WorldWideScience

Sample records for cold-water processes

  1. Food selectivity and processing by the cold-water coral

    NARCIS (Netherlands)

    Van Oevelen, D.; Mueller, C.E.; Lundälv, T.; Middelburg, J.J.

    2016-01-01

    Cold-water corals form prominent reef ecosystemsalong ocean margins that depend on suspended resourcesproduced in surface waters. In this study, we investigatedfood processing of 13C and 15N labelled bacteria and algaeby the cold-water coral Lophelia pertusa. Coral respiration,tissue incorporation

  2. Food selectivity and processing by the cold-water Coral Lophelia pertusa

    NARCIS (Netherlands)

    van Oevelen, Dick; Mueller, Christina E.; Lundälv, Tomas; Middelburg, Jack J.

    2016-01-01

    Cold-water corals form prominent reef ecosystems along ocean margins that depend on suspended resources produced in surface waters. In this study, we investigated food processing of 13C and 15N labelled bacteria and algae by the cold-water coral Lophelia pertusa. Coral respiration, tissue

  3. Process optimization of ultrasound-assisted alcoholic-alkaline treatment for granular cold water swelling starches.

    Science.gov (United States)

    Zhu, Bo; Liu, Jianli; Gao, Weidong

    2017-09-01

    This paper reports on the process optimization of ultrasonic assisted alcoholic-alkaline treatment to prepare granular cold water swelling (GCWS) starches. In this work, three statistical approaches such as Plackett-Burman, steepest ascent path analysis and Box-Behnken design were successfully combined to investigate the effects of major treatment process variables including starch concentration, ethanol volume fraction, sodium hydroxide dosage, ultrasonic power and treatment time, and drying operation, that is, vacuum degree and drying time on cold-water solubility. Results revealed that ethanol volume fraction, sodium hydroxide dosage, applied power and ultrasonic treatment time were significant factors that affected the cold-water solubility of GCWS starches. The maximum cold-water solubility was obtained when treated at 400W of applied power for 27.38min. Optimum volume fraction of ethanol and sodium hydroxide dosage were 66.85% and 53.76mL, respectively. The theoretical values (93.87%) and the observed values (93.87%) were in reasonably good agreement and the deviation was less than 1%. Verification and repeated trial results indicated that the ultrasound-assisted alcoholic-alkaline treatment could be successfully used for the preparation of granular cold water swelling starches at room temperatures and had excellent improvement on the cold-water solubility of GCWS starches. Copyright © 2016. Published by Elsevier B.V.

  4. Criticality safety evaluation report for the Cold Vacuum Drying Facility's process water handling system

    International Nuclear Information System (INIS)

    Roblyer, S.D.

    1998-01-01

    This report addresses the criticality concerns associated with process water handling in the Cold Vacuum Drying Facility (CVDF). The controls and limitations on equipment design and operations to control potential criticality occurrences are identified. The effectiveness of equipment design and operation controls in preventing criticality occurrences during normal and abnormal conditions is evaluated and documented in this report. Spent nuclear fuel (SNF) is removed from existing canisters in both the K East and K West Basins and loaded into a multicanister overpack (MCO) in the K Basin pool. The MCO is housed in a shipping cask surrounded by clean water in the annulus between the exterior of the MCO and the interior of the shipping cask. The fuel consists of spent N Reactor and some single pass reactor fuel. The MCO is transported to the CVDF near the K Basins to remove process water from the MCO interior and from the shipping cask annulus. After the bulk water is removed from the MCO, any remaining free liquid is removed by drawing a vacuum on the MCO's interior. After cold vacuum drying is completed, the MCO is filled with an inert cover gas, the lid is replaced on the shipping cask, and the MCO is transported to the Canister Storage Building. The process water removed from the MCO contains fissionable materials from metallic uranium corrosion. The process water from the MCO is first collected in a geometrically safe process water conditioning receiver tank. The process water in the process water conditioning receiver tank is tested, then filtered, demineralized, and collected in the storage tank. The process water is finally removed from the storage tank and transported from the CVDF by truck

  5. Criticality safety evaluation report for the cold vacuum drying facility's process water handling system

    International Nuclear Information System (INIS)

    NELSON, J.V.

    1999-01-01

    This report addresses the criticality concerns associated with process water handling in the Cold Vacuum Drying Facility. The controls and limitations on equipment design and operations to control potential criticality occurrences are identified

  6. Spent nuclear fuel project cold vacuum drying facility process water conditioning system design description

    International Nuclear Information System (INIS)

    IRWIN, J.J.

    1998-01-01

    This document provides the System Design Description (SDD) for the Cold Vacuum Drying Facility (CVDF) Process Water Conditioning (PWC) System. The SDD was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998), the HNF-SD-SNF-DRD-O02, 1998, Cold Vacuum Drying Facility Design Requirements, and the CVDF Design Summary Report. The SDD contains general descriptions of the PWC equipment, the system functions, requirements and interfaces. The SDD provides references for design and fabrication details, operation sequences and maintenance. This SDD has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved

  7. Cold water injection nozzles

    International Nuclear Information System (INIS)

    Kura, Masaaki; Maeda, Masamitsu; Endo, Takio.

    1979-01-01

    Purpose: To inject cold water in a reactor without applying heat cycles to a reactor container and to the inner wall of a feedwater nozzle by securing a perforated plate at the outlet of the cold water injection nozzle. Constitution: A disc-like cap is secured to the final end of a return nozzle of a control rod drive. The cap prevents the flow of a high temperature water flowing downward in the reactor from entering into the nozzle. The cap is perforated with a plurality of bore holes for injecting cold water into the reactor. The cap is made to about 100 mm in thickness so that the cold water passing through the bore holes is heated by the heat conduction in the cap. Accordingly, the flow of high temperature water flowing downwardly in the reactor is inhibited by the cap from backward flowing into the nozzle. Moreover, the flow of the cold water in the nozzle is controlled and rectified when passed through the bore holes in the cap and then injected into the reactor. (Yoshino, Y.)

  8. Criticality Safety Evaluation Report for the Cold Vacuum Drying (CVD) Facility's Process Water Handling System

    International Nuclear Information System (INIS)

    KESSLER, S.F.

    2000-01-01

    This report addresses the criticality concerns associated with process water handling in the Cold Vacuum Drying Facility. The controls and limitations on equipment design and operations to control potential criticality occurrences are identified

  9. Cold Water Vapor in the Barnard 5 Molecular Cloud

    Science.gov (United States)

    Wirstrom, E. S.; Charnley, S. B.; Persson, C. M.; Buckle, J. V.; Cordiner, M. A.; Takakuwa, S.

    2014-01-01

    After more than 30 yr of investigations, the nature of gas-grain interactions at low temperatures remains an unresolved issue in astrochemistry. Water ice is the dominant ice found in cold molecular clouds; however, there is only one region where cold ((is) approximately 10 K) water vapor has been detected-L1544. This study aims to shed light on ice desorption mechanisms under cold cloud conditions by expanding the sample. The clumpy distribution of methanol in dark clouds testifies to transient desorption processes at work-likely to also disrupt water ice mantles. Therefore, the Herschel HIFI instrument was used to search for cold water in a small sample of prominent methanol emission peaks. We report detections of the ground-state transition of o-H2O (J = 110-101) at 556.9360 GHz toward two positions in the cold molecular cloud, Barnard 5. The relative abundances of methanol and water gas support a desorption mechanism which disrupts the outer ice mantle layers, rather than causing complete mantle removal.

  10. COLD WATER VAPOR IN THE BARNARD 5 MOLECULAR CLOUD

    Energy Technology Data Exchange (ETDEWEB)

    Wirström, E. S.; Persson, C. M. [Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, SE-439 92 Onsala (Sweden); Charnley, S. B.; Cordiner, M. A. [Astrochemistry Laboratory and The Goddard Center for Astrobiology, Mailstop 691, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20770 (United States); Buckle, J. V. [Astrophysics Group, Cavendish Laboratory, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Takakuwa, S., E-mail: eva.wirstrom@chalmers.se [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 106, Taiwan (China)

    2014-06-20

    After more than 30 yr of investigations, the nature of gas-grain interactions at low temperatures remains an unresolved issue in astrochemistry. Water ice is the dominant ice found in cold molecular clouds; however, there is only one region where cold (∼10 K) water vapor has been detected—L1544. This study aims to shed light on ice desorption mechanisms under cold cloud conditions by expanding the sample. The clumpy distribution of methanol in dark clouds testifies to transient desorption processes at work—likely to also disrupt water ice mantles. Therefore, the Herschel HIFI instrument was used to search for cold water in a small sample of prominent methanol emission peaks. We report detections of the ground-state transition of o-H{sub 2}O (J = 1{sub 10}-1{sub 01}) at 556.9360 GHz toward two positions in the cold molecular cloud, Barnard 5. The relative abundances of methanol and water gas support a desorption mechanism which disrupts the outer ice mantle layers, rather than causing complete mantle removal.

  11. Cold-water acclimation does not modify whole-body fluid regulation during subsequent cold-water immersion.

    Science.gov (United States)

    Stocks, J M; Patterson, M J; Hyde, D E; Jenkins, A B; Mittleman, K D; Taylor, N A S

    2004-06-01

    We investigated the impact of cold-water acclimation on whole-body fluid regulation using tracer-dilution methods to differentiate between the intracellular and extracellular fluid compartments. Seven euhydrated males [age 24.7 (8.7) years, mass 74.4 (6.4) kg, height 176.8 (7.8) cm, sum of eight skinfolds 107.4 (20.4) mm; mean (SD)] participated in a 14-day cold-water acclimation protocol, with 60-min resting cold-water stress tests [CWST; 18.1 (0.1) degrees C] on days 1, 8 and 15, and 90-min resting cold-water immersions [18.4 (0.4) degrees C] on intervening days. Subjects were immersed to the 4th intercostal space. Intracellular and extracellular fluid compartments, and plasma protein, electrolyte and hormone concentrations were investigated. During the first CWST, the intracellular fluid (5.5%) and plasma volumes were reduced (6.1%), while the interstitial fluid volume was simultaneously expanded (5.4%). This pattern was replicated on days 8 and 15, but did not differ significantly among test days. Acclimation did not produce significant changes in the pre-immersion distribution of total body water, or changes in plasma osmolality, total protein, electrolyte, atrial natriuretic peptide or aldosterone concentrations. Furthermore, a 14-day cold-water acclimation regimen did not elicit significant changes in body-fluid distribution, urine production, or the concentrations of plasma protein, electrolytes or the fluid-regulatory hormones. While acclimation trends were not evident, we have confirmed that fluid from extravascular cells is displaced into the interstitium during acute cold-water immersion, both before and after cold acclimation.

  12. Stress corrosion cracking of stainless steel under deaerated high-temperature water. Influence of cold work and processing orientation

    International Nuclear Information System (INIS)

    Terachi, Takumi; Yamada, Takuyo; Chiba, Goro; Arioka, Koji

    2006-01-01

    The influence of cold work and processing orientation on the propagation of stress corrosion cracking (SCC) of stainless steel under hydrogenated high-temperature water was examined. It was shown that (1) the crack growth rates increased with heaviness of cold work, and (2) processing orientation affected crack growth rate with cracking direction. Crack growth rates showed anisotropy of T-L>>T-S>L-S, with T-S and L-S branches representing high shear stress direction. Geometric deformation of crystal grains due to cold work caused the anisotropy and shear stress also assisted the SCC propagation. (3) The step intervals of slip like patterns observed on intergranular facets increased cold work. (4) Nano-indentation hardness of the crack tip together with EBSD measurement indicated that the change of hardness due to crack propagation was less than 5% cold-work, even though the distance from the crack tip was 10μm. (author)

  13. Cold water recovery reduces anaerobic performance.

    Science.gov (United States)

    Crowe, M J; O'Connor, D; Rudd, D

    2007-12-01

    This study investigated the effects of cold water immersion on recovery from anaerobic cycling. Seventeen (13 male, 4 female) active subjects underwent a crossover, randomised design involving two testing sessions 2 - 6 d apart. Testing involved two 30-s maximal cycling efforts separated by a one-hour recovery period of 10-min cycling warm-down followed by either passive rest or 15-min cold water immersion (13 - 14 degrees C) with passive rest. Peak power, total work and postexercise blood lactate were significantly reduced following cold water immersion compared to the first exercise test and the control condition. These variables did not differ significantly between the control tests. Peak exercise heart rate was significantly lower after cold water immersion compared to the control. Time to peak power, rating of perceived exertion, and blood pH were not affected by cold water immersion compared to the control. Core temperature rose significantly (0.3 degrees C) during ice bath immersion but a similar increase also occurred in the control condition. Therefore, cold water immersion caused a significant decrease in sprint cycling performance with one-hour recovery between tests.

  14. Air dehumidification by membrane with cold water for manned spacecraft environmental control

    Directory of Open Access Journals (Sweden)

    Shang Yonghong

    2017-01-01

    Full Text Available The traditional condensation dehumidification method requires additional gas-liquid separation and water recovery process in the manned spacecraft humidity control system, which would increase weight and complexity of systems. A new membrane dehumidification with cold water is proposed, which uses water vapor partial pressure difference to promote water vapor transmembrane mass transfer for dehumidification. The permeability of the membrane was measured and the experimental results agree well with the theoretical calculations. Based on the simulation of dehumidification process of cold water-membrane, the influence of module structure and working condition on dehumidification performance was analyzed, which provided reference for the design of membrane module construct. It can be seen from the simulation and experiments that the cold water-membrane dehumidification can effectively reduce the thermal load of the manned spacecraft.

  15. Cold Vacuum Drying facility deionized water system design description

    International Nuclear Information System (INIS)

    PITKOFF, C.C.

    1999-01-01

    This document describes the Cold Vacuum Drying Facility (CVDF) de-ionized water system. The de-ionized water system is used to provide clean, conditioned water, free from contaminants, chlorides and iron for the CVD Facility. Potable water is supplied to the deionized water system, isolated by a backflow prevention device. After the de-ionization process is complete, via a packaged de-ionization unit, de-ionized water is supplied to the process deionization unit

  16. 21 CFR 880.6085 - Hot/cold water bottle.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hot/cold water bottle. 880.6085 Section 880.6085... Devices § 880.6085 Hot/cold water bottle. (a) Identification. A hot/cold water bottle is a device intended for medical purposes that is in the form of a container intended to be filled with hot or cold water...

  17. Cold vacuum drying residual free water test description

    International Nuclear Information System (INIS)

    Pajunen, A.L.

    1997-01-01

    Residual free water expected to remain in a Multi-Canister Overpack (MCO) after processing in the Cold Vacuum Drying (CVD) Facility is investigated based on three alternative models of fuel crevices. Tests and operating conditions for the CVD process are defined based on the analysis of these models. The models consider water pockets constrained by cladding defects, water constrained in a pore or crack by flow through a porous bed, and water constrained in pores by diffusion. An analysis of comparative reaction rate constraints is also presented indicating that a pressure rise test can be used to show MCO's will be thermally stable at operating temperatures up to 75 C

  18. Hydrogen-water isotopic exchange process

    International Nuclear Information System (INIS)

    Cheung, H.

    1983-01-01

    Deuterium is concentrated in a hydrogen-water isotopic exchange process enhanced by the use of catalyst materials in cold and hot tower contacting zones. Water is employed in a closed liquid recirculation loop that includes the cold tower, in which deuterium is concentrated in the water, and the upper portion of the hot tower in which said deuterium is concentrated in the hydrogen stream. Feed water is fed to the lower portion of said hot tower for contact with the circulating hydrogen stream. The feed water does not contact the water in the closed loop. Catalyst employed in the cold tower and the upper portion of the hot tower, preferably higher quality material, is isolated from impurities in the feed water that contacts only the catalyst, preferably of lower quality, in the lower portion of the hot zone. The closed loop water passes from the cold zone to the dehumidification zone, and a portion of said water leaving the upper portion of the hot tower can be passed to the humidification zone and thereafter recycled to said closed loop. Deuterium concentration is enhanced in said catalytic hydrogen-water system while undue retarding of catalyst activity is avoided

  19. Hypothermic general cold adaptation induced by local cold acclimation.

    Science.gov (United States)

    Savourey, G; Barnavol, B; Caravel, J P; Feuerstein, C; Bittel, J H

    1996-01-01

    To study relationships between local cold adaptation of the lower limbs and general cold adaptation, eight subjects were submitted both to a cold foot test (CFT, 5 degrees C water immersion, 5 min) and to a whole-body standard cold air test (SCAT, 1 degree C, 2 h, nude at rest) before and after a local cold acclimation (LCA) of the lower limbs effected by repeated cold water immersions. The LCA induced a local cold adaptation confirmed by higher skin temperatures of the lower limbs during CFT and a hypothermic insulative general cold adaptation (decreased rectal temperature and mean skin temperature P adaptation was related to the habituation process confirmed by decreased plasma concentrations of noradrenaline (NA) during LCA (P general cold adaptation was unrelated either to local cold adaptation or to the habituation process, because an increased NA during SCAT after LCA (P syndrome" occurring during LCA.

  20. Cold leg condensation tests. Task C. Steam--water interaction tests

    International Nuclear Information System (INIS)

    Brodrick, J.R.; Loiselle, V.

    1974-03-01

    A report is presented of tests to determine the condensation efficiency of ECC water injected into a quality fluid mixture flowing through the cold leg. In particular, a specific objective was to determine if the mixture of ECC water and quality fluid reached thermodynamic equilibrium before exiting the cold leg. Further, the stability of the ECC water/quality fluid interaction would be assessed by interpretation of thermocouple records and utilization of a section of cold leg piping with view ports to film the interaction whenever possible. The cold leg condensation tests showed complete condensation of the 5 lbm/sec steam quality mixtures in the cold leg by the ECC water flows of the test matrix. The cold leg exit fluid temperature remained below the saturation temperature and had good agreement with the predicted cold leg outlet temperature, calculated assuming total condensation. (U.S.)

  1. Adsorption cold storage system with zeolite-water working pair used for locomotive air conditioning

    International Nuclear Information System (INIS)

    Lu, Y.Z.; Wang, R.Z.; Zhang, M.; Jiangzhou, S.

    2003-01-01

    Adsorption cold storage has lately attracted attention for its large storage capacity and zero cold energy loss during the storing process. Thermodynamic and experimental studies on the cold storage capacity and the cold discharging process, in which the adsorber is either air cooled or adiabatic, have been presented. An adsorption cold storage system with zeolite-water working pair has been developed, and some operating results are summarized. This system is used for providing air conditioning for the driver's cab of an internal combustion locomotive. Unlike a normal adsorption air conditioner, the system starts running with the adsorption process, during which the cold energy stored is discharged, and ends running with the generation process. The adsorbent temperature decreases during the cold storing period between two runs. The refrigeration power output for the whole running cycle is about 4.1 kW. It appears that such a system is quite energetically efficient and is comparatively suitable for providing discontinuous refrigeration capacity when powered by low grade thermal energy, such as industrial exhausted heat or solar energy

  2. Cold Lake-Beaver River water management study update: Report of the Cold Lake Regional Water Management Task Force

    International Nuclear Information System (INIS)

    1994-01-01

    The Cold Lake Regional Water Management Task Force was formed in 1992, comprising representatives from local governments, aboriginal groups, the oil industry, and the public. The Task Force's mandate was to advise Alberta Environmental Protection on updating the Cold Lake-Beaver River Water Management Plan, taking into acocunt the views and concerns of the public, industry, and local governments. Industrial water use was found to be the key issue to be addressed in the plan update, so the Task Force focused on reviewing industrial water supply options and developing recommendations on the appropriate water supply to meet long-term requirements. A subcommittee was established to monitor groundwater use by the heavy oil industry. This committee took readings at Imperial Oil's water production and observation wells on a biweekly basis. Nine options for supplying industrial water requirements were examined and evaluated using criteria including supply reliability, economic factors, and impacts on other users and the environment. The Task Force found that the preferred source of water for industrial use is the North Saskatchewan River, to be accessed by a water pipeline. The second and less desirable source of water for industrial use would be a system of weirs on Cold or Primrose Lakes and Wolf Lake, supplemented by the use of brackish water to the maximum extent possible. In the interim, industry was recommended to maximize its use of brackish water and continue to use surface and ground water within existing license limits. Other recommendations were to form provincial or regional boards to oversee water use and issue water licenses, to treat water as a resource, and to establish a fee for industrial use of water. 3 figs., 5 tabs

  3. Changes in landing mechanics after cold-water immersion.

    Science.gov (United States)

    Wang, He; Toner, Michael M; Lemonda, Thomas J; Zohar, Mor

    2010-06-01

    The purpose of this study was to investigate the influence of cold-water immersion on kinematics and kinetics during a drop-landing task. On four separate occasions, 9 men performed drop-landings from a 0.6-m platform to a force platform following 30-min immersion to the hip-joint in thermoneutral water (control; 34 degrees C) and in cold water (20 degrees C) to the ankle (low level), knee (medium level), and hip (high level) joints. Sagittal plane kinematics and kinetics were determined. One-way repeated measures multivariate analysis of variance was used for statistical analysis. Compared to the control, the low-level condition had similar joint mechanics, the medium level showed 26% less ankle mechanical work (p = .003), and the high level showed 9% less vertical ground reaction force (p = .025) and 23% less ankle mechanical work (p = .023) with 18% greater trunk flexion (p = .024). In summary, the low-level cold-water immersion had no effect on landing mechanics. The medium- and high-level cold-water immersion resulted in a reduction in impact absorption at the ankle joint during landing. The increased trunk flexion after high-level immersion helped dissipate landing impact.

  4. Validation of OMA formation in cold brackish and sea waters

    International Nuclear Information System (INIS)

    Khelifa, A.; Hill, P.S.

    2005-01-01

    This study addressed the challenge of cleaning oil spilled in cold, ice-infested waters in the St. Lawrence estuary in the winter. The main objective was to develop an environmentally safe and efficient cleansing method. The use of an oil-mineral agglomeration (OMA) process has been proposed to improve dispersion and biodegradation of the spilled oil. This bench-scale study was conducted to validate this proposed remedial method. The theory for this natural attenuation process for oil spills on shores is that oil droplets and suspended sediments disperse in the water column and aggregate into OMAs. OMA formation involves floc break and aggregation by differential settling. This study examined the formation time and the concentration of OMA in a typical turbulent estuarine environment and determined the effect of sediment size and concentration on OMA formation. It also verified if OMA forms in cold brackish water considering 2 types of oils which are commonly transported along the St. Lawrence estuary to Quebec City. OMA formation was validated with Heidrun and IF30 crude oils and 2 types of engineered sediments to determine the best sediment to form OMA and to determine the minimum sediment concentration needed to maximize OMA formation. The minimum agitation time to reach this maximizing condition of OMA formation was also determined. It was concluded that OMAs form readily in cold brackish and seawater when Heidrun or IF30 crude oils are mixed with chalk or bentonite sediment. 23 refs., 2 tabs., 8 figs

  5. Changes in Landing Mechanics after Cold-Water Immersion

    Science.gov (United States)

    Wang, He; Toner, Michael M.; Lemonda, Thomas J.; Zohar, Mor

    2010-01-01

    The purpose of this study was to investigate the influence of cold-water immersion on kinematics and kinetics during a drop-landing task. On four separate occasions, 9 men performed drop-landings from a 0.6-m platform to a force platform following 30-min immersion to the hip-joint in thermoneutral water (control; 34 [degrees]C) and in cold water…

  6. Spent nuclear fuel project cold vacuum drying facility tempered water and tempered water cooling system design description

    International Nuclear Information System (INIS)

    IRWIN, J.J.

    1998-01-01

    This document provides the System Design Description (SDD) for the Cold Vacuum Drying Facility (CVDF) Tempered Water (TW) and Tempered Water Cooling (TWC) System . The SDD was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998), The HNF-SD-SNF-DRD-O02, 1998, Cold Vacuum Drying Facility Design Requirements, and the CVDF Design Summary Report. The SDD contains general descriptions of the TW and TWC equipment, the system functions, requirements and interfaces. The SDD provides references for design and fabrication details, operation sequences and maintenance. This SOD has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved

  7. IMPROVED, FAVORABLE FOR ENVIRONMENT POLYURETHANE COLD-BOX-PROCESS (COLD BOX «HUTTENES-ALBERTUS» .

    Directory of Open Access Journals (Sweden)

    A. Sergini

    2005-01-01

    Full Text Available The results of the laboratory and industrial investigations, the purpose of which is improvement of the classical Cold-box-process, i.e. the process of the slugs hardening in cold boxes, are presented.

  8. Cold Vacuum Drying (CVD) Facility Vacuum Purge System Chilled Water System Design Description. System 47-4

    International Nuclear Information System (INIS)

    IRWIN, J.J.

    2000-01-01

    This system design description (SDD) addresses the Vacuum Purge System Chilled Water (VPSCHW) system. The discussion that follows is limited to the VPSCHW system and its interfaces with associated systems. The reader's attention is directed to Drawings H-1-82162, Cold Vacuum Drying Facility Process Equipment Skid PandID Vacuum System, and H-1-82224, Cold Vacuum Drying Facility Mechanical Utilities Process Chilled Water PandID. Figure 1-1 shows the location and equipment arrangement for the VPSCHW system. The VPSCHW system provides chilled water to the Vacuum Purge System (VPS). The chilled water provides the ability to condense water from the multi-canister overpack (MCO) outlet gases during the MCO vacuum and purge cycles. By condensing water from the MCO purge gas, the VPS can assist in drying the contents of the MCO

  9. Detailed Design of Cooling Water System for Cold Neutron Source in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bong Soo; Choi, Jung Woon; Kim, Y. K.; Wu, S. I.; Lee, Y. S

    2007-04-15

    To make cold neutron, a cryogenic refrigerator is necessary to transform moderator into cryogenic state so, thermal neutron is changed into cold neutron through heat transfer with moderator. A cryogenic refrigerator mainly consists of two apparatus, a helium compressor and a cold box which needs supply of cooling water. Therefore, cooling water system is essential to operate of cryogenic refrigerator normally. This report is mainly focused on the detailed design of the cooling water system for the HANARO cold neutron source, and describes design requirement, calculation, specification of equipment and water treatment method.

  10. Detailed Design of Cooling Water System for Cold Neutron Source in HANARO

    International Nuclear Information System (INIS)

    Kim, Bong Soo; Choi, Jung Woon; Kim, Y. K.; Wu, S. I.; Lee, Y. S.

    2007-04-01

    To make cold neutron, a cryogenic refrigerator is necessary to transform moderator into cryogenic state so, thermal neutron is changed into cold neutron through heat transfer with moderator. A cryogenic refrigerator mainly consists of two apparatus, a helium compressor and a cold box which needs supply of cooling water. Therefore, cooling water system is essential to operate of cryogenic refrigerator normally. This report is mainly focused on the detailed design of the cooling water system for the HANARO cold neutron source, and describes design requirement, calculation, specification of equipment and water treatment method

  11. Linking benthic hydrodynamics and cold-water coral occurrences: A high-resolution model study at three cold-water coral provinces in the NE Atlantic

    Science.gov (United States)

    Mohn, Christian; Rengstorf, Anna; White, Martin; Duineveld, Gerard; Mienis, Furu; Soetaert, Karline; Grehan, Anthony

    2014-03-01

    mound clusters in the Logachev province exceeded typical values in non-coral areas by up to a factor of three. Currents at cold-water coral locations in the Arc and Belgica mound provinces were less energetic, but still elevated compared to non-coral locations. An analysis of dynamical processes associated with oscillatory flow interacting with topography suggests that these motions are locally important food supply mechanisms to cold-water corals by promoting large amplitude local vertical mixing and organic matter fluxes. It is shown that their presence varies considerably between provinces based on the interplay of topographic slope, flow magnitude and ambient stratification.

  12. Impairment of exercise performance following cold water immersion is not attenuated after 7 days of cold acclimation.

    Science.gov (United States)

    Jones, Douglas M; Roelands, Bart; Bailey, Stephen P; Buono, Michael J; Meeusen, Romain

    2018-03-19

    It is well-documented that severe cold stress impairs exercise performance. Repeated immersion in cold water induces an insulative type of cold acclimation, wherein enhanced vasoconstriction leads to greater body heat retention, which may attenuate cold-induced exercise impairments. The purpose of this study, therefore, was to investigate changes in exercise performance during a 7-day insulative type of cold acclimation. Twelve healthy participants consisting of eight males and four females (mean ± SD age: 25.6 ± 5.2 years, height: 174.0 ± 8.9 cm, weight: 75.6 ± 13.1 kg) performed a 20 min self-paced cycling test in 23 °C, 40% humidity without prior cold exposure. Twenty-four hours later they began a 7-day cold acclimation protocol (daily 90 min immersion in 10 °C water). On days one, four, and seven of cold acclimation, participants completed the same cycling test. Measurements of work completed, core and skin temperatures, heart rate, skin blood flow, perceived exertion, and thermal sensation were measured during each cycling test. Successful insulative cold acclimation was observed. Work produced during the baseline cycling test (220 ± 70 kJ) was greater (p immersions (195 ± 58, 197 ± 60, and 194 ± 62 kJ) despite similar ratings of perceived exertion during each test, suggesting that cold exposure impaired cycling performance. This impairment, however, was not attenuated over the cold acclimation period. Results suggest that insulative cold acclimation does not attenuate impairments in exercise performance that were observed following acute cold water immersion.

  13. Parameters and mechanisms in the mechanical upgrading of Athabasca oil sands by a cold water process

    Energy Technology Data Exchange (ETDEWEB)

    Grant, G B

    1977-01-01

    The efficiency of sand rejection in the cold water mechanical upgrading of Athabasca oil sands has been studied in the operation of rotary contactors of 8.9 cm and 19.0 cm internal diameter, fitted with lifters. Duration of operation, rate of rotation, linear velocity of lifters, temperature, water to oil sands ratio, depth of charge to lifter height ratio, and internal diameter of the contactor have been identified as important parameters. Surfactant addition and presoaking of the feed had negligible effects on the process. A model has been proposed that accounts for the variation of extraction efficiency as a function of duration of operation, the data showing that both the equilibrium extraction efficiency and the rate constant were greater in the large contactor than the small contactor for equal rates of rotation, except when centrifuging occurred in the large contactor. Sand rejection was promoted by lifter-sand and contactor wall-sand impacts and by the action of shear fields within vortices created by the lifter. The impacts occurred for all loading conditions but the latter mechanism only contributed to the sand rejection process for depth-of-charge to lifter height ratios of one or greater. In addition, the contribution of shear fields was only significant for large water to oil sands ratios. Finally, the sand rejection process was affected significantly by variations in temperature. 37 refs., 34 figs., 11 tabs., 4 illus.

  14. New Records of Cold-Water Corals from Korea

    Directory of Open Access Journals (Sweden)

    Jun-Im Song

    2016-07-01

    Full Text Available Two cold-water coral taxa, Octocorallia in the class Anthozoa and Stylasteridae in the class Hydrozoa, were identified. Deep-water samples were collected in fishing nets at depths ranging between 20 and 200 m along the coasts of the East Sea in Korea from 1976 to 1993. The two species found in this study represent new records for Korea: Paragorgia arborea (Linnaeus, 1758 in the class Anthozoa, and Stylaster profundiporus Broch, 1936 in the class Hydrozoa. Two families, Paragorgiidae and Stylasteridae, are also newly recorded in Korea. Furthermore, the species name of another cold-water gorgonian species, Primnoa pacifica (Kinoshita, 1907 in the family Primnoidae, is amended in this report. The two newly recorded cold-water coral species from Korea are described in detail based on their morphological characteristics. Paragorgia arborea is characterized by its growth form, medulla and cortex, zooid dimorphism, canal system, and spicule composition. Stylaster profundiporus is distinguished by its external skeletal characteristics, such as the coordination of dactylopores and gastropores, presence or absence of gastrostyles and dactylostyles, cyclosystem orientation, ampullar position, gastropore tube shape, and coenosteal texture.

  15. Cold water injection into two-phase mixtures

    International Nuclear Information System (INIS)

    1989-07-01

    This report presents the results of a review of the international literature regarding the dynamic loadings associated with the injection of cold water into two-phase mixtures. The review placed emphasis on waterhammer in nuclear power plants. Waterhammmer incidence data were reviewed for information related to thermalhydraulic conditions, underlying causes and consequential damage. Condensation induced waterhammer was found to be the most significant consequence of injecting cold water into a two-phase system. Several severe waterhammer incidents have been attributed to slug formation and steam bubble collapse under conditions of stratified steam and cold water flows. These phenomena are complex and not well understood. The current body of experimental and analytical knowledge is not large enough to establish maps of expected regimes of condensation induced waterhammer. The Electric Power Research Institute, in the United States, has undertaken a major research and development programme to develop the knowledge base for this area. The limited models and data currently available show that mechanical parameters are as important as thermodynamic conditions for the initiation of condensation induced waterhammer. Examples of bounds for avoiding two-phase waterhammer are given. These bounds are system specific and depend upon parameters such as pump capacity, pipe length and pipe orientation

  16. Water-hammer in the cold leg during an SBLOCA due to cold ECCS injection

    International Nuclear Information System (INIS)

    Ortiz, M.G.; Ghan, L.S.

    1991-01-01

    Water-hammer might occur in the cold leg of pressurized water reactors (PWR) during small break loss-of-coolant accidents (SBLOCA's), when cold emergency core cooling system (ECCS) water is injected into a pipe that may be partially filled with saturated steam. The water may mix with the steam and cause it to condense abruptly. Depending on the flow regime present, slugs of liquid may then be accelerated towards each other or against the piping structure. The possibility of this phenomenon is of concern to us because it may become a dominant phenomenon and change the character of the transient. In performing the code scaling, applicability, and uncertainty study (CSAU) on a SBLOCA scenario, we had to examine the possibility that the transient being analyzed could experience water-hammer and thus depart from the scope of the study. Two criteria for water-hammer initiation were investigated and tested using a RELAP5/MOD3 simulation of the transient. Our results indicated a very low likelihood of occurrence of the phenomenon. 8 refs., 6 figs

  17. Water processing in power plants

    International Nuclear Information System (INIS)

    Marquardt, K.

    1984-01-01

    Surface water can be treated to a high degree of efficiency by means of new compact processes. The quantity of chemicals to be dosed can easily be adjusted to the raw water composition by intentional energy supply via agitators. In-line coagulations is a new filtration process for reducing organic substances as well as colloids present in surface water. The content of organic substances can be monitored by measuring the plugging index. Advanced ion-exchanger processes (fluidised-bed, compound fluidised-bed and continuously operating ion exchanger plants) allow the required quantity of chemicals as well as the plant's own water consumption to be reduced, thus minimising the adverse effect on the environment. The reverse-osmosis process is becoming more and more significant due to the low adverse effect on the environment and the given possibilities of automation. As not only ionogenic substances but also organic matter are removed by reverse osmosis, this process is particularly suited for treating surface water to be used as boiler feed water. The process of vacuum degassing has become significant for the cold removal of oxygen. (orig.) [de

  18. The main chemical properties of hot and cold mineral waters in Bayankhongor, Mongolia

    Directory of Open Access Journals (Sweden)

    D Oyuntsetseg

    2014-12-01

    Full Text Available In the current study, hot and cold mineral springs and sub mineral waters in the Bayankhongor province were examined for their chemical characteristics and identified cold mineral waters classification according to mineral water classification of Mongolia. The hot spring waters belong to Na+-HCO3- and Na+-SO42- types. The cold mineral spring of Lkham belongs to Ca2+-HCO3- type. All sub mineral waters are generally located in the two areas (northern part or mountain forest area and the southern part or Gobi desert area. TDS concentrations of cold springs of the southern part in the study area were higher than northern part’s cold springs. The total dissolved silica content of cold spring was ranged from 4.5mg/L to 26 mg/L which did not correspond to requirements of mineral water standard of Mongolia. Thus, these cold springs are belonging to sub mineral water classification. The sub mineral waters were characterized into four types such as a Ca2+-SO42-, Na+-SO42-, Na+-HCO3 and Ca2+ - HCO3 by their chemical composition in the study area. The values for the quartz, chalcedony geothermometer and the Na/K geothermometer were quite different. The silica-enthalpy mixing model predicts a subsurface reservoir temperature between 124 and 197°C and most of the hot waters have been  probably mixed with cold water. The result shows that an averaged value of calculated temperature ranges from 77°C to 119°C which indicates that studied area has low temperature geothermal resources. DOI: http://doi.dx.org/10.5564/mjc.v15i0.324 Mongolian Journal of Chemistry 15 (41, 2014, p56-62

  19. Legionella species diversity and dynamics from surface reservoir to tap water: from cold adaptation to thermophily.

    Science.gov (United States)

    Lesnik, René; Brettar, Ingrid; Höfle, Manfred G

    2016-05-01

    Water samples of the Drinking Water Supply System (DWSS) of the city of Braunschweig were analysed for its Legionella species composition using genus-specific PCR amplicons and single-strand conformation polymorphism (SSCP) fingerprint analyses based on 16S rRNA genes. These analyses comprised the whole supply chain including raw water, treatment process and large-scale storage, and a seasonal study of finished drinking water sampled monthly from cold and hot tap water. Treatment of raw water had a major impact on Legionella species by reducing their diversity and abundances. The Legionella species composition of the tap water was highly distinct from that of both source waters. In cold water, 8-14 different phylotypes of Legionella (PTLs) were observed per sample with relative abundances ranging from >1% to 53%. In hot water, L. pneumophila was present during all seasons at high relative abundances (8-40%) accompanied by 5-14 other PTLs of which 6 PTLs were in common with cold water. This thermophilic Legionella community, including L. pneumophila, was able to grow in the hot water above 50 °C. Such thermophilic Legionella populations are of general relevance for drinking water management and public health, but also for the ecology and evolution of the genus Legionella.

  20. Acute Anxiety Predicts Components of the Cold Shock Response on Cold Water Immersion: Toward an Integrated Psychophysiological Model of Acute Cold Water Survival

    Science.gov (United States)

    Barwood, Martin J.; Corbett, Jo; Massey, Heather; McMorris, Terry; Tipton, Mike; Wagstaff, Christopher R. D.

    2018-01-01

    Introduction: Drowning is a leading cause of accidental death. In cold-water, sudden skin cooling triggers the life-threatening cold shock response (CSR). The CSR comprises tachycardia, peripheral vasoconstriction, hypertension, inspiratory gasp, and hyperventilation with the hyperventilatory component inducing hypocapnia and increasing risk of aspirating water to the lungs. Some CSR components can be reduced by habituation (i.e., reduced response to stimulus of same magnitude) induced by 3–5 short cold-water immersions (CWI). However, high levels of acute anxiety, a plausible emotion on CWI: magnifies the CSR in unhabituated participants, reverses habituated components of the CSR and prevents/delays habituation when high levels of anxiety are experienced concurrent to immersions suggesting anxiety is integral to the CSR. Purpose: To examine the predictive relationship that prior ratings of acute anxiety have with the CSR. Secondly, to examine whether anxiety ratings correlated with components of the CSR during immersion before and after induction of habituation. Methods: Forty-eight unhabituated participants completed one (CON1) 7-min immersion in to cold water (15°C). Of that cohort, twenty-five completed four further CWIs that would ordinarily induce CSR habituation. They then completed two counter-balanced immersions where anxiety levels were increased (CWI-ANX) or were not manipulated (CON2). Acute anxiety and the cardiorespiratory responses (cardiac frequency [fc], respiratory frequency [fR], tidal volume [VT], minute ventilation [E]) were measured. Multiple regression was used to identify components of the CSR from the most life-threatening period of immersion (1st minute) predicted by the anxiety rating prior to immersion. Relationships between anxiety rating and CSR components during immersion were assessed by correlation. Results: Anxiety rating predicted the fc component of the CSR in unhabituated participants (CON1; p anxiety rating predicted the f

  1. Acute Anxiety Predicts Components of the Cold Shock Response on Cold Water Immersion: Toward an Integrated Psychophysiological Model of Acute Cold Water Survival.

    Science.gov (United States)

    Barwood, Martin J; Corbett, Jo; Massey, Heather; McMorris, Terry; Tipton, Mike; Wagstaff, Christopher R D

    2018-01-01

    Introduction: Drowning is a leading cause of accidental death. In cold-water, sudden skin cooling triggers the life-threatening cold shock response (CSR). The CSR comprises tachycardia, peripheral vasoconstriction, hypertension, inspiratory gasp, and hyperventilation with the hyperventilatory component inducing hypocapnia and increasing risk of aspirating water to the lungs. Some CSR components can be reduced by habituation (i.e., reduced response to stimulus of same magnitude) induced by 3-5 short cold-water immersions (CWI). However, high levels of acute anxiety, a plausible emotion on CWI: magnifies the CSR in unhabituated participants, reverses habituated components of the CSR and prevents/delays habituation when high levels of anxiety are experienced concurrent to immersions suggesting anxiety is integral to the CSR. Purpose: To examine the predictive relationship that prior ratings of acute anxiety have with the CSR. Secondly, to examine whether anxiety ratings correlated with components of the CSR during immersion before and after induction of habituation. Methods: Forty-eight unhabituated participants completed one (CON1) 7-min immersion in to cold water (15°C). Of that cohort, twenty-five completed four further CWIs that would ordinarily induce CSR habituation. They then completed two counter-balanced immersions where anxiety levels were increased (CWI-ANX) or were not manipulated (CON2). Acute anxiety and the cardiorespiratory responses (cardiac frequency [ f c ], respiratory frequency [ f R ], tidal volume [ V T ], minute ventilation [ E ]) were measured. Multiple regression was used to identify components of the CSR from the most life-threatening period of immersion (1 st minute) predicted by the anxiety rating prior to immersion. Relationships between anxiety rating and CSR components during immersion were assessed by correlation. Results: Anxiety rating predicted the f c component of the CSR in unhabituated participants (CON1; p CSR when anxiety

  2. Oxytocin decreases colonic motility of cold water stressed rats via oxytocin receptors.

    Science.gov (United States)

    Yang, Xiao; Xi, Tao-Fang; Li, Yu-Xian; Wang, Hai-Hong; Qin, Ying; Zhang, Jie-Ping; Cai, Wen-Ting; Huang, Meng-Ting; Shen, Ji-Qiao; Fan, Xi-Min; Shi, Xuan-Zheng; Xie, Dong-Ping

    2014-08-21

    To investigate whether cold water intake into the stomach affects colonic motility and the involvement of the oxytocin-oxytocin receptor pathway in rats. Female Sprague Dawley rats were used and some of them were ovariectomized. The rats were subjected to gastric instillation with cold (0-4 °C, cold group) or room temperature (20-25 °C, control group) saline for 14 consecutive days. Colon transit was determined with a bead inserted into the colon. Colonic longitudinal muscle strips were prepared to investigate the response to oxytocin in vitro. Plasma concentration of oxytocin was detected by ELISA. Oxytocin receptor expression was investigated by Western blot analysis. Immunohistochemistry was used to locate oxytocin receptors. Colon transit was slower in the cold group than in the control group (P cold water intake (0.69 ± 0.08 vs 0.88 ± 0.16, P receptors were located in the myenteric plexus, and their expression was up-regulated in the cold group (P Cold water intake increased blood concentration of oxytocin, but this effect was attenuated in ovariectomized rats (286.99 ± 83.72 pg/mL vs 100.56 ± 92.71 pg/mL, P Cold water intake inhibits colonic motility partially through oxytocin-oxytocin receptor signaling in the myenteric nervous system pathway, which is estrogen dependent.

  3. Thermo-hydraulic behavior of saturated steam-water mixture in pressure vessel during injection of cold water

    International Nuclear Information System (INIS)

    Aya, Izuo; Kobayashi, Michiyuki; Inasaka, Fujio; Nariai, Hideki.

    1983-01-01

    The thermo-hydraulic behavior of saturated steam water mixture in a pressure vessel during injection of cold water was experimentally investigated with the Facility for Mixing Effect of Emergency Core Cooling Water. The dimensions of the pressure vessel used in the experiments were 284mm ID and 1,971mm height. 11 experiments were conducted without blowdown in order to comprehend the basic process excluding the effect of blowdown at injection of cold water. The initial pressure and water level, the injection flow rate and the size of injection nozzle were chosen as experimental parameters. Temperatures and void fractions at 6 elevations as well as pressure in the pressure vessel were measured, and new data especially on the pressure undershoot just after the initation of water injection and the vertical distribution of temperature and void fraction were gotten. The transients of pressure, average temperature and void fraction were caluculated using single-volume analysis code BLODAC-1V which is based on thermal equilibrium and so-called bubble gradient model. Some input parameters included in the analysis code were evaluated through the comparison of analysis with experimental data. Moreover, the observed pressure undershoot which is evaluated to be induced by a time lag of vapourization in water due to thermal nonequilibrium, was also discussed with the aid of another simple analysis model. (author)

  4. Cold-water immersion (cryotherapy for preventing and treating muscle soreness after exercise

    Directory of Open Access Journals (Sweden)

    Chris Bleakley

    Full Text Available BACKGROUND: Many strategies are in use with the intention of preventing or minimizing delayed onset muscle soreness and fatigue after exercise. Cold-water immersion, in water temperatures of less than 15 °C, is currently one of the most popular interventional strategies used after exercise. OBJECTIVES: To determine the effects of cold-water immersion in the management of muscle soreness after exercise. SEARCH METHODS: In February 2010, we searched the Cochrane Bone, Joint and Muscle Trauma Group Specialised Register, the Cochrane Central Register of Controlled Trials (The Cochrane Library (2010, Issue 1, Medline, Embase, Cumulative Index to Nursing and Allied Health (CINAHL, British Nursing Index and archive (BNI, and the Physiotherapy Evidence Database (PEDro. We also searched the reference lists of articles, handsearched journals and conference proceedings and contacted experts. In November 2011, we updated the searches of Central (2011, Issue 4, Medline (up to November Week 3 2011, Embase (to 2011 Week 46 and CINAHL (to 28 November 2011 to check for more recent publications. SELECTION CRITERIA: Randomized and quasi-randomized trials comparing the effect of using cold-water immersion after exercise with: passive intervention (rest/no intervention, contrast immersion, warm-water immersion, active recovery, compression, or a different duration/dosage of cold-water immersion. Primary outcomes were pain (muscle soreness or tenderness (pain on palpation, and subjective recovery (return to previous activities without signs or symptoms. DATA COLLECTION AND ANALYSIS: Three authors independently evaluated study quality and extracted data. Some of the data were obtained following author correspondence or extracted from graphs in the trial reports. Where possible, data were pooled using the fixed-effect model. MAIN RESULTS: Seventeen small trials were included, involving a total of 366 participants. Study quality was low. The temperature, duration and

  5. Cold Vacuum Drying facility potable water system design description

    International Nuclear Information System (INIS)

    PITKOFF, C.C.

    1999-01-01

    This document describes the Cold Vacuum Drying Facility (CVDF) potable water (PW) system. The PW system provides potable water to the CVDF for supply to sinks, water closets, urinals, showers, custodial service sinks, drinking fountains, the decontamination shower, supply water to the non-PW systems, and makeup water for the de-ionized water system

  6. Development of Cold Spray Coatings for Accident-Tolerant Fuel Cladding in Light Water Reactors

    Science.gov (United States)

    Maier, Benjamin; Yeom, Hwasung; Johnson, Greg; Dabney, Tyler; Walters, Jorie; Romero, Javier; Shah, Hemant; Xu, Peng; Sridharan, Kumar

    2018-02-01

    The cold spray coating process has been developed at the University of Wisconsin-Madison for the deposition of oxidation-resistant coatings on zirconium alloy light water reactor fuel cladding with the goal of improving accident tolerance during loss of coolant scenarios. Coatings of metallic (Cr), alloy (FeCrAl), and ceramic (Ti2AlC) materials were successfully deposited on zirconium alloy flats and cladding tube sections by optimizing the powder size, gas preheat temperature, pressure and composition, and other process parameters. The coatings were dense and exhibited excellent adhesion to the substrate. Evaluation of the samples after high-temperature oxidation tests at temperatures up to 1300°C showed that the cold spray coatings significantly mitigate oxidation kinetics because of the formation of thin passive oxide layers on the surface. The results of the study indicate that the cold spray coating process is a viable near-term option for developing accident-tolerant zirconium alloy fuel cladding.

  7. Effect of cold work hardening on stress corrosion cracking of stainless steels in primary water of pressurized water reactors

    International Nuclear Information System (INIS)

    Raquet, O.; Herms, E.; Vaillant, F.; Couvant, T.; Boursier, J.M.

    2004-01-01

    A R and D program is carried out in CEA and EDF laboratories to investigate separately the effects of factors which could contribute to IASCC mechanism. In the framework of this study, the influence of cold work on SCC of ASSs in primary water is studied to supply additional knowledge concerning the contribution of radiation hardening on IASCC of ASSs. Solution annealed ASSs, essentially of type AISI 304(L) and AISI 316(L), are generally considered very resistant to SCC in nominal primary water. However, Constant Extension Rate Tests (CERTs), performed on cold pressed humped specimens in nominal primary water at 360 deg. C, reveal that these materials can exhibit a high SCC susceptibility: deepest cracks reach 1 mm (mean crack growth rate about 1 μm.h -1 ) and propagation is mainly intergranular for 304L and mainly transgranular for 316L. Indeed, work hardening in conjunction with high localized deformation can promote SCC. The influence of the nature of the cold work (shot peening, reaming, cold rolling, counter sinking, fatigue work hardening and tensile deformation) is investigated by means of screening CERTs performed with smooth specimens in 304L at 360 deg. C. For a given cold work hardening level, the susceptibility to crack initiation strongly depends on the cold working process, and no propagation is observed for a hardness level lower than 300 ±10 HV(0.49N). The propagation of cracks is observed only for dynamic loadings like CERT, traction/relaxation tests and crack growth rate tests performed with CT specimens under trapezoidal loading. Although crack initiation is observed for constant load and constant deformation tests, crack propagation do not seem to occur under these mechanical solicitations for 17000 hours of testing, even for hardness levels higher than 450 HV(0.49N). The mean crack growth rate increases when the hardness increases. An important R and D program is in progress to complement these results and to develop a SCC model for ASSs in

  8. Techno-economic evaluation for the heat integration of vaporisation cold energy in natural gas processing

    International Nuclear Information System (INIS)

    Koku, Oludolapo; Perry, Simon; Kim, Jin-Kuk

    2014-01-01

    Highlights: • Development of thermal integration modelling framework for the utilisation of LNG cold energy. • Feasibility study for various design options for the integration of low-temperature cold energy. • Provision of a design approach for achieving efficient use of cold energy in LNG terminals. • Understanding of techno-economic impacts associated with the thermal integration of LNG cold energy. - Abstract: This paper addresses a conceptual study investigating the techno-economic feasibility for the thermal Integration of LNG cold vaporisation energy in power generation applications. In conventional regasification systems, this valuable LNG cold energy is often being wasted to ambient heat sources, representing a thermodynamic inefficient process with a significant thermal impact on the local environment. A combined facility consisting of a non-integrated Combined Cycle Power Plant (CCPP) and an LNG receiving terminal employing traditional Open Rack Vaporisers (ORV) technology, has been modelled, as a base case. Retrofit strategies for the integration of LNG cold energy have been investigated, and their impacts on power production and system efficiency are systematically compared. Retrofit design options considered in this work include the use of a propane Rankine cycle coupled with the direct expansion of natural gas, the integration of a closed-loop water cycle or open-loop water circuit with a steam Rankine cycle, and the facilitation of integrated air cooling for a gas turbine

  9. Physicochemical and phytochemical properties of cold and hot water extraction from Hibiscus sabdariffa.

    Science.gov (United States)

    Ramirez-Rodrigues, Milena M; Plaza, Maria L; Azeredo, Alberto; Balaban, Murat O; Marshall, Maurice R

    2011-04-01

    Hibiscus cold (25 °C) and hot (90 °C) water extracts were prepared in various time-temperature combinations to determine equivalent extraction conditions regarding their physicochemical and phytochemical properties. Equivalent anthocyanins concentration was obtained at 25 °C for 240 min and 90 °C for 16 min. Total phenolics were better extracted with hot water that also resulted in a higher antioxidant capacity in these extracts. Similar polyphenolic profiles were observed between fresh and dried hibiscus extracts. Hibiscus acid and 2 derivatives were found in all extracts. Hydroxybenzoic acids, caffeoylquinic acids, flavonols, and anthocyanins constituted the polyphenolic compounds identified in hibiscus extracts. Two major anthocyanins were found in both cold and hot extracts: delphynidin-3-sambubioside and cyanidin-3-sambubioside. In general, both cold and hot extractions yielded similar phytochemical properties; however, under cold extraction, color degradation was significantly lower and extraction times were 15-fold longer. Hibiscus beverages are prepared from fresh or dried calyces by a hot extraction and pasteurized, which can change organoleptic, nutritional, and color attributes. Nonthermal technologies such as dense phase carbon dioxide may maintain their fresh-like color, flavor, and nutrients. This research compares the physicochemical and phytochemical changes resulting from a cold and hot extraction of fresh and dried hibiscus calyces and adds to the knowledge of work done on color, quality attributes, and antioxidant capacity of unique tropical products. In addition, the research shows how these changes could lead to alternative nonthermal processes for hibiscus.

  10. Voluntary water intake during and following moderate exercise in the cold.

    Science.gov (United States)

    Mears, Stephen A; Shirreffs, Susan M

    2014-02-01

    Exercising in cold environments results in water losses, yet examination of resultant voluntary water intake has focused on warm conditions. The purpose of the study was to assess voluntary water intake during and following exercise in a cold compared with a warm environment. Ten healthy males (22 ± 2 years, 67.8 ± 7.0 kg, 1.77 ± 0.06 m, VO₂peak 60.5 ± 8.9 ml·kg⁻¹·min⁻¹) completed two trials (7-8 days). In each trial subjects sat for 30 min before cycling at 70% VO₂peak (162 ± 27W) for 60 min in 25.0 ± 0.1 °C, 50.8 ± 1.5% relative humidity (RH; warm) or 0.4 ± 1.0 °C, 68.8 ± 7.5% RH (cold). Subjects then sat for 120 min at 22.2 ± 1.2 °C, 50.5 ± 8.0% RH. Ad libitum drinking was allowed during the exercise and recovery periods. Urine volume, body mass, serum osmolality, and sensations of thirst were measured at baseline, postexercise and after 60 and 120 min of the recovery period. Sweat loss was greater in the warm trial (0.96 ± 0.18 l v 0.48 ± 0.15 l; p cold) v 1.03 ± 0.26% (warm)). More water was consumed throughout the duration of the warm trial (0.81 ± 0.42 l v 0.50 ± 0.49 l; p = .001). Cumulative urine output was greater in the cold trial (0.81 ± 0.46 v 0.54 ± 0.31 l; p = .036). Postexercise serum osmolality was higher compared with baseline in the cold (292 ± 2 v 287 ± 3 mOsm.kg⁻¹, p sensations were similar between trials (p > .05). Ad libitum water intake adjusted so that similar body mass losses occurred in both trials. In the cold there appeared to a blunted thirst response.

  11. Hydrogen-water isotopic exchange process

    International Nuclear Information System (INIS)

    Cheung, H.

    1984-01-01

    The objects of this invention are achieved by a dual temperature isotopic exchange process employing hydrogen-water exchange with water passing in a closed recirculation loop between a catalyst-containing cold tower and the upper portion of a catalyst-containing hot tower, with feed water being introduced to the lower portion of the hot tower and being maintained out of contact with the water recirculating in the closed loop. Undue retarding of catalyst activity during deuterium concentration can thus be avoided. The cold tower and the upper portion of the hot tower can be operated with relatively expensive catalyst material of higher catalyst activity, while the lower portion of the hot tower can be operated with a relatively less expensive, more rugged catalyst material of lesser catalyst activity. The feed water stream, being restricted solely to the lower portion of the hot tower, requires minimal pretreatment for the removal of potential catalyst contaminants. The catalyst materials are desirably coated with a hydrophobic treating material so as to be substantially inaccessible to liquid water, thereby retarding catalyst fouling while being accessible to the gas for enhancing isotopic exchange between hydrogen gas and water vapor. A portion of the water of the closed loop can be passed to a humidification zone to heat and humidify the circulating hydrogen gas and then returned to the closed loop

  12. OTEC Advanced Composite Cold Water Pipe: Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Alan Miller; Matthew Ascari

    2011-09-12

    Ocean Thermal Energy Conversion can exploit natural temperature gradients in the oceans to generate usable forms of energy (for example, cost-competitive baseload electricity in tropical regions such as Hawaii) free from fossil fuel consumption and global warming emissions.The No.1 acknowledged challenge of constructing an OTEC plant is the Cold Water Pipe (CWP), which draws cold water from 1000m depths up to the surface, to serve as the coolant for the OTEC Rankine cycle. For a commercial-scale plant, the CWP is on the order of 10m in diameter.This report describes work done by LMSSC developing the CWP for LM MS2 New Ventures emerging OTEC business. The work started in early 2008 deciding on the minimum-cost CWP architecture, materials, and fabrication process. In order to eliminate what in previous OTEC work had been a very large assembly/deployment risk, we took the innovative approach of building an integral CWP directly from theOTEC platform and down into the water. During the latter half of 2008, we proceeded to a successful small-scale Proof-of-Principles validation of the new fabrication process, at the Engineering Development Lab in Sunnyvale. During 2009-10, under the Cooperative Agreement with the US Dept. of Energy, we have now successfully validated key elements of the process and apparatus at a 4m diameter scale suitable for a future OTEC Pilot Plant. The validations include: (1) Assembly of sandwich core rings from pre-pultruded hollow 'planks,' holding final dimensions accurately; (2) Machine-based dispensing of overlapping strips of thick fiberglass fabric to form the lengthwise-continuous face sheets, holding accurate overlap dimensions; (3) Initial testing of the fabric architecture, showing that the overlap splices develop adequate mechanical strength (work done under a parallel US Naval Facilities Command program); and (4) Successful resin infusion/cure of 4m diameter workpieces, obtaining full wet-out and a non-discernable knitline

  13. Effect of cold work and processing orientation on the SCC behavior of Alloy 600

    International Nuclear Information System (INIS)

    Moshier, W.C.; Brown, C.M.

    1999-01-01

    Cold work accelerates SCC growth rates in Alloy 600. However, the variation in crack growth rates generated from cold worker material has been significant, and the effect has been difficult to quantify. A study was performed in hydrogenated water adjusted to pH 10.2 to systematically evaluate the effect of cold work on Alloy 600 as a function of temperature, amount of cold work, stress intensity factor, and processing orientation. Cold work was introduced into the material by either tensile prestraining or cold rolling plate product. Crack growth rates were determined between 252 and 360 C, stress intensity factors between 21 and 55 MPa√m, and yield strengths between 201 and 827 MPa. The material with the highest yield strength was cold rolled and tested in the longitudinal-transverse (LT) and short-transverse (ST) orientations. Crack growth rates increased with increasing temperature, stress intensity factor, and yield strength. Furthermore, crack growth rates were a strong function of the processing orientation in the cold rolled plate, with growth rates being approximately an order of magnitude greater in the ST orientation compared to the LT orientation. Crack growth rates in the LT orientation were measured between 0.003 and 1.95 x 10 -9 m/s and between 0.066 and 6.3 x 10 -9 m/s in the ST orientation. Activation energies were slightly greater in the ST orientation, ranging from 154 to 191 kcal/mole, compared to activation energies between 126 and 157 kJ/mole in the LT orientation. The results of this study demonstrate that although cold work can be used to accelerate SCC, the orientation of crack growth can significantly affect the results, and must be taken into account when analyzing data from cold worked material

  14. Phytochemical content of hot and cold water extracts of Orthosiphon stamineus leaves

    Science.gov (United States)

    Habboo, Maysam Dahham; Nor, Norefrina Shafinaz Md.; Ibrahim, Nazlina

    2018-04-01

    Orthosiphon stamineus Benth (Lamiaceae) is a plant with ethnobotanical applications including antifungal and antibacterial properties. This study aimed to evaluate the phytochemical contents of Orthosiphon stamineus leaves water extract prepared in cold and hot distilled water. Phytochemical screening revealed the presence of phytochemicals components such as a flavonoid, terpenoid and steroid in both extracts. Cold water extract has two extra components: saponin and alkaloid that may be destroyed by the exposure to heat.

  15. A picture on the wall: innovative mapping reveals cold-water coral refuge in submarine canyon.

    Directory of Open Access Journals (Sweden)

    Veerle A I Huvenne

    Full Text Available Cold-water corals are azooxanthellate species found throughout the ocean at water depths down to 5000 m. They occur in patches, reefs or large mound structures up to 380 m high, and as ecosystem engineers create important habitats for a diverse fauna. However, the majority of these habitats are now within reach of deep-sea bottom trawling. Many have been severely damaged or are under threat, despite recent protection initiatives. Here we present a cold-water coral habitat type that so far has been overlooked--quite literally--and that has received minimal impact from human activities. Vertical and overhanging cliffs in deep-sea canyons, revealed using an innovative approach to marine habitat mapping, are shown to provide the perfect substratum for extensive cold-water coral-based communities. Typical canyon-related processes, including locally enhanced internal tides and focussed downslope organic carbon transport, provide favourable environmental conditions (current regime, food input to sustain the communities, even outside the optimal depth and density envelopes reported elsewhere in the NE Atlantic. Our findings show that deep-sea canyons can form natural refuges for faunal communities sensitive to anthropogenic disturbance, and have the potential to fulfil the crucial role of larval sources for the recolonisation of damaged sites elsewhere on the margin.

  16. Effect of seasonal changes in use patterns and cold inlet water temperature on water-heating loads

    Energy Technology Data Exchange (ETDEWEB)

    Abrams, D.W.; Shedd, A.C. [D.W. Abrams, P.E. and Associates, Atlanta, GA (United States)

    1996-11-01

    This paper presents long-term test data obtained in 20 commercial buildings and 16 residential sites. The information illustrates the effects of variations in hot water load determinants and the effect on energy use. It also is useful as a supplement to the load profiles presented in the ASHRAE Handbooks and other design references. The commercial facilities include supermarkets, fast-food restaurants, full-service restaurants, commercial kitchens, a motel, a nursing home, a hospital, a bakery, and laundry facilities. The residential sites ere selected to provide test sites with higher-than-average hot water use. They include 13 single-family detached residences, one 14-unit apartment building, and two apartment laundries. Test data are available at measurement intervals of 1 minute for the residential sites and 15 minutes for the commercial sites. Summary data in tabular and graphical form are presented for average daily volumetric hot water use and cold inlet water temperature. Measured cold inlet water temperature and volumetric hot water use figures are compared to values typically used for design and analysis. Conclusions are offered regarding the effect of cold water inlet temperature and variations in hot water use on water-heating load and energy use. Recommendations for the use of the information presented in water-heating system design, performance optimization, and performance analysis conclude the paper.

  17. Lipid-induced thermogenesis is up-regulated by the first cold-water immersions in juvenile penguins.

    Science.gov (United States)

    Teulier, Loïc; Rey, Benjamin; Tornos, Jérémy; Le Coadic, Marion; Monternier, Pierre-Axel; Bourguignon, Aurore; Dolmazon, Virginie; Romestaing, Caroline; Rouanet, Jean-Louis; Duchamp, Claude; Roussel, Damien

    2016-07-01

    The passage from shore to marine life is a critical step in the development of juvenile penguins and is characterized by a fuel selection towards lipid oxidation concomitant to an enhancement of lipid-induced thermogenesis. However, mechanisms of such thermogenic improvement at fledging remain undefined. We used two different groups of pre-fledging king penguins (Aptenodytes patagonicus) to investigate the specific contribution of cold exposure during water immersion to lipid metabolism. Terrestrial penguins that had never been immersed in cold water were compared with experimentally cold-water immersed juveniles. Experimentally immersed penguins underwent ten successive immersions at approximately 9-10 °C for 5 h over 3 weeks. We evaluated adaptive thermogenesis by measuring body temperature, metabolic rate and shivering activity in fully immersed penguins exposed to water temperatures ranging from 12 to 29 °C. Both never-immersed and experimentally immersed penguins were able to maintain their homeothermy in cold water, exhibiting similar thermogenic activity. In vivo, perfusion of lipid emulsion at thermoneutrality induced a twofold larger calorigenic response in experimentally immersed than in never-immersed birds. In vitro, the respiratory rates and the oxidative phosphorylation efficiency of isolated muscle mitochondria were not improved with cold-water immersions. The present study shows that acclimation to cold water only partially reproduced the fuel selection towards lipid oxidation that characterizes penguin acclimatization to marine life.

  18. Effect of Local Strain Distribution of Cold-Rolled Alloy 690 on Primary Water Stress Corrosion Crack Growth Behavior

    Directory of Open Access Journals (Sweden)

    Kim S.-W.

    2017-06-01

    Full Text Available This work aims to study the stress corrosion crack growth behavior of cold-rolled Alloy 690 in the primary water of a pressurized water reactor. Compared with Alloy 600, which shows typical intergranular cracking along high angle grain boundaries, the cold-rolled Alloy 690, with its heterogeneous microstructure, revealed an abnormal crack growth behavior in mixed mode, that is, in transgranular cracking near a banded region, and in intergranular cracking in a matrix region. From local strain distribution analysis based on local mis-orientation, measured along the crack path using the electron back scattered diffraction method, it was suggested that the abnormal behavior was attributable to a heterogeneity of local strain distribution. In the cold-rolled Alloy 690, the stress corrosion crack grew through a highly strained area formed by a prior cold-rolling process in a direction perpendicular to the maximum principal stress applied during a subsequent stress corrosion cracking test.

  19. OTEC Cold Water Pipe-Platform Subsystem Dynamic Interaction Validation

    Energy Technology Data Exchange (ETDEWEB)

    Varley, Robert [Lockheed Martin Corporation, Manassas, VA (United States); Halkyard, John [John Halkyard and Associates, Houston, TX (United States); Johnson, Peter [BMT Scientific Marine Services, Inc., Houston, TX (United States); Shi, Shan [Houston Offshore Engineering, Houston, TX (United States); Marinho, Thiago [Federal Univ. of Rio de Janeiro (Brazil). LabOceano

    2014-05-09

    A commercial floating 100-megawatt (MW) ocean thermal energy conversion (OTEC) power plant will require a cold water pipe (CWP) with a diameter of 10-meter (m) and length of up to 1,000 m. The mass of the cold water pipe, including entrained water, can exceed the mass of the platform supporting it. The offshore industry uses software-modeling tools to develop platform and riser (pipe) designs to survive the offshore environment. These tools are typically validated by scale model tests in facilities able to replicate real at-sea meteorological and ocean (metocean) conditions to provide the understanding and confidence to proceed to final design and full-scale fabrication. However, today’s offshore platforms (similar to and usually larger than those needed for OTEC applications) incorporate risers (or pipes) with diameters well under one meter. Secondly, the preferred construction method for large diameter OTEC CWPs is the use of composite materials, primarily a form of fiber-reinforced plastic (FRP). The use of these material results in relatively low pipe stiffness and large strains compared to steel construction. These factors suggest the need for further validation of offshore industry software tools. The purpose of this project was to validate the ability to model numerically the dynamic interaction between a large cold water-filled fiberglass pipe and a floating OTEC platform excited by metocean weather conditions using measurements from a scale model tested in an ocean basin test facility.

  20. Effect of cold water immersion on repeat cycling performance and thermoregulation in the heat.

    Science.gov (United States)

    Vaile, Joanna; Halson, Shona; Gill, Nicholas; Dawson, Brian

    2008-03-01

    To assess the effect of cold water immersion and active recovery on thermoregulation and repeat cycling performance in the heat, ten well-trained male cyclists completed five trials, each separated by one week. Each trial consisted of a 30-min exercise task, one of five 15-min recoveries (intermittent cold water immersion in 10 degrees C, 15 degrees C and 20 degrees C water, continuous cold water immersion in 20 degrees C water or active recovery), followed by 40 min passive recovery, before repeating the 30-min exercise task. Recovery strategy effectiveness was assessed via changes in total work in the second exercise task compared with that in the first. Following active recovery, a mean 4.1% (s = 1.8) less total work (P = 0.00) was completed in the second than in the first exercise task. However, no significant differences in total work were observed between any of the cold water immersion protocols. Core and skin temperature, blood lactate concentration, heart rate, rating of thermal sensation, and rating of perceived exertion were recorded. During both exercise tasks there were no significant differences in blood lactate concentration between interventions; however, following active recovery blood lactate concentration was significantly lower (P immersion protocols. All cold water immersion protocols were effective in reducing thermal strain and were more effective in maintaining subsequent high-intensity cycling performance than active recovery.

  1. Human thermal responses during leg-only exercise in cold water.

    Science.gov (United States)

    Golden, F S; Tipton, M J

    1987-10-01

    1. Exercise during immersion in cold water has been reported by several authors to accelerate the rate of fall of core temperature when compared with rates seen during static immersion. The nature of the exercise performed, however, has always been whole-body in nature. 2. In the present investigation fifteen subjects performed leg exercise throughout a 40 min head-out immersion in water at 15 degrees C. The responses obtained were compared with those seen when the subjects performed an identical static immersion. 3. Aural and rectal temperatures were found to fall by greater amounts during static immersion. 4. It is concluded that 'the type of exercise performed' should be included in the list of factors which affect core temperature during cold water immersion.

  2. Changes in the content of water-soluble vitamins in Actinidia chinensis during cold storage

    Directory of Open Access Journals (Sweden)

    Zhu Xian-Bo

    2016-01-01

    Full Text Available We assessed the effects of cold storage on nine water-soluble vitamins in 7 cultivars of Actinidia chinensis (kiwifruit using high-performance liquid chromatography. Samples were collected at three time points during cold storage: one day, 30 days, and when edible. We found that vitamin C in most cultivars was raised with cold storage, but there was no consistent increased or decreased trend for other water-soluble vitamins across cultivars in storage. After one day of cold storage, vitamins B1 and B2 were the most prevalent vitamins in Control (wild fruit, while vitamins B5 and B6 were most prevalent in the Hongyang and Qihong cultivars. However, B12 was the most prevalent vitamin in the Qihong cultivar after 30 days of cold storage. Vitamins B3, B7, B9, and C were detected at the edible time point in Huayou, Hongyang, Jinnong-2, and Control fruit. Vitamin contents varied significantly among cultivars of kiwifruit following different durations of cold storage. Out of the three durations tested, a period of 30 days in cold storage was the most suitable for the absorption of water-soluble vitamins by A. chinensis.

  3. Further assessment studies of the Advanced Cold Process Canister

    International Nuclear Information System (INIS)

    Henshaw, J.; Hoch, A.; Sharland, S.M.

    1990-08-01

    A preliminary assessment of the performance of the Advanced Cold Process Canister (ACPC) was carried out recently by Marsh. The aim of the study presented in this report is to re-examine the validity of some of the assumptions made, and re-evaluate the canister performance as appropriate. Two areas were highlighted in the preliminary study as requiring more detailed quantitative evaluation. 1) Assessment of the risk of internal stress-corrosion cracking induced by irradiation of moist air inside the canister if, under fault conditions, significant water was carried into the canister before sealing. 2) Evaluation of the corrosion behaviour subsequent to first breach of outer container. (author)

  4. Effects of whole body cryotherapy and cold water immersion on knee skin temperature.

    Science.gov (United States)

    Costello, J T; Donnelly, A E; Karki, A; Selfe, J

    2014-01-01

    This study sought to (a) compare and contrast the effect of 2 commonly used cryotherapy treatments, 4 min of -110 °C whole body cryotherapy and 8 °C cold water immersion, on knee skin temperature and (b) establish whether either protocol was capable of achieving a skin temperature (cryotherapy (19.0±0.9 °C) compared to cold water immersion (20.5±0.6 °C). However, from 10 to 60 min post, the average, minimum and maximum skin temperatures were lower (p<0.05) following the cold water treatment. Finally, neither protocol achieved a skin temperature believed to be required to elicit an analgesic effect. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Cold water inlet in solar tanks - valuation

    DEFF Research Database (Denmark)

    Andersen, Elsa

    1999-01-01

    The aim of the project is to make a proposal for how to value a storage tank with a poor design of the cold water inlet. Based on measurements and calculations a number of curves, which are valid for this valuation, are worked out. Based on a simple test with a uniform heated storage tank the rat...

  6. The process and risk of the CPR1000 cold function test in the cold area

    International Nuclear Information System (INIS)

    Liu Tinghao; Zhang Jian; Ji Dapeng; Shi Quanjian; Tian Kuo

    2014-01-01

    Hong yanhe nuclear power station is the first CPR1000 reactor which is under construction in the cold area of north China. It is also the first time to carry out the cold functional test (CFT) in the winter of north China. The preparation and process of CFT are described in the paper. According to the experience feedback of CFT of Unit 1, the risk and solution which are significance for the CFT of the other NPS in the cold area are analysed. (authors)

  7. Effect of a 5-min cold-water immersion recovery on exercise performance in the heat.

    Science.gov (United States)

    Peiffer, J J; Abbiss, C R; Watson, G; Nosaka, K; Laursen, P B

    2010-05-01

    This study examined the effect of a 5-min cold-water immersion (14 degrees C) recovery intervention on repeated cycling performance in the heat. 10 male cyclists performed two bouts of a 25-min constant-paced (254 (22) W) cycling session followed by a 4-km time trial in hot conditions (35 degrees C, 40% relative humidity). The two bouts were separated by either 15 min of seated recovery in the heat (control) or the same condition with 5-min cold-water immersion (5th-10th minute), using a counterbalanced cross-over design (CP(1)TT(1) --> CWI or CON --> CP(2)TT(2)). Rectal temperature was measured immediately before and after both the constant-paced sessions and 4-km timed trials. Cycling economy and Vo(2) were measured during the constant-paced sessions, and the average power output and completion times were recorded for each time trial. Compared with control, rectal temperature was significantly lower (0.5 (0.4) degrees C) in cold-water immersion before CP(2) until the end of the second 4-km timed trial. However, the increase in rectal temperature (0.5 (0.2) degrees C) during CP(2) was not significantly different between conditions. During the second 4-km timed trial, power output was significantly greater in cold-water immersion (327.9 (55.7) W) compared with control (288.0 (58.8) W), leading to a faster completion time in cold-water immersion (6.1 (0.3) min) compared with control (6.4 (0.5) min). Economy and Vo(2) were not influenced by the cold-water immersion recovery intervention. 5-min cold-water immersion recovery significantly lowered rectal temperature and maintained endurance performance during subsequent high-intensity exercise. These data indicate that repeated exercise performance in heat may be improved when a short period of cold-water immersion is applied during the recovery period.

  8. Cold-water coral banks and submarine landslides: a review

    Science.gov (United States)

    de Mol, Ben; Huvenne, Veerle; Canals, Miquel

    2009-06-01

    This paper aims to review the relation between cold-water coral bank development and submarine landslides. Both are common features on continental margins, but so far it has not been reviewed which effect—if at all—they may have upon each other. Indirect and direct relations between coral banks and landslides are evaluated here, based on four case studies: the Magellan Mound Province in the Porcupine Seabight, where fossil coral banks appear partly on top of a buried slide deposit; the Sula Ridge Reef Complex and the Storegga landslide both off mid-Norway; and the Mauritania coral bank province, associated with the Mauritanian Slide Complex. For each of these locations, positive and negative relationships between both features are discussed, based on available datasets. Locally submarine landslides might directly favour coral bank development by creating substratum where corals can settle on, enhancing turbulence due to abrupt seabed morphological variations and, in some cases, causing fluid seepage. In turn, some of these processes may contribute to increased food availability and lower sedimentation rates. Landslides can also affect coral bank development by direct erosion of the coral banks, and by the instantaneous increase of turbidity, which may smother the corals. On the other hand, coral banks might have a stabilising function and delay or stop the headwall retrogradation of submarine landslides. Although local relationships can be deduced from these case studies, no general and direct relationship exists between submarine landslides and cold-water coral banks.

  9. Coral mucus fuels the sponge loop in warm- and cold-water coral reef ecosystems.

    Science.gov (United States)

    Rix, Laura; de Goeij, Jasper M; Mueller, Christina E; Struck, Ulrich; Middelburg, Jack J; van Duyl, Fleur C; Al-Horani, Fuad A; Wild, Christian; Naumann, Malik S; van Oevelen, Dick

    2016-01-07

    Shallow warm-water and deep-sea cold-water corals engineer the coral reef framework and fertilize reef communities by releasing coral mucus, a source of reef dissolved organic matter (DOM). By transforming DOM into particulate detritus, sponges play a key role in transferring the energy and nutrients in DOM to higher trophic levels on Caribbean reefs via the so-called sponge loop. Coral mucus may be a major DOM source for the sponge loop, but mucus uptake by sponges has not been demonstrated. Here we used laboratory stable isotope tracer experiments to show the transfer of coral mucus into the bulk tissue and phospholipid fatty acids of the warm-water sponge Mycale fistulifera and cold-water sponge Hymedesmia coriacea, demonstrating a direct trophic link between corals and reef sponges. Furthermore, 21-40% of the mucus carbon and 32-39% of the nitrogen assimilated by the sponges was subsequently released as detritus, confirming a sponge loop on Red Sea warm-water and north Atlantic cold-water coral reefs. The presence of a sponge loop in two vastly different reef environments suggests it is a ubiquitous feature of reef ecosystems contributing to the high biogeochemical cycling that may enable coral reefs to thrive in nutrient-limited (warm-water) and energy-limited (cold-water) environments.

  10. Water Quality Study on the Hot and Cold Water Supply Systems at Vietnamese Hotels

    Directory of Open Access Journals (Sweden)

    Kanako Toyosada

    2017-04-01

    Full Text Available This study was conducted as part of the Joint Crediting Mechanism (JCM of the Japanese Ministry of Economy, Trade and Industry, and the Ministry of the Environment project’s preparation in Vietnam. Samples were taken from hot and cold water supplies from guest rooms’ faucets in 12 hotels in Hanoi city, Vietnam, and 13 hotels in Japan for comparison. A simple water quality measurement and determination of Legionella was carried out. The results showed that residual effective chlorine—which guarantees bactericidal properties—was not detected in tap water supplied in hotel rooms in Vietnam, and nitrite (an indicator of water pollution was detected in 40% of buildings. In the hotels in Japan, the prescribed residual chlorine concentration met the prescribed levels, and nitrite was not detected. Additionally, while there was no Legionella detected in the Japanese cases, it was detected in most of the Vietnamese hotels, which were found to manage the hot water storage tank at low temperatures of 40–50 °C. It was found that there were deficiencies in cold and hot water supply quality, and that there was no effective system in place for building operation maintenance and management.

  11. Effective Climate Refugia for Cold-water Fishes

    Science.gov (United States)

    Ebersole, J. L.; Morelli, T. L.; Torgersen, C.; Isaak, D.; Keenan, D.; Labiosa, R.; Fullerton, A.; Massie, J.

    2015-12-01

    Climate change threatens to create fundamental shifts in in the distributions and abundances of endothermic organisms such as cold-water salmon and trout species (salmonids). Recently published projected declines in mid-latitude salmonid distributions under future climates range from modest to severe, depending on modeling approaches, assumptions, and spatial context of analyses. Given these projected losses, increased emphasis on management for ecosystem resilience to help buffer cold-water fish populations and their habitats against climate change is emerging. Using terms such as "climate-proofing", "climate-ready", and "climate refugia", such efforts stake a claim for an adaptive, anticipatory planning response to the climate change threat. To be effective, such approaches will need to address critical uncertainties in both the physical basis for projected landscape changes in water temperature and streamflow, as well as the biological responses of organisms. Recent efforts define future potential climate refugia based on projected streamflows, air temperatures, and associated water temperature changes. These efforts reflect the relatively strong conceptual foundation for linkages between regional climate change and local hydrological responses and thermal dynamics. Yet important questions remain. Drawing on case studies throughout the Pacific Northwest, we illustrate some key uncertainties in the responses of salmonids and their habitats to altered hydro-climatic regimes currently not well addressed by physical or ecological models. Key uncertainties include biotic interactions, organismal adaptive capacity, local climate decoupling due to groundwater-surface water interactions, the influence of human engineering responses, and synergies between climatic and other stressors. These uncertainties need not delay anticipatory planning, but rather highlight the need for identification and communication of actions with high probabilities of success, and targeted

  12. Simulating Complex, Cold-region Process Interactions Using a Multi-scale, Variable-complexity Hydrological Model

    Science.gov (United States)

    Marsh, C.; Pomeroy, J. W.; Wheater, H. S.

    2017-12-01

    Accurate management of water resources is necessary for social, economic, and environmental sustainability worldwide. In locations with seasonal snowcovers, the accurate prediction of these water resources is further complicated due to frozen soils, solid-phase precipitation, blowing snow transport, and snowcover-vegetation-atmosphere interactions. Complex process interactions and feedbacks are a key feature of hydrological systems and may result in emergent phenomena, i.e., the arising of novel and unexpected properties within a complex system. One example is the feedback associated with blowing snow redistribution, which can lead to drifts that cause locally-increased soil moisture, thus increasing plant growth that in turn subsequently impacts snow redistribution, creating larger drifts. Attempting to simulate these emergent behaviours is a significant challenge, however, and there is concern that process conceptualizations within current models are too incomplete to represent the needed interactions. An improved understanding of the role of emergence in hydrological systems often requires high resolution distributed numerical hydrological models that incorporate the relevant process dynamics. The Canadian Hydrological Model (CHM) provides a novel tool for examining cold region hydrological systems. Key features include efficient terrain representation, allowing simulations at various spatial scales, reduced computational overhead, and a modular process representation allowing for an alternative-hypothesis framework. Using both physics-based and conceptual process representations sourced from long term process studies and the current cold regions literature allows for comparison of process representations and importantly, their ability to produce emergent behaviours. Examining the system in a holistic, process-based manner can hopefully derive important insights and aid in development of improved process representations.

  13. Effect of cold water injection on operation of and oil production from formations of Romashkino field

    Energy Technology Data Exchange (ETDEWEB)

    Mingareev, R Sh; Vakhitov, G G; Sultanov, S A

    1968-11-01

    Each year about 130 million cu m of cold water are injected into this field. Since cold water can lower reservoir temperature, increase oil viscosity, deposit paraffin in the formation, and reduce oil recovery, a thermal survey of this field was conducted. The survey showed that the average reservoir temperature was not reduced by cold-water injection for 15 yr. However, local cooling was observed at distances less than 400 m from the water injection well. Through these wells more than 4 PV of water have passed. The thermal front lags 1,500 m behind the advancing water front. For this reason, cold-water injection does not reduce oil recovery where there is uniform advance of the floodwater. When the formation is heterogeneous so that water advances more rapidly in high-permeability sand than in adjoining low-permeability sand, then the cooling effect can reduce oil recovery. For this reason, it is advisable to force water into the entire interval of the oil formation. An isotherm map of the Romashkino field is shown.

  14. Effect of Cold-Water Irrigation on Grain Quality Traits in japonica Rice Varieties from Yunnan Province, China

    Directory of Open Access Journals (Sweden)

    Guo-zhen ZHAO

    2009-09-01

    Full Text Available The response of grain quality traits to cold-water irrigation and its correlation with cold tolerance were studied in 11 japonica rice varieties from Yunnan Province, China. The results indicated that the response of grain quality traits to the cold-water stress varied with rice varieties and grain quality traits. Under the cold-water stress, grain width, chalky rice rate, whiteness, 1000-grain weight, brown rice rate, taste meter value, peak viscosity, trough viscosity, breakdown viscosity and final viscosity significantly decreased, whereas grain length-width ratio, head rice rate, alkali digestion value, protein content and setback viscosity markedly increased. However, the other traits such as grain length, amylose content, milled rice rate, peak viscosity time and pasting temperature were not significantly affected by the cold-water stress. Significant correlations were discovered between phenotypic acceptability and cold response indices of taste meter value, protein content, peak viscosity and breakdown viscosity. Therefore, it would be very important to improve the cold tolerance of Yunnan rice varieties in order to stabilize and improve their eating quality.

  15. Influence of pyridostigmine bromide on human thermoregulation during cold-water immersion

    Energy Technology Data Exchange (ETDEWEB)

    Cadarette, B.S.; Prusaczyk, W.K.; Sawka, M.N. (Army Research Inst. of Environmental Medicine, Natick, MA (United States))

    1991-03-11

    This study examined the effects of an oral 30 mg dose of pyridostigmine bromide (PYR) on thermoregulatory and physiological responses during cold stress. Six men were immersed in chilled stirred water for up to 180 minutes; once 2 hours following ingestion of PYR and once 2 hours following ingestion of a placebo (CON). With PYR, mean ({plus minus} SD) red blood cell cholinesterase inhibition was 33 ({plus minus}12)% at 110 minutes post-ingestion. Cholinesterase inhibition was negatively related to lean body mass. Abdominal discomfort caused termination in 3 of 6 PYR experiments ({bar X} immersion time = 117 min) but in no CON experiments ({bar X} immersion time = 142 min, p > 0.05). During immersion, metabolic rate increased significantly over pre-immersion levels, and increased with duration of immersion, but did not differ between conditions. PYR had no significant effect on rectal temperature, mean body temperature, thermal sensation, heart rate, or plasma cortisol concentration. It was concluded that a 30 mg dose of PYR does not increase susceptibility to hypothermia in humans immersed in cold-water; however, in combination with cold-stress, PYR may result in marked abdominal cramping and limit cold tolerance.

  16. Linking benthic hydrodynamics and cold-water coral occurrences: A high-resolution model study at three cold-water coral provinces in the NE Atlantic

    NARCIS (Netherlands)

    Mohn, C.; Rengstorf, A.; White, M.; Mienis, F.; Soetaert, K.; Grehan, A.; Duineveld, G.

    2014-01-01

    Observations from numerous cold-water coral locations in the NE Atlantic show energetic near-bottom flow dynamics along the European continental margin at individual coral mounds and mound clusters. Dynamics are largely controlled by tide-topography interaction generating and enhancing periodic

  17. Main processes of the Atlantic cold tongue interannual variability

    Science.gov (United States)

    Planton, Yann; Voldoire, Aurore; Giordani, Hervé; Caniaux, Guy

    2018-03-01

    The interannual variability of the Atlantic cold tongue (ACT) is studied by means of a mixed-layer heat budget analysis. A method to classify extreme cold and warm ACT events is proposed and applied to ten various analysis and reanalysis products. This classification allows 5 cold and 5 warm ACT events to be selected over the period 1982-2007. Cold (warm) ACT events are defined by the presence of negative (positive) sea surface temperature (SST) anomalies at the center of the equatorial Atlantic in late boreal spring, preceded by negative (positive) zonal wind stress anomalies in the western equatorial Atlantic. An ocean general circulation model capable of reconstructing the interannual variability of the ACT correctly is used to demonstrate that cold ACT events develop rapidly from May to June mainly due to intense cooling by vertical mixing and horizontal advection. The simulated cooling at the center of the basin is the result of the combined effects of non-local and local processes. The non-local process is an upwelling associated with an eastward-propagating Kelvin wave, which makes the mixed-layer more shallow and preconditions the upper layers to be cooled by an intense heat loss at the base of the mixed-layer, which is amplified by a stronger local injection of energy from the atmosphere. The early cooling by vertical mixing in March is also shown to be a good predictor of June cooling. In July, horizontal advection starts to warm the mixed-layer abnormally and damps SST anomalies. The advection anomalies, which result from changes in the horizontal temperature gradient, are associated in some cases with the propagation of Rossby waves along the equator. During warm ACT events, processes are reversed, generating positive SST anomalies: a downwelling Kelvin wave triggers stratification anomalies and mixed-layer depth anomalies, amplified by a weaker injection of energy from the atmosphere in May-June. In July, warm ACT events are abnormally cooled due to

  18. Variability in cold front activities modulating cool-season evaporation from a southern inland water in the USA

    International Nuclear Information System (INIS)

    Liu Heping; Blanken, Peter D; Weidinger, Tamas; Nordbo, Annika; Vesala, Timo

    2011-01-01

    Understanding seasonal variations in the evaporation of inland waters (e.g., lakes and reservoirs) is important for water resource management as well as the prediction of the hydrological cycles in response to climate change. We analyzed eddy covariance-based evaporation measurements from the Ross Barnett Reservoir (32 deg. 26'N, 90 0 02'W; which is always ice-free) in central Mississippi during the cool months (i.e., September-March) of 2007 and 2008, and found that the variability in cold front activities (i.e., passages of cold fronts and cold/dry air masses behind cold fronts) played an important role in modulating the exchange of sensible (H) and latent (λE) heat fluxes. Our analysis showed that 2007's warmer cool season had smaller mean H and λE than 2008's cooler cool season. This implies that the warmer cool season did not accelerate evaporation and heat exchange between the water surface and the atmosphere. Instead, more frequent cold fronts and longer periods of cold/dry air masses behind the cold fronts in 2008 resulted in overall larger H and λE as compared with 2007, this primarily taking the form of sporadic short-term rapid 'pulses' of H and λE losses from the water's surface. These results suggest that future climate-induced changes in frequency of cold fronts and the meteorological properties of the air masses behind cold fronts (e.g., wind speeds, temperature, and humidity), rather than other factors of climate change, would produce significant variations in the water surface's energy fluxes and subsequent evaporation rates.

  19. Performance on Water Stability of Cement-Foamed Asphalt Cold Recycled Mixture

    Directory of Open Access Journals (Sweden)

    Li Junxiao

    2018-01-01

    Full Text Available Through designing the mixture proportion of foamed asphalt cold in-place recycled mixture combined with the water stability experiment, it shows that the addition of cement can obviously improve foamed asphalt mixture’s water stability and the best cement admixture is between 1% ~ 2%; Using digital imaging microscope and SEM technology, the mechanism of increasing on the intensity of foamed asphalt mixture resulted by adding cement was analyzed. It revealed that the cement hydration products contained in the foamed asphalt mixture hydrolyzed into space mesh structure and wrapped up the aggregate particle, this is the main reason that the cement can enhance the mixture’s intensity as well as the water stability. This research provides reference for cement admixture’s formulation in the designing of foamed asphalt cold in-place recycled mixture.

  20. Application of laser assisted cold spraying process for metal deposition

    CSIR Research Space (South Africa)

    Tlotleng, Monnamme

    2014-02-01

    Full Text Available Laser assisted cold spraying (LACS) process is a hybrid technique that uses laser and cold spray to deposit solid powders on metal substrates. For bonding to occur, the particle velocities must be supersonic which are achieved by entraining...

  1. A light water excess heat reaction suggests that cold fusion may be alkali-hydrogen fusion

    International Nuclear Information System (INIS)

    Bush, R.T.

    1992-01-01

    This paper reports that Mills and Kneizys presented data in support of a light water excess heat reaction obtained with an electrolytic cell highly reminiscent of the Fleischmann-Pons cold fusion cell. The claim of Mills and Kneizys that their excess heat reaction can be explained on the basis of a novel chemistry, which supposedly also explains cold fusion, is rejected in favor of their reaction being, instead, a light water cold fusion reaction. It is the first known light water cold fusion reaction to exhibit excess heat, it may serve as a prototype to expand our understanding of cold fusion. From this new reactions are deduced, including those common to past cold fusion studies. This broader pattern of nuclear reactions is typically seen to involve a fusion of the nuclides of the alkali atoms with the simplest of the alkali-type nuclides, namely, protons, deuterons, and tritons. Thus, the term alkali-hydrogen fusion seems appropriate for this new type of reaction with three subclasses: alkali-hydrogen fusion, alkali-deuterium fusion, and alkali-tritium fusion. A new three-dimensional transmission resonance model (TRM) is sketched. Finally, preliminary experimental evidence in support of the hypothesis of a light water nuclear reaction and alkali-hydrogen fusion is reported. Evidence is presented that appears to strongly implicate the transmission resonance phenomenon of the new TRM

  2. Predicting the occurrence of cold water patches at intermittent and ephemeral tributary confluences with warm rivers

    Science.gov (United States)

    Small, cold tributary streams can provide important thermal refuge habitat for cold-water fishes such as Pacific salmon (Oncorhynchus spp.) residing in warm, downstream receiving waters. We investigated the potential function of small perennial and non-perennial tributary stream...

  3. A conceptual demonstration of freeze desalination-membrane distillation (FD-MD) hybrid desalination process utilizing liquefied natural gas (LNG) cold energy.

    Science.gov (United States)

    Wang, Peng; Chung, Tai-Shung

    2012-09-01

    The severe global water scarcity and record-high fossil oil price have greatly stimulated the research interests on new desalination technologies which can be driven by renewable energy or waste energy. In this study, a hybrid desalination process comprising freeze desalination and membrane distillation (FD-MD) processes was developed and explored in an attempt to utilize the waste cold energy released from re-gasification of liquefied natural gas (LNG). The concept of this technology was demonstrated using indirect-contact freeze desalination (ICFD) and direct-contact membrane distillation (DCMD) configurations. By optimizing the ICFD operation parameters, namely, the usage of nucleate seeds, operation duration and feed concentration, high quality drinkable water with a low salinity ∼0.144 g/L was produced in the ICFD process. At the same time, using the optimized hollow fiber module length and packing density in the DCMD process, ultra pure water with a low salinity of 0.062 g/L was attained at a condition of high energy efficiency (EE). Overall, by combining FD and MD processes and adopting the optimized operation parameters, the hybrid FD-MD system has been successfully demonstrated. A high total water recovery of 71.5% was achieved, and the water quality obtained met the standard for drinkable water. In addition, with results from specific energy calculation, it was proven that the hybrid process is an energy-saving process and utilization of LNG cold energy could greatly reduce the total energy consumption. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Survey of public knowledge and responses to educational slogans regarding cold-water immersion.

    Science.gov (United States)

    Giesbrecht, Gordon G; Pretorius, Thea

    2008-01-01

    Cold water temperature is a significant factor in North American drownings. These deaths are usually attributed to hypothermia. Survey questions were administered to 661 attendees of cold-stress seminars-including medical, rescue, law enforcement and lay attendees-to determine general knowledge of the effects of ice water immersion and responses to 2 public service educational slogans. Five questions were posed at the beginning of seminars to 8 groups (ranging in size from 46 to 195) during a 2-year period. Pi(2) analyses were used to determine if responses within any occupational category differed from the group responses. A high portion of respondents greatly underestimated the time to become hypothermic in ice water (correct answer >30 minutes; 84% stated 15 minutes or less) and the time until cooling was life threatening (correct answer >60 minutes; 85% stated 30 minutes or less). There were no occupational differences in these responses. Most of the respondents identified a correct cause of death during cold stress (81% stated cardiac arrest, hypothermia, or drowning). Although both educational slogans had some advantages, between 40% (Slogan #1) to 50% (Slogan #2) of respondents did not respond correctly. The majority of respondents underestimated the time available for survival during ice water immersion. It is important to educate the public accurately to decrease the probability of panic under these circumstances. More work is required to develop effective educational slogans that provide proper information and actions for victims of cold-water immersion.

  5. Research on corrosion aspects of the advanced cold process canister

    International Nuclear Information System (INIS)

    Blackwood, D.J.; Hoch, A.R.; Naish, C.C.; Rance, A.

    1994-01-01

    The Advanced Cold Process Canister (ACPC) is a waste canister being developed jointly by SKB and TVO for the disposal of spent nuclear fuel. It comprises an outer copper canister, with a carbon steel canister inside. A concern regarding the use of the ACPC is that, in the unlikely event that the outer copper canister is penetrated, the anaerobic corrosion of the carbon steel container may result in the formation of hydrogen gas bubbles. These bubbles could disrupt the backfill, and thus increase water flow through the near field and the flux of radionuclides to the host geology. A number of factors that influence the rate at which hydrogen evolves as a result of the anaerobic corrosion of carbon steel in artificial granitic groundwaters have been investigated. A previously observed, time-dependent decline in the hydrogen evolution rate has been confirmed as being due to the production of magnetite film. Once the magnetite film is about 0.7-1.0 μm thick, the rate of hydrogen evolution reaches a steady state value. The pH and the ionic strength of the groundwater were both found to influence the long-term hydrogen evolution rate. The results of the experimental programme were used to update a model of the corrosion behaviour and hydrogen production from the Advanced Cold Process Canister. 36 figs, 5 tabs, 13 refs

  6. 207 EFFECTS OF HOT AND COLD WATER PRE- TREATMENTS ...

    African Journals Online (AJOL)

    The treatments used were immersion of the seeds in cold water (at room o temperature) for 8, 12 and ... goat, sheep and cattle in the semi arid regions due to the palatability of its ... visible signs of infestation were selected out of the total seeds ...

  7. Modelling of Cold Water Hammer with WAHA code

    International Nuclear Information System (INIS)

    Gale, J.; Tiselj, I.

    2003-01-01

    The Cold Water Hammer experiment described in the present paper is a simple facility where overpressure accelerates a column of liquid water into the steam bubble at the closed vertical end of the pipe. Severe water hammer with high pressure peak occurs when the vapor bubble condenses and the liquid column hits the closed end of the pipe. Experimental data of Forschungszentrum Rossendorf are being used to test the newly developed computer code WAHA and the computer code RELAP5. Results show that a small amount of noncondensable air in the steam bubble significantly affects the magnitude of the calculated pressure peak, while the wall friction and condensation rate only slightly affect the simulated phenomena. (author)

  8. Cold spray NDE for porosity and other process anomalies

    Science.gov (United States)

    Glass, S. W.; Larche, M. R.; Prowant, M. S.; Suter, J. D.; Lareau, J. P.; Jiang, X.; Ross, K. A.

    2018-04-01

    This paper describes a technology review of nondestructive evaluation (NDE) methods that can be applied to cold spray coatings. Cold spray is a process for depositing metal powder at high velocity so that it bonds to the substrate metal without significant heating that would be likely to cause additional residual tensile stresses. Coatings in the range from millimeters to centimeters are possible at relatively high deposition rates. Cold spray coatings that may be used for hydroelectric components that are subject to erosion, corrosion, wear, and cavitation damage are of interest. The topic of cold spray NDE is treated generally, however, but may be considered applicable to virtually any cold spray application except where there are constraints of the hydroelectric component application that bear special consideration. Optical profilometry, eddy current, ultrasound, and hardness tests are shown for one set of good, fair, and poor nickel-chrome (NiCr) on 304 stainless steel (304SS) cold spray samples to demonstrate inspection possibilities. The primary indicator of cold spray quality is the cold spray porosity that is most directly measured with witness-sample destructive examinations (DE)—mostly photo-micrographs. These DE-generated porosity values are correlated with optical profilometry, eddy current, ultrasound, and hardness test NDE methods to infer the porosity and other information of interest. These parameters of interest primarily include: • Porosity primarily caused by improper process conditions (temperature, gas velocity, spray standoff, spray angle, powder size, condition, surface cleanliness, surface oxide, etc.) • Presence/absence of the cold spray coating including possible over-sprayed voids • Coating thicknessOptical profilometry measurements of surface roughness trended with porosity plus, if compared with a reference measurement or reference drawing, would provide information on the coating thickness. Ultrasound could provide similar

  9. Hot Water after the Cold War – Water Policy Dynamics in (Semi-Authoritarian States

    Directory of Open Access Journals (Sweden)

    Peter P. Mollinga

    2010-10-01

    Full Text Available This introductory article of the special section introduces the central question that the section addresses: do water policy dynamics in (semi-authoritarian states have specific features as compared to other state forms? The article situates the question in the post-Cold War global water governance dynamics, argues that the state is a useful and required entry point for water policy analysis, explores the meaning of (semi-authoritarian as a category, and finally introduces the three papers, which are on China, South Africa and Vietnam.

  10. The physiological response to cold-water immersion following a mixed martial arts training session.

    Science.gov (United States)

    Lindsay, Angus; Carr, Sam; Cross, Sean; Petersen, Carl; Lewis, John G; Gieseg, Steven P

    2017-05-01

    Combative sport is one of the most physically intense forms of exercise, yet the effect of recovery interventions has been largely unexplored. We investigated the effect of cold-water immersion on structural, inflammatory, and physiological stress biomarkers following a mixed martial arts (MMA) contest preparation training session in comparison with passive recovery. Semiprofessional MMA competitors (n = 15) were randomly assigned to a cold-water immersion (15 min at 10 °C) or passive recovery protocol (ambient air) completed immediately following a contest preparation training session. Markers of muscle damage (urinary myoglobin), inflammation/oxidative stress (urinary neopterin + total neopterin (neopterin + 7,8-dihydroneopterin)), and hypothalamic-pituitary axis (HPA) activation (saliva cortisol) were determined before, immediately after, and 1, 2, and 24 h postsession. Ratings of perceived soreness and fatigue, counter movement jump, and gastrointestinal temperature were also measured. Concentrations of all biomarkers increased significantly (p < 0.05) postsession. Cold water immersion attenuated increases in urinary neopterin (p < 0.05, d = 0.58), total neopterin (p < 0.05, d = 0.89), and saliva cortisol after 2 h (p < 0.05, d = 0.68) and urinary neopterin again at 24 h (p < 0.01, d = 0.57) in comparison with passive recovery. Perceived soreness, fatigue, and gastrointestinal temperatures were also lower for the cold-water immersion group at several time points postsession whilst counter movement jump did not differ. Combative sport athletes who are subjected to impact-induced stress may benefit from immediate cold-water immersion as a simple recovery intervention that reduces delayed onset muscle soreness as well as macrophage and HPA activation whilst not impairing functional performance.

  11. Influence of cold water immersion on limb and cutaneous blood flow at rest.

    Science.gov (United States)

    Gregson, Warren; Black, Mark A; Jones, Helen; Milson, Jordon; Morton, James; Dawson, Brian; Atkinson, Greg; Green, Daniel J

    2011-06-01

    Cold water immersion reduces exercise-induced muscle damage. Benefits may partly arise from a decline in limb blood flow; however, no study has comprehensively investigated the influence of different degrees of cooling undertaken via cold water immersion on limb blood flow responses. To determine the influence of cold (8°C) and cool (22°C) water immersion on lower limb and cutaneous blood flow. Controlled laboratory study. Nine men were placed in a semireclined position and lowered into 8°C or 22°C water to the iliac crest for two 5-minute periods interspersed with 2 minutes of nonimmersion. Rectal and thigh skin temperature, deep and superficial muscle temperature, heart rate, mean arterial pressure, thigh cutaneous blood velocity (laser Doppler), and superficial femoral artery blood flow (duplex ultrasound) were measured during immersion and for 30 minutes after immersion. Indices of vascular conductance were calculated (flux and blood flow/mean arterial pressure). Reductions in rectal temperature (8°C, 0.2° ± 0.1°C; 22°C, 0.1° ± 0.1°C) and thigh skin temperature (8°C, 6.2° ± 0.5°C; 22°C, 3.2° ± 0.2°C) were greater in 8°C water than in 22°C (P water compared with 22°C (P = .01). These data suggest that immersion at both temperatures resulted in similar whole limb blood flow but, paradoxically, more blood was distributed to the skin in the colder water. This suggests that colder temperatures may be associated with reduced muscle blood flow, which could provide an explanation for the benefits of cold water immersion in alleviating exercise-induced muscle damage in sports and athletic contexts. Colder water temperatures may be more effective in the treatment of exercise-induced muscle damage and injury rehabilitation because of greater reductions in muscle blood flow.

  12. Predicting drivers and distributions of deep-sea ecosystems: A cold-water coral case study

    DEFF Research Database (Denmark)

    Mohn, Christian; Rengstorf, Anna; Brown, Colin

    2015-01-01

    pertusa as a case study (Rengstorf et al., 2014). The study shows that predictive models incorporating hydrodynamic variables perform significantly better than models based on terrain parameters only. They are a potentially powerful tool to improve our understanding of deep-sea ecosystem functioning......, facilitating species distribution modelling with high spatial detail. In this study, we used high resolution data (250 m grid size) from a newly developed hydrodynamic model to explore linkages between key physical drivers and occurrences of the cold-water coral Lophelia pertusa in selected areas of the NE...... and to provide decision support for marine spatial planning and conservation in the deep sea. Mohn et al., 2014.Linking benthic hydrodynamics and cold water coral occurrences: A high-resolution model study at three cold-water coral provinces in the NE Atlantic. Progress in Oceanography 122, 92-104. Rengstorf et...

  13. The comparison of cold-water immersion and cold air therapy on maximal cycling performance and recovery markers following strength exercises

    Directory of Open Access Journals (Sweden)

    Kane J. Hayter

    2016-03-01

    Full Text Available This study examined the effects of cold-water immersion (CWI and cold air therapy (CAT on maximal cycling performance (i.e. anaerobic power and markers of muscle damage following a strength training session. Twenty endurance-trained but strength-untrained male (n = 10 and female (n = 10 participants were randomised into either: CWI (15 min in 14 °C water to iliac crest or CAT (15 min in 14 °C air immediately following strength training (i.e. 3 sets of leg press, leg extensions and leg curls at 6 repetition maximum, respectively. Creatine kinase, muscle soreness and fatigue, isometric knee extensor and flexor torque and cycling anaerobic power were measured prior to, immediately after and at 24 (T24, 48 (T48 and 72 (T72 h post-strength exercises. No significant differences were found between treatments for any of the measured variables (p > 0.05. However, trends suggested recovery was greater in CWI than CAT for cycling anaerobic power at T24 (10% ± 2%, ES = 0.90, T48 (8% ± 2%, ES = 0.64 and T72 (8% ± 7%, ES = 0.76. The findings suggest the combination of hydrostatic pressure and cold temperature may be favourable for recovery from strength training rather than cold temperature alone.

  14. High-Speed Imaging of a Water Droplet Impacting a Super Cold Surface

    KAUST Repository

    Khaled, Narimane

    2016-08-01

    Frost formation is of a major research interest as it can affect many industrial processes. Frost appears as a thin deposit of ice crystals when the temperature of the surface is below the freezing point of the liquid. The objective of this research is to study icing with hope to propose new anti-icing and deicing methods. In the beginning of the research, cracking of the ice layer was observed when a deionized water droplet impacts a ?50 oC cooled sphere surface that is in contact with dry ice. To further investigate the cracks occurrence, multiple experiments were conducted. It was observed that the sphere surface temperature and droplet temperature (ranges from 10-80 oC) have no effect on the crack formation. On the other hand, it was observed that formation of a thin layer of frost on the sphere before the drop impact leads the lateral cracking of the ice. Thus, attempts to reproduce the cracks on clean super cold sphere surfaces were made using scratched and sandblasted spheres as well as superhydrophobized and polymer particle coated spheres. Furthermore, innovative methods were tried to initiate the cracks by placing epoxy glue bumps and ice-islands coatings on the surface of the spheres. All of these attempts to reproduce the crack formation without the presence of frost, failed. Nonetheless, the adding of isolated frost on the sphere surfaces always leads to the crack formation. Generally, frost forms on the small spheres faster than it does on the bigger ones. Additionally, the cold water droplet produces thicker water and ice layer compared to a hot water droplet; and the smaller the sphere the larger its water and ice layer thicknesses.

  15. Postexercise cold-water immersion improves intermittent high-intensity exercise performance in normothermia.

    Science.gov (United States)

    McCarthy, Avina; Mulligan, James; Egaña, Mikel

    2016-11-01

    A brief cold water immersion between 2 continuous high-intensity exercise bouts improves the performance of the latter compared with passive recovery in the heat. We investigated if this effect is apparent in normothermic conditions (∼19 °C), employing an intermittent high-intensity exercise designed to reflect the work performed at the high-intensity domain in team sports. Fifteen young active men completed 2 exhaustive cycling protocols (Ex1 and Ex2: 12 min at 85% ventilatory threshold (VT) and then an intermittent exercise alternating 30-s at 40% peak power (P peak ) and 30 s at 90% P peak to exhaustion) separated by 15 min of (i) passive rest, (ii) 5-min cold-water immersion at 8 °C, and (iii) 10-min cold-water immersion at 8 °C. Core temperature, heart rate, rates of perceived exertion, and oxygen uptake kinetics were not different during Ex1 among conditions. Time to failure during the intermittent exercise was significantly (P immersions (7.2 ± 3.5 min and 7.3 ± 3.3 min, respectively) compared with passive rest (5.8 ± 3.1 min). Core temperature, heart rate, and rates of perceived exertion were significantly (P immersions compared with passive rest. The time constant of phase II oxygen uptake response during the 85% VT bout of Ex2 was not different among the 3 conditions. A postexercise, 5- to 10-min cold-water immersion increases subsequent intermittent high-intensity exercise compared with passive rest in normothermia due, at least in part, to reductions in core temperature, circulatory strain, and effort perception.

  16. Process Reengineering of Cold Chain Logistics of Agricultural Products Based on Low-carbon Economy

    OpenAIRE

    Guo, Hong-xia; Shao, Ming

    2012-01-01

    Through the process analysis of cold chain logistics of agricultural products, we find that cold chain logistics of agricultural products contradict the development model of low-carbon economy to some extent. We apply the development idea of low-carbon economy, introduce the third-party logistics companies, establish distribution center of cold chain logistics of agricultural products, and strengthen information sharing, to reengineer the process of cold chain logistics of agricultural produc...

  17. NORTH PORTAL - DOMESTIC COLD WATER CALCULATION - CHANGE HOUSE FACILITY NO.5008

    International Nuclear Information System (INIS)

    Blackstone, R.

    1996-01-01

    The purpose of this design analysis and calculation is to determine the demand for domestic cold water and to size the supply main piping for the Change House Facility No.5008 in accordance with the Uniform Plumbing Code (Section 4.4.1) and U.S. Department of Energy Order 6430.1A-1540 (Section 4.4.2). The method used for the calculations is based on the Uniform Plumbing Code (UPC), Section 4.4.1. The first step is to determine the maximum pressure drop between the most remote cold water plumbing fixture and the main distribution supply. The developed length of pipe from the supply to the fixture is then determined from the plumbing drawings. The maximum pressure drop is then divided by the developed length which results in the friction loss per 100 feet of pipe. Equivalent fixture units are assigned from the UPC based on the actual fixture count which when totaled determines the water flow rate. The water flow rate and pressure drop are used to determine the pipe size based on a given velocity of flow

  18. A Picture on the Wall: Innovative Mapping Reveals Cold-Water Coral Refuge in Submarine Canyon

    OpenAIRE

    Huvenne, Veerle A. I.; Tyler, Paul A.; Masson, Doug G.; Fisher, Elizabeth H.; Hauton, Chris; Huehnerbach, Veit; Le Bas, Timothy P.; Wolff, George A.

    2011-01-01

    Cold-water corals are azooxanthellate species found throughout the ocean at water depths down to 5000 m. They occur in patches, reefs or large mound structures up to 380 m high, and as ecosystem engineers create important habitats for a diverse fauna. However, the majority of these habitats are now within reach of deep-sea bottom trawling. Many have been severely damaged or are under threat, despite recent protection initiatives. Here we present a cold-water coral habitat type that so far has...

  19. Retarding effect of prior-overloading on stress corrosion cracking of cold rolled 316L SS in simulated PWR water environment

    Science.gov (United States)

    Chen, Junjie; Lu, Zhanpeng; Xiao, Qian; Ru, Xiangkun; Ma, Jiarong; Shoji, Tetsuo

    2017-12-01

    The effect of prior single tensile overloading on the stress corrosion cracking behavior of cold rolled 316L in a simulated PWR water environment at 310 °C was investigated. SCC growth retardation by overloading was observed in cold rolled 316L specimens in both the T-L and L-T orientations. The stretch zone observed on the fracture surfaces of the overloaded specimens affected SCC propagation. The compressive residual stress induced by overloading process reduced the effective driving force of SCC propagation. The negative dK/da effect ahead of the crack tip likely contributes to the retardation of SCC growth. The duration of overloading is dependent on water chemistry and the local stress conditions.

  20. Measurements of cold and hot water in ten dwellings; Maetning av kall- och varmvatten i tio hushaall

    Energy Technology Data Exchange (ETDEWEB)

    Wahlstroem, Aasa; Nordman, Roger; Pettersson, Ulrik (Swedish National Testing and Research Inst., Boraas (Sweden))

    2008-07-01

    Reducing tap water consumption has considerable potential for reducing overall environmental impact. It not only saves fresh water, but also gives significant savings of energy that would otherwise have been needed to heat hot water. However, in order to improve the energy efficiency of building services systems and to help occupants act more energy-efficiently, more knowledge is needed on how water is used in our homes. Today, we actually know very little about usage patterns from one tapping point to another, or the division between cold and hot water use, and this study aims to help provide appropriate information. The aim of this project is to increase the knowledge of how tap water is used in Swedish households. The main purpose is to gain knowledge of how to decrease the energy use and for that reason the description of the use of hot water is essential. Measurement has been made of hot and cold water use at each tapping point in ten dwellings: four apartments in apartment buildings, and six single-family buildings. The households were of the following categories; single, young couple, middle-aged couple and families with children. The number of households is too low to represent the water use at national level, but can still contribute with important knowledge of how we use water in our homes. The results show the following division of tap water use: - wash basin: 19% (11 % hot water and 8 % cold water); - kitchen sink 41% (23 % hot water and 18 % cold water); - shower/bathtub 40% (27 % hot water and 13 % cold water). About 61% of the total water quantity is hot water (note that cold water for toilet flushing and for laundry is not included in the total water use). The proportions between tapping points are very similar for the dwellings in the apartment buildings and single-family houses, and the use of water in the shower/bathtub is essentially the same as the use in the kitchens. In the single-family buildings the water use in laundry rooms was measured

  1. THE COLD AND DARK PROCESS AT THE SAVANNAH RIVER SITE

    International Nuclear Information System (INIS)

    Gilmour, J; William Austin, W; Cathy Sizemore, C

    2007-01-01

    The deactivation and decommissioning (D and D) of a facility exposes D and D workers to numerous hazards. One of the more serious hazards is coming into contact to hazardous energy sources (e.g. electrical, pressurized steam). At the Savannah River Site (SRS) a formal process for identifying and eliminating sources of hazardous energy was developed and is called ''Cold and Dark''. Several ''near miss'' events involving cutting of energized conductors during D and D work in buildings thought to be isolated identified the need to have a formal process to identify and isolate these potentially hazardous systems. This process was developed using lessons learned from D and D activities at the Rocky Flats Environmental Technology Site (Rocky Flats) in Colorado. The Cold and Dark process defines an isolation boundary (usually a building perimeter) and then systematically identifies all of the penetrations through this boundary. All penetrations that involve hazardous energy sources are then physically air-gapped. The final product is a documented declaration of isolation performed by a team involving operations, engineering, and project management. Once the Cold and Dark declaration is made for a building work can proceed without the usual controls used in an operational facility (e.g. lockout/tagout, arc flash PPE). It is important to note that the Cold and Dark process does not remove all hazards from a facility. Work planning and controls still need to address hazards that can be present from such things as chemicals, radiological contamination, residual liquids, etc., as well as standard industrial hazards

  2. Effects of menthol application on the skin during prolonged immersion in cool and cold water.

    Science.gov (United States)

    Botonis, P G; Kounalakis, S N; Cherouveim, E D; Koskolou, M D; Geladas, N D

    2018-03-01

    The aim of the study was to compare the effect of skin surface menthol application on rectal temperature (Tre) during prolonged immersion in cool and cold water. We hypothesized that menthol application would lead to a slower Tre decline due to the reduced heat loss as a consequence of the menthol-induced vasoconstriction and that this effect would be attenuated during cold-water immersion. Six male subjects were immersed for 55 minutes in stirred cool (24°C) or cold (14°C) water immediately after attaining a Tre of 38°C by cycling at 60% of maximum heart rate on two occasions: without (ΝM) and with (M) whole-body skin application of menthol cream. Tre, the proximal-distal skin temperature gradient, and oxygen uptake were continuously measured. ANOVA with repeated measures was employed to detect differences among variables. Significance level was set at 0.05. The area under the curve for Tre was calculated and was greater in 24°C M (-1.81 ± 8.22 a.u) compared to 24°C NM (-27.09 ± 19.09 a.u., P = .03, r = .90), 14°C NM (-18.08 ± 10.85 a.u., P = .03, r = .90), and 14°C M (-11.71 ± 12.58 a.u, P = .05, r = .81). In cool water, oxygen uptake and local vasoconstriction were increased (P ≤ .05) by 39 ± 25% and 56 ± 37%, respectively, with menthol compared to ΝM, while no differences were observed in cold water. Menthol application on the skin before prolonged immersion reduces heat loss resulting in a blunted Tre decline. However, such a response is less obvious at 14°C water immersion, possibly because high-threshold cold-sensitive fibers are already maximally recruited and the majority of cold receptors saturated. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. SCC of cold-worked austenitic stainless steels exposed to PWR primary water conditions: susceptibility to initiation

    International Nuclear Information System (INIS)

    Herms, E.; Raquet, O.; Sejourne, L.; Vaillant, F.

    2009-01-01

    Heavily cold-worked austenitic stainless steels (AISI 304L and 316L types) could be significantly susceptible to Stress Corrosion Cracking (SCC) when exposed to PWR nominal primary water conditions even in absence of any pollutants. Susceptibility to SCC was shown to be related with some conditions such as initial hardness, procedure of cold-work or dynamic straining. A dedicated program devoted to better understand the initiation stage on CW austenitic stainless steels in PWR water is presented. Initiation is studied thanks to SCC test conditions leading to an intergranular cracking propagation mode on a CW austenitic stainless steel which is the mode generally reported after field experience. SCC tests are carried out in typical primary water conditions (composition 1000 ppm B and 2 ppm Li) and for temperature in the range 290 - 340 C. Material selected is 316L cold-worked essentially by rolling (reduction in thickness of 40%). Initiation tests are carried out under various stress levels with the aim to investigate the evolution of the initiation period versus the value of applied stress. SCC tests are performed on cylindrical notched specimens in order to increase the applied stress and allow accelerated testing without modify the exposure conditions to strictly nominal hydrogenated PWR water. Respective influences of cyclic/dynamic conditions on SCC initiation are presented and discussed. Dedicated interrupted tests help to investigate the behaviour of the crack initiation process. These SCC tests have shown that crack initiation could be obtained after a very short time under dynamic loading conditions on heavily pre-strained austenitic stainless steels. Actual results show that the most limiting stage of the cracking process on CW 316L seems to be the transition from slow transgranular propagation of surface initiated cracks to intergranular fast propagation through the thickness of the sample. The duration of this stage during crack initiation tests is

  4. Chillers and cold water units. Special issue; Chillers en koudwateraggregaten. Thema

    Energy Technology Data Exchange (ETDEWEB)

    Van Zwam, P. [GEA Refrigeration Components Benelux, Den Bosch (Netherlands); Meijer, W. [Daikin Airconditioning Netherlands, Rotterdam (Netherlands); Torsy, E. [Trane Airconditioning, Soest (Netherlands); Berends, E. [GEA Grenco Refrigeration, Den Bosch (Netherlands); Havenaar, D. (ed.)

    2010-05-15

    In five articles attention is paid to several aspects of chillers and cold water units: (1) reduction of refrigerants and increase of the COP; (2) realization of high partial load efficiency in mono-screw compressors; (3) energy efficient innovation for cooling and heat pump systems; (4) application of modern chiller technology for a skating rink of Sportboulevard, Dordrecht, Netherlands; and (5) the use of propane as a refrigerant in air-cooled cold water units. [Dutch] In vijf artikelen wordt aandacht besteed aan verschillende aspecten van chillers en koudwateraggregaten: (1) minimaliseren van koudemiddeleninhoud en verhogen van de COP; (2) realisatie van hoge deellastrendementen met mono-schroefcompressoren; (3) energie efficiente innovaties voor koelmachine- en warmtepompsystemen; (4) toepassing van moderne chillertechnologie in de ijshal van Sportboulevard Dordrecht; en (5) het gebruik van propaan als koudemiddel in luchtgekoelde koudwateraggregaten.

  5. The Effects of Multiple Cold Water Immersions on Indices of Muscle Damage

    Science.gov (United States)

    Goodall, Stuart; Howatson, Glyn

    2008-01-01

    The aim of this investigation was to elucidate the efficacy of repeated cold water immersions (CWI) in the recovery of exercise induced muscle damage. A randomised group consisting of eighteen males, mean ± s age, height and body mass were 24 ± 5 years, 1.82 ± 0.06 m and 85.7 ± 16.6 kg respectively, completed a bout of 100 drop jumps. Following the bout of damaging exercise, participants were randomly but equally assigned to either a 12 min CWI (15 ± 1 °C; n = 9) group who experienced immersions immediately post-exercise and every 24 h thereafter for the following 3 days, or a control group (no treatment; n = 9). Maximal voluntary contraction (MVC) of the knee extensors, creatine kinase activity (CK), muscle soreness (DOMS), range of motion (ROM) and limb girth were measured pre-exercise and then for the following 96 h at 24 h increments. In addition MVC was also recorded immediately post-exercise. Significant time effects were seen for MVC, CK, DOMS and limb girth (p 0.05). These results suggest that repeated CWI do not enhance recovery from a bout of damaging eccentric contractions. Key pointsCryotherapy, particularly cold water immersions are one of the most common interventions used in order to enhance recovery post-exercise.There is little empirical evidence demonstrating benefits from cold water immersions. Research evidence is equivocal, probably due to methodological inconsistencies.Our results show that the cryotherapy administered did not attenuate any markers of EIMD or enhance the recovery of function.We conclude that repeated cold water immersions are ineffective in the recovery from heavy plyometric exercise and suggest athletes and coaches should use caution before using this intervention as a recovery strategy PMID:24149455

  6. Modelling and Analysis of Hydrodynamics and Water Quality for Rivers in the Northern Cold Region of China.

    Science.gov (United States)

    Tang, Gula; Zhu, Yunqiang; Wu, Guozheng; Li, Jing; Li, Zhao-Liang; Sun, Jiulin

    2016-04-08

    In this study, the Mudan River, which is the most typical river in the northern cold region of China was selected as the research object; Environmental Fluid Dynamics Code (EFDC) was adopted to construct a new two-dimensional water quality model for the urban sections of the Mudan River, and concentrations of COD(Cr) and NH₃N during ice-covered and open-water periods were simulated and analyzed. Results indicated that roughness coefficient and comprehensive pollutant decay rate were significantly different in those periods. To be specific, the roughness coefficient in the ice-covered period was larger than that of the open-water period, while the decay rate within the former period was smaller than that in the latter. In addition, according to the analysis of the simulated results, the main reasons for the decay rate reduction during the ice-covered period are temperature drop, upstream inflow decrease and ice layer cover; among them, ice sheet is the major contributor of roughness increase. These aspects were discussed in more detail in this work. The model could be generalized to hydrodynamic water quality process simulation researches on rivers in other cold regions as well.

  7. Modelling and Analysis of Hydrodynamics and Water Quality for Rivers in the Northern Cold Region of China

    Directory of Open Access Journals (Sweden)

    Gula Tang

    2016-04-01

    Full Text Available In this study, the Mudan River, which is the most typical river in the northern cold region of China was selected as the research object; Environmental Fluid Dynamics Code (EFDC was adopted to construct a new two-dimensional water quality model for the urban sections of the Mudan River, and concentrations of CODCr and NH3N during ice-covered and open-water periods were simulated and analyzed. Results indicated that roughness coefficient and comprehensive pollutant decay rate were significantly different in those periods. To be specific, the roughness coefficient in the ice-covered period was larger than that of the open-water period, while the decay rate within the former period was smaller than that in the latter. In addition, according to the analysis of the simulated results, the main reasons for the decay rate reduction during the ice-covered period are temperature drop, upstream inflow decrease and ice layer cover; among them, ice sheet is the major contributor of roughness increase. These aspects were discussed in more detail in this work. The model could be generalized to hydrodynamic water quality process simulation researches on rivers in other cold regions as well.

  8. Warm versus Cold Water Island Tourism: A Review of Policy Implications

    Directory of Open Access Journals (Sweden)

    Godfrey Baldacchino

    2006-11-01

    Full Text Available Not sun, sea, sand but ice, isolation, indigenous people: the critical exploration of extreme tourism in cold water locations has barely started. Cold water island locations tend to have harsh, pristine and fragile natural environments, characterized by wide open spaces. They become contexts for an exceptional and expensive form of vigorous, outdoor, adventure or cultural tourism, and direct encounters with nature. The nature and practices of the tourism industry suggest a more sustainable form of island tourism, very different from what is experienced on the warm, tropical and exotic island stereotype.This paper critically reviews some of the salient contrasts between the ‘hot’ and ‘cold’ versions of island tourism. It discusses how, on many ‘cold water’ island locations, sound strategic management, limited civilian ‘buy in’, low populations and an absence of pluralism in political life, can conspire with climate and relative inaccessibility to limit tourism to a small scale, low-impact industry with a relatively high, locally-retained value added. Some ‘warm water’ islands are trying to follow this model for tourism development, with mixed results.

  9. Impacts of ocean acidification on sediment processes in shallow waters of the Arctic Ocean

    NARCIS (Netherlands)

    Gazeau, F.; van Rijswijk, P.; Pozzato, L.; Middelburg, J.J.

    Despite the important roles of shallow-water sediments in global biogeochemical cycling, the effects of ocean acidification on sedimentary processes have received relatively little attention. As high-latitude cold waters can absorb more CO2 and usually have a lower buffering capacity than warmer

  10. Impacts of Ocean Acidification on Sediment Processes in Shallow Waters of the Arctic Ocean

    NARCIS (Netherlands)

    Gazeau, F.; van Rijswijk, P.; Pozzato, L.; Middelburg, J.J.

    2014-01-01

    Despite the important roles of shallow-water sediments in global biogeochemical cycling, the effects of ocean acidification on sedimentary processes have received relatively little attention. As high-latitude cold waters can absorb more CO2 and usually have a lower buffering capacity than warmer

  11. Cold Spraying of Armstrong Process Titanium Powder for Additive Manufacturing

    Science.gov (United States)

    MacDonald, D.; Fernández, R.; Delloro, F.; Jodoin, B.

    2017-04-01

    Titanium parts are ideally suited for aerospace applications due to their unique combination of high specific strength and excellent corrosion resistance. However, titanium as bulk material is expensive and challenging/costly to machine. Production of complex titanium parts through additive manufacturing looks promising, but there are still many barriers to overcome before reaching mainstream commercialization. The cold gas dynamic spraying process offers the potential for additive manufacturing of large titanium parts due to its reduced reactive environment, its simplicity to operate, and the high deposition rates it offers. A few challenges are to be addressed before the additive manufacturing potential of titanium by cold gas dynamic spraying can be reached. In particular, it is known that titanium is easy to deposit by cold gas dynamic spraying, but the deposits produced are usually porous when nitrogen is used as the carrier gas. In this work, a method to manufacture low-porosity titanium components at high deposition efficiencies is revealed. The components are produced by combining low-pressure cold spray using nitrogen as the carrier gas with low-cost titanium powder produced using the Armstrong process. The microstructure and mechanical properties of additive manufactured titanium components are investigated.

  12. Mapping of Cold-Water Coral Carbonate Mounds Based on Geomorphometric Features: An Object-Based Approach

    Directory of Open Access Journals (Sweden)

    Markus Diesing

    2018-01-01

    Full Text Available Cold-water coral reefs are rich, yet fragile ecosystems found in colder oceanic waters. Knowledge of their spatial distribution on continental shelves, slopes, seamounts and ridge systems is vital for marine spatial planning and conservation. Cold-water corals frequently form conspicuous carbonate mounds of varying sizes, which are identifiable from multibeam echosounder bathymetry and derived geomorphometric attributes. However, the often-large number of mounds makes manual interpretation and mapping a tedious process. We present a methodology that combines image segmentation and random forest spatial prediction with the aim to derive maps of carbonate mounds and an associated measure of confidence. We demonstrate our method based on multibeam echosounder data from Iverryggen on the mid-Norwegian shelf. We identified the image-object mean planar curvature as the most important predictor. The presence and absence of carbonate mounds is mapped with high accuracy. Spatially-explicit confidence in the predictions is derived from the predicted probability and whether the predictions are within or outside the modelled range of values and is generally high. We plan to apply the showcased method to other areas of the Norwegian continental shelf and slope where multibeam echosounder data have been collected with the aim to provide crucial information for marine spatial planning.

  13. Enzyme-assisted peeling of cold water shrimps (Pandalus borealis)

    DEFF Research Database (Denmark)

    Dang, Tem Thi; Gringer, Nina; Jessen, Flemming

    2018-01-01

    An enzymatic method to facilitate the peeling of cold water shrimps (Pandalus borealis) was developed. The protease solutions were used to mature the shrimps to promote shell-loosening prior to peeling. The efficiency of peeling enzyme-treated shrimps was evaluated by a new quantitative measurement......L and 0.25% Exocut-A0 for 20 h resulted in the best peeling of shrimps (100% completely peeled shrimps, 3 mJ/g work and 89% meat yield). Reuse of the enzyme solution was possible due to a 95% retention rate of proteolytic activity after two 20-h cycles of maturation. The studied enzymatic maturation...... of shrimp. This approach would benefit the shrimp processing industry by 1) enhancing peeling efficiency that includes least efforts to remove the shell, high rate of completely peeled shrimps and high meat yield; 2) shortening the duration of maturation but still sufficiently loosening the shell...

  14. Cold sprayed WO3 and TiO2 electrodes for photoelectrochemical water and methanol oxidation in renewable energy applications.

    Science.gov (United States)

    Haisch, Christoph; Schneider, Jenny; Fleisch, Manuel; Gutzmann, Henning; Klassen, Thomas; Bahnemann, Detlef W

    2017-10-03

    Films prepared by cold spray have potential applications as photoanodes in electrochemical water splitting and waste water purification. In the present study cold sprayed photoelectrodes produced with WO 3 (active under visible light illumination) and TiO 2 (active under UV illumination) on titanium metal substrates were investigated as photoanodes for the oxidation of water and methanol, respectively. Methanol was chosen as organic model pollutant in acidic electrolytes. Main advantages of the cold sprayed photoelectrodes are the improved metal-semiconductor junctions and the superior mechanical stability. Additionally, the cold spray method can be utilized as a large-scale electrode fabrication technique for photoelectrochemical applications. Incident photon to current efficiencies reveal that cold sprayed TiO 2 /WO 3 photoanodes exhibit the best photoelectrochemical properties with regard to the water and methanol oxidation reactions in comparison with the benchmark photocatalyst Aeroxide TiO 2 P25 due to more efficient harvesting of the total solar light irradiation related to their smaller band gap energies.

  15. Anti-fungal activity of cold and hot water extracts of spices against fungal pathogens of Roselle (Hibiscus sabdariffa) in vitro.

    Science.gov (United States)

    Touba, Eslaminejad Parizi; Zakaria, Maziah; Tahereh, Eslaminejad

    2012-02-01

    Crude extracts of seven spices, viz. cardamom, chilli, coriander, onion, garlic, ginger, and galangale were made using cold water and hot water extraction and they were tested for their anti-fungal effects against the three Roselle pathogens i.e. Phoma exigua, Fusarium nygamai and Rhizoctonia solani using the 'poisoned food technique'. All seven spices studied showed significant anti-fungal activity at three concentrations (10, 20 and 30% of the crude extract) in-vitro. The cold water extract of garlic exhibited good anti-fungal activity against all three tested fungi. In the case of the hot water extracts, garlic and ginger showed the best anti-fungal activity. Of the two extraction methods, cold water extraction was generally more effective than hot water extraction in controlling the pathogens. Against P. exigua, the 10% cold water extracts of galangale, ginger, coriander and cardamom achieved total (100%) inhibition of pathogen mycelial growth. Total inhibition of F. nygamai mycelial growth was similarly achieved with the 10% cold water extracts garlic. Against R. solani, the 10% cold water extract of galangale was effective in imposing 100% inhibition. Accordingly, the 10% galangale extract effectively controlled both P. exigua and R. solani in vitro. None of the hot water extracts of the spices succeeded in achieving 100% inhibition of the pathogen mycelial growth. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Cold-water coral mounds on the Pen Duick Escarpment, Gulf of Cadiz: The MiCROSYSTEMS project approach

    NARCIS (Netherlands)

    Van Rooij, D.; Blamart, D.; De Mol, L.; Mienis, F.; Pirlet, H.; Wehrmann, L. M.; Barbieri, R.; Maignien, L.; Templer, S. P.; de Haas, H.; Hebbeln, D.; Frank, N.; Larmagnat, S.; Stadnitskaia, A.; Stivaletta, N.; van Weering, T.; Zhang, Y.; Hamoumi, N.; Cnudde, V.; Duyck, P.; Henriet, J.-P.; The MiCROSYSTEMS MD 169 Shipboard Party

    2011-01-01

    Here we present a case study of three cold-water coral mounds in a juvenile growth stage on top of the Pen Duick Escarpment in the Gulf of Cadiz; Alpha, Beta and Gamma mounds. Although cold-water corals are a common feature on the adjacent cliffs, mud volcanoes and open slope, no actual living

  17. The Effectiveness of Whole Body Cryotherapy Compared to Cold Water Immersion: Implications for Sport and Exercise Recovery

    Directory of Open Access Journals (Sweden)

    Michael Holmes

    2016-10-01

    Full Text Available Background: Cryotherapy is the process of cooling the body, is typically used therapeutically, and is often used as a method of recovery relative to sport and exercise performance.  The purpose of this review is to compare the current literature on WBC to that of CWI and determine whether WBC provides any additional enhancements for sport and exercise recovery. These include tissue temperature reduction, markers of muscle damage, markers of inflammation, and parasympathetic reactivation. Method: Common methods of cryotherapy include cold water immersion (CWI, ice packs, ice massages, and gel or cooling creams. CWI is the most common method among athletes; however, a new form of cryotherapy, known as whole-body cryotherapy (WBC, has recently emerged.  Since its introduction, WBC has grown in popularity among practitioners and athletes. WBC involves short exposures (generally between 2-4 minutes to very cold air (-100o C to -140o C in a controlled room and setting. Furthermore, many of the studies on WBC were observational and did not contain a control group. Conclusion: Despite its growing popularity, the alleged benefits of WBC are largely based on anecdotal evidence as randomized, clinically-controlled studies regarding its efficacy are limited.  Keywords: cryotherapy, cold water immersion, exercise, recovery, muscle damage, inflammation

  18. Cold plasma as a nonthermal food processing technology

    Science.gov (United States)

    Contamination of meats, seafood, poultry, eggs, and fresh and fresh-cut fruits and vegetables is an ongoing concern. Although well-established in non-food applications for surface treatment and modification, cold plasma is a relatively new food safety intervention. As a nonthermal food processing te...

  19. Carbon mineralization and carbonate preservation in modern cold-water coral reef sediments on the Norwegian shelf

    Directory of Open Access Journals (Sweden)

    L. M. Wehrmann

    2009-04-01

    Full Text Available Cold-water coral ecosystems are considered hot-spots of biodiversity and biomass production and may be a regionally important contributor to carbonate production. The impact of these ecosystems on biogeochemical processes and carbonate preservation in associated sediments were studied at Røst Reef and Traenadjupet Reef, two modern (post-glacial cold-water coral reefs on the Mid-Norwegian shelf. Sulfate and iron reduction as well as carbonate dissolution and precipitation were investigated by combining pore-water geochemical profiles, steady state modeling, as well as solid phase analyses and sulfate reduction rate measurements on gravity cores of up to 3.25 m length. Low extents of sulfate depletion and dissolved inorganic carbon (DIC production, combined with sulfate reduction rates not exceeding 3 nmol S cm−3 d−1, suggested that overall anaerobic carbon mineralization in the sediments was low. These data showed that the coral fragment-bearing siliciclastic sediments were effectively decoupled from the productive pelagic ecosystem by the complex reef surface framework. Organic matter being mineralized by sulfate reduction was calculated to consist of 57% carbon bound in CH2O groups and 43% carbon in -CH2- groups. Methane concentrations were below 1 μM, and failed to support the hypothesis of a linkage between the distribution of cold-water coral reefs and the presence of hydrocarbon seepage. Reductive iron oxide dissolution linked to microbial sulfate reduction buffered the pore-water carbonate system and inhibited acid-driven coral skeleton dissolution. A large pool of reactive iron was available leading to the formation of iron sulfide minerals. Constant pore-water Ca2+, Mg2+ and Sr2+ concentrations in most cores and decreasing Ca2+ and Sr2+ concentrations with depth in core 23–18 GC indicated diagenetic carbonate precipitation. This was

  20. Cold water immersion of the ankle decreases neuromuscular response of lower limb after inversion movement.

    Science.gov (United States)

    Macedo, Christiane S G; Alonso, Carolina S; Liporaci, Rogério F; Vieira, Fernando; Guirro, Rinaldo R J

    2014-01-01

    Cryotherapy has been associated with a significant decrease in nerve conduction velocity and muscle contraction with possible effects on exercise and physical training. To quantify the electromyographic response of the lateral gastrocnemius, tibialis anterior, fibularis longus, rectus femoris and gluteus medius to ankle inversion following cold water immersion. The peak values of the root mean square (RMS) were obtained from 35 healthy and active university subjects after the use of a tilt platform to force the ankle into 30° of inversion before, immediately after, and 10, 20, and 30 minutes after water immersion at 4±2°C, for 20 minutes. The Shapiro-Wilk test, repeated measures analysis, Bonferroni's post-hoc, and linear regression analysis provided the results. Peak RMS was significantly lower at all times after cold water immersion, with residual effect of up to 30 minutes, when compared to pre-immersion for all muscles, except for immediate post-immersion for the gluteus medius. After cold water immersion of the ankle, special care should be taken in activities that require greater neuromuscular control.

  1. End of the century pCO₂ levels do not impact calcification in Mediterranean cold-water corals.

    Directory of Open Access Journals (Sweden)

    Cornelia Maier

    Full Text Available Ocean acidification caused by anthropogenic uptake of CO₂ is perceived to be a major threat to calcifying organisms. Cold-water corals were thought to be strongly affected by a decrease in ocean pH due to their abundance in deep and cold waters which, in contrast to tropical coral reef waters, will soon become corrosive to calcium carbonate. Calcification rates of two Mediterranean cold-water coral species, Lophelia pertusa and Madrepora oculata, were measured under variable partial pressure of CO₂ (pCO₂ that ranged between 380 µatm for present-day conditions and 930 µatm for the end of the century. The present study addressed both short- and long-term responses by repeatedly determining calcification rates on the same specimens over a period of 9 months. Besides studying the direct, short-term response to elevated pCO₂ levels, the study aimed to elucidate the potential for acclimation of calcification of cold-water corals to ocean acidification. Net calcification of both species was unaffected by the levels of pCO₂ investigated and revealed no short-term shock and, therefore, no long-term acclimation in calcification to changes in the carbonate chemistry. There was an effect of time during repeated experiments with increasing net calcification rates for both species, however, as this pattern was found in all treatments, there is no indication that acclimation of calcification to ocean acidification occurred. The use of controls (initial and ambient net calcification rates indicated that this increase was not caused by acclimation in calcification response to higher pCO₂. An extrapolation of these data suggests that calcification of these two cold-water corals will not be affected by the pCO₂ level projected at the end of the century.

  2. Modelling studies for the assessment of the Advanced Cold Process Canister

    International Nuclear Information System (INIS)

    Henshaw, J.; Hoch, A.R.; Sharland, S.M.

    1991-01-01

    The Advanced Cold Process Canister (ACPC) is a new concept for the encapsulation of spent nuclear fuel for geological disposal. It consists of steel canister encased in a copper overpack. In this paper, modelling studies to assess the performance of the ACPC under repository conditions are presented. The production of nitric acid and ammonia through radiolysis of any water remaining inside the canister under fault conditions has been examined in this study. However, results suggest that only low levels are possible, and the risk of stress-corrosion cracking is considered small. The corrosion behavior subsequent to a breach in the outer canister was also considered. A model was constructed to predict the hydrogen gas production due to corrosion reactions, and evolution of the corrosion behavior

  3. Water-mass dynamics of an Arctic cold-water coral reef: First results from a new ocean observatory system

    Science.gov (United States)

    Flögel, Sascha; Karstensen, Johannes; Linke, Peter; Pfannkuche, Olaf; Ashastina, Kseniia; Dullo, Christian

    2015-04-01

    Cold-water coral reefs occur at various sites along the European continental margin, like in the Mediterranean Sea, on carbonate mounds West off Ireland, or at shallower depths between 100 and 350 m on the Norwegian shelf. Their occurrence is related to different physical parameters like temperature, salinity, seawater density, dissolved oxygen, and to other environmental parameters such as internal wave activity, nutrient supply, strong currents, which keep sediment input low, etc. Here, we present first results from a long-term observation in one of the nortnermost cold-water coral reefs at 70.5°N - the Stjernsund in northern Norway. The Stjernsund is a 30 km long and up to 3.5 km wide sound connecting the open North Atlantic with a fjord system. A deep-seated SW-NE oriented morainic sill with varying depths (203-236 m) splits the more than 400 m deep sound into two troughs. Living Lophelia pertusa dominated reef complexes occur on the NW slope between 235 and 305 m water depths and on the SE slope between 245 and 280 m. To investigate the dominating physical and biogeochemical boundary conditions a new modular seafloor observatory, MoLab, consisting of five sea-floor observatories and two moorings was deployed for 100 days during the summer of 2012. The various lander systems and moorimgs were equipped with sensors to measure current velocities and directions, temperature, salinity, pressure, pH, turbidity, fluorescence, oxygen concentration and saturation. Results showed that near-bottom salinities, temperature and current velocities are dominated by a semi-diurnal tidal forcing (pronounced M2 constituent), which cause vertical water mass movements of up to 100 m. These influence large parts of the living reef. Closer examination revealed overturning cells on the south-eastern slope of the sill during high tide, when Atlantic Water flows over the sill. The appearance of living cold-water corals is limited to a density envelope of sigma-theta=27.25-27.50 kg/m-3

  4. Powder consolidation using cold spray process modeling and emerging applications

    CERN Document Server

    Moridi, Atieh

    2017-01-01

    This book first presents different approaches to modeling of the cold spray process with the aim of extending current understanding of its fundamental principles and then describes emerging applications of cold spray. In the coverage of modeling, careful attention is devoted to the assessment of critical and erosion velocities. In order to reveal the phenomenological characteristics of interface bonding, severe, localized plastic deformation and material jet formation are studied. Detailed consideration is also given to the effect of macroscopic defects such as interparticle boundaries and subsequent splat boundary cracking on the mechanical behavior of cold spray coatings. The discussion of applications focuses in particular on the repair of damaged parts and additive manufacturing in various disciplines from aerospace to biomedical engineering. Key aspects include a systematic study of defect shape and the ability of cold spray to fill the defect, examination of the fatigue behavior of coatings for structur...

  5. Barium isotopes in cold-water corals

    Science.gov (United States)

    Hemsing, Freya; Hsieh, Yu-Te; Bridgestock, Luke; Spooner, Peter T.; Robinson, Laura F.; Frank, Norbert; Henderson, Gideon M.

    2018-06-01

    Recent studies have introduced stable Ba isotopes (δ 138 / 134Ba) as a novel tracer for ocean processes. Ba isotopes could potentially provide insight into the oceanic Ba cycle, the ocean's biological pump, water-mass provenance in the deep ocean, changes in activity of hydrothermal vents, and land-sea interactions including tracing riverine inputs. Here, we show that aragonite skeletons of various colonial and solitary cold-water coral (CWC) taxa record the seawater (SW) Ba isotope composition. Thirty-six corals of eight different taxa from three oceanic regions were analysed and compared to δ 138 / 134Ba measurements of co-located seawater samples. Sites were chosen to cover a wide range of temperature, salinity, Ba concentrations and Ba isotope compositions. Seawater samples at the three sites exhibit the well-established anti-correlation between Ba concentration and δ 138 / 134Ba. Furthermore, our data set suggests that Ba/Ca values in CWCs are linearly correlated with dissolved [Ba] in ambient seawater, with an average partition coefficient of DCWC/SW = 1.8 ± 0.4 (2SD). The mean isotope fractionation of Ba between seawater and CWCs Δ138/134BaCWC-SW is -0.21 ± 0.08‰ (2SD), indicating that CWC aragonite preferentially incorporates the lighter isotopes. This fractionation likely does not depend on temperature or other environmental variables, suggesting that aragonite CWCs could be used to trace the Ba isotope composition in ambient seawater. Coupled [Ba] and δ 138 / 134Ba analysis on fossil CWCs has the potential to provide new information about past changes in the local and global relationship between [Ba] and δ 138 / 134Ba and hence about the operation of the past global oceanic Ba cycle in different climate regimes.

  6. Pressure resistance of cold-shocked Escherichia coli O157:H7 in ground beef, beef gravy and peptone water.

    Science.gov (United States)

    Baccus-Taylor, G S H; Falloon, O C; Henry, N

    2015-06-01

    (i) To study the effects of cold shock on Escherichia coli O157:H7 cells. (ii) To determine if cold-shocked E. coli O157:H7 cells at stationary and exponential phases are more pressure-resistant than their non-cold-shocked counterparts. (iii) To investigate the baro-protective role of growth media (0·1% peptone water, beef gravy and ground beef). Quantitative estimates of lethality and sublethal injury were made using the differential plating method. There were no significant differences (P > 0·05) in the number of cells killed; cold-shocked or non-cold-shocked. Cells grown in ground beef (stationary and exponential phases) experienced lowest death compared with peptone water and beef gravy. Cold-shock treatment increased the sublethal injury to cells cultured in peptone water (stationary and exponential phases) and ground beef (exponential phase), but decreased the sublethal injury to cells in beef gravy (stationary phase). Cold shock did not confer greater resistance to stationary or exponential phase cells pressurized in peptone water, beef gravy or ground beef. Ground beef had the greatest baro-protective effect. Real food systems should be used in establishing food safety parameters for high-pressure treatments; micro-organisms are less resistant in model food systems, the use of which may underestimate the organisms' resistance. © 2015 The Society for Applied Microbiology.

  7. Cold fronts and reservoir limnology: an integrated approach towards the ecological dynamics of freshwater ecosystems.

    Science.gov (United States)

    Tundisi, J G; Matsumura-Tundisi, T; Pereira, K C; Luzia, A P; Passerini, M D; Chiba, W A C; Morais, M A; Sebastien, N Y

    2010-10-01

    In this paper the authors discuss the effects of cold fronts on the dynamics of freshwater ecosystems of southeast South America. Cold fronts originating from the Antarctic show a monthly frequency that promotes turbulence and vertical mixing in reservoirs with a consequence to homogenize nutrient distribution, dissolved oxygen and temperature. Weak thermoclines and the athelomixis process immediately before, during and after the passage of cold fronts interfere with phytoplankton succession in reservoirs. Cyanobacteria blooms in eutrophic reservoirs are frequently connected with periods of stratification and stability of the water column. Cold fronts in the Amazon and Pantanal lakes may produce fish killings during the process of "friagem" associated mixing events. Further studies will try to implement a model to predict the impact of cold fronts and prepare management procedures in order to cope with cyanobacteria blooms during warm and stable water column periods. Changes in water quality of reservoirs are expected during circulation periods caused by cold fronts.

  8. Cold fronts and reservoir limnology: an integrated approach towards the ecological dynamics of freshwater ecosystems

    Directory of Open Access Journals (Sweden)

    JG. Tundisi

    Full Text Available In this paper the authors discuss the effects of cold fronts on the dynamics of freshwater ecosystems of southeast South America. Cold fronts originating from the Antarctic show a monthly frequency that promotes turbulence and vertical mixing in reservoirs with a consequence to homogenize nutrient distribution, dissolved oxygen and temperature. Weak thermoclines and the athelomixis process immediately before, during and after the passage of cold fronts interfere with phytoplankton succession in reservoirs. Cyanobacteria blooms in eutrophic reservoirs are frequently connected with periods of stratification and stability of the water column. Cold fronts in the Amazon and Pantanal lakes may produce fish killings during the process of "friagem" associated mixing events. Further studies will try to implement a model to predict the impact of cold fronts and prepare management procedures in order to cope with cyanobacteria blooms during warm and stable water column periods. Changes in water quality of reservoirs are expected during circulation periods caused by cold fronts.

  9. Cold-water immersion alters muscle recruitment and balance of basketball players during vertical jump landing.

    Science.gov (United States)

    Macedo, Christiane de Souza Guerino; Vicente, Rafael Chagas; Cesário, Mauricio Donini; Guirro, Rinaldo Roberto de Jesus

    2016-01-01

    The purpose of this study was to evaluate the effects of cold-water immersion on the electromyographic (EMG) response of the lower limb and balance during unipodal jump landing. The evaluation comprised 40 individuals (20 basketball players and 20 non-athletes). The EMG response in the lateral gastrocnemius, tibialis anterior, fibular longus, rectus femoris, hamstring and gluteus medius; amplitude and mean speed of the centre of pressure, flight time and ground reaction force (GRF) were analysed. All volunteers remained for 20 min with their ankle immersed in cold-water, and were re-evaluated immediately post and after 10, 20 and 30 min of reheating. The Shapiro-Wilk test, Friedman test and Dunn's post test (P lower for the athletes. Lower jump flight time and GRF, greater amplitude and mean speed of centre of pressure were predominant in the athletes. Cold-water immersion decreased the EMG activity of the lower limb, flight time and GRF and increased the amplitude and mean speed of centre of pressure.

  10. The Akzo-Fina cold flow improvement process

    Energy Technology Data Exchange (ETDEWEB)

    Free, H.W.H.; Schockaert, T.; Sonnemans, J.W.M. (Akzo Chemicals B.V., Amersfoort (Netherlands). Hydroprocessing Catalysts)

    1993-09-01

    The Akzo-Fina CFI process is a very flexible process in which improvement of cold flow properties, desulfurization and hydroconversion are achieved. One of the main characteristics is the dewaxing obtained by the selective hydrocracking of normal paraffins combined with hydro-desulfurization and hydroconversion. Since its introduction in 1988, five licenses have been sold. The units currently run for heavy gasoil upgrading show an excellent performance and reach pour point improvements of over 50[degree]C, long cycle lengths and product sulfur levels well below 0.05 wt%. 2 figs., 2 tabs.

  11. Lung function after cold-water dives with a standard scuba regulator or full-face-mask during wintertime.

    Science.gov (United States)

    Uhlig, Florian; Muth, Claus-Martin; Tetzlaff, Kay; Koch, Andreas; Leberle, Richard; Georgieff, Michael; Winkler, Bernd E

    2014-06-01

    Full-face-masks (FFM) prevent the diver's face from cold and can support nasal breathing underwater. The aim of the study was to evaluate the effect of the use of FFMs on lung function and wellbeing. Twenty-one, healthy, non-asthmatic divers performed two cold-water dives (4⁰C, 25 min, 10 metres' depth) - one with a FFM and the other with a standard scuba regulator (SSR). Spirometry was performed before and after each dive and well-being and cold sensation were assessed after the dives. Significant decreases in forced vital capacity (FVC), forced expiratory volume in one second (FEV₁) and midexpiratory flow at 75% of FVC (MEF₇₅) occurred after both FFM and SSR dives. Changes in FVC and FEV₁ did not differ significantly between FFM and SSR dives. However, the mid-expiratory flows measured at 50% and 25% of FVC (MEF₅₀ and MEF₂₅) were significantly lower 10 minutes after the FFM dive compared to 10 minutes after the SSR dive. The wellbeing and cold sensation of the divers were significantly improved with FFM dives compared to SSR dives. Cold-water dives during wintertime can be associated with airway narrowing. During cold-water dives, the use of a FFM appears to reduce the cold sensation and enhance the well-being of the divers. However, a FFM does not appear to prevent airway narrowing in healthy, non-asthmatic subjects.

  12. Sr/Ca ratios in cold-water corals - a 'low-resolution' temperature archive?

    Science.gov (United States)

    Rüggeberg, Andres; Riethdorf, Jan-Rainer; Raddatz, Jacek; López Correa, Matthias; Montagna, Paolo; Dullo, Wolf-Christian; Freiwald, André

    2010-05-01

    One of the basic data to understand global change and past global changes is the measurement and the reconstruction of temperature of marine water masses. E.g. seawater temperature controls the density of seawater and in combination with salinity is the major driving force for the oceans circulation system. Geochemical investigations on cold-water corals Lophelia pertusa and Desmophyllum cristagalli indicated the potential of these organisms as high-resolution archives of environmental parameters from intermediate and deeper water masses (Adkins and Boyle 1997). Some studies tried to use cold-water corals as a high-resolution archive of temperature and salinity (Smith et al. 2000, 2002; Blamart et al. 2005; Lutringer et al. 2005). However, the fractionation of stable isotopes (delta18O and delta13C) and element ratios (Sr/Ca, Mg/Ca, U/Ca) are strongly influenced by vital effects (Shirai et al. 2005; Cohen et al. 2006), and difficult to interpret. Nevertheless, ongoing studies indicate the potential of a predominant temperature dependent fractionation of distinct isotopes and elements (e.g. Li/Ca, Montagna et al. 2008; U/Ca, Mg/Ca, delta18O, Lòpez Correa et al. 2008; delta88/86Sr, Rüggeberg et al. 2008). Within the frame of DFG-Project TRISTAN and Paläo-TRISTAN (Du 129/37-2 and 37-3) we investigated live-collected specimens of cold-water coral L. pertusa from all along the European continental margin (Northern and mid Norwegian shelves, Skagerrak, Rockall and Porcupine Bank, Galicia Bank, Gulf of Cadiz, Mediterranean Sea). These coral samples grew in waters characterized by temperatures between 6°C and 14°C. Electron Microprobe investigations along the growth direction of individual coral polyps were applied to determine the relationship between the incorporation of distinct elements (Sr, Ca, Mg, S). Cohen et al. (2006) showed for L. pertusa from the Kosterfjord, Skagerrak, that ~25% of the coral's Sr/Ca ratio is related to temperature, while 75% are influenced

  13. Performance on Water Stability of Cement-Foamed Asphalt Cold Recycled Mixture

    OpenAIRE

    Li Junxiao; Fu Wei; Zang Hechao

    2018-01-01

    Through designing the mixture proportion of foamed asphalt cold in-place recycled mixture combined with the water stability experiment, it shows that the addition of cement can obviously improve foamed asphalt mixture’s water stability and the best cement admixture is between 1% ~ 2%; Using digital imaging microscope and SEM technology, the mechanism of increasing on the intensity of foamed asphalt mixture resulted by adding cement was analyzed. It revealed that the cement hydration products ...

  14. Coating by the Cold Spray Process: a state of the art

    Directory of Open Access Journals (Sweden)

    Mario Guagliano

    2009-04-01

    Full Text Available A brief description of cold spray coating process is presented. This paper intends to review some the previous works which are mostly about the influences of the cold spray parameters, mostly the surface ofthe substrate, on the deposition efficiency (DE. Almost all the important parameters, with more focus on the roughness of the substrate, on increasing the DE are briefly studied; this review also includes a description of application of cold spray and of some important effect of this method on substrate properties.On this basis, some possible development in this field of research are drawn and discussed.

  15. Cold water immersion of the ankle decreases neuromuscular response of lower limb after inversion movement

    Directory of Open Access Journals (Sweden)

    Christiane S. G. Macedo

    2014-03-01

    Full Text Available BACKGROUND: Cryotherapy has been associated with a significant decrease in nerve conduction velocity and muscle contraction with possible effects on exercise and physical training. OBJECTIVES: To quantify the electromyographic response of the lateral gastrocnemius, tibialis anterior, fibularis longus, rectus femoris and gluteus medius to ankle inversion following cold water immersion. METHOD: The peak values of the root mean square (RMS were obtained from 35 healthy and active university subjects after the use of a tilt platform to force the ankle into 30° of inversion before, immediately after, and 10, 20, and 30 minutes after water immersion at 4±2°C, for 20 minutes. The Shapiro-Wilk test, repeated measures analysis, Bonferroni's post-hoc, and linear regression analysis provided the results. RESULTS: Peak RMS was significantly lower at all times after cold water immersion, with residual effect of up to 30 minutes, when compared to pre-immersion for all muscles, except for immediate post-immersion for the gluteus medius. CONCLUSIONS: After cold water immersion of the ankle, special care should be taken in activities that require greater neuromuscular control.

  16. Exertional Rhabdomyolysis in a Collegiate American Football Player After Preventive Cold-Water Immersion: A Case Report

    Science.gov (United States)

    Kahanov, Leamor; Eberman, Lindsey E.; Wasik, Mitchell; Alvey, Thurman

    2012-01-01

    Objective: To describe a case of exertional rhabdomyolysis in a collegiate American football player after preventive cold-water immersion. Background: A healthy man (19 years old) participated in full-contact football practice followed by conditioning (2.5 hours). After practice, he entered a coach-mandated post-practice cold-water immersion and had no signs of heat illness before developing leg cramps, for which he presented to the athletic training staff. After 10 minutes of repeated stretching, massage, and replacement of electrolyte-filled fluids, he was transported to the emergency room. Laboratory tests indicated a creatine kinase (CK) level of 2545 IU/L (normal range, 45–260 IU/L), CK-myoglobin fraction of 8.5 ng/mL (normal rhabdomyolysis. Treatment: The patient was treated with rest and rehydration. One week after the incident, he began biking and swimming. Eighteen days later, the patient continued to demonstrate elevated CK levels (527 IU/L) but described no other symptoms and was allowed to return to football practice as tolerated. Two months after the incident, his CK level remained high (1900 IU/L). Uniqueness: The athlete demonstrated no signs of heat illness upon entering the cold-water immersion but experienced severe leg cramping after immersion, resulting in a diagnosis of exertional rhabdomyolysis. Previously described cases have not linked cold-water immersion with the pathogenesis of rhabdomyolysis. Conclusions: In this football player, CK levels appeared to be a poor indicator of rhabdomyolysis. Our patient demonstrated no other signs of the illness weeks after the incident, yet his elevated CK levels persisted. Cold-water immersion immediately after exercise should be monitored by the athletic training staff and may not be appropriate to prevent muscle damage, given the lack of supporting evidence. PMID:22488291

  17. Mixing Hot and Cold Water Streams at a T-Junction

    Science.gov (United States)

    Sharp, David; Zhang, Mingqian; Xu, Zhenghe; Ryan, Jim; Wanke, Sieghard; Afacan, Artin

    2008-01-01

    A simple mixing of a hot- and cold-water stream at a T-junction was investigated. The main objective was to use mass and energy balance equations to predict mass low rates and the temperature of the mixed stream after the T-junction, and then compare these with the measured values. Furthermore, the thermocouple location after the T-junction and…

  18. Habituation of the initial responses to cold water immersion in humans: a central or peripheral mechanism?

    Science.gov (United States)

    Tipton, M J; Eglin, C M; Golden, F S

    1998-10-15

    1. The initial respiratory and cardiac responses to cold water immersion are thought to be responsible for a significant number of open water deaths each year. Previous research has demonstrated that the magnitude of these responses can be reduced by repeated immersions in cold waterwhether the site of habituation is central or peripheral. 2. Two groups of subjects undertook two 3 min head-out immersions in stirred water at 10 C of the right-hand side of the body (R). Between these two immersions (3 whole days) the control group (n = 7) were not exposed to cold water, but the habituation group (n = 8) undertook a further six 3 min head-out immersions in stirred water at 10 C of the left-hand side of the body (L). 3. Repeated L immersions reduced (P immersion a reduction (P < 0.05) in the magnitude of the responses evoked was seen in the habituation group but not in the control group, despite both groups having identical skin temperature profiles. 4. It is concluded that the mechanisms involved in producing habituation of the initial responses are located more centrally than the peripheral receptors.

  19. Study on the Influence of the Cold-End Cooling Water Thickness on the Generative Performance of TEG

    Science.gov (United States)

    Zhou, Li; Guo, Xuexun; Tan, Gangfeng; Ji, Kangping; Xiao, Longjie

    2017-05-01

    At present, about 40% of the fuel energy is discharged into air with the exhaust gas when an automobile is working, which is a big waste of energy. A thermoelectric generator (TEG) has the ability to harvest the waste heat energy in the exhaust gas. The traditional TEG cold-end is cooled by the engine cooling system, and although its structure is compact, the TEG weight and the space occupied are important factors restricting its application. In this paper, under the premise of ensuring the TEG maximum net output power and reducing the TEG water consumption as much as possible, the optimization of the TEG water thickness in the normal direction of the cold-end surface (WTNCS) is studied, which results in lighter weight, less space occupied and better automobile fuel economy. First, the thermal characteristics of the target diesel vehicle exhaust gas are evaluated based on the experimental data. Then, according to the thermoelectric generation model and the cold-end heat transfer model, the effect of the WTNCS on the cold-end temperature control stability and the system flow resistance are studied. The results show that the WTNCS influences the TEG cold-end temperature. When the engine works in a stable condition, the cold-end temperature decreases with the decrease of the WTNCS. The optimal value of the WTNCS is 0.02 m and the TEG water consumption is 8.8 L. Comparin it with the traditional vehicle exhaust TEG structure, the power generation increased slightly, but the water consumption decreased by about 39.5%, which can save fuel at0.18 L/h when the vehicle works at the speed of 60 km/h.

  20. New design of process for cold forging to improve multi-stage gas fitting

    Directory of Open Access Journals (Sweden)

    Han-Sung Huang

    2016-04-01

    Full Text Available This work develops a process that solves the problem of the formation of cracks inside forged gas fittings in the cold forging process that arises from poor forging process design. DEFORM-3D forming software was utilized, and macroscopic experiments with optical microscopy and scanning electron microscopy were conducted to investigate the processed structures and the distribution therein of metal flow lines, and to find the internal micro-cracks to determine whether the cold forging process is reasonable. Analytical results herein demonstrate that the stress and strain inside the gas fitting can be elucidated using metal forming software. Together with experimental results, they demonstrate that a concentration of stress damages the workpiece in the forming process. Moreover, as metal flow lines become narrower, the workpiece becomes more easily damaged. Consequently, the improved cold forging process that is described in this work should be utilized to reduce the occurrence of fine cracks and defects. Planning for proper die design and production, increasing the quality of products, and reducing the number of defective products promote industrial competitiveness.

  1. Experimental study on combined cold forging process of backward cup extrusion and piercing

    Science.gov (United States)

    Henry, Robinson; Liewald, Mathias

    2018-05-01

    A reduction in material usage of cold forged components while maintaining the functional requirements can be achieved using hollow or tubular preforms. These preforms are used to meet lightweight requirements and to decrease production costs of cold formed components. To increase production efficiency in common multi-stage cold forming processes, manufacturing of hollow preforms by combining the processes backward cup extrusion and piercing was established and will be discussed in this paper. Corresponding investigations and experimental studies are reported in this article. The objectives of the experimental investigations have been the detection of significant process parameters, determination of process limits for the combined processes and validation of the numerical investigations. In addition, the general influence concerning surface quality and diameter tolerance of hollow performs are discussed in this paper. The final goal is to summarize a guideline for industrial application, moreover, to transfer the knowledge to industry, as regards what are required part geometries to reduce the number of forming stages as well as tool cost.

  2. Effects of cold working ratio and stress intensity factor on intergranular stress corrosion cracking susceptibility of non-sensitized austenitic stainless steels in simulated BWR and PWR primary water

    International Nuclear Information System (INIS)

    Yaguchi, Seiji; Yonezawa, Toshio

    2012-01-01

    To evaluate the effects of cold working ratio, stress intensity factor and water chemistry on an IGSCC susceptibility of non-sensitized austenitic stainless steel, constant displacement DCB specimens were applied to SCC tests in simulated BWR and PWR primary water for the three types of austenitic stainless steels, Types 316L, 347 and 321. IGSCC was observed on the test specimens in simulated BWR and PWR primary water. The observed IGSCC was categorized into the following two types. The one is that the IGSCC observed on the same plane of the pre-fatigue crack plane, and the other is that the IGSCC observed on a plane perpendicular to the pre-fatigue crack plane. The later IGSCC fractured plane is parallel to the rolling plane of a cold rolled material. Two types of IGSCC fractured planes were changed according to the combination of the testing conditions (cold working ratio, stress intensity factor and simulated water). It seems to suggest that the most susceptible plane due to fabrication process of materials might play a significant role of IGSCC for non-sensitized cold worked austenitic stainless steels, especially, in simulated PWR primary water. Based upon evaluating on the reference crack growth rate (R-CGR) of the test specimens, the R-CGR seems to be mainly affected by cold working ratio. In case of simulated PWR primary water, it seems that the effect of metallurgical aspects dominates IGSCC susceptibility. (author)

  3. Hot and cold CO{sub 2}-rich mineral waters in Chaves geothermal area (northern Portugal)

    Energy Technology Data Exchange (ETDEWEB)

    Aires-Barros, Luis; Marques, Jose Manuel; Graca, Rui Cores; Matias, Maria Jose [Universidade Tecnica de Lisboa, Lab. de Mineralogia e Petrologia (LAMPIST), Lisboa (Portugal); Weijden, Cornelis H. van der; Kreulen, Rob [Utrecht Univ., Dept. of Geochemistry, Utrecht (Netherlands); Eggenkamp, Hermanus Gerardus M. [Utrecht Univ., Dept. of Geochemistry, Utrecht (Netherlands); Reading Univ., Postgraduate Research Inst. for Sedimentology, Reading (United Kingdom)

    1998-02-01

    In order to update the geohydrologic characterisation of Chaves geothermal area, coupled isotopic and chemical studies have been carried out on hot and cold CO{sub 2}-rich mineral waters discharging, in northern Portugal, along one of the major regional NNE-trending faults (the so-called Verin-Chaves-Penacova Depression). Based upon their location, and chemical and isotopic composition, the analysed waters can be divided into two groups. The northern group belongs to the HCO{sub 3}/Na/CO{sub 2}-rich type, and consists of the hot spring waters of Chaves and the cold spring waters of Vilarelho da Raia. The {delta}D and {delta}{sup 18}O values show that these waters are of meteoric origin. The lack of an {sup 18}O shift indicates that there is no evidence of water/rock interaction at high temperatures. The southern group includes the cold spring waters of Campilho/Vidago and Sabroso/Pedras Salgadas. Their chemistry is similar to that of the northern group but their heavier {delta}D and {delta}{sup 18}O values could be attributed to different recharge altitudes. Mixing between deep mineralised waters and dilute superficial waters of meteoric origin might explain the higher {sup 3}H activity found in the Vidago and Pedras Salgadas mineral waters. Alternatively, they could be mainly related to shallow underground flowpaths. The {delta}{sup 13}C values support a deep-seated origin for the CO{sub 2}. The {delta}{sup 37}Cl is comparable in all the mineral waters of the study areas, indicating a common origin of Cl. The {sup 87}Sr/{sup 86}Sr ratios in waters seem to be dominated by the dissolution of plagioclases or granitic rocks. (Author)

  4. Ecohydrodynamics of cold-water coral reefs: a case study of the Mingulay Reef Complex (western Scotland.

    Directory of Open Access Journals (Sweden)

    Juan Moreno Navas

    Full Text Available Ecohydrodynamics investigates the hydrodynamic constraints on ecosystems across different temporal and spatial scales. Ecohydrodynamics play a pivotal role in the structure and functioning of marine ecosystems, however the lack of integrated complex flow models for deep-water ecosystems beyond the coastal zone prevents further synthesis in these settings. We present a hydrodynamic model for one of Earth's most biologically diverse deep-water ecosystems, cold-water coral reefs. The Mingulay Reef Complex (western Scotland is an inshore seascape of cold-water coral reefs formed by the scleractinian coral Lophelia pertusa. We applied single-image edge detection and composite front maps using satellite remote sensing, to detect oceanographic fronts and peaks of chlorophyll a values that likely affect food supply to corals and other suspension-feeding fauna. We also present a high resolution 3D ocean model to incorporate salient aspects of the regional and local oceanography. Model validation using in situ current speed, direction and sea elevation data confirmed the model's realistic representation of spatial and temporal aspects of circulation at the reef complex including a tidally driven current regime, eddies, and downwelling phenomena. This novel combination of 3D hydrodynamic modelling and remote sensing in deep-water ecosystems improves our understanding of the temporal and spatial scales of ecological processes occurring in marine systems. The modelled information has been integrated into a 3D GIS, providing a user interface for visualization and interrogation of results that allows wider ecological application of the model and that can provide valuable input for marine biodiversity and conservation applications.

  5. Present and past Gulf Stream variability in a cold-water coral area off Cape Lookout, West Atlantic

    Science.gov (United States)

    Mienis, F.; Pedersen, A.; Duineveld, G.; Seidenkrantz, M.; Fischel, A.; Matos, L.; Bane, J. M.; Frank, N.; Hebbeln, D.; Ross, S.

    2012-12-01

    Cold-water coral mounds are common on the SE slope of the US from Florida to Cape Hatteras between depths of 400-600 m. All coral areas lie in the vicinity of the Gulf Stream, which is characterized by strong currents transporting relatively warm water northwards. Thus far little is known about the recent and past environmental conditions inside the cold-water coral habitats on the SE US slope and particularly the effect of changing patterns of the Gulf Stream. Near Cape Lookout, which is the northern most cold-water coral area on the SE US slope, cold-water corals have formed mounds up to 60 m high with a tear drop shape, which are oriented in a SSW-NNE direction. Past explorations of major reef sites of N Carolina using remote and manned submersibles have shown living Lophelia pertusa colonies on the current facing side of the mound structures and a high biodiversity of associated fauna, especially fish. Two autonomous benthic landers were deployed amidst Lophelia reefs off Cape Lookout (NC) for a period of 6 months to define oceanographic patterns that are relevant for the development and persistence of cold-water coral ecosystems. Furthermore, a 3.6 m long piston core was collected in 2010 during a cruise with the R.V. Pelagia. This pistoncore was used to determine the changes of current strength through time, using foraminiferal counts, stable oxygen and carbon isotopes on foraminifera, XRF and magnetic susceptibility measurements. Cold-water coral fragments were dated with U/Th and foraminifera from the same depth interval were dated with C14. Bottom landers have recorded a number of events that are characterized by of peaks in temperature and salinity, coinciding with increased flow and turbidity. The current during these events was directed to the NNE. During some of these events temperature rose up to 9 degrees in one day. The temporary replacement of the colder bottom water by warm (and saline) water in combination with the strong currents to the NNE

  6. Coral mucus fuels the sponge loop in warm- and cold-water coral reef ecosystems

    NARCIS (Netherlands)

    Rix, L.; de Goeij, J.M.; Mueller, C.E.; Struck, U.; Middelburg, J.J.; van Duyl, F.C.; Al-Horani, F.A.; Wild, C.; Naumann, M.S.; Van Oevelen, D.

    2016-01-01

    Shallow warm-water and deep-sea cold-water corals engineer the coral reef framework and fertilize reef communities by releasing coral mucus, a source of reef dissolved organic matter (DOM). By transforming DOM into particulate detritus, sponges play a key role in transferring the energy and

  7. Cold acclimation and cognitive performance: A review.

    Science.gov (United States)

    Jones, Douglas M; Bailey, Stephen P; Roelands, Bart; Buono, Michael J; Meeusen, Romain

    2017-12-01

    Athletes, occupational workers, and military personnel experience cold temperatures through cold air exposure or cold water immersion, both of which impair cognitive performance. Prior work has shown that neurophysiological pathways may be sensitive to the effects of temperature acclimation and, therefore, cold acclimation may be a potential strategy to attenuate cold-induced cognitive impairments for populations that are frequently exposed to cold environments. This review provides an overview of studies that examine repeated cold stress, cold acclimation, and measurements of cognitive performance to determine whether or not cold acclimation provides beneficial protection against cold-induced cognitive performance decrements. Studies included in this review assessed cognitive measures of reaction time, attention, logical reasoning, information processing, and memory. Repeated cold stress, with or without evidence of cold acclimation, appears to offer no added benefit of improving cognitive performance. However, research in this area is greatly lacking and, therefore, it is difficult to draw any definitive conclusions regarding the use of cold acclimation to improve cognitive performance during subsequent cold exposures. Given the current state of minimal knowledge on this topic, athletes, occupational workers, and military commands looking to specifically enhance cognitive performance in cold environments would likely not be advised to spend the time and effort required to become acclimated to cold. However, as more knowledge becomes available in this area, recommendations may change. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Adaptation of the continuous cold-trap system of fluidized-bed to the fluoride volatility process

    International Nuclear Information System (INIS)

    1976-01-01

    A continuous cold-trap system consisting of fluidized condensor and stripper has been evaluated with a view to adapt it to the Fluoride Volatility Process in establishing the continuous purification process without radiation decomposition of PuF 6 . Its feasibility is shown by the test with UF 6 -air. Necessary conditions for the cold trap, and performance of the 2-in.-dia. fluidized-bed cold-trap system are presented, and also a model of mist formation in the condensor

  9. Application of Response Surface Methodology (RSM for Optimization of Operating Parameters and Performance Evaluation of Cooling Tower Cold Water Temperature

    Directory of Open Access Journals (Sweden)

    Ramkumar RAMAKRISHNAN

    2012-01-01

    Full Text Available The performance of a cooling tower was analyzed with various operating parameters tofind the minimum cold water temperature. In this study, optimization of operating parameters wasinvestigated. An experimental design was carried out based on central composite design (CCD withresponse surface methodology (RSM. This paper presents optimum operating parameters and theminimum cold water temperature using the RSM method. The RSM was used to evaluate the effectsof operating variables and their interaction towards the attainment of their optimum conditions.Based on the analysis, air flow, hot water temperature and packing height were high significanteffect on cold water temperature. The optimum operating parameters were predicted using the RSMmethod and confirmed through experiment.

  10. Exertional rhabdomyolysis in a collegiate american football player after preventive cold-water immersion: a case report.

    Science.gov (United States)

    Kahanov, Leamor; Eberman, Lindsey E; Wasik, Mitchell; Alvey, Thurman

    2012-01-01

    To describe a case of exertional rhabdomyolysis in a collegiate American football player after preventive coldwater immersion. A healthy man (19 years old) participated in full-contact football practice followed by conditioning (2.5 hours). After practice, he entered a coach-mandated postpractice cold-water immersion and had no signs of heat illness before developing leg cramps, for which he presented to the athletic training staff. After 10 minutes of repeated stretching, massage, and replacement of electrolyte-filled fluids, he was transported to the emergency room. Laboratory tests indicated a creatine kinase (CK) level of 2545 IU/L (normal range, 45-260 IU/L), CK-myoglobin fraction of 8.5 ng/mL (normal football practice as tolerated. Two months after the incident, his CK level remained high (1900 IU/L). The athlete demonstrated no signs of heat illness upon entering the cold-water immersion but experienced severe leg cramping after immersion, resulting in a diagnosis of exertional rhabdomyolysis. Previously described cases have not linked cold-water immersion with the pathogenesis of rhabdomyolysis. In this football player, CK levels appeared to be a poor indicator of rhabdomyolysis. Our patient demonstrated no other signs of the illness weeks after the incident, yet his elevated CK levels persisted. Cold-water immersion immediately after exercise should be monitored by the athletic training staff and may not be appropriate to prevent muscle damage, given the lack of supporting evidence.

  11. Effective use of thermal energy at both hot and cold side of thermoelectric module for developing efficient thermoelectric water distillation system

    International Nuclear Information System (INIS)

    Al-Madhhachi, Hayder; Min, Gao

    2017-01-01

    Highlights: • New distillation process using thermoelectric to assist evaporation/condensation. • Novel thermoelectric distillation system with reduced specific energy consumption. • Freshwater production by thermoelectrically assisted evaporation and condensation. - Abstract: An efficient thermoelectric distillation system has been designed and constructed for production of drinkable water. The unique design of this system is to use the heat from hot side of the thermoelectric module for water evaporation and the cold side for vapour condensation simultaneously. This novel design significantly reduces energy consumption and improves the system performance. The results of experiments show that the average water production is 28.5 mL/h with a specific energy consumption of 0.00114 kW h/mL in an evaporation chamber filled with 10 × 10 × 30 mm"3 of water. This is significantly lower than the energy consumption required by other existing thermoelectric distillation systems. The results also show that a maximum temperature difference between the hot and cold side of the thermoelectric module is 42.3 °C, which led to temperature increases of 26.4 °C and 8.4 °C in water and vapour, respectively.

  12. Cold comfort at the Magh Mela: social identity processes and physical hardship.

    Science.gov (United States)

    Pandey, Kavita; Stevenson, Clifford; Shankar, Shail; Hopkins, Nicholas P; Reicher, Stephen D

    2014-12-01

    Humans inhabit environments that are both social and physical, and in this article we investigate if and how social identity processes shape the experience and negotiation of physically demanding environmental conditions. Specifically, we consider how severe cold can be interpreted and experienced in relation to group members' social identity. Our data comprise ethnographic observation and semi-structured interviews with pilgrims attending a month-long winter Hindu religious festival that is characterized by near-freezing conditions. The analysis explores (1) how pilgrims appraised the cold and how these appraisals were shaped by their identity as pilgrims; (2) how shared identity with other pilgrims led to forms of mutual support that made it easier to cope with the cold. Our findings therefore extend theorizing on social identity processes to highlight their relevance to physical as well as social conditions. © 2013 The British Psychological Society.

  13. UPTF/TEST10B/RUN081, Steam/Water Flow Phenomena Reflood PWR Cold Leg Break LOCA

    International Nuclear Information System (INIS)

    1998-01-01

    1 - Description of test facility: The Upper Plenum Test Facility (UPTF) is a geometrical full-scale simulation of the primary system of the four-loop 1300 MWe Siemens/KWU pressurized water reactor (PWR) at Grafenrheinfeld. The test vessel, upper plenum and its internals, downcomer, primary loops, pressurizer and surge line are replicas of the reference plant. The core, coolant pumps, steam generators and containment of a PWR are replaced by simulators which simulate the boundary and initial conditions during end-of-blowdown, refill and reflood phase following a loss-of-coolant accident (LOCA) with a hot or cold leg break. The break size and location can be simulated in the broken loop. The emergency core coolant (ECC) injection systems at the UPTF are designed to simulate the various ECC injection modes, such as hot leg, upper plenum, cold leg, downcomer or combined hot and cold leg injection of different ECC systems of German and US/Japan PWRs. Moreover, eight vent valves are mounted in the core barrel above the hot leg nozzle elevation for simulation of ABB and B and W PWRs. The UPTF primary system is divided into the investigation and simulation areas. The investigation areas, which are the exact replicas of a GPWR, consist of the upper plenum with internals, hot legs, cold legs and downcomer. The realistic thermal-hydraulic behavior in the investigation areas is assured by appropriate initial and boundary conditions of the area interface. The boundary conditions are realized by above mentioned simulators, the setup and the operation of which are based on small-scale data and mathematical models. The simulation areas include core simulator, steam generator simulators, pump simulators and containment simulator. The steam production and entrainment in a real core during a LOCA are simulated by steam and water injection through the core simulator. 2 - Description of test: Investigation of steam/water flow phenomena at the upper tie plate and in the upper plenum and

  14. A Review on Cold Start of Proton Exchange Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Zhongmin Wan

    2014-05-01

    Full Text Available Successful and rapid startup of proton exchange membrane fuel cells (PEMFCs at subfreezing temperatures (also called cold start is of great importance for their commercialization in automotive and portable devices. In order to maintain good proton conductivity, the water content in the membrane must be kept at a certain level to ensure that the membrane remains fully hydrated. However, the water in the pores of the catalyst layer (CL, gas diffusion layer (GDL and the membrane may freeze once the cell temperature decreases below the freezing point (Tf. Thus, methods which could enable the fuel cell startup without or with slight performance degradation at subfreezing temperature need to be studied. This paper presents an extensive review on cold start of PEMFCs, including the state and phase changes of water in PEMFCs, impacts of water freezing on PEMFCs, numerical and experimental studies on PEMFCs, and cold start strategies. The impacts on each component of the fuel cell are discussed in detail. Related numerical and experimental work is also discussed. It should be mentioned that the cold start strategies, especially the enumerated patents, are of great reference value on the practical cold start process.

  15. “100 percent fun”: A case study of benefits from cold water surfing in Jæren, Norway

    OpenAIRE

    Elmahdy, Yasmine Mounir

    2015-01-01

    Master's thesis in International hotel and tourism management Norway is steadily progressing towards being a popular cold-water surf destination. The long Norwegian coastline is attracting an increasing number of surfers who surf year round in extreme weather conditions. The aim of this research is to identify the benefits acquired by Norwegian surfers surfing in cold water along the Jæren coast, south the city of Stavanger in Norway. This research adopted a phenomenological approach and q...

  16. Water And Waste Water Processing

    International Nuclear Information System (INIS)

    Yang, Byeong Ju

    1988-04-01

    This book shows US the distribution diagram of water and waste water processing with device of water processing, and device of waste water processing, property of water quality like measurement of pollution of waste water, theoretical Oxygen demand, and chemical Oxygen demand, processing speed like zero-order reactions and enzyme reactions, physical processing of water and waste water, chemical processing of water and waste water like neutralization and buffering effect, biological processing of waste water, ammonia removal, and sludges processing.

  17. Adaptation of the continuous cold trap system of fluidized-bed to the fluoride volatility process

    International Nuclear Information System (INIS)

    1976-02-01

    A continuous cold trap system consisting of fluidized condenser and stripper has been evaluated with a view to adapt it to the Fluoride Volatility Process in establishing the continuous purification process without radiation decomposition of PuF 6 . Its feasibility is shown by the test with UF 6 -air. Necessary conditions for the cold trap, and performance of the two inch-dia. fluidized bed cold trap system are presented, and also a model of mist formation in the condenser. (auth.)

  18. NORTH PORTAL - DOMESTIC COLD WATER CALCULATION - CHANGE HOUSE FACILITY No.5008

    International Nuclear Information System (INIS)

    S. Mastilovic

    2000-01-01

    The purpose of this design analysis and calculation is to determine the demand for domestic cold water and to size the supply main piping for the Change House Facility No.5008 in accordance with the Uniform Plumbing Code (Section 4.4.1) and US Department of Energy Order 6430.1A-1540 (Section 4.4.2)

  19. Cold Water Cleaning and Sanitizing of Kitchenware in the Field

    Science.gov (United States)

    1989-12-01

    product would not be expected Product may result in irritat tact dermatitis have been rep benzalkonium chloride compoun mists or vapors may result in...CONSERVATION COLD WATER 19. ABSTRACT {Continue on reverse if necessary and identify by block number) In emergency situations in the field, where reduction ...MATERIAL: <CAS#) ! % Bv Wt. I TLV I PEL n-Alkyl Dimethyl Benzyl Ammonium Chloride (68424-85-1) Octyl decy I dimethyl

  20. Atlantic salmon breeding program at the National Cold Water Marine Aquaculture Center

    Science.gov (United States)

    The USDA-ARS National Cold Water Marine Aquaculture Center (NCWMAC) in Franklin, ME has been supporting the U.S. coldwater marine aquaculture industry for the past thirteen years by developing a genetically improved North American Atlantic salmon. The St. John's River stock was chosen as the focal ...

  1. Manipulating cold atoms for quantum information processing

    International Nuclear Information System (INIS)

    Knight, P.

    2005-01-01

    Full text: I will describe how cold atoms can be manipulated to realize arrays of addressable qbits as prototype quantum registers, focussing on how atom chips can be used in combination with cavity qed techniques to form such an array. I will discuss how the array can be generated and steered using optical lattices and the Mott transition, and describe the sources of noise and how these place limits on the use of such chips in quantum information processing. (author)

  2. Cold Vacuum Drying facility effluent drain system design description

    International Nuclear Information System (INIS)

    PITKOFF, C.C.

    1999-01-01

    This document describes the Cold Vacuum Drying Facility (CVDF) effluent drain system (EFS). The primary function of the EFS is to collect and transport fire suppression water discharged into a CVDF process bay to a retention basin located outside the facility. The EFS also provides confinement of spills that occur inside a process bay and allows non-contaminated water that drains to the process bay sumps to be collected until sampling and analysis are complete

  3. Standard practice for visible penetrant testing using the Water-Washable process

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice describes procedures for visible liquid penetrant examination utilizing the water-washable process. It is a nondestructive practice for detecting discontinuities that are open to the surface such as cracks, seams, laps, cold shuts, laminations, isolated porosity, through leaks or lack of fusion and is applicable to in-process, final, and maintenance examination. This practice can be effectively used in the examination of nonporous, metallic materials, both ferrous and nonferrous, and of nonmetallic materials such as glazed or fully densified ceramics, and certain nonporous plastics, and glass. 1.2 This practice also provides the following references: 1.2.1 A reference by which visible penetrant examination procedures using the water-washable process can be reviewed to ascertain their applicability and completeness. 1.2.2 For use in the preparation of process specifications dealing with the visible, water-washable liquid penetrant examination of materials and parts. Agreement between the user...

  4. Interaction of cold radiofrequency plasma with seeds of beans (Phaseolus vulgaris)

    Science.gov (United States)

    Bormashenko, Edward; Shapira, Yekaterina; Grynyov, Roman; Whyman, Gene; Bormashenko, Yelena; Drori, Elyashiv

    2015-01-01

    The impact of cold radiofrequency air plasma on the wetting properties and water imbibition of beans (Phaseolus vulgaris) was studied. The influence of plasma on wetting of a cotyledon and seed coat (testa) was elucidated. It was established that cold plasma treatment leads to hydrophilization of the cotyledon and tissues constituting the testa when they are separately exposed to plasma. By contrast, when the entire bean is exposed to plasma treatment, only the external surface of the bean is hydrophilized by the cold plasma. Water imbibition by plasma-treated beans was studied. Plasma treatment markedly accelerates the water absorption. The crucial role of a micropyle in the process of water imbibition was established. It was established that the final percentage of germination was almost the same in the cases of plasma-treated, untreated, and vacuum-pumped samples. However, the speed of germination was markedly higher for the plasma-treated samples. The influence of the vacuum pumping involved in the cold plasma treatment on the germination was also clarified. PMID:25948708

  5. Hand immersion in cold water alleviating physiological strain and increasing tolerance to uncompensable heat stress.

    Science.gov (United States)

    Khomenok, Gennadi A; Hadid, Amir; Preiss-Bloom, Orahn; Yanovich, Ran; Erlich, Tomer; Ron-Tal, Osnat; Peled, Amir; Epstein, Yoram; Moran, Daniel S

    2008-09-01

    The current study examines the use of hand immersion in cold water to alleviate physiological strain caused by exercising in a hot climate while wearing NBC protective garments. Seventeen heat acclimated subjects wearing a semi-permeable NBC protective garment and a light bulletproof vest were exposed to a 125 min exercise-heat stress (35 degrees C, 50% RH; 5 km/h, 5% incline). The heat stress exposure routine included 5 min rest in the chamber followed by two 50:10 min work-rest cycles. During the control trial (CO), there was no intervention, whilst in the intervention condition the subjects immersed their hands and forearms in a 10 degrees C water bath (HI). The results demonstrated that hand immersion in cold water significantly reduced physiological strain. In the CO exposure during the first and second resting periods, the average rectal temperature (T (re)) practically did not decrease. With hand immersion, the mean (SD) T (re) decreased by 0.45 (0.05 degrees C) and 0.48 degrees C (0.06 degrees C) during the first and second rest periods respectively (P immersion in cold water for 10 min is an effective method for decreasing the physiological strain caused by exercising under heat stress while wearing NBC protective garments. The method is convenient, simple, and allows longer working periods in hot or contaminated areas with shorter resting periods.

  6. Surface enhanced 316L/SiC nano-composite coatings via laser cladding and following cold-swaging process

    Science.gov (United States)

    Li, Yuhang; Gao, Shiyou

    2017-10-01

    Cold-swaging is one of a cold deformation processes, and ceramic-reinforcement nano-composite coatings can effectively improve the performance of metal matrix surface. Therefore, the two processes are innovatively combined to further improve the surface properties of the metal matrix in this paper. The microstructure and surface properties of the laser cladding 316L + 10 wt% SiC nano-composite coatings were examined through designed experiments after cold-swaging by self-developed hydraulic machine. Furthermore, the coatings were compared with those without cold-swaging coatings at the same time. The result shows that the cold-swaging process can further enhance the tensile strength, micro-hardness and the wear resistance of the composite coating. This study can be used as a reference for further strengthening of laser cladding nano-composite coatings in future research.

  7. Calcification of the cold-water coral Lophelia pertusa, under ambient and reduced pH

    Directory of Open Access Journals (Sweden)

    J.-P. Gattuso

    2009-08-01

    Full Text Available The cold-water coral Lophelia pertusa is one of the few species able to build reef-like structures and a 3-dimensional coral framework in the deep oceans. Furthermore, deep cold-water coral bioherms may be among the first marine ecosystems to be affected by ocean acidification. Colonies of L. pertusa were collected during a cruise in 2006 to cold-water coral bioherms of the Mingulay reef complex (Hebrides, North Atlantic. Shortly after sample collection onboard these corals were labelled with calcium-45. The same experimental approach was used to assess calcification rates and how those changed due to reduced pH during a cruise to the Skagerrak (North Sea in 2007. The highest calcification rates were found in youngest polyps with up to 1% d−1 new skeletal growth and average rates of 0.11±0.02% d−1±S.E.. Lowering pH by 0.15 and 0.3 units relative to the ambient level resulted in calcification being reduced by 30 and 56%. Lower pH reduced calcification more in fast growing, young polyps (59% reduction than in older polyps (40% reduction. Thus skeletal growth of young and fast calcifying corallites suffered more from ocean acidification. Nevertheless, L. pertusa exhibited positive net calcification (as measured by 45Ca incorporation even at an aragonite saturation state (Ωa below 1.

  8. Closed-cycle process of coke-cooling water in delayed coking unit

    International Nuclear Information System (INIS)

    Zhou, P.; Bai, Z.S.; Yang, Q.; Ma, J.; Wang, H.L.

    2008-01-01

    Synthesized processes are commonly used to treat coke-cooling wastewater. These include cold coke-cut water, diluting coke-cooling water, adding chemical deodorization into oily water, high-speed centrifugal separation, de-oiling and deodorization by coke adsorption, and open nature cooling. However, because of water and volatile evaporation loss, it is not suitable to process high-sulphur heavy oil using open treatments. This paper proposed a closed-cycling process in order to solve the wastewater treatment problem. The process is based on the characteristics of coke-cooling water, such as rapid parametric variation, oil-water-coke emulsification and steam-water mixing. The paper discussed the material characteristics and general idea of the study. The process of closed-cycle separation and utilization process of coke-cooling water was presented along with a process flow diagram. Several applications were presented, including a picture of hydrocyclones for pollution separation and a picture of equipments of pollution separation and components regeneration. The results showed good effect had been achieved since the coke-cooling water system was put into production in 2004. The recycling ratios for the components of the coke-cooling water were 100 per cent, and air quality in the operating area reached the requirements of the national operating site circumstance and the health standards. Calibration results of the demonstration unit were presented. It was concluded that since the devices went into operation, the function of production has been normal and stable. The operation was simple, flexible, adjustable and reliable, with significant economic efficiency and environmental benefits. 10 refs., 2 tabs., 3 figs

  9. Comparison of Environment Impact between Conventional and Cold Chain Management System in Paprika Distribution Process

    Directory of Open Access Journals (Sweden)

    Eidelweijs A Putri

    2012-09-01

    Full Text Available Pasir Langu village in Cisarua, West Java, is the largest central production area of paprika in Indonesia. On average, for every 200 kilograms of paprika produced, there is rejection amounting to 3 kilograms. This resulted in money loss for wholesalers and wastes. In one year, this amount can be approximately 11.7 million Indonesian rupiahs. Recently, paprika wholesalers in Pasir Langu village recently are developing cold chain management system to maintain quality of paprika so that number of rejection can be reduced. The objective of this study is to compare environmental impacts between conventional and cold chain management system in paprika distribution process using Life Cycle Assessment (LCA methodology and propose Photovoltaic (PV system in paprika distribution process. The result implies that the cold chain system produces more CO2 emission compared to conventional system. However, due to the promotion of PV system, the emission would be reduced. For future research, it is necessary to reduce CO2 emission from transportation process since this process is biggest contributor of CO2 emission at whole distribution process. Keywords: LCA, environmentally friendly distribution, paprika,cold chain, PV system

  10. The Effects of Ribose on Mechanical and Physicochemical Properties of Cold Water Fish Gelatin Films

    Directory of Open Access Journals (Sweden)

    Neda Javadian

    2014-06-01

    Full Text Available Native fish gelatin has some disadvantages such as high hydrophilic, and solubility in cold water. Mixing with other biopolymers and crosslinking by sugars may improve functional properties of fish gelatin. So in this research, the effects of ribose were investigated on moisture sorption isotherm, solubility in water, and mechanical properties of cold water fish gelatin (CWFG films. Ribose sugar was incorporated into CWFG solutions at different concentrations (e.g. 0, 2, 4, and 6% w/w dried gelatin. Physicochemical properties such as water solubility, moisture sorption isotherm and mechanical properties of the films were measured according to ASTM standards. Results showed that incorporation of ribose sugar significantly improved functional properties of CWFG films. Solubility, moisture content and monolayer water content of the matrixes were decreased by increasing the ribose contents. Mechanical properties of biocomposites were improved more than 20% and moisture sorption isotherm curve significantly shifted to lower moisture contents. The results of this study could be explored for commercial use, depending on industrial needs for either production of edible films or for packaging purposes.

  11. Methanation process utilizing split cold gas recycle

    Science.gov (United States)

    Tajbl, Daniel G.; Lee, Bernard S.; Schora, Jr., Frank C.; Lam, Henry W.

    1976-07-06

    In the methanation of feed gas comprising carbon monoxide and hydrogen in multiple stages, the feed gas, cold recycle gas and hot product gas is mixed in such proportions that the mixture is at a temperature sufficiently high to avoid carbonyl formation and to initiate the reaction and, so that upon complete reaction of the carbon monoxide and hydrogen, an excessive adiabatic temperature will not be reached. Catalyst damage by high or low temperatures is thereby avoided with a process that utilizes extraordinarily low recycle ratios and a minimum of investment in operating costs.

  12. Climate, invasive species and land use drive population dynamics of a cold-water specialist

    Science.gov (United States)

    Kovach, Ryan P.; Al-Chokhachy, Robert K.; Whited, Diane C.; Schmetterling, David A.; Dux, Andrew M; Muhlfeld, Clint C.

    2017-01-01

    Climate change is an additional stressor in a complex suite of threats facing freshwater biodiversity, particularly for cold-water fishes. Research addressing the consequences of climate change on cold-water fish has generally focused on temperature limits defining spatial distributions, largely ignoring how climatic variation influences population dynamics in the context of other existing stressors.We used long-term data from 92 populations of bull trout Salvelinus confluentus – one of North America's most cold-adapted fishes – to quantify additive and interactive effects of climate, invasive species and land use on population dynamics (abundance, variability and growth rate).Populations were generally depressed, more variable and declining where spawning and rearing stream habitat was limited, invasive species and land use were prevalent and stream temperatures were highest. Increasing stream temperature acted additively and independently, whereas land use and invasive species had additive and interactive effects (i.e. the impact of one stressor depended on exposure to the other stressor).Most (58%–78%) of the explained variation in population dynamics was attributed to the presence of invasive species, differences in life history and management actions in foraging habitats in rivers, lakes and reservoirs. Although invasive fishes had strong negative effects on populations in foraging habitats, proactive control programmes appeared to effectively temper their negative impact.Synthesis and applications. Long-term demographic data emphasize that climate warming will exacerbate imperilment of cold-water specialists like bull trout, yet other stressors – especially invasive fishes – are immediate threats that can be addressed by proactive management actions. Therefore, climate-adaptation strategies for freshwater biodiversity should consider existing abiotic and biotic stressors, some of which provide potential and realized opportunity for conservation

  13. Warming by immersion or exercise affects initial cooling rate during subsequent cold water immersion.

    Science.gov (United States)

    Scott, Chris G; Ducharme, Michel B; Haman, François; Kenny, Glen P

    2004-11-01

    We examined the effect of prior heating, by exercise and warm-water immersion, on core cooling rates in individuals rendered mildly hypothermic by immersion in cold water. There were seven male subjects who were randomly assigned to one of three groups: 1) seated rest for 15 min (control); 2) cycling ergometry for 15 min at 70% Vo2 peak (active warming); or 3) immersion in a circulated bath at 40 degrees C to an esophageal temperature (Tes) similar to that at the end of exercise (passive warming). Subjects were then immersed in 7 degrees C water to a Tes of 34.5 degrees C. Initial Tes cooling rates (initial approximately 6 min cooling) differed significantly among the treatment conditions (0.074 +/- 0.045, 0.129 +/- 0.076, and 0.348 +/- 0.117 degrees C x min(-1) for control, active, and passive warming conditions, respectively); however, secondary cooling rates (rates following initial approximately 6 min cooling to the end of immersion) were not different between treatments (average of 0.102 +/- 0.085 degrees C x min(-1)). Overall Tes cooling rates during the full immersion period differed significantly and were 0.067 +/- 0.047, 0.085 +/- 0.045, and 0.209 +/- 0.131 degrees C x min(-1) for control, active, and passive warming, respectively. These results suggest that prior warming by both active and, to a greater extent, passive warming, may predispose a person to greater heat loss and to experience a larger decline in core temperature when subsequently exposed to cold water. Thus, functional time and possibly survival time could be reduced when cold water immersion is preceded by whole-body passive warming, and to a lesser degree by active warming.

  14. INTEC CPP-603 Basin Water Treatment System Closure: Process Design

    Energy Technology Data Exchange (ETDEWEB)

    Kimmitt, Raymond Rodney; Faultersack, Wendell Gale; Foster, Jonathan Kay; Berry, Stephen Michael

    2002-09-01

    This document describes the engineering activities that have been completed in support of the closure plan for the Idaho Nuclear Technology and Engineering Center (INTEC) CPP-603 Basin Water Treatment System. This effort includes detailed assessments of methods and equipment for performing work in four areas: 1. A cold (nonradioactive) mockup system for testing equipment and procedures for vessel cleanout and vessel demolition. 2. Cleanout of process vessels to meet standards identified in the closure plan. 3. Dismantlement and removal of vessels, should it not be possible to clean them to required standards in the closure plan. 4. Cleanout or removal of pipelines and pumps associated with the CPP-603 basin water treatment system. Cleanout standards for the pipes will be the same as those used for the process vessels.

  15. Acute effects of Finnish sauna and cold-water immersion on haemodynamic variables and autonomic nervous system activity in patients with heart failure.

    Science.gov (United States)

    Radtke, Thomas; Poerschke, Daniel; Wilhelm, Matthias; Trachsel, Lukas D; Tschanz, Hansueli; Matter, Friederike; Jauslin, Daniel; Saner, Hugo; Schmid, Jean-Paul

    2016-04-01

    The haemodynamic response to Finnish sauna and subsequent cold-water immersion in heart failure patients is unknown. Haemodynamic response to two consecutive Finnish sauna (80℃) exposures, followed by a final head-out cold-water immersion (12℃) was measured in 37 male participants: chronic heart failure (n = 12, 61.8 ± 9.2 years), coronary artery disease (n = 13, 61.2 ± 10.6 years) and control subjects (n = 12, 60.9 ± 8.9 years). Cardiac output was measured non-invasively with an inert gas rebreathing method prior to and immediately after the first sauna exposure and after cold-water immersion, respectively. Blood pressure was measured before, twice during and after sauna. The autonomic nervous system was assessed by power spectral analysis of heart rate variability. Total power, low-frequency and high-frequency components were evaluated. The low frequency/high frequency ratio was used as a marker of sympathovagal balance. Sauna and cold-water immersion were well tolerated by all subjects. Cardiac output and heart rate significantly increased in all groups after sauna and cold-water immersion (p heart failure patients. In coronary artery disease patients and controls a prolonged increase in low frequency/high frequency ratio was observed after the first sauna exposure. Acute exposure to Finnish sauna and cold-water immersion causes haemodynamic alterations in chronic heart failure patients similarly to control subjects and in particular did not provoke an excessive increase in adrenergic activity or complex arrhythmias. © The European Society of Cardiology 2015.

  16. Simultaneous measurement of current and temperature distributions in a proton exchange membrane fuel cell during cold start processes

    International Nuclear Information System (INIS)

    Jiao Kui; Alaefour, Ibrahim E.; Karimi, Gholamreza; Li Xianguo

    2011-01-01

    Cold start is critical to the commercialization of proton exchange membrane fuel cell (PEMFC) in automotive applications. Dynamic distributions of current and temperature in PEMFC during various cold start processes determine the cold start characteristics, and are required for the optimization of design and operational strategy. This study focuses on an investigation of the cold start characteristics of a PEMFC through the simultaneous measurements of current and temperature distributions. An analytical model for quick estimate of purging duration is also developed. During the failed cold start process, the highest current density is initially near the inlet region of the flow channels, then it moves downstream, reaching the outlet region eventually. Almost half of the cell current is produced in the inlet region before the cell current peaks, and the region around the middle of the cell has the best survivability. These two regions are therefore more important than other regions for successful cold start through design and operational strategy, such as reducing the ice formation and enhancing the heat generation in these two regions. The evolution of the overall current density distribution over time remains similar during the successful cold start process; the current density is the highest near the flow channel inlets and generally decreases along the flow direction. For both the failed and the successful cold start processes, the highest temperature is initially in the flow channel inlet region, and is then around the middle of the cell after the overall peak current density is reached. The ice melting and liquid formation during the successful cold start process have negligible influence on the general current and temperature distributions.

  17. Study of Cycling Air-Cooling System with a Cold Accumulator for Micro Gas-Turbine Installations

    Science.gov (United States)

    Ochkov, V. F.; Stepanova, T. A.; Katenev, G. M.; Tumanovskii, V. A.; Borisova, P. N.

    2018-05-01

    Using the cycling air-cooling systems of the CTIC type (Combustion Turbine Inlet Cooling) with a cold accumulator in a micro gas-turbine installation (micro-GTI) to preserve its capacity under the seasonal temperature rise of outside air is described. Water ice is used as the body-storage in the accumulators, and ice water (water at 0.5-1.0°C) is used as the body that cools air. The ice water circulates between the accumulator and the air-water heat exchanger. The cold accumulator model with renewable ice resources is considered. The model contains the heat-exchanging tube lattice-evaporator covered with ice. The lattice is cross-flowed with water. The criterion heat exchange equation that describes the process in the cold accumulator under consideration is presented. The calculations of duration of its active operation were performed. The dependence of cold accumulator service life on water circulation rate was evaluated. The adequacy of the design model was confirmed experimentally in the mock-up of the cold accumulator with a refrigerating machine periodically creating a 200 kg ice reserve in the reservoir-storage. The design model makes it possible to determine the weight of ice reserve of the discharged cold accumulator for cooling the cycle air in the operation of a C-30 type micro- GTI produced by the Capstone Company or micro-GTIs of other capacities. Recommendations for increasing the working capacity of cold accumulators of CTIC-systems of a micro-GTI were made.

  18. Embryogenesis and larval biology of the cold-water coral Lophelia pertusa.

    Directory of Open Access Journals (Sweden)

    Ann I Larsson

    Full Text Available Cold-water coral reefs form spectacular and highly diverse ecosystems in the deep sea but little is known about reproduction, and virtually nothing about the larval biology in these corals. This study is based on data from two locations of the North East Atlantic and documents the first observations of embryogenesis and larval development in Lophelia pertusa, the most common framework-building cold-water scleractinian. Embryos developed in a more or less organized radial cleavage pattern from ∼ 160 µm large neutral or negatively buoyant eggs, to 120-270 µm long ciliated planulae. Embryogenesis was slow with cleavage occurring at intervals of 6-8 hours up to the 64-cell stage. Genetically characterized larvae were sexually derived, with maternal and paternal alleles present. Larvae were active swimmers (0.5 mm s(-1 initially residing in the upper part of the water column, with bottom probing behavior starting 3-5 weeks after fertilization. Nematocysts had developed by day 30, coinciding with peak bottom-probing behavior, and possibly an indication that larvae are fully competent to settle at this time. Planulae survived for eight weeks under laboratory conditions, and preliminary results indicate that these planulae are planktotrophic. The late onset of competency and larval longevity suggests a high dispersal potential. Understanding larval biology and behavior is of paramount importance for biophysical modeling of larval dispersal, which forms the basis for predictions of connectivity among populations.

  19. Changes of brachial arterial doppler waveform during immersion of the hand of young men in ice-cold water

    International Nuclear Information System (INIS)

    Kim, Young Goo

    1994-01-01

    To evaluate the changes of brachial arterial Doppler waveform during immersion of the hand of young men in ice-cold water. Doppler waveforms of brachial arteries in 11 young male patients were recorded before and during immersion of ipsilateral hand in ice-cold water(4-5 .deg. C). The procedure was repeated on separate days. Patterns of waveform during immersion were compared with the changes of pulsatility index. Four men showed high impedance waveforms, and 5 men showed low impedance waveforms during immersion both at the first and at the second study. Two men, however, showed high impedance waveforms at the first study and tow impedance waveforms at the second study. The pulsatility index rose and fell in high and low impedance waveforms, respectively. The changes of brachial arterial Doppler waveforms could be classified into high and low impedance patterns, probably reflecting the acute changes in downstream impedance during immersion of hand in ice-cold water

  20. Photolytic degradation of methyl-parathion and fenitrothion in ice and water: Implications for cold environments

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Jan [Lancaster Environment Centre, Centre for Chemicals Management, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Kurkova, Romana; Klanova, Jana [RECETOX, Faculty of Science, Masaryk University, Kamenice 3, 625 00 Brno (Czech Republic); Klan, Petr, E-mail: klan@sci.muni.c [Dept of Chemistry, Faculty of Science, Masaryk University, Kamenice 5/A8, 625 00 Brno (Czech Republic); Halsall, Crispin J., E-mail: c.halsall@lancaster.ac.u [Lancaster Environment Centre, Centre for Chemicals Management, Lancaster University, Lancaster LA1 4YQ (United Kingdom)

    2009-12-15

    Here we investigate the photodegradation of structurally similar organophosphorus pesticides; methyl-parathion and fenitrothion in water (20 deg. C) and ice (-15 deg. C) under environmentally-relevant conditions with the aim of comparing these laboratory findings to limited field observations. Both compounds were found to be photolyzed more efficiently in ice than in aqueous solutions, with quantum yields of degradation being higher in ice than in water (fenitrothion > methyl-parathion). This rather surprising observation was attributed to the concentration effect caused by freezing the aqueous solutions. The major phototransformation products included the corresponding oxons (methyl-paraoxon and fenitroxon) and the nitrophenols (3-methyl-nitrophenol and nitrophenol) in both irradiated water and ice samples. The presence of oxons in ice following irradiation, demonstrates an additional formation mechanism of these toxicologically relevant compounds in cold environments, although further photodegradation of oxons in ice indicates that photochemistry of OPs might be an environmentally important sink in cold environments. - Photodegradation of methyl-parathion and fenitrothion in water and ice under environmentally-relevant conditions is described.

  1. Cold-Water Immersion and Contrast Water Therapy: No Improvement of Short-Term Recovery After Resistance Training.

    Science.gov (United States)

    Argus, Christos K; Broatch, James R; Petersen, Aaron C; Polman, Remco; Bishop, David J; Halson, Shona

    2017-08-01

    An athlete's ability to recover quickly is important when there is limited time between training and competition. As such, recovery strategies are commonly used to expedite the recovery process. To determine the effectiveness of both cold-water immersion (CWI) and contrast water therapy (CWT) compared with control on short-term recovery (<4 h) after a single full-body resistance-training session. Thirteen men (age 26 ± 5 y, weight 79 ± 7 kg, height 177 ± 5 cm) were assessed for perceptual (fatigue and soreness) and performance measures (maximal voluntary isometric contraction [MVC] of the knee extensors, weighted and unweighted countermovement jumps) before and immediately after the training session. Subjects then completed 1 of three 14-min recovery strategies (CWI, CWT, or passive sitting [CON]), with the perceptual and performance measures reassessed immediately, 2 h, and 4 h postrecovery. Peak torque during MVC and jump performance were significantly decreased (P < .05) after the resistance-training session and remained depressed for at least 4 h postrecovery in all conditions. Neither CWI nor CWT had any effect on perceptual or performance measures over the 4-h recovery period. CWI and CWT did not improve short-term (<4-h) recovery after a conventional resistance-training session.

  2. Ultraviolet-B radiation induced cross-linking improves physical properties of cold- and warm-water fish gelatin gels and films.

    Science.gov (United States)

    Otoni, Caio G; Avena-Bustillos, Roberto J; Chiou, Bor-Sen; Bilbao-Sainz, Cristina; Bechtel, Peter J; McHugh, Tara H

    2012-09-01

    Cold- and warm-water fish gelatin granules were exposed to ultraviolet-B radiation for doses up to 29.7 J/cm(2). Solutions and films were prepared from the granules. Gel electrophoresis and refractive index were used to examine changes in molecular weight of the samples. Also, the gel strength and rheological properties of the solutions as well as the tensile and water vapor barrier properties of the films were characterized. SDS-PAGE and refractive index results indicated cross-linking of gelatin chains after exposure to radiation. Interestingly, UV-B treated samples displayed higher gel strengths, with cold- and warm-water fish gelatin having gel strength increases from 1.39 to 2.11 N and from 7.15 to 8.34 N, respectively. In addition, both gelatin samples exhibited an increase in viscosity for higher UV doses. For gelatin films, the cold-water fish gelatin samples made from irradiated granules showed greater tensile strength. In comparison, the warm-water gelatin films made from irradiated granules had lower tensile strength, but better water vapor barrier properties. This might be due to the UV induced cross-linking in warm-water gelatin that disrupted helical structures. Journal of Food Science copy; 2012 Institute of Food Technologists® No claim to original US government works.

  3. Washing Habits and Machine with Intake of hot and cold Water

    DEFF Research Database (Denmark)

    Christensen, Bente Lis; Nørgaard, Jørgen

    1997-01-01

    with slightly adapted washing habits, or 17% of normal today. If the heat is supplied from combined heat and power production as in the actual experiment, CO2-emission is reduced by 81%. With hot water from oil or gas heaters the reduction will be slightly lower, while with solar hot water it will be larger.......Domestic washing machines typically spend around 80% of the electricity on heating water. Most of this can be replaced by more appropriate heat sources like district heat from combined heat and power production, or gas heating system. In recent years some washing machine manufacturers have marketed...... machines which can take in both hot and cold water and mix it to the temperature wanted. Such one machine has been tested in daily household use over 5 months, with habits of very few hot water washes. The result is an electricity consumption corresponding to 67 kWh per year for an average household...

  4. The ;Sardinian cold-water coral province; in the context of the Mediterranean coral ecosystems

    Science.gov (United States)

    Taviani, M.; Angeletti, L.; Canese, S.; Cannas, R.; Cardone, F.; Cau, A.; Cau, A. B.; Follesa, M. C.; Marchese, F.; Montagna, P.; Tessarolo, C.

    2017-11-01

    A new cold-water coral (CWC) province has been identified in the Mediterranean Sea in the Capo Spartivento canyon system offshore the southern coast of Sardinia. The 'Sardinia cold-water coral province' is characterized in the Nora canyon by a spectacular coral growth dominated by the branching scleractinian Madrepora oculata at a depth of 380-460 m. The general biohermal frame is strengthened by the common occurrence of the solitary scleractinian Desmophyllum dianthus and the occasional presence of Lophelia pertusa. As documented by Remotely Operated Vehicle survey, this area is a hotspot of megafaunal diversity hosting among other also live specimens of the deep oyster Neopycnodonte zibrowii. The new coral province is located between the central Mediterranean CWC provinces (Bari Canyon, Santa Maria di Leuca, South Malta) and the western and northern ones (Melilla, Catalan-Provençal-Ligurian canyons). As for all the best developed CWC situations in the present Mediterranean Sea, the new Sardinian province is clearly influenced by Levantine Intermediate Water which appears to be a main driver for CWC distribution and viability in this basin.

  5. Physiological response of the cold-water coral Desmophyllum dianthus to thermal stress and ocean acidification.

    Science.gov (United States)

    Gori, Andrea; Ferrier-Pagès, Christine; Hennige, Sebastian J; Murray, Fiona; Rottier, Cécile; Wicks, Laura C; Roberts, J Murray

    2016-01-01

    Rising temperatures and ocean acidification driven by anthropogenic carbon emissions threaten both tropical and temperate corals. However, the synergistic effect of these stressors on coral physiology is still poorly understood, in particular for cold-water corals. This study assessed changes in key physiological parameters (calcification, respiration and ammonium excretion) of the widespread cold-water coral Desmophyllum dianthus maintained for ∼8 months at two temperatures (ambient 12 °C and elevated 15 °C) and two pCO2 conditions (ambient 390 ppm and elevated 750 ppm). At ambient temperatures no change in instantaneous calcification, respiration or ammonium excretion rates was observed at either pCO2 levels. Conversely, elevated temperature (15 °C) significantly reduced calcification rates, and combined elevated temperature and pCO2 significantly reduced respiration rates. Changes in the ratio of respired oxygen to excreted nitrogen (O:N), which provides information on the main sources of energy being metabolized, indicated a shift from mixed use of protein and carbohydrate/lipid as metabolic substrates under control conditions, to less efficient protein-dominated catabolism under both stressors. Overall, this study shows that the physiology of D. dianthus is more sensitive to thermal than pCO2 stress, and that the predicted combination of rising temperatures and ocean acidification in the coming decades may severely impact this cold-water coral species.

  6. The origin and relation among hot and cold CO{sub 2}-rich mineral waters in Vilarelho da Raia - Pedras Salgadas region, northern Portugal: A geochemical approach

    Energy Technology Data Exchange (ETDEWEB)

    Marques, J.M.; Aires-Barros, L.; Graca, R.C. [Technical Univ. of Lisbon, Lisboa (Portugal)

    1996-12-31

    Coupled isotopic and chemical studies, carried out on hot and cold CO{sub 2}-rich mineral waters discharging in Vilarelho da Raia - Pedras Salgadas region (northern Portugal), have been adopted to purpose some hypothesis on the origin and path-ways of fluids emerging along one of the major regional NNE-trending faults (the so called {open_quotes}Chaves Depression{close_quotes}). Chemical and isotopic ({delta}{sup 18}O and {delta}D) composition of Vilarelho da. Raia cold waters indicate that these waters could be traced as a ramification of the Chaves thermal waters. The enrichment in {sup 18}O and D content in Vidago and Pedras Salgadas cold waters could be attributed either to different recharge altitudes or mixing between deep regional waters with more recent waters derived from local infiltration, in accordance with {sup 3}H activity. Geothermometric interpretation indicates that hot and cold mineral waters have had deep circulation. Model calculations to estimate circulation depth of the groundwater flow system are also indicate deep (about 4km) circulation. Regarding the origin of CO{sub 2} in the thermal and cold mineral waters, two hypothesis could be considered: deep-seated (mantle degassing) or rock (graphitic slates) leaching.

  7. Comparison of cold water sponging and acetaminophen in control of fever among children attending a tertiary hospital in South Nigeria

    Directory of Open Access Journals (Sweden)

    Tony M Aluka

    2013-01-01

    Full Text Available Background: A wide range of childhood illnesses are accompanied by fever, leading to varied attempts at treatment by caregivers at home before coming to a hospital. Common modalities of treatment include use of antipyretics and physical methods such as cold water sponging, fanning and removal of clothing. These treatment modalities have been received with varied attitudes among physicians and the scientific community. This study was to assess the efficacy of both modalities in first-line management of fever in our area. Objectives: The main aim of the study is to compare the effectiveness of cold water sponging with that of oral paracetamol in the treatment of fever in children attending the University of Calabar Teaching Hospital, Calabar. Subjects and Methods: This is a randomized clinical trial. Eighty-eight children aged 12-120 months who presented to the Children Outpatient Clinic (CHOP and the Children Emergency Room (CHER of University of Calabar Teaching Hospital, Calabar, with acute febrile illness and axillary temperatures spanning ≥ 38.0-40.0°C. All children within the age limit whose caregivers gave consent were recruited into the study and were randomized to receive either cold water sponging or oral paracetamol. Axillary temperature, pulse rate, respiratory rate and assessment of discomforts (crying, shivering, goose pimples and convulsions were recorded every 30 min for 2 h. The results were analyzed using the SPSS statistical software and have been presented in the tables. Results: Cold water sponging was very effective in temperature reduction within the first 30 min, with 29 (70.73% having their temperature reduced to within normal limits. This declined to 12 (29.26% at 60 min and 4 (10.53% at 120 min, with the mean temperature differences from the baseline value following the same trends (1.63°C by 30 min, 0.91°C by 60 min and 0.39°C by 120 min. When compared with paracetamol, cold water sponging was more effective in

  8. Facial immersion in cold water enhances cerebral blood velocity during breath-hold exercise in humans.

    Science.gov (United States)

    Kjeld, Thomas; Pott, Frank C; Secher, Niels H

    2009-04-01

    The diving response is initiated by apnea and facial immersion in cold water and includes, besides bradycardia, peripheral vasoconstriction, while cerebral perfusion may be enhanced. This study evaluated whether facial immersion in 10 degrees C water has an independent influence on cerebral perfusion evaluated as the middle cerebral artery mean flow velocity (MCA V(mean)) during exercise in nine male subjects. At rest, a breath hold of maximum duration increased the arterial carbon dioxide tension (Pa(CO(2))) from 4.2 to 6.7 kPa and MCA V(mean) from 37 to 103 cm/s (mean; approximately 178%; P breath hold increased Pa(CO(2)) from 5.9 to 8.2 kPa (P breath hold diverts blood toward the brain with a >100% increase in MCA V(mean), largely because Pa(CO(2)) increases, but the increase in MCA V(mean) becomes larger when combined with facial immersion in cold water independent of Pa(CO(2)).

  9. Relationships of self-identified cold tolerance and cold-induced vasodilatation in the finger

    Science.gov (United States)

    Park, Joonhee; Lee, Joo-Young

    2016-04-01

    This study was conducted to investigate relationships of self-identified cold tolerance and cold-induced vasodilatation (CIVD) in the finger. Nine males and 34 females participated in the following 2 tests: a CIVD test and a self-reported survey. The CIVD test was conducted 30-min cold-water immersion (3.8 ± 0.3 °C) of the middle finger at an air temperature of 27.9 ± 0.1 °C. The self-reported questionnaire consisted of 28 questions about whole and local body cold and heat tolerances. By a cluster analysis on the survey results, the participants were divided into two groups: high self-identified cold tolerance (HSCT, n = 25) and low self-identified cold tolerance (LSCT, n = 18). LSCT had lower self-identified cold tolerance ( P cold or heat tolerance had relationships with cold tolerance index, T max, and amplitude ( P cold tolerance classified through a standardized survey could be a good index to predict physiological cold tolerance.

  10. Effects of whole body cryotherapy and cold water immersion on knee skin temperature

    OpenAIRE

    Costello, J. T.; Donnelly, A. E.; Karki, A.; Selfe, J.

    2014-01-01

    This study sought to a) compare and contrast the effect of 2 commonly used cryotherapy treatments, 4 min of −110°C whole body cryotherapy and 8°C cold water immersion, on knee skin temperature and b) establish whether either protocol was capable of achieving a skin temperature (

  11. Energy Efficiency and Sustainability Evaluation of Space and Water Heating in Urban Residential Buildings of the Hot Summer and Cold Winter Zone in China

    OpenAIRE

    Xiao Chen; Yongquan Wen; Nanyang Li

    2016-01-01

    With the urbanization process of the hot summer and cold winter (HSCW) zone in China, the energy consumption of space and water heating in urban residential buildings of the HSCW zone has increased rapidly. This study presents the energy efficiency and sustainability evaluation of various ways of space and water heating taking 10 typical cities in the HSCW zone as research cases. Two indicators, primary energy efficiency (PEE) and sustainability index based on exergy efficiency, are adopted t...

  12. Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying (CVD) Facility Operations Manual

    International Nuclear Information System (INIS)

    IRWIN, J.J.

    2000-01-01

    The mission of the Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying Facility (CVDF) is to achieve the earliest possible removal of free water from Multi-Canister Overpacks (MCOs). The MCOs contain metallic uranium SNF that have been removed from the 100K Area fuel storage water basins (i.e., the K East and K West Basins) at the US. Department of Energy Hanford Site in Southeastern Washington state. Removal of free water is necessary to halt water-induced corrosion of exposed uranium surfaces and to allow the MCOs and their SNF payloads to be safely transported to the Hanford Site 200 East Area and stored within the SNF Project Canister Storage Building (CSB). The CVDF is located within a few hundred yards of the basins, southwest of the 165KW Power Control Building and the 105KW Reactor Building. The site area required for the facility and vehicle circulation is approximately 2 acres. Access and egress is provided by the main entrance to the 100K inner area using existing roadways. The CVDF will remove free. water from the MCOs to reduce the potential for continued fuel-water corrosion reactions. The cold vacuum drying process involves the draining of bulk water from the MCO and subsequent vacuum drying. The MCO will be evacuated to a pressure of 8 torr or less and backfilled with an inert gas (helium). The MCO will be sealed, leak tested, and then transported to the CSB within a sealed shipping cask. (The MCO remains within the same shipping Cask from the time it enters the basin to receive its SNF payload until it is removed from the Cask by the CSB MCO handling machine.) The CVDF subproject acquired the required process systems, supporting equipment, and facilities. The cold vacuum drying operations result in an MCO containing dried fuel that is prepared for shipment to the CSB by the Cask transportation system. The CVDF subproject also provides equipment to dispose of solid wastes generated by the cold vacuum drying process and transfer process water removed

  13. Cold shock to aquatic organisms: guidance for power-plant siting, design, and operation

    International Nuclear Information System (INIS)

    Coutant, C.C.

    1977-01-01

    Problems of cold-shock damages to aquatic organisms have arisen at some condenser cooling-water discharges of thermal power stations when the warm-water releases have suddenly terminated. The basis for such damage lies in the exposure of resident organisms to a rapid decrease in temperature and a sustained exposure to low temperature that induces abnormal behavioral or physiological performance and often leads to death. Although some spectacular fish kills from cold shock have occurred, the present knowledge of the hydraulic and biological processes involved can provide guidance for the siting, design, and operation of power-plant cooling systems to minimize the likelihood of significant cold-shock effects. Preventing cold-shock damages is one consideration in minimizing overall environmental impacts of power-plant cooling and in balancing plant costs with environmental benefits

  14. Influence of prior intense exercise and cold water immersion in recovery for performance and physiological response during subsequent exercise

    DEFF Research Database (Denmark)

    Christensen, Peter Møller; Bangsbo, Jens

    2016-01-01

    ) and the influence from prior intense exercise on subsequent performance and physiological response to moderate and maximal exercise with and without the use of cold water immersion (CWI) in recovery (part B). In part A, performance times during eight World championships for male track cyclists were extracted from...... min preceded by an identical warm-up period in both a control setting (CON) and using cold water immersion in recovery (CWI; 15 min at 15°C). Performance was lowered (P

  15. Investigation of cold extrusion process using coupled thermo-mechanical FEM analysis and adaptive friction modeling

    Science.gov (United States)

    Görtan, Mehmet Okan

    2017-10-01

    Cold extrusion processes are known for their excellent material usage as well as high efficiency in the production of large batches. Although the process starts at room temperature, workpiece temperatures may rise above 200°C. Moreover, contact normal stresses can exceed 2500 MPa, whereas surface enlargement values can reach up to 30. These changes affects friction coefficients in cold extrusion processes. In the current study, friction coefficients between a plain carbon steel C4C (1.0303) and a tool steel (1.2379) are determined dependent on temperature and contact pressure using the sliding compression test (SCT). In order to represent contact normal stress and temperature effects on friction coefficients, an empirical adaptive friction model has been proposed. The validity of the model has been tested with experiments and finite element simulations for a cold forward extrusion process. By using the proposed adaptive friction model together with thermo-mechanical analysis, the deviation in the process loads between numerical simulations and model experiments could be reduced from 18.6% to 3.3%.

  16. Investigation of Carboxymethyl Cellulose (CMC on Mechanical Properties of Cold Water Fish Gelatin Biodegradable Edible Films

    Directory of Open Access Journals (Sweden)

    Mahsa Tabari

    2017-05-01

    Full Text Available The tendency to use biocompatible packages, such as biodegradable films, is growing since they contain natural materials, are recyclable and do not cause environmental pollution. In this research, cold water fish gelatin and carboxymethyl cellulose were combined for use in edible films. Due to its unique properties, gelatin is widely used in creating gel, and in restructuring, stabilizing, emulsifying, and forming foam and film in food industries. This research for the first time modified and improved the mechanical properties of cold water fish gelatin films in combination with carboxymethyl cellulose. Cold water fish gelatin films along with carboxymethyl cellulose with concentrations of 0%, 5%, 10%, 20% and 50% were prepared using the casting method. The mechanical properties were tested by the American National Standard Method. Studying the absorption isotherm of the resulting composite films specified that the humidity of single-layer water decreased (p < 0.05 and caused a reduction in the equilibrium moisture of these films. In the mechanical testing of the composite films, the tensile strength and Young’s modulus significantly increased and the elongation percent significantly decreased with the increase in the concentration of carboxymethyl cellulose. Considering the biodegradability of the films and the improvement of their mechanical properties by carboxymethyl cellulose, this kind of packaging can be used in different industries, especially the food industry, as an edible coating for packaging food and agricultural crops.

  17. Cold pressure welding of aluminium-steel blanks: Manufacturing process and electrochemical surface preparation

    Science.gov (United States)

    Schmidt, Hans Christian; Homberg, Werner; Orive, Alejandro Gonzalez; Grundmeier, Guido; Hordych, Illia; Maier, Hans Jürgen

    2018-05-01

    In this study the manufacture of aluminium-steel blanks by cold pressure welding and their preparation for a welding process through electrochemical surface treatment are investigated and discussed. The cold pressure welding process was done with an incremental rolling tool that allows for the partial pressure welding of two blanks along a prepared path. The influence of the surface preparation by electrochemical deposition of bond promoting organosilane-based agents and roughening on a nano-scale is investigated and compared to conventional surface treatments. Coating the surfaces with a thin organosilane-based film incorporating specific functional groups should promote additional bonding between the mating oxide layers; its influence on the total weld strength is studied. Pressure welding requires suitable process strategies, and the current advances in the proposed incremental rolling process for the combination of mild steel and aluminium are presented.

  18. Standard practice for fluorescent liquid penetrant testing using the Water-Washable process

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice covers procedures for water-washable fluorescent penetrant examination of materials. It is a nondestructive testing method for detecting discontinuities that are open to the surface such as cracks, seams, laps, cold shuts, laminations, isolated porosity, through leaks, or lack of porosity and is applicable to in-process, final, and maintenance examination. It can be effectively used in the examination of nonporous, metallic materials, both ferrous and nonferrous, and of nonmetallic materials such as glazed or fully densified ceramics and certain nonporous plastics and glass. 1.2 This practice also provides a reference: 1.2.1 By which a fluorescent penetrant examination method using the water-washable process recommended or required by individual organizations can be reviewed to ascertain its applicability and completeness. 1.2.2 For use in the preparation of process specifications dealing with the water-washable fluorescent penetrant examination of materials and parts. Agreement by the purch...

  19. Thermal and metabolic responses of military divers during a 6-hour static dive in cold water.

    Science.gov (United States)

    Riera, Florence; Horr, Reed; Xu, Xiaojiang; Melin, Bruno; Regnard, Jacques; Bourdon, Lionel

    2014-05-01

    Human thermal responses during prolonged whole-body immersion in cold water are of interest for the military, especially French SEALS. This study aims at describing the thermo-physiological responses. There were 10 male military divers who were randomly assigned to a full immersion in neutral (34 degrees C), moderately cold (18 degrees C), and cold (10 degrees C) water wearing their operational protective devices (5.5 mm wetsuit with 3.0 mm thick underwear) for 6 h in a static position. Rectal temperature (T(re)) and 14 skin temperatures (T(sk)), blood analysis (stress biomarkers, metabolic substrates), and oxygen consumption (Vo2) were collected. At 34 degrees C, there were no significant modifications of the thermo-physiological responses over time. The most interesting result was that rates of rectal temperature decrease (0.15 +/- 0.02 degrees C x min(-1)) were the same between the two cold stress experimental conditions (at 18 degrees C and 10 degrees C). At the final experiment, rectal temperature was not significantly different between the two cold stress experimental conditions. Mean T(sk) decreased significantly during the first 3 h of immersion and then stabilized at a lower level at 10 degrees C (25.6 +/- 0.8 degrees C) than at 18 degrees C (29.3 +/- 0.9 degrees C). Other results demonstrate that the well-trained subjects developed effective physiological reactions. However, these reactions are consistently too low to counterbalance the heat losses induced by cold temperature conditions and long-duration immersion. This study shows that providing divers with thermal protection is efficient for a long-duration immersion from a medical point of view, but not from an operational one when skin extremities were taken into account.

  20. Cold Vacuum Drying (CVD) Facility Technical Safety Requirements

    International Nuclear Information System (INIS)

    KRAHN, D.E.

    2000-01-01

    The Technical Safety Requirements (TSRs) for the Cold Vacuum Drying Facility define acceptable conditions, safe boundaries, bases thereof, and management or administrative controls required to ensure safe operation during receipt of multi-canister overpacks (MCOs) containing spent nuclear fuel. removal of free water from the MCOs using the cold vacuum drying process, and inerting and testing of the MCOs before transport to the Canister Storage Building. Controls required for public safety, significant defense in depth, significant worker safety, and for maintaining radiological and toxicological consequences below risk evaluation guidelines are included

  1. EDF program on SCC initiation of cold-worked stainless steels in primary water

    Energy Technology Data Exchange (ETDEWEB)

    Huguenin, P.; Vaillant, F.; Couvant, T. [Electricite de France (EDF/RD), Site des Renardieres, 77 - Moret sur loing (France); Buisse, L. [EDF UTO, 93 - Noisy-Le-Grand (France); Huguenin, P.; Crepin, J.; Duhamel, C.; Proudhon, H. [MINES ParisTech, Centre des Materiaux, 91 - Evry (France); Ilevbare, G. [EPRI California (United States)

    2009-07-01

    A few cases of Intergranular Stress Corrosion Cracking (IGSCC) on cold-worked austenitic stainless steels in primary water have been detected in French Pressurized Water Reactors (PWRs). A previous program launched in the early 2000's identified the required conditions for SCC of cold-worked stainless steels. It was found that a high strain hardening coupled with cyclic loading favoured SCC, whereas cracking under static conditions appeared to be difficult. A propagation model was also proposed. The first available results of the present study demonstrate the strong influence of a trapezoidal cyclic loading on the creep of 304L austenitic stainless steel. While no creep was detected under a pure static loading, the creep rate was increased by a factor 102 under a trapezoidal cyclic loading. The first results of SCC initiation performed on notched specimens under a trapezoidal cyclic loading at low frequency are presented. The present study aims at developing an engineering model for IGSCC initiation of 304L, 316L and weld 308L stainless steels. The effect of the pre-straining on the SCC mechanisms is more specifically studied. Such a model will be based on (i) SCC initiation tests on notched and smooth specimens under 'trapezoidal' cyclic loading and, (ii) constant strain rate SCC initiation tests. The influence of stress level, cold-work level, strain path, surface roughness and temperature is particularly investigated. (authors)

  2. Variation of the cold intermediate water in the Black Sea exit of the Strait of Istanbul (Bosphorus and its transfer through the strait

    Directory of Open Access Journals (Sweden)

    Huseyin Yuce

    2012-04-01

    Full Text Available The cold intermediate water (CIW, T < 8°C entering the Strait of Istanbul and its variation along the strait have been studied by using monthly conductivity-temperature-depth (CTDdata sets collected during the period from 1996 to 2000. In the northern exit of the strait, CIW is located between the seasonal thermocline and Mediterranean water originating from the lowerlayer of the Sea of Marmara. The thickness of CIW decreases fromApril to October. In the Strait of Istanbul, CIW is observedas a layer of temperature < 14$^{circ}$C. The thickness of thismodified cold intermediate water flowing southwards with the upper layer decreases, while its temperature increases along thestrait due to mixing with adjacent water. In the southern exit of the strait, the modified cold intermediate water is observed during the period from May to October. If CIW exists in the Black Sea exit region of the strait, modified cold water is found inthe Marmara exit region during the same period. The distribution of CIW in the Strait of Istanbul contributes to our understanding of the dynamics of the strait, especially in the summer months.

  3. Cold-crucible fabrication of nuclear glasses

    International Nuclear Information System (INIS)

    Boen, R.

    2010-01-01

    Vitrification has stood the nuclear industry in good stead, for many years now, as a safe long-term conditioning technology for high-level waste. Major advances are nonetheless still being made, with the development of the cold-crucible technology, affording as it does new possibilities, in terms of volume reduction, and of extending the range of waste products amenable to incorporation. Indeed, by allowing higher melting temperatures to be achieved (1200 - 1400 C degrees), this process opens the way to a considerable increase in glass production capacities, and the fabrication of novel matrices, involving higher incorporation rates than current glasses. In the cold-crucible technology, materials put into the crucible are heated directly through induction. The crucible made of metal is cooled by water circulation. Where the glass comes into contact with the cold wall, a thin layer of solidified glass forms, with a thickness of 5-10 mm preventing the metal forming the crucible from coming into contact with the molten glass. A full scale pilot of the cold crucible was constructed at the La Hague vitrification workshop

  4. Scenarios of Earth system change in western Canada: Conceptual understanding and process insights from the Changing Cold Regions Network

    Science.gov (United States)

    DeBeer, C. M.; Wheater, H. S.; Pomeroy, J. W.; Stewart, R. E.; Turetsky, M. R.; Baltzer, J. L.; Pietroniro, A.; Marsh, P.; Carey, S.; Howard, A.; Barr, A.; Elshamy, M.

    2017-12-01

    The interior of western Canada has been experiencing rapid, widespread, and severe hydroclimatic change in recent decades, and this is projected to continue in the future. To better assess future hydrological, cryospheric and ecological states and fluxes under future climates, a regional hydroclimate project was formed under the auspices of the Global Energy and Water Exchanges (GEWEX) project of the World Climate Research Programme; the Changing Cold Regions Network (CCRN; www.ccrnetwork.ca) aims to understand, diagnose, and predict interactions among the changing Earth system components at multiple spatial scales over the Mackenzie and Saskatchewan River basins of western Canada. A particular challenge is in applying land surface and hydrological models under future climates, as system changes and cold regions process interactions are not often straightforward, and model structures and parameterizations based on historical observations and understanding of contemporary system functioning may not adequately capture these complexities. To address this and provide guidance and direction to the modelling community, CCRN has drawn insights from a multi-disciplinary perspective on the process controls and system trajectories to develop a set of feasible scenarios of change for the 21st century across the region. This presentation will describe CCRN's efforts towards formalizing these insights and applying them in a large-scale modelling context. This will address what are seen as the most critical processes and key drivers affecting hydrological, cryospheric and ecological change, how these will most likely evolve in the coming decades, and how these are parameterized and incorporated as future scenarios for terrestrial ecology, hydrological functioning, permafrost state, glaciers, agriculture, and water management.

  5. Habituation of the cold shock response is inhibited by repeated anxiety: Implications for safety behaviour on accidental cold water immersions.

    Science.gov (United States)

    Barwood, Martin J; Corbett, Jo; Tipton, Mike; Wagstaff, Christopher; Massey, Heather

    2017-05-15

    Accidental cold-water immersion (CWI) triggers the life-threatening cold shock response (CSR) which is a precursor to sudden death on immersion. One practical means of reducing the CSR is to induce an habituation by undergoing repeated short CWIs. Habituation of the CSR is known to be partially reversed by the concomitant experience of acute anxiety, raising the possibility that repeated anxiety could prevent CSR habituation; we tested this hypothesis. Sixteen participants (12 male, 4 female) completed seven, seven-minute immersions in to cold water (15°C). Immersion one acted as a control (CON1). During immersions two to five, which would ordinarily induce an habituation, anxiety levels were repeatedly increased (CWI-ANX rep ) by deception and a demanding mathematical task. Immersions six and seven were counter-balanced with another high anxiety condition (CWI-ANX rep ) or a further control (CON2). Anxiety (20cm visual analogue scale) and cardiorespiratory responses (cardiac frequency [f c ], respiratory frequency [f R ], tidal volume [V T ], minute ventilation [V̇ E ]) were measured. Comparisons were made between experimental immersions (CON1, final CWI-ANX rep , CON2), across habituation immersions and with data from a previous study. Anxiety levels were sustained at a similar level throughout the experimental and habituation immersions (mean [SD] CON1: 7.0 [4.0] cm; CON2: 5.8 [5.2] cm cf CWI-ANX rep : 7.3 [5.5] cm; p>0.05). This culminated in failure of the CSR to habituate even when anxiety levels were not manipulated (i.e. CON2). These data were different (pCSR consequently habituated. Repeated anxiety prevented CSR habituation. A protective strategy that includes inducing habituation for those at risk should include techniques to lower anxiety associated with the immersion event or habituation may not be beneficial in the emergency scenario. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. The erosion performance of cold spray deposited metal matrix composite coatings with subsequent friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Peat, Tom, E-mail: tompeat12@gmail.com [Department of Mechanical & Aerospace Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow G1 1XJ (United Kingdom); Galloway, Alexander; Toumpis, Athanasios [Department of Mechanical & Aerospace Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow G1 1XJ (United Kingdom); McNutt, Philip [TWI Ltd., Granta Park, Cambridge CB21 6AL (United Kingdom); Iqbal, Naveed [TWI Technology Centre, Wallis Way, Catcliff, Rotherham, S60 5TZ (United Kingdom)

    2017-02-28

    Highlights: • WC-CoCr, Cr{sub 3}C{sub 2}-NiCr and Al{sub 2}O{sub 3} coatings were cold spray deposited on AA5083 and friction stir processed. • The SprayStirred WC-CoCr demonstrated a hardness increase of 100% over the cold sprayed coating. • As-deposited and SprayStirred coatings were examined under slurry erosion test conditions. • Mass and volume loss was measured following 20-min exposure to the slurry. • The WC-CoCr and Al2O3 demonstrated a reduction in volume loss of approx. 40% over the cold sprayed coating. - Abstract: This study forms an initial investigation into the development of SprayStir, an innovative processing technique for generating erosion resistant surface layers on a chosen substrate material. Tungsten carbide – cobalt chromium, chromium carbide – nickel chromium and aluminium oxide coatings were successfully cold spray deposited on AA5083 grade aluminium. In order to improve the deposition efficiency of the cold spray process, coatings were co-deposited with powdered AA5083 using a twin powder feed system that resulted in thick (>300 μm) composite coatings. The deposited coatings were subsequently friction stir processed to embed the particles in the substrate in order to generate a metal matrix composite (MMC) surface layer. The primary aim of this investigation was to examine the erosion performance of the SprayStirred surfaces and demonstrate the benefits of this novel process as a surface engineering technique. Volumetric analysis of the SprayStirred surfaces highlighted a drop of approx. 40% in the level of material loss when compared with the cold spray deposited coating prior to friction stir processing. Micro-hardness testing revealed that in the case of WC-CoCr reinforced coating, the hardness of the SprayStirred material exhibits an increase of approx. 540% over the unaltered substrate and 120% over the as-deposited composite coating. Microstructural examination demonstrated that the increase in the hardness of the

  7. Glacial cold-water coral growth in the Gulf of Cádiz: Implications of increased palaeo-productivity

    Science.gov (United States)

    Wienberg, Claudia; Frank, Norbert; Mertens, Kenneth N.; Stuut, Jan-Berend; Marchant, Margarita; Fietzke, Jan; Mienis, Furu; Hebbeln, Dierk

    2010-10-01

    A set of 40 Uranium-series datings obtained on the reef-forming scleractinian cold-water corals Lophelia pertusa and Madrepora oculata revealed that during the past 400 kyr their occurrence in the Gulf of Cádiz (GoC) was almost exclusively restricted to glacial periods. This result strengthens the outcomes of former studies that coral growth in the temperate NE Atlantic encompassing the French, Iberian and Moroccan margins dominated during glacial periods, whereas in the higher latitudes (Irish and Norwegian margins) extended coral growth prevailed during interglacial periods. Thus it appears that the biogeographical limits for sustained cold-water coral growth along the NE Atlantic margin are strongly related to climate change. By focussing on the last glacial-interglacial cycle, this study shows that palaeo-productivity was increased during the last glacial. This was likely driven by the fertilisation effect of an increased input of aeolian dust and locally intensified upwelling. After the Younger Dryas cold event, the input of aeolian dust and productivity significantly decreased concurrent with an increase in water temperatures in the GoC. This primarily resulted in reduced food availability and caused a widespread demise of the formerly thriving coral ecosystems. Moreover, these climate induced changes most likely caused a latitudinal shift of areas with optimum coral growth conditions towards the northern NE Atlantic where more suitable environmental conditions established with the onset of the Holocene.

  8. Control of biological hazards in cold smoked salmon production

    DEFF Research Database (Denmark)

    Huss, Hans Henrik; Embarek, Peter Karim Ben; Jeppesen, V.F.

    1995-01-01

    An outline of the common processing technology for cold smoked salmon in Denmark is presented. The safety hazards related to pathogenic bacteria, parasites and biogenic amines are discussed with special emphasis on hazards related to Clostridium botulinum and Listeria monocytogenes. Critical...... control points are identified for all hazards except growth of L. monocytogenes. For this reason a limitation of shelf life to three weeks at +5 degrees C far cold smoked vacuum-packed salmon having greater than or equal to 3% water phase salt is recommended...

  9. Global habitat suitability for framework-forming cold-water corals.

    Directory of Open Access Journals (Sweden)

    Andrew J Davies

    Full Text Available Predictive habitat models are increasingly being used by conservationists, researchers and governmental bodies to identify vulnerable ecosystems and species' distributions in areas that have not been sampled. However, in the deep sea, several limitations have restricted the widespread utilisation of this approach. These range from issues with the accuracy of species presences, the lack of reliable absence data and the limited spatial resolution of environmental factors known or thought to control deep-sea species' distributions. To address these problems, global habitat suitability models have been generated for five species of framework-forming scleractinian corals by taking the best available data and using a novel approach to generate high resolution maps of seafloor conditions. High-resolution global bathymetry was used to resample gridded data from sources such as World Ocean Atlas to produce continuous 30-arc second (∼1 km(2 global grids for environmental, chemical and physical data of the world's oceans. The increased area and resolution of the environmental variables resulted in a greater number of coral presence records being incorporated into habitat models and higher accuracy of model predictions. The most important factors in determining cold-water coral habitat suitability were depth, temperature, aragonite saturation state and salinity. Model outputs indicated the majority of suitable coral habitat is likely to occur on the continental shelves and slopes of the Atlantic, South Pacific and Indian Oceans. The North Pacific has very little suitable scleractinian coral habitat. Numerous small scale features (i.e., seamounts, which have not been sampled or identified as having a high probability of supporting cold-water coral habitat were identified in all ocean basins. Field validation of newly identified areas is needed to determine the accuracy of model results, assess the utility of modelling efforts to identify vulnerable marine

  10. Cold-water coral reefs and adjacent sponge grounds: Hotspots of benthic respiration and organic carbon cycling in the deep sea

    Directory of Open Access Journals (Sweden)

    Cecile eCathalot

    2015-06-01

    Full Text Available Cold-water coral reefs and adjacent sponge grounds are distributed widely in the deep ocean, where only a small fraction of the surface productivity reaches the seafloor as detritus. It remains elusive how these hotspots of biodiversity can thrive in such a food-limited environment, as data on energy flow and organic carbon utilization are critically lacking. Here we report in situ community respiration rates for cold-water coral and sponge ecosystems obtained by the non-invasive aquatic Eddy Correlation technique. Oxygen uptake rates over coral reefs and adjacent sponge grounds in the Træna Coral Field (Norway were 9-20 times higher than those of the surrounding soft sediments. These high respiration rates indicate strong organic matter consumption, and hence suggest a local focusing onto these ecosystems of the downward flux of organic matter that is exported from the surface ocean. Overall, our results show that coral reefs and adjacent sponge grounds are hotspots of carbon processing in the food-limited deep ocean, and that these deep-sea ecosystems play a more prominent role in marine biogeochemical cycles than previously recognized.

  11. Global land-atmosphere coupling associated with cold climate processes

    OpenAIRE

    Dutra, Emanuel, 1983-

    2011-01-01

    Tese de doutoramento, Ciências Geofísicas e da Geoinformação (Meteorologia), Universidade de Lisboa, Faculdade de Ciências, 2011 This dissertation constitutes an assessment of the role of cold processes, associated with snow cover, in controlling the land-atmosphere coupling. The work was based on model simulations, including offline simulations with the land surface model HTESSEL, and coupled atmosphere simulations with the EC-EARTH climate model. A revised snow scheme was developed and t...

  12. Why cold water delays the onset of vestibular vertigo-An functional MRI study

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhi [Department of Radiology, Beijing Hospital, No. 1 Dahua Road Dongdan, Beijing 100730 (China)], E-mail: zhiwang76@gmail.com; Chen Min [Department of Radiology, Beijing Hospital, No. 1 Dahua Road Dongdan, Beijing 100730 (China); Gong Xia; Huang Weining [Department of E.N.T., Beijing Hospital, No. 1 Dahua Road Dongdan, Beijing 100730 (China); Xu Liang [Department of Radiology, Beijing Hospital, No. 1 Dahua Road Dongdan, Beijing 100730 (China); Zhou Cheng [Department of Radiology, Beijing Hospital, No. 1 Dahua Road Dongdan, Beijing 100730 (China)], E-mail: chengzhou2000@yahoo.com

    2008-09-15

    The mechanism of vertigo is unclear. Generally, the peak time or the latency of blood oxygenation level dependent (BOLD) effect is about 6 s. However, clinically, the latency of vertigo or nystagmus induced by caloric stimulations is much longer than 6 s, commonly about 30 s induced by water of 30 deg. C or 44 deg. C. We hypothesize that there is an inhibitive power or mechanism for the occurrence of vestibular vertigo, since it is an unpleasant feeling. The caloric test was performed in healthy volunteers during the BOLD fMRI scanning. The overlaid results of statistical parametric mapping (SPM) showed that three brain regions showed neural activation during vestibular dizziness while deactivation occurred in response to cold water simulation: (1) supplementary motor area (SMA); (2) middle temporal area/medial superior temporal area (MT/MST); (3) visual association area (BA19). The time course of the regions further demonstrated that the signal decreased during the cold-water stimulation and increased during the period of vertigo. We therefore further hypothesize that there may be two forces for the production of vertigo: inhibitory power (IP) and promotive power (PP). The delayed onset of vertigo was the result of the interaction between IP and PP. All of our findings, for the first time, suggested such an original mechanism of vertigo.

  13. Why cold water delays the onset of vestibular vertigo-An functional MRI study

    International Nuclear Information System (INIS)

    Wang Zhi; Chen Min; Gong Xia; Huang Weining; Xu Liang; Zhou Cheng

    2008-01-01

    The mechanism of vertigo is unclear. Generally, the peak time or the latency of blood oxygenation level dependent (BOLD) effect is about 6 s. However, clinically, the latency of vertigo or nystagmus induced by caloric stimulations is much longer than 6 s, commonly about 30 s induced by water of 30 deg. C or 44 deg. C. We hypothesize that there is an inhibitive power or mechanism for the occurrence of vestibular vertigo, since it is an unpleasant feeling. The caloric test was performed in healthy volunteers during the BOLD fMRI scanning. The overlaid results of statistical parametric mapping (SPM) showed that three brain regions showed neural activation during vestibular dizziness while deactivation occurred in response to cold water simulation: (1) supplementary motor area (SMA); (2) middle temporal area/medial superior temporal area (MT/MST); (3) visual association area (BA19). The time course of the regions further demonstrated that the signal decreased during the cold-water stimulation and increased during the period of vertigo. We therefore further hypothesize that there may be two forces for the production of vertigo: inhibitory power (IP) and promotive power (PP). The delayed onset of vertigo was the result of the interaction between IP and PP. All of our findings, for the first time, suggested such an original mechanism of vertigo

  14. Influence of cold-water immersion on limb blood flow after resistance exercise.

    Science.gov (United States)

    Mawhinney, Chris; Jones, Helen; Low, David A; Green, Daniel J; Howatson, Glyn; Gregson, Warren

    2017-06-01

    This study determined the influence of cold (8°C) and cool (22°C) water immersion on lower limb and cutaneous blood flow following resistance exercise. Twelve males completed 4 sets of 10-repetition maximum squat exercise and were then immersed, semi-reclined, into 8°C or 22°C water for 10-min, or rested in a seated position (control) in a randomized order on different days. Rectal and thigh skin temperature, muscle temperature, thigh and calf skin blood flow and superficial femoral artery blood flow were measured before and after immersion. Indices of vascular conductance were calculated (flux and blood flow/mean arterial pressure). The colder water reduced thigh skin temperature and deep muscle temperature to the greatest extent (P lower (55%) than the control post-immersion (P water similarly reduce femoral artery and cutaneous blood flow responses but not muscle temperature following resistance exercise.

  15. The effect of time of day on cold water ingestion by high-level swimmers in a tropical climate.

    Science.gov (United States)

    Hue, Olivier; Monjo, Roland; Lazzaro, Marc; Baillot, Michelle; Hellard, Philippe; Marlin, Laurent; Jean-Etienne, A

    2013-07-01

    The authors tested the effect of cold water ingestion during high-intensity training in the morning vs the evening on both core temperature (TC) and thermal perceptions of internationally ranked long-distance swimmers during a training period in a tropical climate. Nine internationally ranked long-distance swimmers (5 men and 4 women) performed 4 randomized training sessions (2 in the evening and 2 in the morning) with 2 randomized beverages with different temperatures for 3 consecutive days. After a standardized warm-up of 1000 m, the subjects performed a standardized training session that consisted of 10 x 100 m (start every 1'20″) at a fixed velocity. The swimmers were then followed for the next 3000 m of the training schedule. Heart rate (HR) was continuously monitored during the 10 x 100 m, whereas TC, thermal comfort, and thermal sensation (TS) were measured before and after each 1000-m session. Before and after each 1000 m, the swimmers were asked to drink 190 mL of neutral (26.5 ± 2.5°C) or cold (1.3 ± 0.3°C) water packaged in standardized bottles. Results demonstrated that cold water ingestion induced a significant effect on TC, with a pronounced decrease in the evening, resulting in significantly lower mean TC and lower mean delta TC in evening cold (EC) than in evening neutral (EN), concomitant with significantly lower TS in EC than in EN and a significant effect on exercise HR. Moreover, although TC increased significantly with time in MN, MC, and EN, TC was stabilized during exercise in EC. To conclude, we demonstrate that a cold beverage had a significant effect on TC, TS, and HR during training in high-level swimmers in a tropical climate, especially during evening training.

  16. Effect of cold water and inverse lighting on growth performance of broiler chickens under extreme heat stress.

    Science.gov (United States)

    Park, Sang-oh; Park, Byung-sung; Hwangbo, Jong

    2015-07-01

    The present study was carried out to investigate the effect of provision of extreme heat stress diet (EHD), inverse lighting, cold water on growth performance of broiler chickens exposed to extreme heat stress. The chickens were divided into four treatment groups, (T1, T2, T3, T4) as given below: Ti (EHD 1, 10:00-19:00 dark, 19:00-10:00 light, cool water 9 degrees C); T2 (EHD 2, 10:00-19:00 dark, 19:00-10:00 light, cool water 9 degrees C); T3 (EHD 1, 09:00-18:00 dark, 18:00-09:00 light, cool water 141C); T4 (EHD 2, 09:00-18:00 dark, 18:00-09:00 light, cool water 14 degrees C. EHD 1 contained soybean oil, molasses, methionine and lysine; EHD 2 contained the same ingredients as EHD 1 with addition of vitamin C. Groups T1 and T2 were given cooler water than the othertwo groups, and displayed higher body weight increase and diet intake as compared to T3 and T4 (pstress diet, inverse lighting (10:00-19:00 dark, 19:00-10:00 light) with cold water at 9 degrees C under extreme heat stress could enhance growth performance of broiler chickens.

  17. Thermal effects of dorsal head immersion in cold water on nonshivering humans.

    Science.gov (United States)

    Giesbrecht, Gordon G; Lockhart, Tamara L; Bristow, Gerald K; Steinman, Allan M

    2005-11-01

    Personal floatation devices maintain either a semirecumbent flotation posture with the head and upper chest out of the water or a horizontal flotation posture with the dorsal head and whole body immersed. The contribution of dorsal head and upper chest immersion to core cooling in cold water was isolated when the confounding effect of shivering heat production was inhibited with meperidine (Demerol, 2.5 mg/kg). Six male volunteers were immersed four times for up to 60 min, or until esophageal temperature = 34 degrees C. An insulated hoodless dry suit or two different personal floatation devices were used to create four conditions: 1) body insulated, head out; 2) body insulated, dorsal head immersed; 3) body exposed, head (and upper chest) out; and 4) body exposed, dorsal head (and upper chest) immersed. When the body was insulated, dorsal head immersion did not affect core cooling rate (1.1 degrees C/h) compared with head-out conditions (0.7 degrees C/h). When the body was exposed, however, the rate of core cooling increased by 40% from 3.6 degrees C/h with the head out to 5.0 degrees C/h with the dorsal head and upper chest immersed (P immersed (approximately 10%). The exaggerated core cooling during dorsal head immersion (40% increase) may result from the extra heat loss affecting a smaller thermal core due to intense thermal stimulation of the body and head and resultant peripheral vasoconstriction. Dorsal head and upper chest immersion in cold water increases the rate of core cooling and decreases potential survival time.

  18. Optimization of the cold processing of 15-15Ti AIM1 austenitic steel cladding tubes

    International Nuclear Information System (INIS)

    Courtin, Laurine

    2015-01-01

    In order to face the next century energy demand growth, the worldwide development of the 4. generation of nuclear reactors is considered. The construction of a sodium-cooled fast reactor prototype (ASTRID) is currently envisaged at the CEA. The reference material selected for the fuel cladding of its first core is the 15-15Ti-AIM1 austenitic steel (Austenitic Improved Material). The goal of this PhD thesis work is to investigate the different ways of optimization for the cold working steps undergone by the claddings during their manufacture in order to improve their swelling resistance. The main investigations are focused on the conditions of the cold-working steps and the thermal treatments applied throughout the shaping of the claddings, especially of the last solution annealing treatment. The effects of these parameters on the microstructure are investigated (structural refinement, precipitation and the additive elements dissolution and arrangement of the dislocations). This study is divided into three main steps: An analysis of the fabrication routes applied in the past along with the study of the 'cold-work' and the thermal treatments conditions; An assessment of new shaping processes, such as the 'cold-pilgering' and the hammering, in order to verify the conformity of the manufactured tubes with respect to the required specifications; An attempt of optimization of the cold-work routes and the microstructure of the final material. The results of microstructure characterization and the mechanical behavior allow envisaging favorably the use of an alternative process such as the cold pilgering to manufacture claddings. (author) [fr

  19. Thermal effects of whole head submersion in cold water on nonshivering humans.

    Science.gov (United States)

    Pretorius, Thea; Bristow, Gerald K; Steinman, Alan M; Giesbrecht, Gordon G

    2006-08-01

    This study isolated the effect of whole head submersion in cold water, on surface heat loss and body core cooling, when the confounding effect of shivering heat production was pharmacologically eliminated. Eight healthy male subjects were studied in 17 degrees C water under four conditions: the body was either insulated or uninsulated, with the head either above the water or completely submersed in each body-insulation subcondition. Shivering was abolished with buspirone (30 mg) and meperidine (2.5 mg/kg), and subjects breathed compressed air throughout all trials. Over the first 30 min of immersion, exposure of the head increased core cooling both in the body-insulated conditions (head out: 0.47 +/- 0.2 degrees C, head in: 0.77 +/- 0.2 degrees C; P body-exposed conditions (head out: 0.84 +/- 0.2 degrees C and head in: 1.17 +/- 0.5 degrees C; P body surface area) in the body-exposed conditions increased total heat loss by only 10%. In both body-exposed and body-insulated conditions, head submersion increased core cooling rate much more (average of 42%) than it increased total heat loss. This may be explained by a redistribution of blood flow in response to stimulation of thermosensitive and/or trigeminal receptors in the scalp, neck and face, where a given amount of heat loss would have a greater cooling effect on a smaller perfused body mass. In 17 degrees C water, the head does not contribute relatively more than the rest of the body to surface heat loss; however, a cold-induced reduction of perfused body mass may allow this small increase in heat loss to cause a relatively larger cooling of the body core.

  20. Update to the Atlantic salmon breeding program at the National Cold Water Marine Aquaculture Center

    Science.gov (United States)

    The USDA-ARS National Cold Water Marine Aquaculture Center (NCWMAC) in Franklin, ME has been supporting the U.S. coldwater marine aquaculture industry for the past thirteen years by developing a genetically improved North American Atlantic salmon. The St. John's River stock was chosen as the focal ...

  1. Optimizing Cold Water Immersion for Exercise-Induced Hyperthermia: A Meta-analysis.

    Science.gov (United States)

    Zhang, Yang; Davis, Jon-Kyle; Casa, Douglas J; Bishop, Phillip A

    2015-11-01

    Cold water immersion (CWI) provides rapid cooling in events of exertional heat stroke. Optimal procedures for CWI in the field are not well established. This meta-analysis aimed to provide structured analysis of the effectiveness of CWI on the cooling rate in healthy adults subjected to exercise-induced hyperthermia. An electronic search (December 2014) was conducted using the PubMed and Web of Science. The mean difference of the cooling rate between CWI and passive recovery was calculated. Pooled analyses were based on a random-effects model. Sources of heterogeneity were identified through a mixed-effects model Q statistic. Inferential statistics aggregated the CWI cooling rate for extrapolation. Nineteen studies qualified for inclusion. Results demonstrate CWI elicited a significant effect: mean difference, 0.03°C·min(-1); 95% confidence interval, 0.03-0.04°C·min(-1). A conservative, observed estimate of the CWI cooling rate was 0.08°C·min(-1) across various conditions. CWI cooled individuals twice as fast as passive recovery. Subgroup analyses revealed that cooling was more effective (Q test P immersion water temperature ≤10°C, ambient temperature ≥20°C, immersion duration ≤10 min, and using torso plus limbs immersion. There is insufficient evidence of effect using forearms/hands CWI for rapid cooling: mean difference, 0.01°C·min(-1); 95% confidence interval, -0.01°C·min(-1) to 0.04°C·min(-1). A combined data summary, pertaining to 607 subjects from 29 relevant studies, was presented for referencing the weighted cooling rate and recovery time, aiming for practitioners to better plan emergency procedures. An optimal procedure for yielding high cooling rates is proposed. Using prompt vigorous CWI should be encouraged for treating exercise-induced hyperthermia whenever possible, using cold water temperature (approximately 10°C) and maximizing body surface contact (whole-body immersion).

  2. Process and magnetic properties of cold pressed Ne Fe B bonded magnets

    International Nuclear Information System (INIS)

    Rodrigues, DAniel; Concilio, Gilberto Vicente; Landgraf, Fernando Jose Gomes; Zanchetta, Antonio Carlos

    1996-01-01

    Bonded magnets are polymer composites based on a mixture of a hard magnetic powder and a polymer. This mixture is processed as a traditional powder metallurgy material, cold pressed, or like a thermoplastic material, by injection molding. The polymeric phase to a large extent determines the mechanical properties of the composite, while magnetic powder determines its magnetic properties. They are less expensive and easier to produce, specially in the case of high complexity parts. This paper presents the relationship between process variables and magnetic properties of cold pressed Nd Fe B bonded magnets produced from melt spun flakes mixed with thermosetting resins. The experiments were done using Statistical Design of Experiments. The variables investigates were: uniaxial compaction pressure, binder type; binder content; size of Nd Fe B particles; addition of lubricant; and addition of small quantities of magnetic additives, particles of ferrites, iron, or alnico. (author)

  3. Corrosion And Thermal Processing In Cold Gas Dynamic Spray Deposited Austenitic Stainless Steel Coatings

    Science.gov (United States)

    2016-06-01

    Champagne have demonstrated this use of the cold spray technique in the repair of helicopter mast supports in U.S. Army aircraft, with over 50...Process: Fundamentals and Applications, Champagne , V. K., Ed., Woodhead, Boca Raton, FL Chap. 3. [3] Schiel, J. F., 2014, “The cold gas-dynamic spray... Champagne , V. K., Ed., Woodhead, Boca Raton, FL Chap. 2. [15] Han, W., Meng, X. M., Zhang, J. B., and Zhao, J., 2012, “Elastic modulus of 304 stainless

  4. The ins and outs of water dynamics in cold tolerant soil invertebrates.

    Science.gov (United States)

    Holmstrup, Martin

    2014-10-01

    Many soil invertebrates have physiological characteristics in common with freshwater animals and represent an evolutionary transition from aquatic to terrestrial life forms. Their high cuticular permeability and ability to tolerate large modifications of internal osmolality are of particular importance for their cold tolerance. A number of cold region species that spend some or most of their life-time in soil are in more or less intimate contact with soil ice during overwintering. Unless such species have effective barriers against cuticular water-transport, they have only two options for survival: tolerate internal freezing or dehydrate. The risk of internal ice formation may be substantial due to inoculative freezing and many species rely on freeze-tolerance for overwintering. If freezing does not occur, the desiccating power of external ice will cause the animal to dehydrate until vapor pressure equilibrium between body fluids and external ice has been reached. This cold tolerance mechanism is termed cryoprotective dehydration (CPD) and requires that the animal must be able to tolerate substantial dehydration. Even though CPD is essentially a freeze-avoidance strategy the associated physiological traits are more or less the same as those found in freeze tolerant species. The most well-known are accumulation of compatible osmolytes and molecular chaperones reducing or protecting against the stress caused by cellular dehydration. Environmental moisture levels of the habitat are important for which type of cold tolerance is employed, not only in an evolutionary context, but also within a single population. Some species use CPD under relatively dry conditions, but freeze tolerance when soil moisture is high. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Information Use Differences in Hot and Cold Risk Processing: When Does Information About Probability Count in the Columbia Card Task?

    Science.gov (United States)

    Markiewicz, Łukasz; Kubińska, Elżbieta

    2015-01-01

    This paper aims to provide insight into information processing differences between hot and cold risk taking decision tasks within a single domain. Decision theory defines risky situations using at least three parameters: outcome one (often a gain) with its probability and outcome two (often a loss) with a complementary probability. Although a rational agent should consider all of the parameters, s/he could potentially narrow their focus to only some of them, particularly when explicit Type 2 processes do not have the resources to override implicit Type 1 processes. Here we investigate differences in risky situation parameters' influence on hot and cold decisions. Although previous studies show lower information use in hot than in cold processes, they do not provide decision weight changes and therefore do not explain whether this difference results from worse concentration on each parameter of a risky situation (probability, gain amount, and loss amount) or from ignoring some parameters. Two studies were conducted, with participants performing the Columbia Card Task (CCT) in either its Cold or Hot version. In the first study, participants also performed the Cognitive Reflection Test (CRT) to monitor their ability to override Type 1 processing cues (implicit processes) with Type 2 explicit processes. Because hypothesis testing required comparison of the relative importance of risky situation decision weights (gain, loss, probability), we developed a novel way of measuring information use in the CCT by employing a conjoint analysis methodology. Across the two studies, results indicated that in the CCT Cold condition decision makers concentrate on each information type (gain, loss, probability), but in the CCT Hot condition they concentrate mostly on a single parameter: probability of gain/loss. We also show that an individual's CRT score correlates with information use propensity in cold but not hot tasks. Thus, the affective dimension of hot tasks inhibits correct

  6. Some aspects on the role of hydrogen in the cold crack develoment process on welding

    International Nuclear Information System (INIS)

    Bourges, P.; Faure, F.

    1983-03-01

    Examination of the hydrogen input during welding (humidity of the electrode coatings, humidity of the wires, ribbon, and weld fluxing) and the means to minimize these hydrogen inputs. Description of various examples of cold crack development in welded joints caused by hydrogen, influence of the chemical composition, of the thermal processing on the two metals joints, influence of sulfur on cold crack on low alloy steels [fr

  7. Videogame distraction using virtual reality technology for children experiencing cold pressor pain: the role of cognitive processing.

    Science.gov (United States)

    Law, Emily F; Dahlquist, Lynnda M; Sil, Soumitri; Weiss, Karen E; Herbert, Linda Jones; Wohlheiter, Karen; Horn, Susan Berrin

    2011-01-01

    This study examined whether increasing the demand for central cognitive processing involved in a distraction task, by involving the child in ongoing, effortful interaction with the distraction stimulus, would increase children's tolerance for cold pressor pain. Seventy-nine children ages 6-15 years underwent a baseline cold pressor trial followed by two cold pressor trials in which they received interactive distraction (i.e., used voice commands to play a videogame) or passive distraction (in which they merely watched the output from the same videogame segment) in counterbalanced order. Both distraction conditions were presented via a virtual reality-type helmet. As expected, children demonstrated significant improvement in pain tolerance during distraction relative to baseline. Children showed the greatest improvement during the interactive distraction task. The effects of distraction on children's cold pressor pain tolerance are significantly enhanced when the distraction task also includes greater demands for central cognitive processing.

  8. Cold Responsive Gene Expression Profiling of Sugarcane and Saccharum spontaneum with Functional Analysis of a Cold Inducible Saccharum Homolog of NOD26-Like Intrinsic Protein to Salt and Water Stress.

    Directory of Open Access Journals (Sweden)

    Jong-Won Park

    Full Text Available Transcriptome analysis of sugarcane hybrid CP72-1210 (cold susceptible and Saccharum spontaneum TUS05-05 (cold tolerant using Sugarcane Assembled Sequences (SAS from SUCEST-FUN Database showed that a total of 35,340 and 34,698 SAS genes, respectively, were expressed before and after chilling stress. The analysis revealed that more than 600 genes are differentially expressed in each genotype after chilling stress. Blast2Go annotation revealed that the major difference in gene expression profiles between CP72-1210 and TUS05-05 after chilling stress are present in the genes related to the transmembrane transporter activity. To further investigate the relevance of transmembrane transporter activity against abiotic stress tolerance, a S. spontaneum homolog of a NOD26-like major intrinsic protein gene (SspNIP2 was selected for functional analysis, of which expression was induced after chilling stress in the cold tolerant TUS05-05. Quantitative real-time PCR showed that SspNIP2 expression was increased ~2.5 fold at 30 minutes after cold treatment and stayed induced throughout the 24 hours of cold treatment. The amino acid sequence analysis of the cloned SspNIP2 confirmed the presence of six transmembrane domains and two NPA (Asn-Pro-Ala motifs, signature features of major intrinsic protein families. Amino acid analysis confirmed that four amino acids, comprising the ar/R (aromatic residue/arginine region responsible for the substrate specificity among MIPs, are conserved among monocot silicon transporters and SspNIP2. Salinity stress test on SspNIP2 transgenic tobacco plants resulted in more vigorous transgenic lines than the non-transgenic tobacco plants, suggesting some degree of tolerance to salt stress conferred by SspNIP2. SspNIP2-transgenic plants, exposed to 2 weeks of water stress without irrigation, developed various degrees of water stress symptom. The water stress test confirmed that the SspNIP2 transgenic lines had lower evapotranspiration

  9. Human whole body cold adaptation.

    Science.gov (United States)

    Daanen, Hein A M; Van Marken Lichtenbelt, Wouter D

    2016-01-01

    Reviews on whole body human cold adaptation generally do not distinguish between population studies and dedicated acclimation studies, leading to confusing results. Population studies show that indigenous black Africans have reduced shivering thermogenesis in the cold and poor cold induced vasodilation in fingers and toes compared to Caucasians and Inuit. About 40,000 y after humans left Africa, natives in cold terrestrial areas seems to have developed not only behavioral adaptations, but also physiological adaptations to cold. Dedicated studies show that repeated whole body exposure of individual volunteers, mainly Caucasians, to severe cold results in reduced cold sensation but no major physiological changes. Repeated cold water immersion seems to slightly reduce metabolic heat production, while repeated exposure to milder cold conditions shows some increase in metabolic heat production, in particular non-shivering thermogenesis. In conclusion, human cold adaptation in the form of increased metabolism and insulation seems to have occurred during recent evolution in populations, but cannot be developed during a lifetime in cold conditions as encountered in temperate and arctic regions. Therefore, we mainly depend on our behavioral skills to live in and survive the cold.

  10. Water-rock interaction during diagenesis and thermal recovery, Cold Lake, Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Abercrombie, H.J.

    1988-12-01

    Fluid and rocks interact at high temperatures during diagenesis and steam assisted thermal recovery of bitumen from the Clearwater Formation at Cold Lake, Alberta. A study was carried out to assess the effects of natural diagenesis in rocks of the formation, and using these data, to relate the chemical and isotopic compositions of fluids produced during thermal recovery to water-rock interactions occurring in the reservoir. X-ray diffraction (XRD) studies on core from Leming and Marguerite Lake document a variety of diagenetic clays including mixed layer minerals smectite-illite and chlorite-smectite, chlorite, illite, berthierine and kaolinite. A method for internally generating factors to convert clay mineral XRD peak heights to relative weight percents was used. Semi-quantitative results show that smectite-illite is ubiquitous and the most abundant clay present. Details are provided of the diagenetic sequence illustrating water-rock interaction over a prolonged period. Three types of water were found to be produced from the wells: injected water, formation water associated with bitumen, and bottom water from the underlying McMurray Formation. Produced water compositions were used to estimate in-situ temperatures of fluids produced from reservoirs. It is concluded that equilibrium closed-system models can be applied to natural diagenesis and artificial diagenesis induced during thermal recovery. 132 refs., 52 figs., 5 tabs.

  11. Glendonites in Neoproterozoic low-latitude, interglacial, sedimentary rocks, northwest Canada: Insights into the Cryogenian ocean and Precambrian cold-water carbonates

    Science.gov (United States)

    James, Noel P.; Narbonne, Guy M.; Dalrymple, Robert W.; Kurtis Kyser, T.

    2005-01-01

    Stellate crystals of ferroan dolomite in neritic siliciclastic and carbonate sedimentary rocks between Sturtian and Marinoan glaciations in the Mackenzie Mountains are interpreted as replaced glendonites. These pseudomorphs after ikaite indicate that shallow seawater at that time was near freezing. Stromatolites verify that paleoenvironments were in the photic zone and physical sedimentary structures such as hummocky cross-bedding confirm that the seafloor was repeatedly disturbed by storms. Glendonites within these low-latitude, continental shelf to coastal sedimentary deposits imply that global ocean water during much of Cryogenian time was likely very cold. Such an ocean would easily have cooled to yield widespread sea ice and, through positive feedback, growth of low-latitude continental glaciers. In this situation gas hydrates could have formed in shallow-water, cold shelf sediment, but would have been particularly sensitive to destabilization as a result of sea-level change. Co-occurrence of pisolites and glendonites in these rocks additionally implies that some ooids and pisoids might have been, unlike Phanerozoic equivalents, characteristic of cold-water sediments.

  12. A geochemical characterization of cold-water natural acid rock drainage at the Zn–Pb XY deposit, Yukon, Canada

    International Nuclear Information System (INIS)

    Gault, Kristen B.; Gammon, Paul; Fortin, Danielle

    2015-01-01

    Highlights: • Characterizes the waters and minerals of a natural acid rock drainage (ARD). • Demonstrates that cold climate ARD is mostly similar to temperate systems. • Cold-climate differences impact kinetic rates and hydrologic seasonality. • Demonstrates that thermodynamic equilibrium governs the ARD system. • Demonstrates that extraneous inputs can be detected in the system. - Abstract: Acid rock drainage (ARD) is considered to be temperature-limited due to the diminished activity of Fe(II)-oxidizing microbes at low temperatures. Nonetheless, ARD streams are present in cold climates. This study presents a geochemical characterization of a cold climate ARD creek at the Zn–Pb XY deposit in Yukon, Canada, which showed highly elevated concentrations of dissolved zinc (up to 475 mg/L). Acid rock drainage at the XY deposit is likely generated via subsurface abiotic and biotic oxidation of sulfide minerals, and then exits as seeps at the headwaters of the creek. The uppermost reaches of the creek have the lowest pH levels (pH 3.3) and highest metal concentrations, with prolific precipitation of iron-hydroxysulfate and -oxyhydroxide mineral precipitates (schwertmannite, jarosite, and goethite), present as terraced iron formations (TIFs) at one sampling location. The lower reaches of the creek show a progressive pH increase (up to pH level 4.9) which occurs due to Fe(III)- and Al-hydrolysis, the neutralizing influence of carbonate-rich strata and/or ground waters, and dilution by surface waters entering the creek. Progressive pH neutralization causes a change in precipitate mineralogy to X-ray amorphous Al-hydroxysulfates, with a composition similar to aluminite and hydrobasaluminite, and amorphous Al(OH)_3. Natural attenuation of Cd, Zn, and Pb occurred downstream from the headwater seeps, which was likely influenced by adsorption reactions involving both metal-sulfate anions and metal-sulfate ternary complexes. Generally, the concentrations of Cd, Zn, and

  13. Distribution of cold-water corals in the Whittard Canyon, NE Atlantic Ocean

    OpenAIRE

    Morris, Kirsty J.; Tyler, Paul A.; Masson, Doug G.; Huvenne, Veerle A.I.; Rogers, Alex D.

    2013-01-01

    The deep-sea floor occupies about 60% of the surface of the planet and is covered mainly by fine sediments. Most studies of deep-sea benthic fauna therefore have concentrated on soft sediments with little sampling of hard substrata, such as rocky outcrops in submarine canyons. Here we assess the distribution and abundance of cold-water corals within the Whittard Canyon (NE Atlantic) using video footage from the ROV Isis. Abundances per 100 m of video transect were calculated and mapped using ...

  14. SCC growth behavior of stainless steel weld metals in high-temperature water. Influence of corrosion potential, weld type, thermal aging, cold-work and temperature

    International Nuclear Information System (INIS)

    Yamada, Takuyo; Terachi, Takumi; Miyamoto, Tomoki; Arioka, Koji

    2009-01-01

    Recent studies on crack growth rate measurement in oxygenated high-temperature pure water conditions, such as normal water chemistry in boiling water reactors, using compact tension type specimens have shown that weld stainless steels are susceptible to stress corrosion cracking. However, to our knowledge, there is no crack growth data of weld stainless steels in pressurized water reactor primary water. The principal purpose of this study was to examine the SCC growth behavior of stainless steel weld metals in simulated PWR primary water. A second objective was to examine the effect of (1) corrosion potential, (2) thermal-aging, (3) Mo in alloy and (4) cold-working on SCC growth in hydrogenated and oxygenated water environments at 320degC. In addition, the temperature dependence of SCC growth in simulated PWR primary water was also studied. The results were as follows: (1) No significant SCC growth was observed on all types of stainless steel weld metals: as-welded, aged (400degC x 10 kh) 308L and 316L, in 2.7 ppm-hydrogenated (low-potential) water at 320degC. (2) 20% cold-working markedly accelerated the SCC growth of weld metals in high-potential water at 320degC, but no significant SCC growth was observed in the hydrogenated water, even after 20% cold-working. (3) No significant SCC growth was observed on stainless steel weld metals in low-potential water at 250degC and 340degC. Thus, stainless steel weld metals have excellent SCC resistance in PWR primary water. On the other hand, (4) significant SCC growth was observed on all types of stainless steel weld metals: as-weld, aged (400degC x 10 kh) and 20% cold-worked 308L and 316L, in 8 ppm-oxygenated (high-potential) water at 320degC. (5) No large difference in SCC growth was observed between 316L (Mo) and 308L. (6) No large effect on SCC growth was observed between before and after aging up to 400degC for 10 kh. (7) 20% cold-working markedly accelerated the SCC growth of stainless steel weld metals. (author)

  15. Characteristics of the cold-water belt formed off Soya Warm Current

    Science.gov (United States)

    Ishizu, Miho; Kitade, Yujiro; Matsuyama, Masaji

    2008-12-01

    We examined the data obtained by acoustic Doppler current profiler, conductivity-temperature-depth profiler, and expendable bathythermograph observations, which were collected in the summers of 2000, 2001, and 2002, to clarify the characteristics of the cold-water belt (CWB), i.e., lower-temperature water than the surrounding water extending from the southwest coast of Sakhalin along the offshore side of Soya Warm Current (SWC) and to confirm one of the formation mechanisms of the CWB as suggested by our previous study, i.e., the upwelling due to the convergence of bottom Ekman transport off the SWC region. The CWB was observed at about 30 km off the coast, having a thickness of 14 m and a minimum temperature of 12°C at the sea surface. The CWB does not have the specific water mass, but is constituted of three representative water types off the northeast coast of Hokkaido in summer, i.e., SWC water, Fresh Surface Okhotsk Sea Water, and Okhotsk Sea Intermediate Water. In a comparison of the horizontal distributions of current and temperature, the CWB region is found to be advected to the southeast at an average of 40 ± 29% of the maximum current velocity of the SWC. The pumping speed due to the convergence of the bottom Ekman transport is estimated as (1.5-3.0) × 10-4 m s-1. We examined the mixing ratio of the CWB, and the results implied that the water mass of the CWB is advected southeastward and mixes with a water mass upwelling in a different region off SWC.

  16. Going Green and Cold: Biosurfactants from Low-Temperature Environments to Biotechnology Applications.

    Science.gov (United States)

    Perfumo, Amedea; Banat, Ibrahim M; Marchant, Roger

    2018-03-01

    Approximately 80% of the Earth's biosphere is cold, at an average temperature of 5°C, and is populated by a diversity of microorganisms that are a precious source of molecules with high biotechnological potential. Biosurfactants from cold-adapted organisms can interact with multiple physical phases - water, ice, hydrophobic compounds, and gases - at low and freezing temperatures and be used in sustainable (green) and low-energy-impact (cold) products and processes. We review the biodiversity of microbial biosurfactants produced in cold habitats and provide a perspective on the most promising future applications in environmental and industrial technologies. Finally, we encourage exploring the cryosphere for novel types of biosurfactants via both culture screening and functional metagenomics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Estimation of the consumption of cold tap water for microbiological risk assessment: An overview of studies and statistical analysis of data

    NARCIS (Netherlands)

    Mons, M.N.; Wielen, J.M.L. van der; Blokker, E.J.M.; Sinclair, M.I.; Hulshof, K.F.A.M.; Dangendorf, F.; Hunter, P.R.; Medema, G.J.

    2007-01-01

    The volume of cold tap water consumed is an essential element in quantitative microbial risk assessment. This paper presents a review of tap water consumption studies. Study designs were evaluated and statistical distributions were fitted to water consumption data from The Netherlands, Great

  18. Magnetic filter apparatus and method for generating cold plasma in semicoductor processing

    Science.gov (United States)

    Vella, Michael C.

    1996-01-01

    Disclosed herein is a system and method for providing a plasma flood having a low electron temperature to a semiconductor target region during an ion implantation process. The plasma generator providing the plasma is coupled to a magnetic filter which allows ions and low energy electrons to pass therethrough while retaining captive the primary or high energy electrons. The ions and low energy electrons form a "cold plasma" which is diffused in the region of the process surface while the ion implantation process takes place.

  19. Magnetic filter apparatus and method for generating cold plasma in semiconductor processing

    Science.gov (United States)

    Vella, M.C.

    1996-08-13

    Disclosed herein is a system and method for providing a plasma flood having a low electron temperature to a semiconductor target region during an ion implantation process. The plasma generator providing the plasma is coupled to a magnetic filter which allows ions and low energy electrons to pass therethrough while retaining captive the primary or high energy electrons. The ions and low energy electrons form a ``cold plasma`` which is diffused in the region of the process surface while the ion implantation process takes place. 15 figs.

  20. Long-term monitoring reveals cold-water corals in extreme conditions off the southeast US coast

    Science.gov (United States)

    Mienis, F.; Duineveld, G.; Davies, A. J.; Ross, S. W.; Lavaleye, M.; Van Weering, T.

    2011-12-01

    Cold-water corals are common on the SE slope of the US (SEUS) from Florida to Cape Hatteras between depths of 400-600 m. Near Cape Hatteras cold-water corals have formed mound structures that are up to 60 m high, which are mainly covered by living colonies of the coral species Lophelia pertusa. Past explorations of major reef sites of N Carolina using remote and manned submersibles have shown living Lophelia pertusa colonies on the current facing side of the mound structures and a high biodiversity of associated fauna, especially fish. The coral areas lie in the vicinity of the Gulf Stream characterized by strong currents transporting relatively warm water northwards along the SEUS slope. Thus far little is known about the environmental conditions inside the SEUS coral communities and particularly the effects of the nearby Gulf Stream. In December 2009 two autonomous benthic landers were deployed amidst Lophelia reefs off Cape Lookout (NC) for a period of 6 months to define oceanographic patterns that are relevant for the development and persistence of cold-water coral ecosystems. Landers recorded temperature, fluorescence, turbidity, and current speed and direction. Furthermore, a sediment trap was mounted on the landers that collected material at a 16-days interval. A first analysis of the lander data shows that instability of the Gulf Stream causes rapid rises in temperature, current speed and turbidity lasting for days to more than a week. Peak temperature and turbidity levels are the highest measured in coral habitats studied so far. We did not see clear cut effects of Gulf Stream instabilities on the near bed flux of phytodetritus as opposed to reports of meanders inducing upwelling and enhanced production in the photic zone. Data analyzed so far suggest that cwc habitats of Cape Lookout experience extreme and adverse conditions for prolonged periods. The findings of this study are compared with methodologically similar studies that have been conducted in

  1. Investigation of the internal behavior in segmented PEMFCs of different flow fields during cold start process

    International Nuclear Information System (INIS)

    Lin, R.; Ren, Y.S.; Lin, X.W.; Jiang, Z.H.; Yang, Z.; Chang, Y.T.

    2017-01-01

    In this study, we have researched the internal behavior in segmented proton exchange membrane fuel cells (PEMFCs) with three different flow fields during cold start process. The change of internal current density and temperature in fuel cells with different flow fields could be obviously shown by the printed circuit board (PCB) technology, and the study shows that the flow field is significant for enhancing the cold start ability and durability. Single serpentine flow field has the best cold start performance, while triple channel serpentine flow field has the best uniformity. It is found that without a robust temperature rising tendency, the cell temperature reaching 0 °C does not definitely mean a successful cold start because the cell temperature might drop down 0 °C again. Polarization curves show that there is almost no performance degradation after successful cold start, but the cell degrades quickly after the failed cold start at −7 °C and −10 °C. Based on these characteristics, we optimized the rapid cold start strategy by using electric heating and make it possible to start up the PEMFC at temperatures down to −20 °C within about 11 min. - Highlights: • Segmented fuel cell were used to record the internal current density and temperature distributions during the cold start. • The effects of flow fields on the PEMFC cold start capacity were evaluated. • The effect of cold start on the performance of fuel cell was evaluated. • An optimized strategy was adopted to improve the cold start capacity.

  2. Vitrification of HLW in cold crucible melter

    International Nuclear Information System (INIS)

    Bordier, G.

    2005-01-01

    The performance of the vitrification process currently used in the La Hague commercial reprocessing plants has been continuously improved during more than ten years of operation. In parallel the CEA (French Atomic Energy Commission), COGEMA (Industrial Operator), and SGN (COGEMA's Engineering) have developed the cold crucible melter vitrification technology to obtain greater operating flexibility, increased plant availability and further reduction of secondary waste generated during operations. The cold crucible is a compact water-cooled melter in which the radioactive waste and the glass additives are melted by direct high frequency induction. The cooling of the melter produces a solidified glass layer that protects the melter's inner wall from corrosion. Because the heat is transferred directly to the melt, high operating temperatures can be achieved with no impact on the melter itself. COGEMA plans to implement the cold crucible technology to vitrify high level liquid waste from reprocessed spent U-Mo-Sn-Al fuel (used in gas cooled reactor). The cold crucible was selected for the vitrification of this particularly hard-to-process waste stream because it could not be reasonably processed in the standard hot induction melters currently used at the La Hague vitrification facilities: the waste has a high molybdenum content which makes it very corrosive and also requires a special high temperature glass formulation to obtain sufficiently high waste loading factors (12 % in molybdenum). A special glass formulation has been developed by the CEA and has been qualified through lab and pilot testing to meet standard waste acceptance criteria for final disposal of the U-Mo waste. The process and the associated technologies have been also qualified on a full-scale prototype at the CEA pilot facility in Marcoule. Engineering study has been integrated in parallel in order to take into account that the Cold Crucible should be installed remotely in one of the R7 vitrification

  3. Cold acclimation increases cold tolerance independently of diapause programing in the bean bug, Riptortus pedestris.

    Science.gov (United States)

    Rozsypal, J; Moos, M; Goto, S G

    2017-10-17

    The bean bug (Riptortus pedestris) is a pest of soybeans and other legumes in Japan and other Asian countries. It enters a facultative adult diapause on exposure to short days. While photoperiodism and diapause are well understood in R. pedestris, knowledge of cold tolerance is very limited, as is information on the effect of diapause on cold tolerance. We examined the effect of photoperiod, cold acclimation, and feeding status on cold tolerance in R. pedestris. We found that cold acclimation significantly increased survival at -10°C in both long- and short-day adult R. pedestris. Since the difference in cold survival between long- and short-day cold-acclimated groups was only marginal, we conclude that entering diapause is not crucial for R. pedestris to successfully pass through cold acclimation and become cold tolerant. We observed similar effects in 5th instar nymphs, with both long- and short-day cold-acclimated groups surviving longer cold exposures compared with non-acclimated groups. Starvation, which was tested only in adult bugs, had only a negligible and negative impact on cold survival. Although cold tolerance significantly increased with cold acclimation in adult bugs, supercooling capacity unexpectedly decreased. Our results suggest that changes in supercooling capacity as well as in water content are unrelated to cold tolerance in R. pedestris. An analysis of metabolites revealed differences between the treatments, and while several metabolites markedly increased with cold acclimation, their concentrations were too low to have a significant effect on cold tolerance.

  4. Near-field performance of the advanced cold process canister

    International Nuclear Information System (INIS)

    Werme, L.

    1990-09-01

    A near-field performance evaluation of an Advanced Cold Process Canister for spent fuel disposal has been performed jointly by TVO, Finland and SKB, Sweden. The canister consists of a steel canister as a load bearing element, with an outer corrosion shield of copper. The canister design was originally proposed by TVO. In the analysis, as well internal (ie corrosion processes from the inside of the canister) as external processes (mechanical and chemical) have been considered both prior to and after canister breach. Throughout the analysis, present day underground conditions has been assumed to persist during the service life of the canister. The major conclusions for the evaluation are: Internal processes cannot cause the canister breach under foreseen conditions, ie localized corrosion for the steel or copper canisters can be dismissed as a failure mechanism. The evaluation of the effects of processes outside the canister indicate that there is no rapid mechanism to endanger the integrity of the canister. Consequently the service life of the canister will be several million years. This factor will ensure the safety of the concept. (orig.)

  5. Information use differences in hot and cold risk processing: When does information about probability count in the Columbia Card Task?

    Directory of Open Access Journals (Sweden)

    Lukasz eMarkiewicz

    2015-11-01

    Full Text Available Objective: This paper aims to provide insight into information processing differences between hot and cold risk taking decision tasks within a single domain. Decision theory defines risky situations using at least three parameters: outcome one (often a gain with its probability and outcome two (often a loss with a complementary probability. Although a rational agent should consider all of the parameters, decision maker could potentially narrow focus to only some of them, particularly when explicit Type 2 processes do not have the resources to override implicit Type 1 processes. Here we investigate differences in risky situation parameter(s influence on hot and cold decisions. Although previous studies show lower information use in hot as compared to cold processes, they do not provide decision weight changes and therefore do not explain whether this difference results from worse concentration on each parameter of a risky situation (probability, gain amount and loss amount or from ignoring some parameters. Methods: Two studies were conducted, with participants performing the Columbia Card Task (CCT in either its Cold or Hot version. In the first study, participants also performed the Cognitive Reflection Test (CRT to monitor their ability to override Type 1 processing cues (implicit processes with Type 2 explicit processes. Because hypothesis testing required comparison of the relative importance of risky situation decision weights (gain, loss, probability, we developed a novel way of measuring information use in the CCT by employing a conjoint analysis methodology. Results: Across the two studies, results indicated that in the CCT Cold condition decision makers concentrate on each information type (gain, loss, probability, but in the CCT Hot condition they concentrate mostly on a single parameter: probability of gain/loss. We also show that an individual’s CRT score correlates with information use propensity in cold but not hot tasks. Thus

  6. Information Use Differences in Hot and Cold Risk Processing: When Does Information About Probability Count in the Columbia Card Task?

    Science.gov (United States)

    Markiewicz, Łukasz; Kubińska, Elżbieta

    2015-01-01

    Objective: This paper aims to provide insight into information processing differences between hot and cold risk taking decision tasks within a single domain. Decision theory defines risky situations using at least three parameters: outcome one (often a gain) with its probability and outcome two (often a loss) with a complementary probability. Although a rational agent should consider all of the parameters, s/he could potentially narrow their focus to only some of them, particularly when explicit Type 2 processes do not have the resources to override implicit Type 1 processes. Here we investigate differences in risky situation parameters' influence on hot and cold decisions. Although previous studies show lower information use in hot than in cold processes, they do not provide decision weight changes and therefore do not explain whether this difference results from worse concentration on each parameter of a risky situation (probability, gain amount, and loss amount) or from ignoring some parameters. Methods: Two studies were conducted, with participants performing the Columbia Card Task (CCT) in either its Cold or Hot version. In the first study, participants also performed the Cognitive Reflection Test (CRT) to monitor their ability to override Type 1 processing cues (implicit processes) with Type 2 explicit processes. Because hypothesis testing required comparison of the relative importance of risky situation decision weights (gain, loss, probability), we developed a novel way of measuring information use in the CCT by employing a conjoint analysis methodology. Results: Across the two studies, results indicated that in the CCT Cold condition decision makers concentrate on each information type (gain, loss, probability), but in the CCT Hot condition they concentrate mostly on a single parameter: probability of gain/loss. We also show that an individual's CRT score correlates with information use propensity in cold but not hot tasks. Thus, the affective dimension of

  7. Numerical modeling of axi-symmetrical cold forging process by ``Pseudo Inverse Approach''

    Science.gov (United States)

    Halouani, A.; Li, Y. M.; Abbes, B.; Guo, Y. Q.

    2011-05-01

    The incremental approach is widely used for the forging process modeling, it gives good strain and stress estimation, but it is time consuming. A fast Inverse Approach (IA) has been developed for the axi-symmetric cold forging modeling [1-2]. This approach exploits maximum the knowledge of the final part's shape and the assumptions of proportional loading and simplified tool actions make the IA simulation very fast. The IA is proved very useful for the tool design and optimization because of its rapidity and good strain estimation. However, the assumptions mentioned above cannot provide good stress estimation because of neglecting the loading history. A new approach called "Pseudo Inverse Approach" (PIA) was proposed by Batoz, Guo et al.. [3] for the sheet forming modeling, which keeps the IA's advantages but gives good stress estimation by taking into consideration the loading history. Our aim is to adapt the PIA for the cold forging modeling in this paper. The main developments in PIA are resumed as follows: A few intermediate configurations are generated for the given tools' positions to consider the deformation history; the strain increment is calculated by the inverse method between the previous and actual configurations. An incremental algorithm of the plastic integration is used in PIA instead of the total constitutive law used in the IA. An example is used to show the effectiveness and limitations of the PIA for the cold forging process modeling.

  8. The effects of cold rolling orientation and water chemistry on stress corrosion cracking behavior of 316L stainless steel in simulated PWR water environments

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Junjie [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Mailbox 269, 149 Yanchang Road, Shanghai, 200072 (China); Lu, Zhanpeng, E-mail: zplu@t.shu.edu.cn [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Mailbox 269, 149 Yanchang Road, Shanghai, 200072 (China); State Key Laboratory of Advanced Special Steels, Shanghai University, 149 Yanchang Road, Shanghai, 200072 (China); Xiao, Qian; Ru, Xiangkun; Han, Guangdong; Chen, Zhen [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Mailbox 269, 149 Yanchang Road, Shanghai, 200072 (China); Zhou, Bangxin [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Mailbox 269, 149 Yanchang Road, Shanghai, 200072 (China); State Key Laboratory of Advanced Special Steels, Shanghai University, 149 Yanchang Road, Shanghai, 200072 (China); Shoji, Tetsuo [New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579 (Japan)

    2016-04-15

    Stress corrosion cracking behaviors of one-directionally cold rolled 316L stainless steel specimens in T–L and L–T orientations were investigated in hydrogenated and deaerated PWR primary water environments at 310 °C. Transgranular cracking was observed during the in situ pre-cracking procedure and the crack growth rate was almost not affected by the specimen orientation. Locally intergranular stress corrosion cracks were found on the fracture surfaces of specimens in the hydrogenated PWR water. Extensive intergranular stress corrosion cracks were found on the fracture surfaces of specimens in deaerated PWR water. More extensive cracks were found in specimen T–L orientation with a higher crack growth rate than that in the specimen L–T orientation with a lower crack growth rate. Crack branching phenomenon found in specimen L–T orientation in deaerated PWR water was synergistically affected by the applied stress direction as well as the preferential oxidation path along the elongated grain boundaries, and the latter was dominant. - Highlights: • Transgranular fatigue crack growth rate was not affected by the cold rolling orientation. • Locally intergranular SCC was found in the hydrogenated PWR water. • Extensive intergranular SCC cracks were found in deaerated PWR water. • T–L specimen showed more extensive SCC cracks and a higher crack growth rate. • Crack branching related to the applied stress and the preferential oxidation path.

  9. Heat pipe based cold energy storage systems for datacenter energy conservation

    International Nuclear Information System (INIS)

    Singh, Randeep; Mochizuki, Masataka; Mashiko, Koichi; Nguyen, Thang

    2011-01-01

    In the present paper, design and economics of the novel type of thermal control system for datacenter using heat pipe based cold energy storage has been proposed and discussed. Two types of cold energy storage system namely: ice storage system and cold water storage system are explained and sized for datacenter with heat output capacity of 8800 kW. Basically, the cold energy storage will help to reduce the chiller running time that will save electricity related cost and decrease greenhouse gas emissions resulting from the electricity generation from non-renewable sources. The proposed cold energy storage system can be retrofit or connected in the existing datacenter facilities without major design changes. Out of the two proposed systems, ice based cold energy storage system is mainly recommended for datacenters which are located in very cold locations and therefore can offer long term seasonal storage of cold energy within reasonable cost. One of the potential application domains for ice based cold energy storage system using heat pipes is the emergency backup system for datacenter. Water based cold energy storage system provides more compact size with short term storage (hours to days) and is potential for datacenters located in areas with yearly average temperature below the permissible cooling water temperature (∼25 o C). The aforesaid cold energy storage systems were sized on the basis of metrological conditions in Poughkeepsie, New York. As an outcome of the thermal and cost analysis, water based cold energy storage system with cooling capability to handle 60% of datacenter yearly heat load will provide an optimum system size with minimum payback period of 3.5 years. Water based cold energy storage system using heat pipes can be essentially used as precooler for chiller. Preliminary results obtained from the experimental system to test the capability of heat pipe based cold energy storage system have provided satisfactory outcomes and validated the proposed

  10. Facial immersion in cold water enhances cerebral blood velocity during breath-hold exercise in humans

    DEFF Research Database (Denmark)

    Kjeld, Thomas; Pott, Frank C; Secher, Niels H

    2009-01-01

    The diving response is initiated by apnea and facial immersion in cold water and includes, besides bradycardia, peripheral vasoconstriction, while cerebral perfusion may be enhanced. This study evaluated whether facial immersion in 10 degrees C water has an independent influence on cerebral...... immersion further increased MCA V(mean) to 122 cm/s ( approximately 88%; both P ... 180-W exercise (from 47 to 53 cm/s), and this increment became larger with facial immersion (76 cm/s, approximately 62%; P 100% increase in MCA V(mean), largely...

  11. Cold Heat Release Characteristics of Solidified Oil Droplet-Water Solution Latent Heat Emulsion by Air Bubbles

    Science.gov (United States)

    Inaba, Hideo; Morita, Shin-Ichi

    The present work investigates the cold heat-release characteristics of the solidified oil droplets (tetradecane, C14H30, freezing point 278.9 K)/water solution emulsion as a latent heat-storage material having a low melting point. An air bubbles-emulsion direct-contact heat exchange method is selected for the cold heat-results from the solidified oil droplet-emulsion layer. This type of direct-contact method results in the high thermal efficiency. The diameter of air bubbles in the emulsion increases as compared with that in the pure water. The air bubbles blown from a nozzle show a strong mixing behavior during rising in the emulsion. The temperature effectiveness, the sensible heat release time and the latent heat release time have been measured as experimental parameters. The useful nondimensional emulsion level equations for these parameters have been derived in terms of the nondimensional emalsion level expressed the emulsion layer dimensions, Reynolds number for air flow, Stefan number and heat capacity ratio.

  12. Global land-atmosphere coupling associated with cold climate processes

    Science.gov (United States)

    Dutra, Emanuel

    This dissertation constitutes an assessment of the role of cold processes, associated with snow cover, in controlling the land-atmosphere coupling. The work was based on model simulations, including offline simulations with the land surface model HTESSEL, and coupled atmosphere simulations with the EC-EARTH climate model. A revised snow scheme was developed and tested in HTESSEL and EC-EARTH. The snow scheme is currently operational at the European Centre for Medium-Range Weather Forecasts integrated forecast system, and in the default configuration of EC-EARTH. The improved representation of the snowpack dynamics in HTESSEL resulted in improvements in the near surface temperature simulations of EC-EARTH. The new snow scheme development was complemented with the option of multi-layer version that showed its potential in modeling thick snowpacks. A key process was the snow thermal insulation that led to significant improvements of the surface water and energy balance components. Similar findings were observed when coupling the snow scheme to lake ice, where lake ice duration was significantly improved. An assessment on the snow cover sensitivity to horizontal resolution, parameterizations and atmospheric forcing within HTESSEL highlighted the role of the atmospheric forcing accuracy and snowpack parameterizations in detriment of horizontal resolution over flat regions. A set of experiments with and without free snow evolution was carried out with EC-EARTH to assess the impact of the interannual variability of snow cover on near surface and soil temperatures. It was found that snow cover interannual variability explained up to 60% of the total interannual variability of near surface temperature over snow covered regions. Although these findings are model dependent, the results showed consistency with previously published work. Furthermore, the detailed validation of the snow dynamics simulations in HTESSEL and EC-EARTH guarantees consistency of the results.

  13. Postexercise cold water immersion modulates skeletal muscle PGC-1α mRNA expression in immersed and nonimmersed limbs: evidence of systemic regulation.

    Science.gov (United States)

    Allan, Robert; Sharples, Adam P; Close, Graeme L; Drust, Barry; Shepherd, Sam O; Dutton, John; Morton, James P; Gregson, Warren

    2017-08-01

    Mechanisms mediating postexercise cold-induced increases in PGC-1α gene expression in human skeletal muscle are yet to be fully elucidated but may involve local cooling effects on AMPK and p38 MAPK-related signaling and/or increased systemic β-adrenergic stimulation. Therefore, we aimed to examine whether postexercise cold water immersion enhancement of PGC-1α mRNA is mediated through local or systemic mechanisms. Ten subjects completed acute cycling (8 × 5 min at ~80% peak power output) followed by seated-rest (CON) or single-leg cold water immersion (CWI; 10 min, 8°C). Muscle biopsies were obtained preexercise, postexercise, and 3 h postexercise from a single limb in the CON condition but from both limbs in CWI [thereby providing tissue from a CWI and nonimmersed limb (NOT)]. Muscle temperature decreased up to 2 h postexercise following CWI (-5°C) in the immersed limb, with lesser changes observed in CON and NOT (-3°C, P cold induction of PGC-1α mRNA. NEW & NOTEWORTHY We report for the first time that postexercise cold water immersion of one limb also enhances PGC-1α expression in a contralateral, nonimmersed limb. We suggest that increased systemic β-adrenergic stimulation, and not localized cooling per se, exerts regulatory effects on local signaling cascades, thereby modulating PGC-1α expression. Therefore, these data have important implications for research designs that adopt contralateral, nonimmersed limbs as a control condition while also increasing our understanding of the potential mechanisms underpinning cold-mediated PGC-1α responses. Copyright © 2017 the American Physiological Society.

  14. Texture Of Zircaloy-4 Result Of Beta-Quenching, Cold Rolling And Recrystallization

    International Nuclear Information System (INIS)

    Futichah; Sulistioso

    1998-01-01

    Differences of crystallographic texture of zircaloy-4 plate depends on cold working and heat treatment.To determine the change of zircaloy-4 textures, the solid solution treatment process at beta phase which was followed by quenching on water was employed for this sample. The next step was cold rolling until deformation epsilon = 1.62. The specimens were recrystallized at 750 o C, for 2 hours. The result of beta-quench gave a spread and different orientations and the main orientation occurred at (0001)[1010] and (0001)[1120]. Result of cold rolling with epsilon = 1.39 and epsilon 1.62 is the deformation texture at the main orientation of (0001)[1010] with the angle of inclination was around 38 o. However, the result of Recrystallization process on 750 o C for 2 hours gave annealing textures with orientations of (0001)[1120]. It means that the recrystallization process of zircaloy-4 plate can not remove the deformation textures, but can change the crystallographic orientation

  15. Effect of cold water-induced stress on immune response, pathology and fertility in mice during Chlamydia muridarum genital infection.

    Science.gov (United States)

    Belay, Tesfaye; Woart, Anthony; Graffeo, Vincent

    2017-07-31

    Genital infection by Chlamydia trachomatis is the most common bacterial sexually transmitted disease worldwide. It causes serious reproductive health complications, including pelvic inflammatory disease and infertility. Stress is implicated as a risk factor for various infections; however, its effect on chlamydia genital infection is unknown. We previously showed that repeated exposure of mice to cold water results in increased severity of chlamydia genital infection. In this study, cold water-induced stress resulted in (i) elevated levels of norepinephrine (NE) and epinephrine in the spleen and genital tract of stressed mice; (ii) elevated IL-1β, TNF-α, IL-6 and nitric oxide production in macrophage-rich peritoneal cells of mice; (iii) supplement of NE in vitro exerts an immunosuppressive effect on splenic T-cell production of cytokines; (iv) decreased C. muridarum shedding in the genital tract of β1Adr/β2Adr receptor KO mice; and (v) a higher rate of infertility in infected mice. These results suggest that cold water stress induces the production of catecholamines, which may play a critical role in the modulation of the immune system leading to increased intensity of C. muridarum genital infection. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Reduction of rainbow trout spleen size by splenectomy does not alter resistance against bacterial cold water disease

    Science.gov (United States)

    In lower vertebrates, the contribution of the spleen to anti-bacterial immunity is poorly understood. Researchers have previously reported a phenotypic and genetic correlation between resistance to Flavobacterium psychrophilum, the causative agent of bacterial cold water disease (BCWD) and spleen so...

  17. Body cooling in human males by cold-water immersion after vigorous exercise.

    Science.gov (United States)

    McDonald, A; Goode, R C; Livingstone, S D; Duffin, J

    1984-03-01

    Five male subjects were immersed to neck level in a whole-body water calorimeter (water temperature 19 degrees C) on two occasions. One immersion was preceded by 30 min of exercise on a treadmill at 80% of the subjects' maximum heart rate, while the other was preceded by no exercise (control). Ventilation, oxygen consumption, hand-grip strength, and heat loss (measured by calorimetry) results showed no significant differences between resting and exercise trials. Minute ventilation and oxygen consumption increased during the immersion but the magnitude of the increase varied among subjects. There was a significant decrease is isometric hand-grip strength after 30 min of immersion. Rectal temperatures fell faster (0.031 degree C +/- 0.004 degree C/min) for exercised subjects than for controls (0.019 degree C +/- 0.005 degree C/min) between 10 and 45 min of immersion (P less than 0.01). It appears that vigorous preimmersion exercise may shorten survival time in cold water due to an increase in cooling rate.

  18. Nuclear Waste Vitrification Efficiency: Cold Cap Reactions

    International Nuclear Information System (INIS)

    Kruger, A.A.; Hrma, P.R.; Pokorny, R.

    2011-01-01

    The cost and schedule of nuclear waste treatment and immobilization are greatly affected by the rate of glass production. Various factors influence the performance of a waste-glass melter. One of the most significant, and also one of the least understood, is the process of batch melting. Studies are being conducted to gain fundamental understanding of the batch reactions, particularly those that influence the rate of melting, and models are being developed to link batch makeup and melter operation to the melting rate. Batch melting takes place within the cold cap, i.e., a batch layer floating on the surface of molten glass. The conversion of batch to glass consists of various chemical reactions, phase transitions, and diffusion-controlled processes. These include water evaporation (slurry feed contains as high as 60% water), gas evolution, the melting of salts, the formation of borate melt, reactions of borate melt with molten salts and with amorphous oxides (Fe 2 O 3 and Al 2 O 3 ), the formation of intermediate crystalline phases, the formation of a continuous glass-forming melt, the growth and collapse of primary foam, and the dissolution of residual solids. To this list we also need to add the formation of secondary foam that originates from molten glass but accumulates on the bottom of the cold cap. This study presents relevant data obtained for a high-level-waste melter feed and introduces a one-dimensional (1D) mathematical model of the cold cap as a step toward an advanced three-dimensional (3D) version for a complete model of the waste glass melter. The 1D model describes the batch-to-glass conversion within the cold cap as it progresses in a vertical direction. With constitutive equations and key parameters based on measured data, and simplified boundary conditions on the cold-cap interfaces with the glass melt and the plenum space of the melter, the model provides sensitivity analysis of the response of the cold cap to the batch makeup and melter

  19. Fructooligosaccharides integrity after atmospheric cold plasma and high-pressure processing of a functional orange juice.

    Science.gov (United States)

    Almeida, Francisca Diva Lima; Gomes, Wesley Faria; Cavalcante, Rosane Souza; Tiwari, Brijesh K; Cullen, Patrick J; Frias, Jesus Maria; Bourke, Paula; Fernandes, Fabiano A N; Rodrigues, Sueli

    2017-12-01

    In this study, the effect of atmospheric pressure cold plasma and high-pressure processing on the prebiotic orange juice was evaluated. Orange juice containing 7g/100g of commercial fructooligosaccharides (FOS) was directly and indirectly exposed to a plasma discharge at 70kV with processing times of 15, 30, 45 and 60s. For high-pressure processing, the juice containing the same concentration of FOS was treated at 450MPa for 5min at 11.5°C in an industrial equipment (Hyperbaric, model: 300). After the treatments, the fructooligosaccharides were qualified and quantified by thin layer chromatography. The organic acids and color analysis were also evaluated. The maximal overall fructooligosaccharides degradation was found after high-pressure processing. The total color difference was pressure and plasma processing. citric and ascorbic acid (Vitamin C) showed increased content after plasma and high-pressure treatment. Thus, atmospheric pressure cold plasma and high-pressure processing can be used as non-thermal alternatives to process prebiotic orange juice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Fishing on cold water coral reefs : A bioeconomic model of habitat-fishery connections

    OpenAIRE

    Kahui, Viktoria; Armstrong, Claire W.

    2008-01-01

    This paper applies a bioeconomic model in order to study different interactions between a harvested renewable resource and a non-renewable resource without commercial value that is negatively affected by the harvesting activity. This enables the analysis of for instance cold water coral habitats and their importance to commercial fish species. The fish is harvested either in a manner that does not damage coral, such as stationary gear, or in a destructive fashion, such as botto...

  1. Assessing Oil Spill Impacts to Cold-Water Corals of the Deep Gulf of Mexico

    Science.gov (United States)

    DeLeo, D. M.; Lengyel, S. D.; Cordes, E. E.

    2016-02-01

    The Deepwater Horizon (DWH) disaster and subsequent cleanup efforts resulted in the release of an unprecedented amount of oil and chemical dispersants in the deep waters of the Gulf of Mexico (GoM). Over the years, numerous detrimental effects have been documented including impacts to cold-water coral ecosystems. Assessing and quantifying these effects is crucial to understanding the long-term consequences to affected coral populations as well as their resilience. We conducted live exposure experiments to investigate the toxicity of oil and dispersants on two deep-sea corals, Callogorgia delta and Paramuricea type B3. For both species, the treatments containing dispersants had a more pronounced effect than oil treatments alone. In addition, RNA from unexposed and DWH spill-impacted Paramuricea biscaya was extracted and sequenced using Illumina technology. A de novo reference transcriptome was produced and used to explore stress-induced variations in gene expression. Current findings show overexpression of genes coding for Cytochrome p450 (CYP1A1), Tumor necrosis factor receptor-associated factors (TRAFs), Peroxidasin and additional genes involved in innate immunity and apoptotic pathways. CYP1A1 is involved in the metabolism of xenobiotics and has been previously used as a diagnostic tool for aquatic pollution. TRAFs are responsible for regulating pathways involved in immune and inflammatory responses and were likewise overexpressed in thermally stressed shallow-water corals. Ribosomal proteins were also significantly underexpressed. These genes among others found in our expression data serve as useful biomarker candidates for assessing and monitoring future spill impacts as resource extraction continues in the deep waters of the GoM. Our results also provide insights into the responses of deep-sea corals to toxin exposure, implications of applying dispersants to oil spills and a novel reference assembly for a relatively under-studied group of cold-water corals.

  2. Short-term metabolic and growth responses of the cold-water coral Lophelia pertusa to ocean acidification

    Science.gov (United States)

    Hennige, S. J.; Wicks, L. C.; Kamenos, N. A.; Bakker, D. C. E.; Findlay, H. S.; Dumousseaud, C.; Roberts, J. M.

    2014-01-01

    Cold-water corals are associated with high local biodiversity, but despite their importance as ecosystem engineers, little is known about how these organisms will respond to projected ocean acidification. Since preindustrial times, average ocean pH has decreased from 8.2 to ~8.1, and predicted CO2 emissions will decrease by up to another 0.3 pH units by the end of the century. This decrease in pH may have a wide range of impacts upon marine life, and in particular upon calcifiers such as cold-water corals. Lophelia pertusa is the most widespread cold-water coral (CWC) species, frequently found in the North Atlantic. Here, we present the first short-term (21 days) data on the effects of increased CO2 (750 ppm) upon the metabolism of freshly collected L. pertusa from Mingulay Reef Complex, Scotland, for comparison with net calcification. Over 21 days, corals exposed to increased CO2 conditions had significantly lower respiration rates (11.4±1.39 SE, μmol O2 g-1 tissue dry weight h-1) than corals in control conditions (28.6±7.30 SE μmol O2 g-1 tissue dry weight h-1). There was no corresponding change in calcification rates between treatments, measured using the alkalinity anomaly technique and 14C uptake. The decrease in respiration rate and maintenance of calcification rate indicates an energetic imbalance, likely facilitated by utilisation of lipid reserves. These data from freshly collected L. pertusa from the Mingulay Reef Complex will help define the impact of ocean acidification upon the growth, physiology and structural integrity of this key reef framework forming species.

  3. The Dominant Snow-forming Process in Warm and Cold Mixed-phase Orographic Clouds: Effects of Cloud Condensation Nuclei and Ice Nuclei

    Science.gov (United States)

    Fan, J.; Rosenfeld, D.; Leung, L. R.; DeMott, P. J.

    2014-12-01

    Mineral dust aerosols often observed over California in winter and spring from long-range transport can be efficient ice nuclei (IN) and enhance snow precipitation in mixed-phase orographic clouds. On the other hand, local pollution particles can serve as good CCN and suppress warm rain, but their impacts on cold rain processes are uncertain. The main snow-forming mechanism in warm and cold mixed-phase orographic clouds (refer to as WMOC and CMOC, respectively) could be very different, leading to different precipitation response to CCN and IN. We have conducted 1-km resolution model simulations using the Weather Research and Forecasting (WRF) model coupled with a spectral-bin cloud microphysical model for WMOC and CMOC cases from CalWater2011. We investigated the response of cloud microphysical processes and precipitation to CCN and IN with extremely low to extremely high concentrations using ice nucleation parameterizations that connect with dust and implemented based on observational evidences. We find that riming is the dominant process for producing snow in WMOC while deposition plays a more important role than riming in CMOC. Increasing IN leads to much more snow precipitation mainly due to an increase of deposition in CMOC and increased rimming in WMOC. Increasing CCN decreases precipitation in WMOC by efficiently suppressing warm rain, although snow is increased. In CMOC where cold rain dominates, increasing CCN significantly increases snow, leading to a net increase in precipitation. The sensitivity of supercooled liquid to CCN and IN has also been analyzed. The mechanism for the increased snow by CCN and caveats due to uncertainties in ice nucleation parameterizations will be discussed.

  4. Processes Controlling Water Vapor in the Winter Arctic Tropopause Region

    Science.gov (United States)

    Pfister, Leonhard; Selkirk, Henry B.; Jensen, Eric J.; Padolske, James; Sachse, Glen; Avery, Melody; Schoeberl, Mark R.; Mahoney, Michael J.; Richard, Erik

    2002-01-01

    This work describes transport and thermodynamic processes that control water vapor near the tropopause during the SAGE III-Ozone Loss and Validation Experiment (SOLVE), held during the Arctic 1999/2000 winter season. Aircraft-based water vapor, carbon monoxide, and ozone measurements were analyzed so as to establish how deeply tropospheric air mixes into the Arctic lowermost stratosphere and what the implications are for cloud formation and water vapor removal in this region of the atmosphere. There are three major findings. First, troposphere-to-stratosphere exchange extends into the Arctic stratosphere to about 13 km. Penetration is to similar levels throughout the winter, however, because ozone increases with altitude most rapidly in the early spring, tropospheric air mixes with the highest values of ozone in that season. The effect of this upward mixing is to elevate water vapor mixing ratios significantly above their prevailing stratospheric values of above 5ppmv. Second, the potential for cloud formation in the stratosphere is highest during early spring, with about 20% of the parcels which have ozone values of 300-350 ppbv experiencing ice saturation in a given 10 day period. Third, during early spring, temperatures at the troposphere are cold enough so that 5-10% of parcels experience relative humidities above 100%, even if the water content is as low as 5 ppmv. The implication is that during this period, dynamical processes near the Arctic tropopause can dehydrate air and keep the Arctic tropopause region very dry during early spring.

  5. The Effects of The Industrial Cryogenic Process on The Wear Behaviours of AISI D2 Cold Work Tool Steels

    OpenAIRE

    Ersöz, Enes; Ovalı, İsmail

    2018-01-01

    In this study, industrial cryogenic process afterconventional heat treatment process for various holding time was applied toAISI D2 (DIN 1.2379) cold work tool steel. The effects of the industrialcryogenic process on the wear behavior was investigated. In the wear test 5,10and 15 N forces were carried out to all group specimens at a constant shearrate (3,16 m/s) and three different wear distances. Experimental results showthat cryogenic processing of AISI D2 cold work tool steels have a signi...

  6. The Innovative Concept of Cold District Heating Networks: A Literature Review

    Directory of Open Access Journals (Sweden)

    Marco Pellegrini

    2018-01-01

    Full Text Available The development of sustainable and innovative solutions for the production and supply of energy at district level is nowadays one of the main technical challenges. In the past, district heating and cooling networks aimed to achieve greater energy efficiency through the centralization of the energy production process but with relevant losses related to heat transport. Moving towards a higher share of renewables and lower demand of primary energy requires redesign of the energy district networks. The novel concept of cold district heating networks aims to combine the advantages of a centralized energy distribution system with low heat losses in energy supply. This combined effect is achieved through the centralized supply of water at relatively low temperatures (in the range 10–25 °C, which is then heated up by decentralized heat pumps. Moreover, cold district heating networks are also very suitable for cooling delivery, since cold water supplying can be directly used for cooling purposes (i.e., free cooling or to feed decentralized chillers with very high energy efficiency ratio. This paper provides a preliminary literature review of existing cold district heating networks and then qualitatively analyses benefits and drawbacks in comparison with the alternatives currently used to produce heat and cold at district level, including the evaluation of major barriers to its further development.

  7. Analysis of Startup Process and Its Optimization for a Two-Stand Reversible Cold Rolling Mill

    Directory of Open Access Journals (Sweden)

    Guangming Liu

    2017-01-01

    Full Text Available Dynamic characteristic analysis of a two-stand reversible cold rolling mill in the startup process was carried out. The delay algorithm of the interstand thickness was proposed. A new method combined with the accelerated secant and the tangent methods was established to solve the simultaneous equations. The thickness and interstand tension transition processes with different static tension establishing processes were analyzed. Both mills were operated under constant rolling force control mode in the above process. The results show that the strip thickness in the rolling gap reduces in the static mill screwdown process. The entry stand runs inversely to establish the static interstand tension. This area becomes an abnormal thickness reduction area of the incoming strip. It results in several abnormal interstand tension increases in the subsequent startup process. The tension increase leads to an impact force on the strip that is the main reason of the strip breakage in the startup process. So the static tension establishing process was optimized, and the interstand tension fluctuation and the strip breakage accidents both reduced significantly. The results are beneficial to the startup process of the two-stand reversible cold rolling mill.

  8. Vertical and horizontal distribution of Desmophyllum dianthus in Comau Fjord, Chile: a cold-water coral thriving at low pH.

    Science.gov (United States)

    Fillinger, Laura; Richter, Claudio

    2013-01-01

    Cold-water corals provide an important habitat for a rich fauna along the continental margins and slopes. Although these azooxanthellate corals are considered particularly sensitive to ocean acidification, their responses to natural variations in pH and aragonite saturation are largely unknown due to the difficulty of studying their ecology in deep waters. Previous SCUBA investigations have shown an exceptionally shallow population of the cold-water coral Desmophyllum dianthus in near-surface waters of Comau Fjord, a stratified 480 m deep basin in northern Chilean Patagonia with suboxic deep waters. Here, we use a remotely operated vehicle to quantitatively investigate the distribution of D. dianthus and its physico-chemical drivers in so far uncharted naturally acidified waters. Remarkably, D. dianthus was ubiquitous throughout the fjord, but particularly abundant between 20 and 280 m depth in a pH range of 8.4 to 7.4. The persistence of individuals in aragonite-undersaturated waters suggests that present-day D. dianthus in Comau Fjord may show pre-acclimation or pre-adaptation to conditions of ocean acidification predicted to reach over 70% of the known deep-sea coral locations by the end of the century.

  9. Vertical and horizontal distribution of Desmophyllum dianthus in Comau Fjord, Chile: a cold-water coral thriving at low pH

    Directory of Open Access Journals (Sweden)

    Laura Fillinger

    2013-10-01

    Full Text Available Cold-water corals provide an important habitat for a rich fauna along the continental margins and slopes. Although these azooxanthellate corals are considered particularly sensitive to ocean acidification, their responses to natural variations in pH and aragonite saturation are largely unknown due to the difficulty of studying their ecology in deep waters. Previous SCUBA investigations have shown an exceptionally shallow population of the cold-water coral Desmophyllum dianthus in near-surface waters of Comau Fjord, a stratified 480 m deep basin in northern Chilean Patagonia with suboxic deep waters. Here, we use a remotely operated vehicle to quantitatively investigate the distribution of D. dianthus and its physico-chemical drivers in so far uncharted naturally acidified waters. Remarkably, D. dianthus was ubiquitous throughout the fjord, but particularly abundant between 20 and 280 m depth in a pH range of 8.4 to 7.4. The persistence of individuals in aragonite-undersaturated waters suggests that present-day D. dianthus in Comau Fjord may show pre-acclimation or pre-adaptation to conditions of ocean acidification predicted to reach over 70% of the known deep-sea coral locations by the end of the century.

  10. Temporal characteristics of cold pain perception.

    Science.gov (United States)

    Frölich, Michael A; Bolding, Mark S; Cutter, Gary R; Ness, Timothy J; Zhang, Kui

    2010-08-09

    Adaptation to a sustained stimulus is an important phenomenon in psychophysical experiments. When studying the response to an experimental task, the investigator has to account for the change in perceived stimulus intensity with repeated stimulus application and, if the stimulus is sustained, for the change in intensity during the presentation. An example of a sustained stimulus is the cold pressor task (CPT). The task has been used both as an experimental pain task and to study cardiovascular physiology. In functional imaging research, the CPT has been used to evaluate cognitive processing of a noxious stimulus. Investigators typically model the stimulus in a block design as a categorical (on-off) stimulus and do not account for a temporal change in stimulus perception. If the perceived stimulus changes over time, the results may be misleading. Therefore, we characterized the time course of cold pain in human volunteers and developed a model of the temporal characteristics of perceived cold pain. Fifteen healthy participants underwent cold pain testing by immersing their right foot into a container filled with ice water (2 degrees C) for 30s alternating with a 30s immersion into a container filled with tepid water 32 degrees C (control). Participants rated the pain intensity using an electronic slide algometer. Using a mixed general linear model (effectively a polynomial regression model), we determined that pain ratings follow a crescendo-decrescendo pattern that can be described well using a quadratic model. We conclude that the time course of quantitative perception differs fundamentally from the time course of stimulus presentation. This may be important when looking for the physiological correlates of perception as opposed to the presence of a stimulus per se. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  11. Welding of cold worked austenitic steels - comparison of TIG, EB and laser processes

    International Nuclear Information System (INIS)

    Richard, A.; Prunele, D. de; Castilan, F.

    1993-01-01

    Effect of welding on cold worked components is a local falling of their properties. Modifications induced by such an operation depend on the thermal cycle and consequently on the welding process. An experimental study aim of which is to compare respective effects of different welding processes (TIG, EB, laser) has been realized. This publication presents results related to 316L and 316Ti steels. (author). 2 refs., 7 figs., 1 tab

  12. Observations and simulations of snowpack cold content and its relationship to snowmelt timing and rate

    Science.gov (United States)

    Jennings, K. S.; Molotch, N. P.

    2017-12-01

    Mountain snowpacks serve as a vital water resource for more than 1 billion people across the globe. Two key properties of snowmelt—rate and timing—are controlled by the snowpack energy budget where incoming positive fluxes are balanced by a decrease in the energy deficit of the snowpack and a change in the phase of water from solid to liquid. In this context, the energy deficit, or cold content, regulates snowmelt as runoff does not commence until the deficit approaches zero. There is significant uncertainty surrounding cold content despite its relevance to snowmelt processes, likely due to the inherent difficulties in its observation. Our work has clarified the previously unresolved meteorological and energy balance controls on cold content development in seasonal snowpacks by leveraging two unique datasets from the Niwot Ridge LTER in the Rocky Mountains of Colorado. The first is a long-term snow pit record of snowpack properties from an alpine and subalpine site within the LTER. These data were augmented with a 23-year simulation of the snowpack at both sites using a quality controlled, serially complete, hourly forcing dataset. The observations and simulations both indicated that cold content primarily developed through new snowfall, while a negative energy budget provided a secondary pathway for cold content development, mainly through longwave emission and sublimation. Cold content gains from snowfall outnumbered energy balance gains by 438% in the alpine and 166% in the subalpine. Increased spring precipitation and later peak cold content significantly delayed snowmelt onset and daily melt rates were reduced by 32.2% in the alpine and 36.1% in the subalpine when an energy deficit needed to be satisfied. Furthermore, preliminary climate change simulations indicated warmer air temperatures reduced cold content accumulation, which increased the amount of snow lost to melt throughout the winter as incoming positive fluxes had to overcome smaller energy

  13. Surface Water Connectivity, Flow Pathways and Water Level Fluctuation in a Cold Region Deltaic Ecosystem

    Science.gov (United States)

    Peters, D. L.; Niemann, O.; Skelly, R.; Monk, W. A.; Baird, D. J.

    2017-12-01

    The Peace-Athabasca Delta (PAD) is a 6000 km2 deltaic floodplain ecosystem of international importance (Wood Buffalo National Park, Ramsar Convention, UNESCO World Heritage, and SWOT satellite water level calibration/validation site). The low-relief floodplain formed at the confluence of the Peace, Athabasca and Birch rivers with Lake Athabasca. More than 1000 wetland and lake basins have varying degrees of connectivity to the main flow system. Hydroperiod and water storage is influenced by ice-jam and open-water inundations and prevailing semi-arid climate that control water drawdown. Prior studies have identified pathways of river-to-wetland floodwater connection and historical water level fluctuation/trends as a key knowledge gaps, limiting our knowledge of deltaic ecosystem status and potential hydroecological responses to climate change and upstream water alterations to flow contributions. To address this knowledge gap, surface elevation mapping of the PAD has been conducted since 2012 using aerial remote sensing Light Detection and Ranging (LiDAR), plus thousands of ground based surface and bathymetric survey points tied to Global Positioning System (GPS) were obtained. The elevation information was used to develop a high resolution digital terrain model to simulate and investigate surface water connectivity. Importantly, the surveyed areas contain a set of wetland monitoring sites where ground-based surface water connectivity, water level/depth, water quality, and aquatic ecology (eg, vegetation, macroinvertebrate and muskrat) have been examined. The goal of this presentation is to present an assessment of: i) surface water fluctuation and connectivity for PAD wetland sites; ii) 40+ year inter-annual hydroperiod reconstruction for a perched basin using a combination of field measurements, remote sensing estimates, and historical documents; and iii) outline an approach to integrate newly available hydro-bio-geophysical information into a novel, multi

  14. Evaporative cooling enhanced cold storage system

    Science.gov (United States)

    Carr, P.

    1991-10-15

    The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream. 3 figures.

  15. Diving of great shearwaters (Puffinus gravis in cold and warm water regions of the South Atlantic Ocean.

    Directory of Open Access Journals (Sweden)

    Robert A Ronconi

    Full Text Available BACKGROUND: Among the most widespread seabirds in the world, shearwaters of the genus Puffinus are also some of the deepest diving members of the Procellariiformes. Maximum diving depths are known for several Puffinus species, but dive depths or diving behaviour have never been recorded for great shearwaters (P. gravis, the largest member of this genus. This study reports the first high sampling rate (2 s of depth and diving behaviour for Puffinus shearwaters. METHODOLOGY/PRINCIPAL FINDINGS: Time-depth recorders (TDRs were deployed on two female great shearwaters nesting on Inaccessible Island in the South Atlantic Ocean, recording 10 consecutive days of diving activity. Remote sensing imagery and movement patterns of 8 males tracked by satellite telemetry over the same period were used to identify probable foraging areas used by TDR-equipped females. The deepest and longest dive was to 18.9 m and lasted 40 s, but most (>50% dives were <2 m deep. Diving was most frequent near dawn and dusk, with <0.5% of dives occurring at night. The two individuals foraged in contrasting oceanographic conditions, one in cold (8 to 10°C water of the Sub-Antarctic Front, likely 1000 km south of the breeding colony, and the other in warmer (10 to 16°C water of the Sub-tropical Frontal Zone, at the same latitude as the colony, possibly on the Patagonian Shelf, 4000 km away. The cold water bird spent fewer days commuting, conducted four times as many dives as the warm water bird, dived deeper on average, and had a greater proportion of bottom time during dives. CONCLUSIONS/SIGNIFICANCE: General patterns of diving activity were consistent with those of other shearwaters foraging in cold and warm water habitats. Great shearwaters are likely adapted to forage in a wide range of oceanographic conditions, foraging mostly with shallow dives but capable of deep diving.

  16. [Cold hardiness of Pinus ponderosa, P. banksian and P. tabulaeformis].

    Science.gov (United States)

    Gong, Yuehua; Zhou, Yongxue; Fan, Junfeng; Liu, Yingzhou; Pang, Kejia

    2006-08-01

    By the method of artificial freezing, this paper made a comparative study on the cold hardiness of Pinus ponderosa, P. banksiana and P. tabulaeformis, with their inherent mechanisms approached. The results showed that the cold hardiness of these three species was in the sequence of P. banksiana > P. tabulaeformis > P. ponderosa. P. banksiana had high bound water/free water ratio (7.0) and ABA content (164.3 microg x g(-1) FW) but low K+ (2450 microg x g(-1) DW) and soluble sugar (12.0%) , P. tabulaeformis had higher contents of ABA (95.8 microg x g(-1) FW), K+ (4538 microg x g(-1) DW) and soluble sugar (18.68%) but low bound water/free water ratio (2.58), while P. ponderosa had high soluble sugar content (18.05%) but low bound water/free water ratio (2.18) and K+ (2275 microg x g(-1) DW) and ABA (63.3 microg x g(-1) FW) contents. These differences might be the reasons resulting in the different cold hardiness of these three species. Low chlorophyll content and high carotenoid/chlorophyll ratio might also contribute to the cold hardiness of P. banksiana. Therefore, though the test species are all of cold hardiness, their inherent mechanisms may be different.

  17. Cold-Hearted or Cool-Headed: Physical Coldness Promotes Utilitarian Moral Judgment

    Directory of Open Access Journals (Sweden)

    Hiroko eNakamura

    2014-10-01

    Full Text Available In the current study, we examine the effect of physical coldness on personal moral dilemma judgment. Previous studies have indicated that utilitarian moral judgment—sacrificing a few people to achieve the greater good for others—was facilitated when: (1 participants suppressed an initial emotional response and deliberately thought about the utility of outcomes; (2 participants had a high-level construal mindset and focused on abstract goals (e.g., save many; or (3 there was a decreasing emotional response to sacrificing a few. In two experiments, we exposed participants to extreme cold or typical room temperature and then asked them to make personal moral dilemma judgments. The results of Experiment 1 indicated that coldness prompted utilitarian judgment, but the effect of coldness was independent from deliberate thought or abstract high-level construal mindset. As Experiment 2 revealed, coldness facilitated utilitarian judgment via reduced empathic feelings. Therefore, physical coldness did not affect the cool-headed deliberate process or the abstract high-level construal mindset. Rather, coldness biased people toward being cold-hearted, reduced empathetic concern about a sacrificed victim, and facilitated utilitarian moral judgments.

  18. Environmental prevalence and persistence of Listeria monocytogenes in cold-smoked trout processing plants

    Science.gov (United States)

    The presence of Listeria monocytogenes on the surfaces of equipment and workers' hands during different production stages, as well as on fish skin and meat during processing and storage of cold-smoked trout, was investigated. Listeria monocytogenes was recovered from 10 (6.06%) of a total 165 cotto...

  19. A customised cold-water immersion protocol favours one-size-fits-all protocols in improving acute performance recovery

    NARCIS (Netherlands)

    Zandvoort, Coen S.; de Zwart, Jelmer R.; van Keeken, Brenda L.; Viroux, Patrick J.F.; Tiemessen, Ivo J.H.

    The purpose of the present study was to investigate whether a customised cold-water immersion (CWIc) protocol was more effective in enhancing acute performance recovery than a one-size-fits-all CWI (CWIs) or active recovery (AR) protocol. On three separate testing days, 10 healthy, physically

  20. Cold-water coral ecosystems in Cassidaigne Canyon: An assessment of their environmental living conditions

    OpenAIRE

    Fabri, Marie-claire; Bargain, Annaelle; Pairaud, Ivane; Pedel, Laura; Taupier-letage, I.

    2017-01-01

    The Cassidaigne canyon is one of the two canyons (together with Lacaze-Duthiers) of the French Mediterranean coast in which cold-water corals have settled and formed large colonies, providing a structural habitat for other species. Nevertheless, the communities settled in the Cassidaigne canyon are physically impacted by discharges of bauxite residues. New information on the distribution of the species Madrepora oculata and the associated species diversity in Cassidaigne canyon was provid...

  1. Cold Vacuum Drying facility crane and hoist system design description

    International Nuclear Information System (INIS)

    PITKOFF, C.C.

    1999-01-01

    This document describes the Cold Vacuum Drying Facility (CVDF) crane and hoist system. The overhead crane and hoist system is located in the process bays of the CVDF. It supports the processes required to drain the water and dry the spent nuclear fuel contained in the multi-canister overpacks after they have been removed from the K-Basins. The cranes will also be used to assist maintenance activities within the bays, as required

  2. Cold-Climate Solar Domestic Hot Water Systems Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Burch, J.; Salasovich, J.; Hillman, T.

    2005-11-01

    The Solar Heating and Lighting Sub-program has set the key goal to reduce the cost of saved energy [Csav, defined as (total cost, $)/(total discounted savings, kWh_thermal)] for solar domestic water heaters (SDWH) by at least 50%. To determine if this goal is attainable and prioritize R&D for cold-climate SDWH, life-cycle analyses were done with hypothetical lower-cost components in glycol, drainback, and thermosiphon systems. Balance-of-system (BOS, everything but the collector) measures included replacing metal components with polymeric versions and system simplification. With all BOS measures in place, Csav could be reduced more than 50% with a low-cost, selectively-coated, glazed polymeric collector, and slightly less than 50% with either a conventional selective metal-glass or a non-selective glazed polymer collector. The largest percent reduction in Csav comes from replacing conventional pressurized solar storage tanks and metal heat exchangers with un-pressurized polymer tanks with immersed polymer heat exchangers, which could be developed with relatively low-risk R&D.

  3. Cold Heat Storage Characteristics of O/W-type Latent Heat Emulsion Including Continuum Phase of Water Treated with a Freezing Point Depression

    Science.gov (United States)

    Inaba, Hideo; Morita, Shin-Ichi

    This paper deals with flow and cold heat storage characteristics of the oil (tetradecane, C14H30, freezing point 278.9 K, Latent heat 229 kJ/kg)/water emulsion as a latent heat storage material having a low melting point. The test emulsion includes a water-urea solution as a continuum phase. The freezing point depression of the continuum phase permits enhancement of the heat transfer rate of the emulison, due to the large temperature difference between the latent heat storage material and water-urea solution. The velocity of emulsion flow and the inlet temperature of coolant in a coiled double tube heat exchanger are chosen as the experimental parameters. The pressure drop, the heat transfer coefficient of the emulsion in the coiled tube are measured in the temperture region over solid and liquid phase of the latent heat storage material. The finishing time of the cold heat storage is defined experimentally in the range of sensible and latent heat storage. It is clarified that the flow behavior of the emulsion as a non-Newtonian fluid has an important role in cold heat storage. The useful nondimentional correlation equations for the additional pressure loss coefficient, the heat transfer coefficient and the finishing time of the cold heat storage are derived in terms of Dean number and heat capacity ratio.

  4. Selective removal of water in purge and cold-trap capillary gas chromatographic analysis of volatile organic traces in aqueous samples

    NARCIS (Netherlands)

    Noij, T.H.M.; van Es, A.J.J.; Cramers, C.A.M.G.; Rijks, J.A.; Dooper, R.P.M.

    1987-01-01

    The design and features of an on-line purge and cold-trap pre-concentration device for rapid analysis of volatile organic compounds in aqueous samples are discussed. Excessive water is removed from the purge gas by a condenser or a water permeable membrane in order to avoid blocking of the capillary

  5. Thinking about the cold fusion fever

    International Nuclear Information System (INIS)

    Kitsunezaki, Akio

    1989-01-01

    The excitement since March 23 on cold fusion seems to be unprecedented evidence that the people of the world are waiting for fusion power with much enthusiasm. Cold fusion is really a surprise because it does not need high temperature and because it seems to be easy to enlarge the test tube into a useful power source if the claim by Professors Pons and Fleischmann at the University of Utah are true. The second announcement of cold fusion came from the Brigham Young University, also in the state of Utah, by Professor Jones, but his report was totally different from that given by Pons and Fleischmann. From the beginning of the 'fever', physicists have been very skeptical about cold fusion. Most of the critics and criticisms are targeted on Pons and Fleischmann rather than Jones, because not only was their paper poor but also their statements have not been scientific. They insisted that the heat came from fusion reaction, but without any scientific proof. They had not carried out the basic control experiment by running the same test with ordinary water instead of heavy water. A meeting on cold fusion was held at JAERI on May 15. At the end of the meeting, the some 260 attendants knew that cold fusion was not conceivable with the current scientific knowledge. (N.K.)

  6. The Investigations of Friction under Die Surface Vibration in Cold Forging Process

    DEFF Research Database (Denmark)

    Jinming, Sha

    investigation, and the second stage is to design and manufacture a more practical tool system which can be used to forging some industrial components with larger capacity. The high performance and power piezoelectric actuator stack as the vibration source will be used for designing the vibration system in order...... to 50% with vibration being applied in forming process. Furthermore, by using finite element method, a series of the simulations of the cold forging process under die surface excitation have been implemented in order to further understand the influence of vibration on friction, especially the influence...

  7. Cold recovery during regasification of LNG part one: Cold utilization far from the regasification facility

    International Nuclear Information System (INIS)

    La Rocca, Vincenzo

    2010-01-01

    The paper deals with cold recovery during LNG regasification. The applications analyzed pertain to the use in deep freezing agro food industry and in space air conditioning facilities in commercial sector (Supermarkets and Hypermarkets) of cold recovered from the regasification process. A modular LNG regasification unit is proposed having the regasification capacity of 2 BCM/year of gas and it is based on use of a Power Cycle working with Ethane, this unit allows operation of cold energy transfer, contained in LNG to be regasified, in a range of temperatures suitable for multipurpose use of cold, reducing regasification process irreversibility. Some electric energy is produced by the Power Cycle, but the purpose of the modular unit is to deliver cold suitable for industrial and commercial use in the proper temperature range utilizing Carbon dioxide as secondary fluid to transfer cold from regasification site to far end users. The subject is divided in two papers: this paper deals with facilities delivering cold released during LNG regasification and related pipeline facilities to transfer cold at far end users while the other paper pertains to analysis of end users applications. Results of a detailed thermodynamic and economic analysis demonstrate the suitability of the proposal.

  8. Numerical simulation of thermal stratification in cold legs by using openFOAM

    International Nuclear Information System (INIS)

    Cai, Jiejin; Watanabe, Tadashi

    2010-01-01

    During a small-break loss-of-coolant accident in pressurized water reactors (PWRs), emergency core cooling system (ECCS) is actuated and cold water is injected into cold legs. Insufficient mixing of injected cold water and hot primary coolant results in thermal stratification, which is a matter of concern for evaluation of pressurized thermal shock (PTS) in view of aging and life extension of nuclear power plants. In this study, an open source CFD software, OpenFOAM, is used to simulate mixing and thermal stratification in the cold leg of ROSA/LSTF, which is the largest thermal-hydraulic integral test facility simulating PWR. One of the cold-leg is numerically simulated from the outlet of primary coolant pump to the inlet of downcomer. ECCS water is injected from injection nozzle connected at the top of the cold leg into the steady-state natural circulation flow under high-pressure and high-temperature conditions. The temperature distribution in the cold leg is compared with experimental and FLUENT's results. Effects of turbulent flow models and secondary flow due to the elbow section of the cold leg are discussed for the case with the single-phase natural circulation. Injection into a two-phase stratified flow is also simulated and predictive and numerical capabilities of OpenFOAM are discussed. (author)

  9. Experimental study of natural convection adjacent to an isothermal vertical ice cylinder in cold pure water

    International Nuclear Information System (INIS)

    Riu, Kap Jong; Yea, Yong Taeg; Park, Sang Hee

    1991-01-01

    A natural convection adjacent to an isothermal vertical ice cylinder is studied experimentally in cold pure water. The experiments are carried out as changing the temperature of the ambient water and then the flow and heat transfer characteristics is visualized and observed. It is shown that flow patterns are steady state upflow, unsteady state flow, steady state dual flow, and steady state downflow. There is also obtained a heat transfer coefficient and mean Nusselt number at various ambient temperature. These results are in good agreement with the theoretical ones. (Author)

  10. Cold-Active, Heterotrophic Bacteria from the Highly Oligotrophic Waters of Lake Vanda, Antarctica

    Directory of Open Access Journals (Sweden)

    Nicole A. Vander Schaaf

    2015-07-01

    Full Text Available The permanently ice-covered lakes of the McMurdo Dry Valleys, Antarctica are distinctive ecosystems that consist strictly of microbial communities. In this study, water samples were collected from Lake Vanda, a stratified Dry Valley lake whose upper waters (from just below the ice cover to nearly 60 m are highly oligotrophic, and used to establish enrichment cultures. Six strains of psychrotolerant, heterotrophic bacteria were isolated from lake water samples from a depth of 50 or 55 m. Phylogenetic analyses showed the Lake Vanda strains to be species of Nocardiaceae, Caulobacteraceae, Sphingomonadaceae, and Bradyrhizobiaceae. All Lake Vanda strains grew at temperatures near or below 0 °C, but optimal growth occurred from 18 to 24 °C. Some strains showed significant halotolerance, but no strains required NaCl for growth. The isolates described herein include cold-active species not previously reported from Dry Valley lakes, and their physiological and phylogenetic characterization broadens our understanding of these limnologically unique lakes.

  11. Mammal-like muscles power swimming in a cold-water shark.

    Science.gov (United States)

    Bernal, Diego; Donley, Jeanine M; Shadwick, Robert E; Syme, Douglas A

    2005-10-27

    Effects of temperature on muscle contraction and powering movement are profound, outwardly obvious, and of great consequence to survival. To cope with the effects of environmental temperature fluctuations, endothermic birds and mammals maintain a relatively warm and constant body temperature, whereas most fishes and other vertebrates are ectothermic and conform to their thermal niche, compromising performance at colder temperatures. However, within the fishes the tunas and lamnid sharks deviate from the ectothermic strategy, maintaining elevated core body temperatures that presumably confer physiological advantages for their roles as fast and continuously swimming pelagic predators. Here we show that the salmon shark, a lamnid inhabiting cold, north Pacific waters, has become so specialized for endothermy that its red, aerobic, locomotor muscles, which power continuous swimming, seem mammal-like, functioning only within a markedly elevated temperature range (20-30 degrees C). These muscles are ineffectual if exposed to the cool water temperatures, and when warmed even 10 degrees C above ambient they still produce only 25-50% of the power produced at 26 degrees C. In contrast, the white muscles, powering burst swimming, do not show such a marked thermal dependence and work well across a wide range of temperatures.

  12. Beneficial effects of laser irradiation on the deposition process of diamond/Ni60 composite coating with cold spray

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Jianhua, E-mail: laser@zjut.edu.cn; Yang, Lijing; Li, Bo; Li, Zhihong

    2015-03-01

    Graphical abstract: - Highlights: • The hard Ni-based alloy powder as matrix in diamond composite coating was studied. • The influence of laser on diamond distribution of composite coating was analyzed. • The graphitization of diamond was prohibited in supersonic laser deposition process. • The abrasion mechanisms of diamond/Ni60 composite coating were discussed. - Abstract: Although cold spray process has many unique advantages over other coating techniques, it has difficulties in depositing hard materials. This article presents a study in the beneficial effects of laser irradiation on the fabrication process of diamond/Ni60 composite coating using cold spray. The focus of this research is on the comparison between the composite coatings produced with laser cladding (LC) and with supersonic laser deposition (SLD), with respect to diamond graphitization and tribological properties, thus to demonstrate the beneficial effects of laser irradiation on the cold spray process. The influence of deposition temperature on the coating characteristics, such as deposition efficiency, diamond volume fraction, microstructure and phase is also investigated. The tribological properties of the diamond/Ni60 composite coating produced with SLD are determined using a pin-on-disc tribometer, along with the diamond/Ni60 coating produced using LC with the optimal process parameters for comparison. The experimental results show that with the assistance of laser irradiation, diamond/Ni60 composite coating can be successfully deposited using cold spray; the obtained coating is superior to that processed with LC, because SLD can suppress the graphitization of the diamond particles. The diamond/Ni60 composite coating fabricated with SLD has much better tribological properties than the LC coating.

  13. Breath-hold time during cold water immersion: effects of habituation with psychological training.

    Science.gov (United States)

    Barwood, Martin J; Datta, Avijit K; Thelwell, Richard C; Tipton, Michael J

    2007-11-01

    The loss of the conscious control of respiration on whole body cold water immersion (CWI) can result in the aspiration of water and drowning. Repeated CWI reduces the respiratory drive evoked by CWI and should prolong breath-hold time on CWI (BHmax(CWI)). Psychological skills training (PST) can also increase BHmax(CWI) by improving the ability of individuals to consciously suppress the drive to breathe. This study tested the hypothesis that combining PST and repeated CWI would extend BHmax(CWI) beyond that seen following only repeated CWI. There were 20 male subjects who completed two 2.5-min, head-out breath-hold CWI (BH1 and BH2) in water at 12 degrees C. Following BH1, subjects were matched on BHmax(CWI) and allocated to a habituation (HAB) group or a habituation plus PST group (H+PST). Between BH1 and BH2 both experimental groups undertook five 2.5-min CWI on separate days, during which they breathed freely. The H+PST also received psychological training to help tolerate cold and suppress the drive to breathe on immersion to extend BHmax(CWI). During BH1, mean BHmax(CWI) (+/- SD) in the HAB group was 22.00 (10.33) s and 22.38 (10.65) s in the H+PST. After the five free-breathing CWI, both groups had a longer BHmax(CWI) in BH2. The HAB group improved by 14.13 (20.21) s, an increase of 73%. H+PST improved by 26.86 (24.70) s, a 120% increase. No significant differences were identified between the groups. Habituation significantly increases BHmax on CWI, the addition of PST did not result in statistically significant improvements in BHmax(CWI), but may have practical significance.

  14. Cold temperatures increase cold hardiness in the next generation Ophraella communa beetles.

    Directory of Open Access Journals (Sweden)

    Zhong-Shi Zhou

    Full Text Available The leaf beetle, Ophraella communa, has been introduced to control the spread of the common ragweed, Ambrosia artemisiifolia, in China. We hypothesized that the beetle, to be able to track host-range expansion into colder climates, can phenotypically adapt to cold temperatures across generations. Therefore, we questioned whether parental experience of colder temperatures increases cold tolerance of the progeny. Specifically, we studied the demography, including development, fecundity, and survival, as well as physiological traits, including supercooling point (SCP, water content, and glycerol content of O. communa progeny whose parents were maintained at different temperature regimes. Overall, the entire immature stage decreased survival of about 0.2%-4.2% when parents experienced cold temperatures compared to control individuals obtained from parents raised at room temperature. However, intrinsic capacity for increase (r, net reproductive rate (R 0 and finite rate of increase (λ of progeny O. communa were maximum when parents experienced cold temperatures. Glycerol contents of both female and male in progeny was significantly higher when maternal and paternal adults were cold acclimated as compared to other treatments. This resulted in the supercooling point of the progeny adults being significantly lower compared to beetles emerging from parents that experienced room temperatures. These results suggest that cold hardiness of O. communa can be promoted by cold acclimation in previous generation, and it might counter-balance reduced survival in the next generation, especially when insects are tracking their host-plants into colder climates.

  15. Cold water immersion of the ankle decreases neuromuscular response of lower limb after inversion movement

    OpenAIRE

    Macedo, Christiane S. G.; Alonso, Carolina S.; Liporaci, Rogério F.; Vieira, Fernando; Guirro, Rinaldo R. J.

    2014-01-01

    BACKGROUND: Cryotherapy has been associated with a significant decrease in nerve conduction velocity and muscle contraction with possible effects on exercise and physical training. OBJECTIVES: To quantify the electromyographic response of the lateral gastrocnemius, tibialis anterior, fibularis longus, rectus femoris and gluteus medius to ankle inversion following cold water immersion. METHOD: The peak values of the root mean square (RMS) were obtained from 35 healthy and active univ...

  16. Experimental validation of a local dehumidification system based on cold water droplets and air-to-air heat exchanger

    NARCIS (Netherlands)

    Janssen, E.G.O.N.; Hammink, H.A.J.; Hendriksen, L.J.A.M.

    2015-01-01

    Excessive humidity is a problem in Dutch growing circumstances. A traditional solution is heating and natural ventilation. To save energy a number of energy efficient dehumidification methods are developed, like mechanical ventilation with dry outside air or a curtain of cold water droplets. In this

  17. Observation of stars produced during cold fusion

    International Nuclear Information System (INIS)

    Matsumoto, T.

    1992-01-01

    It has been indicated tht multiple-neutron nuclei such as quad-neutrons can be emitted during cold fusion. These multiple-neutrons might bombard the nuclei of materials outside a cold fusion cell to cause nuclear reactions. In this paper, observations of nuclear emulsions that were irradiated during a cold fusion experiment with heavy water and palladium foil are described. Various traces, like stars, showing nuclear reactions caused by the multiple-neutrons have been clearly observed

  18. Prolonged whole body immersion in cold water: hormonal and metabolic changes.

    Science.gov (United States)

    Smith, D J; Deuster, P A; Ryan, C J; Doubt, T J

    1990-03-01

    To characterize metabolic and hormonal responses during prolonged whole body immersion, 16 divers wearing dry suits completed four immersions in 5 degrees C water during each of two 5-day air saturation dives at 6.1 meters of sea water. One immersion began in the AM (1000 h) and one began in the PM (2200 h) to evaluate diurnal variations. Venous blood samples were obtained before and after completion of each immersion. Cortisol and ACTH levels demonstrated diurnal variation, with larger increases occurring after PM immersions. A greater than three-fold postimmersion increase occurred in norepinephrine (NE). There were significant increases in triiodothyronine (T3) uptake and epinephrine, but no change in T3, thyroxine, thyrotrophic hormone, and dopamine. Postimmersion free fatty acid levels increased 409% from preimmersion levels; glucose levels declined, and lactate increased significantly. Only changes in NE correlated significantly with changes in rectal temperature. In summary, when subjects are immersed in cold water for prolonged periods, with a slow rate of body cooling afforded by thermal protection and intermittent exercise, hormonal and metabolic changes occur that are similar in direction and magnitude to short-duration unprotected exposures. Except for cortisol and ACTH, none of the other measured variables exhibited diurnal alterations.

  19. Temporal variability of secondary processes in alkaline geothermal waters associated to granitic rocks: the Caldes de Boí geothermal system (Spain)

    International Nuclear Information System (INIS)

    Asta, M.; Gimeno, M.J.; Auqué, L.F.; Galve, J.P.; Gómez, J.; Acero, P.; Lapuente, P.

    2017-01-01

    The Caldes de Boí geothermal waters show important differences in pH (6.5–9.6) and temperature (15.9ºC–52ºC) despite they have a common origin and a very simple circuit at depth (4km below the recharge area level). Thes differences are the result of secondary processes such as conductive cooling, mixing with colder shallower waters, and input of external CO2, which affect each spring to a different extent in the terminal part of the thermal circuit. In this paper, the secondary processes that control the geochemical evolution of this system have been addressed using a geochemical dataset spanning over 20 years and combining different approaches: classical geochemical calculations and geochemical modelling. Mixing between a cold and a thermal end-member, cooling and CO2 exchange are the processes affecting the spring waters with different intensity over time. These differences in the intensity of the secondary processes could be controlled by the effect of climate and indirectly by the geomorphological and hydrogeological setting of the different springs. Infiltration recharging the shallow aquifer is dominant during the rainy seasons and the extent of the mixing process is greater, at least in some springs.Moreover, significant rainfall can produce a decrease in the ground temperature favouring the conductive cooling. Finally, the geomorphological settings of the springs determine the thickness and the hydraulic properties of the saturated layer below them and, therefore, they affect the extent of the mixing process between the deep thermal waters and the shallower cold waters. The understanding of the compositional changes in the thermal waters and the main factors that could affect them is a key issue to plan the future management of the geothermal resources of the Caldes de Boí system. Here, we propose to use a simple methodology to assess the effect of those factors, which could affect the quality of the thermal waters for balneotherapy at long

  20. Temporal variability of secondary processes in alkaline geothermal waters associated to granitic rocks: the Caldes de Boí geothermal system (Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Asta, M.; Gimeno, M.J.; Auqué, L.F.; Galve, J.P.; Gómez, J.; Acero, P.; Lapuente, P.

    2017-11-01

    The Caldes de Boí geothermal waters show important differences in pH (6.5–9.6) and temperature (15.9ºC–52ºC) despite they have a common origin and a very simple circuit at depth (4km below the recharge area level). Thes differences are the result of secondary processes such as conductive cooling, mixing with colder shallower waters, and input of external CO2, which affect each spring to a different extent in the terminal part of the thermal circuit. In this paper, the secondary processes that control the geochemical evolution of this system have been addressed using a geochemical dataset spanning over 20 years and combining different approaches: classical geochemical calculations and geochemical modelling. Mixing between a cold and a thermal end-member, cooling and CO2 exchange are the processes affecting the spring waters with different intensity over time. These differences in the intensity of the secondary processes could be controlled by the effect of climate and indirectly by the geomorphological and hydrogeological setting of the different springs. Infiltration recharging the shallow aquifer is dominant during the rainy seasons and the extent of the mixing process is greater, at least in some springs.Moreover, significant rainfall can produce a decrease in the ground temperature favouring the conductive cooling. Finally, the geomorphological settings of the springs determine the thickness and the hydraulic properties of the saturated layer below them and, therefore, they affect the extent of the mixing process between the deep thermal waters and the shallower cold waters. The understanding of the compositional changes in the thermal waters and the main factors that could affect them is a key issue to plan the future management of the geothermal resources of the Caldes de Boí system. Here, we propose to use a simple methodology to assess the effect of those factors, which could affect the quality of the thermal waters for balneotherapy at long

  1. Development of a novel processing system for efficient sour water stripping

    International Nuclear Information System (INIS)

    Kazemi, Abolghasem; Mehrabani-Zeinabad, Arjomand; Beheshti, Masoud

    2017-01-01

    Application of vapor recompression systems can result in enhanced energy efficiency and reduced energy requirements of distillation systems. In vapor recompression systems, temperature and dew point temperature of the top product of the column are increased through compression. By transferring heat from top to bottoms product, required boil up and reflux streams for the column are provided. In this paper, a new system is proposed for efficient stripping of sour water based on vapor recompression. Ammonia and H 2 S are the contaminants of sour water. Initially, based on a certain specifications of products, a sour water stripping system is implemented. A novel processing system is then developed and simulated to reduce utility requirements. The two processing systems are economically evaluated by Aspen Economic Evaluation software. There are 89.0% and 83.7% reduction of hot and cold utility requirements for the proposed system in comparison to the base processing system. However, the new processing system requires new equipment such as compressor and corresponding mechanical work that increases its capital and operating costs in comparison to the base case. However, the results indicate that the proposed system results in reduction of 11.4% of total annual costs and 14.9% of operating costs. - Highlights: • A novel system was developed for enhancement of performance of a distillation system based on vapor recompression. • In this system, utility streams are used for providing thermal energy. • A parametric study is carried out on the proposed processing system. • Applying the proposed system resulted in reduction of energy and utility requirements and costs of the separation process. • Environmental performance of the model was investigated.

  2. Investigation of the fragmentation of molten metals dropped into cold water

    International Nuclear Information System (INIS)

    Shiralkar, G.S.

    1976-11-01

    The physical mechanism by which small quantities of molten metal fragment extensively when dropped into a pool of cold water was investigated. Since this subject has been the focus of considerable research in the past, some of the more prominent theories are briefly discussed. Experiments were conducted dropping small solid spheres at a high temperature instead of molten metal drops, and indicate a significant difference from the latter. Several hypotheses were proposed based on the hydrodynamics of the molten drop and tested analytically. The theory that the drop fragmentation is caused by the violent release of dissolved gas from within the drop was investigated experimentally and lead to the conclusion that tin fragmentation probably does not occur in this way. It is felt that a calculation of the dynamics of the vapor film that would be expected to surround the hot drop is needed. This calculation was not performed but several suggestions and estimates have been made. It would seem that the possibility of metal fragmentation by rapid vaporization of water entrapped within the metal drop is well worth investigating

  3. The Role of Epibionts of Bacteria of the Genus Pseudoalteromonas and Cellular Proteasomes in the Adaptive Plasticity of Marine Cold-Water Sponges.

    Science.gov (United States)

    Kravchuk, O I; Lavrov, A I; Finoshin, A D; Gornostaev, N G; Georgiev, A A; Abaturova, S B; Mikhailov, V S; Lyupina, Yu V

    2018-03-01

    It was found that cells of different color morphs of the cold-water marine sponges Halichondria panicea (Pallas, 1766) of the class Demospongiae differ in the content of epibionts of bacteria of the genus Pseudoalteromonas. The sponge cells with elevated levels of epibionts of bacteria of the genus Pseudoalteromonas showed an increased expression of Hsp70 proteins but had a reduced level of the proteasomal catalytic beta 5 subunit, which was accompanied by a change in their activity. Probably, epibionts of bacteria of the genus Pseudoalteromonas may affect the ubiquitin-proteasome system in the cells of cold-water marine sponges and, thereby, ensure their adaptive plasticity.

  4. The effect of melanin-free extract from Sepia esculenta ink on lipid peroxidation, protein oxidation and water-holding capacity of tilapia fillet during cold storage.

    Science.gov (United States)

    Duan, Zhen-Hua; Liu, Hua-Zhong; Luo, Ping; Gu, Yi-Peng; Li, Yan-Qun

    2018-03-14

    Preservative effect of melanin-free extract of Sepia esculenta ink (MFESI) on Sparus latus fillet has been verified in our previous work. This study aims to further approach the mechanism of MFESI for extending the shelf-life of fish fillet during cold storage. Tilapia fillets were treated with different dosage of MFESI (0, 15, 25 and 35 mg/ml) and packed with preservative film for succedent cold-storage at 4 °C for scheduled time. Contents of total volatile basic nitrogen and sulfydryl and carbanyl groups were measured for evaluating protein oxidation. Malondialdehyde contents were measured for estimating lipid peroxidation and loss of water was used to determine water-holding capacity of fillet. The data indicated that MFESI not only possessed certain degree of antioxidant capacity in vitro, also lengthened shelf-life of tilapia fillet in cold-storage condition. Apart from 15 mg/ml, both 25 and 35 mg/ml of MFESI obviously prevented lipid and protein from oxidation and reduced loss of water from tilapia fillets, and the latter was more effective than the former. MFESI can repress lipid peroxidation and protein oxidation and reduce water loss, maintain the tilapia fillets quality and, thus, it could be an effective and natural preservative for extending the shelf-life of tilapia fillets during cold storage.

  5. Evolution of body size, vision, and biodiversity of coral-associated organisms: evidence from fossil crustaceans in cold-water coral and tropical coral ecosystems.

    Science.gov (United States)

    Klompmaker, Adiël A; Jakobsen, Sten L; Lauridsen, Bodil W

    2016-06-16

    Modern cold-water coral and tropical coral environments harbor a highly diverse and ecologically important macrofauna of crustaceans that face elevated extinction risks due to reef decline. The effect of environmental conditions acting on decapod crustaceans comparing these two habitats is poorly understood today and in deep time. Here, we compare the biodiversity, eye socket height as a proxy for eye size, and body size of decapods in fossil cold-water and tropical reefs that formed prior to human disturbance. We show that decapod biodiversity is higher in fossil tropical reefs from The Netherlands, Italy, and Spain compared to that of the exceptionally well-preserved Paleocene (Danian) cold-water reef/mound ecosystem from Faxe (Denmark), where decapod diversity is highest in a more heterogeneous, mixed bryozoan-coral habitat instead of in coral and bryozoan-dominated facies. The relatively low diversity at Faxe was not influenced substantially by the preceding Cretaceous/Paleogene extinction event that is not apparent in the standing diversity of decapods in our analyses, or by sampling, preservation, and/or a latitudinal diversity gradient. Instead, the lower availability of food and fewer hiding places for decapods may explain this low diversity. Furthermore, decapods from Faxe are larger than those from tropical waters for half of the comparisons, which may be caused by a lower number of predators, the delayed maturity, and the increased life span of crustaceans in deeper, colder waters. Finally, deep-water specimens of the benthic crab Caloxanthus from Faxe exhibit a larger eye socket size compared to congeneric specimens from tropical reefs, suggesting that dim light conditions favored the evolution of relatively large eyes. The results suggest a strong habitat control on the biodiversity of crustaceans in coral-associated environments and that the diversity difference between deep, cold-water reefs and tropical reefs evolved at least ~63 million years ago

  6. Numerical simulation of thermal stratification in cold legs by using OpenFOAM

    International Nuclear Information System (INIS)

    Cai, Jiejin; Watanabe, Tadashi

    2011-01-01

    During a small-break loss-of-coolant accident in pressurized water reactors (PWRs), emergency core cooling system (ECCS) is actuated and cold water is injected into cold legs. Insufficient mixing of injected cold water and hot primary coolant results in thermal stratification, which is a matter of concern for evaluation of pressurized thermal shock (PTS) in view of aging and life extension of nuclear power plants. In this study, an open source CFD software, OpenFOAM, is used to simulate mixing and thermal stratification in the cold leg of ROSA/LSTF, which is the largest thermal-hydraulic integral test facility simulating PWR. One of the cold-leg is numerically simulated from the outlet of primary coolant pump to the inlet of downcomer. ECCS water is injected from injection nozzle connected at the top of the cold leg into the steady-state natural circulation flow under high-pressure and high-temperature conditions. The temperature distribution in the cold leg is compared with experimental and FLUENT's results. Effects of turbulent flow models and secondary flow due to the elbow section of the cold leg are discussed for the case with the single-phase natural circulation. Injection into a two-phase stratified flow is also simulated and predictive and numerical capabilities of OpenFOAM are discussed. (author)

  7. Installation Test of Cold Neutron Soruce In-pool Assembly

    International Nuclear Information System (INIS)

    Lee, Kye Hong; Choi, J.; Wu, S. I.; Kim, Y. K.; Cho, Y. G.; Lee, C. H.; Kim, K. R.

    2006-04-01

    Before installation of the final cold neutron source in-pool assembly (IPA) in the vertical CN hole at the HANARO, the research reactor, the installation test of IPA has been conducted in the CN hole of the reactor using a full-scaled mock-up in-pool assembly. The well-known cold neutron sources, being safely operated or being now constructed, had been constructed together with each research reactor; therefore, there was little limitation to obtain the optimal cold neutron source since a cold neutron source had been decided to be installed in the reactor from the beginning of the design for the reactor construction. Unlikely, the HANARO has been operated for 10 years so that we have got lots of design limitation in terms of the decisions in the optimal shape, size, minimal light-water gap, and adhesion degree to the CN beam tube, IPA installation tools, etc. for the construction of the CNS. Accordingly, the main objective of this test is to understand any potential problem or interference happened inside the reactor by installing the mock-up IPA and installation bracket. The outcomes from this test is reflected on the finalizing process of the IPA detail design

  8. Gymnodinium corollarium sp. nov. (Dinophyceae) - a new cold-water dinoflagellate responsible for cyst sedimentation events in the Baltic Sea

    DEFF Research Database (Denmark)

    Sundström, Annica; Kremp, Anke; Daugbjerg, Niels

    2009-01-01

    revealed a preference of G. corollarium for low salinities and temperatures, confirming it to be a cold-water species well adapted to the brackish water conditions in the Baltic Sea. At nitrogen-deplete conditions, G. corollarium cultures produced small, slightly oval cysts resembling a previously...

  9. Cold trap dismantling and sodium removal at a fast breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Graf, Anja; Petrick, Holger; Stutz, Uwe [WAK GmbH, Eggenstein-Leopoldshafen (Germany). Hauptabt. Dekontaminationsbetriebe Rueckbau Kompakte Natriumgekuehlte Kernreaktoranlage (KNK); Hosking, Paul [Nuclear Decommissioning Services Limited (NDSL), Sutherland, Dornoch (United Kingdom)

    2013-11-15

    The first German prototype Fast Breeder Nuclear Reactor (KNK) is currently being dismantled after being the only operating Fast Breeder-type reactor in Germany. As this reactor type used sodium as a coolant in its primary and secondary circuit, 7 cold traps containing various amounts of partially activated sodium needed to be disposed of as part of the dismantling. The resulting combined difficulties of radioactive contamination and high chemical reactivity were handled by treating the cold traps differently depending on their size and the amount of sodium contained inside. Six small cold traps were processed on-site by cutting them up into small parts using a band saw under a protective atmosphere. The sodium was then converted to sodium hydroxide by using water. The remaining large cold trap could not be handled in the same way due to its dimensions (2.9 m x 1.1 m) and the declared amount of sodium inside (1,700 kg). It was therefore manually dismantled inside a large box filled with a protective atmosphere, while the resulting pieces were packaged for later burning in a special facility. The experiences gained by KNK during this process may be advantageous for future dismantling projects in similar sodium-cooled reactors worldwide. (orig.)

  10. The giant cold-water coral mound as a nested microbial/metazoan system: physical, chemical, biological and geological picture (ESF EuroDiversity MiCROSYSTEMS)

    Science.gov (United States)

    Henriet, J. P.; Microsystems Team

    2009-04-01

    The MiCROSYSTEMS project under the ESF EUROCORES EuroDiversity scheme is a holistic and multi-scale approach in studying microbial diversity and functionality in a nested microbial/metazoan system, which thrives in deep waters: the giant cold-water coral mound. Studies on prolific cold-water coral sites have been carried out from the canyons of the Bay of Biscay to the fjords of the Norwegian margin, while the Pen Duick carbonate mound province off Morocco developed into a joint natural lab for studying in particular the impact of biogeochemical and microbial processes on modern sedimentary diagenesis within the reef sediments, in complement to the studies on I0DP Exp. 307 cores (Challenger Mound, off Ireland). Major outcomes of this research can be summarized as follows. • IODP Exp. 307 on Challenger Mound had revealed a significant prokaryotic community both within and beneath the carbonate mound. MiCROSYSTEMS unveils a remarkable degree of compartmentalization in such community from the seawater, the coral skeleton surface and mucus to the reef sediments. The occurrence of such multiple and distinct microbial compartments associated with cold-water coral ecosystems promotes opportunities for microbial diversity in the deep ocean. • New cases of co-habitation of cold-water corals and giant deep-water oysters were discovered in the Bay of Biscay, which add a new facet of macrofaunal diversity to cold-water coral reef systems. • The discovery of giant, ancient coral graveyards on the Moroccan mounds not only fuels the debate about natural versus anthropogenic mass extinction, but these open frameworks simultaneously invite for the study of bio-erosion and early diagenesis, in particular organo-mineralization, and of the possible role and significance of these thick, solid rubble patches in 3D mound-building and consolidation. • The assessment of the carbonate budget of a modern cold-water coral mound (Challenger Mound) reveals that only 33 to 40 wt % of

  11. Effects of an Unusual Cold-Water Intrusion in 2008 on the Catch of Coastal Fishing Methods around Penghu Islands, Taiwan

    Directory of Open Access Journals (Sweden)

    Ming-An Lee

    2014-01-01

    Full Text Available Based upon long-term observations (1993 - 2010 of satellite-derived winter sea surface temperature (SST data, an exceptional cold-water intrusion into the southern Taiwan Strait (TS was noted in February 2008. In the winter of 2008, La Niña caused a strong and continuous northeasterly wind that drove the cold ocean current, the China Coastal Current, more southward to penetrate the southern TS north of the Chang-Yuen Ridge. A portion of this current turned eastward to the south of Penghu Islands (PHI. The low-SST event significantly impeded local marine aquaculture and wild fish, causing the death of more than 73 tons of fish around PHI. Comparing variations of the first quarterly catches in 2008 with the long-term averages from 1993 to 2010 (excluding 2008, we noted a 50 to 80% decrease in catches from pole-and-line, long-line, and gill-net fishery. Non-migratory species dominated the composition of the catches. We also noted a greater than 230% increase in the catches from set-net fishery, with the majority being migratory species. These results illustrate the positive and negative effects of cold-water intrusion on several fish communities and species.

  12. Ecosystem engineering creates a direct nutritional link between 600-m deep cold-water coral mounds and surface productivity

    NARCIS (Netherlands)

    Soetaert, K.; Mohn, C.; Rengstorf, A.; Grehan, A.; Van Oevelen, D.

    2016-01-01

    Cold-water corals (CWCs) form large mounds on the seafloor that are hotspots of biodiversity in the deep sea, but it remains enigmatic how CWCs can thrive in this food-limited environment. Here, we infer from model simulations that the interaction between tidal currents and CWC-formed mounds induces

  13. Constructed wetlands for wastewater treatment in cold climate - A review.

    Science.gov (United States)

    Wang, Mo; Zhang, Dong Qing; Dong, Jian Wen; Tan, Soon Keat

    2017-07-01

    Constructed wetlands (CWs) have been successfully used for treating various wastewaters for decades and have been identified as a sustainable wastewater management option worldwide. However, the application of CW for wastewater treatment in frigid climate presents special challenges. Wetland treatment of wastewater relies largely on biological processes, and reliable treatment is often a function of climate conditions. To date, the rate of adoption of wetland technology for wastewater treatment in cold regions has been slow and there are relatively few published reports on CW applications in cold climate. This paper therefore highlights the practice and applications of treatment wetlands in cold climate. A comprehensive review of the effectiveness of contaminant removal in different wetland systems including: (1) free water surface (FWS) CWs; (2) subsurface flow (SSF) CWs; and (3) hybrid wetland systems, is presented. The emphasis of this review is also placed on the influence of cold weather conditions on the removal efficacies of different contaminants. The strategies of wetland design and operation for performance intensification, such as the presence of plant, operational mode, effluent recirculation, artificial aeration and in-series design, which are crucial to achieve the sustainable treatment performance in cold climate, are also discussed. This study is conducive to further research for the understanding of CW design and treatment performance in cold climate. Copyright © 2017. Published by Elsevier B.V.

  14. Cold rolling precision forming of shaft parts theory and technologies

    CERN Document Server

    Song, Jianli; Li, Yongtang

    2017-01-01

    This book presents in detail the theory, processes and equipment involved in cold rolling precision forming technologies, focusing on spline and thread shaft parts. The main topics discussed include the status quo of research on cold rolling precision forming technologies; the design and calculation of process parameters; the numerical simulation of cold rolling forming processes; and the equipment used in cold rolling forming. The mechanism of cold rolling forming is extremely complex, and research on the processes, theory and mechanical analysis of spline cold rolling forming has remained very limited to date. In practice, the forming processes and production methods used are mainly chosen on the basis of individual experience. As such, there is a marked lack of both systematic, theory-based guidelines, and of specialized books covering theoretical analysis, numerical simulation, experiments and equipment used in spline cold rolling forming processes – all key points that are included in this book and ill...

  15. Is Detrusor Contraction during Rapid Bladder Filling Caused by Cold or Warm Water? A Randomized, Controlled, Double-Blind Trial.

    Science.gov (United States)

    Kozomara, Marko; Mehnert, Ulrich; Seifert, Burkhardt; Kessler, Thomas M

    2018-01-01

    We investigated whether detrusor contraction during rapid bladder filling is provoked by cold or warm water. Patients with neurogenic lower urinary tract dysfunction were included in this randomized, controlled, double-blind trial. At the end of a standard urodynamic investigation patients underwent 2 bladder fillings using a 4C ice water test or a 36C warm water test saline solution at a filling speed of 100 ml per minute. The order was randomly selected, and patients and investigators were blinded to the order. The primary outcome measure was detrusor overactivity, maximum detrusor pressure and maximum bladder filling volume during the ice and warm water tests. Nine women and 31 men were the subject of data analysis. Neurogenic lower urinary tract dysfunction was caused by spinal cord injury in 33 patients and by another neurological disorder in 7. Irrespective of test order detrusor overactivity occurred significantly more often during the ice water test than during the warm water test (30 of 40 patients or 75% vs 25 of 40 or 63%, p = 0.02). When comparing the ice water test to the warm water test, maximum detrusor pressure was significantly higher and maximum bladder filling volume was significantly lower during the ice water test (each p warm water first) had no effect on the parameters. Our findings imply that the more frequent detrusor overactivity, higher maximum detrusor pressure and lower bladder filling volume during the ice water test compared to the warm water test were caused by cold water. This underlies the theory of a C-fiber mediated bladder cooling reflex in humans. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  16. Optimized manufacture of nuclear fuel cladding tubes by FEA of hot extrusion and cold pilgering processes

    Science.gov (United States)

    Gaillac, Alexis; Ly, Céline

    2018-05-01

    Within the forming route of Zirconium alloy cladding tubes, hot extrusion is used to deform the forged billets into tube hollows, which are then cold rolled to produce the final tubes with the suitable properties for in-reactor use. The hot extrusion goals are to give the appropriate geometry for cold pilgering, without creating surface defects and microstructural heterogeneities which are detrimental for subsequent rolling. In order to ensure a good quality of the tube hollows, hot extrusion parameters have to be carefully chosen. For this purpose, finite element models are used in addition to experimental tests. These models can take into account the thermo-mechanical coupling conditions obtained in the tube and the tools during extrusion, and provide a good prediction of the extrusion load and the thermo-mechanical history of the extruded product. This last result can be used to calculate the fragmentation of the microstructure in the die and the meta-dynamic recrystallization after extrusion. To further optimize the manufacturing route, a numerical model of the cold pilgering process is also applied, taking into account the complex geometry of the tools and the pseudo-steady state rolling sequence of this incremental forming process. The strain and stress history of the tube during rolling can then be used to assess the damage risk thanks to the use of ductile damage models. Once validated vs. experimental data, both numerical models were used to optimize the manufacturing route and the quality of zirconium cladding tubes. This goal was achieved by selecting hot extrusion parameters giving better recrystallized microstructure that improves the subsequent formability. Cold pilgering parameters were also optimized in order to reduce the potential ductile damage in the cold rolled tubes.

  17. Effect of Cold (14° C) vs. Ice (5° C) Water Immersion on Recovery From Intermittent Running Exercise.

    Science.gov (United States)

    Anderson, Daniel; Nunn, James; Tyler, Christopher J

    2018-03-01

    Anderson, D, Nunn, J, and Tyler, CJ. Effect of cold (14° C) vs. ice (5° C) water immersion on recovery from intermittent running exercise. J Strength Cond Res 32(3): 764-771, 2018-The purpose was to compare 14° C (CWI14° C) and 5° C (CWI5° C) cold water immersion after intermittent running. On 3 occasions, 9 male team-sport players undertook 12 minutes of CWI14° C, CWI5° C, or nonimmersed seated recovery (CON) after 45 minutes of intermittent running exercise. Maximal cycling performance and markers of recovery were measured before and in the 0-72 hours after exercise. Peak power output (PPO) was immediately reduced after all interventions (d = 1.8). CWI5° C was more effective at restoring PPO than CWI14° C (d = 0.38) and CON (d = 0.28) 24 hours after exercise, whereas both CON (d = 0.20) and CWI5 (d = 0.37) were more effective than CWI14° C after 48 hours. Cold water immersion (CWI) was more effective than CON at restoring PPO 72 hours after exercise (d = 0.28-0.30). Mean power output (MPO) was higher in CON compared with CWI5° C (d = 0.30) and CWI14° C (d = 0.21), but there was no difference between CWI5° C and CWI14° C (d = 0.08). CWI5° C was more effective than CWI14° C for restoring MPO to baseline levels 24 hours (d = 0.28) and 72 hours (d = 0.28) after exercise; however, CON was more, or equally, effective as CWI5° C and CWI14° C throughout. Lactate and creatine kinase concentrations were unaffected. Perceived muscle soreness remained elevated in CWI5 and CON throughout but was similar to baseline in CWI14° C after 72 hours. In conclusion, repeated bouts of exercise are initially impaired after 5 and 14° C CWI, but PPO may be improved 72 hours after exercise. Cold water immersion is not recommended for acute recovery based on these data. Athletes and coaches should use the time currently allocated to CWI for more effective and alternative recovery modalities.

  18. Structural, magnetic and electrical transport properties in cold-drawn thin Fe-rich wires

    International Nuclear Information System (INIS)

    Garcia, C.; Chizhik, A.; Val, J.J. del; Zhukov, A.; Blanco, J.M.; Gonzalez, J.

    2005-01-01

    Microstructural (X-ray diffraction), magnetic properties (hysteresis loop), electrical resistivity, magneto-impedance and stress impedance effects have been investigated in cold-drawn Fe 77.5 B 15 Si 7.5 amorphous wire. Initial amorphous wire (obtained by the in-rotating-water technique) with diameter of 125 μm was submitted to cold-drawn process decreasing the diameter to 50 μm. Such cold-drawn wire was treated by current annealing (currents of 190, 210, 220 and 230 mA during times between 1 and 45 min) for tailoring the magnetic and electrical transport properties. A qualitative analysis of the magnetoimpedance and stress impedance effects is given by considering the influence of the magnetoelastic anisotropy and frequency of the AC driving electrical current on the circular permeability

  19. Cold injury to a diver's hand after a 90-min dive in 6 degrees C water.

    Science.gov (United States)

    Laden, Gerard D M; Purdy, Gerard; O'Rielly, Gerard

    2007-05-01

    We present here a case of non-freezing cold injury (NFCI) in a sport scuba diver. There are similarities between the presenting symptoms of NFCI and decompression sickness, e.g., pain and/or altered sensation in an extremity, often reported as numbness. In both conditions patients have been known to describe their lower limbs or feet as feeling woolly. Both conditions are the result of environmental exposure. Additionally, there are no good (high sensitivity and specificity) diagnostic tests for either condition. Diagnosis is made based on patient history, clinical presentation, and examination. NFCI is most frequently seen in military personnel, explorers, and the homeless. When affecting the feet of soldiers it is often referred to as "trench foot." Historically, NFCI has been and continues to be of critical importance in infantry warfare in cold and wet environments. A high priority should be given to prevention of NFCI during military operational planning. With the advent of so-called "technical diving" characterized by going deeper for longer (often in cold water) and adventure tourism, this extremely painful condition is likely to increase in prevalence. NFCI is treated symptomatically.

  20. Stress corrosion cracking behavior of annealed and cold worked 316L stainless steel in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Sáez-Maderuelo, A., E-mail: alberto.saez@ciemat.es; Gómez-Briceño, D.

    2016-10-15

    Highlights: • The alloy 316L is susceptible to stress corrosion cracking in supercritical water. • The susceptibility of alloy 316L increases with temperature and plastic deformation. • Dynamic strain ageing processes may be active in the material. - Abstract: The supercritical water reactor (SCWR) is one of the more promising designs considered by the Generation IV International Forum due to its high thermal efficiency and improving security. To build this reactor, standardized structural materials used in light water reactors (LWR), like austenitic stainless steels, have been proposed. These kind of materials have shown an optimum behavior to stress corrosion cracking (SCC) under LWR conditions except when they are cold worked. It is known that physicochemical properties of water change sharply with pressure and temperature inside of the supercritical region. Owing to this situation, there are several doubts about the behavior of candidate materials like austenitic stainless steel 316L to SCC in the SCWR conditions. In this work, alloy 316L was studied in deaerated SCW at two different temperatures (400 °C and 500 °C) and at 25 MPa in order to determine how changes in this variable influence the resistance of this material to SCC. The influence of plastic deformation in the behavior of alloy 316L to SCC in SCW was also studied at both temperatures. Results obtained from these tests have shown that alloy 316L is susceptible to SCC in supercritical water reactor conditions where the susceptibility of this alloy increases with temperature. Moreover, prior plastic deformation of 316L SS increased its susceptibility to environmental cracking in SCW.

  1. Cold compaction behavior of nano-structured Nd–Fe–B alloy powders prepared by different processes

    International Nuclear Information System (INIS)

    Liu, Xiaoya; Hu, Lianxi; Wang, Erde

    2013-01-01

    Graphical abstract: Relative density enhancement and nanocrystallization of Nd 2 Fe 14 B phase are two major effective means to improve magnetic properties. Since the matrix Nd 2 Fe 14 B phase in the starting Nd–Fe–B alloy can be disproportionated into a nano-structured mixture of NdH 2.7 , Fe 2 B, and α-Fe phases during mechanical milling in hydrogen. It is thus important to study the densification behavior of nanocrystalline powders to evaluate and predict the cold compactibility of powders. By comparison with the as milled as well as melt-spun Nd 16 Fe 76 B 8 alloy powders, we find that the as-disproportionated Nd 16 Fe 76 B 8 alloy powder exhibits the best cold compactibility. As evident from the illustration presented below, compaction parameters (representing the powder compactibility) have been determined by fitting density–pressure data with double logarithm compaction equation. Densification mechanisms involved during cold compaction process are clarified in our work by referring to microstructure observation of samples prepared by various methods. As a result, highly densified green magnet compact can be obtained by cold pressing of as-disproportionated NdFeB alloy powders. Highlights: ► Nano-structured disproportionated Nd–Fe–B alloy powders by mechanical milling in hydrogen. ► Highly densified green magnet compact by cold pressing of as-disproportionated Nd–Fe–B alloy powders. ► Density–pressure data fitted well by an empirical powder compaction model. ► As-disproportionated powder showed better compactibility than as milled and melt-spun counterparts. ► The effects of physical properties on powder compactibility and densification mechanisms are clarified. - Abstract: The compaction behavior of nano-structured Nd 16 Fe 76 B 8 (atomic ratio) alloy powders, which were prepared by three different processing routes including melt spinning, mechanical milling in argon, and mechanically activated disproportionation by milling in

  2. Cold-Water Immersion for Hyperthermic Humans Wearing American Football Uniforms.

    Science.gov (United States)

    Miller, Kevin C; Swartz, Erik E; Long, Blaine C

    2015-08-01

    Current treatment recommendations for American football players with exertional heatstroke are to remove clothing and equipment and immerse the body in cold water. It is unknown if wearing a full American football uniform during cold-water immersion (CWI) impairs rectal temperature (Trec) cooling or exacerbates hypothermic afterdrop. To determine the time to cool Trec from 39.5°C to 38.0°C while participants wore a full American football uniform or control uniform during CWI and to determine the uniform's effect on Trec recovery postimmersion. Crossover study. Laboratory. A total of 18 hydrated, physically active, unacclimated men (age = 22 ± 3 years, height = 178.8 ± 6.8 cm, mass = 82.3 ± 12.6 kg, body fat = 13% ± 4%, body surface area = 2.0 ± 0.2 m(2)). Participants wore the control uniform (undergarments, shorts, crew socks, tennis shoes) or full uniform (control plus T-shirt; tennis shoes; jersey; game pants; padding over knees, thighs, and tailbone; helmet; and shoulder pads). They exercised (temperature approximately 40°C, relative humidity approximately 35%) until Trec reached 39.5°C. They removed their T-shirts and shoes and were then immersed in water (approximately 10°C) while wearing each uniform configuration; time to cool Trec to 38.0°C (in minutes) was recorded. We measured Trec (°C) every 5 minutes for 30 minutes after immersion. Time to cool from 39.5°C to 38.0°C and Trec. The Trec cooled to 38.0°C in 6.19 ± 2.02 minutes in full uniform and 8.49 ± 4.78 minutes in control uniform (t17 = -2.1, P = .03; effect size = 0.48) corresponding to cooling rates of 0.28°C·min(-1) ± 0.12°C·min(-1) in full uniform and 0.23°C·min(-1) ± 0.11°C·min(-1) in control uniform (t17 = 1.6, P = .07, effect size = 0.44). The Trec postimmersion recovery did not differ between conditions over time (F1,17 = 0.6, P = .59). We speculate that higher skin temperatures before CWI, less shivering, and greater conductive cooling explained the faster cooling

  3. The effect of cold water endurance swimming on core temperature in aspiring English Channel swimmers.

    Science.gov (United States)

    Diversi, Tara; Franks-Kardum, Vanessa; Climstein, Mike

    2016-01-01

    The purpose of this study was to determine if cold water swimmers (CWS) developed hypothermia over a 6-h cold water endurance swim and whether body composition, stroke rate (SR) or personal characteristics correlated with core temperature (TC) change. Nine experienced male and female CWS who were aspiring English Channel (EC) swimmers volunteered to participate. Subjects aimed to complete their 6-h EC qualifying swim (water 15-15.8 °C/air 15-25 °C) while researchers intermittently monitored TC and SR. Data obtained included anthropometry (height, mass, segmental body composition), training volume and EC completion. Of the nine swimmers who volunteered, all successfully completed their EC qualifying swim. Six CWS had complete data included in analysis. One CWS demonstrated hypothermia (34.8 °C) at 6-h. TC rate of decline was slower in the first 3 h (-0.06 °C/hr) compared to the last 3 h (-0.36 °C/hr) of the swim. Older age was significantly correlated to TC change (r = -0.901, p swim was 57.8 spm (range 48-73 spm), and a significant (p pool and open water (OW); however, they swam significantly [t (7) = -2.433, p swim (CWES) of 6-h duration at 15-16 °C resulted in TC reduction in the majority of swimmers regardless of anthropometry. More research is required to determine why some CWS are able to maintain their TC throughout a CWES. Our results indicate that older swimmers are at greater risk of developing hypothermia, and that SR decline is an indicator of TC decline. Our results also suggest that OW swimming training combined with pool training is important for EC swim success.

  4. Study on superheat of TiAl melt during cold crucible levitation melting. TiAl no cold crucible levitation yokai ni okeru yoto kanetsudo no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Miwa, K.; Kobayashi, K.; Ninomiya, M. (Government Industrial Research Institute, Nagoya, Nagoya (Japan))

    1992-06-20

    Investigations were given on effects of test sample weights and sample positions in cold crucibles on superheat of melts when the intermetallic compound TiAl is melted using cold crucible levitation melting process, one of noncontaminated melting processes. The cold crucibles used in the experiment are a water-cooled copper crucible with an inner diameter of 42 mm and a length of 140 mm, into which a column-like ingot sample with an outer diameter of 32 mm (Al containing Ti at 33.5% by mass) was put and melted using the levitation melting. Comparisons and discussions were given on the relationship between sample weights and melt temperatures, the relationship between positions of the inserted samples and melt temperatures, and the state of contamination at melting of casts obtained from the melts resulted from the levitation melting and high-frequency melting poured into respective ceramic dies. Elevating the superheat temperature of the melts requires optimizing the sample weights and positions. Melt temperatures were measured using a radiation thermometer and a thermocouple, and the respective measured values were compared. 7 refs., 4 figs., 1 tab.

  5. Influence of processing steps in cold-smoked salmon production on survival and growth of persistent and presumed non-persistent Listeria monocytogenes

    DEFF Research Database (Denmark)

    Porsby, Cisse Hedegaard; Vogel, Birte Fonnesbech; Mohr, Mona

    2008-01-01

    conditions, (ii) fillets of salmon cold-smoked in a pilot plant and finally, (iii) assessment of the bacterial levels before and after processing during commercial scale production. L. monocytogenes proliferated on salmon blocks that were brined or dipped in liquid smoke and left at 25 degrees C......Cold-smoked salmon is a ready-to-eat product in which Listeria monocytogenes sometimes can grow to high numbers. The bacterium can colonize the processing environment and it is believed to survive or even grow during the processing steps. The purpose of the present study was to determine...... if the steps in the processing of cold-smoked salmon affect Survival and subsequent growth of a persistent strain of L. monocytogenes to a lesser degree than presumed non-persistent strains. We used a sequence of experiments increasing in complexity: (i) small salmon blocks salted, smoked or dried under model...

  6. Cold Vacuum Drying Facility Crane and Hoist System Design Description. System 14

    International Nuclear Information System (INIS)

    TRAN, Y.S.

    2000-01-01

    This system design description (SDD) is for the Cold Vacuum Drying (CVD) Facility overhead crane and hoist system. The overhead crane and hoist system is a general service system. It is located in the process bays of the CVD Facility, supports the processes required to drain the water and dry the spent nuclear fuel (SNF) contained in the multi-canister overpacks (MCOs) after they have been removed from the K-Basins. The location of the system in the process bay is shown

  7. Texture and magnetic properties of non-oriented electrical steels processed by an unconventional cold rolling scheme

    Energy Technology Data Exchange (ETDEWEB)

    He, Youliang, E-mail: youliang.he@canada.ca [CanmetMATERIALS, Natural Resources Canada, Hamilton, ON (Canada); Hilinski, Erik J. [Formerly Research and Technology Centre, United States Steel Corporation, Munhall, PA (United States); Now Tempel Steel Co., Chicago, IL (United States)

    2016-05-01

    Two non-oriented electrical steels containing 0.9 wt% and 2.8 wt% of silicon were processed using an unconventional cold rolling scheme, i.e. the cold rolling direction (CRD) was intentionally inclined at an angle to the hot rolling direction (HRD) so that the initial texture before cold rolling and the rotation paths of crystals during cold deformation were both altered as compared to conventional cold rolling along the original HRD. The cold-rolled steel strips were then annealed, skin-pass rolled and final annealed. The texture and microstructure of the materials were characterized by X-ray diffraction (XRD), electron backscatter diffraction (EBSD) and optical microscopy, and considerable differences in average grain size and texture were observed at different inclination angles. The magnetic properties of the steel strips were measured at 400 Hz and 1.0 T/1.5 T using a specially designed Epstein frame, and apparent differences were also noticed at various angles. The magnetic quality of texture was evaluated using different texture factors/parameters and compared to the measured magnetic properties. Although apparent improvement on the magnetic quality of texture can be noted by inclining the CRD to HRD, the trend does not match the measured magnetic properties at 400 Hz, which may have been affected by other parameters in addition to crystallographic texture. - Highlights: • The cold rolling direction is inclined an angle to the hot rolling direction. • The deformation and annealing textures are both changed by the inclined rolling. • Magnetic quality of texture is improved at specific inclination angles. • Low silicon steel is more sensitive in texture change than high silicon steel. • High frequency core loss does not follow the computed magnetic quality of texture.

  8. Trophic structure of cold-water coral communities revealed from the analysis of tissue isotopes and fatty acid composition

    NARCIS (Netherlands)

    Van Oevelen, D.; Duineveld, G.; Lavaleye, M.S.S.; Kutti, T.; Soetaert, K.

    2018-01-01

    The trophic structure of cold-water coral reef communities at two contrasting locations, the 800-m deep Belgica Mounds (Irish margin) and the 300-m deep Træna reefs (Norwegian Shelf), was investigated using stable isotope (δ13C and δ15N) and fatty-acid composition analysis. A broad range of

  9. Study on the effectiveness of Extreme Cold Mist MQL system on turning process of stainless steel AISI 316

    Science.gov (United States)

    Jamaludin, A. S.; Hosokawa, A.; Furumoto, T.; Koyano, T.; Hashimoto, Y.

    2018-03-01

    Cutting process of difficult-to-cut material such as stainless steel, generates immensely excessive heat, which is one of the major causes related to shortening tool life and lower quality of surface finish. It is proven that application of cutting fluid during the cutting process of difficult-to-cut material is able to improve the cutting performance, but excessive application of cutting fluid leads to another problem such as increasing processing cost and environmental hazardous pollution of workplace. In the study, Extreme Cold Mist system is designed and tested along with various Minimum Quantity Lubrication (MQL) systems on turning process of stainless steel AISI 316. In the study, it is obtained that, Extreme Cold Mist system is able to reduce cutting force up to 60N and improve the surface roughness of the machined surface significantly.

  10. Process control of an HTGR fuel reprocessing cold pilot plant

    International Nuclear Information System (INIS)

    Rode, J.S.

    1976-10-01

    Development of engineering-scale systems for a large-scale HTGR fuel reprocessing demonstration facility is currently underway in a cold pilot plant. These systems include two fluidized-bed burners, which remove the graphite (carbon) matrix from the crushed HTGR fuel by high temperature (900 0 C) oxidation. The burners are controlled by a digital process controller with an all analog input/output interface which has been in use since March, 1976. The advantages of such a control system to a pilot plant operation can be summarized as follows: (1) Control loop functions and configurations can be changed easily; (2) control constants, alarm limits, output limits, and scaling constants can be changed easily; (3) calculation of data and/or interface with a computerized information retrieval system during operation are available; (4) diagnosis of process control problems is facilitated; and (5) control panel/room space is saved

  11. Cold Storage for a Single-Family House in Italy

    OpenAIRE

    Luigi Mongibello; Giorgio Graditi

    2016-01-01

    This work deals with the operation, modeling, simulation, and cost evaluation of two different cold storage systems for a single-family house in Italy, that differ from one another on the cold storage material. The two materials used to perform the numerical simulations of the cold storage systems are represented by cold water and a phase change material (PCM), and the numerical simulations have been realized by means of numerical codes written in Matlab environment. The main finding of the p...

  12. [Differences between cold and hot natures of processed Radix ginseng rubra and Panax quinquefolius L. based upon mice temperature tropism].

    Science.gov (United States)

    Zhang, Xue-Ru; Zhao, Yan-Ling; Wang, Jia-Bo; Zhou, Can-Ping; Liu, Ta-Si; Zhao, Hai-Ping; Ren, Yong-Shen; Yan, Dan; Xiao, Xiao-He

    2009-07-28

    To establish an objective method to estimate the disparity between the cold and hot natures on the basis of an intrinsic correlation between temperature tropism of mice and the cold and hot natures of Chinese medicines. Male KM mice were randomly divided into 7 groups of 6 each, namely the normal group (NM), the weak model group (WM), the strong model group (SM), the weak model plus Radix ginseng rubra group (WM + RG), the weak model plus Panax quinquefolius L. group (WM + PQ), the strong model plus Radix ginseng rubra group (SM + RG) and the strong model plus Panax quinquefolius L. group (SM +PQ). The specific herbal drugs were administered intragastricly. To induce the weak model, mice were fed with a limited supply of feed and forced to swim in cold water until almost drowning while the strong model induced by feeding a high-protein diet with an unlimited feed access. The doses of Radix ginseng rubra and Panax quinquefolius L. were 35 mg/g of body weight per day (counted by the quantity of crude material) and lasting for seven days. The NM and model groups without dosing were intragastricly administered with physiological saline of the same volume to the dosing groups. The percentage of the remaining time of mouse on a high temperature (40 degrees C) pad to the total monitoring time was recorded by a self-designed intelligent animal behavior monitoring system. Meanwhile, the drinking volume of mice in each group was measured. Immediately after experiment, the activities of Na(+)K(+)-ATPase and superoxide dismutase (SOD) in liver tissue were measured by assay kits of phosphorus and xanthine oxidase methods respectively. The features of deficient and cold symptom, such as fatigue, stagnant weight growth, decreased water intake, cold limbs and tail etc, were observed in WM group. And the features of heat symptom, such as increased weight and water intake, hyperactivity etc, were observed in SM group. The percentage of time that the mouse remained on 40 degrees C

  13. Analytical model of heat transfer in porous insulation around cold pipes

    DEFF Research Database (Denmark)

    Guldbrandsen, Tom; Karlsson, Per W.; Korsgaard, Vagn

    2011-01-01

    cloth is wrapped around the cold tube and extended through a slit in the tubular insulation and a slot in the facing to the ambient so that condensed water can evaporate into the air. Some of the moisture in that part of the wicking cloth situated in the slit in the tubular insulation will diffuse......A thermal insulation system is analysed that consists of a cold tube insulated with a porous material faced with a vapour retarding foil.Water vapour will diffuse through the vapour retarding foil and condense on the cold tube. To avoid build-up of water in the insulation a hydrophilic wicking...

  14. Regeneration process for a cold trap placed in a liquid metal circuit

    International Nuclear Information System (INIS)

    Desreumaux, J.; Rebiere, J.

    1989-01-01

    Regeneration of a cold trap containing solid hydride and oxide sodium impurities is made by heating the cold trap for thermally decomposing the impurities. By communication with a vessel containing an absorbing material such as Mg 2 Ni the tritium liberated by heating is absorbed. Liquid effluents made by heating the impurities are drained out of the cold trap [fr

  15. Study of the effect of injecting cold or hot water on the operation of an oil field

    Energy Technology Data Exchange (ETDEWEB)

    Gusein-Zade, M A; Kolosovskaya, A K; Lebedev, V V; Chicherov, L G

    1968-11-01

    Several Soviet reservoirs contain either highly paraffinic or viscous crude oils, where recovery by an ordinary waterflood is poor. Under such circumstances, hot water injection appears to be advantageous. Hot water injection is advisable when: (1) the reservoir is heterogeneous and contains low-permeability sections; (2) the oil is saturated with paraffin at reservoir temperature; and (3) reservoir pressure is only slightly higher than static pressure. In Uzen field, hot water injection should recover 1.5 times more oil than would be recovered with cold water. Various problems involved with hot water injection such as equipment and methods of heating the water, transportation of the water of the wellhead, heat losses in transport of hot water, and well equipment for handling hot water are discussed. Calculations indicate that it should be possible to transport 100/sup 0/C water through a 5 km pipeline with a 4/sup 0/ to 6/sup 0/C temperature drop; then deliver to the well bottom at a temperature of 90/sup 0/ to 92/sup 0/C.

  16. Cold gelation of globular proteins

    NARCIS (Netherlands)

    Alting, A.C.

    2003-01-01

    Keywords : globular proteins, whey protein, ovalbumin, cold gelation, disulfide bonds, texture, gel hardnessProtein gelation in food products is important to obtain desirable sensory and textural properties. Cold gelation is a novel method to produce protein-based gels. It is a two step process in

  17. Near-field performance of the advanced cold process canister

    International Nuclear Information System (INIS)

    Werme, L.

    1991-12-01

    A near-field performance evaluation of an advanced cold process canister for spent fuel disposal has been performed jointly by TVO, Finland and SKB, Sweden. The canister consists of a steel canister as a load bearing element, with an outer corrosion shield of copper. In the analysis, as well internal (ie corrosion processes from the inside of the canister) as external processes (mechanical and chemical) have been considered both prior to and after canister breach. The major conclusions for the evaluation are: Internal processes cannot cause the canister breach under foreseen conditions, ie local-iced corrosion for the steel or copper canisters can be dismissed as a failure mechanism; The evaluation of the effects of processed outside the canister indicate that there is no rapid mechanism to endanger the integrity of the canister. Consequently the service life of the canister will be several million years. For completeness also evaluation of post-failure behaviour was carried out. Analyses were focussed on low probability phenomena from faults in canisters. Some items were identified where further research is justified in order to increase knowledge of the phenomena and thus strengthen the confidence of safety margins. However, it can be concluded that the risks of these scenarios can be judged to be acceptable. This is due to the fact that firstly, the probability of occurrence of most of these scenarios can be controlled to a large extent through technical measures. Secondly, these analyses indicated that the consequences would not be severe

  18. Load leveling of the Tohoku Electric Power Co. Development of ice storage cold-water manufacturing unit/solid organic waste treatment equipment using midnight power for cold district; Tohoku Denryoku no fuka heijunka. Kori chikunetsu reisui seizo unit no kaihatsu, shin`ya denryoku riyo kanreichi muke kokei yuki haikibutsu shori sochi no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    An ice storage cold-water manufacturing unit that can manufacture cold water at a stable temperature near 0degC by using midnight power and a solid organic waste treatment facility were developed. The high-speed melting of ice is required to stabilize the cold-water temperature. Therefore, experimental investigation was performed. A piece of flake-shaped ice whose surface area and storage quality are balanced was used. A system that melts ice using the melting tank installed outside an icebox, and a high-speed melting system of ice based on the mixing unit installed in a melting tank were also used together. In the validation test of a prototype for smaller food factories, the following was confirmed. Manufacturing of cold water at about 1degC, amount of cooled water, stability of output water temperature for a change in water temperature, and good storage of ice in an icebox. In the prototype developed for a solid organic waste treatment facility, satisfactory performance was confirmed for following. Temperature in a fermenter when wastes were put, moisture content in a fermenter, pH value, net loss when the refuse of fish is put, and saving of an electricity rate. 6 figs., 2 tabs.

  19. Experimental study on a cold neutron source of solid methylbenzene

    Energy Technology Data Exchange (ETDEWEB)

    Utsuro, M; Sugimoto, M; Fujita, Y [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.

    1975-10-01

    An experimental study to produce cold neutrons with low temperature solid mesitylene as cold moderator in liquid helium and liquid nitrogen cryostats is reported. Measured cold neutron spectra by using an electron linac and time-of-flight method shows that this material is a better cold moderator than light water ice, giving the cold neutron output not so much inferior to that of solid methane in the temperature range above about 20 K and in the neutron energy region above about 1 MeV.

  20. Cold compaction behavior of nano-structured Nd-Fe-B alloy powders prepared by different processes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaoya [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Hu, Lianxi, E-mail: hulx@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wang, Erde [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2013-02-25

    Graphical abstract: Relative density enhancement and nanocrystallization of Nd{sub 2}Fe{sub 14}B phase are two major effective means to improve magnetic properties. Since the matrix Nd{sub 2}Fe{sub 14}B phase in the starting Nd-Fe-B alloy can be disproportionated into a nano-structured mixture of NdH{sub 2.7}, Fe{sub 2}B, and {alpha}-Fe phases during mechanical milling in hydrogen. It is thus important to study the densification behavior of nanocrystalline powders to evaluate and predict the cold compactibility of powders. By comparison with the as milled as well as melt-spun Nd{sub 16}Fe{sub 76}B{sub 8} alloy powders, we find that the as-disproportionated Nd{sub 16}Fe{sub 76}B{sub 8} alloy powder exhibits the best cold compactibility. As evident from the illustration presented below, compaction parameters (representing the powder compactibility) have been determined by fitting density-pressure data with double logarithm compaction equation. Densification mechanisms involved during cold compaction process are clarified in our work by referring to microstructure observation of samples prepared by various methods. As a result, highly densified green magnet compact can be obtained by cold pressing of as-disproportionated NdFeB alloy powders. Highlights: Black-Right-Pointing-Pointer Nano-structured disproportionated Nd-Fe-B alloy powders by mechanical milling in hydrogen. Black-Right-Pointing-Pointer Highly densified green magnet compact by cold pressing of as-disproportionated Nd-Fe-B alloy powders. Black-Right-Pointing-Pointer Density-pressure data fitted well by an empirical powder compaction model. Black-Right-Pointing-Pointer As-disproportionated powder showed better compactibility than as milled and melt-spun counterparts. Black-Right-Pointing-Pointer The effects of physical properties on powder compactibility and densification mechanisms are clarified. - Abstract: The compaction behavior of nano-structured Nd{sub 16}Fe{sub 76}B{sub 8} (atomic ratio) alloy

  1. Differential response of two Mediterranean cold-water coral species to ocean acidification

    Science.gov (United States)

    Movilla, Juancho; Orejas, Covadonga; Calvo, Eva; Gori, Andrea; López-Sanz, Àngel; Grinyó, Jordi; Domínguez-Carrió, Carlos; Pelejero, Carles

    2014-09-01

    Cold-water coral (CWC) reefs constitute one of the most complex deep-sea habitats harboring a vast diversity of associated species. Like other tropical or temperate framework builders, these systems are facing an uncertain future due to several threats, such as global warming and ocean acidification. In the case of Mediterranean CWC communities, the effect may be exacerbated due to the greater capacity of these waters to absorb atmospheric CO2 compared to the global ocean. Calcification in these organisms is an energy-demanding process, and it is expected that energy requirements will be greater as seawater pH and the availability of carbonate ions decrease. Therefore, studies assessing the effect of a pH decrease in skeletal growth, and metabolic balance are critical to fully understand the potential responses of these organisms under a changing scenario. In this context, the present work aims to investigate the medium- to long-term effect of a low pH scenario on calcification and the biochemical composition of two CWCs from the Mediterranean, Dendrophyllia cornigera and Desmophyllum dianthus. After 314 d of exposure to acidified conditions, a significant decrease of 70 % was observed in Desmophyllum dianthus skeletal growth rate, while Dendrophyllia cornigera showed no differences between treatments. Instead, only subtle differences between treatments were observed in the organic matter amount, lipid content, skeletal microdensity, or porosity in both species, although due to the high variability of the results, these differences were not statistically significant. Our results also confirmed a heterogeneous effect of low pH on the skeletal growth rate of the organisms depending on their initial weight, suggesting that those specimens with high calcification rates may be the most susceptible to the negative effects of acidification.

  2. Calculation of temperature field for complex heat exchange environments in multiple-layer reservoir systems on ''cold'' water injection

    Energy Technology Data Exchange (ETDEWEB)

    Vlasova, S.P.; Sukharev, G.M.; Koval' skii, E.V.

    1981-04-01

    Owing to the exhaustion of oil deposits in the arthesian basin of Eastern Subcaucasus situated in the Chechen-Ingush ASSR, it is proposed to inject cold wastewater into the wells for 25 years in order to cause underground thermal waters to rise and thus provide a steady supply of hot water for 25-30 years.

  3. Microfossils, a Key to Unravel Cold-Water Carbonate Mound Evolution through Time: Evidence from the Eastern Alboran Sea.

    Directory of Open Access Journals (Sweden)

    Claudio Stalder

    Full Text Available Cold-water coral (CWC ecosystems occur worldwide and play a major role in the ocean's carbonate budget and atmospheric CO2 balance since the Danian (~65 m.y. ago. However their temporal and spatial evolution against climatic and oceanographic variability is still unclear. For the first time, we combine the main macrofaunal components of a sediment core from a CWC mound of the Melilla Mounds Field in the Eastern Alboran Sea with the associated microfauna and we highlight the importance of foraminifera and ostracods as indicators of CWC mound evolution in the paleorecord. Abundances of macrofauna along the core reveal alternating periods dominated by distinct CWC taxa (mostly Lophelia pertusa, Madrepora oculata that correspond to major shifts in foraminiferal and ostracod assemblages. The period dominated by M. oculata coincides with a period characterized by increased export of refractory organic matter to the seafloor and rather unstable oceanographic conditions at the benthic boundary layer with periodically decreased water energy and oxygenation, variable bottom water temperature/density and increased sediment flow. The microfaunal and geochemical data strongly suggest that M. oculata and in particular Dendrophylliidae show a higher tolerance to environmental changes than L. pertusa. Finally, we show evidence for sustained CWC growth during the Alleröd-Younger-Dryas in the Eastern Alboran Sea and that this period corresponds to stable benthic conditions with cold/dense and well oxygenated bottom waters, high fluxes of labile organic matter and relatively strong bottom currents.

  4. Surfer's ear: external auditory exostoses are more prevalent in cold water surfers.

    Science.gov (United States)

    Kroon, David F; Lawson, M Louise; Derkay, Craig S; Hoffmann, Karen; McCook, Joe

    2002-05-01

    The study goal was to demonstrate the prevalence and severity of external auditory exostoses (EAEs) in a population of surfers and to examine the relationship between these lesions and the length of time surfed as well as water temperature in which the swimmers surfed. It was hypothesized that subjects who predominantly surfed in colder waters had more frequent and more severe exostoses. Two hundred two avid surfers (91% male and 9% female, median age 17 years) were included in the study. EAEs were graded based on the extent of external auditory canal patency; grades of normal (100% patency), mild (66% to 99% patency), and moderate-severe (surfing habits. There was a 38% overall prevalence of EAEs, with 69% of lesions graded as mild and 31% graded as moderate-severe. Professional surfers (odds ratio 3.8) and those subjects who surfed predominantly in colder waters (odds ratio 5.8) were found to be at a significantly increased risk for the development of EAEs. The number of years surfed was also found to be significant, increasing one's risk for developing an exostosis by 12% per year and for developing more severe lesions by 10% per year. Individuals who had moderate-severe EAEs were significantly more likely to be willing to surf in colder waters than were those who had mild EAEs (odds ratio 4.3). EAEs are more prevalent in cold water surfers, and additional years surfing increase one's risk not only for developing an EAE but also for developing more severe lesions.

  5. Interactive Effects of Ocean Acidification and Warming on Growth, Fitness and Survival of the Cold-Water Coral Lophelia pertusa under Different Food Availabilities

    Directory of Open Access Journals (Sweden)

    Janina V. Büscher

    2017-04-01

    Full Text Available Cold-water corals are important bioengineers that provide structural habitat for a diverse species community. About 70% of the presently known scleractinian cold-water corals are expected to be exposed to corrosive waters by the end of this century due to ocean acidification. At the same time, the corals will experience a steady warming of their environment. Studies on the sensitivity of cold-water corals to climate change mainly concentrated on single stressors in short-term incubation approaches, thus not accounting for possible long-term acclimatisation and the interactive effects of multiple stressors. Besides, preceding studies did not test for possible compensatory effects of a change in food availability. In this study a multifactorial long-term experiment (6 months was conducted with end-of-the-century scenarios of elevated pCO2 and temperature levels in order to examine the acclimatisation potential of the cosmopolitan cold-water coral Lophelia pertusa to future climate change related threats. For the first time multiple ocean change impacts including the role of the nutritional status were tested on L. pertusa with regard to growth, “fitness,” and survival. Our results show that while L. pertusa is capable of calcifying under elevated CO2 and temperature, its condition (fitness is more strongly influenced by food availability rather than changes in seawater chemistry. Whereas growth rates increased at elevated temperature (+4°C, they decreased under elevated CO2 concentrations (~800 μatm. No difference in net growth was detected when corals were exposed to the combination of increased CO2 and temperature compared to ambient conditions. A 10-fold higher food supply stimulated growth under elevated temperature, which was not observed in the combined treatment. This indicates that increased food supply does not compensate for adverse effects of ocean acidification and underlines the importance of considering the nutritional status

  6. Detection of cold pain, cold allodynia and cold hyperalgesia in freely behaving rats

    Directory of Open Access Journals (Sweden)

    Woolf Clifford J

    2005-12-01

    Full Text Available Abstract Background Pain is elicited by cold, and a major feature of many neuropathic pain states is that normally innocuous cool stimuli begin to produce pain (cold allodynia. To expand our understanding of cold induced pain states we have studied cold pain behaviors over a range of temperatures in several animal models of chronic pain. Results We demonstrate that a Peltier-cooled cold plate with ± 1°C sensitivity enables quantitative measurement of a detection withdrawal response to cold stimuli in unrestrained rats. In naïve rats the threshold for eliciting cold pain behavior is 5°C. The withdrawal threshold for cold allodynia is 15°C in both the spared nerve injury and spinal nerve ligation models of neuropathic pain. Cold hyperalgesia is present in the spared nerve injury model animals, manifesting as a reduced latency of withdrawal response threshold at temperatures that elicit cold pain in naïve rats. We also show that following the peripheral inflammation produced by intraplantar injection of complete Freund's adjuvant, a hypersensitivity to cold occurs. Conclusion The peltier-cooled provides an effective means of assaying cold sensitivity in unrestrained rats. Behavioral testing of cold allodynia, hyperalgesia and pain will greatly facilitate the study of the neurobiological mechanisms involved in cold/cool sensations and enable measurement of the efficacy of pharmacological treatments to reduce these symptoms.

  7. Status and perspective of development of cold moderators at the IBR-2 reactor

    International Nuclear Information System (INIS)

    Kulikov, S; Shabalin, E

    2012-01-01

    The modernized IBR-2M reactor will start its operation with three water grooved moderators in 2011. Afterwards, they will be exchanged by a new complex of moderators. The complex consists of three so-called kombi-moderators, each of them containing a pre-moderator, a cold moderator, grooved ambient water moderators and post-moderators. They are mounted onto three moveable trolleys that serve to deliver and install moderators near the reactor core. The project is divided in three stages. In 2012 the first stage of development of complex of moderators will be finished. The water grooved moderator will be replaced with the new kombi-moderator for beams nos. 7, 8, 10, 11. Main parameters of moderators for this direction will be studied then. The next stages will be done for beams nos. 2-3 and for beams nos. 1, 9, 4-6, consequently. Cold moderator chambers at the modernized IBR-2 reactor are filled with thousands of beads (∼3.5 - 4 mm in diameter) of moderating material. The cold helium gas flow delivers beads from the charging device to the moderator during the fulfillment process and cools down them during the reactor cycle. The mixture of aromatic hydrocarbons (mesithylen and m-xylen) has been chosen as moderating material. The explanation of the choice of material for novel cold neutron moderators, configuration of moderator complex for the modernized IBR-2 reactor and the main results of optimization of moderator complex for the third stage of moderator development are discussed in the article.

  8. Status and perspective of development of cold moderators at the IBR-2 reactor

    Science.gov (United States)

    Kulikov, S.; Shabalin, E.

    2012-03-01

    The modernized IBR-2M reactor will start its operation with three water grooved moderators in 2011. Afterwards, they will be exchanged by a new complex of moderators. The complex consists of three so-called kombi-moderators, each of them containing a pre-moderator, a cold moderator, grooved ambient water moderators and post-moderators. They are mounted onto three moveable trolleys that serve to deliver and install moderators near the reactor core. The project is divided in three stages. In 2012 the first stage of development of complex of moderators will be finished. The water grooved moderator will be replaced with the new kombi-moderator for beams #7, 8, 10, 11. Main parameters of moderators for this direction will be studied then. The next stages will be done for beams #2-3 and for beams #1, 9, 4-6, consequently. Cold moderator chambers at the modernized IBR-2 reactor are filled with thousands of beads (~3.5 - 4 mm in diameter) of moderating material. The cold helium gas flow delivers beads from the charging device to the moderator during the fulfillment process and cools down them during the reactor cycle. The mixture of aromatic hydrocarbons (mesithylen and m-xylen) has been chosen as moderating material. The explanation of the choice of material for novel cold neutron moderators, configuration of moderator complex for the modernized IBR-2 reactor and the main results of optimization of moderator complex for the third stage of moderator development are discussed in the article.

  9. Consecutive days of cold water immersion: effects on cycling performance and heart rate variability.

    Science.gov (United States)

    Stanley, Jamie; Peake, Jonathan M; Buchheit, Martin

    2013-02-01

    We investigated performance and heart rate (HR) variability (HRV) over consecutive days of cycling with post-exercise cold water immersion (CWI) or passive recovery (PAS). In a crossover design, 11 cyclists completed two separate 3-day training blocks (120 min cycling per day, 66 maximal sprints, 9 min time trialling [TT]), followed by 2 days of recovery-based training. The cyclists recovered from each training session by standing in cold water (10 °C) or at room temperature (27 °C) for 5 min. Mean power for sprints, total TT work and HR were assessed during each session. Resting vagal-HRV (natural logarithm of square-root of mean squared differences of successive R-R intervals; ln rMSSD) was assessed after exercise, after the recovery intervention, during sleep and upon waking. CWI allowed better maintenance of mean sprint power (between-trial difference [90 % confidence limits] +12.4 % [5.9; 18.9]), cadence (+2.0 % [0.6; 3.5]), and mean HR during exercise (+1.6 % [0.0; 3.2]) compared with PAS. ln rMSSD immediately following CWI was higher (+144 % [92; 211]) compared with PAS. There was no difference between the trials in TT performance (-0.2 % [-3.5; 3.0]) or waking ln rMSSD (-1.2 % [-5.9; 3.4]). CWI helps to maintain sprint performance during consecutive days of training, whereas its effects on vagal-HRV vary over time and depend on prior exercise intensity.

  10. Sonoluminescence: an IRaser creating cold fusion neutrons?

    International Nuclear Information System (INIS)

    Prevenslik, T.V.

    1996-01-01

    Sonoluminescence can be explained by treating the bubbles as IRasers with standing waves in resonance with the bubble dimensions. Since the IRaser resonant radiation is required to satisfy wave boundary conditions, the water molecules lining the bubble walls undergo a continuous population inversion as the bubble collapses. By stimulated processes, the Planck energy accumulates as the K b T energy of radiation photons is pumped from the surroundings through the rotational state of the water molecule. Bubble collapse occurs almost isothermally with the high IR absorptivity of the water molecule permitting the Planck energy to accumulate to 2∼6 eV only to be released by VIS-UV photon emission because of the low absorptivity of water at VIS-UV frequencies. As the IRaser cavity dimensions collapse to the spacing between water molecules at liquid density, soft x-rays at about 2 keV are predicted. But, this is less than 10 keV necessary for cold fusion so that no neutrons is directly expected yet. Therefore, it is suggested that UV laser enhancement is used to accumulate further bubble collapse energy

  11. Cold nuclear fusion device

    International Nuclear Information System (INIS)

    Ogino, Shinji.

    1991-01-01

    Selection of cathode material is a key to the attainment of cold nuclear fusion. However, there are only few reports on the cathode material at present and an effective development has been demanded. The device comprises an anode and a cathode and an electrolytic bath having metal salts dissolved therein and containing heavy water in a glass container. The anode is made of gold or platinum and the cathode is made of metals of V, Sr, Y, Nb, Hf or Ta, and a voltage of 3-25V is applied by way of a DC power source between them. The metal comprising V, Sr, Y, Nb, Hf or Ta absorbs deuterium formed by electrolysis of heavy water effectively to cause nuclear fusion reaction at substantially the same frequency and energy efficiency as palladium and titanium. Accordingly, a cold nuclear fusion device having high nuclear fusion generation frequency can be obtained. (N.H.)

  12. Large reptiles and cold temperatures: Do extreme cold spells set distributional limits for tropical reptiles in Florida?

    Science.gov (United States)

    Mazzotti, Frank J.; Cherkiss, Michael S.; Parry, Mark; Beauchamp, Jeff; Rochford, Mike; Smith, Brian J.; Hart, Kristen M.; Brandt, Laura A.

    2016-01-01

    Distributional limits of many tropical species in Florida are ultimately determined by tolerance to low temperature. An unprecedented cold spell during 2–11 January 2010, in South Florida provided an opportunity to compare the responses of tropical American crocodiles with warm-temperate American alligators and to compare the responses of nonnative Burmese pythons with native warm-temperate snakes exposed to prolonged cold temperatures. After the January 2010 cold spell, a record number of American crocodiles (n = 151) and Burmese pythons (n = 36) were found dead. In contrast, no American alligators and no native snakes were found dead. American alligators and American crocodiles behaved differently during the cold spell. American alligators stopped basking and retreated to warmer water. American crocodiles apparently continued to bask during extreme cold temperatures resulting in lethal body temperatures. The mortality of Burmese pythons compared to the absence of mortality for native snakes suggests that the current population of Burmese pythons in the Everglades is less tolerant of cold temperatures than native snakes. Burmese pythons introduced from other parts of their native range may be more tolerant of cold temperatures. We documented the direct effects of cold temperatures on crocodiles and pythons; however, evidence of long-term effects of cold temperature on their populations within their established ranges remains lacking. Mortality of crocodiles and pythons outside of their current established range may be more important in setting distributional limits.

  13. Impacts of ocean acidification on sediment processes in shallow waters of the Arctic Ocean.

    Science.gov (United States)

    Gazeau, Frédéric; van Rijswijk, Pieter; Pozzato, Lara; Middelburg, Jack J

    2014-01-01

    Despite the important roles of shallow-water sediments in global biogeochemical cycling, the effects of ocean acidification on sedimentary processes have received relatively little attention. As high-latitude cold waters can absorb more CO2 and usually have a lower buffering capacity than warmer waters, acidification rates in these areas are faster than those in sub-tropical regions. The present study investigates the effects of ocean acidification on sediment composition, processes and sediment-water fluxes in an Arctic coastal system. Undisturbed sediment cores, exempt of large dwelling organisms, were collected, incubated for a period of 14 days, and subject to a gradient of pCO2 covering the range of values projected for the end of the century. On five occasions during the experimental period, the sediment cores were isolated for flux measurements (oxygen, alkalinity, dissolved inorganic carbon, ammonium, nitrate, nitrite, phosphate and silicate). At the end of the experimental period, denitrification rates were measured and sediment samples were taken at several depth intervals for solid-phase analyses. Most of the parameters and processes (i.e. mineralization, denitrification) investigated showed no relationship with the overlying seawater pH, suggesting that ocean acidification will have limited impacts on the microbial activity and associated sediment-water fluxes on Arctic shelves, in the absence of active bio-irrigating organisms. Only following a pH decrease of 1 pH unit, not foreseen in the coming 300 years, significant enhancements of calcium carbonate dissolution and anammox rates were observed. Longer-term experiments on different sediment types are still required to confirm the limited impact of ocean acidification on shallow Arctic sediment processes as observed in this study.

  14. Evidence for Surface and Subsurface Ice Inside Micro Cold-Traps on Mercury's North Pole

    Science.gov (United States)

    Rubanenko, L.; Mazarico, E.; Neumann, G. A.; Paige, D. A.

    2017-01-01

    The small obliquity of Mercury causes topographic depressions located near its poles to cast persistent shadows. Many [1, 9, 15] have shown these permanently shadowed regions (PSRs) may trap water ice for geologic time periods inside cold-traps. More recently, direct evidence for the presence of water ice deposits inside craters was remotely sensed in RADAR [5] and visible imagery [3]. Albedo measurements (reflectence at 1064 nm) obtained by the MErcury Space ENviroment GEochemistry and Ranging Laser Altimeter (MLA) found unusually bright and dark areas next to Mercury's north pole [7]. Using a thermal illumination model, Paige et al. [8] found the bright deposits are correlated with surface cold-traps, and the dark deposits are correlated with subsurface cold-traps. They suggested these anomalous deposits were brought to the surface by comets and were processed by the magnetospheric radiation flux, removing hydrogen and mixing C-N-O-S atoms to form a variety of molecules which will darken with time. Here we use a thermal illumination model to find the link between the cold-trap area fraction of a rough surface and its albedo. Using this link and the measurements obtained by MESSENGER we derive a surface and a subsurface ice distribution map on Mercury's north pole below the MESSENGER spatial resolution, approximately 500 m. We find a large fraction of the polar ice on Mercury resides inside micro cold-traps (of scales 10 - 100 m) distributed along the inter-crater terrain.

  15. The influence of near-bed hydrodynamic conditions on cold-water corals in the Viosca Knoll area, Gulf of Mexico

    Science.gov (United States)

    Mienis, F.; Duineveld, G. C. A.; Davies, A. J.; Ross, S. W.; Seim, H.; Bane, J.; van Weering, T. C. E.

    2012-01-01

    Near-bed hydrodynamic conditions were recorded for almost one year in the Viosca Knoll area (lease block 826), one of the most well-developed cold-water coral habitats in the Gulf of Mexico. Here, a reef-like cold-water coral ecosystem, dominated by the coral Lophelia pertusa, resembles coral habitats found off the southeastern US coast and the North East Atlantic. Two landers were deployed in the vicinity and outside of the coral habitat and measured multiple near-bed parameters, including temperature, salinity, current speed and direction and optical and acoustic backscatter. Additionally, the lander deployed closest to the coral area was equipped with a sediment trap that collected settling particles over the period of deployment at 27 day intervals. Long-term monitoring showed, that in general, environmental parameters, such as temperature (6.5-11.6 °C), salinity (34.95-35.4) and current speed (average 8 cm s -1, peak current speed up to 38 cm s -1) largely resembled conditions previously recorded within North East Atlantic coral habitats. Major differences between site VK 826 and coral areas in the NE Atlantic were the much higher particle load, and the origin of the particulate matter. Several significant events occurred during the deployment period beginning with an increase in current speed followed by a gradual increase in temperature and salinity, followed by a rapid decrease in temperature and salinity. Simultaneously with the decrease in temperature and salinity, the direction of the current changed from west to east and cold and less turbid water was transported upslope. The most prominent event occurred in July, when a westward flow lasted over 21 days. These events are consistent with bottom boundary layer dynamics influenced by friction (bottom Ekman layer). The Mississippi River discharges large quantities of sediment and dominates sedimentation regimes in the area. Furthermore, the Mississippi River disperses large amounts of terrestrial organic

  16. An evaluation of hand immersion for rewarming individuals cooled by immersion in cold water.

    Science.gov (United States)

    Cahill, C J; Balmi, P J; Tipton, M J

    1995-05-01

    The hypothesis that hypothermic individuals can be actively rewarmed in the field by immersion of the extremities in hot water was investigated. Three techniques for rewarming subjects with lowered deep body temperatures were compared: a) whole body immersion to the neck in water at 40 degrees C; b) immersion of two hands plus forearms only in water at 42 degrees C; and c) passive rewarming. The suggestion that the fall in deep body temperature resulting from immersion to the neck in water at 15 degrees C could be arrested by immersing both arms in water at 42 degrees C was also investigated. Results indicated that immersion to the neck in hot water was clearly the most effective rewarming technique. No significant difference (p > 0.05) was observed in the deep body temperature response during passive rewarming or during immersion of both hands and forearms in water at 42 degrees C. In the later condition some increase in peripheral blood flow to the hands may have occurred and resulted in a heat input of approximately 12 W, but any benefit from this was negated by an associated significant decrease (p > 0.05) in intrinsic heat production. Immersing the arms in hot water during immersion to the neck in cold water appeared to accelerate rather than decelerate the rate of fall of deep body temperature. We concluded that hand rewarming, although theoretically attractive, is ineffective in practice and could be detrimental in some circumstances, by suppressing intrinsic heat production or precipitating rewarming collapse.

  17. Numerical investigations on the rebound phenomena and the bonding mechanisms in cold spray processes

    Science.gov (United States)

    Viscusi, A.

    2018-05-01

    Cold spray technology is a relatively new additive process allowing to create high quality metallic coatings, on both metallic and non-metallic substrates, without extensive heating of the powders sprayed. Upon impact with a target surface, conversion of kinetic energy to plastic deformation occurs, the solid particles deform and bond together. The actual bonding mechanism for cold spray particles is still not well understood, a high number of works has been carried out during the past two decades, several theories have been proposed to explain the adhesion/rebound mechanisms making the system ineffective for industrial applications. Therefore, the aim of this research activity is to better explain the complex adhesion/rebound phenomena into cold spray impact processes through numerical simulations; for this purpose, on the base of simplified hypothesis and results found in literature, an original 3D Finite Element Method (FEM) model of an aluminium particle impacting on an aluminium substrate was proposed. A cohesive behaviour algorithm was implemented in the particle-substrate contact regions aiming to simulate the bonding between the impacting particle and the substrate under specific working conditions. A rebound coefficient was also defined representing the particle residual energy. Different simulations were performed using a range of impact velocities and varying the interfacial cohesive strength. It was shown that at low impact velocities the rebound phenomenon is governed by the elastic energy stored in the system, meanwhile at high impact velocities, the rebound phenomenon is mainly due to the strain rate effects making the system mechanically stronger; therefore, a specific range of bonding velocities depending on substrate-particle contact area were found.

  18. Effect of cold working on the stress corrosion cracking resistance of nickel-chromium-iron alloys

    International Nuclear Information System (INIS)

    Yonezawa, T.; Onimura, K.

    1987-01-01

    In order to grasp the stress corrosion cracking resistance of cold worked nickel base alloys in PWR primary water, the effect of cold working on the stress corrosion cracking resistance of alloys 600, X-750 and 690, in high temperature water, have been studied. Stress corrosion cracking tests were conducted at 360 0 C (633K) in a simulated PWR primary water for about 12,000 hours (43.2Ms). From the test results, it is concluded that the stress corrosion cracking resistance in the cold worked Alloy 600 at the same applied stress level increases with an increase in cold working ratio, and the cold worked alloys of thermally treated 690 and X-750 have excellent stress corrosion cracking resistance. (Author)

  19. Direct effects of cold shock: bioassays with three Columbia River organisms

    International Nuclear Information System (INIS)

    Becker, C.D.; Schneider, M.J.

    1975-01-01

    Results of studies of the direct effects of cold shock on the pumpkinseed sunfish (representing a warmwater fish), the rainbow trout (representing a coldwater fish), and the common crayfish showed that resistance to cold shock varies between species, is dependent on acclimation temperature, and resistance to temperature declines is dependent on the decline rate. Severe cold shock at a sublethal level is accompanied by disorientation, loss of equilibrium, and immobilization. Pumpkinseed, the warm water species, are most susceptible. Rainbow, the cold water species, are less susceptible; at an acclimation 10 0 C, rainbow survive abrupt shock to levels slightly above freezing. Crayfish, the decapod crustacean, are most resistant; at an acclimation of 15 0 C, crayfish survive abrupt shock to the point just above freezing

  20. ESKIMO1 is a key gene involved in water economy as well as cold acclimation and salt tolerance

    DEFF Research Database (Denmark)

    Bouchabke-Coussa, O.; Quashie, M.L.; Seoane, Jose Miguel

    2008-01-01

    's improved tolerance to reduced water supply may be explained by its lower transpiration rate and better water use efficiency (WUE), which was assessed by carbon isotope discrimination and gas exchange measurements. esk1 alleles were also shown to be more tolerant to salt stress. Transcriptomic analysis......Background: Drought is a major social and economic problem resulting in huge yield reduction in the field. Today's challenge is to develop plants with reduced water requirements and stable yields in fluctuating environmental conditions. Arabidopsis thaliana is an excellent model for identifying...... as a key gene involved in plant water economy as well as cold acclimation and salt tolerance. Results: All esk1 mutants were more tolerant to freezing, after acclimation, than their wild type counterpart. esk1 mutants also showed increased tolerance to mild water deficit for all traits measured. The mutant...

  1. Adaptive Automatic Gauge Control of a Cold Strip Rolling Process

    Directory of Open Access Journals (Sweden)

    ROMAN, N.

    2010-02-01

    Full Text Available The paper tackles with thickness control structure of the cold rolled strips. This structure is based on the rolls position control of a reversible quarto rolling mill. The main feature of the system proposed in the paper consists in the compensation of the errors introduced by the deficient dynamics of the hydraulic servo-system used for the rolls positioning, by means of a dynamic compensator that approximates the inverse system of the servo-system. Because the servo-system is considered variant over time, an on-line identification of the servo-system and parameter adapting of the compensator are achieved. The results obtained by numerical simulation are presented together with the data taken from real process. These results illustrate the efficiency of the proposed solutions.

  2. Environmental quality assessment of cold water stream spring in urban perimeter of Codo City, Brazil

    Directory of Open Access Journals (Sweden)

    Luciana dos Santos Oliveira

    2016-12-01

    Full Text Available Lack of planning, accelerated and uncontrolled growth of Brazilian cities, has triggered a series of impacts in the aquatic ecosystems, including the degradation of springs. This study evaluated the macroscopic shape of the nascent state of cold water creek conservation in the urban area of Codo City, Maranhao State, by applying the Headwaters Environmental Impact Index (IIAN during the visit in the field. The spring is located in New Jerusalem neighborhood, with a poor degree of protection, with main macroscopic impact in degraded vegetation, easy access and the approach of urban facilities.

  3. Cold Vacuum Drying facility heating, ventilation, and Air Conditioning system design description

    International Nuclear Information System (INIS)

    SINGH, G.

    2000-01-01

    This System Design Description (SDD) addresses the HVAC system for the CVDF. The CVDF HVAC system consists of five subsystems: (1) Administration building HVAC system; (2) Process bay recirculation HVAC system; (3) Process bay local exhaust HVAC and process vent system; (4) Process general supply/exhaust HVAC system; and (5) Reference air system. The HVAC and reference air systems interface with the following systems: the fire protection control system, Monitoring and Control System (MCS), electrical power distribution system (including standby power), compressed air system, Chilled Water (CHW) system, drainage system, and other Cold Vacuum Drying (CVD) control systems not addressed in this SDD

  4. Estimation of water flow velocity in small plants using cold neutron imaging with D 2O tracer

    Science.gov (United States)

    Matsushima, U.; Herppich, W. B.; Kardjilov, N.; Graf, W.; Hilger, A.; Manke, I.

    2009-06-01

    Water flow imaging may help to better understand various problems related to water stress of plants. It may help to fully understand the water relations of plants. The objective of this research was to estimate the velocity of water flow in plant samples. Cut roses ( Rosa hybrida, var. 'Milva') were used as samples. Cold neutron radiography (CNR) was conducted at CONRAD, Helmholtz Center Berlin for Materials and Energy, Berlin, Germany. D 2O and H 2O were interchangeably injected into the water feeding system of the sample. After the uptake of D 2O, the neutron transmission increased due to the smaller attenuation coefficient of D 2O compared to H 2O. Replacement of D 2O in the rose peduncle was clearly observed. Three different optical flow algorithms, Block Matching, Horn-Schunck and Lucas-Kanade, were used to calculate the vector of D 2O tracer flow. The quality of sequential images providing sufficient spatial and temporal resolution allowed to estimate flow vector.

  5. Peripheral cold acclimatization in Antarctic scuba divers.

    Science.gov (United States)

    Bridgman, S A

    1991-08-01

    Peripheral acclimatization to cold in scuba divers stationed at the British Antarctic Survey's Signy Station was investigated during a year in Antarctica. Five divers and five non-diver controls underwent monthly laboratory tests of index finger immersion in cold water for 30 min. Index finger pulp temperature and time of onset of cold-induced vasodilatation (CIVD) were measured. Pain was recorded with verbal and numerical psychophysical subjective pain ratings. Average finger temperatures and median finger pain from 6-30 min of immersion, maximum finger temperatures during the first CIVD cycle, and finger temperatures at the onset of CIVD were calculated. Comparison of the variables recorded from divers and non-divers were performed with analysis of variance. No significant differences were found among the variables recorded from divers and non-divers. From a review of the literature, divers have responses typical of non-cold-adapted Caucasians. There is, therefore, no evidence that Signy divers peripherally acclimatized to cold. We suggest that these findings occur because either the whole body cooling which divers undergo inhibits peripheral acclimatization or because of insufficiently frequent or severe cold exposure while diving. Further basic studies on the duration, frequency and severity of cold exposure necessary to induce peripheral cold acclimatization are required before this question can be satisfactorily answered.

  6. Surface Improvement of Shafts by Turn-Assisted Deep Cold Rolling Process

    Directory of Open Access Journals (Sweden)

    Prabhu Raghavendra

    2016-01-01

    Full Text Available It is well recognized that mechanical surface enhancement methods can significantly improve the characteristics of highly-stressed metallic components. Deep cold rolling is one of such technique which is particularly attractive since it is possible to generate, near the surface, deep compressive residual stresses and work hardened layers while retaining a relatively smooth surface finish. In this paper, the effect of turn-assisted deep cold rolling on AISI 4140 steel is examined, with emphasis on the residual stress state. Based on the X-ray diffraction measurements, it is found that turn-assisted deep cold rolling can be quite effective in retarding the initiation and initial propagation of fatigue cracks in AISI 4140 steel.

  7. Two strategies for response to 14 °C cold-water immersion: is there a difference in the response of motor, cognitive, immune and stress markers?

    Directory of Open Access Journals (Sweden)

    Marius Brazaitis

    Full Text Available Here, we address the question of why some people have a greater chance of surviving and/or better resistance to cold-related-injuries in prolonged exposure to acute cold environments than do others, despite similar physical characteristics. The main aim of this study was to compare physiological and psychological reactions between people who exhibited fast cooling (FC; n = 20 or slow cooling (SC; n = 20 responses to cold water immersion. Individuals in whom the T(re decreased to a set point of 35.5 °C before the end of the 170-min cooling time were indicated as the FC group; individuals in whom the T(re did not decrease to the set point of 35.5 °C before the end of the 170-min cooling time were classified as the SC group. Cold stress was induced using intermittent immersion in bath water at 14 °C. Motor (spinal and supraspinal reflexes, voluntary and electrically induced skeletal muscle contraction force and cognitive (executive function, short term memory, short term spatial recognition performance, immune variables (neutrophils, leucocytes, lymphocytes, monocytes, IL-6, TNF-α, markers of hypothalamic-pituitary-adrenal axis activity (cortisol, corticosterone and autonomic nervous system activity (epinephrine, norepinephrine were monitored. The data obtained in this study suggest that the response of the FC group to cooling vs the SC group response was more likely an insulative-hypothermic response and that the SC vs the FC group displayed a metabolic-insulative response. The observations that an exposure time to 14 °C cold water--which was nearly twice as short (96-min vs 170-min with a greater rectal temperature decrease (35.5 °C vs 36.2 °C in the FC group compared with the SC group--induces similar responses of motor, cognitive, and blood stress markers were novel. The most important finding is that subjects with a lower cold-strain-index (SC group showed stimulation of some markers of innate immunity and suppression of markers of

  8. Processing-Microstructure-Property Relationships for Cold Spray Powder Deposition of Al-Cu Alloys

    Science.gov (United States)

    2015-06-01

    Champagne [18]. The simulations were completed to compare the simulated particle exit velocities versus the measured particle exit velocities. In...620 m/s to 670 m/s [39]. V. Champagne states that for pure aluminum, an acceptable critical velocity for the deposition of pure aluminum is anything...Materials and Processess, vol. 168, no. 5, pp. 53–55, May 2010. [3] V. K. Champagne and P. F. Leyman, “Cold Spray Process Development for the Reclamation

  9. Cold-water coral reefs and adjacent sponge grounds: hotspots of benthic respiration and organic carbon cycling in the deep sea

    NARCIS (Netherlands)

    Cathalot, C.; Van Oevelen, D.; Cox, T.; Kutti, T.; Lavaleye, M.S.S.; Duineveld, G.C.A.; Meysman, F.J.R.

    2015-01-01

    Cold-water coral reefs and adjacent sponge grounds are distributed widely in the deep ocean, where only a small fraction of the surface productivity reaches the seafloor as detritus. It remains elusive how these hotspots of biodiversity can thrive in such a food-limited environment, as data on

  10. Sodium removal and requalification of secondary loop cold trap

    International Nuclear Information System (INIS)

    Rajan, M.; Veerasamy, R.; Gurumoorthy, K.; Rajan, K.K.; Kale, R.D.

    1997-01-01

    The secondary loop cold trap of the Fast Breeder Test Reactor got plugged prematurely and was not removing impurities from the sodium. This cold trap was taken up for cleaning and modification of the internals. The cleaning operation was carried out successfully by hydride decomposition and vacuum distillation followed by steam cleaning method. Without dismantling, the cold trap internals were washed by circulating water. Subsequently the wire mesh was removed, examined and replaced, the internal modifications were carried (nit and the cold trap way qualified for reuse. The procedures followed and the experience gained are discussed. (author)

  11. Cold pleasure. Why we like ice drinks, ice-lollies and ice cream.

    Science.gov (United States)

    Eccles, R; Du-Plessis, L; Dommels, Y; Wilkinson, J E

    2013-12-01

    This review discusses how the ingestion of cold foods and drinks may be perceived as pleasant because of the effects of cooling of the mouth. The case is made that man has originated from a tropical environment and that cold stimuli applied to the external skin may initiate thermal discomfort and reflexes such as shivering and vasoconstriction that defend body temperature, whereas cold stimuli applied to the mouth are perceived as pleasant because of pleasure associated with satiation of thirst and a refreshing effect. Cold water is preferred to warm water as a thirst quencher and cold products such as ice cream may also be perceived as pleasant because oral cooling satiates thirst. The case is made that cold stimuli may be perceived differently in the skin and oral mucosa, leading to different effects on temperature regulation, and perception of pleasure or displeasure, depending on the body temperature and the temperature of the external environment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Building America Best Practices Series: Volume 3; Builders and Buyers Handbook for Improving New Home Efficiency, Comfort, and Durability in the Cold and Very Cold Climates

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-08-01

    The guide book is a resource to help builders large and small build high-quality, energy-efficient homes that achieve 30% energy savings in space conditioning and water heating in the cold and very cold climates.

  13. Seismic imaging of the Formosa Ridge cold seep site offshore of southwestern Taiwan

    Science.gov (United States)

    Hsu, Ho-Han; Liu, Char-Shine; Morita, Sumito; Tu, Shu-Lin; Lin, Saulwood; Machiyama, Hideaki; Azuma, Wataru; Ku, Chia-Yen; Chen, Song-Chuen

    2017-12-01

    Multi-scale reflection seismic data, from deep-penetration to high-resolution, have been analyzed and integrated with near-surface geophysical and geochemical data to investigate the structures and gas hydrate system of the Formosa Ridge offshore of southwestern Taiwan. In 2007, dense and large chemosynthetic communities were discovered on top of the Formosa Ridge at water depth of 1125 m by the ROV Hyper-Dolphin. A continuous and strong BSR has been observed on seismic profiles from 300 to 500 ms two-way-travel-time below the seafloor of this ridge. Sedimentary strata of the Formosa Ridge are generally flat lying which suggests that this ridge was formed by submarine erosion processes of down-slope canyon development. In addition, some sediment waves and mass wasting features are present on the ridge. Beneath the cold seep site, a vertical blanking zone, or seismic chimney, is clearly observed on seismic profiles, and it is interpreted to be a fluid conduit. A thick low velocity zone beneath BSR suggests the presence of a gas reservoir there. This "gas reservoir" is shallower than the surrounding canyon floors along the ridge; therefore as warm methane-rich fluids inside the ridge migrate upward, sulfate carried by cold sea water can flow into the fluid system from both flanks of the ridge. This process may drive a fluid circulation system and the active cold seep site which emits both hydrogen sulfide and methane to feed the chemosynthetic communities.

  14. Energy Efficiency and Sustainability Evaluation of Space and Water Heating in Urban Residential Buildings of the Hot Summer and Cold Winter Zone in China

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    2016-09-01

    Full Text Available With the urbanization process of the hot summer and cold winter (HSCW zone in China, the energy consumption of space and water heating in urban residential buildings of the HSCW zone has increased rapidly. This study presents the energy efficiency and sustainability evaluation of various ways of space and water heating taking 10 typical cities in the HSCW zone as research cases. Two indicators, primary energy efficiency (PEE and sustainability index based on exergy efficiency, are adopted to perform the evaluation. Models for the energy and total exergy efficiencies of various space and water heating equipment/systems are developed. The evaluation results indicate that common uses of electricity for space and water heating are the most unsustainable ways of space and water heating. In terms of PEE and sustainability index, air-source heat pumps for space and water heating are suitable for the HSCW zone. The PEE and sustainability index of solar water heaters with auxiliary electric heaters are greatly influenced by local solar resources. Air-source heat pump assisted solar hot water systems are the most sustainable among all water heating equipment/systems investigated in this study. Our works suggest the key potential for improving the energy efficiency and the sustainability of space and water heating in urban residential buildings of the HSCW zone.

  15. Cold vacuum drying facility site evaluation report

    International Nuclear Information System (INIS)

    Diebel, J.A.

    1996-01-01

    In order to transport Multi-Canister Overpacks to the Canister Storage Building they must first undergo the Cold Vacuum Drying process. This puts the design, construction and start-up of the Cold Vacuum Drying facility on the critical path of the K Basin fuel removal schedule. This schedule is driven by a Tri-Party Agreement (TPA) milestone requiring all of the spent nuclear fuel to be removed from the K Basins by December, 1999. This site evaluation is an integral part of the Cold Vacuum Drying design process and must be completed expeditiously in order to stay on track for meeting the milestone

  16. The role of water tracks in altering biotic and abiotic soil properties and processes in a polar desert in Antarctica

    Science.gov (United States)

    Ball, Becky A.; Levy, Joseph

    2015-02-01

    Groundwater discharge via water tracks is a largely unexplored passageway routing salts and moisture from high elevations to valley floors in the McMurdo Dry Valleys (MDV) of Antarctica. Given the influence that water tracks have on the distribution of liquid water in seasonally thawed Antarctic soils, it is surprising how little is known about their role in structuring biotic and abiotic processes this cold desert ecosystem. Particularly, it is unclear how soil biota will respond to the activation of new water tracks resulting from enhanced active layer thickening or enhanced regional snowmelt. In the MDV, water tracks are both wetter and more saline than the surrounding soils, constituting a change in soil habitat suitability for soil biology and therefore the ecological processes they carry out. To investigate the net impact that water tracks have on Dry Valley soil biology, and therefore the ecosystem processes for which they are responsible, we analyzed microbial biomass and activity in soils inside and outside of three water tracks and relate this to the physical soil characteristics. Overall, our results suggest that water tracks can significantly influence soil properties, which can further impact biological biovolume and both biotic and abiotic fluxes of CO2. However, the nature of its impact differs with water track, further suggesting that not all water tracks can be regarded the same.

  17. Heterogeneously catalyzed deuterium separation processes: Hydrogen-water exchange studies at elevated temperatures and pressures

    International Nuclear Information System (INIS)

    Halliday, J.D.; Rolston, J.H.; Au, J.C.; Den Hartog, J.; Tremblay, R.R.

    1985-01-01

    New processes for the separation of hydrogen isotopes are required to produce heavy water for CANDU nuclear reactors and to extract tritium formed in the moderator during reactor operation. Wetproofed platinum catalysts capable of promoting rapid exchange of isotopes between countercurrent flows of hydrogen and liquid water in packed columns have been developed at CRNL over the past 15 years. These catalysts provide a catalystic surface for the gas phase exchange reaction H/sub 2/O/sub (v)/ + HD/sub (g)/ ↔ HDO/sub (v)/ + H/sub 2(g)/ as well as a large liquid surface for the liquid phase isotope transfer reaction HDO/sub (v)/ + H/sub 2/O/sub (iota)/↔HDO/sub (iota)/+H/sub 2/O/sub (v)/. Any economic stand-alone heavy water separation process, based on bithermal hydrogen-water exchange over wetproofed platinum catalysts, requires rapid overall exchange of isotopes between two phases at two temperatures. Catalysts developed for cold tower operation at 25-60 0 C are now being tested in a laboratory scale stainless steel trickle bed reactor for performance and stability at simulated hot tower conditions, 150 0 C and 2.0 MPa pressure. Catalytically active layers containing platinum supported on carbon or crystalline silica and wetproofed with Teflon have been prepared on ceramic spheres and stainless steel screening and tested in both random and ordered bed columns

  18. IODP Expedition 307 Drills Cold-Water Coral Mound Along the Irish Continental Margin

    Directory of Open Access Journals (Sweden)

    Trevor Williams

    2006-03-01

    Full Text Available Introduction Over the past decade, oceanographic and geophysical surveys along the slope of the Porcupine Seabight off the southwestern continental margin of Ireland have identified upwards of a thousand enigmatic mound-like structures (Figs. 1 and 2. The mounds of the Porcupine Seabight rise from the seafl oor in water depths of 600–900 m and formimpressive conical bodies several kilometers wide and up to 200 m high. Although a few mounds such as Thérèse Mound and Galway Mound are covered by a thriving thicket of coldwater corals, most mound tops and fl anks are covered by dead coral rubble or are entirely buried by sediment (De Mol et al., 2002; Fig. 2, Beyer et al., 2003. Lophelia pertusa (Fig.3 and Madrepora oculata are the most prominent cold-water corals growing without photosynthetic symbionts. The widespread discovery of large and numerous coral-bearing banks and the association of these corals with the mounds have generated signifi cant interest as to the composition, origin and development of these mound structures.Challenger Mound, in the Belgica mound province, has an elongated shape oriented along a north-northeast to south-southwest axis and ispartially buried under Pleistocene drift sediments. In high-resolution seismic profiles the mounds appear to root on an erosion surface (van Rooij et al., 2003. During IODP Expedition307 the Challenger Mound in the Porcupine Seabight was drilled with the goal of unveiling the origin and depositional processes withinthese intriguing sedimentary structures. Challenger Mound, unlike its near neighbors the Thérèse and Galway mounds, has little to no livecoral coverage and, therefore, was chosen as the main target for drilling activities, so that no living ecosystem would be disturbed.

  19. Resistance of Two Mediterranean Cold-Water Coral Species to Low-pH Conditions

    Directory of Open Access Journals (Sweden)

    Juancho Movilla

    2013-12-01

    Full Text Available Deep-water ecosystems are characterized by relatively low carbonate concentration values and, due to ocean acidification (OA, these habitats might be among the first to be exposed to undersaturated conditions in the forthcoming years. However, until now, very few studies have been conducted to test how cold-water coral (CWC species react to such changes in the seawater chemistry. The present work aims to investigate the mid-term effect of decreased pH on calcification of the two branching CWC species most widely distributed in the Mediterranean, Lophelia pertusa and Madrepora oculata. No significant effects were observed in the skeletal growth rate, microdensity and porosity of both species after 6 months of exposure. However, while the calcification rate of M. oculata was similar for all colony fragments, a heterogeneous skeletal growth pattern was observed in L. pertusa, the younger nubbins showing higher growth rates than the older ones. A higher energy demand is expected in these young, fast-growing fragments and, therefore, a reduction in calcification might be noticed earlier during long-term exposure to acidified conditions.

  20. Heat and cold accumulators in vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Kauranen, P.; Wikstroem, L. (VTT Technical Research Centre of Finland, Advanced Materials, Tampere (Finland)); Heikkinen, J. (VTT Technical Research Centre of Finland, Building Services and Indoor Environment, Espoo (Finland)); Laurikko, J.; Elonen, T. (VTT Technical Research Centre of Finland, Emission Control, Espoo (Finland)); Seppaelae, A. (Helsinki Univ. of Technology, Applied Thermodynamics, Espoo (Finland)). Email: ari.seppala@tkk.fi

    2009-07-01

    Phase Change Material (PCM) based heat and cold accumulators have been tailored for transport applications including a mail delivery van as well as the cold chains of foodstuff and blood products. The PCMs can store relative large amount of thermal energy in a narrow temperature interval as latent heat of fusion of their melting and crystallization processes. Compact heat and cold accumulators can be designed using PCMs. The aim of the project has been to reduce the exhaust gas and noise emissions and improve the fuel economy of the transport systems and to improve the reliability of the cold chains studied by storing thermal energy in PCM accumulators. (orig.)

  1. Finger cold-induced vasodilation of older Korean female divers, haenyeo: effects of chronic cold exposure and aging

    Science.gov (United States)

    Lee, Joo-Young; Park, Joonhee; Koh, Eunsook; Cha, Seongwon

    2017-07-01

    The aim of the present study was to evaluate the local cold tolerance of older Korean female divers, haenyeo ( N = 22) in terms of cold acclimatization and ageing. As control groups, older non-diving females ( N = 25) and young females from a rural area ( N = 15) and an urban area ( N = 51) participated in this study. To evaluate local cold tolerance, finger cold-induced vasodilation (CIVD) during finger immersion of 4 °C water was examined. As a result, older haenyeos showed greater minimum finger temperature and recovery finger temperature than older non-diving females ( P < 0.05), but similar responses in onset time, peak time, maximum finger temperature, frequency of CIVD, heart rate, blood pressure, and thermal and pain sensations as those of older non-diving females. Another novel finding was that young urban females showed more vulnerable responses to local cold in CIVD variables and subjective sensations when compared to older females, whereas young rural females had the most excellent cold tolerance in terms of maximum temperature and frequency of CIVD among the four groups ( P < 0.05). The present results imply that older haenyeos still retain cold acclimatized features on the periphery even though they changed their cotton diving suits to wet suits in the early 1980s. However, cardiovascular responses and subjective sensations to cold reflect aging effects. In addition, we suggest that young people who have been adapted to highly insulated clothing and indoor heating systems in winter should be distinguished from young people who were exposed to less modern conveniences when compared to the aged in terms of cold tolerance.

  2. Magnesium Repair by Cold Spray

    National Research Council Canada - National Science Library

    Champagne, V. K; Leyman, P.F; Helfritch, D. J

    2008-01-01

    .... Army Research Laboratory has developed a cold spray process to reclaim magnesium components that shows significant improvement over existing methods and is in the process of qualification for use on rotorcraft...

  3. Spatial and temporal distributions of Martian north polar cold spots before, during, and after the global dust storm of 2001

    Science.gov (United States)

    Cornwall, C.; Titus, T.N.

    2009-01-01

    In the 1970s, Mariner and Viking observed features in the Mars northern polar region that were a few hundred kilometers in diameter with 20 fj,m brightness temperatures as low as 130 K (considerably below C02 ice sublimation temperatures). Over the past decade, studies have shown that these areas (commonly called "cold spots") are usually due to emissivity effects of frost deposits and occasionally to active C02 snowstorms. Three Mars years of Mars Global Surveyor Thermal Emission Spectrometer data were used to observe autumn and wintertime cold spot activity within the polar regions. Many cold spots formed on or near scarps of the perennial cap, probably induced by adiabatic cooling due to orographic lifting. These topographically associated cold spots were often smaller than those that were not associated with topography. We determined that initial grain sizes within the cold spots were on the order of a few millimeters, assuming the snow was uncontaminated by dust or water ice. On average, the half-life of the cold spots was 5 Julian days. The Mars global dust storm in 2001 significantly affected cold spot activity in the north polar region. Though overall perennial cap cold spot activity seemed unaffected, the distribution of cold spots did change by a decrease in the number of topographically associated cold spots and an increase in those not associated with topography. We propose that the global dust storm affected the processes that form cold spots and discuss how the global dust storm may have affected these processes. ?? 2009 by the American Geophysical Union.

  4. An alternative to the traditional cold pressor test: the cold pressor arm wrap.

    Science.gov (United States)

    Porcelli, Anthony John

    2014-01-16

    Recently research on the relationship between stress and cognition, emotion, and behavior has greatly increased. These advances have yielded insights into important questions ranging from the nature of stress' influence on addiction(1) to the role of stress in neural changes associated with alterations in decision-making(2,3). As topics being examined by the field evolve, however, so too must the methodologies involved. In this article a practical and effective alternative to a classic stress induction technique, the cold pressor test (CPT), is presented: the cold pressor arm wrap (CPAW). CPT typically involves immersion of a participant's dominant hand in ice-cold water for a period of time(4). The technique is associated with robust activation of the sympatho-adrenomedullary (SAM) axis (and release of catecholamines; e.g. adrenaline and noradrenaline) and mild-to-moderate activation of the hypothalamic-pituitary-adrenal (HPA) axis with associated glucocorticoid (e.g. cortisol) release. While CPT has been used in a wide range of studies, it can be impractical to apply in some research environments. For example use of water during, rather than prior to, magnetic resonance imaging (MRI) has the potential to damage sensitive and expensive equipment or interfere with acquisition of MRI signal. The CPAW is a practical and effective alternative to the traditional CPT. Composed of a versatile list of inexpensive and easily acquired components, CPAW makes use of MRI-safe gelpacs cooled to a temperature similar to CPT rather than actual water. Importantly CPAW is associated with levels of SAM and HPA activation comparable to CPT, and can easily be applied in a variety of research contexts. While it is important to maintain specific safety protocols when using the technique, these are easy to implement if planned for. Creation and use of the CPAW will be discussed.

  5. Convectively-driven cold layer and its influences on moisture in the UTLS

    Science.gov (United States)

    Kim, J.; Randel, W. J.; Birner, T.

    2016-12-01

    Characteristics of the cold anomaly in the tropical tropopause layer (TTL) that is commonly observed with deep convection are examined using CloudSat and Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) GPS radio occultation measurements. Deep convection is sampled based on the cloud top height (>17 km) from CloudSat 2B-CLDCLASS, and then temperature profiles from COSMIC are composited around the deep convection. The composite temperature shows anomalously warm troposphere (up to 14 km) and a significantly cold layer near the tropopause (at 16-18 km) in the regions of deep convection. Generally in the tropics, the cold layer has very large horizontal scale (2,000 - 6,000 km) compared to that of mesoscale convective cluster, and it lasts one or two weeks with minimum temperature anomaly of - 2K. The cold layer shows slight but clear eastward-tilted vertical structure in the deep tropics indicating a large-scale Kelvin wave response. Further analyses on circulation patterns suggest that the anomaly can be explained as a part of Gill-type response in the TTL to deep convective heating in the troposphere. Response of moisture to the cold layer is also examined in the upper troposphere and lower stratosphere using microwave limb sounder (MLS) measurements. The water vapor anomalies show coherent structures with the temperature and circulation anomalies. A clear dry anomaly is found in the cold layer and its outflow region, implying a large-scale dehydration process due to the convectively driven cold layer in the upper TTL.

  6. NASA Cold Land Processes Experiment (CLPX 2002/03): Field measurements of snowpack properties and soil moisture

    Science.gov (United States)

    Kelly Elder; Don Cline; Glen E. Liston; Richard Armstrong

    2009-01-01

    A field measurement program was undertaken as part NASA's Cold Land Processes Experiment (CLPX). Extensive snowpack and soil measurements were taken at field sites in Colorado over four study periods during the two study years (2002 and 2003). Measurements included snow depth, density, temperature, grain type and size, surface wetness, surface roughness, and...

  7. A pilot study exploring the effects of reflexology on cold intolerance.

    Science.gov (United States)

    Zhang, Wenping; Takahashi, Shougo; Miki, Takashi; Fujieda, Hisayo; Ishida, Torao

    2010-03-01

    Cold intolerance is an inability to tolerate cold temperatures and is accompanied by symptoms including headache, shoulder discomfort, dizziness and palpitations. The current study was performed to examine whether reflexology therapy affected cold intolerance in human subjects and whether the treatment was systemically effective. Ten female volunteer examinees with subjective feelings of cold were examined. After a 5-minute foot bath, 10 minutes of reflexology therapy was performed on their left foot. Skin temperature and blood flow were estimated before and after treatment, together with an interview concerning their feelings of cold and daily habits. In addition, how the recovery rate was affected by the application of a chilled-water load was also estimated. Along with significant increases in skin temperature and blood flow compared with pre-treatment at the bilateral points of KI-1, LR-3, and BL-60, a faster recovery after the application of the chilled-water load was also seen in the lower limbs on both sides. From these results, we conclude that reflexology has systemic effects and is an alternative method for treating cold intolerance. Copyright (c) 2010 Korean Pharmacopuncture Institute. Published by .. All rights reserved.

  8. Hydrothermal Cold Sintering

    Science.gov (United States)

    Kang, Xiaoyu

    C, respectively. Process variables were defined and effects of individual parameters were studied systematically through control variable method with Li2MoO4-water system. Crystalline structure, fractured surface morphology and chemical bonding information of the cold sintered pellets were studied with X-ray diffraction (XRD), field effect scanning electron microscopy (FE-SEM) and Raman spectroscopy, etc. Densification mechanism studies were conducted on ZnO. Through comparison experiments, it was found that the Zn2+ concentration in the solution is critical for densification, while dissolution of grains only serves as a means to the former. Through pressure dependent studies, a critical value was found, which correlated well with the hydrostatic pressure keeping liquid water from thermal expansion. These results confirmed establishment of hydrothermal condition that would be important for mass transport in densification. Densification rate variations with process time was estimated and similar time dependence to Kingery's model was found. The densification process was proposed to be consist of three consecutive stages, which are quick initial compaction, grain rearrangement and dissolution-reprecipitation events. Binary metal oxides with different acidities were subjected to cold sintering with various aqueous solutions in establishing a criteria for material selection. It was found that in general materials with high solubility at around neutral pH, high dissolution kinetics and similar free energy to their hydroxides or hydrates at ambient would be more likely for full densification with high phase purity. The anions in solution should also be wisely selected to avoid stable compound or complex formation. To extend the applicable material list for full densification, non-aqueous solvent of dimethyl sulfoxide (DMSO) based solution was studied for cold sintering. Both improvement of pellet density and suppression of hydroxide formation were achieved for MnO by using DMSO

  9. Development of a novel cold forging process to manufacture eccentric shafts

    Science.gov (United States)

    Pasler, Lukas; Liewald, Mathias

    2018-05-01

    Since the commercial usage of compact combustion engines, eccentric shafts have been used to transform translational into rotational motion. Over the years, several processes to manufacture these eccentric shafts or crankshafts have been developed. Especially for single-cylinder engines manufactured in small quantities, built crankshafts disclose advantages regarding tooling costs and performance. Those manufacturing processes do have one thing in common: They are all executed at elevated temperatures to enable the material to be formed to high forming degree. In this paper, a newly developed cold forging process is presented, which combines lateral extrusion and shifting for manufacturing a crank in one forming operation at room temperature. In comparison to the established upsetting and shifting methods to manufacture such components, the tool cavity or crank web thickness remains constant. Therefore, the developed new process presented in this paper consists of a combination of shifting and extrusion of the billet, which allows pushing material into the forming zone during shifting. In order to reduce the tensile stresses induced by the shifting process, compressive stresses are superimposed. It is expected that the process limits will be expanded regarding the horizontal displacement and form filling. In the following report, the simulation and design of the tooling concept are presented. Experiments were conducted and compared with corresponding simulation results afterwards.

  10. The Cold Chain Logistics for Perishable Agricultural Products in China

    OpenAIRE

    Hou Yanfang; Xie Dong; Wang Jianbo

    2015-01-01

    This study introduces concepts of the agricultural product cold chain logistics and domestic and international researches. Also, the study discusses issues of Chinese agricultural cold chain logistics in the development process as the following aspects: the dividing of cold chain logistics market, refrigeration hardware facilities, third-party cold chain logistics development, the level of cold chain technologies, cold chain logistics professionals and the legal system and the standard system...

  11. Tips to Protect Workers in Cold Environments

    Science.gov (United States)

    ... Z Index | Newsroom | Contact Us | FAQs | About OSHA OSHA ... health problems such as trench foot, frostbite and hypothermia. In extreme cases, including cold water immersion, exposure can lead to ...

  12. How cold is cold dark matter?

    International Nuclear Information System (INIS)

    Armendariz-Picon, Cristian; Neelakanta, Jayanth T.

    2014-01-01

    If cold dark matter consists of particles, these must be non-interacting and non-relativistic by definition. In most cold dark matter models however, dark matter particles inherit a non-vanishing velocity dispersion from interactions in the early universe, a velocity that redshifts with cosmic expansion but certainly remains non-zero. In this article, we place model-independent constraints on the dark matter temperature to mass ratio, whose square root determines the dark matter velocity dispersion. We only assume that dark matter particles decoupled kinetically while non-relativistic, when galactic scales had not entered the horizon yet, and that their momentum distribution has been Maxwellian since that time. Under these assumptions, using cosmic microwave background and matter power spectrum observations, we place upper limits on the temperature to mass ratio of cold dark matter today (away from collapsed structures). These limits imply that the present cold dark matter velocity dispersion has to be smaller than 54 m/s. Cold dark matter has to be quite cold, indeed

  13. Spatial and tidal variation in food supply to shallow cold-water coral reefs of the Mingulay Reef complex (Outer Hebrides, Scotland)

    NARCIS (Netherlands)

    Duineveld, G.C.A.; Jeffreys, R.M.; Lavaleye, M.S.S.; Davies, A.J.; Bergman, M.J.N.; Watmough, T.; Witbaard, R.

    2012-01-01

    The finding of a previously undescribed cold-water coral reef (Banana Reef) in the Scottish Mingulay reef complex, with denser coverage of living Lophelia pertusa than the principal Mingulay 1 Reef, was the incentive for a comparative study of the food supply to the 2 reefs. Suspended particulate

  14. Cold Antimatter Plasmas, and Aspirations for Cold Antihydrogen

    Science.gov (United States)

    2002-06-24

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP012494 TITLE: Cold Antimatter Plasmas, and Aspirations for Cold...part numbers comprise the compilation report: ADP012489 thru ADP012577 UNCLASSIFIED Cold Antimatter Plasmas, and Aspirations for Cold Antihydrogen G...and positrons. The antiprotons come initially from the new Antiproton Decel- erator facility at CERN. Good control of such cold antimatter plasmas is

  15. DBP formation in hot and cold water across a simulated distribution system: effect of incubation time, heating time, pH, chlorine dose, and incubation temperature.

    Science.gov (United States)

    Liu, Boning; Reckhow, David A

    2013-10-15

    This paper demonstrates that disinfection byproducts (DBP) concentration profiles in heated water were quite different from the DBP concentrations in the cold tap water. Chloroform concentrations in the heated water remained constant or even decreased slightly with increasing distribution system water age. The amount of dichloroacetic acid (DCAA) was much higher in the heated water than in the cold water; however, the maximum levels in heated water with different distribution system water ages did not differ substantially. The levels of trichloroacetic acid (TCAA) in the heated water were similar to the TCAA levels in the tap water, and a slight reduction was observed after the tap water was heated for 24 h. Regardless of water age, significant reductions of nonregulated DBPs were observed after the tap water was heated for 24 h. For tap water with lower water ages, there were significant increases in dichloroacetonitrile (DCAN), chloropicrin (CP), and 1,1-dichloropropane (1,1-DCP) after a short period of heating. Heating of the tap water with low pH led to a more significant increase of chloroform and a more significant short-term increase of DCAN. High pH accelerated the loss of the nonregulated DBPs in the heated water. The results indicated that as the chlorine doses increased, levels of chloroform and DCAA in the heated water increased significantly. However, for TCAA, the thermally induced increase in concentration was only notable for the chlorinated water with very high chlorine dose. Finally, heating may lead to higher DBP concentrations in chlorinated water with lower distribution system temperatures.

  16. Cold-neutron tomography of annular flow and functional spacer performance in a model of a boiling water reactor fuel rod bundle

    International Nuclear Information System (INIS)

    Zboray, Robert; Kickhofel, John; Damsohn, Manuel; Prasser, Horst-Michael

    2011-01-01

    Highlights: → Annular flows w/wo functional spacers are investigated by cold neutron imaging. → Liquid film thickness distribution on fuel pins and on spacer vanes is measured. → The influence of the spacers on the liquid film distributions has been quantified. → The cross-sectional averaged liquid hold-up significantly affected by the spacers. → The sapers affect the fraction of the entrained liquid hold up in the gas core. - Abstract: Dryout of the coolant liquid film at the upper part of the fuel pins of a boiling water reactor (BWR) core constitutes the type of heat transfer crisis relevant for the conditions of high void fractions. It is both a safety concern and a limiting factor in the thermal power and thus for the economy of BWRs. We have investigated adiabatic, air-water annular flows in a scaled-up model of two neighboring subchannels as found in BWR fuel assemblies using cold-neutron tomography. The imaging of the double suchannel has been performed at the ICON beamline at the neutron spallation source SINQ at the Paul Scherrer Institute, Switzerland. Cold-neutron tomography is shown here to be an excellent tool for investigating air-water annular flows and the influence of functional spacers of different geometries on such flows. The high-resolution, high-contrast measurements provide the spatial distributions of the coolant liquid film thickness on the fuel pin surfaces as well as on the surfaces of the spacer vanes. The axial variations of the cross-section averaged liquid hold-up and its fraction in the gas core shows the effect of the spacers on the redistribution of the two phases.

  17. Experiments on cold trap regeneration by NaH decomposition

    International Nuclear Information System (INIS)

    McPheeters, C.C.; Skladzien, S.B.; Raue, D.J.

    1979-10-01

    Cold trap regeneration may be very important in future LMFBRs because of the expected high hydrogen source from the steam generators. This hydrogen precipitates as NaH in the cold trap and may fill the trap within one year of operation. Several methods of cold trap regeneration were considered, but the simplest and least expensive appears to be decomposition of NaH under vacuum at elevated temperatures. Experiments were done to assess the feasibility of this method for cold trap regeneration. Small-scale simulated cold traps (SCT) were located with NaH and NaH plus Na 2 O, and were heated both under vacuum and under a sweep gas at 100 kPa. The evolved hydrogen was converted to water by a CuO bed and collected in a weighting tube

  18. Cold Storage for a Single-Family House in Italy

    Directory of Open Access Journals (Sweden)

    Luigi Mongibello

    2016-12-01

    Full Text Available This work deals with the operation, modeling, simulation, and cost evaluation of two different cold storage systems for a single-family house in Italy, that differ from one another on the cold storage material. The two materials used to perform the numerical simulations of the cold storage systems are represented by cold water and a phase change material (PCM, and the numerical simulations have been realized by means of numerical codes written in Matlab environment. The main finding of the present work is represented by the fact that, for the considered user characteristics, and under the Italian electricity tariff policy, the use of a proper designed cold storage system characterized by an effective operation strategy could represent a viable solution from an economical point of view.

  19. Experiments on cold-trap regeneration by NaH decomposition

    International Nuclear Information System (INIS)

    McPheeters, C.C.; Skladzien, S.B.; Raue, D.J.

    1980-06-01

    Cold-trap regeneration may be very important in future LMFBRs because of the expected high hydrogen source from the steam generators. This hydrogen precipitates as NaH in the cold trap and may fill the trap within one year of operation. Several methods of cold-trap regeneration were considered, but the simplest and least expensive appears to be decomposition of NaH under vacuum at elevated temperatures. Experiments were done to assess the feasibility of this method for cold-trap regeneration. Small-scale simulated cold traps (SCT) were loaded with NaH and NaH plus Na 2 O, and were heated both under vacuum and under a sweep gas at 100 kPa. The evolved hydrogen was converted to water by a CuO bed and collected in a weighing tube

  20. Cold-crucible melting of hulls and structural materials

    International Nuclear Information System (INIS)

    Jouan, A.; Jacquet-Francillon, N.; Puyou, M.; Piccinato, R.

    1990-01-01

    The method currently implemented at the La Hague UP3 reprocessing plant for conditioning of PWR zircaloy hulls is cement embedding. Another promising method, mainly for reducing the waste volume and the available exchange surface area, is melting. A cold-crucible melting process has therefore been developed by the CEA at Marcoule (France) over the last decade. Development work first concentrated on cladding hulls from fast breeder reactors, then from pressurized water reactors. The process can be used for both types of cladding wastes. Subassembly head and foot end-caps are sheared off and should be suitable for surface storage after α decontamination by successive rinsing. If necessary because of their α activity, they could be melted in a larger furnace

  1. Effect of cold water immersion on repeated cycling performance and limb blood flow.

    Science.gov (United States)

    Vaile, J; O'Hagan, C; Stefanovic, B; Walker, M; Gill, N; Askew, C D

    2011-08-01

    The purpose of the present study was to compare the effects of cold water immersion (CWI) and active recovery (ACT) on resting limb blood flow, rectal temperature and repeated cycling performance in the heat. Ten subjects completed two testing sessions separated by 1 week; each trial consisted of an initial all-out 35-min exercise bout, one of two 15-min recovery interventions (randomised: CWI or ACT), followed by a 40-min passive recovery period before repeating the 35-min exercise bout. Performance was measured as the change in total work completed during the exercise bouts. Resting limb blood flow, heart rate, rectal temperature and blood lactate were recorded throughout the testing sessions. There was a significant decline in performance after ACT (mean (SD) -1.81% (1.05%)) compared with CWI where performance remained unchanged (0.10% (0.71%)). Rectal temperature was reduced after CWI (36.8°C (1.0°C)) compared with ACT (38.3°C (0.4°C)), as was blood flow to the arms (CWI 3.64 (1.47) ml/100 ml/min; ACT 16.85 (3.57) ml/100 ml/min) and legs (CW 4.83 (2.49) ml/100 ml/min; ACT 4.83 (2.49) ml/100 ml/min). Leg blood flow at the end of the second exercise bout was not different between the active (15.25 (4.33) ml/100 ml/min) and cold trials (14.99 (4.96) ml/100 ml/min), whereas rectal temperature (CWI 38.1°C (0.3°C); ACT 38.8°C (0.2°C)) and arm blood flow (CWI 20.55 (3.78) ml/100 ml/min; ACT 23.83 (5.32) ml/100 ml/min) remained depressed until the end of the cold trial. These findings indicate that CWI is an effective intervention for maintaining repeat cycling performance in the heat and this performance benefit is associated with alterations in core temperature and limb blood flow.

  2. Cold fusion reaction ignition at cavitation effect on deuterium-containing media

    International Nuclear Information System (INIS)

    Lipson, A.G.; Deryagin, B.V.; Klyuev, V.A.

    1992-01-01

    A possibility to induce 'cold' nuclear fusion reactions in the process of ultrasound cavitation in heavy water is studied. Nonstationary neutron emission is detected under cavitation in D 2 O on titanium vibrator which has the tracks of cavitation erosion (the vibrator ran in D 2 O to 20 hours). Maximum excess over background (12σ) was recorded under cavitation impact on the suspension of LaNi 5 D x dispersed particle in D 2 O

  3. Prolonged whole-body cold water immersion: fluid and ion shifts.

    Science.gov (United States)

    Deuster, P A; Smith, D J; Smoak, B L; Montgomery, L C; Singh, A; Doubt, T J

    1989-01-01

    To characterize fluid and ion shifts during prolonged whole-body immersion, 16 divers wearing dry suits completed four whole-body immersions in 5 degrees C water during each of two 5-day air saturation dives at 6.1 msw. One immersion was conducted at 1000 (AM) and one at 2200 (PM) so that diurnal variations could be evaluated. Fifty-four hours separated the immersions, which lasted up to 6 h; 9 days separated each air saturation dive. Blood was collected before and after immersion; urine was collected for 12 h before, during, and after immersion for a total of 24 h. Plasma volume decreased significantly and to the same extent (approximately 17%) during both AM and PM immersions. Urine flow increased by 236.1 +/- 38.7 and 296.3 +/- 52.0%, urinary excretion of Na increased by 290.4 +/- 89.0 and 329.5 +/- 77.0%, K by 245.0 +/- 73.4 and 215.5 +/- 44.6%, Ca by 211.0 +/- 31.4 and 241.1 +/- 50.4%, Mg by 201.4 +/- 45.9 and 165.3 +/- 287%, and Zn by 427.8 +/- 93.7 and 301.9 +/- 75.4% during AM and PM immersions, respectively, compared with preimmersion. Urine flow and K excretion were significantly higher during the AM than PM. In summary, when subjects are immersed in cold water for prolonged periods, combined with a slow rate of body cooling afforded by thermal protection and enforced intermittent exercise, there is diuresis, decreased plasma volume, and increased excretions of Na, K, Ca, Mg, and Zn.

  4. Cold fusion

    International Nuclear Information System (INIS)

    Seo, Suk Yong; You, Jae Jun

    1996-01-01

    Nearly every technical information is chased in the world. All of them are reviewed and analyzed. Some of them are chosen to study further more to review every related documents. And a probable suggestion about the excitonic process in deuteron absorbed condensed matter is proposed a way to cold fusion. 8 refs. (Author)

  5. Similar genetic architecture with shared and unique quantitative trait loci for bacterial cold water disease resistance in two rainbow trout breeding populations

    Science.gov (United States)

    Bacterial cold water disease (BCWD) causes significant mortality and economic losses in salmonid aquaculture. In previous studies, we identified moderate-large effect QTL for BCWD resistance in rainbow trout (Oncorhynchus mykiss). However, the recent availability of a 57K SNP array and a genome phys...

  6. Melatonin enhances cold tolerance in drought-primed wild-type and abscisic acid-deficient mutant barley.

    Science.gov (United States)

    Li, Xiangnan; Tan, Dun-Xian; Jiang, Dong; Liu, Fulai

    2016-10-01

    Melatonin is involved in multiple plant developmental processes and various stress responses. To explore the roles of melatonin played as well as its association with abscisic acid (ABA) in a process of drought priming-induced cold tolerance (DPICT), a wild-type barley and its ABA-deficient mutant Az34 counterpart were selected for comparison, in which the effects of melatonin application (either foliarly or rhizospherically) and/or drought priming on the cold tolerance of both types of barleys were systematically investigated. It was demonstrated that the early drought priming induced an increase of endogenous melatonin production, which is not ABA dependent. In addition, exogenously applied melatonin resulted in higher ABA concentration in the drought-primed plants than in the nonprimed plants when exposed to cold stress, indicating that ABA responded in a drought-dependent manner. The interplay of melatonin and ABA leads to plants maintaining better water status. Drought priming-induced melatonin accumulation enhanced the antioxidant capacity in both chloroplasts and mitochondria, which sustained the photosynthetic electron transport in photosynthetic apparatus of the plants under cold stress. These results suggest that the exogenous melatonin application enhances the DPICT by modulating subcellular antioxidant systems and ABA levels in barley. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Testing of the Defense Waste Processing Facility Cold Chemical Dissolution Method in Sludge Batch 9 Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coleman, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Young, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Brown, L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-05-10

    For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) tests the applicability of the digestion methods used by the DWPF Laboratory for elemental analysis of Sludge Receipt and Adjustment Tank (SRAT) Receipt samples and SRAT Product process control samples. DWPF SRAT samples are typically dissolved using a method referred to as the DWPF Cold Chemical or Cold Chem Method (CC), (see DWPF Procedure SW4- 15.201). Testing indicates that the CC method produced mixed results. The CC method did not result in complete dissolution of either the SRAT Receipt or SRAT Product with some fine, dark solids remaining. However, elemental analyses did not reveal extreme biases for the major elements in the sludge when compared with analyses obtained following dissolution by hot aqua regia (AR) or sodium peroxide fusion (PF) methods. The CC elemental analyses agreed with the AR and PF methods well enough that it should be adequate for routine process control analyses in the DWPF after much more extensive side-by-side tests of the CC method and the PF method are performed on the first 10 SRAT cycles of the Sludge Batch 9 (SB9) campaign. The DWPF Laboratory should continue with their plans for further tests of the CC method during these 10 SRAT cycles.

  8. An empirical model for friction in cold forging

    DEFF Research Database (Denmark)

    Bay, Niels; Eriksen, Morten; Tan, Xincai

    2002-01-01

    With a system of simulative tribology tests for cold forging the friction stress for aluminum, steel and stainless steel provided with typical lubricants for cold forging has been determined for varying normal pressure, surface expansion, sliding length and tool/work piece interface temperature...... of normal pressure and tool/work piece interface temperature. The model is verified by process testing measuring friction at varying reductions in cold forward rod extrusion. KEY WORDS: empirical friction model, cold forging, simulative friction tests....

  9. RNA-Seq-based analysis of cold shock response in Thermoanaerobacter tengcongensis, a bacterium harboring a single cold shock protein encoding gene.

    Directory of Open Access Journals (Sweden)

    Bo Liu

    Full Text Available BACKGROUND: Although cold shock responses and the roles of cold shock proteins in microorganisms containing multiple cold shock protein genes have been well characterized, related studies on bacteria possessing a single cold shock protein gene have not been reported. Thermoanaerobacter tengcongensis MB4, a thermophile harboring only one known cold shock protein gene (TtescpC, can survive from 50° to 80 °C, but has poor natural competence under cold shock at 50 °C. We therefore examined cold shock responses and their effect on natural competence in this bacterium. RESULTS: The transcriptomes of T. tengcongensis before and after cold shock were analyzed by RNA-seq and over 1200 differentially expressed genes were successfully identified. These genes were involved in a wide range of biological processes, including modulation of DNA replication, recombination, and repair; energy metabolism; production of cold shock protein; synthesis of branched amino acids and branched-chain fatty acids; and sporulation. RNA-seq analysis also suggested that T. tengcongensis initiates cell wall and membrane remodeling processes, flagellar assembly, and sporulation in response to low temperature. Expression profiles of TtecspC and failed attempts to produce a TtecspC knockout strain confirmed the essential role of TteCspC in the cold shock response, and also suggested a role of this protein in survival at optimum growth temperature. Repression of genes encoding ComEA and ComEC and low energy metabolism levels in cold-shocked cells are the likely basis of poor natural competence at low temperature. CONCLUSION: Our study demonstrated changes in global gene expression under cold shock and identified several candidate genes related to cold shock in T. tengcongensis. At the same time, the relationship between cold shock response and poor natural competence at low temperature was preliminarily elucidated. These findings provide a foundation for future studies on genetic

  10. Simulation of a Novel Single-column Cryogenic Air Separation Process Using LNG Cold Energy

    Science.gov (United States)

    Jieyu, Zheng; Yanzhong, Li; Guangpeng, Li; Biao, Si

    In this paper, a novel single-column air separation process is proposed with the implementation of heat pump technique and introduction of LNG coldenergy. The proposed process is verifiedand optimized through simulation on the Aspen Hysys® platform. Simulation results reveal that thepower consumption per unit mass of liquid productis around 0.218 kWh/kg, and the total exergy efficiency of the systemis 0.575. According to the latest literatures, an energy saving of 39.1% is achieved compared with those using conventional double-column air separation units.The introduction of LNG cold energy is an effective way to increase the system efficiency.

  11. Effect assessment of Future Climate Change on Water Resource and Snow Quality in cold snowy regions in Japan

    Science.gov (United States)

    Taniguchi, Y.; Nakatsugawa, M.; Kudo, K.

    2017-12-01

    It is predicted that the effects of global warming on everyday life will be clearly seen in cold, snowy regions such as Hokkaido. In relation to climate change, there is the concern that the warmer climate will affect not only water resources, but also local economies, in snowy areas, when air temperature increases and snowfall decreases become more marked in the future. Communities whose economies are greatly dependent on snow as a tourism resource, such as for winter sports and snow events, will lose large numbers of visitors because of the shortened winter season. This study was done as a basic study to provide basic ideas for planning adaptation strategies against climate change based on the local characteristics of a cold, snowy region. By taking dam catchment basins in Hokkaido as the subject areas and by using the climate change prediction data that correspond to IPCCAR5, the local-level influence of future climate change on snowfall and snow quality in relation to water resources and winter sports was quantitatively assessed. The water budget was examined for a dam catchment basin in Hokkaido under the present climate (September 1984 to August 2004) and under the future climate (September 2080 to August 2100) by using rainfall, snowfall and evapotranspiration estimated by the LoHAS heat and water balance analysis model.The examination found that, under the future climate, the net annual precipitation will decrease by up to 200 mm because of decreases in precipitation and in runoff height that will result from increased evapotranspiration. The predicted decrease in annual hydro potential of snowfall was considered to greatly affect the dam reservoir operation during the snowmelt season. The snow quality analysis by SNOWPACK revealed that the future snow would become granular earlier than it does at present. Most skiers' snow preferences, from best to worst, are light dry snow (i.e., fresh snow), lightly compacted snow, compacted snow and, finally, granular

  12. Role of cavity formation in SCC of cold worked carbon steel in high-temperature water. Part 2. Study of crack initiation behavior

    International Nuclear Information System (INIS)

    Yamada, Takuyo; Aoki, Masanori; Miyamoto, Tomoki; Arioka, Koji

    2013-01-01

    To consider the role of cavity formation in stress corrosion cracking (SCC) of cold worked (CW) carbon steel in high-temperature water, SCC and creep growth (part 1) and initiation (part 2) tests were performed. The part 2 crack initiation tests used blunt notched compact tension (CT) type specimens of CW carbon steel exposed under the static load condition in hydrogenated pure water and in air in the range of temperatures between 360 and 450°C. Inter-granular (IG) crack initiation was observed both in water and in air even in static load condition when steel specimens had been cold worked. 1/T type temperature dependencies of initiation times were observed for CW carbon steel, and the crack initiation times in an operating pressurized heavy water reactor, PHWR (Pt Lepreau) seemed to lie on the extrapolated line of the experimental results. Cavities were identified at the grain boundaries near the bottom of a notch (highly stressed location) before cracks initiated both in water and air. The cavities were probably formed by the condensation of vacancies and they affected the bond strength of the grain boundaries. To assess the mechanism of IGSCC initiation in high temperature water, the diffusion of vacancies driven by stress gradients was studied using a specially designed CT specimen. As a model for IGSCC in CW carbon steel in high temperature water, it was concluded that the formation of cavities from the collapse of vacancies offers the best interpretation of the present data. (author)

  13. Application of a non-dynamometric method to the measurement of the coefficient of static friction in cold and hot water between stainless steel and two alloys of zirconium

    International Nuclear Information System (INIS)

    D'Agraives, B.C.; Toornvliet, J.

    1977-01-01

    A method is proposed to perform comparative measurements of the coefficient of friction, either in cold water (25 0 C) or in hot pressurized water (240 0 C). For the purpose, a pin-on-disc tribometer, working with no force transducer, in which the coefficient of friction μ is measured through an angle 0, and given by μ=K sin 0 is used. The method is presently applied to the determination of the incipient friction along a distance of few millimetres. At low speed (1 mm/s) and with light contacts loads (from 50 to 150 g), two different friction mechanisms are observed for the following couples of materials; Zircalloy 2/304L stainless steel, Zirconium Niobium 2.5/304L stainless steel, 304L stainless steel/304L stainless steel. The first mechanism, which is observed essentially in cold conditions, is characterized by a regular sliding since friction starts, whereas the second appears mostly in hot conditions and shows peaks of friction with irregular and scattered values of μ. These two mechanisms seem to be related to intermetallic affinity of the mating materials, and also to the existence of preoxydized surface layers, and, to a large extent, to the change in the water viscosity. In such conditions, it appears that it is not possible to replace friction experiments in hot water by easier experiments in cold water

  14. Recycling of Manganese Secondary Raw Material Via Cold-Bond Pelletizing Process

    International Nuclear Information System (INIS)

    Ahmed, Y.M.Z.; Mohamed, F.M.

    2004-01-01

    Large quantities of fines were produced during the shipping, transportation, handling and storage of manganese ore sinter imported from different countries to Sinai Company for ferromanganese production. These fines are generally considered as valuable secondary raw materials. Hence, they have a potential to be recycled back to the submerged arc furnace after having been agglomerated. For agglomerates to be considered as feed materials for submerged arc furnace they must have sufficient room temperature strength. Cold-bonded penalization process offers an economically attractive and environmentally viable method for achieving this. Ordinary Portland cement was used in this investigation for the purpose of producing a suitable cold-bonded pellet from such fines. In this investigation, the effect of adding different percentages of Portland cement on the mechanical properties of both green and pellet dried at room temperature for 1, 3, 7, 14, and 28 days of normal curing were studied. The results revealed that, although the compressive strength of green pellets improved with the increase of the amount of cement added. retardation in pellet drop strength was reported. Whereas, the increase in both the cement content and time of drying leads to increase in the mechanical properties of pellets normally cured at room temperature. pellets obtain with the addition of 9% cement shows reasonable mechanical properties to be charged in the submerged are furnace. ferromanganese alloy having a standard range composition was produced in a laboratory submerged are furnace using such pellets

  15. Method for heavy-water production by H2S--H2O chemical exchange process

    International Nuclear Information System (INIS)

    Strathdee, G.G.

    1978-01-01

    The invention discloses a heavy water production stage in a bithermal H 2 S gas H 2 O liquid exchange plant wherein the cold tower is operated under temperature and pressure conditions such that H 2 S in the liquid phase is formed and is maintained in the separation units (sieve trays or plates) of the cold tower. It has been found that the presence of liquid H 2 S acts as an efficient anti-foaming agent

  16. Tritium recovery from tritiated water with a two-stage palladium membrane reactor

    International Nuclear Information System (INIS)

    Birdsell, S.A.; Willms, R.S.

    1997-01-01

    A process to recover tritium from tritiated water has been successfully demonstrated at TSTA. The 2-stage palladium membrane reactor (PMR) is capable of recovering tritium from water without generating additional waste. This device can be used to recover tritium from the substantial amount of tritiated water that is expected to be generated in the International Thermonuclear Experimental Reactor both from torus exhaust and auxiliary operations. A large quantity of tritiated waste water exists world wide because the predominant method of cleaning up tritiated streams is to oxidize tritium to tritiated water. The latter can be collected with high efficiency for subsequent disposal. The PMR is a combined catalytic reactor/permeator. Cold (non-tritium) water processing experiments were run in preparation for the tritiated water processing tests. Tritium was recovered from a container of molecular sieve loaded with 2,050 g (2,550 std. L) of water and 4.5 g of tritium. During this experiment, 27% (694 std. L) of the water was processed resulting in recovery of 1.2 g of tritium. The maximum water processing rate for the PMR system used was determined to be 0.5 slpm. This correlates well with the maximum processing rate determined from the smaller PMR system on the cold test bench and has resulted in valuable scale-up and design information

  17. Tritium recovery from tritiated water with a two-stage palladium membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Birdsell, S.A.; Willms, R.S.

    1997-04-01

    A process to recover tritium from tritiated water has been successfully demonstrated at TSTA. The 2-stage palladium membrane reactor (PMR) is capable of recovering tritium from water without generating additional waste. This device can be used to recover tritium from the substantial amount of tritiated water that is expected to be generated in the International Thermonuclear Experimental Reactor both from torus exhaust and auxiliary operations. A large quantity of tritiated waste water exists world wide because the predominant method of cleaning up tritiated streams is to oxidize tritium to tritiated water. The latter can be collected with high efficiency for subsequent disposal. The PMR is a combined catalytic reactor/permeator. Cold (non-tritium) water processing experiments were run in preparation for the tritiated water processing tests. Tritium was recovered from a container of molecular sieve loaded with 2,050 g (2,550 std. L) of water and 4.5 g of tritium. During this experiment, 27% (694 std. L) of the water was processed resulting in recovery of 1.2 g of tritium. The maximum water processing rate for the PMR system used was determined to be 0.5 slpm. This correlates well with the maximum processing rate determined from the smaller PMR system on the cold test bench and has resulted in valuable scale-up and design information.

  18. Cold Stress

    Science.gov (United States)

    ... Publications and Products Programs Contact NIOSH NIOSH COLD STRESS Recommend on Facebook Tweet Share Compartir Workers who ... cold environments may be at risk of cold stress. Extreme cold weather is a dangerous situation that ...

  19. Fish communities associated with cold-water corals vary with depth and substratum type

    Science.gov (United States)

    Milligan, Rosanna J.; Spence, Gemma; Roberts, J. Murray; Bailey, David M.

    2016-08-01

    Understanding the processes that drive the distribution patterns of organisms and the scales over which these processes operate are vital when considering the effective management of species with high commercial or conservation value. In the deep sea, the importance of scleractinian cold-water corals (CWCs) to fish has been the focus of several studies but their role remains unclear. We propose this may be due to the confounding effects of multiple drivers operating over multiple spatial scales. The aims of this study were to investigate the role of CWCs in shaping fish community structure and individual species-habitat associations across four spatial scales in the NE Atlantic ranging from "regions" (separated by >500 km) to "substratum types" (contiguous). Demersal fish and substratum types were quantified from three regions: Logachev Mounds, Rockall Bank and Hebrides Terrace Seamount (HTS). PERMANOVA analyses showed significant differences in community composition between all regions which were most likely caused by differences in depths. Within regions, significant variation in community composition was recorded at scales of c. 20-3500 m. CWCs supported significantly different fish communities to non-CWC substrata at Rockall Bank, Logachev and the HTS. Single-species analyses using generalised linear mixed models showed that Sebastes sp. was strongly associated with CWCs at Rockall Bank and that Neocyttus helgae was more likely to occur in CWCs at the HTS. Depth had a significant effect on several other fish species. The results of this study suggest that the importance of CWCs to fish is species-specific and depends on the broader spatial context in which the substratum is found. The precautionary approach would be to assume that CWCs are important for associated fish, but must acknowledge that CWCs in different depths will not provide redundancy or replication within spatially-managed conservation networks.

  20. Numerical modeling of cold room's hinged door opening and closing processes

    Science.gov (United States)

    Carneiro, R.; Gaspar, P. D.; Silva, P. D.; Domingues, L. C.

    2016-06-01

    The need of rationalize energy consumption in agrifood industry has fasten the development of methodologies to improve the thermal and energy performances of cold rooms. This paper presents a three-dimensional (3D) transient Computational Fluid Dynamics (CFD) modelling of a cold room to evaluate the air infiltration rate through hinged doors. A species transport model is used for modelling the tracer gas concentration decay technique. Numerical predictions indicate that air temperature difference between spaces affects the air infiltration. For this case study, the infiltration rate increases 0.016 m3 s-1 per K of air temperature difference. The knowledge about the evolution of air infiltration during door opening/closing times allows to draw some conclusions about its influence on the air conditions inside the cold room, as well as to suggest best practices and simple technical improvements that can minimize air infiltration, and consequently improve thermal performance and energy consumption rationalization.

  1. Major differences observed in transcript profiles of blueberry during cold acclimation under field and cold room conditions.

    Science.gov (United States)

    Dhanaraj, Anik L; Alkharouf, Nadim W; Beard, Hunter S; Chouikha, Imed B; Matthews, Benjamin F; Wei, Hui; Arora, Rajeev; Rowland, Lisa J

    2007-02-01

    Our laboratory has been working toward increasing our understanding of the genetic control of cold hardiness in blueberry (Vaccinium section Cyanococcus) to ultimately use this information to develop more cold hardy cultivars for the industry. Here, we report using cDNA microarrays to monitor changes in gene expression at multiple times during cold acclimation under field and cold room conditions. Microarrays contained over 2,500 cDNA inserts, approximately half of which had been picked and single-pass sequenced from each of two cDNA libraries that were constructed from cold acclimated floral buds and non-acclimated floral buds of the fairly cold hardy cv. Bluecrop (Vaccinium corymbosum L.). Two biological samples were examined at each time point. Microarray data were analyzed statistically using t tests, ANOVA, clustering algorithms, and online analytical processing (OLAP). Interestingly, more transcripts were found to be upregulated under cold room conditions than under field conditions. Many of the genes induced only under cold room conditions could be divided into three major types: (1) genes associated with stress tolerance; (2) those that encode glycolytic and TCA cycle enzymes, and (3) those associated with protein synthesis machinery. A few of the genes induced only under field conditions appear to be related to light stress. Possible explanations for these differences are discussed in physiological context. Although many similarities exist in how plants respond during cold acclimation in the cold room and in the field environment, there are major differences suggesting caution should be taken in interpreting results based only on artificial, cold room conditions.

  2. Ingestion of a cold temperature/menthol beverage increases outdoor exercise performance in a hot, humid environment.

    Science.gov (United States)

    Tran Trong, Than; Riera, Florence; Rinaldi, Kévin; Briki, Walid; Hue, Olivier

    2015-01-01

    A recent laboratory study demonstrated that the ingestion of a cold/menthol beverage improved exercise performance in a hot and humid environment during 20 km of all-out cycling. Therefore, the aim of this study was to determine whether the ingestion of cold water/ice-slurry with menthol would improve performance in hot and humid outdoor conditions. Ten trained males completed three trials of five blocks consisting of 4-km cycling and 1.5-km running. During warm-up, every block and recovery, the athletes drank 190 ml of aromatized (i.e., with 0.05 mL of menthol) beverage at three temperatures: Neutral (ambient temperature) (28.7°C±0. 5°C), Cold (3.1°C±0.6°C) or Ice-slurry (0.17°C±0.07°C). Trial time, core temperature (Tco), heart rate (HR), rate of perceived exertion (RPE), thermal sensation (TS) and thermal comfort (TC) were assessed. Ice-slurry/menthol increased performance by 6.2% and 3.3% compared with neutral water/menthol and cold water/menthol, respectively. No between-trial differences were noted for Tco, HR, RPE, TC and TS was lower with ice-slurry/menthol and cold water/menthol compared with neutral water/menthol. A low drink temperature combined with menthol lessens the performance decline in hot/humid outdoor conditions (i.e., compared with cold water alone). Performances were better with no difference in psycho-physiological stress (Tco, HR and RPE) between trials. The changes in perceptual parameters caused by absorbing a cold/menthol beverage reflect the psychological impact. The mechanism leading to these results seems to involve brain integration of signals from physiological and psychological sources.

  3. A data-driven emulation framework for representing water-food nexus in a changing cold region

    Science.gov (United States)

    Nazemi, A.; Zandmoghaddam, S.; Hatami, S.

    2017-12-01

    Water resource systems are under increasing pressure globally. Growing population along with competition between water demands and emerging effects of climate change have caused enormous vulnerabilities in water resource management across many regions. Diagnosing such vulnerabilities and provision of effective adaptation strategies requires the availability of simulation tools that can adequately represent the interactions between competing water demands for limiting water resources and inform decision makers about the critical vulnerability thresholds under a range of potential natural and anthropogenic conditions. Despite a significant progress in integrated modeling of water resource systems, regional models are often unable to fully represent the contemplating dynamics within the key elements of water resource systems locally. Here we propose a data-driven approach to emulate a complex regional water resource system model developed for Oldman River Basin in southern Alberta, Canada. The aim of the emulation is to provide a detailed understanding of the trade-offs and interaction at the Oldman Reservoir, which is the key to flood control and irrigated agriculture in this over-allocated semi-arid cold region. Different surrogate models are developed to represent the dynamic of irrigation demand and withdrawal as well as reservoir evaporation and release individually. The nan-falsified offline models are then integrated through the water balance equation at the reservoir location to provide a coupled model for representing the dynamic of reservoir operation and water allocation at the local scale. The performance of individual and integrated models are rigorously examined and sources of uncertainty are highlighted. To demonstrate the practical utility of such surrogate modeling approach, we use the integrated data-driven model for examining the trade-off in irrigation water supply, reservoir storage and release under a range of changing climate, upstream

  4. Integrating terrestrial through aquatic processing of water, carbon and nitrogen over hot, cold and lukewarm moments in mixed land use catchments

    Science.gov (United States)

    Band, L. E.; Lin, L.; Duncan, J. M.

    2017-12-01

    A major challenge in understanding and managing freshwater volumes and quality in mixed land use catchments is the detailed heterogeneity of topography, soils, canopy, and inputs of water and biogeochemicals. The short space and time scale dynamics of sources, transport and processing of water, carbon and nitrogen in natural and built environments can have a strong influence on the timing and magnitude of watershed runoff and nutrient production, ecosystem cycling and export. Hydroclimate variability induces a functional interchange of terrestrial and aquatic environments across their transition zone with the temporal and spatial expansion and contraction of soil wetness, standing and flowing water over seasonal, diurnal and storm event time scales. Variation in sources and retention of nutrients at these scales need to be understood and represented to design optimal mitigation strategies. This paper discusses the conceptual framework used to design both simulation and measurement approaches, and explores these dynamics using an integrated terrestrial-aquatic watershed model of coupled water-carbon-nitrogen processes at resolutions necessary to resolve "hot spot/hot moment" phenomena in two well studied catchments in Long Term Ecological Research sites. The potential utility of this approach for design and assessment of urban green infrastructure and stream restoration strategies is illustrated.

  5. Observations and simulations of the seasonal evolution of snowpack cold content and its relation to snowmelt and the snowpack energy budget

    Science.gov (United States)

    Jennings, Keith S.; Kittel, Timothy G. F.; Molotch, Noah P.

    2018-05-01

    Cold content is a measure of a snowpack's energy deficit and is a linear function of snowpack mass and temperature. Positive energy fluxes into a snowpack must first satisfy the remaining energy deficit before snowmelt runoff begins, making cold content a key component of the snowpack energy budget. Nevertheless, uncertainty surrounds cold content development and its relationship to snowmelt, likely because of a lack of direct observations. This work clarifies the controls exerted by air temperature, precipitation, and negative energy fluxes on cold content development and quantifies the relationship between cold content and snowmelt timing and rate at daily to seasonal timescales. The analysis presented herein leverages a unique long-term snow pit record along with validated output from the SNOWPACK model forced with 23 water years (1991-2013) of quality controlled, infilled hourly meteorological data from an alpine and subalpine site in the Colorado Rocky Mountains. The results indicated that precipitation exerted the primary control on cold content development at our two sites with snowfall responsible for 84.4 and 73.0 % of simulated daily gains in the alpine and subalpine, respectively. A negative surface energy balance - primarily driven by sublimation and longwave radiation emission from the snowpack - during days without snowfall provided a secondary pathway for cold content development, and was responsible for the remaining 15.6 and 27.0 % of cold content additions. Non-zero cold content values were associated with reduced snowmelt rates and delayed snowmelt onset at daily to sub-seasonal timescales, while peak cold content magnitude had no significant relationship to seasonal snowmelt timing. These results suggest that the information provided by cold content observations and/or simulations is most relevant to snowmelt processes at shorter timescales, and may help water resource managers to better predict melt onset and rate.

  6. Pressure field study of the Tevatron cold compressors

    International Nuclear Information System (INIS)

    Klebaner, A.L.; Martinez, A.; Soyars, W.M.; Theilacker, J.C.; Fermilab

    2003-01-01

    The Fermilab Tevatron cryogenic system utilizes high-speed centrifugal cold compressors, manufactured by Ishikawajima-Harima Heavy Industries Co. Ltd. (IHI), for high-energy operations [1]. The compressor is designed to pump 60 g/sec of 3.6 K saturated helium vapor at a pressure ratio of 2.8, with an off-design range of 40 to 70 g/sec. Operating speeds are between 40 and 95 krpm, with a speed of 80 krpm at the design point. Different heat loads and magnet quench performance of each of the twenty-four satellite refrigerators dictates different process pressure and flow rates of the cold compressors. Reducing the process flow rate can cause the centrifugal cold compressor to stop pumping and subsequently surge. Tests have been conducted at the Cryogenic Test Facility at Fermilab to map the pressure field and appropriate efficiency of the IHI hydrodynamic cold compressor. The information allows tuning of each of the twenty-four Tevatron satellite refrigerators to avoid cold compressor operation near the surge and choke lines. A new impeller has also been tested. The Tevatron cold compressor pressure field and efficiency data with the new impeller are presented in this paper

  7. Pressure Field Study of the Tevatron Cold Compressors

    International Nuclear Information System (INIS)

    Klebaner, A.L.; Martinez, A.; Soyars, W.M.; Theilacker, J.C.

    2004-01-01

    The Fermilab Tevatron cryogenic system utilizes high-speed centrifugal cold compressors, manufactured by Ishikawajima-Harima Heavy Industries Co. Ltd. (IHI), for high-energy operations. The compressor is designed to pump 60 g/sec of 3.6 K saturated helium vapor at a pressure ratio of 2.8, with an off-design range of 40 to 70 g/sec. Operating speeds are between 40,000 and 95,000 rpm, with a speed of 80,000 rpm at the design point. Different heat loads and magnet quench performance of each of the twenty-four satellite refrigerators dictates different process pressure and flow rates of the cold compressors. Reducing the process flow rate can cause the centrifugal cold compressor to stop pumping and subsequently surge. Tests have been conducted at the Cryogenic Test Facility at Fermilab to map the pressure field and appropriate efficiency of the IHI hydrodynamic cold compressor. The information allows tuning of each of the twenty-four Tevatron satellite refrigerators to avoid cold compressor operation near the surge and choke lines. A new impeller has also been tested. The Tevatron cold compressor pressure field and efficiency data with the new impeller are presented in this paper

  8. Safety analysis report for the Cold Vacuum Drying Facility, phase 1, supporting civil/structural construction

    International Nuclear Information System (INIS)

    Pili-Vincens, C.

    1997-01-01

    The US Department of Energy established the K Basins Spent Nuclear Fuel Project to address safety and environmental concerns associated with deteriorating spent nuclear fuel presently stored under water in the Hanford Site's K Basins, which are located near the Columbia River. Recommendations for a series of aggressive projects to construct and operate systems and facilities to manage the safe removal of K Basins fuel were made in WHC-EP-0830, Hanford Spent Nuclear Fuel Recommended Path Forward,' and its subsequent update, WHC-SD-SNF-SP-005, Hanford Spent Nuclear Fuel Project Integrated Process Strategy for K Basins Fuel. The integrated process strategy recommendations include the following process steps: fuel preparation activities at the K Basins, including removing the fuel elements from their K Basin canisters, separating fuel particulate from fuel elements and fuel fragments greater than 0.6 cm (0.25 in.) in any dimension, removing excess sludge from the fuel and fuel fragments by means of flushing, as necessary, and packaging the fuel into multicanister overpacks; removal of free water by draining and vacuum drying at the Cold Vacuum Drying Facility (CVDF), a new facility in the 100 K Area of the Hanford Site. This report is contains the safety analysis for the Cold Vacuum Drying Facility, Phase 1

  9. Implementation of cold risk management in occupational safety, occupational health and quality practices. Evaluation of a development process and its effects at the finnish maritime administration.

    Science.gov (United States)

    Risikko, Tanja; Remes, Jouko; Hassi, Juhani

    2008-01-01

    Cold is a typical environmental risk factor in outdoor work in northern regions. It should be taken into account in a company's occupational safety, health and quality systems. A development process for improving cold risk management at the Finnish Maritime Administration (FMA) was carried out by FMA and external experts. FMA was to implement it. Three years after the development phase, the outcomes and implementation were evaluated. The study shows increased awareness about cold work and few concrete improvements. Concrete improvements in occupational safety and health practices could be seen in the pilot group. However, organization-wide implementation was insufficient, the main reasons being no organization-wide practices, unclear process ownership, no resources and a major reorganization process. The study shows a clear need for expertise supporting implementation. The study also presents a matrix for analyzing the process.

  10. Evaluating the role of fronts in habitat overlaps between cold and warm water species in the western North Pacific: A proof of concept

    Science.gov (United States)

    Mugo, Robinson M.; Saitoh, Sei-Ichi; Takahashi, Fumihiro; Nihira, Akira; Kuroyama, Tadaaki

    2014-09-01

    Cold- and warm-water species' fishing grounds show a spatial synchrony around fronts in the western North Pacific (WNP). However, it is not yet clear whether a front (thermal, salinity or chlorophyll) acts as an absolute barrier to fish migration on either side or its structure allows interaction of species with different physiological requirements. Our objective was to assess potential areas of overlap between cold- and warm-water species using probabilities of presence derived from fishery datasets and remotely sensed environment data in the Kuroshio-Oyashio region in the WNP. Fishery data comprised skipjack tuna (Katsuwonus pelamis) fishing locations and proxy presences (derived from fishing night light images) for neon flying squid (Ommastrephes bartrami) and Pacific saury (Cololabis saira). Monthly (August-November) satellite remotely sensed sea-surface temperature, chlorophyll-a and sea-surface height anomaly images were used as environment data. Maximum entropy (MaxEnt) models were used to determine probabilities of presence (PoP) for each set of fishery and environment data for the area 35-45°N and 140-160°E. Maps of both sets of PoPs were compared and areas of overlap identified using a combined probability map. Results indicated that areas of spatial overlap existed among the species habitats, which gradually widened from September to November. The reasons for these overlaps include the presence of strong thermal/ocean-color gradients between cold Oyashio and warm Kuroshio waters, and also the presence of the sub-arctic front. Due to the high abundance of food along frontal zones, the species use the fronts as foraging grounds while confining within physiologically tolerable waters on either side of the front. The interaction zone around the front points to areas that might be accessible to both species for foraging, which suggests intense prey-predator interaction zones.

  11. Imaging with cold neutrons

    International Nuclear Information System (INIS)

    Lehmann, E.H.; Kaestner, A.; Josic, L.; Hartmann, S.; Mannes, D.

    2011-01-01

    Neutrons for imaging purposes are provided mainly from thermal beam lines at suitable facilities around the world. The access to cold neutrons is presently limited to very few places only. However, many challenging options for imaging with cold neutrons have been found out, given by the interaction behavior of the observed materials with neutrons in the cold energy range (3-10 A). For absorbing materials, the interaction probability increases proportionally with the wavelength with the consequence of more contrast but less transmission with cold neutrons. Many materials are predominantly scattering neutrons, in particular most of crystalline structural materials. In these cases, cold neutrons play an important role by covering the energy range of the most important Bragg edges given by the lattice planes of the crystallites. This particular behavior can be used for at least two important aspects-choosing the right energy of the initial beam enables to have a material more or less transparent, and a direct macroscopic visualization of the crystalline structure and its change in a manufacturing process. Since 2006, PSI operates its second beam line for neutron imaging, where cold neutrons are provided from a liquid deuterium cold source (operated at 25 K). It has been designed to cover the most current aspects in neutron imaging research with the help of high flexibility. This has been done with changeable inlet apertures, a turbine based velocity selector, two beam positions and variable detector systems, satisfying the demands of the individual investigation. The most important detection system was found to be a micro-tomography system that enables studies in the presently best spatial resolution. In this case, the high contrast from the sample interaction process and the high detection probability for the cold neutrons combines in an ideal combination for the best possible performance. Recently, it was found out that the energy selective studies might become a

  12. Solar process for cold production at low temperature (-28 deg) by solid-gas sorption; Procede solaire de production de froid basse temperature (-28 deg) par sorption solide-gaz

    Energy Technology Data Exchange (ETDEWEB)

    Le Pierres, N.

    2005-09-15

    The aim of this work is the design and experimentation of a thermochemical process for cold production purpose at -28 deg. C using low grade heat (70 deg. C) supplied by flat plate solar collectors. An exergetic analysis of the thermo-chemical dipole and of ideal thermodynamic cycles led to the definition of an original solar process. This process involves two cascaded cycles functioning in parallel. The cycle is discontinuous and presents a day phase of heating and regeneration and a night phase of cold production. A dynamic simulation allowed the study of its functioning depending on the weather conditions and on the dimensions of the process. A prototype covering the needs of a cold chamber loosing 40 W of cold continuously was built and tested in real conditions in Perpignan. It demonstrated the feasibility of this innovative concept and validated the hypothesis used to develop the model. A study of the process functioning was lead by simulation in different meteorological conditions and for different heat sources (solar, geothermal or industrial waste). It showed the potentialities of the concept. (author)

  13. The crabs that live where hot and cold collide.

    Science.gov (United States)

    Thurber, Andrew R

    2015-07-01

    The distribution of Kiwa tyleri with the large male individual in the high-temperature flow (right hand side - fluid flow indicated by shimmering water) and the mixed sex assemblage (left). Note the heavy coat of epibiotic bacteria (grey colouring) on the individual in the hottest section of the vent, as expected from being closest to the sulphide needed to sustain the epibiotic bacteria that this species harvests for its food. Image courtesy of Dr. L. Marsh (Credit: NERC ChEsSo Consortium). In Focus: Marsh, L., Copley, J.T., Tyler, P.A. & Thatje, S. (2015) In hot and cold water: differential life-history traits are key to success in contrasting thermal deep-sea environments. Journal of Animal Ecology, 84, 898-913. Southern Ocean hydrothermal vents juxtapose two extremes - intense food-poor cold and scalding food-rich oases. At these vents, Marsh et al. (2015) found a community of Kiwa (Yeti) crabs that separated themselves along this gradient with the largest males sitting in hot, food-rich waters, while smaller males and females co-occur in an intermediate zone of warmth. However, as their eggs start to develop, females embark away from the vent to the food-poor yet stable cold of the Southern Ocean. This species has found an intriguing way to balance foraging risk and population persistence at the interface of hot and cold. © 2015 The Author. Journal of Animal Ecology © 2015 British Ecological Society.

  14. Formation of cold molecules through the photo-association of cold atoms of Cesium. Existence of long range forces between between cold excited atoms of Cesium

    International Nuclear Information System (INIS)

    Comparat, D.

    1999-09-01

    This thesis deals with the experimental study and the theoretical interpretation of the processes involved in photo-association and the formation of cold caesium molecules. It also presents a study of the dipolar forces between a pair of cold excited caesium atoms. We present here the first photo-association experiment on cold caesium atoms: two cold atoms absorb a photon to form an excited electronically excited molecules in a rotation-vibration level. The first production of cold molecules which was realised experimentally, after the spontaneous deexcitation of the photo-associated molecules, is described, stressing the role of the potential well of the molecular states O g - (6s+6p 3/2 ) or 1 u (6s+6p 3/2 ) of caesium. The detection of the formed caesium molecules is based on a two-photons resonant ionisation that creates Cs 2 + ions, afterwards selectively detected. Temperatures around 20-200 μK have been measured. The photo-associative spectroscopy is described on the theoretical point of view: a detailed theoretical study allows to calculate precisely the asymptotic parts of the potential curves. On the experimental point of view, we present the spectroscopy of the extern potential well of the caesium state O g - (6s+6p 3/2 ) and the construction of an effective potential curve of the RKR type. A unified theory of photo-association in weak field, considered as a collision assisted by laser, is developed. The cold atoms experiments allow to study and control the collision between two atoms whose mutual interaction is of the dipole-dipole type. Two different physical systems are studied: a sample of Rydberg atoms, and the photo-association process which is a laser-assisted collision. A modification of the motion of one pair of atoms makes it possible to control the bipolar forces and to choose the atoms relative speeds. (author)

  15. Cold starting characteristics analysis of hydraulic free piston engine

    International Nuclear Information System (INIS)

    Zhang, Shuanlu; Zhao, Zhenfeng; Zhao, Changlu; Zhang, Fujun; Wang, Shan

    2017-01-01

    The cold start characteristic of hydraulic free piston diesel engine may affect its stable operation. Therefore the specific cold start characteristics, such as BDC or TDC positions, pressure in-cylinder, heat release rate, should be investigated in detail. These parameters fluctuate in some regularity in the cod start process. With the development of the free piston engine prototype and the establishment of test bench, the results are obtained. For the dynamic results, the fluctuation range of TDC and BDC positions is 8 mm and decreases with time. The thermodynamic results show that the combustion process is not stable and the pressure in-cylinder fluctuates largely in the cold start process. In addition, the combustion is rapid and knock happens inevitably. In order to investigate the reasons, a CFD model is established for temperature analysis in-cylinder and heat transfer conditions. It is found that higher start wall temperature will lead to more uniform temperature distribution. The delay period may decreases and heat release will move forward. This reason is analyzed by thermodynamic derivation based on the first law of thermodynamics. Finally, the improvement suggestions of cold start strategy are proposed. - Highlights: • The cold start behaviors of HFPE are investigated in detail. • CFD method is used for simulating temperature distribution in start process. • Thermodynamic derivation uncovers the compression temperature distribution. • The improvement suggestions of cold start strategy are proposed.

  16. Cold dark matter from the hidden sector

    International Nuclear Information System (INIS)

    Arias, Paola; Pontificia Univ. Catolica de Chile, Santiago

    2012-02-01

    Weakly interacting slim particles (WISPs) such as hidden photons (HP) and axion-like particles (ALPs) have been proposed as cold dark matter candidates. They might be produced non-thermally via the misalignment mechanism, similarly to cold axions. In this talk we review the main processes of thermalisation of HP and we compute the parameter space that may survive as cold dark matter population until today. Our findings are quite encouraging for experimental searches in the laboratory in the near future.

  17. Cold dark matter from the hidden sector

    Energy Technology Data Exchange (ETDEWEB)

    Arias, Paola [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Pontificia Univ. Catolica de Chile, Santiago (Chile). Facultad de Fisica

    2012-02-15

    Weakly interacting slim particles (WISPs) such as hidden photons (HP) and axion-like particles (ALPs) have been proposed as cold dark matter candidates. They might be produced non-thermally via the misalignment mechanism, similarly to cold axions. In this talk we review the main processes of thermalisation of HP and we compute the parameter space that may survive as cold dark matter population until today. Our findings are quite encouraging for experimental searches in the laboratory in the near future.

  18. Ingestion of a cold temperature/menthol beverage increases outdoor exercise performance in a hot, humid environment.

    Directory of Open Access Journals (Sweden)

    Than Tran Trong

    Full Text Available A recent laboratory study demonstrated that the ingestion of a cold/menthol beverage improved exercise performance in a hot and humid environment during 20 km of all-out cycling. Therefore, the aim of this study was to determine whether the ingestion of cold water/ice-slurry with menthol would improve performance in hot and humid outdoor conditions.Ten trained males completed three trials of five blocks consisting of 4-km cycling and 1.5-km running. During warm-up, every block and recovery, the athletes drank 190 ml of aromatized (i.e., with 0.05 mL of menthol beverage at three temperatures: Neutral (ambient temperature (28.7°C±0. 5°C, Cold (3.1°C±0.6°C or Ice-slurry (0.17°C±0.07°C. Trial time, core temperature (Tco, heart rate (HR, rate of perceived exertion (RPE, thermal sensation (TS and thermal comfort (TC were assessed.Ice-slurry/menthol increased performance by 6.2% and 3.3% compared with neutral water/menthol and cold water/menthol, respectively. No between-trial differences were noted for Tco, HR, RPE, TC and TS was lower with ice-slurry/menthol and cold water/menthol compared with neutral water/menthol.A low drink temperature combined with menthol lessens the performance decline in hot/humid outdoor conditions (i.e., compared with cold water alone. Performances were better with no difference in psycho-physiological stress (Tco, HR and RPE between trials. The changes in perceptual parameters caused by absorbing a cold/menthol beverage reflect the psychological impact. The mechanism leading to these results seems to involve brain integration of signals from physiological and psychological sources.

  19. Seasonal, synoptic and diurnal variation of atmospheric water-isotopologues in the boundary layer of Southwestern Germany caused by plant transpiration, cold-front passages and dewfall.

    Science.gov (United States)

    Christner, Emanuel; Dyroff, Christoph; Kohler, Martin; Zahn, Andreas; Gonzales, Yenny; Schneider, Matthias

    2013-04-01

    Atmospheric water is an enormously crucial trace gas. It is responsible for ~70 % of the natural greenhouse effect (Schmidt et al., JGR, 2010) and carries huge amounts of latent heat. The isotopic composition of water vapor is an elegant tracer for a better understanding and quantification of the extremely complex and variable hydrological cycle in Earth's atmosphere (evaporation, cloud condensation, rainout, re-evaporation, snow), which in turn is a prerequisite to improve climate modeling and predictions. As H216O, H218O and HDO differ in vapor pressure and mass, isotope fractionation occurs due to condensation, evaporation and diffusion processes. In contrast to that, plants are able to transpire water with almost no isotope fractionation. For that reason the ratio of isotopologue concentrations in the boundary layer (BL) provides, compared to humidity measurements alone, independent and additional constraints for quantifying the strength of evaporation and transpiration. Furthermore the isotope ratios contain information about transport history of an air mass and microphysical processes, that is not accessible by humidity measurements. Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) a commercial Picarro Analyzer L2120-i is operated at Karlsruhe in Southwestern Germany, which is continuously measuring the isotopologues H216O, HDO and H218O of atmospheric water vapor since January 2012. A one year record of H216O, HDO and H218O shows clear seasonal, synoptic and diurnal characteristics and reveals the main driving processes affecting the isotopic composition of water vapor in the Middle European BL. Changes in continental plant transpiration and evaporation throughout the year lead to a slow seasonal HDO/H216O-variation, that cannot be explained by pure Rayleigh condensation. Furthermore, cold-front passages from NW lead to fast and pronounced depletion of the HDO/H216O-ratio within

  20. Development of cold source moderator structure

    International Nuclear Information System (INIS)

    Aso, Tomokaze; Ishikura, Syuichi; Terada, Atsuhiko; Teshigawara, Makoto; Watanabe, Noboru; HIno, Ryutaro

    1999-01-01

    The cold and thermal neutrons generated at the target (which works as a spallation neutron source under a 5MW proton beam condition) is filtered with cold source moderators using supercritical hydrogen. Preliminary structural analysis was carried out to clarify technical problems on the concept of the thin-walled structure for the cold source moderator. Structural analytical results showed that the maximum stress of 1 12MPa occurred on the moderator surface, which exceeded the allowable design stresses of ordinary aluminum alloys. Flow patterns measured by water flow experiments agreed well with hydraulic analytical results, which showed that an impinging jet flow from an inner pipe of the moderator caused a recirculation flow on a large scale. Based on analytical and experimental results, new moderator structures with minute frames, blowing flow holes etc. were proposed to keep its strength and to suppress the recirculation flow. (author)

  1. Cold-water coral distributions in the drake passage area from towed camera observations--initial interpretations.

    Directory of Open Access Journals (Sweden)

    Rhian G Waller

    Full Text Available Seamounts are unique deep-sea features that create habitats thought to have high levels of endemic fauna, productive fisheries and benthic communities vulnerable to anthropogenic impacts. Many seamounts are isolated features, occurring in the high seas, where access is limited and thus biological data scarce. There are numerous seamounts within the Drake Passage (Southern Ocean, yet high winds, frequent storms and strong currents make seafloor sampling particularly difficult. As a result, few attempts to collect biological data have been made, leading to a paucity of information on benthic habitats or fauna in this area, particularly those on primarily hard-bottom seamounts and ridges. During a research cruise in 2008 six locations were examined (two on the Antarctic margin, one on the Shackleton Fracture Zone, and three on seamounts within the Drake Passage, using a towed camera with onboard instruments to measure conductivity, temperature, depth and turbidity. Dominant fauna and bottom type were categorized from 200 randomized photos from each location. Cold-water corals were present in high numbers in habitats both on the Antarctic margin and on the current swept seamounts of the Drake Passage, though the diversity of orders varied. Though the Scleractinia (hard corals were abundant on the sedimented margin, they were poorly represented in the primarily hard-bottom areas of the central Drake Passage. The two seamount sites and the Shackleton Fracture Zone showed high numbers of stylasterid (lace and alcyonacean (soft corals, as well as large numbers of sponges. Though data are preliminary, the geological and environmental variability (particularly in temperature between sample sites may be influencing cold-water coral biogeography in this region. Each area observed also showed little similarity in faunal diversity with other sites examined for this study within all phyla counted. This manuscript highlights how little is understood of these

  2. Vitrification of HLW produced by uranium/molybdenum fuel reprocessing in cogema's cold crucible melter

    International Nuclear Information System (INIS)

    Quang, R. Do; Petitjean, V.; Hollebeque, F.; Pinet, O.; Flament, T.; Prodhomme, A.; Dalcorso, J. P.

    2003-01-01

    The performance of the vitrification process currently used in the La Hague commercial reprocessing plants has been continuously improved during more than ten years of operation. In parallel COGEMA (industrial Operator), the French Atomic Energy Commission (CEA) and SGN (respectively COGEMA's R and D provider and Engineering) have developed the cold crucible melter vitrification technology to obtain greater operating flexibility, increased plant availability and further reduction of secondary waste generated during operations. The cold crucible is a compact water-cooled melter in which the radioactive waste and the glass additives are melted by direct high frequency induction. The cooling of the melter produces a solidified glass layer that protects the melter's inner wall from corrosion. Because the heat is transferred directly to the melt, high operating temperatures can be achieved with no impact on the melter itself. COGEMA plans to implement the cold crucible technology to vitrify high level liquid waste from reprocessed spent U-Mo-Sn-Al fuel (used in gas cooled reactor). The cold crucible was selected for the vitrification of this particularly hard-to-process waste stream because it could not be reasonably processed in the standard hot induction melters currently used at the La Hague vitrification facilities : the waste has a high molybdenum content which makes it very corrosive and also requires a special high temperature glass formulation to obtain sufficiently high waste loading factors (12% in molybdenum). A special glass formulation has been developed by the CEA and has been qualified through lab and pilot testing to meet standard waste acceptance criteria for final disposal of the U-Mo waste. The process and the associated technologies have been also being qualified on a full-scale prototype at the CEA pilot facility in Marcoule. Engineering study has been integrated in parallel in order to take into account that the Cold Crucible should be installed

  3. Vitrification of HLW Produced by Uranium/Molybdenum Fuel Reprocessing in COGEMA's Cold Crucible Melter

    International Nuclear Information System (INIS)

    Do Quang, R.; Petitjean, V.; Hollebecque, F.; Pinet, O.; Flament, T.; Prod'homme, A.

    2003-01-01

    The performance of the vitrification process currently used in the La Hague commercial reprocessing plants has been continuously improved during more than ten years of operation. In parallel COGEMA (industrial Operator), the French Atomic Energy Commission (CEA) and SGN (respectively COGEMA's R and D provider and Engineering) have developed the cold crucible melter vitrification technology to obtain greater operating flexibility, increased plant availability and further reduction of secondary waste generated during operations. The cold crucible is a compact water-cooled melter in which the radioactive waste and the glass additives are melted by direct high frequency induction. The cooling of the melter produces a solidified glass layer that protects the melter's inner wall from corrosion. Because the heat is transferred directly to the melt, high operating temperatures can be achieved with no impact on the melter itself. COGEMA plans to implement the cold crucible technology to vitrify high level liquid waste from reprocessed spent U-Mo-Sn-Al fuel (used in gas cooled reactor). The cold crucible was selected for the vitrification of this particularly hard-to-process waste stream because it could not be reasonably processed in the standard hot induction melters currently used at the La Hague vitrification facilities : the waste has a high molybdenum content which makes it very corrosive and also requires a special high temperature glass formulation to obtain sufficiently high waste loading factors (12 % in molybdenum). A special glass formulation has been developed by the CEA and has been qualified through lab and pilot testing to meet standard waste acceptance criteria for final disposal of the U-Mo waste. The process and the associated technologies have been also being qualified on a full-scale prototype at the CEA pilot facility in Marcoule. Engineering study has been integrated in parallel in order to take into account that the Cold Crucible should be installed

  4. Influence of cold-water immersion on limb and cutaneous blood flow after exercise.

    Science.gov (United States)

    Mawhinney, Chris; Jones, Helen; Joo, Chang Hwa; Low, David A; Green, Daniel J; Gregson, Warren

    2013-12-01

    This study aimed to determine the influence of cold (8°C) and cool (22°C) water immersion on femoral artery and cutaneous blood flow after exercise. Twelve men completed a continuous cycle exercise protocol at 70% peak oxygen uptake until a core temperature of 38°C was attained. Subjects were then immersed semireclined into 8°C or 22°C water to the iliac crest for 10 min or rested. Rectal and thigh skin temperature, deep and superficial muscle temperature, thigh and calf skin blood flow (laser Doppler flowmetry), and superficial femoral artery blood flow (duplex ultrasound) were measured before and up to 30 min after immersion. Indices of vascular conductance were calculated (flux and blood flow/mean arterial pressure). Reductions in rectal temperature were similar (0.6°C-0.7°C) in all three trials (P = 0.38). The mean ± SD thigh skin temperature during recovery was 25.4°C ± 3.8°C in the 8°C trial, which was lower than the 28.2°C ± 1.4°C and 33.78°C ± 1.0°C in the 22°C and control trials, respectively (P lower (∼55%) compared with the control condition 30 min after immersion (P water temperatures may be more effective in the treatment of exercise-induced muscle damage and injury rehabilitation by virtue of greater reductions in muscle temperature and not muscle blood flow.

  5. fabrics induced by cold plasma treatments

    Indian Academy of Sciences (India)

    Some selective cold plasma processing modify specific surface properties of ... obtain information on the chemical and physical processing involved in ... charges of suitable gases. such plasma species can give rise to several concurrent.

  6. Conventional sources of fast neutrons in 'cold fusion' experiments

    International Nuclear Information System (INIS)

    Cribier, M.; Spiro, M.; Favier, J.

    1989-04-01

    In 'cold fusion' experiments with heavy water a source of neutrons is the dissociation of deuterium induced by alpha particles emitted by natural occurring radioisotopes. We evaluate the rate of fast neutron emission as a function of the concentration of U, Th, Rn in contact with deuterium and discuss the possibility that the neutrons claimed to have been observed in 'cold fusion' experiments could be due to this conventional source

  7. Evaluation of microstructure and micro-hardness of 410L SS coatings fabricated using laser assisted cold spraying: process development

    CSIR Research Space (South Africa)

    Mathebula, TE

    2014-11-01

    Full Text Available , contaminating and erosive environments which accelerate the degradation of these components. Surface coatings are generally used to protect and prolong the lifetime of the parts. Laser Assisted Cold Spray (LACS) is a relatively new surface coating process which...

  8. Estimation of regional cutaneous cold sensitivity by analysis of the gasping response.

    Science.gov (United States)

    Burke, W E; Mekjavić, I B

    1991-11-01

    Regional cutaneous sensitivity to cooling was assessed in males by separately immersing four discrete skin regions in cold water (15 degrees C) during head-out immersion. The response measured was gasping at the onset of immersion; the gasping response appears to be the result of a nonthermoregulatory neurogenic drive from cutaneous cold receptors. Subjects of similar body proportions wore a neoprene "dry" suit modified to allow exposure to the water of either the arms, upper torso, lower torso, or legs, while keeping the unexposed skin regions thermoneutral. Each subject was immersed to the sternal notch in all four conditions of partial exposure plus one condition of whole body exposure. The five cold water conditions were matched by control immersions in lukewarm (34 degrees C) water, and trials were randomized. The magnitude of the gasping response was determined by mouth occlusion pressure (P0.1). For each subject, P0.1 values for the 1st min of immersion were integrated, and control trial values, although minimal, were subtracted from their cold water counterpart to account for any gasping due to the experimental design. Results were averaged and showed that the highest P0.1 values were elicited from whole body exposure, followed in descending order by exposures of the upper torso, legs, lower torso, and arms. Correction of the P0.1 response for differences in exposed surface area (A) and cooling stimulus (delta T) between regions gave a cold sensitivity index [CSI, P0.1/(A.delta T)] for each region and showed that the index for the upper torso was significantly higher than that for the arms or legs; no significant difference was observed between the indexes for the upper and lower torso.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Cold injuries.

    Science.gov (United States)

    Kruse, R J

    1995-01-01

    There are two categories of cold injury. The first is hypothermia, which is a systemic injury to cold, and the second is frostbite, which is a local injury. Throughout history, entire armies, from George Washington to the Germans on the Russian Front in World War II, have fallen prey to prolonged cold exposure. Cold injury is common and can occur in all seasons if ambient temperature is lower than the core body temperature. In the 1985 Boston Marathon, even though it was 76 degrees and sunny, there were 75 runners treated for hypothermia. In general, humans adapt poorly to cold exposure. Children are at particular risk because of their relatively greater surface area/body mass ratio, causing them to cool even more rapidly than adults. Because of this, the human's best defense against cold injury is to limit his/her exposure to cold and to dress appropriately. If cold injury has occurred and is mild, often simple passive rewarming such as dry blankets and a warm room are sufficient treatment.

  10. Cold exposure lowers energy expenditure at the cellular level.

    Science.gov (United States)

    Park, Seyeon; Chun, Sohyun; Kim, Danuh

    2013-06-01

    Mitochondrial function is intimately involved in various metabolic processes and is therefore essential to maintain cell viability. Of particular importance is the fact that mitochondrial membrane potential (ΔΨm ) is coupled with oxidative phosphorylation to drive adenosine triphosphate (ATP) synthesis. We have examined the effects of cold temperature stress on ΔΨm and the role of cold temperature receptor expression on ΔΨm . Human bronchial endothelial cell line, BEAS-2B, and human embryonic kidney, HEK293, cell line were transfected with the gene for cold temperature responsive receptor protein TRPM8 or TRPA1, and exposed to cold temperature. ΔΨm was monitored using 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazoyl carbocyanine iodide derivative (JC-10), a ΔΨm probe. While cold temperatures significantly increased ΔΨm and mitochondrial ATP levels in cells transfected with temperature responsive receptor TRPM8 or TRPA1, no change was noted in wild-type cells. Moreover, the change in ΔΨm and ATP level was a dynamic process. ΔΨm was raised to peak levels within 10 min of cold exposure, followed by a return to baseline levels at 30 min. Our findings suggest that cold temperature exposure increased mitochondrial ΔΨm via a mechanism involving cold temperature receptors. © 2013 International Federation for Cell Biology.

  11. Analysis of large break loss of coolant accident with simultaneous injection into cold leg and hot leg

    International Nuclear Information System (INIS)

    Luo Bangqi

    1997-01-01

    When a large break loss of coolant accident occurs, the most part of the safety injection water injected into the cold leg by the safety injection system will flow through the channel between the pressure vessel and the barrel out of the break into the containment, only a little part of the safety injection water can flow into the reactor core. If the safety injection can inject into both the cold leg and the hot leg simultaneously, the safety injection water injected from the cold leg will flow into the core more easily, because the safety injection water injected from the hot leg will carry out more heat from the upper plenum and the core, so the upper plenum and the core is depressed. In addition, a small part of the safety injection water injected from the hot leg will flow down in the core after impinging the guide tubes in the upper plenum, so the core will get more safety injection water than only cold leg injection, and the core will be much safer

  12. Both brown adipose tissue and skeletal muscle thermogenesis processes are activated during mild to severe cold adaptation in mice.

    Science.gov (United States)

    Bal, Naresh C; Singh, Sushant; Reis, Felipe C G; Maurya, Santosh K; Pani, Sunil; Rowland, Leslie A; Periasamy, Muthu

    2017-10-06

    Thermogenesis is an important homeostatic mechanism essential for survival and normal physiological functions in mammals. Both brown adipose tissue (BAT) ( i.e. uncoupling protein 1 (UCP1)-based) and skeletal muscle ( i.e. sarcolipin (SLN)-based) thermogenesis processes play important roles in temperature homeostasis, but their relative contributions differ from small to large mammals. In this study, we investigated the functional interplay between skeletal muscle- and BAT-based thermogenesis under mild versus severe cold adaptation by employing UCP1 -/- and SLN -/- mice. Interestingly, adaptation of SLN -/- mice to mild cold conditions (16 °C) significantly increased UCP1 expression, suggesting increased reliance on BAT-based thermogenesis. This was also evident from structural alterations in BAT morphology, including mitochondrial architecture, increased expression of electron transport chain proteins, and depletion of fat droplets. Similarly, UCP1 -/- mice adapted to mild cold up-regulated muscle-based thermogenesis, indicated by increases in muscle succinate dehydrogenase activity, SLN expression, mitochondrial content, and neovascularization, compared with WT mice. These results further confirm that SLN-based thermogenesis is a key player in muscle non-shivering thermogenesis (NST) and can compensate for loss of BAT activity. We also present evidence that the increased reliance on BAT-based NST depends on increased autonomic input, as indicated by abundant levels of tyrosine hydroxylase and neuropeptide Y. Our findings demonstrate that both BAT and muscle-based NST are equally recruited during mild and severe cold adaptation and that loss of heat production from one thermogenic pathway leads to increased recruitment of the other, indicating a functional interplay between these two thermogenic processes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Arabidopsis COLD SHOCK DOMAIN PROTEIN2 is a RNA chaperone that is regulated by cold and developmental signals

    International Nuclear Information System (INIS)

    Sasaki, Kentaro; Kim, Myung-Hee; Imai, Ryozo

    2007-01-01

    Bacterial cold shock proteins (CSPs) are RNA chaperones that unwind RNA secondary structures. Arabidopsis COLD SHOCK DOMAIN PROTEIN2 (AtCSP2) contains a domain that is shared with bacterial CSPs. Here we showed that AtCSP2 binds to RNA and unwinds nucleic acid duplex. Heterologous expression of AtCSP2 complemented cold sensitivity of an Escherichia coli csp quadruple mutant, indicating that AtCSP2 function as a RNA chaperone in E. coli. AtCSP2 mRNA and protein levels increased during cold acclimation, but the protein accumulation was most prominent after 10 days of cold treatment. AtCSP2 promoter::GUS transgenic plants revealed that AtCSP2 is expressed only in root and shoot apical regions during vegetative growth but is expressed in reproductive organs such as pollens, ovules and embryos. These data indicated that AtCSP2 is involved in developmental processes as well as cold adaptation. Localization of AtCSP2::GFP in nucleolus and cytoplasm suggested different nuclear and cytosolic RNA targets

  14. Consideration of LH2 and LD2 cold neutron sources in heavy water reactor reflector

    International Nuclear Information System (INIS)

    Potapov, I.A.; Serebrov, A.P.

    2001-01-01

    The reactor power, the required CNS dimensions and power of the cryogenic equipment define the CNS type with maximized cold neutron production. Cold neutron fluxes from liquid hydrogen (LH 2 ) and liquid deuterium (LD 2 ) cold neutron sources (CNS) are analyzed. Different CNS volumes, presents and absence of reentrant holes inside the CNS, different adjustment of beam tube and containment are considered. (orig.)

  15. Leading research report for fiscal 1998 on the next-generation cold emission technology; 1998 nendo jisedai cold emission gijutsu no chosa kenkyu sendo kenkyu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The report covers the fruits of researches into technologies of cold emission control and cold emission application conducted in fiscal 1998. In the study relative to the current status of cold emission control technology, emitter materials that govern electron emitting characteristics are discussed, such as metallic materials, silicon, carbon systems, semiconductors, liquid metal, etc. In relation with the application of semiconductor process technology, the tunnel emitter is taken up that utilizes the semiconductor tunnel cathode. In relation with the cold emission process, an emitter high in aspect ratio is described, obtained by the inductive emitter deposition method in which organic metallic gas is decomposed by an electron beam. In the study of the cold emission control system and instrumentation, the merits and demerits of control by MOSFET (MOS field effect transistor) are discussed. In relation with the technology of cold emission application, FED (field effect display) development and problems, current status of sensor technology and problems, RF application technology, application to power systems, etc., are mentioned. (NEDO)

  16. Low incidence of clonality in cold water corals revealed through the novel use of a standardized protocol adapted to deep sea sampling

    Science.gov (United States)

    Becheler, Ronan; Cassone, Anne-Laure; Noël, Philippe; Mouchel, Olivier; Morrison, Cheryl L.; Arnaud-Haond, Sophie

    2017-11-01

    Sampling in the deep sea is a technical challenge, which has hindered the acquisition of robust datasets that are necessary to determine the fine-grained biological patterns and processes that may shape genetic diversity. Estimates of the extent of clonality in deep-sea species, despite the importance of clonality in shaping the local dynamics and evolutionary trajectories, have been largely obscured by such limitations. Cold-water coral reefs along European margins are formed mainly by two reef-building species, Lophelia pertusa and Madrepora oculata. Here we present a fine-grained analysis of the genotypic and genetic composition of reefs occurring in the Bay of Biscay, based on an innovative deep-sea sampling protocol. This strategy was designed to be standardized, random, and allowed the georeferencing of all sampled colonies. Clonal lineages discriminated through their Multi-Locus Genotypes (MLG) at 6-7 microsatellite markers could thus be mapped to assess the level of clonality and the spatial spread of clonal lineages. High values of clonal richness were observed for both species across all sites suggesting a limited occurrence of clonality, which likely originated through fragmentation. Additionally, spatial autocorrelation analysis underlined the possible occurrence of fine-grained genetic structure in several populations of both L. pertusa and M. oculata. The two cold-water coral species examined had contrasting patterns of connectivity among canyons, with among-canyon genetic structuring detected in M. oculata, whereas L. pertusa was panmictic at the canyon scale. This study exemplifies that a standardized, random and georeferenced sampling strategy, while challenging, can be applied in the deep sea, and associated benefits outlined here include improved estimates of fine grained patterns of clonality and dispersal that are comparable across sites and among species.

  17. Sensation of Cold during the Ice Water Test Corresponds to the Perception of Pain during Botulinum Toxin Bladder Wall Injections.

    Science.gov (United States)

    Reitz, André; Hüsch, Tanja; Doggweiler, Regula; Buse, Stephan; Haferkamp, Axel

    2018-01-01

    To investigate the association of bladder cold sensation (BCS) during the ice water test (IWT) and pain perception when botulinum toxin injections (BTI) are administered into the bladder wall. In 86 patients with idiopathic overactive bladder, the BCS during the IWT was investigated. Patients were divided into 2 groups: with and without BCS. During subsequent administration of BTI, the number of perceived and painful injections as well as the pain levels on a 0-100 pain scale were compared in both groups using Student t test. Thirty-five patients reported a BCS, while 51 did not. After 10 BTI, the mean number of perceived injections was 7.9 in patients with and 2.4 in patients without BCS (p sensation (p perceptions of cold and pain in the urinary bladder may use similar receptors and neuronal pathways. © 2018 S. Karger AG, Basel.

  18. Examples on cold forged aluminium components in automotive industry

    DEFF Research Database (Denmark)

    Bay, Niels; Kolsgaard, A.

    2000-01-01

    The present paper describes the possibilites of applying cold forging for manufacturing of light weight components in aluminium. A short description of the basic cold forming processes forms the basis for describing the great variety in design of cold forged components. Examples are mainly taken ...... from automotive industry but in a few cases also from other industrial sectors to show the possibilities....

  19. CERN’s Drinking Water

    CERN Multimedia

    GS Department

    CERN’s drinking water is monitored on a regular basis. A certified independent laboratory takes and analyses samples to verify that the water complies with national and European regulations for safe drinking water. Nevertheless, the system that supplies our drinking water is very old and occasionally, especially after work has been carried out on the system, the water may become cloudy or discoloured, due to traces of corrosion. For this reason, we recommend: Never use hot water from the tap for drinking or cooking. If you need hot water, then draw water from the cold water tap and heat it. Only drink or cook with cold water. Let the cold water run until it is clear before drinking or making your tea or coffee. If you have any questions about the quality of CERN’s drinking water, please contact: Jerome Espuche (GS/SEM), Serge Deleval (EN/CV) or Jonathan Gulley (DG/SCG).

  20. CERN’s Drinking Water

    CERN Multimedia

    GS Department

    2009-01-01

      CERN’s drinking water is monitored, with regular samples being taken and analysed by a certified independent laboratory, which checks on compliance with national and European regulations for safe drinking water. Nevertheless, the drinking water network is very old and occasionally, especially after work has been carried out on the network, the clarity and colour of the water can be adversely affected due to high levels of corrosion in suspension. Some basic recommendations should always be followed:   Never use hot water from the tap for drinking or cooking. If you need hot water, then draw water from the cold water tap before heating it. Only drink or cook with cold water. Let the cold water run until you notice that the water has become clear.   If you have questions about the quality of CERN’s drinking water, then please contact: Jerome Espuche (GS/SEM), Serge Deleval (EN/CV) or Jonathan Gulley (DG/SCG).

  1. CERN’s Drinking Water

    CERN Multimedia

    GS Department

      CERN’s drinking water is monitored, with regular samples being taken and analysed by a certified independent laboratory, which checks on compliance with national and European regulations for safe drinking water. Nevertheless, the drinking water network is very old and occasionally, especially after work has been carried out on the network, the clarity and colour of the water can be adversely affected due to high levels of corrosion in suspension. Some basic recommendations should always be followed: Never use hot water from the tap for drinking or cooking. If you need hot water, then draw water from the cold water tap before heating it. Only drink or cook with cold water. Let the cold water run until you notice that the water has become clear. If you have questions about the quality of CERN’s drinking water, then please contact: Jerome Espuche (GS/SEM), Serge Deleval (EN/CV) or Jonathan Gulley (DG/SCG).

  2. Heavy Water - Industrial Separation Processes

    International Nuclear Information System (INIS)

    Peculea, M.

    1984-01-01

    This monograph devoted to the heavy water production mainly presents the Romanian experience in the field which started in early sixties from the laboratory scale production and reached now the level of large scale industrial production at ROMAG-Drobeta, Romania. The book is structured in eleven chapters entitled: Overview, The main physical properties, Sources, Uses, Separation factor and equilibrium constant, Mathematical modelling of the separation process, Thermodynamical considerations on the isotope separation, Selection criteria for heavy water separation processes, Industrial installations for heavy water production, Prospects, Acknowledgements. 200 Figs., 90 Tabs., 135 Refs

  3. Cold Fronts Research Programme: Progress, Future Plans, and Research Directions.

    Science.gov (United States)

    Ryan, B. F.; Wilson, K. J.; Garratt, J. R.; Smith, R. K.

    1985-09-01

    Following the analysis of data collected during Phases land II of the Cold Fronts Research Programme (CFRP) a conceptual model for the Australian summertime "cool change" has been proposed. The model provides a focus and a framework for the design of Phase III.The model is based on data gathered from a mesoscale network centered on Mount Gambier, South Australia, and includes the coastal waters to the west and relatively flat terrain to the east. The first objective of Phase III is to generalize the model so that it is applicable to the ocean waters to the far west of Mount Gambier and to the more rugged terrain farther to the east in the vicinity of Melbourne, Victoria. The remaining objectives concentrate on resolving unsatisfactory aspects of the model such as the evolution of convective lines and the relationship between the surface cold front and the upper-tropospheric cold pool and its associated jet stream.The integrated nature of the Cold Fronts Research Programme has meant that it has stimulated a wide range of research activities that extend beyond the field observations. The associated investigations include climatological, theoretical, and numerical modeling studies.

  4. Wear Improvement of Tools in the Cold Forging Process for Long Hex Flange Nuts.

    Science.gov (United States)

    Hsia, Shao-Yi; Shih, Po-Yueh

    2015-09-25

    Cold forging has played a critical role in fasteners and has been widely used in automotive production, manufacturing, aviation and 3C (Computer, Communication, and Consumer electronics). Despite its extensive use in fastener forming and die design, operator experience and trial and error make it subjective and unreliable owing to the difficulty of controlling the development schedule. This study used finite element analysis to establish and simulate wear in automotive repair fastener manufacturing dies based on actual process conditions. The places on a die that wore most quickly were forecast, with the stress levels obtained being substituted into the Archard equation to calculate die wear. A 19.87% improvement in wear optimization occurred by applying the Taguchi quality method to the new design. Additionally, a comparison of actual manufacturing data to simulations revealed a nut forging size error within 2%, thereby demonstrating the accuracy of this theoretical analysis. Finally, SEM micrographs of the worn surfaces on the upper punch indicate that the primary wear mechanism on the cold forging die for long hex flange nuts was adhesive wear. The results can simplify the development schedule, reduce the number of trials and further enhance production quality and die life.

  5. Green method for ultrasensitive determination of Hg in natural waters by electrothermal-atomic absorption spectrometry following sono-induced cold vapor generation and 'in-atomizer trapping'

    International Nuclear Information System (INIS)

    Gil, Sandra; Lavilla, Isela; Bendicho, Carlos

    2007-01-01

    Sono-induced cold vapor generation (SI-CVG) has been used for the first time in combination with a graphite furnace atomizer for determination of Hg in natural waters by electrothermal-atomic absorption spectrometry after in situ trapping onto a noble metal-pretreated platform (Pd, Pt or Rh) inserted into a graphite tube. The system allows 'in-atomizer trapping' of Hg without the use of conventional reduction reactions based on sodium borohydride or tin chloride in acid medium for cold vapor generation. The sono-induced reaction is accomplished by applying ultrasound irradiation to the sample solution containing Hg(II) in the presence of an organic compound such as formic acid. As this organic acid is partly degraded upon ultrasound irradiation to yield CO, CO 2 , H 2 and H 2 O, the amount of lab wastes is minimized and a green methodology is achieved. For this purpose, experimental variables influencing the generation/trapping process are fully investigated. The limit of detection for a 10 min trapping time and 10 mL sample volume was 0.03 μg L -1 (Integrated absorbance) and the repeatability expressed as relative standard deviation was about 3%. Carbonates and chlorides at 100 mg L -1 level caused a signal depression by 20-30%. The enhanced trapping efficiency observed with the sono-induced cold vapor generation as compared with 'in-atomizer trapping' methods employing chemical vapor generation is discussed. A reaction pathway for SI-CVG is proposed on the basis of the current knowledge for synthesis of noble metal nanoparticles by ultrasound

  6. Cold fission description with constant and varying mass asymmetries

    International Nuclear Information System (INIS)

    Duarte, S.B.; Rodriguez, O.; Tavares, O.A.P.; Goncalves, M.; Garcia, F.; Guzman, F.

    1998-01-01

    Different description for varying the mass asymmetry in the fragmentation process are used to calculate the cold fission barrier penetrability. The relevance of the appropriate choice for both the description of the pre-scission phase and inertia coefficient to unify alpha decay, cluster radioactivity, and spontaneous cold fission processes in the same theoretical framework is explicitly shown. We calculate the half-life of all possible partition modes of nuclei of A > 200 following the most recent Mass Table by Audi and Wapstra. It is shown that if one uses the description in which the mass asymmetry is maintained constant during the fragmentation process, the experimental half-life-values and mass yield of 234 U cold fission are satisfactorily reproduced. (author)

  7. Pseudo one-dimensional analysis of polymer electrolyte fuel cell cold-start

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Partha P [Los Alamos National Laboratory; Mukundan, Rangachary [Los Alamos National Laboratory; Borup, Rodney L [Los Alamos National Laboratory; Wang, Yun [NON LANL; Mishlera, Jeff [NON LANL

    2009-01-01

    This paper investigates the electrochemical kinetics, oxygen transport, and solid water formation in polymer electrolyte fuel cell (PEFC) during cold start. Following [Yo Wang, J. Electrochem. Soc., 154 (2007) B1041-B1048], we develop a pseudo one-dimensional analysis, which enables the evaluation of the impact of ice volume fraction and temperature variations on cell performance during cold-start. The oxygen profile, starvation ice volume fraction, and relevant overpotentials are obtained. This study is valuable for studying the characteristics of PEFC cold-start.

  8. Proteomic analysis of endothelial cold-adaptation

    Directory of Open Access Journals (Sweden)

    Zieger Michael AJ

    2011-12-01

    Full Text Available Abstract Background Understanding how human cells in tissue culture adapt to hypothermia may aid in developing new clinical procedures for improved ischemic and hypothermic protection. Human coronary artery endothelial cells grown to confluence at 37°C and then transferred to 25°C become resistant over time to oxidative stress and injury induced by 0°C storage and rewarming. This protection correlates with an increase in intracellular glutathione at 25°C. To help understand the molecular basis of endothelial cold-adaptation, isolated proteins from cold-adapted (25°C/72 h and pre-adapted cells were analyzed by quantitative proteomic methods and differentially expressed proteins were categorized using the DAVID Bioinformatics Resource. Results Cells adapted to 25°C expressed changes in the abundance of 219 unique proteins representing a broad range of categories such as translation, glycolysis, biosynthetic (anabolic processes, NAD, cytoskeletal organization, RNA processing, oxidoreductase activity, response-to-stress and cell redox homeostasis. The number of proteins that decreased significantly with cold-adaptation exceeded the number that increased by 2:1. Almost half of the decreases were associated with protein metabolic processes and a third were related to anabolic processes including protein, DNA and fatty acid synthesis. Changes consistent with the suppression of cytoskeletal dynamics provided further evidence that cold-adapted cells are in an energy conserving state. Among the specific changes were increases in the abundance and activity of redox proteins glutathione S-transferase, thioredoxin and thioredoxin reductase, which correlated with a decrease in oxidative stress, an increase in protein glutathionylation, and a recovery of reduced protein thiols during rewarming from 0°C. Increases in S-adenosylhomocysteine hydrolase and nicotinamide phosphoribosyltransferase implicate a central role for the methionine

  9. Effective Thermal Analysis of Using Peltier Module for Desalination Process

    Directory of Open Access Journals (Sweden)

    Hayder Al-Madhhachi

    2018-01-01

    Full Text Available The key objective of this study is to analyse the heat transfer processes involved in the evaporation and condensation of water in a water distillation system employing a thermoelectric module. This analysis can help to increase the water production and to enhance the system performance. For the analysis, a water distillation unit prototype integrated with a thermoelectric module was designed and fabricated. A theoretical model is developed to study the effect of the heat added, transferred and removed, in forced convection and laminar flow, during the evaporation and condensation processes. The thermoelectric module is used to convert electricity into heat under Peltier effect and control precisely the absorbed and released heat at the cold and hot sides of the module, respectively. Temperatures of water, vapour, condenser, cold and hot sides of the thermoelectric module and water production have been measured experimentally under steady state operation. The theoretical and experimental water production were found to be in agreement. The amount of heat that needs to be evaporated from water-vapour interface and transferred through the condenser surface to the thermoelectric module is crucial for the design and optimization of distillation systems.

  10. The giant Mauritanian cold-water coral mound province: Oxygen control on coral mound formation

    Science.gov (United States)

    Wienberg, Claudia; Titschack, Jürgen; Freiwald, André; Frank, Norbert; Lundälv, Tomas; Taviani, Marco; Beuck, Lydia; Schröder-Ritzrau, Andrea; Krengel, Thomas; Hebbeln, Dierk

    2018-04-01

    The largest coherent cold-water coral (CWC) mound province in the Atlantic Ocean exists along the Mauritanian margin, where up to 100 m high mounds extend over a distance of ∼400 km, arranged in two slope-parallel chains in 400-550 m water depth. Additionally, CWCs are present in the numerous submarine canyons with isolated coral mounds being developed on some canyon flanks. Seventy-seven Uranium-series coral ages were assessed to elucidate the timing of CWC colonisation and coral mound development along the Mauritanian margin for the last ∼120,000 years. Our results show that CWCs were present on the mounds during the Last Interglacial, though in low numbers corresponding to coral mound aggradation rates of 16 cm kyr-1. Most prolific periods for CWC growth are identified for the last glacial and deglaciation, resulting in enhanced mound aggradation (>1000 cm kyr-1), before mound formation stagnated along the entire margin with the onset of the Holocene. Until today, the Mauritanian mounds are in a dormant state with only scarce CWC growth. In the canyons, live CWCs are abundant since the Late Holocene at least. Thus, the canyons may serve as a refuge to CWCs potentially enabling the observed modest re-colonisation pulse on the mounds along the open slope. The timing and rate of the pre-Holocene coral mound aggradation, and the cessation of mound formation varied between the individual mounds, which was likely the consequence of vertical/lateral changes in water mass structure that placed the mounds near or out of oxygen-depleted waters, respectively.

  11. Water Supply Treatment Sustainability of Panching Water Supply Treatment Process - Water Footprint Approach

    Science.gov (United States)

    Aziz, Edriyana A.; Malek, Marlinda Abdul; Moni, Syazwan N.; Zulkifli, Nabil F.; Hadi, Iqmal H.

    2018-03-01

    In many parts of the world, freshwater is scarce and overexploited. The purpose of this study is to determine the water footprint of Water Supply Treatment Process (WSTP) at Panching Water Treatment Plant (WTP) as well as to identify the sustainability of the Sg. Kuantan as an intake resource due to the effect of land use development. The total water footprint (WF) will be calculated by using WF accounting manual. The results obtained shows that the water intake resource is still available but it is believed that it will not be able to cope with the increasing WF. The increment of water demand percentage by 1.8% from 2015 to 2016 has increased 11 times higher of the water footprint percentage, 19.9%. This result shows that the water consumption during the water supply treatment process is two times higher than the demand thus it shows the inefficient of the water management

  12. Cold source economic study

    International Nuclear Information System (INIS)

    Fuster, Serge.

    1975-01-01

    This computer code is intended for the statement of the general economic balance resulting from using a given cold source. The balance includes the investments needed for constructing the various materials, and also production balances resulting from their utilization. The case of either using an open circuit condenser on sea or river, or using air cooling systems with closed circuits or as auxiliaries can be dealt with. The program can be used to optimize the characteristics of the various parts of the cold source. The performance of the various materials can be evaluated for a given situation from using very full, precise economic balances, these materials can also be classified according to their possible uses, the outer constraints being taken into account (limits for heat disposal into rivers or seas, water temperature, air temperature). Technical choices whose economic consequences are important have been such clarified [fr

  13. Diviner lunar radiometer observations of cold traps in the moon's south polar region

    Science.gov (United States)

    Paige, D.A.; Siegler, M.A.; Zhang, J.A.; Hayne, P.O.; Foote, E.J.; Bennett, K.A.; Vasavada, A.R.; Greenhagen, B.T.; Schofield, J.T.; McCleese, D.J.; Foote, M.C.; DeJong, E.; Bills, B.G.; Hartford, W.; Murray, B.C.; Allen, C.C.; Snook, K.; Soderblom, L.A.; Calcutt, S.; Taylor, F.W.; Bowles, N.E.; Bandfield, J.L.; Elphic, R.; Ghent, R.; Glotch, T.D.; Wyatt, M.B.; Lucey, P.G.

    2010-01-01

    Diviner Lunar Radiometer Experiment surface-temperature maps reveal the existence of widespread surface and near-surface cryogenic regions that extend beyond the boundaries of persistent shadow. The Lunar Crater Observation and Sensing Satellite (LCROSS) struck one of the coldest of these regions, where subsurface temperatures are estimated to be 38 kelvin. Large areas of the lunar polar regions are currently cold enough to cold-trap water ice as well as a range of both more volatile and less volatile species. The diverse mixture of water and high-volatility compounds detected in the LCROSS ejecta plume is strong evidence for the impact delivery and cold-trapping of volatiles derived from primitive outer solar system bodies.

  14. Nasal mucosa secretion exudation response to cold air in bronchial asthma patients

    Directory of Open Access Journals (Sweden)

    Eduard V. Nekrasov

    2017-01-01

    Full Text Available Background. Combined airway hyper responsiveness to cold and hypoosmotic stimuli in asthma patients results in impairment of lung respiration function and poor disease control compared to patients with isolated airway hyper responsiveness to only one of the stimuli or without such responsiveness that can be connected with edema or mucus hypersecretion.Aim. The purpose of the study is the estimation of the processes of mucin secretion, plasma exudation and oxidative stress in response to cold air in asthma patients with combined airway responsiveness to cold and hypoosmotic stimuli using nasal mucosa as a model.Materials and methods. 23 patients with asthma participated in the study. For the nasal lavage procedure, a nasal cavity was pre-washed at least three times in 5-min intervals with 5 ml saline solution (~36 °C. A control nasal lavage was done 5 min after the last washing with a dwelling time of 1 min in the nasal cavity. Directly after the control lavage, a cold air nasal challenge was done: a participant was asked to breathe deeply at the pace of a metronome to ensure hyperventilation inhaling cold air (–20 °C through the nose and exhaling through the mouth for 5 min. Nasal lavages were taken at 1 min, 15, and 30 min after the challenge. Mucin secretion was estimated on the basis of total protein (TP content, total carbohydrates (TC, and water-soluble forms of mucins MUC5AC and MUC5B in the lavage fluids. For the estimation of plasma exudation, the concentration of α2-macroglobulin (α2-MG was measured. Oxidative stress was estimated by the content of thiobarbituric acid-reactive substances (TBARS in lavage fluid. Lung function and airway responsiveness were studied by the forced expiration spirometry method and the bronchial challenge tests with isocapnic cold air hyperventilation (CAHV and distilled water inhalation (DWI.Results. According to the bronchial challenge tests, the patients were divided into groups: 1 without airway

  15. Effects of light emitting diode (LED) therapy and cold water immersion therapy on exercise-induced muscle damage in rats.

    Science.gov (United States)

    Camargo, Mariana Zingari; Siqueira, Cláudia Patrícia Cardoso Martins; Preti, Maria Carla Perozim; Nakamura, Fábio Yuzo; de Lima, Franciele Mendes; Dias, Ivan Frederico Lupiano; Toginho Filho, Dari de Oliveira; Ramos, Solange de Paula

    2012-09-01

    The aim of this work is to analyze the effects of LED therapy at 940 nm or cold water immersion therapy (CWI) after an acute bout of exercise on markers of muscle damage and inflammation. Thirty-two male Wistar rats were allocated into four groups: animals kept at rest (control), exercised animals (E), exercised + CWI (CWI), and exercised + LED therapy (LED). The animals swam for 100 min, after which blood samples were collected for lactate analysis. Animals in the E group were returned to their cages without treatment, the CWI group was placed in cold water (10°C) for 10 min and the LED group received LED irradiation on both gastrocnemius muscles (4 J/cm(2) each). After 24 h, the animals were killed and the soleus muscles were submitted to histological analysis. Blood samples were used for hematological and CK analyses. The results demonstrated that the LED group presented fewer areas of muscle damage and inflammatory cell infiltration and lower levels of CK activity than the E group. Fewer areas of damaged muscle fiber were observed in the LED group than in CWI. CWI and LED did not reduce edema areas. Hematological analysis showed no significant effect of either treatment on leukocyte counts. The results suggest that LED therapy is more efficient than CWI in preventing muscle damage and local inflammation after exercise.

  16. A numerical model for cold welding of metals

    DEFF Research Database (Denmark)

    Zhang, Wenqi; Bay, Niels

    1996-01-01

    at the weld interface. Accordingly, the general model for bond strength in cold welding earlier developed by Bay has been extended and modified. The new model presented in this paper simulates the whole cold welding process including the deformation of base metals and the establishment of welds bonding......Based on experimental investigations of cold welding of different metal combinations applying various surface preparation methods, the understanding of the mechanisms of bond formation in cold welding has been improved by introducing two parameters representing the properties of surface layers...... similar as well as dissimilar metals The calculated bond strengths are verified by comparing with experimental measurements....

  17. Effect of Cold Drawing and Heat Treatment on the Microstructure of Invar36 Alloy Wire

    International Nuclear Information System (INIS)

    Han, Seung Youb; Jang, Seon Ah; Eun, Hee-Chul; Choi, Jung-Hoon; Lee, Ki Rak; Park, Hwan Seo; Ahn, Do-Hee; Kim, Soo Young; Kim, Jea Youl; Shin, Sang Yong

    2016-01-01

    In this study, the effect of cold drawing and heat treatment on the microstructure of Invar36 alloy wire was investigated. Invar36 alloy wire is used as a transmission line core material, and is required to have high strength. The diameter of the Invar36 alloy wire specimens were reduced from 16 mm to 4.3 mm after three cold drawing and two heat treatment processes, thereby increasing tensile strength. Specimens were taken after each of the cold drawing and heat treatment processes, and their microstructure and tensile properties were analyzed. The Invar36 alloy wire had a γ-(Fe, Ni) phase matrix before the cold drawing and heat treatment processes. After the cold drawing processes, {220} and {200} textures were mainly achieved. After the heat treatment processes, a {200} recrystallization γ-(Fe, Ni) phase was formed with fine carbides. The recrystallization γ-(Fe, Ni) phase grains had low dislocation density, so they probably accommodated a large amount of deformation during the cold drawing processes.

  18. Effect of Cold Drawing and Heat Treatment on the Microstructure of Invar36 Alloy Wire

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seung Youb; Jang, Seon Ah; Eun, Hee-Chul; Choi, Jung-Hoon; Lee, Ki Rak; Park, Hwan Seo; Ahn, Do-Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Soo Young; Kim, Jea Youl [RandD Center, KOS Ltd., Yangsan (Korea, Republic of); Shin, Sang Yong [University of Ulsan, Ulsan (Korea, Republic of)

    2016-10-15

    In this study, the effect of cold drawing and heat treatment on the microstructure of Invar36 alloy wire was investigated. Invar36 alloy wire is used as a transmission line core material, and is required to have high strength. The diameter of the Invar36 alloy wire specimens were reduced from 16 mm to 4.3 mm after three cold drawing and two heat treatment processes, thereby increasing tensile strength. Specimens were taken after each of the cold drawing and heat treatment processes, and their microstructure and tensile properties were analyzed. The Invar36 alloy wire had a γ-(Fe, Ni) phase matrix before the cold drawing and heat treatment processes. After the cold drawing processes, {220} and {200} textures were mainly achieved. After the heat treatment processes, a {200} recrystallization γ-(Fe, Ni) phase was formed with fine carbides. The recrystallization γ-(Fe, Ni) phase grains had low dislocation density, so they probably accommodated a large amount of deformation during the cold drawing processes.

  19. Condensation of the steam in the horizontal steam line during cold water flooding

    International Nuclear Information System (INIS)

    Strubelj, L.; Tiselj, I.

    2006-01-01

    Direct contact condensation and condensation induced water-hammer in a horizontal pipe was experimentally investigated at PMK-2 test facility of the Hungarian Atomic Energy Research Institute KFKI. The experiment is preformed in the horizontal section of the steam line of the PMK-2 integral test facility. As liquid water floods the horizontal part of the pipeline, the counter current horizontally stratified flow is being observed. During the flooding of the steam line, the vapour-liquid interface area increases and therefore the vapour condensation rate and the vapour velocity also increase. Similar phenomena can occur in the cold/hot leg of the primary loop of PWR nuclear power plant during loss of coolant accident, when emergency core cooling system is activated. Water level at one cross-section and four local void fraction and temperature at the top of steam line was measured and compared with simulation. Condensed steam increases the water temperature that is why the local temperature measurements are the most important information, from which condensation rate can be estimated, since mass of condensed steam was not measured. Free surface simulation of the experiment with thermal phase change model is presented. Surface renewal concept with small eddies is used for calculation of heat transfer coefficient. With surface renewal theory we did not get results similar to experiment, that is why heat transfer coefficient was increased by factor 20. In simulation with heat transfer coefficient calculated with surface renewal concept bubble entrapment is due to reflection of the wave from the end of the pipe. When heat transfer coefficient is increased, condensation rate and steam velocity are also increased, bubble entrapment is due to Kelvin-Helmholtz instability of the free surface, and the results become similar to the measurements. (author)

  20. Cold water immersion enhances recovery of submaximal muscle function after resistance exercise.

    Science.gov (United States)

    Roberts, Llion A; Nosaka, Kazunori; Coombes, Jeff S; Peake, Jonathan M

    2014-10-15

    We investigated the effect of cold water immersion (CWI) on the recovery of muscle function and physiological responses after high-intensity resistance exercise. Using a randomized, cross-over design, 10 physically active men performed high-intensity resistance exercise followed by one of two recovery interventions: 1) 10 min of CWI at 10°C or 2) 10 min of active recovery (low-intensity cycling). After the recovery interventions, maximal muscle function was assessed after 2 and 4 h by measuring jump height and isometric squat strength. Submaximal muscle function was assessed after 6 h by measuring the average load lifted during 6 sets of 10 squats at 80% of 1 repetition maximum. Intramuscular temperature (1 cm) was also recorded, and venous blood samples were analyzed for markers of metabolism, vasoconstriction, and muscle damage. CWI did not enhance recovery of maximal muscle function. However, during the final three sets of the submaximal muscle function test, participants lifted a greater load (P work during subsequent training sessions, which could enhance long-term training adaptations. Copyright © 2014 the American Physiological Society.

  1. Cold plate

    Energy Technology Data Exchange (ETDEWEB)

    Marroquin, Christopher M.; O' Connell, Kevin M.; Schultz, Mark D.; Tian, Shurong

    2018-02-13

    A cold plate, an electronic assembly including a cold plate, and a method for forming a cold plate are provided. The cold plate includes an interface plate and an opposing plate that form a plenum. The cold plate includes a plurality of active areas arranged for alignment over respective heat generating portions of an electronic assembly, and non-active areas between the active areas. A cooling fluid flows through the plenum. The plenum, at the non-active areas, has a reduced width and/or reduced height relative to the plenum at the active areas. The reduced width and/or height of the plenum, and exterior dimensions of cold plate, at the non-active areas allow the non-active areas to flex to accommodate surface variations of the electronics assembly. The reduced width and/or height non-active areas can be specifically shaped to fit between physical features of the electronics assembly.

  2. Investigation of multi-stage cold forward extrusion process using coupled thermo-mechanical finite element analysis

    Science.gov (United States)

    Görtan, Mehmet Okan

    2018-05-01

    Cold extrusion processes are distinguished by their low material usage as well as great efficiency in the production of mid-range and large component series. Although majority of the cold extruded parts are produced using die systems containing multiple forming stages, this subject has rarely been investigated so far. Therefore, the characteristics of multi-stage cold forward rod extrusion is studied in the current work using thermo-mechanically coupled finite element (FE) analysis. A case hardening steel, 16MnCr5 (1.7131) was used as experimental material. Its strain, strain rate and temperature dependent mechanical characteristics were determined using compression testing and modeled in FE simulations via a Johnson-Cook material model. Friction coefficients for the same material while in contact with a tool steel (1.2379) were determined dependent on temperature and contact pressure using sliding compression test (SCT) and modeled by an adaptive friction model developed by the author. In the first set of simulations, rod material with a diameter of 14.9 mm was extruded down to a diameter of 9.6 mm in a single step using three different die opening angles (2α); 20°, 40° and 60°. In the second set of investigations, the same rod was reduced first to 12 mm and then to 9.6 mm in two steps within the same forming die. Press forces, contact normal stresses between extruded material and forming die, material temperature and axial stresses are compared in these two set of simulations and the differences are discussed.

  3. The cold-water coral community as a hot spot of carbon cycling on continental margins: a food-web analysis from Rockall Bank (northeast Atlantic)

    NARCIS (Netherlands)

    Van Oevelen, D.J.; Duineveld, G.; Lavaleye, M.; Mienis, F.; Soetaert, K.E.R.; Heip, C.H.R.

    2009-01-01

    We present a quantitative food-web analysis of the cold-water coral community, i.e., the assembly of living corals, dead coral branches and sediment beneath, associated with the reef-building Lophelia pertusa on the giant carbonate mounds at ~800-m depth at Rockall Bank. Carbon flows, 140 flows

  4. Cold-Water Coral Distributions in the Drake Passage Area from Towed Camera Observations – Initial Interpretations

    Science.gov (United States)

    Waller, Rhian G.; Scanlon, Kathryn M.; Robinson, Laura F.

    2011-01-01

    Seamounts are unique deep-sea features that create habitats thought to have high levels of endemic fauna, productive fisheries and benthic communities vulnerable to anthropogenic impacts. Many seamounts are isolated features, occurring in the high seas, where access is limited and thus biological data scarce. There are numerous seamounts within the Drake Passage (Southern Ocean), yet high winds, frequent storms and strong currents make seafloor sampling particularly difficult. As a result, few attempts to collect biological data have been made, leading to a paucity of information on benthic habitats or fauna in this area, particularly those on primarily hard-bottom seamounts and ridges. During a research cruise in 2008 six locations were examined (two on the Antarctic margin, one on the Shackleton Fracture Zone, and three on seamounts within the Drake Passage), using a towed camera with onboard instruments to measure conductivity, temperature, depth and turbidity. Dominant fauna and bottom type were categorized from 200 randomized photos from each location. Cold-water corals were present in high numbers in habitats both on the Antarctic margin and on the current swept seamounts of the Drake Passage, though the diversity of orders varied. Though the Scleractinia (hard corals) were abundant on the sedimented margin, they were poorly represented in the primarily hard-bottom areas of the central Drake Passage. The two seamount sites and the Shackleton Fracture Zone showed high numbers of stylasterid (lace) and alcyonacean (soft) corals, as well as large numbers of sponges. Though data are preliminary, the geological and environmental variability (particularly in temperature) between sample sites may be influencing cold-water coral biogeography in this region. Each area observed also showed little similarity in faunal diversity with other sites examined for this study within all phyla counted. This manuscript highlights how little is understood of these isolated

  5. Quantifying the Metabolome of Pseudomonas taiwanensis VLB120: Evaluation of Hot and Cold Combined Quenching/Extraction Approaches

    DEFF Research Database (Denmark)

    Wordofa, Gossa Garedew; Kristensen, Mette; Schrübbers, Lars

    2017-01-01

    Absolute quantification of free intracellular metabolites is a valuable tool in both pathway discovery and metabolic engineering. In this study, we conducted a comprehensive examination of different hot and cold combined quenching/extraction approaches to extract and quantify intracellular...... (such as cold methanol/acetonitrile/water, hot water, and boiling ethanol/water, as well as cold ethanol/water) were tested and evaluated for P. taiwanensis VLB120 metabolome analysis. In total 94 out of 107 detected intracellular metabolites were quantified using an isotope-ratio-based approach....... The quantified metabolites include amino acids, nucleotides, central carbon metabolism intermediates, redox cofactors, and others. The acquired data demonstrate that the pressure driven fast filtration approach followed by boiling ethanol quenching/extraction is the most adequate technique for P. taiwanensis VLB...

  6. Human factors engineering report for the cold vacuum drying facility

    Energy Technology Data Exchange (ETDEWEB)

    IMKER, F.W.

    1999-06-30

    The purpose of this report is to present the results and findings of the final Human Factors Engineering (HFE) technical analysis and evaluation of the Cold Vacuum Drying Facility (CVDF). Ergonomics issues are also addressed in this report, as appropriate. This report follows up and completes the preliminary work accomplished and reported by the Preliminary HFE Analysis report (SNF-2825, Spent Nuclear Fuel Project Cold Vacuum Drying Facility Human Factors Engineering Analysis: Results and Findings). This analysis avoids redundancy of effort except for ensuring that previously recommended HFE design changes have not affected other parts of the system. Changes in one part of the system may affect other parts of the system where those changes were not applied. The final HFE analysis and evaluation of the CVDF human-machine interactions (HMI) was expanded to include: the physical work environment, human-computer interface (HCI) including workstation and software, operator tasks, tools, maintainability, communications, staffing, training, and the overall ability of humans to accomplish their responsibilities, as appropriate. Key focal areas for this report are the process bay operations, process water conditioning (PWC) skid, tank room, and Central Control Room operations. These key areas contain the system safety-class components and are the foundation for the human factors design basis of the CVDF.

  7. Human factors engineering report for the cold vacuum drying facility

    International Nuclear Information System (INIS)

    IMKER, F.W.

    1999-01-01

    The purpose of this report is to present the results and findings of the final Human Factors Engineering (HFE) technical analysis and evaluation of the Cold Vacuum Drying Facility (CVDF). Ergonomics issues are also addressed in this report, as appropriate. This report follows up and completes the preliminary work accomplished and reported by the Preliminary HFE Analysis report (SNF-2825, Spent Nuclear Fuel Project Cold Vacuum Drying Facility Human Factors Engineering Analysis: Results and Findings). This analysis avoids redundancy of effort except for ensuring that previously recommended HFE design changes have not affected other parts of the system. Changes in one part of the system may affect other parts of the system where those changes were not applied. The final HFE analysis and evaluation of the CVDF human-machine interactions (HMI) was expanded to include: the physical work environment, human-computer interface (HCI) including workstation and software, operator tasks, tools, maintainability, communications, staffing, training, and the overall ability of humans to accomplish their responsibilities, as appropriate. Key focal areas for this report are the process bay operations, process water conditioning (PWC) skid, tank room, and Central Control Room operations. These key areas contain the system safety-class components and are the foundation for the human factors design basis of the CVDF

  8. Treatment of waters before use. Processes and applications

    International Nuclear Information System (INIS)

    Mouchet, P.

    2006-01-01

    Some industrial processes require a water without any particulate in suspension and stable with respect to various aspects: no post-precipitations, no interference with storage and distribution equipments (corrosion or fouling), no development of bacterial, algal or other type of fauna (no chemical nutrients) etc. The water preparation process used will be different depending on the origin of the water (surface or underground). This article describes, first, the different type of treatments depending on the origin of the water and on the quality requested (clear and stable water, drinkable water, specific complementary processes, different processing files). Then, in a second part, the application of these processes to some industries are given (beverage, food, textile, paper, steel-making, aerospace and automotive, petroleum, power plants, ultra-pure waters) and in particular the preparation of demineralized water for nuclear power plants is described. (J.S.)

  9. The use of continuous vs. intermittent cold water immersion as a recovery method in basketball players after training: a randomized controlled trial.

    Science.gov (United States)

    Sánchez-Ureña, Braulio; Martínez-Guardado, Ismael; Crespo, Carmen; Timón, Rafael; Calleja-González, Julio; Ibañez, Sergio J; Olcina, Guillermo

    2017-05-01

    The main objective of this study was to compare two cold water immersion protocols, continuous or intermittent, on recovery in basketball players. Ten male basketball players (age: 14 ± 0.4 years, body mass: 65.4 ± 9.1 kg, height: 175 ± 7.3 cm, body fat %: 10.3 ± 4) were included in the study. After three 90-minute training sessions (avg. heart rate 158 ± 11.92, 156 ± 7.06 and 151 ± 10.44 bpm), participants were grouped into a continuous immersion (12 min at 12 ± 0.4°C) group, intermittent immersion (4 x 2 min immersion at 12 ± 0.4 °C + 1 min out of water) group and a control group (CG). Countermovement jump (CMJ), muscle pain and thigh volume were measured. Both cold water immersion protocols were effective in reducing the pain 24 and 48 hours after training compared with the CG (F (3.54) = 2.91, p = 0.016, η p 2  = .24). Concerning CMJ change, % differences occurred at 24 (Z = 11.04, p = 0.004) and 48 hours (Z = 14.01, p basketball players.

  10. A user-centred design process of new cold-protective clothing for offshore petroleum workers operating in the Barents Sea.

    Science.gov (United States)

    Naesgaard, Ole Petter; Storholmen, Tore Christian Bjørsvik; Wiggen, Øystein Nordrum; Reitan, Jarl

    2017-12-07

    Petroleum operations in the Barents Sea require personal protective clothing (PPC) to ensure the safety and performance of the workers. This paper describes the accomplishment of a user-centred design process of new PPC for offshore workers operating in this area. The user-centred design process was accomplished by mixed-methods. Insights into user needs and context of use were established by group interviews and on-the-job observations during a field-trip. The design was developed based on these insights, and refined by user feedback and participatory design. The new PPC was evaluated via field-tests and cold climate chamber tests. The insight into user needs and context of use provided useful input to the design process and contributed to tailored solutions. Providing users with clothing prototypes facilitated participatory design and iterations of design refinement. The group interviews following the final field test showed consensus of enhanced user satisfaction compared to PPC in current use. The final cold chamber test indicated that the new PPC provides sufficient thermal protection during the 60 min of simulated work in a wind-chill temperature of -25°C. Accomplishing a user-centred design process contributed to new PPC with enhanced user satisfaction and included relevant functional solutions.

  11. Exospheric transport restrictions on water ice in lunar polar traps

    Science.gov (United States)

    Hodges, R. R., Jr.

    1991-01-01

    There is little doubt that at least 10 exp 17 g of water has accreted on the moon as a result of the reduction of ferric iron at the regolith surface by solar wind protons, the vaporization of chondrites, and perhaps comet impacts. Lacking an efficient escape mechanism, most of this water (or its progeny) is probably on the moon now. If the water were to have migrated to permanently shaded cold traps near the lunar poles, ice deposts with densities greater than 1000 g/sq cm would cover the traps, providing accessible resources. However, exospheric transport considerations suggest that the actual amount of water ice in the cold traps is probably too small to be of practical interest. The alternative is global assimilation of most of the water into the regolith, a process that must account for about 30 micromoles of water per gram of soil.

  12. The Effect of Cold Rolling on the Hydrogen Susceptibility of 5083 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    E.P. Georgiou

    2017-10-01

    Full Text Available This work focuses in investigating the effect of cold deformation on the cathodic hydrogen charging of 5083 aluminum alloy. The aluminium alloy was submitted to a cold rolling process, until the average thickness of the specimens was reduced by 7% and 15%, respectively. A study of the structure, microhardness, and tensile properties of the hydrogen charged aluminium specimens, with and without cold rolling, indicated that the cold deformation process led to an increase of hydrogen susceptibility of this aluminum alloy.

  13. Culture-independent characterization of bacterial communities associated with the cold-water coral Lophelia pertusa in the northeastern Gulf of Mexico

    Science.gov (United States)

    Kellogg, C.A.; Lisle, J.T.; Galkiewicz, J.P.

    2009-01-01

    Bacteria are recognized as an important part of the total biology of shallow-water corals. Studies of shallow-water corals suggest that associated bacteria may benefit the corals by cycling carbon, fixing nitrogen, chelating iron, and producing antibiotics that protect the coral from other microbes. Cold-water or deep-sea corals have a fundamentally different ecology due to their adaptation to cold, dark, high-pressure environments and as such have novel microbiota. The goal of this study was to characterize the microbial associates of Lophelia pertusa in the northeastern Gulf of Mexico. This is the first study to collect the coral samples in individual insulated containers and to preserve coral samples at depth in an effort to minimize thermal shock and evaluate the effects of environmental gradients on the microbial diversity of samples. Molecular analysis of bacterial diversity showed a marked difference between the two study sites, Viosca Knoll 906/862 (VK906/862) and Viosca Knoll 826 (VK826). The bacterial communities from VK826 were dominated by a variety of unknown mycoplasmal members of the Tenericutes and Bacteroidetes, whereas the libraries from VK906/862 were dominated by members of the Proteobacteria. In addition to novel sequences, the 16S rRNA gene clone libraries revealed many bacterial sequences in common between Gulf of Mexico Lophelia corals and Norwegian fjord Lophelia corals, as well as shallow-water corals. Two Lophelia-specific bacterial groups were identified: a cluster of gammaproteobacteria related to sulfide-oxidizing gill symbionts of seep clams and a group of Mycoplasma spp. The presence of these groups in both Gulf and Norwegian Lophelia corals indicates that in spite of the geographic heterogeneity observed in Lophelia-associated bacterial communities, there are Lophelia-specific microbes. Copyright ?? 2009, American Society for Microbiology. All Rights Reserved.

  14. Amelioration of cold injury-induced cortical brain edema formation by selective endothelin ETB receptor antagonists in mice.

    Science.gov (United States)

    Michinaga, Shotaro; Nagase, Marina; Matsuyama, Emi; Yamanaka, Daisuke; Seno, Naoki; Fuka, Mayu; Yamamoto, Yui; Koyama, Yutaka

    2014-01-01

    Brain edema is a potentially fatal pathological condition that often occurs in stroke and head trauma. Following brain insults, endothelins (ETs) are increased and promote several pathophysiological responses. This study examined the effects of ETB antagonists on brain edema formation and disruption of the blood-brain barrier in a mouse cold injury model (Five- to six-week-old male ddY mice). Cold injury increased the water content of the injured cerebrum, and promoted extravasation of both Evans blue and endogenous albumin. In the injury area, expression of prepro-ET-1 mRNA and ET-1 peptide increased. Intracerebroventricular (ICV) administration of BQ788 (ETB antagonist), IRL-2500 (ETB antagonist), or FR139317 (ETA antagonist) prior to cold injury significantly attenuated the increase in brain water content. Bolus administration of BQ788, IRL-2500, or FR139317 also inhibited the cold injury-induced extravasation of Evans blue and albumin. Repeated administration of BQ788 and IRL-2500 beginning at 24 h after cold injury attenuated both the increase in brain water content and extravasation of markers. In contrast, FR139317 had no effect on edema formation when administrated after cold injury. Cold injury stimulated induction of glial fibrillary acidic protein-positive reactive astrocytes in the injured cerebrum. Induction of reactive astrocytes after cold injury was attenuated by ICV administration of BQ788 or IRL-2500. These results suggest that ETB receptor antagonists may be an effective approach to ameliorate brain edema formation following brain insults.

  15. Conceptualizing Cold Disasters

    DEFF Research Database (Denmark)

    Lauta, Kristian Cedervall; Dahlberg, Rasmus; Vendelø, Morten Thanning

    2017-01-01

    In the present article, we explore in more depth the particular circumstances and characteristics of governing what we call ‘cold disasters’, and thereby, the paper sets out to investigate how disasters in cold contexts distinguish themselves from other disasters, and what the implications hereof...... are for the conceptualization and governance of cold disasters. Hence, the paper can also be viewed as a response to Alexander’s (2012a) recent call for new theory in the field of disaster risk reduction. The article is structured in four overall parts. The first part, Cold Context, provides an overview of the specific...... conditions in a cold context, exemplified by the Arctic, and zooms in on Greenland to provide more specific background for the paper. The second part, Disasters in Cold Contexts, discusses “cold disasters” in relation to disaster theory, in order to, elucidate how cold disasters challenge existing...

  16. Extraction of a Novel Cold-Water-Soluble Polysaccharide from Astragalus membranaceus and Its Antitumor and Immunological Activities

    Directory of Open Access Journals (Sweden)

    An-jun Liu

    2017-12-01

    Full Text Available The polysaccharides of Astragalus membranaceus have received extensive study and attention, but there have been few reports on the extraction of these polysaccharides using cold water (4 °C. In this study, we fractionated a novel cold-water-soluble polysaccharide (cAMPs-1A from Astragalus membranaceus with a 92.00% carbohydrate content using a DEAE-cellulose 52 anion exchange column and a Sephadex G-100 column. Our UV, Fourier-transform infrared spectroscopy (FTIR, high-performance gel permeation chromatography, and ion chromatography analysis results indicated the monosaccharide composition of cAMPs-1A with 1.23 × 104 Da molecular weight to be fucose, arabinose, galactose, glucose, and xylose, with molar ratios of 0.01:0.06:0.20:1.00:0.06, respectively. The UV spectroscopy detected no protein and nucleic acid in cAMPs-1A. We used FTIR analysis to characterize the α-d-pyranoid configuration in cAMPs-1A. In addition, we performed animal experiments in vivo to evaluate the antitumor and immunomodulatory effects of cAMPs-1A. The results suggested that cAMPs-1A oral administration could significantly inhibit tumor growth with the inhibitory rate of 20.53%, 36.50% and 44.49%, respectively, at the dosage of 75,150, and 300 mg/kg. Moreover, cAMPs-1A treatment could also effectively protect the immune organs, promote macrophage pinocytosis, and improve the percentages of lymphocyte subsets in the peripheral blood of tumor-bearing mice. These findings demonstrate that the polysaccharide cAMPs-1A has an underlying application as natural antitumor agents.

  17. Experimental and numerical investigation on cold flat rolling processes of DC04 sheets with special focus on residual stresses

    International Nuclear Information System (INIS)

    Bauer, A; Binotsch, C; Awiszus, B; Mehner, T; Sieber, M; Lampke, T

    2016-01-01

    The process of cold flat rolling is a widespread industrial technique to manufacture semi-finished products, e.g., for the automotive or homewares industry. Basic knowledge of the process regarding dimensioning and adjustment of defined characteristics is already state of the art. However, a detailed consideration and analysis with respect to local inhomogeneous residual stresses in several process steps mostly remains disregarded. A broad understanding of the process due to the distribution of residual stresses in the workpiece and the direction of the stress tensors allows for a definition of the characteristics of the workpiece even before the actual manufacturing process. For that purpose, it is necessary to perform numerical investigations by means of the finite element analysis (FEA) of cold flat rolling processes. Within this contribution, several approaches for the calibration of the FEA with the real flat rolling process will be addressed and discussed. To ensure that the numerical consideration provides realistic results, this calibration is indispensable. General parameters such as geometry, height reduction, rolling temperature, process time, and the rolling speed are considered as well as a photogrammetric survey, and calculated residual stresses with results of X-ray diffraction (XRD) will be compared. In the course of the experiments, a good agreement between the stress results of the FEA and the XRD was found in the center of the specimen. In combination with the allocation of the stress orientations, the agreement close to the edges is also fine. Some issues that cause differences between the FEA and the experiment are dis-cussed. (paper)

  18. Cold vacuum drying facility design requirements

    Energy Technology Data Exchange (ETDEWEB)

    IRWIN, J.J.

    1999-07-01

    This document provides the detailed design requirements for the Spent Nuclear Fuel Project Cold Vacuum Drying Facility. Process, safety, and quality assurance requirements and interfaces are specified.

  19. Cold vacuum drying facility design requirements

    International Nuclear Information System (INIS)

    IRWIN, J.J.

    1999-01-01

    This document provides the detailed design requirements for the Spent Nuclear Fuel Project Cold Vacuum Drying Facility. Process, safety, and quality assurance requirements and interfaces are specified

  20. Possible stimulation of anti-tumor immunity using repeated cold stress: a hypothesis

    Directory of Open Access Journals (Sweden)

    Radoja Sasa

    2007-11-01

    Full Text Available Abstract Background The phenomenon of hormesis, whereby small amounts of seemingly harmful or stressful agents can be beneficial for the health and lifespan of laboratory animals has been reported in literature. In particular, there is accumulating evidence that daily brief cold stress can increase both numbers and activity of peripheral cytotoxic T lymphocytes and natural killer cells, the major effectors of adaptive and innate tumor immunity, respectively. This type of regimen (for 8 days has been shown to improve survival of mice infected with intracellular parasite Toxoplasma gondii, which would also be consistent with enhanced cell-mediated immunity. Presentation of the hypothesis This paper hypothesizes that brief cold-water stress repeated daily over many months could enhance anti-tumor immunity and improve survival rate of a non-lymphoid cancer. The possible mechanism of the non-specific stimulation of cellular immunity by repeated cold stress appears to involve transient activation of the sympathetic nervous system, hypothalamic-pituitary-adrenal and hypothalamic-pituitary-thyroid axes, as described in more detail in the text. Daily moderate cold hydrotherapy is known to reduce pain and does not appear to have noticeable adverse effects on normal test subjects, although some studies have shown that it can cause transient arrhythmias in patients with heart problems and can also inhibit humoral immunity. Sudden immersion in ice-cold water can cause transient pulmonary edema and increase permeability of the blood-brain barrier, thereby increasing mortality of neurovirulent infections. Testing the hypothesis The proposed procedure is an adapted cold swim (5–7 minutes at 20 degrees Celsius, includes gradual adaptation to be tested on a mouse tumor model. Mortality, tumor size, and measurements of cellular immunity (numbers and activity of peripheral CD8+ T lymphocytes and natural killer cells of the cold-exposed group would be compared to