studies on the subsistence and/or commercial hunting of aquatic vertebrates in the Brazilian Amazon in 271 locations that involved 43 institutions (37 Brazilian and 6 international). The spatial distribution of the studies across the Brazilian Amazon varied, but over 80% took place in the northeast and central Amazon, encompassing three States of the Legal Brazilian Amazon (Amazonas, 51.42%; Pará, 19.05%; and Amapá, 16.19%). Over half of the research study sites (52.91%) were within 500 km of the research institute/university of the first or last authors. Some research institutes/universities did not have any inter-institutional collaborations, while others collaborated with eight or more institutes. Some research institutes/universities conducted many studies, had an extensive collaboration network, and contributed greatly to the network of studies on Amazonian aquatic vertebrates. Our research contributes to the knowledge of studies on the subsistence and/or commercial hunting of the most exploited aquatic vertebrates of the Brazilian Amazon, illustrates the impact that collaboration networks have on research, and highlights potential areas for improvement and the

  20. Science as a Common Language in a Globalised World - Scientific Collaboration Promoting Progress, Building Bridges

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit

    2003-01-01

    International scientific collaboration and co-operation can accelerate the progress of science, help build bridges between diverse societies, and foster the development of science and technology in non-industrialised countries. This is possible because science is a common language (although the progress of science is often influenced by non-scientific factors). I shall describe examples of the role that scientific collaboration can play in bridge building and in conflict resolution. I shall then present a proposal for "Bridge Building Fellowships" which would contribute to strengthening scientific capacity in developing countries by helping to stem the brain drain and providing a basis for collaborations with scientists in industrialised countries.

  1. Distributed Leadership and Digital Collaborative Learning: A Synergistic Relationship?

    Science.gov (United States)

    Harris, Alma; Jones, Michelle; Baba, Suria

    2013-01-01

    This paper explores the synergy between distributed leadership and digital collaborative learning. It argues that distributed leadership offers an important theoretical lens for understanding and explaining how digital collaboration is best supported and led. Drawing upon evidence from two online educational platforms, the paper explores the…

  2. Scientific Visualization for Atmospheric Data Analysis in Collaborative Virtual Environments

    Science.gov (United States)

    Engelke, Wito; Flatken, Markus; Garcia, Arturo S.; Bar, Christian; Gerndt, Andreas

    2016-04-01

    1 INTRODUCTION The three year European research project CROSS DRIVE (Collaborative Rover Operations and Planetary Science Analysis System based on Distributed Remote and Interactive Virtual Environments) started in January 2014. The research and development within this project is motivated by three use case studies: landing site characterization, atmospheric science and rover target selection [1]. Currently the implementation for the second use case is in its final phase [2]. Here, the requirements were generated based on the domain experts input and lead to development and integration of appropriate methods for visualization and analysis of atmospheric data. The methods range from volume rendering, interactive slicing, iso-surface techniques to interactive probing. All visualization methods are integrated in DLR's Terrain Rendering application. With this, the high resolution surface data visualization can be enriched with additional methods appropriate for atmospheric data sets. This results in an integrated virtual environment where the scientist has the possibility to interactively explore his data sets directly within the correct context. The data sets include volumetric data of the martian atmosphere, precomputed two dimensional maps and vertical profiles. In most cases the surface data as well as the atmospheric data has global coverage and is of time dependent nature. Furthermore, all interaction is synchronized between different connected application instances, allowing for collaborative sessions between distant experts. 2 VISUALIZATION TECHNIQUES Also the application is currently used for visualization of data sets related to Mars the techniques can be used for other data sets as well. Currently the prototype is capable of handling 2 and 2.5D surface data as well as 4D atmospheric data. Specifically, the surface data is presented using an LoD approach which is based on the HEALPix tessellation of a sphere [3, 4, 5] and can handle data sets in the order of

  3. Building flexible, distributed collaboration tools using type-based publish/subscribe - The Distributed Knight case

    DEFF Research Database (Denmark)

    Hansen, Klaus Marius; Damm, Christian Heide

    2004-01-01

    Distributed collaboration is becoming increasingly impor tant also in software development. Combined with an in creasing interest in experimental and agile approaches to software development, this poses challenges to tool sup port for software development. Specifically, tool support is needed...... for flexible, distributed collaboration. We intro duce the Distributed Knight tool that provides flexible and lightweight support for distributed collaboration in object oriented modelling. The Distributed Knight implementa tion builds crucially on the type-based publish/subscribe distributed communication...... paradigm, which provides an effective and natural abstraction for developing distributed collaboration tools....

  4. Instant collaboration: Using context-aware instant messaging for session management in distributed collaboration tools

    DEFF Research Database (Denmark)

    Hansen, Klaus Marius; Damm, Christian Heide

    2002-01-01

    Distributed collaboration has become increasingly important, and instant messaging has become widely used for distributed communication. We present findings from an investigation of instant messaging use for work-related activities in a commercial setting. Based on these findings, we propose...... a lightweight session management design for distributed collaboration tools based on context-aware instant messaging. An implementation of this design is presented and an ongoing evaluation is discussed....

  5. A field experiment on search costs and the formation of scientific collaborations

    Czech Academy of Sciences Publication Activity Database

    Boudreau, K. J.; Brady, T.; Ganguli, I.; Gaulé, Patrick; Guinan, E.; Hollenberg, A.; Lakhani, K. R.

    2017-01-01

    Roč. 99, č. 4 (2017), s. 565-576 ISSN 0034-6535 Institutional support: RVO:67985998 Keywords : search costs * scientific collaborations Subject RIV: AH - Economics OBOR OECD: Applied Economics , Econometrics Impact factor: 2.926, year: 2016

  6. Comparing absolute and normalized indicators in scientific collaboration: a study in Environmental Science in Latin America

    Energy Technology Data Exchange (ETDEWEB)

    Cabrini-Grácio, M.C.; Oliveira, E.F.T.

    2016-07-01

    This paper aims to conduct a comparative analysis of scientific collaboration proximity trends generated from absolute indicators and indicators of collaboration intensity in the field of Environmental Sciences in Latin America (LA), in order to identify possible existing biases in the absolute indicators of international cooperation, due to the magnitude of scientific production of these countries in mainstream science. More specifically, the objective is to analyze the compared forms of absolute and normalized values of co-authorship among Latin America countries and their main collaborators, in order to observe similarities and differences expressed by two indexes of frequency in relation to scientific collaboration trends in LA countries. In addition, we aim to visualize and analyze scientific collaboration networks with absolute and normalized indexes of co-authorship through SC among Latin America countries and their collaborators, comparing proximity evidenced by two generated collaborative networks - absolute and relative indicators. Data collection comprised a period of 10 years (2006-2015) for the countries from LA: Brazil, Mexico, Argentina, Chile and Colombia as they produced 94% of total production, a percentage considered representative and significant for this study. Then, we verified the co-authorship frequencies among the five countries and their key collaborators and builted the matrix with the indexes of co-authorship normalized through SC. Then, we generated two egocentric networks of scientific collaboration - absolute frequencies and normalized frequencies through SC using Pajek software. From the results, we observed the need for absolute and normalized indicators to describe the scientific collaboration phenomenon in a more thoroughly way, once these indicators provide complementary information. (Author)

  7. The world network of scientific collaborations between cities: domestic or international dynamics?

    Energy Technology Data Exchange (ETDEWEB)

    Maisonobe, M.; Eckert, D.; Grossetti, M.; Jégou, L.; Milard, B.

    2016-07-01

    Earlier publication (Grossetti et al., 2014) has established that we are attending a decreasing concentration of scientific activities within “world-cities”. Given that more and more cities and countries are contributing to the world production of knowledge, this article analyzes the evolution of the world network of collaborations both at the domestic and international levels during the 2000s. Using data from the Science Citation Index Expanded, scientific authors’ addresses are geo-localized and grouped by urban areas. Our data suggests that interurban collaborations within countries have increased together with international linkages. In most countries, domestic collaborations have increased faster than international collaborations. Even among the top collaborating cities, sometimes referred to as “world cities”, the share of domestic collaborations is gaining momentum. Our results suggest that, contrary to common beliefs about the globalization process, national systems of research have been strengthening during the 2000s. (Author)

  8. Evolutionary convergence of the patterns of international research collaborations across scientific fields

    NARCIS (Netherlands)

    Wang, L.; Coccia, M.

    2015-01-01

    Frame and Carpenter (1979) analysed the pattern of international research collaboration among scientific fields in 1970s. Starting from this pioneering work, this paper investigates international collaborations over 1997-2012 and compares the critical results with earlier studies to detect the

  9. Scientific collaborations on Living Labs: some lessons learnt from South Africa and Tanzania

    CSIR Research Space (South Africa)

    Herselman, M

    2015-11-01

    Full Text Available The purpose of this paper is to provide an overview of the specific lessons that were learnt when Tanzanian and South African Living Labs (LL) collaborated to support one another. It was a scientific collaboration which focussed on Living Labs...

  10. Distributed collaborative team effectiveness: measurement and process improvement

    Science.gov (United States)

    Wheeler, R.; Hihn, J.; Wilkinson, B.

    2002-01-01

    This paper describes a measurement methodology developed for assessing the readiness, and identifying opportunities for improving the effectiveness, of distributed collaborative design teams preparing to conduct a coccurent design session.

  11. Who sets up the bridge? Tracking scientific collaborations between China and the EU28

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L.; Wang, X

    2016-07-01

    In the past decade, collaborations between China and European Union have been rapidly expanding. Hitherto, however, little research has been carried out to assess implementation and impacts of such collaborations. This paper evaluates the collaboration performance between China and the EU28 concerning major research and innovation priorities. To shed light on the initiatives of collaborations, corresponding authors are detected and classified into three categories, Chinese local, Chinese abroad, and non-Chinese. In order to foster more profitable collaboration for both parties and to formulate options for international policy on research and innovation cooperation between the European Union and China, this paper presents an in-depth analysis of the scientific collaborations focusing on the initiatives and benefits of the collaborations. (Author)

  12. International collaboration in SSC (or any $4 billion scientific project)

    International Nuclear Information System (INIS)

    Lederman, L.M.

    1988-01-01

    In this paper, the author discusses the superconducting supercollider. This is a project that costs U.S. $4.4 billion. The author spends a short time giving the motivation (which is a scientific motivation) and also giving the idea of how it is possible, with U.S. deficits

  13. Distributing Knight. Using Type-Based Publish/Subscribe for Building Distributed Collaboration Tools

    DEFF Research Database (Denmark)

    Damm, Christian Heide; Hansen, Klaus Marius

    2002-01-01

    more important. We present Distributed Knight, an extension to the Knight tool, for distributed, collaborative, and gesture-based object-oriented modelling. Distributed Knight was built using the type-based publish/subscribe paradigm. Based on this case, we argue that type-based publish......Distributed applications are hard to understand, build, and evolve. The need for decoupling, flexibility, and heterogeneity in distributed collaboration tools present particular problems; for such applications, having the right abstractions and primitives for distributed communication becomes even....../subscribe provides a natural and effective abstraction for developing distributed collaboration tools....

  14. Program of scientific investigations and development of solid-oxide fuel cells (SOFC) in VNIITF. Proposals on scientific and technical collaboration and SOFC commercialization

    Energy Technology Data Exchange (ETDEWEB)

    Kleschev, Yu.N.; Chukharev, V.F.

    1996-04-01

    This paper describes proposals on scientific and technical collaborations pertaining to solid oxide fuel cell commercialization. Topics included for discussion are: materials research and manufacture; market estimation and cost; directions of collaboration; and project of proposals on joint enterprise creation.

  15. Scientific climate change information by collaborative venture and digital portal

    Science.gov (United States)

    Dubelaar-Versluis, W.

    2010-09-01

    Klimaatportaal is the digital entry of Dutch ‘climate' knowledge centres, which are collaborated in the Platform Communication on Climate Change (PCCC). This collaborative venture was established in 2003 by the Dutch climate research community to improve the quality, efficiency and effectiveness of the communication of Dutch climate research. By now, eight Dutch knowledge centres are participating and still more want to join. The Ministry of Housing, Spatial Planning and the Environment (VROM) supports the PCCC and the project is implemented in collaboration with the BSIK ‘Climate Changes Spatial Planning' programme. The website provides actual and background climate change information for a wide audience on the national scale from policy makers, media to general public. By supplying integral climate information, such as observations of climate change, causes and consequences of climate system, adaptation, mitigation and energy issues, a wide spectrum of target groups will be served. The information is offered in different forms, because of the needs of different target groups. Klimaatportaal contains therefore news on climate issues, frequently asked questions and popular science reports, like the annually brochure De Staat van het Klimaat (‘The State of the Climate'). Recently, also a portal for students is added, where they can find information for their assignments. Beside the website, PCCC is organising activities as symposia and workshops and is supplying information on international issues, for example the content of the Kyoto protocol and the IPCC fourth assessment report (2007). Finally, informing the public through contacts with the media is also an important part of the PCCC. The presentation will address the strengths and weaknesses of this approach which may serve as an example for combining knowledge in outreach activities in other countries.

  16. Collaborative Learning in the Scientific Community of Practice

    International Nuclear Information System (INIS)

    Jesionkowska, J.

    2016-01-01

    Full text: The paper describes research done in the scope of doctoral project. The aim of the study is to discover how to improve the process of collaborative learning in the community of scientists by the development of a community of practice. A mixed methods approach was used combining data from content analysis, interviews and questionnaires. Results show that such community helps to build relationships and network with others, it motivates to share work-related knowledge, represents an area of common interest for organization, but also that it is mainly driven by the willingness of members and is lacking instruments to share ideas. (author

  17. The contribution of bubble chambers to European scientific collaboration

    International Nuclear Information System (INIS)

    Krige, John

    1994-01-01

    We tend to take the organization of bubble chamber experiments for granted today. Yet the schemes put in practice in the early 1960s were innovative at the time. They required breaking with existing habits of mind which were dominated by the so-called truck team system for doing experiments. They required the formulation of new procedures for both the definition and the implementation of an experimental programme, procedures which were to serve as a ''model'' for the organization of experimental work at CERN with other techniques. And they stimulated an impressive growth of physics activities in universities and national institutes in the CERN member states. In short, bubble chamber physics was the avenue through which multinational, multi-institutional collaborative work was initiated at CERN, the means whereby the laboratory fulfilled its mission to rebuild physics on a European scale. If the bubble chamber physicists achieved these objectives it is not simply because they had already developed a tradition of collaboration. It was also because their technique imposed certain forms of organization on them. It was this combination of historical, technical and political factors which ensured that bubble chamber physics played the key role that it did in the early history of CERN and indeed of European high-energy physics as a whole. (orig./HB)

  18. Task distribution mechanism for effective collaboration in virtual environments

    International Nuclear Information System (INIS)

    Khalid, S.; Ullah, S.; Alam, A.

    2016-01-01

    Collaborative Virtual Environments (CVEs) are computer generated worlds where two or more users can simultaneously interact with synthetic objects to perform a task. User performance is one of the main issues caused by either loose coordination, less awareness or communication among collaborating users. In this paper, a new model for task distribution is proposed, in which task distribution strategy among multiple users in CVEs is defined. The model assigns the task to collaborating users in CVEs either on static or dynamic basis. In static distribution there exists loose dependency and requires less communication during task realization whereas in dynamic distribution users are more dependent on each other and thus require more communication. In order to study the effect of static and dynamic task distribution strategies on user's performance in CVEs, a collaborative virtual environment is developed where twenty four (24) teams (each consists of two users) perform a task in collaboration under both strategies (static and dynamic). Results reveal that static distribution is more effective and increases users performance in CVEs. The outcome of this work will help the development of effective CVEs in the field of virtual assembly, repair, education and entertainment. (author)

  19. XSIM Final Report: Modelling the Past and Future of Identity Management for Scientific Collaborations

    Energy Technology Data Exchange (ETDEWEB)

    Cowles, Robert; Jackson, Craig; Welch, Von

    2016-08-31

    The eXtreme Science Identity Management (XSIM1) research project: collected and analyzed real world data on virtual organization (VO) identity management (IdM) representing the last 15+ years of collaborative DOE science; constructed a descriptive VO IdM model based on that data; used the model and existing trends to project the direction for IdM in the 2020 timeframe; and provided guidance to scientific collaborations and resource providers that are implementing or seeking to improve IdM functionality. XSIM conducted over 20 semi­structured interviews of representatives from scientific collaborations and resource providers, both in the US and Europe; the interviewees supported diverse set of scientific collaborations and disciplines. We developed a definition of “trust,” a key concept in IdM, to understand how varying trust models affect where IdM functions are performed. The model identifies how key IdM data elements are utilized in collaborative scientific workflows, and it has the flexibility to describe past, present and future trust relationships and IdM implementations. During the funding period, we gave more than two dozen presentations to socialize our work, encourage feedback, and improve the model; we also published four refereed papers. Additionally, we developed, presented, and received favorable feedback on three white papers providing practical advice to collaborations and/or resource providers.

  20. The degree distribution of fixed act-size collaboration networks

    Indian Academy of Sciences (India)

    In this paper, we investigate a special evolving model of collaboration net-works, where the act-size is fixed. Based on the first-passage probability of Markov chain theory, this paper provides a rigorous proof for the existence of a limiting degree distribution of this model and proves that the degree distribution obeys the ...

  1. Beyond Music Sharing: An Evaluation of Peer-to-Peer Data Dissemination Techniques in Large Scientific Collaborations

    Energy Technology Data Exchange (ETDEWEB)

    Ripeanu, Matei [University of British Columbia, Vancouver; Al-Kiswany, Samer [University of British Columbia, Vancouver; Iamnitchi, Adriana [University of South Florida, Tampa; Vazhkudai, Sudharshan S [ORNL

    2009-03-01

    The avalanche of data from scientific instruments and the ensuing interest from geographically distributed users to analyze and interpret it accentuates the need for efficient data dissemination. A suitable data distribution scheme will find the delicate balance between conflicting requirements of minimizing transfer times, minimizing the impact on the network, and uniformly distributing load among participants. We identify several data distribution techniques, some successfully employed by today's peer-to-peer networks: staging, data partitioning, orthogonal bandwidth exploitation, and combinations of the above. We use simulations to explore the performance of these techniques in contexts similar to those used by today's data-centric scientific collaborations and derive several recommendations for efficient data dissemination. Our experimental results show that the peer-to-peer solutions that offer load balancing and good fault tolerance properties and have embedded participation incentives lead to unjustified costs in today's scientific data collaborations deployed on over-provisioned network cores. However, as user communities grow and these deployments scale, peer-to-peer data delivery mechanisms will likely outperform other techniques.

  2. Do usage and scientific collaboration associate with citation impact

    Energy Technology Data Exchange (ETDEWEB)

    Chi, P.S.; Glänzel, W.

    2016-07-01

    In this study usage counts and times cited from Web of Science Core Collection (WoS) were collected for each article published in 2013 with Belgian, Israeli and Iranian addresses. We investigate the relations among three indicators related to citation impact, usage counts coauthorship, respectively. In addition, we apply the method of Characteristic Scores and Scal (CSS) to analyse the distributions of citations and usage counts. The results show that citations and usage counts in WoS correlate to each other significantly, especially in the social sciences. However, the increase of the number of co-authors does not increase usage counts or citations significantly. Furthermore, the stability of CSS-class distributions proves the availability of CSS in characterising both usage and citation distributions. (Author)

  3. A Collaborative Neurodynamic Approach to Multiple-Objective Distributed Optimization.

    Science.gov (United States)

    Yang, Shaofu; Liu, Qingshan; Wang, Jun

    2018-04-01

    This paper is concerned with multiple-objective distributed optimization. Based on objective weighting and decision space decomposition, a collaborative neurodynamic approach to multiobjective distributed optimization is presented. In the approach, a system of collaborative neural networks is developed to search for Pareto optimal solutions, where each neural network is associated with one objective function and given constraints. Sufficient conditions are derived for ascertaining the convergence to a Pareto optimal solution of the collaborative neurodynamic system. In addition, it is proved that each connected subsystem can generate a Pareto optimal solution when the communication topology is disconnected. Then, a switching-topology-based method is proposed to compute multiple Pareto optimal solutions for discretized approximation of Pareto front. Finally, simulation results are discussed to substantiate the performance of the collaborative neurodynamic approach. A portfolio selection application is also given.

  4. Coordinated Collaboration between Heterogeneous Distributed Energy Resources

    Directory of Open Access Journals (Sweden)

    Shahin Abdollahy

    2014-01-01

    Full Text Available A power distribution feeder, where a heterogeneous set of distributed energy resources is deployed, is examined by simulation. The energy resources include PV, battery storage, natural gas GenSet, fuel cells, and active thermal storage for commercial buildings. The resource scenario considered is one that may exist in a not too distant future. Two cases of interaction between different resources are examined. One interaction involves a GenSet used to partially offset the duty cycle of a smoothing battery connected to a large PV system. The other example involves the coordination of twenty thermal storage devices, each associated with a commercial building. Storage devices are intended to provide maximum benefit to the building, but it is shown that this can have a deleterious effect on the overall system, unless the action of the individual storage devices is coordinated. A network based approach is also introduced to calculate some type of effectiveness metric to all available resources which take part in coordinated operation. The main finding is that it is possible to achieve synergy between DERs on a system; however this required a unified strategy to coordinate the action of all devices in a decentralized way.

  5. Research collaboration at a distance : changing spatial patterns of scientific collaboration in Europe

    NARCIS (Netherlands)

    Hoekman, J.; Frenken, K.; Tijssen, R.J.W.

    2010-01-01

    This study analyses the changing effect of physical distance and territorial borders (regional, national, language) on the intensity of research collaboration across European regions. Using data on all co-publications between 313 regions in 33 European countries for the period 2000–2007, we find

  6. Uses of the Drupal CMS Collaborative Framework in the Woods Hole Scientific Community (Invited)

    Science.gov (United States)

    Maffei, A. R.; Chandler, C. L.; Work, T. T.; Shorthouse, D.; Furfey, J.; Miller, H.

    2010-12-01

    Organizations that comprise the Woods Hole scientific community (Woods Hole Oceanographic Institution, Marine Biological Laboratory, USGS Woods Hole Coastal and Marine Science Center, Woods Hole Research Center, NOAA NMFS Northeast Fisheries Science Center, SEA Education Association) have a long history of collaborative activity regarding computing, computer network and information technologies that support common, inter-disciplinary science needs. Over the past several years there has been growing interest in the use of the Drupal Content Management System (CMS) playing a variety of roles in support of research projects resident at several of these organizations. Many of these projects are part of science programs that are national and international in scope. Here we survey the current uses of Drupal within the Woods Hole scientific community and examine reasons it has been adopted. The promise of emerging semantic features in the Drupal framework is examined and projections of how pre-existing Drupal-based websites might benefit are made. Closer examination of Drupal software design exposes it as more than simply a content management system. The flexibility of its architecture; the power of its taxonomy module; the care taken in nurturing the open-source developer community that surrounds it (including organized and often well-attended code sprints); the ability to bind emerging software technologies as Drupal modules; the careful selection process used in adopting core functionality; multi-site hosting and cross-site deployment of updates and a recent trend towards development of use-case inspired Drupal distributions casts Drupal as a general-purpose application deployment framework. Recent work in the semantic arena casts Drupal as an emerging RDF framework as well. Examples of roles played by Drupal-based websites within the Woods Hole scientific community that will be discussed include: science data metadata database, organization main website, biological

  7. Conceptual design report for the scientific program of the super-FRS experiment collaboration

    International Nuclear Information System (INIS)

    2016-01-01

    This Conceptual Design Report (CDR) presents the plans of the Super-FRS Experiment Collaboration for a variety of experiments, which build on the versatile high-resolution separator and spectrometer performance of the Super-FRS. The characteristic feature of these experiments is the fact that they use the separator as an integral part of the measurement. These experiments build on the experience of the collaboration and their scientific program pursued at the FRS in the last 25 years, but also includes recently developed novel topics. Under these premises, the Super-FRS Experiment Collaboration has identified ten major topics of current interest and with far-reaching scientific potential. In this CDR, the scientific case is briefly recapitulated and the conceptual design of the experiments, the setups and their implementation are described. Much of the needed equipment is already available or, if not, will be realized with new, additional resources and efforts outside the FAIR Cost Books. The related R and D works and some pilot experiments can be carried out at the existing FRS of GSI in FAIR Phase-0. On the midterm, the science program of this collaboration can start at the commissioning phase of the Super-FRS and will continue on the long term with the established full performance. Accordingly, the prototype equipment and other already existing devices can be tested and used at the FRS and can later, when completed or upgraded, be moved to the Super-FRS. The related developments and organization of the Super-FRS Experiment Collaboration are described,and the collaboration partners and institutes are listed. The Super-FRS Experiment Collaboration is formally and firmly established and is a comprising part of the NUSTAR Collaboration. A large variety of modern nuclear physics experiments with new scientific possibilities and outstanding scientific potential were presented in the scientific program (GSI-Report 2014-4), which was very positively evaluated and

  8. Conceptual design report for the scientific program of the super-FRS experiment collaboration

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-11-01

    This Conceptual Design Report (CDR) presents the plans of the Super-FRS Experiment Collaboration for a variety of experiments, which build on the versatile high-resolution separator and spectrometer performance of the Super-FRS. The characteristic feature of these experiments is the fact that they use the separator as an integral part of the measurement. These experiments build on the experience of the collaboration and their scientific program pursued at the FRS in the last 25 years, but also includes recently developed novel topics. Under these premises, the Super-FRS Experiment Collaboration has identified ten major topics of current interest and with far-reaching scientific potential. In this CDR, the scientific case is briefly recapitulated and the conceptual design of the experiments, the setups and their implementation are described. Much of the needed equipment is already available or, if not, will be realized with new, additional resources and efforts outside the FAIR Cost Books. The related R and D works and some pilot experiments can be carried out at the existing FRS of GSI in FAIR Phase-0. On the midterm, the science program of this collaboration can start at the commissioning phase of the Super-FRS and will continue on the long term with the established full performance. Accordingly, the prototype equipment and other already existing devices can be tested and used at the FRS and can later, when completed or upgraded, be moved to the Super-FRS. The related developments and organization of the Super-FRS Experiment Collaboration are described,and the collaboration partners and institutes are listed. The Super-FRS Experiment Collaboration is formally and firmly established and is a comprising part of the NUSTAR Collaboration. A large variety of modern nuclear physics experiments with new scientific possibilities and outstanding scientific potential were presented in the scientific program (GSI-Report 2014-4), which was very positively evaluated and

  9. A Distributed and Collaborative Intelligent System for Medical Diagnosis

    Directory of Open Access Journals (Sweden)

    Wided LEJOUAD-CHAARI

    2013-08-01

    Full Text Available In this paper, we present a distributed collaborative system assisting physicians in diagnosis when processing medical images. This is a Web-based solution since the different participants and resources are on various sites. It is collaborative because these participants (physicians, radiologists, knowledgebasesdesigners, program developers for medical image processing, etc. can work collaboratively to enhance the quality of programs and then the quality of the diagnosis results. It is intelligent since it is a knowledge-based system including, but not only, a knowledge base, an inference engine said supervision engine and ontologies. The current work deals with the osteoporosis detection in bone radiographies. We rely on program supervision techniques that aim to automatically plan and control complex software usage. Our main contribution is to allow physicians, who are not experts in computing, to benefit from technological advances made by experts in image processing, and then to efficiently use various osteoporosis detection programs in a distributed environment.

  10. Analysis of Research Collaboration between Universities and Private Companies in Spain Based on Joint Scientific Publications

    Science.gov (United States)

    Olmeda-Gómez, Carlos; Ovalle-Perandones, María Antonia; de Moya-Anegón, Félix

    2015-01-01

    Introduction: The article presents the results of a study on scientific collaboration between Spanish universities and private enterprise, measured in terms of the co-authorship of papers published in international journals. Method: Bibliometric analysis of papers published in journals listed in Scopus in 2003-2011. Indicators were calculated for…

  11. Linking shallow, Linking deep : how scientific intermediaries use the Web for their network of collaborators

    NARCIS (Netherlands)

    Vasileiadou, E.; Besselaar, van den P.

    2006-01-01

    In this paper we explore the possibility of using Web links to study collaborations between organisations, combining the results of qualitative analysis of interviews and quantitative analysis of linking patterns. We use case studies of scientific intermediaries, that is, organisations that mediate

  12. A field experiment on search costs and the formation of scientific collaborations

    Czech Academy of Sciences Publication Activity Database

    Boudreau, K. J.; Brady, T.; Ganguli, I.; Gaulé, Patrick; Guinan, E.; Hollenberg, A.; Lakhani, K. R.

    2017-01-01

    Roč. 99, č. 4 (2017), s. 565-576 ISSN 0034-6535 Institutional support: Progres-Q24 Keywords : search costs * scientific collaborations Subject RIV: AH - Economics OBOR OECD: Applied Economics , Econometrics Impact factor: 2.926, year: 2016

  13. Scientific Management in Higher Education: Concerns and Using Collaborative School Management to Improve Communication.

    Science.gov (United States)

    Koermer, Chas; Petelle, John

    1996-01-01

    Explores problems associated with using "scientific management" ideals as a means of governance in higher education. Discusses hierarchial control, fitting in, paper bureaucracy, and committees. Describes the Collaborative School Management technique and how it fosters a more productive communication environment and facilitates…

  14. Collaborative Professional Development for Distributed Teacher Leadership towards School Change

    Science.gov (United States)

    Sales, Auxiliadora; Moliner, Lidón; Francisco Amat, Andrea

    2017-01-01

    Professional development that aims to build school change capacity requires spaces for collaborative action and reflection. These spaces should promote learning and foster skills for distributed leadership in managing school change. The present study analyses the case of the Seminar for Critical Citizenship (SCC) established by teachers of infant,…

  15. UNEDF: Advanced Scientific Computing Collaboration Transforms the Low-Energy Nuclear Many-Body Problem

    International Nuclear Information System (INIS)

    Nam, H; Stoitsov, M; Nazarewicz, W; Hagen, G; Kortelainen, M; Pei, J C; Bulgac, A; Maris, P; Vary, J P; Roche, K J; Schunck, N; Thompson, I; Wild, S M

    2012-01-01

    The demands of cutting-edge science are driving the need for larger and faster computing resources. With the rapidly growing scale of computing systems and the prospect of technologically disruptive architectures to meet these needs, scientists face the challenge of effectively using complex computational resources to advance scientific discovery. Multi-disciplinary collaborating networks of researchers with diverse scientific backgrounds are needed to address these complex challenges. The UNEDF SciDAC collaboration of nuclear theorists, applied mathematicians, and computer scientists is developing a comprehensive description of nuclei and their reactions that delivers maximum predictive power with quantified uncertainties. This paper describes UNEDF and identifies attributes that classify it as a successful computational collaboration. We illustrate significant milestones accomplished by UNEDF through integrative solutions using the most reliable theoretical approaches, most advanced algorithms, and leadership-class computational resources.

  16. Proximity and scientific collaboration in Northern European “cross-border regional innovation systems”

    DEFF Research Database (Denmark)

    Makkonen, Teemu; Williams, Allan

    2015-01-01

    A novel approach, namely cross-border regional innovation system, has been recently introduced to the literature on economic geography as a framework for studying innovation and scientific collaboration in a cross-border context. However, despite the importance of the topic for cross-border regions......, there are no existing empirical accounts comprehensively validating the concept. Here an attempt to shed some light into this “black box” is made by addressing this research gap via empirical material from Northern European cross-border regions. Specifically this is done by applying data on publications, sectoral...... and cultural statistics together with measures for accessibility and institutional and organisational similarity. These measures are linked to the varying types of proximity discussed in the literature on innovation and scientific collaboration; the impacts of proximity on the volume of cross-border scientific...

  17. DISTRIBUTED LEADERSHIP COLLABORATION FACTORS TO SUPPORT IDEA GENERATION IN COMPUTER-SUPPORTED COLLABORATIVE e-LEARNING

    Directory of Open Access Journals (Sweden)

    Niki Lambropoulos

    2011-01-01

    Full Text Available This paper aims to identify, discuss and analyze students’ collaboration factors related to distributed leadership (DL, which correlates with interaction quality evident in idea generation. Scripting computer-supported collaborative e-learning (CSCeL activities based on DL can scaffold students’ interactions that support collaboration and promote idea generation. Furthermore, the associated tools can facilitate collaboration via scripting and shed light on students’ interactions and dialogical sequences. Such detailed planning can result in effective short e-courses. In this case study, 21 MSc students’ teams worked on a DL project within a 2-day e-course at the IT Institute (ITIN, France. The research methods involved a self-reported questionnaire; the Non-Negative Matrix Factorization (NNMF algorithm with qualitative analysis; and outcomes from the Social Network Analysis (SNA tools implemented within the forums. The results indicated that scripting DL based on the identified distributed leadership attributes can support values such as collaboration and can be useful in supporting idea generation in short e-courses.

  18. Scientific collaboration and endorsement: Network analysis of coauthorship and citation networks

    Science.gov (United States)

    Ding, Ying

    2010-01-01

    Scientific collaboration and endorsement are well-established research topics which utilize three kinds of methods: survey/questionnaire, bibliometrics, and complex network analysis. This paper combines topic modeling and path-finding algorithms to determine whether productive authors tend to collaborate with or cite researchers with the same or different interests, and whether highly cited authors tend to collaborate with or cite each other. Taking information retrieval as a test field, the results show that productive authors tend to directly coauthor with and closely cite colleagues sharing the same research interests; they do not generally collaborate directly with colleagues having different research topics, but instead directly or indirectly cite them; and highly cited authors do not generally coauthor with each other, but closely cite each other. PMID:21344057

  19. Collaborative Distributed Scheduling Approaches for Wireless Sensor Network

    Science.gov (United States)

    Niu, Jianjun; Deng, Zhidong

    2009-01-01

    Energy constraints restrict the lifetime of wireless sensor networks (WSNs) with battery-powered nodes, which poses great challenges for their large scale application. In this paper, we propose a family of collaborative distributed scheduling approaches (CDSAs) based on the Markov process to reduce the energy consumption of a WSN. The family of CDSAs comprises of two approaches: a one-step collaborative distributed approach and a two-step collaborative distributed approach. The approaches enable nodes to learn the behavior information of its environment collaboratively and integrate sleep scheduling with transmission scheduling to reduce the energy consumption. We analyze the adaptability and practicality features of the CDSAs. The simulation results show that the two proposed approaches can effectively reduce nodes' energy consumption. Some other characteristics of the CDSAs like buffer occupation and packet delay are also analyzed in this paper. We evaluate CDSAs extensively on a 15-node WSN testbed. The test results show that the CDSAs conserve the energy effectively and are feasible for real WSNs. PMID:22408491

  20. Collaborative Distributed Scheduling Approaches for Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Zhidong Deng

    2009-10-01

    Full Text Available Energy constraints restrict the lifetime of wireless sensor networks (WSNs with battery-powered nodes, which poses great challenges for their large scale application. In this paper, we propose a family of collaborative distributed scheduling approaches (CDSAs based on the Markov process to reduce the energy consumption of a WSN. The family of CDSAs comprises of two approaches: a one-step collaborative distributed approach and a two-step collaborative distributed approach. The approaches enable nodes to learn the behavior information of its environment collaboratively and integrate sleep scheduling with transmission scheduling to reduce the energy consumption. We analyze the adaptability and practicality features of the CDSAs. The simulation results show that the two proposed approaches can effectively reduce nodes’ energy consumption. Some other characteristics of the CDSAs like buffer occupation and packet delay are also analyzed in this paper. We evaluate CDSAs extensively on a 15-node WSN testbed. The test results show that the CDSAs conserve the energy effectively and are feasible for real WSNs.

  1. [Co-authorship and Spanish pediatric scientific collaboration networks (2006-2010)].

    Science.gov (United States)

    Aleixandre Benavent, R; González de Dios, J; Alonso Arroyo, A; Bolaños Pizarro, M; Castelló Cogollos, L; González Alcaide, G; Vidal Infer, A; Navarro Molina, C; Coronado Ferrer, S; González Muñoz, M; Málaga Guerrero, S

    2013-06-01

    Scientific collaboration is very important, as it is the basis of the scientific development of every discipline. The aim of this paper is to identify the indicators of scientific collaboration and co-authorship networks of Spanish researchers and institutions publishing in national and international paediatric, multidisciplinary or other knowledge areas journals during the period 2006-2010. The papers studied were obtained from the databases including, Science Citation Index Expanded, Scopus, Índice Médico Español and Índice Bibliográfico Español en Ciencias de la Salud, by means of applying different search profiles. All the papers signed by co-authors were quantified in order to identify the authorship and institutional collaboration networks. Furthermore the degree, betweenness index, and closeness index were obtained as a measurement of the structural analysis. Co-authorships were represented graphically by the network analysis and display software Pajek. A total of 7971 articles were published during the period 2006-2010, with 90.55% completed in collaboration. Using a threshold of 10 or more co-authorships, 77 research groups in Pediatrics were identified. Most papers were published in collaboration between institutions of the same Autonomous Community (42.28%), and 14.84% with international collaboration. The analysis of institutional participation enabled a large nucleus or institutional collaboration network to be identified, with 52 linked institutions. International collaboration was led by the USA and European countries, such as United Kingdom, Germany and Italy. Authors, institutions and the most active working groups in Spanish pediatrics were identified, which is very interesting information to establish contacts to increase the existing networks, to prevent redundancies, and to take advantage of the new emerging groups. It is necessary to promote the collaboration of Spanish researchers, especially with their international colleagues, since a

  2. An in-depth longitudinal analysis of mixing patterns in a small scientific collaboration network

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Marko A [Los Alamos National Laboratory; Pepe, Alberto [UCLA

    2009-01-01

    Many investigations of scientific collaboration are based on large-scale statistical analyses of networks constructed from bibliographic repositories. These investigations often rely on a wealth of bibliographic data, but very little or no other information about the individuals in the network, and thus, fail to illustate the broader social and academic landscape in which collaboration takes place. In this article, we perform an in-depth longitudinal analysis of a small-scale network of scientific collaboration (N = 291) constructed from the bibliographic record of a research center involved in the development and application of sensor network technologies. We perform a preliminary analysis of selected structural properties of the network, computing its range, configuration and topology. We then support our preliminary statistical analysis with an in-depth temporal investigation of the assortativity mixing of these node characteristics: academic department, affiliation, position, and country of origin of the individuals in the network. Our qualitative analysis of mixing patterns offers clues as to the nature of the scientific community being modeled in relation to its organizational, disciplinary, institutional, and international arrangements of collaboration.

  3. Using Cloud-Computing Applications to Support Collaborative Scientific Inquiry: Examining Pre-Service Teachers' Perceived Barriers to Integration

    Science.gov (United States)

    Donna, Joel D.; Miller, Brant G.

    2013-01-01

    Technology plays a crucial role in facilitating collaboration within the scientific community. Cloud-computing applications, such as Google Drive, can be used to model such collaboration and support inquiry within the secondary science classroom. Little is known about pre-service teachers' beliefs related to the envisioned use of collaborative,…

  4. A Field Experiment on Search Costs and the Formation of Scientific Collaborations.

    Science.gov (United States)

    Boudreau, Kevin J; Brady, Tom; Ganguli, Ina; Gaule, Patrick; Guinan, Eva; Hollenberg, Anthony; Lakhani, Karim R

    2017-10-01

    We present the results of a field experiment conducted at Harvard Medical School to understand the extent to which search costs affect matching among scientific collaborators. We generated exogenous variation in search costs for pairs of potential collaborators by randomly assigning individuals to 90-minute structured information-sharing sessions as part of a grant funding opportunity. We estimate that the treatment increases the probability of grant co-application of a given pair of researchers by 75%. The findings suggest that matching between scientists is subject to considerable frictions, even in the case of geographically-proximate scientists working in the same institutional context.

  5. Distributed Sensing and Processing Adaptive Collaboration Environment (D-SPACE)

    Science.gov (United States)

    2014-07-01

    RISC 525 Brooks Road Rome NY 13441-4505 10. SPONSOR/MONITOR’S ACRONYM(S) AFRL/RI 11. SPONSOR/MONITOR’S REPORT NUMBER AFRL-RI-RS-TR-2014-195 12...cloud” technologies are not appropriate for situation understanding in areas of denial, where computation resources are limited, data not easily...graph matching process. D-SPACE distributes graph exploitation among a network of autonomous computational resources, designs the collaboration policy

  6. Expanding NASA and Roscosmos Scientific Collaboration on the International Space Station

    Science.gov (United States)

    Hasbrook, Pete

    2016-01-01

    The International Space Station (ISS) is a world-class laboratory orbiting in space. NASA and Roscosmos have developed a strong relationship through the ISS Program Partnership, working together and with the other ISS Partners for more than twenty years. Since 2013, based on a framework agreement between the Program Managers, NASA and Roscosmos are building a joint program of collaborative research on ISS. This international collaboration is developed and implemented in phases. Initially, members of the ISS Program Science Forum from NASA and TsNIIMash (representing Roscosmos) identified the first set of NASA experiments that could be implemented in the "near term". The experiments represented the research categories of Technology Demonstration, Microbiology, and Education. Through these experiments, the teams from the "program" and "operations" communities learned to work together to identify collaboration opportunities, establish agreements, and jointly plan and execute the experiments. The first joint scientific activity on ISS occurred in January 2014, and implementation of these joint experiments continues through present ISS operations. NASA and TsNIIMash have proceeded to develop "medium term" collaborations, where scientists join together to improve already-proposed experiments. A major success is the joint One-Year Mission on ISS, with astronaut Scott Kelly and cosmonaut Mikhail Kornienko, who returned from ISS in March, 2016. The teams from the NASA Human Research Program and the RAS Institute for Biomedical Problems built on their considerable experience to design joint experiments, learn to work with each other's protocols and processes, and share medical and research data. New collaborations are being developed between American and Russian scientists in complex fluids, robotics, rodent research and space biology, and additional human research. Collaborations are also being developed in Earth Remote Sensing, where scientists will share data from imaging

  7. Scientific Collaboration in Chinese Nursing Research: A Social Network Analysis Study.

    Science.gov (United States)

    Hou, Xiao-Ni; Hao, Yu-Fang; Cao, Jing; She, Yan-Chao; Duan, Hong-Mei

    2016-01-01

    Collaboration has become very important in research and in technological progress. Coauthorship networks in different fields have been intensively studied as an important type of collaboration in recent years. Yet there are few published reports about collaboration in the field of nursing. This article aimed to reveal the status and identify the key features of collaboration in the field of nursing in China. Using data from the top 10 nursing journals in China from 2003 to 2013, we constructed a nursing scientific coauthorship network using social network analysis. We found that coauthorship was a common phenomenon in the Chinese nursing field. A coauthorship network with 228 subnetworks formed by 1428 nodes was constructed. The network was relatively loose, and most subnetworks were of small scales. Scholars from Shanghai and from military medical system were at the center of the Chinese nursing scientific coauthorship network. We identified the authors' positions and influences according to the research output and centralities of each author. We also analyzed the microstructure and the evolution over time of the maximum subnetwork.

  8. South American collaboration in scientific publications on leishmaniasis: bibliometric analysis in SCOPUS (2000-2011).

    Science.gov (United States)

    Huamaní, Charles; Romaní, Franco; González-Alcaide, Gregorio; Mejia, Miluska O; Ramos, José Manuel; Espinoza, Manuel; Cabezas, César

    2014-01-01

    Evaluate the production and the research collaborative network on Leishmaniasis in South America. A bibliometric research was carried out using SCOPUS database. The analysis unit was original research articles published from 2000 to 2011, that dealt with leishmaniasis and that included at least one South American author. The following items were obtained for each article: journal name, language, year of publication, number of authors, institutions, countries, and others variables. 3,174 articles were published, 2,272 of them were original articles. 1,160 different institutional signatures, 58 different countries and 398 scientific journals were identified. Brazil was the country with more articles (60.7%) and Oswaldo Cruz Foundation (FIOCRUZ) had 18% of Brazilian production, which is the South American nucleus of the major scientific network in Leishmaniasis. South American scientific production on Leishmaniasis published in journals indexed in SCOPUS is focused on Brazilian research activity. It is necessary to strengthen the collaboration networks. The first step is to identify the institutions with higher production, in order to perform collaborative research according to the priorities of each country.

  9. SOUTH AMERICAN COLLABORATION IN SCIENTIFIC PUBLICATIONS ON LEISHMANIASIS: BIBLIOMETRIC ANALYSIS IN SCOPUS (2000-2011

    Directory of Open Access Journals (Sweden)

    Charles Huamaní

    2014-09-01

    Full Text Available Objectives: Evaluate the production and the research collaborative network on Leishmaniasis in South America. Methods: A bibliometric research was carried out using SCOPUS database. The analysis unit was original research articles published from 2000 to 2011, that dealt with leishmaniasis and that included at least one South American author. The following items were obtained for each article: journal name, language, year of publication, number of authors, institutions, countries, and others variables. Results: 3,174 articles were published, 2,272 of them were original articles. 1,160 different institutional signatures, 58 different countries and 398 scientific journals were identified. Brazil was the country with more articles (60.7% and Oswaldo Cruz Foundation (FIOCRUZ had 18% of Brazilian production, which is the South American nucleus of the major scientific network in Leishmaniasis. Conclusions: South American scientific production on Leishmaniasis published in journals indexed in SCOPUS is focused on Brazilian research activity. It is necessary to strengthen the collaboration networks. The first step is to identify the institutions with higher production, in order to perform collaborative research according to the priorities of each country.

  10. Research on Collaborative Technology in Distributed Virtual Reality System

    Science.gov (United States)

    Lei, ZhenJiang; Huang, JiJie; Li, Zhao; Wang, Lei; Cui, JiSheng; Tang, Zhi

    2018-01-01

    Distributed virtual reality technology applied to the joint training simulation needs the CSCW (Computer Supported Cooperative Work) terminal multicast technology to display and the HLA (high-level architecture) technology to ensure the temporal and spatial consistency of the simulation, in order to achieve collaborative display and collaborative computing. In this paper, the CSCW’s terminal multicast technology has been used to modify and expand the implementation framework of HLA. During the simulation initialization period, this paper has used the HLA statement and object management service interface to establish and manage the CSCW network topology, and used the HLA data filtering mechanism for each federal member to establish the corresponding Mesh tree. During the simulation running period, this paper has added a new thread for the RTI and the CSCW real-time multicast interactive technology into the RTI, so that the RTI can also use the window message mechanism to notify the application update the display screen. Through many applications of submerged simulation training in substation under the operation of large power grid, it is shown that this paper has achieved satisfactory training effect on the collaborative technology used in distributed virtual reality simulation.

  11. USEM workshop: designing for knowledge collaboration in distributed communities of practice

    NARCIS (Netherlands)

    Bitter-Rijpkema, Marlies

    2009-01-01

    Bitter-Rijpkema, M. (2009). USEM workshop: designing for knowledge collaboration in distributed communities of practice. 1st Presentation: Introduction. June, 3, 2009, Heerlen, The Netherlands. 2nd Presentation: From distance learning courses to knowledge collaboration in distributed communities.

  12. A framework for distributed mixed-language scientific applications

    International Nuclear Information System (INIS)

    Quarrie, D.R.

    1996-01-01

    The Object Management Group has defined an architecture (COBRA) for distributed object applications based on an Object Broker and Interface Definition Language. This project builds upon this architecture to establish a framework for the creation of mixed language scientific applications. A prototype compiler has been written that generates FORTRAN 90 or Eiffel subs and skeletons and the required C++ glue code from an input IDL file that specifies object interfaces. This generated code can be used directly for non-distributed mixed language applications or in conjunction with the C++ code generated from a commercial IDL compiler for distributed applications. A feasibility study is presently to see whether a fully integrated software development environment for distributed, mixed-language applications can be created by modifying the back-end code generator of a commercial CASE tool to emit IDL. (author)

  13. Protection of Location Privacy Based on Distributed Collaborative Recommendations.

    Science.gov (United States)

    Wang, Peng; Yang, Jing; Zhang, Jian-Pei

    2016-01-01

    In the existing centralized location services system structure, the server is easily attracted and be the communication bottleneck. It caused the disclosure of users' location. For this, we presented a new distributed collaborative recommendation strategy that is based on the distributed system. In this strategy, each node establishes profiles of their own location information. When requests for location services appear, the user can obtain the corresponding location services according to the recommendation of the neighboring users' location information profiles. If no suitable recommended location service results are obtained, then the user can send a service request to the server according to the construction of a k-anonymous data set with a centroid position of the neighbors. In this strategy, we designed a new model of distributed collaborative recommendation location service based on the users' location information profiles and used generalization and encryption to ensure the safety of the user's location information privacy. Finally, we used the real location data set to make theoretical and experimental analysis. And the results show that the strategy proposed in this paper is capable of reducing the frequency of access to the location server, providing better location services and protecting better the user's location privacy.

  14. Facebook for scientists: requirements and services for optimizing how scientific collaborations are established.

    Science.gov (United States)

    Schleyer, Titus; Spallek, Heiko; Butler, Brian S; Subramanian, Sushmita; Weiss, Daniel; Poythress, M Louisa; Rattanathikun, Phijarana; Mueller, Gregory

    2008-08-13

    As biomedical research projects become increasingly interdisciplinary and complex, collaboration with appropriate individuals, teams, and institutions becomes ever more crucial to project success. While social networks are extremely important in determining how scientific collaborations are formed, social networking technologies have not yet been studied as a tool to help form scientific collaborations. Many currently emerging expertise locating systems include social networking technologies, but it is unclear whether they make the process of finding collaborators more efficient and effective. This study was conducted to answer the following questions: (1) Which requirements should systems for finding collaborators in biomedical science fulfill? and (2) Which information technology services can address these requirements? The background research phase encompassed a thorough review of the literature, affinity diagramming, contextual inquiry, and semistructured interviews. This phase yielded five themes suggestive of requirements for systems to support the formation of collaborations. In the next phase, the generative phase, we brainstormed and selected design ideas for formal concept validation with end users. Then, three related, well-validated ideas were selected for implementation and evaluation in a prototype. Five main themes of systems requirements emerged: (1) beyond expertise, successful collaborations require compatibility with respect to personality, work style, productivity, and many other factors (compatibility); (2) finding appropriate collaborators requires the ability to effectively search in domains other than your own using information that is comprehensive and descriptive (communication); (3) social networks are important for finding potential collaborators, assessing their suitability and compatibility, and establishing contact with them (intermediation); (4) information profiles must be complete, correct, up-to-date, and comprehensive and allow

  15. Scientific authorships and collaboration network analysis on Chagas disease: papers indexed in PubMed (1940-2009).

    Science.gov (United States)

    González-Alcaide, Gregorio; Park, Jinseo; Huamaní, Charles; Gascón, Joaquín; Ramos, José Manuel

    2012-08-01

    Chagas disease is a chronic, tropical, parasitic disease, endemic throughout Latin America. The large-scale migration of populations has increased the geographic distribution of the disease and cases have been observed in many other countries around the world. To strengthen the critical mass of knowledge generated in different countries, it is essential to promote cooperative and translational research initiatives. We analyzed authorship of scientific documents on Chagas disease indexed in the Medline database from 1940 to 2009. Bibliometrics was used to analyze the evolution of collaboration patterns. A Social Network Analysis was carried out to identify the main research groups in the area by applying clustering methods. We then analyzed 13,989 papers produced by 21,350 authors. Collaboration among authors dramatically increased over the study period, reaching an average of 6.2 authors per paper in the last five-year period. Applying a threshold of collaboration of five or more papers signed in co-authorship, we identified 148 consolidated research groups made up of 1,750 authors. The Chagas disease network identified constitutes a "small world," characterized by a high degree of clustering and a notably high number of Brazilian researchers.

  16. Organization of Biomedical Data for Collaborative Scientific Research: A Research Information Management System.

    Science.gov (United States)

    Myneni, Sahiti; Patel, Vimla L

    2010-06-01

    Biomedical researchers often work with massive, detailed and heterogeneous datasets. These datasets raise new challenges of information organization and management for scientific interpretation, as they demand much of the researchers' time and attention. The current study investigated the nature of the problems that researchers face when dealing with such data. Four major problems identified with existing biomedical scientific information management methods were related to data organization, data sharing, collaboration, and publications. Therefore, there is a compelling need to develop an efficient and user-friendly information management system to handle the biomedical research data. This study evaluated the implementation of an information management system, which was introduced as part of the collaborative research to increase scientific productivity in a research laboratory. Laboratory members seemed to exhibit frustration during the implementation process. However, empirical findings revealed that they gained new knowledge and completed specified tasks while working together with the new system. Hence, researchers are urged to persist and persevere when dealing with any new technology, including an information management system in a research laboratory environment.

  17. Designing a solution to enable agency-academic scientific collaboration for disasters

    Science.gov (United States)

    Mease, Lindley A.; Gibbs-Plessl, Theodora; Erickson, Ashley; Ludwig, Kristin A.; Reddy, Christopher M.; Lubchenco, Jane

    2017-01-01

    As large-scale environmental disasters become increasingly frequent and more severe globally, people and organizations that prepare for and respond to these crises need efficient and effective ways to integrate sound science into their decision making. Experience has shown that integrating nongovernmental scientific expertise into disaster decision making can improve the quality of the response, and is most effective if the integration occurs before, during, and after a crisis, not just during a crisis. However, collaboration between academic, government, and industry scientists, decision makers, and responders is frequently difficult because of cultural differences, misaligned incentives, time pressures, and legal constraints. Our study addressed this challenge by using the Deep Change Method, a design methodology developed by Stanford ChangeLabs, which combines human-centered design, systems analysis, and behavioral psychology. We investigated underlying needs and motivations of government agency staff and academic scientists, mapped the root causes underlying the relationship failures between these two communities based on their experiences, and identified leverage points for shifting deeply rooted perceptions that impede collaboration. We found that building trust and creating mutual value between multiple stakeholders before crises occur is likely to increase the effectiveness of problem solving. We propose a solution, the Science Action Network, which is designed to address barriers to scientific collaboration by providing new mechanisms to build and improve trust and communication between government administrators and scientists, industry representatives, and academic scientists. The Science Action Network has the potential to ensure cross-disaster preparedness and science-based decision making through novel partnerships and scientific coordination.

  18. Designing a solution to enable agency-academic scientific collaboration for disasters

    Directory of Open Access Journals (Sweden)

    Lindley A. Mease

    2017-06-01

    Full Text Available As large-scale environmental disasters become increasingly frequent and more severe globally, people and organizations that prepare for and respond to these crises need efficient and effective ways to integrate sound science into their decision making. Experience has shown that integrating nongovernmental scientific expertise into disaster decision making can improve the quality of the response, and is most effective if the integration occurs before, during, and after a crisis, not just during a crisis. However, collaboration between academic, government, and industry scientists, decision makers, and responders is frequently difficult because of cultural differences, misaligned incentives, time pressures, and legal constraints. Our study addressed this challenge by using the Deep Change Method, a design methodology developed by Stanford ChangeLabs, which combines human-centered design, systems analysis, and behavioral psychology. We investigated underlying needs and motivations of government agency staff and academic scientists, mapped the root causes underlying the relationship failures between these two communities based on their experiences, and identified leverage points for shifting deeply rooted perceptions that impede collaboration. We found that building trust and creating mutual value between multiple stakeholders before crises occur is likely to increase the effectiveness of problem solving. We propose a solution, the Science Action Network, which is designed to address barriers to scientific collaboration by providing new mechanisms to build and improve trust and communication between government administrators and scientists, industry representatives, and academic scientists. The Science Action Network has the potential to ensure cross-disaster preparedness and science-based decision making through novel partnerships and scientific coordination.

  19. Teaching scientific literacy in an introductory women's studies course: a case study in interdisciplinary collaboration

    Science.gov (United States)

    Fuselier, Linda; Murphy, Claudia; Bender, Anita; Creel Falcón, Kandace

    2015-01-01

    Background and purpose:The purpose of this exploratory case study is to describe how scholars negotiated disciplinary divides to develop and communicate to their students an understanding of the basic features of scientific knowledge. Our goals were to examine boundary crossing in interdisciplinary collaboration and to assess the efficacy of adding science content to an introductory Women's Studies course. Sample:We studied a collaboration between faculty in Biology and Women's Studies and evaluated science modules in a Women's Studies course at a regional four-year university in the Midwestern USA. The study included 186 student participants over three semesters and four faculty from Philosophy, Women's Studies and Biology. Design and method:Women's Studies and Biology faculty collaborated to design and implement science content learning modules that included the case of women and science in an introductory Women's Studies course. Qualitative data collected from faculty participants in the form of peer debrief sessions and narrative reflections were used to examine the process of interdisciplinary collaboration. Students exposed to curriculum changes were administered pre- and post-lesson surveys to evaluate their understanding of issues faced by women in science careers, the nature of science, and interest in science studies. Data from collaborators, student journal reflections, and pre-/post-lesson surveys were considered together in an evaluation of how knowledge of science was understood and taught in a Women's Studies course over a longitudinal study of three semesters. Results:We found evidence of discipline-based challenges to interdisciplinarity and disciplinary boundary crossing among collaborators. Three themes emerged from our collaboration: challenges posed by disciplinary differences, creation of a space for interdisciplinary work, and evidence of boundary crossing. Student participants exhibited more prior knowledge of Women's Studies content than

  20. AmeriFlux and EuroFlux: History of a Strong Collaboration that Provided Unique Resources to the Scientific Community

    Science.gov (United States)

    Papale, D.; Agarwal, D.; Biraud, S.; Canfora, E.; Pastorello, G.; Torn, M. S.; Trotta, C.

    2017-12-01

    In 1995 scientific communities in Europe and North America using the eddy covariance technique to measure carbon, water, and energy exchanges between the terrestrial biosphere and the atmosphere started to organize their respective regional networks. Although there was a general interest and agreement to collaborate and exchange information and data between the two communities, these mainly occurred at the single site or individual levels through direct communications rather than systematically across networks. Between 2000 and 2008 common strategies to facilitate data sharing, promote data use across the two networks, and outreach to the scientific community, started to be more deeply discussed. Early on, harmonization across networks was deemed necessary to the success of both networks. This actually required major effort including lengthy discussions, compromises, and interactions between the networks for concrete implementation of common platforms and tools. Topics such as measurement units, variable definitions and labeling, data processing methods, data sharing policy, data distribution systems and formats, were key elements that had to be addressed and agreed upon carefully to build integrated and inter-operable research infrastructures (RIs). Today, AmeriFlux and EuroFlux are the basis, not only of the continental research infrastructures (ICOS in Europe), but they are also the driving force behind FLUXNET, where other regional networks are joining this coalition and contributing to the definition of a common system to make complex measurements accessible and comparable across continents. The latest dataset produced from this collaboration includes data contributed by over 200 sites around the world, with records spanning over two decades of data, and has been downloaded by over 900 users in the first 1.5 years of its publication. The core strategy of this collaboration, critical aspects and implemented solutions, as well as the current state of this effort

  1. Modeling nonuniversal citation distributions: the role of scientific journals

    International Nuclear Information System (INIS)

    Yao, Zheng; Peng, Xiao-Long; Xu, Xin-Jian; Zhang, Li-Jie

    2014-01-01

    Whether a scientific paper is cited is related not only to the influence of its author(s) but also to the journal publishing it. Scientists, either proficient or less experienced, usually submit their most important work to prestigious journals which receive more citations than others. How to model the role of scientific journals in citation dynamics is of great importance. In this paper we address this issue through two approaches. One is the intrinsic heterogeneity of a paper determined by the impact factor of the journal publishing it. The other is the mechanism of a paper being cited which depends on its citations and prestige. We develop a model for citation networks via an intrinsic nodal weight function and an intuitive aging mechanism. The node’s weight is drawn from the distribution of impact factors of journals and the aging transition is a function of the citation and the prestige. The node-degree distribution of resulting networks shows nonuniversal scaling: the distribution decays exponentially for small degree and has a power-law tail for large degree, hence the dual behavior. The higher the impact factor of the journal, the larger the tipping point and the smaller the power exponent that are obtained. With the increase of the journal rank, this phenomenon will fade and evolve to pure power laws. (paper)

  2. Mapping longitudinal scientific progress, collaboration and impact of the Alzheimer's disease neuroimaging initiative.

    Directory of Open Access Journals (Sweden)

    Xiaohui Yao

    Full Text Available Alzheimer's disease neuroimaging initiative (ADNI is a landmark imaging and omics study in AD. ADNI research literature has increased substantially over the past decade, which poses challenges for effectively communicating information about the results and impact of ADNI-related studies. In this work, we employed advanced information visualization techniques to perform a comprehensive and systematic mapping of the ADNI scientific growth and impact over a period of 12 years.Citation information of ADNI-related publications from 01/01/2003 to 05/12/2015 were downloaded from the Scopus database. Five fields, including authors, years, affiliations, sources (journals, and keywords, were extracted and preprocessed. Statistical analyses were performed on basic publication data as well as journal and citations information. Science mapping workflows were conducted using the Science of Science (Sci2 Tool to generate geospatial, topical, and collaboration visualizations at the micro (individual to macro (global levels such as geospatial layouts of institutional collaboration networks, keyword co-occurrence networks, and author collaboration networks evolving over time.During the studied period, 996 ADNI manuscripts were published across 233 journals and conference proceedings. The number of publications grew linearly from 2008 to 2015, so did the number of involved institutions. ADNI publications received much more citations than typical papers from the same set of journals. Collaborations were visualized at multiple levels, including authors, institutions, and research areas. The evolution of key ADNI research topics was also plotted over the studied period.Both statistical and visualization results demonstrate the increasing attention of ADNI research, strong citation impact of ADNI publications, the expanding collaboration networks among researchers, institutions and ADNI core areas, and the dynamic evolution of ADNI research topics. The visualizations

  3. The Impact of Virtual Collaboration and Collaboration Technologies on Knowledge Transfer and Team Performance in Distributed Organizations

    Science.gov (United States)

    Ngoma, Ngoma Sylvestre

    2013-01-01

    Virtual teams are increasingly viewed as a powerful determinant of competitive advantage in geographically distributed organizations. This study was designed to provide insights into the interdependencies between virtual collaboration, collaboration technologies, knowledge transfer, and virtual team performance in an effort to understand whether…

  4. Scientific retreats with 'speed dating': networking to stimulate new interdisciplinary translational research collaborations and team science.

    Science.gov (United States)

    Ranwala, Damayanthi; Alberg, Anthony J; Brady, Kathleen T; Obeid, Jihad S; Davis, Randal; Halushka, Perry V

    2017-02-01

    To stimulate the formation of new interdisciplinary translational research teams and innovative pilot projects, the South Carolina Clinical and Translational Research (SCTR) Institute (South Carolina Clinical and Translational Science Award, CTSA) initiated biannual scientific retreats with 'speed dating' networking sessions. Retreat themes were prioritized based on the following criteria; cross-cutting topic, unmet medical need, generation of novel technologies and methodologies. Each retreat begins with an external keynote speaker followed by a series of brief research presentations by local researchers focused on the retreat theme, articulating potential areas for new collaborations. After each session of presentations, there is a 30 min scientific 'speed dating' period during which the presenters meet with interested attendees to exchange ideas and discuss collaborations. Retreat attendees are eligible to compete for pilot project funds on the topic of the retreat theme. The 10 retreats held have had a total of 1004 participants, resulted in 61 pilot projects with new interdisciplinary teams, and 14 funded projects. The retreat format has been a successful mechanism to stimulate novel interdisciplinary research teams and innovative translational research projects. Future retreats will continue to target topics of cross-cutting importance to biomedical and public health research. Copyright © 2016 American Federation for Medical Research.

  5. Fast 3D Net Expeditions: Tools for Effective Scientific Collaboration on the World Wide Web

    Science.gov (United States)

    Watson, Val; Chancellor, Marisa K. (Technical Monitor)

    1996-01-01

    Two new technologies, the FASTexpedition and Remote FAST, have been developed that provide remote, 3D (three dimensional), high resolution, dynamic, interactive viewing of scientific data. The FASTexpedition permits one to access scientific data from the World Wide Web, take guided expeditions through the data, and continue with self controlled expeditions through the data. Remote FAST permits collaborators at remote sites to simultaneously view an analysis of scientific data being controlled by one of the collaborators. Control can be transferred between sites. These technologies are now being used for remote collaboration in joint university, industry, and NASA projects. Also, NASA Ames Research Center has initiated a project to make scientific data and guided expeditions through the data available as FASTexpeditions on the World Wide Web for educational purposes. Previously, remote visualization of dynamic data was done using video format (transmitting pixel information) such as video conferencing or MPEG (Motion Picture Expert Group) movies on the Internet. The concept for this new technology is to send the raw data (e.g., grids, vectors, and scalars) along with viewing scripts over the Internet and have the pixels generated by a visualization tool running on the viewers local workstation. The visualization tool that is currently used is FAST (Flow Analysis Software Toolkit). The advantages of this new technology over using video format are: (1) The visual is much higher in resolution (1280x1024 pixels with 24 bits of color) than typical video format transmitted over the network. (2) The form of the visualization can be controlled interactively (because the viewer is interactively controlling the visualization tool running on his workstation). (3) A rich variety of guided expeditions through the data can be included easily. (4) A capability is provided for other sites to see a visual analysis of one site as the analysis is interactively performed. Control of

  6. Developing a Collaborative Agenda for Humanities and Social Scientific Research on Laboratory Animal Science and Welfare.

    Science.gov (United States)

    Davies, Gail F; Greenhough, Beth J; Hobson-West, Pru; Kirk, Robert G W; Applebee, Ken; Bellingan, Laura C; Berdoy, Manuel; Buller, Henry; Cassaday, Helen J; Davies, Keith; Diefenbacher, Daniela; Druglitrø, Tone; Escobar, Maria Paula; Friese, Carrie; Herrmann, Kathrin; Hinterberger, Amy; Jarrett, Wendy J; Jayne, Kimberley; Johnson, Adam M; Johnson, Elizabeth R; Konold, Timm; Leach, Matthew C; Leonelli, Sabina; Lewis, David I; Lilley, Elliot J; Longridge, Emma R; McLeod, Carmen M; Miele, Mara; Nelson, Nicole C; Ormandy, Elisabeth H; Pallett, Helen; Poort, Lonneke; Pound, Pandora; Ramsden, Edmund; Roe, Emma; Scalway, Helen; Schrader, Astrid; Scotton, Chris J; Scudamore, Cheryl L; Smith, Jane A; Whitfield, Lucy; Wolfensohn, Sarah

    2016-01-01

    Improving laboratory animal science and welfare requires both new scientific research and insights from research in the humanities and social sciences. Whilst scientific research provides evidence to replace, reduce and refine procedures involving laboratory animals (the '3Rs'), work in the humanities and social sciences can help understand the social, economic and cultural processes that enhance or impede humane ways of knowing and working with laboratory animals. However, communication across these disciplinary perspectives is currently limited, and they design research programmes, generate results, engage users, and seek to influence policy in different ways. To facilitate dialogue and future research at this interface, we convened an interdisciplinary group of 45 life scientists, social scientists, humanities scholars, non-governmental organisations and policy-makers to generate a collaborative research agenda. This drew on methods employed by other agenda-setting exercises in science policy, using a collaborative and deliberative approach for the identification of research priorities. Participants were recruited from across the community, invited to submit research questions and vote on their priorities. They then met at an interactive workshop in the UK, discussed all 136 questions submitted, and collectively defined the 30 most important issues for the group. The output is a collaborative future agenda for research in the humanities and social sciences on laboratory animal science and welfare. The questions indicate a demand for new research in the humanities and social sciences to inform emerging discussions and priorities on the governance and practice of laboratory animal research, including on issues around: international harmonisation, openness and public engagement, 'cultures of care', harm-benefit analysis and the future of the 3Rs. The process outlined below underlines the value of interdisciplinary exchange for improving communication across

  7. Developing a Collaborative Agenda for Humanities and Social Scientific Research on Laboratory Animal Science and Welfare

    Science.gov (United States)

    Davies, Gail F.; Greenhough, Beth J; Hobson-West, Pru; Kirk, Robert G. W.; Applebee, Ken; Bellingan, Laura C.; Berdoy, Manuel; Buller, Henry; Cassaday, Helen J.; Davies, Keith; Diefenbacher, Daniela; Druglitrø, Tone; Escobar, Maria Paula; Friese, Carrie; Herrmann, Kathrin; Hinterberger, Amy; Jarrett, Wendy J.; Jayne, Kimberley; Johnson, Adam M.; Johnson, Elizabeth R.; Konold, Timm; Leach, Matthew C.; Leonelli, Sabina; Lewis, David I.; Lilley, Elliot J.; Longridge, Emma R.; McLeod, Carmen M.; Miele, Mara; Nelson, Nicole C.; Ormandy, Elisabeth H.; Pallett, Helen; Poort, Lonneke; Pound, Pandora; Ramsden, Edmund; Roe, Emma; Scalway, Helen; Schrader, Astrid; Scotton, Chris J.; Scudamore, Cheryl L.; Smith, Jane A.; Whitfield, Lucy; Wolfensohn, Sarah

    2016-01-01

    Improving laboratory animal science and welfare requires both new scientific research and insights from research in the humanities and social sciences. Whilst scientific research provides evidence to replace, reduce and refine procedures involving laboratory animals (the ‘3Rs’), work in the humanities and social sciences can help understand the social, economic and cultural processes that enhance or impede humane ways of knowing and working with laboratory animals. However, communication across these disciplinary perspectives is currently limited, and they design research programmes, generate results, engage users, and seek to influence policy in different ways. To facilitate dialogue and future research at this interface, we convened an interdisciplinary group of 45 life scientists, social scientists, humanities scholars, non-governmental organisations and policy-makers to generate a collaborative research agenda. This drew on methods employed by other agenda-setting exercises in science policy, using a collaborative and deliberative approach for the identification of research priorities. Participants were recruited from across the community, invited to submit research questions and vote on their priorities. They then met at an interactive workshop in the UK, discussed all 136 questions submitted, and collectively defined the 30 most important issues for the group. The output is a collaborative future agenda for research in the humanities and social sciences on laboratory animal science and welfare. The questions indicate a demand for new research in the humanities and social sciences to inform emerging discussions and priorities on the governance and practice of laboratory animal research, including on issues around: international harmonisation, openness and public engagement, ‘cultures of care’, harm-benefit analysis and the future of the 3Rs. The process outlined below underlines the value of interdisciplinary exchange for improving communication across

  8. Developing a Collaborative Agenda for Humanities and Social Scientific Research on Laboratory Animal Science and Welfare.

    Directory of Open Access Journals (Sweden)

    Gail F Davies

    Full Text Available Improving laboratory animal science and welfare requires both new scientific research and insights from research in the humanities and social sciences. Whilst scientific research provides evidence to replace, reduce and refine procedures involving laboratory animals (the '3Rs', work in the humanities and social sciences can help understand the social, economic and cultural processes that enhance or impede humane ways of knowing and working with laboratory animals. However, communication across these disciplinary perspectives is currently limited, and they design research programmes, generate results, engage users, and seek to influence policy in different ways. To facilitate dialogue and future research at this interface, we convened an interdisciplinary group of 45 life scientists, social scientists, humanities scholars, non-governmental organisations and policy-makers to generate a collaborative research agenda. This drew on methods employed by other agenda-setting exercises in science policy, using a collaborative and deliberative approach for the identification of research priorities. Participants were recruited from across the community, invited to submit research questions and vote on their priorities. They then met at an interactive workshop in the UK, discussed all 136 questions submitted, and collectively defined the 30 most important issues for the group. The output is a collaborative future agenda for research in the humanities and social sciences on laboratory animal science and welfare. The questions indicate a demand for new research in the humanities and social sciences to inform emerging discussions and priorities on the governance and practice of laboratory animal research, including on issues around: international harmonisation, openness and public engagement, 'cultures of care', harm-benefit analysis and the future of the 3Rs. The process outlined below underlines the value of interdisciplinary exchange for improving

  9. Distributed scaffolding: Wiki collaboration among Latino high school chemistry students

    Science.gov (United States)

    O'Sullivan, Edwin Duncan, Jr.

    The primary purpose of this study was to evaluate if wiki collaboration among Latino high school chemistry students can help reduce the science achievement gap between Latino and White students. The study was a quasi-experimental pre/post control group mixed-methods design. It used three intact sections of a high school chemistry course. The first research question asked if there is a difference in academic achievement between a treatment and control group on selected concepts from the topics of bonding, physical changes, and chemical changes, when Latino high school chemistry students collaborate on a quasi-natural wiki project. Overall results for all three activities (Bonding, Physical Changes, and Chemical Changes) indicated no significant difference between the wiki and control group. However, students performing the chemical changes activity did significantly better than their respective control group. Furthermore, there was a significant association, with large effect size, between group membership and ability to overcome the misconception that aqueous ionic reactants in precipitation reactions exist as molecular pairs of ions. Qualitative analysis of classroom and computer lab dialogue, discussion board communication, student focus groups, teacher interviews, and wiki content attributes the better performance of the chemical changes wiki group to favorable differences in intersubjectivity and calibrated assistance, as well as learning about submicroscopic representations of precipitation reactions in multiple contexts. Furthermore, the nonsignificant result overall points to an aversion to peer editing as a possible cause. Drawing considerably on Vygotsky and Piaget, the results are discussed within the context of how distributed scaffolding facilitated medium levels of cognitive conflict. The second research question asked what the characteristics of distributed metacognitive scaffolding are when Latino high school chemistry students collaborate on a quasi

  10. CERN’s model for international scientific collaboration to be discussed at UNOG

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    On 2 November, on the occasion of the 70th anniversary of the United Nations, CERN and UNOG will co-host a one-day symposium, with the support of Switzerland and France. The event will bring together policy-makers, scientists and members of civil society to debate how to construct synergies across communities as a means to drive global objectives. CERN people are invited to the Palais des Nations to take part.   CERN's seat at the General Assembly of the United Nations in New York. How does CERN work? How are goals achieved in such a complex environment where diverse communities work together in the interests of science? CERN’s model for international scientific collaboration is being looked at with growing interest by an increasingly large community of experts in various fields. Scientific advances and accomplishments are testament to the effectiveness of the model and prove that ambitious scientific programmes can be carried out only by communities c...

  11. Web-Based Scientific Exploration and Analysis of 3D Scanned Cuneiform Datasets for Collaborative Research

    Directory of Open Access Journals (Sweden)

    Denis Fisseler

    2017-12-01

    Full Text Available The three-dimensional cuneiform script is one of the oldest known writing systems and a central object of research in Ancient Near Eastern Studies and Hittitology. An important step towards the understanding of the cuneiform script is the provision of opportunities and tools for joint analysis. This paper presents an approach that contributes to this challenge: a collaborative compatible web-based scientific exploration and analysis of 3D scanned cuneiform fragments. The WebGL -based concept incorporates methods for compressed web-based content delivery of large 3D datasets and high quality visualization. To maximize accessibility and to promote acceptance of 3D techniques in the field of Hittitology, the introduced concept is integrated into the Hethitologie-Portal Mainz, an established leading online research resource in the field of Hittitology, which until now exclusively included 2D content. The paper shows that increasing the availability of 3D scanned archaeological data through a web-based interface can provide significant scientific value while at the same time finding a trade-off between copyright induced restrictions and scientific usability.

  12. Collaborative Posters Develop Students' Ability to Communicate about Undervalued Scientific Resources to Nonscientists.

    Science.gov (United States)

    Mayfield, Teresa J; Olimpo, Jeffrey T; Floyd, Kevin W; Greenbaum, Eli

    2018-01-01

    Scientists are increasingly called upon to communicate with the public, yet most never receive formal training in this area. Public understanding is particularly critical to maintaining support for undervalued resources such as biological collections, research data repositories, and expensive equipment. We describe activities carried out in an inquiry-driven organismal biology laboratory course designed to engage a diverse student body using biological collections. The goals of this cooperative learning experience were to increase students' ability to locate and comprehend primary research articles, and to communicate the importance of an undervalued scientific resource to nonscientists. Our results indicate that collaboratively created, research-focused informational posters are an effective tool for achieving these goals and may be applied in other disciplines or classroom settings.

  13. Finding a PATH toward Scientific Collaboration: Insights from the Columbia River Basin

    Directory of Open Access Journals (Sweden)

    David Marmorek

    2002-01-01

    Full Text Available Observed declines in the Snake River basin salmon stocks, listed under the U.S. Endangered Species Act (ESA, have been attributed to multiple causes: the hydrosystem, hatcheries, habitat, harvest, and ocean climate. Conflicting and competing analyses by different agencies led the National Marine Fisheries Service (NMFS in 1995 to create the Plan for Analyzing and Testing Hypotheses (PATH, a collaborative interagency analytical process. PATH included about 30 fisheries scientists from a dozen agencies, as well as independent participating scientists and a technical facilitation team. PATH had some successes and some failures in meeting its objectives. Some key lessons learned from these successes and failures were to: (1 build trust through independent technical facilitation and multiple levels of peer review (agency scientists, independent participating scientists and an external Scientific Review Panel; (2 clarify critical uncertainties by developing common data sets, detailed sensitivity analyses, and thorough retrospective analyses of the weight of evidence for key alternative hypotheses; (3 clarify advice to decision makers by using an integrated life cycle model and decision analysis framework to evaluate the robustness of potential recovery actions under alternative states of nature; (4 involve key senior scientists with access to decision makers; (5 work closely with policy makers to clearly communicate analyses in nontechnical terms and provide input into the creation of management alternatives; and (6 recognize the trade-off between collaboration and timely completion of assignments.

  14. The main activities and scientific collaboration possibilities at Ankara Nuclear research and training center

    International Nuclear Information System (INIS)

    Yucel, H.; Turhan, S.; Zararsiz, A.; Oksuz, B.S.

    2004-01-01

    Full text: Founded in 1964, Ankara Nuclear Research and Training Center (ANRTC) conducts and facilitates the scientific activities including training (summer practice, MSc and Ph D studies in physics and chemistry, IAEA fellowship programs etc.), research and other studies in nuclear and related fields. As it's a part of main duties, ANRTC has analysis on the variety of samples, and radiation protection services commercially, for radiation workers in state, public and private sectors. Research, development and application projects implemented in this Center have mostly been supported by State Planning Organization (SPO) and Turkish Atomic Energy Authority (TAEA). In addition to the projects there are on going collaborative studies with some national Universities and International Atomic Energy Agency. The main activities carried out in ANRTC can be summarized as: studies on experimental nuclear physics, application of nuclear techniques such as XRF, XRD, Gamma, Alpha, etc. for environmental pollutants, archaeological and geological dating, elemental and crystal structural analyses, studies on the detection of irradiated foodstuff by ESR, development of accident dosimeters to be used in the case of a nuclear or radiological accident, and radiation matter interaction studies. In near future, for young scientists, there will be new collaboration possibilities related to accelerator-based applications, especially the new production methods of radioisotopes and their radiopharmaceuticals by using a cyclotron when our 30 MeV p / 15MeV d cyclotron facility project is underway

  15. Distributed Collaborative Homework Activities in a Problem-Based Usability Engineering Course

    Science.gov (United States)

    Carroll, John M.; Jiang, Hao; Borge, Marcela

    2015-01-01

    Teams of students in an upper-division undergraduate Usability Engineering course used a collaborative environment to carry out a series of three distributed collaborative homework assignments. Assignments were case-based analyses structured using a jigsaw design; students were provided a collaborative software environment and introduced to a…

  16. Exascale Virtualized and Programmable Distributed Cyber Resource Control: Final Scientific Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, S.J.Ben [Univ. of California, Davis, CA (United States); Lauer, Gregory S. [Raytheon BBN Technologies, Minneapolis, MN (United States)

    2016-09-30

    Extreme-science drives the need for distributed exascale processing and communications that are carefully, yet flexibly, managed. Exponential growth of data for scientific simulations, experimental data, collaborative data analyses, remote visualization and GRID computing requirements of scientists in fields as diverse as high energy physics, climate change, genomics, fusion, synchrotron radiation, material science, medicine, and other scientific disciplines cannot be accommodated by simply applying existing transport protocols to faster pipes. Further, scientific challenges today demand diverse research teams, heightening the need for and increasing the complexity of collaboration. To address these issues within the network layer and physical layer, we have performed a number of research activities surrounding effective allocation and management of elastic optical network (EON) resources, particularly focusing on FlexGrid transponders. FlexGrid transponders support the opportunity to build Layer-1 connections at a wide range of bandwidths and to reconfigure them rapidly. The new flexibility supports complex new ways of using the physical layer that must be carefully managed and hidden from the scientist end-users. FlexGrid networks utilize flexible (or elastic) spectral bandwidths for each data link without using fixed wavelength grids. The flexibility in spectrum allocation brings many appealing features to network operations. Current networks are designed for the worst case impairments in transmission performance and the assigned spectrum is over-provisioned. In contrast, the FlexGrid networks can operate with the highest spectral efficiency and minimum bandwidth for the given traffic demand while meeting the minimum quality of transmission (QoT) requirement. Two primary focuses of our research are: (1) resource and spectrum allocation (RSA) for IP traffic over EONs, and (2) RSA for cross-domain optical networks. Previous work concentrates primarily on large

  17. Unbalanced international collaboration affects adversely the usefulness of countries' scientific output as well as their technological and social impact.

    Science.gov (United States)

    Zanotto, Sonia R; Haeffner, Cristina; Guimarães, Jorge A

    The unbalanced international scientific collaboration as cause of misleading information on the country's contribution to the scientific world output was analyzed. ESI Data Base (Thomson Reuters' InCites), covering the scientific production of 217 active countries in the period 2010-2014 was used. International collaboration implicates in a high percentage (33.1 %) of double-counted world articles, thus impacting qualitative data as citations, impact and impact relative to word. The countries were divided into three groups, according to their individual contribution to the world publications: Group I (24 countries, at least 1 %) representing 83.9 % of the total double-counted world articles. Group II (40 countries, 0.1-0.99 % each). Group III, 153 countries (70.5 %) with international collaboration were: Group I, 43.0 %; Group II, 55.8 % and Group III, 85.2 %. We concluded that very high and unbalanced international collaboration, as presented by many countries, misrepresent the importance of their scientific production, technological and social outputs. Furthermore, it jeopardizes qualitative outputs of the countries themselves, artificially increasing their scientific impact, affecting all fields and therefore, the whole world. The data confirm that when dealing with the qualitative contribution of countries, it is necessary to take in consideration the level of international cooperation because, as seen here, it can and in fact it does create false impression of the real contribution of countries.

  18. Correlation between Scientific Output and Collaboration among LIS Scholars around the World [as Reflected in Emerald Database

    Directory of Open Access Journals (Sweden)

    Farshid Danesh

    2009-12-01

    Full Text Available Sample of The present investigation was drawn from the total number of LIS articles published in Emereald Database during 2003-2008 period. 8320 articles was produced by 10760 researchers. The most prolific writers, countries having the highest number of articles, the most prolific research centers, and the busiest journals based on article count alone, were identified. Mean coefficient of collaboration among LIS scholars was 0.08. No significant correlation was found between scientific output and degree of collaboration. Findings indicated that in spite of the importance of joint research that would eventually lead to an increase in quality, coefficient of collaboration among LIS scholars is very low.

  19. Efficient Use of Distributed Systems for Scientific Applications

    Science.gov (United States)

    Taylor, Valerie; Chen, Jian; Canfield, Thomas; Richard, Jacques

    2000-01-01

    Distributed computing has been regarded as the future of high performance computing. Nationwide high speed networks such as vBNS are becoming widely available to interconnect high-speed computers, virtual environments, scientific instruments and large data sets. One of the major issues to be addressed with distributed systems is the development of computational tools that facilitate the efficient execution of parallel applications on such systems. These tools must exploit the heterogeneous resources (networks and compute nodes) in distributed systems. This paper presents a tool, called PART, which addresses this issue for mesh partitioning. PART takes advantage of the following heterogeneous system features: (1) processor speed; (2) number of processors; (3) local network performance; and (4) wide area network performance. Further, different finite element applications under consideration may have different computational complexities, different communication patterns, and different element types, which also must be taken into consideration when partitioning. PART uses parallel simulated annealing to partition the domain, taking into consideration network and processor heterogeneity. The results of using PART for an explicit finite element application executing on two IBM SPs (located at Argonne National Laboratory and the San Diego Supercomputer Center) indicate an increase in efficiency by up to 36% as compared to METIS, a widely used mesh partitioning tool. The input to METIS was modified to take into consideration heterogeneous processor performance; METIS does not take into consideration heterogeneous networks. The execution times for these applications were reduced by up to 30% as compared to METIS. These results are given in Figure 1 for four irregular meshes with number of elements ranging from 30,269 elements for the Barth5 mesh to 11,451 elements for the Barth4 mesh. Future work with PART entails using the tool with an integrated application requiring

  20. GENESI-DR Portal: a scientific gateway to distributed repositories

    Science.gov (United States)

    Goncalves, Pedro; Brito, Fabrice; D'Andria, Fabio; Cossu, Roberto; Fusco, Luigi

    2010-05-01

    GENESI-DR (Ground European Network for Earth Science Interoperations - Digital Repositories) is a European Commission (EC)-funded project, kicked-off early 2008 lead by ESA; partners include Space Agencies (DLR, ASI, CNES), both space and no-space data providers such as ENEA (I), Infoterra (UK), K-SAT (N), NILU (N), JRC (EU) and industry as Elsag Datamat (I), CS (F) and TERRADUE (I). GENESI-DR intends to meet the challenge of facilitating "time to science" from different Earth Science disciplines in discovery, access and use (combining, integrating, processing, …) of historical and recent Earth-related data from space, airborne and in-situ sensors, which are archived in large distributed repositories. "Discovering" which data are available on a "geospatial web" is one of the main challenges ES scientists have to face today. Some well- known data sets are referred to in many places, available from many sources. For core information with a common purpose many copies are distributed, e.g., VMap0, Landsat, and SRTM. Other data sets in low or local demand may only be found in a few places and niche communities. Relevant services, results of analysis, applications and tools are accessible in a very scattered and uncoordinated way, often through individual initiatives from Earth Observation mission operators, scientific institutes dealing with ground measurements, service companies or data catalogues. In the discourse of Spatial Data Infrastructures, there are "catalogue services" - directories containing information on where spatial data and services can be found. For metadata "records" describing spatial data and services, there are "registries". The Geospatial industry coins specifications for search interfaces, where it might do better to reach out to other information retrieval and Internet communities. These considerations are the basis for the GENESI-DR scientific portal, which adopts a simple model allowing the geo-spatial classification and discovery of

  1. Science in an age of globalisation : the geography of research collaboration and its effect on scientific publishing

    NARCIS (Netherlands)

    Hoekman, J.

    2012-01-01

    Although scientific knowledge is considered by many a universal and context-free product, its producers are often embedded in geographically bounded networks of research collaboration. However, in an age of globalisation these local networks of knowledge production are challenged by pressures to

  2. Spatial distribution of scientific activities: An exploratory analysis of Brazil, 2000–10

    OpenAIRE

    Tulio Chiarini; Vanessa Parreiras Oliveira; Fabio Chaves do Couto e Silva Neto

    2014-01-01

    The literature analyzing the spatial distribution of scientific and technological production in Brazil identifies differences in the regional distribution of scientific and technological resources. In this paper, we contribute to this discussion, by analyzing the dynamics of the production of new scientific knowledge in the states that contributed the most to national scientific production in the period 2000–10: Sao Paulo, Rio de Janeiro, Minas Gerais and Rio Grande do Sul, also known as the ...

  3. SCIENTIFIC PRESENTATION. 7TH MEETING OF THE MANAGEMENT STEERING COMMITTEE OF THE RIKEN BNL COLLABORATION.

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T.D.

    2001-02-13

    The RIKEN BNL Research Center (RBRC) was established in April 1997 at Brookhaven National Laboratory. It is funded by the ''Rikagaku Kenkysho,'' (RIKEN) The Institute of Physical and Chemical Research, of Japan. The Center is dedicated to the study of strong interactions, including hard QCD/spin physics, lattice QCD and RHIC (Relativistic Heavy Ion Collider) physics through nurturing of a new generation of young physicists. The Director of RBRC is Professor T. D. Lee. The first years were dedicated to the establishment of a theory group. This has essentially been completed consisting of Fellows, Postdocs, and RHIC Physics/University Fellows, with an active group of consultants. The center also organizes an extensive series of workshops on specific topics in strong interactions with an accompanying series of published proceedings. In addition, a 0.6 teraflop parallel processor computer has been constructed and operational since August 1998. It was awarded the Supercomputer 1998 Gordon Bell Prize for price performance. An active experimental group centered around the spin physics program at RHIC has subsequently also been established at RBRC. It presently consists of five Fellows, one Postdoc and several scientific collaborators with more appointments being expected in the near future. Members and participants of RBRC on occasion will develop articles such as this one, in the nature of a status report or a general review.

  4. SCIENTIFIC PRESENTATION. 7TH MEETING OF THE MANAGEMENT STEERING COMMITTEE OF THE RIKEN BNL COLLABORATION.

    Energy Technology Data Exchange (ETDEWEB)

    LEE,T.D.

    2001-02-13

    The RIKEN BNL Research Center (RBRC) was established in April 1997 at Brookhaven National Laboratory. It is funded by the ''Rikagaku Kenkysho,'' (RIKEN) The Institute of Physical and Chemical Research, of Japan. The Center is dedicated to the study of strong 'interactions, including hard QCD/spin physics, lattice QCD and RHIC (Relativistic Heavy Ion Collider) physics through nurturing of a new generation of young physicists. The Director of RBRC is Professor T. D. Lee. The first years were dedicated to the establishment of a theory group. This has essentially been completed consisting of Fellows, Postdocs, and RHIC Physics/University Fellows, with an active group of consultants. The center also organizes an extensive series of workshops on specific topics in strong interactions with an accompanying series of published proceedings. In addition, a 0.6 teraflop parallel processor computer has been constructed and operational since August 1998. It was awarded the Supercomputer 1998 Gordon Bell Prize for price performance. An active experimental group centered around the spin physics program at RHIC has subsequently also been established at RBRC. It presently consists of five Fellows, one Postdoc and several scientific collaborators with more appointments being expected in the near future. Members and participants of RBRC on occasion will develop articles such as this one, in the nature of a status report or a general review.

  5. Scientific presentation. 7th meeting of the management steering committee of the RIKEN BNL Collaboration

    International Nuclear Information System (INIS)

    Lee, T.D.

    2001-01-01

    The RIKEN BNL Research Center (RBRC) was established in April 1997 at Brookhaven National Laboratory. It is funded by the ''Rikagaku Kenkysho,'' (RIKEN) The Institute of Physical and Chemical Research, of Japan. The Center is dedicated to the study of strong interactions, including hard QCD/spin physics, lattice QCD and RHIC (Relativistic Heavy Ion Collider) physics through nurturing of a new generation of young physicists. The Director of RBRC is Professor T. D. Lee. The first years were dedicated to the establishment of a theory group. This has essentially been completed consisting of Fellows, Postdocs, and RHIC Physics/University Fellows, with an active group of consultants. The center also organizes an extensive series of workshops on specific topics in strong interactions with an accompanying series of published proceedings. In addition, a 0.6 teraflop parallel processor computer has been constructed and operational since August 1998. It was awarded the Supercomputer 1998 Gordon Bell Prize for price performance. An active experimental group centered around the spin physics program at RHIC has subsequently also been established at RBRC. It presently consists of five Fellows, one Postdoc and several scientific collaborators with more appointments being expected in the near future. Members and participants of RBRC on occasion will develop articles such as this one, in the nature of a status report or a general review

  6. When citizens and scientists work together : a french collaborative science network on earthworms communities distribution

    Science.gov (United States)

    Guernion, Muriel; Hoeffner, Kevin; Guillocheau, Sarah; Hotte, Hoël; Cylly, Daniel; Piron, Denis; Cluzeau, Daniel; Hervé, Morgane; Nicolai, Annegret; Pérès, Guénola

    2017-04-01

    Scientists have become more and more interested in earthworms because of their impact on soil functioning and their importance in provision of many ecosystem services. To improve the knowledge on soil biodiversity and integrate earthworms in soil quality diagnostics, it appeared necessary to gain a large amount of data on their distribution. The University of Rennes 1 developed since 2011 a collaborative science project called Observatoire Participatif des Vers de Terre (OPVT, participative earthworm observatory). It has several purposes : i) to offer a simple tool for soil biodiversity evaluation in natural and anthropic soils through earthworm assessment, ii) to offer trainings to farmers, territory managers, gardeners, pupils on soil ecology, iii) to build a database of reference values on earthworms in different habitats, iv) to propose a website (https://ecobiosoil.univ-rennes1.fr/OPVT_accueil.php) providing for example general scientific background (earthworm ecology and impacts of soil management), sampling protocols and online visualization of results (data processing and earthworms mapping). Up to now, more than 5000 plots have been prospected since the opening of the project in 2011., Initially available to anyone on a voluntary basis, this project is also used by the French Ministry of Agriculture to carry out a scientific survey throughout the French territory.

  7. Collaboration

    Science.gov (United States)

    King, Michelle L.

    2010-01-01

    This article explores collaboration between library media educators and regular classroom teachers. The article focuses on the context of the issue, positions on the issue, the impact of collaboration, and how to implement effective collaboration into the school system. Various books and professional journals are used to support conclusions…

  8. Cyberinfrastructure and Scientific Collaboration: Application of a Virtual Team Performance Framework with Potential Relevance to Education. WCER Working Paper No. 2010-12

    Science.gov (United States)

    Kraemer, Sara; Thorn, Christopher A.

    2010-01-01

    The purpose of this exploratory study was to identify and describe some of the dimensions of scientific collaborations using high throughput computing (HTC) through the lens of a virtual team performance framework. A secondary purpose was to assess the viability of using a virtual team performance framework to study scientific collaborations using…

  9. Hot Spots and Hot Moments in Scientific Collaborations and Social Movements

    Science.gov (United States)

    Parker, John N.; Hackett, Edward J.

    2012-01-01

    Emotions are essential but little understood components of research; they catalyze and sustain creative scientific work and fuel the scientific and intellectual social movements (SIMs) that propel scientific change. Adopting a micro-sociological focus, we examine how emotions shape two intellectual processes central to all scientific work:…

  10. [Peruvian scientific production in medicine and collaboration networks, analysis of the Science Citation Index 2000-2009].

    Science.gov (United States)

    Huamaní, Charles; Mayta-Tristán, Percy

    2010-09-01

    To describe the Peruvian scientific production in indexed journals in the Institute for Scientific Information (ISI) and the characteristics of the institutional collaborative networks. All papers published in the ISI database (Clinical Medicine collection) were included during 2000 to 2009 with at least one author with a Peruvian affiliation. The publication trend, address of corresponding author, type of article, institution, city (only for Peru), and country were evaluated. The collaborative networks were analized using the Pajek® software. 1210 papers were found, increasing from 61 in 2000 to 200 in 2009 (average of 121 articles/year). 30.4% articles included a corresponding author from a Peruvian institution. The average of authors per article was 8.3. Original articles represented 82.1% of total articles. Infectious diseases-related journals concentrated most of the articles. The main countries that collaborate with Peru are: USA (60.4%), England (12.9%), and Brazil (8.0%). Lima concentrated 94.7% of the publications and three regions (Huancavelica, Moquegua and Tacna) did not register any publication. Only two universities published more than one article/year and four institutions published more than 10 articles/year. Universidad Peruana Cayetano Heredia published 45% of the total number of articles, being the most productive institution and which concentrated the most number of collaborations with foreign institutions. The ministry of Health--including all dependencies--published 37.3% of the total number of publications. There is a higher level of collaboration with foreign institutions rather than local institutions. The Peruvian scientific production in medicine represented in the ISI database is very low but growing, and is concentrated in Lima and in a few institutions. The most productive Peruvian institutions collaborate more intensively with foreign journals rather than local institutions.

  11. Mentoring perception, scientific collaboration and research performance: is there a 'gender gap' in academic medicine? An Academic Health Science Centre perspective.

    Science.gov (United States)

    Athanasiou, Thanos; Patel, Vanash; Garas, George; Ashrafian, Hutan; Hull, Louise; Sevdalis, Nick; Harding, Sian; Darzi, Ara; Paroutis, Sotirios

    2016-10-01

    The 'gender gap' in academic medicine remains significant and predominantly favours males. This study investigates gender disparities in research performance in an Academic Health Science Centre, while considering factors such as mentoring and scientific collaboration. Professorial registry-based electronic survey (n=215) using bibliometric data, a mentoring perception survey and social network analysis. Survey outcomes were aggregated with measures of research performance (publications, citations and h-index) and measures of scientific collaboration (authorship position, centrality and social capital). Univariate and multivariate regression models were constructed to evaluate inter-relationships and identify gender differences. One hundred and four professors responded (48% response rate). Males had a significantly higher number of previous publications than females (mean 131.07 (111.13) vs 79.60 (66.52), p=0.049). The distribution of mentoring survey scores between males and females was similar for the quality and frequency of shared core, mentor-specific and mentee-specific skills. In multivariate analysis including gender as a variable, the quality of managing the relationship, frequency of providing corrective feedback and frequency of building trust had a statistically significant positive influence on number of publications (all presearch to investigate the relationship between mentoring perception, scientific collaboration and research performance in the context of gender. It presents a series of initiatives that proved effective in marginalising the gender gap. These include the Athena Scientific Women's Academic Network charter, new recruitment and advertisement strategies, setting up a 'Research and Family Life' forum, establishing mentoring circles for women and projecting female role models. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  12. Creating E-Books in a Distributed and Collaborative Way.

    Science.gov (United States)

    Perez, Ruth Cobos; Alaman, Xavier

    2002-01-01

    Describes how groups of authors can create electronic books through unsupervised collaborative work. Proposes a Web-based groupware system that allows building Web sites that can be considered as electronic books without the need of an editor, and describes experiences at the Universidad Autonoma de Madrid (Spain). (Author/LRW)

  13. The StratusLab cloud distribution: Use-cases and support for scientific applications

    Science.gov (United States)

    Floros, E.

    2012-04-01

    The StratusLab project is integrating an open cloud software distribution that enables organizations to setup and provide their own private or public IaaS (Infrastructure as a Service) computing clouds. StratusLab distribution capitalizes on popular infrastructure virtualization solutions like KVM, the OpenNebula virtual machine manager, Claudia service manager and SlipStream deployment platform, which are further enhanced and expanded with additional components developed within the project. The StratusLab distribution covers the core aspects of a cloud IaaS architecture, namely Computing (life-cycle management of virtual machines), Storage, Appliance management and Networking. The resulting software stack provides a packaged turn-key solution for deploying cloud computing services. The cloud computing infrastructures deployed using StratusLab can support a wide range of scientific and business use cases. Grid computing has been the primary use case pursued by the project and for this reason the initial priority has been the support for the deployment and operation of fully virtualized production-level grid sites; a goal that has already been achieved by operating such a site as part of EGI's (European Grid Initiative) pan-european grid infrastructure. In this area the project is currently working to provide non-trivial capabilities like elastic and autonomic management of grid site resources. Although grid computing has been the motivating paradigm, StratusLab's cloud distribution can support a wider range of use cases. Towards this direction, we have developed and currently provide support for setting up general purpose computing solutions like Hadoop, MPI and Torque clusters. For what concerns scientific applications the project is collaborating closely with the Bioinformatics community in order to prepare VM appliances and deploy optimized services for bioinformatics applications. In a similar manner additional scientific disciplines like Earth Science can take

  14. Project WEST: Fostering Scientific Inquiry and Collaborations From K Through Gray

    Science.gov (United States)

    Godsey, H. S.; Chapman, D. S.

    2007-12-01

    WEST (Water, the Environment, Science and Teaching) is a science education and outreach program at the University of Utah. WEST partners graduate students in the sciences with K-12 teachers to enhance inquiry- based science teaching in the Salt Lake City urban area. WEST has capitalized on the expertise of faculty and graduate students, scientists from state and federal agencies, local advocacy groups, and K-12 teachers to develop several placed-based scientific field projects for K-12 students. University members provide science content and ideas; state and federal researchers provide practical application and, often times, financial support; advocacy groups provide a tie to the community, and teachers provide a conduit for translating complex science concepts to students. These collaborations are built around a mutual interest in science education and anthropogenic influences on the quality and quantity of water resources critical to life in the arid West. Participants are relied upon to bring their unique perspective to each of the projects in order to meet a number of criteria: 1) projects should involve students in the entire scientific process from developing a hypothesis, making observations, data collection and analysis, 2) projects should be place-based and address interactions of water, the environment and society, and 3) projects should be directly tied to state education standards at appropriate grade levels. Examples of these projects include a water-quality study of Great Salt Lake where students participated in a research project on the lake. Students learned about navigation tools, collected and examined brine shrimp, and measured sulfide and chlorophyll concentrations as indicators of anthropogenic influences to Great Salt Lake. Hydrologists from the University of Utah and U.S. Geological Survey helped design this project and the Utah Dept. of Environmental Quality provided critical funds and supplies. In another project, students were involved in

  15. Merging assistance function with task distribution model to enhance user performance in collaborative virtual environment

    International Nuclear Information System (INIS)

    Khalid, S.; Alam, A.

    2016-01-01

    Collaborative Virtual Environments (CVEs) falls under Virtual Reality (VR) where two or more users manipulate objects collaboratively. In this paper we have made some experiments to make assembly from constituents parts scattered in Virtual Environment (VE) based on task distribution model using assistance functions for checking and enhancing user performance. The CVEs subjects setting on distinct connected machines via local area network. In this perspective, we consider the effects of assistance function with oral communication on collaboration, co-presence and users performance. Twenty subjects performed collaboratively an assembly task on static and dynamic based task distribution. We examine the degree of influence of assistance function with oral communications on user's performance based on task distribution model. The results show that assistance functions with oral communication based on task distribution model not only increase user performance but also enhance the sense of copresence and awareness. (author)

  16. idSpace Tooling and Training for collaborative distributed product innovation

    NARCIS (Netherlands)

    Rutjens, Marjo; Bitter-Rijpkema, Marlies; Grube, Pascal; Heider, Thomas

    2009-01-01

    Rutjens, M., Bitter-Rijpkema, M., Grube, P. P., & Heider, T. (2009). idSpace Tooling and Training for collaborative distributed product innovation. Workshop during the e-Learning Baltic conference. June, 17-19, 2009, Rostock, Germany.

  17. Predicting Scientific Creativity: The Role of Adversity, Collaborations, and Work Strategies

    Science.gov (United States)

    Barrett, Jamie D.; Vessey, William B.; Griffith, Jennifer A.; Mracek, Derek; Mumford, Michael D.

    2014-01-01

    There is little doubt that career experiences contribute to scientific achievement; however this relationship has yet to be thoroughly investigated in terms the effects on scientific creativity. In this study, a historiometric approach was used to examine 3 areas of adult career experiences common to scientific achievement. In doing so, prior…

  18. Integrated production-distribution planning optimization models: A review in collaborative networks context

    Directory of Open Access Journals (Sweden)

    Beatriz Andres

    2017-01-01

    Full Text Available Researchers in the area of collaborative networks are more and more aware of proposing collaborative approaches to address planning processes, due to the advantages associated when enterprises perform integrated planning models. Collaborative production-distribution planning, among the supply network actors, is considered a proper mechanism to support enterprises on dealing with uncertainties and dynamicity associated to the current markets. Enterprises, and especially SMEs, should be able to overcome the continuous changes of the market by increasing their agility. Carrying out collaborative planning allows enterprises to enhance their readiness and agility for facing the market turbulences. However, SMEs have limited access when incorporating optimization tools to deal with collaborative planning, reducing their ability to respond to the competition. The problem to solve is to provide SMEs affordable solutions to support collaborative planning. In this regard, new optimisation algorithms are required in order to improve the collaboration within the supply network partners. As part of the H2020 Cloud Collaborative Manufacturing Networks (C2NET research project, this paper presents a study on integrated production and distribution plans. The main objective of the research is to identify gaps in current optimization models, proposed to address integrated planning, taking into account the requirements and needs of the industry. Thus, the needs of the companies belonging to the industrial pilots, defined in the C2NET project, are identified; analysing how these needs are covered by the optimization models proposed in the literature, to deal with the integrated production-distribution planning.

  19. An exploration of collaborative scientific production at MIT through spatial organization and institutional affiliation.

    Science.gov (United States)

    Claudel, Matthew; Massaro, Emanuele; Santi, Paolo; Murray, Fiona; Ratti, Carlo

    2017-01-01

    Academic research is increasingly cross-disciplinary and collaborative, between and within institutions. In this context, what is the role and relevance of an individual's spatial position on a campus? We examine the collaboration patterns of faculty at the Massachusetts Institute of Technology, through their academic output (papers and patents), and their organizational structures (institutional affiliation and spatial configuration) over a 10-year time span. An initial comparison of output types reveals: 1. diverging trends in the composition of collaborative teams over time (size, faculty versus non-faculty, etc.); and 2. substantively different patterns of cross-building and cross-disciplinary collaboration. We then construct a multi-layered network of authors, and find two significant features of collaboration on campus: 1. a network topology and community structure that reveals spatial versus institutional collaboration bias; and 2. a persistent relationship between proximity and collaboration, well fit with an exponential decay model. This relationship is consistent for both papers and patents, and present also in exclusively cross-disciplinary work. These insights contribute an architectural dimension to the field of scientometrics, and take a first step toward empirical space-planning policy that supports collaboration within institutions.

  20. Science Camps in Europe--Collaboration with Companies and School, Implications and Results on Scientific Literacy

    Science.gov (United States)

    Lindner, M.; Kubat, C.

    2014-01-01

    The paper informs on the characteristics of a Comenius Network of seven organizations, who are collaborating in exchanging best practice on science camps. This exchange includes evaluation results on more science camps of European organizations, which will deliver information on organization, collaboration with companies, pedagogical aspects, as…

  1. An exploration of collaborative scientific production at MIT through spatial organization and institutional affiliation

    Science.gov (United States)

    Santi, Paolo; Murray, Fiona; Ratti, Carlo

    2017-01-01

    Academic research is increasingly cross-disciplinary and collaborative, between and within institutions. In this context, what is the role and relevance of an individual’s spatial position on a campus? We examine the collaboration patterns of faculty at the Massachusetts Institute of Technology, through their academic output (papers and patents), and their organizational structures (institutional affiliation and spatial configuration) over a 10-year time span. An initial comparison of output types reveals: 1. diverging trends in the composition of collaborative teams over time (size, faculty versus non-faculty, etc.); and 2. substantively different patterns of cross-building and cross-disciplinary collaboration. We then construct a multi-layered network of authors, and find two significant features of collaboration on campus: 1. a network topology and community structure that reveals spatial versus institutional collaboration bias; and 2. a persistent relationship between proximity and collaboration, well fit with an exponential decay model. This relationship is consistent for both papers and patents, and present also in exclusively cross-disciplinary work. These insights contribute an architectural dimension to the field of scientometrics, and take a first step toward empirical space-planning policy that supports collaboration within institutions. PMID:28640829

  2. Volcanic Ash Hazards and Risk in Argentina: Scientific and Social Collaborative Approaches.

    Science.gov (United States)

    Rovere, E. I., II; Violante, R. A.; Vazquez Herrera, M. D.; Martinez Fernandez, M. D. L. P.

    2015-12-01

    Due to the absence of alerts or volcanic impacts during 60 years (from 1932, Quizapu-Descabezado Grande -one of the major eruptions of the XX Century- until 1991 Hudson eruption) there was mild remembrance of volcanic hazards in the collective memory of the Argentina citizens. Since then and until April 2015, the social perception changed according to different factors: age, location, education, culture, vulnerability. This variability produces a maze of challenges that go beyond the scientific knowledge. Volcanic health hazards began to be understood in 2008 after the eruption of Chaiten volcano. The particle size of ashfall (concern on epidemiological monitoring. In 2011 the volcanic complex Puyehue - Cordon Caulle eruption produced ashfall through plumes that reached densely populated cities like San Carlos de Bariloche and Buenos Aires. Farther away in South Africa and New Zealand ash plumes forced airlines to cancel local and international flights for several weeks. The fear of another eruption did not wait long when Calbuco volcano started activity in April 2015, it came at a time when Villarrica volcano was also in an eruptive phase, and the SERNAGEOMIN Chile, through the Observatory OVDAS of the Southern Andes, faced multiple natural disasters at the same time, 3 volcanoes in activity, lahars, pyroclastic flows and floods in the North. In Argentina, critical infrastructure, farming, livestock and primary supplies were affected mainly in the western region. Copahue volcano, is increasing unstability on seismic and geochemistry data since 2012. Caviahue resort village, distant only 8 Km. from the active vent happens to be a high vulnerable location. In 2014 GEVAS (Geology, Volcanoes, Environment and Health) Network ARGENTINA Civil Association started collaborative activities with SEGEMAR and in 2015 with the IAPG (Geoethics, Argentina), intending to promote Best Practices in volcanic and geological hazards. Geoscientists and the volcano vulnerable population

  3. Security in Distributed Collaborative Environments: Limitations and Solutions

    Science.gov (United States)

    Saadi, Rachid; Pierson, Jean-Marc; Brunie, Lionel

    The main goal of establishing collaboration between heterogeneous environment is to create such as Pervasive context which provide nomadic users with ubiquitous access to digital information and surrounding resources. However, the constraints of mobility and heterogeneity arise a number of crucial issues related to security, especially authentication access control and privacy. First of all, in this chapter we explore the trust paradigm, specially the transitive capability to enable a trust peer to peer collaboration. In this manner, when each organization sets its own security policy to recognize (authenticate) users members of a trusted community and provide them a local access (access control), the trust transitivity between peers will allows users to gain a broad, larger and controlled access inside the pervasive environment. Next, we study the problem of user's privacy. In fact in pervasive and ubiquitous environments, nomadic users gather and exchange certificates or credential which providing them rights to access by transitivity unknown and trusted environments. These signed documents embeds increasing number of attribute that require to be filtered according to such contextual situation. In this chapter, we propose a new morph signature enabling each certificate owner to preserve his privacy by discloses or blinds some sensitive attributes according to faced situation.

  4. Collaborative Cloud Manufacturing: Design of Business Model Innovations Enabled by Cyberphysical Systems in Distributed Manufacturing Systems

    Directory of Open Access Journals (Sweden)

    Erwin Rauch

    2016-01-01

    Full Text Available Collaborative cloud manufacturing, as a concept of distributed manufacturing, allows different opportunities for changing the logic of generating and capturing value. Cyberphysical systems and the technologies behind them are the enablers for new business models which have the potential to be disruptive. This paper introduces the topics of distributed manufacturing as well as cyberphysical systems. Furthermore, the main business model clusters of distributed manufacturing systems are described, including collaborative cloud manufacturing. The paper aims to provide support for developing business model innovations based on collaborative cloud manufacturing. Therefore, three business model architecture types of a differentiated business logic are discussed, taking into consideration the parameters which have an influence and the design of the business model and its architecture. As a result, new business models can be developed systematically and new ideas can be generated to boost the concept of collaborative cloud manufacturing within all sustainable business models.

  5. Earth observation scientific workflows in a distributed computing environment

    CSIR Research Space (South Africa)

    Van Zyl, TL

    2011-09-01

    Full Text Available capabilities has focused on the web services approach as exemplified by the OGC's Web Processing Service and by GRID computing. The approach to leveraging distributed computing resources described in this paper uses instead remote objects via RPy...

  6. Virus evolutionary genetic algorithm for task collaboration of logistics distribution

    Science.gov (United States)

    Ning, Fanghua; Chen, Zichen; Xiong, Li

    2005-12-01

    In order to achieve JIT (Just-In-Time) level and clients' maximum satisfaction in logistics collaboration, a Virus Evolutionary Genetic Algorithm (VEGA) was put forward under double constraints of logistics resource and operation sequence. Based on mathematic description of a multiple objective function, the algorithm was designed to schedule logistics tasks with different due dates and allocate them to network members. By introducing a penalty item, make span and customers' satisfaction were expressed in fitness function. And a dynamic adaptive probability of infection was used to improve performance of local search. Compared to standard Genetic Algorithm (GA), experimental result illustrates the performance superiority of VEGA. So the VEGA can provide a powerful decision-making technique for optimizing resource configuration in logistics network.

  7. A Distributed Feature-based Environment for Collaborative Design

    Directory of Open Access Journals (Sweden)

    Wei-Dong Li

    2003-02-01

    Full Text Available This paper presents a client/server design environment based on 3D feature-based modelling and Java technologies to enable design information to be shared efficiently among members within a design team. In this environment, design tasks and clients are organised through working sessions generated and maintained by a collaborative server. The information from an individual design client during a design process is updated and broadcast to other clients in the same session through an event-driven and call-back mechanism. The downstream manufacturing analysis modules can be wrapped as agents and plugged into the open environment to support the design activities. At the server side, a feature-feature relationship is established and maintained to filter the varied information of a working part, so as to facilitate efficient information update during the design process.

  8. Public-private collaboration and scientific impact: an analysis at the level of the individual researcher

    Energy Technology Data Exchange (ETDEWEB)

    Bloch, C.; Ryan, T.K.; Andersen, J.P.

    2016-07-01

    This paper examines whether citation impact for individual researchers differs when collaborating with industry compared to work only involving academic researchers. To do this, we have identified a group of corresponding authors with addresses in Denmark with articles involving public-private collaboration for 2008-2010 and thereafter constructed a list of all articles authored by these researchers during the period 2006-2012. (Author)

  9. Exploring teachers' beliefs and knowledge about scientific inquiry and the nature of science: A collaborative action research project

    Science.gov (United States)

    Fazio, Xavier Eric

    Science curriculum reform goals espouse the need to foster and support the development of scientific literacy in students. Two critical goals of scientific literacy are students' engagement in, and developing more realistic conceptions about scientific inquiry (SI) and the nature of science (NOS). In order to promote the learning of these curriculum emphases, teachers themselves must possess beliefs and knowledge supportive of them. Collaborative action research is a viable form of curriculum and teacher development that can be used to support teachers in developing the requisite beliefs and knowledge that can promote these scientific literacy goals. This research study used a collective case study methodology to describe and interpret the views and actions of four teachers participating in a collaborative action research project. I explored the teachers' SI and NOS views throughout the project as they investigated ideas and theories, critically examined their current curricular practice, and implemented and reflected on these modified curricular practices. By the end of the research study, all participants had uniquely augmented their understanding of SI and NOS. The participants were better able to provide explanatory depth to some SI and NOS ideas; however, specific belief revision with respect to SI and NOS ideas was nominal. Furthermore, their idealized action research plans were not implemented to the extent that they were planned. Explanations for these findings include: impact of significant past educational experiences, prior understanding of SI and NOS, depth of content and pedagogical content knowledge of the discipline, and institutional and instructional constraints. Nonetheless, through participation in the collaborative action research process, the teachers developed professionally, personally, and socially. They identified many positive outcomes from participating in a collaborative action research project; however, they espoused constraints to

  10. A method for scientific code coupling in a distributed environment

    International Nuclear Information System (INIS)

    Caremoli, C.; Beaucourt, D.; Chen, O.; Nicolas, G.; Peniguel, C.; Rascle, P.; Richard, N.; Thai Van, D.; Yessayan, A.

    1994-12-01

    This guide book deals with coupling of big scientific codes. First, the context is introduced: big scientific codes devoted to a specific discipline coming to maturity, and more and more needs in terms of multi discipline studies. Then we describe different kinds of code coupling and an example of code coupling: 3D thermal-hydraulic code THYC and 3D neutronics code COCCINELLE. With this example we identify problems to be solved to realize a coupling. We present the different numerical methods usable for the resolution of coupling terms. This leads to define two kinds of coupling: with the leak coupling, we can use explicit methods, and with the strong coupling we need to use implicit methods. On both cases, we analyze the link with the way of parallelizing code. For translation of data from one code to another, we define the notion of Standard Coupling Interface based on a general structure for data. This general structure constitutes an intermediary between the codes, thus allowing a relative independence of the codes from a specific coupling. The proposed method for the implementation of a coupling leads to a simultaneous run of the different codes, while they exchange data. Two kinds of data communication with message exchange are proposed: direct communication between codes with the use of PVM product (Parallel Virtual Machine) and indirect communication with a coupling tool. This second way, with a general code coupling tool, is based on a coupling method, and we strongly recommended to use it. This method is based on the two following principles: re-usability, that means few modifications on existing codes, and definition of a code usable for coupling, that leads to separate the design of a code usable for coupling from the realization of a specific coupling. This coupling tool available from beginning of 1994 is described in general terms. (authors). figs., tabs

  11. Instructional Design Issues in a Distributed Collaborative Engineering Design (CED) Instructional Environment

    Science.gov (United States)

    Koszalka, Tiffany A.; Wu, Yiyan

    2010-01-01

    Changes in engineering practices have spawned changes in engineering education and prompted the use of distributed learning environments. A distributed collaborative engineering design (CED) course was designed to engage engineering students in learning about and solving engineering design problems. The CED incorporated an advanced interactive…

  12. Enhancing research publications and advancing scientific writing in health research collaborations: sharing lessons learnt from the trenches.

    Science.gov (United States)

    Li, Guowei; Jin, Yanling; Mbuagbaw, Lawrence; Dolovich, Lisa; Adachi, Jonathan D; Levine, Mitchell Ah; Cook, Deborah; Samaan, Zainab; Thabane, Lehana

    2018-01-01

    Disseminating research protocols, processes, methods or findings via peer-reviewed publications has substantive merits and benefits to various stakeholders. In this article, we share strategies to enhance research publication contents (ie, what to write about) and to facilitate scientific writing (ie, how to write) in health research collaborations. Empirical experience sharing. To enhance research publication contents, we encourage identifying appropriate opportunities for publications, publishing protocols ahead of results papers, seeking publications related to methodological issues, considering justified secondary analyses, and sharing academic process or experience. To advance writing, we suggest setting up scientific writing as a goal, seeking an appropriate mentorship, making full use of scientific meetings and presentations, taking some necessary formal training in areas such as effective communication and time and stress management, and embracing the iterative process of writing. All the strategies we share are dependent upon each other; and they advocate gradual academic accomplishments through study and training in a "success-breeds-success" way. It is expected that the foregoing shared strategies in this paper, together with other previous guidance articles, can assist one with enhancing research publications, and eventually one's academic success in health research collaborations.

  13. Ceph, a distributed storage system for scientific computing

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    Ceph is a distributed storage system designed to providing high performance and reliability at scales of up to thousands of storage nodes. The system is based on a distributed object storage layer call RADOS that provides durability, availability, efficient data distribution, and rich object semantics. This storage can be consumed directly via an object-based interface, or via file, block, or REST-based object services that are built on top of it. Clusters are composed of commodity components to provide a reliable storage service serving multiple use-cases. This seminar will cover the basic architecture of Ceph, with a focus on how each service can be consumed in a research and infrastructure environment. About the speaker Sage Weil, Founder and current CTO of Inktank Inc, is the creator of the Ceph project. He originally designed it as part of his PhD research in Storage Systems at the University of California, Santa Cruz. Since graduating, he has continued to refine the system with the goal of providi...

  14. [Scientific productivity, collaboration and research areas in Enfermedades Infecciosas y Microbiología Clínica (2003-2007)].

    Science.gov (United States)

    González-Alcaide, Gregorio; Valderrama-Zurián, Juan Carlos; Ramos-Rincón, José Manuel

    2010-10-01

    Collaboration is essential for biomedical research. The Carlos III Health Institute (the Spanish national public organization responsible for promoting biomedical research) has encouraged scientific collaboration by promoting Thematic Networks and Cooperative Research Centres. Scientific collaboration in Enfermedades Infecciosas y Microbiología Clinica journal is investigated. Papers published in Enfermedades Infecciosas y Microbiología Clinica in the period 2002-2007 have been identified. Bibliometrics and Social Network Analysis methods have been carried out in order to quantify and characterise scientific collaboration and research areas. A total of 805 papers generated by 2,289 authors and 326 institutions have been analysed. There were 36 research groups involving 138 authors identified. The Collaboration Index for articles was 5.5. Institutional collaboration was determined in 75% of articles. The collaboration between departments or units of the same institution prevails (43%), followed by intra-regional domestic collaboration (41%) and inter-regional domestic collaboration (14%). Hospital centres were the main institutional sector responsible of research (88% of papers), with 68% of articles cited. Sida/VIH (AIDS/HIV) is the main research area (n=114), followed by Staphylococcal Infections (n=33). Notable collaboration and citation rates have been observed. Research is focused on diseases with the highest mortality rates caused by infectious diseases in Spain. Copyright © 2009 Elsevier España, S.L. All rights reserved.

  15. Requisite Information Collaboration and Distributed Knowledge Management in Software Development

    DEFF Research Database (Denmark)

    Petersen, Mogens K.; Bjørn, Pernille; Frank, L.

    distributed knowledge management product state models. The paper draws upon a series of discussion with Scandinavian IT Group (SIG). With an interest in how performance in their new organization develops SIG invited the research group to study measures of organizational performance and the use and effect...... of knowledge management tools in software development. The paper does not represent the viewpoint of SIG but outline our framework and major research questions....

  16. A Component Approach to Collaborative Scientific Software Development: Tools and Techniques Utilized by the Quantum Chemistry Science Application Partnership

    Directory of Open Access Journals (Sweden)

    Joseph P. Kenny

    2008-01-01

    Full Text Available Cutting-edge scientific computing software is complex, increasingly involving the coupling of multiple packages to combine advanced algorithms or simulations at multiple physical scales. Component-based software engineering (CBSE has been advanced as a technique for managing this complexity, and complex component applications have been created in the quantum chemistry domain, as well as several other simulation areas, using the component model advocated by the Common Component Architecture (CCA Forum. While programming models do indeed enable sound software engineering practices, the selection of programming model is just one building block in a comprehensive approach to large-scale collaborative development which must also address interface and data standardization, and language and package interoperability. We provide an overview of the development approach utilized within the Quantum Chemistry Science Application Partnership, identifying design challenges, describing the techniques which we have adopted to address these challenges and highlighting the advantages which the CCA approach offers for collaborative development.

  17. Cassini Information Management System in Distributed Operations Collaboration and Cassini Science Planning

    Science.gov (United States)

    Equils, Douglas J.

    2008-01-01

    Launched on October 15, 1997, the Cassini-Huygens spacecraft began its ambitious journey to the Saturnian system with a complex suite of 12 scientific instruments, and another 6 instruments aboard the European Space Agencies Huygens Probe. Over the next 6 1/2 years, Cassini would continue its relatively simplistic cruise phase operations, flying past Venus, Earth, and Jupiter. However, following Saturn Orbit Insertion (SOI), Cassini would become involved in a complex series of tasks that required detailed resource management, distributed operations collaboration, and a data base for capturing science objectives. Collectively, these needs were met through a web-based software tool designed to help with the Cassini uplink process and ultimately used to generate more robust sequences for spacecraft operations. In 2001, in conjunction with the Southwest Research Institute (SwRI) and later Venustar Software and Engineering Inc., the Cassini Information Management System (CIMS) was released which enabled the Cassini spacecraft and science planning teams to perform complex information management and team collaboration between scientists and engineers in 17 countries. Originally tailored to help manage the science planning uplink process, CIMS has been actively evolving since its inception to meet the changing and growing needs of the Cassini uplink team and effectively reduce mission risk through a series of resource management validation algorithms. These algorithms have been implemented in the web-based software tool to identify potential sequence conflicts early in the science planning process. CIMS mitigates these sequence conflicts through identification of timing incongruities, pointing inconsistencies, flight rule violations, data volume issues, and by assisting in Deep Space Network (DSN) coverage analysis. In preparation for extended mission operations, CIMS has also evolved further to assist in the planning and coordination of the dual playback redundancy of

  18. The relation of learners' motivation with the process of collaborative scientific discovery learning

    NARCIS (Netherlands)

    Saab, N.; van Joolingen, W.R.; van Hout-Wolters, B.H.A.M.

    2009-01-01

    In this study, we investigated the influence of individual learners' motivation on the collaborative discovery learning process. In this we distinguished the motivation of the individual learners and had eye for the composition of groups, which could be homogeneous or heterogeneous in terms of

  19. The Relation of Learners' Motivation with the Process of Collaborative Scientific Discovery Learning

    Science.gov (United States)

    Saab, Nadira; van Joolingen, Wouter R.; van Hout-Wolters, B. H. A. M.

    2009-01-01

    In this study, we investigated the influence of individual learners' motivation on the collaborative discovery learning process. In this we distinguished the motivation of the individual learners and had eye for the composition of groups, which could be homogeneous or heterogeneous in terms of motivation. The study involved 73 dyads of 10th-grade…

  20. Ciência & Saúde Coletiva: scientific production analysis and collaborative research networks.

    Science.gov (United States)

    Conner, Norma; Provedel, Attilio; Maciel, Ethel Leonor Noia

    2017-03-01

    The purpose of this metric and descriptive study was to identify the most productive authors and their collaborative research networks from articles published in Ciência & Saúde Coletiva between, 2005, and 2014. Authors meeting the cutoff criteria of at least 10 articles were considered the most productive authors. VOSviewer and Network Workbench technologies were applied for visual representations of collaborative research networks involving the most productive authors in the period. Initial analysis recovered 2511 distinct articles, with 8920 total authors with an average of 3.55 authors per article. Author analysis revealed 6288 distinct authors, 24 of these authors were identified as the most productive. These 24 authors generated 287 articles with an average of 4.31 authors per article, and represented 8 separate collaborative partnerships, the largest of which had 14 authors, indicating a significant degree of collaboration among these authors. This analysis provides a visual representation of networks of knowledge development in public health and demonstrates the usefulness of VOSviewer and Network Workbench technologies in future research.

  1. Managing Distributed Innovation Processes in Virtual Organizations by Applying the Collaborative Network Relationship Analysis

    Science.gov (United States)

    Eschenbächer, Jens; Seifert, Marcus; Thoben, Klaus-Dieter

    Distributed innovation processes are considered as a new option to handle both the complexity and the speed in which new products and services need to be prepared. Indeed most research on innovation processes was focused on multinational companies with an intra-organisational perspective. The phenomena of innovation processes in networks - with an inter-organisational perspective - have been almost neglected. Collaborative networks present a perfect playground for such distributed innovation processes whereas the authors highlight in specific Virtual Organisation because of their dynamic behaviour. Research activities supporting distributed innovation processes in VO are rather new so that little knowledge about the management of such research is available. With the presentation of the collaborative network relationship analysis this gap will be addressed. It will be shown that a qualitative planning of collaboration intensities can support real business cases by proving knowledge and planning data.

  2. Enhancing Scientific Collaboration, Transparency, and Public Access: Utilizing the Second Life Platform to Convene a Scientific Conference in 3-D Virtual Space

    Science.gov (United States)

    McGee, B. W.

    2006-12-01

    uprecedented opportunity to witness an example of scientific collaboration typically reserved for members of a particular field or focus group. With a minimal investment in advertising or promotion both in real and virtual space, the possibility exists for scientific information and interaction to reach a far broader audience through Second Life than with any other currently available means for comparable cost.

  3. Specification of Scientific Tasks in Collaboration between Science, Industry and State, and Impact of Political Factors on Managerial Levers and Economy

    Directory of Open Access Journals (Sweden)

    Bondarenko Tetiana M.

    2016-11-01

    Full Text Available The issue of collaboration between science, industry and state is of relevance in domestic and international practice. In leading countries of the world and in Ukraine compatible production and scientific complexes are created; collaboration between research institutions and state is established, in particular the theory and practice of collaboration between science, industry and state on the basis of Triple Helix Model is widespread in the world; in scientific papers objects of research of economic processes, subjects of research of the economic theory are considered. However, there are no works where the objects and tasks of economic researches are studied on the basis of macroeconomic environment, and a distinct principle to distinguish research objects relating to different economies and types of production is laid out; scientific and practical problems of economy in the field of collaboration between state, science and industry are clearly defined. According to the purpose of the article (to specify scientific and practical tasks to rationalize scientific research, the experience gained is systematized and a scheme-matrix of scientific and practical problems is proposed. In scientific practice there are works highlighting principles of scientific research work, research tasks in the field of economy, scientific problems of economy but there are no works considering both principles and tasks of collaboration of academic economists with state and industry in order to provide scientists with recommendations on optimization of economic processes to improve the economic efficiency. Taking into account the experience gained, principles of collaboration of academic economists with the state and industry are identified. On the basis of the developed matrix of scientific and practical tasks, the principle of impact of political factors on managerial levers, the level of Gross Domestic Product and Gross Social Product is demonstrated.

  4. A study on scientific collaboration and co-authorship patterns in library and information science studies in Iran between 2005 and 2009.

    Science.gov (United States)

    Siamaki, Saba; Geraei, Ehsan; Zare-Farashbandi, Firoozeh

    2014-01-01

    Scientific collaboration is among the most important subjects in scientometrics, and many studies have investigated this concept to this day. The goal of the current study is investigation of scientific collaboration and co-authorship patterns of researchers in the field of library and information science in Iran between years 2005 and 2009. The current study uses scientometrics method. The statistical population consists of 942 documents published in Iranian library and information science journals between years 2005 and 2009. Collaboration coefficient, collaboration index (CI), and degree of collaboration (DC) were used for data analysis. The findings showed that among 942 investigated documents, 506 documents (53.70%) was created by one individual researcher and 436 documents (46.30%) were the result of collaboration between two or more researchers. Also, the highest rank of different authorship patterns belonged to National Journal of Librarianship and Information Organization (code H). The average collaboration coefficient for the library and information science researchers in the investigated time frame was 0.23. The closer this coefficient is to 1, the higher is the level of collaboration between authors, and a coefficient near zero shows a tendency to prefer individual articles. The highest collaboration index with an average of 1.92 authors per paper was seen in year 1388. The five year collaboration index in library and information science in Iran was 1.58, and the average degree of collaboration between researchers in the investigated papers was 0.46, which shows that library and information science researchers have a tendency for co-authorship. However, the co-authorship had increased in recent years reaching its highest number in year 1388. The researchers' collaboration coefficient also shows relative increase between years 1384 and 1388. National Journal of Librarianship and Information Organization has the highest rank among all the investigated

  5. Virtual patient simulator for distributed collaborative medical education.

    Science.gov (United States)

    Caudell, Thomas P; Summers, Kenneth L; Holten, Jim; Hakamata, Takeshi; Mowafi, Moad; Jacobs, Joshua; Lozanoff, Beth K; Lozanoff, Scott; Wilks, David; Keep, Marcus F; Saiki, Stanley; Alverson, Dale

    2003-01-01

    Project TOUCH (Telehealth Outreach for Unified Community Health; http://hsc.unm.edu/touch) investigates the feasibility of using advanced technologies to enhance education in an innovative problem-based learning format currently being used in medical school curricula, applying specific clinical case models, and deploying to remote sites/workstations. The University of New Mexico's School of Medicine and the John A. Burns School of Medicine at the University of Hawai'i face similar health care challenges in providing and delivering services and training to remote and rural areas. Recognizing that health care needs are local and require local solutions, both states are committed to improving health care delivery to their unique populations by sharing information and experiences through emerging telehealth technologies by using high-performance computing and communications resources. The purpose of this study is to describe the deployment of a problem-based learning case distributed over the National Computational Science Alliance's Access Grid. Emphasis is placed on the underlying technical components of the TOUCH project, including the virtual reality development tool Flatland, the artificial intelligence-based simulation engine, the Access Grid, high-performance computing platforms, and the software that connects them all. In addition, educational and technical challenges for Project TOUCH are identified. Copyright 2003 Wiley-Liss, Inc.

  6. The NSF Cybersecurity Center of Excellence: Translating Identity Management and Cybersecurity into Scientific Collaboration

    Science.gov (United States)

    Welch, V.

    2016-12-01

    Scientists care deeply about their collaborations: who is a member, who can access, produce, and correct data, and manager instruments critical to their science missions. The communities of cybersecurity and identity management professionals develop tools to support collaborations and the undertaking of trustworthy science, but there are large cultural and linguistic gaps between these communities and the scientists they service. The National Science Foundation has recently funded a NSF Cybersecurity Center of Excellence to help its community of projects by providing leadership and addressing the challenges of trustworthy science. A key goal of this NSF Center has been translating between the goals of the science community into requirements and risks understood by identity management and cybersecurity communities. This talk will give an update on the Center's efforts and other services it provides to the NSF community to bridge these cultures.

  7. The IceCube Data Acquisition Software: Lessons Learned during Distributed, Collaborative, Multi-Disciplined Software Development.

    Energy Technology Data Exchange (ETDEWEB)

    Beattie, Keith S; Beattie, Keith; Day Ph.D., Christopher; Glowacki, Dave; Hanson Ph.D., Kael; Jacobsen Ph.D., John; McParland, Charles; Patton Ph.D., Simon

    2007-09-21

    In this experiential paper we report on lessons learned during the development ofthe data acquisition software for the IceCube project - specifically, how to effectively address the unique challenges presented by a distributed, collaborative, multi-institutional, multi-disciplined project such as this. While development progress in software projects is often described solely in terms of technical issues, our experience indicates that non- and quasi-technical interactions play a substantial role in the effectiveness of large software development efforts. These include: selection and management of multiple software development methodologies, the effective useof various collaborative communication tools, project management structure and roles, and the impact and apparent importance of these elements when viewed through the differing perspectives of hardware, software, scientific and project office roles. Even in areas clearly technical in nature, success is still influenced by non-technical issues that can escape close attention. In particular we describe our experiences on software requirements specification, development methodologies and communication tools. We make observations on what tools and techniques have and have not been effective in this geographically disperse (including the South Pole) collaboration and offer suggestions on how similarly structured future projects may build upon our experiences.

  8. The Integrating Role of the LBA and the LPB Programs as an Example of Cyberinfrastructures in International Scientific Collaboration

    Science.gov (United States)

    Dias, P. L.

    2007-05-01

    International science collaboration is a key component of research programs such as the The Large Scale Biosphere Atmosphere Interaction Program (LBA) and the La Plata Basin Project (LPB). Both are programs with crosscutting science questions permeating different areas of knowledge related to the functioning of the natural and agricultural ecosystems in the Amazon system (LBA) and the change in the hydrological, agricultural and social systems of the Plata Basin (LPB) ecosystem under natural climatic variability and climate change. Both programs are strongly related to GEWEX, CLIVAR and IGBP and are based on extensive use of data information system (LBA/LPB/DIS) with mirror sites in the US, Europe and South America. These international programs have a significant impact in building up regional scientific capabilities at all levels of education and triggered the establishment of new research groups located in remote areas of South America. The cyberinfrastructure has been fundamental to promote the integration of the research groups, and a remarkable feedback with the operational forecasting systems has been detected. The LBA/LPB should be used as examples on how to promote international scientific and operational collaboration.

  9. Scientific Retreats with ‘Speed Dating’: Networking to Stimulate New Interdisciplinary Translational Research Collaborations and Team Science

    Science.gov (United States)

    Alberg, Anthony J.; Brady, Kathleen T.; Obeid, Jihad S.; Davis, Randal; Halushka, Perry V.

    2016-01-01

    To stimulate the formation of new interdisciplinary translational research teams and innovative pilot projects, the South Carolina Clinical & Translational Research (SCTR) Institute (South Carolina Clinical and Translational Science Award, CTSA) initiated biannual scientific retreats with “speed dating” networking sessions. Retreat themes were prioritized based on the following criteria; cross-cutting topic, unmet medical need, generation of novel technologies and methodologies. Each retreat commences with an external keynote speaker followed by a series of brief research presentations by local researchers focused on the retreat theme, articulating potential areas for new collaborations. After each session of presentations, there is a 30 minute scientific “speed dating” period during which the presenters meet with interested attendees to exchange ideas and discuss collaborations. Retreat attendees are eligible to compete for pilot project funds on the topic of the retreat theme. The 10 retreats held have had a total of 1004 participants, resulted in 61 pilot projects with new interdisciplinary teams, and 14 funded projects. The retreat format has been a successful mechanism to stimulate novel interdisciplinary research teams and innovative translational research projects. Future retreats will continue to target topics of cross-cutting importance to biomedical and public health research. PMID:27807146

  10. Actinides compounds for the transmutation: scientific contributions of american and japanese collaborations

    International Nuclear Information System (INIS)

    Raison, Ph.; Albiot, T.

    2000-01-01

    This paper deals with the minor actinides transmutation and the scientific contribution of the ORNL and the JAERI. It presents researches on the Am-Zr-Y-O system in the framework of the heterogeneous reprocessing, the curium and pyrochlore structures, with the ORNL contribution and phase diagrams, data of Thermodynamics, actinides nitrides, with the JAERI. (A.L.B.)

  11. Location-Based Mapping Services to Support Collaboration in Spatially Distributed Workgroups

    Science.gov (United States)

    Meyer, Eike Michael; Wichmann, Daniel; Büsch, Henning; Boll, Susanne

    Mobile devices and systems reached almost every part of our daily life. Following the mobile computing trend, also business logics of distributed, cooperative applications started to move into the mobile client applications. With this shift, the cooperation aspect may also exploit the user’s location and situation context and capabilities of the mobile device and integrate it into the actual cooperation and collaboration. In this paper, we present an approach for a Collaborative Map that exploits the spatial context of the member of a distributed group as a means to visualize and provide collaboration functionality. Then, a number of location-related cooperation methods become feasible such as getting an overview of the spatial distribution of the team members, identify an ad-hoc meeting place nearby, or chat with a group member who has a certain expertise in his or her profile. With CoMa, we move from standard collaboration tools that marginally consider spatial information towards context-aware mobile collaborative systems that can support a wide range of applications such as emergency response, maintenance work or event organization where human resources have to be coordinated in a spatial context and tasks need to be assigned dynamically depending on capabilities and situation context.

  12. Environmental Defense Fund Oil and Gas Methane Studies: Principles for Collaborating with Industry Partners while Maintaining Scientific Objectivity

    Science.gov (United States)

    Hamburg, S.

    2016-12-01

    Environmental Defense Fund (EDF) launched a series of 16 research studies in 2012 to quantify methane emissions from the U.S. oil and gas (O&G) supply chain. In addition to EDF's funding from philanthropic individuals and foundations and in-kind contributions from universities, over forty O&G companies contributed money to the studies. For a subset of studies that required partner companies to provide site access to measure their equipment, five common principles were followed to assure that research was objective and scientifically rigorous. First, academic scientists were selected as principal investigators (PIs) to lead the studies. In line with EDF's policy of not accepting money from corporate partners, O&G companies provided funding directly to academic PIs. Technical work groups and steering committees consisting of EDF and O&G partner staff advised the PIs in the planning and implementation of research, but PIs had the final authority in scientific decisions including publication content. Second, scientific advisory panels of independent experts advised the PIs in the study design, data analysis, and interpretation. Third, studies employed multiple methodologies when possible, including top-down and bottom-up measurements. This helped overcome the limitations of individual approaches to decrease the uncertainty of emission estimates and minimize concerns with data being "cherry-picked". Fourth, studies were published in peer-reviewed journals to undergo an additional round of independent review. Fifth, transparency of data was paramount. Study data were released after publication, although operator and site names of individual data points were anonymized to ensure transparency and allow independent analysis. Following these principles allowed an environmental organization, O&G companies, and academic scientists to collaborate in scientific research while minimizing conflicts of interest. This approach can serve as a model for a scientifically rigorous

  13. LabKey Server: An open source platform for scientific data integration, analysis and collaboration

    Science.gov (United States)

    2011-01-01

    Background Broad-based collaborations are becoming increasingly common among disease researchers. For example, the Global HIV Enterprise has united cross-disciplinary consortia to speed progress towards HIV vaccines through coordinated research across the boundaries of institutions, continents and specialties. New, end-to-end software tools for data and specimen management are necessary to achieve the ambitious goals of such alliances. These tools must enable researchers to organize and integrate heterogeneous data early in the discovery process, standardize processes, gain new insights into pooled data and collaborate securely. Results To meet these needs, we enhanced the LabKey Server platform, formerly known as CPAS. This freely available, open source software is maintained by professional engineers who use commercially proven practices for software development and maintenance. Recent enhancements support: (i) Submitting specimens requests across collaborating organizations (ii) Graphically defining new experimental data types, metadata and wizards for data collection (iii) Transitioning experimental results from a multiplicity of spreadsheets to custom tables in a shared database (iv) Securely organizing, integrating, analyzing, visualizing and sharing diverse data types, from clinical records to specimens to complex assays (v) Interacting dynamically with external data sources (vi) Tracking study participants and cohorts over time (vii) Developing custom interfaces using client libraries (viii) Authoring custom visualizations in a built-in R scripting environment. Diverse research organizations have adopted and adapted LabKey Server, including consortia within the Global HIV Enterprise. Atlas is an installation of LabKey Server that has been tailored to serve these consortia. It is in production use and demonstrates the core capabilities of LabKey Server. Atlas now has over 2,800 active user accounts originating from approximately 36 countries and 350

  14. LabKey Server: An open source platform for scientific data integration, analysis and collaboration

    Directory of Open Access Journals (Sweden)

    Lum Karl

    2011-03-01

    Full Text Available Abstract Background Broad-based collaborations are becoming increasingly common among disease researchers. For example, the Global HIV Enterprise has united cross-disciplinary consortia to speed progress towards HIV vaccines through coordinated research across the boundaries of institutions, continents and specialties. New, end-to-end software tools for data and specimen management are necessary to achieve the ambitious goals of such alliances. These tools must enable researchers to organize and integrate heterogeneous data early in the discovery process, standardize processes, gain new insights into pooled data and collaborate securely. Results To meet these needs, we enhanced the LabKey Server platform, formerly known as CPAS. This freely available, open source software is maintained by professional engineers who use commercially proven practices for software development and maintenance. Recent enhancements support: (i Submitting specimens requests across collaborating organizations (ii Graphically defining new experimental data types, metadata and wizards for data collection (iii Transitioning experimental results from a multiplicity of spreadsheets to custom tables in a shared database (iv Securely organizing, integrating, analyzing, visualizing and sharing diverse data types, from clinical records to specimens to complex assays (v Interacting dynamically with external data sources (vi Tracking study participants and cohorts over time (vii Developing custom interfaces using client libraries (viii Authoring custom visualizations in a built-in R scripting environment. Diverse research organizations have adopted and adapted LabKey Server, including consortia within the Global HIV Enterprise. Atlas is an installation of LabKey Server that has been tailored to serve these consortia. It is in production use and demonstrates the core capabilities of LabKey Server. Atlas now has over 2,800 active user accounts originating from approximately 36

  15. LabKey Server: an open source platform for scientific data integration, analysis and collaboration.

    Science.gov (United States)

    Nelson, Elizabeth K; Piehler, Britt; Eckels, Josh; Rauch, Adam; Bellew, Matthew; Hussey, Peter; Ramsay, Sarah; Nathe, Cory; Lum, Karl; Krouse, Kevin; Stearns, David; Connolly, Brian; Skillman, Tom; Igra, Mark

    2011-03-09

    Broad-based collaborations are becoming increasingly common among disease researchers. For example, the Global HIV Enterprise has united cross-disciplinary consortia to speed progress towards HIV vaccines through coordinated research across the boundaries of institutions, continents and specialties. New, end-to-end software tools for data and specimen management are necessary to achieve the ambitious goals of such alliances. These tools must enable researchers to organize and integrate heterogeneous data early in the discovery process, standardize processes, gain new insights into pooled data and collaborate securely. To meet these needs, we enhanced the LabKey Server platform, formerly known as CPAS. This freely available, open source software is maintained by professional engineers who use commercially proven practices for software development and maintenance. Recent enhancements support: (i) Submitting specimens requests across collaborating organizations (ii) Graphically defining new experimental data types, metadata and wizards for data collection (iii) Transitioning experimental results from a multiplicity of spreadsheets to custom tables in a shared database (iv) Securely organizing, integrating, analyzing, visualizing and sharing diverse data types, from clinical records to specimens to complex assays (v) Interacting dynamically with external data sources (vi) Tracking study participants and cohorts over time (vii) Developing custom interfaces using client libraries (viii) Authoring custom visualizations in a built-in R scripting environment. Diverse research organizations have adopted and adapted LabKey Server, including consortia within the Global HIV Enterprise. Atlas is an installation of LabKey Server that has been tailored to serve these consortia. It is in production use and demonstrates the core capabilities of LabKey Server. Atlas now has over 2,800 active user accounts originating from approximately 36 countries and 350 organizations. It tracks

  16. Summary of the ACAT round table discussion. Open-source, knowledge sharing and scientific collaboration

    International Nuclear Information System (INIS)

    Carminati, Federico; Perret-Gallix, Denis; Riemann, Tord

    2014-07-01

    Round table discussions are in the tradition of ACAT. This year's plenary round table discussion was devoted to questions related to the use of scientific software in High Energy Physics and beyond. The 90 minutes of discussion were lively, and quite a lot of diverse opinions were spelled out. Although the discussion was, in part, controversial, the participants agreed unanimously on several basic issues in software sharing: (i) The importance of having various licensing models in academic research; (ii) The basic value of proper recognition and attribution of intellectual property, including scientific software; (iii) The user respect for the conditions of use, including licence statements, as formulated by the author. The need of a similar discussion on the issues of data sharing was emphasized and it was recommended to cover this subject at the conference round table discussion of next ACAT. In this contribution, we summarise selected topics that were covered in the introductory talks and in the following discussion.

  17. Summary of the ACAT Round Table Discussion: Open-source, knowledge sharing and scientific collaboration

    International Nuclear Information System (INIS)

    Carminati, Federico; Perret-Gallix, Denis; Riemann, Tord

    2014-01-01

    Round table discussions are in the tradition of ACAT. This year's plenary round table discussion was devoted to questions related to the use of scientific software in High Energy Physics and beyond. The 90 minutes of discussion were lively, and quite a lot of diverse opinions were spelled out. Although the discussion was, in part, controversial, the participants agreed unanimously on several basic issues in software sharing: • The importance of having various licensing models in academic research; • The basic value of proper recognition and attribution of intellectual property, including scientific software; • The user respect for the conditions of use, including licence statements, as formulated by the author. The need of a similar discussion on the issues of data sharing was emphasized and it was recommended to cover this subject at the conference round table discussion of next ACAT. In this contribution, we summarise selected topics that were covered in the introductory talks and in the following discussion

  18. Summary of the ACAT round table discussion. Open-source, knowledge sharing and scientific collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Carminati, Federico [CERN, Geneva (Switzerland); Perret-Gallix, Denis [LAPP/IN2P3, CNRS, Annecy-le-Vieux, (France); Riemann, Tord [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2014-07-15

    Round table discussions are in the tradition of ACAT. This year's plenary round table discussion was devoted to questions related to the use of scientific software in High Energy Physics and beyond. The 90 minutes of discussion were lively, and quite a lot of diverse opinions were spelled out. Although the discussion was, in part, controversial, the participants agreed unanimously on several basic issues in software sharing: (i) The importance of having various licensing models in academic research; (ii) The basic value of proper recognition and attribution of intellectual property, including scientific software; (iii) The user respect for the conditions of use, including licence statements, as formulated by the author. The need of a similar discussion on the issues of data sharing was emphasized and it was recommended to cover this subject at the conference round table discussion of next ACAT. In this contribution, we summarise selected topics that were covered in the introductory talks and in the following discussion.

  19. Summary of the ACAT Round Table Discussion: Open-source, knowledge sharing and scientific collaboration

    CERN Document Server

    Carminati, Federico; Riemann, Tord

    2014-01-01

    Round table discussions are in the tradition of ACAT. This year's plenary round table discussion was devoted to questions related to the use of scientific software in High Energy Physics and beyond. The 90 minutes of discussion were lively, and quite a lot of diverse opinions were spelled out. Although the discussion was, in part, controversial, the participants agreed unanimously on several basic issues in software sharing: (i) The importance of having various licensing models in academic research; (ii) The basic value of proper recognition and attribution of intellectual property, including scientific software; (iii) The user respect for the conditions of use, including licence statements, as formulated by the author. The need of a similar discussion on the issues of data sharing was emphasized and it was recommended to cover this subject at the conference round table discussion of next ACAT. In this contribution, we summarise selected topics that were covered in the introductory talks and in the following ...

  20. Innovation as a distributed, collaborative process of knowledge generation: open, networked innovation

    NARCIS (Netherlands)

    Sloep, Peter

    2009-01-01

    Sloep, P. B. (2009). Innovation as a distributed, collaborative process of knowledge generation: open, networked innovation. In V. Hornung-Prähauser & M. Luckmann (Eds.), Kreativität und Innovationskompetenz im digitalen Netz - Creativity and Innovation Competencies in the Web, Sammlung von

  1. Distributed Cognition and Embodiment in Text Planning: A Situated Study of Collaborative Writing in the Workplace

    Science.gov (United States)

    Clayson, Ashley

    2018-01-01

    Through a study of collaborative writing at a student advocacy nonprofit, this article explores how writers distribute their text planning across tools, artifacts, and gestures, with a particular focus on how embodied representations of texts are present in text planning. Findings indicate that these and other representations generated by the…

  2. Distribution of Feedback among Teacher and Students in Online Collaborative Learning in Small Groups

    Science.gov (United States)

    Coll, Cesar; Rochera, Maria Jose; de Gispert, Ines; Diaz-Barriga, Frida

    2013-01-01

    This study explores the characteristics and distribution of the feedback provided by the participants (a teacher and her students) in an activity organized inside a collaborative online learning environment. We analyse 853 submissions made by two groups of graduate students and their teacher (N1 = 629 & N2 = 224) involved in the collaborative…

  3. Using External Collaborations To Advance Distributed Learning at the University of Pennsylvania.

    Science.gov (United States)

    Eleey, Michael; Comegno, Marsha

    1999-01-01

    Discusses distributed-learning technology and distance learning in higher education and describes initiatives at the University of Pennsylvania to collaborate with businesses and choose outsourcing for some functions. Reasons for outsourcing include a decentralized institutional structure, high initial costs, uncertainty about which techniques…

  4. Supporting Trust in Globally Distributed Software Teams: The Impact of Visualized Collaborative Traces on Perceived Trustworthiness

    Science.gov (United States)

    Trainer, Erik Harrison

    2012-01-01

    Trust plays an important role in collaborations because it creates an environment in which people can openly exchange ideas and information with one another and engineer innovative solutions together with less perceived risk. The rise in globally distributed software development has created an environment in which workers are likely to have less…

  5. Analysis of Production, Impact, and Scientific Collaboration on Difficult Airway Through the Web of Science and Scopus (1981-2013).

    Science.gov (United States)

    García-Aroca, Miguel Ángel; Pandiella-Dominique, Andrés; Navarro-Suay, Ricardo; Alonso-Arroyo, Adolfo; Granda-Orive, José Ignacio; Anguita-Rodríguez, Francisco; López-García, Andrés

    2017-06-01

    Bibliometrics, the statistical analysis of written publications, is an increasingly popular approach to the assessment of scientific activity. Bibliometrics allows researchers to assess the impact of a field, or research area, and has been used to make decisions regarding research funding. Through bibliometric analysis, we hypothesized that a bibliometric analysis of difficult airway research would demonstrate a growth in authors and articles over time. Using the Web of Science (WoS) and Scopus databases, we conducted a search of published manuscripts on the difficult airway from January 1981 to December 2013. After removal of duplicates, we identified 2412 articles. We then analyzed the articles as a group to assess indicators of productivity, collaboration, and impact over this time period. We found an increase in productivity over the study period, with 37 manuscripts published between 1981 and 1990, and 1268 between 2001 and 2010 (P 9% for both WoS and Scopus, and CAGR for anesthesiology as a whole =0.64% in WoS, and =3.30% in Scopus. Furthermore, we found a positive correlation between the number of papers published per author and the number of coauthored manuscripts (P < .001). We also found an increase in the number of coauthored manuscripts, in international cooperation between institutions, and in the number of citations for each manuscript. For any author, we also identified a positive relationship between the number of citations per manuscript and the number of papers published (P < .001). We found a greater increase over time in the number of difficult airway manuscripts than for anesthesiology research overall. We found that collaboration between authors increases their impact, and that an increase in collaboration increases citation rates. Publishing in English and in certain journals, and collaborating with certain authors and institutions, increases the visibility of manuscripts published on this subject.

  6. Choosing between different AI approaches? The scientific benefits of the confrontation, and the new collaborative era between humans and machines

    Directory of Open Access Journals (Sweden)

    Jordi Vallverdú

    2008-07-01

    Full Text Available AI is a multidisciplinary activity that involves specialists from several fields, and we can say that the aim of science, and AI science, is solving problems. AI and computer sciences are been creating a new kind of making science, that we can call in silico science. Both models top-eown and bottomup are useful for e-scientific research. There is no a real controversy between them. Besides, the extended mind model of human cognition, involves human-machine interactions. Huge amount of data requires new ways to make and organize scientific practices: supercomputers, grids, distributed computing, specific software and middleware and, basically, more efficient and visual ways to interact with information. This is one of the key points to understand contemporary relationships between humans and machines: usability of scientific data.

  7. The DECLIC Research Facility - a Fertile Platform for NASA/CNES Scientific Collaboration

    Science.gov (United States)

    Hicks, Michael C.; Hegde,Uday G.; Hahn, Inseob; Strutzenberg, Louise S.; Pont, Gabriel; Zappoli, Bernard

    2012-01-01

    The DECLIC (Device for the Study of Critical Liquids and Crystalization) Facility was launched to the International Space Station (ISS) on Shuttle flight 17-A (August 2009) and has been in service for a little over three years. Activity from the three originally planned investigations, the HTI (High Temperature Insert) investigation, the ALI (Alice Like Insert) investigation and the DSI (Directional Solidication Insert) investigation has led to fruitful collaborations among a team of scientists, sponsored by NASA and CNES, to extend the utility of the inserts and the breadth of science beyond its initial scope. These follow-on investigations plan to use inserts that have been returned to earth for refurbishment, two of which (i.e., HTI-R and DSI-R) simply entail changing the test sample and the third (i.e., ALI-R) entails a slight hardware modication to allow for precise changes in sample volume. The first investigation, the Supercritical Water Mixture (SCWM) experiment, uses the refurbished HTI-R, which will accommodate a dilute aqueous mixture of Na2SO4 -0.5% w. This investigation will extend earlier observations of pure water at near-critical conditions. The second experiment uses a modified insert, the DSI-R, with a different concentration of succinonitrile-camphor than the original flight sample. This will allow, among other objectives, a detailed study of dendritic sidebranch formation in extended three-dimensional arrays, with the goal of elucidating whether noise amplication and/or a deterministic limit cycle is the main cause of sidebranch formation. The final experiment, the ALI-R, uses a sample cell with variable density to allow for additional observations of thermo-physical properties on SF6 at near critical conditions. The presentation will provide a discussion of the DECLIC facility's hardware, its modied inserts, and an overview of the extended science that will be achieved through these collaborative activities.

  8. Global scientific research commons under the Nagoya Protocol: Towards a collaborative economy model for the sharing of basic research assets.

    Science.gov (United States)

    Dedeurwaerdere, Tom; Melindi-Ghidi, Paolo; Broggiato, Arianna

    2016-01-01

    This paper aims to get a better understanding of the motivational and transaction cost features of building global scientific research commons, with a view to contributing to the debate on the design of appropriate policy measures under the recently adopted Nagoya Protocol. For this purpose, the paper analyses the results of a world-wide survey of managers and users of microbial culture collections, which focused on the role of social and internalized motivations, organizational networks and external incentives in promoting the public availability of upstream research assets. Overall, the study confirms the hypotheses of the social production model of information and shareable goods, but it also shows the need to complete this model. For the sharing of materials, the underlying collaborative economy in excess capacity plays a key role in addition to the social production, while for data, competitive pressures amongst scientists tend to play a bigger role.

  9. Collaborative technologies for distributed science: fusion energy and high-energy physics

    International Nuclear Information System (INIS)

    Schissel, D P; Gottschalk, E E; Greenwald, M J; McCune, D

    2006-01-01

    This paper outlines a strategy to significantly enhance scientific collaborations in both Fusion Energy Sciences and in High-Energy Physics through the development and deployment of new tools and technologies into working environments. This strategy is divided into two main elements, collaborative workspaces and secure computational services. Experimental and theory/computational programs will greatly benefit through the provision of a flexible, standards-based collaboration space, which includes advanced tools for ad hoc and structured communications, shared applications and displays, enhanced interactivity for remote data access applications, high performance computational services and an improved security environment. The technologies developed should be prototyped and tested on the current generation of experiments and numerical simulation projects. At the same time, such work should maintain a strong focus on the needs of the next generation of mega-projects, ITER and the ILC. Such an effort needs to leverage existing computer science technology and take full advantage of commercial software wherever possible. This paper compares the requirements of FES and HEP, discuss today's solutions, examine areas where more functionality is required, and discuss those areas with sufficient overlap in requirements that joint research into collaborative technologies will increase the benefit to both

  10. Using cloud-computing applications to support collaborative scientific inquiry: Examining pre-service teachers’ perceived barriers towards integration / Utilisation d'applications infonuagiques pour appuyer la recherche scientifique collaborative

    OpenAIRE

    Joel Donna; Brant G Miller

    2013-01-01

    Technology plays a crucial role in facilitating collaboration within the scientific community. Cloud-computing applications can be used to model such collaboration and support inquiry within the secondary science classroom. Little is known about pre-service teachers’ beliefs related to the envisioned use of this technology in their teaching. These beliefs may influence future integration. This study finds several first-order barriers, such as perceptions that these tools would take too much t...

  11. Managing collaboration in the nanoManipulator

    DEFF Research Database (Denmark)

    Hudson, Thomas C.; Helser, Aren T.; Sonnenwald, Diane H.

    2004-01-01

    We designed, developed, deployed, and evaluated the Collaborative nanoManipulator (CnM), a distributed, collaborative virtual environment system supporting remote scientific collaboration between users of the nanoManipulator interface to atomic force microscopes. This paper describes the entire...

  12. Investigating ultra high-enthalpy geothermal systems: a collaborative initiative to promote scientific opportunities

    Science.gov (United States)

    Elders, W. A.; Nielson, D.; Schiffman, P.; Schriener, A., Jr.

    2014-12-01

    Scientists, engineers, and policy makers gathered at a workshop in the San Bernardino Mountains of southern California in October 2013 to discuss the science and technology involved in developing high-enthalpy geothermal fields. A typical high-enthalpy geothermal well between 2000 and 3000 m deep produces a mixture of hot water and steam at 200-300 °C that can be used to generate about 5-10 MWe of electric power. The theme of the workshop was to explore the feasibility and economic potential of increasing the power output of geothermal wells by an order of magnitude by drilling deeper to reach much higher pressures and temperatures. Development of higher enthalpy geothermal systems for power production has obvious advantages; specifically higher temperatures yield higher power outputs per well so that fewer wells are needed, leading to smaller environmental footprints for a given size of power plant. Plans for resource assessment and drilling in such higher enthalpy areas are already underway in Iceland, New Zealand, and Japan. There is considerable potential for similar developments in other countries that already have a large production of electricity from geothermal steam, such as Mexico, the Philippines, Indonesia, Italy, and the USA. However drilling deeper involves technical and economic challenges. One approach to mitigating the cost issue is to form a consortium of industry, government and academia to share the costs and broaden the scope of investigation. An excellent example of such collaboration is the Iceland Deep Drilling Project (IDDP), which is investigating the economic feasibility of producing electricity from supercritical geothermal reservoirs, and this approach could serve as model for future developments elsewhere. A planning committee was formed to explore creating a similar initiative in the USA.

  13. Collaborative Problem-Solving Environments; Proceedings for the Workshop CPSEs for Scientific Research, San Diego, California, June 20 to July 1, 1999

    Energy Technology Data Exchange (ETDEWEB)

    Chin, George

    1999-01-11

    A workshop on collaborative problem-solving environments (CPSEs) was held June 29 through July 1, 1999, in San Diego, California. The workshop was sponsored by the U.S. Department of Energy and the High Performance Network Applications Team of the Large Scale Networking Working Group. The workshop brought together researchers and developers from industry, academia, and government to identify, define, and discuss future directions in collaboration and problem-solving technologies in support of scientific research.

  14. A survey of scientific production and collaboration rate among of medical library and information sciences in ISI, scopus and Pubmed databases during 2001-2010.

    Science.gov (United States)

    Yousefy, Alireza; Malekahmadi, Parisa

    2013-01-01

    Research is essential for development. In other words, scientific development of each country can be evaluated by researchers' scientific production. Understanding and assessing the activities of researchers for planning and policy making is essential. The significance of collaboration in the production of scientific publications in today's complex world where technology is everything is very apparent. Scientists realized that in order to get their work wildly used and cited to by experts, they must collaborate. The collaboration among researchers results in the development of scientific knowledge and hence, attainment of wider information. The main objective of this research is to survey scientific production and collaboration rate in philosophy and theoretical bases of medical library and information sciences in ISI, SCOPUS, and Pubmed databases during 2001-2010. This is a descriptive survey and scientometrics methods were used for this research. Then data gathered via check list and analyzed by the SPSS software. Collaboration rate was calculated according to the formula. Among the 294 related abstracts about philosophy, and theoretical bases of medical library and information science in ISI, SCOPUS, and Pubmed databases during 2001-2010, the year 2007 with 45 articles has the most and the year 2003 with 16 articles has the least number of related collaborative articles in this scope. "B. Hjorland" with eight collaborative articles had the most one among Library and Information Sciences (LIS) professionals in ISI, SCOPUS, and Pubmed. Journal of Documentation with 29 articles and 12 collaborative articles had the most related articles. Medical library and information science challenges with 150 articles had first place in number of articles. Results also show that the most elaborative country in terms of collaboration point of view and number of articles was US. "University of Washington" and "University Western Ontario" are the most elaborative affiliation from

  15. David Triggle: Research collaborations and scientific exchanges with the China Pharmaceutical University, Nanjing, China.

    Science.gov (United States)

    Dai, De-Zai

    2015-11-15

    Over the period 1995-2012, David Triggle was a frequent visitor to the China Pharmaceutical University in Nanjing, China making many important contributions that enhanced the activities of the Research Division of Pharmacology at the University. In addition to providing collegial advice and facilitating interactions with the international pharmacological community, Professor Triggle's international reputation as a thought leader in the field of ion channel research and drug discovery provided important insights into the potential pathophysiological and therapeutic effects of targeting ion channels. This included the L-type calcium channel and the outward delayed rectified potassium currents of rapid (IKr) and slow (IKs) components in the myocardium. The Nanjing research team had been particularly interested in ion channel dysfunction in the context of cardiac arrhythmias, remodeling and drug discovery. With Professor Triggle's assistance, the relationship between an increase in ICa.L and other biological events including an enhancement of IKr and IKr currents, NADPH oxidase and endothelin receptor activation, down regulation of calcium modulating protein FKBP12.6, sarco/endoplasmic reticulum Ca(2+)ATPse (SERCA2A) and calsequens 2 (CASQ2), calcium leak at the diastole and endoplasmic reticulum stress, were evaluated and are discussed. Additionally, the organization of several international symposia was greatly enhanced by input from Professor Triggle as were the published research manuscripts in international pharmacology journals. During his association with the China Pharmaceutical University, Professor Triggle aided in enhancing the scientific standing of the Pharmacology department and was a highly effective ambassador for international research cooperation. Copyright © 2015. Published by Elsevier Inc.

  16. The ecology of the Chernobyl catastrophe. Scientific outlines of an international programme of collaborative research

    International Nuclear Information System (INIS)

    Savchenko, V.K.

    1995-01-01

    The Chernobyl disaster was the largest civil nuclear catastrophe of all time. When reactor number 4 of the Chernobyl nuclear power plant exploded on 26 April 1986, it permanently changed the lives of more than 4 million people living in Belarus, Ukraine and Russia, shaking the fabric of an area almost the size of England, and triggering a whole swathe of environmental, economic, social, medical and political repercussions. At first the Soviet Union tackled the aftermath alone but, by 1990, with the process of change associated with perestroika, the three affected states of Belarus, Ukraine and the Federation of Russia appealed to the international community for solidarity and help. In co-operation with other agencies of the United Nations system, the UNESCO Chernobyl Programme was launched , with the formal signing of an agreement in January 1991 between the three republics and UNESCO. Since then, some twenty projects have been carried out in UNESCO's various fields of competence - education, science, culture and communication. The volume reviews eight years of study on the impact of Chernobyl on natural ecosystems, agro-ecosystems, human ecology, biological diversity, and genetic and socio-economic systems. It comprises eight chapters. The first three chapters discuss the effects of the high levels of radionuclides released from the Chernobyl reactor on the environment, on natural ecosystems and on agro-ecosystems. The fourth chapter, on human ecology, covers both the human effects at the time of the disaster and those still continuing today. Chapters five and six describe the impact of radionuclide release on biological diversity and genetic systems respectively. The socioeconomic effects of the catastrophe are discussed in chapter seven. Each of these seven chapters ends with scientific hypotheses and research recommendations, with a final chapter providing a detailed description of the setting up and aims of the multinational and multidimensional Chernobyl

  17. Distributed collaborative processing in wireless sensor networks with application to target localization and beamforming

    OpenAIRE

    Béjar Haro, Benjamín

    2013-01-01

    Abstract The proliferation of wireless sensor networks and the variety of envisioned applications associated with them has motivated the development of distributed algorithms for collaborative processing over networked systems. One of the applications that has attracted the attention of the researchers is that of target localization where the nodes of the network try to estimate the position of an unknown target that lies within its coverage area. Particularly challenging is the problem of es...

  18. Standard distribution for unclassified scientific and technical reports: instructions and category scope notes

    International Nuclear Information System (INIS)

    1980-12-01

    The US Department of Energy Technical Information Center (DOE/TIC) uses a subject category scheme for classifying and distributing DOE-originated or -sponsored unclassified scientific and technical reports. This document contains the subject category scope notes used for these purposes. Originators of DOE or DOE-sponsored scientific and technical reports are urged to adhere to the instructions contained this publication. A limited number of copies of the unabridged version (addresses included) are available to Department of Energy offices and their contractors as DOE/TIC-4500(Rev.69)(Unabridged)

  19. A Distributed Multi-Agent System for Collaborative Information Management and Learning

    Science.gov (United States)

    Chen, James R.; Wolfe, Shawn R.; Wragg, Stephen D.; Koga, Dennis (Technical Monitor)

    2000-01-01

    In this paper, we present DIAMS, a system of distributed, collaborative agents to help users access, manage, share and exchange information. A DIAMS personal agent helps its owner find information most relevant to current needs. It provides tools and utilities for users to manage their information repositories with dynamic organization and virtual views. Flexible hierarchical display is integrated with indexed query search-to support effective information access. Automatic indexing methods are employed to support user queries and communication between agents. Contents of a repository are kept in object-oriented storage to facilitate information sharing. Collaboration between users is aided by easy sharing utilities as well as automated information exchange. Matchmaker agents are designed to establish connections between users with similar interests and expertise. DIAMS agents provide needed services for users to share and learn information from one another on the World Wide Web.

  20. SciSpark's SRDD : A Scientific Resilient Distributed Dataset for Multidimensional Data

    Science.gov (United States)

    Palamuttam, R. S.; Wilson, B. D.; Mogrovejo, R. M.; Whitehall, K. D.; Mattmann, C. A.; McGibbney, L. J.; Ramirez, P.

    2015-12-01

    Remote sensing data and climate model output are multi-dimensional arrays of massive sizes locked away in heterogeneous file formats (HDF5/4, NetCDF 3/4) and metadata models (HDF-EOS, CF) making it difficult to perform multi-stage, iterative science processing since each stage requires writing and reading data to and from disk. We have developed SciSpark, a robust Big Data framework, that extends ApacheTM Spark for scaling scientific computations. Apache Spark improves the map-reduce implementation in ApacheTM Hadoop for parallel computing on a cluster, by emphasizing in-memory computation, "spilling" to disk only as needed, and relying on lazy evaluation. Central to Spark is the Resilient Distributed Dataset (RDD), an in-memory distributed data structure that extends the functional paradigm provided by the Scala programming language. However, RDDs are ideal for tabular or unstructured data, and not for highly dimensional data. The SciSpark project introduces the Scientific Resilient Distributed Dataset (sRDD), a distributed-computing array structure which supports iterative scientific algorithms for multidimensional data. SciSpark processes data stored in NetCDF and HDF files by partitioning them across time or space and distributing the partitions among a cluster of compute nodes. We show usability and extensibility of SciSpark by implementing distributed algorithms for geospatial operations on large collections of multi-dimensional grids. In particular we address the problem of scaling an automated method for finding Mesoscale Convective Complexes. SciSpark provides a tensor interface to support the pluggability of different matrix libraries. We evaluate performance of the various matrix libraries in distributed pipelines, such as Nd4jTM and BreezeTM. We detail the architecture and design of SciSpark, our efforts to integrate climate science algorithms, parallel ingest and partitioning (sharding) of A-Train satellite observations from model grids. These

  1. Review & Analysis: Technological Impact on Future Air Force Personnel & Training: Distributed Collaborative Decision-Making, Volume I

    National Research Council Canada - National Science Library

    Palmer, Barbara

    1997-01-01

    ..., compared to that of a single individual. (2) The greatest detriment to collaborative distributed decision making is that we must rely on technology rather than face to face interactions, and subtleties of human communication may be lost. (3...

  2. TNT Maritime Interdiction Operation Experiments: Enabling Radiation Awareness and Geographically Distributed Collaboration for Network-Centric Maritime Interdiction Operations [Preprint

    National Research Council Canada - National Science Library

    Bordetsky, Alex; Dougan, Arden; Chiann, Foo Y; Kilberg, Andres

    2007-01-01

    ...) comprised of long-haul OFDM networks combined with self-forming wireless mesh links to radiation detection sensors, and real-time radiation awareness collaboration with geographically distributed partners...

  3. Distributed and collaborative: Experiences of local leadership of a first-year experience program

    Directory of Open Access Journals (Sweden)

    Jo McKenzie

    2017-07-01

    Full Text Available Local level leadership of the first year experience (FYE is critical for engaging academic and professional staff in working collaboratively on a whole of institution focus on student transition and success. This paper describes ways in which local informal leadership is experienced at faculty level in an institutional FYE program, based on interviews with faculty coordinators and small grant recipients. Initial analysis using the distributed leadership tenets described by Jones, Hadgraft, Harvey, Lefoe, and Ryland (2014 revealed features that enabled success, such as collaborative communities, as well as faculty differences influenced by the strength of the external mandate for change in the FYE. More fine-grained analysis indicated further themes in engaging others, enabling and enacting the FYE program that fostered internal mandates for change: gaining buy-in; being opportunistic; making use of evidence of success and recognition; along with the need for collegial support for coordinators and self-perceptions of leadership being about making connections, collaboration, trust and expertise.

  4. Plans for a Collaboratively Developed Distributed Control System for the Spallation Neutron Source

    International Nuclear Information System (INIS)

    DeVan, W.R.; Gurd, D.P.; Hammonds, J.; Lewis, S.A.; Smith, J.D.

    1999-01-01

    The Spallation Neutron Source (SNS) is an accelerator-based pulsed neutron source to be built in Oak Ridge, Tennessee. The facility has five major sections - a ''front end'' consisting of a 65 keV H - ion source followed by a 2.5 MeV RFQ; a 1 GeV linac; a storage ring; a 1MW spallation neutron target (upgradeable to 2 MW); the conventional facilities to support these machines and a suite of neutron scattering instruments to exploit them. These components will be designed and implemented by five collaborating institutions: Lawrence Berkeley National Laboratory (Front End), Los Alamos National Laboratory (Linac); Brookhaven National Laboratory (Storage Ring); Argonne National Laboratory (Instruments); and Oak Ridge National Laboratory (Neutron Source and Conventional Facilities). It is proposed to implement a fully integrated control system for all aspects of this complex. The system will be developed collaboratively, with some degree of local autonomy for distributed systems, but centralized accountability. Technical integration will be based upon the widely-used EPICS control system toolkit, and a complete set of hardware and software standards. The scope of the integrated control system includes site-wide timing and synchronization, networking and machine protection. This paper discusses the technical and organizational issues of planning a large control system to be developed collaboratively at five different institutions, the approaches being taken to address those issues, as well as some of the particular technical challenges for the SNS control system

  5. A Distributed Architecture for Tsunami Early Warning and Collaborative Decision-support in Crises

    Science.gov (United States)

    Moßgraber, J.; Middleton, S.; Hammitzsch, M.; Poslad, S.

    2012-04-01

    The presentation will describe work on the system architecture that is being developed in the EU FP7 project TRIDEC on "Collaborative, Complex and Critical Decision-Support in Evolving Crises". The challenges for a Tsunami Early Warning System (TEWS) are manifold and the success of a system depends crucially on the system's architecture. A modern warning system following a system-of-systems approach has to integrate various components and sub-systems such as different information sources, services and simulation systems. Furthermore, it has to take into account the distributed and collaborative nature of warning systems. In order to create an architecture that supports the whole spectrum of a modern, distributed and collaborative warning system one must deal with multiple challenges. Obviously, one cannot expect to tackle these challenges adequately with a monolithic system or with a single technology. Therefore, a system architecture providing the blueprints to implement the system-of-systems approach has to combine multiple technologies and architectural styles. At the bottom layer it has to reliably integrate a large set of conventional sensors, such as seismic sensors and sensor networks, buoys and tide gauges, and also innovative and unconventional sensors, such as streams of messages from social media services. At the top layer it has to support collaboration on high-level decision processes and facilitates information sharing between organizations. In between, the system has to process all data and integrate information on a semantic level in a timely manner. This complex communication follows an event-driven mechanism allowing events to be published, detected and consumed by various applications within the architecture. Therefore, at the upper layer the event-driven architecture (EDA) aspects are combined with principles of service-oriented architectures (SOA) using standards for communication and data exchange. The most prominent challenges on this layer

  6. Distributed interactive virtual environments for collaborative experiential learning and training independent of distance over Internet2.

    Science.gov (United States)

    Alverson, Dale C; Saiki, Stanley M; Jacobs, Joshua; Saland, Linda; Keep, Marcus F; Norenberg, Jeffrey; Baker, Rex; Nakatsu, Curtis; Kalishman, Summers; Lindberg, Marlene; Wax, Diane; Mowafi, Moad; Summers, Kenneth L; Holten, James R; Greenfield, John A; Aalseth, Edward; Nickles, David; Sherstyuk, Andrei; Haines, Karen; Caudell, Thomas P

    2004-01-01

    Medical knowledge and skills essential for tomorrow's healthcare professionals continue to change faster than ever before creating new demands in medical education. Project TOUCH (Telehealth Outreach for Unified Community Health) has been developing methods to enhance learning by coupling innovations in medical education with advanced technology in high performance computing and next generation Internet2 embedded in virtual reality environments (VRE), artificial intelligence and experiential active learning. Simulations have been used in education and training to allow learners to make mistakes safely in lieu of real-life situations, learn from those mistakes and ultimately improve performance by subsequent avoidance of those mistakes. Distributed virtual interactive environments are used over distance to enable learning and participation in dynamic, problem-based, clinical, artificial intelligence rules-based, virtual simulations. The virtual reality patient is programmed to dynamically change over time and respond to the manipulations by the learner. Participants are fully immersed within the VRE platform using a head-mounted display and tracker system. Navigation, locomotion and handling of objects are accomplished using a joy-wand. Distribution is managed via the Internet2 Access Grid using point-to-point or multi-casting connectivity through which the participants can interact. Medical students in Hawaii and New Mexico (NM) participated collaboratively in problem solving and managing of a simulated patient with a closed head injury in VRE; dividing tasks, handing off objects, and functioning as a team. Students stated that opportunities to make mistakes and repeat actions in the VRE were extremely helpful in learning specific principles. VRE created higher performance expectations and some anxiety among VRE users. VRE orientation was adequate but students needed time to adapt and practice in order to improve efficiency. This was also demonstrated successfully

  7. XNsim: Internet-Enabled Collaborative Distributed Simulation via an Extensible Network

    Science.gov (United States)

    Novotny, John; Karpov, Igor; Zhang, Chendi; Bedrossian, Nazareth S.

    2007-01-01

    In this paper, the XNsim approach to achieve Internet-enabled, dynamically scalable collaborative distributed simulation capabilities is presented. With this approach, a complete simulation can be assembled from shared component subsystems written in different formats, that run on different computing platforms, with different sampling rates, in different geographic locations, and over singlelmultiple networks. The subsystems interact securely with each other via the Internet. Furthermore, the simulation topology can be dynamically modified. The distributed simulation uses a combination of hub-and-spoke and peer-topeer network topology. A proof-of-concept demonstrator is also presented. The XNsim demonstrator can be accessed at http://www.jsc.draver.corn/xn that hosts various examples of Internet enabled simulations.

  8. Concurrent Engineering Working Group White Paper Distributed Collaborative Design: The Next Step in Aerospace Concurrent Engineering

    Science.gov (United States)

    Hihn, Jairus; Chattopadhyay, Debarati; Karpati, Gabriel; McGuire, Melissa; Panek, John; Warfield, Keith; Borden, Chester

    2011-01-01

    As aerospace missions grow larger and more technically complex in the face of ever tighter budgets, it will become increasingly important to use concurrent engineering methods in the development of early conceptual designs because of their ability to facilitate rapid assessments and trades of performance, cost and schedule. To successfully accomplish these complex missions with limited funding, it is essential to effectively leverage the strengths of individuals and teams across government, industry, academia, and international agencies by increased cooperation between organizations. As a result, the existing concurrent engineering teams will need to increasingly engage in distributed collaborative concurrent design. The purpose of this white paper is to identify a near-term vision for the future of distributed collaborative concurrent engineering design for aerospace missions as well as discuss the challenges to achieving that vision. The white paper also documents the advantages of creating a working group to investigate how to engage the expertise of different teams in joint design sessions while enabling organizations to maintain their organizations competitive advantage.

  9. Individual motivation and threat indicators of collaboration readiness in scientific knowledge producing teams: a scoping review and domain analysis

    Directory of Open Access Journals (Sweden)

    Gaetano R. Lotrecchiano

    2016-05-01

    Full Text Available This paper identifies a gap in the team science literature that considers intrapersonal indicators of collaboration as motivations and threats to participating in collaborative knowledge producing teams (KPTs. Through a scoping review process, over 150 resources were consulted to organize 6 domains of motivation and threat to collaboration in KPTs: Resource Acquisition, Advancing Science, Building Relationships, Knowledge Transfer, Recognition and Reward, and Maintenance of Beliefs. Findings show how domains vary in their presentation of depth and diversity of motivation and threat indicators as well as their relationship with each other within and across domains. The findings of 51 indicators resulting from the review provide a psychosocial framework for which to establish a hierarchy of collaborative reasoning for individual engagement in KPTs thus allowing for further research into the mechanism of collaborative engagement. The indicators serve as a preliminary step in establishing a protocol for testing of the psychometric properties of intrapersonal measures of collaboration readiness.

  10. Science gateways for distributed computing infrastructures development framework and exploitation by scientific user communities

    CERN Document Server

    Kacsuk, Péter

    2014-01-01

    The book describes the science gateway building technology developed in the SCI-BUS European project and its adoption and customization method, by which user communities, such as biologists, chemists, and astrophysicists, can build customized, domain-specific science gateways. Many aspects of the core technology are explained in detail, including its workflow capability, job submission mechanism to various grids and clouds, and its data transfer mechanisms among several distributed infrastructures. The book will be useful for scientific researchers and IT professionals engaged in the develop

  11. [Scientific production and cancer-related collaboration networks in Peru 2000-2011: a bibliometric study in Scopus and Science Citation Index].

    Science.gov (United States)

    Mayta-Tristán, Percy; Huamaní, Charles; Montenegro-Idrogo, Juan José; Samanez-Figari, César; González-Alcaide, Gregorio

    2013-03-01

    A bibliometric study was carried out to describe the scientific production on cancer written by Peruvians and published in international health journals, as well as to assess the scientific collaboration networks. It included articles on cancer written in Peru between the years 2000 and 2011 and published in health journals indexed in SCOPUS or Science Citation Index Expanded. In the 358 articles identified, an increase in the production was seen, from 4 articles in 2000 to 57 in 2011.The most studied types were cervical cancer (77 publications); breast cancer (53), and gastric cancer (37). The National Institute of Neoplastic Diseases (INEN) was the most productive institution (121 articles) and had the highest number of collaborations (180 different institutions). 52 clinical trials were identified, 29 of which had at least one author from INEN. We can conclude that, cancer research is increasing in Peru, the INEN being the most productive institution, with an important participation in clinical trials.

  12. Atomic physics with highly-charged heavy ions at the GSI future facility: The scientific program of the SPARC collaboration

    International Nuclear Information System (INIS)

    Stoehlker, Th.; Beier, T.; Beyer, H.F.; Bosch, F.; Braeuning-Demian, A.; Gumberidze, A.; Hagmann, S.; Kozhuharov, C.; Kuehl, Th.; Liesen, D.; Mann, R.; Mokler, P.H.; Quint, W.; Schuch, R.; Warczak, A.

    2005-01-01

    In the current report a short overview about the envisioned program of the atomic physics research collaboration SPARC (Stored Particle Atomic Research Collaboration, at the new international accelerator Facility for Antiproton and Ion Research (FAIR) at GSI is given. In addition, a condensed description of the planned experimental areas devoted to atomic physics research at the new facility is presented

  13. EPA Collaboration with Israel

    Science.gov (United States)

    The United States and Israel focus on scientific and technical collaboration to protect the environment, by exchanging scientific and technical information, arranging visits of scientific personnel, cooperating in scientific symposia and workshops, etc.

  14. Geographically distributed hybrid testing & collaboration between geotechnical centrifuge and structures laboratories

    Science.gov (United States)

    Ojaghi, Mobin; Martínez, Ignacio Lamata; Dietz, Matt S.; Williams, Martin S.; Blakeborough, Anthony; Crewe, Adam J.; Taylor, Colin A.; Madabhushi, S. P. Gopal; Haigh, Stuart K.

    2018-01-01

    Distributed Hybrid Testing (DHT) is an experimental technique designed to capitalise on advances in modern networking infrastructure to overcome traditional laboratory capacity limitations. By coupling the heterogeneous test apparatus and computational resources of geographically distributed laboratories, DHT provides the means to take on complex, multi-disciplinary challenges with new forms of communication and collaboration. To introduce the opportunity and practicability afforded by DHT, here an exemplar multi-site test is addressed in which a dedicated fibre network and suite of custom software is used to connect the geotechnical centrifuge at the University of Cambridge with a variety of structural dynamics loading apparatus at the University of Oxford and the University of Bristol. While centrifuge time-scaling prevents real-time rates of loading in this test, such experiments may be used to gain valuable insights into physical phenomena, test procedure and accuracy. These and other related experiments have led to the development of the real-time DHT technique and the creation of a flexible framework that aims to facilitate future distributed tests within the UK and beyond. As a further example, a real-time DHT experiment between structural labs using this framework for testing across the Internet is also presented.

  15. Power Management and Distribution Trades Studies for a Deep-Space Mission Scientific Spacecraft

    Science.gov (United States)

    Kimnach, Greg L.; Soltis, James V.

    2004-01-01

    As part of NASA's Project Prometheus, the Nuclear Systems Program, NASA GRC performed trade studies on the various Power Management and Distribution (PMAD) options for a deep-space scientific spacecraft which would have a nominal electrical power requirement of 100 kWe. These options included AC (1000Hz and 1500Hz and DC primary distribution at various voltages. The distribution system efficiency, reliability, mass, thermal, corona, space radiation levels and technology readiness of devices and components were considered. The final proposed system consisted of two independent power distribution channels, sourced by two 3-phase, 110 kVA alternators nominally operating at half-rated power. Each alternator nominally supplies 50kWe to one half of the ion thrusters and science modules but is capable of supplying the total power re3quirements in the event of loss of one alternator. This paper is an introduction to the methodology for the trades done to arrive at the proposed PMAD architecture. Any opinions expressed are those of the author(s) and do not necessarily reflect the views of Project Prometheus.

  16. Actinides compounds for the transmutation: scientific contributions of american and japanese collaborations; Composes d'actinides pour la transmutation: apports scientifiques de collaborations americaines et japonaises

    Energy Technology Data Exchange (ETDEWEB)

    Raison, Ph.; Albiot, T

    2000-07-01

    This paper deals with the minor actinides transmutation and the scientific contribution of the ORNL and the JAERI. It presents researches on the Am-Zr-Y-O system in the framework of the heterogeneous reprocessing, the curium and pyrochlore structures, with the ORNL contribution and phase diagrams, data of Thermodynamics, actinides nitrides, with the JAERI. (A.L.B.)

  17. Intellectual Amplification through Reflection and Didactic Change in Distributed Collaborative Learning

    DEFF Research Database (Denmark)

    Sorensen, Elsebeth K.

    Presented at the Conference on Computer Supported Collaborative Learning, CSCL99, Stanford University, California, December 11-18, 1999 Presented at the Conference on Computer Supported Collaborative Learning, CSCL99, Stanford University, California, December 11-18, 1999...

  18. SOMWeb: a semantic web-based system for supporting collaboration of distributed medical communities of practice.

    Science.gov (United States)

    Falkman, Göran; Gustafsson, Marie; Jontell, Mats; Torgersson, Olof

    2008-08-26

    Information technology (IT) support for remote collaboration of geographically distributed communities of practice (CoP) in health care must deal with a number of sociotechnical aspects of communication within the community. In the mid-1990s, participants of the Swedish Oral Medicine Network (SOMNet) began discussing patient cases in telephone conferences. The cases were distributed prior to the conferences using PowerPoint and email. For the technical support of online CoP, Semantic Web technologies can potentially fulfill needs of knowledge reuse, data exchange, and reasoning based on ontologies. However, more research is needed on the use of Semantic Web technologies in practice. The objectives of this research were to (1) study the communication of distributed health care professionals in oral medicine; (2) apply Semantic Web technologies to describe community data and oral medicine knowledge; (3) develop an online CoP, Swedish Oral Medicine Web (SOMWeb), centered on user-contributed case descriptions and meetings; and (4) evaluate SOMWeb and study how work practices change with IT support. Based on Java, and using the Web Ontology Language and Resource Description Framework for handling community data and oral medicine knowledge, SOMWeb was developed using a user-centered and iterative approach. For studying the work practices and evaluating the system, a mixed-method approach of interviews, observations, and a questionnaire was used. By May 2008, there were 90 registered users of SOMWeb, 93 cases had been added, and 18 meetings had utilized the system. The introduction of SOMWeb has improved the structure of meetings and their discussions, and a tenfold increase in the number of participants has been observed. Users submit cases to seek advice on diagnosis or treatment, to show an unusual case, or to create discussion. Identified barriers to submitting cases are lack of time, concern about whether the case is interesting enough, and showing gaps in one's own

  19. Proceedings of the scientific meeting on 'behavior and distributions of trace substances in the environment'

    International Nuclear Information System (INIS)

    Fukui, M.; Matsuzuru, H.

    1998-02-01

    The scientific meeting was held at the Research Reactor Institute, Kyoto University on December 11-12, 1997. This single report covers all aspects concerning association of trace substances such as pesticides/herbicides, organic chemicals and radionuclides in the environment. The reason for having this meeting is to describe the distribution and behavior of trace substances in which the emphasis is directed towards the dynamic interaction between the soil-sediment-water system and the contaminants. The Chernobyl accident raised the attention on the fate of radionuclides released in the environment and stimulated many scientists, who carry out large scale 'field experiments' without using a tracer in a laboratory. Of course, fundamental laboratory studies are necessary to give direction to and to understand observations from field studies. These activities have brought a lot of knowledge and understanding towards revealing a part of the complexity of the transport processes. It is hoped that the assembled experts, will not only dwell on distinct scientific issues, but also be able to draw firm conclusions with respect to the effective environmental management of the ecological aspects of hazardous materials. The 25 of the presented papers are indexed individually. (J.P.N.)

  20. Scientific production of brazilian researchers who filed patents in the area of biotechnology from 2001 to 2005: institutional and interpersonal collaboration

    Directory of Open Access Journals (Sweden)

    Ana Maria Mielniczuk de Moura

    2010-05-01

    Full Text Available Analyzes the scientific production of researchers who deposited patents in the field of Biotechnology in the period from 2001 to 2005. From a scientometric approach, aims to reveal the inter-institutional collaboration and interpersonal existing. The corpus is based on 2584 items collected in WebofScience. We used the methodology of Social Network Analysis and MDS to observe the formation of clusters of authors and institutions. The results indicate that to most of the articles has up to three institutions involved in field C1, because 88.7% of cases present themselves in this way. It was observed that the scientific production is concentrated in a few institutions, led by public universities (federal and state and research institutions of repute. Among the universities, the most productive are the USP, UNICAMP, UNESP and UFRJ, and between research institutions, have highlighted the FIOCRUZ, Instituto Butantan and EMBRAPA. Some institutions have a regional pattern of collaboration, since they have only interaction with other institutions closer geographically to form regional clusters with motivation. The most productive authors are not in the top positions in the ranking by outdegree, meaning the centrality is not directly related to productivity. It was observed that the interpersonal collaboration is strengthened after the partnership formed by the bond created in graduate school, as many partnerships have been formed from this type of relationship, with significant production between agents and targeted.

  1. Collaborative Technologies for Distributed Science - Fusion Energy and High-Energy Physics

    International Nuclear Information System (INIS)

    Schissel, D.P.; Abla, G.; Burruss, J.R.; Gottschalk, E.

    2006-01-01

    The large-scale experiments, needed for fusion energy sciences (FES) and high-energy physics (HEP) research, are staffed by correspondingly large, geographically dispersed teams. At the same time, theoretical work has come to rely increasingly on complex numerical simulations developed by distributed teams of scientists and applied mathematicians and run on massively parallel computers. These trends will only accelerate. Operation of the most powerful accelerator ever built, the Large Hadron Collider at CERN, will begin next year and will dominate experimental high-energy physics. The fusion program will be increasingly oriented toward the ITER where even now, a decade before operation begins, a large portion of national programs efforts are organized around coordinated efforts to develop promising operational scenarios. While both FES and HEP have a significant track record for developing and exploiting remote collaborations, with such large investments at stake, there is a clear need to improve the integration and reach of the tools available. These challenges are being addressed by the creation and deployment of advanced collaborative software and hardware tools. Grid computing, to provide secure on-demand access to data analysis capabilities and related functions, is being deployed as an alternative to traditional resource sharing among institutions. Utilizing public-key based security that is recognized worldwide, numerous analysis and simulation codes are securely available worldwide in a service-oriented approach. Traditional audio teleconferencing is being augmented by more advanced capabilities including videoconferencing, instant messaging, presentation sharing, applications sharing, large display walls, and the virtual-presence capabilities of Access Grid and VRVS. With these advances, remote real-time experimental participation has begun as well as remote seminars, working meetings, and design review meetings. Work continues to focus on reducing the

  2. CMS Collaboration

    International Nuclear Information System (INIS)

    Faridah Mohammad Idris; Wan Ahmad Tajuddin Wan Abdullah; Zainol Abidin Ibrahim

    2013-01-01

    Full-text: CMS Collaboration is an international scientific collaboration located at European Organization for Nuclear Research (CERN), Switzerland, dedicated in carried out research on experimental particle physics. Consisting of 179 institutions from 41 countries from all around the word, CMS Collaboration host a general purpose detector for example the Compact Muon Solenoid (CMS) for members in CMS Collaboration to conduct experiment from the collision of two proton beams accelerated to a speed of 8 TeV in the LHC ring. In this paper, we described how the CMS detector is used by the scientist in CMS Collaboration to reconstruct the most basic building of matter. (author)

  3. 28 October 2013- Former US Vice President A. Gore signing the guest book with Technology Department Head F. Bordry, Head of International Relations R. Voss, Director for Research and Scientific Computing S. Bertolucci and CMS Collaboration Spokesperson J. Incandela.

    CERN Multimedia

    Maximilien Brice

    2013-01-01

    28 October 2013- Former US Vice President A. Gore signing the guest book with Technology Department Head F. Bordry, Head of International Relations R. Voss, Director for Research and Scientific Computing S. Bertolucci and CMS Collaboration Spokesperson J. Incandela.

  4. Signature of the CERN – EGO (European Gravitational Observatory) Agreement concerning Collaboration in Scientific, Technological, Educational and other Domains of Mutual Interest, by R. Heuer, Director-General and Prof. F. Ferrini.

    CERN Multimedia

    Maximilien Brice

    2012-01-01

    Signature of the CERN – EGO (European Gravitational Observatory) Agreement concerning Collaboration in Scientific, Technological, Educational and other Domains of Mutual Interest, by R. Heuer, Director-General and Prof. F. Ferrini.

  5. Building A Collaborative And Distributed E&O Program For EarthScope

    Science.gov (United States)

    Hall-Wallace, M. K.; Boyd, T.; Richard, G.; Ellins, K.; Meertens, C.; Semken, S.; Taber, J.; Benthien, M.; Wald, L.; Marvinney, R.

    2003-12-01

    EarthScope's education and outreach (E&O) mission is to ensure that the EarthScope experiment creates as its legacy a public more knowledgeable and understanding of the scientific and societal contributions made by the EarthScope experiment and Earth science. It will fulfill this commitment by developing and disseminating programs and products that utilize the data, models, technology and discoveries of EarthScope. The EarthScope Education and Outreach Network (EON), consisting of local EON alliances, the EarthScope facilities, partner organizations and a coordinating office, will facilitate this E&O mission. The local EON alliances, which will vary in size and purpose to respond quickly and to meet the specific needs in a region, will carry out the bulk of the effort. Thus, EarthScope EON can provide customized services that engage culturally, economically and geographically diverse audiences at the national and local scales. The EarthScope facilities and research community will provide access to data, models, and visualization tools for educational purposes. Partnerships with other national and local science education and outreach programs at colleges, universities, research facilities and professional societies within the EarthScope community as well as relevant programs at museums and parks, state geologic surveys and emergency management agencies, and K-12 schools are critical to EON's success. These partnerships will allow EON to use existing resources, networks and expertise to gear up quickly and efficiently. As EON develops, it will reciprocate by contributing new resources and expertise to the partnerships that help improve public understanding of Earth systems overall and promote effective application of EarthScope discoveries. In this presentation, we will outline major programs and products envisioned for EarthScope, plans for evaluating those programs locally and nationally, and mechanisms for collaborating with existing E&O programs.

  6. Effective regulation under conditions of scientific uncertainty: how collaborative networks contribute to occupational health and safety regulation for nanomaterials

    NARCIS (Netherlands)

    Reichow, Aline

    2015-01-01

    This thesis seeks to understand, and evaluate, the contribution of business associations within the United States (US) and German chemical sector, to the effective regulation of nanomaterials. In the effective regulation of new technologies characterized by high scientific uncertainty, with

  7. SCIENTIFIC PRESENTATIONS of the 11. MEETING OF THE MANAGEMENT STEERING COMMITTEE OF THE RIKEN BNL COLLABORATION (RBRC SCIENTIFIC ARTICLE, VOLUME 11)

    International Nuclear Information System (INIS)

    Samios, N.P.

    2005-01-01

    The RIKEN BNL Research Center (RBRC) was established in April 1997 at Brookhaven National Laboratory. It is funded by the ''Rikagaku Kenkyusho,'' (RIKEN) The Institute of Physical and Chemical Research, of Japan. The Center is dedicated to the study of strong interactions, including hard QCD/spin physics, lattice QCD and RHIC (Relativistic Heavy Ion Collider) physics through nurturing of a new generation of young physicists. The agreement was extended in 2002 for another five year period. This 11th steering group meeting consisted of a series of reports on current activities and future perspectives. Presentation titles and authors included: 'RBRC operations and accomplishments' by Nicholas P. Samios, 'Theoretical physics at RIKEN-BNL Center: strong interactions and QCD' by Larry McLerran, 'RBRC experimental group and Wako base', by Hideto En'yo, 'The QCDOC project overview and status' by Norman H. Christ, 'RHIC spin physics' by Gerry Bunce, 'RHIC heavy ion progam' by Yasuyuki Akiba, 'RIKEN's current status and future plans' by Samuel Aronson, 'Procedure for proposing renewal of the collaboration agreement in 2007' by Chiharu Shimoyamada, and 'New direction of RPRC beyond JFY 2007' by Nicholas P. Samios

  8. Using cloud-computing applications to support collaborative scientific inquiry: Examining pre-service teachers’ perceived barriers towards integration / Utilisation d'applications infonuagiques pour appuyer la recherche scientifique collaborative

    Directory of Open Access Journals (Sweden)

    Joel Donna

    2013-07-01

    Full Text Available Technology plays a crucial role in facilitating collaboration within the scientific community. Cloud-computing applications can be used to model such collaboration and support inquiry within the secondary science classroom. Little is known about pre-service teachers’ beliefs related to the envisioned use of this technology in their teaching. These beliefs may influence future integration. This study finds several first-order barriers, such as perceptions that these tools would take too much time to use. Second-order barriers include perceptions that this technology would not promote face-to-face collaboration skills, would create social loafing situations, and beliefs that the technology does not help students understand the nature of science. Suggestions for mitigating these barriers within pre-service education technology courses are discussed. La technologie joue un rôle essentiel pour faciliter la collaboration au sein de la communauté scientifique. Les applications infonuagiques telles que Google Drive peuvent être utilisées pour donner forme à ce type de collaboration et pour appuyer le questionnement dans les cours de sciences du secondaire. On connaît pourtant peu les opinions que se font les futurs enseignants d’une telle utilisation des technologies collaboratives infonuagiques. Or, ces opinions pourraient influencer l’intégration future de ces technologies en salle de classe. Cette étude révèle plusieurs obstacles de premier plan, comme l’idée que l’utilisation de ces outils informatiques prend trop de temps. Parmi les obstacles de second plan, on note les perceptions selon lesquelles cette technologie ne promeut pas les compétences collaboratives de personne à personne, pose des problèmes de gestion de classe et n'aide pas les étudiants à comprendre la nature de la science. Des suggestions sont proposées pour atténuer ces obstacles dans les cours de technologie des programmes d’éducation.

  9. Organizing distributed knowledge for collaborative action: Structure, functioning, and emergence of organizational transactive memory systems

    NARCIS (Netherlands)

    Schakel, J.K.

    2013-01-01

    In the domain of safety and security specialized organizations often have to collaborate on an occasional basis with other organizations to head challenges that none of the partners can head (as easily) on its own. Such collaborations are temporal and often virtual in nature. One emerging

  10. Utilizing Professional Vision in Supporting Preservice Teachers' Learning About Contextualized Scientific Practices. Collaborative Discourse Practices Between Teachers and Scientists

    Science.gov (United States)

    Sezen-Barrie, Asli

    2018-03-01

    Drawn from the cultural-historical theories of knowing and doing science, this article uses the concept of professional vision to explore what scientists and experienced teachers see and articulate as important aspects of climate science practices. The study takes an abductive reasoning approach to analyze scientists' videotaped lectures to recognize what scientists pay attention to in their explanations of climate science practices. It then analyzes how ideas scientists attended align with experienced teachers' sense-making of scientific practices to teach climate change. The findings show that experienced teachers' and scientists' explanations showed alignment in the focus on scientific practices, but indicated variations in the temporal and spatial reasoning of climate data. Furthermore, the interdisciplinarity of climate science was emphasized in climate scientists' lectures, but was not apparent once scientists and teachers shared the same culture in meetings to provide feedback to preservice teachers. Given the importance of teaching through scientific practices in classrooms, this study provides suggestions to capture the epistemic diversity of scientific disciplines.

  11. Utilizing Professional Vision in Supporting Preservice Teachers' Learning About Contextualized Scientific Practices - Collaborative Discourse Practices Between Teachers and Scientists

    Science.gov (United States)

    Sezen-Barrie, Asli

    2018-03-01

    Drawn from the cultural-historical theories of knowing and doing science, this article uses the concept of professional vision to explore what scientists and experienced teachers see and articulate as important aspects of climate science practices. The study takes an abductive reasoning approach to analyze scientists' videotaped lectures to recognize what scientists pay attention to in their explanations of climate science practices. It then analyzes how ideas scientists attended align with experienced teachers' sense-making of scientific practices to teach climate change. The findings show that experienced teachers' and scientists' explanations showed alignment in the focus on scientific practices, but indicated variations in the temporal and spatial reasoning of climate data. Furthermore, the interdisciplinarity of climate science was emphasized in climate scientists' lectures, but was not apparent once scientists and teachers shared the same culture in meetings to provide feedback to preservice teachers. Given the importance of teaching through scientific practices in classrooms, this study provides suggestions to capture the epistemic diversity of scientific disciplines.

  12. Weighted Optimization-Based Distributed Kalman Filter for Nonlinear Target Tracking in Collaborative Sensor Networks.

    Science.gov (United States)

    Chen, Jie; Li, Jiahong; Yang, Shuanghua; Deng, Fang

    2017-11-01

    The identification of the nonlinearity and coupling is crucial in nonlinear target tracking problem in collaborative sensor networks. According to the adaptive Kalman filtering (KF) method, the nonlinearity and coupling can be regarded as the model noise covariance, and estimated by minimizing the innovation or residual errors of the states. However, the method requires large time window of data to achieve reliable covariance measurement, making it impractical for nonlinear systems which are rapidly changing. To deal with the problem, a weighted optimization-based distributed KF algorithm (WODKF) is proposed in this paper. The algorithm enlarges the data size of each sensor by the received measurements and state estimates from its connected sensors instead of the time window. A new cost function is set as the weighted sum of the bias and oscillation of the state to estimate the "best" estimate of the model noise covariance. The bias and oscillation of the state of each sensor are estimated by polynomial fitting a time window of state estimates and measurements of the sensor and its neighbors weighted by the measurement noise covariance. The best estimate of the model noise covariance is computed by minimizing the weighted cost function using the exhaustive method. The sensor selection method is in addition to the algorithm to decrease the computation load of the filter and increase the scalability of the sensor network. The existence, suboptimality and stability analysis of the algorithm are given. The local probability data association method is used in the proposed algorithm for the multitarget tracking case. The algorithm is demonstrated in simulations on tracking examples for a random signal, one nonlinear target, and four nonlinear targets. Results show the feasibility and superiority of WODKF against other filtering algorithms for a large class of systems.

  13. Global scientific research commons under the Nagoya Protocol: Towards a collaborative economy model for the sharing of basic research assets

    OpenAIRE

    Dedeurwaerdere, Tom; Melindi Ghidi, Paolo; Broggiato, Arianna

    2015-01-01

    This paper aims to get a better understanding of the motivational and transaction cost features of building global scientific research commons, with a view to contributing to the debate on the design of appropriate policy measures under the recently adopted Nagoya Protocol. For this purpose, the paper analyses the results of a world-wide survey of managers and users of microbial culture collections, which focused on the role of social and internalized motivations, organizational networks and ...

  14. Scientific authorship and collaboration network analysis on malaria research in Benin: papers indexed in the web of science (1996-2016).

    Science.gov (United States)

    Azondekon, Roseric; Harper, Zachary James; Agossa, Fiacre Rodrigue; Welzig, Charles Michael; McRoy, Susan

    2018-01-01

    To sustain the critical progress made, prioritization and a multidisciplinary approach to malaria research remain important to the national malaria control program in Benin. To document the structure of the malaria collaborative research in Benin, we analyze authorship of the scientific documents published on malaria from Benin. We collected bibliographic data from the Web Of Science on malaria research in Benin from January 1996 to December 2016. From the collected data, a mulitigraph co-authorship network with authors representing vertices was generated. An edge was drawn between two authors when they co-author a paper. We computed vertex degree, betweenness, closeness, and eigenvectors among others to identify prolific authors. We further assess the weak points and how information flow in the network. Finally, we perform a hierarchical clustering analysis, and Monte-Carlo simulations. Overall, 427 publications were included in this study. The generated network contained 1792 authors and 116,388 parallel edges which converted in a weighted graph of 1792 vertices and 95,787 edges. Our results suggested that prolific authors with higher degrees tend to collaborate more. The hierarchical clustering revealed 23 clusters, seven of which form a giant component containing 94% of all the vertices in the network. This giant component has all the characteristics of a small-world network with a small shortest path distance between pairs of three, a diameter of 10 and a high clustering coefficient of 0.964. However, Monte-Carlo simulations suggested our observed network is an unusual type of small-world network. Sixteen vertices were identified as weak articulation points within the network. The malaria research collaboration network in Benin is a complex network that seems to display the characteristics of a small-world network. This research reveals the presence of closed research groups where collaborative research likely happens only between members. Interdisciplinary

  15. From "sit and listen" to "shake it out yourself": Helping urban middle school students to bridge personal knowledge to scientific knowledge through a collaborative environmental justice curriculum

    Science.gov (United States)

    Sadeh, Shamu Fenyvesi

    Science education and environmental education are not meeting the needs of marginalized communities such as urban, minority, and poor communities (Seller, 2001; U.S. Environmental Protection Agency [EPA], 1996). There exists an equity gap characterized by the racial and socioeconomic disparities in: levels of participation in scientific and environmental careers and environmental organizations (Lewis & James, 1995; Sheppard, 1995), access to appropriate environmental education programs (U.S. EPA, 1996), exposure to environmental toxins (Bullard, 1993), access to environmental amenities and legal protections (Bullard, 1993), and in grades and standardized test scores in K-12 science (Jencks & Phillips, 1998; Johnston & Viadero, 2000). Researchers point to the cultural divide between home and school culture as one of the reasons for the equity gap in science education (Barton, 2003; Delpit, 1995; Seiler, 2001). This study is designed to address the equity gap by helping students connect personal/cultural knowledge to scientific knowledge. A collaborative action research study was conducted in 8th-grade science classrooms of low-income African American and Latino students. The participating teacher and the researcher developed, enacted and evaluated a curriculum that elicited students' personal and cultural knowledge in the investigation of local community issues. Using qualitative methods, data were collected through student and teacher interviews, observation, and written documents. Data were analyzed to answer questions on student participation and learning, bridging between personal and scientific knowledge, and student empowerment. The most compelling themes from the data were described as parts of three stories: tensions between the empire of school and the small student nation, bridging between the two nations, and students gaining empowerment. This study found that the bridging the curriculum intended was successful in that many students brought personal

  16. Collaborative and distributed e-research: innovations in technologies, strategies, and applications

    National Research Council Canada - National Science Library

    Juan, Angel A

    2012-01-01

    "This book offers insight into practical and methodological issues related to collaborative e-research and furthers readers understanding of current and future trends in online research and the types...

  17. Collaborative enterprise and virtual prototyping (CEVP): a product-centric approach to distributed simulation

    Science.gov (United States)

    Saunders, Vance M.

    1999-06-01

    The downsizing of the Department of Defense (DoD) and the associated reduction in budgets has re-emphasized the need for commonality, reuse, and standards with respect to the way DoD does business. DoD has implemented significant changes in how it buys weapon systems. The new emphasis is on concurrent engineering with Integrated Product and Process Development and collaboration with Integrated Product Teams. The new DoD vision includes Simulation Based Acquisition (SBA), a process supported by robust, collaborative use of simulation technology that is integrated across acquisition phases and programs. This paper discusses the Air Force Research Laboratory's efforts to use Modeling and Simulation (M&S) resources within a Collaborative Enterprise Environment to support SBA and other Collaborative Enterprise and Virtual Prototyping (CEVP) applications. The paper will discuss four technology areas: (1) a Processing Ontology that defines a hierarchically nested set of collaboration contexts needed to organize and support multi-disciplinary collaboration using M&S, (2) a partial taxonomy of intelligent agents needed to manage different M&S resource contributions to advancing the state of product development, (3) an agent- based process for interfacing disparate M&S resources into a CEVP framework, and (4) a Model-View-Control based approach to defining `a new way of doing business' for users of CEVP frameworks/systems.

  18. Managing globally distributed expertise with new competence management solutions a big-science collaboration as a pilot case.

    CERN Document Server

    Ferguson, J; Livan, M; Nordberg, M; Salmia, T; Vuola, O

    2003-01-01

    In today's global organisations and networks, a critical factor for effective innovation and project execution is appropriate competence and skills management. The challenges include selection of strategic competences, competence development, and leveraging the competences and skills to drive innovation and collaboration for shared goals. This paper presents a new industrial web-enabled competence management and networking solution and its implementation and piloting in a complex big-science environment of globally distributed competences.

  19. Space Weather Monitors -- Preparing to Distribute Scientific Devices and Classroom Materials Worldwide for the IHY 2007

    Science.gov (United States)

    Scherrer, D. K.; Burress, B.

    2006-05-01

    Stanford's Solar Center, in conjunction with the Space, Telecommunications and Radioscience Laboratory and local educators, have developed inexpensive Space Weather Monitors that students around the world can use to track solar-induced changes to the Earth's ionosphere. Through the United Nations Basic Space Science Initiative (UNBSSI) and the IHY Education and Public Outreach Program, our Monitors have been designated for deployment to 191 countries for the International Heliophysical Year, 2007. In partnership with Chabot Space and Science Center, we are designing and developing classroom and educator support materials to accompany distribution of the monitors worldwide. Earth's ionosphere reacts strongly to the intense x-ray and ultraviolet radiation released by the Sun during solar events and by lightning during thunderstorms. Students anywhere in the world can directly monitor and track these sudden ionospheric disturbances (SIDs) by using a VLF radio receiver to monitor the signal strength from distant VLF transmitters and noting unusual changes as the waves bounce off the ionosphere. High school students "buy in" to the project by building their own antenna, a simple structure costing little and taking a couple hours to assemble. Data collection and analysis are handled by a local PC. Stanford is providing a centralized data repository where students and researchers can exchange and discuss data. Chabot Space & Science Center is an innovative teaching and learning center focusing on astronomy and the space sciences. Formed as a Joint Powers Agency with the City of Oakland (California), the Oakland Unified School District, the East Bay Regional Park District, and in collaboration with the Eastbay Astronomical Society, Chabot addresses the critical issue of broad access to the specialized information and facilities needed to improve K-12 science education and public science literacy. Up to 2,000 K-12 teachers annually take part in Chabot's professional

  20. Tides, Krill, Penguins, Oh My!: Scientists and Teachers Partner in Project CONVERGE to Bring Collaborative Antarctic Research, Authentic Data, and Scientific Inquiry into the Hands of NJ and NY Students

    Science.gov (United States)

    Hunter-thomson, K. I.; Kohut, J. T.; Florio, K.; McDonnell, J. D.; Ferraro, C.; Clark, H.; Gardner, K.; Oliver, M. J.

    2016-02-01

    How do you get middle and high school students excited about scientific inquiry? Have them join a collaborative research team in Antarctica! A comprehensive education program brought ocean science, marine ecology, and climate change impact research to more than 950 students in 2014-15 to increase their exposure to and excitement of current research. The program was integrated into a collaborative research project, involving five universities, that worked to characterize the connection between ocean circulation, plankton distribution, penguin foraging behavior, and climate change around Palmer Station, Antarctica. The scientists and education team co-led a weeklong workshop to expose 22 teachers to the research science, build relationships among the teachers and scientists, and refine the program to most effectively communicate the research to their students. In the fall, teachers taught NGSS-aligned, hands-on, data-focused classroom lessons to provide their students the necessary content to understand the project hypotheses using multiple science practices. Through a professional science blog and live video calls from Antarctica, students followed and discussed the science teams work while they were in the field. To apply the science practices the students had learned about, they designed, conducted, and analyzed their own ocean-related, inquiry-based research investigation as the culminating component of the program (results were presented at a Student Research Symposium attended by the science team). Of their own choosing, roughly half of the students used raw data from the CONVERGE research (including krill, CODAR, penguin, and glider data) for their investigations. This presentation will focus on the evaluation results of the education program to identify the aspects that successfully engaged teachers and students with scientific inquiry, science practices, and authentic data as well as the replicability of this integrated scientist-teacher partnership and

  1. 28 March 2014 - Italian Minister of Education, University and Research S. Giannini welcomed by CERN Director-General R. Heuer and Director for Research and Scientific Computing S. Bertolucci in the ATLAS experimental cavern with Former Collaboration Spokesperson F. Gianotti. Signature of the guest book with Belgian State Secretary for the Scientific Policy P. Courard.

    CERN Multimedia

    Gadmer, Jean-Claude

    2014-01-01

    28 March 2014 - Italian Minister of Education, University and Research S. Giannini welcomed by CERN Director-General R. Heuer and Director for Research and Scientific Computing S. Bertolucci in the ATLAS experimental cavern with Former Collaboration Spokesperson F. Gianotti. Signature of the guest book with Belgian State Secretary for the Scientific Policy P. Courard.

  2. Listening into the Dark: An Essay Testing the Validity and Efficacy of Collaborative Developmental Action Inquiry for Describing and Encouraging Transformations of Self, Society, and Scientific Inquiry

    Directory of Open Access Journals (Sweden)

    William R. Torbert

    2013-06-01

    Full Text Available Collaborative Developmental Action Inquiry (CDAI is introduced as a meta-paradigmatic approach to social science and social action that encompasses seven other more familiar paradigms (e.g., Behaviorism, Empirical Positivism, and Postmodern Interpretivism and that triangulates among third-person, objectivity-seeking social scientific inquiry, second-person, transformational, mutuality-seeking political inquiry, and first-person, adult, spiritual inquiry and consciousness development in the emerging present. CDAI tests findings, not only against third-person criteria of validity as do quantitative, positivist studies and qualitative, interpretive studies, but also against first- and second-person criteria of validity, as well as criteria of efficacy in action. CDAI introduces the possibility of treating, not just formal third-person studies, but any and all activities in one’s daily life in an inquiring manner. The aim of this differently-scientific approach is not only theoretical, generalizable knowledge, but also knowledge that generates increasingly timely action in particular cases in the relationships that mean the most to the inquirer. To illustrate and explain why the CDAI approach can explain unusually high percentages of the variance in whether or not organizations actually transform, all three types of validity-testing are applied to a specific study of intended transformation in ten organizations. The ten organization study found that adding together the performance of each organization’s CEO and lead consultant pn a reliable, well-validated measure of developmental action-logic, predicted 59% of the variance, beyond the .01 level, in whether and how the organization transformed (as rated by three scorers who achieved between .90 and 1.0 reliability. The essay concludes with a comparison between the Empirical Positivist paradigm of inquiry and the Collaborative Developmental Action Inquiry paradigm.

  3. Combining Facility Location and Routing Decisions in Sustainable Urban Freight Distribution under Horizontal Collaboration: How Can Shippers Be Benefited?

    Directory of Open Access Journals (Sweden)

    Hanan Ouhader

    2017-01-01

    Full Text Available This article investigates the potential economic, environmental, and social effects of combining depot location and vehicle routing decisions in urban road freight transportation under horizontal collaboration. We consider a city in which several suppliers decide to joint deliveries to their customers and goods are delivered via intermediate depots. We study a transportation optimization problem from the perspective of sustainability development. This quantitative approach is based on three-objective mathematical model for strategic, tactical, and operational decision-making as a two-echelon location routing problem (2E-LRP. The objectives are to minimize cost and CO2 emissions of the transportation and maximize the created job opportunities. The model was solved with the ε-constraint method using extended known instances reflecting the real distribution in urban area to evaluate several goods’ delivery strategies. The obtained results by comparing collaborative and noncollaborative scenarios show that collaboration leads to a reduction in CO2 emissions, transportation cost, used vehicles, and travelled distances in addition to the improvement of the vehicles load rate but collaboration affects negatively social impact. To evaluate the effect of the method used to allocate the total gains to the different partners, we suggest to decision makers a comparison between well-known allocation methods.

  4. Using SensorML to describe scientific workflows in distributed web service environments

    CSIR Research Space (South Africa)

    Van Zyl, TL

    2009-07-01

    Full Text Available for increased collaboration through workflow sharing. The Sensor Web is an open complex adaptive system the pervades the internet and provides access to sensor resources. One mechanism for describing sensor resources is through the use of Sensor ML. It is shown...

  5. Using SensorML to describe scientific workflows in distributed web service environments

    CSIR Research Space (South Africa)

    Van Zyl, TL

    2009-07-01

    Full Text Available for increased collaboration through workflow sharing. The Sensor Web is an open complex adaptive system the pervades the internet and provides access to sensor resources. One mechanism for describing sensor resources is through the use of SensorML. It is shown...

  6. Developing Distributed Collaboration Systems at NASA: A Report from the Field

    Science.gov (United States)

    Becerra-Fernandez, Irma; Stewart, Helen; Knight, Chris; Norvig, Peter (Technical Monitor)

    2001-01-01

    Web-based collaborative systems have assumed a pivotal role in the information systems development arena. While business to customers (B-to-C) and business to business (B-to-B) electronic commerce systems, search engines, and chat sites are the focus of attention, web-based systems span the gamut of information systems that were traditionally confined to internal organizational client server networks. For example, the Domino Application Server allows Lotus Notes (trademarked) uses to build collaborative intranet applications and mySAP.com (trademarked) enables web portals and e-commerce applications for SAP users. This paper presents the experiences in the development of one such system: Postdoc, a government off-the-shelf web-based collaborative environment. Issues related to the design of web-based collaborative information systems, including lessons learned from the development and deployment of the system as well as measured performance, are presented in this paper. Finally, the limitations of the implementation approach as well as future plans are presented as well.

  7. Collaborations in fusion research

    International Nuclear Information System (INIS)

    Barnes, D.; Davis, S.; Roney, P.

    1995-01-01

    This paper reviews current experimental collaborative efforts in the fusion community and extrapolates to operational scenarios for the Tokamak Physics Experiment (TPX) and the International Thermonuclear Experimental Reactor (ITER). Current requirements, available technologies and tools, and problems, issues and concerns are discussed. This paper specifically focuses on the issues that apply to experimental operational collaborations. Special requirements for other types of collaborations, such as theoretical or design and construction efforts, will not be addressed. Our current collaborative efforts have been highly successful, even though the tools in use will be viewed as primitive by tomorrow's standards. An overview of the tools and technologies in today's collaborations can be found in the first section of this paper. The next generation of fusion devices will not be primarily institutionally based, but will be national (TPX) and international (ITER) in funding, management, operation and in ownership of scientific results. The TPX will present the initial challenge of real-time remotely distributed experimental data analysis for a steady state device. The ITER will present new challenges with the possibility of several remote control rooms all participating in the real-time operation of the experimental device. A view to the future of remote collaborations is provided in the second section of this paper

  8. Collaborative Simulation Grid: Multiscale Quantum-Mechanical/Classical Atomistic Simulations on Distributed PC Clusters in the US and Japan

    Science.gov (United States)

    Kikuchi, Hideaki; Kalia, Rajiv; Nakano, Aiichiro; Vashishta, Priya; Iyetomi, Hiroshi; Ogata, Shuji; Kouno, Takahisa; Shimojo, Fuyuki; Tsuruta, Kanji; Saini, Subhash; hide

    2002-01-01

    A multidisciplinary, collaborative simulation has been performed on a Grid of geographically distributed PC clusters. The multiscale simulation approach seamlessly combines i) atomistic simulation backed on the molecular dynamics (MD) method and ii) quantum mechanical (QM) calculation based on the density functional theory (DFT), so that accurate but less scalable computations are performed only where they are needed. The multiscale MD/QM simulation code has been Grid-enabled using i) a modular, additive hybridization scheme, ii) multiple QM clustering, and iii) computation/communication overlapping. The Gridified MD/QM simulation code has been used to study environmental effects of water molecules on fracture in silicon. A preliminary run of the code has achieved a parallel efficiency of 94% on 25 PCs distributed over 3 PC clusters in the US and Japan, and a larger test involving 154 processors on 5 distributed PC clusters is in progress.

  9. Distributed and Collaborative Knowledge Management Using an Ontology-Based System

    OpenAIRE

    Adrian , Weronika ,; Ligęza , Antoni; Nalepa , Grzegorz ,; Kaczor , Krzysztof

    2012-01-01

    International audience; Semantic annotations and formally grounded ontologies constitute flexible yet powerful methods of knowledge representation. Using them in a system allows to perform automated reasoning and can enhance the knowledge management. In the paper, we present a system for collaborative knowledge management, in which an ontology and ontological reasoning is used. The main objective of the application is to provide information for citizens about threats in an urban environment. ...

  10. Review & Analysis: Technological Impact on Future Air Force Personnel & Training: Distributed Collaborative Decision-Making, Volume II. Non-Copyrighted Literature Search

    National Research Council Canada - National Science Library

    Palmer, Barbara

    1997-01-01

    ..., compared to that of a single individual. (2) The greatest detriment to collaborative distributed decision making is that we must rely on technology rather than face to face interactions, and subtleties of human communication may be lost. (3...

  11. Distributed collaborative probabilistic design of multi-failure structure with fluid-structure interaction using fuzzy neural network of regression

    Science.gov (United States)

    Song, Lu-Kai; Wen, Jie; Fei, Cheng-Wei; Bai, Guang-Chen

    2018-05-01

    To improve the computing efficiency and precision of probabilistic design for multi-failure structure, a distributed collaborative probabilistic design method-based fuzzy neural network of regression (FR) (called as DCFRM) is proposed with the integration of distributed collaborative response surface method and fuzzy neural network regression model. The mathematical model of DCFRM is established and the probabilistic design idea with DCFRM is introduced. The probabilistic analysis of turbine blisk involving multi-failure modes (deformation failure, stress failure and strain failure) was investigated by considering fluid-structure interaction with the proposed method. The distribution characteristics, reliability degree, and sensitivity degree of each failure mode and overall failure mode on turbine blisk are obtained, which provides a useful reference for improving the performance and reliability of aeroengine. Through the comparison of methods shows that the DCFRM reshapes the probability of probabilistic analysis for multi-failure structure and improves the computing efficiency while keeping acceptable computational precision. Moreover, the proposed method offers a useful insight for reliability-based design optimization of multi-failure structure and thereby also enriches the theory and method of mechanical reliability design.

  12. California Earthquake Clearinghouse: Advocating for, and Advancing, Collaboration and Technology Interoperability, Between the Scientific and Emergency Response Communities, to Produce Actionable Intelligence for Situational Awareness, and Decision Support

    Science.gov (United States)

    Rosinski, A.; Beilin, P.; Colwell, J.; Hornick, M.; Glasscoe, M. T.; Morentz, J.; Smorodinsky, S.; Millington, A.; Hudnut, K. W.; Penn, P.; Ortiz, M.; Kennedy, M.; Long, K.; Miller, K.; Stromberg, M.

    2015-12-01

    The Clearinghouse provides emergency management and response professionals, scientific and engineering communities with prompt information on ground failure, structural damage, and other consequences from significant seismic events such as earthquakes or tsunamis. Clearinghouse activations include participation from Federal, State and local government, law enforcement, fire, EMS, emergency management, public health, environmental protection, the military, public and non-governmental organizations, and private sector. For the August 24, 2014 S. Napa earthquake, over 100 people from 40 different organizations participated during the 3-day Clearinghouse activation. Every organization has its own role and responsibility in disaster response; however all require authoritative data about the disaster for rapid hazard assessment and situational awareness. The Clearinghouse has been proactive in fostering collaboration and sharing Essential Elements of Information across disciplines. The Clearinghouse-led collaborative promotes the use of standard formats and protocols to allow existing technology to transform data into meaningful incident-related content and to enable data to be used by the largest number of participating Clearinghouse partners, thus providing responding personnel with enhanced real-time situational awareness, rapid hazard assessment, and more informed decision-making in support of response and recovery. The Clearinghouse efforts address national priorities outlined in USGS Circular 1242, Plan to Coordinate NEHRP post-earthquake investigations and S. 740-Geospatial Data Act of 2015, Sen. Orrin Hatch (R-UT), to streamline and coordinate geospatial data infrastructure, maximizing geospatial data in support of the Robert T. Stafford Act. Finally, the US Dept. of Homeland Security, Geospatial Management Office, recognized Clearinghouse's data sharing efforts as a Best Practice to be included in the forthcoming 2015 HLS Geospatial Concept of Operations.

  13. Effects of distributed teamwork and time pressure on collaborative planning quality

    NARCIS (Netherlands)

    Kleij, R. van der; Rasker, P.C.; Lijkwan, J.T.E.; Dreu, C.K.W. de

    2006-01-01

    Distributed teamwork is not without its difficulties. The detrimental aspects of geographical dispersion of team members on effective teamwork are often invoked to justify reluctance 'to go virtual', despite the fact that for some tasks, and under some conditions, distributed environments may be as

  14. Distributed collaborative probabilistic design for turbine blade-tip radial running clearance using support vector machine of regression

    Science.gov (United States)

    Fei, Cheng-Wei; Bai, Guang-Chen

    2014-12-01

    To improve the computational precision and efficiency of probabilistic design for mechanical dynamic assembly like the blade-tip radial running clearance (BTRRC) of gas turbine, a distribution collaborative probabilistic design method-based support vector machine of regression (SR)(called as DCSRM) is proposed by integrating distribution collaborative response surface method and support vector machine regression model. The mathematical model of DCSRM is established and the probabilistic design idea of DCSRM is introduced. The dynamic assembly probabilistic design of aeroengine high-pressure turbine (HPT) BTRRC is accomplished to verify the proposed DCSRM. The analysis results reveal that the optimal static blade-tip clearance of HPT is gained for designing BTRRC, and improving the performance and reliability of aeroengine. The comparison of methods shows that the DCSRM has high computational accuracy and high computational efficiency in BTRRC probabilistic analysis. The present research offers an effective way for the reliability design of mechanical dynamic assembly and enriches mechanical reliability theory and method.

  15. Automatic determination of L/H transition times in DIII-D through a collaborative distributed environment

    International Nuclear Information System (INIS)

    Farias, G.; Vega, J.; González, S.; Pereira, A.; Lee, X.; Schissel, D.; Gohil, P.

    2012-01-01

    Highlights: ► An automatic predictor of L/H transition times has been implemented for the DIII-D tokamak. ► The system predicts the transition combining two techniques: a morphological pattern recognition algorithm and a support vector machines multi-layer model. ► The predictor is employed within a collaborative distributed computing environment. The system is trained remotely in the Ciemat computer cluster and operated on the DIII-D site. - Abstract: An automatic predictor of L/H transition times has been implemented for the DIII-D tokamak. The system predicts the transition combining two techniques: A morphological pattern recognition algorithm, which estimates the transition based on the waveform of a Dα emission signal, and a support vector machines multi-layer model, which predicts the L/H transition using a non-parametric model. The predictor is employed within a collaborative distributed computing environment. The system is trained remotely in the Ciemat computer cluster and operated on the DIII-D site.

  16. Interpersonal Privacy Management in Distributed Collaboration: Situational Characteristics and Interpretive Influences

    Science.gov (United States)

    Patil, Sameer; Kobsa, Alfred; John, Ajita; Brotman, Lynne S.; Seligmann, Doree

    To understand how collaborators reconcile the often conflicting needs of awareness and privacy, we studied a large software development project in a multinational corporation involving individuals at sites in the U.S. and India. We present a theoretical framework describing privacy management practices and their determinants that emerged from field visits, interviews, and questionnaire responses. The framework identifies five relevant situational characteristics: issue(s) under consideration, physical place(s) involved in interaction(s), temporal aspects, affordances and limitations presented by technology, and nature of relationships among parties. Each actor, in turn, interprets the situation based on several simultaneous influences: self, team, work site, organization, and cultural environment. This interpretation guides privacy management action(s). Past actions form a feedback loop refining and/or reinforcing the interpretive influences. The framework suggests that effective support for privacy management will require that designers follow a socio-technical approach incorporating a wider scope of situational and interpretive differences.

  17. Distributed situation awareness in complex collaborative systems: A field study of bridge operations on platform supply vessels.

    Science.gov (United States)

    Sandhåland, Hilde; Oltedal, Helle A; Hystad, Sigurd W; Eid, Jarle

    2015-06-01

    This study provides empirical data about shipboard practices in bridge operations on board a selection of platform supply vessels (PSVs). Using the theoretical concept of distributed situation awareness, the study examines how situation awareness (SA)-related information is distributed and coordinated at the bridge. This study thus favours a systems approach to studying SA, viewing it not as a phenomenon that solely happens in each individual's mind but rather as something that happens between individuals and the tools that they use in a collaborative system. Thus, this study adds to our understanding of SA as a distributed phenomenon. Data were collected in four field studies that lasted between 8 and 14 days on PSVs that operate on the Norwegian continental shelf and UK continental shelf. The study revealed pronounced variations in shipboard practices regarding how the bridge team attended to operational planning, communication procedures, and distracting/interrupting factors during operations. These findings shed new light on how SA might decrease in bridge teams during platform supply operations. The findings from this study emphasize the need to assess and establish shipboard practices that support the bridge teams' SA needs in day-to-day operations. Provides insights into how shipboard practices that are relevant to planning, communication and the occurrence of distracting/interrupting factors are realized in bridge operations.Notes possible areas for improvement to enhance distributed SA in bridge operations.

  18. Molecular biology in a distributed world. A Kantian perspective on scientific practices and the human mind

    Directory of Open Access Journals (Sweden)

    Mariagrazia Portera

    2016-01-01

    Full Text Available In recent years the number of scholarly publications devoted to Kant's theory of biology has rapidly growing, with particular attention being given to Kant's thoughts about the concepts of teleology, function, organism, and their respective roles in scientific practice. Moving from these recent studies, and distancing itself from their mostly evolutionary background, the main aim of the present paper is to suggest an original "cognitive turn" in the interpretation of Kant's theory of biology. More specifically, the Authors will trace a connection between some Kantian theses about the “peculiar” or special nature of the human mind (intellectus ectypus, advanced in the Critique of the Power of Judgement (§ 76, 77, and some specific epistemological issues pertaining to the research practice of contemporary molecular biology.

  19. Collaborative Virtual Environments as Means to Increase the Level of Intersubjectivity in a Distributed Cognition System

    Science.gov (United States)

    Ligorio, M. Beatrice; Cesareni, Donatella; Schwartz, Neil

    2008-01-01

    Virtual environments are able to extend the space of interaction beyond the classroom. In order to analyze how distributed cognition functions in such an extended space, we suggest focusing on the architecture of intersubjectivity. The Euroland project--a virtual land created and populated by seven classrooms supported by a team of…

  20. Distributed Pair Programming Using Collaboration Scripts: An Educational System and Initial Results

    Science.gov (United States)

    Tsompanoudi, Despina; Satratzemi, Maya; Xinogalos, Stelios

    2015-01-01

    Since pair programming appeared in the literature as an effective method of teaching computer programming, many systems were developed to cover the application of pair programming over distance. Today's systems serve personal, professional and educational purposes allowing distributed teams to work together on the same programming project. The…

  1. How role distribution influences choice of spatial reference frames in a virtual collaborative task

    OpenAIRE

    Pouliquen-Lardy , Lauriane; Milleville-Pennel , Isabelle; Guillaume , François; Mars , Franck

    2014-01-01

    International audience; We investigated the effects of role distribution on individuals' choice of reference frames in a two-person task. Pairs of participants had to move a virtual block in a constraint immersive virtual environment: only one of them could manipulate the ob-ject, his coworker guided him in the VE. Results show that the guiding operators used more addressee-centered frames of ref-erence than the manipulators. They also suggest that the guides tried to facilitate the manipulat...

  2. A Shared Infrastructure for Federated Search Across Distributed Scientific Metadata Catalogs

    Science.gov (United States)

    Reed, S. A.; Truslove, I.; Billingsley, B. W.; Grauch, A.; Harper, D.; Kovarik, J.; Lopez, L.; Liu, M.; Brandt, M.

    2013-12-01

    The vast amount of science metadata can be overwhelming and highly complex. Comprehensive analysis and sharing of metadata is difficult since institutions often publish to their own repositories. There are many disjoint standards used for publishing scientific data, making it difficult to discover and share information from different sources. Services that publish metadata catalogs often have different protocols, formats, and semantics. The research community is limited by the exclusivity of separate metadata catalogs and thus it is desirable to have federated search interfaces capable of unified search queries across multiple sources. Aggregation of metadata catalogs also enables users to critique metadata more rigorously. With these motivations in mind, the National Snow and Ice Data Center (NSIDC) and Advanced Cooperative Arctic Data and Information Service (ACADIS) implemented two search interfaces for the community. Both the NSIDC Search and ACADIS Arctic Data Explorer (ADE) use a common infrastructure which keeps maintenance costs low. The search clients are designed to make OpenSearch requests against Solr, an Open Source search platform. Solr applies indexes to specific fields of the metadata which in this instance optimizes queries containing keywords, spatial bounds and temporal ranges. NSIDC metadata is reused by both search interfaces but the ADE also brokers additional sources. Users can quickly find relevant metadata with minimal effort and ultimately lowers costs for research. This presentation will highlight the reuse of data and code between NSIDC and ACADIS, discuss challenges and milestones for each project, and will identify creation and use of Open Source libraries.

  3. Delay-sensitive content distribution via peer-to-peer collaboration in public safety vehicular ad-hoc networks

    KAUST Repository

    Atat, Rachad; Yaacoub, Elias E.; Alouini, Mohamed-Slim; Filali, Fethi; Abu-Dayya, Adnan A.

    2014-01-01

    Delay-sensitive content distribution with peer-to-peer (P2P) cooperation in public safety vehicular networks is investigated. Two cooperative schemes are presented and analyzed. The first scheme is based on unicasting from the base station, whereas the second is based on threshold based multicasting. Long Term Evolution (LTE) is used for long range (LR) communications with the base station (BS) and IEEE 802.11p is considered for inter-vehicle collaboration on the short range (SR). The first scheme is shown to outperform non-cooperative unicasting and multicasting, while the second scheme outperforms non-cooperative unicasting beyond a specific number of cooperating vehicles, when the appropriate 802.11p power class is used. The first scheme achieves the best performance among the compared methods, and a practical approximation of that scheme is shown to be close to optimal performance. © 2014 Elsevier B.V. All rights reserved.

  4. Delay-sensitive content distribution via peer-to-peer collaboration in public safety vehicular ad-hoc networks

    KAUST Repository

    Atat, Rachad

    2014-05-01

    Delay-sensitive content distribution with peer-to-peer (P2P) cooperation in public safety vehicular networks is investigated. Two cooperative schemes are presented and analyzed. The first scheme is based on unicasting from the base station, whereas the second is based on threshold based multicasting. Long Term Evolution (LTE) is used for long range (LR) communications with the base station (BS) and IEEE 802.11p is considered for inter-vehicle collaboration on the short range (SR). The first scheme is shown to outperform non-cooperative unicasting and multicasting, while the second scheme outperforms non-cooperative unicasting beyond a specific number of cooperating vehicles, when the appropriate 802.11p power class is used. The first scheme achieves the best performance among the compared methods, and a practical approximation of that scheme is shown to be close to optimal performance. © 2014 Elsevier B.V. All rights reserved.

  5. Conceptual Design of an Online Estimation System for Stigmergic Collaboration and Nodal Intelligence on Distributed DC Systems

    Directory of Open Access Journals (Sweden)

    DOORSAMY, W.

    2017-05-01

    Full Text Available The secondary level control of stand-alone distributed energy systems requires accurate online state information for effective coordination of its components. State estimation is possible through several techniques depending on the system's architecture and control philosophy. A conceptual design of an online state estimation system to provide nodal autonomy on DC systems is presented. The proposed estimation system uses local measurements - at each node - to obtain an aggregation of the system's state required for nodal self-control without the need for external communication with other nodes or a central controller. The recursive least-squares technique is used in conjunction with stigmergic collaboration to implement the state estimation system. Numerical results are obtained using a Matlab/Simulink model and experimentally validated in a laboratory setting. Results indicate that the proposed system provides accurate estimation and fast updating during both quasi-static and transient states.

  6. WASP (Write a Scientific Paper) using Excel - 7: The t-distribution.

    Science.gov (United States)

    Grech, Victor

    2018-03-01

    The calculation of descriptive statistics after data collection provides researchers with an overview of the shape and nature of their datasets, along with basic descriptors, and may help identify true or incorrect outlier values. This exercise should always precede inferential statistics, when possible. This paper provides some pointers for doing so in Microsoft Excel, both statically and dynamically, with Excel's functions, including the calculation of standard deviation and variance and the relevance of the t-distribution. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Scientific Collaboration Along the Trinational Frontier of Brazil-Bolivia-Peru: Implications for Regional Land-Use in the MAP Region of Southwestern Amazonia

    Science.gov (United States)

    Brown, I.

    2002-12-01

    High-speed road systems are connecting southwestern Amazonia (~1.5 million km2) to Pacific and Atlantic ports as well as providing greater access to Brazilian, Bolivian and Peruvian urban markets. Coupled with this increased accessibility are ambitious governmental plans to expand production of timber, non-timber forest products, and beef, all of which are likely to modify human migrations in the region. The heart of southwestern Amazonia lies in the trinational frontier region of Madre de Dios Department/Peru, eastern Acre State/Brazil and Pando Department/Bolivia (MAP region: ~200,000 km2, ~500,000 inhabitants). The MAP region composes a global hot spot of terrestrial biodiversity and has become an axis of integration for the three countries. Faced with rapid change in socioeconomic trends, regional environmental scientists and professionals have promoted collaborative projects to analyze land use trends and their forcing functions and to supply these results to local and regional societies. In addition, they have begun to develop a regional scientific community that bridges different nationalities and specialties. The projects are both international - as they involve three countries - and local/regional as they involve institutions that are within a radius of 300 km of the border. In the past two years, LBA-sponsored activities have helped bring over 100 professionals together in the region in five MAP-oriented workshops. The research results are now influencing public policy and are being incorporated into the regional school systems with the objective of maximizing the benefits and minimizing the adverse impacts of the changing socio-economic trends on land-use and development in the MAP region.

  8. The Revista Scientific

    Directory of Open Access Journals (Sweden)

    Oscar Antonio Martínez Molina

    2017-02-01

    Full Text Available The Revista Scientific aims to publish quality papers that include the perspective of analysis in educational settings. Together with www.indtec.com.ve, this electronic publication aims to promote and disseminate, with seriousness and rigor, the academic production in this field. Editorial of the new stage Revista Scientific was created with the aim of constituting a reference space for scientific research in the field of research analysis that is carried out within the universities in Latin America, once the distribution list hosted on the INDTEC platform (http://www.indtec.com.ve is consolidated as a space for dissemination and development of new ideas and initiatives. The first presentation of INDTEC Magazine was held in August 2016 in Venezuela. Thanks to the support of the INDTEC platform, SCIENTIFIC Magazine has been able to develop from the cooperative work of the people who make up its Editorial Committee, Academic Committee and Scientific Committee in Electronic Edition, and of the referees of each one of the numbers. Part of the success is due to the motivation of its co-editors and excellent professionals from different parts of the world: Argentina, Belgium, Colombia, Cuba, Ecuador, Spain, Mexico, Venezuela, which form the various committees, with enthusiasm and joy participating in this project (whose organizational structure is presented in this edition and continues in increcendo. Also, the strategy adopted to edit a monographic number from the various events organized in the framework of the universities, has contributed to provide SCIENTIFIC with a point value speaker of intellectual progress in the field of education. SCIENTIFIC Magazine is currently indexed in ISI, International Scientific Indexing, Dubai - UAE; ROAD, the Directory of Open Access Scholarly Resources (ISSN International Center, France; REVENCYT-ULA, Venezuela; Google Scholar (Google Scholar, International Index; Published in Calaméo; ISSUU; Academia

  9. Final Scientific/ Technical Report. Playas Grid Reliability and Distributed Energy Research

    Energy Technology Data Exchange (ETDEWEB)

    Romero, Van [New Mexico Institute Of Mining And Technology, Socorro, NM (United States); Weinkauf, Don [New Mexico Institute Of Mining And Technology, Socorro, NM (United States); Khan, Mushtaq [New Mexico Institute Of Mining And Technology, Socorro, NM (United States); Helgeson, Wes [New Mexico Institute Of Mining And Technology, Socorro, NM (United States); Weedeward, Kevin [New Mexico Institute Of Mining And Technology, Socorro, NM (United States); LeClerc, Corey [New Mexico Institute Of Mining And Technology, Socorro, NM (United States); Fuierer, Paul [New Mexico Institute Of Mining And Technology, Socorro, NM (United States)

    2012-06-30

    Technology (NMT) and the Department of Homeland Security (DHS) perform various training and research activities at this site. Given its unique nature, Playas was chosen to test Micro-Grids and other examples of renewable distributed energy resources (DER). Several proposed distributed energy sources (DERs) were not implemented as planned including the Micro-Grid. However, Micro-Grid design and computer modeling were completed and these results are included in this report. As part of this research, four PV (solar) generating systems were installed with remote Internet based communication and control capabilities. These systems have been integrated into and can interact with the local grid So that (for example) excess power produced by the solar arrays can be exported to the utility grid. Energy efficient LED lighting was installed in several buildings to further reduce consumption of utility-supplied power. By combining reduced lighting costs; lowering HVAC loads; and installing smart PV generating equipment with energy storage (battery banks) these systems can greatly reduce electrical usage drawn from an older rural electrical cooperative (Co-Op) while providing clean dependable power. Several additional tasks under this project involved conducting research to develop methods of producing electricity from organic materials (i.e. biofuels, biomass. etc.), the most successful being the biodiesel reactor. Improvements with Proton Exchange Membranes (PEM) for fuels cells were demonstrated and advances in Dye Sensitized Solar Cells (DSSC) were also shown. The specific goals of the project include; Instrumentation of the power distribution system with distributed energy resources, demand-side control and intelligent homes within the town of Playas, NM; Creation of models (power flow and dynamic) of the Playas power distribution system; Validation of the models through comparison of predicted behavior to data collected from instrumentation; and Utilization of the models and test

  10. Developing an Open Source, Reusable Platform for Distributed Collaborative Information Management in the Early Detection Research Network

    Science.gov (United States)

    Hart, Andrew F.; Verma, Rishi; Mattmann, Chris A.; Crichton, Daniel J.; Kelly, Sean; Kincaid, Heather; Hughes, Steven; Ramirez, Paul; Goodale, Cameron; Anton, Kristen; hide

    2012-01-01

    For the past decade, the NASA Jet Propulsion Laboratory, in collaboration with Dartmouth University has served as the center for informatics for the Early Detection Research Network (EDRN). The EDRN is a multi-institution research effort funded by the U.S. National Cancer Institute (NCI) and tasked with identifying and validating biomarkers for the early detection of cancer. As the distributed network has grown, increasingly formal processes have been developed for the acquisition, curation, storage, and dissemination of heterogeneous research information assets, and an informatics infrastructure has emerged. In this paper we discuss the evolution of EDRN informatics, its success as a mechanism for distributed information integration, and the potential sustainability and reuse benefits of emerging efforts to make the platform components themselves open source. We describe our experience transitioning a large closed-source software system to a community driven, open source project at the Apache Software Foundation, and point to lessons learned that will guide our present efforts to promote the reuse of the EDRN informatics infrastructure by a broader community.

  11. Distributing File-Based Data to Remote Sites Within the BABAR Collaboration

    International Nuclear Information System (INIS)

    Gowdy, Stephen J.

    2002-01-01

    BABAR [1] uses two formats for its data: Objectivity database and root [2] files. This poster concerns the distribution of the latter--for Objectivity data see [3]. The BABAR analysis data is stored in root files--one per physics run and analysis selection channel--maintained in a large directory tree. Currently BABAR has more than 4.5 TBytes in 200,000 root files. This data is (mostly) produced at SLAC, but is required for analysis at universities and research centers throughout the us and Europe. Two basic problems confront us when we seek to import bulk data from slac to an institute's local storage via the network. We must determine which files must be imported (depending on the local site requirements and which files have already been imported), and we must make the optimum use of the network when transferring the data. Basic ftp-like tools (ftp, scp, etc) do not attempt to solve the first problem. More sophisticated tools like rsync [4], the widely-used mirror/synchronization program, compare local and remote file systems, checking for changes (based on file date, size and, if desired, an elaborate checksum) in order to only copy new or modified files. However rsync allows for only limited file selection. Also when, as in BABAR, an extremely large directory structure must be scanned, rsync can take several hours just to determine which files need to be copied. Although rsync (and scp) provides on-the-fly compression, it does not allow us to optimize the network transfer by using multiple streams, adjusting the tcp window size, or separating encrypted authentication from unencrypted data channels

  12. Distributing file-based data to remote sites within the BABAR collaboration

    International Nuclear Information System (INIS)

    Adye, T.; Dorigo, A.; Forti, A.; Leonardi, E.

    2001-01-01

    BABAR uses two formats for its data: Objectivity database and ROOT files. This poster concerns the distribution of the latter--for Objectivity data see. The BABAR analysis data is stored in ROOT files--one per physics run and analysis selection channel-maintained in a large directory tree. Currently BABAR has more than 4.5 TBytes in 200,00- ROOT files. This data is (mostly) produced at SLAC, but is required for analysis at universities and research centres throughout the US and Europe. Two basic problems confront us when we seek to import bulk data from SLAC to an institute's local storage via the network. We must determine which files must be imported (depending on the local site requirements and which files have already been imported), and the authors must make the optimum use of the network when transferring the data. Basic ftp-like tools (ftp, scp, etc) do not attempt to solve the first problem. More sophisticated tools like rsync, the widely-used mirror/synchronisation program, compare local and remote file systems, checking for changes (based on file date, size and, if desired, an elaborate checksum) in order to only copy new or modified files. However rsync allows for only limited file selection. Also when, as in BABAR, an extremely large directory structure must be scanned, rsync can take several hours just to determine which files need to be copied. Although rsync (and scp) provides on-the-fly compression, it does not allow us to optimise the network transfer by using multiple streams, adjusting the TCP window size, or separating encrypted authentication from unencrypted data channels

  13. Collaborative 3D Target Tracking in Distributed Smart Camera Networks for Wide-Area Surveillance

    Directory of Open Access Journals (Sweden)

    Xenofon Koutsoukos

    2013-05-01

    Full Text Available With the evolution and fusion of wireless sensor network and embedded camera technologies, distributed smart camera networks have emerged as a new class of systems for wide-area surveillance applications. Wireless networks, however, introduce a number of constraints to the system that need to be considered, notably the communication bandwidth constraints. Existing approaches for target tracking using a camera network typically utilize target handover mechanisms between cameras, or combine results from 2D trackers in each camera into 3D target estimation. Such approaches suffer from scale selection, target rotation, and occlusion, drawbacks typically associated with 2D tracking. In this paper, we present an approach for tracking multiple targets directly in 3D space using a network of smart cameras. The approach employs multi-view histograms to characterize targets in 3D space using color and texture as the visual features. The visual features from each camera along with the target models are used in a probabilistic tracker to estimate the target state. We introduce four variations of our base tracker that incur different computational and communication costs on each node and result in different tracking accuracy. We demonstrate the effectiveness of our proposed trackers by comparing their performance to a 3D tracker that fuses the results of independent 2D trackers. We also present performance analysis of the base tracker along Quality-of-Service (QoS and Quality-of-Information (QoI metrics, and study QoS vs. QoI trade-offs between the proposed tracker variations. Finally, we demonstrate our tracker in a real-life scenario using a camera network deployed in a building.

  14. Conceptions and Expectations of Research Collaboration in the European Social Sciences: Research Policies, Institutional Contexts and the Autonomy of the Scientific Field

    Science.gov (United States)

    Lebeau, Yann; Papatsiba, Vassiliki

    2016-01-01

    This paper investigates the interactions between policy drivers and academic practice in international research collaboration. It draws on the case of the Open Research Area (ORA), a funding scheme in the social sciences across four national research agencies, seeking to boost collaboration by supporting "integrated" projects. The paper…

  15. Advanced Communication and Control for Distributed Energy Resource Integration: Phase 2 Scientific Report

    Energy Technology Data Exchange (ETDEWEB)

    BPL Global

    2008-09-30

    The objective of this research project is to demonstrate sensing, communication, information and control technologies to achieve a seamless integration of multivendor distributed energy resource (DER) units at aggregation levels that meet individual user requirements for facility operations (residential, commercial, industrial, manufacturing, etc.) and further serve as resource options for electric and natural gas utilities. The fully demonstrated DER aggregation system with embodiment of communication and control technologies will lead to real-time, interactive, customer-managed service networks to achieve greater customer value. Work on this Advanced Communication and Control Project (ACCP) consists of a two-phase approach for an integrated demonstration of communication and control technologies to achieve a seamless integration of DER units to reach progressive levels of aggregated power output. Phase I involved design and proof-of-design, and Phase II involves real-world demonstration of the Phase I design architecture. The scope of work for Phase II of this ACCP involves demonstrating the Phase I design architecture in large scale real-world settings while integrating with the operations of one or more electricity supplier feeder lines. The communication and control architectures for integrated demonstration shall encompass combinations of software and hardware components, including: sensors, data acquisition and communication systems, remote monitoring systems, metering (interval revenue, real-time), local and wide area networks, Web-based systems, smart controls, energy management/information systems with control and automation of building energy loads, and demand-response management with integration of real-time market pricing. For Phase II, BPL Global shall demonstrate the Phase I design for integrating and controlling the operation of more than 10 DER units, dispersed at various locations in one or more Independent System Operator (ISO) Control Areas, at

  16. A Laboratory-Based System for Managing and Distributing Publically Funded Geochemical Data in a Collaborative Environment

    Science.gov (United States)

    McInnes, B.; Brown, A.; Liffers, M.

    2015-12-01

    Publically funded laboratories have a responsibility to generate, archive and disseminate analytical data to the research community. Laboratory managers know however, that a long tail of analytical effort never escapes researchers' thumb drives once they leave the lab. This work reports on a research data management project (Digital Mineralogy Library) where integrated hardware and software systems automatically archive and deliver analytical data and metadata to institutional and community data portals. The scientific objective of the DML project was to quantify the modal abundance of heavy minerals extracted from key lithological units in Western Australia. The selected analytical platform was a TESCAN Integrated Mineral Analyser (TIMA) that uses EDS-based mineral classification software to image and quantify mineral abundance and grain size at micron scale resolution. The analytical workflow used a bespoke laboratory information management system (LIMS) to orchestrate: (1) the preparation of grain mounts with embedded QR codes that serve as enduring links between physical samples and analytical data, (2) the assignment of an International Geo Sample Number (IGSN) and Digital Object Identifier (DOI) to each grain mount via the System for Earth Sample Registry (SESAR), (3) the assignment of a DOI to instrument metadata via Research Data Australia, (4) the delivery of TIMA analytical outputs, including spatially registered mineralogy images and mineral abundance data, to an institutionally-based data management server, and (5) the downstream delivery of a final data product via a Google Maps interface such as the AuScope Discovery Portal. The modular design of the system permits the networking of multiple instruments within a single site or multiple collaborating research institutions. Although sharing analytical data does provide new opportunities for the geochemistry community, the creation of an open data network requires: (1) adopting open data reporting

  17. Identifying Strategic Scientific Opportunities

    Science.gov (United States)

    As NCI's central scientific strategy office, CRS collaborates with the institute's divisions, offices, and centers to identify research opportunities to advance NCI's vision for the future of cancer research.

  18. Silence in Intercultural Collaboration

    NARCIS (Netherlands)

    Verouden, Nick W.; Sanden, Van der Maarten C.A.; Aarts, Noelle

    2018-01-01

    China is widely recognized as a significant scientific partner for Western universities. Given that many Western universities are now operating in the Chinese context, this study investigates the everyday conversations in which international partnerships are collaboratively developed and

  19. Integrating Diverse Data Systems for International Collaboration

    Science.gov (United States)

    Fox, Peter

    2014-05-01

    International collaborations, especially ones that arise with little or no financial resources, still face challenges in opening up data collections via a wide variety of differing and often non-interoperable means. In turn, this hampers the collaborative process, slows or even prevents scientific exchange. Early efforts that proposed a centralized, and project specific data archive encountered many difficulties, ranging from little or no adoption, to the inability to provide required documentation and metadata to make the datasets findable or usable. In time, virtualized approaches appeared to gain traction, for e.g. virtual observatories. In this contribution, we report on several international collaboration case studies with distributed data systems; their needs, successes, challenges and failures and synthesize a set of suggested practices to inform future international collaboration efforts.

  20. Collection of scientific papers in collaboration with Joint Institute for Nuclear Research, Dubna, USSR and Central Research Institute for Physics, Budapest, Hungary Pt. 5

    International Nuclear Information System (INIS)

    Nemeth, G.

    1987-04-01

    The results of JINR (Dubna) - CRIP (Budapest) collaboration in the field of numerical and computer methods for solving physical problems are reported. The topics cover pure mathematical problems with applications in organization theory, numerical data handling, construction and simulation of physical devices and reinterpretation of current problems in mathematical physics. (D.Gy.)

  1. AWOB: A Collaborative Workbench for Astronomers

    Science.gov (United States)

    Kim, J. W.; Lemson, G.; Bulatovic, N.; Makarenko, V.; Vogler, A.; Voges, W.; Yao, Y.; Kiefl, R.; Koychev, S.

    2015-09-01

    We present the Astronomers Workbench (AWOB1), a web-based collaboration and publication platform for a scientific project of any size, developed in collaboration between the Max-Planck institutes of Astrophysics (MPA) and Extra-terrestrial Physics (MPE) and the Max-Planck Digital Library (MPDL). AWOB facilitates the collaboration between geographically distributed astronomers working on a common project throughout its whole scientific life cycle. AWOB does so by making it very easy for scientists to set up and manage a collaborative workspace for individual projects, where data can be uploaded and shared. It supports inviting project collaborators, provides wikis, automated mailing lists, calendars and event notification and has a built in chat facility. It allows the definition and tracking of tasks within projects and supports easy creation of e-publications for the dissemination of data and images and other resources that cannot be added to submitted papers. AWOB extends the project concept to larger scale consortia, within which it is possible to manage working groups and sub-projects. The existing AWOB instance has so far been limited to Max-Planck members and their collaborators, but will be opened to the whole astronomical community. AWOB is an open-source project and its source code is available upon request. We intend to extend AWOB's functionality also to other disciplines, and would greatly appreciate contributions from the community.

  2. Collection of scientific papers in collaboration with Joint Institute for Nuclear Research, Dubna, USSR and Central Research Institute for Physics, Budapest, Hungary Vol. 6

    International Nuclear Information System (INIS)

    Zhidkov, E.P.; Lobanov, Yu.Yu.; Nemeth, G.

    1989-11-01

    Papers of collaboration of JINR, Dubna and CRIP, Budapest, are presented in the field of algorithms and computer programs for solution of physical problems. The topics include computer evaluation and calculation of functional integrals and Pade approximants, occurring in theoretical particle physics, field theory and statistical physics, error estimations for approximate solutions of quasilinear integrodifferential evolution equations, overview of protocol testing, improved random number generation methods and computer simulation methods in molecule physics. Computer codes are also presented. (D.G.)

  3. Proposing an International Collaboration on Lightweight Autonomous Vehicles to Conduct Scientific Traverses and Surveys over Antarctica and the Surrounding Sea Ice

    Science.gov (United States)

    Carsey, Frank; Behar, Alberto

    2004-01-01

    We have continued to develop a concept for use of autonomous rovers, originally developed for use in planetary exploration, in polar science on Earth; the concept was the subject of a workshop, and this report summarizes and extends that workshop. The workshop on Antarctic Autonomous Scientific Vehicles and Traverses met at the National Geographic Society on February 14 and 15, 2001 to discuss scientific objectives and benefits of the use of autonomous rovers. The participants enthusiastically viewed rovers as being uniquely valuable for such tasks as data taking on tedious or repetitive routes, traverses in polar night, difficult or hazardous routes, extremely remote regions, routes requiring only simple instrumentation, traverses that must be conducted at low speed, augments of manned traverses, and scientific procedures not compatible with human presence or combustion engines. The workshop has concluded that instrumented autonomous vehicles, of the type being developed for planetary exploration, have the potential to contribute significantly to the way science in conducted in Antarctica while also aiding planetary technology development, and engaging the public's interest. Specific objectives can be supported in understanding ice sheet mass balance, sea ice heat and momentum exchange, and surface air chemistry processes. In the interval since the workshop, we have concluded that organized program to employ such rovers to perform scientific tasks in the Fourth International Polar Year would serve the objectives of that program well.

  4. Titles of Scientific Letters and Research Papers in Astrophysics: A Comparative Study of Some Linguistic Aspects and Their Relationship with Collaboration Issues

    Science.gov (United States)

    Méndez, David I.; Alcaraz, M. Ángeles

    2017-01-01

    In this study we compare the titles of scientific letters and those of research papers published in the field of astrophysics in order to identify the possible differences and/or similarities between both genres in terms of several linguistic and extra-linguistic variables (length, lexical density, number of prepositions, number of compound…

  5. Distribution of Citations Received by Scientific Papers Published in the Imaging Literature From 2001 to 2010: Decreasing Inequality and Polarization.

    Science.gov (United States)

    Yoon, Soo Jeong; Yoon, Dae Young; Lee, Hyung Jin; Baek, Sora; Lim, Kyoung Ja; Seo, Young Lan; Yun, Eun Joo

    2017-08-01

    The objective of this study was to assess the distribution of citations received by scientific papers published in the imaging literature between 2001 and 2010. We extracted the number of citations of all articles and reviews for 5 years after publication using the Scopus (Elsevier) citation database of imaging journals between 2001 and 2010. We quantitatively analyzed article and review citations from each journal and each year, including the number, proportion, and annual number of citations of the most- (≥ 20 citations) and least-cited (three or fewer citations) papers; ratio of most-cited to least-cited papers; 75/25 percentile citation ratio; 90/10 percentile citation ratio; Gini coefficient; and Kolkata index. Our analysis of 124,331 articles and 13,575 reviews from 121 journals showed that the proportion of most-cited articles (from 19.6% to 27.1%) and reviews (from 19.1% to 37.2%) increased from 2001 to 2010, whereas the proportion of least-cited articles (from 32.3% to 23.0%) and reviews (from 31.9% to 15.8%) declined over the same period. The annual numbers of citations of most-cited articles and reviews both reached a peak in the fourth year after publication, whereas those of least-cited articles and reviews reached a peak in the second and fist years, respectively, after publication and thereafter decreased. The 75/25 percentile ratio for articles declined from 41.1 to 27.5 between 2001 and 2010. Over the same time, the 75/25 percentile ratio for reviews declined from 47.4 to 22.9. The 90/10 percentile ratio for articles declined from 1730.8 to 188.7; for reviews, the 90/10 percentile ratio declined from 5788.0 to 100.7. The Gini coefficient of articles and reviews also declined from 0.6116 to 0.5721 for articles and from 0.6507 to 0.5649 for reviews; the k index, from 0.7260 to 0.7088 for articles from 0.7409 to 0.7072 for reviews. Inequality and polarization of citations consistently decreased in the imaging literature from 2001 to 2010.

  6. Electronic Collaboration Logbook

    International Nuclear Information System (INIS)

    Gysin, Suzanne; Mandrichenko, Igor; Podstavkov, Vladimir; Vittone, Margherita

    2012-01-01

    In HEP, scientific research is performed by large collaborations of organizations and individuals. The logbook of a scientific collaboration is an important part of the collaboration record. Often it contains experimental data. At Fermi National Accelerator Laboratory (FNAL), we developed an Electronic Collaboration Logbook (ECL) application, which is used by about 20 different collaborations, experiments and groups at FNAL. The ECL is the latest iteration of the project formerly known as the Control Room Logbook (CRL). We have been working on mobile (IOS and Android) clients for the ECL. We will present the history, current status and future plans of the project, as well as design, implementation and support solutions made by the project.

  7. The Management of Education and the Social Theory of the Firm: From Distributed Leadership to Collaborative Community

    Science.gov (United States)

    Hartley, David

    2010-01-01

    Modes of organisation and control within educational organisations have tended to accord with those of the workplace. Bureaucracy has endured in both. Of late, it has been loosened. This has opened up a new conceptual space within educational management and leadership. Its underlying theme is collaboration. The analysis here extends the space…

  8. International collaborations through the internet

    DEFF Research Database (Denmark)

    Olson, Gary M.; David, Paul A.; Eksteen, Johan

    2007-01-01

    The past decade has seen remarkable advances in the availability of tools to support scientific collaboration at a distance. This is especially good news for international collaborations, where in the past constraints on collocation and travel have made such collaborations a major challenge. The ...

  9. Collaboration 'Engineerability'

    NARCIS (Netherlands)

    Kolfschoten, Gwendolyn L.; de Vreede, Gert-Jan; Briggs, Robert O.; Sol, Henk G.

    Collaboration Engineering is an approach to create sustained collaboration support by designing collaborative work practices for high-value recurring tasks, and transferring those designs to practitioners to execute for themselves without ongoing support from collaboration professionals. A key

  10. PENENTUAN KOLABORASI PENELITIAN DAN DISTRIBUSI PENGARANG PADA JURNAL TEKNOLOGI INDONESIA (THE DETERMINATIONS OF RESEARCH COLLABORATION AND AUTHORS DISTRIBUTION IN THE JURNAL TEKNOLOGI INDONESIA

    Directory of Open Access Journals (Sweden)

    Engkos Koswara Natakusumah

    2014-06-01

    Full Text Available This study aims to determine of research collaboration and authors distribution based on the data and informationmentioned in the Jurnal Teknologi Indonesia (JTI during 5 years, from 2007 up to 2011. To reach this aims, theresearch uses methodology of bibliometric analysis to analyse the citation appeared in every last page of the articlepublished in the JTI; including distribution of articles each year, the number of contributors, the authorship, thedistribution of article languages, the single and many authors who wrote write the articles, the number of documentcited by outhors, and average number of references in an article. The bibliometrics data come from 80 articles,ranging from volume 30 up to volume 34. Then the data are tabulated, analysed and described for the purpose tomake conclusion of the research. The results show that there are domination of publication contribution by auhtors’collaboration in the journal, have significant range of research collaboration and have high rank of publication by 4researchers of 7, 6 and 5 articles published. 

  11. Analysis of psychosocial factors influencing the distribution and projection of Spanish scientific activity: report of the initial qualitative study

    Directory of Open Access Journals (Sweden)

    GESCIT (Grup d'Estudis Socials de la Ciència i la Tecnologia

    2007-11-01

    Full Text Available In this first phase of a longer study, we identify a number of psycho-social factors which are affecting science in Spain: attitudes, stereotypes, prejudices, values, beliefs, and attribution processes. We also examine how these factors might help or hinder Spanish science's greater impact in the international scientific community. This study falls within the framework of the Social Psychology of Science, the main principle of which is to explain scientific work by appeal to psycho-social variables and processes. We use qualitative methods to analyse a wide sample of material gleaned from the Spanish scientific community, and report on those elements that construct and perpetuate the perceptions, images and representations of current Spanish science research.

  12. Converting the Literature of a Scientific Field to Open Access through Global Collaboration: The Experience of SCOAP3 in Particle Physics

    Directory of Open Access Journals (Sweden)

    Alexander Kohls

    2018-04-01

    Full Text Available Gigantic particle accelerators, incredibly complex detectors, an antimatter factory and the discovery of the Higgs boson—this is part of what makes CERN famous. Only a few know that CERN also hosts the world largest Open Access initiative: SCOAP3. The Sponsoring Consortium for Open Access Publishing in Particle Physics started operation in 2014 and has since supported the publication of 20,000 Open Access articles in the field of particle physics, at no direct cost, nor burden, for individual authors worldwide. SCOAP3 is made possible by a 3000-institute strong partnership, where libraries re-direct funds previously used for subscriptions to ‘flip’ articles to ‘Gold Open Access’. With its recent expansion, the initiative now covers about 90% of the journal literature of the field. This article describes the economic principles of SCOAP3, the collaborative approach of the partnership, and finally summarizes financial results after four years of successful operation.

  13. Managing globally distributed expertise with new competence management solutions: a big-science collaboration as a pilot case.

    OpenAIRE

    Ferguson, J; Koivula, T; Livan, M; Nordberg, M; Salmia, T; Vuola, O

    2003-01-01

    In today's global organisations and networks, a critical factor for effective innovation and project execution is appropriate competence and skills management. The challenges include selection of strategic competences, competence development, and leveraging the competences and skills to drive innovation and collaboration for shared goals. This paper presents a new industrial web-enabled competence management and networking solution and its implementation and piloting in a complex big-science ...

  14. Accelerating the scientific exploration process with scientific workflows

    International Nuclear Information System (INIS)

    Altintas, Ilkay; Barney, Oscar; Cheng, Zhengang; Critchlow, Terence; Ludaescher, Bertram; Parker, Steve; Shoshani, Arie; Vouk, Mladen

    2006-01-01

    Although an increasing amount of middleware has emerged in the last few years to achieve remote data access, distributed job execution, and data management, orchestrating these technologies with minimal overhead still remains a difficult task for scientists. Scientific workflow systems improve this situation by creating interfaces to a variety of technologies and automating the execution and monitoring of the workflows. Workflow systems provide domain-independent customizable interfaces and tools that combine different tools and technologies along with efficient methods for using them. As simulations and experiments move into the petascale regime, the orchestration of long running data and compute intensive tasks is becoming a major requirement for the successful steering and completion of scientific investigations. A scientific workflow is the process of combining data and processes into a configurable, structured set of steps that implement semi-automated computational solutions of a scientific problem. Kepler is a cross-project collaboration, co-founded by the SciDAC Scientific Data Management (SDM) Center, whose purpose is to develop a domain-independent scientific workflow system. It provides a workflow environment in which scientists design and execute scientific workflows by specifying the desired sequence of computational actions and the appropriate data flow, including required data transformations, between these steps. Currently deployed workflows range from local analytical pipelines to distributed, high-performance and high-throughput applications, which can be both data- and compute-intensive. The scientific workflow approach offers a number of advantages over traditional scripting-based approaches, including ease of configuration, improved reusability and maintenance of workflows and components (called actors), automated provenance management, 'smart' re-running of different versions of workflow instances, on-the-fly updateable parameters, monitoring

  15. The Sea Ice for Walrus Outlook: A collaboration between scientific and Indigenous communities to support safety and food security in a changing Arctic

    Science.gov (United States)

    Sheffield Guy, L.; Wiggins, H. V.; Schreck, M. B.; Metcalf, V. K.

    2017-12-01

    The Sea Ice for Walrus Outlook (SIWO) provides Alaskan Native subsistence walrus hunters and Bering Strait coastal communities with weekly reports on spring sea ice and weather conditions to promote hunter safety, food security, and preservation of cultural heritage. These reports integrate scientific and Indigenous knowledge into a co-produced tool that is used by both local and scientific communities. SIWO is a team effort led by the Arctic Research Consortium of the U.S. (ARCUS, with funding from NSF Arctic Sciences Section), with the Eskimo Walrus Commission, National Weather Service - Alaska Sea Ice Program, University of Alaska Fairbanks - International Arctic Research Center, and local observers. For each weekly outlook, the National Weather Service provides location-specific weather and sea ice forecasts and regional satellite imagery. Local observations of sea ice, weather, and hunting conditions are provided by observers from five Alaskan communities in the Bering Strait region: Wales, Shishmaref, Nome, Gambell, and Savoonga. These observations typically include a written description of conditions accompanied by photographs of sea ice or subsistence activities. Outlooks are easily accessible and provide a platform for sharing of knowledge among hunters in neighboring communities. The opportunity to contribute is open, and Indigenous language and terms are encouraged. These observations from local hunters and community members also provide a valuable tool for validation of weather forecasts, satellite products, and other information for scientists. This presentation will discuss the process, products, and mutually beneficial outcomes of the Sea Ice for Walrus Outlook.

  16. A Classroom-Based Distributed Workflow Initiative for the Early Involvement of Undergraduate Students in Scientific Research

    Science.gov (United States)

    Friedrich, Jon M.

    2014-01-01

    Engaging freshman and sophomore students in meaningful scientific research is challenging because of their developing skill set and their necessary time commitments to regular classwork. A project called the Chondrule Analysis Project was initiated to engage first- and second-year students in an initial research experience and also accomplish…

  17. Collaboration and decision making tools for mobile groups

    International Nuclear Information System (INIS)

    Abrahamyan, S.; Balyan, S.; Degtyarev, A.; Ter-Minasyan, H.

    2017-01-01

    Nowadays the use of distributed collaboration tools is widespread in many areas of people activity. But lack of mobility and certain equipment dependence create difficulties and decelerate development and integration of such technologies. Also, mobile technologies allow individuals to interact with each other without need of traditional office spaces and regardless of location. Hence, realization of special infrastructures on mobile platforms with the help of ad hoc wireless local networks could eliminate hardware attachment and be also useful in terms of scientific approach. Solutions from basic internet messengers to complex software for online collaboration equipment in large-scale workgroups are implementations of tools based on mobile infrastructures. Despite growth of mobile infrastructures, applied distributed solutions in group decision-making and e-collaboration are not common. In this article we propose software complex for real-time collaboration and decision-making based on mobile devices, describe its architecture and evaluate performance.

  18. Collaboration and decision making tools for mobile groups

    Science.gov (United States)

    Abrahamyan, Suren; Balyan, Serob; Ter-Minasyan, Harutyun; Degtyarev, Alexander

    2017-12-01

    Nowadays the use of distributed collaboration tools is widespread in many areas of people activity. But lack of mobility and certain equipment-dependency creates difficulties and decelerates development and integration of such technologies. Also mobile technologies allow individuals to interact with each other without need of traditional office spaces and regardless of location. Hence, realization of special infrastructures on mobile platforms with help of ad-hoc wireless local networks could eliminate hardware-attachment and be useful also in terms of scientific approach. Solutions from basic internet-messengers to complex software for online collaboration equipment in large-scale workgroups are implementations of tools based on mobile infrastructures. Despite growth of mobile infrastructures, applied distributed solutions in group decisionmaking and e-collaboration are not common. In this article we propose software complex for real-time collaboration and decision-making based on mobile devices, describe its architecture and evaluate performance.

  19. An advanced educational program for nuclear professionals with social scientific literacy. A collaborative initiative by UC Berkeley and Univ. of Tokyo on the Fukushima accident

    International Nuclear Information System (INIS)

    Juraku, Kohta; Nagasaki, Shinya; Ahn, Joonhong; Carson, Cathryn; Jensen, Mikael

    2011-01-01

    The authors have collaborated for over three years in developing an advanced educational program to cultivate leading engineers who can productively interact with other stakeholders. The program is organized under a partnership between the Nuclear Engineering Department of University of California, Berkeley (UCBNE) and the Global COE Program 'Nuclear Education and Research Initiative' (GoNERI) of the University of Tokyo, and is funded by MEXT (Ministry of Education, Culture, Sports, Science and Technology), Japan. We conducted two 'summer schools' in 2009 and 2010 as trial cases of the educational program. This year, in response to the Fukushima Daiichi nuclear accident, we decided to make our third summer school a venue for preliminary, yet multi-dimensional learning from that event. This school was held in Berkeley, CA, in the first week of August, with 12 lecturers and 18 students from various fields and countries. In this paper, we will explain the concept, aim, and design of our program; do a preliminary assessment of its effectiveness; introduce a couple of intriguing discussions held by participants; and discuss the program's implications for the post-Fukushima nuclear context. (author)

  20. Evaluating a scientific collaboratory

    DEFF Research Database (Denmark)

    Sonnenwald, Diane H.; Whitton, Mary C.; Maglaughlin, Kelly L.

    2003-01-01

    of the system, and post-interviews to understand the participants' views of doing science under both conditions. We hypothesized that study participants would be less effective, report more difficulty, and be less favorably inclined to adopt the system when collaborating remotely. Contrary to expectations...... of collaborating remotely. While the data analysis produced null results, considered as a whole, the analysis leads us to conclude there is positive potential for the development and adoption of scientific collaboratory systems....

  1. Collaborative Data Mining

    Science.gov (United States)

    Moyle, Steve

    Collaborative Data Mining is a setting where the Data Mining effort is distributed to multiple collaborating agents - human or software. The objective of the collaborative Data Mining effort is to produce solutions to the tackled Data Mining problem which are considered better by some metric, with respect to those solutions that would have been achieved by individual, non-collaborating agents. The solutions require evaluation, comparison, and approaches for combination. Collaboration requires communication, and implies some form of community. The human form of collaboration is a social task. Organizing communities in an effective manner is non-trivial and often requires well defined roles and processes. Data Mining, too, benefits from a standard process. This chapter explores the standard Data Mining process CRISP-DM utilized in a collaborative setting.

  2. Studying Research Collaboration Patterns via Co-authorship Analysis in the Field of TeL: The Case of "Educational Technology & Society" Journal

    Science.gov (United States)

    Zervas, Panagiotis; Tsitmidelli, Asimenia; Sampson, Demetrios G.; Chen, Nian-Shing; Kinshuk

    2014-01-01

    Research collaboration is studied in different research areas, so as to provide useful insights on how researchers combine existing distributed scientific knowledge and transform it into new knowledge. Commonly used metrics for measuring research collaborative activity include, among others, the co-authored publications (concerned with who works…

  3. Collaborative research: Accomplishments & potential

    Science.gov (United States)

    Katsouyanni, Klea

    2008-01-01

    Although a substantial part of scientific research is collaborative and increasing globalization will probably lead to its increase, very few studies actually investigate the advantages, disadvantages, experiences and lessons learned from collaboration. In environmental epidemiology interdisciplinary collaboration is essential and the contrasting geographical patterns in exposure and disease make multi-location projects essential. This paper is based on a presentation given at the Annual Conference of the International Society for Environmental Epidemiology, Paris 2006, and is attempting to initiate a discussion on a framework for studying collaborative research. A review of the relevant literature showed that indeed collaborative research is rising, in some countries with impressive rates. However, there are substantial differences between countries in their outlook, need and respect for collaboration. In many situations collaborative publications receive more citations than those based on national authorship. The European Union is the most important host of collaborative research, mainly driven by the European Commission through the Framework Programmes. A critical assessment of the tools and trends of collaborative networks under FP6, showed that there was a need for a critical revision, which led to changes in FP7. In conclusion, it is useful to study the characteristics of collaborative research and set targets for the future. The added value for science and for the researchers involved may be assessed. The motivation for collaboration could be increased in the more developed countries. Particular ways to increase the efficiency and interaction in interdisciplinary and intercultural collaboration may be developed. We can work towards "the principles of collaborative research" in Environmental Epidemiology. PMID:18208596

  4. Collaborative Networks for biodiversity domain organizations

    NARCIS (Netherlands)

    Ermilova, E.; Afsarmanesh, H.

    2010-01-01

    European scientific research and development organizations, operating in the domains of biology, ecology, and biodiversity, strongly need to cooperate/collaborate with other centers. Unavailability of interoperation infrastructure as well as the needed collaboration environment among research

  5. Center for Technology for Advanced Scientific Component Software (TASCS)

    Energy Technology Data Exchange (ETDEWEB)

    Damevski, Kostadin [Virginia State Univ., Petersburg, VA (United States)

    2009-03-30

    A resounding success of the Scientific Discover through Advanced Computing (SciDAC) program is that high-performance computational science is now universally recognized as a critical aspect of scientific discovery [71], complementing both theoretical and experimental research. As scientific communities prepare to exploit unprecedened computing capabilities of emerging leadership-class machines for multi-model simulations at the extreme scale [72], it is more important than ever to address the technical and social challenges of geographically distributed teams that combine expertise in domain science, applied mathematics, and computer science to build robust and flexible codes that can incorporate changes over time. The Center for Technology for Advanced Scientific Component Software (TASCS) tackles these issues by exploiting component-based software development to facilitate collaborative hig-performance scientific computing.

  6. Collaborative research among academia, business, and government

    Science.gov (United States)

    SETAC is a tripartite organization comprised chiefly of three sectors: academia, government, and industry. Collaborative connections within and among these sectors provide the basis for scientific structural integrity. Such interactions generally foster scientific integrity, tra...

  7. 28th February 2011 - Turkish Minister of Foreign Affairs A. Davutoğlu signing the guest book with CERN Director for Research and Scientific Computing S. Bertolucci and Head of International Relations F. Pauss; meeting the CERN Turkish Community at Point 1; visiting the ATLAS control room with Former Collaboration Spokesperson P. Jenni.

    CERN Document Server

    Maximilien Brice

    2011-01-01

    28th February 2011 - Turkish Minister of Foreign Affairs A. Davutoğlu signing the guest book with CERN Director for Research and Scientific Computing S. Bertolucci and Head of International Relations F. Pauss; meeting the CERN Turkish Community at Point 1; visiting the ATLAS control room with Former Collaboration Spokesperson P. Jenni.

  8. Mr Lars Leijonborg, Minister for Higher Education and Research of Sweden visiting the cavern ATLAS, the control room of ATLAS and the machine LHC at Point 1 with Collaboration Spokesperson P. Jenni and Dr. Jos Engelen, Chief Scientific Officer of CERN.

    CERN Multimedia

    Maximilien Brice

    2008-01-01

    Mr Lars Leijonborg, Minister for Higher Education and Research of Sweden visiting the cavern ATLAS, the control room of ATLAS and the machine LHC at Point 1 with Collaboration Spokesperson P. Jenni and Dr. Jos Engelen, Chief Scientific Officer of CERN.

  9. 7th April 2011 - Romanian President of the National Authority for Scientific Research State Secretary Ministry for Education, Research, Youth and Sport D. M. Ciuparu signing the guest book with Director for Research S. Bertolucci and ALICE surface building with Collaboration Spokesperson P. Giubellino.

    CERN Multimedia

    Maximilien Brice

    2011-01-01

    7th April 2011 - Romanian President of the National Authority for Scientific Research State Secretary Ministry for Education, Research, Youth and Sport D. M. Ciuparu signing the guest book with Director for Research S. Bertolucci and ALICE surface building with Collaboration Spokesperson P. Giubellino.

  10. 11 July 2011 - Carleton University Ottawa, Canada Vice President (Research and International) K. Matheson in the ATLAS visitor centre with Collaboration Spokesperson F. Gianotti, accompanied by Adviser J. Ellis and signing the guest book with CERN Director for Research and Scientific Computing S. Bertolucci.

    CERN Multimedia

    Jean-Claude Gadmer

    2011-01-01

    11 July 2011 - Carleton University Ottawa, Canada Vice President (Research and International) K. Matheson in the ATLAS visitor centre with Collaboration Spokesperson F. Gianotti, accompanied by Adviser J. Ellis and signing the guest book with CERN Director for Research and Scientific Computing S. Bertolucci.

  11. Recursion organization of interactive experiment control systems in distributed multi-level automated systems for scientific investigations

    International Nuclear Information System (INIS)

    Putilov, V.A.

    1985-01-01

    Problems of organization of multilevel distributed systems for complex investigations of different objects, phenomena and processes are discussed. Priori uncertainty of organization procedures of these investigations assumes compulsory presence of interactive means of communication of an investigator with the system at all the levels of solving complex problems. Recurrent models which assume detailed representation of the solved problem using decomposition tree of research purposes should be used as formal apparatus when developing the considered systems. Recurrent derivation of an algorithm of the problem solution is exercised using the problem-oriented LEADER language

  12. Collaborative Economy

    DEFF Research Database (Denmark)

    collaborative economy and tourism Dianne Dredge and Szilvia Gyimóthy PART I - Theoretical explorations 2.Definitions and mapping the landscape in the collaborative economy Szilvia Gyimóthy and Dianne Dredge 3.Business models of the collaborative economy Szilvia Gyimóthy 4.Responsibility and care...... in the collaborative economy Dianne Dredge 5.Networked cultures in the collaborative economy Szilvia Gyimóthy 6.Policy and regulatory perspectives in the collaborative economy Dianne Dredge PART II - Disruptions, innovations and transformations 7.Regulating innovation in the collaborative economy: An examination...... localities of tourism Greg Richards 11.Collaborative economy and destination marketing organizations: A systems approach Jonathan Day 12.Working within the Collaborative Tourist Economy: The complex crafting of work and meaning Jane Widtfeldt Meged and Mathilde Dissing Christensen PART - III Encounters...

  13. Distributing and storing required data efficiently by means of specifically tailored data formats in the ATLAS collaboration

    CERN Document Server

    Koeneke, K; The ATLAS collaboration

    2011-01-01

    With the start of the LHC physics program, the ATLAS experiment started to record vast amounts of data. This data has to be distributed and stored on the world-wide computing grid in a smart way in order to enable an effective and efficient analysis by physicists. There are in principle two classes of analysis that are required. In the commissioning phase of the ATLAS experiment, low-level Event Summary Data (ESD), the result of the event reconstruction, has to be analyzed to evaluate the performance of the individual subdetectors, the performance of the reconstruction and particle identification algorithms, and to obtain calibration coefficients. For later physics analysis, it is usually sufficient to use the less detailed Analysis Object Data (AOD), which is a less-detailed version of the ESD. In the grid model of distributed analysis, these data must be transferred to Tier-2 sites before they can be analyzed. However, the large size of ESD (~1 MByte/event) constrains the amount of detailed data that can be...

  14. Coordination theory and collaboration technology

    CERN Document Server

    Olson, Gary M; Smith, John B

    2001-01-01

    The National Science Foundation funded the first Coordination Theory and Collaboration Technology initiative to look at systems that support collaborations in business and elsewhere. This book explores the global revolution in human interconnectedness. It will discuss the various collaborative workgroups and their use in technology. The initiative focuses on processes of coordination and cooperation among autonomous units in human systems, in computer and communication systems, and in hybrid organizations of both systems. This initiative is motivated by three scientific issues which have been

  15. A System to Provide Real-Time Collaborative Situational Awareness by Web Enabling a Distributed Sensor Network

    Science.gov (United States)

    Panangadan, Anand; Monacos, Steve; Burleigh, Scott; Joswig, Joseph; James, Mark; Chow, Edward

    2012-01-01

    In this paper, we describe the architecture of both the PATS and SAP systems and how these two systems interoperate with each other forming a unified capability for deploying intelligence in hostile environments with the objective of providing actionable situational awareness of individuals. The SAP system works in concert with the UICDS information sharing middleware to provide data fusion from multiple sources. UICDS can then publish the sensor data using the OGC's Web Mapping Service, Web Feature Service, and Sensor Observation Service standards. The system described in the paper is able to integrate a spatially distributed sensor system, operating without the benefit of the Web infrastructure, with a remote monitoring and control system that is equipped to take advantage of SWE.

  16. Collaborative Economy

    DEFF Research Database (Denmark)

    that are emerging from them, and how governments are responding to these new challenges. In doing so, the book provides both theoretical and practical insights into the future of tourism in a world that is, paradoxically, becoming both increasingly collaborative and individualized. Table of Contents Preface 1.The...... collaborative economy and tourism Dianne Dredge and Szilvia Gyimóthy PART I - Theoretical explorations 2.Definitions and mapping the landscape in the collaborative economy Szilvia Gyimóthy and Dianne Dredge 3.Business models of the collaborative economy Szilvia Gyimóthy 4.Responsibility and care...... in the collaborative economy Dianne Dredge 5.Networked cultures in the collaborative economy Szilvia Gyimóthy 6.Policy and regulatory perspectives in the collaborative economy Dianne Dredge PART II - Disruptions, innovations and transformations 7.Regulating innovation in the collaborative economy: An examination...

  17. Working Collaboratively

    DEFF Research Database (Denmark)

    Holder, Anna; Lovett, George

    2009-01-01

    identified as a transformative global force of the last decade, most notably in knowledge and information publishing, communication and creation. This paper presents a structured conversation on changing understandings of collaboration, and the realities of collaborative methodology in architectural work...

  18. [The Continuity Between World War II and the Postwar Period: Grant Distribution by the Japan Society for the Promotion of Science and the Subsidiary Fund for Scientific Research].

    Science.gov (United States)

    Mizusawa, Hikari

    2015-01-01

    This paper analyzes the distribution of the Subsidiary Fund for Scientific Research, a predecessor to the Grant-in-Aid for Scientific Research (KAKENHI), which operated in Japan from the 1930s to 1950s. It reveals that the Japanese government maintained this wide-ranging promotion system since its establishment during the war until well into the postwar period. Previous studies insist that, at the end of the war, the Japanese government generally only funded the research that it considered immediately and practically useful. In contrast to this general perception, my analysis illustrates that both before and after the war, funding was allotted to four research areas: natural science, engineering, agriculture, and medicine. In order to illuminate this continuity, I compare the Subsidiary Fund with another research fund existing from 1933 to 1947: the Grant of the Japan Society for the Promotion of Science (JSPS). The comparison demonstrates that the JSPS received externally raised capital from the military and munitions companies. However, while this group focused upon engineering and military-related research as the war dragged on, the Subsidiary Fund has consistently entrusted scientists with the authority to decide the allocation of financial support.

  19. Scientifically artistic - artistically scientific

    CERN Multimedia

    Anaïs Schaeffer

    2013-01-01

    From 5 to 7 June, two Austrian high-school classes met in Graz (Austria) for the Art&Science@School project. Launched by Michael Hoch from the CMS collaboration, the programme aims to show them another face of science through art.       On the first day, 62 teenagers from the BORG and GIBS schools attended a masterclass, where scientists from the CMS institute HEPHY (Vienna) provided information on colliders and detectors at CERN and explained the principles of high-energy physics. The students even had the chance to analyse real CERN data sets to “find” new particles. They also discovered the close link between science and art over the centuries and how contemporary artists visualise modern science and technology today. On the second day, under the supervision of art teachers, the students created an artwork from idea and concept to realisation and presentation. “I was completely amazed by the standard of the four artworks and by ...

  20. Collaborative Economy

    DEFF Research Database (Denmark)

    collaborative economy and tourism Dianne Dredge and Szilvia Gyimóthy PART I - Theoretical explorations 2.Definitions and mapping the landscape in the collaborative economy Szilvia Gyimóthy and Dianne Dredge 3.Business models of the collaborative economy Szilvia Gyimóthy 4.Responsibility and care...... and similar phenomena are among these collective innovations in tourism that are shaking the very bedrock of an industrial system that has been traditionally sustained along commercial value chains. To date there has been very little investigation of these trends, which have been inspired by, amongst other...... in the collaborative economy Dianne Dredge 5.Networked cultures in the collaborative economy Szilvia Gyimóthy 6.Policy and regulatory perspectives in the collaborative economy Dianne Dredge PART II - Disruptions, innovations and transformations 7.Regulating innovation in the collaborative economy: An examination...

  1. Data management, code deployment, and scientific visualization to enhance scientific discovery in fusion research through advanced computing

    International Nuclear Information System (INIS)

    Schissel, D.P.; Finkelstein, A.; Foster, I.T.; Fredian, T.W.; Greenwald, M.J.; Hansen, C.D.; Johnson, C.R.; Keahey, K.; Klasky, S.A.; Li, K.; McCune, D.C.; Peng, Q.; Stevens, R.; Thompson, M.R.

    2002-01-01

    The long-term vision of the Fusion Collaboratory described in this paper is to transform fusion research and accelerate scientific understanding and innovation so as to revolutionize the design of a fusion energy source. The Collaboratory will create and deploy collaborative software tools that will enable more efficient utilization of existing experimental facilities and more effective integration of experiment, theory, and modeling. The computer science research necessary to create the Collaboratory is centered on three activities: security, remote and distributed computing, and scientific visualization. It is anticipated that the presently envisioned Fusion Collaboratory software tools will require 3 years to complete

  2. Energy and scientific communication

    Science.gov (United States)

    De Sanctis, E.

    2013-06-01

    Energy communication is a paradigmatic case of scientific communication. It is particularly important today, when the world is confronted with a number of immediate, urgent problems. Science communication has become a real duty and a big challenge for scientists. It serves to create and foster a climate of reciprocal knowledge and trust between science and society, and to establish a good level of interest and enthusiasm for research. For an effective communication it is important to establish an open dialogue with the audience, and a close collaboration among scientists and science communicators. An international collaboration in energy communication is appropriate to better support international and interdisciplinary research and projects.

  3. Supporting collaborative computing and interaction

    International Nuclear Information System (INIS)

    Agarwal, Deborah; McParland, Charles; Perry, Marcia

    2002-01-01

    To enable collaboration on the daily tasks involved in scientific research, collaborative frameworks should provide lightweight and ubiquitous components that support a wide variety of interaction modes. We envision a collaborative environment as one that provides a persistent space within which participants can locate each other, exchange synchronous and asynchronous messages, share documents and applications, share workflow, and hold videoconferences. We are developing the Pervasive Collaborative Computing Environment (PCCE) as such an environment. The PCCE will provide integrated tools to support shared computing and task control and monitoring. This paper describes the PCCE and the rationale for its design

  4. Comprehensive multiplatform collaboration

    Science.gov (United States)

    Singh, Kundan; Wu, Xiaotao; Lennox, Jonathan; Schulzrinne, Henning G.

    2003-12-01

    We describe the architecture and implementation of our comprehensive multi-platform collaboration framework known as Columbia InterNet Extensible Multimedia Architecture (CINEMA). It provides a distributed architecture for collaboration using synchronous communications like multimedia conferencing, instant messaging, shared web-browsing, and asynchronous communications like discussion forums, shared files, voice and video mails. It allows seamless integration with various communication means like telephones, IP phones, web and electronic mail. In addition, it provides value-added services such as call handling based on location information and presence status. The paper discusses the media services needed for collaborative environment, the components provided by CINEMA and the interaction among those components.

  5. Expectations for a scientific collaboratory

    DEFF Research Database (Denmark)

    Sonnenwald, Diane H.

    2003-01-01

    In the past decade, a number of scientific collaboratories have emerged, yet adoption of scientific collaboratories remains limited. Meeting expectations is one factor that influences adoption of innovations, including scientific collaboratories. This paper investigates expectations scientists have...... with respect to scientific collaboratories. Interviews were conducted with 17 scientists who work in a variety of settings and have a range of experience conducting and managing scientific research. Results indicate that scientists expect a collaboratory to: support their strategic plans; facilitate management...... of the scientific process; have a positive or neutral impact on scientific outcomes; provide advantages and disadvantages for scientific task execution; and provide personal conveniences when collaborating across distances. These results both confirm existing knowledge and raise new issues for the design...

  6. Collaboration and E-collaboration

    DEFF Research Database (Denmark)

    Razmerita, Liana; Kirchner, Kathrin

    2015-01-01

    Understanding student’s perception of collaboration and how collaboration is supported by ICT is important for its efficient use in the classroom. This article aims to investigate how students perceive collaboration and how they use new technologies in collaborative group work. Furthermore......, it tries to measure the impact of technology on students’ satisfaction with collaboration outcomes. In particular, the study aims to address the following research questions: Which demographic information (e.g. gender and place of origin) is significant for collaboration and ecollaboration? and Which...... are the perceived factors that influence the students’ group performance? The findings of this study emphasize that there are gender and cultural differences with respect to the perception of e-collaboration. Furthermore, the article summarizes in a model the most significant factors influencing group performance....

  7. Collaborative Optimal Pricing and Day-Ahead and Intra-Day Integrative Dispatch of the Active Distribution Network with Multi-Type Active Loads

    Directory of Open Access Journals (Sweden)

    Chong Chen

    2018-04-01

    Full Text Available In order to better handle the new features that emerge at both ends of supply and demand, new measures are constantly being introduced, such as demand-side management (DSM and prediction of uncertain output and load. However, the existing DSM strategies, like real-time price (RTP, and dispatch methods are optimized separately, and response models of active loads, such as the interruptible load (IL, are still imperfect, which make it difficult for the active distribution network (ADN to achieve global optimal operation. Therefore, to better manage active loads, the response characteristics including both the response time and the responsibility and compensation model of IL for cluster users, and the real-time demand response model for price based load, were analyzed and established. Then, a collaborative optimization strategy of RTP and optimal dispatch of ADN was proposed, which can realize an economical operation based on mutual benefit and win-win mode of supply and demand sides. Finally, the day-ahead and intra-day integrative dispatch model using different time-scale prediction data was established, which can achieve longer-term optimization while reducing the impact of prediction errors on the dispatch results. With numerical simulations, the effectiveness and superiority of the proposed strategy were verified.

  8. Collaborative experience

    DEFF Research Database (Denmark)

    Mortensen, Thomas Bøtker

    -Doerr, 1996) and has been shown to have a positive effect to the outcome of collaborative R&D (Sampson, 2005). Anand & Khanna (2000), furthermore, hypothesized that research joint ventures are more ambiguous than marketing joint ventures and even more the licensing and showed that the effect of collaborative......Literature review: Collaborative experience has been shown to have a positive effect on the collaborative outcome in general (Anand & Khanna, 2000; Kale, Dyer & Singh, 2002). Furthermore, it has been linked to the ability to exploit the network of the firm for learning (Powell, Koput and Smith...... experience was largest the higher the hypothesized ambiguity. Theoretically contribution: This research project aims at contributing to existing literature by arguing, that collaborative experience is a moderating variable which moderates the effects on collaborative outcome from the level of complexity...

  9. FINAL SCIENTIFIC REPORT Southwest United States of America – Distributed Technology Training Consortia (SWUSA-DTTC) Contract Number: DE-EE0006339

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, Kodie [Electricore, Inc., Santa Clarita, CA (United States)

    2014-12-29

    The Southwest United States of America – Distributed Technology Training Consortia (SWUSA-DTTC) leveraged the highest concentration of renewable resources in the U.S. as well as operation of the leading independent microgrid installations and other distributed technologies to collect and analyze real-time data streams, advance power system simulations and analysis, identify educational and training gaps and develop solutions-focused curricula. The SWUSA-DTTC consortium posed a unique collaboration between universities and utilities to ensure that classes were focused on subjects and topics of interest to the utilities and ones that had practical benefit related to the preparedness for accommodating high penetration of solar and other distributed energy technologies. This approach to have a close collaboration and shared effort to develop the course content and curriculum is unique and a significant departure from conventional course development. This coursework and training was intended to endure over a long time horizon (10-20 year time frame), and include professionals over the entire Southwest region and the rest of the US, and even outreach into foreign countries. Project Objectives In order to support the increase in power systems research, development, and analytical capacity, the SWUSA-DTTC brought together respected professors in Power Systems education, student/professor research and development, and valuable industry and utility experience. Through this program, the partnered universities created and/or modified existing curricula available to students and professionals in the form of university courses, short courses, videos, consortia-led training, and online materials. During this time, the supporting vendors and utilities provided the SWUSA-DTTC with technical advisory roles as well as providing input and feedback in terms of utility and related energy industry needs. The goals were to create power and energy systems training, curricula, and

  10. Creatiing a Collaborative Research Network for Scientists

    Science.gov (United States)

    Gunn, W.

    2012-12-01

    This abstract proposes a discussion of how professional science communication and scientific cooperation can become more efficient through the use of modern social network technology, using the example of Mendeley. Mendeley is a research workflow and collaboration tool which crowdsources real-time research trend information and semantic annotations of research papers in a central data store, thereby creating a "social research network" that is emergent from the research data added to the platform. We describe how Mendeley's model can overcome barriers for collaboration by turning research papers into social objects, making academic data publicly available via an open API, and promoting more efficient collaboration. Central to the success of Mendeley has been the creation of a tool that works for the researcher without the requirement of being part of an explicit social network. Mendeley automatically extracts metadata from research papers, and allows a researcher to annotate, tag and organize their research collection. The tool integrates with the paper writing workflow and provides advanced collaboration options, thus significantly improving researchers' productivity. By anonymously aggregating usage data, Mendeley enables the emergence of social metrics and real-time usage stats on top of the articles' abstract metadata. In this way a social network of collaborators, and people genuinely interested in content, emerges. By building this research network around the article as the social object, a social layer of direct relevance to academia emerges. As science, particularly Earth sciences with their large shared resources, become more and more global, the management and coordination of research is more and more dependent on technology to support these distributed collaborations.

  11. Scientific report 1996-1997

    International Nuclear Information System (INIS)

    1998-01-01

    A general introduction gives a summary of the present scientific program of the SPEC and presents some of the recent highlights, the organization, the recent evolution and the relationship of the laboratory with the CEA and the scientific community. Most of the information on the organization is gathered at the end of the report in a section called 'Facts and Figures'. The central part consists in 20 chapters which can be divided in 4 subsets corresponding to the contributions of the four laboratories of the SPEC. In front of each of these subsets, an inset gives a summary of the respective contributions. The distribution is as follows: Chapter 1 - 4: Soft matter, interfaces and turbulence. Chapter 5 - 11: Solid state and novel materials. Chapter 12 - 16 : Quantum condensed matter. Chapter 17 - 20: Condensed matter theory. The headings of each chapter list the physicists, technicians, PhD students as well as the visitors and main collaborators which have taken part in the corresponding activities. In most cases, graduate students were involved in some of the work during their training period. Their names can be found in the section Facts and Figures (subsection Teaching and Training). The Index lists all the contributors and gives the page numbers at which their names appear. (authors)

  12. Collaborative Hierarchy.

    Science.gov (United States)

    Maris, Mariann

    The University of Wisconsin-Milwaukee writing program is collaborative, not divisionary, as some, such as Jeanne Gunner, have suggested. Three terms are useful in understanding the relationships and ethics governing operations at Wisconsin-Milwaukee: (1) authority and collaboration; (2) hierarchical difference; (3) professional respect.…

  13. Collaborative Prototyping

    DEFF Research Database (Denmark)

    Bogers, Marcel; Horst, Willem

    2014-01-01

    of the prototyping process, the actual prototype was used as a tool for communication or development, thus serving as a platform for the cross-fertilization of knowledge. In this way, collaborative prototyping leads to a better balance between functionality and usability; it translates usability problems into design......This paper presents an inductive study that shows how collaborative prototyping across functional, hierarchical, and organizational boundaries can improve the overall prototyping process. Our combined action research and case study approach provides new insights into how collaborative prototyping...... can provide a platform for prototype-driven problem solving in early new product development (NPD). Our findings have important implications for how to facilitate multistakeholder collaboration in prototyping and problem solving, and more generally for how to organize collaborative and open innovation...

  14. Competências científico- tecnológicas e cooperação universidade-empresa na saúde Competencias científico-tecnológicas y cooperación Universidad-Empresa en la salud Health-related scientific and technological capabilities and university-industry research collaboration

    Directory of Open Access Journals (Sweden)

    Jorge Britto

    2012-12-01

    were assessed indicators of resource mobilization, research network structuring, and knowledge transfer between science and industry initiatives. RESULTS: Based on the regional distribution map of health-related scientific and technological capabilities there were identified patterns of scientific capabilities and science-industry collaboration. There was relative spatial deconcentration of health research groups and more than 6% of them worked in six areas of knowledge areas: medicine, collective health, dentistry, veterinary medicine, ecology and physical education. Lines of incentives that were adopted from 2000 to 2009 contributed to reducing regional scientific imbalances and improving preexisting capabilities or, alternatively, encouraging spatial decentralization of these capabilities. CONCLUSIONS: Health-related scientific and technological capabilities remain highly spatially concentrated in Brazil and incentive policies have contributed to reduce to some extent these imbalances.

  15. Scientific collaboration with the states of the former Soviet Union; scientific analysis, supplementation, and evaluation of data compiled for management of the consequences of the Chernobyl reactor accident. Final report on the scientific and technical results. Reporting period 1995-1997

    International Nuclear Information System (INIS)

    Hille, R.; Rohloff, F.; Ramzaev, A.; Skryabin, A.; Girij, V.

    1998-04-01

    Activities for this part of the project continued earlier measuring work for input to a database on environmental contamination and transfer of radioactivity to food for another period of three years and were performed in collaboration with the Novosybkov division of the institute for radiation hygiene based in St. Petersburg. The results are summarized and present a particular success with a study of Ukranian partners who made an attempt to solve the relevant differential equations for transfer rate assessment, using the measured data not available to the authors of the Ecosys 87 report in 1990. The authors of this latest study found an interesting correlation between pH-values of the soil and radioactive contamination of the cover of grass. Integration of those data for calculation and simulation using the Ecomodel yielded satisfactory results in the modelling of long-time nuclide transfer used as an averaged value for a number of defined sites. The Ukrainian partners carried out initial investigations into the statistical nature of the nuclide transfer and likewise achieved promising results that can be incorporated in future into the transfer model. (orig./CB)

  16. NASA's Scientific Visualization Studio

    Science.gov (United States)

    Mitchell, Horace G.

    2003-01-01

    Since 1988, the Scientific Visualization Studio(SVS) at NASA Goddard Space Flight Center has produced scientific visualizations of NASA s scientific research and remote sensing data for public outreach. These visualizations take the form of images, animations, and end-to-end systems and have been used in many venues: from the network news to science programs such as NOVA, from museum exhibits at the Smithsonian to White House briefings. This presentation will give an overview of the major activities and accomplishments of the SVS, and some of the most interesting projects and systems developed at the SVS will be described. Particular emphasis will be given to the practices and procedures by which the SVS creates visualizations, from the hardware and software used to the structures and collaborations by which products are designed, developed, and delivered to customers. The web-based archival and delivery system for SVS visualizations at svs.gsfc.nasa.gov will also be described.

  17. ATLAS Experiment: Collaboration at the frontiers of science and technology

    CERN Document Server

    2018-01-01

    ATLAS is run by a collaboration of physicists, engineers, technicians and support staff from around the world. It is one of the largest collaborative efforts ever attempted in science, with over 5000 members and almost 3000 scientific authors. The ATLAS Collaboration welcomes new collaborators for long-term engagement in the experiment.

  18. Grid computing and collaboration technology in support of fusion energy sciences

    International Nuclear Information System (INIS)

    Schissel, D.P.

    2005-01-01

    Science research in general and magnetic fusion research in particular continue to grow in size and complexity resulting in a concurrent growth in collaborations between experimental sites and laboratories worldwide. The simultaneous increase in wide area network speeds has made it practical to envision distributed working environments that are as productive as traditionally collocated work. In computing power, it has become reasonable to decouple production and consumption resulting in the ability to construct computing grids in a similar manner as the electrical power grid. Grid computing, the secure integration of computer systems over high speed networks to provide on-demand access to data analysis capabilities and related functions, is being deployed as an alternative to traditional resource sharing among institutions. For human interaction, advanced collaborative environments are being researched and deployed to have distributed group work that is as productive as traditional meetings. The DOE Scientific Discovery through Advanced Computing Program initiative has sponsored several collaboratory projects, including the National Fusion Collaboratory Project, to utilize recent advances in grid computing and advanced collaborative environments to further research in several specific scientific domains. For fusion, the collaborative technology being deployed is being used in present day research and is also scalable to future research, in particular, to the International Thermonuclear Experimental Reactor experiment that will require extensive collaboration capability worldwide. This paper briefly reviews the concepts of grid computing and advanced collaborative environments and gives specific examples of how these technologies are being used in fusion research today

  19. SIFlore, a dataset of geographical distribution of vascular plants covering five centuries of knowledge in France: Results of a collaborative project coordinated by the Federation of the National Botanical Conservatories.

    Science.gov (United States)

    Just, Anaïs; Gourvil, Johan; Millet, Jérôme; Boullet, Vincent; Milon, Thomas; Mandon, Isabelle; Dutrève, Bruno

    2015-01-01

    More than 20 years ago, the French Muséum National d'Histoire Naturelle (MNHN, Secretariat of the Fauna and Flora) published the first part of an atlas of the flora of France at a 20km spatial resolution, accounting for 645 taxa (Dupont 1990). Since then, at the national level, there has not been any work on this scale relating to flora distribution, despite the obvious need for a better understanding. In 2011, in response to this need, the Federation des Conservatoires Botaniques Nationaux (FCBN, http://www.fcbn.fr) launched an ambitious collaborative project involving eleven national botanical conservatories of France. The project aims to establish a formal procedure and standardized system for data hosting, aggregation and publication for four areas: flora, fungi, vegetation and habitats. In 2014, the first phase of the project led to the development of the national flora dataset: SIFlore. As it includes about 21 million records of flora occurrences, this is currently the most comprehensive dataset on the distribution of vascular plants (Tracheophyta) in the French territory. SIFlore contains information for about 15'454 plant taxa occurrences (indigenous and alien taxa) in metropolitan France and Reunion Island, from 1545 until 2014. The data records were originally collated from inventories, checklists, literature and herbarium records. SIFlore was developed by assembling flora datasets from the regional to the national level. At the regional level, source records are managed by the national botanical conservatories that are responsible for flora data collection and validation. In order to present our results, a geoportal was developed by the Fédération des conservatoires botaniques nationaux that allows the SIFlore dataset to be publically viewed. This portal is available at: http://siflore.fcbn.fr. As the FCBN belongs to the Information System for Nature and Landscapes' (SINP), a governmental program, the dataset is also accessible through the websites of

  20. Collaborative Consumption

    DEFF Research Database (Denmark)

    Gjerdrum Pedersen, Esben Rahbek; Netter, Sarah

    2015-01-01

    Purpose – The purpose of this paper is to explore barriers and opportunities for business models based on the ideas of collaborative consumption within the fashion industry. Design/methodology/approach – The analysis is based on a multiple-case study of Scandinavian fashion libraries – a new...... to the new phenomenon of fashion libraries and does not cover other types of collaborative consumption within the fashion industry (Swap-parties, etc.). Originality/value – The paper is one of the first attempts to examine new business models of collaborative consumption in general and the fashion library...... concept in particular. The study contributes to the discussions of whether and how fashion sharing and collaboration holds promise as a viable business model and as a means to promote sustainability....

  1. Collaborative Consumption

    DEFF Research Database (Denmark)

    Gjerdrum Pedersen, Esben Rahbek; Netter, Sarah

    Purpose: The purpose of this paper is to explore barriers and opportunities for business models based on the ideas of collaborative consumption within the fashion industry. Design/methodology/approach: The analysis is based on a multiple-­‐‑case study of Scandinavian fashion libraries – a new...... to the new phenomenon of fashion libraries and does not cover other types of collaborative consumption within the fashion industry (Swap-­‐‑parties, etc.). Originality/value: The paper is one of the first attempts to examine new business models of collaborative consumption in general and the fashion library...... concept in particular. The study contributes to the discussions of whether and how fashion sharing and collaboration holds promise as a viable business model and as a means to promote sustainability....

  2. Distribution

    Science.gov (United States)

    John R. Jones

    1985-01-01

    Quaking aspen is the most widely distributed native North American tree species (Little 1971, Sargent 1890). It grows in a great diversity of regions, environments, and communities (Harshberger 1911). Only one deciduous tree species in the world, the closely related Eurasian aspen (Populus tremula), has a wider range (Weigle and Frothingham 1911)....

  3. Collaborative Visualization and Analysis of Multi-dimensional, Time-dependent and Distributed Data in the Geosciences Using the Unidata Integrated Data Viewer

    Science.gov (United States)

    Meertens, C. M.; Murray, D.; McWhirter, J.

    2004-12-01

    Over the last five years, UNIDATA has developed an extensible and flexible software framework for analyzing and visualizing geoscience data and models. The Integrated Data Viewer (IDV), initially developed for visualization and analysis of atmospheric data, has broad interdisciplinary application across the geosciences including atmospheric, ocean, and most recently, earth sciences. As part of the NSF-funded GEON Information Technology Research project, UNAVCO has enhanced the IDV to display earthquakes, GPS velocity vectors, and plate boundary strain rates. These and other geophysical parameters can be viewed simultaneously with three-dimensional seismic tomography and mantle geodynamic model results. Disparate data sets of different formats, variables, geographical projections and scales can automatically be displayed in a common projection. The IDV is efficient and fully interactive allowing the user to create and vary 2D and 3D displays with contour plots, vertical and horizontal cross-sections, plan views, 3D isosurfaces, vector plots and streamlines, as well as point data symbols or numeric values. Data probes (values and graphs) can be used to explore the details of the data and models. The IDV is a freely available Java application using Java3D and VisAD and runs on most computers. UNIDATA provides easy-to-follow instructions for download, installation and operation of the IDV. The IDV primarily uses netCDF, a self-describing binary file format, to store multi-dimensional data, related metadata, and source information. The IDV is designed to work with OPeNDAP-equipped data servers that provide real-time observations and numerical models from distributed locations. Users can capture and share screens and animations, or exchange XML "bundles" that contain the state of the visualization and embedded links to remote data files. A real-time collaborative feature allows groups of users to remotely link IDV sessions via the Internet and simultaneously view and

  4. Enabling scientific teamwork

    International Nuclear Information System (INIS)

    Hereld, Mark; Uram, Thomas; Hudson, Randy; Norris, John; Papka, Michael E

    2009-01-01

    The Computer Supported Collaborative Work research community has identified that the technology used to support distributed teams of researchers, such as email, instant messaging, and conferencing environments, are not enough. Building from a list of areas where it is believed technology can help support distributed teams, we have divided our efforts into support of asynchronous and synchronous activities. This paper will describe two of our recent efforts to improve the productivity of distributed science teams. One effort focused on supporting the management and tracking of milestones and results, with the hope of helping manage information overload. The second effort focused on providing an environment that supports real-time analysis of data. Both of these efforts are seen as add-ons to the existing collaborative infrastructure, developed to enhance the experience of teams working at a distance by removing barriers to effective communication.

  5. Enabling scientific teamwork

    Science.gov (United States)

    Hereld, Mark; Hudson, Randy; Norris, John; Papka, Michael E.; Uram, Thomas

    2009-07-01

    The Computer Supported Collaborative Work research community has identified that the technology used to support distributed teams of researchers, such as email, instant messaging, and conferencing environments, are not enough. Building from a list of areas where it is believed technology can help support distributed teams, we have divided our efforts into support of asynchronous and synchronous activities. This paper will describe two of our recent efforts to improve the productivity of distributed science teams. One effort focused on supporting the management and tracking of milestones and results, with the hope of helping manage information overload. The second effort focused on providing an environment that supports real-time analysis of data. Both of these efforts are seen as add-ons to the existing collaborative infrastructure, developed to enhance the experience of teams working at a distance by removing barriers to effective communication.

  6. Secure Peer-to-Peer Networks for Scientific Information Sharing

    Science.gov (United States)

    Karimabadi, Homa

    2012-01-01

    The most common means of remote scientific collaboration today includes the trio of e-mail for electronic communication, FTP for file sharing, and personalized Web sites for dissemination of papers and research results. With the growth of broadband Internet, there has been a desire to share large files (movies, files, scientific data files) over the Internet. Email has limits on the size of files that can be attached and transmitted. FTP is often used to share large files, but this requires the user to set up an FTP site for which it is hard to set group privileges, it is not straightforward for everyone, and the content is not searchable. Peer-to-peer technology (P2P), which has been overwhelmingly successful in popular content distribution, is the basis for development of a scientific collaboratory called Scientific Peer Network (SciPerNet). This technology combines social networking with P2P file sharing. SciPerNet will be a standalone application, written in Java and Swing, thus insuring portability to a number of different platforms. Some of the features include user authentication, search capability, seamless integration with a data center, the ability to create groups and social networks, and on-line chat. In contrast to P2P networks such as Gnutella, Bit Torrent, and others, SciPerNet incorporates three design elements that are critical to application of P2P for scientific purposes: User authentication, Data integrity validation, Reliable searching SciPerNet also provides a complementary solution to virtual observatories by enabling distributed collaboration and sharing of downloaded and/or processed data among scientists. This will, in turn, increase scientific returns from NASA missions. As such, SciPerNet can serve a two-fold purpose for NASA: a cost-savings software as well as a productivity tool for scientists working with data from NASA missions.

  7. Center for Center for Technology for Advanced Scientific Component Software (TASCS)

    Energy Technology Data Exchange (ETDEWEB)

    Kostadin, Damevski [Virginia State Univ., Petersburg, VA (United States)

    2015-01-25

    A resounding success of the Scientific Discovery through Advanced Computing (SciDAC) program is that high-performance computational science is now universally recognized as a critical aspect of scientific discovery [71], complementing both theoretical and experimental research. As scientific communities prepare to exploit unprecedented computing capabilities of emerging leadership-class machines for multi-model simulations at the extreme scale [72], it is more important than ever to address the technical and social challenges of geographically distributed teams that combine expertise in domain science, applied mathematics, and computer science to build robust and flexible codes that can incorporate changes over time. The Center for Technology for Advanced Scientific Component Software (TASCS)1 tackles these these issues by exploiting component-based software development to facilitate collaborative high-performance scientific computing.

  8. Center for Technology for Advanced Scientific Component Software (TASCS) Consolidated Progress Report July 2006 - March 2009

    Energy Technology Data Exchange (ETDEWEB)

    Bernholdt, D E; McInnes, L C; Govindaraju, M; Bramley, R; Epperly, T; Kohl, J A; Nieplocha, J; Armstrong, R; Shasharina, S; Sussman, A L; Sottile, M; Damevski, K

    2009-04-14

    A resounding success of the Scientific Discovery through Advanced Computing (SciDAC) program is that high-performance computational science is now universally recognized as a critical aspect of scientific discovery [71], complementing both theoretical and experimental research. As scientific communities prepare to exploit unprecedented computing capabilities of emerging leadership-class machines for multi-model simulations at the extreme scale [72], it is more important than ever to address the technical and social challenges of geographically distributed teams that combine expertise in domain science, applied mathematics, and computer science to build robust and flexible codes that can incorporate changes over time. The Center for Technology for Advanced Scientific Component Software (TASCS) tackles these issues by exploiting component-based software development to facilitate collaborative high-performance scientific computing.

  9. Collaborative Economy

    DEFF Research Database (Denmark)

    things, de-industrialization processes and post-capitalist forms of production and consumption, postmaterialism, the rise of the third sector and collaborative governance. Addressing that gap, this book explores the character, depth and breadth of these disruptions, the creative opportunities for tourism...... that are emerging from them, and how governments are responding to these new challenges. In doing so, the book provides both theoretical and practical insights into the future of tourism in a world that is, paradoxically, becoming both increasingly collaborative and individualized. Table of Contents Preface 1.The......This book employs an interdisciplinary, cross-sectoral lens to explore the collaborative dynamics that are currently disrupting, re-creating and transforming the production and consumption of tourism. House swapping, ridesharing, voluntourism, couchsurfing, dinner hosting, social enterprise...

  10. Scientific Misconduct.

    Science.gov (United States)

    Goodstein, David

    2002-01-01

    Explores scientific fraud, asserting that while few scientists actually falsify results, the field has become so competitive that many are misbehaving in other ways; an example would be unreasonable criticism by anonymous peer reviewers. (EV)

  11. Collaborative Improvement

    DEFF Research Database (Denmark)

    Kaltoft, Rasmus

    The thesis data have been collected in the EU-sponsored project: Collaborative Improvement Tool for the Extended Manufacturing Enterprise, CO-IMPROVE. In this project four universities (Denmark, Ireland, Italy, and The Netherlands), two software vendors (Greece and Sweden) and three companies...... (Denmark, Italy and The Netherlands) each with three to five suppliers were involved. The CO-IMPROVE project and the thesis is based on “action research” and “action learning”. The main aim of the whole project is through actual involvement and actions make the researchers, companies and selected suppliers...... learn how to improve operations in (hopefully) a win-win like manner through collaboration....

  12. Collaborative Improvement

    DEFF Research Database (Denmark)

    Kaltoft, Rasmus

    -organisational continuous improvement of their performance, relative to that of other EMEs. Developing a collaborative improvement relationship between companies is a protracted and complex process and, according to some surveys, the failure rate is as low as one to three. This failure rate is affected by a whole range...... of factors. The research presented in this thesis was aimed at identifying these factors and investigating their interplay and influence on the progress and success of the development of the collaborative improvement. This thesis presents our findings regarding the factors found, their interplay...

  13. Building Bridges through Scientific Conferences

    DEFF Research Database (Denmark)

    Zierath, Juleen R

    2016-01-01

    Getting together to exchange ideas, forge collaborations, and disseminate knowledge is a long-standing tradition of scientific communities. How conferences are serving the community, what their current challenges are, and what is in store for the future of conferences are the topics covered...

  14. 25th May 2011 - Egyptian Minister for Scientific Research, Science and Technology A. Ezzat Salama signing the guest book with CERN Director-General R. Heuer and visiting CMS control centre with Collaboration Spokesperson G. Tonelli.

    CERN Multimedia

    Maximilien Brice

    2011-01-01

    He visited the CMS control room on the Meyrin site with, from left, CMS spokesperson, Guido Tonelli, Alaa Awad, Fayum University, Hisham Badr, ambassador at the UN Geneva, and Maged Elsherbiny, president of the Scientific Research Academy.

  15. This presentation will discuss how PLOS ONE collaborates with many different scientific communities to help create, share, and preserve the scholarly works produced by their researchers with emphasis on current common difficulties faced by communities, practical solutions, and a broader view of the importance of open data and reproducibility.

    Science.gov (United States)

    Kroffe, K.

    2017-12-01

    The mission of the Public Library of Science is to accelerate progress in science and medicine by leading a transformation in research communication. Researchers' ability to share their work without restriction is essential, but critical to sharing is open data, transparency in peer review, and an open approach to science assessment. In this session, we will discuss how PLOS ONE collaborates with many different scientific communities to help create, share, and preserve the scholarly works produced by their researchers with emphasis on current common difficulties faced by communities, practical solutions, and a broader view of the importance of open data and reproducibility.

  16. Contested collaboration

    DEFF Research Database (Denmark)

    Sonnenwald, Diane H.

    1995-01-01

    . The model describes design phases, roles, themes, and intergroup communication networks as they evolve throughout the design process and characterizes design as a process of "contested collaboration". It is a first step towards a predictive design model that suggests strategies which may help participants...

  17. Timeline Collaboration

    DEFF Research Database (Denmark)

    Bohøj, Morten; Borchorst, Nikolaj Gandrup; Bouvin, Niels Olof

    2010-01-01

    This paper explores timelines as a web-based tool for collaboration between citizens and municipal caseworkers. The paper takes its outset in a case study of planning and control of parental leave; a process that may involve surprisingly many actors. As part of the case study, a web-based timeline...

  18. Collaborative Appropriation

    DEFF Research Database (Denmark)

    Muller, Michael; Neureiter, Katja; Verdezoto, Nervo

    2016-01-01

    Previous workshops and papers have examined how individual users adopt and adapt technologies to meet their own local needs, by “completing design through use.” However, there has been little systematic study of how groups of people engage collaboratively in these activities. This workshop opens ...

  19. Collaborative Design

    Science.gov (United States)

    Broderick, Debora

    2014-01-01

    This practitioner research study investigates the power of multimodal texts within a real-world context and argues that a participatory culture focused on literary arts offers marginalized high school students opportunities for collaborative design and authoring. Additionally, this article invites educators to rethink the at-risk label. This…

  20. Professional scientific blog

    Directory of Open Access Journals (Sweden)

    Tamás Beke

    2009-03-01

    Full Text Available The professional blog is a weblog that on the whole meets the requirements of scientific publication. In my opinion it bear a resemblance to digital notice board, where the competent specialists of the given branch of science can place their ideas, questions, possible solutions and can raise problems. Its most important function can be collectivization of the knowledge. In this article I am going to examine the characteristics of the scientific blog as a genre. Conventional learning counts as a rather solitary activity. If the students have access to the materials of each other and of the teacher, their sense of solitude diminishes and this model is also closer to the constructivist approach that features the way most people think and learn. Learning does not mean passively collecting tiny pieces of knowledge; it much more esembles ‘spinning a conceptual net’ which is made up by the experiences and observations of the individual. With the spreading of the Internet more universities and colleges worldwide gave a try to on-line educational methods, but the most efficient one has not been found yet. The publication of the curriculum (the material of the lectures and the handling of the electronic mails are not sufficient; much more is needed for collaborative learning. Our scholastic scientific blog can be a sufficient field for the start of a knowledge-building process based on cooperation. In the Rocard-report can be read that for the future of Europe it is crucial to develop the education of the natural sciences, and for this it isnecessary to act on local, regional, national and EU-level. To the educational processes should be involved beyond the traditional actors (child, parent, teacher also others (scientists, professionals, universities, local institutions, the actors of the economic sphere, etc.. The scholastic scientific blog answer the purposes, as a collaborative knowledge-sharing forum.

  1. Betting on better scientific literacy

    CERN Multimedia

    Daisy Yuhas

    Dmitry Zimin, founder of the Russian philanthropic foundation Dynasty, visited CERN on 23 October. Zimin, who is himself a scientist and businessman, founded Dynasty in order to support scientific education and a greater public understanding of scientific thinking. Zimin met the Bulletin to reflect on the experience and what had interested him about CERN. Zimin, who had read about and researched CERN before his visit, felt prepared for the physics at CERN but was greatly impressed by the collaborative “brainforce.” He observed that “The organization of all of these people is not less important as an achievement than all of the technical achievements, the collider, the experiments.” He was amazed at “how CERN has been able to organize such a grand collaboration of different people from different institutes of countries from all over the world.” At the core of the Dynasty Foundation’s ideals is the dissemination of scientific thought. Zimin ...

  2. Scientific communication

    Directory of Open Access Journals (Sweden)

    Aleksander Kobylarek

    2017-09-01

    Full Text Available The article tackles the problem of models of communication in science. The formal division of communication processes into oral and written does not resolve the problem of attitude. The author defines successful communication as a win-win game, based on the respect and equality of the partners, regardless of their position in the world of science. The core characteristics of the process of scientific communication are indicated , such as openness, fairness, support, and creation. The task of creating the right atmosphere for science communication belongs to moderators, who should not allow privilege and differentiation of position to affect scientific communication processes.

  3. Scientific millenarianism

    International Nuclear Information System (INIS)

    Weinberg, A.M.

    1997-01-01

    Today, for the first time, scientific concerns are seriously being addressed that span future times--hundreds, even thousands, or more years in the future. One is witnessing what the author calls scientific millenarianism. Are such concerns for the distant future exercises in futility, or are they real issues that, to the everlasting gratitude of future generations, this generation has identified, warned about and even suggested how to cope with in the distant future? Can the four potential catastrophes--bolide impact, CO 2 warming, radioactive wastes and thermonuclear war--be avoided by technical fixes, institutional responses, religion, or by doing nothing? These are the questions addressed in this paper

  4. Scientific meetings

    International Nuclear Information System (INIS)

    1973-01-01

    One of the main aims of the IAEA is to foster the exchange of scientific and technical information and one of the main ways of doing this is to convene international scientific meetings. They range from large international conferences bringing together several hundred scientists, smaller symposia attended by an average of 150 to 250 participants and seminars designed to instruct rather than inform, to smaller panels and study groups of 10 to 30 experts brought together to advise on a particular programme or to develop a set of regulations. The topics of these meetings cover every part of the Agency's activities and form a backbone of many of its programmes. (author)

  5. Remote Collaborative 3D Printing - Process Investigation

    Science.gov (United States)

    2016-04-01

    COLLABORATIVE 3D PRINTING - PROCESS INVESTIGATION Cody M. Reese, PE CAD MODEL PRINT MODEL PRINT PREVIEW PRINTED PART AERIAL VIRTUAL This...REMOTE COLLABORATIVE 3D PRINTING - PROCESS INVESTIGATION 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Cody M. Reese...release; distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT The Remote Collaborative 3D Printing project is a collaboration between

  6. Participants of the "Grid: the Key to Scientific Collaboration", an outstanding UNESCO-ROSTE and CERN event sponsored by Hewlett Packard held on 28 and 29 September at CERN, Geneva.

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    Based on the collaboration-fostering and research-enabling role of the grid, CERN and UNESCO are taking the opportunity to invite current and future grid participants, universities and research institutions to a grid event hosted by CERN in Geneva. Through presentations by key grid protagonists from CERN, the European Commission, the EGEE Grid, and the European research community, participants have been able to learn about the capabilities of the grid, opportunities to leverage their research work, and participation in international projects.

  7. Automatic tools for enhancing the collaborative experience in large projects

    International Nuclear Information System (INIS)

    Bourilkov, D; Rodriquez, J L

    2014-01-01

    With the explosion of big data in many fields, the efficient management of knowledge about all aspects of the data analysis gains in importance. A key feature of collaboration in large scale projects is keeping a log of what is being done and how - for private use, reuse, and for sharing selected parts with collaborators and peers, often distributed geographically on an increasingly global scale. Even better if the log is automatically created on the fly while the scientist or software developer is working in a habitual way, without the need for extra efforts. This saves time and enables a team to do more with the same resources. The CODESH - COllaborative DEvelopment SHell - and CAVES - Collaborative Analysis Versioning Environment System projects address this problem in a novel way. They build on the concepts of virtual states and transitions to enhance the collaborative experience by providing automatic persistent virtual logbooks. CAVES is designed for sessions of distributed data analysis using the popular ROOT framework, while CODESH generalizes the approach for any type of work on the command line in typical UNIX shells like bash or tcsh. Repositories of sessions can be configured dynamically to record and make available the knowledge accumulated in the course of a scientific or software endeavor. Access can be controlled to define logbooks of private sessions or sessions shared within or between collaborating groups. A typical use case is building working scalable systems for analysis of Petascale volumes of data as encountered in the LHC experiments. Our approach is general enough to find applications in many fields.

  8. Collaborative Consumption

    OpenAIRE

    Rahbek Gjerdrum Pedersen, Esben; Netter, Sarah

    2013-01-01

    Purpose: The purpose of this paper is to explore barriers and opportunities for business models based on the ideas of collaborative consumption within the fashion industry. Design/methodology/approach: The analysis is based on a multiple-­‐‑case study of Scandinavian fashion libraries – a new, clothes-­‐‑sharing concept that has emerged as a fashion niche within the last decade. Findings: It is concluded that fashion libraries offers interesting perspectives, e.g. by allow...

  9. Collaborative sketching

    DEFF Research Database (Denmark)

    Johansson, Martin Wetterstrand

    2006-01-01

    Sketching is a most central activity with in most design projects. But what happens if we adopt the ideas of collaborative design and invite participants that are not trained to sketch in to the design process, how can they participate in this central activity? This paper offers an introduction to...... the design material has been used to co- author possible futures within the scope of design sessions....

  10. Kaleidoscope: Scientific Quality Committee - final report

    DEFF Research Database (Denmark)

    Dirckinck-Holmfeld, Lone; Laurillard, Diana

    To shape a body of reference at a scientific level for the European TEL research communities. To make recommendations (i) to support a policy for the enhancement of research in Europe in this field, (ii) to survey the development of the field, and (iii) to build scientific collaboration on top of...

  11. Cross-Disciplinary Collaboration and Learning

    Directory of Open Access Journals (Sweden)

    Deana D. Pennington

    2008-12-01

    Full Text Available Complex environmental problem solving depends on cross-disciplinary collaboration among scientists. Collaborative research must be preceded by an exploratory phase of collective thinking that creates shared conceptual frameworks. Collective thinking, in a cross-disciplinary setting, depends on the facility with which collaborators are able to learn and understand each others' perspectives. This paper applies three perspectives on learning to the problem of enabling cross-disciplinary collaboration: Maslow's hierarchy of needs, constructivism, and organizational learning. Application of learning frameworks to collaboration provides insights regarding receptive environments for collaboration, and processes that facilitate cross-disciplinary interactions. These environments and interactions need time to develop and require a long phase of idea generation preceding any focused research effort. The findings highlight that collaboration is itself a complex system of people, scientific theory, and tools that must be intentionally managed. Effective management of the system requires leaders who are facilitators and are capable of orchestrating effective environments and interactions.

  12. The collaborative tokamak control room

    International Nuclear Information System (INIS)

    Schissel, D.P.

    2006-01-01

    Magnetic fusion experiments keep growing in size and complexity resulting in a concurrent growth in collaborations between experimental sites and laboratories worldwide. In the US, the National Fusion Collaboratory Project is developing a persistent infrastructure to enable scientific collaboration for all aspects of magnetic fusion energy research by creating a robust, user-friendly collaborative environment and deploying this to the more than 1000 US fusion scientists in 40 institutions who perform magnetic fusion research. This paper reports on one aspect of the project which is the development of the collaborative tokamak control room to enhance both collocated and remote scientific participation in experimental operations. This work includes secured computational services that can be scheduled as required, the ability to rapidly compare experimental data with simulation results, a means to easily share individual results with the group by moving application windows to a shared display, and the ability for remote scientists to be fully engaged in experimental operations through shared audio, video, and applications. The project is funded by the USDOE Office of Science, Scientific Discovery through Advanced Computing (SciDAC) Program and unites fusion and computer science researchers to directly address these challenges

  13. Collaborative Care

    OpenAIRE

    Schuyler, Dean

    2005-01-01

    本書を著したHornbyは英国のソーシャルワーカーである。彼女は1983年に「Collaboration in social work(Journal of social work practice,1.1)」を発表し、ソーシャルワークでの職種間の連携の重要性について報告している。さらに1993年に発刊した本書では、同一機関内の人間関係 ...

  14. Visualization analysis of author collaborations in schizophrenia research

    OpenAIRE

    Wu, Ying; Duan, Zhiguang

    2015-01-01

    Background Schizophrenia is a serious mental illness that levies a heavy medical toll and cost burden throughout the world. Scientific collaborations are necessary for progress in psychiatric research. However, there have been few publications on scientific collaborations in schizophrenia. The aim of this study was to investigate the extent of author collaborations in schizophrenia research. Methods This study used 58,107 records on schizophrenia from 2003 to 2012 which were downloaded from S...

  15. Collaborative Environments. Considerations Concerning Some Collaborative Systems

    Directory of Open Access Journals (Sweden)

    Mihaela I. MUNTEAN

    2009-01-01

    Full Text Available It is obvious, that all collaborative environments (workgroups, communities of practice, collaborative enterprises are based on knowledge and between collaboration and knowledge management there is a strong interdependence. The evolution of information systems in these collaborative environments led to the sudden necessity to adopt, for maintaining the virtual activities and processes, the latest technologies/systems, which are capable to support integrated collaboration in business services. In these environments, portal-based IT platforms will integrate multi-agent collaborative systems, collaborative tools, different enterprise applications and other useful information systems.

  16. The ESA Hubble 15th Anniversary Campaign: A Trans-European collaboration project

    Science.gov (United States)

    Zoulias, Manolis; Christensen, Lars Lindberg; Kornmesser, Martin

    2006-08-01

    On April 24th 2005, NASA/ESA Hubble Space Telescope had been in orbit for 15 years. The anniversary was celebrated by ESA with the production of an 83 min. scientific movie and a 120 pages book, both titled ``Hubble, 15 years of discovery''. In order to cross language and distribution barriers a network of 16 translators and 22 partners from more than 10 countries was established. The DVD was distributed in approximately 700,000 copies throughout Europe. The project was amongst the largest of its kind with respect to collaboration, distribution and audience impact. It clearly demonstrated how international collaboration can produce effective cross-cultural educational and outreach products for astronomy.

  17. Collaborative innovation

    DEFF Research Database (Denmark)

    Torfing, Jacob; Sørensen, Eva; Hartley, Jean

    2013-01-01

    , which emphasizes market competition; the neo-Weberian state, which emphasizes organizational entrepreneurship; and collaborative governance, which emphasizes multiactor engagement across organizations in the private, public, and nonprofit sectors. The authors conclude that the choice of strategies......-driven private sector is more innovative than the public sector by showing that both sectors have a number of drivers of as well as barriers to innovation, some of which are similar, while others are sector specific. The article then systematically analyzes three strategies for innovation: New Public Management......There are growing pressures for the public sector to be more innovative but considerable disagreement about how to achieve it. This article uses institutional and organizational analysis to compare three major public innovation strategies. The article confronts the myth that the market...

  18. 10 September 2013 - Italian Minister for Economic Development F. Zanonato visiting the ATLAS cavern with Collaboration Spokesperson D. Charlton and Italian scientists F. Gianotti and A. Di Ciaccio; signing the guest book with CERN Director-General R. Heuer and Director for Research and Scientific Computing S. Bertolucci; in the LHC tunnel with S. Bertolucci, Technology Deputy Department Head L. Rossi and Engineering Department Head R. Saban; visiting CMS cavern with Scientists G. Rolandi and P. Checchia.

    CERN Multimedia

    Jean-Claude Gadmer

    2013-01-01

    10 September 2013 - Italian Minister for Economic Development F. Zanonato visiting the ATLAS cavern with Collaboration Spokesperson D. Charlton and Italian scientists F. Gianotti and A. Di Ciaccio; signing the guest book with CERN Director-General R. Heuer and Director for Research and Scientific Computing S. Bertolucci; in the LHC tunnel with S. Bertolucci, Technology Deputy Department Head L. Rossi and Engineering Department Head R. Saban; visiting CMS cavern with Scientists G. Rolandi and P. Checchia.

  19. India joins the ISOLDE collaboration

    CERN Multimedia

    Antonella Del Rosso

    2012-01-01

    On 18 April India signed a Memorandum of Understanding with the ISOLDE collaboration, thus strengthening its links with CERN. Three experiments led by Indian scientists at ISOLDE have been recommended by the Research Board and will be performed in the coming months, and more projects are being designed for the future HIE-ISOLDE scientific programme.   Shaking hands: Rüdiger Voss (left), adviser for India in CERN’s International Relations Office, and SINP Director Milan Kumar Sanyal (right). Also photographed: ISOLDE spokesperson Yorick Blumenfeld, (centre left) and Sunanda Banerjee, head of high-energy at SINP (centre right).  The new Memorandum of Understanding (MoU) was signed in Kolkata at the Saha Institute of Nuclear Physics (SINP). India thus becomes the 15th member of the ISOLDE collaboration, after having signed similar collaboration documents with the CMS and ALICE experiments. “This agreement will a...

  20. A method for scientific code coupling in a distributed environment; Une methodologie pour le couplage de codes scientifiques en environnement distribue

    Energy Technology Data Exchange (ETDEWEB)

    Caremoli, C; Beaucourt, D; Chen, O; Nicolas, G; Peniguel, C; Rascle, P; Richard, N; Thai Van, D; Yessayan, A

    1994-12-01

    This guide book deals with coupling of big scientific codes. First, the context is introduced: big scientific codes devoted to a specific discipline coming to maturity, and more and more needs in terms of multi discipline studies. Then we describe different kinds of code coupling and an example of code coupling: 3D thermal-hydraulic code THYC and 3D neutronics code COCCINELLE. With this example we identify problems to be solved to realize a coupling. We present the different numerical methods usable for the resolution of coupling terms. This leads to define two kinds of coupling: with the leak coupling, we can use explicit methods, and with the strong coupling we need to use implicit methods. On both cases, we analyze the link with the way of parallelizing code. For translation of data from one code to another, we define the notion of Standard Coupling Interface based on a general structure for data. This general structure constitutes an intermediary between the codes, thus allowing a relative independence of the codes from a specific coupling. The proposed method for the implementation of a coupling leads to a simultaneous run of the different codes, while they exchange data. Two kinds of data communication with message exchange are proposed: direct communication between codes with the use of PVM product (Parallel Virtual Machine) and indirect communication with a coupling tool. This second way, with a general code coupling tool, is based on a coupling method, and we strongly recommended to use it. This method is based on the two following principles: re-usability, that means few modifications on existing codes, and definition of a code usable for coupling, that leads to separate the design of a code usable for coupling from the realization of a specific coupling. This coupling tool available from beginning of 1994 is described in general terms. (authors). figs., tabs.

  1. Final Scientific EFNUDAT Workshop

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    The Final Scientific EFNUDAT Workshop - organized by the CERN/EN-STI group on behalf of n_TOF Collaboration - will be held at CERN, Geneva (Switzerland) from 30 August to 2 September 2010 inclusive.EFNUDAT website: http://www.efnudat.euTopics of interest include: Data evaluationCross section measurementsExperimental techniquesUncertainties and covariancesFission propertiesCurrent and future facilities  International Advisory Committee: C. Barreau (CENBG, France)T. Belgya (IKI KFKI, Hungary)E. Gonzalez (CIEMAT, Spain)F. Gunsing (CEA, France)F.-J. Hambsch (IRMM, Belgium)A. Junghans (FZD, Germany)R. Nolte (PTB, Germany)S. Pomp (TSL UU, Sweden) Workshop Organizing Committee: Enrico Chiaveri (Chairman)Marco CalvianiSamuel AndriamonjeEric BerthoumieuxCarlos GuerreroRoberto LositoVasilis Vlachoudis Workshop Assistant: Géraldine Jean

  2. Scientific computing

    CERN Document Server

    Trangenstein, John A

    2017-01-01

    This is the third of three volumes providing a comprehensive presentation of the fundamentals of scientific computing. This volume discusses topics that depend more on calculus than linear algebra, in order to prepare the reader for solving differential equations. This book and its companions show how to determine the quality of computational results, and how to measure the relative efficiency of competing methods. Readers learn how to determine the maximum attainable accuracy of algorithms, and how to select the best method for computing problems. This book also discusses programming in several languages, including C++, Fortran and MATLAB. There are 90 examples, 200 exercises, 36 algorithms, 40 interactive JavaScript programs, 91 references to software programs and 1 case study. Topics are introduced with goals, literature references and links to public software. There are descriptions of the current algorithms in GSLIB and MATLAB. This book could be used for a second course in numerical methods, for either ...

  3. Educational Opportunities in Pro-Am Collaboration

    Science.gov (United States)

    Fienberg, R. T.; Stencel, R. E.

    2006-08-01

    While many backyard stargazers take up the hobby just for fun, many others are attracted to it because of their keen interest in learning more about the universe. The best way to learn science is to do science. Happily, the technology available to today's amateur astronomers — including computer-controlled telescopes, CCD cameras, powerful astronomical software, and the Internet — gives them the potential to make real contributions to scientific research and to help support local educational objectives. Meanwhile, professional astronomers are losing access to small telescopes as funding is shifted to larger projects, including survey programs that will soon discover countless interesting objects needing follow-up observations. Clearly the field is ripe with opportunities for amateurs, professionals, and educators to collaborate. Amateurs will benefit from mentoring by expert professionals, pros will benefit from observations and data processing by increasingly knowledgeable amateurs, and educators will benefit from a larger pool of skilled talent to help them carry out astronomy-education initiatives. We will look at some successful pro-am collaborations that have already borne fruit and examine areas where the need and/or potential for new partnerships is especially large. In keeping with the theme of this special session, we will focus on how pro-am collaborations in astronomy can contribute to science education both inside and outside the classroom, not only for students of school age but also for adults who may not have enjoyed particularly good science education when they were younger. Because nighttime observations with sophisticated equipment are not always possible in formal educational settings, we will also mention other types of pro-am partnerships, including those involving remote observing, data mining, and/or distributed computing.

  4. Analyses of (0.5part>)-1dNch/dη distributions of PHOBOS and BRAHMS collaborations by means of a stochastic process

    International Nuclear Information System (INIS)

    Biyajima, M.; Ide, M.; Mizoguchi, T.; Suzuki, N.

    2002-01-01

    Recently interesting data on dN ch /dη in Au-Au collisions (η=-ln tan(θ/2)) with the centrality cuts have been reported by PHOBOS and BRAHMS Collaborations. Their data are usually divided by the number of participants (nucleons) in collisions. Instead of this way, using the total multiplicity N ch =∫(dN ch /dη)dη, we find that there are scaling phenomena among (N ch ) -1 dN ch /dη=dn/dη with different centrality cuts at √s NN = 130 GeV and 200 GeV, respectively. To explain these scaling behaviors of dn/dη, we consider the stochastic approach named Ornstein-Uhlenbeck process with two sources. The Langevin equation is adopted for the present explanation. Among dn/dη at 130 GeV and 200 GeV, no significant difference has been found. Possible detection method of the quark-gluon plasma (QGP) through dN ch /dη is presented. (author)

  5. Collaborative information seeking

    DEFF Research Database (Denmark)

    Hertzum, Morten

    2008-01-01

    Since common ground is pivotal to collaboration, this paper proposes to define collaborative information seeking as the combined activity of information seeking and collaborative grounding. While information-seeking activities are necessary for collaborating actors to acquire new information......, the activities involved in information seeking are often performed by varying subgroups of actors. Consequently, collaborative grounding is necessary to share information among collaborating actors and, thereby, establish and maintain the common ground necessary for their collaborative work. By focusing...... on the collaborative level, collaborative information seeking aims to avoid both individual reductionism and group reductionism, while at the same time recognizing that only some information and understanding need be shared....

  6. A collaborative adventure

    CERN Multimedia

    2014-01-01

    At the start of a new year, I’d like to wish all of you and your families a happy, successful and peaceful 2014. It’s a year that holds particular significance for CERN, as on 29 September it will be 60 years since the Organization was founded.   As CERN turns 60, it is still going strong, maintaining its underlying attraction of international collaboration for basic science. Since its foundation in 1954, it has grown steadily and this year begins well as we welcome a new Member State, Israel. CERN and Israel already have a long history of mutual collaboration and now we can look forward to increasingly fruitful scientific cooperation. Israel’s accession brings the total number of Member States to 21, and other countries are in the stages leading up to becoming Members or Associates, while still others are expressing interest. CERN is becoming a global success, while retaining its original, European flavour. This year’s events for the 60th anniversary ...

  7. Collaborative Information Technologies

    Science.gov (United States)

    Meyer, William; Casper, Thomas

    1999-11-01

    Significant effort has been expended to provide infrastructure and to facilitate the remote collaborations within the fusion community and out. Through the Office of Fusion Energy Science Information Technology Initiative, communication technologies utilized by the fusion community are being improved. The initial thrust of the initiative has been collaborative seminars and meetings. Under the initiative 23 sites, both laboratory and university, were provided with hardware required to remotely view, or project, documents being presented. The hardware is capable of delivering documents to a web browser, or to compatible hardware, over ESNET in an access controlled manner. The ability also exists for documents to originate from virtually any of the collaborating sites. In addition, RealNetwork servers are being tested to provide audio and/or video, in a non-interactive environment with MBONE providing two-way interaction where needed. Additional effort is directed at remote distributed computing, file systems, security, and standard data storage and retrieval methods. This work supported by DoE contract No. W-7405-ENG-48

  8. International workshop on knowledge management in scientific organizations, KMSO 2009, Damascus (SY), 9-11 March 2009

    International Nuclear Information System (INIS)

    2009-01-01

    This publication includes the papers presented at the International workshop on knowledge management in scientific organizations which held in Damascus 9-11 March 2009. KM processes and technologies are main topics of the workshop with keynote speeches and exercises covering: Knowledge Generation, Knowledge Preservation, Knowledge Distribution, Knowledge Utilization and KM technologies which cover Information and Communication Technology, Internet, Intranet and Extranet, Data Mining and Warehousing, Knowledge bases and information repositories, Information retrieval, Intelligent agents and expert systems, Groupware and collaborative systems

  9. Factors that impact interdisciplinary natural science research collaboration in academia

    DEFF Research Database (Denmark)

    Maglaughlin, Kelly L.; Sonnenwald, Diane H.

    2005-01-01

    to provide a more comprehensive understanding of interdisciplinary scientific research collaboration within the natural sciences in academia. Data analysis confirmed factors previously identified in various literatures and yielded new factors. A total of twenty factors were identified, and classified......Interdisciplinary collaboration occurs when people with different educational and research backgrounds bring complementary skills to bear on a problem or task. The strength of interdisciplinary scientific research collaboration is its capacity to bring together diverse scientific knowledge...... to address complex problems and questions. However, interdisciplinary scientific research can be difficult to initiate and sustain. We do not yet fully understand factors that impact interdisciplinary scientific research collaboration. This study synthesizes empirical data from two empirical studies...

  10. Collaboration rules.

    Science.gov (United States)

    Evans, Philip; Wolf, Bob

    2005-01-01

    Corporate leaders seeking to boost growth, learning, and innovation may find the answer in a surprising place: the Linux open-source software community. Linux is developed by an essentially volunteer, self-organizing community of thousands of programmers. Most leaders would sell their grandmothers for workforces that collaborate as efficiently, frictionlessly, and creatively as the self-styled Linux hackers. But Linux is software, and software is hardly a model for mainstream business. The authors have, nonetheless, found surprising parallels between the anarchistic, caffeinated, hirsute world of Linux hackers and the disciplined, tea-sipping, clean-cut world of Toyota engineering. Specifically, Toyota and Linux operate by rules that blend the self-organizing advantages of markets with the low transaction costs of hierarchies. In place of markets' cash and contracts and hierarchies' authority are rules about how individuals and groups work together (with rigorous discipline); how they communicate (widely and with granularity); and how leaders guide them toward a common goal (through example). Those rules, augmented by simple communication technologies and a lack of legal barriers to sharing information, create rich common knowledge, the ability to organize teams modularly, extraordinary motivation, and high levels of trust, which radically lowers transaction costs. Low transaction costs, in turn, make it profitable for organizations to perform more and smaller transactions--and so increase the pace and flexibility typical of high-performance organizations. Once the system achieves critical mass, it feeds on itself. The larger the system, the more broadly shared the knowledge, language, and work style. The greater individuals' reputational capital, the louder the applause and the stronger the motivation. The success of Linux is evidence of the power of that virtuous circle. Toyota's success is evidence that it is also powerful in conventional companies.

  11. Managing collaborative design

    NARCIS (Netherlands)

    Sebastian, R.

    2007-01-01

    Collaborative design has been emerging in building projects everywhere. The more complex a building project becomes, the closer and more intensive collaboration between the design actors is required. This research focuses on collaborative design in the conceptual architecture design phase,

  12. Collaborative networks: Reference modeling

    NARCIS (Netherlands)

    Camarinha-Matos, L.M.; Afsarmanesh, H.

    2008-01-01

    Collaborative Networks: Reference Modeling works to establish a theoretical foundation for Collaborative Networks. Particular emphasis is put on modeling multiple facets of collaborative networks and establishing a comprehensive modeling framework that captures and structures diverse perspectives of

  13. Concept similarity in publications precedes cross-disciplinary collaboration.

    Science.gov (United States)

    Post, Andrew R; Harrison, James H

    2008-11-06

    Innovative science frequently occurs as a result of cross-disciplinary collaboration, the importance of which is reflected by recent NIH funding initiatives that promote communication and collaboration. If shared research interests between collaborators are important for the formation of collaborations,methods for identifying these shared interests across scientific domains could potentially reveal new and useful collaboration opportunities. MEDLINE represents a comprehensive database of collaborations and research interests, as reflected by article co-authors and concept content. We analyzed six years of citations using information retrieval based methods to compute articles conceptual similarity, and found that articles by basic and clinical scientists who later collaborated had significantly higher average similarity than articles by similar scientists who did not collaborate.Refinement of these methods and characterization of found conceptual overlaps could allow automated discovery of collaboration opportunities that are currently missed.

  14. Scientific Visualization & Modeling for Earth Systems Science Education

    Science.gov (United States)

    Chaudhury, S. Raj; Rodriguez, Waldo J.

    2003-01-01

    Providing research experiences for undergraduate students in Earth Systems Science (ESS) poses several challenges at smaller academic institutions that might lack dedicated resources for this area of study. This paper describes the development of an innovative model that involves students with majors in diverse scientific disciplines in authentic ESS research. In studying global climate change, experts typically use scientific visualization techniques applied to remote sensing data collected by satellites. In particular, many problems related to environmental phenomena can be quantitatively addressed by investigations based on datasets related to the scientific endeavours such as the Earth Radiation Budget Experiment (ERBE). Working with data products stored at NASA's Distributed Active Archive Centers, visualization software specifically designed for students and an advanced, immersive Virtual Reality (VR) environment, students engage in guided research projects during a structured 6-week summer program. Over the 5-year span, this program has afforded the opportunity for students majoring in biology, chemistry, mathematics, computer science, physics, engineering and science education to work collaboratively in teams on research projects that emphasize the use of scientific visualization in studying the environment. Recently, a hands-on component has been added through science student partnerships with school-teachers in data collection and reporting for the GLOBE Program (GLobal Observations to Benefit the Environment).

  15. Open archives, the expectations of the scientific communities

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    Open archives (OA) started in physics more than 15 years ago with ArXiv, and have since played a more and more important role in the activity of the disciplin; actually, in many fields of physics, ArXiv has now become the major vector or scientific communication. We now have two communication channels in parallel, traditional scientific journals with peer review, and open archives, both with different functionalities and both indispensable. It it therefore interesting to try and transpose to other disciplins the scheme that has worked so well for physicists, which means that the reasons for the success of ArXiv should be analyzed. Scientists do not care about the technicalities, and whether or not the OA is centralized, or distributed with a high level of interoperability. What they wish is to have one single interface where all the scientific information in their domain is available, with the same scientific classifications, etc.. In case of collaborations beween different institutions, they do not wish to ...

  16. Marie Curie: scientific entrepreneur

    International Nuclear Information System (INIS)

    Boudia, S.

    1998-01-01

    Marie Curie is best known for her discovery of radium one hundred years ago this month, but she also worked closely with industry in developing methods to make and monitor radioactive material, as Soraya Boudia explains. One hundred years ago this month, on 28 December 1898, Pierre Curie, Marie Sklodowska-Curie and Gustave Bemont published a paper in Comptes-rendus - the journal of the French Academy of Sciences. In the paper they announced that they had discovered a new element with astonishing properties: radium. But for one of the authors, Marie Curie, the paper was more than just the result of outstanding work: it showed that a woman could succeed in what was then very much a male-dominated scientific world. Having arrived in Paris from Poland in 1891, Marie Curie became the first woman in France to obtain a PhD in physics, the first woman to win a Nobel prize and the first woman to teach at the Sorbonne. She also helped to found a new scientific discipline: the study of radioactivity. She became an icon and a role-model for other women to follow, someone who succeeded - despite many difficulties - in imposing herself on the world of science. Although Curie's life story is a familiar and well documented one, there is one side to her that is less well known: her interaction with industry. As well as training many nuclear physicists and radiochemists in her laboratory, she also became a scientific pioneer in industrial collaboration. In this article the author describes this side of Marie Curie. (UK)

  17. Scientific Resource EXplorer

    Science.gov (United States)

    Xing, Z.; Wormuth, A.; Smith, A.; Arca, J.; Lu, Y.; Sayfi, E.

    2014-12-01

    Inquisitive minds in our society are never satisfied with curatedimages released by a typical public affairs office. They always want tolook deeper and play directly on original data. However, most scientificdata products are notoriously hard to use. They are immensely large,highly distributed and diverse in format. In this presentation,we will demonstrate Resource EXplorer (REX), a novel webtop applicationthat allows anyone to conveniently explore and visualize rich scientificdata repositories, using only a standard web browser. This tool leverageson the power of Webification Science (w10n-sci), a powerful enabling technologythat simplifies the use of scientific data on the web platform.W10n-sci is now being deployed at an increasing number of NASA data centers,some of which are the largest digital treasure troves in our nation.With REX, these wonderful scientific resources are open for teachers andstudents to learn and play.

  18. Scientific Services on the Cloud

    Science.gov (United States)

    Chapman, David; Joshi, Karuna P.; Yesha, Yelena; Halem, Milt; Yesha, Yaacov; Nguyen, Phuong

    Scientific Computing was one of the first every applications for parallel and distributed computation. To this date, scientific applications remain some of the most compute intensive, and have inspired creation of petaflop compute infrastructure such as the Oak Ridge Jaguar and Los Alamos RoadRunner. Large dedicated hardware infrastructure has become both a blessing and a curse to the scientific community. Scientists are interested in cloud computing for much the same reason as businesses and other professionals. The hardware is provided, maintained, and administrated by a third party. Software abstraction and virtualization provide reliability, and fault tolerance. Graduated fees allow for multi-scale prototyping and execution. Cloud computing resources are only a few clicks away, and by far the easiest high performance distributed platform to gain access to. There may still be dedicated infrastructure for ultra-scale science, but the cloud can easily play a major part of the scientific computing initiative.

  19. CBM Collaboration

    Science.gov (United States)

    Ablyazimov, T.; Abuhoza, A.; Adak, R.; Adamczewski-Musch, J.; Adamczyk, M.; Aggarwal, M. M.; Ahammed, Z.; Ahmad, F.; Ahmad, N.; Ahmad, S.; Akindinov, A.; Akishin, P.; Akishina, E.; Akishina, T.; Akishina, V.; Al-Turany, M.; Alexandrov, E.; Alexandrov, I.; Amar-Youcef, S.; Anđelić, M.; Andreeva, O.; Andrei, C.; Andronic, A.; Anisimov, Yu.; Appelshäuser, H.; Arend, A.; Argintaru, D.; Atkin, E.; Avdeev, S.; Averbeck, R.; Azmi, M. D.; Baban, V.; Bach, M.; Badura, E.; Baginyan, S.; Balle, T.; Balog, T.; Bandyopadhyay, S.; Banerjee, P.; Baranova, N.; Barczyk, T.; Bartoş, D.; Bashir, S.; Basrak, Z.; Baszczyk, M.; Batenkov, O.; Baublis, V.; Baumann, C.; Baznat, M.; Becker, K.-H.; Bel, T.; Belogurov, S.; Bendarouach, J.; Berceanu, I.; Bercuci, A.; Berdermann, E.; Berdnikov, A.; Berdnikov, Y.; Berendes, R.; Bergmann, C.; Bertini, D.; Bertini, O.; Beşliu, C.; Bezshyyko, O.; Bhaduri, P. P.; Bhasin, A.; Bhati, A. K.; Bhattacharjee, B.; Bhattacharyya, A.; Bhattacharyya, T. K.; Biswas, S.; Blau, D.; Blume, C.; Bocharov, Yu.; Böttger, S.; Borysova, M.; Breitner, T.; Brüning, U.; Brzychczyk, J.; Bubak, A.; Büsching, H.; Bychkov, A.; Byszuk, A.; Cai, Xu; Cãlin, M.; Cao, Ping; Čaplar, R.; Caragheorgheopol, G.; Carević, I.; Cătănescu, V.; Chakrabarti, A.; Chatterji, S.; Chattopadhyay, Sanatan; Chattopadhyay, Subhasis; Chen, Hongfang; Cheng, Jianping; Chepurnov, V.; Chernenko, S.; Chernogorov, A.; Choi, Kyung-Eon; Ciobanu, M. I.; Claus, G.; Constantin, F.; Covlea, V.; Csanád, M.; D'Ascenzo, N.; Das, S.; Davkov, K.; Davkov, V.; de Cuveland, J.; Debnath, B.; Dementiev, D.; Deng, Zhi; Deppe, H.; Deppner, I.; Derenovskaya, O.; Deveaux, C. A.; Deveaux, M.; Dey, K.; Dey, M.; Dillenseger, P.; Dobyrn, V.; Doering, D.; Dorokhov, A.; Drozd, A.; Dubey, A. K.; Dubnichka, S.; Dubnichkova, A.; Dürr, M.; Dulinski, W.; Dutka, L.; Dželalija, M.; Emschermann, D.; Engel, H.; Eremin, V.; Eşanu, T.; Eschke, J.; Eschweiler, D.; Eum, Jongsik; Fan, Huanhuan; Fateev, O.; Filozova, I.; Finogeev, D.; Fischer, P.; Flemming, H.; Frankenfeld, U.; Friese, V.; Friske, E.; Fröhlich, I.; Frühauf, J.; Fülöp, Á.; Gajda, J.; Galatyuk, T.; Galkin, A.; Galkin, V.; Gangopadhyay, G.; García Chávez, C.; Gašparić, I.; Gebelein, J.; Ghosh, P.; Ghosh, S. K.; Goffe, M.; Golinka-Bezshyyko, L.; Golovatyuk, V.; Golovnya, S.; Golovtsov, V.; Golubeva, M.; Golubkov, D.; Gómez Ramírez, A.; Gorbunov, S.; Gorokhov, S.; Gottschalk, D.; Gryboś, P.; Grzeszczuk, A.; Guber, F.; Gudima, K.; Gupta, A.; Gusakov, Yu.; Haldar, A.; Haldar, S.; Hartmann, H.; Hehner, J.; Heidel, K.; Heine, N.; Hellbär, E.; Herghelegiu, A.; Herrmann, N.; Heß, B.; Heuser, J. M.; Himmi, A.; Höhne, C.; Holzmann, R.; Huang, Guangming; Huang, Xinjie; Hutsch, J.; Hutter, D.; Iakovleva, E.; Ierusalimov, A.; Ilgenfritz, E.-M.; Irfan, M.; Ivanov, M.; Ivanov, Valery; Ivanov, Victor; Ivanov, Vladimir; Ivashkin, A.; Jaaskelainen, K.; Jahan, H.; Jain, V.; Jakovlev, V.; Janson, T.; Jipa, A.; Kadenko, I.; Kämpfer, B.; Kalcher, S.; Kalinin, V.; Kampert, K.-H.; Kang, Tae Im; Kaptur, E.; Karabowicz, R.; Karavichev, O.; Karavicheva, T.; Karmanov, D.; Karnaukhov, V.; Karpechev, E.; Kasiński, K.; Kasprowicz, G.; Kaur, M.; Kazantsev, A.; Kebschull, U.; Kekelidze, G.; Khan, M. M.; Khan, S. A.; Khanzadeev, A.; Khasanov, F.; Khvorostukhin, A.; Kirakosyan, V.; Kirejczyk, M.; Kiryakov, A.; Kiš, M.; Kisel, I.; Kisel, P.; Kiselev, S.; Kiss, A.; Kiss, T.; Klaus, P.; Kłeczek, R.; Klein-Bösing, Ch.; Kleipa, V.; Kmon, P.; Koch, K.; Kochenda, L.; Koczoń, P.; König, W.; Kohn, M.; Kolb, B. W.; Kolosova, A.; Komkov, B.; Kopfer, J. M.; Korolev, M.; Korolko, I.; Kotte, R.; Kotynia, A.; Kovalchuk, A.; Kowalski, S.; Koziel, M.; Kozlov, G.; Kravtsov, P.; Krebs, E.; Kreidl, C.; Kresan, D.; Kretschmar, G.; Kretz, M.; Krieger, M.; Kryshen, E.; Kucewicz, W.; Kudin, L.; Kugler, A.; Kulakov, I.; Kunkel, J.; Kurepin, A.; Kurilkin, P.; Kushpil, V.; Kyva, V.; Ladygin, V.; Lara, C.; Larionov, P.; Laso Garcia, A.; Lavrik, E.; Lazanu, I.; Lebedev, A.; Lebedev, S.; Lebedeva, E.; Lehnert, J.; Lehrbach, J.; Lemke, F.; Li, Cheng; Li, Jin; Li, Qiyan; Li, Yuanjing; Li, Yulan; Lindenstruth, V.; Linev, S.; Linnik, B.; Litvinenko, E.; Liu, Feng; Lobanov, I.; Lobanova, E.; Löchner, S.; Loizeau, P.-A.; Lucio Martínez, J. A.; Lymanets, A.; Maevskaya, A.; Mahajan, S.; Mahapatra, D. P.; Mahmoud, T.; Maj, P.; Majka, Z.; Malakhov, A.; Malankin, E.; Malkevich, D.; Malyatina, O.; Malygina, H.; Mandal, S.; Manko, V.; Manz, S.; Marin, V.; Marin Garcia, A. M.; Markert, J.; Masciocchi, S.; Matulewicz, T.; Merkin, M.; Mialkovski, V.; Michel, J.; Miftakhov, N.; Mikhailov, K.; Mikhaylov, V.; Milanović, B.; Militsija, V.; Mir, M. F.; Miskowiec, D.; Morhardt, T.; Müller, W. F. J.; Müntz, C.; Murin, Yu.; Najman, R.; Naumann, L.; Nayak, T.; Nedosekin, A.; Neumann, B.; Niebur, W.; Nikulin, V.; Normanov, D.; Nüssle, M.; Oancea, A.; Oh, Kunsu; Onishchuk, Y.; Osipov, D.; Ososkov, G.; Ossetski, D.; Otfinowski, P.; Ovcharenko, E.; Pal, S.; Panasenko, I.; Panda, N. R.; Parzhitskiy, S.; Pauly, C.; Peng, Haiping; Peric, I.; Peshekhonov, D.; Peshekhonov, V.; Petráček, V.; Petriş, M.; Petrovici, A.; Petrovici, M.; Petrovskiy, A.; Petukhov, O.; Piasecki, K.; Pieper, J.; Pietraszko, J.; Płaneta, R.; Plekhanov, E.; Plotnikov, V.; Plujko, V.; Pluta, J.; Poliakov, V.; Polozov, P.; Pop, A.; Popov, V.; Pospisil, V.; Potukuchi, B. V. K. S.; Pouryamout, J.; Poźniak, K.; Prakash, A.; Prokudin, M.; Pshenichnov, I.; Pugach, M.; Pugatch, V.; Querchfeld, S.; Radulescu, L.; Raha, S.; Raja, W.; Rami, F.; Raniwala, R.; Raniwala, S.; Raportirenko, A.; Rautenberg, J.; Rauza, J.; Ray, R.; Razin, S.; Reichelt, P.; Reinecke, S.; Reshetin, A.; Ristea, C.; Ristea, O.; Roether, F.; Romaniuk, R.; Rost, A.; Rostchin, E.; Rostovtseva, I.; Roy, A.; Rożynek, J.; Ryabov, Yu.; Rykalin, V.; Sadovsky, A.; Sadovsky, S.; Sahoo, R.; Sahu, P. K.; Saini, J.; Samanta, S.; Sambyal, S. S.; Samsonov, V.; Sánchez Rosado, J.; Sau, S.; Saveliev, V.; Schatral, S.; Schiaua, C.; Schmidt, C. J.; Schmidt, H. R.; Schmidt, K.; Schweda, K.; Scurtu, A.; Seck, F.; Seddiki, S.; Selyuzhenkov, I.; Semennikov, A.; Senger, A.; Senger, P.; Shabunov, A.; Shao, Ming; Sharma, M. K.; Shumeiko, N.; Shumikhin, V.; Sikora, B.; Simakov, A.; Simon, C.; Simons, C.; Singaraju, R. N.; Singh, A. K.; Singh, B. K.; Singh, C. P.; Singhal, V.; Siwek-Wilczyńska, K.; Škoda, L.; Skwira-Chalot, I.; Som, I.; Song, Jihye; Sorokin, I.; Sosin, Z.; Soyk, D.; Staszel, P.; Stavinskiy, A.; Stephan, E.; Storozhyk, D.; Strikhanov, M.; Strohauer, S.; Stroth, J.; Sturm, C.; Sultanov, R.; Sun, Yongjie; Svoboda, O.; Szczygieł, R.; Talukdar, R.; Tang, Zebo; Tanha, M.; Tarasiuk, J.; Tarassenkova, O.; Târzilă, M.-G.; Tiflov, V.; Tischler, T.; Tlustý, P.; Toia, A.; Tolyhi, T.; Topil'skaya, N.; Trageser, C.; Trivedy, P.; Tsakov, I.; Tsyupa, Yu.; Turowiecki, A.; Uhlig, F.; Usenko, E.; Valin, I.; Vasiliev, T.; Vassiliev, I.; Verbitskaya, E.; Verhoeven, W.; Veshikov, A.; Visinka, R.; Viyogi, Y. P.; Volkov, S.; Volkov, Yu.; Vorobiev, A.; Voronin, A.; Vovchenko, V.; Vznuzdaev, E.; Vznuzdaev, M.; Wang, Dong; Wang, Yaping; Yi, Wang; Wendisch, C.; Wessels, J. P.; Wiebusch, M.; Wiechula, J.; Wiedemann, B.; Wielanek, D.; Wieloch, A.; Winckler, N.; Winter, M.; Wiśniewski, K.; Wohlfeld, D.; Wolf, Gy.; Sanguk, Won; Wüstenfeld, J.; Xiang, Changzhou; Nu, Xu; Yi, Jun-Gyu; Yin, Zhongbao; Yoo, In-Kwon; Yue, Qian; Yuldashev, B.; Yushmanov, I.; Zabołotny, W.; Zaitsev, Yu.; Zanevsky, Yu.; Zhalov, M.; Zhang, Ya Peng; Zhang, Yifei; Zhou, Daicui; Zhu, Xianglei; Zinchenko, A.; Zipper, W.; Żoładź, M.; Zrelov, P.; Zryuev, V.; Zumbruch, P.; Zyzak, M.

    2014-11-01

    We acknowledge support by the Seventh Framework Programme (FP7) of the European Commission through projects AIDA, CRISP and HadronPhysics3; the Bundesministerium für Bildung und Forschung, Germany, through the grants 05P09PXFC5, 05P12PXFCE, 05P12RFFC7, 05P12RFFCM, 05P12RFFCP, 05P12RGFCG,05P12RGGHM, 05P12VHFCE, 05P12VHFCF, 05PRVHFC7, and 06HD9123I; the Deutsche Forschungsgemeinschaft, Germany, grant GRK 1039; the Hessian Loewe Initiative through the Helmholtz International Center for FAIR (HIC4FAIR); the Helmholtz Graduate School HIRe; the Helmholtz Research School H-QM; the GSI Helmholzzentrum für Schwerionenforschung mbH, Germany, through F&E cooperations with Goethe-Universität Frankfurt, Justus-Liebig-Universität Gießen and Bergische Universität Wuppertal (WKAMPE1012); the Department of Science and Technology, Government of India; the Department of Atomic Energy, Government of India; the Council of Scientific and Industrial Research, Government of India; the University Grants Commission, Government of India; the Indo-FAIR Co-ordination Centre, Bose Institute, Kolkata, India; the Strategic Grants POSDRU/89/1.5/S/58852 and PN-II-ID-PCE-IDEI 34/05.10.2011, Romania; the NASR/CAPACITATI-Modul III, Romania, contract nr. 179EU; the NASR/NUCLEU Project PN09370103, Romania; the FAIR Russia Research Center (FRRC), Russia; and the Federal Agency for Atomic Research (Rosatom), Russia.

  20. Do estrogenic compounds in drinking water migrating from plastic pipe distribution system pose adverse effects to human? An analysis of scientific literature.

    Science.gov (United States)

    Liu, Ze-Hua; Yin, Hua; Dang, Zhi

    2017-01-01

    With the widespread application of plastic pipes in drinking water distribution system, the effects of various leachable organic chemicals have been investigated and their occurrence in drinking water supplies is monitored. Most studies focus on the odor problems these substances may cause. This study investigates the potential endocrine disrupting effects of the migrating compound 2,4-di-tert-butylphenol (2,4-d-t-BP). The summarized results show that the migration of 2,4-d-t-BP from plastic pipes could result in chronic exposure and the migration levels varied greatly among different plastic pipe materials and manufacturing brands. Based on estrogen equivalent (EEQ), the migrating levels of the leachable compound 2,4-d-t-BP in most plastic pipes were relative low. However, the EEQ levels in drinking water migrating from four out of 15 pipes may pose significant adverse effects. With the increasingly strict requirements on regulation of drinking water quality, these results indicate that some drinking water transported with plastic pipes may not be safe for human consumption due to the occurrence of 2,4-d-t-BP. Moreover, 2,4-d-t-BP is not the only plastic pipe-migrating estrogenic compound, other compounds such as 2-tert-butylphenol (2-t-BP), 4-tert-butylphenol (4-t-BP), and others may also be leachable from plastic pipes.

  1. Geographical imbalances and divides in the scientific production of climate change knowledge

    DEFF Research Database (Denmark)

    Pasgaard, Maya; Dalsgaard, Bo; Maruyama, Pietro K.

    2015-01-01

    Studies on scientific production of climate change knowledge show a geographical bias against the developing and more vulnerable regions of the world. If there is limited knowledge exchange between regions, this may deepen global knowledge divides and, thus, potentially hamper adaptive capacities....... Consequently, there is a need to further understand this bias, and, particularly, link it with the exchange of knowledge across borders. We use a world-wide geographical distribution of author affiliations in > 15,000 scientific climate change publications to show that (1) research production mainly takes...... are determined mainly by geographical proximity, common climates, and similar political and economic characteristics. This indicates that political-economic, social and educational-scientific initiatives targeted to enhance local research production and collaborations across geographical-climate module borders...

  2. Collaborative National Program for the Development and Performance Testing of Distributed Power Technologies with Emphasis on Combined Heat and Power Applications

    Energy Technology Data Exchange (ETDEWEB)

    Soinski, Arthur; Hanson, Mark

    2006-06-28

    A current barrier to public acceptance of distributed generation (DG) and combined heat and power (CHP) technologies is the lack of credible and uniform information regarding system performance. Under a cooperative agreement, the Association of State Energy Research and Technology Transfer Institutions (ASERTTI) and the U.S. Department of Energy have developed four performance testing protocols to provide a uniform basis for comparison of systems. The protocols are for laboratory testing, field testing, long-term monitoring and case studies. They have been reviewed by a Stakeholder Advisory Committee made up of industry, public interest, end-user, and research community representatives. The types of systems covered include small turbines, reciprocating engines (including Stirling Cycle), and microturbines. The protocols are available for public use and the resulting data is publicly available in an online national database and two linked databases with further data from New York State. The protocols are interim pending comments and other feedback from users. Final protocols will be available in 2007. The interim protocols and the national database of operating systems can be accessed at www.dgdata.org. The project has entered Phase 2 in which protocols for fuel cell applications will be developed and the national and New York databases will continue to be maintained and populated.

  3. Configurable Project Collaboration Portal, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — SplashNote Systems is proposing to develop a more effective and innovative approach to project collaboration in distributed teams. The proposed system uniquely gives...

  4. Software Engineering Support of the Third Round of Scientific Grand Challenge Investigations: An Earth Modeling System Software Framework Strawman Design that Integrates Cactus and UCLA/UCB Distributed Data Broker

    Science.gov (United States)

    Talbot, Bryan; Zhou, Shu-Jia; Higgins, Glenn

    2002-01-01

    One of the most significant challenges in large-scale climate modeling, as well as in high-performance computing in other scientific fields, is that of effectively integrating many software models from multiple contributors. A software framework facilitates the integration task. both in the development and runtime stages of the simulation. Effective software frameworks reduce the programming burden for the investigators, freeing them to focus more on the science and less on the parallel communication implementation, while maintaining high performance across numerous supercomputer and workstation architectures. This document proposes a strawman framework design for the climate community based on the integration of Cactus, from the relativistic physics community, and UCLA/UCB Distributed Data Broker (DDB) from the climate community. This design is the result of an extensive survey of climate models and frameworks in the climate community as well as frameworks from many other scientific communities. The design addresses fundamental development and runtime needs using Cactus, a framework with interfaces for FORTRAN and C-based languages, and high-performance model communication needs using DDB. This document also specifically explores object-oriented design issues in the context of climate modeling as well as climate modeling issues in terms of object-oriented design.

  5. Charlotte: Scientific Modeling and Simulation Under the Software as a Service Paradigm, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA spends considerable effort supporting the efforts of collaborating researchers. These researchers are interested in interacting with scientific models provided...

  6. The PACA Project : Pro-Am Collaborative Astronomy

    Science.gov (United States)

    Yanamandra-Fisher, P. A.

    2014-04-01

    The Pro-Am Collaborative Astronomy (PACA) project is the next stage of evolution of the paradigm developed for the observational campaign of C/2012 S1 or C/ISON. Four different phases of collaboration are identified, and illustrate the integration of scientific investigations with amateur astronomer community via observations, and models; and the rapid dissemination of the results via a multitude of social media for rapid global access. The success of the paradigm shift in scientific research is now implemented in other comet observing campaigns. Both communities (scientific and amateur astronomers) benefit from these collective, collaborative partnerships; while outreach is the instantaneous deliverable that provides both a framework for future data analyses and the dissemination of the results. While PACA identifies a collaborative approach to pro-am collaborations, given the volume of data generated for each campaign, new ways of rapid data analysis, mining access and storage are needed.

  7. State Technologies Advancement Collaborative

    Energy Technology Data Exchange (ETDEWEB)

    David S. Terry

    2012-01-30

    The U. S. Department of Energy (DOE), National Association of State Energy Officials (NASEO), and Association of State Energy Research and Technology Transfer Institutions (ASERTTI) signed an intergovernmental agreement on November 14, 2002, that allowed states and territories and the Federal Government to better collaborate on energy research, development, demonstration and deployment (RDD&D) projects. The agreement established the State Technologies Advancement Collaborative (STAC) which allowed the states and DOE to move RDD&D forward using an innovative competitive project selection and funding process. A cooperative agreement between DOE and NASEO served as the contracting instrument for this innovative federal-state partnership obligating funds from DOE's Office of Energy Efficiency and Renewable Energy and Office of Fossil Energy to plan, fund, and implement RDD&D projects that were consistent with the common priorities of the states and DOE. DOE's Golden Field Office provided Federal oversight and guidance for the STAC cooperative agreement. The STAC program was built on the foundation of prior Federal-State efforts to collaborate on and engage in joint planning for RDD&D. Although STAC builds on existing, successful programs, it is important to note that it was not intended to replace other successful joint DOE/State initiatives such as the State Energy Program or EERE Special Projects. Overall the STAC process was used to fund, through three competitive solicitations, 35 successful multi-state research, development, deployment, and demonstration projects with an overall average non-federal cost share of 43%. Twenty-two states were awarded at least one prime contract, and organizations in all 50 states and some territories were involved as subcontractors in at least one STAC project. Projects were funded in seven program areas: (1) Building Technologies, (2) Industrial Technologies, (3) Transportation Technologies, (4) Distributed Energy

  8. A generative model for scientific concept hierarchies.

    Science.gov (United States)

    Datta, Srayan; Adar, Eytan

    2018-01-01

    In many scientific disciplines, each new 'product' of research (method, finding, artifact, etc.) is often built upon previous findings-leading to extension and branching of scientific concepts over time. We aim to understand the evolution of scientific concepts by placing them in phylogenetic hierarchies where scientific keyphrases from a large, longitudinal academic corpora are used as a proxy of scientific concepts. These hierarchies exhibit various important properties, including power-law degree distribution, power-law component size distribution, existence of a giant component and less probability of extending an older concept. We present a generative model based on preferential attachment to simulate the graphical and temporal properties of these hierarchies which helps us understand the underlying process behind scientific concept evolution and may be useful in simulating and predicting scientific evolution.

  9. A generative model for scientific concept hierarchies

    Science.gov (United States)

    Adar, Eytan

    2018-01-01

    In many scientific disciplines, each new ‘product’ of research (method, finding, artifact, etc.) is often built upon previous findings–leading to extension and branching of scientific concepts over time. We aim to understand the evolution of scientific concepts by placing them in phylogenetic hierarchies where scientific keyphrases from a large, longitudinal academic corpora are used as a proxy of scientific concepts. These hierarchies exhibit various important properties, including power-law degree distribution, power-law component size distribution, existence of a giant component and less probability of extending an older concept. We present a generative model based on preferential attachment to simulate the graphical and temporal properties of these hierarchies which helps us understand the underlying process behind scientific concept evolution and may be useful in simulating and predicting scientific evolution. PMID:29474409

  10. Globally Collaborative Experiential Learning

    Directory of Open Access Journals (Sweden)

    Takeshi UTSUMI

    2005-07-01

    Full Text Available ABSTRACT The Global University System (GUS [Utsumi, et al, 2003] is a worldwide initiative to create advanced telecommunications infrastructure for access to educational resources across national and cultural boundaries for global peace. GUS aims to create a worldwide consortium of universities to provide the underdeveloped world with access to 21st Century education via broadband Internet technologies. The aim is to achieve “education and healthcare for all,” anywhere, anytime and at any pace. The GUS works in the major regions of the globe with partnerships of higher education and healthcare institutions. Learners in these regions will be able to take their courses from member institutions around the world to receive a GUS degree. These learners and their professors from partner institutions will also form a global forum for exchange of ideas and information and for conducting collaborative research and development with emerging global GRID computer network technology. Globally Collaborative Environmental Peace Gaming (GCEPG project [Utsumi, 2003] with a globally distributed computer simulation system, focusing on the issue of environment and sustainable development in developing countries, is to train would-be decision-makers in crisis management, conflict resolution, and negotiation techniques basing on “facts and figures.” The GUS will supply game players from around the world.

  11. Authorship for scientific papers: the new challenges.

    Science.gov (United States)

    Garcia, Carla Costa; Martrucelli, Cristina Ribeiro Nabuco; Rossilho, Marilisa de Melo Freire; Denardin, Odilon Victor Porto

    2010-01-01

    The dissemination of the practice of collaborative authorship (coauthorship) in Brazil and in the international scientific community has been accompanied by an increasing occurrence of frauds, manipulations and other deviations in the assignment of responsibility for a scientific paper. This article discusses the criteria for authorship attribution, the reasons for the growing indices of coauthorship and the challenges to determine authorship in electronic journals. Through literature review and case study (bibliographic search in scientific database), it shows ways to avoid that "misbehaviors" related to the authorship attribution affect the credibility of science.

  12. Collaboration networks and research productivity at IPEN

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, Carlos Anisio; Barroso, Antonio Carlos de Oliveira, E-mail: monteiro@ipen.br, E-mail: barroso@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    In this article, we investigate the IPEN's scientific collaboration network. Based on publications registered in IPEN's technical and scientific database was extracted a set of authors that developed technical and scientific work on the 2001 to 2010 period, using coauthorship to define the relationship between authors. From the data collected, we used degree centrality indicator in conjunction with two approaches to assess the relationship between collaboration and productivity: normal count, where for each publication that the author appears is added one for the author’s productivity indicator, and fractional count which is added a fractional value according to the total number of publication's authors. We concluded that collaboration for the development of a technical and scientific work has a positive correlation with the researchers productivity, that is, the greater the collaboration greater the productivity. We presented, also, a statistical summary to reveal the total number of publications and the number of IPEN's authors by publication, the average number of IPEN's authors per publication and the average number of publications by IPEN's author, the number of IPEN's authors that not published with no other author of the IPEN and, finally, the number of active and inactive (ex. retirees) researchers of the IPEN, as well as, the number of authors who do not have employment contract with the IPEN. (author)

  13. Collaboration networks and research productivity at IPEN

    International Nuclear Information System (INIS)

    Monteiro, Carlos Anisio; Barroso, Antonio Carlos de Oliveira

    2015-01-01

    In this article, we investigate the IPEN's scientific collaboration network. Based on publications registered in IPEN's technical and scientific database was extracted a set of authors that developed technical and scientific work on the 2001 to 2010 period, using coauthorship to define the relationship between authors. From the data collected, we used degree centrality indicator in conjunction with two approaches to assess the relationship between collaboration and productivity: normal count, where for each publication that the author appears is added one for the author’s productivity indicator, and fractional count which is added a fractional value according to the total number of publication's authors. We concluded that collaboration for the development of a technical and scientific work has a positive correlation with the researchers productivity, that is, the greater the collaboration greater the productivity. We presented, also, a statistical summary to reveal the total number of publications and the number of IPEN's authors by publication, the average number of IPEN's authors per publication and the average number of publications by IPEN's author, the number of IPEN's authors that not published with no other author of the IPEN and, finally, the number of active and inactive (ex. retirees) researchers of the IPEN, as well as, the number of authors who do not have employment contract with the IPEN. (author)

  14. Surgical Skills Beyond Scientific Management.

    Science.gov (United States)

    Whitfield, Nicholas

    2015-07-01

    During the Great War, the French surgeon Alexis Carrel, in collaboration with the English chemist Henry Dakin, devised an antiseptic treatment for infected wounds. This paper focuses on Carrel's attempt to standardise knowledge of infected wounds and their treatment, and looks closely at the vision of surgical skill he espoused and its difference from those associated with the doctrines of scientific management. Examining contemporary claims that the Carrel-Dakin method increased rather than diminished demands on surgical work, this paper further shows how debates about antiseptic wound treatment opened up a critical space for considering the nature of skill as a vital dynamic in surgical innovation and practice.

  15. Brain Tumor Trials Collaborative | Center for Cancer Research

    Science.gov (United States)

    Brain Tumor Trials Collaborative In Pursuit of a Cure The mission of the BTTC is to develop and perform state-of-the-art clinical trials in a collaborative and collegial environment, advancing treatments for patients with brain tumors, merging good scientific method with concern for patient well-being and outcome.

  16. The geography of collaborative knowledge production in Europe

    NARCIS (Netherlands)

    Hoekman, J.; Frenken, K.; Oort, van F.G.

    2009-01-01

    We analyse inter-regional research collaboration as measured by scientific publications and patents with multiple addresses, covering 1316 NUTS3 regions in 29 European countries. The estimates of gravity equations show the effects of geographical and institutional distance on research collaboration.

  17. Evaluating Scientific Work by Means of Diffusion

    Directory of Open Access Journals (Sweden)

    Dan Ophir

    2013-10-01

    Full Text Available There are two approaches for evaluating scientific papers. The classic way is to choose well established representatives of the specific scientific community and have them evaluate their colleague's work. The other method of evaluation, the so called peer-evaluation method, is where peers (famous or otherwise of the author evaluate the paper. Peer-evaluation resembles the diffusion process in which a new substance spreads out to the whole solution. Similarly the new author and article are diffused among the scientific community, smoothing the level for accepting scientific papers. Using the classic-evaluation system of accepting new papers, the average starting scientists writes their first number of articles as collaborators with a renowned scientist, thus gradually building up their image. Only afterwards do these authors dare to independently publish. What are the pros and cons of both these types of scientific article evaluations?

  18. Produção científica dos pesquisadores brasileiros que depositaram patentes na área da biotecnologia, no período de 2001 a 2005: colaboração interinstitucional e interpessoalScientific production of Brazilian researchers who filed patents in the area of biotechnology from 2001 to 2005: institutional and interpersonal collaboration

    Directory of Open Access Journals (Sweden)

    Ana Maria Mielniczuk de Moura

    2010-05-01

    Full Text Available Analisamos a produção científica dos pesquisadores que depositaram patentes na área da Biotecnologia, no período compreendido entre 2001 e 2005. A partir de um enfoque cientométrico, objetivamos revelar a colaboração interinstitucional e interpessoal existente. O corpus constitui-se em 2.584 artigos coletados na WebofScience. Utilizou-se a metodologia de Análise de Redes Sociais e MDS para observar a formação de clusters entre autores e instituições. Os resultados indicam que a maioria dos artigos possui até três instituições relacionadas no Campo C1, pois 88,7% dos casos apresentam-se desta forma. Observou-se que a produção científica está concentrada em algumas poucas instituições, liderada pelas universidades públicas (federais e estaduais e instituições de pesquisa de renome. Entre as universidades, as mais produtivas são a USP, a UNICAMP, a UNESP e a UFRJ; e entre as instituições de pesquisa, tiveram destaque a FIOCRUZ, o INSTITUTO BUTANTAN e a EMBRAPA. Algumas instituições apresentam um padrão regional de colaboração, pois apresentam interação somente com outras instituições mais próximas geograficamente, formando clusters com motivação regional. Os autores mais produtivos não se encontram nas primeiras posições no ranking por grau de centralidade, significando que a centralidade não está relacionada diretamente à produtividade. Observou-se que a colaboração interpessoal se fortalece após a parceria formada pelo vínculo criado na pós-graduação, pois muitas parcerias foram formadas deste modo, apresentando produção significativa entre orientadores e orientandos.Analyzes the scientific production of researchers who deposited patents in the field of Biotechnology in the period from 2001 to 2005. From a scientometric approach, aims to reveal the inter-institutional collaboration and interpersonal existing. The corpus is based on 2584 items collected in WebofScience. We used the

  19. Measuring scientific research in emerging nano-energy field

    Science.gov (United States)

    Guan, Jiancheng; Liu, Na

    2014-04-01

    The purpose of this paper is to comprehensively explore scientific research profiles in the field of emerging nano-energy during 1991-2012 based on bibliometrics and social network analysis. We investigate the growth pattern of research output, and then carry out across countries/regions comparisons on research performances. Furthermore, we examine scientific collaboration across countries/regions by analyzing collaborative intensity and networks in 3- to 4-year intervals. Results indicate with an impressively exponential growth pattern of nano-energy articles, the world share of scientific "giants," such as the USA, Germany, England, France and Japan, display decreasing research trends, especially in the USA. Emerging economies, including China, South Korea and India, exhibit a rise in terms of the world share, illustrating strong development momentum of these countries in nano-energy research. Strikingly, China displays a remarkable rise in scientific influence rivaling Germany, Japan, France, and England in the last few years. Finally, the scientific collaborative network in nano-energy research has expanded steadily. Although the USA and several major European countries play significantly roles on scientific collaboration, China and South Korea exert great influence on scientific collaboration in recent years. The findings imply that emerging economies can earn competitive advantages in some emerging fields by properly engaging a catch-up strategy.

  20. Investigating the Effects of Peer to Peer Prompts on Collaborative Argumentation, Consensus and Perceived Efficacy in Collaborative Learning

    Science.gov (United States)

    Harney, Owen M.; Hogan, Michael J.; Quinn, Sarah

    2017-01-01

    In a society which is calling for more productive modes of collaboration to address increasingly complex scientific and social issues, greater involvement of students in dialogue, and increased emphasis on collaborative discourse and argumentation, become essential modes of engagement and learning. This paper investigates the effects of…

  1. Ocean Drilling: Forty Years of International Collaboration

    Science.gov (United States)

    Smith, Deborah K.; Exon, Neville; Barriga, Fernando J. A. S.; Tatsumi, Yoshiyuki

    2010-10-01

    International cooperation is an essential component of modern scientific research and societal advancement [see Ismail-Zadeh and Beer, 2009], and scientific ocean drilling represents one of Earth science's longest-running and most successful international collaborations. The strength of this collaboration and its continued success result from the realization that scientific ocean drilling provides a unique and powerful tool to study the critical processes of both short-term change and the long-term evolution of Earth systems. A record of Earth's changing tectonics, climate, ocean circulation, and biota is preserved in marine sedimentary deposits and the underlying basement rocks. And because the ocean floor is the natural site for accumulation and preservation of geological materials, it may preserve a continuous record of these processes.

  2. Collaboration systems for classroom instruction

    Science.gov (United States)

    Chen, C. Y. Roger; Meliksetian, Dikran S.; Chang, Martin C.

    1996-01-01

    In this paper we discuss how classroom instruction can benefit from state-of-the-art technologies in networks, worldwide web access through Internet, multimedia, databases, and computing. Functional requirements for establishing such a high-tech classroom are identified, followed by descriptions of our current experimental implementations. The focus of the paper is on the capabilities of distributed collaboration, which supports both synchronous multimedia information sharing as well as a shared work environment for distributed teamwork and group decision making. Our ultimate goal is to achieve the concept of 'living world in a classroom' such that live and dynamic up-to-date information and material from all over the world can be integrated into classroom instruction on a real-time basis. We describe how we incorporate application developments in a geography study tool, worldwide web information retrievals, databases, and programming environments into the collaborative system.

  3. Promoting Science Learning and Scientific Identification through Contemporary Scientific Investigations

    Science.gov (United States)

    Van Horne, Katie

    This dissertation investigates the implementation issues and the educational opportunities associated with "taking the practice turn" in science education. This pedagogical shift focuses instructional experiences on engaging students in the epistemic practices of science both to learn the core ideas of the disciplines, as well as to gain an understanding of and personal connection to the scientific enterprise. In Chapter 2, I examine the teacher-researcher co-design collaboration that supported the classroom implementation of a year-long, project-based biology curriculum that was under development. This study explores the dilemmas that arose when teachers implemented a new intervention and how the dilemmas arose and were managed throughout the collaboration of researchers and teachers and between the teachers. In the design-based research of Chapter 3, I demonstrate how students' engagement in epistemic practices in contemporary science investigations supported their conceptual development about genetics. The analysis shows how this involved a complex interaction between the scientific, school and community practices in students' lives and how through varied participation in the practices students come to write about and recognize how contemporary investigations can give them leverage for science-based action outside of the school setting. Finally, Chapter 4 explores the characteristics of learning environments for supporting the development of scientific practice-linked identities. Specific features of the learning environment---access to the intellectual work of the domain, authentic roles and accountability, space to make meaningful contributions in relation to personal interests, and practice-linked identity resources that arose from interactions in the learning setting---supported learners in stabilizing practice-linked science identities through their engagement in contemporary scientific practices. This set of studies shows that providing students with the

  4. Virtual Collaboration for a Distributed Enterprise

    Science.gov (United States)

    2013-01-01

    aircraft SIGINT signals intelligence UAV unmanned aerial vehicle VoIP voice over Internet protocol 1 1. The Need for Effective Virtual...Z., and Robert H. Anderson, Toward an Ethics and Etiquette for Electronic Mail, Santa Monica, Calif.: RAND Corporation, R-3283-NSF/RC, 1985. As of

  5. Collaborative Workspaces within Distributed Virtual Environments.

    Science.gov (United States)

    1996-12-01

    willingness to listen made the first half of my stay at AFIT a very enjoyable experience. I owe you a trip to Disneyland . Finally, a quackazillion thanks to...the title classification in parentheses. BiockS. Funding Numbers. To include contract and grant numbers; may include program element number(s...project number(s), task number(s), and work unit number(s). Use the following labels: C G PE Contract Grant Program Element PR TA Project

  6. VGI in surveying engineering: Introducing collaborative cloud land surveying

    Directory of Open Access Journals (Sweden)

    Ioannis Sofos

    2017-12-01

    Full Text Available Volunteered geographic information (VGI has enabled many innovative applications in various scientific fields. This paper introduces a new framework called "collaborative cloud-based land surveying" (CCLS that uses VGI principles for data sharing among surveyor engineers to boost the productivity and improve the quality of their applications. A cloud-based spatio-temporal data repository is presented, aiming to facilitate the sharing of VGI among surveyor engineers. A fully-functional distributed software application has been developed and used to apply CCLS in a large-scale land surveying project run by the Greek Ministry of Culture, which involves the mapping of the historic center of Athens. Results from the data analysis of hundreds of measurements indicate a substantial (30% to 60% error reduction and also a significant productivity raise (~22%. The collected measurements are shared in an online database, accessible by professional surveyors who can in turn contribute their own data to further enhance the CCLS system.

  7. The Role of Collaborative Advantage for Analyzing the Effect of Supply Chain Collaboration on Firm Performance

    Directory of Open Access Journals (Sweden)

    Huriye Yılmaz

    2017-06-01

    Full Text Available Collaboration plays a critical role in a globalized, rapidly changing and competitive world, as the resources of an individual company are limited to compete with the challenges of the era. Supply chain collaboration is defined as a partnership process where two or more autonomous firms work closely to plan and execute supply chain operations towards common goals and mutual benefits. Supply chain collaboration results in collaborative advantage, the strategic benefits gained over competitors through supply chain partnering, and these both increase firm performance of the partners. In this research, the effect of supply chain collaboration on firm performance has been investigated by distributing a survey to Turkish companies which have been responded by 150. The role of collaborative advantage in this relation has also been measured. The results of the research suggest that there is a positive correlation between supply chain collaboration and collaborative advantage. The results also prove that supply chain collaboration positively affects firm performance. It is also proven that the mediator role of collaborative advantage on the effect of supply chain collaboration on firm performance is statistically significant.

  8. 2 October 2012 - Egyptian Academy of Scientific Research and Technology President M. Al Sherbiny signing a protocol agreement with CERN Director-General R. Heuer, witnessed by Ambassador to the UN W. Bassim. This signature is followed by the signature of an MoU with ALICE and CMS Collaborations.

    CERN Multimedia

    Maximilien Brice

    2012-01-01

    Where present: ALICE Collaboration: CP. Giubellino, F. Carminati, C. Decosse, and A. N. Tawfik CMS Collaboration: T. Camporesi A. Charkiewicz, A. De Roeck, A. Petrilli, A. Sharma with S. Aly, Y. Assran, M. Attia, R. Masod and A. Radi

  9. Collaborative Contracting in Projects

    NARCIS (Netherlands)

    Suprapto, M.

    2016-01-01

    Project practitioners have increasingly recognized the importance of collaborative relationships to ensure successful executions of projects. However, the ability to sustain and consistenly drive real collaborative attitudes and behavior for achieving the desired outcomes remains of enduring

  10. Global Collaborative STEM Education

    Science.gov (United States)

    Meabh Kelly, Susan; Smith, Walter

    2016-04-01

    Global Collaborative STEM Education, as the name suggests, simultaneously supports two sets of knowledge and skills. The first set is STEM -- science, technology, engineering and math. The other set of content knowledge and skills is that of global collaboration. Successful global partnerships require awareness of one's own culture, the biases embedded within that culture, as well as developing awareness of the collaborators' culture. Workforce skills fostered include open-mindedness, perseverance when faced with obstacles, and resourceful use of technological "bridges" to facilitate and sustain communication. In respect for the 2016 GIFT Workshop focus, Global Collaborative STEM Education projects dedicated to astronomy research will be presented. The projects represent different benchmarks within the Global Collaborative STEM Education continuum, culminating in an astronomy research experience that fully reflects how the global STEM workforce collaborates. To facilitate wider engagement in Global Collaborative STEM Education, project summaries, classroom resources and contact information for established international collaborative astronomy research projects will be disseminated.

  11. Brazilian law for scientific use of animals.

    Science.gov (United States)

    Marques, Ruy Garcia; Morales, Marcelo Marcos; Petroianu, Andy

    2009-01-01

    The Brazilian scientific community claimed for a definitive systematization and for comprehensive and realistic national rules, to provide guidance and regulation, instead of sanctions, so that the question of scientific research involving animals could be better contemplated. This is beginning to occur now with Law no. 11.794, sanctioned by the President of the Republic on November 8, 2008. To describe the evolution of Brazilian regimentation for scientific use of animals and to analyze Law no. 11.794. The legislation about the use of animals in teaching and in scientific research in Brazil and in Rio de Janeiro State was identified and discussed. Until now, there was no updated general and systematizing rule regarding animal vivisection and experimentation for didactic or scientific purposes. The only specific law dates back to 1979 and was not regimented. More recent laws equated the practice of scientific experiments to acts of abuse and mistreatment of animals, when alternative technology was available. Municipal laws that restricted the scientific practice of vivisection and experimentation with animals were created in the cities of Rio de Janeiro and Florianopolis. With the claim and collaboration of the scientific community, the sanction of Law no. 11.794 regarding the scientific use of animals represented an invaluable advance in spite of the presence of some points that eventually may require another type of treatment. The new Law states that it will be regimented within 180 (one-hundred-and-eighty) days, when some of these points could be better elucidated.

  12. Scientific collaboration between 'old' and 'new' member states

    DEFF Research Database (Denmark)

    Makkonen, Teemu; Mitze, Timo Friedel

    2016-01-01

    following the two enlargement waves 2004 and 2007 has significantly increased the co-publication intensity of the new member states with other member countries. The empirical results based on data collected from the Web of Science database and Difference-in-Difference estimations point towards a conclusion...... that joining the EU indeed has had an additional positive impact on the co-publication intensity between the new and old member states and, in particular, between the new member states themselves. These results give tentative support for the successfulness of the EU’s science policies in achieving a common...

  13. Evolution of the social network of scientific collaborations

    Science.gov (United States)

    Barabási, A. L.; Jeong, H.; Néda, Z.; Ravasz, E.; Schubert, A.; Vicsek, T.

    2002-08-01

    The co-authorship network of scientists represents a prototype of complex evolving networks. In addition, it offers one of the most extensive database to date on social networks. By mapping the electronic database containing all relevant journals in mathematics and neuro-science for an 8-year period (1991-98), we infer the dynamic and the structural mechanisms that govern the evolution and topology of this complex system. Three complementary approaches allow us to obtain a detailed characterization. First, empirical measurements allow us to uncover the topological measures that characterize the network at a given moment, as well as the time evolution of these quantities. The results indicate that the network is scale-free, and that the network evolution is governed by preferential attachment, affecting both internal and external links. However, in contrast with most model predictions the average degree increases in time, and the node separation decreases. Second, we propose a simple model that captures the network's time evolution. In some limits the model can be solved analytically, predicting a two-regime scaling in agreement with the measurements. Third, numerical simulations are used to uncover the behavior of quantities that could not be predicted analytically. The combined numerical and analytical results underline the important role internal links play in determining the observed scaling behavior and network topology. The results and methodologies developed in the context of the co-authorship network could be useful for a systematic study of other complex evolving networks as well, such as the world wide web, Internet, or other social networks.

  14. Towards Collaborative and Reproducible Scientific Experiments on Blockchain

    NARCIS (Netherlands)

    Karastoyanova, Dimka; Stage, Ludwig

    2018-01-01

    Business process management research opened numerous opportunities for synergies with blockchains in different domains. Blockchains have been identified as means of preventing illegal runtime adaptation of decentralized choreographies that involve untrusting parties. In the eScience domain however

  15. Scientists and Educators in Sync: Exploring the Strengths of Each through a Collaborative Educational "Umbrella" on Space Weather

    Science.gov (United States)

    Cobabe-Ammann, E. A.; Singer, H. J.

    2003-12-01

    Scientists and educators have much to offer formal and informal science education forums (and each other) when brought together in balanced collaboration. New educational opportunities from NASA and NSF have made it easier to develop these collaborations, effectively allowing for the establishment of educational "umbrellas" whereby several separately funded programs focused on a single theme are overseen by a single working group. Here, we explore one such collaboration on space weather developed by CU's Laboratory for Atmospheric and Space Physics, in collaboration with NOAA's Space Environment Center, the Fiske Planetarium, the Space Science Institute and teachers from local school districts. The goal of the collaboration is to develop a new planetarium show, associated curricula and teacher workshops and guidebooks, as well as distance learning programming through the NASA Center for Distance Learning. One hallmark of this collaboration is the recognition that both scientists and educators bring important research-based perspectives to the table - Scientists are primarily responsible for the scientific integrity of the programming; Educators offer effective (tested) educational models for implementing student and teacher experiences. Both bring creativity, ingenuity and innovation to this dynamic environment. Sustainability is enhanced by integrating components and activities into a cogent whole, and efforts are perceived as even more worthwhile since most aspects of this program will be available for national distribution over the next several years.

  16. Experiences of Collaborative Research

    Science.gov (United States)

    Kahneman, Daniel

    2003-01-01

    The author's personal history of the research that led to his recognition in economics is described, focusing on the process of collaboration and on the experience of controversy. The author's collaboration with Amos Tversky dealt with 3 major topics: judgment under uncertainty, decision making, and framing effects. A subsequent collaboration,…

  17. Scientific instruments, scientific progress and the cyclotron

    International Nuclear Information System (INIS)

    Baird, David; Faust, Thomas

    1990-01-01

    Philosophers speak of science in terms of theory and experiment, yet when they speak of the progress of scientific knowledge they speak in terms of theory alone. In this article it is claimed that scientific knowledge consists of, among other things, scientific instruments and instrumental techniques and not simply of some kind of justified beliefs. It is argued that one aspect of scientific progress can be characterized relatively straightforwardly - the accumulation of new scientific instruments. The development of the cyclotron is taken to illustrate this point. Eight different activities which promoted the successful completion of the cyclotron are recognised. The importance is in the machine rather than the experiments which could be run on it and the focus is on how the cyclotron came into being, not how it was subsequently used. The completed instrument is seen as a useful unit of scientific progress in its own right. (UK)

  18. Understanding life together: A brief history of collaboration in biology

    Science.gov (United States)

    Vermeulen, Niki; Parker, John N.; Penders, Bart

    2013-01-01

    The history of science shows a shift from single-investigator ‘little science’ to increasingly large, expensive, multinational, interdisciplinary and interdependent ‘big science’. In physics and allied fields this shift has been well documented, but the rise of collaboration in the life sciences and its effect on scientific work and knowledge has received little attention. Research in biology exhibits different historical trajectories and organisation of collaboration in field and laboratory – differences still visible in contemporary collaborations such as the Census of Marine Life and the Human Genome Project. We employ these case studies as strategic exemplars, supplemented with existing research on collaboration in biology, to expose the different motives, organisational forms and social dynamics underpinning contemporary large-scale collaborations in biology and their relations to historical patterns of collaboration in the life sciences. We find the interaction between research subject, research approach as well as research organisation influencing collaboration patterns and the work of scientists. PMID:23578694

  19. Compendium of Scientific Linacs

    Energy Technology Data Exchange (ETDEWEB)

    Clendenin, James E

    2003-05-16

    The International Committee supported the proposal of the Chairman of the XVIII International Linac Conference to issue a new Compendium of linear accelerators. The last one was published in 1976. The Local Organizing Committee of Linac96 decided to set up a sub-committee for this purpose. Contrary to the catalogues of the High Energy Accelerators which compile accelerators with energies above 1 GeV, we have not defined a specific limit in energy. Microtrons and cyclotrons are not in this compendium. Also data from thousands of medical and industrial linacs has not been collected. Therefore, only scientific linacs are listed in the present compendium. Each linac found in this research and involved in a physics context was considered. It could be used, for example, either as an injector for high energy accelerators, or in nuclear physics, materials physics, free electron lasers or synchrotron light machines. Linear accelerators are developed in three continents only: America, Asia, and Europe. This geographical distribution is kept as a basis. The compendium contains the parameters and status of scientific linacs. Most of these linacs are operational. However, many facilities under construction or design studies are also included. A special mention has been made at the end for the studies of future linear colliders.

  20. MyGeoHub: A Collaborative Geospatial Research and Education Platform

    Science.gov (United States)

    Kalyanam, R.; Zhao, L.; Biehl, L. L.; Song, C. X.; Merwade, V.; Villoria, N.

    2017-12-01

    Scientific research is increasingly collaborative and globally distributed; research groups now rely on web-based scientific tools and data management systems to simplify their day-to-day collaborative workflows. However, such tools often lack seamless interfaces, requiring researchers to contend with manual data transfers, annotation and sharing. MyGeoHub is a web platform that supports out-of-the-box, seamless workflows involving data ingestion, metadata extraction, analysis, sharing and publication. MyGeoHub is built on the HUBzero cyberinfrastructure platform and adds general-purpose software building blocks (GABBs), for geospatial data management, visualization and analysis. A data management building block iData, processes geospatial files, extracting metadata for keyword and map-based search while enabling quick previews. iData is pervasive, allowing access through a web interface, scientific tools on MyGeoHub or even mobile field devices via a data service API. GABBs includes a Python map library as well as map widgets that in a few lines of code, generate complete geospatial visualization web interfaces for scientific tools. GABBs also includes powerful tools that can be used with no programming effort. The GeoBuilder tool provides an intuitive wizard for importing multi-variable, geo-located time series data (typical of sensor readings, GPS trackers) to build visualizations supporting data filtering and plotting. MyGeoHub has been used in tutorials at scientific conferences and educational activities for K-12 students. MyGeoHub is also constantly evolving; the recent addition of Jupyter and R Shiny notebook environments enable reproducible, richly interactive geospatial analyses and applications ranging from simple pre-processing to published tools. MyGeoHub is not a monolithic geospatial science gateway, instead it supports diverse needs ranging from just a feature-rich data management system, to complex scientific tools and workflows.

  1. The ESO Scientific and Technical Committee.

    Science.gov (United States)

    Léna, P.

    1982-03-01

    Since 1978, the structure of ESO involves a Scientific and Technical Committee (STC) which advises the Council on scientific and technical matters. This committee meets twice a year, usually at Garehing; its members are nominated by the Council and their term is 4 years. The STC has 10 members, who are as evenly distributed as possible among member countries, although indeed mainly chosen for their scientific abilities. The chairman is invited to attend Council meetings and to report to the members.

  2. ISOGA: Integrated Services Optical Grid Architecture for Emerging E-Science Collaborative Applications

    Energy Technology Data Exchange (ETDEWEB)

    Oliver Yu

    2008-11-28

    This final report describes the accomplishments in the ISOGA (Integrated Services Optical Grid Architecture) project. ISOGA enables efficient deployment of existing and emerging collaborative grid applications with increasingly diverse multimedia communication requirements over a wide-area multi-domain optical network grid; and enables collaborative scientists with fast retrieval and seamless browsing of distributed scientific multimedia datasets over a wide-area optical network grid. The project focuses on research and development in the following areas: the polymorphic optical network control planes to enable multiple switching and communication services simultaneously; the intelligent optical grid user-network interface to enable user-centric network control and monitoring; and the seamless optical grid dataset browsing interface to enable fast retrieval of local/remote dataset for visualization and manipulation.

  3. Trust repertoires for collaboration

    DEFF Research Database (Denmark)

    Fuglsang, Lars

    This case study analyses the role of trust in a public private innovation network that involved a private consultancy company as a facilitator. We know that collaboration is a important for innovation, and that collaboration across organizational boundaries is not a trivial issue. But we know very...... little about how such processes develop and how trust, understood as “confident positive expectations” (Lewicki et al. 1998) to collaborative activities, arises out of collaboration. The paper contributes by showing how trust and collaboration are intertwined. The main finding is that a facilitator can...

  4. University - industry collaborations: models, drivers and cultures.

    Science.gov (United States)

    Ehrismann, Dominic; Patel, Dhavalkumar

    2015-01-01

    The way academic institutions and pharmaceutical companies have been approaching collaborations has changed significantly in recent years. A multitude of interaction models were tested and critical factors that drive successful collaborations have been proposed. Based on this experience the current consensus in the pharmaceutical industry is to pursue one of two strategies: an open innovation approach to source discoveries wherever they occur, or investing selectively into scientific partnerships that churn out inventions that can be translated from bench to bedside internally. While these strategies may be intuitive, to form and build sustainable relationships between academia and large multinational healthcare enterprises is proving challenging. In this article we explore some of the more testing aspects of these collaborations, approaches that various industrial players have taken and provide our own views on the matter. We found that understanding and respecting each other's organisational culture and combining the intellectual and technological assets to answer big scientific questions accelerates and improves the quality of every collaboration. Upon discussing the prevailing cooperation models in the university - industry domain, we assert that science-driven collaborations where risks and rewards are shared equally without a commercial agenda in mind are the most impactful.

  5. Collaborative production indicators in information architecture

    Directory of Open Access Journals (Sweden)

    Zayr Claudio Gomes da Silva

    2017-04-01

    Full Text Available Information architecture is considered a strategic domain of collaborative production of Information Science. We describe the conditions of collaborative production in information architecture, considering it a sub-area of the study of Information Science. In order to do so, we specifically address indicators of scientific production that include topics of study, typology and authorship, postgraduate programs and areas to which it is linked, among others. This is an exploratory and descriptive research. The scientific production of the National Meeting of Information Science Research (ENANCIB, from 2003 to 2013, is mapped in the "Network Matters" repository. Bibliometry is used to identify paratextual and textual elements that form evidence of collaborative production in information architecture. We verified the plurality in the academic formation of the researchers that approach information architecture, the sharing of languages, some indications of the disciplinary convergences from the collaboration in coauthorship, as well as a plexus of relations through the indirect citations that represent the sharing of elements Theoretical-methodological approaches in interdisciplinary production. In addition, the academic training of the researchers with the highest productivity index is mainly related to Librarianship and Computer Science. The collaborative production in the information architecture is presented as a multidisciplinary production process, constituting a convergent domain that allows the effectiveness of interdisciplinary practices in Information Science.

  6. Scientific wealth and inequality within nations

    OpenAIRE

    Prathap, Gangan

    2017-01-01

    We show that the greater the scientific wealth of a nation, the more likely that it will tend to concentrate this excellence in a few premier institutions. That is, great wealth implies great inequality of distribution. The scientific wealth is interpreted in terms of citation data harvested by Google Scholar Citations for profiled institutions from all countries in the world.

  7. Bibliometric analysis of regional Latin America's scientific output in Public Health through SCImago Journal & Country Rank

    Science.gov (United States)

    2014-01-01

    Background In the greater framework of the essential functions of Public Health, our focus is on a systematic, objective, external evaluation of Latin American scientific output, to compare its publications in the area of Public Health with those of other major geographic zones. We aim to describe the regional distribution of output in Public Health, and the level of visibility and specialization, for Latin America; it can then be characterized and compared in the international context. Methods The primary source of information was the Scopus database, using the category “Public Health, Environmental and Occupational Health”, in the period 1996–2011. Data were obtained through the portal of SCImago Journal and Country Rank. Using a set of qualitative (citation-based), quantitative (document recount) and collaborative (authors from more than one country) indicators, we derived complementary data. The methodology serves as an analytical tool for researchers and scientific policy-makers. Results The contribution of Latin America to the arsenal of world science lies more or less midway on the international scale in terms of its output and visibility. Revealed as its greatest strengths are the high level of specialization in Public Health and the sustained growth of output. The main limitations identified were a relative decrease in collaboration and low visibility. Conclusions Collaboration is a key factor behind the development of scientific activity in Latin America. Although this finding can be useful for formulating research policy in Latin American countries, it also underlines the need for further research into patterns of scientific communication in this region, to arrive at more specific recommendations. PMID:24950735

  8. Visualization analysis of author collaborations in schizophrenia research.

    Science.gov (United States)

    Wu, Ying; Duan, Zhiguang

    2015-02-19

    Schizophrenia is a serious mental illness that levies a heavy medical toll and cost burden throughout the world. Scientific collaborations are necessary for progress in psychiatric research. However, there have been few publications on scientific collaborations in schizophrenia. The aim of this study was to investigate the extent of author collaborations in schizophrenia research. This study used 58,107 records on schizophrenia from 2003 to 2012 which were downloaded from Science Citation Index Expanded (SCI Expanded) via Web of Science. CiteSpace III, an information visualization and analysis software, was used to make a visual analysis. Collaborative author networks within the field of schizophrenia were determined using published documents. We found that external author collaboration networks were more scattered while potential author collaboration networks were more compact. Results from hierarchical clustering analysis showed that the main collaborative field was genetic research in schizophrenia. Based on the results, authors belonging to different institutions and in different countries should be encouraged to collaborate in schizophrenia research. This will help researchers focus their studies on key issues, and allow each other to offer reasonable suggestions for making polices and providing scientific evidence to effectively diagnose, prevent, and cure schizophrenia.

  9. XVIS: Visualization for the Extreme-Scale Scientific-Computation Ecosystem Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Geveci, Berk [Kitware, Inc., Clifton Park, NY (United States); Maynard, Robert [Kitware, Inc., Clifton Park, NY (United States)

    2017-10-27

    The XVis project brings together the key elements of research to enable scientific discovery at extreme scale. Scientific computing will no longer be purely about how fast computations can be performed. Energy constraints, processor changes, and I/O limitations necessitate significant changes in both the software applications used in scientific computation and the ways in which scientists use them. Components for modeling, simulation, analysis, and visualization must work together in a computational ecosystem, rather than working independently as they have in the past. The XVis project brought together collaborators from predominant DOE projects for visualization on accelerators and combining their respective features into a new visualization toolkit called VTK-m.

  10. The common characteristics and outcomes of multidisciplinary collaboration in primary health care: a systematic literature review.

    NARCIS (Netherlands)

    Schepman, S.; Hansen, J.; Putter, I.D. de; Batenburg, R.S.; Bakker, D.H. de

    2015-01-01

    Introduction: Research on collaboration in primary care focuses on specific diseases or types of collaboration. We investigate the effects of such collaboration by bringing together the results of scientific studies. Theory and methods: We conducted a systematic literature review of PubMed, CINAHL,

  11. The injection of biomethane produced from sludge from sewage stations into the French natural gas distribution network. Scientific and technical support report. Scientific and technical support related to the problem of injection of biomethane produced from sludges from sewage stations into the French natural gas distribution network

    International Nuclear Information System (INIS)

    Zdanevitch, Isabelle; Jaeg, Jean-Philippe; Leroux, Carole; Pernelet-Joly, Valerie; Solal, Cecilia; Saddoki, Sophia

    2013-04-01

    This report aimed at producing an assessment of health risks (for consumers as well as for professionals) related to the injection of biogas produced from water treatment stations into the natural gas transport and distribution network. Data on the chemical composition of raw bio-gases produced by sewage stations and of biomethane produced from sludge from these stations have been obtained from different sources and measurements. After a recall of works performed in answer to a first expertise mission which comprised an approach to the assessment of microbiological risks, this report presents the various data and their sources. It discusses the characterisation (i.e. the various components) of raw bio-gases and of biomethane produced from sludge from sewage stations, and of natural gas. The last part proposes an identification of risks through a qualitative approach

  12. Picturing diversity in the ATLAS collaboration

    CERN Document Server

    Biondi, Silvia; The ATLAS collaboration

    2017-01-01

    With over 3000 members from 178 institutes, the ATLAS Collaboration is naturally diverse. However, capturing this diversity through pictures can be a challenge. Photography is a powerful tool, allowing us to reveal the faces behind a story and give the public the unique opportunity to understand and appreciate the human aspects of ATLAS's scientific research. The role of photographs in portraying the diversity of the ATLAS Collaboration and on various communication platforms will be described. Their impact will be examined, with focus on engagement of new audiences.

  13. Success in Science, Success in Collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Mariann R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-25

    This is a series of four different scientific problems which were resolved through collaborations. They are: "Better flow cytometry through novel focusing technology", "Take Off®: Helping the Agriculture Industry Improve the Viability of Sustainable, Large-Production Crops", "The National Institutes of Health's Models of Infectious Disease Agent Study (MIDAS)", and "Expanding the capabilities of SOLVE/RESOLVE through the PHENIX Consortium." For each one, the problem is listed, the solution, advantages, bottom line, then information about the collaboration including: developing the technology, initial success, and continued success.

  14. SALTON SEA SCIENTIFIC DRILLING PROJECT: SCIENTIFIC PROGRAM.

    Science.gov (United States)

    Sass, J.H.; Elders, W.A.

    1986-01-01

    The Salton Sea Scientific Drilling Project, was spudded on 24 October 1985, and reached a total depth of 10,564 ft. (3. 2 km) on 17 March 1986. There followed a period of logging, a flow test, and downhole scientific measurements. The scientific goals were integrated smoothly with the engineering and economic objectives of the program and the ideal of 'science driving the drill' in continental scientific drilling projects was achieved in large measure. The principal scientific goals of the project were to study the physical and chemical processes involved in an active, magmatically driven hydrothermal system. To facilitate these studies, high priority was attached to four areas of sample and data collection, namely: (1) core and cuttings, (2) formation fluids, (3) geophysical logging, and (4) downhole physical measurements, particularly temperatures and pressures.

  15. Fermilab-Latin America collaboration

    International Nuclear Information System (INIS)

    Rubinstein, R.

    1994-01-01

    Fermilab's program of collaboration with Latin America was initiated by then-Director Leon Lederman about 1980. His goal was to aid Latin American physics, and particularly its particle physics; this latter aim is in keeping with the Laboratory's particle physics mission. The reasons for collaboration between institutions in the US and Latin America are many, including geographic and cultural, together with the existence of many talented scientists and many centers of excellence in the region. There are also broader reasons; for example, it has been stated frequently that physics is the basis of much technology, and advanced technology is a necessity for a country's development. There is nothing unique about Fermilab's program; other US institutions can carry out similar activities, and some have carried out individual items in the past. On the Latin American side, such collaboration enables institutions there to carry out forefront physics research, and also to have the advantages of particle physics spin-offs, both in expertise in related technologies and in scientist training. In addition to particle physics, collaboration is possible in many other related areas. Although particle physics is frequently viewed as open-quotes big scienceclose quotes, all of the large research groups in the field are composed of many small university groups, each of which contributes to the experiment, the analysis and the physics. Fermilab is an international laboratory, open to all users; a research proposal is accepted on scientific merit and technical competence, not on the country of origin of the scientists making the proposal. Currently, of Fermilab's approximately 1400 users, about 30% are from non-US institutions. It should be noted here that Fermilab's funds, which come from the US government, are for particle physics only; however, there is some flexibility in interpretation of this

  16. Ethics of reviewing scientific publications.

    Science.gov (United States)

    Napolitani, Federica; Petrini, Carlo; Garattini, Silvio

    2017-05-01

    The approval or rejection of scientific publications can have important consequences for scientific knowledge, so considerable responsibility lies on those who have to assess or review them. Today it seems that the peer review process, far from being considered an outdated system to be abandoned, is experiencing a new upturn. This article proposes criteria for the conduct of reviewers and of those who select them. While commenting on new emerging models, it provides practical recommendations for improving the peer-review system, like strengthening the role of guidelines and training and supporting reviewers. The process of peer review is changing, it is getting more open and collaborative, but those same ethical principles which guided it from its very origin should remain untouched and be firmly consolidated. The paper highlights how the ethics of reviewing scientific publications is needed now more than ever, in particular with regard to competence, conflict of interest, willingness to discuss decisions, complete transparency and integrity. Copyright © 2016 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.

  17. A Progressive Reading, Writing, and Artistic Module to Support Scientific Literacy

    Directory of Open Access Journals (Sweden)

    Stephanie B. Stockwell

    2015-11-01

    Full Text Available Scientific literacy, marked by the ability and willingness to engage with scientific information, is supported through a new genre of citizen science—course-based research in association with undergraduate laboratories. A three-phased progressive learning module was developed to enhance student engagement in such contexts while supporting three learning outcomes: I present an argument based on evidence, II analyze science and scientists within a social context, and III experience, reflect upon, and communicate the nature of scientific discovery. Phase I entails guided reading and reflection of citizen science–themed texts. In Phase II, students write, peer-review, and edit position and counterpoint papers inspired by the following prompt, “Nonscientists should do scientific research.” Phase III involves two creative assignments intended to communicate the true nature of science. Students work collaboratively to develop public service announcement–like poster campaigns to debunk a common misconception about the nature of science or scientists. Individually, they create a work of art to communicate a specific message about the raw experience of performing scientific research. Suggestions for implementation and modifications are provided. Strengths of the module include the development of transferable skills, temporal distribution of grading demands, minimal in-class time needed for implementation, and the inclusion of artistic projects to support affective learning domains. This citizen science–themed learning module is an excellent complement to laboratory coursework, as it serves to surprise, challenge, and inspire students while promoting disciplinary values.

  18. Inuit and Scientific Perspectives on the Relationship Between Sea Ice and Climate Change. The Ideal Complement?

    Energy Technology Data Exchange (ETDEWEB)

    Laidler, G.J. [Department of Geography, University of Toronto at Mississauga, 3359 Mississauga Road North, Mississauga, Ontario, L5L 1C6 (Canada)

    2006-10-15

    Sea ice is influential in regulating energy exchanges between the ocean and the atmosphere, and has figured prominently in scientific studies of climate change and climate feedbacks. However, sea ice is also a vital component of everyday life in Inuit communities of the circumpolar Arctic. Therefore, it is important to understand the links between the potential impacts of climate change on Arctic sea ice extent, distribution, and thickness as well as the related consequences for northern coastal populations. This paper explores the relationship between sea ice and climate change from both scientific and Inuit perspectives. Based on an overview of diverse literature the experiences, methods, and goals which differentiate local and scientific sea ice knowledge are examined. These efforts are considered essential background upon which to develop more accurate assessments of community vulnerability to climate, and resulting sea ice, change. Inuit and scientific perspectives may indeed be the ideal complement when investigating the links between sea ice and climate change, but effective and appropriate conceptual bridges need to be built between the two types of expertise. The complementary nature of these knowledge systems may only be realized, in a practical sense, if significant effort is expended to: (1) understand sea ice from both Inuit and scientific perspectives, along with their underlying differences; (2) investigate common interests or concerns; (3) establish meaningful and reciprocal research partnerships with Inuit communities; (4) engage in, and improve, collaborative research methods; and, (5) maintain ongoing dialogue.

  19. A Progressive Reading, Writing, and Artistic Module to Support Scientific Literacy.

    Science.gov (United States)

    Stockwell, Stephanie B

    2016-03-01

    Scientific literacy, marked by the ability and willingness to engage with scientific information, is supported through a new genre of citizen science-course-based research in association with undergraduate laboratories. A three-phased progressive learning module was developed to enhance student engagement in such contexts while supporting three learning outcomes: I) present an argument based on evidence, II) analyze science and scientists within a social context, and III) experience, reflect upon, and communicate the nature of scientific discovery. Phase I entails guided reading and reflection of citizen science-themed texts. In Phase II, students write, peer-review, and edit position and counterpoint papers inspired by the following prompt, "Nonscientists should do scientific research." Phase III involves two creative assignments intended to communicate the true nature of science. Students work collaboratively to develop public service announcement-like poster campaigns to debunk a common misconception about the nature of science or scientists. Individually, they create a work of art to communicate a specific message about the raw experience of performing scientific research. Suggestions for implementation and modifications are provided. Strengths of the module include the development of transferable skills, temporal distribution of grading demands, minimal in-class time needed for implementation, and the inclusion of artistic projects to support affective learning domains. This citizen science-themed learning module is an excellent complement to laboratory coursework, as it serves to surprise, challenge, and inspire students while promoting disciplinary values.

  20. A Progressive Reading, Writing, and Artistic Module to Support Scientific Literacy†

    Science.gov (United States)

    Stockwell, Stephanie B.

    2016-01-01

    Scientific literacy, marked by the ability and willingness to engage with scientific information, is supported through a new genre of citizen science—course-based research in association with undergraduate laboratories. A three-phased progressive learning module was developed to enhance student engagement in such contexts while supporting three learning outcomes: I) present an argument based on evidence, II) analyze science and scientists within a social context, and III) experience, reflect upon, and communicate the nature of scientific discovery. Phase I entails guided reading and reflection of citizen science–themed texts. In Phase II, students write, peer-review, and edit position and counterpoint papers inspired by the following prompt, “Nonscientists should do scientific research.” Phase III involves two creative assignments intended to communicate the true nature of science. Students work collaboratively to develop public service announcement–like poster campaigns to debunk a common misconception about the nature of science or scientists. Individually, they create a work of art to communicate a specific message about the raw experience of performing scientific research. Suggestions for implementation and modifications are provided. Strengths of the module include the development of transferable skills, temporal distribution of grading demands, minimal in-class time needed for implementation, and the inclusion of artistic projects to support affective learning domains. This citizen science–themed learning module is an excellent complement to laboratory coursework, as it serves to surprise, challenge, and inspire students while promoting disciplinary values. PMID:27047600

  1. The PBase Scientific Workflow Provenance Repository

    Directory of Open Access Journals (Sweden)

    Víctor Cuevas-Vicenttín

    2014-10-01

    Full Text Available Scientific workflows and their supporting systems are becoming increasingly popular for compute-intensive and data-intensive scientific experiments. The advantages scientific workflows offer include rapid and easy workflow design, software and data reuse, scalable execution, sharing and collaboration, and other advantages that altogether facilitate “reproducible science”. In this context, provenance – information about the origin, context, derivation, ownership, or history of some artifact – plays a key role, since scientists are interested in examining and auditing the results of scientific experiments. However, in order to perform such analyses on scientific results as part of extended research collaborations, an adequate environment and tools are required. Concretely, the need arises for a repository that will facilitate the sharing of scientific workflows and their associated execution traces in an interoperable manner, also enabling querying and visualization. Furthermore, such functionality should be supported while taking performance and scalability into account. With this purpose in mind, we introduce PBase: a scientific workflow provenance repository implementing the ProvONE proposed standard, which extends the emerging W3C PROV standard for provenance data with workflow specific concepts. PBase is built on the Neo4j graph database, thus offering capabilities such as declarative and efficient querying. Our experiences demonstrate the power gained by supporting various types of queries for provenance data. In addition, PBase is equipped with a user friendly interface tailored for the visualization of scientific workflow provenance data, making the specification of queries and the interpretation of their results easier and more effective.

  2. Scientific integrity in Brazil.

    Science.gov (United States)

    Lins, Liliane; Carvalho, Fernando Martins

    2014-09-01

    This article focuses on scientific integrity and the identification of predisposing factors to scientific misconduct in Brazil. Brazilian scientific production has increased in the last ten years, but the quality of the articles has decreased. Pressure on researchers and students for increasing scientific production may contribute to scientific misconduct. Cases of misconduct in science have been recently denounced in the country. Brazil has important institutions for controlling ethical and safety aspects of human research, but there is a lack of specific offices to investigate suspected cases of misconduct and policies to deal with scientific dishonesty.

  3. The Diesel Combustion Collaboratory: Combustion Researchers Collaborating over the Internet

    Energy Technology Data Exchange (ETDEWEB)

    C. M. Pancerella; L. A. Rahn; C. Yang

    2000-02-01

    The Diesel Combustion Collaborator (DCC) is a pilot project to develop and deploy collaborative technologies to combustion researchers distributed throughout the DOE national laboratories, academia, and industry. The result is a problem-solving environment for combustion research. Researchers collaborate over the Internet using DCC tools, which include: a distributed execution management system for running combustion models on widely distributed computers, including supercomputers; web-accessible data archiving capabilities for sharing graphical experimental or modeling data; electronic notebooks and shared workspaces for facilitating collaboration; visualization of combustion data; and video-conferencing and data-conferencing among researchers at remote sites. Security is a key aspect of the collaborative tools. In many cases, the authors have integrated these tools to allow data, including large combustion data sets, to flow seamlessly, for example, from modeling tools to data archives. In this paper the authors describe the work of a larger collaborative effort to design, implement and deploy the DCC.

  4. Collaboration across the Arctic

    DEFF Research Database (Denmark)

    Huppert, Verena Gisela; Chuffart, Romain François R.

    2017-01-01

    The Arctic is witnessing the rise of a new paradigm caused by an increase in pan-Arctic collaborations which co-exist with the region’s traditional linkages with the South. Using an analysis of concrete examples of regional collaborations in the Arctic today in the fields of education, health...... and infrastructure, this paper questions whether pan-Arctic collaborations in the Arctic are more viable than North-South collaborations, and explores the reasons behind and the foreseeable consequences of such collaborations. It shows that the newly emerging East-West paradigm operates at the same time...... as the traditional North-South paradigm, with no signs of the East-West paradigm being more viable in the foreseeable future. However, pan-Arctic collaboration, both due to pragmatic reasons and an increased awareness of similarities, is likely to increase in the future. The increased regionalization process...

  5. A Data-Centered Collaboration Portal to Support Global Carbon-Flux Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Deborah A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Humphrey, Marty [Univ. of Virginia, Charlottesville, VA (United States); Beekwilder, Norm [Univ. of Virginia, Charlottesville, VA (United States); Jackson, Keith [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Goode, Monte [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); van Ingen, Catharine [Microsoft. San Francisco, CA (United States)

    2009-04-07

    Carbon-climate, like other environmental sciences, has been changing. Large-scalesynthesis studies are becoming more common. These synthesis studies are often conducted by science teams that are geographically distributed and on datasets that are global in scale. A broad array of collaboration and data analytics tools are now available that could support these science teams. However, building tools that scientists actually use is hard. Also, moving scientists from an informal collaboration structure to one mediated by technology often exposes inconsistencies in the understanding of the rules of engagement between collaborators. We have developed a scientific collaboration portal, called fluxdata.org, which serves the community of scientists providing and analyzing the global FLUXNET carbon-flux synthesis dataset. Key things we learned or re-learned during our portal development include: minimize the barrier to entry, provide features on a just-in-time basis, development of requirements is an on-going process, provide incentives to change leaders and leverage the opportunity they represent, automate as much as possible, and you can only learn how to make it better if people depend on it enough to give you feedback. In addition, we also learned that splitting the portal roles between scientists and computer scientists improved user adoption and trust. The fluxdata.org portal has now been in operation for ~;;1.5 years and has become central to the FLUXNET synthesis efforts.

  6. Collaborative online projects for English language learners in science

    Science.gov (United States)

    Terrazas-Arellanes, Fatima E.; Knox, Carolyn; Rivas, Carmen

    2013-12-01

    This paper summarizes how collaborative online projects (COPs) are used to facilitate science content-area learning for English Learners of Hispanic origin. This is a Mexico-USA partnership project funded by the National Science Foundation. A COP is a 10-week thematic science unit, completely online, and bilingual (Spanish and English) designed to provide collaborative learning experiences with culturally and linguistically relevant science instruction in an interactive and multimodal learning environment. Units are integrated with explicit instructional lessons that include: (a) hands-on and laboratory activities, (b) interactive materials and interactive games with immediate feedback, (c) animated video tutorials, (d) discussion forums where students exchange scientific learning across classrooms in the USA and in Mexico, and (e) summative and formative assessments. Thematic units have been aligned to U.S. National Science Education Standards and are under current revisions for alignment to the Common Core State Standards. Training materials for the teachers have been integrated into the project website to facilitate self-paced and independent learning. Preliminary findings of our pre-experimental study with a sample of 53 students (81 % ELs), distributed across three different groups, resulted in a 21 % statistically significant points increase from pretest to posttest assessments of science content learning, t( 52) = 11.07, p = .000.

  7. Professional Learning and Collaboration

    OpenAIRE

    Greer, Janet Agnes

    2012-01-01

    The American education system must utilize collaboration to meet the challenges and demands our culture poses for schools. Deeply rooted processes and structures favor teaching and learning in isolation and hinder the shift to a more collaborative paradigm. Professional learning communities (PLCs) support continuous teacher learning, improved efficacy, and program implementation. The PLC provides the framework for the development and enhancement of teacher collaboration and teacher collaborat...

  8. Managing collaborative design

    OpenAIRE

    Sebastian, R.

    2007-01-01

    Collaborative design has been emerging in building projects everywhere. The more complex a building project becomes, the closer and more intensive collaboration between the design actors is required. This research focuses on collaborative design in the conceptual architecture design phase, especially during the elaboration of the masterplan and the development of the preliminary building designs. This research is descriptive and has two aims. First, it aims at describing the characteristics a...

  9. Opposing incentives for collaboration

    DEFF Research Database (Denmark)

    Dorch, Bertil F.; Wien, Charlotte; Larsen, Asger Væring

    , and gives a bonus for publications done through inter-institutionary collaboration. Credits given to universities are fractionalized between the participating universities. So far credits are not assigned to the individual authors but only to their institutions. However, it turns out that research...... collaboration is associated with a higher number of citations than single authorship which may present the author with two opposing incentives for research collaboration....

  10. What Are the Antecedents of Collaboration Intensity between Industry and Universities in Public Subsidized Projects?

    DEFF Research Database (Denmark)

    Cannito, Davide

    firms’ decision to engage in university-industry collaboration. This paper contribute to the antecedents of U-I collaboration by investigating whether a scientific oriented knowledge base is an important factor for explaining the intensity of collaborations. In line with the theory, we expect...... of citations, on the intensity of university industry collaboration, in terms of share of university collaborators. We control for program fixed effect and previous co-patenting with university. We expect a positive relationship between scientific orientation and intensity of collaboration with universities.......University-industry collaboration has attracted in the last decades an increasing attention both from scholars and public policy. An increasing number of national and European programs has been designed to increase public-private collaboration. The extensive literature on University Industry...

  11. PSI Scientific report 2009

    International Nuclear Information System (INIS)

    Piwnicki, P.

    2010-04-01

    This annual report issued by the Paul Scherrer Institute (PSI) in Switzerland takes a look at work done at the institute in the year 2009. In particular, the SwissFEL X-ray Laser facility that will allow novel investigations of femtosecond molecular dynamics in chemical, biochemical and condensed-matter systems and permit coherent diffraction imaging of individual nanostructures is commented on. Potential scientific applications of the SwissFEL are noted. Further, the institute's research focus and its findings are commented on. Synchrotron light is looked at and results obtained using neutron scattering and muon spin resonance are reported on. Work done in the micro and nano-technology, biomolecular research and radiopharmacy areas is also reported on Work performed in the biology, general energy and environmental sciences area is also reported on. The institute's comprehensive research facilities are reviewed and the facilities provided for users from the national and international scientific community, in particular regarding condensed matter, materials science and biology research are noted. In addition to the user facilities at the accelerators, other PSI laboratories are also open to external users, e.g. the Hot Laboratory operated by the Nuclear Energy and Safety Department that allows experiments to be performed on highly radioactive samples. The Technology Transfer Office at PSI is also reported on. This department assists representatives from industry in their search for opportunities and sources of innovation at the PSI. Further, an overview is presented of the people who work at the PSI, how the institute is organised and how the money it receives is distributed and used. Finally, a comprehensive list of publications completes the report

  12. The Collaborative Future

    Directory of Open Access Journals (Sweden)

    Thomas Marlowe

    2011-10-01

    Full Text Available Collaboration has become an important goal in modern ventures, across the spectrum of commercial, social, and intellectual activities, sometimes as a mediating factor, and sometimes as a driving, foundational principle. Research, development, social programs, and ongoing ventures of all sorts benefit from interactions between teams, groups, and organizations, across intellectual disciplines and across facets and features of the inquiry, product, entity, or activity under consideration. We present a survey of the state of collaboration and collaborative enterprise, in the context of papers and presentations at the International Symposium on Collaborative Enterprises 2011 (CENT 2011, and the extended papers appearing in this special issue.

  13. Commemorating Misadventures, Celebrating Collaborations

    Centers for Disease Control (CDC) Podcasts

    Byron Breedlove, Managing Editor of Emerging Infectious Diseases journal, reads his February 2018 cover essay, "Commemorating Misadventures, Celebrating Collaborations" and discusses a sketch by Picasso and zoonoses.

  14. Collaborative Service Arrangements

    DEFF Research Database (Denmark)

    J. May, Peter; Winter, Søren

    While much of prior research on collaboration addresses the service delivery network as a whole, we address collaborative relationships between one type of organization—municipal employment services—and a range of governmental and non-governmental partners for employment services in Denmark....... Municipalities differ in the type, degree, and character of collaboration with these partners. As others have found in prior research, we find that organizational benefits, trust, and a variety of contextual factors help shape the extent of collaboration. But, the relevance of these and problem-solving benefits...

  15. Selecting the right collaborative components in a construction project

    DEFF Research Database (Denmark)

    Bohnstedt, Kristian Ditlev; Wandahl, Søren

    2018-01-01

    Regardless of context and scope, collaboration is consistently attributed to be an essential determinant of success in construction projects. Researches have long been concerned with the issue of poor collaboration, but situational determination of collaborative components has been overlooked....... The questionnaire was distributed electronically to 440 respondents; after sorting a total of 288 valid responses were obtained. The result is a set of components in a model of structures of collaboration that facilitates a more efficient and effective situational collaboration (EESC), it is denoted as target areas...... structured in type of contract, party and component....

  16. The Scientific Enterprise

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 9. The Scientific Enterprise - Assumptions, Problems, and Goals in the Modern Scientific Framework. V V Raman. Reflections Volume 13 Issue 9 September 2008 pp 885-894 ...

  17. Extensional scientific realism vs. intensional scientific realism.

    Science.gov (United States)

    Park, Seungbae

    2016-10-01

    Extensional scientific realism is the view that each believable scientific theory is supported by the unique first-order evidence for it and that if we want to believe that it is true, we should rely on its unique first-order evidence. In contrast, intensional scientific realism is the view that all believable scientific theories have a common feature and that we should rely on it to determine whether a theory is believable or not. Fitzpatrick argues that extensional realism is immune, while intensional realism is not, to the pessimistic induction. I reply that if extensional realism overcomes the pessimistic induction at all, that is because it implicitly relies on the theoretical resource of intensional realism. I also argue that extensional realism, by nature, cannot embed a criterion for distinguishing between believable and unbelievable theories. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Collaboration tools for the global accelerator network: Workshop Report

    International Nuclear Information System (INIS)

    Agarwal, Deborah; Olson, Gary; Olson, Judy

    2002-01-01

    The concept of a ''Global Accelerator Network'' (GAN) has been put forward as a means for inter-regional collaboration in the operation of internationally constructed and operated frontier accelerator facilities. A workshop was held to allow representatives of the accelerator community and of the collaboratory development community to meet and discuss collaboration tools for the GAN environment. This workshop, called the Collaboration Tools for the Global Accelerator Network (GAN) Workshop, was held on August 26, 2002 at Lawrence Berkeley National Laboratory. The goal was to provide input about collaboration tools in general and to provide a strawman for the GAN collaborative tools environment. The participants at the workshop represented accelerator physicists, high-energy physicists, operations, technology tool developers, and social scientists that study scientific collaboration

  19. Collaboration tools for the global accelerator network Workshop Report

    CERN Document Server

    Agarwal, D; Olson, J

    2002-01-01

    The concept of a ''Global Accelerator Network'' (GAN) has been put forward as a means for inter-regional collaboration in the operation of internationally constructed and operated frontier accelerator facilities. A workshop was held to allow representatives of the accelerator community and of the collaboratory development community to meet and discuss collaboration tools for the GAN environment. This workshop, called the Collaboration Tools for the Global Accelerator Network (GAN) Workshop, was held on August 26, 2002 at Lawrence Berkeley National Laboratory. The goal was to provide input about collaboration tools in general and to provide a strawman for the GAN collaborative tools environment. The participants at the workshop represented accelerator physicists, high-energy physicists, operations, technology tool developers, and social scientists that study scientific collaboration.

  20. Collaborative Clustering for Sensor Networks

    Science.gov (United States)

    Wagstaff. Loro :/; Green Jillian; Lane, Terran

    2011-01-01

    Traditionally, nodes in a sensor network simply collect data and then pass it on to a centralized node that archives, distributes, and possibly analyzes the data. However, analysis at the individual nodes could enable faster detection of anomalies or other interesting events, as well as faster responses such as sending out alerts or increasing the data collection rate. There is an additional opportunity for increased performance if individual nodes can communicate directly with their neighbors. Previously, a method was developed by which machine learning classification algorithms could collaborate to achieve high performance autonomously (without requiring human intervention). This method worked for supervised learning algorithms, in which labeled data is used to train models. The learners collaborated by exchanging labels describing the data. The new advance enables clustering algorithms, which do not use labeled data, to also collaborate. This is achieved by defining a new language for collaboration that uses pair-wise constraints to encode useful information for other learners. These constraints specify that two items must, or cannot, be placed into the same cluster. Previous work has shown that clustering with these constraints (in isolation) already improves performance. In the problem formulation, each learner resides at a different node in the sensor network and makes observations (collects data) independently of the other learners. Each learner clusters its data and then selects a pair of items about which it is uncertain and uses them to query its neighbors. The resulting feedback (a must and cannot constraint from each neighbor) is combined by the learner into a consensus constraint, and it then reclusters its data while incorporating the new constraint. A strategy was also proposed for cleaning the resulting constraint sets, which may contain conflicting constraints; this improves performance significantly. This approach has been applied to collaborative