WorldWideScience

Sample records for cold crucible melter

  1. Vitrification of HLW in cold crucible melter

    International Nuclear Information System (INIS)

    Bordier, G.

    2005-01-01

    The performance of the vitrification process currently used in the La Hague commercial reprocessing plants has been continuously improved during more than ten years of operation. In parallel the CEA (French Atomic Energy Commission), COGEMA (Industrial Operator), and SGN (COGEMA's Engineering) have developed the cold crucible melter vitrification technology to obtain greater operating flexibility, increased plant availability and further reduction of secondary waste generated during operations. The cold crucible is a compact water-cooled melter in which the radioactive waste and the glass additives are melted by direct high frequency induction. The cooling of the melter produces a solidified glass layer that protects the melter's inner wall from corrosion. Because the heat is transferred directly to the melt, high operating temperatures can be achieved with no impact on the melter itself. COGEMA plans to implement the cold crucible technology to vitrify high level liquid waste from reprocessed spent U-Mo-Sn-Al fuel (used in gas cooled reactor). The cold crucible was selected for the vitrification of this particularly hard-to-process waste stream because it could not be reasonably processed in the standard hot induction melters currently used at the La Hague vitrification facilities: the waste has a high molybdenum content which makes it very corrosive and also requires a special high temperature glass formulation to obtain sufficiently high waste loading factors (12 % in molybdenum). A special glass formulation has been developed by the CEA and has been qualified through lab and pilot testing to meet standard waste acceptance criteria for final disposal of the U-Mo waste. The process and the associated technologies have been also qualified on a full-scale prototype at the CEA pilot facility in Marcoule. Engineering study has been integrated in parallel in order to take into account that the Cold Crucible should be installed remotely in one of the R7 vitrification

  2. Compilation of information on modeling of inductively heated cold crucible melters

    International Nuclear Information System (INIS)

    Lessor, D.L.

    1996-03-01

    The objective of this communication, Phase B of a two-part report, is to present information on modeling capabilities for inductively heated cold crucible melters, a concept applicable to waste immobilization. Inductively heated melters are those in which heat is generated using coils around, rather than electrodes within, the material to be heated. Cold crucible or skull melters are those in which the melted material is confined within unmelted material of the same composition. This phase of the report complements and supplements Phase A by Loren Eyler, specifically by giving additional information on modeling capabilities for the inductively heated melter concept. Eyler discussed electrically heated melter modeling capabilities, emphasizing heating by electrodes within the melt or on crucible walls. Eyler also discussed requirements and resources for the computational fluid dynamics, heat flow, radiation effects, and boundary conditions in melter modeling; the reader is referred to Eyler's discussion of these. This report is intended for use in the High Level Waste (HLW) melter program at Hanford. We sought any modeling capabilities useful to the HLW program, whether through contracted research, code license for operation by Department of Energy laboratories, or existing codes and modeling expertise within DOE

  3. Vitrification of HLW produced by uranium/molybdenum fuel reprocessing in cogema's cold crucible melter

    International Nuclear Information System (INIS)

    Quang, R. Do; Petitjean, V.; Hollebeque, F.; Pinet, O.; Flament, T.; Prodhomme, A.; Dalcorso, J. P.

    2003-01-01

    The performance of the vitrification process currently used in the La Hague commercial reprocessing plants has been continuously improved during more than ten years of operation. In parallel COGEMA (industrial Operator), the French Atomic Energy Commission (CEA) and SGN (respectively COGEMA's R and D provider and Engineering) have developed the cold crucible melter vitrification technology to obtain greater operating flexibility, increased plant availability and further reduction of secondary waste generated during operations. The cold crucible is a compact water-cooled melter in which the radioactive waste and the glass additives are melted by direct high frequency induction. The cooling of the melter produces a solidified glass layer that protects the melter's inner wall from corrosion. Because the heat is transferred directly to the melt, high operating temperatures can be achieved with no impact on the melter itself. COGEMA plans to implement the cold crucible technology to vitrify high level liquid waste from reprocessed spent U-Mo-Sn-Al fuel (used in gas cooled reactor). The cold crucible was selected for the vitrification of this particularly hard-to-process waste stream because it could not be reasonably processed in the standard hot induction melters currently used at the La Hague vitrification facilities : the waste has a high molybdenum content which makes it very corrosive and also requires a special high temperature glass formulation to obtain sufficiently high waste loading factors (12% in molybdenum). A special glass formulation has been developed by the CEA and has been qualified through lab and pilot testing to meet standard waste acceptance criteria for final disposal of the U-Mo waste. The process and the associated technologies have been also being qualified on a full-scale prototype at the CEA pilot facility in Marcoule. Engineering study has been integrated in parallel in order to take into account that the Cold Crucible should be installed

  4. Vitrification of HLW Produced by Uranium/Molybdenum Fuel Reprocessing in COGEMA's Cold Crucible Melter

    International Nuclear Information System (INIS)

    Do Quang, R.; Petitjean, V.; Hollebecque, F.; Pinet, O.; Flament, T.; Prod'homme, A.

    2003-01-01

    The performance of the vitrification process currently used in the La Hague commercial reprocessing plants has been continuously improved during more than ten years of operation. In parallel COGEMA (industrial Operator), the French Atomic Energy Commission (CEA) and SGN (respectively COGEMA's R and D provider and Engineering) have developed the cold crucible melter vitrification technology to obtain greater operating flexibility, increased plant availability and further reduction of secondary waste generated during operations. The cold crucible is a compact water-cooled melter in which the radioactive waste and the glass additives are melted by direct high frequency induction. The cooling of the melter produces a solidified glass layer that protects the melter's inner wall from corrosion. Because the heat is transferred directly to the melt, high operating temperatures can be achieved with no impact on the melter itself. COGEMA plans to implement the cold crucible technology to vitrify high level liquid waste from reprocessed spent U-Mo-Sn-Al fuel (used in gas cooled reactor). The cold crucible was selected for the vitrification of this particularly hard-to-process waste stream because it could not be reasonably processed in the standard hot induction melters currently used at the La Hague vitrification facilities : the waste has a high molybdenum content which makes it very corrosive and also requires a special high temperature glass formulation to obtain sufficiently high waste loading factors (12 % in molybdenum). A special glass formulation has been developed by the CEA and has been qualified through lab and pilot testing to meet standard waste acceptance criteria for final disposal of the U-Mo waste. The process and the associated technologies have been also being qualified on a full-scale prototype at the CEA pilot facility in Marcoule. Engineering study has been integrated in parallel in order to take into account that the Cold Crucible should be installed

  5. Letter report: Cold crucible melter assessment

    International Nuclear Information System (INIS)

    Elliott, M.L.

    1996-03-01

    One of the activities of the PNL Vitrification Technology Development (PVTD) Project is to assist the Tank Waste Remediation Systems (TWRS) Program in determining which melter systems should be performance tested for potential implementation in the high-level waste (HLW) vitrification plant. The Richland Operations Office (RL) has recommended that the Cold Crucible Melter (CCM) be evaluated as a candidate ''next generation'' melter. As a result, the CCM System Evaluation cost account was established under the PVTD Project so that the CCM could be initially assessed on a high-priority basis. This letter report summarizes a brief initial review and assessment of the CCM. Using the recommendations made in this document, Westinghouse Hanford Company (WHC) and RL will make a decision regarding the urgency of performance testing the CCM. If the decision is favorable, a subcontract will be negotiated for performance testing of a CCM using Hanford HLW simulants in a pilot-scale facility. Because of the aggressive nature of the schedule, the CCM evaluation was not rigorous. The evaluation consisted of a literature review and interviews with proponents of the technology during a recent trip to France. This letter report summarizes the evaluation and makes recommendations regarding further work in this area

  6. Noble metal (NM) behavior during simulated HLLW vitrification in induction melter with cold crucible

    International Nuclear Information System (INIS)

    Demin, A.V.; Matyunin, Y.I.; Fedorova, M.I.

    1995-01-01

    The investigation of noble metal (Ru, Rh, Pd) properties in, glass melts are connected with their specific behaviors during HLLW vitrification. Ruthenium, rhodium and palladium volatilities and heterogeneous platinoid phases forming on melts are investigated in reasonable details conformably to Joule's heating ceramic melters. The vitrification conditions in melters with induction heating of melts are differ from the vitrification ones in ceramic melters on some numbers of parameters (the availability of significant temperature gradients and convection flows in melts, short time of molten mass updating in melter and probability of definite interaction between high-frequency field and melt inhomogeneities). The results of simulated HLLW solidification modelling of the vitrification process in induction melter with cold crucible to produce phosphate and boron-silicate materials are presented. The properties of received glasses and behavior of platinoids are shown to have analogies and distinctions in comparison with compounds, synthesized in ceramic melter. The structures of dispersed particles of NM heterogeneous phases forming in glass melts prepared in induction melter with cold crucible are identified. The results of investigations show, that the marked distinctions between two processes can influence (in definite degree) as on property of synthesized materials, as on behavior of platinoid during vitrifications

  7. Cold crucible induction melter studies for making glass ceramic waste forms: A feasibility assessment

    International Nuclear Information System (INIS)

    Crum, Jarrod; Maio, Vince; McCloy, John; Scott, Clark; Riley, Brian; Benefiel, Brad; Vienna, John; Archibald, Kip; Rodriguez, Carmen; Rutledge, Veronica; Zhu, Zihua; Ryan, Joe; Olszta, Matthew

    2014-01-01

    Glass ceramics are being developed to immobilize fission products, separated from used nuclear fuel by aqueous reprocessing, into a stable waste form suitable for disposal in a geological repository. This work documents the glass ceramic formulation at bench scale and for a scaled melter test performed in a pilot-scale (∼1/4 scale) cold crucible induction melter (CCIM). Melt viscosity, electrical conductivity, and crystallization behavior upon cooling were measured on a small set of compositions to select a formulation for melter testing. Property measurements also identified a temperature range for melter operation and cooling profiles necessary to crystallize the targeted phases in the waste form. Bench scale and melter run results successfully demonstrate the processability of the glass ceramic using the CCIM melter technology

  8. Cold-Crucible Design Parameters for Next Generation HLW Melters

    International Nuclear Information System (INIS)

    Gombert, D.; Richardson, J.; Aloy, A.; Day, D.

    2002-01-01

    The cold-crucible induction melter (CCIM) design eliminates many materials and operating constraints inherent in joule-heated melter (JHM) technology, which is the standard for vitrification of high-activity wastes worldwide. The cold-crucible design is smaller, less expensive, and generates much less waste for ultimate disposal. It should also allow a much more flexible operating envelope, which will be crucial if the heterogeneous wastes at the DOE reprocessing sites are to be vitrified. A joule-heated melter operates by passing current between water-cooled electrodes through a molten pool in a refractory-lined chamber. This design is inherently limited by susceptibility of materials to corrosion and melting. In addition, redox conditions and free metal content have exacerbated materials problems or lead to electrical short-circuiting causing failures in DOE melters. In contrast, the CCIM design is based on inductive coupling of a water-cooled high-frequency electrical coil with the glass, causing eddycurrents that produce heat and mixing. A critical difference is that inductance coupling transfers energy through a nonconductive solid layer of slag coating the metal container inside the coil, whereas the jouleheated design relies on passing current through conductive molten glass in direct contact with the metal electrodes and ceramic refractories. The frozen slag in the CCIM design protects the containment and eliminates the need for refractory, while the corrosive molten glass can be the limiting factor in the JH melter design. The CCIM design also eliminates the need for electrodes that typically limit operating temperature to below 1200 degrees C. While significant marketing claims have been made by French and Russian technology suppliers and developers, little data is available for engineering and economic evaluation of the technology, and no facilities are available in the US to support testing. A currently funded project at the Idaho National Engineering

  9. The Production of Advanced Glass Ceramic HLW Forms using Cold Crucible Induction Melter

    Energy Technology Data Exchange (ETDEWEB)

    Veronica J Rutledge; Vince Maio

    2013-10-01

    Cold Crucible Induction Melters (CCIMs) will favorably change how High-Level radioactive Waste (from nuclear fuel recovery) is treated in the 21st century. Unlike the existing Joule-Heated Melters (JHMs) currently in operation for the glass-based immobilization of High-Level Waste (HLW), CCIMs offer unique material features that will increase melt temperatures, increase throughput, increase mixing, increase loading in the waste form, lower melter foot prints, eliminate melter corrosion and lower costs. These features not only enhance the technology for producing HLW forms, but also provide advantageous attributes to the waste form by allowing more durable alternatives to glass. This paper discusses advantageous features of the CCIM, with emphasis on features that overcome the historical issues with the JHMs presently utilized, as well as the benefits of glass ceramic waste forms over borosilicate glass waste forms. These advantages are then validated based on recent INL testing to demonstrate a first-of-a-kind formulation of a non-radioactive ceramic-based waste form utilizing a CCIM.

  10. The production of advanced glass ceramic HLW forms using cold crucible induction melter

    International Nuclear Information System (INIS)

    Rutledge, V.J.; Maio, V.

    2013-01-01

    Cold Crucible Induction Melters (CCIM) will favorably change how High-Level radioactive Waste (from nuclear fuel recovery) is treated in a near future. Unlike the existing Joule-Heated Melters (JHM) currently in operation for the glass-based immobilization of High-Level Waste (HLW), CCIM offers unique material features that will increase melt temperatures, increase throughput, increase mixing, increase loading in the waste form, lower melter foot prints, eliminate melter corrosion and lower costs. These features not only enhance the technology for producing HLW forms, but also provide advantageous attributes to the waste form by allowing more durable alternatives to glass. It is concluded that glass ceramic waste forms that are tailored to immobilize fission products of HLW can be can be made from the HLW processed with the CCIM. The advantageous higher temperatures reached with the CCIM and unachievable with JHM allows the lanthanides, alkali, alkaline earths, and molybdenum to dissolve into a molten glass. Upon controlled cooling they go into targeted crystalline phases to form a glass ceramic waste form with higher waste loadings than achievable with borosilicate glass waste forms. Natural cooling proves to be too fast for the formation of all targeted crystalline phases

  11. Silicate Based Glass Formulations for Immobilization of U.S. Defense Wastes Using Cold Crucible Induction Melters

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Gary L.; Kim, Dong-Sang; Schweiger, Michael J.; Marra, James C.; Lang, Jesse B.; Crum, Jarrod V.; Crawford, Charles L.; Vienna, John D.

    2014-05-22

    The cold crucible induction melter (CCIM) is an alternative technology to the currently deployed liquid-fed, ceramic-lined, Joule-heated melter for immobilizing of U.S. tank waste generated from defense related reprocessing. In order to accurately evaluate the potential benefits of deploying a CCIM, glasses must be developed specifically for that melting technology. Related glass formulation efforts have been conducted since the 1990s including a recent study that is first documented in this report. The purpose of this report is to summarize the silicate base glass formulation efforts for CCIM testing of U.S. tank wastes. Summaries of phosphate based glass formulation and phosphate and silicate based CCIM demonstration tests are reported separately (Day and Ray 2013 and Marra 2013, respectively). Combined these three reports summarize the current state of knowledge related to waste form development and process testing of CCIM technology for U.S. tank wastes.

  12. Characterization of Ceramic Material Produced From a Cold Crucible Induction Melter Test

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Marra, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-04-30

    This report summarizes the results from characterization of samples from a melt processed surrogate ceramic waste form. Completed in October of 2014, the first scaled proof of principle cold crucible induction melter (CCIM) test was conducted to process a Fe-hollandite-rich titanate ceramic for treatment of high level nuclear waste. X-ray diffraction, electron microscopy, inductively coupled plasma-atomic emission spectroscopy (and inductively coupled plasma-mass spectroscopy for Cs), and product consistency tests were used to characterize the CCIM material produced. Core samples at various radial locations from the center of the CCIM were taken. These samples were also sectioned and analyzed vertically. Together, the various samples were intended to provide an indication of the homogeneity throughout the CCIM with respect to phase assemblage, chemical composition, and chemical durability. Characterization analyses confirmed that a crystalline ceramic with desirable phase assemblage was produced from a melt using a CCIM. Hollandite and zirconolite were identified in addition to possible highly-substituted pyrochlore and perovskite. Minor phases rich in Fe, Al, or Cs were also identified. Remarkably only minor differences were observed vertically or radially in the CCIM material with respect to chemical composition, phase assemblage, and durability. This recent CCIM test and the resulting characterization in conjunction with demonstrated compositional improvements support continuation of CCIM testing with an improved feed composition and improved melter system.

  13. ''Cold crucible'' vitrification projects for low and high active waste

    International Nuclear Information System (INIS)

    Roux, P.; Jouan, A.

    1998-01-01

    In continuity of the CEA HLW vitrification process experienced for more than 20 years in industrial operations in Cogema reprocessing plants (Marcoule and La Hague), CEA has developed an advanced extended performance cold crucible glass melter to address a wider range of waste like LLW, ILW and in particular waste with very corrosive species or requiring glass with higher elaboration temperature. In the cold crucible melter the bath of molten glass is directly heated by induction while the walls are cooled in order to freeze a protective glass layer. This technology subsequently allows high glass throughput while keeping the flexibility, the maintainability and low secondary waste generation related to a small metallic melter. Its recent use in the glass industry and the thousands of hours of pilot tests performed on inactive surrogates have demonstrated the maturity of this technology and its flexibility of use for processing most of the waste generated at nuclear facilities. SGN has therefore proposed this technology in Italy and Korea and in USA in the frame of the Hanford Privatization phase 1 A feasibility study. Main features of this study but also tests results with Hanford surrogates and active samples are discussed. (author)

  14. Cold crucible induction melter test for crystalline ceramic waste form fabrication: A feasibility assessment

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, Jake W., E-mail: jake.amoroso@srnl.doe.gov [Savannah River National Laboratory, Aiken, SC 29808 (United States); Marra, James; Dandeneau, Christopher S. [Savannah River National Laboratory, Aiken, SC 29808 (United States); Brinkman, Kyle; Xu, Yun [Clemson University, Clemson, SC 29634 (United States); Tang, Ming [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Maio, Vince [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Webb, Samuel M. [Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94086 (United States); Chiu, Wilson K.S. [University of Connecticut, Storrs, Connecticut 06269-3139 (United States)

    2017-04-01

    The first scaled proof-of-principle cold crucible induction melter (CCIM) test to process a multiphase ceramic waste form from a simulated combined (Cs/Sr, lanthanide and transition metal fission products) commercial used nuclear fuel waste stream was recently conducted in the United States. X-ray diffraction, 2-D X-ray absorption near edge structure (XANES), electron microscopy, inductively coupled plasma-atomic emission spectroscopy (and inductively coupled plasma-mass spectroscopy for Cs), and product consistency tests were used to characterize the fabricated CCIM material. Characterization analyses confirmed that a crystalline ceramic with a desirable phase assemblage was produced from a melt using a CCIM. Primary hollandite, pyrochlore/zirconolite, and perovskite phases were identified in addition to minor phases rich in Fe, Al, or Cs. The material produced in the CCIM was chemically homogeneous and displayed a uniform phase assemblage with acceptable aqueous chemical durability.

  15. FEASIBILITY EVALUATION AND RETROFIT PLAN FOR COLD CRUCIBLE INDUCTION MELTER DEPLOYMENT IN THE DEFENSE WASTE PROCESSING FACILITY AT SAVANNAH RIVER SITE 8118

    International Nuclear Information System (INIS)

    Barnes, A; Dan Iverson, D; Brannen Adkins, B

    2008-01-01

    Cold crucible induction melters (CCIM) have been proposed as an alternative technology for waste glass melting at the Defense Waste Processing Facility (DWPF) at Savannah River Site (SRS) as well as for other waste vitrification facilities. Proponents of this technology cite high temperature operation, high tolerance for noble metals and aluminum, high waste loading, high throughput capacity, and low equipment cost as the advantages over existing Joule Heated Melter (JHM) technology. The CCIM uses induction heating to maintain molten glass at high temperature. A water-cooled helical induction coil is connected to an AC current supply, typically operating at frequencies from 100 KHz to 5 MHz. The oscillating magnetic field generated by the oscillating current flow through the coil induces eddy currents in conductive materials within the coil. Those oscillating eddy currents, in turn, generate heat in the material. In the CCIM, the induction coil surrounds a 'Cold Crucible' which is formed by metal tubes, typically copper or stainless steel. The tubes are constructed such that the magnetic field does not couple with the crucible. Therefore, the field generated by the induction coil couples primarily with the conductive medium (hot glass) within. The crucible tubes are water cooled to maintain their temperature between 100 C to 200 C so that a protective layer of molten glass and/or batch material, referred to as a 'skull', forms between them and the hot, corrosive melt. Because the protective skull is the only material directly in contact with the molten glass, the CCIM doesn't have the temperature limitations of traditional refractory lined JHM. It can be operated at melt temperatures in excess of 2000 C, allowing processing of high waste loading batches and difficult-to-melt compounds. The CCIM is poured through a bottom drain, typically through a water-cooled slide valve that starts and stops the pour stream. To promote uniform temperature distribution and

  16. Volatilization of heavy metals and radionuclides from soil heated in an induction ''cold'' crucible melter

    International Nuclear Information System (INIS)

    Aloy, A.S.; Belov, V.Z.; Trofimenko, A.S.; Dmitriev, S.A.; Stefanovsky, S.V.; Gombert, D.; Knecht, D.A.

    1997-01-01

    The behavior of heavy metals and radionuclides during high-temperature treatment is very important for the design and operational capabilities of the off-gas treatment system, as well as for a better understanding of the nature and forms of the secondary waste. In Russia, a process for high-temperature melting in an induction heated cold crucible system is being studied for vitrification of Low Level Waste (LLW) flyash and SYNROC production with simulated high level waste (HLW). This work was done as part of a Department of Energy (DOE) funded research project for thermal treatment of mixed low level waste (LLW). Soil spiked with heavy metals (Cd, Pb) and radionuclides (Cs-137, U-239, Pu-239) was used as a waste surrogate. The soil was melted in an experimental lab-scale system that consisted of a high-frequency generator (1.76 MHz, 60 kW), a cold crucible melter (300 mm high and 90 mm in diameter), a shield box, and an off-gas system. The process temperature was 1,350--1,400 C. Graphite and silicon carbide were used as sacrificial conductive materials to start heating and initial melting of the soil batch. The off-gas system was designed in such a manner that after each experiment, it can be disconnected to collect and analyze all deposits to determine the mass balance. The off-gases were also sampled during an experiment to analyze for hydrogen, NO x , carbon dioxide, carbon monoxide and chlorine formation. This paper describes distribution and mass balance of metals and radionuclides in various parts of the off-gas system. The leach rate of the solidified blocks identified by the PCT method is also reported

  17. Vitrification of HLLW Surrogate Solutions Containing Sulfate in a Direct-Induction Cold Crucible Melter

    International Nuclear Information System (INIS)

    Tronche, E.; Lacombe, J.; Ledoux, A.; Boen, R.; Ladirat, C.H.

    2009-01-01

    Efforts were made in the People's Republic of China to solidify legacy high level liquid waste (HLLW) by the Liquid-Fed Ceramic Melter process (LFCM) in the 1990's. This process was to be a continuous process with high throughput as in the French Marcoule Vitrification Plant (AVM) or the LFCM. In this context, the CEA (Commissariat a l'Energie Atomique is a French government-funded technological research organization) suggests the Cold Crucible Induction Melter (CCIM) technology that has been developed by the CEA since the 1980's to improve the performance of the vitrification process. In this context a series of vitrification tests has been carried out in a CCIM. CEA and AREVA have designed an integrated platform based on the CCIM technology on a sufficient scale to be used for demonstration programs of the one-step process. In 2003 a test was carried out at Marcoule in southern France on simulated HLLW with high sulfur content. In order to ensure the tests performed at Marcoule were consistent with the Chinese waste-forms, the glass frit was supplied by a Chinese Industry. The CCIM facility is described in detail, including process instrumentation. The test run is also described, including how the solution was directly fed on the surface of the molten glass. A maximum capacity was determined according to the applied process parameters including the high operating temperature. The electrical power supply characteristics are detailed and a glass mass balance is also presented covering more than seven hundred kilograms of glass produced in a sixty-hour test run. (authors)

  18. Vitrification of organic products in a cold crucible

    International Nuclear Information System (INIS)

    Song, Myung Jae; Park, Jong Kil; Jouan, A.; Ladirat, C.; Merlin, S.; Pujadas, V.

    1997-01-01

    A worldwide increasing interest is presently observed for the waste vitrification whether they are radioactive or hazardous. Vitrification confines the waste in a stable and inert material and reduces significantly the waste volume which has a major effect on the disposal cost. The waste vitrification has been primarily applied for the treatment of high level radioactive waste from spent fuels reprocessing. In France, the CEA had a significant contribution in that field by developing in the 60's a technology based on metallic crucible heated by induction. The CEA continued to be actively engaged in an R and D effort and, since the 80's, is developing an advanced technology based on a cold crucible heated by induction. This technology particularly well fits with the requirements associated with LAW/Man waste treatment. Laboratory as well as preliminary full scale tests have been conducted with encouraging results to investigate the feasibility of direct ion exchange resins vitrification in a cold crucible. KEPRI investigated, In the past years, the different high temperature technologies which were available on the market and able to treat the low- and medium-level active waste produced by the NPP. The most promising technologies identified as a result of the studies were the cold crucible melter (CCM) for the conditioning of the evaporator concentrate, the ions exchange resins and the solid combustible waste and the plasma torch for the remaining solid waste such as filters

  19. Investigation of U3O8 immobilization in the GP-91 borosilicate glass by induction melter with a cold crucible (CCIM)

    International Nuclear Information System (INIS)

    Matyunin, Y.I.; Demin, A.V.; Smelova, T.V.; Yudintsev, S.V.; Lapina, M.I.

    1997-01-01

    One of the most promising and intensively developed methods for the solidification of high-level wastes is their vitrification with the use of a cold crucible induction melter (CCIM), which offers a number of advantages over ceramic melter. This work is concerned with comparison studies on the behavior of uranium in vitreous borosilicate materials synthesized by the traditional technique (melting in muffle furnaces) and CCIM method. The incorporation of uranium oxide U 3 O 8 into the GP-91 borosilicate glass with the use of CCIM technology is investigated. The limiting solubility of uranium in the GP-91 borosilicate glass is evaluated. The phase composition of precipitated dispersed particles based on uranium is determined. Some physicochemical properties of synthesized materials are explored. Investigations into the behavior of uranium in borosilicate glass prepared in the CCIM show a feasibility to synthesize the X-ray amorphous homogeneous borosilicate glasses incorporating as much as 25 - 28 wt% uranium, which is 4 - 5 times larger than that in glasses obtained by the traditional method. (author)

  20. Compilation of information on melter modeling

    International Nuclear Information System (INIS)

    Eyler, L.L.

    1996-03-01

    The objective of the task described in this report is to compile information on modeling capabilities for the High-Temperature Melter and the Cold Crucible Melter and issue a modeling capabilities letter report summarizing existing modeling capabilities. The report is to include strategy recommendations for future modeling efforts to support the High Level Waste (BLW) melter development

  1. Characterization of a High-Level Waste Cold Cap in a Laboratory-Scale Melter

    Energy Technology Data Exchange (ETDEWEB)

    Dixona, Derek R; Schweiger, Michael J; Hrma, Pavel [Pacific Northwest National Laboratory, Richland (United States)

    2013-05-15

    The feed, slurry or calcine, is charged to the melter from above. The conversion of the melter feed to molten glass occurs within the cold cap, a several centimeters thin layer of the reacting material blanketing the surface of the melt. Between the cold-cap top, which is covered by boiling slurry, and its bottom, where bubbles separate it from molten glass, the temperature changes by ∼900 .deg. C. The heat is delivered to the cold cap from the melt that is stirred mainly by bubbling. The feed contains oxides, hydroxides, acids, inorganic salts and organic materials. On heating, these components react, releasing copious amounts of gases, while molten salts decompose, glass-forming melt is generated, and crystalline phases precipitate and dissolve in the melt. Most of these processes have been studied in detail and became sufficiently understood for a mathematical model to represent the heat and mass transfer within the cold cap. This allows US to relate the rate of melting to the feed properties. While the melting reactions can be studied, and feed properties, such as heat conductivity and density, measured in the laboratory, the actual cold-cap dynamics, as it evolves in the waste glass melter, is not accessible to direct investigation. Therefore, to bridge the gap between the laboratory crucible and the waste glass melter, we explored the cold cap formation in a laboratory-scale melter (LSM) and studied the structure of quenched cold caps. The LSM is a suitable tool for investigating the cold cap. The cold cap that formed in the LSM experiments exhibited macroscopic features observed in scaled melters, as well as microscopic features accessible through laboratory studies and mathematical modeling. The cold cap consists of two main layers. The top layer contains solid particles dissolving in the glass-forming melt and open shafts through which gases are escaping. The bottom layer contains bubbly melt or foam where bubbles coalesce into larger cavities that move

  2. Cold-crucible fabrication of nuclear glasses

    International Nuclear Information System (INIS)

    Boen, R.

    2010-01-01

    Vitrification has stood the nuclear industry in good stead, for many years now, as a safe long-term conditioning technology for high-level waste. Major advances are nonetheless still being made, with the development of the cold-crucible technology, affording as it does new possibilities, in terms of volume reduction, and of extending the range of waste products amenable to incorporation. Indeed, by allowing higher melting temperatures to be achieved (1200 - 1400 C degrees), this process opens the way to a considerable increase in glass production capacities, and the fabrication of novel matrices, involving higher incorporation rates than current glasses. In the cold-crucible technology, materials put into the crucible are heated directly through induction. The crucible made of metal is cooled by water circulation. Where the glass comes into contact with the cold wall, a thin layer of solidified glass forms, with a thickness of 5-10 mm preventing the metal forming the crucible from coming into contact with the molten glass. A full scale pilot of the cold crucible was constructed at the La Hague vitrification workshop

  3. Technology and equipment based on induction melters with ''cold'' crucible for reprocessing active metal waste

    International Nuclear Information System (INIS)

    Pastushkov, V.G.; Molchanov, A.V.; Serebryakov, V.P.; Smelova, T.V.; Shestoperov, I.N.

    2000-01-01

    The operation and, particularly, the decommissioning of NPPs and radiochemical plants result in substantial arisings of radioactive metal waste (RAMW) having different activity levels (from 5 x 10 -4 to ∼ 40 Ci/kg). The paper reviews the specific features of the technology and equipment used to melt RAMW in electric arc and induction furnaces with ceramic or 'cold' crucibles. The experimentally determined and calculated data are given on the level to which RAMW is decontaminated from the main radionuclides as well as on the distribution of the latter in the products of melting (ingot, slag, gaseous phase). Special attention is focused on the process and the facility for the induction-slag melting of RAMW in furnaces equipped with 'cold' crucibles. The work is described that is under way at SSC RF VNIINM to master the technology of melting simulated high activity level Zr-alloy and stainless steel waste. (authors)

  4. Induction melter apparatus

    Science.gov (United States)

    Roach, Jay A [Idaho Falls, ID; Richardson, John G [Idaho Falls, ID; Raivo, Brian D [Idaho Falls, ID; Soelberg, Nicholas R [Idaho Falls, ID

    2008-06-17

    Apparatus and methods of operation are provided for a cold-crucible-induction melter for vitrifying waste wherein a single induction power supply may be used to effect a selected thermal distribution by independently energizing at least two inductors. Also, a bottom drain assembly may be heated by an inductor and may include an electrically resistive heater. The bottom drain assembly may be cooled to solidify molten material passing therethrough to prevent discharge of molten material therefrom. Configurations are provided wherein the induction flux skin depth substantially corresponds with the central longitudinal axis of the crucible. Further, the drain tube may be positioned within the induction flux skin depth in relation to material within the crucible or may be substantially aligned with a direction of flow of molten material within the crucible. An improved head design including four shells forming thermal radiation shields and at least two gas-cooled plenums is also disclosed.

  5. The Influence A Crucible Arrangement On The Electrical Efficiency Of The Cold Crucible Induction Furnace

    Directory of Open Access Journals (Sweden)

    Smalcerz A.

    2015-09-01

    Full Text Available A big interest in application of cold crucible furnace (CCF for industrial, particularly metallurgical, processes has been observed in recent years. They are mainly utilised for melting of metal, glass and other materials. Analyses of processes that occur in such devices are performed; however, computer modelling is rarely applied. As a precise determination of the electromagnetic field distribution is essential for a proper analysis of processes in furnaces with cold crucibles, a complex 3D model development is necessary. In the paper, effects of a crucible design and current frequency on the efficiency of the induction furnace with cold crucible are presented. Numerical calculations were performed with the use of the Flux 3D professional software.

  6. Control of pouring molten charge out of a levitation type cold crucible; Fuyogata cold crucible kara no hiyukaibutsu no chuto seigyo

    Energy Technology Data Exchange (ETDEWEB)

    Ando, K.; Iwai, K.; Asai, S. [Nagoya University, Nagoya (Japan). Faculty of Engineering

    1994-10-25

    The cold crucible is a high-frequency induced heating melting process consisting of the cold copper crucible, coil, and charge. The levitation type crucible is of the cup type device, with the magnetic field concentrated to the vicinity of the hole in its bottom, so that the whole charge is melted and non-contact retention is achieved by the Lorentz`s force. However, when the vacuum suction method or the tilting method is used to take out or pour a charge from the crucible, defects such as contamination due to contact with the wall and heat transfer are unavoidable. This report proposes a new pouring method using the electromagnetic force, providing the logical and experimental examinations. As a result of analysis of the electromagnetic force applied on the side of the charge levitating in the crucible, it was confirmed that changing the current value through the coil varies the pouring phenomenon, depending on the followability of the levitating position, and changing the relative position of the coil to the crucible enables pouring. Thus, the pouring form measuring method was established. 9 refs., 10 figs., 1 tab.

  7. Incorporating Cold Cap Behavior in a Joule-heated Waste Glass Melter Model

    Energy Technology Data Exchange (ETDEWEB)

    Varija Agarwal; Donna Post Guillen

    2013-08-01

    In this paper, an overview of Joule-heated waste glass melters used in the vitrification of high level waste (HLW) is presented, with a focus on the cold cap region. This region, in which feed-to-glass conversion reactions occur, is critical in determining the melting properties of any given glass melter. An existing 1D computer model of the cold cap, implemented in MATLAB, is described in detail. This model is a standalone model that calculates cold cap properties based on boundary conditions at the top and bottom of the cold cap. Efforts to couple this cold cap model with a 3D STAR-CCM+ model of a Joule-heated melter are then described. The coupling is being implemented in ModelCenter, a software integration tool. The ultimate goal of this model is to guide the specification of melter parameters that optimize glass quality and production rate.

  8. NEXT GENERATION MELTER(S) FOR VITRIFICATION OF HANFORD WASTE: STATUS AND DIRECTION

    International Nuclear Information System (INIS)

    Ramsey, W.G.; Gray, M.F.; Calmus, R.B.; Edge, J.A.; Garrett, B.G.

    2011-01-01

    Vitrification technology has been selected to treat high-level waste (HLW) at the Hanford Site, the West Valley Demonstration Project and the Savannah River Site (SRS), and low activity waste (LAW) at Hanford. In addition, it may potentially be applied to other defense waste streams such as sodium bearing tank waste or calcine. Joule-heated melters (already in service at SRS) will initially be used at the Hanford Site's Waste Treatment and Immobilization Plant (WTP) to vitrify tank waste fractions. The glass waste content and melt/production rates at WTP are limited by the current melter technology. Significant reductions in glass volumes and mission life are only possible with advancements in melter technology coupled with new glass formulations. The Next Generation Melter (NGM) program has been established by the U.S. Department of Energy's (DOE's), Environmental Management Office of Waste Processing (EM-31) to develop melters with greater production capacity (absolute glass throughput rate) and the ability to process melts with higher waste fractions. Advanced systems based on Joule-Heated Ceramic Melter (JHCM) and Cold Crucible Induction Melter (CCIM) technologies will be evaluated for HLW and LAW processing. Washington River Protection Solutions (WRPS), DOE's tank waste contractor, is developing and evaluating these systems in cooperation with EM-31, national and university laboratories, and corporate partners. A primary NGM program goal is to develop the systems (and associated flowsheets) to Technology Readiness Level 6 by 2016. Design and testing are being performed to optimize waste glass process envelopes with melter and balance of plant requirements. A structured decision analysis program will be utilized to assess the performance of the competing melter technologies. Criteria selected for the decision analysis program will include physical process operations, melter performance, system compatibility and other parameters.

  9. Advanced waste form and melter development for treatment of troublesome high-level wastes

    Energy Technology Data Exchange (ETDEWEB)

    Marra, James [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kim, Dong -Sang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Maio, Vincent [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-02

    A number of waste components in US defense high level radioactive wastes (HLW) have proven challenging for current Joule heated ceramic melter (JHCM) operations and have limited the ability to increase waste loadings beyond already realized levels. Many of these "troublesome" waste species cause crystallization in the glass melt that can negatively impact product quality or have a deleterious effect on melter processing. Recent efforts at US Department of Energy laboratories have focused on understanding crystallization behavior within HLW glass melts and investigating approached to mitigate the impacts of crystallization so that increases in waste loading can be realized. Advanced glass formulations have been developed to highlight the unique benefits of next-generation melter technologies such as the Cold Crucible Induction Melter (CCIM). Crystal-tolerant HLW glasses have been investigated to allow sparingly soluble components such as chromium to crystallize in the melter but pass out of the melter before accumulating.

  10. Determination of heat conductivity and thermal diffusivity of waste glass melter feed: Extension to high temperatures

    International Nuclear Information System (INIS)

    Rice, Jarrett A.; Pokorny, Richard; Schweiger, Michael J.; Hrma, Pavel R.

    2014-01-01

    The heat conductivity (λ) and the thermal diffusivity (a) of reacting glass batch, or melter feed, control the heat flux into and within the cold cap, a layer of reacting material floating on the pool of molten glass in an all-electric continuous waste glass melter. After previously estimating λ of melter feed at temperatures up to 680 deg C, we focus in this work on the λ(T) function at T > 680 deg C, at which the feed material becomes foamy. We used a customized experimental setup consisting of a large cylindrical crucible with an assembly of thermocouples, which monitored the evolution of the temperature field while the crucible with feed was heated at a constant rate from room temperature up to 1100°C. Approximating measured temperature profiles by polynomial functions, we used the heat transfer equation to estimate the λ(T) approximation function, which we subsequently optimized using the finite-volume method combined with least-squares analysis. The heat conductivity increased as the temperature increased until the feed began to expand into foam, at which point the conductivity dropped. It began to increase again as the foam turned into a bubble-free glass melt. We discuss the implications of this behavior for the mathematical modeling of the cold cap

  11. Study on superheat of TiAl melt during cold crucible levitation melting. TiAl no cold crucible levitation yokai ni okeru yoto kanetsudo no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Miwa, K.; Kobayashi, K.; Ninomiya, M. (Government Industrial Research Institute, Nagoya, Nagoya (Japan))

    1992-06-20

    Investigations were given on effects of test sample weights and sample positions in cold crucibles on superheat of melts when the intermetallic compound TiAl is melted using cold crucible levitation melting process, one of noncontaminated melting processes. The cold crucibles used in the experiment are a water-cooled copper crucible with an inner diameter of 42 mm and a length of 140 mm, into which a column-like ingot sample with an outer diameter of 32 mm (Al containing Ti at 33.5% by mass) was put and melted using the levitation melting. Comparisons and discussions were given on the relationship between sample weights and melt temperatures, the relationship between positions of the inserted samples and melt temperatures, and the state of contamination at melting of casts obtained from the melts resulted from the levitation melting and high-frequency melting poured into respective ceramic dies. Elevating the superheat temperature of the melts requires optimizing the sample weights and positions. Melt temperatures were measured using a radiation thermometer and a thermocouple, and the respective measured values were compared. 7 refs., 4 figs., 1 tab.

  12. CHARACTERIZATION OF VITRIFIED SAVANNAH RIVER SITE SB4 WASTE SURROGATE PRODUCED IN COLD CRUCIBLE

    International Nuclear Information System (INIS)

    Marra, J

    2008-01-01

    Savannah River Site (SRS) sludge batch 4 (SB4) waste surrogate with high aluminum and iron content was vitrified with commercially available Frit 503-R4 (8 wt.% Li 2 O, 16 wt.% B2O3, 76 wt.% SiO 2 ) by cold crucible inductive melting using lab- (56 mm inner diameter), bench- (236 mm) and large-scale (418 mm) cold crucible. The waste loading ranged between 40 and 60 wt.%. The vitrified products obtained in the lab-scale cold crucible were nearly amorphous with traces of unreacted quartz in the product with 40 wt.% waste loading and traces of spinel phase in the product with 50 wt.% waste loading. The glassy products obtained in the bench-scale cold crucible are composed of major vitreous and minor iron-rich spinel phase whose content at ∼60 wt.% waste loading may achieve ∼10 vol.%. The vitrified waste obtained in the large-scale cold crucible was also composed of major vitreous and minor spinel structure phases. No nepheline phase has been found. Average degree of crystallinity was estimated to be ∼12 vol.%. Anionic motif of the glass network is built from rather short metasilicate chains and boron-oxygen constituent based on boron-oxygen triangular units

  13. Melter viewing system for liquid-fed ceramic melters

    International Nuclear Information System (INIS)

    Westsik, J.H. Jr.; Brenden, B.B.

    1988-01-01

    Melter viewing systems are an integral component of the monitoring and control systems for liquid-fed ceramic melters. The Pacific Northwest Laboratory (PNL) has designed cameras for use with glass melters at PNL, the Hanford Waste Vitrification Plant (HWVP), and West Valley Demonstration Project (WVDP). This report is a compilation of these designs. Operating experiences with one camera designed for the PNL melter are discussed. A camera has been fabricated and tested on the High-Bay Ceramic Melter (HBCM) and the Pilot-Scale Ceramic Melter (PSCM) at PNL. The camera proved to be an effective tool for monitoring the cold cap formed as the feed pool developed on the molten glass surface and for observing the physical condition of the melter. Originally, the camera was built to operate using the visible light spectrum in the melter. It was later modified to operate using the infrared (ir) spectrum. In either configuration, the picture quality decreases as the size of the cold cap increases. Large cold caps cover the molten glass, reducing the amount of visible light and reducing the plenum temperatures below 600 0 C. This temperature corresponds to the lowest level of blackbody radiation to which the video tube is sensitive. The camera has been tested in melter environments for about 1900 h. The camera has withstood mechanical shocks and vibrations. The cooling system in the camera has proved effective in maintaining the optical and electronic components within acceptable temperature ranges. 10 refs., 15 figs

  14. Iron Phosphate Glass for Vitrifying Hanford AZ102 LAW in Joule Heated and Cold Crucible Induction Melters - 12240

    Energy Technology Data Exchange (ETDEWEB)

    Day, Delbert E.; Brow, Richard K.; Ray, Chandra S.; Reis, Signo T. [Missouri University of Science and Technology, 1870 Miner Circle, Rolla, MO 65409 (United States); Kim, Cheol-Woon [MO-SCI Corporation, 4040 HyPoint North, Rolla, MO 65401 (United States); Vienna, John D.; Sevigny, Gary [Pacific North West National Laboratory, Battelle Blvd., Richland, WA 99352 (United States); Peeler, David; Johnson, Fabienne C.; Hansen, Eric K. [Savannah River National Laboratory, Savannah River Site, 999-W, Aiken, SC 29803 (United States); Soelberg, Nick [Idaho National Laboratory, 2525 Fremont Avenue, Idaho Falls, ID 83415 (United States); Pegg, Ian L.; Gan, Hao [Catholic University of America, 620 Michigan Avenue, N.E., Washington, DC 20064 (United States)

    2012-07-01

    An iron phosphate composition for vitrifying a high sulfate (∼17 wt%) and high alkali (∼80 wt%) Hanford low activity waste (LAW), known as AZ-102 LAW, has been developed for processing in a Joule Heated Melter (JHM) or a Cold Crucible Induction Melter (CCIM). This composition produced a glass waste form, designated as MS26AZ102F-2, with a waste loading of 26 wt% of the AZ-102 which corresponded to a total alkali and sulfate (represented as SO{sub 3}) content of 21 and 4.4 wt%, respectively. A slurry (7 M Na{sup +}) of MS26AZ102F-2 simulant was melted continuously at temperatures between 1030 and 1090 deg. C for 10 days in a small JHM at PNNL and for 70 hours in a CCIM at INL. The as-cast glasses produced in both melters and in trial laboratory experiments along with their canister centerline cooled (CCC) counterparts met the requirements for the Product Consistency Test (PCT) and the Vapor Hydration Test (VHT) responses in the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Contract. These glass waste forms retained up to 77 % of the SO{sub 3} (3.3 wt%), 100% of the Cesium, and 33 to 44% of the rhenium (used as a surrogate for Tc) all of which either exceeded or were comparable to the retention limit for these species in borosilicate glass nuclear waste form. Analyses of commercial K-3 refractory lining and the Inconel 693 metal electrodes used in JHM indicated only minimum corrosion of these components by the iron phosphate glass. This is the first time that an iron phosphate composition was melted continuously in a slurry fed JHM and in the US, thereby, demonstrating that iron phosphate glasses can be used as alternative hosts for vitrifying nuclear waste. The following conclusions are drawn from the results of the present work. (1) An iron phosphate composition, designated as MS26AZ102F-2, containing 26 wt% of the simulated high sulfate (17 wt%), high alkali (80 wt%) Hanford AZ-102 LAW meets all the criteria for processing in a JHM and CCIM. This

  15. Effect of melter feed foaming on heat flux to the cold cap

    Science.gov (United States)

    Lee, SeungMin; Hrma, Pavel; Pokorny, Richard; Klouzek, Jaroslav; VanderVeer, Bradley J.; Dixon, Derek R.; Luksic, Steven A.; Rodriguez, Carmen P.; Chun, Jaehun; Schweiger, Michael J.; Kruger, Albert A.

    2017-12-01

    The glass production rate, which is crucial for the nuclear waste cleanup lifecycle, is influenced by the chemical and mineralogical nature of melter feed constituents. The choice of feed materials affects both the conversion heat and the thickness of the foam layer that forms at the bottom of the cold cap and controls the heat flow from molten glass. We demonstrate this by varying the alumina source, namely, substituting boehmite or corundum for gibbsite, in a high-alumina high-level-waste melter feed. The extent of foaming was determined using the volume expansion test and the conversion heat with differential scanning calorimetry. Evolved gas analysis was used to identify gases responsible for the formation of primary and secondary foam. The foam thickness, a critical factor in the rate of melting, was estimated using known values of heat conductivities and melting rates. The result was in reasonable agreement with the foam thickness experimentally observed in quenched cold caps from the laboratory-scale melter.

  16. Experimental results for TiO2 melting and release using cold crucible melting

    International Nuclear Information System (INIS)

    Hong, S. W.; Min, B. T.; Park, I. G.; Kim, H. D.

    2000-01-01

    To simulate the severe accident phenomena using the real reactor material which melting point is about 2,800K, the melting and release method for materials with high melting point should be developed. This paper discusses the test results for TiO 2 materials using the cold crucible melting method to study the melting and release method of actual corium. To melt and release of few kg of TiO2, the experimental facility is manufactured through proper selection of design parameters such as frequency and capacity of R.F generator, crucible size and capacity of coolant. The melting and release of TiO 2 has been successfully performed in the cold crucible of 15cm in inner diameter and 30cm in height with 30kW RF power generator of 370 KHz. In the melt delivery experiment, about 2.6kg of molten TiO2, 60% of initial charged mass, is released. Rest of it is remained in the watercage in form of the rubble crust formed at the top of crucible and melt crust formed at the interface between the water-cage and melt. Especially, in the melt release test, the location of the working coil is important to make the thin crust at the bottom of the crucible

  17. Generalized Test Plan for the Vitrification of Simulated High-Level -Waste Calcine in the Idaho National Laboratory's Bench -Scale Cold Crucible Induction Melter

    International Nuclear Information System (INIS)

    Maio, Vince

    2011-01-01

    This Preliminary Idaho National Laboratory (INL) Test Plan outlines the chronological steps required to initially evaluate the validity of vitrifying INL surrogate (cold) High-Level-Waste (HLW) solid particulate calcine in INL's Cold Crucible Induction Melter (CCIM). Its documentation and publication satisfies interim milestone WP-413-INL-01 of the DOE-EM (via the Office of River Protection) sponsored work package, WP 4.1.3, entitled 'Improved Vitrification' The primary goal of the proposed CCIM testing is to initiate efforts to identify an efficient and effective back-up and risk adverse technology for treating the actual HLW calcine stored at the INL. The calcine's treatment must be completed by 2035 as dictated by a State of Idaho Consent Order. A final report on this surrogate/calcine test in the CCIM will be issued in May 2012-pending next fiscal year funding In particular the plan provides; (1) distinct test objectives, (2) a description of the purpose and scope of planned university contracted pre-screening tests required to optimize the CCIM glass/surrogate calcine formulation, (3) a listing of necessary CCIM equipment modifications and corresponding work control document changes necessary to feed a solid particulate to the CCIM, (4) a description of the class of calcine that will be represented by the surrogate, and (5) a tentative tabulation of the anticipated CCIM testing conditions, testing parameters, sampling requirements and analytical tests. Key FY -11 milestones associated with this CCIM testing effort are also provided. The CCIM test run is scheduled to be conducted in February of 2012 and will involve testing with a surrogate HLW calcine representative of only 13% of the 4,000 m3 of 'hot' calcine residing in 6 INL Bin Sets. The remaining classes of calcine will have to be eventually tested in the CCIM if an operational scale CCIM is to be a feasible option for the actual INL HLW calcine. This remaining calcine's make-up is HLW containing

  18. Plasma arc and cold crucible furnace vitrification for medium level waste: a review

    International Nuclear Information System (INIS)

    Poitou, S.; Fiquet, O.; Bourdeloie, C.; Gramondi, P.; Rebollo, F.; Girold, C.; Charvillat, J.P.; Boen, R.; Jouan, A.; Ladirat, C.; Nabot, J.P.; Ochem, D.; Baronnet, J.M.

    2001-01-01

    Initially developed for high-level waste reprocessing, several vitrification processes have been under study since the 80's at the French Atomic Energy Commission (CEA) for other waste categories. According to the French law concerning waste management research passed on December 30, 1991, vitrification may be applied to mixed medium-level waste. A review of processes developed at CEA is presented: cold crucible furnace heated by induced current, refractory furnace heated by nitrogen transferred arc plasma torch, and coupling of cold crucible furnace with oxygen transferred plasma arc twin torch. Furthermore, gas post-combustion has been studied with an oxygen non-transferred plasma torch. (authors)

  19. Treatment of NPP wastes using vitrification

    International Nuclear Information System (INIS)

    Sobolev, I.A.; Lifanov, F.A.; Stefanovsky, S.V.; Kobelev, A.P.; Savkin, A.E.; Kornev, V.I.

    1998-01-01

    Glass-based materials to immobilize various liquid and solid radioactive wastes generated at nuclear power plants (NPP) were designed. Glassy waste forms can be produced using electric melting including a cold crucible melting. Leach rate of cesium was found to be 10 -5 -10 -6 g/(cm 2 day) (IAEA technique). Volume reduction factor after vitrification reached 4-5. Various technologies for NPP waste vitrification were developed. Direct vitrification means feeding of source waste into the melter with formation of glassy waste form to be disposed. Joule heated ceramic melter, and cold crucible were tested. Process variables at treatment of Kursk, Chernobyl (RBMK), Kalinin, Novovoronezh (VVER) NPP wastes were determined. The most promising melter was found to be the cold crucible. Pilot plant based on the cold crucibles has been designed and constructed. Solid burnable NPP wastes are incinerated and slags are incorporated in glass. (author)

  20. Melter Throughput Enhancements for High-Iron HLW

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, A. A. [Department of Energy, Office of River Protection, Richland, Washington (United States); Gan, Hoa [The Catholic University of America, Washington, DC (United States); Joseph, Innocent [The Catholic University of America, Washington, DC (United States); Pegg, Ian L. [The Catholic University of America, Washington, DC (United States); Matlack, Keith S. [The Catholic University of America, Washington, DC (United States); Chaudhuri, Malabika [The Catholic University of America, Washington, DC (United States); Kot, Wing [The Catholic University of America, Washington, DC (United States)

    2012-12-26

    This report describes work performed to develop and test new glass and feed formulations in order to increase glass melting rates in high waste loading glass formulations for HLW with high concentrations of iron. Testing was designed to identify glass and melter feed formulations that optimize waste loading and waste processing rate while meeting all processing and product quality requirements. The work included preparation and characterization of crucible melts to assess melt rate using a vertical gradient furnace system and to develop new formulations with enhanced melt rate. Testing evaluated the effects of waste loading on glass properties and the maximum waste loading that can be achieved. The results from crucible-scale testing supported subsequent DuraMelter 100 (DM100) tests designed to examine the effects of enhanced glass and feed formulations on waste processing rate and product quality. The DM100 was selected as the platform for these tests due to its extensive previous use in processing rate determination for various HLW streams and glass compositions.

  1. Thermo-hydrodynamic and inductive modelling of a glass melt elaborated in cold inductive crucible

    International Nuclear Information System (INIS)

    Sauvage, E.

    2009-11-01

    Within the context of a search for a new vitrification process for nuclear wastes with a replacement of the presently used metallic pot by an inductive cold crucible, this research thesis deals with the numerical modelling of this technology. After having recalled the interest of nuclear waste vitrification, this report presents the new process based on the use of a cold crucible, describing principles and objectives of this method, and the characteristic physical phenomena associated with the flow and the thermodynamics of the glassy melt in such a crucible. It also recalls and comments the existing works on modelling. The main objective of this research is then to demonstrate the feasibility of 3D thermo-hydraulic and inductive simulations. He describes and analyses the glass physical properties (electrical properties, viscosity, thermal properties), the electromagnetic, hydrodynamic and thermal phenomena. He presents in detail the bubbling mixing modelling, reports 3D induction and fluid mechanical coupling calculations, and specific thermal investigations (radiating transfers, thermal limit conditions)

  2. Effect of melter feed foaming on heat flux to the cold cap

    Energy Technology Data Exchange (ETDEWEB)

    Lee, SeungMin; Hrma, Pavel; Pokorny, Richard; Klouzek, Jaroslav; VanderVeer, Bradley J.; Dixon, Derek R.; Luksic, Steven A.; Rodriguez, Carmen P.; Chun, Jaehun; Schweiger, Michael J.; Kruger, Albert A.

    2017-12-01

    The glass production rate, which is crucial for the nuclear waste cleanup lifecycle, is influenced by the chemical and mineralogical nature of melter feed constituents. The choice of feed materials affects both the conversion heat and the thickness of the foam layer that forms at the bottom of the cold cap and controls the heat flow from molten glass. We demonstrate this by varying the alumina source, namely, substituting boehmite or corundum for gibbsite, in a high-alumina high-level-waste melter feed. The extent of foaming was determined using the volume expansion test and the conversion heat with differential scanning calorimetry. Evolved gas analysis was used to identify gases responsible for the formation of primary and secondary foam. The foam thickness, a critical factor in the rate of melting, was estimated using known values of heat conductivities and melting rates. The result was in reasonable agreement with the foam thickness experimentally observed in the laboratory-scale melter.

  3. Control of high level radioactive waste-glass melters

    International Nuclear Information System (INIS)

    Bickford, D.F.; Choi, A.S.

    1991-01-01

    Slurry Fed Melters (SFM) are being developed in the United States, Europe and Japan for the conversion of high-level radioactive waste to borosilicate glass for permanent disposal. The high transition metal, noble metal, nitrate, organic, and sulfate contents of these wastes lead to unique melter redox control requirements. Pilot waste-glass melter operations have indicated the possibility of nickel sulfide or noble-metal fission-product accumulation on melter floors, which can lead to distortion of electric heating patterns, and decrease melter life. Sulfide formation is prevented by control of the redox chemistry of the melter feed. The redox state of waste-glass melters is determined by balance between the reducing potential of organic compounds in the feed, and the oxidizing potential of gases above the melt, and nitrates and polyvalent elements in the waste. Semiquantitative models predicting limitations of organic content have been developed based on crucible testing. Computerized thermodynamic computations are being developed to predict the sequence and products of redox reactions and is assessing process variations. Continuous melter test results have been compared to improved computer staged-thermodynamic-models of redox behavior. Feed chemistry control to prevent sulfide and moderate noble metal accumulations are discussed. 17 refs., 3 figs

  4. Promising technology for the melting and decontamination of dismantled metal by an induction cold crucible

    International Nuclear Information System (INIS)

    Suzuki, M.; Tsurumaki, K.; Akiyama, T.; Fukumura, N.; Tanaka, T.; Yoshida, M.; Ikenaga, Y.

    1998-01-01

    An induction cold crucible melting is one of the most promising technology for the reuse and decontamination of the radioactively contaminated metallic materials generated during the dismantling of nuclear facilities, because the crucible ensures a long life operation without generating the secondary wastes. Based on the knowledge obtained through the fundamental study using the crucible of 45 mm in diameter, the MERC(Melting and Recycling of Metals by -Cold Crucible) process was designed, manufactured and scaled up to 100-140 mm in diameter. Not only cylindrical sectional crucibles but also rectangular slab sectional crucibles were developed. The maximum power of the high frequency generator is 150 kW and the frequency is 25 kHz. In the MERC, either fragments of stainless steel or tubing and pipings with small section, which were the surrogates of contaminated metallic materials, were continuously supplied together with the flux for the decontamination, followed by melting in the crucible and pulling down by the precise withdrawal system ensuring the melt dome to be kept at a suitable level for the melting. The maximal withdrawal velocity employed was 12 mm/min. The Ingot and slab were cut in every 300 mm length by the mechanical saw. They were automatically transported to the outlet of the equipment by the conveying system. Heat efficiency of the MERC was more than 26%. The ingot surface was smooth and crack free, facilitating the removal of radioactive elements concentrated in a slag stuck on the ingot surface. There was no macro segregation inside. Tracer elements of Sr and Hf transferred to the slag, Cs and Zn to the dust. Co and Mn mostly remained in the ingot. However, up to 10% of Co could transfer to the slag. This work was done under the sponsorship of Science and Technology Agency of Japan. (author)

  5. Heat Transfer Model of a Small-Scale Waste Glass Melter with Cold Cap Layer

    Energy Technology Data Exchange (ETDEWEB)

    Abboud, Alexander; Guillen, Donna Post; Pokorny, Richard

    2016-09-01

    At the Hanford site in the state of Washington, more than 56 million gallons of radioactive waste is stored in underground tanks. The cleanup plan for this waste is vitrification at the Waste Treatment Plant (WTP), currently under construction. At the WTP, the waste will be blended with glass-forming materials and heated to 1423K, then poured into stainless steel canisters to cool and solidify. A fundamental understanding of the glass batch melting process is needed to optimize the process to reduce cost and decrease the life cycle of the cleanup effort. The cold cap layer that floats on the surface of the glass melt is the primary reaction zone for the feed-to-glass conversion. The conversion reactions include water release, melting of salts, evolution of batch gases, dissolution of quartz and the formation of molten glass. Obtaining efficient heat transfer to this region is crucial to achieving high rates of glass conversion. Computational fluid dynamics (CFD) modeling is being used to understand the heat transfer dynamics of the system and provide insight to optimize the process. A CFD model was developed to simulate the DM1200, a pilot-scale melter that has been extensively tested by the Vitreous State Laboratory (VSL). Electrodes are built into the melter to provide Joule heating to the molten glass. To promote heat transfer from the molten glass into the reactive cold cap layer, bubbling of the molten glass is used to stimulate forced convection within the melt pool. A three-phase volume of fluid approach is utilized to model the system, wherein the molten glass and cold cap regions are modeled as separate liquid phases, and the bubbling gas and plenum regions are modeled as one lumped gas phase. The modeling of the entire system with a volume of fluid model allows for the prescription of physical properties on a per-phase basis. The molten glass phase and the gas phase physical properties are obtained from previous experimental work. Finding representative

  6. Final Report - Effects of High Spinel and Chromium Oxide Crystal Contents on Simulated HLW Vitrification in DM100 Melter Tests, VSL-09R1520-1, Rev. 0, dated 6/22/09

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A.; Matlack, K. S.; Kot, W.; Pegg, I. L.; Chaudhuri, M.; Lutze, W.

    2013-11-13

    The principal objective of the work was to evaluate the effects of spinel and chromium oxide particles on WTP HLW melter operations and potential impacts on melter life. This was accomplished through a combination of crucible-scale tests, settling and rheological tests, and tests on the DM100 melter system. Crucible testing was designed to develop and identify HLW glass compositions with high waste loadings that exhibit formation of crystalline spinel and/or chromium oxide phases up to relatively high crystal contents (i.e., > 1 vol%). Characterization of crystal settling and the effects on melt rheology was performed on the HLW glass formulations. Appropriate candidate HLW glass formulations were selected, based on characterization results, to support subsequent melter tests. In the present work, crucible melts were formulated that exhibit up to about 4.4 vol% crystallization.

  7. Evaluation of liquid-fed ceramic melter scale-up correlations

    International Nuclear Information System (INIS)

    Koegler, S.S.; Mitchell, S.J.

    1988-08-01

    This study was conducted to determine the parameters governing factors of scale for liquid-fed ceramic melters (LFCMs) in order to design full-scale melters using smaller-scale melter data. Results of melter experiments conducted at Pacific Northwest Laboratory (PNL) and Savannah River Laboratory (SRL) are presented for two feed compositions and five different liquid-fed ceramic melters. The melter performance data including nominal feed rate and glass melt rate are correlated as a function of melter surface area. Comparisons are made between the actual melt rate data and melt rates predicted by a cold cap heat transfer model. The heat transfer model could be used in scale-up calculations, but insufficient data are available on the cold cap characteristics. Experiments specifically designed to determine heat transfer parameters are needed to further develop the model. 17 refs

  8. Initial Laboratory-Scale Melter Test Results for Combined Fission Product Waste

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J.; Crum, Jarrod V.; Buchmiller, William C.; Rieck, Bennett T.; Schweiger, Michael J.; Vienna, John D.

    2009-10-01

    This report describes the methods and results used to vitrify a baseline glass, CSLNTM-C-2.5 in support of the AFCI (Advanced Fuel Cycle Initiative) using a Quartz Crucible Scale Melter at the Pacific Northwest National Laboratory. Document number AFCI-WAST-PMO-MI-DV-2009-000184.

  9. Cold-crucible melting of hulls and structural materials

    International Nuclear Information System (INIS)

    Jouan, A.; Jacquet-Francillon, N.; Puyou, M.; Piccinato, R.

    1990-01-01

    The method currently implemented at the La Hague UP3 reprocessing plant for conditioning of PWR zircaloy hulls is cement embedding. Another promising method, mainly for reducing the waste volume and the available exchange surface area, is melting. A cold-crucible melting process has therefore been developed by the CEA at Marcoule (France) over the last decade. Development work first concentrated on cladding hulls from fast breeder reactors, then from pressurized water reactors. The process can be used for both types of cladding wastes. Subassembly head and foot end-caps are sheared off and should be suitable for surface storage after α decontamination by successive rinsing. If necessary because of their α activity, they could be melted in a larger furnace

  10. Technical Exchange on Improved Design and Performance of High Level Waste Melters - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    SK Sundaram; ML Elliott; D Bickford

    1999-11-19

    SIA Radon is responsible for management of low- and intermediate-level radioactive waste (LILW) produced in Central Russia. In cooperation with Minatom organizations Radon carries out R and D programs on treatment of simulated high level waste (HLW) as well. Radon scientists deal with a study of materials for LILW, HLW, and Nuclear Power Plants (NPP) wastes immobilization, and development and testing of processes and technologies for waste treatment and disposal. Radon is mostly experienced in LILW vitrification. This experience can be carried over to HLW vitrification especially in field of melting systems. The melter chosen as a basic unit for the vitrification plant is a cold crucible. Later on Radon experience in LILW vitrification as well as our results on simulated HLW vitrification are briefly described.

  11. Technical Exchange on Improved Design and Performance of High Level Waste Melters - Final Report

    International Nuclear Information System (INIS)

    Sundaram, S.K.; Elliott, M.L.; Bickford, D.

    1999-01-01

    SIA Radon is responsible for management of low- and intermediate-level radioactive waste (LILW) produced in Central Russia. In cooperation with Minatom organizations Radon carries out R and D programs on treatment of simulated high level waste (HLW) as well. Radon scientists deal with a study of materials for LILW, HLW, and Nuclear Power Plants (NPP) wastes immobilization, and development and testing of processes and technologies for waste treatment and disposal. Radon is mostly experienced in LILW vitrification. This experience can be carried over to HLW vitrification especially in field of melting systems. The melter chosen as a basic unit for the vitrification plant is a cold crucible. Later on Radon experience in LILW vitrification as well as our results on simulated HLW vitrification are briefly described

  12. DWPF Melter Off-Gas Flammability Assessment for Sludge Batch 9

    Energy Technology Data Exchange (ETDEWEB)

    Choi, A. S. [Savannah River Site (SRS), Aiken, SC (United States)

    2016-07-11

    The slurry feed to the Defense Waste Processing Facility (DWPF) melter contains several organic carbon species that decompose in the cold cap and produce flammable gases that could accumulate in the off-gas system and create potential flammability hazard. To mitigate such a hazard, DWPF has implemented a strategy to impose the Technical Safety Requirement (TSR) limits on all key operating variables affecting off-gas flammability and operate the melter within those limits using both hardwired/software interlocks and administrative controls. The operating variables that are currently being controlled include; (1) total organic carbon (TOC), (2) air purges for combustion and dilution, (3) melter vapor space temperature, and (4) feed rate. The safety basis limits for these operating variables are determined using two computer models, 4-stage cold cap and Melter Off-Gas (MOG) dynamics models, under the baseline upset scenario - a surge in off-gas flow due to the inherent cold cap instabilities in the slurry-fed melter.

  13. Control of high level radioactive waste-glass melters - Part 5: Modeling of complex redox effects

    International Nuclear Information System (INIS)

    Bickford, D.F.; Choi, A.S.

    1991-01-01

    Computerized thermodynamic computations are useful in predicting the sequence and products of redox reactions and in assessing process variations. The redox state of waste-glass melters is determined by balance between the reducing potential of organic compounds in the feed, and the oxidizing potential of gases above the melt, and nitrates and polyvalent elements in the waste. Semiquantitative models predicting limitations of organic content have been developed based on crucible testing. Continuous melter test results have been compared to this improved staged-thermodynamic model of redox behavior

  14. Summary Of Cold Crucible Vitrification Tests Results With Savannah River Site High Level Waste Surrogates

    Energy Technology Data Exchange (ETDEWEB)

    Stefanovsky, Sergey; Marra, James; Lebedev, Vladimir

    2014-01-13

    The cold crucible inductive melting (CCIM) technology successfully applied for vitrification of low- and intermediate-level waste (LILW) at SIA Radon, Russia, was tested to be implemented for vitrification of high-level waste (HLW) stored at Savannah River Site, USA. Mixtures of Sludge Batch 2 (SB2) and 4 (SB4) waste surrogates and borosilicate frits as slurries were vitrified in bench- (236 mm inner diameter) and full-scale (418 mm inner diameter) cold crucibles. Various process conditions were tested and major process variables were determined. Melts were poured into 10L canisters and cooled to room temperature in air or in heat-insulated boxes by a regime similar to Canister Centerline Cooling (CCC) used at DWPF. The products with waste loading from ~40 to ~65 wt.% were investigated in details. The products contained 40 to 55 wt.% waste oxides were predominantly amorphous; at higher waste loadings (WL) spinel structure phases and nepheline were present. Normalized release values for Li, B, Na, and Si determined by PCT procedure remain lower than those from EA glass at waste loadings of up to 60 wt.%.

  15. A feasibility study on the vitrification of low-level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Song, Myung Jae; Park, Jong Kil; Ahn, Hee Jin [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center; Cho, Jeong Mi; Choe, Young Son; Cho, Myeong Ryul [Hankuk Fiber Group (Korea, Republic of)

    1995-12-31

    A Study was carried out to investigate the feasibility of vitrification for low-and medium-level radioactive waste(LMLW). In order to understand maximum yearly generation volume and composition for each waste streams waste generation trends, which have been produced from nuclear power plants(PWR) in korea, were examined and then technical and economical assessment were performed based on the volume and composition. To select the most promising melters, technical characteristics were analyzed for several melters such as cold crucible melter heated by direct induction(CCM), cold crucible melter heated by vertical electrodes(CCVE), molten metal melter(MM), and plasma melter(PM) which were most likely to be applied to LMLW treatment. Economical assessment was carried out for several treatment strategies with selected melters and resulted in that it was desirable that non-combustibles and spent filter were vitrified with PM, and the others with CCM. For the demonstration of vitrification possibility for protective clothing, vinyl seats, spent resin, and evaporator bottoms, the surrogated wastes were paralyzed or dried at optimal conditions and than specimens contained various percentages of pyrolysis ash were prepared with lab. and pilot scale melters. Compressive strength for these specimens was measured to determine the maximum ash content in glass waste forms. (author). 27 refs., 88 figs.

  16. A feasibility study on the vitrification of low-level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Song, Myung Jae; Park, Jong Kil; Ahn, Hee Jin [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center; Cho, Jeong Mi; Choe, Young Son; Cho, Myeong Ryul [Hankuk Fiber Group (Korea, Republic of)

    1996-12-31

    A Study was carried out to investigate the feasibility of vitrification for low-and medium-level radioactive waste(LMLW). In order to understand maximum yearly generation volume and composition for each waste streams waste generation trends, which have been produced from nuclear power plants(PWR) in korea, were examined and then technical and economical assessment were performed based on the volume and composition. To select the most promising melters, technical characteristics were analyzed for several melters such as cold crucible melter heated by direct induction(CCM), cold crucible melter heated by vertical electrodes(CCVE), molten metal melter(MM), and plasma melter(PM) which were most likely to be applied to LMLW treatment. Economical assessment was carried out for several treatment strategies with selected melters and resulted in that it was desirable that non-combustibles and spent filter were vitrified with PM, and the others with CCM. For the demonstration of vitrification possibility for protective clothing, vinyl seats, spent resin, and evaporator bottoms, the surrogated wastes were paralyzed or dried at optimal conditions and than specimens contained various percentages of pyrolysis ash were prepared with lab. and pilot scale melters. Compressive strength for these specimens was measured to determine the maximum ash content in glass waste forms. (author). 27 refs., 88 figs.

  17. Melting characteristics of a plasma torch melter according to the waste feeding method

    International Nuclear Information System (INIS)

    Kim, T. W.; Choi, J. R.; Park, S. C.; Lu, C. S.; Park, J. K.; Hwang, T. W.; Shin, S. W.

    2001-01-01

    By using a batch type plasma torch melting system, continuous feeding and melting tests of non-combustible waste were executed. Using the results, the establishment of a heat transfer model and its verification were executed; the characteristics of the molten slag, exhaust gas, fly dust, volatilization of Cs, and leaching of slag were analyzed. In order to establish the heat transfer mode, the followings were considered; the electrical energy supplied to the plasma torch, the absorbed energy to the plasma torch for generating the plasma gas, the absorbed energy to the cooling water of the plasma torch, the energy supplied to the melter from the plasma gas by radiant heat, the energy loss through the exhaust gas, the waste melting energy, and the heating energy of an inner crucible and the melter. The concrete and soil were melted for the verification of the model. The waste was fed through waste feeder by the amount of 0.5kg or 1kg that was calculated by using the model. The experiment for the verification resulted in that the model was fitted well until the melter was heated sufficiently. If the electrical energy of 128kW were supplied to the plasma torch, energy balance of the plasma melting system was calculated with the model: the absorbed energy to the plasma torch for generating the plasma gas (27kW), the absorbed energy to the cooling water of the plasma torch (0∼ 36kW), the energy loss through the exhaust gas (5 ∼ 8kW), the waste melting energy (14kW), and the heating energy of an inner crucible and the melter (82 ∼ 43kW)

  18. Advanced waste form and Melter development for treatment of troublesome high-level wastes

    Energy Technology Data Exchange (ETDEWEB)

    Marra, James [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kim, Dong -Sang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Maio, Vincent [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-10-01

    A number of waste components in US defense high level radioactive wastes (HLW) have proven challenging for current Joule heated ceramic melter (JHCM) operations and have limited the ability to increase waste loadings beyond already realized levels. Many of these “troublesome" waste species cause crystallization in the glass melt that can negatively impact product quality or have a deleterious effect on melter processing. Recent efforts at US Department of Energy laboratories have focused on understanding crystallization behavior within HLW glass melts and investigating approaches to mitigate the impacts of crystallization so that increases in waste loading can be realized. Advanced glass formulations have been developed to highlight the unique benefits of next-generation melter technologies such as the Cold Crucible Induction Melter (CCIM). Crystal-tolerant HLW glasses have been investigated to allow sparingly soluble components such as chromium to crystallize in the melter but pass out of the melter before accumulating.The Hanford site AZ-101 tank waste composition represents a waste group that is waste loading limited primarily due to high concentrations of Fe2O3 (also with high Al2O3 concentrations). Systematic glass formulation development utilizing slightly higher process temperatures and higher tolerance to spinel crystals demonstrated that an increase in waste loading of more than 20% could be achieved for this waste composition, and by extension higher loadings for wastes in the same group. An extended duration CCIM melter test was conducted on an AZ-101 waste simulant using the CCIM platform at the Idaho National Laboratory (INL). The melter was continually operated for approximately 80 hours demonstrating that the AZ-101 high waste loading glass composition could be readily processed using the CCIM technology. The resulting glass was close to the targeted composition and exhibited excellent durability in both

  19. Small-Scale High Temperature Melter-1 (SSHTM-1) Data Package. Appendix B

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This appendix provides the data for Alternate HTM Flowsheet 2 (Glycolic Acid) melter feed preparation activities in both the laboratory- and small-scale testing. The first section provides an outline of this appendix. The melter feed preparation data are presented in the next two main sections, laboratory melter feed preparation data and small-scale melter feed preparation data. Section 3.0 provides the laboratory data which is discussed in the main body of the Small-Scale High Temperature-1 (SSHTM-1) Data Package, milestone C95-02.02Y. Section 3.1 gives the flowsheet in outline form as used in the laboratory-scale tests. This section also includes the ``Laboratory Melter Feed Preparation Activity Log`` which gives A chronological account of the test in terms of time, temperature, slurry pH, and specific observations about slurry appearance, acid addition rates, and samples taken. The ``Laboratory Melter Feed Preparation Activity Log`` provides a road map to the reader by which all the activity and data from the laboratory can be easily accessed. A summary of analytical data is presented next, section 3.2, which covers starting materials and progresses to the analysis of the melter feed. The next section, 3.3, characterizes the off-gas generation that occurs during the slurry processing. The following section, 3.4, provides the rheology data gathered including gram waste oxide loading information for the various slurries tested. The final section, 3.5, includes data from standard crucible redox testing. Section 4.0 provides the small-scale data in parallel form to section 3.0. Section 5.0 concludes with the references for this appendix.

  20. Proposed Strategies for DWPF Melter Off-Gas Surge Control

    International Nuclear Information System (INIS)

    CHOI, ALEXANDERS.

    2004-01-01

    Off-gas surging is inherent to the operation of slurry-fed melters. Although the melter design and the feed chemistry are both known to significantly affect off-gas surging, the frequency and intensity of surges are in essence unpredictable. In typical off-gas surges, both condensable and non condensable flows spike simultaneously. Condensable or steam surges have been observed to occur as the boiling water layer occasionally falls into the crevices of the cold cap or flows over the edges of the cold cap, thereby coming in contact with the melt surface. The resulting steam surges can pressurize the melter considerably and, therefore, are responsible for the bulk of pressure transients that propagate throughout the off-gas system. The non condensable surges occur as the calcine gases that have been accumulating within the cold cap finally build up enough pressure to be released through the temporary openings of the cold cap. The analysis of off-gas data has shown that over 90 of the gas released during a surge is due to steam.1 Therefore, it is essential to have a large inventory of water in the cold cap for any significant pressure spikes to occur. With the Melter 2 vapor space temperature typically running at 720C, the water layer in the cold cap will quickly evaporate once the feeding stops, and the potential for any large pressure spikes should practically cease to exist. The analysis also showed that large pressure spikes well above 2 inches H2O cannot occur under the steam surge scenarios described above. More severe conditions should prevail and one such condition would be that the feed materials form a mound with a growing lake on top, while the melt below remains very fluidic due to its low viscosity, thus resulting in greater movements both in the lateral as well as vertical directions. Once the mound begins to grow, its rate should accelerate, since the heat transfer rate to the upper regions of the cold cap is inversely proportional to the cold cap

  1. Bench-scale arc melter for R&D in thermal treatment of mixed wastes

    Energy Technology Data Exchange (ETDEWEB)

    Kong, P.C.; Grandy, J.D.; Watkins, A.D.; Eddy, T.L.; Anderson, G.L.

    1993-05-01

    A small dc arc melter was designed and constructed to run bench-scale investigations on various aspects of development for high-temperature (1,500-1,800{degrees}C) processing of simulated transuranic-contaminated waste and soil located at the Radioactive Waste Management Complex (RWMC). Several recent system design and treatment studies have shown that high-temperature melting is the preferred treatment. The small arc melter is needed to establish techniques and procedures (with surrogates) prior to using a similar melter with the transuranic-contaminated wastes in appropriate facilities at the site. This report documents the design and construction, starting and heating procedures, and tests evaluating the melter`s ability to process several waste types stored at the RWMC. It is found that a thin graphite strip provides reliable starting with initial high current capability for partially melting the soil/waste mixture. The heating procedure includes (1) the initial high current-low voltage mode, (2) a low current-high voltage mode that commences after some slag has formed and arcing dominates over the receding graphite conduction path, and (3) a predominantly Joule heating mode during which the current can be increased within the limits to maintain relatively quiescent operation. Several experiments involving the melting of simulated wastes are discussed. Energy balance, slag temperature, and electrode wear measurements are presented. Recommendations for further refinements to enhance its processing capabilities are identified. Future studies anticipated with the arc melter include waste form processing development; dissolution, retention, volatilization, and collection for transuranic and low-level radionuclides, as well as high vapor pressure metals; electrode material development to minimize corrosion and erosion; refractory corrosion and/or skull formation effects; crucible or melter geometry; metal oxidation; and melt reduction/oxidation (redox) conditions.

  2. The mechanism of hot crack formation in Ti-6A1-4V during cold crucible continuous casting

    Directory of Open Access Journals (Sweden)

    Hongsheng DING

    2004-08-01

    Full Text Available Hot crack is one of common defects in castings, which often results in failure of castings. This work studies the formation of hot cracks during cold crucible continous casting by means of experiments and thoretical analysis. The results show that the hot crack occurs on the surface and in the circumference of ingots, where the solidified shell and solidification front meet each other. The tendency of hot cracking decreases with the increase of withdrawal velocities in some extent. The hot crack is caused mainly by friction force between the shell and the crucible inner wall, and it takes place when the stress resulting from friction exceeds the tensile strength of the shell. The factors affecting the hot cracks are analyzed and verified. In order to decrease the tendency of hot cracks, technical parameters should be optimized.

  3. Cold crucible technique for interaction test of molten corium with structure

    International Nuclear Information System (INIS)

    Ha, Kwang Soon; An, Sang Mo; Min, Beong Tae; Kim, Hwan Yeol

    2012-01-01

    During a severe accident, the molten corium might interact with several structures in a nuclear power plant such as core peripheral structures, lower plenum, lower head vessel, and external structures of a reactor vessel. The interaction of the molten corium with the structure depends on the molten corium composition, temperature, structural materials, and environmental conditions such as pressure and humidity. For example, the interaction of a metallic molten corium containing metal uranium (U) and zirconium (Zr) with the oxidized steel structure (Fe 2O3 ) is affected by not only thermal ablation but oxidation reduction reaction because the oxidation quotients of the U and Zr are higher than that of Fe. KAERI set up an experimental facility and technique using a cold crucible melting method to verify the interaction mechanism between the metallic molten corium and structural materials. This technique includes the generation of the metallic melt, melt delivery, measurement of the interaction process, and post analyses after the test

  4. Crystal-Tolerant Glass Approach For Mitigation Of Crystal Accumulation In Continuous Melters Processing Radioactive Waste

    International Nuclear Information System (INIS)

    Kruger, Albert A.; Rodriguez, Carmen P.; Lang, Jesse B.; Huckleberry, Adam R.; Matyas, Josef; Owen, Antoinette T.

    2012-01-01

    High-level radioactive waste melters are projected to operate in an inefficient manner as they are subjected to artificial constraints, such as minimum liquidus temperature (T L ) or maximum equilibrium fraction of crystallinity at a given temperature. These constraints substantially limit waste loading, but were imposed to prevent clogging of the melter with spinel crystals [(Fe, Ni, Mn, Zn)(Fe, Cr) 2 O 4 ]. In the melter, the glass discharge riser is the most likely location for crystal accumulation during idling because of low glass temperatures, stagnant melts, and small diameter. To address this problem, a series of lab-scale crucible tests were performed with specially formulated glasses to simulate accumulation of spinel in the riser. Thicknesses of accumulated layers were incorporated into empirical model of spinel settling. In addition, T L of glasses was measured and impact of particle agglomeration on accumulation rate was evaluated. Empirical model predicted well the accumulation of single crystals and/or smallscale agglomerates, but, excessive agglomeration observed in high-Ni-Fe glass resulted in an under-prediction of accumulated layers, which gradually worsen over time as an increased number of agglomerates formed. Accumulation rate of ∼14.9 +- 1 nm/s determined for this glass will result in ∼26 mm thick layer in 20 days of melter idling

  5. Tank waste remediation system high-level waste vitrification system development and testing requirements

    International Nuclear Information System (INIS)

    Calmus, R.B.

    1995-01-01

    This document provides the fiscal year (FY) 1995 recommended high-level waste melter system development and testing (D and T) requirements. The first phase of melter system testing (FY 1995) will focus on the feasibility of high-temperature operation of recommended high-level waste melter systems. These test requirements will be used to establish the basis for defining detailed testing work scope, cost, and schedules. This document includes a brief summary of the recommended technologies and technical issues associated with each technology. In addition, this document presents the key D and T activities and engineering evaluations to be performed for a particular technology or general melter system support feature. The strategy for testing in Phase 1 (FY 1995) is to pursue testing of the recommended high-temperature technologies, namely the high-temperature, ceramic-lined, joule-heated melter, referred to as the HTCM, and the high-frequency, cold-wall, induction-heated melter, referred to as the cold-crucible melter (CCM). This document provides a detailed description of the FY 1995 D and T needs and requirements relative to each of the high-temperature technologies

  6. Bench-scale arc melter for R ampersand D in thermal treatment of mixed wastes

    International Nuclear Information System (INIS)

    Kong, P.C.; Grandy, J.D.; Watkins, A.D.; Eddy, T.L.; Anderson, G.L.

    1993-05-01

    A small dc arc melter was designed and constructed to run bench-scale investigations on various aspects of development for high-temperature (1,500-1,800 degrees C) processing of simulated transuranic-contaminated waste and soil located at the Radioactive Waste Management Complex (RWMC). Several recent system design and treatment studies have shown that high-temperature melting is the preferred treatment. The small arc melter is needed to establish techniques and procedures (with surrogates) prior to using a similar melter with the transuranic-contaminated wastes in appropriate facilities at the site. This report documents the design and construction, starting and heating procedures, and tests evaluating the melter's ability to process several waste types stored at the RWMC. It is found that a thin graphite strip provides reliable starting with initial high current capability for partially melting the soil/waste mixture. The heating procedure includes (1) the initial high current-low voltage mode, (2) a low current-high voltage mode that commences after some slag has formed and arcing dominates over the receding graphite conduction path, and (3) a predominantly Joule heating mode during which the current can be increased within the limits to maintain relatively quiescent operation. Several experiments involving the melting of simulated wastes are discussed. Energy balance, slag temperature, and electrode wear measurements are presented. Recommendations for further refinements to enhance its processing capabilities are identified. Future studies anticipated with the arc melter include waste form processing development; dissolution, retention, volatilization, and collection for transuranic and low-level radionuclides, as well as high vapor pressure metals; electrode material development to minimize corrosion and erosion; refractory corrosion and/or skull formation effects; crucible or melter geometry; metal oxidation; and melt reduction/oxidation (redox) conditions

  7. Maximum total organic carbon limits at different DWPF melter feed maters (U)

    International Nuclear Information System (INIS)

    Choi, A.S.

    1996-01-01

    The document presents information on the maximum total organic carbon (TOC) limits that are allowable in the DWPF melter feed without forming a potentially flammable vapor in the off-gas system were determined at feed rates varying from 0.7 to 1.5 GPM. At the maximum TOC levels predicted, the peak concentration of combustible gases in the quenched off-gas will not exceed 60 percent of the lower flammable limit during a 3X off-gas surge, provided that the indicated melter vapor space temperature and the total air supply to the melter are maintained. All the necessary calculations for this study were made using the 4-stage cold cap model and the melter off-gas dynamics model. A high-degree of conservatism was included in the calculational bases and assumptions. As a result, the proposed correlations are believed to by conservative enough to be used for the melter off-gas flammability control purposes

  8. Melter feed viscosity during conversion to glass: Comparison between low-activity waste and high-level waste feeds

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Tongan [Pacific Northwest National Laboratory, Richland Washington; Chun, Jaehun [Pacific Northwest National Laboratory, Richland Washington; Dixon, Derek R. [Pacific Northwest National Laboratory, Richland Washington; Kim, Dongsang [Pacific Northwest National Laboratory, Richland Washington; Crum, Jarrod V. [Pacific Northwest National Laboratory, Richland Washington; Bonham, Charles C. [Pacific Northwest National Laboratory, Richland Washington; VanderVeer, Bradley J. [Pacific Northwest National Laboratory, Richland Washington; Rodriguez, Carmen P. [Pacific Northwest National Laboratory, Richland Washington; Weese, Brigitte L. [Pacific Northwest National Laboratory, Richland Washington; Schweiger, Michael J. [Pacific Northwest National Laboratory, Richland Washington; Kruger, Albert A. [U.S. Department of Energy, Office of River Protection, Richland Washington; Hrma, Pavel [Pacific Northwest National Laboratory, Richland Washington

    2017-12-07

    During nuclear waste vitrification, a melter feed (generally a slurry-like mixture of a nuclear waste and various glass forming and modifying additives) is charged into the melter where undissolved refractory constituents are suspended together with evolved gas bubbles from complex reactions. Knowledge of flow properties of various reacting melter feeds is necessary to understand their unique feed-to-glass conversion processes occurring within a floating layer of melter feed called a cold cap. The viscosity of two low-activity waste (LAW) melter feeds were studied during heating and correlated with volume fractions of undissolved solid phase and gas phase. In contrast to the high-level waste (HLW) melter feed, the effects of undissolved solid and gas phases play comparable roles and are required to represent the viscosity of LAW melter feeds. This study can help bring physical insights to feed viscosity of reacting melter feeds with different compositions and foaming behavior in nuclear waste vitrification.

  9. Melter Technologies Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Perez, J.M. Jr. [Pacific Northwest National Lab., Richland, WA (United States); Schumacher, R.F. [Savannah River Technology Center, Aiken, SC (United States); Forsberg, C.W. [Oak Ridge National Lab., TN (United States)

    1996-05-01

    The problem of controlling and disposing of surplus fissile material, in particular plutonium, is being addressed by the US Department of Energy (DOE). Immobilization of plutonium by vitrification has been identified as a promising solution. The Melter Evaluation Activity of DOE`s Plutonium Immobilization Task is responsible for evaluating and selecting the preferred melter technologies for vitrification for each of three immobilization options: Greenfield Facility, Adjunct Melter Facility, and Can-In-Canister. A significant number of melter technologies are available for evaluation as a result of vitrification research and development throughout the international communities for over 20 years. This paper describes an evaluation process which will establish the specific requirements of performance against which candidate melter technologies can be carefully evaluated. Melter technologies that have been identified are also described.

  10. Hanford High-Level Waste Vitrification Program at the Pacific Northwest National Laboratory: technology development - annotated bibliography

    International Nuclear Information System (INIS)

    Larson, D.E.

    1996-09-01

    This report provides a collection of annotated bibliographies for documents prepared under the Hanford High-Level Waste Vitrification (Plant) Program. The bibliographies are for documents from Fiscal Year 1983 through Fiscal Year 1995, and include work conducted at or under the direction of the Pacific Northwest National Laboratory. The bibliographies included focus on the technology developed over the specified time period for vitrifying Hanford pretreated high-level waste. The following subject areas are included: General Documentation; Program Documentation; High-Level Waste Characterization; Glass Formulation and Characterization; Feed Preparation; Radioactive Feed Preparation and Glass Properties Testing; Full-Scale Feed Preparation Testing; Equipment Materials Testing; Melter Performance Assessment and Evaluations; Liquid-Fed Ceramic Melter; Cold Crucible Melter; Stirred Melter; High-Temperature Melter; Melter Off-Gas Treatment; Vitrification Waste Treatment; Process, Product Control and Modeling; Analytical; and Canister Closure, Decontamination, and Handling

  11. Control of high-level radioactive waste-glass melters

    International Nuclear Information System (INIS)

    Bickford, D.F.; Coleman, C.J.

    1990-01-01

    The Defense Waste Processing Facility (DWPF) will immobilize Savannah River Site High Level Waste as a durable borosilicate glass for permanent disposal in a repository. The DWPF will be controlled based on glass composition. The following discussion is a preliminary analysis of the capability of the laboratory methods that can be used to control the glass composition, and the relationships between glass durability and glass properties important to glass melting. The glass durability and processing properties will be controlled by controlling the chemical composition of the glass. The glass composition will be controlled by control of the melter feed transferred from the Slurry Mix Evaporator (SME) to the Melter Feed Tank (MFT). During cold runs, tests will be conducted to demonstrate the chemical equivalence of glass sampled from the pour stream and glass removed from cooled canisters. In similar tests, the compositions of glass produced from slurries sampled from the SME and MFT will be compared to final product glass to determine the statistical relationships between melter feed and glass product. The total error is the combination of those associated with homogeneity in the SME or MFT, sampling, preparation of samples for analysis, instrument calibration, analysis, and the composition/property model. This study investigated the sensitivity of estimation of property data to the combination of variations from sampling through analysis. In this or a similar manner, the need for routine glass product sampling will be minimized, and glass product characteristics will be assured before the melter feed is committed to the melter

  12. Nuclear Waste Vitrification Efficiency: Cold Cap Reactions

    International Nuclear Information System (INIS)

    Kruger, A.A.; Hrma, P.R.; Pokorny, R.

    2011-01-01

    The cost and schedule of nuclear waste treatment and immobilization are greatly affected by the rate of glass production. Various factors influence the performance of a waste-glass melter. One of the most significant, and also one of the least understood, is the process of batch melting. Studies are being conducted to gain fundamental understanding of the batch reactions, particularly those that influence the rate of melting, and models are being developed to link batch makeup and melter operation to the melting rate. Batch melting takes place within the cold cap, i.e., a batch layer floating on the surface of molten glass. The conversion of batch to glass consists of various chemical reactions, phase transitions, and diffusion-controlled processes. These include water evaporation (slurry feed contains as high as 60% water), gas evolution, the melting of salts, the formation of borate melt, reactions of borate melt with molten salts and with amorphous oxides (Fe 2 O 3 and Al 2 O 3 ), the formation of intermediate crystalline phases, the formation of a continuous glass-forming melt, the growth and collapse of primary foam, and the dissolution of residual solids. To this list we also need to add the formation of secondary foam that originates from molten glass but accumulates on the bottom of the cold cap. This study presents relevant data obtained for a high-level-waste melter feed and introduces a one-dimensional (1D) mathematical model of the cold cap as a step toward an advanced three-dimensional (3D) version for a complete model of the waste glass melter. The 1D model describes the batch-to-glass conversion within the cold cap as it progresses in a vertical direction. With constitutive equations and key parameters based on measured data, and simplified boundary conditions on the cold-cap interfaces with the glass melt and the plenum space of the melter, the model provides sensitivity analysis of the response of the cold cap to the batch makeup and melter

  13. Preliminary melter performance assessment report

    International Nuclear Information System (INIS)

    Elliott, M.L.; Eyler, L.L.; Mahoney, L.A.; Cooper, M.F.; Whitney, L.D.; Shafer, P.J.

    1994-08-01

    The Melter Performance Assessment activity, a component of the Pacific Northwest Laboratory's (PNL) Vitrification Technology Development (PVTD) effort, was designed to determine the impact of noble metals on the operational life of the reference Hanford Waste Vitrification Plant (HWVP) melter. The melter performance assessment consisted of several activities, including a literature review of all work done with noble metals in glass, gradient furnace testing to study the behavior of noble metals during the melting process, research-scale and engineering-scale melter testing to evaluate effects of noble metals on melter operation, and computer modeling that used the experimental data to predict effects of noble metals on the full-scale melter. Feed used in these tests simulated neutralized current acid waste (NCAW) feed. This report summarizes the results of the melter performance assessment and predicts the lifetime of the HWVP melter. It should be noted that this work was conducted before the recent Tri-Party Agreement changes, so the reference melter referred to here is the Defense Waste Processing Facility (DWPF) melter design

  14. Preliminary Analysis of Species Partitioning in the DWPF Melter

    Energy Technology Data Exchange (ETDEWEB)

    Choi, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kesterson, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Johnson, F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-07-15

    The work described in this report is preliminary in nature since its goal was to demonstrate the feasibility of estimating the off-gas entrainment rates from the Defense Waste Processing Facility (DWPF) melter based on a simple mass balance using measured feed and glass pour stream compositions and timeaveraged melter operating data over the duration of one canister-filling cycle. The only case considered in this study involved the SB6 pour stream sample taken while Canister #3472 was being filled over a 20-hour period on 12/20/2010, approximately three months after the bubblers were installed. The analytical results for that pour stream sample provided the necessary glass composition data for the mass balance calculations. To estimate the “matching” feed composition, which is not necessarily the same as that of the Melter Feed Tank (MFT) batch being fed at the time of pour stream sampling, a mixing model was developed involving three preceding MFT batches as well as the one being fed at that time based on the assumption of perfect mixing in the glass pool but with an induction period to account for the process delays involved in the calcination/fusion step in the cold cap and the melter turnover.

  15. Pyrolysis and oxidative pyrolysis experiments with organization exchange resin

    International Nuclear Information System (INIS)

    Chun, Ung Kyung

    1997-01-01

    Pyrolysis may be an important pretreatment step before vitrification in a cold crucible melter (CCM). During vitrification of organic resin the carbon or other remaining residues may harm the performance of the cold crucible melter of the eventual stability of the final glass product. Hence, it is important to reduce or prevent such harmful waste from entry into the cold crucible melter. Pretreatment with pyrolysis will generally provide volume reduction resulting in less amount of solid waste that needs to be handled by the CCM; in addition, the pyrolytic processes may breakdown much of the complex organics causing release through volatilization resulting in less carbon and other harmful substances. Hence, KEPRI has undertaken studies on the pyrolysis and oxidative pyrolysis of organic ion exchange resin. Pyrolysis and oxidative pyrolysis were examined with TGA and a tube furnace. TGA results for pyrolysis with the flow of nitrogen indicate that even after pyrolyzing from room temperature to about 900 deg C, a significant mass fraction of the original cationic resin remains, approximately 46 %. The anionic resin when pyrolytically heated in a flow of nitrogen only, from room temperature to about 900 deg C, produced a final residue mass fraction of about 8 percent. Oxidation at a ratio of air to nitrogen, 1:2, reduced the cationic resin to 5.3% when heated at 5 C/min. Oxidation of anionic resin at the same ratio and same heating rate left almost no solid residue. Pyrolysis (e.g. nitrogen-only environment) in the tube furnace of larger samples relative to the TGA produced very similar results to the TGA. The differences may be attributed to the scale effects such as surface area exposure to the gas stream, temperature distributions throughout the resin, etc. (author) 7 refs., 7 figs

  16. Pyrolysis and oxidative pyrolysis experiments with organization exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Ung Kyung [Korea Electric Power Research Insititute, Taejon (Korea, Republic of)

    1997-12-31

    Pyrolysis may be an important pretreatment step before vitrification in a cold crucible melter (CCM). During vitrification of organic resin the carbon or other remaining residues may harm the performance of the cold crucible melter of the eventual stability of the final glass product. Hence, it is important to reduce or prevent such harmful waste from entry into the cold crucible melter. Pretreatment with pyrolysis will generally provide volume reduction resulting in less amount of solid waste that needs to be handled by the CCM; in addition, the pyrolytic processes may breakdown much of the complex organics causing release through volatilization resulting in less carbon and other harmful substances. Hence, KEPRI has undertaken studies on the pyrolysis and oxidative pyrolysis of organic ion exchange resin. Pyrolysis and oxidative pyrolysis were examined with TGA and a tube furnace. TGA results for pyrolysis with the flow of nitrogen indicate that even after pyrolyzing from room temperature to about 900 deg C, a significant mass fraction of the original cationic resin remains, approximately 46 %. The anionic resin when pyrolytically heated in a flow of nitrogen only, from room temperature to about 900 deg C, produced a final residue mass fraction of about 8 percent. Oxidation at a ratio of air to nitrogen, 1:2, reduced the cationic resin to 5.3% when heated at 5 C/min. Oxidation of anionic resin at the same ratio and same heating rate left almost no solid residue. Pyrolysis (e.g. nitrogen-only environment) in the tube furnace of larger samples relative to the TGA produced very similar results to the TGA. The differences may be attributed to the scale effects such as surface area exposure to the gas stream, temperature distributions throughout the resin, etc. (author) 7 refs., 7 figs.

  17. Vitrification melter study

    International Nuclear Information System (INIS)

    Jones, J.A.

    1995-04-01

    This report presents the results of a study performed to identify the most promising vitrification melter technologies that the Department of Energy (EM-50) might pursue with available funding. The primary focus was on plasma arc systems and graphite arc melters. The study was also intended to assist EM-50 in evaluating competing technologies, formulating effective technology strategy, developing focused technology development projects, and directing the work of contractors involved in vitrification melter development

  18. Research-scale melter test report

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, M.F.; Elliott, M.L.; Eyler, L.L.; Freeman, C.J.; Higginson, J.J.; Mahoney, L.A.; Powell, M.R.

    1994-05-01

    The Melter Performance Assessment (MPA) activity in the Pacific Northwest Laboratory`s (PNL) Hanford Waste Vitrification Plant (HWVP) Technology Development (PHTD) effort is intended to determine the impact of noble metals on the operational life of the reference HWVP melter. As a part of this activity, a parametric melter test was completed using a Research-Scale Melter (RSM). The RSM is a small, approximately 1/100-scale melter, 6-in.-diameter, that allows rapid changing of process conditions and subsequent re-establishment of a steady-state condition. The test matrix contained nine different segments that varied the melter operating parameters (glass and plenum temperatures) and feed properties (oxide concentration, redox potential, and noble metal concentrations) so that the effects of these parameters on noble metal agglomeration on the melter floor could be evaluated. The RSM operated for 48 days and consumed 1,300 L of feed, equating to 153 tank turnovers. The run produced 531 kg of glass. During the latter portion of the run, the resistance between the electrodes decreased. Upon destructive examination of the melter, a layer of noble metals was found on the bottom. This was surprising because the glass residence time in the RSM is only 10% of the HWVP plant melter. The noble metals layer impacted the melter significantly. Approximately 1/3 of one paddle electrode was melted or corroded off. The cause is assumed to be localized heating from short circuiting of the electrode to the noble metal layer. The metal layer also removed approximately 1/2 in. of the refractory on the bottom of the melter. The mechanism for this damage is not presently known.

  19. Research-scale melter test report

    International Nuclear Information System (INIS)

    Cooper, M.F.; Elliott, M.L.; Eyler, L.L.; Freeman, C.J.; Higginson, J.J.; Mahoney, L.A.; Powell, M.R.

    1994-05-01

    The Melter Performance Assessment (MPA) activity in the Pacific Northwest Laboratory's (PNL) Hanford Waste Vitrification Plant (HWVP) Technology Development (PHTD) effort is intended to determine the impact of noble metals on the operational life of the reference HWVP melter. As a part of this activity, a parametric melter test was completed using a Research-Scale Melter (RSM). The RSM is a small, approximately 1/100-scale melter, 6-in.-diameter, that allows rapid changing of process conditions and subsequent re-establishment of a steady-state condition. The test matrix contained nine different segments that varied the melter operating parameters (glass and plenum temperatures) and feed properties (oxide concentration, redox potential, and noble metal concentrations) so that the effects of these parameters on noble metal agglomeration on the melter floor could be evaluated. The RSM operated for 48 days and consumed 1,300 L of feed, equating to 153 tank turnovers. The run produced 531 kg of glass. During the latter portion of the run, the resistance between the electrodes decreased. Upon destructive examination of the melter, a layer of noble metals was found on the bottom. This was surprising because the glass residence time in the RSM is only 10% of the HWVP plant melter. The noble metals layer impacted the melter significantly. Approximately 1/3 of one paddle electrode was melted or corroded off. The cause is assumed to be localized heating from short circuiting of the electrode to the noble metal layer. The metal layer also removed approximately 1/2 in. of the refractory on the bottom of the melter. The mechanism for this damage is not presently known

  20. Lid heater for glass melter

    International Nuclear Information System (INIS)

    Phillips, T.D.

    1993-01-01

    A glass melter having a lid electrode for heating the glass melt radiantly. The electrode comprises a series of INCONEL 690 tubes running above the melt across the melter interior and through the melter walls and having nickel cores inside the tubes beginning where the tubes leave the melter interior and nickel connectors to connect the tubes electrically in series. An applied voltage causes the tubes to generate heat of electrical resistance for melting frit injected onto the melt. The cores limit heat generated as the current passes through the walls of the melter. Nickel bus connection to the electrical power supply minimizes heat transfer away from the melter that would occur if standard copper or water-cooled copper connections were used between the supply and the INCONEL 690 heating tubes. 3 figures

  1. History of the small cylindrical melter

    International Nuclear Information System (INIS)

    Allen, T.L.; Iverson, D.C.; Plodinec, M.J.

    1985-08-01

    The small cylindrical melter (SCM) was designed to provide engineering data useful for operation and design of full-scale glass melters for vitrification of high-level radioactive waste. This melter was part of the research and development program for the Defense Waste Processing Facility (DWPF) at the Savannah River Plant (SRP). Extensive corrosion testing of melter materials of construction (Monofrax K3, Inconel 690), simulated radioactive waste glass characterization, and melter component development were conducted in support of the DWPF full-scale melter design. 66 figs., 14 tabs

  2. GTS Duratek, Phase I Hanford low-level waste melter tests: 100-kg melter offgas report

    International Nuclear Information System (INIS)

    Eaton, W.C.

    1995-11-01

    A multiphase program was initiated in 1994 to test commercially available melter technologies for the vitrification of the low-level waste (LLW) stream from defense wastes stored in underground tanks at the Hanford Site in southeastern Washington State. Phase 1 of the melter demonstration tests using simulated LLW was completed during fiscal year 1995. This document is the 100-kg melter offgas report on testing performed by GTS Duratek, Inc., in Columbia, Maryland. GTS Duratek (one of the seven vendors selected) was chosen to demonstrate Joule heated melter technology under WHC subcontract number MMI-SVV-384215. The document contains the complete offgas report on the 100-kg melter as prepared by Parsons Engineering Science, Inc. A summary of this report is also contained in the GTS Duratek, Phase I Hanford Low-Level Waste Melter Tests: Final Report (WHC-SD-WM-VI-027)

  3. RNi2B2C (R = Ho, Dy, Tb and Pr) single crystals grown by the cold copper crucible method

    Science.gov (United States)

    Durán, A.; Munoz, E.; Bernès, S.; Escudero, R.

    2000-08-01

    Single crystals of RNi2B2C (R = Ho, Dy, Tb, Pr) have been grown on cold copper crucibles in a high-frequency induction furnace. As a result, shiny metallic and brittle platelike single crystals were obtained. They were examined by x-ray and scanning electron microscopy with WDX/EDX for local composition analysis and show a very good crystallographic structure and compositions. Resistivity and dc magnetic measurements were performed to study superconducting and magnetic properties. Besides known electronic properties of the RNi2B2C family, we report for the first time results for PrNi2B2C single crystals successfully obtained by this technique.

  4. Steam Explosions in Slurry-fed Ceramic Melters

    Energy Technology Data Exchange (ETDEWEB)

    Carter, J.T.

    2001-03-28

    This report assesses the potential and consequences of a steam explosion in Slurry Feed Ceramic Melters (SFCM). The principles that determine if an interaction is realistically probable within a SFCM are established. Also considered are the mitigating effects due to dissolved, non-condensable gas(es) and suspended solids within the slurry feed, radiation, high glass viscosity, and the existence of a cold cap. The report finds that, even if any explosion were to occur, however, it would not be large enough to compromise vessel integrity.

  5. Final Report - Glass Formulation Testing to Increase Sulfate Volatilization from Melter, VSL-04R4970-1, Rev. 0, dated 2/24/05

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A.; Matlack, K. A.; Pegg, I. L.; Gong, W.

    2013-11-13

    The principal objectives of the DM100 and DM10 tests were to determine the impact of four different organics and one inorganic feed additive on sulfate volatilization and to determine the sulfur partitioning between the glass and the off-gas system. The tests provided information on melter processing characteristics and off-gas data including sulfur incorporation and partitioning. A series of DM10 and DM100 melter tests were conducted using a LAW Envelope A feed. The testing was divided into three parts. The first part involved a series of DM10 melter tests with four different organic feed additives: sugar, polyethylene glycol (PEG), starch, and urea. The second part involved two confirmatory 50-hour melter tests on the DM100 using the best combination of reductants and conditions based on the DM10 results. The third part was performed on the DM100 with feeds containing vanadium oxide (V{sub 2}O{sub 5}) as an inorganic additive to increase sulfur partitioning to the off-gas. Although vanadium oxide is not a reductant, previous testing has shown that vanadium shows promise for partitioning sulfur to the melter exhaust, presumably through its known catalytic effect on the SO{sub 2}/SO{sub 3} reaction. Crucible-scale tests were conducted prior to the melter tests to confirm that the glasses and feeds would be processable in the melter and that the glasses would meet the waste form (ILAW) performance requirements. Thus, the major objectives of these tests were to: Perform screening tests on the DM10 followed by tests on the DM100-WV system using a LAW -Envelope A feed with four organic additives to assess their impact on sulfur volatilization. Perform tests on the DM100-WV system using a LAW -Envelope A feed containing vanadium oxide to assess its impact on sulfur volatilization. Determine feed processability and product quality with the above additives. Collect melter emissions data to determine the effect of additives on sulfur partitioning and melter emissions

  6. Cold-cap reactions in vitrification of nuclear waste glass: experiments and modeling

    International Nuclear Information System (INIS)

    Chun, Jaehun; Pierce, David A.; Pokorny, Richard; Hrma, Pavel R.

    2013-01-01

    Cold-cap reactions are multiple overlapping reactions that occur in the waste-glass melter during the vitrification process when the melter feed is being converted to molten glass. In this study, we used differential scanning calorimetry (DSC) to investigate cold-cap reactions in a high-alumina high-level waste melter feed. To separate the reaction heat from both sensible heat and experimental instability, we employed the run/rerun method, which enabled us to define the degree of conversion based on the reaction heat and to estimate the heat capacity of the reacting feed. Assuming that the reactions are nearly independent and can be approximated by the nth order kinetics, we obtained the kinetic parameters using the Kissinger method combined with least squares analysis. The resulting mathematical simulation of the cold-cap reactions provides a key element for the development of an advanced cold-cap model

  7. U.S. Bureau of Mines, phase I Hanford low-level waste melter tests: Melter offgas report

    International Nuclear Information System (INIS)

    Eaton, W.C.

    1995-01-01

    A multiphase program was initiated in 1994 to test commercially available melter technologies for the vitrification of the low-level waste (LLW) stream from defense wastes stored in underground tanks at the Hanford Site in southeastern Washington State. Phase 1 of the melter demonstration tests using simulated LLW was completed during fiscal year 1995. This document is the melter offgas report on testing performed by the U.S. Department of the Interior, Bureau of Mines, Albany Research Center in Albany, Oregon. The Bureau of Mines (one of the seven vendors selected) was chosen to demonstrate carbon electrode melter technology (also called carbon arc or electric arc) under WHC subcontract number MMI-SVV-384216. The document contains the complete offgas report for the first 24-hour melter test (WHC-1) as prepared by Entropy Inc. A summary of this report is also contained in the''U.S. Bureau of Mines, Phase 1 Hanford Low-Level Waste Melter Tests: Final Report'' (WHC-SD-WM-VI-030)

  8. Two-Crucible Czochralski Process

    Science.gov (United States)

    Fiegl, G.; Torbet, W.

    1985-01-01

    Scheme for continuous melt replenishment increases capacity of Czochralski crystal-growing furnace. Replenishing and drawing crucibles of improved Czochralski apparatus connected by heated quartz siphon. When doped silicon added to replenishing crucible, liquid silicon flows into drawing crucible, equalizing two melt levels. Addition of new material automatically controlled in response to optically sensed melt level. Results of this semicontinuous operation higher production speed, lower cost, and good control of crystal quality.

  9. Thermal effects of electrically conductive deposits in melter

    International Nuclear Information System (INIS)

    Choi, I.G.; Bickford, D.F.; Carter, J.T.

    1992-01-01

    The radioactive waste processed by the Defense Waste Processing Facility melter at the Savannah river Site contains noble metal fission-products. Operation of waste-glass melters treating commercial power reactor wastes indicates that accumulation of noble metals on melter floors can lead to distortion of electric heating patterns, loss of power, and possible electrode damage. Changes in melter geometry have been developed in Japan and Germany to minimize these effects. The two existing melters for the US Department of Energy's Defense Waste Processing Facility were designed in 1982, before this effect was known or had been characterized. Modeling and pilot scale tests are being conducted in the Integrated DWPF melter system to determine if the effect is significant for melters processing defense wastes, and if the effect can be diagnosed and corrected without significant damage or changes to the melter design. This document provides a discussion of these tests

  10. Aluminum titanate crucible for molten uranium

    International Nuclear Information System (INIS)

    Asbury, J.J.

    1975-01-01

    An improved crucible for molten uranium is described. The crucible or crucible liner is formed of aluminum titanate which essentially eliminates contamination of uranium and uranium alloys during molten states thereof. (U.S.)

  11. Final Report - Testing of Optimized Bubbler Configuration for HLW Melter VSL-13R2950-1, Rev. 0, dated 6/12/2013

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A.; Pegg, I. L.; Callow, R. A.; Joseph, I.; Matlack, K. S.; Kot, W. K.

    2013-11-13

    The principal objective of this work was to determine the glass production rate increase and ancillary effects of adding more bubbler outlets to the current WTP HLW melter baseline. This was accomplished through testing on the HLW Pilot Melter (DM1200) at VSL. The DM1200 unit was selected for these tests since it was used previously with several HLW waste streams including the four tank wastes proposed for initial processing at Hanford. This melter system was also used for the development and optimization of the present baseline WTP HLW bubbler configuration for the WTP HLW melter, as well as for MACT testing for both HLW and LAW. Specific objectives of these tests were to: Conduct DM1200 melter testing with the baseline WTP bubbling configuration and as augmented with additional bubblers. Conduct DM1200 melter testing to differentiate the effects of total bubbler air flow and bubbler distribution on glass production rate and cold cap formation. Collect melter operating data including processing rate, temperatures at a variety of locations within the melter plenum space, melt pool temperature, glass melt density, and melter pressure with the baseline WTP bubbling configuration and as augmented with additional bubblers. Collect melter exhaust samples to compare particulate carryover for different bubbler configurations. Analyze all collected data to determine the effects of adding more bubblers to the WTP HLW melter to inform decisions regarding future lid re-designs. The work used a high aluminum HLW stream composition defined by ORP, for which an appropriate simulant and high waste loading glass formulation were developed and have been previously processed on the DM1200.

  12. ALTERNATE REDUCTANT COLD CAP EVALUATION FURNACE PHASE I TESTING

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, F.; Miller, D.; Zamecnik, J.; Lambert, D.

    2014-04-22

    Savannah River Remediation (SRR) conducted a Systems Engineering Evaluation (SEE) to determine the optimum alternate reductant flowsheet for the Defense Waste Processing Facility (DWPF). Specifically, two proposed flowsheets (nitric–formic–glycolic and nitric–formic–sugar) were evaluated based upon results from preliminary testing. Comparison of the two flowsheets among evaluation criteria indicated a preference towards the nitric–formic–glycolic flowsheet. Further evaluation of this flowsheet eliminated the formic acid1, and as a result, the nitric–glycolic flowsheet was recommended for further testing. Based on the development of a roadmap for the nitric–glycolic acid flowsheet, Waste Solidification Engineering (WS-E) issued a Technical Task Request (TTR) to address flammability issues that may impact the implementation of this flowsheet. Melter testing was requested in order to define the DWPF flammability envelope for the nitric glycolic acid flowsheet. The Savannah River National Laboratory (SRNL) Cold Cap Evaluation Furnace (CEF), a 1/12th scale DWPF melter, was selected by the SRR Alternate Reductant project team as the melter platform for this testing. The overall scope was divided into the following sub-tasks as discussed in the Task Technical and Quality Assurance Plan (TTQAP): Phase I - A nitric–formic acid flowsheet melter test (unbubbled) to baseline the Cold Cap Evaluation Furnace (CEF) cold cap and vapor space data to the benchmark melter flammability models Phase II - A nitric–glycolic acid flowsheet melter test (unbubbled and bubbled) to: o Define new cold cap reactions and global kinetic parameters for the melter flammability models o Quantify off-gas surging potential of the feed o Characterize off-gas condensate for complete organic and inorganic carbon species Prior to startup, a number of improvements and modifications were made to the CEF, including addition of cameras, vessel support temperature measurement, and a heating

  13. Alternate Reductant Cold Cap Evaluation Furnace Phase II Testing

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, F. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Stone, M. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Miller, D. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-09-03

    Savannah River Remediation (SRR) conducted a Systems Engineering Evaluation (SEE) to determine the optimum alternate reductant flowsheet for the Defense Waste Processing Facility (DWPF). Specifically, two proposed flowsheets (nitric–formic–glycolic and nitric–formic–sugar) were evaluated based upon results from preliminary testing. Comparison of the two flowsheets among evaluation criteria indicated a preference towards the nitric–formic–glycolic flowsheet. Further research and development of this flowsheet eliminated the formic acid, and as a result, the nitric–glycolic flowsheet was recommended for further testing. Based on the development of a roadmap for the nitric–glycolic acid flowsheet, Waste Solidification Engineering (WS-E) issued a Technical Task Request (TTR) to address flammability issues that may impact the implementation of this flowsheet. Melter testing was requested in order to define the DWPF flammability envelope for the nitric-glycolic acid flowsheet. The Savannah River National Laboratory (SRNL) Cold Cap Evaluation Furnace (CEF), a 1/12th scale DWPF melter, was selected by the SRR Alternate Reductant project team as the melter platform for this testing. The overall scope was divided into the following sub-tasks as discussed in the Task Technical and Quality Assurance Plan (TTQAP): Phase I - A nitric–formic acid flowsheet melter test (unbubbled) to baseline the CEF cold cap and vapor space data to the benchmark melter flammability models; Phase II - A nitric–glycolic acid flowsheet melter test (unbubbled and bubbled) to: Define new cold cap reactions and global kinetic parameters in support of the melter flammability model development; Quantify off-gas surging potential of the feed; Characterize off-gas condensate for complete organic and inorganic carbon species. After charging the CEF with cullet from Phase I CEF testing, the melter was slurry-fed with glycolic flowsheet based SB6-Frit 418 melter feed at 36% waste

  14. Physical and numerical modeling of Joule-heated melters

    Energy Technology Data Exchange (ETDEWEB)

    Eyler, L.L.; Skarda, R.J.; Crowder, R.S. III; Trent, D.S.; Reid, C.R.; Lessor, D.L.

    1985-10-01

    The Joule-heated ceramic-lined melter is an integral part of the high level waste immobilization process under development by the US Department of Energy. Scaleup and design of this waste glass melting furnace requires an understanding of the relationships between melting cavity design parameters and the furnace performance characteristics such as mixing, heat transfer, and electrical requirements. Developing empirical models of these relationships through actual melter testing with numerous designs would be a very costly and time consuming task. Additionally, the Pacific Northwest Laboratory (PNL) has been developing numerical models that simulate a Joule-heated melter for analyzing melter performance. This report documents the method used and results of this modeling effort. Numerical modeling results are compared with the more conventional, physical modeling results to validate the approach. Also included are the results of numerically simulating an operating research melter at PNL. Physical Joule-heated melters modeling results used for qualiying the simulation capabilities of the melter code included: (1) a melter with a single pair of electrodes and (2) a melter with a dual pair (two pairs) of electrodes. The physical model of the melter having two electrode pairs utilized a configuration with primary and secondary electrodes. The principal melter parameters (the ratio of power applied to each electrode pair, modeling fluid depth, electrode spacing) were varied in nine tests of the physical model during FY85. Code predictions were made for five of these tests. Voltage drops, temperature field data, and electric field data varied in their agreement with the physical modeling results, but in general were judged acceptable. 14 refs., 79 figs., 17 tabs.

  15. Physical and numerical modeling of Joule-heated melters

    International Nuclear Information System (INIS)

    Eyler, L.L.; Skarda, R.J.; Crowder, R.S. III; Trent, D.S.; Reid, C.R.; Lessor, D.L.

    1985-10-01

    The Joule-heated ceramic-lined melter is an integral part of the high level waste immobilization process under development by the US Department of Energy. Scaleup and design of this waste glass melting furnace requires an understanding of the relationships between melting cavity design parameters and the furnace performance characteristics such as mixing, heat transfer, and electrical requirements. Developing empirical models of these relationships through actual melter testing with numerous designs would be a very costly and time consuming task. Additionally, the Pacific Northwest Laboratory (PNL) has been developing numerical models that simulate a Joule-heated melter for analyzing melter performance. This report documents the method used and results of this modeling effort. Numerical modeling results are compared with the more conventional, physical modeling results to validate the approach. Also included are the results of numerically simulating an operating research melter at PNL. Physical Joule-heated melters modeling results used for qualiying the simulation capabilities of the melter code included: (1) a melter with a single pair of electrodes and (2) a melter with a dual pair (two pairs) of electrodes. The physical model of the melter having two electrode pairs utilized a configuration with primary and secondary electrodes. The principal melter parameters (the ratio of power applied to each electrode pair, modeling fluid depth, electrode spacing) were varied in nine tests of the physical model during FY85. Code predictions were made for five of these tests. Voltage drops, temperature field data, and electric field data varied in their agreement with the physical modeling results, but in general were judged acceptable. 14 refs., 79 figs., 17 tabs

  16. Program plan: DWPF/HLWDP stirred Melter Program Plan

    International Nuclear Information System (INIS)

    Smith, M.E.

    1994-01-01

    Slurry Fed Melters (SFM) have been developed in the United States, Europe, and Japan for the conversion of high-level radioactive waste (HLW) to borosilicate glass for permanent disposal. The newest design, the stirred melter, combines the high production rates and high glass quality features of the Joule-heated melters with the low-cost, compact, simple maintenance features of the pot melters. However, further engineering design and demonstrations are needed to operate the stirred melter on a large scale. This document outlines the program which develops a full scale stirred melter for the DWPF (240 pph), and provides a basis which will allow further scale-up of the technology for use in the Hanford High Level Waste Disposal Program (HLWDP) for up to four times the reference capacity

  17. Chemically durable iron phosphate glasses for vitrifying sodium bearing waste (SBW) using conventional and cold crucible induction melting (CCIM) techniques

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C.W. E-mail: cheol@umr.edu; Ray, C.S.; Zhu, D.; Day, D.E.; Gombert, D.; Aloy, A.; Mogus-Milankovic, A.; Karabulut, M

    2003-11-01

    A simulated sodium bearing waste (SBW) was successfully vitrified in iron phosphate glasses (IPG) at a maximum waste loading of 40 wt% using conventional and cold crucible induction melting (CCIM) techniques. No sulfate segregation or crystalline phases were detectable in the IPG when examined by SEM and XRD. The IPG wasteforms containing 40 wt% SBW satisfy current DOE requirements for aqueous chemical durability as evaluated from their bulk dissolution rate (D{sub R}), product consistency test, and vapor hydration test. The fluid IPG wasteforms can be melted at a relatively low temperature (1000 deg. C) and for short times (<6 h). These properties combined with a significantly higher waste loading, and the feasibility of CCIM melting offer considerable savings in time, energy, and cost for vitrifying the SBW stored at the Idaho National Engineering and Environmental Laboratory in iron phosphate glasses.

  18. Commercialization project of Ulchin vitrification

    International Nuclear Information System (INIS)

    Jo, Hyun-Jun; Kim, Cheon-Woo; Hwang, Tae-Won

    2011-01-01

    The Ulchin Vitrification Facility (UVF), to be used for the vitirification of low- and intermediate-level radioactive waste (LILW) generated by nuclear power plants (NPPs), is the world's first commercial facility using Cold Crucible Induction Melter (CCIM) technology. The construction of the facility was begun in 2005 and was completed in 2007. From December 2007 to September 2009, all key performance tests, such as the system functional test, the cold test, the hot test, and the real waste test, were successfully carried out. The UVF commenced commercial operation in October 2009 for the vitrification of radioactive waste. (author)

  19. Temperature Distribution within a Cold Cap during Nuclear Waste Vitrification.

    Science.gov (United States)

    Dixon, Derek R; Schweiger, Michael J; Riley, Brian J; Pokorny, Richard; Hrma, Pavel

    2015-07-21

    The kinetics of the feed-to-glass conversion affects the waste vitrification rate in an electric glass melter. The primary area of interest in this conversion process is the cold cap, a layer of reacting feed on top of the molten glass. The work presented here provides an experimental determination of the temperature distribution within the cold cap. Because direct measurement of the temperature field within the cold cap is impracticable, an indirect method was developed in which the textural features in a laboratory-made cold cap with a simulated high-level waste feed were mapped as a function of position using optical microscopy, scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction. The temperature distribution within the cold cap was established by correlating microstructures of cold-cap regions with heat-treated feed samples of nearly identical structures at known temperatures. This temperature profile was compared with a mathematically simulated profile generated by a cold-cap model that has been developed to assess the rate of glass production in a melter.

  20. Hanford high-level waste melter system evaluation data packages

    International Nuclear Information System (INIS)

    Elliott, M.L.; Shafer, P.J.; Lamar, D.A.; Merrill, R.A.; Grunewald, W.; Roth, G.; Tobie, W.

    1996-03-01

    The Tank Waste Remediation System is selecting a reference melter system for the Hanford High-Level Waste vitrification plant. A melter evaluation was conducted in FY 1994 to narrow down the long list of potential melter technologies to a few for testing. A formal evaluation was performed by a Melter Selection Working Group (MSWG), which met in June and August 1994. At the June meeting, MSWG evaluated 15 technologies and selected six for more thorough evaluation at the Aug. meeting. All 6 were variations of joule-heated or induction-heated melters. Between the June and August meetings, Hanford site staff and consultants compiled data packages for each of the six melter technologies as well as variants of the baseline technologies. Information was solicited from melter candidate vendors to supplement existing information. This document contains the data packages compiled to provide background information to MSWG in support of the evaluation of the six technologies. (A separate evaluation was performed by Fluor Daniel, Inc. to identify balance of plant impacts if a given melter system was selected.)

  1. DC plasma arc melter technology for waste vitrification

    International Nuclear Information System (INIS)

    Hamilton, R.A.; Wittle, J.K.; Trescot, J.

    1995-01-01

    This paper describes the features and benefits of a breakthrough DC Arc Melter for the permanent treatment of all types of solid wastes including nonhazardous, hazardous and radioactive. This DC Arc Furnace system, now commercially available, is the low cost permanent solution for solid waste pollution prevention and remediation. Concern over the effective disposal of wastes generated by the industrial society, worldwide, has prompted development of technologies to address the problem. For the most part these technologies have resulted in niche solutions with limited application. The only solution that has the ability to process almost all wastes, and to recover/recycle metallic and inorganic matter, is the group of technologies known as melters. Melters have distinct advantages over traditional technologies such as incineration because melters operate at higher temperatures, are relatively unaffected by changes in the waste stream, produce a vitrified stable product, and have the capability to recover/recycle slag, metals and gas. The system, DC Plasma Arc Melter, has the lowest capital, maintenance and operating cost of any melter technology because of its patented DC Plasma Arc with graphite electrode. DC Plasma Arc Melter systems are commercially available in sizes from 50 kg/batch or 250--3,000 kg/hr on a continuous feed basis. This paper examines the design and operating benefits of a DC Plasma Arc Melter System

  2. Control of radioactive waste-glass melters

    International Nuclear Information System (INIS)

    Bickford, D.F.; Smith, P.K.; Hrma, P.; Bowan, B.W.

    1987-01-01

    Radioactive waste-glass melters require physical control limits and redox control of glass to assure continuous operation, and maximize production rates. Typical waste-glass melter operating conditions, and waste-glass chemical reaction paths are discussed. Glass composition, batching and melter temperature control are used to avoid the information of phases which are disruptive to melting or reduce melter life. The necessity and probable limitations of control for electric melters with complex waste feed compositions are discussed. Preliminary control limits, their bases, and alternative control methods are described for use in the Defense Waste Processing Facility (DWPF) at the US Department of Energy's Savannah River Plant (SRP), and at the West Valley Demonstration Project (WVDP). Slurries of simulated high level radioactive waste and ground glass frit or glass formers have been isothermally reacted and analyzed to identify the sequence of the major chemical reactions in waste vitrification, and their effect on waste-glass production rates. Relatively high melting rates of waste batches containing mixtures of reducing agents (formic acid, sucrose) and nitrates are attributable to exothermic reactions which occur at critical stages in the vitrification process. The effect of foaming on waste glass production rates is analyzed, and limits defined for existing waste-glass melters, based upon measurable thermophysical properties. Through balancing the high nitrate wastes of the WVDP with reducing agents, the high glass melting rates and sustained melting without foaming required for successful WVDP operations have been demonstrated. 65 refs., 4 figs., 15 tabs

  3. Application of electrical resistance tomography to glass melter

    International Nuclear Information System (INIS)

    Ichijo, Noriaki; Sakai, Taiji; Fujiwara, Hiroaki; Matsuno, Shinsuke; Misumi, Ryuta; Nishi, Kazuhiko; Kaminoyama, Meguru

    2015-01-01

    This paper describes the application of electrical resistance tomography (ERT) to glass melter to monitor the accumulation of the noble metals. To minimize the modification of the melter, existing structures such as thermowells and heating electrodes are used as electrodes of ERT, and the number of electrodes is much fewer than the conventional method. Therefore, Expanding Combination Data Acquisition method (ECDA) is developed and applies to the glass melter. ECDA method uses adjacent method and opposite method as a data acquisition and current injection electrodes are used as voltage measurement electrodes to increase the number of the data. In addition, conductivity images are reconstructed only near the wall to improve the resolution. As a result of applying to the glass melter, the conductivity change inside the melter caused by temperature can be monitored. Furthermore, lower voltage is measured in case of containing the noble metals inside the melter. Therefore, the potential as a monitoring method be confirmed. (author)

  4. DATA SUMMARY REPORT SMALL SCALE MELTER TESTING OF HLW ALGORITHM GLASSES MATRIX1 TESTS VSL-07S1220-1 REV 0 7/25/07

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; PEGG IL

    2011-12-29

    Eight tests using different HLW feeds were conducted on the DM100-BL to determine the effect of variations in glass properties and feed composition on processing rates and melter conditions (off-gas characteristics, glass processing, foaming, cold cap, etc.) at constant bubbling rate. In over seven hundred hours of testing, the property extremes of glass viscosity, electrical conductivity, and T{sub 1%}, as well as minimum and maximum concentrations of several major and minor glass components were evaluated using glass compositions that have been tested previously at the crucible scale. Other parameters evaluated with respect to glass processing properties were +/-15% batching errors in the addition of glass forming chemicals (GFCs) to the feed, and variation in the sources of boron and sodium used in the GFCs. Tests evaluating batching errors and GFC source employed variations on the HLW98-86 formulation (a glass composition formulated for HLW C-106/AY-102 waste and processed in several previous melter tests) in order to best isolate the effect of each test variable. These tests are outlined in a Test Plan that was prepared in response to the Test Specification for this work. The present report provides summary level data for all of the tests in the first test matrix (Matrix 1) in the Test Plan. Summary results from the remaining tests, investigating minimum and maximum concentrations of major and minor glass components employing variations on the HLW98-86 formulation and glasses generated by the HLW glass formulation algorithm, will be reported separately after those tests are completed. The test data summarized herein include glass production rates, the type and amount of feed used, a variety of measured melter parameters including temperatures and electrode power, feed sample analysis, measured glass properties, and gaseous emissions rates. More detailed information and analysis from the melter tests with complete emission chemistry, glass durability, and

  5. DC graphite plasma arc melter technology for waste vitrification

    International Nuclear Information System (INIS)

    Hamilton, R.A.; Wittle, J.K.; Trescot, J.; Wilver, P.

    1995-01-01

    This paper describes the features and benefits of a DC Arc Melter for the permanent treatment of all types of solid wastes including nonhazardous, hazardous and radioactive. This DC Arc Melter system is the low cost permanent solution for solid waste pollution prevention and remediation. Concern over the effective disposal of wastes generated by our industrial society, worldwide, has prompted development of technologies to address the problem. The only solution that has the ability to process almost all wastes, and to recover/recycle metallic and inorganic matter, is the group of technologies known as melters. Melters have distinct advantages over traditional technologies such as incineration because melters; operate at higher temperatures, are relatively unaffected by changes in the waste stream, produce a vitrified stable product, reduce gaseous emissions, and have the capability to recover/recycle slag, metals and gas. The system, DC Plasma Arc Melter, has the lowest capital, maintenance and operating cost of any melter technology because of its patented DC Plasma Arc with graphite electrode. DC Plasma Arc Melter systems are available in sizes from 50 kg/batch or 250-3,000 kg/hr on a continuous basis

  6. DWPF Glass Melter Technology Manual: Volume 1

    International Nuclear Information System (INIS)

    Iverson, D.C.

    1993-01-01

    This document details information about the design of a glass melter to be used at the Defense Waste Processing Facility located at the Savannah River Site. Topics include: melter overview, design basis, materials, vessel configuration, insulation, refractory configuration, electrical isolation, electrodes, riser and pour spout heater design, dome heaters, feed tubes, drain valves, differential pressure pouring, and melter test results. Information is conveyed using many diagrams and photographs

  7. Rheology enhancement for remediated PX6 melter feed

    International Nuclear Information System (INIS)

    Marek, J.C.; Eibling, R.E.

    1996-01-01

    This document is referenced in WSRC-TR-94-0556. This memorandum summarizes results of experimental work performed on the original IDMS PX6 melter feed, the remediated IDMS PX6 melter feed, and melter feeds produced in a laboratory simulation to duplicate the IDMS remediation as well as the experimental results on the caustic treatment to enhance the rheology. Characterization of the products of excess caustic addition and what steps to take if excess caustic is inadvertently added to the IDMS PX6 melter feed are also discussed

  8. Feed process studies: Research-Scale Melter

    Energy Technology Data Exchange (ETDEWEB)

    Whittington, K.F.; Seiler, D.K.; Luey, J.; Vienna, J.D.; Sliger, W.A.

    1996-09-01

    In support of a two-phase approach to privatizing the processing of hazardous and radioactive waste at Hanford, research-scale melter (RSM) experiments were conducted to determine feed processing characteristics of two potential privatization Phase 1 high-level waste glass formulations and to determine if increased Ag, Te, and noble metal amounts would have bad effects. Effects of feed compositions and process conditions were examined for processing rate, cold cap behavior, off-gas, and glass properties. The 2 glass formulations used were: NOM-2 with adjusted waste loading (all components except silica and soda) of 25 wt%, and NOM-3 (max waste loaded glass) with adjusted waste loading of 30 wt%. The 25 wt% figure is the minimum required in the privatization Request for Proposal. RSM operated for 19 days (5 runs). 1010 kg feed was processed, producing 362 kg glass. Parts of runs 2 and 3 were run at 10 to 30 degrees above the nominal temperature 1150 C, with the most significant processing rate increase in run 3. Processing observations led to the choice of NOM-3 for noble metal testing in runs 4 and 5. During noble metal testing, processing rates fell 50% from baseline. Destructive analysis showed that a layer of noble metals and noble metal oxides settled on the floor of the melter, leading to current ``channeling`` which allowed the top section to cool, reducing production rates.

  9. Feed process studies: Research-Scale Melter

    International Nuclear Information System (INIS)

    Whittington, K.F.; Seiler, D.K.; Luey, J.; Vienna, J.D.; Sliger, W.A.

    1996-09-01

    In support of a two-phase approach to privatizing the processing of hazardous and radioactive waste at Hanford, research-scale melter (RSM) experiments were conducted to determine feed processing characteristics of two potential privatization Phase 1 high-level waste glass formulations and to determine if increased Ag, Te, and noble metal amounts would have bad effects. Effects of feed compositions and process conditions were examined for processing rate, cold cap behavior, off-gas, and glass properties. The 2 glass formulations used were: NOM-2 with adjusted waste loading (all components except silica and soda) of 25 wt%, and NOM-3 (max waste loaded glass) with adjusted waste loading of 30 wt%. The 25 wt% figure is the minimum required in the privatization Request for Proposal. RSM operated for 19 days (5 runs). 1010 kg feed was processed, producing 362 kg glass. Parts of runs 2 and 3 were run at 10 to 30 degrees above the nominal temperature 1150 C, with the most significant processing rate increase in run 3. Processing observations led to the choice of NOM-3 for noble metal testing in runs 4 and 5. During noble metal testing, processing rates fell 50% from baseline. Destructive analysis showed that a layer of noble metals and noble metal oxides settled on the floor of the melter, leading to current ''channeling'' which allowed the top section to cool, reducing production rates

  10. EFFECT OF MELTER-FEED-MAKEUP ON VITRIFICATION PROCESS

    International Nuclear Information System (INIS)

    Kruger, A.A.; Hrma, P.R.; Schweiger, M.J.; Humrickhouse, C.J.; Moody, J.A.; Tate, R.M.; Tegrotenhuis, N.E.; Arrigoni, B.M.; Rodriguez, C.P.

    2009-01-01

    Increasing the rate of glass processing in the Hanford Tank Waste Treatment and Immobilization Plant (WTP) will allow shortening the life cycle of waste cleanup at the Hanford Site. While the WTP melters have approached the limit of increasing the rate of melting by enhancing the heat transfer rate from molten glass to the cold cap, a substantial improvement can still be achieved by accelerating the feed-to-glass conversion kinetics. This study investigates how the feed-to-glass conversion process responds to the feed makeup. By identifying the means of control of primary foam formation and silica grain dissolution, it provides data needed for a meaningful and economical design of large-scale experiments aimed at achieving faster melting

  11. Two new research melters at the Savannah River Technology Center

    International Nuclear Information System (INIS)

    Gordon, J.R.; Coughlin, J.T.; Minichan, R.L.; Zamecnik, J.R.

    2000-01-01

    The Savannah River Technology Center (SRTC) is a US Department of Energy (DOE) complex leader in the development of vitrification technology. To maintain and expand this SRTC core technology, two new melter systems are currently under construction in SRTC. This paper discusses the development of these two new systems, which will be used to support current as well as future vitrification programs in the DOE complex. The first of these is the new minimelter, which is a joule-heated glass melter intended for experimental melting studies with nonradioactive glass waste forms. Testing will include surrogates of Defense Waste processing Facility (DWPF) high-level wastes. To support the DWPF testing, the new minimelter was scaled to the DWPF melter based on melt surface area. This new minimelter will replace an existing system and provide a platform for the research and development necessary to support the SRTC vitrification core technology mission. The second new melter is the British Nuclear Fuels, Inc., research melter system (BNFL melter), which is a scaled version of the BNFL low-activity-waste (LAW) melter proposed for vitrification of LAW at Hanford. It is designed to process a relatively large amount of actual radiative Hanford tank waste and to gather data on the composition of off-gases that will be generated by the LAW melter. Both the minimelter and BNFL melter systems consist of five primary subsystems: melter vessel, off-gas treatment, feed, power supply, and instrumentation and controls. The configuration and design of these subsystems are tailored to match the current system requirements and provide the flexibility to support future DOE vitrification programs. This paper presents a detailed discussion of the unique design challenges represented by these two new melter systems

  12. Maximum total organic carbon limit for DWPF melter feed

    International Nuclear Information System (INIS)

    Choi, A.S.

    1995-01-01

    DWPF recently decided to control the potential flammability of melter off-gas by limiting the total carbon content in the melter feed and maintaining adequate conditions for combustion in the melter plenum. With this new strategy, all the LFL analyzers and associated interlocks and alarms were removed from both the primary and backup melter off-gas systems. Subsequently, D. Iverson of DWPF- T ampersand E requested that SRTC determine the maximum allowable total organic carbon (TOC) content in the melter feed which can be implemented as part of the Process Requirements for melter feed preparation (PR-S04). The maximum TOC limit thus determined in this study was about 24,000 ppm on an aqueous slurry basis. At the TOC levels below this, the peak concentration of combustible components in the quenched off-gas will not exceed 60 percent of the LFL during off-gas surges of magnitudes up to three times nominal, provided that the melter plenum temperature and the air purge rate to the BUFC are monitored and controlled above 650 degrees C and 220 lb/hr, respectively. Appropriate interlocks should discontinue the feeding when one or both of these conditions are not met. Both the magnitude and duration of an off-gas surge have a major impact on the maximum TOC limit, since they directly affect the melter plenum temperature and combustion. Although the data obtained during recent DWPF melter startup tests showed that the peak magnitude of a surge can be greater than three times nominal, the observed duration was considerably shorter, on the order of several seconds. The long surge duration assumed in this study has a greater impact on the plenum temperature than the peak magnitude, thus making the maximum TOC estimate conservative. Two models were used to make the necessary calculations to determine the TOC limit

  13. Refractory material crucibles evaluation for U evaporation

    International Nuclear Information System (INIS)

    Damiao, A.J.; Vasconcelos, G.; Silveira, C.A.B.; Rodrigues, N.A.S.

    1996-01-01

    In studies that involve small amounts of U vapor generation, such as spectroscopy or thin films, most of the E-gun power is delivered to the cooling system. Normally crucibles are used as container and thermal insulator. Since liquid U is extremely reactive at evaporation temperatures, the crucibles are seriously attacked, decreasing the insulation efficiency and adding contaminants to the U vapor. There is no complete solution for the problem, however, with a careful choice of materials, one can design crucibles with extended lifetime and reduced contamination. This work reports some preliminary results we have obtained in the assessing of crucible materials and design, such as, graphite, Si C, vitreous carbon and Al 2 O 3 . (author)

  14. Crystallization in high level waste (HLW) glass melters: Savannah River Site operational experience

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Kevin M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Peeler, David K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kruger, Albert A. [USDOE Office of River Protection, Richland, WA (United States)

    2015-06-12

    This paper provides a review of the scaled melter testing that was completed for design input to the Defense Waste Processing Facility (DWPF) melter. Testing with prototype melters provided the data to define the DWPF operating limits to avoid bulk (volume) crystallization in the un-agitated DWPF melter and provided the data to distinguish between spinels generated by refractory corrosion versus spinels that precipitated from the HLW glass melt pool. A review of the crystallization observed with the prototype melters and the full-scale DWPF melters (DWPF Melter 1 and DWPF Melter 2) is included. Examples of actual DWPF melter attainment with Melter 2 are given. The intent is to provide an overview of lessons learned, including some example data, that can be used to advance the development and implementation of an empirical model and operating limit for crystal accumulation for a waste treatment and immobilization plant.

  15. Design and operation of small-scale glass melters for immobilizing radioactive waste

    International Nuclear Information System (INIS)

    Plodinec, M.J.; Chismar, P.H.

    1980-01-01

    A small-scale (3-kg), joule-heated, continuous melter has been designed to study vitrification of Savannah River Plant radioactive waste. The first melter built has been in nonradioactive service for nearly three years. This melter had Inconel 690 electrodes and uses Monofrax K-3 for the contact refractory. Several problems seem in this melter have had an impact on the design of a full-scale system. Problems include uncontrolled electric currents passing through the throat, and formation of a slag layer at the bottom of the melter. The performance of a similar melter in a low-maintenance, radioactive environment is also described. Problems such as halide refluxing, and hot streaking, first observed in this melter, are also discussed

  16. Refractory material crucibles evaluation for U evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Damiao, A.J.; Vasconcelos, G.; Silveira, C.A.B.; Rodrigues, N.A.S. [Centro Tecnico Aeroespacial (CTA-IEAv), Sao Jose dos Campos, SP (Brazil). Inst. de Estudos Avancados

    1996-12-31

    In studies that involve small amounts of U vapor generation, such as spectroscopy or thin films, most of the E-gun power is delivered to the cooling system. Normally crucibles are used as container and thermal insulator. Since liquid U is extremely reactive at evaporation temperatures, the crucibles are seriously attacked, decreasing the insulation efficiency and adding contaminants to the U vapor. There is no complete solution for the problem, however, with a careful choice of materials, one can design crucibles with extended lifetime and reduced contamination. This work reports some preliminary results we have obtained in the assessing of crucible materials and design, such as, graphite, Si C, vitreous carbon and Al{sub 2} O{sub 3}. (author) 1 refs., 3 figs.,2 tabs.

  17. Material interactions between system components and glass product melts in a ceramic melter

    International Nuclear Information System (INIS)

    Knitter, R.

    1989-07-01

    The interactions of the ceramic and metallic components of a ceramic melter for the vitrification of High Active Waste were investigated with simulated glass product melts in static crucible tests at 1000 0 C and 1150 0 C. Corrosion of the fusion-cast Al 2 O 3 -ZrO 2 -SiO 2 - and Al 2 O 3 -ZrO 2 -SiO 2 -Cr 2 O 3 -refractories (ER 1711 and ER 2161) is characterized by homogeneous chemical dissolution and diffusion through the glass matrix of the refractory. The resulting boundary compositions lead to characteristic modification and formation of phases, not only inside the refractory but also in the glass melt. The attack of the electrode material, a Ni-Cr-Fe-alloy Inconel 690, by the glass melt takes place via grain boundaries and leads to the oxidation of Cr and growth of Cr 2 O 3 -crystals at the boundary layer. Noble metals, added to the glass melt can form solid solutions with the alloy with varying compositions. (orig.) [de

  18. Freeze and restart of the DWPF Scale Glass Melter

    International Nuclear Information System (INIS)

    Choi, A.S.

    1989-01-01

    After over two years of successful demonstration of many design and operating concepts of the DWPF Melter system, the last Scale Glass Melter campaign was initiated on 6/9/88 and consisted of two parts; (1) simulation of noble metal buildup and (2) freeze and subsequent restart of the melter under various scenarios. The objectives were to simulate a prolonged power loss to major heating elements and to examine the characteristics of transient melter operations during a startup with a limited supply of lid heat. Experimental results indicate that in case of a total power loss to the lower electrodes such as due to noble metal deposition, spinel crystals will begin to form in the SRL 165 composite waste glass pool in 24 hours. The total lid heater power required to initiate joule heating was the same as that during slurry-feeding. Results of a radiative heat transfer analysis in the plenum indicate that under the identical operating conditions, the startup capabilities of the SGM and the DWPF Melter are quite similar, despite a greater lid heater to melt surface area ratio in the DWPF Melter

  19. Liquid-fed ceramic melter: a general description report

    International Nuclear Information System (INIS)

    Buelt, J.L.; Chapman, C.C.

    1978-10-01

    The Pacific Northwest Laboratory is conducting several research and development programs for the solidification of high-level wastes. The liquid-fed ceramic melter (LFCM) is a major component in the solidification process. This melter can solidify liquid high-level waste, as well as melt calcined waste with glass additives and then solidify the mixture. This report describes the LFCM system and shows the main features of the refractories, electrodes and power systems, melter box and lid, draining system, feeding system, and off-gas system

  20. Energy Efficient Glass Melting - The Next Generation Melter

    Energy Technology Data Exchange (ETDEWEB)

    David Rue

    2008-03-01

    The objective of this project is to demonstrate a high intensity glass melter, based on the submerged combustion melting technology. This melter will serve as the melting and homogenization section of a segmented, lower-capital cost, energy-efficient Next Generation Glass Melting System (NGMS). After this project, the melter will be ready to move toward commercial trials for some glasses needing little refining (fiberglass, etc.). For other glasses, a second project Phase or glass industry research is anticipated to develop the fining stage of the NGMS process.

  1. Numerical analysis of historical change of the electric resistance in the TVF glass melter

    International Nuclear Information System (INIS)

    Kawamura, Takumi; Sakai, Takaaki

    2004-09-01

    Concerning to the TVF glass melter in the Tokai reprocessing center, it is being planned to detect the deposition of the noble metals in a glass melter and remove them periodically to extend the melter lifetime. Numerical analysis has been performed for the electric resistance evaluation in order to estimate the sedimentation situation and current density distribution from the melter resistance. Electric field analysis was carried out by using MAGNA-FIM code and the influence factors to melter resistance was evaluated concerning to the sedimentation situation and glass temperature. In addition, transitions of the sedimentation and melter resistances were estimated from the operation history of the TVF-1 melter. As a result, the followings were obtained. From the evaluation of the influence factors to melter resistance, it turns out that the volume and the noble metals concentration of a sediment influence notably to melter resistance when the sediment contacts to electrodes. The sediment temperature at the melter bottom has small sensitivity in case of the non-contact situation. The glass temperature in the melter upper part, however, has big sensitivity in melter resistance irrespective of the existence of contact. Based on the above sensitivity evaluation, Numerical analysis was carried out supposing the sedimentation process which suits to a melter resistance fall during the operation history of the TVF-1 melter. As input conditions, the voltage between electrodes and the temperature in the melter were referred from the operation history data. It was assumed that the noble metals concentration in a sediment increased constantly for every operation batch. As a result, the characteristics of melter resistance history was reproduced successfully in general. Thereby, it became prospective to predict the sedimentation situation by using the new resistance analysis model for the glass melter. (author)

  2. Summary of pilot-scale activities with resorcinol ion exchange resin

    International Nuclear Information System (INIS)

    Cicero, C.A.; Bickford, D.F.; Sargent, T.N.; Andrews, M.K.; Bibler, J.P.; Bibler, N.E.; Jantzen, C.M.

    1995-01-01

    The Mixed Waste Focus Area (MWFA) of the Department of Energy (DOE) is currently investigating vitrification technology for treatment of low level mixed wastes (LLMW). They have chartered the Savannah River Technology Center (SRTC) to study vitrification of the wastes through an Office of Technology Development (OTD) Technical Task Plan (TTP). SRTC's efforts have included crucible-scale studies and pilot scale testing on simulated LLMW sludges, resins, soils, and other solid wastes. Results from the crucible-scale studies have been used as the basis for the pilot-scale demonstrations. As part of the fiscal year (FY) 1995 activities, SRTC performed crucible-scale studies with organic resins. This waste stream was selected because of the large number of DOE sites, as well as commercial industries, that use resins for treatment of liquid wastes. Pilot-scale studies were to be completed in FY 1995, but could not be due to a reduction in funding. Instead, a compilation of pilot-scale tests with organic resins performed under the guidance of SRTC was provided in this report. The studies which will be discussed used a resorcinol- formaldehyde resin loaded with non-radioactive cesium, which was fed with simulated wastewater treatment sludge feed. The first study was performed at the SRTC in the mini-melter, 1/100th scale of the Defense Waste Processing Facility (DWPF) melter, and also involved limited crucible-scale studies to determine the resin loading obtainable. The other study was performed at the DOE/Industrial Center for Vitrification Research (Center) and involved both crucible and pilot-scale testing in the Stir-Melter stirred-melter. Both studies were successful in vitrifying the resin in simulated radioactive sludge and glass additive feeds

  3. DWPF Glass Melter Technology Manual: Volume 4

    Energy Technology Data Exchange (ETDEWEB)

    Iverson, D.C.

    1993-12-31

    This document details information about the design of a glass melter to be used at the Defense Waste Processing Facility located at the Savannah River Plant. Information contained in this document consists solely of a machine drawing and parts list and purchase orders with specifications of equipment used in the development of the melter.

  4. DWPF Glass Melter Technology Manual: Volume 4

    International Nuclear Information System (INIS)

    Iverson, D.C.

    1993-01-01

    This document details information about the design of a glass melter to be used at the Defense Waste Processing Facility located at the Savannah River Plant. Information contained in this document consists solely of a machine drawing and parts list and purchase orders with specifications of equipment used in the development of the melter

  5. Advanced Mixed Waste Treatment Project melter system preliminary design technical review meeting

    Energy Technology Data Exchange (ETDEWEB)

    Eddy, T.L.; Raivo, B.D.; Soelberg, N.R.; Wiersholm, O.

    1995-02-01

    The Idaho National Engineering Laboratory Advanced Mixed Waste Treatment Project sponsored a plasma are melter technical design review meeting to evaluate high-temperature melter system configurations for processing heterogeneous alpha-contaminated low-level radioactive waste (ALLW). Thermal processing experts representing Department of Energy contractors, the Environmental Protection Agency, and private sector companies participated in the review. The participants discussed issues and evaluated alternative configurations for three areas of the melter system design: plasma torch melters and graphite arc melters, offgas treatment options, and overall system configuration considerations. The Technical Advisory Committee for the review concluded that graphite arc melters are preferred over plasma torch melters for processing ALLW. Initiating involvement of stakeholders was considered essential at this stage of the design. For the offgas treatment system, the advisory committee raised the question whether to a use wet-dry or a dry-wet system. The committee recommended that the waste stream characterization, feed preparation, and the control system are essential design tasks for the high-temperature melter treatment system. The participants strongly recommended that a complete melter treatment system be assembled to conduct tests with nonradioactive surrogate waste material. A nonradioactive test bed would allow for inexpensive design and operational changes prior to assembling a system for radioactive waste treatment operations.

  6. Advanced Mixed Waste Treatment Project melter system preliminary design technical review meeting

    International Nuclear Information System (INIS)

    Eddy, T.L.; Raivo, B.D.; Soelberg, N.R.; Wiersholm, O.

    1995-02-01

    The Idaho National Engineering Laboratory Advanced Mixed Waste Treatment Project sponsored a plasma are melter technical design review meeting to evaluate high-temperature melter system configurations for processing heterogeneous alpha-contaminated low-level radioactive waste (ALLW). Thermal processing experts representing Department of Energy contractors, the Environmental Protection Agency, and private sector companies participated in the review. The participants discussed issues and evaluated alternative configurations for three areas of the melter system design: plasma torch melters and graphite arc melters, offgas treatment options, and overall system configuration considerations. The Technical Advisory Committee for the review concluded that graphite arc melters are preferred over plasma torch melters for processing ALLW. Initiating involvement of stakeholders was considered essential at this stage of the design. For the offgas treatment system, the advisory committee raised the question whether to a use wet-dry or a dry-wet system. The committee recommended that the waste stream characterization, feed preparation, and the control system are essential design tasks for the high-temperature melter treatment system. The participants strongly recommended that a complete melter treatment system be assembled to conduct tests with nonradioactive surrogate waste material. A nonradioactive test bed would allow for inexpensive design and operational changes prior to assembling a system for radioactive waste treatment operations

  7. Fiscal year 1995 final report for TTP SR-1320-04

    International Nuclear Information System (INIS)

    Cicero, C.A.; Bickford, D.F.; Marra, J.C.

    1995-01-01

    The purpose of this Technical Task Plan (TTP) in fiscal year 1995 was to develop vitrification technology for application to mercury and organic waste streams, which are considered problem streams for a large portion of the DOE complexes. In addition, efforts were continued for pilot-scale demonstrations on Rocky Flats Plant (RFP) Precipitate sludge, and Los Alamos National Laboratory (LANL) TA-50 sludge, which was a carry-over of fiscal year 1994 activities. Crucible-scale studies were performed on mercury and organic waste streams to determine the optimum glass compositions. The optimal compositions were then used to treat actual wastes on a bench-top scale. Reports were written to summarize the data and results from the mercury and organic studies. The pilot-scale studies with RFP and LANL simulated sludge used glass compositions determined in fiscal year 1994 studies. The pilot-scale studies were attempted in the EnVitCo cold-top melter and the Stir-Melter reg-sign stirred melter at the DOE/Industrial Center for Vitrification Research (Center)

  8. Certain physicochemical characteristics of Bi1.4Y0.6O3 prepared by the method of direct high-frequency fusion in cold crucible

    International Nuclear Information System (INIS)

    Poluyan, A.F.; Lashneva, V.V.; Vecher, A.A.; Voropaev, A.G.; Savitskij, A.A.; Tatarintsev, V.M.

    1988-01-01

    Electric properties and the nature of conductivity of Bi 1.4 V 0.6 O 3 solid solution prepared by the method of direct high-frequency melting in the cold crucible are studied. A sample of Bi 1.4 Y 0.6 O 3 composition synthesized by this technique has a higher electric conductivity value as compared with analogous polycrystal sample has a cubic face-centered structure of the τ-Bi 2 O 3 type. On the basis of experimental e.m.f. values temperature dependences of pressures of oxygen dissociation for Bi 2 O 3 and Bi 1.4 Y 0.6 O 3 are calculated. Bi 1.4 Y 0.6 O 3 solid solution has lower values of Po 2 dissociation pressure as compared with bismuth oxide. This expands the limits of its application

  9. Efficient particulate scrubber for glass melter off-gas

    International Nuclear Information System (INIS)

    Wright, G.T.

    1983-01-01

    Operation of joule-heated, continuous slurry-fed melters has demonstrated that off-gas aerosols are generated by entrainment of feed slurry and vaporization of volatile species from the melt. Effective off-gas stream decontamination for these aerosols can be obtained by utilizing a suitably designed and operated wet scrubber system. Results are presented for performance tests conducted with an air aspirating-type venturi scrubber processing a simulated melter off-gas aerosol. Mass overall removal efficiencies ranged from 99.5 to 99.8%. Details of the testing program and applications for melter off-gas system design are discussed

  10. Graphite electrode arc melter demonstration Phase 2 test results

    International Nuclear Information System (INIS)

    Soelberg, N.R.; Chambers, A.G.; Anderson, G.L.; O'Connor, W.K.; Oden, L.L.; Turner, P.C.

    1996-06-01

    Several U.S. Department of Energy organizations and the U.S. Bureau of Mines have been collaboratively conducting mixed waste treatment process demonstration testing on the near full-scale graphite electrode submerged arc melter system at the Bureau's Albany (Oregon) Research Center. An initial test series successfully demonstrated arc melter capability for treating surrogate incinerator ash of buried mixed wastes with soil. The conceptual treatment process for that test series assumed that buried waste would be retrieved and incinerated, and that the incinerator ash would be vitrified in an arc melter. This report presents results from a recently completed second series of tests, undertaken to determine the ability of the arc melter system to stably process a wide range of open-quotes as-receivedclose quotes heterogeneous solid mixed wastes containing high levels of organics, representative of the wastes buried and stored at the Idaho National Engineering Laboratory (INEL). The Phase 2 demonstration test results indicate that an arc melter system is capable of directly processing these wastes and could enable elimination of an up-front incineration step in the conceptual treatment process

  11. Using an induction melter with a cold crucible for the immobilization of plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Kushnikov, V.V.; Matiunin, Yu.I.; Smelova, T.V. [A.A. Bochvara All Russian Scientific Research Institute of Non-Organic Materials, Moscow (Russian Federation)

    1996-05-01

    This report evaluates the possibilities for immobilizing weapons-grade plutonium in glass-type materials that satisfy requirements for eventual burial in deep geologic repositories and correspond to the standards set for spent fuel.

  12. High-Temperature Corrosion Study for the RPP Low Activity Waste Melter

    International Nuclear Information System (INIS)

    Marshall, K.M.

    2003-01-01

    The River Protection Program (RPP) low activity waste (LAW) melter design incorporates a series of bubblers used to increase convection in the molten glass. Through runs of a pilot melter at Duratek, Inc. in Columbia, Maryland, the bubblers have been identified as the major component limiting LAW melter availability, requiring frequent replacement due to corrosive degradation, primarily at the melt line. Laboratory experiments were performed to evaluate the performance of several alloys and coatings in simulated RPP low activity waste melter vapor space and molten glass environments. The performance of the alloys and coatings was studied in order to advance our understanding of how these materials react at the melt/air interface inside the melter. The ultimate goal was to identify a material with superior performance compared to that of Inconel 693, and to deliver a bubbler sub-assembly made of that material to the RPP LAW melter pilot facility for further testing

  13. Steady state simulation of Joule heated ceramic melter for vitrification of high level liquid waste

    Energy Technology Data Exchange (ETDEWEB)

    Sugilal, G; Wattal, P K; Theyyunni, T K [Process Engineering and Systems Development Division, Bhabha Atomic Research Centre, Mumbai (India); Iyer, K N [Department of Mechanical Engineering, Indian Inst. of Tech., Mumbai (India)

    1994-06-01

    The Joule heated ceramic melter is emerging as an attractive alternative to metallic melters for high level waste vitrification. The inherent limitations with metallic melters viz., low capacity and short melter life, are overcome in a ceramic melter which can be adopted for continuous mode of operation. The ceramic melter has the added advantage of better operational flexibility. This paper describes the three dimensional model used for simulating the complex design conditions of the ceramic melter. (author).

  14. Steady state simulation of Joule heated ceramic melter for vitrification of high level liquid waste

    International Nuclear Information System (INIS)

    Sugilal, G.; Wattal, P.K.; Theyyunni, T.K.; Iyer, K.N.

    1994-01-01

    The Joule heated ceramic melter is emerging as an attractive alternative to metallic melters for high level waste vitrification. The inherent limitations with metallic melters viz., low capacity and short melter life, are overcome in a ceramic melter which can be adopted for continuous mode of operation. The ceramic melter has the added advantage of better operational flexibility. This paper describes the three dimensional model used for simulating the complex design conditions of the ceramic melter. (author)

  15. Settling of Spinel in A High-Level Waste Glass Melter

    International Nuclear Information System (INIS)

    Pavel Hrma; Pert Schill; Lubomir Nemec

    2002-01-01

    High-level nuclear waste is being vitrified, i.e., converted to a durable glass that can be stored in a safe repository for hundreds of thousands of years. Waste vitrification is accomplished in reactors call melters to which the waste is charged together with glass-forming additives. The mixture is electrically heated to a temperature as high as 1150 degree C (or even higher in advanced melters) to create a melt that becomes glass on cooling. This process is slow and expensive. Moreover, the melters that are currently in use or are going to be used in the U.S. are sensitive to clogging and thus cannot process melt in which solid particles are suspended. These particles settle and gradually accumulate on the melter bottom. Such particles, most often small crystals of spinel ( a mineral containing iron, nickel, chromium, and other minor oxides), inevitably occurred in the melt when the content of the waste in the glass (called waste loading) increases above a certain limit. To avoid the presence of solid particles in the melter, the waste loading is kept rather low, in average 15% lower than in glass formulated for more robust melters

  16. DM100 AND DM1200 MELTER TESTING WITH HIGH WASTE LOADING GLASS FORMULATIONS FOR HANFORD HIGH-ALUMINUM HLW STREAMS

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; KOT WK; PEGG IL; JOSEPH I

    2009-12-30

    This Test Plan describes work to support the development and testing of high waste loading glass formulations that achieve high glass melting rates for Hanford high aluminum high level waste (HLW). In particular, the present testing is designed to evaluate the effect of using low activity waste (LAW) waste streams as a source of sodium in place ofchemical additives, sugar or cellulose as a reductant, boehmite as an aluminum source, and further enhancements to waste processing rate while meeting all processing and product quality requirements. The work will include preparation and characterization of crucible melts in support of subsequent DuraMelter 100 (DM 100) tests designed to examine the effects of enhanced glass formulations, glass processing temperature, incorporation of the LAW waste stream as a sodium source, type of organic reductant, and feed solids content on waste processing rate and product quality. Also included is a confirmatory test on the HLW Pilot Melter (DM1200) with a composition selected from those tested on the DM100. This work builds on previous work performed at the Vitreous State Laboratory (VSL) for Department of Energy's (DOE's) Office of River Protection (ORP) to increase waste loading and processing rates for high-iron HLW waste streams as well as previous tests conducted for ORP on the same waste composition. This Test Plan is prepared in response to an ORP-supplied statement of work. It is currently estimated that the number of HLW canisters to be produced in the Hanford Tank Waste Treatment and Immobilization Plant (WTP) is about 12,500. This estimate is based upon the inventory ofthe tank wastes, the anticipated performance of the sludge treatment processes, and current understanding of the capability of the borosilicate glass waste form. The WTP HLW melter design, unlike earlier DOE melter designs, incorporates an active glass bubbler system. The bubblers create active glass pool convection and thereby improve heat

  17. Americium/curium bushing melter drain tests

    International Nuclear Information System (INIS)

    Smith, M.E.; Hardy, B.J.; Smith, M.E.

    1997-01-01

    Americium and curium were produced in the past at the Savannah River Site (SRS) for research, medical, and radiological applications. They have been stored in a nitric acid solution in an SRS reprocessing facility for a number of years. Vitrification of the americium/curium (Am/Cm) solution will allow the material to be safely stored or transported to the DOE Oak Ridge Reservation. Oak Ridge is responsible for marketing radionuclides for research and medical applications. The bushing melter technology being used in the Am/Cm vitrification research work is also under consideration for the stabilization of other actinides such as neptunium and plutonium. A series of melter drain tests were conducted at the Savannah River Technology Center to determine the relationship between the drain tube assembly operating variables and the resulting pour initiation times, glass flowrates, drain tube temperatures, and stop pour times. Performance criteria such as ability to start and stop pours in a controlled manner were also evaluated. The tests were also intended to provide support of oil modeling of drain tube performance predictions and thermal modeling of the drain tube and drain tube heater assembly. These drain tests were instrumental in the design of subsequent melter drain tube and drain tube heaters for the Am/Cm bushing melter, and therefore in the success of the Am/Cm vitrification and plutonium immobilization programs

  18. Maximum organic carbon limits at different melter feed rates (U)

    International Nuclear Information System (INIS)

    Choi, A.S.

    1995-01-01

    This report documents the results of a study to assess the impact of varying melter feed rates on the maximum total organic carbon (TOC) limits allowable in the DWPF melter feed. Topics discussed include: carbon content; feed rate; feed composition; melter vapor space temperature; combustion and dilution air; off-gas surges; earlier work on maximum TOC; overview of models; and the results of the work completed

  19. Computational Fluid Dynamics Modeling of Bubbling in a Viscous Fluid for Validation of Waste Glass Melter Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Abboud, Alexander William [Idaho National Laboratory; Guillen, Donna Post [Idaho National Laboratory

    2016-01-01

    At the Hanford site, radioactive waste stored in underground tanks is slated for vitrification for final disposal. A comprehensive knowledge of the glass batch melting process will be useful in optimizing the process, which could potentially reduce the cost and duration of this multi-billion dollar cleanup effort. We are developing a high-fidelity heat transfer model of a Joule-heated ceramic lined melter to improve the understanding of the complex, inter-related processes occurring with the melter. The glass conversion rates in the cold cap layer are dependent on promoting efficient heat transfer. In practice, heat transfer is augmented by inserting air bubblers into the molten glass. However, the computational simulations must be validated to provide confidence in the solutions. As part of a larger validation procedure, it is beneficial to split the physics of the melter into smaller systems to validate individually. The substitution of molten glass for a simulant liquid with similar density and viscosity at room temperature provides a way to study mixing through bubbling as an isolated effect without considering the heat transfer dynamics. The simulation results are compared to experimental data obtained by the Vitreous State Laboratory at the Catholic University of America using bubblers placed within a large acrylic tank that is similar in scale to a pilot glass waste melter. Comparisons are made for surface area of the rising air bubbles between experiments and CFD simulations for a variety of air flow rates and bubble injection depths. Also, computed bubble rise velocity is compared to a well-accepted expression for bubble terminal velocity.

  20. Literature review of arc/plasma, combustion, and joule-heated melter vitrification systems

    International Nuclear Information System (INIS)

    Freeman, C.J.; Abrigo, G.P.; Shafer, P.J.; Merrill, R.A.

    1995-07-01

    This report provides reviews of papers and reports for three basic categories of melters: arc/plasma-heated melters, combustion-heated melters, and joule-heated melters. The literature reviewed here represents those publications which may lend insight to phase I testing of low-level waste vitrification being performed at the Hanford Site in FY 1995. For each melter category, information from those papers and reports containing enough information to determine steady-state mass balance data is tabulated at the end of each section. The tables show the composition of the feed processed, the off-gas measured via decontamination factors, gross energy consumptions, and processing rates, among other data

  1. Covering a Crucible with Metal Containing Channels

    Science.gov (United States)

    Grugel, Richard N.

    2006-01-01

    In a procedure that partly resembles the lost-wax casting process, a crucible made of a brittle material (ceramic, quartz, or glass) is covered with a layer of metal containing channels. The metal cover and the channels can serve any or all of several purposes, depending upon the application: Typically, the metal would serve at least partly to reinforce the crucible. The channels could be used as passages for narrow objects that could include thermocouples and heat-transfer strips. Alternatively or in addition, channels could be used as flow paths for liquid or gaseous coolants and could be positioned and oriented for position- or direction-selective cooling. In some cases, the channels could be filled with known gases and sealed so that failure of the crucibles could be indicated by instruments that detect the gases. The process consists of three main steps. In the first step, a pattern defining the channels is formed by wrapping or depositing a material in the desired channel pattern on the outer surface of the crucible. The pattern material can be a plastic, wax, low-ash fibrous material, a soluble material, or other suitable material that can subsequently be removed easily. In a proof-of-concept demonstration (see figure), the crucible was an alumina cylinder and the mold material was plastic tie-down tape. In the second step, the patterned crucible is coated with metal. In one variation of the second step, a very thin layer containing or consisting of an electrically conductive material (e.g., gold, silver, or carbon) is painted or otherwise deposited on the mold-covered crucible, then the covering metal required for the specific application is electrodeposited on the very thin conducting layer. In another variation of the second step, the metal coat is formed by chemical vapor deposition. In the proof-of-concept demonstration, a layer of nickel 0.003 in. ( 0.08 mm) thick was electrodeposited. In the third step, the patterned material is removed. This is

  2. Graphite electrode arc melter demonstration Phase 2 test results

    Energy Technology Data Exchange (ETDEWEB)

    Soelberg, N.R.; Chambers, A.G.; Anderson, G.L.; O`Connor, W.K.; Oden, L.L.; Turner, P.C.

    1996-06-01

    Several U.S. Department of Energy organizations and the U.S. Bureau of Mines have been collaboratively conducting mixed waste treatment process demonstration testing on the near full-scale graphite electrode submerged arc melter system at the Bureau`s Albany (Oregon) Research Center. An initial test series successfully demonstrated arc melter capability for treating surrogate incinerator ash of buried mixed wastes with soil. The conceptual treatment process for that test series assumed that buried waste would be retrieved and incinerated, and that the incinerator ash would be vitrified in an arc melter. This report presents results from a recently completed second series of tests, undertaken to determine the ability of the arc melter system to stably process a wide range of {open_quotes}as-received{close_quotes} heterogeneous solid mixed wastes containing high levels of organics, representative of the wastes buried and stored at the Idaho National Engineering Laboratory (INEL). The Phase 2 demonstration test results indicate that an arc melter system is capable of directly processing these wastes and could enable elimination of an up-front incineration step in the conceptual treatment process.

  3. Modified IRC bench-scale arc melter for waste processing

    International Nuclear Information System (INIS)

    Eddy, T.L.; Sears, J.W.; Grandy, J.D.; Kong, P.C.; Watkins, A.D.

    1994-03-01

    This report describes the INEL Research Center (IRC) arc melter facility and its recent modifications. The arc melter can now be used to study volatilization of toxic and high vapor pressure metals and the effects of reducing and oxidizing (redox) states in the melt. The modifications include adding an auger feeder, a gas flow control and monitoring system, an offgas sampling and exhaust system, and a baghouse filter system, as well as improving the electrode drive, slag sampling system, temperature measurement and video monitoring and recording methods, and oxidation lance. In addition to the volatilization and redox studies, the arc melter facility has been used to produce a variety of glass/ceramic waste forms for property evaluation. Waste forms can be produced on a daily basis. Some of the melts performed are described to illustrate the melter's operating characteristics

  4. Review of continuous ceramic-lined melter and associated experience at PNL

    International Nuclear Information System (INIS)

    Buelt, J.L.; Chapman, C.C.; Barnes, S.M.; Dierks, R.D.

    1979-01-01

    Development of continuous, ceramic-lined melters applicable to immobilization of radioactive wastes began at PNL in 1973. A comprehensive program is curretly in progress. The melters constructed at PNL have incorporated remote and reliable design features necessary for radioactive use. The extensive experience with vitrification of simulated wastes has proven the continuous melter's applicability to radioactive waste immobilization

  5. The R and D and commercial experience on KHNP's vitrification technology

    International Nuclear Information System (INIS)

    Jo, Hyun-Jun; Kim, Cheon-Woo

    2015-01-01

    The Korea Hydro and Nuclear Power Co., Ltd., (KHNP) has investigated and evaluated various efficient thermal treatment technologies for the LILW. In 1994 and 1995, the feasibility of several melter technologies was assessed from technical and economic perspectives. Finally, the R and D project to develop the vitrification technology using CCIM (Cold Crucible Induction Melter) and PTM (Plasma Torch Melter) was launched in 1997. This R and D project had been completed from 1997 to 2002. KHNP started the project to construct the commercial facility using the results of the R and D project in 2002. The HanUl Vitrification Facility (UVF), to be used for the vitirification of low-and intermediate-level radioactive waste (LILW) generated by nuclear power plants (NPPs), is the world's first commercial facility using CCIM technology. The design of UVF had been conducted from 2002 to 2005. The construction was begun in 2005 and was completed in 2007. From 2007 to 2009, all key performance tests, such as the system functional test, the cold test, the hot test, and the real waste test, were successfully carried out. The UVF commenced the commercial operation in October 2009. Based on the successful construction and operation of UVF, the advanced R and D project has been started to develop the large-scale vitrification facility. (author)

  6. Americium/Curium Melter 2A Pilot Tests

    International Nuclear Information System (INIS)

    Smith, M.E.; Fellinger, A.P.; Jones, T.M.; Miller, C.B.; Miller, D.H.; Snyder, T.K.; Stone, M.E.; Witt, D.C.

    1998-05-01

    Isotopes of americium (Am) and curium (Cm) were produced in the past at the Savannah River Site (SRS) for research, medical, and radiological applications. These highly radioactive and valuable isotopes have been stored in an SRS reprocessing facility for a number of years. Vitrification of this solution will allow the material to be more safely stored until it is transported to the DOE Oak Ridge Reservation for use in research and medical applications. To this end, the Am/Cm Melter 2A pilot system, a full-scale non- radioactive pilot plant of the system to be installed at the reprocessing facility, was designed, constructed and tested. The full- scale pilot system has a frit and aqueous feed delivery system, a dual zone bushing melter, and an off-gas treatment system. The main items which were tested included the dual zone bushing melter, the drain tube with dual heating and cooling zones, glass compositions, and the off-gas system which used for the first time a film cooler/lower melter plenum. Most of the process and equipment were proven to function properly, but several problems were found which will need further work. A system description and a discussion of test results will be given

  7. Final flush of the shielded cells melter

    International Nuclear Information System (INIS)

    Marshall, K.M.; Fellinger, T.L.; Harbour, J.R.

    1997-01-01

    A flush of the Savannah River Technology Center (SRTC) Shielded Cells melter was performed after the completion of a campaign to vitrify loaded crystalline silicotitanate (CST) ion exchange medium. The purpose of the flush was to lower levels of radioisotopes accumulated during the campaign and to lower the level of titanium dioxide present in the glass. This in turn would ready the melter for future campaigns involving the Defense Waste Processing Facility (DWPF)

  8. GTS Duratek, phase I Hanford low-level waste melter tests: Final report

    International Nuclear Information System (INIS)

    Eaton, W.C.

    1995-01-01

    A multiphase program was initiated in 1994 to test commercially available melter technologies for the vitrification of the low-level waste (LLW) stream from defense waste stored in underground tanks at the Hanford Site in southeastern Washington State. Phase 1 of the melter demonstration tests using simulated LLW was completed during fiscal year 1995. This document is the final report on testing performed by GTS Duratek Inc. in Columbia, Maryland. GTS Duratek (one of the seven vendors selected) was chosen to demonstrate Joule heated melter technology under WHC subcontract number MMI-SVV-384215. The report contains description of the tests, observations, test data and some analysis of the data as it pertains to application of this technology for LLW vitrification. The document also contains summaries of the melter offgas reports issued as separate documents for the 100 kg melter (WHC-SD-WM-VI-028) and for the 1000 kg melter (WHC-SD-WM-VI-029)

  9. Conversion of Nuclear Waste into Nuclear Waste Glass: Experimental Investigation and Mathematical Modeling

    International Nuclear Information System (INIS)

    Hrma, Pavel

    2014-01-01

    The melter feed, slurry, or calcine charged on the top of a pool of molten glass forms a floating layer of reacting material called the cold cap. Between the cold-cap top, which is covered with boiling slurry, and its bottom, where bubbles separate it from molten glass, the temperature changes by up to 1000 K. The processes that occur over this temperature interval within the cold cap include liberation of gases, conduction and consumption of heat, dissolution of quartz particles, formation and dissolution of intermediate crystalline phases, and generation of foam and gas cavities. These processes have been investigated using thermal analyses, optical and electronic microscopies, x-ray diffraction, as well as other techniques. Properties of the reacting feed, such as heat conductivity and density, were measured as functions of temperature. Investigating the structure of quenched cold caps produced in a laboratory-scale melter complemented the crucible studies. The cold cap consists of two main layers. The top layer contains solid particles dissolving in the glass-forming melt and open pores through which gases are escaping. The bottom layer contains bubbly melt or foam where bubbles coalesce into larger cavities that move sideways and release the gas to the atmosphere. The feed-to-glass conversion became sufficiently understood for representing the cold-cap processes via mathematical models. These models, which comprise heat transfer, mass transfer, and reaction kinetics models, have been developed with the final goal to relate feed parameters to the rate of glass melting

  10. Comparison of the rotary calciner-metallic melter and the slurry-fed ceramic melter technologies for vitrifying West Valley high-level wastes

    International Nuclear Information System (INIS)

    Chapman, C.C.

    1983-01-01

    Two processes which are believed applicable and available for vitrification of West Valley's high-level (HLW) wastes were technically evaluated and compared. The rotary calciner-metallic melter (AVH) and the slurry-fed ceramic melter (SFCM) were evaluated under the following general categories: process flow sheet, remote operability, safety and environmental considerations, and estimated cost and schedules

  11. Hanford low-level vitrification melter testing -- Master list of data submittals

    International Nuclear Information System (INIS)

    Hendrickson, D.W.

    1995-01-01

    The Westinghouse Hanford Company (WHC) is conducting a two-phased effort to evaluate melter system technologies for vitrification of liquid low-level radioactive waste (LLW) streams. The evaluation effort includes demonstration testing of selected glass melter technologies and technical reports regarding the applicability of the glass melter technologies to the vitrification of Hanford LLW tank waste. The scope of this document is to identify and list vendor document submittals in technology demonstration support of the Hanford Low-Level Waste Vitrification melter testing program. The scope of this document is limited to those documents responsive to the Statement of Work, accepted and issued by the LLW Vitrification Program. The purpose of such a list is to maintain configuration control of vendor supplied data and to enable ready access to, and application of, vendor supplied data in the evaluation of melter technologies for the vitrification of Hanford low-level tank wastes

  12. Development of HWVP melter/turntable components for canyon-remote maintenance and replacement

    International Nuclear Information System (INIS)

    Siemens, D.H.; Beary, M.M.; Berger, D.N.; Heath, W.O.; Larson, D.E.

    1985-03-01

    Remote operability and maintainability of vitrification equipment were assessed under shielded-cell conditions. The equipment tested will be applied to immobilize high-level and transuranic liquid waste slurries that resulted from plutonium production for defense weapons. Equipment tested included: (1) a turntable for handling waste canisters under the melter; (2) a removable discharge cone in the melter overflow section; (3) a thermocouple jumper that extends into a shielded cell; (4) remote instrument and electrical connectors; (5) remote, mechanical, and heat transfer aspects of the melter glass overflow section; (6) a reamer to clean out plugged nozzles in the melter top; (7) a closed circuit camera to view the melter interior; and (8) a device to retrieve samples of the glass product. 14 figs

  13. Off-gas characteristics of defense waste vitrification using liquid-fed Joule-heated ceramic melters

    International Nuclear Information System (INIS)

    Goles, R.W.; Sevigny, G.J.

    1983-09-01

    Off-gas and effluent characterization studies have been established as part of a PNL Liquid-Fed Ceramic Melter development program supporting the Savannah River Laboratory Defense Waste Processing Facility (SRL-DWPF). The objectives of these studies were to characterize the gaseous and airborne emission properties of liquid-fed joule-heated melters as a function of melter operational parameters and feed composition. All areas of off-gas interest and concern including effluent characterization, emission control, flow rate behavior and corrosion effects have been studied using alkaline and formic-acid based feed compositions. In addition, the behavioral patterns of gaseous emissions, the characteristics of melter-generated aerosols and the nature and magnitude of melter effluent losses have been established under a variety of feeding conditions with and without the use of auxiliary plenum heaters. The results of these studies have shown that particulate emissions are responsible for most radiologically important melter effluent losses. Melter-generated gases have been found to be potentially flammable as well as corrosive. Hydrogen and carbon monoxide present the greatest flammability hazard of the combustibles produced. Melter emissions of acidic volatile compounds of sulfur and the halogens have been responsible for extensive corrosion observed in melter plenums and in associated off-gas lines and processing equipment. The use of auxiliary plenum heating has had little effect upon melter off-gas characteristics other than reducing the concentrations of combustibles

  14. Glass melter assembly for the Hanford Waste Vitrification Plant

    International Nuclear Information System (INIS)

    Chen, A.E.; Russell, A.; Shah, K.R.; Kalia, J.

    1993-01-01

    The Hanford Waste Vitrification Plant (HWVP) is designed to solidify high level radioactive waste by converting it into stable borosilicate after mixing with glass frit and water. The heart of this conversion process takes place in the glass melter. The life span of the existing melter is limited by the possible premature failure of the heater assembly, which is not remotely replaceable, in the riser and pour spout. A goal of HWVP Project is to design remotely replaceable riser and pour spout heaters so that the useful life of the melter can be prolonged. The riser pour spout area is accessible only by the canyon crane and impact wrench. It is also congested with supporting frame members, service piping, electrode terminals, canister positioning arm and other various melter components. The visibility is low and the accessibility is limited. The problem is further compounded by the extreme high temperature in the riser core and the electrical conductive nature of the molten glass that flows through it

  15. Melter system technology testing for Hanford Site low-level tank waste vitrification

    International Nuclear Information System (INIS)

    Wilson, C.N.

    1996-01-01

    Following revisions to the Tri-Party Agreement for Hanford Site cleanup, which specified vitrification for Complete melter feasibility and system operability immobilization of the low-level waste (LLW) tests, select reference melter(s), and establish reference derived from retrieval and pretreatment of the radioactive LLW glass formulation that meets complete systems defense wastes stored in 177 underground tanks, commercial requirements (June 1996). Available melter technologies were tested during 1994 to 1995 as part of a multiphase program to select reference Submit conceptual design and initiate definitive design technologies for the new LLW vitrification mission

  16. HWVP NCAW melter feed rheology FY 1993 testing and analyses: Letter report

    International Nuclear Information System (INIS)

    Smith, P.A.

    1996-03-01

    The Hanford Waste Vitrification Plant (HWVP) program has been established to immobilize selected Hanford nuclear wastes before shipment to a geologic repository. The HWVP program is directed by the U.S. Department of Energy (DOE). The Pacific Northwest Laboratory (PNL) provides waste processing and vitrification technology to assist the design effort. The focus of this letter report is melter feed rheology, Process/Product Development, which is part of the Task in the PNL HWVP Technology Development (PHTD) Project. Specifically, the melter feed must be transported to the liquid fed ceramic melter (LFCM) to ensure HWVP operability and the manufacture of an immobilized waste form. The objective of the PHTD Project slurry flow technology development is to understand and correlate dilute and concentrated waste, formatted waste, waste with recycle addition, and melter feed transport properties. The objectives of the work described in this document were to examine frit effects and several processing conditions on melter feed rheology. The investigated conditions included boiling time, pH, noble metal containing melter feed, solids loading, and aging time. The results of these experiments contribute to the understanding of melter feed rheology. This document is organized in eight sections. This section provides the introductory remarks, followed by Section 2.0 that contains conclusions and recommendations. Section 3.0 reviews the scientific principles, and Section 4.0 details the experimental methods. The results and discussion and the review of related rheology data are in Sections 5.0 and 6.0, respectively. Section 7.0, an analysis of NCAW melter feed rheology data, provides an overall review of melter feed with FY 91 frit. References are included in Section 8.0. This letter report satisfies contractor milestone PHTD C93-03.02E, as described in the FY 1993 Pacific Northwest Hanford Laboratory Waste Plant Technology Development (PHTD) Project Work Plan

  17. Crucibles of Leadership.

    Science.gov (United States)

    Bennis, Warren G.; Thomas, Robert J.

    2002-01-01

    Often, a traumatic event that forces a profound redefinition of the self forges leadership. The stories of a diverse group of business leaders and the "crucible experiences" that shaped them reveal four essential skills: ability to engage others in shared meanings, compelling voice, integrity, and adaptive capacity (applied creativity). (SK)

  18. Technology of off-gas treatment for liquid-fed ceramic melters

    Energy Technology Data Exchange (ETDEWEB)

    Scott, P.A.; Goles, R.W.; Peters, R.D.

    1985-05-01

    The technology for treating off gas from liquid-fed ceramic melters (LFCMs) has been under development at the Pacific Northwest Laboratory since 1977. This report presents the off-gas technology as developed at PNL and by others to establish a benchmark of development and to identify technical issues. Tests conducted on simulated (nonradioactive) wastes have provided data that allow estimation of melter off-gas composition for a given waste. Mechanisms controlling volatilization of radionuclides and noxious gases are postulated, and correlations between melter operation and emissions are presented. This report is directed to those familiar with LFCM operation. Off-gas treatment systems always require primary quench scrubbers, aerosol scrubbers, and final particulate filters. Depending on the composition of the off gas, equipment for removal of ruthenium, iodine, tritium, and noxious gases may also be needed. Nitrogen oxides are the most common noxious gases requiring treatment, and can be controlled by aqueous absorption or catalytic conversion with ammonia. High efficiency particulate air (HEPA) filters should be used for final filtration. The design criteria needed for an off-gas system can be derived from emission regulations and composition of the melter feed. Conservative values for melter off-gas composition can be specified by statistical treatment of reported off-gas data. Statistical evaluation can also be used to predict the frequency and magnitude of normal surge events that occur in the melter. 44 refs., 28 figs., 17 tabs.

  19. Redox control of electric melters with complex feed compositions. Part I: analytical methods and models

    International Nuclear Information System (INIS)

    Bickford, D.F.; Diemer, R.B. Jr.

    1985-01-01

    The redox state of glass from electric melters with complex feed compositions is determined by balance between gases above the melt, and transition metals and organic compounds in the feed. Part I discusses experimental and computational methods of relating flowrates and other melter operating conditions to the redox state of glass, and composition of the melter offgas. Computerized thermodynamic computational methods are useful in predicting the sequence and products of redox reactions and in assessing individual process variations. Melter redox state can be predicted by combining monitoring of melter operating conditions, redox measurement of fused melter feed samples, and periodic redox measurement of product. Mossbauer spectroscopy, and other methods which measure Fe(II)/Fe(III) in glass, can be used to measure melter redox state. Part II develops preliminary operating limits for the vitrification of High-Level Radioactive Waste. Limits on reducing potential to preclude the accumulation of combustible gases, accumulation of sulfides and selenides, and degradation of melter components are the most critical. Problems associated with excessively oxidizing conditions, such as glass foaming and potential ruthenium volatility, are controlled when sufficient formic acid is added to adjust melter feed rheology

  20. Materials and design experience in a slurry-fed electric glass melter

    International Nuclear Information System (INIS)

    Barnes, S.M.; Larson, D.E.

    1981-08-01

    The design of a slurry-fed electric gas melter and an examination of the performance and condition of the construction materials were completed. The joule-heated, ceramic-lined melter was constructed to test the applicability of materials and processes for high-level waste vitrification. The developmental Liquid-Fed Ceramic Melter (LFCM) was operated for three years with simulated high-level waste and was subjected to conditions more severe than those expected for a nuclear waste vitrification plant

  1. Gaseous and particulate emissions from a DC arc melter.

    Science.gov (United States)

    Overcamp, Thomas J; Speer, Matthew P; Griner, Stewart J; Cash, Douglas M

    2003-01-01

    Tests treating soils contaminated with metal compounds and radionuclide surrogates were conducted in a DC arc melter. The soil melted, and glassy or ceramic waste forms with a separate metal phase were produced. Tests were run in the melter plenum with either air or N2 purge gases. In addition to nitrogen, the primary emissions of gases were CO2, CO, oxygen, methane, and oxides of nitrogen (NO(x)). Although the gas flow through the melter was low, the particulate concentrations ranged from 32 to 145 g/m3. Cerium, a nonradioactive surrogate for plutonium and uranium, was not enriched in the particulate matter (PM). The PM was enriched in cesium and highly enriched in lead.

  2. Slurry feed variability in West Valley's melter feed tank and sampling system

    International Nuclear Information System (INIS)

    Fow, C.L.; Kurath, D.E.; Pulsipher, B.A.; Bauer, B.P.

    1989-04-01

    The present plan for disposal of high-level wastes at West Valley is to vitrify the wastes for disposal in deep geologic repository. The vitrification process involves mixing the high-level wastes with glass-forming chemicals and feeding the resulting slurry to a liquid-fed ceramic melter. Maintaining the quality of the glass product and proficient melter operation depends on the ability of the melter feed system to produce and maintain a homogeneous mixture of waste and glass-former materials. To investigate the mixing properties of the melter feed preparation system at West Valley, a statistically designed experiment was conducted using synthetic melter feed slurry over a range of concentrations. On the basis of the statistical data analysis, it was found that (1) a homogeneous slurry is produced in the melter feed tank, (2) the liquid-sampling system provides slurry samples that are statistically different from the slurry in the tank, and (3) analytical measurements are the major source of variability. A statistical quality control program for the analytical laboratory and a characterization test of the actual sampling system is recommended. 1 ref., 5 figs., 1 tab

  3. Conversion of nuclear waste to molten glass: Formation of porous amorphous alumina in a high-Al melter feed

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Kai, E-mail: kaixu@whut.edu.cn [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Hrma, Pavel, E-mail: pavel.hrma@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Washton, Nancy; Schweiger, Michael J. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Kruger, Albert A. [U.S. Department of Energy, Office of River Protection, Richland, WA 99352 (United States)

    2017-01-15

    The transition of Al phases in a simulated high-Al high-level nuclear waste melter feed heated at 5 K min{sup −1} to 700 °C was investigated with transmission electron microscopy, {sup 27}Al nuclear magnetic resonance spectroscopy, the Brunauer-Emmett-Teller method, and X-ray diffraction. At temperatures between 300 and 500 °C, porous amorphous alumina formed from the dehydration of gibbsite, resulting in increased specific surface area of the feed (∼8 m{sup 2} g{sup −1}). The high-surface-area amorphous alumina formed in this manner could potentially stop salt migration in the cold cap during nuclear waste vitrification. - Highlights: • Porous amorphous alumina formed in a simulated high-Al HLW melter feed during heating. • The feed had a high specific surface area at 300 °C ≤ T ≤ 500 °C. • Porous amorphous alumina induced increased specific surface area.

  4. Assessment of water/glass interactions in waste glass melter operation

    International Nuclear Information System (INIS)

    Postma, A.K.; Chapman, C.C.; Buelt, J.L.

    1980-04-01

    A study was made to assess the possibility of a vapor explosion in a liquid-fed glass melter and during off-standard conditions for other vitrification processes. The glass melter considered is one designed for the vitrification of high-level nuclear wastes and is comprised of a ceramic-lined cavity with electrodes for joule heating and processing equipment required to add feed and withdraw glass. Vapor explosions needed to be considered because experience in other industrial processes has shown that violent interactions can occur if a hot liquid is mixed with a cooler, vaporizable liquid. Available experimental evidence and theoretical analyses indicate that destructive glass/water interactions are low probability events, if they are possible at all. Under standard conditions, aspects of liquid-fed melter operation which work against explosive interactions include: (1) the aqueous feed is near its boiling point; (2) the feed contains high concentrations of suspended particles; (3) molten glass has high viscosity (greater than 20 poise); and (4) the glass solidifies before film boiling can collapse. While it was concluded that vapor explosions are not expected in a liquid-fed melter, available information does not allow them to be ruled out altogether. Several precautionary measures which are easily incorporated into melter operation procedures were identified and additional experiments were recommended

  5. Development of equipments for remote dismantling of joule heated ceramic melter

    International Nuclear Information System (INIS)

    Badgujar, Kiran T.; Usarkar, Sachin G.; Kumar, Binu; Nair, K.N.S.

    2011-01-01

    Joule Heated Ceramic Melter (JHCM) technology has been adopted for industrial scale vitrification of high level liquid waste (HLLW) at Tarapur and Kalpakkam. The melter installed at Advanced Vitrification System (AVS), Tarapur has immobilized 175 m 3 of HLLW in 113 canisters containing 11533Kg of Vitrified Waste Product (VWP). The melter has been in operation for 3 years before shutdown. It is intended to demonstrate the complete procedure of dismantling of Joule Melter in 1:1 scale prior to going in for actual dismantling in the hot cell. The Melter consists of an assembly of Inconel/SS pipes and plates, fuse cast refractories, thermal insulations of various types inside a SS casing and possibly some glass which is left over in the melter. Dismantling of melter involves remote cutting of the outer casing, pipe connections, electrical connections and removal, sizing and packing of internals in a sequential manner to minimise generation of secondary waste. The challenge involves development of remotely operated multi-degrees of freedom fixtures, modification and performance testing of standard industrial cutting and breaking tools and adapting them for remote operations. The work also involves development of equipments for collection of waste generated during the dismantling operation and packaging thus in special packages. Remotely actuated fixtures have been developed for remote top plate and side electrodes cutting. Remotely operated grab has been developed for handling of loose material and grippers have been developed for handling of refractory blocks. Industrial vacuum suction device has been modified into split units to enable for reducing the spread of powder material, while dismantling in progress. The performance test of developed fixtures, equipments, cutting and breaking tools have been carried on 1:1 scale melter model. Various parameters like cutting speed, cutting tool performance, generation of waste volume has been measured and analysed for

  6. Slip cast coating of alumina crucibles

    International Nuclear Information System (INIS)

    Haroun, N.A.; El-Masry, M.A.A.

    1980-01-01

    The development of a process for coating alumina crucibles with MgO protective coat in a two-step slip casting operation is described. The best milling conditions for the alumina used were wet ball milling for 24 hr. MgO had to be calcined at 1200 0 C to minimize hydration. Optimum slip casting conditions for alumina and magnesia were found to be L/S I and pH 3-6 or 9-II for the former, and L/S 3 (alcohol) and pH 8.5-10 for the latter. Sintering of Al 2 O 3 and MgO in the temperature range 1150-500 0 C was investigated. Additions of NiO and MgO lowered the sintered densities at lower temperatures but improved the densification at 1500 0 C. Near theoretical density Al 2 O 3 and MgO crucibles were obtained. A two-step slip casting technique was developed to coat Al 2 O 3 with MgO. Certain slow firing schedules could eliminate the otherwise observed coat-crucible separation and cracks. (author)

  7. Investigation of corrosion experienced in a spray calciner/ceramic melter vitrification system

    International Nuclear Information System (INIS)

    Dierks, R.D.; Mellinger, G.B.; Miller, F.A.; Nelson, T.A.; Bjorklund, W.J.

    1980-08-01

    After periodic testing of a large-scale spray calciner/ceramic melter vitrification system over a 2-yr period, sufficient corrosion was noted on various parts of the vitrification system to warrant its disassembly and inspection. A majority of the 316 SS sintered metal filters on the spray calciner were damaged by chemical corrosion and/or high temperature oxidation. Inconel-601 portions of the melter lid were attacked by chlorides and sulfates which volatilized from the molten glass. The refractory blocks, making up the walls of the melter, were attacked by the waste glass. This attack was occurring when operating temperatures were >1200 0 C. The melter floor was protected by a sludge layer and showed no corrosion. Corrosion to the Inconel-690 electrodes was minimal, and no corrosion was noted in the offgas treatment system downstream of the sintered metal filters. It is believed that most of the melter corrosion occurred during one specific operating period when the melter was operated at high temperatures in an attempt to overcome glass foaming behavior. These high temperatures resulted in a significant release of volatile elements from the molten glass, and also created a situation where the glass was very fluid and convective, which increased the corrosion rate of the refractories. Specific corrosion to the calciner components cannot be proven to have occurred during a specific time period, but the mechanisms of attack were all accelerated under the high-temperature conditions that were experienced with the melter. A review of the materials of construction has been made, and it is concluded that with controlled operating conditions and better protection of some materials of construction corrosion of these systems will not cause problems. Other melter systems operating under similar strenuous conditions have shown a service life of 3 yr

  8. Crucible and coil monitoring during melting operation in induction crucible furnaces; Tiegel- und Spulenueberwachung beim Schmelzbetrieb von Induktionstiegeloefen

    Energy Technology Data Exchange (ETDEWEB)

    Doetsch, Erwin; Forsthoevel, Christoph; Rische, Marco [ABP Induction Systems GmbH, Dortmund (Germany)

    2013-03-15

    The immediate proximity of the metal melt, with a temperature of up to above, 1600 C, to the induction coil in inductive melting necessitates highly reliable monitoring systems, in order to prevent dangerous contact between the melt and the cooling-water-conducting copper section. Ground-fault monitoring, in which the electrical resistance between the melt and the coil is continuously measured, is a standard solution for this function. Everyday use of this long-established system has been made more dependable by automating a number of functions, and the system has also been adapted to modern plant technology, including synchronous tandem operation of two crucible furnaces from a common converter power supply, for example. Measurement of frequency and effective power, as a function of wall thickness, is a supplementary monitoring strategy. Processing of the measured data in the melt processor, in combination with visual assessment, permits appraisal of the integral crucible state and reliable estimation of the remaining service-life of the current crucible. (orig.)

  9. Impact Of Melter Internal Design On Off-Gas Flammability

    International Nuclear Information System (INIS)

    Choi, A. S.; Lee, S. Y.

    2012-01-01

    The purpose of this study was to: (1) identify the more dominant design parameters that can serve as the quantitative measure of how prototypic a given melter is, (2) run the existing DWPF models to simulate the data collected using both DWPF and non-DWPF melter configurations, (3) confirm the validity of the selected design parameters by determining if the agreement between the model predictions and data is reasonably good in light of the design and operating conditions employed in each data set, and (4) run Computational Fluid Dynamics (CFD) simulations to gain new insights into how fluid mixing is affected by the configuration of melter internals and to further apply the new insights to explaining, for example, why the agreement is not good

  10. Alternative Crucibles for U-Mo Microwave Melting

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, Brent W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-03-31

    The crucibles used currently for microwave melting of U-Mo alloy at the Y-12 Complex contain silicon carbide (SiC) in a mullite (3Al2O3-2SiO2) matrix with an erbia coating in contact with the melt. Due to observed silicon contamination, Pacific Northwest National Laboratory has investigated alternative crucible materials that are susceptible to microwave radiation and are chemically compatible with molten U-Mo at 1400 1500C. Recommended crucibles for further testing are: 1) high-purity alumina (Al2O3); 2) yttria-stabilized zirconia (ZrO2); 3) a composite of alumina and yttria-stabilized zirconia; 4) aluminum nitride (AlN). Only AlN does not require an erbia coating. The recommended secondary susceptor, for heating at low temperature, is SiC in a “picket fence” arrangement.

  11. Numerical analysis of continuous charge of lithium niobate in a double-crucible Czochralski system using the accelerated crucible rotation technique

    Science.gov (United States)

    Kitashima, Tomonori; Liu, Lijun; Kitamura, Kenji; Kakimoto, Koichi

    2004-05-01

    The transport mechanism of supplied raw material in a double-crucible Czochralski system using the accelerated crucible rotation technique (ACRT) was investigated by three-dimensional and time-dependent numerical simulation. The calculation clarified that use of the ACRT resulted in enhancement of the mixing effect of the supplied raw material. It is, therefore, possible to maintain the composition of the melt in an inner crucible during crystal growth by using the ACRT. The effect of the continuous charge of the raw material on melt temperature was also investigated. Our results showed that the effect of feeding lithium niobate granules on melt temperature was small, since the feeding rate of the granules is small. Therefore, solidification of the melt surface due to the heat of fusion in this system is not likely.

  12. U.S. Bureau of Mines, Phase 1 Hanford low-level waste melter tests. Final report

    International Nuclear Information System (INIS)

    Eaton, W.C.; Oden, L.L.; O'Connor, W.K.

    1995-11-01

    A multiphase program was initiated in 1994 to test commercially available melter technologies for the vitrification of the low-level waste (LLW) stream from defense wastes stored in underground tanks at the Hanford Site in southeastern Washington State. Phase 1 of the melter demonstration tests using simulated LLW was completed during fiscal year 1995. This document is the melter offgas report on testing performed by the U.S. Department of the Interior, Bureau of Mines, Albany Research Center in Albany, Oregon. The Bureau of Mines (one of the seven vendors selected) was chosen to demonstrate carbon electrode melter technology (also called carbon arc or electric arc) under WHC Subcontract number MMI-SVV-384216. The report contains description of the tests, observation, test data and some analysis of the data as it pertains to application of this technology for LLW vitrification. Testing consisted of melter feed preparation and three melter tests, the first of which was to fulfill the requirements of the statement of work (WHC-SD-EM-RD-044), and the second and third were to address issues identified during the first test. The document also contains summaries of the melter offgas report issued as a separate document U.S. Bureau of Mines, Phase 1 Hanford Low-Level Waste Melter Tests: Melter Offgas Report (WHC-SD-WM-VI-032)

  13. U.S. Bureau of Mines, Phase 1 Hanford low-level waste melter tests. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Eaton, W.C. [Westinghouse Hanford Co., Richland, WA (United States); Oden, L.L.; O`Connor, W.K. [Bureau of Mines, Albany, OR (United States). Albany Research Center

    1995-11-01

    A multiphase program was initiated in 1994 to test commercially available melter technologies for the vitrification of the low-level waste (LLW) stream from defense wastes stored in underground tanks at the Hanford Site in southeastern Washington State. Phase 1 of the melter demonstration tests using simulated LLW was completed during fiscal year 1995. This document is the melter offgas report on testing performed by the U.S. Department of the Interior, Bureau of Mines, Albany Research Center in Albany, Oregon. The Bureau of Mines (one of the seven vendors selected) was chosen to demonstrate carbon electrode melter technology (also called carbon arc or electric arc) under WHC Subcontract number MMI-SVV-384216. The report contains description of the tests, observation, test data and some analysis of the data as it pertains to application of this technology for LLW vitrification. Testing consisted of melter feed preparation and three melter tests, the first of which was to fulfill the requirements of the statement of work (WHC-SD-EM-RD-044), and the second and third were to address issues identified during the first test. The document also contains summaries of the melter offgas report issued as a separate document U.S. Bureau of Mines, Phase 1 Hanford Low-Level Waste Melter Tests: Melter Offgas Report (WHC-SD-WM-VI-032).

  14. Control of DWPF melter feed composition

    International Nuclear Information System (INIS)

    Brown, K.G.; Edwards, R.E.; Postles, R.L.; Randall, C.T.

    1989-01-01

    The Defense Waste Processing Facility will be used to immobilize Savannah River Site high-level waste into a stable borosilicate glass for disposal in a geologic repository. Proper control of the melter feed composition in this facility is essential to the production of glass which meets product durability constraints dictated by repository regulations and facility processing constraints dictated by melter design. A technique has been developed which utilizes glass property models to determine acceptable processing regions based on the multiple constraints imposed on the glass product and to display these regions graphically. This system along with the batch simulation of the process is being used to form the basis for the statistical process control system for the facility

  15. DM100 AND DM1200 MELTER TESTING WITH HIGH WASTE LOADING FORMULATIONS FOR HANFORD HIGH-ALUMINUM HLW STREAMS, TEST PLAN 09T1690-1

    International Nuclear Information System (INIS)

    Kruger, A.A.; Matlack, K.S.; Kot, W.K.; Pegg, I.L.; Joseph, I.

    2009-01-01

    This Test Plan describes work to support the development and testing of high waste loading glass formulations that achieve high glass melting rates for Hanford high aluminum high level waste (HLW). In particular, the present testing is designed to evaluate the effect of using low activity waste (LAW) waste streams as a source of sodium in place ofchemical additives, sugar or cellulose as a reductant, boehmite as an aluminum source, and further enhancements to waste processing rate while meeting all processing and product quality requirements. The work will include preparation and characterization of crucible melts in support of subsequent DuraMelter 100 (DM 100) tests designed to examine the effects of enhanced glass formulations, glass processing temperature, incorporation of the LAW waste stream as a sodium source, type of organic reductant, and feed solids content on waste processing rate and product quality. Also included is a confirmatory test on the HLW Pilot Melter (DM1200) with a composition selected from those tested on the DM100. This work builds on previous work performed at the Vitreous State Laboratory (VSL) for Department of Energy's (DOE's) Office of River Protection (ORP) to increase waste loading and processing rates for high-iron HLW waste streams as well as previous tests conducted for ORP on the same waste composition. This Test Plan is prepared in response to an ORP-supplied statement of work. It is currently estimated that the number of HLW canisters to be produced in the Hanford Tank Waste Treatment and Immobilization Plant (WTP) is about 12,500. This estimate is based upon the inventory ofthe tank wastes, the anticipated performance of the sludge treatment processes, and current understanding of the capability of the borosilicate glass waste form. The WTP HLW melter design, unlike earlier DOE melter designs, incorporates an active glass bubbler system. The bubblers create active glass pool convection and thereby improve heat transfer and

  16. Current status of the active test at RRP and development programs for the advanced melter

    International Nuclear Information System (INIS)

    Kanehira, Norio

    2016-01-01

    The vitrification facility in Rokkasho Reprocessing Plant started the active tests to solidify HAW into the glass in 2007 which was the examination of the final stage before the operation, but the active test had to be discontinued due to the trouble of glass melter operation with down of pouring by deposit of noble metals on the melter bottom. After the equipment and operating conditions were improved in response to the result of the mock-up tests, a series of active tests were restarted active tests in May, 2012. These tests were finished with enough confirmation of stability in the state such as glass temperature and controlling the noble metals. JNFL has been developed the advanced melter, Joule heated ceramic melter, and the design of the advanced melter is largely different from the existing one. For the confirmation of the advanced melter performances, the full-scale inactive tests had been performed and successfully finished. This paper describes outline of development for advanced melter in Rokkasho Reprocessing Plant. (author)

  17. The behavior and effects of the noble metals in the DWPF melter system

    International Nuclear Information System (INIS)

    Hutson, N.D.; Smith, M.E.

    1992-01-01

    Fission-product noble metals have caused severe operating problems in numerous worldwide waste vitrification facilities. These dense, highly conductive noble metals have tended to accumulate on the floor of joule-heated glass melters causing electrical distortions which have, in some occurrences, rendered the melter inoperable. A pilot scale vitrification research facility at the U.S. Department of Energy's Savannah River Laboratory has been operated for more than a year with simulated feed streams containing noble metals. In this paper the behavior of these noble metals in the melter system and final glass product and their effects on the scaled DWPF-type melter are discussed

  18. Crystallization In High Level Waste (HLW) Glass Melters: Operational Experience From The Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-02-27

    processing strategy for the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The basis of this alternative approach is an empirical model predicting the crystal accumulation in the WTP glass discharge riser and melter bottom as a function of glass composition, time, and temperature. When coupled with an associated operating limit (e.g., the maximum tolerable thickness of an accumulated layer of crystals), this model could then be integrated into the process control algorithms to formulate crystal tolerant high level waste (HLW) glasses targeting higher waste loadings while still meeting process related limits and melter lifetime expectancies. This report provides a review of the scaled melter testing that was completed in support of the Defense Waste Processing Facility (DWPF) melter. Testing with scaled melters provided the data to define the DWPF operating limits to avoid bulk (volume) crystallization in the un-agitated DWPF melter and provided the data to distinguish between spinels generated by K-3 refractory corrosion versus spinels that precipitated from the HLW glass melt pool. This report includes a review of the crystallization observed with the scaled melters and the full scale DWPF melters (DWPF Melter 1 and DWPF Melter 2). Examples of actual DWPF melter attainment with Melter 2 are given. The intent is to provide an overview of lessons learned, including some example data, that can be used to advance the development and implementation of an empirical model and operating limit for crystal accumulation for WTP. Operation of the first and second (current) DWPF melters has demonstrated that the strategy of using a liquidus temperature predictive model combined with a 100 °C offset from the normal melter operating temperature of 1150 °C (i.e., the predicted liquidus temperature (TL) of the glass must be 1050 °C or less) has been successful in preventing any detrimental accumulation of spinel in the DWPF melt pool, and spinel has not been

  19. Experimental Plan for Crystal Accumulation Studies in the WTP Melter Riser

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fowley, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-04-28

    This experimental plan defines crystal settling experiments to be in support of the U.S. Department of Energy – Office of River Protection crystal tolerant glass program. The road map for development of crystal-tolerant high level waste glasses recommends that fluid dynamic modeling be used to better understand the accumulation of crystals in the melter riser and mechanisms of removal. A full-scale version of the Hanford Waste Treatment and Immobilization Plant (WTP) melter riser constructed with transparent material will be used to provide data in support of model development. The system will also provide a platform to demonstrate mitigation or recovery strategies in off-normal events where crystal accumulation impedes melter operation. Test conditions and material properties will be chosen to provide results over a variety of parameters, which can be used to guide validation experiments with the Research Scale Melter at the Pacific Northwest National Laboratory, and that will ultimately lead to the development of a process control strategy for the full scale WTP melter. The experiments described in this plan are divided into two phases. Bench scale tests will be used in Phase 1 (using the appropriate solid and fluid simulants to represent molten glass and spinel crystals) to verify the detection methods and analytical measurements prior to their use in a larger scale system. In Phase 2, a full scale, room temperature mockup of the WTP melter riser will be fabricated. The mockup will provide dynamic measurements of flow conditions, including resistance to pouring, as well as allow visual observation of crystal accumulation behavior.

  20. Melter operation results in chemical test at Rokkasho Reprocessing Plant

    International Nuclear Information System (INIS)

    Kanehira, Norio; Yoshioka, Masahiro; Muramoto, Hitoshi; Oba, Takaaki; Takahashi, Yuji

    2005-01-01

    Chemical Test of the glass melter system of the Vitrification Facility at Rokkasho Reprocessing Plant (RRP) was performed. In this test, basic performance of heating-up of the melter, melting glass, pouring glass was confirmed using simulated materials. Through these tests and operation of all modes, good results were gained, and training of operators was completed. (author)

  1. MODELING THE IMPACT OF ELEVATED MERCURY IN DEFENSE WASTE PROCESSING FACILITY MELTER FEED ON THE MELTER OFF-GAS SYSTEM-PRELIMINARY REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Zamecnik, J.; Choi, A.

    2010-08-18

    The Defense Waste Processing Facility (DWPF) is currently evaluating an alternative Chemical Process Cell (CPC) flowsheet to increase throughput. It includes removal of the steam-stripping step, which would significantly reduce the CPC processing time and lessen the sampling needs. However, its downside would be to send 100% of the mercury that comes in with the sludge straight to the melter. For example, the new mercury content in the Sludge Batch 5 (SB5) melter feed is projected to be 25 times higher than that in the SB4 with nominal steam stripping of mercury. This task was initiated to study the impact of the worst-case scenario of zero-mercury-removal in the CPC on the DWPF melter offgas system. It is stressed that this study is intended to be scoping in nature, so the results presented in this report are preliminary. In order to study the impact of elevated mercury levels in the feed, it is necessary to be able to predict how mercury would speciate in the melter exhaust under varying melter operating conditions. A homogeneous gas-phase oxidation model of mercury by chloride was developed to do just that. The model contains two critical parameters pertaining to the partitioning of chloride among HCl, Cl, Cl{sub 2}, and chloride salts in the melter vapor space. The values for these parameters were determined at two different melter vapor space temperatures by matching the calculated molar ratio of HgCl (or Hg{sub 2}Cl{sub 2}) to HgCl{sub 2} with those measured during the Experimental-Scale Ceramic Melter (ESCM) tests run at the Pacific Northwest National Laboratory (PNNL). The calibrated model was then applied to the SB5 simulant used in the earlier flowsheet study with an assumed mercury stripping efficiency of zero; the molar ratio of Cl-to-Hg in the resulting melter feed was only 0.4, compared to 12 for the ESCM feeds. The results of the model run at the indicated melter vapor space temperature of 650 C (TI4085D) showed that due to excessive shortage of

  2. Modeling The Impact Of Elevated Mercury In Defense Waste Processing Facility Melter Feed On The Melter Off-Gas System - Preliminary Report

    International Nuclear Information System (INIS)

    Zamecnik, J.; Choi, A.

    2009-01-01

    The Defense Waste Processing Facility (DWPF) is currently evaluating an alternative Chemical Process Cell (CPC) flowsheet to increase throughput. It includes removal of the steam-stripping step, which would significantly reduce the CPC processing time and lessen the sampling needs. However, its downside would be to send 100% of the mercury that come in with the sludge straight to the melter. For example, the new mercury content in the Sludge Batch 5 (SB5) melter feed is projected to be 25 times higher than that in the SB4 with nominal steam stripping of mercury. This task was initiated to study the impact of the worst-case scenario of zero-mercury-removal in the CPC on the DWPF melter off-gas system. It is stressed that this study is intended to be scoping in nature, so the results presented in this report are preliminary. In order to study the impact of elevated mercury levels in the feed, it is necessary to be able to predict how mercury would speciate in the melter exhaust under varying melter operating conditions. A homogeneous gas-phase oxidation model of mercury by chloride was developed to do just that. The model contains two critical parameters pertaining to the partitioning of chloride among HCl, Cl, Cl 2 , and chloride salts in the melter vapor space. The values for these parameters were determined at two different melter vapor space temperatures by matching the calculated molar ratio of HgCl (or Hg 2 Cl 2 ) to HgCl 2 with those measured during the Experimental-Scale Ceramic Melter (ESCM) tests run at the Pacific Northwest National Laboratory (PNNL). The calibrated model was then applied to the SB5 simulant used in the earlier flowsheet study with an assumed mercury stripping efficiency of zero; the molar ratio of Cl-to-Hg in the resulting melter feed was only 0.4, compared to 12 for the ESCM feeds. The results of the model run at the indicated melter vapor space temperature of 650 C (TI4085D) showed that due to excessive shortage of chloride, only 6% of

  3. High-level waste melter alternatives assessment report

    Energy Technology Data Exchange (ETDEWEB)

    Calmus, R.B.

    1995-02-01

    This document describes the Tank Waste Remediation System (TWRS) High-Level Waste (HLW) Program`s (hereafter referred to as HLW Program) Melter Candidate Assessment Activity performed in fiscal year (FY) 1994. The mission of the TWRS Program is to store, treat, and immobilize highly radioactive Hanford Site waste (current and future tank waste and encapsulated strontium and cesium isotopic sources) in an environmentally sound, safe, and cost-effective manner. The goal of the HLW Program is to immobilize the HLW fraction of pretreated tank waste into a vitrified product suitable for interim onsite storage and eventual offsite disposal at a geologic repository. Preparation of the encapsulated strontium and cesium isotopic sources for final disposal is also included in the HLW Program. As a result of trade studies performed in 1992 and 1993, processes planned for pretreatment of tank wastes were modified substantially because of increasing estimates of the quantity of high-level and transuranic tank waste remaining after pretreatment. This resulted in substantial increases in needed vitrification plant capacity compared to the capacity of original Hanford Waste Vitrification Plant (HWVP). The required capacity has not been finalized, but is expected to be four to eight times that of the HWVP design. The increased capacity requirements for the HLW vitrification plant`s melter prompted the assessment of candidate high-capacity HLW melter technologies to determine the most viable candidates and the required development and testing (D and T) focus required to select the Hanford Site HLW vitrification plant melter system. An assessment process was developed in early 1994. This document describes the assessment team, roles of team members, the phased assessment process and results, resulting recommendations, and the implementation strategy.

  4. High-level waste melter alternatives assessment report

    International Nuclear Information System (INIS)

    Calmus, R.B.

    1995-02-01

    This document describes the Tank Waste Remediation System (TWRS) High-Level Waste (HLW) Program's (hereafter referred to as HLW Program) Melter Candidate Assessment Activity performed in fiscal year (FY) 1994. The mission of the TWRS Program is to store, treat, and immobilize highly radioactive Hanford Site waste (current and future tank waste and encapsulated strontium and cesium isotopic sources) in an environmentally sound, safe, and cost-effective manner. The goal of the HLW Program is to immobilize the HLW fraction of pretreated tank waste into a vitrified product suitable for interim onsite storage and eventual offsite disposal at a geologic repository. Preparation of the encapsulated strontium and cesium isotopic sources for final disposal is also included in the HLW Program. As a result of trade studies performed in 1992 and 1993, processes planned for pretreatment of tank wastes were modified substantially because of increasing estimates of the quantity of high-level and transuranic tank waste remaining after pretreatment. This resulted in substantial increases in needed vitrification plant capacity compared to the capacity of original Hanford Waste Vitrification Plant (HWVP). The required capacity has not been finalized, but is expected to be four to eight times that of the HWVP design. The increased capacity requirements for the HLW vitrification plant's melter prompted the assessment of candidate high-capacity HLW melter technologies to determine the most viable candidates and the required development and testing (D and T) focus required to select the Hanford Site HLW vitrification plant melter system. An assessment process was developed in early 1994. This document describes the assessment team, roles of team members, the phased assessment process and results, resulting recommendations, and the implementation strategy

  5. Off-gas chemistry study of melter feed by Springborn Laboratories

    International Nuclear Information System (INIS)

    Crow, K.R.

    1985-01-01

    The purpose of the off-gas chemistry study of melter feed samples was to support and help substantiate glass melter thermochemistry models developed for the DWPF. Both sludge-only and sludge-precipitate feed samples were analyzed. Each slurry sample was pyrolyzed at temperatures from 150 to 1000 0 C in air and inert atmospheres, and the head space products were analyzed by chromatographic and mass spectrometric methods. Thermogravimetric, differential scanning calorimetric and Fourier transform infrared analyses were also performed on each sample. There were no unusually high exothermic reactions that would be cause for concern in the DWPF melter. Results for two types of sludge-precipitate feed were compared. One type contained simulated precipitate hydrolysis aqueous (PHA) product as fed to the SCM-2 melter. The second type contained PHA from the lab-scale acid hydrolysis reactor in 677-T. A major difference between the two types was a small, but distinct, presence of higher aromatics in gas from feed with reactor-produced PHA. This feed also evolved more CO and CO 2 than feed with simulated PHA at high pyrolytic temperatures (>750 0 C). Recent analyses have identified the higher boiling aromatics in reactor-produced PHA as primarily diphenylamine and p-terphenyl. These compounds will be included in future PHA simulations that are fed to research melters. Under an inert atmosphere, benzene and phenol were the two most abundant organics evolved during pyrolysis of sludge-precipitate feed

  6. Literature review: Assessment of DWPF melter and melter off-gas system lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Reigel, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-07-30

    A glass melter for use in processing radioactive waste is a challenging environment for the materials of construction (MOC) resulting from a combination of high temperatures, chemical attack, and erosion/corrosion; therefore, highly engineered materials must be selected for this application. The focus of this report is to review the testing and evaluations used in the selection of the Defense Waste Processing Facility (DWPF), glass contact MOC specifically the Monofrax® K-3 refractory and Inconel® 690 alloy. The degradation or corrosion mechanisms of these materials during pilot scale testing and in-service operation were analyzed over a range of oxidizing and reducing flowsheets; however, DWPF has primarily processed a reducing flowsheet (i.e., Fe2+/ΣFe of 0.09 to 0.33) since the start of radioactive operations. This report also discusses the materials selection for the DWPF off-gas system and the corrosion evaluation of these materials during pilot scale testing and non-radioactive operations of DWPF Melter #1. Inspection of the off-gas components has not been performed during radioactive operations with the exception of maintenance because of plugging.

  7. Literature review: Assessment of DWPF melter and melter off-gas system lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Reigel, M. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-07-30

    A glass melter for use in processing radioactive waste is a challenging environment for the materials of construction (MOC) resulting from a combination of high temperatures, chemical attack, and erosion/corrosion; therefore, highly engineered materials must be selected for this application. The focus of this report is to review the testing and evaluations used in the selection of the Defense Waste Processing Facility (DWPF), glass contact MOC specifically the Monofrax® K-3 refractory and Inconel® 690 alloy. The degradation or corrosion mechanisms of these materials during pilot scale testing and in-service operation were analyzed over a range of oxidizing and reducing flowsheets; however, DWPF has primarily processed a reducing flowsheet (i.e., Fe2+/ΣFe of 0.09 to 0.33) since the start of radioactive operations. This report also discusses the materials selection for the DWPF off-gas system and the corrosion evaluation of these materials during pilot scale testing and non-radioactive operations of DWPF Melter #1. Inspection of the off-gas components has not been performed during radioactive operations with the exception of maintenance because of plugging.

  8. Evaluation of melter technologies for vitrification of Hanford site low-level tank waste - phase 1 testing summary report

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, C.N., Westinghouse Hanford

    1996-06-27

    Following negotiation of the fourth amendment to the Tri- Party Agreement for Hanford Site cleanup, commercially available melter technologies were tested during 1994 and 1995 for vitrification of the low-level waste (LLW) stream to be derived from retrieval and pretreatment of the radioactive defense wastes stored in 177 underground tanks. Seven vendors were selected for Phase 1 testing to demonstrate vitrification of a high-sodium content liquid LLW simulant. The tested melter technologies included four Joule-heated melters, a carbon electrode melter, a combustion melter, and a plasma melter. Various dry and slurry melter feed preparation processes also were tested. The technologies and Phase 1 testing results were evaluated and a preliminary technology down-selection completed. This report describes the Phase 1 LLW melter vendor testing and the tested technologies, and summarizes the testing results and the preliminary technology recommendations.

  9. Savannah River Laboratory's operating experience with glass melters

    International Nuclear Information System (INIS)

    Brown, F.H.; Randall, C.T.; Cosper, M.B.; Moseley, J.P.

    1982-01-01

    The Department of Energy, with recommendations from the Du Pont Company, is proposing that a Defense Waste Processing Facility be constructed at the Savannah River Plant to immobilize radioactive The immobilization process is designed around the solidification of waste sludge in borosilicate glass. The Savannah River Laboratory, who is responsible for the solidification process development program, has completed an experimental program with one large-scale glass melter and just started up another melter. Experimental data indicate that process requirements can easily be met with the current design. 7 figures

  10. Energy Savings Through Thermally Efficient Crucible Technology: Fundamentals, Process Modeling, and Applications

    Science.gov (United States)

    Shi, Wenwu; Pinto, Brian

    2017-12-01

    Melting and holding molten metals within crucibles accounts for a large portion of total energy demand in the resource-intensive nonferrous foundry industry. Multivariate mathematical modeling aided by detailed material characterization and advancements in crucible technologies can make a significant impact in the areas of cost-efficiency and carbon footprint reduction. Key thermal properties such as conductivity and specific heat capacity were studied to understand their influence on crucible furnace energy consumption during melting and holding processes. The effects of conductivity on thermal stresses and longevity of crucibles were also evaluated. With this information, accurate theoretical models using finite element analysis were developed to study total energy consumption and melting time. By applying these findings to recent crucible developments, considerable improvements in field performance were reported and documented as case studies in applications such as aluminum melting and holding.

  11. Literature Review: Assessment of DWPF Melter and Melter Off-gas System Lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Reigel, M. [Savannah River Site (SRS), Aiken, SC (United States)

    2015-07-30

    Testing to date for the MOC for the Hanford Waste Treatment and Immobilization Plant (WTP) melters is being reviewed with the lessons learned from DWPF in mind and with consideration to the changes in the flowsheet/feed compositions that have occurred since the original testing was performed. This information will be presented in a separate technical report that identifies any potential gaps for WTP processing.

  12. The Suitability Of Local Quartz Sand In The Production Of Bath Crucibles.

    Directory of Open Access Journals (Sweden)

    C. O. Okpanachi

    2017-03-01

    Full Text Available The suitability of local quartz sand in the production of bath crucibles is a study that was carried out in order to impart overall strength on bath crucibles hence reduce breakages during fettling. Therefore this research constitutes a study to enhance the efficiency of production of bath crucibles by addition of quartz sand in slip preparation. The steps taken in the beneficiation of quartz sand for the production of bath crucibles are comminution which entails crushing and milling classification washing liquid dispersion sizing and reduction of iron content by magnetic separation. The slip contains materials like plastic clay feldspar kaolin talc sodium silicate water quartz sand etc. These were all milled in the ball mill for slip production casting and fettling glazing and sintering to get final bath crucibles as the end products. Quartz sand is used in a variety of products essentially as raw material for the foundry casting and glass industries and also in chemicals water filtration and ceramics the heat resistance nature of quartz sand makes it an excellent refractory substance for these industrial processes. Slip can be prepared for production of bath crucibles without the inclusion of quartz sand however the addition of quartz sand is needed to improve the mechanical performance of the slip in the production of bath crucibles.

  13. Startup of a Joule-heated glass melter with a graphite slurry

    International Nuclear Information System (INIS)

    Allen, T.L.; Porter, M.A.; Routt, K.R.

    1984-01-01

    Startup of a Joule-heated glass melter using a graphite slurry as a conducting medium was demonstrated. This technique can be used for the initial startup and for the restart of a melter used for vitrifying high-level radioactive waste. Theory, physical property data, and a demonstration test are reported

  14. CERAMIC WASTE FORM DATA PACKAGE

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J.; Marra, J.

    2014-06-13

    The purpose of this data package is to provide information about simulated crystalline waste forms that can be used to select an appropriate composition for a Cold Crucible Induction Melter (CCIM) proof of principle demonstration. Melt processing, viscosity, electrical conductivity, and thermal analysis information was collected to assess the ability of two potential candidate ceramic compositions to be processed in the Idaho National Laboratory (INL) CCIM and to guide processing parameters for the CCIM operation. Given uncertainties in the CCIM capabilities to reach certain temperatures throughout the system, one waste form designated 'Fe-MP' was designed towards enabling processing and another, designated 'CAF-5%TM-MP' was designed towards optimized microstructure. Melt processing studies confirmed both compositions could be poured from a crucible at 1600{degrees}C although the CAF-5%TM-MP composition froze before pouring was complete due to rapid crystallization (upon cooling). X-ray diffraction measurements confirmed the crystalline nature and phase assemblages of the compositions. The kinetics of melting and crystallization appeared to vary significantly between the compositions. Impedance spectroscopy results indicated the electrical conductivity is acceptable with respect to processing in the CCIM. The success of processing either ceramic composition will depend on the thermal profiles throughout the CCIM. In particular, the working temperature of the pour spout relative to the bulk melter which can approach 1700{degrees}C. The Fe-MP composition is recommended to demonstrate proof of principle for crystalline simulated waste forms considering the current configuration of INL's CCIM. If proposed modifications to the CCIM can maintain a nominal temperature of 1600{degrees}C throughout the melter, drain, and pour spout, then the CAF-5%TM-MP composition should be considered for a proof of principle demonstration.

  15. Melter development needs assessment for RWMC buried wastes

    International Nuclear Information System (INIS)

    Donaldson, A.D.; Carpenedo, R.J.; Anderson, G.L.

    1992-02-01

    This report presents a survey and initial assessment of the existing state-of-the-art melter technology necessary to thermally treat (stabilize) buried TRU waste, by producing a highly leach resistant glass/ceramic waste form suitable for final disposal. Buried mixed transuranic (TRU) waste at the Idaho National Engineering Laboratory (INEL) represents an environmental hazard requiring remediation. The Environmental Protection Agency (EPA) placed the INEL on the National Priorities List in 1989. Remediation of the buried TRU-contaminated waste via the CERCLA decision process is required to remove INEL from the National Priorities List. A Waste Technology Development (WTD) Preliminary Systems Design and Thermal Technologies Screening Study identified joule-heated and plasma-heated melters as the most probable thermal systems technologies capable of melting the INEL soil and waste to produce the desired final waste form [Iron-Enriched Basalt (IEB) glass/ceramic]. The work reported herein then surveys the state of existing melter technology and assesses it within the context of processing INEL buried TRU wastes and contaminated soils. Necessary technology development work is recommended

  16. Characterization of high level nuclear waste glass samples following extended melter idling

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Kevin M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Peeler, David K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kruger, Albert A. [USDOE Office of River Protection, Richland, WA (United States)

    2015-06-16

    The Savannah River Site Defense Waste Processing Facility (DWPF) melter was recently idled with glass remaining in the melt pool and riser for approximately three months. This situation presented a unique opportunity to collect and analyze glass samples since outages of this duration are uncommon. The objective of this study was to obtain insight into the potential for crystal formation in the glass resulting from an extended idling period. The results will be used to support development of a crystal-tolerant approach for operation of the high-level waste melter at the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Two glass pour stream samples were collected from DWPF when the melter was restarted after idling for three months. The samples did not contain crystallization that was detectible by X-ray diffraction. Electron microscopy identified occasional spinel and noble metal crystals of no practical significance. Occasional platinum particles were observed by microscopy as an artifact of the sample collection method. Reduction/oxidation measurements showed that the pour stream glasses were fully oxidized, which was expected after the extended idling period. Chemical analysis of the pour stream glasses revealed slight differences in the concentrations of some oxides relative to analyses of the melter feed composition prior to the idling period. While these differences may be within the analytical error of the laboratories, the trends indicate that there may have been some amount of volatility associated with some of the glass components, and that there may have been interaction of the glass with the refractory components of the melter. These changes in composition, although small, can be attributed to the idling of the melter for an extended period. The changes in glass composition resulted in a 70-100 °C increase in the predicted spinel liquidus temperature (TL) for the pour stream glass samples relative to the analysis of the melter feed prior to

  17. Plasma/arc melter review for vitrification of mixed wastes: Results

    Energy Technology Data Exchange (ETDEWEB)

    Eddy, T.L.; Soelberg, N.R.; Raivo, B.D. [MeltTran, Inc., Idaho Falls, ID (United States)

    1995-12-31

    In October of 1994, the Idaho Waste Treatment Program (IWTP) sponsored a workshop to review the results of a plasma/arc melter system preliminary design for treating mixed waste. Attention focused on (1) the melter design, (2) the offgas system design, and (3) the overall system design. The inclusion of feed preparation and handling systems, as well as monitoring and control systems, were considered premature until decisions regarding the melter and offgas treatment were resolved. The evaluation was based on the constraints of the transuranic-contaminated mixed waste in the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering Laboratory (INEL). Major factors are the retention of the transuranics in the basaltic slag, maintenance in a radioactive environment, reliability of components to prevent any major problems, upsets, or safety concerns, and the collection, elimination, or reduction of hazardous materials for appropriate stabilization. Several modifications were recommended by the group at large, discussed by the subcommittees, and accepted as the preferred options by the design team. Though all questions were not answered, the preferred systems for mixed waste treatment were the arc melters with graphite electrode systems with appropriate cooling which reduced maintenance and the possibility of eruptions that have occurred with plasma torches. Arc melters can also result in the minimum footprint and shielding. The preferred offgas systems were the wet/dry systems, that essentially eliminate the formation of carcinogenic compounds so they do not have to be destroyed down stream. This system also puts all of the particulate matter into one stream, instead of two.

  18. A multi-crucible core-catcher concept: Design considerations and basic results

    International Nuclear Information System (INIS)

    Szabo, I.

    1995-01-01

    A multi-crucible core-catcher concept to be implemented in new light water reactor containments has recently been proposed. This paper deals with conceptual design considerations and the various ways this type of core-catcher could be designed to meet requirements for reactor application. A systematic functional analysis of the multi-crucible core-catcher concept and the results of the preliminary design calculation are presented. Finally, the adequacy of the multi-crucible core-catcher concept for reactor application is discussed. (orig.)

  19. Role of crucible partition in improving Czochralski melt conditions

    Science.gov (United States)

    Jafri, I. H.; Prasad, V.; Anselmo, A. P.; Gupta, K. P.

    1995-09-01

    Many of the inhomogeneities and defects in the crystal grown from a pool of melt are because of the inherent unsteady growth kinetics and flow instabilities of the process. A scaled up version of the Czochralski process induces oscillatory and turbulent conditions in the melt, thereby resulting in the production of non-uniform silicon crystals. This numerical study reveals that a crucible partition shorter than the melt height can significantly improve the melt conditions. The obstruction at the bottom of the crucible is helpful but the variations in heat flux and flow patterns remain random. However, when the obstruction is introduced at the top of the melt, the flow conditions become much more desirable and oscillations are greatly suppressed. It is also found that a full-melt height partition or a double-crucible may not be a good choice. An optimal size of the blockage and its location to produce the most desirable process conditions will depend on the growth parameters including the melt height and the crucible diameter. These findings should be particularly useful in designing a solid polysilicon pellets-feed continuous Czochralski process for Si crystals.

  20. LFCM [liquid-fed eramic melter] emission and off-gas system performance for feed component cesium

    International Nuclear Information System (INIS)

    Goles, R.W.; Andersen, C.M.

    1986-09-01

    Except for volatile off-gas effluents, overall adequacy of the liquid-fed ceramic melter (LFCM) system depends most upon its effectiveness in dealing with cesium. However, the mechanism responsible for melter cesium losses has proved insensitive to many LFCM operating and processing conditions. As a result, variations in inleakage, plenum temperature, feeding rate and waste loading do not significantly influence melter cesium performance. Feed composition, specifically halogen content, is the only processing variable that has had a significant effect. Due to the submicron nature of LFCM-generated aerosols, melter disengagement design features are not expected to be particularly effective in reducing cesium emission rates. For the same reason, the cesium performance of conventional quench scrubbers is quite low, being dependent only upon the magnitude of melter entrainment losses. Although a deep bed washable filter has been effective in removing submicron aerosols from the process exhaust, high performance has only been achieved under dry operating conditions. The melter's idling state does not appear to place additional demands upon the off-gas treatment system

  1. Vectra GSI, Inc. low-level waste melter testing Phase 1 test report

    Energy Technology Data Exchange (ETDEWEB)

    Stegen, G.E.; Wilson, C.N.

    1996-02-21

    A multiphase program was initiated in 1994 to test commercially available melter technologies for the vitrification of the low-level waste (LLW) stream from defense wastes stored in underground tanks at the Hanford Site in southeastern Washington State. Vectra GSI, Inc. was one of seven vendors selected for Phase 1 of the melter demonstration tests using simulated LLW that were completed during fiscal year 1995. The attached report prepared by Vectra GSI, Inc. describes results of melter testing using slurry feed and dried feeds. Results of feed drying and prereaction tests using a fluid bed calciner and rotary dryer also are described.

  2. Vectra GSI, Inc. low-level waste melter testing Phase 1 test report

    International Nuclear Information System (INIS)

    Stegen, G.E.; Wilson, C.N.

    1996-01-01

    A multiphase program was initiated in 1994 to test commercially available melter technologies for the vitrification of the low-level waste (LLW) stream from defense wastes stored in underground tanks at the Hanford Site in southeastern Washington State. Vectra GSI, Inc. was one of seven vendors selected for Phase 1 of the melter demonstration tests using simulated LLW that were completed during fiscal year 1995. The attached report prepared by Vectra GSI, Inc. describes results of melter testing using slurry feed and dried feeds. Results of feed drying and prereaction tests using a fluid bed calciner and rotary dryer also are described

  3. Hanford Waste Vitrification Program process development: Melt testing subtask, pilot-scale ceramic melter experiment, run summary

    International Nuclear Information System (INIS)

    Nakaoka, R.K.; Bates, S.O.; Elmore, M.R.; Goles, R.W.; Perez, J.M.; Scott, P.A.; Westsik, J.H.

    1996-03-01

    Hanford Waste Vitrification Program (HWVP) activities for FY 1985 have included engineering and pilot-scale melter experiments HWVP-11/HBCM-85-1 and HWVP-12/PSCM-22. Major objectives designated by HWVP fo these tests were to evaluate the processing characteristics of the current HWVP melter feed during actual melter operation and establish the product quality of HW-39 borosilicate glass. The current melter feed, defined during FY 85, consists of reference feed (HWVP-RF) and glass-forming chemicals added as frit

  4. Electrical service and controls for Joule heating of a defense waste experimental glass melter

    International Nuclear Information System (INIS)

    Erickson, C.J.; Haideri, A.Q.

    1983-01-01

    Vitrification of radioactive liquid waste in a glass matrix is a leading candidate for long-term storage of high-level waste. This paper describes the electrical service and control system for an experimental electrically heated, nonradioactive glass melter installed at Savannah River Laboratory. Data accumulated, and design/operating experience acquired in operating this melter, are being used to design a modified melter to be installed in a processing area for use with radioactive materials

  5. Viscosity calculations of simulated ion-exchange resin waste glasses

    International Nuclear Information System (INIS)

    Kim, Cheon Woo; Park, Jong Kil; Lee, Kyung Ho; Lee, Myung Chan; Song, Myung Jae; BRUNELOT, Pierre

    2000-01-01

    An induction cold crucible melter (CCM) located in the NETEC-KEPCO has been used to vitrify simulated ion-exchange resin. During vitrification, the CCM operations were tightly constrained by glass viscosity as an important process parameter. Understanding the role of viscosity and quantifying viscosity is highly required in the determination of optimized feed formulations and in the selection of the processing temperature. Therefore, existing process models of glass viscosity based on a relationship between the glass composition, its structure polymerization, and the temperature were searched and adapted to our borosilicate glass systems. Calculated data using a viscosity model based on calculation of non-bridging oxygen (NBO) were in good agreement with the measured viscosity data of benchmark glasses

  6. Preliminary evaluation of PSCM and BIPP melter design and operating conditions using physical modeling

    International Nuclear Information System (INIS)

    Skarda, R.J.; Hauser, S.G.; Fort, J.A.

    1985-05-01

    The Glass Melter Physical Modeling investigation was initiated to support Pacific Northwest Laboratory (PNL) Hanford Waste Vitrification Program. Specifically, results discussed herein are those of the modeled B-Plant Immobilization Pilot Plant (BIPP) and Pilot Scale Ceramic Melter (PSCM) designs. The purpose of this study was to evaluate various melter design features using laboratory scale models. Hydrodynamic, thermal, and electrical similarity between the modeling fluid and the molten glass were primary objectives. Stroboscopic velocity measurements (flow visualization), temperature measurements, and electrical potential measurements were used to investigate the molten glass behavior. Results from this effort are to provide input to melter design and proposed operation in addition to providing a data base for verifying numerical models. 13 refs., 48 figs., 24 tabs

  7. HLW Melter Control Strategy Without Visual Feedback VSL-12R2500-1 Rev 0

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, A A. [Department of Energy, Office of River Protection, Richland, Washington (United States); Joseph, Innocent [The Catholic University of America, Washington, DC (United States); Matlack, Keith S. [The Catholic University of America, Washington, DC (United States); Callow, Richard A. [The Catholic University of America, Washington, DC (United States); Abramowitz, Howard [The Catholic University of America, Washington, DC (United States); Pegg, Ian L. [The Catholic University of America, Washington, DC (United States); Brandys, Marek [The Catholic University of America, Washington, DC (United States); Kot, Wing K. [The Catholic University of America, Washington, DC (United States)

    2012-11-13

    Plans for the treatment of high level waste (HL W) at the Hanford Tank Waste Treatment and Immobilization Plant (WTP) are based upon the inventory of the tank wastes, the anticipated performance of the pretreatment processes, and current understanding of the capability of the borosilicate glass waste form [I]. The WTP HLW melter design, unlike earlier DOE melter designs, incorporates an active glass bubbler system. The bubblers create active glass pool convection and thereby improve heat and mass transfer and increase glass melting rates. The WTP HLW melter has a glass surface area of 3.75 m{sup 2} and depth of ~ 1.1 m. The two melters in the HLW facility together are designed to produce up to 7.5 MT of glass per day at 100% availability. Further increases in HL W waste processing rates can potentially be achieved by increasing the melter operating temperature above 1150°C and by increasing the waste loading in the glass product. Increasing the waste loading also has the added benefit of decreasing the number of canisters for storage.

  8. HLW Melter Control Strategy Without Visual Feedback VSL-12R2500-1 Rev 0

    International Nuclear Information System (INIS)

    Kruger, A A.; Joseph, Innocent; Matlack, Keith S.; Callow, Richard A.; Abramowitz, Howard; Pegg, Ian L.; Brandys, Marek; Kot, Wing K.

    2012-01-01

    Plans for the treatment of high level waste (HL W) at the Hanford Tank Waste Treatment and Immobilization Plant (WTP) are based upon the inventory of the tank wastes, the anticipated performance of the pretreatment processes, and current understanding of the capability of the borosilicate glass waste form [I]. The WTP HLW melter design, unlike earlier DOE melter designs, incorporates an active glass bubbler system. The bubblers create active glass pool convection and thereby improve heat and mass transfer and increase glass melting rates. The WTP HLW melter has a glass surface area of 3.75 m 2 and depth of ∼ 1.1 m. The two melters in the HLW facility together are designed to produce up to 7.5 MT of glass per day at 100% availability. Further increases in HL W waste processing rates can potentially be achieved by increasing the melter operating temperature above 1150°C and by increasing the waste loading in the glass product. Increasing the waste loading also has the added benefit of decreasing the number of canisters for storage

  9. Melter Disposal Strategic Planning Document

    Energy Technology Data Exchange (ETDEWEB)

    BURBANK, D.A.

    2000-09-25

    This document describes the proposed strategy for disposal of spent and failed melters from the tank waste treatment plant to be built by the Office of River Protection at the Hanford site in Washington. It describes program management activities, disposal and transportation systems, leachate management, permitting, and safety authorization basis approvals needed to execute the strategy.

  10. Cylindrical Induction Melter Modicon Control System

    International Nuclear Information System (INIS)

    Weeks, G.E.

    1998-04-01

    In the last several years an extensive R ampersand D program has been underway to develop a vitrification system to stabilize Americium (Am) and Curium (Cm) inventories at SRS. This report documents the Modicon control system designed for the 3 inch Cylindrical Induction Melter (CIM)

  11. PHYSICAL CHARACTERIZATION OF VITREOUS STATE LABORATORY AY102/C106 AND AZ102 HIGH LEVEL WASTE MELTER FEED SIMULANTS (U)

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, E

    2005-03-31

    The objective of this task is to characterize and report specified physical properties and pH of simulant high level waste (HLW) melter feeds (MF) processed through the scaled melters at Vitreous State Laboratories (VSL). The HLW MF simulants characterized are VSL AZ102 straight hydroxide melter feed, VSL AZ102 straight hydroxide rheology adjusted melter feed, VSL AY102/C106 straight hydroxide melter feed, VSL AY102/C106 straight hydroxide rheology adjusted melter feed, and Savannah River National Laboratory (SRNL) AY102/C106 precipitated hydroxide processed sludge blended with glass former chemicals at VSL to make melter feed. The physical properties and pH were characterized using the methods stated in the Waste Treatment Plant (WTP) characterization procedure (Ref. 7).

  12. Selection of melter systems for the DOE/Industrial Center for Waste Vitrification Research

    International Nuclear Information System (INIS)

    Bickford, D.F.

    1993-01-01

    The EPA has designated vitrification as the best developed available technology for immobilization of High-Level Nuclear Waste. In a recent federal facilities compliance agreement between the EPA, the State of Washington, and the DOE, the DOE agreed to vitrify all of the Low Level Radioactive Waste resulting from processing of High Level Radioactive Waste stored at the Hanford Site. This is expected to result in the requirement of 100 ton per day Low Level Radioactive Waste melters. Thus, there is increased need for the rapid adaptation of commercial melter equipment to DOE's needs. DOE has needed a facility where commercial pilot scale equipment could be operated on surrogate (non-radioactive) simulations of typical DOE waste streams. The DOE/Industry Center for Vitrification Research (Center) was established in 1992 at the Clemson University Department of Environmental Systems Engineering, Clemson, SC, to address that need. This report discusses some of the characteristics of the melter types selected for installation of the Center. An overall objective of the Center has been to provide the broadest possible treatment capability with the minimum number of melter units. Thus, units have been sought which have broad potential application, and which had construction characteristics which would allow their adaptation to various waste compositions, and various operating conditions, including extreme variations in throughput, and widely differing radiological control requirements. The report discusses waste types suitable for vitrification; technical requirements for the application of vitrification to low level mixed wastes; available melters and systems; and selection of melter systems. An annotated bibliography is included

  13. Selection of melter systems for the DOE/Industrial Center for Waste Vitrification Research

    Energy Technology Data Exchange (ETDEWEB)

    Bickford, D.F.

    1993-12-31

    The EPA has designated vitrification as the best developed available technology for immobilization of High-Level Nuclear Waste. In a recent federal facilities compliance agreement between the EPA, the State of Washington, and the DOE, the DOE agreed to vitrify all of the Low Level Radioactive Waste resulting from processing of High Level Radioactive Waste stored at the Hanford Site. This is expected to result in the requirement of 100 ton per day Low Level Radioactive Waste melters. Thus, there is increased need for the rapid adaptation of commercial melter equipment to DOE`s needs. DOE has needed a facility where commercial pilot scale equipment could be operated on surrogate (non-radioactive) simulations of typical DOE waste streams. The DOE/Industry Center for Vitrification Research (Center) was established in 1992 at the Clemson University Department of Environmental Systems Engineering, Clemson, SC, to address that need. This report discusses some of the characteristics of the melter types selected for installation of the Center. An overall objective of the Center has been to provide the broadest possible treatment capability with the minimum number of melter units. Thus, units have been sought which have broad potential application, and which had construction characteristics which would allow their adaptation to various waste compositions, and various operating conditions, including extreme variations in throughput, and widely differing radiological control requirements. The report discusses waste types suitable for vitrification; technical requirements for the application of vitrification to low level mixed wastes; available melters and systems; and selection of melter systems. An annotated bibliography is included.

  14. Conversion of nuclear waste to molten glass: Formation of porous amorphous alumina in a high-Al melter feed

    Science.gov (United States)

    Xu, Kai; Hrma, Pavel; Washton, Nancy; Schweiger, Michael J.; Kruger, Albert A.

    2017-01-01

    The transition of Al phases in a simulated high-Al high-level nuclear waste melter feed heated at 5 K min-1 to 700 °C was investigated with transmission electron microscopy, 27Al nuclear magnetic resonance spectroscopy, the Brunauer-Emmett-Teller method, and X-ray diffraction. At temperatures between 300 and 500 °C, porous amorphous alumina formed from the dehydration of gibbsite, resulting in increased specific surface area of the feed (∼8 m2 g-1). The high-surface-area amorphous alumina formed in this manner could potentially stop salt migration in the cold cap during nuclear waste vitrification.

  15. Computer modeling of ceramic melters to assess impacts of process and design variables on performance

    International Nuclear Information System (INIS)

    Eyler, L.L.; Elliott, M.L.; Lowery, P.S.; Lessor, D.L.

    1991-01-01

    Numerical and physical simulation of existing and advanced melter designs conducted to assess impacts of process and design variables on performance of ceramic melters are presented. Coupled equations of flow, thermal, and electric fields were numerically solved in time-dependent three dimensional finite volume form. Recent simulation results of a three electrode melter design with sloped walls indicate the presence of bi-modal stable flow patterns dominated by boundary conditions

  16. Results of a pilot scale melter test to attain higher production rates

    International Nuclear Information System (INIS)

    Elliott, M.L.; Perez, J.M. Jr.; Chapman, C.C.

    1991-01-01

    A pilot-scale melter test was completed as part of the effort to enhance glass production rates. The experiment was designed to evaluate the effects of bulk glass temperature and feed oxide loading. The maximum glass production rate obtained, 86 kg/hr-m 2 , was over 200% better than the previous record for the melter used

  17. Cermet crucible for metallurgical processing

    Science.gov (United States)

    Boring, Christopher P.

    1995-01-01

    A cermet crucible for metallurgically processing metals having high melting points comprising a body consisting essentially of a mixture of calcium oxide and erbium metal, the mixture comprising calcium oxide in a range between about 50 and 90% by weight and erbium metal in a range between about 10 and 50% by weight.

  18. Temperature control system for liquid-fed ceramic melters

    International Nuclear Information System (INIS)

    Westsik, J.H. Jr.

    1986-10-01

    A temperature-feedback system has been developed for controlling electrical power to liquid-fed ceramic melters (LFCM). Software, written for a microcomputer-based data acquisition and process monitoring system, compares glass temperatures with a temperature setpoint and adjusts the electrical power accordingly. Included in the control algorithm are steps to reject failed thermocouples, spatially average the glass temperatures, smooth the averaged temperatures over time using a digital filter, and detect foaming in the glass. The temperature control system has proved effective during all phases of melter operation including startup, steady operation, loss of feed, and shutdown. This system replaces current, power, and resistance feedback control systems used previously in controlling the LFCM process

  19. Formulation and Characterization of Waste Glasses with Varying Processing Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Sang; Schweiger, M. J.; Rodriguez, Carmen P.; Lepry, William C.; Lang, Jesse B.; Crum, Jarrod V.; Vienna, John D.; Johnson, Fabienne; Marra, James C.; Peeler, David K.

    2011-10-17

    This report documents the preliminary results of glass formulation and characterization accomplished within the finished scope of the EM-31 technology development tasks for WP-4 and WP-5, including WP-4.1.2: Glass Formulation for Next Generation Melter, WP-5.1.2.3: Systematic Glass Studies, and WP-5.1.2.4: Glass Formulation for Specific Wastes. This report also presents the suggested studies for eventual restart of these tasks. The initial glass formulation efforts for the cold crucible induction melter (CCIM), operating at {approx}1200 C, with selected HLW (AZ-101) and LAW (AN-105) successfully developed glasses with significant increase of waste loading compared to that is likely to be achieved based on expected reference WTP formulations. Three glasses formulated for AZ-101HLW and one glass for AN-105 LAW were selected for the initial CCIM demonstration melter tests. Melter tests were not performed within the finished scope of the WP-4.1.2 task. Glass formulations for CCIM were expanded to cover additional HLWs that have high potential to successfully demonstrate the unique advantages of the CCIM technologies based on projected composition of Hanford wastes. However, only the preliminary scoping tests were completed with selected wastes within the finished scope. Advanced glass formulations for the reference WTP melter, operating at {approx}1200 C, were initiated with selected specific wastes to determine the estimated maximum waste loading. The incomplete results from these initial formulation efforts are summarized. For systematic glass studies, a test matrix of 32 high-aluminum glasses was completed based on a new method developed in this study.

  20. Formulation and Characterization of Waste Glasses with Varying Processing Temperature

    International Nuclear Information System (INIS)

    Kim, Dong-Sang; Schweiger, M.J.; Rodriguez, Carmen P.; Lepry, William C.; Lang, Jesse B.; Crum, Jarrod V.; Vienna, John D.; Johnson, Fabienne; Marra, James C.; Peeler, David K.

    2011-01-01

    This report documents the preliminary results of glass formulation and characterization accomplished within the finished scope of the EM-31 technology development tasks for WP-4 and WP-5, including WP-4.1.2: Glass Formulation for Next Generation Melter, WP-5.1.2.3: Systematic Glass Studies, and WP-5.1.2.4: Glass Formulation for Specific Wastes. This report also presents the suggested studies for eventual restart of these tasks. The initial glass formulation efforts for the cold crucible induction melter (CCIM), operating at ∼1200 C, with selected HLW (AZ-101) and LAW (AN-105) successfully developed glasses with significant increase of waste loading compared to that is likely to be achieved based on expected reference WTP formulations. Three glasses formulated for AZ-101HLW and one glass for AN-105 LAW were selected for the initial CCIM demonstration melter tests. Melter tests were not performed within the finished scope of the WP-4.1.2 task. Glass formulations for CCIM were expanded to cover additional HLWs that have high potential to successfully demonstrate the unique advantages of the CCIM technologies based on projected composition of Hanford wastes. However, only the preliminary scoping tests were completed with selected wastes within the finished scope. Advanced glass formulations for the reference WTP melter, operating at ∼1200 C, were initiated with selected specific wastes to determine the estimated maximum waste loading. The incomplete results from these initial formulation efforts are summarized. For systematic glass studies, a test matrix of 32 high-aluminum glasses was completed based on a new method developed in this study.

  1. Yield Stress Reduction of DWPF Melter Feed Slurries

    International Nuclear Information System (INIS)

    Stone, M.E.; Smith, M.E.

    2007-01-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site vitrifies High Level Waste for repository internment. The process consists of three major steps: waste pretreatment, vitrification, and canister decontamination/sealing. The HLW consists of insoluble metal hydroxides and soluble sodium salts. The pretreatment process acidifies the sludge with nitric and formic acids, adds the glass formers as glass frit, then concentrates the resulting slurry to approximately 50 weight percent (wt%) total solids. This slurry is fed to the joule-heated melter where the remaining water is evaporated followed by calcination of the solids and conversion to glass. The Savannah River National Laboratory (SRNL) is currently assisting DWPF efforts to increase throughput of the melter. As part of this effort, SRNL has investigated methods to increase the solids content of the melter feed to reduce the heat load required to complete the evaporation of water and allow more of the energy available to calcine and vitrify the waste. The process equipment in the facility is fixed and cannot process materials with high yield stresses, therefore increasing the solids content will require that the yield stress of the melter feed slurries be reduced. Changing the glass former added during pretreatment from an irregularly shaped glass frit to nearly spherical beads was evaluated. The evaluation required a systems approach which included evaluations of the effectiveness of beads in reducing the melter feed yield stress as well as evaluations of the processing impacts of changing the frit morphology. Processing impacts of beads include changing the settling rate of the glass former (which effects mixing and sampling of the melter feed slurry and the frit addition equipment) as well as impacts on the melt behavior due to decreased surface area of the beads versus frit. Beads were produced from the DWPF process frit by fire polishing. The frit was allowed to free fall through a flame

  2. Wootz: Erroneous Transliteration of Sanskrit " Utsa" used for Indian Crucible Steel

    Science.gov (United States)

    Dube, R. K.

    2014-11-01

    The terminology Wootz for the legendary Indian crucible steel was first introduced by Helenus Scott in his letter to Joseph Banks, the then President of the Royal Society, London, in 1794. He stated several salient features of this steel in his letter. During the period 1794-1796, Banks received approximately 200 lbs. of this steel from Scott. Banks assigned several professionals to carry out experimental work on Indian crucible steel. One such important person was the famous surgical instrument maker, cutler and metallurgist of his time, James Stodart. Stodart experimented extensively with the Indian crucible steel, and was its great admirer. It has been shown, along with corroborative documentary evidence, that the original word for this steel was Sanskrit word " utsa". This was erroneously transliterated in Roman script as Wootz by Scott in his letter to Banks. It was James Stodart, who preserved the Sanskrit word " utsa" written in Devanāgarī script on his trade card for future generation. The reason for using this word for the Indian crucible steel has also been discussed.

  3. FY-97 operations of the pilot-scale glass melter to vitrify simulated ICPP high activity sodium-bearing waste

    International Nuclear Information System (INIS)

    Musick, C.A.

    1997-11-01

    A 3.5 liter refractory-lined joule-heated glass melter was built to test the applicability of electric melting to vitrify simulated high activity waste (HAW). The HAW streams result from dissolution and separation of Idaho Chemical Processing Plant (ICPP) calcines and/or radioactive liquid waste. Pilot scale melter operations will establish selection criteria needed to evaluate the application of joule heating to immobilize ICPP high activity waste streams. The melter was fabricated with K-3 refractory walls and Inconel 690 electrodes. It is designed to be continuously operated at 1,150 C with a maximum glass output rate of 10 lbs/hr. The first set of tests were completed using surrogate HAW-sodium bearing waste (SBW). The melter operated for 57 hours and was shut down due to excessive melt temperatures resulting in low glass viscosity (< 30 Poise). Due to the high melt temperature and low viscosity the molten glass breached the melt chamber. The melter has been dismantled and examined to identify required process improvement areas and successes of the first melter run. The melter has been redesigned and is currently being fabricated for the second run, which is scheduled to begin in December 1997

  4. TESTS WITH HIGH-BISMUTH HLW GLASSES FINAL REPORT VSL-10R1780-1, Rev. 0; 12/13/10

    International Nuclear Information System (INIS)

    Matlack, K.S.; Kruger, A.A.; Joseph, I.; Gan, H.; Kot, W.K.; Chaudhuri, M.; Mohr, R.K.; Mckeown, D.A.; Bardakei, T.; Gong, W.; Buecchele, A.C.; Pegg, I.L.

    2011-01-01

    This Final Report describes the testing of glass formulations developed for Hanford High Level Waste (HLW) containing high concentrations of bismuth. In previous work on high-bismuth HLW streams specified by the Office of River Protection (ORP), fully compliant, high waste loading compositions were developed and subjected to melter testing on the DM100 vitrification system. However, during heat treatment according to the Hanford Tank Waste Treatment and Immobilization Plant (WTP) HLW canister centerline cooling (CCC) curves, crucible melts of the high-bismuth glasses were observed to foam. Clearly, such an occurrence during cooling of actual HLW canisters would be highly undesirable. Accordingly, the present work involves larger-scale testing to determine whether this effect occurs under more prototypical conditions, as well as crucible-scale tests to determine the causes and potentially remediate the observed foaming behavior. The work included preparation and characterization of crucible melts designed to determine the underlying causes of the foaming behavior as well as to assess potential mitigation strategies. Testing was also conducted on the DM1200 HLW Pilot melter with a composition previously tested on the DM100 and shown to foam during crucible-scale CCC heat treatment. The DM1200 tests evaluated foaming of glasses over a range of bismuth concentrations poured into temperature-controlled, 55-gallon drums which have a diameter that is close to that of the full-scale WTP HLW canisters. In addition, the DM1200 tests provided the first large-scale melter test data on high-bismuth WTP HLW compositions, including information on processing rates, cold cap behavior and off-gas characteristics, and data from this waste composition on the prototypical DM1200 off-gas treatment system. This work builds on previous work performed at the Vitreous State Laboratory (VSL) for ORP on the same waste composition. The scope of this study was outlined in a Test Plan that was

  5. TESTS WITH HIGH-BISMUTH HLW GLASSES FINAL REPORT VSL-10R1780-1 REV 0 12/13/10

    Energy Technology Data Exchange (ETDEWEB)

    MATLACK KS; KRUGER AA; JOSEPH I; GAN H; KOT WK; CHAUDHURI M; MOHR RK; MCKEOWN DA; BARDAKEI T; GONG W; BUECCHELE AC; PEGG IL

    2011-01-05

    This Final Report describes the testing of glass formulations developed for Hanford High Level Waste (HLW) containing high concentrations of bismuth. In previous work on high-bismuth HLW streams specified by the Office of River Protection (ORP), fully compliant, high waste loading compositions were developed and subjected to melter testing on the DM100 vitrification system. However, during heat treatment according to the Hanford Tank Waste Treatment and Immobilization Plant (WTP) HLW canister centerline cooling (CCC) curves, crucible melts of the high-bismuth glasses were observed to foam. Clearly, such an occurrence during cooling of actual HLW canisters would be highly undesirable. Accordingly, the present work involves larger-scale testing to determine whether this effect occurs under more prototypical conditions, as well as crucible-scale tests to determine the causes and potentially remediate the observed foaming behavior. The work included preparation and characterization of crucible melts designed to determine the underlying causes of the foaming behavior as well as to assess potential mitigation strategies. Testing was also conducted on the DM1200 HLW Pilot melter with a composition previously tested on the DM100 and shown to foam during crucible-scale CCC heat treatment. The DM1200 tests evaluated foaming of glasses over a range of bismuth concentrations poured into temperature-controlled, 55-gallon drums which have a diameter that is close to that of the full-scale WTP HLW canisters. In addition, the DM1200 tests provided the first large-scale melter test data on high-bismuth WTP HLW compositions, including information on processing rates, cold cap behavior and off-gas characteristics, and data from this waste composition on the prototypical DM1200 off-gas treatment system. This work builds on previous work performed at the Vitreous State Laboratory (VSL) for ORP on the same waste composition. The scope of this study was outlined in a Test Plan that was

  6. High-temperature vitrification of Hanford residual-liquid waste in a continuous melter

    International Nuclear Information System (INIS)

    Barnes, S.M.

    1980-04-01

    Over 270 kg of high-temperature borosilicate glass have been produced in a series of three short-term tests in the High-Temperature Ceramic Melter vitrification system at PNL. The glass produced was formulated to vitrify simulated Hanford residual-liquid waste. The tests were designed to (1) demonstrate the feasibility of utilizing high-temperature, continuous-vitrification technology for the immobilization of the residual-liquid waste, (2) test the airlift draining technique utilized by the high-temperature melter, (3) compare glass produced in this process to residual-liquid glass produced under laboratory conditions, (4) investigate cesium volatility from the melter during waste processing, and (5) determine the maximum residual-liquid glass production rate in the high-temperature melter. The three tests with the residual-liquid composition confirmed the viability of the continuous-melting vitrification technique for the immobilization of this waste. The airlift draining technique was demonstrated in these tests and the glass produced from the melter was shown to be less porous than the laboratory-produced glass. The final glass produced from the second test was compared to a glass of the same composition produced under laboratory conditions. The comparative tests found the glasses to be indistinguishable, as the small differences in the test results fell within the precision range of the characterization testing equipment. The cesium volatility was examined in the final test. This examination showed that 0.44 wt % of the cesium (assumed to be cesium oxide) was volatilized, which translates to a volatilization rate of 115 mg/cm 2 -h

  7. DWPF Melter No.2 Prototype Bus Bar Test Report

    International Nuclear Information System (INIS)

    Gordon, J.

    2003-01-01

    Characterization and performance testing of a prototype DWPF Melter No.2 Dome Heater Bus Bar are described. The prototype bus bar was designed to address the design features of the existing system which may have contributed to water leaks on Melter No.1. Performance testing of the prototype revealed significant improvement over the existing design in reduction of both bus bar and heater connection maximum temperature, while characterization revealed a few minor design and manufacturing flaws in the bar. The prototype is recommended as an improvement over the existing design. Recommendations are also made in the area of quality control to ensure that critical design requirements are met

  8. Recommendations for rheological testing and modelling of DWPF melter feed slurries

    International Nuclear Information System (INIS)

    Shadday, M.A. Jr.

    1994-08-01

    The melter feed in the DWPF process is a non-Newtonian slurry. In the melter feed system and the sampling system, this slurry is pumped at a wide range of flow rates through pipes of various diameters. Both laminar and turbulent flows are encountered. Good rheology models of the melter feed slurries are necessary for useful hydraulic models of the melter feed and sampling systems. A concentric cylinder viscometer is presently used to characterize the stress/strain rate behavior of the melter feed slurries, and provide the data for developing rheology models of the fluids. The slurries exhibit yield stresses, and they are therefore modelled as Bingham plastics. The ranges of strain rates covered by the viscometer tests fall far short of the entire laminar flow range, and therefore hydraulic modelling applications of the present rheology models frequently require considerable extrapolation beyond the range of the data base. Since the rheology models are empirical, this cannot be done with confidence in the validity of the results. Axial pressure drop versus flow rate measurements in a straight pipe can easily fill in the rest of the laminar flow range with stress/strain rate data. The two types of viscometer tests would be complementary, with the concentric cylinder viscometer providing accurate data at low strain rates, near the yield point if one exists, and pipe flow tests providing data at high strain rates up to and including the transition to turbulence. With data that covers the laminar flow range, useful rheological models can be developed. In the Bingham plastic model, linear behavior of the shear stress as a function of the strain rate is assumed once the yield stress is exceeded. Both shear thinning and shear thickening behavior have been observed in viscometer tests. Bingham plastic models cannot handle this non-linear behavior, but a slightly more complicated yield/power law model can

  9. Enhancement of the life of refractories through the operational experience of plasma torch melter

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Young Pyo [Technology Institute, Korea Radioactive waste Agency (KORAD), Daejeon (Korea, Republic of); Choi, Jaang Young [Chungnam National University, Daejeon (Korea, Republic of)

    2016-06-15

    The properties of wastes for melting need to be considered to minimize the maintenance of refractory and to discharge the molten slags smoothly from a plasma torch melter. When the nonflammable wastes from nuclear facilities such as concrete debris, glass, sand, etc., are melted, they become acid slags with low basicity since the chemical composition has much more acid oxides than basic oxides. A molten slag does not have good characteristics of discharge and is mainly responsible for the refractory erosion due to its low liquidity. In case of a stationary plasma torch melter with a slant tapping port on the wall, a fixed amount of molten slags remains inside of tapping hole as well as the melter inside after tapping out. Nonmetallic slags keep the temperature higher than melting point of metal because metallic slags located on the bottom of melter by specific gravity difference are simultaneously melted when dual mode plasma torch operates in transferred mode. In order to minimize the refractory erosion, the compatible refractories are selected considering the temperature inside the melter and the melting behavior of slags whether to contact or noncontact with molten slags. An acidic refractory shall not be installed in adjacent to a basic refractory for the resistibility against corrosion.

  10. Effect of the roughness of crucible on viscosity of liquid Pb38.1Sn61.9 alloy

    International Nuclear Information System (INIS)

    Wu Yuqin; Bian Xiufang; Mao Tan; Li Xuelian; Li Taibao; Wang Caidong

    2007-01-01

    The viscosity of the eutectic Pb 38.1 Sn 61.9 alloy has been measured by a torsional oscillation viscometer using three different crucibles which are made of the materials of highly sintered alumina (Al 2 O 3 ), quartz (SiO 2 ), and graphite (C) respectively. The roughness of crucibles has effect on the viscosity. The viscosity data obtained for SiO 2 and C crucibles were concentrated in the narrow range of about 0.5% and showed almost the same activation energy. However, the viscosity obtained using Al 2 O 3 crucible with the maximal roughness is higher than that using the other two crucibles. The discrepancy of viscosity obtained using those crucibles increases with the viscosity. In addition, the viscosity obtained using three kinds of crucibles in our work has a breakpoint at 488 K, which is approximate with the results of electrical conductivity and thermopower measurements reported by Plevachuk et al., which indicates the microstructure in melt changes before solidification

  11. Remote Fiber Laser Cutting System for Dismantling Glass Melter - 13071

    Energy Technology Data Exchange (ETDEWEB)

    Mitsui, Takashi; Miura, Noriaki [IHI Corporation, 1 Shin-Nakahara-cho, Isogo-ku, Yokohama, Kanagawa (Japan); Oowaki, Katsura; Kawaguchi, Isao [IHI Inspection and Instrumentation Co., Ltd, 1 Shin-Nakahara-cho, Isogo-ku, Yokohama, Kanagawa (Japan); Miura, Yasuhiko; Ino, Tooru [Japan Nuclear Fuel Limited, 4-108, Aza Okitsuke, Oaza Obuchi, Rokkasho-Mura, Kamikita-gun, Aomori (Japan)

    2013-07-01

    Since 2008, the equipment for dismantling the used glass melter has been developed in High-level Liquid Waste (HLW) Vitrification Facility in the Japanese Rokkasho Reprocessing Plant (RRP). Due to the high radioactivity of the glass melter, the equipment requires a fully-remote operation in the vitrification cell. The remote fiber laser cutting system was adopted as one of the major pieces of equipment. An output power of fiber laser is typically higher than other types of laser and so can provide high-cutting performance. The fiber laser can cut thick stainless steel and Inconel, which are parts of the glass melter such as casings, electrodes and nozzles. As a result, it can make the whole of the dismantling work efficiently done for a shorter period. Various conditions of the cutting test have been evaluated in the process of developing the remote fiber cutting system. In addition, the expected remote operations of the power manipulator with the laser torch have been fully verified and optimized using 3D simulations. (authors)

  12. Making rhyolite in a basalt crucible

    Science.gov (United States)

    Eichelberger, John

    2016-04-01

    Iceland has long attracted the attention of those concerned with the origin of rhyolitic magmas and indeed of granitic continental crust, because it presents no alternative for such magmas other than deriving them from a basaltic source. Hydrothermally altered basalt has been identified as the progenitor. The fact that rhyolite erupts as pure liquid requires a process of melt-crustal separation that is highly efficient despite the high viscosity of rhyolite melt. Volcanoes in Iceland are foci of basaltic magma injection along the divergent plate boundary. Repeated injection produces remelting, digestion, and sometimes expulsion or lateral withdrawal of material resulting in a caldera, a "crucible" holding down-dropped and interlayered lava flows, tephras, and injected sills. Once melting of this charge begins, a great deal of heat is absorbed in the phase change. Just 1% change in crystallinity per degree gives a melt-present body an effective heat capacity >5 times the subsolidus case. Temperature is thus buffered at the solidus and melt composition at rhyolite. Basalt inputs are episodic ("fires") so likely the resulting generation of rhyolite by melting is too. If frequent enough to offset cooling between events, rhyolite melt extractions will accumulate as a rhyolite magma reservoir rather than as discrete crystallized sills. Evidently, such magma bodies can survive multiple firings without themselves erupting, as the 1875 eruption of Askja Caldera of 0.3 km3 of rhyolite equilibrated at 2-km depth without previous leakage over a ten-millennium period and the surprise discovery of rhyolite magma at 2-km depth in Krafla suggest. Water is required for melting; otherwise melting cannot begin at a temperature lower than that of the heat source. Because the solubility of water in melt is pressure-dependent and almost zero at surface pressure, there must be a minimum depth at which basalt-induced melting can occur and a rhyolite reservoir sustained. In practice, the

  13. Nuclear waste glass melter design including the power and control systems

    International Nuclear Information System (INIS)

    Chapman, C.C.

    1982-01-01

    An energy balance of a joule-heated nuclear waste glass melter is used to discuss the problems in the design of the melter geometry and in the specifications of the power and control systems. The relationships between geometry, electrode current density, production rate, load voltage, and load power are presented graphically. The influence of liquid feeding on the surface of the glass and the variability of nuclear waste glass on the design and control during operation is discussed. 10 refs

  14. Sampling data summary for the ninth run of the Large Slurry Fed Melter

    International Nuclear Information System (INIS)

    Sabatino, D.M.

    1983-01-01

    The ninth experimental run of the Large Slurry Fed Melter (LSFM) was completed June 27, 1983, after 63 days of continuous operation. During the run, the various melter and off-gas streams were sampled and analyzed to determine melter material balances and to characterize off-gas emissions. Sampling methods and preliminary results were reported earlier. The emphasis was on the chemical analyses of the off-gas entrainment, deposits, and scrubber liquid. The significant sampling results from the run are summarized below: Flushing the Frit 165 with Frit 131 without bubbler agitation required 3 to 4.5 melter volumes. The off-gas cesium concentration during feeding was on the order of 36 to 56 μgCs/scf. The cesium concentration in the melter plenum (based on air in leakage only) was on the order of 110 to 210 μgCs/scf. Using <1 micron as the cut point for semivolatile material 60% of the chloride, 35% of the sodium and less than 5% of the managanese and iron in the entrainment are present as semivolatiles. A material balance on the scrubber tank solids shows good agreement with entrainment data. An overall cesium balance using LSFM-9 data and the DWPF production rate indicates an emission of 0.11 mCi/yr of cesium from the DWPF off-gas. This is a factor of 27 less than the maximum allowable 3 mCi/yr

  15. CRUCIBLE TESTING OF TANK 48 RADIOACTIVE WASTE SAMPLE USING FBSR TECHNOLOGY FOR ORGANIC DESTRUCTION

    International Nuclear Information System (INIS)

    Hammond, C; William Pepper, W

    2008-01-01

    The purpose of crucible scale testing with actual radioactive Tank 48H material was to duplicate the test results that had been previously performed on simulant Tank 48H material. The earlier crucible scale testing using simulants was successful in demonstrating that bench scale crucible tests produce results that are indicative of actual Fluidized Bed Steam Reforming (FBSR) pilot scale tests. Thus, comparison of the results using radioactive Tank 48H feed to those reported earlier with simulants would then provide proof that the radioactive tank waste behaves in a similar manner to the simulant. Demonstration of similar behavior for the actual radioactive Tank 48H slurry to the simulant is important as a preliminary or preparation step for the more complex bench-scale steam reformer unit that is planned for radioactive application in the Savannah River National Laboratory (SRNL) Shielded Cells Facility (SCF) later in 2008. The goals of this crucible-scale testing were to show 99% destruction of tetraphenylborate and to demonstrate that the final solid product produced is sodium carbonate. Testing protocol was repeated using the specifications of earlier simulant crucible scale testing, that is sealed high purity alumina crucibles containing a pre-carbonated and evaporated Tank 48H material. Sealing of the crucibles was accomplished by using an inorganic 'nepheline' sealant. The sealed crucibles were heat-treated at 650 C under constant argon flow to inert the system. Final product REDOX measurements were performed to establish the REDuction/OXidation (REDOX) state of known amounts of added iron species in the final product. These REDOX measurements confirm the processing conditions (pyrolysis occurring at low oxygen fugacity) of the sealed crucible environment which is the environment actually achieved in the fluidized bed steam reformer process. Solid product dissolution in water was used to measure soluble cations and anions, and to investigate insoluble

  16. Numerical Research on Magnetic Field, Temperature Field and Flow Field During Melting and Directionally Solidifying TiAl Alloys by Electromagnetic Cold Crucible

    Science.gov (United States)

    Chen, Ruirun; Yang, Yaohua; Gong, Xue; Guo, Jingjie; Su, Yanqing; Ding, Hongsheng; Fu, Hengzhi

    2017-12-01

    The electromagnetic cold crucible (EMCC) technique is an effective method to melt and directionally solidify reactive and high-temperature materials without contamination. The temperature field and fluid flow induced by the electromagnetic field are very important for melting and controlling the microstructure. In this article, a 3D EMCC model for calculating the magnetic field in the charges (TiAl alloys) using the T-Ω finite element method was established and verified. Magnetic fields in the charge under different electrical parameters, positions and dimensions of the charge were calculated and analyzed. The calculated results show that the magnetic field concentrates in the skin layer, and the magnetic flux density ( B) increases with increasing of the frequency, charge diameter and current. The maximum B in the charge is affected by the position of the charge in EMCC ( h 1) and the charge height ( h 2), which emerges at the middle of coils ( h c) when the relationship of h c < h 1 + h 2 < h c + δ is satisfied. Lower frequency and smaller charge diameter can improve the uniformity of the magnetic field in the charge. Consequently, the induced uniform electromagnetic stirring weakens the turbulence and improves temperature uniformity in the vicinity of the solid/liquid (S/L) interface, which is beneficial to forming a planar S/L interface during directional solidification. Based on the above conclusions, the TiAlNb alloy was successfully melted with lower power consumption and directionally solidified by the square EMCC.

  17. Determination of halogen content in glass for assessment of melter decontamination factors

    International Nuclear Information System (INIS)

    Goles, R.W.

    1996-03-01

    Melter decontamination factor (DF) values for the halogens (fluorine, chlorine, and iodine) are important to the Hanford Waste Vitrification Plant (HWVP) process because of the potential influence of DF on secondary-waste recycle strategies (fluorine and chlorine) as well as its impact on off-gas emissions (iodine). This study directly establishes the concentrations of halides-in HWVP simulated reference glasses rather than relying on indirect off-gas data. For fluorine and chlorine, pyrohydrolysis coupled with halide (ion chromatographic) detection has proven to be a useful analytical approach suitable for glass matrices, sensitive enough for the range of halogens encountered, and compatible with remote process support applications. Results obtained from pyrohydrolytic analysis of pilot-scale ceramic melter (PSCM) -22 and -23 glasses indicate that the processing behavior of fluorine and chlorine is quite variable even under similar processing conditions. Specifically, PSCM-23 glass exhibited a ∼90% halogen (F and Cl) retention efficiency, while only 20% was incorporated in PSCM-22 glass. These two sets of very dissimilar test results clearly do not form a sufficient basis for establishing design DF values for fluorine and chlorine. Because the present data do not provide any new halogen volatility information, but instead reconfirm the validity of previously obtained offgas derived values, melter DF values of 4, 2, and 1 for fluorine, chlorine, and iodine, respectively, are recommended for adoption; these values were conservatively established by a team of responsible engineers at Westinghouse Hanford Company (WHC) and Pacific Northwest Laboratory (PNL) on the basis of average behavior for many comparable melter tests. In the absence of further HWVP process data, these average melter DFs are the best values currently available

  18. Production and remediation of low-sludge, simulated Purex waste glasses, 1: Effects of sludge oxide additions on melter operation

    International Nuclear Information System (INIS)

    Ramsey, W.G.

    1993-01-01

    Glass produced during the Purex 4 campaigns of the Integrated Defense Waste Processing Facility (DWPF) Melter System (IDMS) and the 774 Research Melter contained a lower fraction of sludge components than targeted by the Product Composition Control System (PCCS). Purex 4 glass was more durable than the benchmark (EA) glass, but less durable than most simulated SRS high-level waste glasses. Also, Purex 4 glass was considerably less durable than predicted by the algorithm which will be used to control production of DWPF glass. A melter run was performed using the 774 Research Melter to determine if the initial PCCS target composition determined for Purex 4 would produce acceptable glass whose durability could be accurately modeled by Hydration Thermodynamics. Reagent grade oxides and carbonates were added to Purex 4 melter feed stock to simulate a higher sludge loading. Each canister of glass produced was sampled and the composition, crystallinity, and durability was determined. This document details the melter operation and composition and crystallinity analyses

  19. Modeling principles applied to the simulation of a joule-heated glass melter

    International Nuclear Information System (INIS)

    Routt, K.R.

    1980-05-01

    Three-dimensional conservation equations applicable to the operation of a joule-heated glass melter were rigorously examined and used to develop scaling relationships for modeling purposes. By rigorous application of the conservation equations governing transfer of mass, momentum, energy, and electrical charge in three-dimensional cylindrical coordinates, scaling relationships were derived between a glass melter and a physical model for the following independent and dependent variables: geometrical size (scale), velocity, temperature, pressure, mass input rate, energy input rate, voltage, electrode current, electrode current flux, total power, and electrical resistance. The scaling relationships were then applied to the design and construction of a physical model of the semiworks glass melter for the Defense Waste Processing Facility. The design and construction of such a model using glycerine plus LiCl as a model fluid in a one-half-scale Plexiglas tank is described

  20. Design and performance of a 100-kg/h, direct calcine-fed electric-melter system for nuclear-waste vitrification

    International Nuclear Information System (INIS)

    Dierks, R.D.

    1980-11-01

    This report describes the physical characteristics of a ceramic-lined, joule-heated glass melter that is directly connected to the discharge of a spray calciner and is currently being used to study the vitrification of simulated nuclear-waste slurries. Melter performance characteristics and subsequent design improvements are described. The melter contains 0.24 m 3 of glass with a glass surface area of 0.76 m 2 , and is heated by the flow of an alternating current (ranging from 600 to 1200 amps) between two Inconel-690 slab-type electrodes immersed in the glass at either end of the melter tank. The melter was maintained at operating temperature (900 to 1260 0 C) for 15 months, and produced 62,000 kg of glass. The maximum sustained operating period was 122 h, during which glass was produced at the rate of 70 kg/h

  1. Kinetics of Cold-Cap Reactions for Vitrification of Nuclear Waste Glass Based on Simultaneous Differential Scanning Calorimetry - Thermogravimetry (DSC-TGA) and Evolved Gas Analysis (EGA)

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Carmen P.; Pierce, David A.; Schweiger, Michael J.; Kruger, Albert A.; Chun, Jaehun; Hrma, Pavel R.

    2013-12-03

    For vitrifying nuclear waste glass, the feed, a mixture of waste with glass-forming and modifying additives, is charged onto the cold cap that covers 90-100% of the melt surface. The cold cap consists of a layer of reacting molten glass floating on the surface of the melt in an all-electric, continuous glass melter. As the feed moves through the cold cap, it undergoes chemical reactions and phase transitions through which it is converted to molten glass that moves from the cold cap into the melt pool. The process involves a series of reactions that generate multiple gases and subsequent mass loss and foaming significantly influence the mass and heat transfers. The rate of glass melting, which is greatly influenced by mass and heat transfers, affects the vitrification process and the efficiency of the immobilization of nuclear waste. We studied the cold-cap reactions of a representative waste glass feed using both the simultaneous differential scanning calorimetry thermogravimetry (DSC-TGA) and the thermogravimetry coupled with gas chromatography-mass spectrometer (TGA-GC-MS) as complementary tools to perform evolved gas analysis (EGA). Analyses from DSC-TGA and EGA on the cold-cap reactions provide a key element for the development of an advanced cold-cap model. It also helps to formulate melter feeds for higher production rate.

  2. Microstructure and mechanical properties of cast Ti-47Al-2Cr-2Nb alloy melted in various crucibles

    Directory of Open Access Journals (Sweden)

    Wang Ligang

    2012-02-01

    Full Text Available The main factors limiting the mass production of TiAl-based components are the high reactivity of TiAl-based alloys with the crucible or mould at high temperature. In this work, various crucibles (e.g. CaO, Y2O3 ceramic crucibles and water-cooled copper crucible were used to fabricate the Ti-47Al-2Cr-2Nb alloy in a vacuum induction furnace. The effects of crucible materials and melting parameters on the microstructure and mechanical properties of the alloy were analyzed by means of microstructure observation, chemical analysis, tensile test and fracture surface observation. The possibilities of melting TiAl alloys in crucibles made of CaO and Y2O3 refractory materials were also discussed.

  3. Analysis of cascade impactor and EPA method 29 data from the americium/curium pilot melter system

    International Nuclear Information System (INIS)

    Zamecnik, J.R.

    1997-11-01

    The offgas system of the Am/Cm pilot melter at TNX was characterized by measuring the particulate evolution using a cascade impactor and EPA Method 29. This sampling work was performed by John Harden of the Clemson Environmental Technologies Laboratory, under SCUREF Task SC0056. Elemental analyses were performed by the SRTC Mobile Laboratory.Operation of the Am/Cm melter with B2000 frit has resulted in deposition of PbO and boron compounds in the offgas system that has contributed to pluggage of the High Efficiency Mist Eliminator (HEME). Sampling of the offgas system was performed to quantify the amount of particulate in the offgas system under several sets of conditions. Particulate concentration and particle size distribution were measured just downstream of the melter pressure control air addition port and at the HEME inlet. At both locations, the particulate was measured with and without steam to the film cooler while the melter was idled at about 1450 degrees Celsius. Additional determinations were made at the melter location during feeding and during idling at 1150 degrees Celsius rather than 1450 degrees Celsius (both with no steam to the film cooler). Deposition of particulates upstream of the melter sample point may have, and most likely did occur in each run, so the particulate concentrations measured do no necessarily reflect the total particulate emission at the melt surface. However, the data may be used in a relative sense to judge the system performance

  4. Compatibility tests of materials for a prototype ceramic melter for defense glass-waste products

    International Nuclear Information System (INIS)

    Wicks, G.G.

    1979-01-01

    Objective is to evaluate the corrosion/erosion resistance of melter materials. Materials tested were Monofrox K3 and E, Serv, Inconel 690, Pt, and SnO. Results show that Inconel 690 is the leading electrode material and Monofrox K3 the leading refractory candidate. Melter lifetime is estimated to be 2 to 5 years for defense waste

  5. Vitrification of noble metals containing NCAW simulant with an engineering scale melter (ESM): Campaign report

    Energy Technology Data Exchange (ETDEWEB)

    Grunewald, W.; Roth, G.; Tobie, W.; Weisenburger, S.; Weiss, K.; Elliott, M.; Eyler, L.L.

    1996-03-01

    ESM has been designed as a 10th-scale model of the DWPF-type melter, currently the reference melter for nitrification of Hanford double shell tankwaste. ESM and related equipment have been integrated to the existing mockup vitrification plant VA-WAK at KfK. On June 2-July 10, 1992, a shakedown test using 2.61 m{sup 3} of NCAW (neutralized current acid waste) simulant without noble metals was performed. On July 11-Aug. 30, 1992, 14.23 m{sup 3} of the same simulant with nominal concentrations of Ru, Rh, and Pd were vitrified. Objective was to investigate the behavior of such a melter with respect to discharge of noble metals with routine glass pouring via glass overflow. Results indicate an accumulation of noble metals in the bottom area of the flat-bottomed ESM. About 65 wt% of the noble metals fed to the melter could be drained out, whereas 35 wt% accumulated in the melter, based on analysis of glass samples from glass pouring stream in to the canisters. After the melter was drained at the end of the campaign through a bottom drain valve, glass samples were taken from the residual bottom layer. The samples had significantly increased noble metals content (factor of 20-45 to target loading). They showed also a significant decrease of the specific electric resistance compared to bulk glass (factor of 10). A decrease of 10- 15% of the resistance between he power electrodes could be seen at the run end, but the total amount of noble metals accumulated was not yet sufficient enough to disturb the Joule heating of the glass tank severely.

  6. Pilot-scale ceramic melter 1985-1986 rebuild: Nuclear Waste Treatment Program

    International Nuclear Information System (INIS)

    Koegler, S.S.

    1987-07-01

    The pilot-scale ceramic melter (PSCM) was subsequently dismantled, and the damaged and corroded components were repaired or replaced. The PSCM rebuild ensures that the melter will be available for an additional three to five years of planned testing. An analysis of the corrosion products and the failed electrodes indicated that the electrode bus connection welds may have failed due to a combination of chemical and mechanical effects. The electrodes were replaced with a design similar to the original electrodes, but with improved electrical bus connections. The implications of the PSCM electrode corrosion evaluation are that, although Inconel 690 has excellent corrosion resistance to molten glass, corrosion at the melt line in stagnant regions is a significant concern. Functional changes made during the rebuild included increases in wall and floor insulation to better simulate well-insulated melters, a decrease in the lid height for more prototypical plenum and off-gas conditions, and installation of an Inconel 690 trough and dam to improve glass pouring and prevent glass seepage. 9 refs., 33 figs., 5 tabs

  7. Processing of high-temperature simulated waste glass in a continuous ceramic melter

    International Nuclear Information System (INIS)

    Barnes, S.M.; Brouns, R.A.; Hanson, M.S.

    1980-01-01

    Recent operations have demonstrated that high-melting-point glasses and glass-ceramics can be successfully processed in joule-heated, ceramic-lined melters with minor modifications to the existing technology. Over 500 kg of simulated waste glasses have been processed at temperatures up to 1410 0 C. The processability of the two high-temperature waste forms tested is similar to existing borosilicate waste glasses. High-temperature waste glass formulations produced in the bench-scale melter exhibit quality comparing favorably to standard waste glass formulations

  8. Noble metals-compatible melter features development Phase 1: Establishing functional and design criteria and design concepts

    International Nuclear Information System (INIS)

    Elmore, M.R.; Siemens, D.H.; Chapman, C.C.

    1996-03-01

    Premature failures have occurred in melters at Japan's Tokai Mockup Facility and at the Federal Republic of Germany (FRG) PAMELA plant during processing of feeds with high levels of noble metals. Melter failure was due to the accumulation of an electrically conductive, noble metals-containing precipitates in the glass, that then resulted in short circuiting of the electrodes. A comparison was made of the anticipated Hanford Waste Vitrification Plant (HWVP) feed with the feeds processed in the FRG and Japanese melters. The evaluation showed that comparable levels of noble metals and other potential precipitate-forming components (e.g. Cr/Fe/Ni-spinels) exist in the HWVP feed. As a result, the HWVP project made a decision to modify the present reference melter design to include features to prevent the precipitation and accumulation or otherwise accommodate precipitated phases on a routine basis without loss of production capacity

  9. Final Report Integrated DM1200 Melter Testing Of Bubbler Configurations Using HLW AZ-101 Simulants VSL-04R4800-4, Rev. 0, 10/5/04

    International Nuclear Information System (INIS)

    Kruger, A.A.; Matlack, K.S.; Gong, W.; Bardakci, T.; D'Angelo, N.A.; Lutze, W.; Callow, R.A.; Brandys, M.; Kot, W.K.; Pegg, I.L.

    2011-01-01

    This report documents melter and off-gas performance results obtained on the DM1200 HLW Pilot Melter during processing of AZ-101 HLW simulants. The tests reported herein are a subset of six tests from a larger series of tests described in the Test Plan for the work; results from the other tests have been reported separately. The solids contents of the melter feeds were based on the WTP baseline value for the solids content of the feeds from pretreatment which changed during these tests from 20% to 15% undissolved solids resulting in tests conducted at two feed solids contents. Based on the results of earlier tests with single outlet 'J' bubblers, initial tests were performed with a total bubbling rate of 651 pm. The first set of tests (Tests 1A-1E) addressed the effects of skewing this total air flow rate back and forth between the two installed bubblers in comparison to a fixed equal division of flow between them. The second set of tests (2A-2D) addressed the effects of bubbler depth. Subsequently, as the location, type and number of bubbling outlets were varied, the optimum bubbling rate for each was determined. A third (3A-3C) and fourth (8A-8C) set of tests evaluated the effects of alternative bubbler designs with two gas outlets per bubbler instead of one by placing four bubblers in positions simulating multiple-outlet bubblers. Data from the simulated multiple outlet bubblers were used to design bubblers with two outlets for an additional set of tests (9A-9C). Test 9 was also used to determine the effect of small sugar additions to the feed on ruthenium volatility. Another set of tests (10A-10D) evaluated the effects on production rate of spiking the feed with chloride and sulfate. Variables held constant to the extent possible included melt temperature, plenum temperature, cold cap coverage, the waste simulant composition, and the target glass composition. The feed rate was increased to the point that a constant, essentially complete, cold cap was achieved

  10. Thermal stress analysis of an Am/Cm stabilization bushing melter

    International Nuclear Information System (INIS)

    Gong, C.; Hardy, B.J.

    1996-01-01

    Decades of nuclear material production at the Savannah River Site (SRS) has resulted in the generation of large quantities of the isotopes Am 243 and Cm 244 . Currently, the Am and Cm isotopes are stored as a nitric acid solution in a tank. The Am and Cm isotopes have great commercial value but must be transferred to the Oak Ridge National Laboratory (ORNL) for processing. The nitric acid solution contains other isotopes and is intensely radioactive, which makes storage a problem and precludes shipment in the liquid form. In order to stabilize the material for onsite storage and to permit transport the material from SRS to ORNL, it has been proposed that the Am and Cm be separated from other isotopes in the solution and vitrified. The vitrification process in the Platinum-Rhodium alloy vessel generates a wide spectrum of temperature distributions. The melter is partially supported by a suspension system and confined by the flexible insulation. The combination of the fluctuation of temperature distribution and variable boundary conditions, induces stresses and strains in the melter. The thermal stress analysis is carried out with the finite element code ABAQUS. This analysis is closely associated with the design, manufacture and testing of the melter. The results were compared with the test data

  11. Fabrication technique of U-siliscide solution crucible

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Chull Koo; Kim, Joon Soo; Ha, Ho Gwan; Kang, Hwan Gui; Kim, Jung Goo; Yun, Jong Yong [Dongsuh Ceramic Institute, Seoul (Korea, Republic of)

    1997-07-01

    The objective of this study is to establish ZrO{sub 2} crucibel fabrication technology preventing the infiltration by foreign substances. This study was established and practiced technology of formation and sintering of dense zirconia crucible was established at the second year. 21 refs., 10 tabs., 21 figs. (author)

  12. DWPF Glass Melter Technology Manual: Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    Iverson, D.C.

    1993-12-31

    This document details information about the design of a glass melter to be used at the Defense Waste Processing Facility located at the Savannah River Site. Topics discussed include: Information collected during testing, equipment, materials, design basis, feed tubes, and an evaluation of the performance of various components. Information is conveyed using many diagrams and photographs.

  13. DWPF Glass Melter Technology Manual: Volume 3

    International Nuclear Information System (INIS)

    Iverson, D.C.

    1993-01-01

    This document details information about the design of a glass melter to be used at the Defense Waste Processing Facility located at the Savannah River Site. Topics discussed include: Information collected during testing, equipment, materials, design basis, feed tubes, and an evaluation of the performance of various components. Information is conveyed using many diagrams and photographs

  14. The Behavior and Effects of the Noble Metals in the DWPF Melter System

    International Nuclear Information System (INIS)

    Smith, M.E.; Bickford, D.F.

    1997-01-01

    Governments worldwide have committed to stabilization of high-level nuclear waste (HLW) by vitrification to a durable glass form for permanent disposal. All of these nuclear wastes contain the fission-product noble metals: ruthenium, rhodium, and palladium. SRS wastes also contain natural silver from iodine scrubbers. Closely associated with the noble metals are the fission products selenium and tellurium which are chemical analogs of sulfur and which combine with noble metals to influence their behavior and properties. Experience has shown that these melt insoluble metals and their compounds tend to settle to the floor of Joule-heated ceramic melters. In fact, almost all of the major research and production facilities have experienced some operational problem which can be associated with the presence of dense accumulations of these relatively conductive metals and/or their compounds. In most cases, these deposits have led to a loss of production capability, in some cases, to the point that melter operation could not continue. HLW nuclear waste vitrification facilities in the United States are the Department of Energy's Defense Waste Processing Facility (DWPF) at the Savannah River Site, the planned Hanford Waste Vitrification Plant (HWVP) at the Hanford Site and the operating West Valley Demonstration Project (WVDP) at West Valley, NY. The Integrated DWPF Melter System (IDMS) is a vitrification test facility at the Savannah River Technology Center (SRTC). It was designed and constructed to provide an engineering-scale representation of the DWPF melter and its associated feed preparation and off-gas treatment systems. An extensive noble metals testing program was begun in 1990. The objectives of this task were to explore the effects of the noble metals on the DWPF melter feed preparation and waste vitrification processes. This report focuses on the vitrification portion of the test program

  15. An experimental feasibility study on vitrification of Low - and medium-level radioactive waste

    International Nuclear Information System (INIS)

    Park, Jongkil; Song, Myungjae; Choe, Youngson; Cho, Myungyul

    1996-01-01

    Laboratory and pilot tests(all cold tests) were carried out to examine the possibility of vitrification of low-level radioactive waste such as combustible DAW(protection clothes and vinyl seat), ion exchange resins, and evaporator bottoms with three types of vitrification equipment. Pyrolyzed or dried waste material and glass formers were fed into the melting cavity, converted to molten glassy mixture, and poured into a canister. For examination of the optimal ash contents in borosilicate glass waste forms with respect to waste types, compressive strength tests were conducted for several samples of ash contents. In the case of protection clothes, vinyl seat, and spent resin was rapidly reduced up to 5 or 6 times lower than that of neat glass, but hardly changed for dried evaporator bottoms. In order to investigate the possibility of direct vitrification, combustible DAW and spent resin were directly fed into the in-can melter and Pt crucible. Pilot scale joule-heated melter in which plate type electrodes were employed to generate heat and whose melting cavity maintained a near constant molten glass level throughout the vitrification process, was designed and constructed. The total amount of molten glass in the melter was about 125 Kg and the average processing rate was 10 ∼ 15 Kg/h. At least 10 hr of retention time was considered for the best quality of the glassy waste form throughout the long-term tests

  16. Final Report Melter Tests With AZ-101 HLW Simulant Using A Duramelter 100 Vitrification System VSL-01R10N0-1, Rev. 1, 2/25/02

    International Nuclear Information System (INIS)

    Kruger, A.A.; Matlack, K.S.; Kot, W.K.; Pegg, I.L.

    2011-01-01

    This report provides data, analyses, and conclusions from a series of tests that were conducted at the Vitreous State Laboratory of The Catholic of America (VSL) to determine the processing rates that are achievable with AZ-101 HLW simulants and corresponding melter feeds on a DuraMelter 100 (DM100) vitrification system. One of the most critical pieces of information in determining the required size of the RPP-WTP HLW melter is the specific glass production rate in terms of the mass of glass that can be produced per unit area of melt surface per unit time. The specific glass production rate together with the waste loading (essentially, the ratio of waste-in to glass-out, which is determined from glass formulation activities) determines the melt area that is needed to achieve a given waste processing rate with due allowance for system availability. Tests conducted during Part B1 (VSL-00R2590-2) on the DM1000 vitrification system installed at the Vitreous State Laboratory of The Catholic University of America showed that, without the use of bubblers, glass production rates with AZ-101 and C-106/AY-102 simulants were significantly lower than the Project design basis rate of 0.4 MT/m 2 /d. Conversely, three-fold increases over the design basis rate were demonstrated with the use of bubblers. Furthermore, an un-bubbled control test using a replica of the melter feed used in cold commissioning tests at West Valley reproduced the rates that were observed with that feed on the WVDP production melter. More recent tests conducted on the DM1200 system, which more closely represents the present RPP-WTP design, are in general agreement with these earlier results. Screening tests conducted on the DM10 system have provided good indications of the larger-scale processing rates with bubblers (for both HL W and LAW feeds) but significantly overestimated the DM1000 un-bubbled rate observed for C-106/AY-102 melter feeds. This behavior is believed to be a consequence of the role of

  17. Test Plan: Phase 1, Hanford LLW melter tests, GTS Duratek, Inc

    International Nuclear Information System (INIS)

    Eaton, W.C.

    1995-01-01

    This document provides a test plan for the conduct of vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System (TWRS) Low-Level Waste (LLW) Vitrification Program. The vendor providing this test plan and conducting the work detailed within it [one of seven selected for glass melter testing under Purchase Order MMI-SVV-384215] is GTS Duratek, Inc., Columbia, Maryland. The GTS Duratek project manager for this work is J. Ruller. This test plan is for Phase I activities described in the above Purchase Order. Test conduct includes melting of glass with Hanford LLW Double-Shell Slurry Feed waste simulant in a DuraMelter trademark vitrification system

  18. Processing of Oak Ridge B ampersand C pond sludge surrogate in the transportable vitrification system

    International Nuclear Information System (INIS)

    Zamecnik, J.R.; Young, S.R.; Peeler, D.K.; Smith, M.E.

    1997-01-01

    The Transportable Vitrification System (TVS) developed at the Savannah River Site is designed to process low-level and mixed radioactive wastes into a stable glass product. The TVS consists of a feed preparation and delivery system, a joule-heated melter, and an offgas treatment system. Surrogate Oak Ridge Reservation (ORR) B ampersand amp;C pond sludge was treated in a demonstration of the TVS system at Clemson University and at ORR. After initial tests with soda-lime-silica (SLS) feed, three melter volumes of glass were produced from the surrogate feed. A forthcoming report will describe glass characterization; and melter feeding, operation, and glass pouring. Melter operations described will include slurry characterization and feeding, factors affecting feed melt rates, glass pouring and pour rate constraints, and melter operating temperatures. Residence time modeling of the melter will also be discussed. Characterization of glass; including composition, predicted liquidity and viscosity, Toxic Characteristic Leaching Procedure (TCLP), and devitrification will be covered. Devitrification was a concern in glass container tests and was found to be mostly dependent on the cooling rate. Crucible tests indicated that melter shutdown with glass containing Fe and Li was also a devitrification concern, so the melter was flushed with SLS glass before cooldown

  19. Control of DWPF [Defense Waste Processing Facility] melter feed composition

    International Nuclear Information System (INIS)

    Edwards, R.E. Jr.; Brown, K.G.; Postles, R.L.

    1990-01-01

    The Defense Waste Processing Facility will be used to immobilize Savannah River Site high-level waste into a stable borosilicate glass for disposal in a geologic repository. Proper control of the melter feed composition in this facility is essential to the production of glass which meets product durability constraints dictated by repository regulations and facility processing constraints dictated by melter design. A technique has been developed which utilizes glass property models to determine acceptable processing regions based on the multiple constraints imposed on the glass product and to display these regions graphically. This system along with the batch simulation of the process is being used to form the basis for the statistical process control system for the facility. 13 refs., 3 figs., 1 tab

  20. LFCM [liquid-fed ceramic melter] vitrification technology: Quarterly progress report, January--March 1987

    International Nuclear Information System (INIS)

    Brouns, R. A.; Allen, C. R.; Powell, J. A.

    1988-05-01

    This report is compiled by the Nuclear Waste Treatment Program and the Hanford Waste Vitrification Program at Pacific Northwest Laboratory to describe the progress in developing, testing, applying and documenting liquid-fed ceramic melter vitrification technology. Progress in the following technical subject areas during the second quarter of FY 1987 is discussed: melting process chemistry and glass development, feed preparation and transfer systems, melter systems, canister filling and handling systems, and process/product modeling. 23 refs., 14 figs., 10 tabs

  1. Reproducing crucible steel: a practical guide and a comparative analysis to persian manuscripts

    Directory of Open Access Journals (Sweden)

    Moshtagh Khorasani, Manouchehr

    2013-12-01

    Full Text Available Different terms are used in old Persian manuscripts, such as Ta’id Besârat, to define and refer to crucible or watered steel and different types of swords. However, there are few manuscripts that describe the way crucible steel cakes and blades were made such as the manuscript Gŏharnâme. The present article deals with the making of crucible steel as described in Persian manuscripts and also with a new reproduction process of making crucible steel as conducted by the Finnish smith Niko Hynninen.Los antiguos manuscritos persas, tales como Ta’id Besârat, emplean diversos términos para definir y referirse al acero de crisol o acero de Damasco y a diversos tipos de espada. Sin embargo, existen pocos manuscritos que describan el modo en que se elaboraban los lingotes y hojas de acero de crisol, entre ellos el manuscrito Gŏharnâme. El presente artículo describe el proceso de elaboración del acero de crisol tal y como lo refieren los manuscritos persas, así como una moderna reproducción del mismo realizada por el forjador finlandés Niko Hynninen.

  2. Integrated DWPF Melter System (IDMS) campaign report: The first two noble metals operations

    International Nuclear Information System (INIS)

    Hutson, N.D.; Zamecnik, J.R.; Smith, M.E.; Miller, D.H.; Ritter, J.A.

    1991-01-01

    The Integrated DWPF Melter System (IDMS) is designed and constructed to provide an engineering-scale representation of the DWPF melter and its associated feed preparation and off-gas systems. The facility is the first pilot-scale melter system capable of processing mercury, and flowsheet levels of halides and noble metals. In order to characterize the processing of noble metals (Pd, Rh, Ru, and Ag) on a large scale, the IDMS will be operated batchstyle for at least nine feed preparation cycles. The first two of these operations are complete. The major observation to date occurred during the second run when significant amounts of hydrogen were evolved during the feed preparation cycle. The runs were conducted between June 7, 1990 and March 8, 1991. This time period included nearly six months of ''fix-up'' time when forced air purges were installed on the SRAT MFT and other feed preparation vessels to allow continued noble metals experimentation

  3. Preliminary analysis of species partitioning in the DWPF melter. Sludge batch 7A

    Energy Technology Data Exchange (ETDEWEB)

    Choi, A. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Smith III, F. G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-01-01

    The work described in this report is preliminary in nature since its goal was to demonstrate the feasibility of estimating the off-gas carryover from the Defense Waste Processing Facility (DWPF) melter based on a simple mass balance using measured feed and glass pour stream (PS) compositions and time-averaged melter operating data over the duration of one canister-filling cycle. The DWPF has been in radioactive operation for over 20 years processing a wide range of high-level waste (HLW) feed compositions under varying conditions such as bubbled vs. non-bubbled and feeding vs. idling. So it is desirable to find out how the varying feed compositions and operating parameters would have impacted the off-gas entrainment. However, the DWPF melter is not equipped with off-gas sampling or monitoring capabilities, so it is not feasible to measure off-gas entrainment rates directly. The proposed method provides an indirect way of doing so.

  4. Volatilization and redox testing in a DC arc melter: FY-93 and FY-94

    International Nuclear Information System (INIS)

    Grandy, J.D.; Sears, J.W.; Soelberg, N.R.; Reimann, G.A.; McIlwain, M.E.

    1996-07-01

    The purpose of these experiments was to study the dissolution, retention, volatilization, and trapping of transuranic radionuclide elements (TRUs), mixed fission and activation products, and high vapor pressure metals (HVPMS) during processing in a high temperature arc furnace. In all cases, surrogate elements (lanthanides) were used in place of radioactive ones. The experiments were conducted utilizing a small DC arc melter developed at the Idaho National Engineering Laboratory (INEL) Research Center (IRC). The small arc melter was originally developed in 1992 and has been used previously for waste form studies of iron enriched basalt (IEB) and IEB with zirconium and titanium additions (IEB4). Section 3 contains a description of the small arc melter and its operational capabilities are discussed in Chapter 4. The remainder of the document describes each testing program and then discusses results and findings

  5. Final Report Tests On The Duramelter 1200 HLW Pilot Melter System Using AZ-101 HLW Simulants VSL-02R0100-2, Rev. 1, 2/17/03

    International Nuclear Information System (INIS)

    Kruger, A.A.; Matlack, K.S.; Kot, W.K.; Bardakci, T.; Gong, W.; D'Angelo, N.A.; Schatz, T.R.; Pegg, I.L.

    2011-01-01

    This document provides the final report on data and results obtained from a series of nine tests performed on the one-third scale DuraMelter(trademark) 1200 (DM1200) HLW Pilot Melter system that has been installed at VSL with an integrated prototypical off-gas treatment system. That system has replaced the DM1000 system that was used for HLW throughput testing during Part B1 (1). Both melters have similar melt surface areas (1.2 m 2 ) but the DM1200 is prototypical of the present RPP-WTP HLW melter design whereas the DM1000 was not. These tests were performed under a corresponding RPP-WTP Test Specification and associated Test Plans. The nine tests reported here were preceded by an initial series of short-duration tests conducted to support the start-up and commissioning of this system. This report is a followup to the previously issued Preliminary Data Summary Reports. The DM1200 system was deployed for testing and confirmation of basic design, operability, flow sheet, and process control assumptions as well as for support of waste form qualification and permitting. These tests include data on processing rates, off-gas treatment system performance, recycle stream compositions, as well as process operability and reliability. Consequently, this system is a key component of the overall HLW vitrification development strategy. The primary objective of the present series of tests was to determine the effects of a variety of parameters on the glass production rate in comparison to the RPP-WTP HL W design basis of 400 kg/m 2 /d. Previous testing on the DMIOOO system (1) concluded that achievement of that rate with simulants of projected WTP melter feeds (AZ-101 and C-106/AY-102) was unlikely without the use of bubblers. As part of those tests, the same feed that was used during the cold-commissioning of the West Valley Demonstration Project (WVDP) HLW vitrification system was run on the DM1000 system. The DM1000 tests reproduced the rates that were obtained at the larger

  6. FINAL REPORT TESTS ON THE DURAMELTER 1200 HLW PILOT MELTER SYSTEM USING AZ-101 HLW SIMULANTS VSL-02R0100-2 REV 1 2/17/03

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; KOT WK; BARDAKCI T; GONG W; D' ANGELO NA; SCHATZ TR; PEGG IL

    2011-12-29

    This document provides the final report on data and results obtained from a series of nine tests performed on the one-third scale DuraMelter{trademark} 1200 (DM1200) HLW Pilot Melter system that has been installed at VSL with an integrated prototypical off-gas treatment system. That system has replaced the DM1000 system that was used for HLW throughput testing during Part B1 [1]. Both melters have similar melt surface areas (1.2 m{sup 2}) but the DM1200 is prototypical of the present RPP-WTP HLW melter design whereas the DM1000 was not. These tests were performed under a corresponding RPP-WTP Test Specification and associated Test Plans. The nine tests reported here were preceded by an initial series of short-duration tests conducted to support the start-up and commissioning of this system. This report is a followup to the previously issued Preliminary Data Summary Reports. The DM1200 system was deployed for testing and confirmation of basic design, operability, flow sheet, and process control assumptions as well as for support of waste form qualification and permitting. These tests include data on processing rates, off-gas treatment system performance, recycle stream compositions, as well as process operability and reliability. Consequently, this system is a key component of the overall HLW vitrification development strategy. The primary objective of the present series of tests was to determine the effects of a variety of parameters on the glass production rate in comparison to the RPP-WTP HL W design basis of 400 kg/m{sup 2}/d. Previous testing on the DMIOOO system [1] concluded that achievement of that rate with simulants of projected WTP melter feeds (AZ-101 and C-106/AY-102) was unlikely without the use of bubblers. As part of those tests, the same feed that was used during the cold-commissioning of the West Valley Demonstration Project (WVDP) HLW vitrification system was run on the DM1000 system. The DM1000 tests reproduced the rates that were obtained at the

  7. Startup and operation of a plant-scale continuous glass melter for vitrification of Savannah River Plant simulated waste

    International Nuclear Information System (INIS)

    Willis, T.A.

    1980-01-01

    The reference process for disposal of radioactive waste from the Savannah River Plant is vitrification of the waste in borosilicate glass in a continuous glass melter. Design, startup, and operation of a plant-scale developmental melter system are discussed

  8. Improved mixing and sampling systems for vitrification melter feeds

    International Nuclear Information System (INIS)

    Ebadian, M.A.

    1998-01-01

    This report summarizes the methods used and results obtained during the progress of the study of waste slurry mixing and sampling systems during fiscal year 1977 (FY97) at the Hemispheric Center for Environmental Technology (HCET) at Florida International University (FIU). The objective of this work is to determine optimal mixing configurations and operating conditions as well as improved sampling technology for defense waste processing facility (DWPF) waste melter feeds at US Department of Energy (DOE) sites. Most of the research on this project was performed experimentally by using a tank mixing configuration with different rotating impellers. The slurry simulants for the experiments were prepared in-house based on the properties of the DOE sites' typical waste slurries. A sampling system was designed to withdraw slurry from the mixing tank. To obtain insight into the waste mixing process, the slurry flow in the mixing tank was also simulated numerically by applying computational fluid dynamics (CFD) methods. The major parameters investigated in both the experimental and numerical studies included power consumption of mixer, mixing time to reach slurry uniformity, slurry type, solids concentration, impeller type, impeller size, impeller rotating speed, sampling tube size, and sampling velocities. Application of the results to the DWPF melter feed preparation process will enhance and modify the technical base for designing slurry transportation equipment and pipeline systems. These results will also serve as an important reference for improving waste slurry mixing performance and melter operating conditions. These factors will contribute to an increase in the capability of the vitrification process and the quality of the waste glass

  9. Influence of Crucible Thermal Conductivity on Crystal Growth in an Industrial Directional Solidification Process for Silicon Ingots

    Directory of Open Access Journals (Sweden)

    Zaoyang Li

    2016-01-01

    Full Text Available We carried out transient global simulations of heating, melting, growing, annealing, and cooling stages for an industrial directional solidification (DS process for silicon ingots. The crucible thermal conductivity is varied in a reasonable range to investigate its influence on the global heat transfer and silicon crystal growth. It is found that the crucible plays an important role in heat transfer, and therefore its thermal conductivity can influence the crystal growth significantly in the entire DS process. Increasing the crucible thermal conductivity can shorten the time for melting of silicon feedstock and growing of silicon crystal significantly, and therefore large thermal conductivity is helpful in saving both production time and power energy. However, the high temperature gradient in the silicon ingots and the locally concave melt-crystal interface shape for large crucible thermal conductivity indicate that high thermal stress and dislocation propagation are likely to occur during both growing and annealing stages. Based on the numerical simulations, some discussions on designing and choosing the crucible thermal conductivity are presented.

  10. Durability of glasses from the Hg-doped Integrated DWPF Melter System (IDMS) campaign

    International Nuclear Information System (INIS)

    Jantzen, C.M.

    1992-01-01

    The Integrated DWPF Melter System (IDMS) for the vitrification of high-level radioactive wastes is designed and constructed to be a 1/9th scale prototype of the full scale Defense Waste Processing Facility (DWPF) melter. The IDMS facility is the first engineering scale melter system capable of processing mercury, and flowsheet levels of halides and noble metals. In order to determine the effects of mercury on the feed preparation process, the off-gas chemistry, glass melting behavior, and glass durability, a three-run mercury (Hg) campaign was conducted. The glasses produced during the Hg campaign were composed of Batch 1 sludge, simulated precipitate hydrolysis aqueous product (PHA) from the Precipitate Hydrolysis Experimental Facility (PHEF), and Frit 202. The glasses were produced using the DWPF process/product models for glass durability, viscosity, and liquidus. The durability model indicated that the glasses would all be more durable than the glass qualified in the DWPF Environmental Assessment (EA). The glass quality was verified by performing the Product Consistency Test (PCT) which was designed for glass durability testing in the DWPF

  11. Hazards analysis of TNX Large Melter-Off-Gas System

    International Nuclear Information System (INIS)

    Randall, C.T.

    1982-03-01

    Analysis of the potential safety hazards and an evaluation of the engineered safety features and administrative controls indicate that the LMOG System can be operated without undue hazard to employees or the public, or damage to equipment. The safety features provided in the facility design coupled with the planned procedural and administrative controls make the occurrence of serious accidents very improbable. A set of recommendations evolved during this analysis that was judged potentially capable of further reducing the probability of personnel injury or further mitigating the consequences of potential accidents. These recommendations concerned areas such as formic acid vapor hazards, hazard of feeding water to the melter at an uncontrolled rate, prevention of uncontrolled glass pours due to melter pressure excursions and additional interlocks. These specific suggestions were reviewed with operational and technical personnel and are being incorporated into the process. The safeguards provided by these recommendations are discussed in this report

  12. FINAL REPORT INTEGRATED DM1200 MELTER TESTING OF BUBBLER CONFIGURATIONS USING HLW AZ-101 SIMULANTS VSL-04R4800-4 REV 0 10/5/04

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; GONG W; BARDAKCI T; D' ANGELO NA; LUTZE W; CALLOW RA; BRANDYS M; KOT WK; PEGG IL

    2011-12-29

    This report documents melter and off-gas performance results obtained on the DM1200 HLW Pilot Melter during processing of AZ-101 HLW simulants. The tests reported herein are a subset of six tests from a larger series of tests described in the Test Plan for the work; results from the other tests have been reported separately. The solids contents of the melter feeds were based on the WTP baseline value for the solids content of the feeds from pretreatment which changed during these tests from 20% to 15% undissolved solids resulting in tests conducted at two feed solids contents. Based on the results of earlier tests with single outlet 'J' bubblers, initial tests were performed with a total bubbling rate of 651 pm. The first set of tests (Tests 1A-1E) addressed the effects of skewing this total air flow rate back and forth between the two installed bubblers in comparison to a fixed equal division of flow between them. The second set of tests (2A-2D) addressed the effects of bubbler depth. Subsequently, as the location, type and number of bubbling outlets were varied, the optimum bubbling rate for each was determined. A third (3A-3C) and fourth (8A-8C) set of tests evaluated the effects of alternative bubbler designs with two gas outlets per bubbler instead of one by placing four bubblers in positions simulating multiple-outlet bubblers. Data from the simulated multiple outlet bubblers were used to design bubblers with two outlets for an additional set of tests (9A-9C). Test 9 was also used to determine the effect of small sugar additions to the feed on ruthenium volatility. Another set of tests (10A-10D) evaluated the effects on production rate of spiking the feed with chloride and sulfate. Variables held constant to the extent possible included melt temperature, plenum temperature, cold cap coverage, the waste simulant composition, and the target glass composition. The feed rate was increased to the point that a constant, essentially complete, cold cap was

  13. Predictive modeling of crystal accumulation in high-level waste glass melters processing radioactive waste

    Science.gov (United States)

    Matyáš, Josef; Gervasio, Vivianaluxa; Sannoh, Sulaiman E.; Kruger, Albert A.

    2017-11-01

    The effectiveness of high-level waste vitrification at Hanford's Waste Treatment and Immobilization Plant may be limited by precipitation/accumulation of spinel crystals [(Fe, Ni, Mn, Zn)(Fe, Cr)2O4] in the glass discharge riser of Joule-heated ceramic melters during idling. These crystals do not affect glass durability; however, if accumulated in thick layers, they can clog the melter and prevent discharge of molten glass into canisters. To address this problem, an empirical model was developed that can predict thicknesses of accumulated layers as a function of glass composition. This model predicts well the accumulation of single crystals and/or small-scale agglomerates, but excessive agglomeration observed in high-Ni-Fe glass resulted in an underprediction of accumulated layers, which gradually worsened over time as an increased number of agglomerates formed. The accumulation rate of ∼53.8 ± 3.7 μm/h determined for this glass will result in a ∼26 mm-thick layer after 20 days of melter idling.

  14. Predictive modeling of crystal accumulation in high-level waste glass melters processing radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Matyáš, Josef; Gervasio, Vivianaluxa; Sannoh, Sulaiman E.; Kruger, Albert A.

    2017-11-01

    The effectiveness of HLW vitrification is limited by precipitation/accumulation of spinel crystals [(Fe, Ni, Mn, Zn)(Fe, Cr)2O4] in the glass discharge riser of Joule-heated ceramic melters during idling. These crystals do not affect glass durability; however, if accumulated in thick layer, they can clog the melter and prevent discharge of molten glass into canisters. To address this problem, an empirical model was developed that can predict thicknesses of accumulated layers as a function of glass composition. This model predicts well the accumulation of single crystals and/or small-scale agglomerates, but, excessive agglomeration observed in high-Ni-Fe glass resulted in an under-prediction of accumulated layers, which gradually worsen over time as an increased number of agglomerates formed. Accumulation rate of ~53.8 ± 3.7 µm/h determined for this glass will result in ~26 mm thick layer in 20 days of melter idling.

  15. Effect of melter feed foaming on heat flux to the cold cap

    Czech Academy of Sciences Publication Activity Database

    Lee, S.; Hrma, P.; Pokorný, R.; Kloužek, Jaroslav; VanderVeer, B.J.; Dixon, D.R.; Luksic, S.A.; Rodriguez, C.P.; Chun, J.; Schweiger, M. J.; Kruger, A.A.

    2017-01-01

    Roč. 496, DEC 1 (2017), s. 54-65 ISSN 0022-3115 Institutional support: RVO:67985891 Keywords : cold cap * foam layer * heat flux * heat conductivity * evolved gas Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass OBOR OECD: Ceramics Impact factor: 2.048, year: 2016

  16. FINAL REPORT MELTER TESTS WITH AZ-101 HLW SIMULANT USING A DURAMELTER 100 VITRIFICATION SYSTEM VSL-01R10N0-1 REV 1 2/25/02

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; KOT WK; PEGG IL

    2011-12-29

    This report provides data, analyses, and conclusions from a series of tests that were conducted at the Vitreous State Laboratory of The Catholic of America (VSL) to determine the processing rates that are achievable with AZ-101 HLW simulants and corresponding melter feeds on a DuraMelter 100 (DM100) vitrification system. One of the most critical pieces of information in determining the required size of the RPP-WTP HLW melter is the specific glass production rate in terms of the mass of glass that can be produced per unit area of melt surface per unit time. The specific glass production rate together with the waste loading (essentially, the ratio of waste-in to glass-out, which is determined from glass formulation activities) determines the melt area that is needed to achieve a given waste processing rate with due allowance for system availability. Tests conducted during Part B1 (VSL-00R2590-2) on the DM1000 vitrification system installed at the Vitreous State Laboratory of The Catholic University of America showed that, without the use of bubblers, glass production rates with AZ-101 and C-106/AY-102 simulants were significantly lower than the Project design basis rate of 0.4 MT/m{sup 2}/d. Conversely, three-fold increases over the design basis rate were demonstrated with the use of bubblers. Furthermore, an un-bubbled control test using a replica of the melter feed used in cold commissioning tests at West Valley reproduced the rates that were observed with that feed on the WVDP production melter. More recent tests conducted on the DM1200 system, which more closely represents the present RPP-WTP design, are in general agreement with these earlier results. Screening tests conducted on the DM10 system have provided good indications of the larger-scale processing rates with bubblers (for both HL W and LAW feeds) but significantly overestimated the DM1000 un-bubbled rate observed for C-106/AY-102 melter feeds. This behavior is believed to be a consequence of the role of

  17. FINAL REPORT INTEGRATED DM1200 MELTER TESTING OF REDOX EFFECTS USING HLW AZ-101 AND C-106/AY-102 SIMULANTS VSL-04R4800-1 REV 0 5/6/

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; GONG W; BARDAKCI T; D' ANGELO NA; LUTZE W; BIZOT PM; CALLOW RA; BRANDYS M; KOT WK; PEGG IL

    2011-12-29

    This report documents melter and off-gas performance results obtained on the DM1200 HLW Pilot Melter during processing of AZ-101 and C-106/AY-102 HLW simulants. The tests reported herein are a subset of three tests from a larger series of tests described in the Test Plan for the work; results from the remaining tests will be reported separately. Three nine day tests, one with AZ-101 and two with C-106/AY-102 feeds were conducted with variable amounts of added sugar to address the effects of redox. The test with AZ-101 included ruthenium spikes to also address the effects of redox on ruthenium volatility. One of tests addressed the effects of increased flow-sheet nitrate levels using C-106/AY-102 feeds. With high nitrate/nitrite feeds (such as WTP LAW feeds), reductants are required to prevent melt foaming and deleterious effects on glass production rates. Sugar is the baseline WTP reductant for this purpose. WTP HLW feeds typically have relatively low nitrate/nitrite content in comparison to the organic carbon content and, therefore, have typically not required sugar additions. However, HLW feed variability, particularly with respect to nitrate levels, may necessitate the use of sugar in some instances. The tests reported here investigate the effects of variable sugar additions to the melter feed as well as elevated nitrate levels in the waste. Variables held constant to the extent possible included melt temperature, bubbling rate, plenum temperature, cold cap coverage, the waste simulant composition, and the target glass composition. The principal objectives of the DM1200 melter testing were to determine the achievable glass production rates for simulated HLW feeds with variable amounts of added sugar and increased nitrate levels; characterize melter off-gas emissions; characterize the performance of the prototypical off-gas system components as well as their integrated performance; characterize the feed, glass product, and off-gas effluents; and perform pre- and

  18. Initiating the Validation of CCIM Processability for Multi-phase all Ceramic (SYNROC) HLW Form: Plan for Test BFY14CCIM-C

    Energy Technology Data Exchange (ETDEWEB)

    Maio, Vince [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-08-01

    This plan covers test BFY14CCIM-C which will be a first–of–its-kind demonstration for the complete non-radioactive surrogate production of multi-phase ceramic (SYNROC) High Level Waste Forms (HLW) using Cold Crucible Induction Melting (CCIM) Technology. The test will occur in the Idaho National Laboratory’s (INL) CCIM Pilot Plant and is tentatively scheduled for the week of September 15, 2014. The purpose of the test is to begin collecting qualitative data for validating the ceramic HLW form processability advantages using CCIM technology- as opposed to existing ceramic–lined Joule Heated Melters (JHM) currently producing BSG HLW forms. The major objectives of BFY14CCIM-C are to complete crystalline melt initiation with a new joule-heated resistive starter ring, sustain inductive melting at temperatures between 1600 to 1700°C for two different relatively high conductive materials representative of the SYNROC ceramic formation inclusive of a HLW surrogate, complete melter tapping and pouring of molten ceramic material in to a preheated 4 inch graphite canister and a similar canister at room temperature. Other goals include assessing the performance of a new crucible specially designed to accommodate the tapping and pouring of pure crystalline forms in contrast to less recalcitrant amorphous glass, assessing the overall operational effectiveness of melt initiation using a resistive starter ring with a dedicated power source, and observing the tapped molten flow and subsequent relatively quick crystallization behavior in pans with areas identical to standard HLW disposal canisters. Surrogate waste compositions with ceramic SYNROC forming additives and their measured properties for inductive melting, testing parameters, pre-test conditions and modifications, data collection requirements, and sampling/post-demonstration analysis requirements for the produced forms are provided and defined.

  19. CRUCIBLE TESTING OF TANK 48H RADIOACTIVE WASTE SAMPLE USING FLUIDIZED BED STEAM REFORMING TECHNOLOGY FOR ORGANIC DESTRUCTION

    International Nuclear Information System (INIS)

    Crawford, C

    2008-01-01

    The purpose of crucible scale testing with actual radioactive Tank 48H material was to duplicate the test results that had been previously performed on simulant Tank 48H material. The earlier crucible scale testing using simulants was successful in demonstrating that bench scale crucible tests produce results that are indicative of actual Fluidized Bed Steam Reforming (FBSR) pilot scale tests. Thus, comparison of the results using radioactive Tank 48H feed to those reported earlier with simulants would then provide proof that the radioactive tank waste behaves in a similar manner to the simulant. Demonstration of similar behavior for the actual radioactive Tank 48H slurry to the simulant is important as a preliminary or preparation step for the more complex bench-scale steam reformer unit that is planned for radioactive application in the Savannah River National Laboratory (SRNL) Shielded Cells Facility (SCF) later in 2008. The goals of this crucible-scale testing were to show 99% destruction of tetraphenylborate and to demonstrate that the final solid product produced is sodium carbonate. Testing protocol was repeated using the specifications of earlier simulant crucible scale testing, that is sealed high purity alumina crucibles containing a pre-carbonated and evaporated Tank 48H material. Sealing of the crucibles was accomplished by using an inorganic 'nepheline' sealant. The sealed crucibles were heat-treated at 650 C under constant argon flow to inert the system. Final product REDOX measurements were performed to establish the REDuction/OXidation (REDOX) state of known amounts of added iron species in the final product. These REDOX measurements confirm the processing conditions (pyrolysis occurring at low oxygen fugacity) of the sealed crucible environment which is the environment actually achieved in the fluidized bed steam reformer process. Solid product dissolution in water was used to measure soluble cations and anions, and to investigate insoluble

  20. Spray Calciner/In-Can Melter high-level waste solidification technical manual

    International Nuclear Information System (INIS)

    Larson, D.E.

    1980-09-01

    This technical manual summarizes process and equipment technology developed at Pacific Northwest Laboratory over the last 20 years for vitrification of high-level liquid waste by the Spray Calciner/In-Can Melter process. Pacific Northwest Laboratory experience includes process development and demonstration in laboratory-, pilot-, and full-scale equipment using nonradioactive synthetic wastes. Also, laboratory- and pilot-scale process demonstrations have been conducted using actual high-level radioactive wastes. In the course of process development, more than 26 tonnes of borosilicate glass have been produced in 75 canisters. Four of these canisters contained radioactive waste glass. The associated process and glass chemistry is discussed. Technology areas described include calciner feed treatment and techniques, calcination, vitrification, off-gas treatment, glass containment (the canister), and waste glass chemistry. Areas of optimization and site-specific development that would be needed to adapt this base technology for specific plant application are indicated. A conceptual Spray Calciner/In-Can Melter system design and analyses are provided in the manual to assist prospective users in evaluating the process for plant application, to provide equipment design information, and to supply information for safety analyses and environmental reports. The base (generic) technology for the Spray Calciner/In-Can Melter process has been developed to a point at which it is ready for plant application

  1. Ceramic Materials Selection of Fuel Crucibles based on Plasma Spray Coating for SFR

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hoon; Kim, Jonghwan; Kim, Hyungtae; Ko, Youngmo; Woo, Yoonmyung; Oh, Seokjin; Kim, Kihwan; Lee, Chanbock [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-07-01

    The plasma-sprayed coating can provide the crucible with a denser, more friable coating layer, compared with the more friable coating layer formed by slurry-coating, which was used to prevent the interaction between melt and crucibles. Plasma-sprayed coatings are consolidated by mechanical interlocking of the molten particles impacting on the substrate and are dense by the heat applied by the plasma. The increased coating density is advantageous because it should not require frequent re coating and U-Zr melt penetration through the protective layer is more difficult in a dense coating than in a porous coating. In this study, we used Vacuum Plasma Spray method to investigate permanent coatings for re-usable crucibles for melting and casting of metallic fuel onto niobium substrates. Niobium was selected as a substrate because of its refractory nature and the coefficient of thermal expansion is similar to that of many of the candidate materials. After the HfC, ZrC, TiC, TaC, Y{sub 2}O{sub 3}, and 8% YSZ coatings were applied the resulting microstructure and chemical compositions was characterized to find the optimum process conditions for coating. Thermal plasma-sprayed coatings of refractory materials can be applied to develop a re-usable crucible coating for metallic fuel, such as the U-Zr alloy proposed for sodium cooled fast reactors.

  2. VIBROCASTING CRUCIBLES OF DIFFERENT COMPOSITION FOR FRYING INDUCTION MELTING ALLOYS

    OpenAIRE

    V. V. Primachenko; V. V. Martynenko; I. G. Szulik; S. V. Chaplyanko; L. V. Gritsyuk; L. P. Tkachenko

    2012-01-01

    It is shown that PSC «UKRNIIO them. A.S.Berezhnogo  has developed technologies for a wide range of induction melting temperature alloys and started commercial production of crucibles of different composition.

  3. Investigation of Reusable Crucibles on Uranium Casting by Injection Method

    International Nuclear Information System (INIS)

    Song, Hoon; Kim, Jong-Hwan; Ko, Young-Mo; Woo, Yoon-Myung; Kim, Ki-Hwan; Lee, Chan-Bock

    2014-01-01

    Slurry applied coatings must be recoated after every batch. Thermal plasma-sprayed coatings of refractory materials can be applied to develop a re-usable crucible coating for metallic fuel. Plasma-sprayed coating can provide a crucible with a denser, more durable, coating layer, compared with the more friable coating layer formed by slurry-coating. Plasma-sprayed coatings are consolidated by mechanical interlocking of the molten particles impacting on the substrate and are dense from the heat applied by the plasma. Although the protective layer is more difficult in a dense coating than in a porous coating, the increased coating density is advantageous because it should not require frequent recoating or U-Zr melt penetration. In this study, we used a Vacuum Plasma Spray (VPS) method, which is suitable to prevent oxidization and has a number of advantages such as low defect density and excellent adhesion of the coating layer, to investigate permanent coatings for re-usable crucibles for melting and casting of metallic fuel. After coatings, interaction studies between molten U-Zr alloys and the plasma sprayed coatings were also carried out. We summarized the results of the coating methods. All coated samples maintained good coating integrity in a U-Zr melt, but most of the coating method samples did not maintain integrity in the U-Zr-RE melt because of the cracks or microcracks of the coating layer, presumably formed from the thermal expansion difference. Only the TaC(100)-Y 2 O 3 (100) DL VPS coated rod survived the 2 cycles dipping test of U-Zr-RE melt. This is likely caused by good adhesion of the TaC coating onto the niobium rod and the chemical inertness of Y 2 O 3 coating material in the U-Zr-RE melt. Based on the results from the interactions with U-10Zr and U-10Zr-5RE melt, TaC(100)-Y 2 O 3 (100) plasma-sprayed coating methods have been applied to real graphite crucibles

  4. Final Report Integrated DM1200 Melter Testing Of Redox Effects Using HLW AZ-101 And C-106/AY-102 Simulants VSL-04R4800-1, Rev. 0, 5/6/04

    International Nuclear Information System (INIS)

    Kruger, A.A.; Matlack, K.S.; Gong, W.; Bardakci, T.; D'Angelo, N.A.; Lutze, W.; Bizot, P.M.; Callow, R.A.; Brandys, M.; Kot, W.K.; Pegg, I.L.

    2011-01-01

    This report documents melter and off-gas performance results obtained on the DM1200 HLW Pilot Melter during processing of AZ-101 and C-106/AY-102 HLW simulants. The tests reported herein are a subset of three tests from a larger series of tests described in the Test Plan for the work; results from the remaining tests will be reported separately. Three nine day tests, one with AZ-101 and two with C-106/AY-102 feeds were conducted with variable amounts of added sugar to address the effects of redox. The test with AZ-101 included ruthenium spikes to also address the effects of redox on ruthenium volatility. One of tests addressed the effects of increased flow-sheet nitrate levels using C-106/AY-102 feeds. With high nitrate/nitrite feeds (such as WTP LAW feeds), reductants are required to prevent melt foaming and deleterious effects on glass production rates. Sugar is the baseline WTP reductant for this purpose. WTP HLW feeds typically have relatively low nitrate/nitrite content in comparison to the organic carbon content and, therefore, have typically not required sugar additions. However, HLW feed variability, particularly with respect to nitrate levels, may necessitate the use of sugar in some instances. The tests reported here investigate the effects of variable sugar additions to the melter feed as well as elevated nitrate levels in the waste. Variables held constant to the extent possible included melt temperature, bubbling rate, plenum temperature, cold cap coverage, the waste simulant composition, and the target glass composition. The principal objectives of the DM1200 melter testing were to determine the achievable glass production rates for simulated HLW feeds with variable amounts of added sugar and increased nitrate levels; characterize melter off-gas emissions; characterize the performance of the prototypical off-gas system components as well as their integrated performance; characterize the feed, glass product, and off-gas effluents; and perform pre- and

  5. Startup of a Joule-heated glass melter with a graphite slurry

    International Nuclear Information System (INIS)

    Allen, T.L.; Routt, K.R.; Porter, M.A.

    1983-01-01

    This paper discusses the theoretical equations and physical and electrical property data of various graphite slurries for starting up a glass melter. An application test is also included to demonstrate the graphite slurry startup technique

  6. Immobilization of high-level defense waste in a slurry-fed electric glass melter

    International Nuclear Information System (INIS)

    Brouns, R.A.; Mellinger, G.B.; Nelson, T.A.; Oma, K.H.

    1980-11-01

    Scoping studies have been performed at the Pacific Northwest Laboratory related to the direct liquid-feeding of a generic high-level defense waste to a joule-heated ceramic melter. Tests beginning on the laboratory scale and progressing to full-scale operation are reported. Laboratory work identified the need for a reducing agent in the feed to help control the foaming tendencies of the waste glass. These tests also indicated that suspension agents were helpful in reducing the tendency of solids to settle out of the liquid feed. Testing was then moved to a larger pilot-scale melter (designed for approx. 2.5 kg/h) where verification of the flowsheet examined in the lab was accomplished. It was found that the reducing agent controlled foaming and did not result in the precipitation of metals. Pumping problems were encountered when slurries with higher than normal solids content were fed. A demonstration (designed for approx. 50 kg/h) in a full-scale melter was then made with the tested flowsheet; however, the amount of reducing agent had to be increased. In addition, it was found that feed control needed further development; however, steady-state operation was achieved giving encouraging results on process capacities. During steady-state operation, ruthenium losses to the offgas system averaged less than 0.16%, while cesium losses were somewhat higher, ranging from 0.91 to 24% and averaging 13%. Particulate decontamination factors from feed to offgas in the melter ranged from 5 x 10 2 to greater than 10 3 without any filtration or treatment. Approximately 1050 kg of glass was produced from 2900 L of waste at rates up to 40 kg/h

  7. Baseline tests for arc melter vitrification of INEL buried wastes. Volume 1: Facility description and summary data report

    International Nuclear Information System (INIS)

    Oden, L.L.; O'Connor, W.K.; Turner, P.C.; Soelberg, N.R.; Anderson, G.L.

    1993-01-01

    This report presents field results and raw data from the Buried Waste Integrated Demonstration (BWID) Arc Melter Vitrification Project Phase 1 baseline test series conducted by the Idaho National Engineering Laboratory (INEL) in cooperation with the U.S. Bureau of Mines (USBM). The baseline test series was conducted using the electric arc melter facility at the USBM Albany Research Center in Albany, Oregon. Five different surrogate waste feed mixtures were tested that simulated thermally-oxidized, buried, TRU-contaminated, mixed wastes and soils present at the INEL. The USBM Arc Furnace Integrated Waste Processing Test Facility includes a continuous feed system, the arc melting furnace, an offgas control system, and utilities. The melter is a sealed, 3-phase alternating current (ac) furnace approximately 2 m high and 1.3 m wide. The furnace has a capacity of 1 metric ton of steel and can process as much as 1,500 lb/h of soil-type waste materials. The surrogate feed materials included five mixtures designed to simulate incinerated TRU-contaminated buried waste materials mixed with INEL soil. Process samples, melter system operations data and offgas composition data were obtained during the baseline tests to evaluate the melter performance and meet test objectives. Samples and data gathered during this program included (a) automatically and manually logged melter systems operations data, (b) process samples of slag, metal and fume solids, and (c) offgas composition, temperature, velocity, flowrate, moisture content, particulate loading and metals content. This report consists of 2 volumes: Volume I summarizes the baseline test operations. It includes an executive summary, system and facility description, review of the surrogate waste mixtures, and a description of the baseline test activities, measurements, and sample collection. Volume II contains the raw test data and sample analyses from samples collected during the baseline tests

  8. Formulation of special glass frit and its use for decontamination of Joule melter employed for vitrification of high level and radioactive liquid waste

    International Nuclear Information System (INIS)

    Valsala, T.P.; Mishra, P.K.; Thakur, D.A.; Ghongane, D.E.; Jayan, R.V.; Dani, U.; Sonavane, M.S.; Kulkarni, Y.

    2012-01-01

    Advanced vitrification system at TWMP Tarapur was used for successful vitrification of large volume of HLW stored in waste tank farm. After completion of the operational life of the joule melter, dismantling was planned. Prior to the dismantling, the hold up inventory of active glass product from the melter was flushed out using specially formulated inactive glass frit to reduce the air activity buildup in the cell during dismantling operations. The properties of the special glass frit prepared are comparable with that of the regular product glass. More than 94% of holdup activity was flushed out from the joule melter prior to the dismantling of the melter. (author)

  9. The dismantling of the one-third-scale Joule ceramic melter and preliminary investigation of electrode corrosion

    International Nuclear Information System (INIS)

    Morris, J.B.; Walmsley, D.; Hollinrake, A.; Horsley, G.

    1986-01-01

    The Harwell one-third scale Joule ceramic melter was dismantled to discover the cause of a fall in electric resistance. The two inconel-690 electrodes were corroded over the lower 40mm sections and were examined by optical and electron microscopy. Sedimentation of Ru species on the floor of the melter may have led to corrosion of the electrodes. Glass withdrawn from the canisters was analyzed for evidence of a segregation mechanism. (UK)

  10. VIBROCASTING CRUCIBLES OF DIFFERENT COMPOSITION FOR FRYING INDUCTION MELTING ALLOYS

    Directory of Open Access Journals (Sweden)

    V. V. Primachenko

    2012-01-01

    Full Text Available It is shown that PSC «UKRNIIO them. A.S.Berezhnogo  has developed technologies for a wide range of induction melting temperature alloys and started commercial production of crucibles of different composition.

  11. INTEGRATED DM 1200 MELTER TESTING OF HLW C-106/AY-102 COMPOSITION USING BUBBLERS VSL-03R3800-1 REV 0 9/15/03

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; GONG W; BARDAKCI T; D' ANGELO NA; KOT WK; PEGG IL

    2011-12-29

    This report documents melter and off-gas performance results obtained on the DM1200 HLW Pilot Melter during processing of simulated HLW C-106/AY-102 feed. The principal objectives of the DM1200 melter testing were to determine the achievable glass production rates for simulated HLW C-106/AY-102 feed; determine the effect of bubbling rate on production rate; characterize melter off-gas emissions; characterize the performance of the prototypical off-gas system components as well as their integrated performance; characterize the feed, glass product, and off-gas effluents; and to perform pre- and post test inspections of system components.

  12. Integrated DM 1200 Melter Testing Of HLW C-106/AY-102 Composition Using Bubblers VSL-03R3800-1, Rev. 0, 9/15/03

    International Nuclear Information System (INIS)

    Kruger, A.A.; Matlack, K.S.; Kot, W.K.; Bardakci, T.; Gong, W.; D'Angelo, N.A.; Pegg, I.L.

    2011-01-01

    This report documents melter and off-gas performance results obtained on the DM1200 HLW Pilot Melter during processing of simulated HLW C-106/AY-102 feed. The principal objectives of the DM1200 melter testing were to determine the achievable glass production rates for simulated HLW C-106/AY-102 feed; determine the effect of bubbling rate on production rate; characterize melter off-gas emissions; characterize the performance of the prototypical off-gas system components as well as their integrated performance; characterize the feed, glass product, and off-gas effluents; and to perform pre- and post test inspections of system components.

  13. Ionic Conductivity and Air Stability of Al-Doped Li₇La₃Zr₂O₁₂ Sintered in Alumina and Pt Crucibles.

    Science.gov (United States)

    Xia, Wenhao; Xu, Biyi; Duan, Huanan; Guo, Yiping; Kang, Hongmei; Li, Hua; Liu, Hezhou

    2016-03-02

    Li7La3Zr2O12 (LLZO) is a promising electrolyte material for all-solid-state battery due to its high ionic conductivity and good stability with metallic lithium. In this article, we studied the effect of crucibles on the ionic conductivity and air stability by synthesizing 0.25Al doped LLZO pellets in Pt crucibles and alumina crucibles, respectively. The results show that the composition and microstructure of the pellets play important roles influencing the ionic conductivity, relative density, and air stability. Specifically, the 0.25Al-LLZO pellets sintered in Pt crucibles exhibit a high relative density (∼96%) and high ionic conductivity (4.48 × 10(-4) S cm(-1)). The ionic conductivity maintains 3.6 × 10(-4) S cm(-1) after 3-month air exposure. In contrast, the ionic conductivity of the pellets from alumina crucibles is about 1.81 × 10(-4) S cm(-1) and drops to 2.39 × 10(-5) S cm(-1) 3 months later. The large grains and the reduced grain boundaries in the pellets sintered in Pt crucibles are favorable to obtain high ionic conductivity and good air stability. X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy results suggest that the formation of Li2CO3 on the pellet surface is probably another main reason, which is also closely related to the relative density and the amount of grain boundary within the pellets. This work stresses the importance of synthesis parameters, crucibles included, to obtain the LLZO electrolyte with high ionic conductivity and good air stability.

  14. Rheological Studies on Pretreated Feed and Melter Feed from AW-101 and AN-107

    International Nuclear Information System (INIS)

    Bredt, Paul R; Swoboda, Robert G

    2001-01-01

    Rheological and physical properties testing were conducted on actual AN-107 and AW-101 pretreated feed samples prior to the addition of glass formers. Analyses were repeated following the addition of glass formers. The AN-107 and AW-101 pretreated feeds were tested at the target sodium values of nominally 6, 8, and 10 M. The AW-101 melter feeds were tested at these same concentrations, while the AN-107 melter feeds were tested at 5, 6, and 8 M with respect to sodium. These data on actual waste are required to validate and qualify results obtained with simulants

  15. Multilayer Porous Crucibles for the High Throughput Salt Separation from Uranium Deposits

    International Nuclear Information System (INIS)

    Kwon, S. W.; Park, K. M.; Kim, J. G.; Kim, I. T.; Seo, B. K.; Moon, J. G.

    2013-01-01

    Solid cathode processing is necessary to separate the salt from the cathode since the uranium deposit in a solid cathode contains electrolyte salt. A physical separation process, such as a distillation separation, is more attractive than a chemical or dissolution process because physical processes generate much less secondary process. Distillation process was employed for the cathode processsing due to the advantages of minimal generation of secondary waste, compact unit process, simple and low cost equipment. The basis for vacuum distillation separation is the difference in vapor pressures between salt and uranium. A solid cathode deposit is heated in a heating region and salt vaporizes, while nonvolatile uranium remains behind. It is very important to increase the throughput of the salt separation system owing to the high uranium content of spent nuclear fuel and high salt fraction of uranium dendrites. The evaporation rate of the LiCl-KCl eutectic salt in vacuum distiller is not so high to come up with the generation capacity of uranium dendrites in an electro-refiner. Therefore, a wide evaporation area or high distillation temperature is necessary for the successful salt separation. In this study, it was attempted to enlarge a throughput of the salt distiller with a multilayer porous crucibles for the separation of adhered salt in the uranium deposits generated from the electrorefiner. The feasibility of the porous crucibles was tested by the salt distillation experiments. In this study, the salt distiller with multilayer porous crucibles was proposed and the feasibility of liquid salt separation was examined to increase a throughput. It was found that the effective separation of salt from uranium deposits was possible by the multilayer porous crucibles

  16. Multilayer Porous Crucibles for the High Throughput Salt Separation from Uranium Deposits

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, S. W.; Park, K. M.; Kim, J. G.; Kim, I. T.; Seo, B. K.; Moon, J. G. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    Solid cathode processing is necessary to separate the salt from the cathode since the uranium deposit in a solid cathode contains electrolyte salt. A physical separation process, such as a distillation separation, is more attractive than a chemical or dissolution process because physical processes generate much less secondary process. Distillation process was employed for the cathode processsing due to the advantages of minimal generation of secondary waste, compact unit process, simple and low cost equipment. The basis for vacuum distillation separation is the difference in vapor pressures between salt and uranium. A solid cathode deposit is heated in a heating region and salt vaporizes, while nonvolatile uranium remains behind. It is very important to increase the throughput of the salt separation system owing to the high uranium content of spent nuclear fuel and high salt fraction of uranium dendrites. The evaporation rate of the LiCl-KCl eutectic salt in vacuum distiller is not so high to come up with the generation capacity of uranium dendrites in an electro-refiner. Therefore, a wide evaporation area or high distillation temperature is necessary for the successful salt separation. In this study, it was attempted to enlarge a throughput of the salt distiller with a multilayer porous crucibles for the separation of adhered salt in the uranium deposits generated from the electrorefiner. The feasibility of the porous crucibles was tested by the salt distillation experiments. In this study, the salt distiller with multilayer porous crucibles was proposed and the feasibility of liquid salt separation was examined to increase a throughput. It was found that the effective separation of salt from uranium deposits was possible by the multilayer porous crucibles.

  17. Commissioning Tests of the Ulchin LLW Vitrification Facility In Korea

    International Nuclear Information System (INIS)

    Kyung-Hwa, Yang; Sang-Woon, Shin; Chan-Kook, Moon

    2009-01-01

    Since 1994, Korea Hydro and Nuclear Power Co., Ltd. (KHNP) has, together with SGN in France and Hyundai ROTEM, investigated and developed a vitrification process using a Cold Crucible Induction Melter (CCIM) to treat low-and intermediate-level radioactive waste. A commercialization project was launched in 2002 as a governmental nuclear power technology development project. The installation of the first commercial plant, Ulchin Vitrification Facility (UVF), was completed in 2007 inside Ulchin nuclear power plants no. 5 and 6. Combustible dry active waste and low-level ion exchange resin will be treated in the UVF. The UVF has a waste feeding capacity of 20 kg/h and consists of waste pretreatment and feeding systems, a cold crucible induction melter (CCIM) system, an off-gas treatment system, a dust recycling system, as well as other systems. In order to assure that systems and equipments meet their design objectives and that the UVF complies with applicable regulations, equipment tests, system functional tests and inactive performance tests were conducted. Furthermore, a long-term inactive test was carried out for 202 hours to evaluate the overall performance and stability of the facility. During the test, about 1,700 kg of surrogate waste was vitrified and 302 kg of waste glass was poured into a glass mould. As the gaseous emission from the UVF was one of the key issues for the operational license and public acceptance, 25 hazardous gases and dusts were analyzed. The compressive strength of the waste glasses was also measured. Results showed that effluent concentrations of the off-gases and the quality of the waste glass met the regulatory limits with sufficient margins. Operation procedures of the UVF were revised based on experiences gained from the tests. By demonstrating satisfactory performance of the UVF, KHNP acquired an operational license in October, 2008 as an amendment to the operational license of the Ulchin NPPs. We are planning to conduct a simulated

  18. DC Graphite Arc Melter for vitrification of low-level waste

    International Nuclear Information System (INIS)

    Desrosiers, A.E.; Wilver, P.J.; Wittle, J.K.

    1996-01-01

    The volume of mixed waste continues to increase with few options for its permanent disposal other than storage on site. This mixed waste is being generated by not only the Department of Energy at government sites but by the private sector in hospitals and at electrical utility sites. Bartlett Services, Inc. proposes to offer a service to treat these materials to both reduce the volume and stabilize the radionuclides in a vitrified material. This product will be formed in the DC Graphite Arc Melters developed by Electro-Pyrolysis, Inc. and being offered for commercial design, sale and installation by Svedala Industries, Pyro Division. The process is a high temperature procedure which pyrolytically decomposes the organic portion of the waste to form clean hydrogen and carbon monoxide and solid carbon. The inorganic portion, containing the radioactive components, melts to produce a stable glass which is resistant to environmental leaching and will remain stable until the radioactivity has decreased to a safe level. Glasses produced with surrogate materials such as cesium and cerium have been shown to pass the Product Compatibility Test (PCT). The process being proposed for this treatment utilizes a sealed melter system having the capability of melting wastes containing both metallic and inorganic materials. This process, unlike joule heated melters, is capable of operating to temperatures of 1600 degrees C or higher. Since the system is heated electrically, oxidation is not required to create the heat. Since the system is pyrolytic, relatively small quantities of gas are produced. These gases may have beneficial uses in producing chemicals or may be used as a clean fuel

  19. Oxygen enriched combustion system performance study. Phase 2: 100 percent oxygen enriched combustion in regenerative glass melters, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Tuson, G.B.; Kobayashi, H.; Campbell, M.J.

    1994-08-01

    The field test project described in this report was conducted to evaluate the energy and environmental performance of 100% oxygen enriched combustion (100% OEC) in regenerative glass melters. Additional objectives were to determine other impacts of 100% OEC on melter operation and glass quality, and to verify on a commercial scale that an on-site Pressure Swing Adsorption oxygen plant can reliably supply oxygen for glass melting with low electrical power consumption. The tests constituted Phase 2 of a cooperative project between the United States Department of Energy, and Praxair, Inc. Phase 1 of the project involved market and technical feasibility assessments of oxygen enriched combustion for a range of high temperature industrial heating applications. An assessment of oxygen supply options for these applications was also performed during Phase 1, which included performance evaluation of a pilot scale 1 ton per day PSA oxygen plant. Two regenerative container glass melters were converted to 100% OEC operation and served as host sites for Phase 2. A 75 ton per day end-fired melter at Carr-Lowrey Glass Company in Baltimore, Maryland, was temporarily converted to 100% OEC in mid- 1990. A 350 tpd cross-fired melter at Gallo Glass Company in Modesto, California was rebuilt for permanent commercial operation with 100% OEC in mid-1991. Initially, both of these melters were supplied with oxygen from liquid storage. Subsequently, in late 1992, a Pressure Swing Adsorption oxygen plant was installed at Gallo to supply oxygen for 100% OEC glass melting. The particular PSA plant design used at Gallo achieves maximum efficiency by cycling the adsorbent beds between pressurized and evacuated states, and is therefore referred to as a Vacuum/Pressure Swing Adsorption (VPSA) plant.

  20. Multiphysics Integrated Coupling Environment (MICE) User Manual

    Energy Technology Data Exchange (ETDEWEB)

    Varija Agarwal; Donna Post Guillen

    2013-08-01

    The complex, multi-part nature of waste glass melters used in nuclear waste vitrification poses significant modeling challenges. The focus of this project has been to couple a 1D MATLAB model of the cold cap region within a melter with a 3D STAR-CCM+ model of the melter itself. The Multiphysics Integrated Coupling Environment (MICE) has been developed to create a cohesive simulation of a waste glass melter that accurately represents the cold cap. The one-dimensional mathematical model of the cold cap uses material properties, axial heat, and mass fluxes to obtain a temperature profile for the cold cap, the region where feed-to-glass conversion occurs. The results from Matlab are used to update simulation data in the three-dimensional STAR-CCM+ model so that the cold cap is appropriately incorporated into the 3D simulation. The two processes are linked through ModelCenter integration software using time steps that are specified for each process. Data is to be exchanged circularly between the two models, as the inputs and outputs of each model depend on the other.

  1. Final Report - Enhanced LAW Glass Formulation Testing, VSL-07R1130-1, Rev. 0, dated 10/05/07

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A.; Pegg, I. L.; Matlack, K. S.; Joseph, I.; Muller, I. S.; Gong, W.

    2013-11-13

    The principal objective of this work was to extend the glass formulation methodology developed in the earlier work [2, 5, 6] for Envelope A, B and C waste compositions for development of compliant glass compositions targeting five high sodium-sulfur waste loading regions. This was accomplished through a combination of crucible-scale tests, and tests on the DM10 melter system. The DM10 was used for several previous tests on LAW compositions to determine the maximum feed sulfur concentrations that can be processed without forming secondary sulfate phases on the surface of the melt pool. This melter is the most efficient melter platform for screening glass compositions over a wide range of sulfate concentrations and therefore was selected for the present tests. The tests were conducted to provide information on melter processing characteristics and off-gas data, including sulfur incorporation and partitioning. As described above, the main objective was to identify the limits of waste loading in compliant glass formulations spanning the range of expected Na{sub 2}O and SO{sub 3} concentrations in the LAW glasses.

  2. Vitrification of Hanford wastes in a joule-heated ceramic melter and evaluation of resultant canisterized product

    International Nuclear Information System (INIS)

    Chapman, C.C.; Buelt, J.L.; Slate, S.C.; Katayama, Y.B.; Bunnell, L.R.

    1979-08-01

    Experience gained in the week-long vitrification test and characterization of the glass produced in the run support the following conclusions: The Hanford waste simulated in this test can be readily vitrified in a joule-heated ceramic melter. Physical properties of the molten glass were entirely compatible with melter operation. The average feed rate of 106 kg/h is high enough to make the ceramic melter a feasible piece of equipment for vitrifying Hanford wastes. The glass produced in this trial had good chemical durability, 6(10) -5 g/cm 2 -d. When one of the canisters was purposely dropped onto a steel pad, the damage was limited to deformation of the steel can in the impact area, cracking of a weld, and fracturing of glass in the immediate vicinity of the impact area. No glass was released from the canister as a result of the drop test. The results of this vitrification test support the technical feasibility of vitrifying Hanford wastes by means of a joule-heated ceramic melter. Surface area for large glass castings is equivalent to the mass median particle diameters between 4.27 cm (1.75 in.) and 8.91 cm (3.51 in.) even when allowed to cool rapidly by standing in ambient air. Large canisters (up to 0.91 m in dia) can be cast without large voids while standing in air if the fill rate is over 100 kg/h. 34 figures, 10 tables

  3. Direct induction skull melting for glass and vitreous materials (Fly ash- oxides - salts)

    Energy Technology Data Exchange (ETDEWEB)

    Uring, J.C. [Celes, 68 - Lautenbach (France); Van den Broek, J. [Promethee, 92 - Paris-la-Defense (France)

    1997-12-31

    Direct coil cold crucibles appear as the most economic and reliable furnaces for vitrifying solid wastes. The efficiency is excellent, as the electromagnetic energy is only transferred into the melt and the power dissipation in the walls of the crucible is negligible. The walls of the crucible are cooled, so a skull of cold material protects the metal or the lining of the crucible. Application to municipal solid waste fly ashes is discussed

  4. Design and Construction of Oil Fired Compact Crucible Furnace ...

    African Journals Online (AJOL)

    As a prelude to necessary industrialization, foundries are springing up in various parts of Nigeria and most of these foundries rely on oil fired furnaces in their operation. This study is aimed at developing an oil fired crucible furnace from locally sourced materials for foundries in Nigeria. In our design, a new system of fuel ...

  5. Combined effects of crucible geometry and Marangoni convection on silicon Czochralski crystal growth

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, F. [Unit of Developpement of Silicon Technologie, Algiers (Algeria); Bouabdallah, A.; Zizi, M. [LTSE Laboratory, University of Science and Technology USTHB., Babezzouar, Algiers (Algeria); Hanchi, S. [UER Mecanique/ E.M.P/ B.P, El Bahri/Alger (Algeria); Alemany, A. [Laboratoire EPM, CNRS, Grenoble (France)

    2009-08-15

    In order to understand the influence of crucible geometry combined with natural convection and Marangoni convection on melt flow pattern, temperature and pressure fields in silicon Czochralski crystal growth process, a set of numerical simulations was conducted. We carry out calculation enable us to determine temperature, pressure and velocity fields in function of Grashof and Marangoni numbers. The essential results show that the hemispherical geometry of crucible seems to be adapted for the growth of a good quality crystal and the pressure field is strongly affected by natural and Marangoni convection and it is more sensitive than temperature. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. TTP SR1-6-WT-31, Milestone C.3-2 Annual Report on Clemson/INEEL Melter Work

    International Nuclear Information System (INIS)

    Bickford, D.F.

    1999-01-01

    This work is performed in collaboration with RL37WT31-C and ID77WT31-B. During the first two years of radioactive operation of the DWPF process, several areas for improvement in melter design have been identified. The continuing scope of this task is to address performance limitations and deficiencies identified by the user. SRS will design and test several configurations of the melter pour spout and associated equipment to improve consistency of performance and recommend design improvements

  7. TTP SR1-6-WT-31, Milestone C.3-2 Annual Report on Clemson/INEEL Melter Work

    Energy Technology Data Exchange (ETDEWEB)

    Bickford, D.F.

    1999-10-20

    This work is performed in collaboration with RL37WT31-C and ID77WT31-B. During the first two years of radioactive operation of the DWPF process, several areas for improvement in melter design have been identified. The continuing scope of this task is to address performance limitations and deficiencies identified by the user. SRS will design and test several configurations of the melter pour spout and associated equipment to improve consistency of performance and recommend design improvements.

  8. 50-kg large-size cold crucible levitation melting apparatus; Teibu shuto kino wo motsu 50kg kyu korudo kurushiburu fuyo yokai shochi no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, S. [Fuji Electric Co. Ltd., Tokyo (Japan); Tadano, E. [Fuji Electric Corporate Research and Development Ltd., Kanagawa (Japan)

    1997-06-25

    With an increase in the degree of industrial techniques and the development of high-technology products in recent years, it has been demanded that the quality of high-purity metal materials be improved. The levitation melting method is a new melting method in which a metal material is melted by induction heating while the material is levitated in a water-cooled copper crucible. This paper made clear the principle of the levitation melting method and describes some problems in the development of a 50 kg-class large-capacity levitation melting apparatus and solutions to the problems. The development of a 50 kg-class levitation melting apparatus having a bottom discharging function was carried out on the basis of the results of discussion of the above-mentioned problems, and the noncontact melting of 50 kg cast iron and the noncontact bottom discharging of molten iron succeeded. This enabled the noncontact process of from the melting of a high-purity metal material and a metal of a high melting point to the casting of the molten metal. Since a continuous casting apparatus is provided under the crucible, the casting of an ingot and a rod material becomes possible. When a metal material is levitation-melted in superhigh vacuum, production of a superhigh-purity metal and a new metal material can be attained since the material is not contaminated by the atmosphere. 9 refs., 11 figs., 4 tabs.

  9. High quality vacuum induction melting of small quantities of NiTi shape memory alloys in graphite crucibles

    International Nuclear Information System (INIS)

    Frenzel, J.; Zhang, Z.; Neuking, K.; Eggeler, G.

    2004-01-01

    Binary NiTi based shape memory alloys can be produced starting from the pure elements (Ni-pellets, Ti-rods) by using vacuum induction melting (VIM). VIM ingot metallurgy is known to produce materials with a good chemical homogeneity; it, moreover, is cheaper than vacuum arc melting (VAM) when small quantities of laboratory materials are needed. In a VIM procedure, graphite crucibles are attractive because they have appropriate electrical properties. For NiTi melting, graphite crucibles are interesting because they are reasonably priced and they show a good resistance against thermal cracking. On the other hand, it is well known that melting of Ti alloys in graphite crucibles is associated with a vigorous interface reaction. And the carbon concentration of NiTi alloys needs to be kept below a certain minimum in order to assure that the functional properties of the alloys meet the required targets. Therefore, it is important to minimize the carbon pick up of the melt. The present work presents experimental results and discusses thermodynamic and kinetic aspects of the reaction of NiTi melts with graphite crucibles; a method is suggested to keep the carbon dissolution into the melt at a minimum

  10. Remote viewing of melter interior Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Heckendorn, F.M. II.

    1986-01-01

    A remote system has been developed and demonstrated for continuous reviewing of the interior of a glass melter, which is used to vitrify highly radioactive waste. The system is currently being implemented with the Defense Waste Processing Facility (DWPF) now under construction at the Savannah River Plant (SRP). The environment in which the borescope/TV unit is implemented combines high temperature, high ionizing radiation, low light, spattering, deposition, and remote maintenance

  11. FINAL REPORT INTEGRATED DM1200 MELTER TESTING USING AZ 102 AND C 106/AY-102 HLW SIMULANTS: HLW SIMULANT VERIFICATION VSL-05R5800-1 REV 0 6/27/05

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; GONG W; BARDAKCI T; D' ANGELO NA; BRANDYS M; KOT WK; PEGG IL

    2011-12-29

    The principal objectives of the DM1200 melter tests were to determine the effects of feed rheology, feed solid content, and bubbler configuration on glass production rate and off-gas system performance while processing the HLW AZ-101 and C-106/AY-102 feed compositions; characterize melter off-gas emissions; characterize the performance of the prototypical off-gas system components, as well as their integrated performance; characterize the feed, glass product, and off-gas effluents; and perform pre- and post test inspections of system components. The specific objectives (including test success criteria) of this testing, along with how each objective was met, are outlined in a table. The data provided in this Final Report address the impacts of HLW melter feed rheology on melter throughput and validation of the simulated HLW melter feeds. The primary purpose of this testing is to further validate/verify the HLW melter simulants that have been used for previous melter testing and to support their continued use in developing melter and off-gas related processing information for the Project. The primary simulant property in question is rheology. Simulants and melter feeds used in all previous melter tests were produced by direct addition of chemicals; these feed tend to be less viscous than rheological the upper-bound feeds made from actual wastes. Data provided here compare melter processing for the melter feed used in all previous DM100 and DM1200 tests (nominal melter feed) with feed adjusted by the feed vendor (NOAH Technologies) to be more viscous, thereby simulating more closely the upperbounding feed produced from actual waste. This report provides results of tests that are described in the Test Plan for this work. The Test Plan is responsive to one of several test objectives covered in the WTP Test Specification for this work; consequently, only part of the scope described in the Test Specification was addressed in this particular Test Plan. For the purpose of

  12. Final Report Integrated DM1200 Melter Testing Using AZ-102 And C-106/AY-102 HLW Simulants: HLW Simulant Verification VSL-05R5800-1, Rev. 0, 6/27/05

    International Nuclear Information System (INIS)

    Kruger, A.A.; Matlack, K.S.; Gong, W.; Bardakci, T.; D'Angelo, N.A.; Brandys, M.; Kot, W.K.; Pegg, I.L.

    2011-01-01

    The principal objectives of the DM1200 melter tests were to determine the effects of feed rheology, feed solid content, and bubbler configuration on glass production rate and off-gas system performance while processing the HLW AZ-101 and C-106/AY-102 feed compositions; characterize melter off-gas emissions; characterize the performance of the prototypical off-gas system components, as well as their integrated performance; characterize the feed, glass product, and off-gas effluents; and perform pre- and post test inspections of system components. The specific objectives (including test success criteria) of this testing, along with how each objective was met, are outlined in a table. The data provided in this Final Report address the impacts of HLW melter feed rheology on melter throughput and validation of the simulated HLW melter feeds. The primary purpose of this testing is to further validate/verify the HLW melter simulants that have been used for previous melter testing and to support their continued use in developing melter and off-gas related processing information for the Project. The primary simulant property in question is rheology. Simulants and melter feeds used in all previous melter tests were produced by direct addition of chemicals; these feed tend to be less viscous than rheological the upper-bound feeds made from actual wastes. Data provided here compare melter processing for the melter feed used in all previous DM100 and DM1200 tests (nominal melter feed) with feed adjusted by the feed vendor (NOAH Technologies) to be more viscous, thereby simulating more closely the upperbounding feed produced from actual waste. This report provides results of tests that are described in the Test Plan for this work. The Test Plan is responsive to one of several test objectives covered in the WTP Test Specification for this work; consequently, only part of the scope described in the Test Specification was addressed in this particular Test Plan. For the purpose of

  13. Final Report - Melt Rate Enhancement for High Aluminum HLW Glass Formulation, VSL-08R1360-1, Rev. 0, dated 12/19/08

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A.; Pegg, I. L.; Chaudhuri, M.; Gong, W.; Gan, H.; Matlack, K. S.; Bardakci, T.; Kot, W.

    2013-11-13

    The principal objective of the work reported here was to develop and identify HLW glass compositions that maximize waste processing rates for the aluminum limted waste composition specified by ORP while maintaining high waste loadings and acceptable glass properties. This was accomplished through a combination of crucible-scale tests, confirmation tests on the DM100 melter system, and demonstration at pilot scale (DM1200). The DM100-BL unit was selected for these tests since it was used previously with the HLW waste streams evaluated in this study, was used for tests on HLW glass compositions to support subsequent tests on the HLW Pilot Melter, conduct tests to determine the effect of various glass properties (viscosity and conductivity) and oxide concentrations on glass production rates with HLW feed streams, and to assess the volatility of cesium and technetium during the vitrification of an HLW AZ-102 composition. The same melter was selected for the present tests in order to maintain comparisons between the previously collected data. These tests provide information on melter processing characteristics and off-gas data, including formation of secondary phases and partitioning. Once DM100 tests were completed, one of the compositions was selected for further testing on the DM1200; the DM1200 system has been used for processing a variety of simulated Hanford waste streams. Tests on the larger melter provide processing data at one third of the scale of the actual WTP HLW melter and, therefore, provide a more accurate and reliable assessment of production rates and potential processing issues. The work focused on maximizing waste processing rates for high aluminum HLW compositions. In view of the diversity of forms of aluminum in the Hanford tanks, tests were also conducted on the DM100 to determine the effect of changes in the form of aluminum on feed properties and production rate. In addition, the work evaluated the effect on production rate of modest increases

  14. Application of Ceramic Bond Coating for Reusable Melting Crucible of Metallic Fuel Slugs

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki-Hwan; Song, Hoon; Ko, Young-Mo; Park, Jeong-Yong; Lee, Chan-Bock [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Hong, Ki-Won [Chungnam National University, Daejeon (Korea, Republic of)

    2016-10-15

    Metal fuel slugs of the driver fuel assembly have been fabricated by injection casting of the fuel alloys under a vacuum state or an inert atmosphere. Traditionally, metal fuel such as a U-Zr alloy system for SFR has been melted in slurry-coated graphite crucibles and cast in slurry-coated quartz tube molds to prevent melt/material interactions. Reactive coatings and porous coatings can be a source of melt contaminations, and fuel losses, respectively. Ceramic Y{sub 2}O{sub 3}, TiC, and TaC coating materials showed no penetration in the protective layer after a melt dipping test. However, the ceramic coating materials showed separations in the coating interface between the substrate and coating layer, or between the coating layer and fuel melt after the dipping test. All plasma-spray coated methods maintained a sound coating state after a dipping test with U-10wt.%Zr melt. A single coating Y{sub 2}O{sub 3}(150) layer and double coating layer of TaC(50)-Y{sub 2}O{sub 3}(100), showed a sound state or little penetration in the protective layer after a dipping test with U-10wt.%Zr-5wt.%RE melt. Injection casting experiments of U-10wt.%Zr and U-10wt.%Zr-5wt.%RE fuel slugs have been performed to investigate the feasibility of a reusable crucible of the metal fuel slugs. U–10wt.%Zr and U–10wt.%Zr–5wt.%RE fuel slugs have been soundly fabricated without significant interactions of the graphite crucibles. Thus, the ceramic plasma-spray coatings are thought to be promising candidate coating methods for a reusable graphite crucible to fabricate metal fuel slugs.

  15. Cullet Manufacture Using the Cylindrical Induction Melter

    International Nuclear Information System (INIS)

    Miller, D. H.

    2000-01-01

    The base process for vitrification of the Am/Cm solution stored in F-canyon uses 25SrABS cullet as the glass former. A small portion of the cullet used in the SRTC development work was purchased from Corning while the majority was made in the 5 inch Cylindrical Induction Melter (CIM5). Task 1.01 of TTR-NMSS/SE-006, Additional Am-Cm Process Development Studies, requested that a process for the glass former (cullet) fabrication be specified. This report provides the process details for 25SrAB cullet production thereby satisfying Task 1.01

  16. MASBAL: A computer program for predicting the composition of nuclear waste glass produced by a slurry-fed ceramic melter

    International Nuclear Information System (INIS)

    Reimus, P.W.

    1987-07-01

    This report is a user's manual for the MASBAL computer program. MASBAL's objectives are to predict the composition of nuclear waste glass produced by a slurry-fed ceramic melter based on a knowledge of process conditions; to generate simulated data that can be used to estimate the uncertainty in the predicted glass composition as a function of process uncertainties; and to generate simulated data that can be used to provide a measure of the inherent variability in the glass composition as a function of the inherent variability in the feed composition. These three capabilities are important to nuclear waste glass producers because there are constraints on the range of compositions that can be processed in a ceramic melter and on the range of compositions that will be acceptable for disposal in a geologic repository. MASBAL was developed specifically to simulate the operation of the West Valley Component Test system, a commercial-scale ceramic melter system that will process high-level nuclear wastes currently stored in underground tanks at the site of the Western New York Nuclear Services Center (near West Valley, New York). The program is flexible enough, however, to simulate any slurry-fed ceramic melter system. 4 refs., 16 figs., 5 tabs

  17. Electrical power supply and controls for a remotely operated glass melter for nuclear waste

    International Nuclear Information System (INIS)

    Haideri, A.Q.

    1985-01-01

    An electrical power supply, controls and instruments used for a joule heated glass melter for nuclear waste are discussed. Remotely replaceable interconnection wiring assemblies for power, controls and instruments are also described

  18. EVALUATION OF MIXING IN THE SLURRY MIX EVAPORATOR AND MELTER FEED TANK

    International Nuclear Information System (INIS)

    MARINIK, ANDREW

    2004-01-01

    The Defense Waste Processing Facility (DWPF) vitrifies High Level radioactive Waste (HLW) currently stored in underground tanks at the Savannah River Site (SRS). The HLW currently being processed is a waste sludge composed primarily of metal hydroxides and oxides in caustic slurry. These slurries are typically characterized as Bingham Plastic fluids. The HLW undergoes a pretreatment process in the Chemical Process Cell (CPC) at DWPF. The processed HLW sludge is then transferred to the Sludge Receipt and Adjustment Tank (SRAT) where it is acidified with nitric and formic acid then evaporated to concentrate the solids. Reflux boiling is used to strip mercury from the waste and then the waste is transferred to the Slurry Mix Evaporator tank (SME). Glass formers are added as a frit slurry to the SME to prepare the waste for vitrification. This mixture is evaporated in the SME to the final concentration target. The frit slurry mixture is then transferred to the Melter Feed Tank (MFT) to be fed to the melter

  19. Off-gas system data summary for the ninth run of the large slurry fed melter

    International Nuclear Information System (INIS)

    Colven, W.P.

    1983-01-01

    The ninth melter campaign successfully demonstrated extended operation of both melter and off-gas systems. Two critical problem areas associated with the handling of melter off-gases were resolved leading to firm definition of the DWPF Off-Gas Treatment System. These two concerns, wet scrubber decontamination efficiency and the reduction of solids deposition at the off-gas line entrance, were the primary focus of off-gas system studies during the 63-day run (LSFM-9). The Hydro-Sonic Scrubber was confirmed to be the superior candidate for wet scrubbing by outperforming all other scrubbers tested at the Equipment Test Facility (ETF). The two stage, steam-driven scrubber achieved consistent decontamination factors for cesium exceeding the required DWPF flowsheet DF of 50. As a result, the device was selected as the reference wet scrubber for the DWPF. The Off-Gas Film Cooling device continued to show promising results for reducing three accumulation of solid deposits at the entrance to the off-gas line. In addition, a rotating wire brush cleaning device provided easy and efficient removal of deposits which had accumulated. The combination of the two has adequately resolved the deposit accumulation problem and both devices have been incorporated in the DWPF design

  20. Experimental research of crucible steel: a new insight and historical reflection

    Directory of Open Access Journals (Sweden)

    Klaas Remmen

    2012-06-01

    Full Text Available This paper describes experimental archaeo-metallurgical research on crucible steel, executed as a master project to obtain the master degree in conservation.  After evaluating the results of different manufacturing techniques, the so-called Georgian crucible steel technique showed results that were remarkably similar to archaeological evidence from Merv, Turkmenistan. An objective historical reflection was made.Cet article décrit une étude expérimentale archéo-métallurgique sur l'acier creuset, menée en tant que projet maîtrise pour l’obtention du grade de master en conservation et restauration. Après avoir évalué les résultats des techniques différentes de fabrication, la technique de l’acier au creuset géorgien a montré des résultats similaires aux preuves archéologiques de Merv, au Turkménistan. Une réflexion historique a été menée à ce sujet.

  1. Characterization Report on Sand, Slag, and Crucible Residues and on Fluoride Residues

    International Nuclear Information System (INIS)

    Murray, A.M.

    1999-01-01

    This paper reports on the chemical characterization of the sand, slag, and crucible (SS and C) residues and the fluoride residues that may be shipped from the Rocky Flats Environmental Technology Site (RFETS) to Savannah River Site (SRS)

  2. Glass Ceramic Formulation Data Package

    International Nuclear Information System (INIS)

    Crum, Jarrod V.; Rodriguez, Carmen P.; McCloy, John S.; Vienna, John D.; Chung, Chul-Woo

    2012-01-01

    A glass ceramic waste form is being developed for treatment of secondary waste streams generated by aqueous reprocessing of commercial used nuclear fuel (Crum et al. 2012b). The waste stream contains a mixture of transition metals, alkali, alkaline earths, and lanthanides, several of which exceed the solubility limits of a single phase borosilicate glass (Crum et al. 2009; Caurant et al. 2007). A multi-phase glass ceramic waste form allows incorporation of insoluble components of the waste by designed crystallization into durable heat tolerant phases. The glass ceramic formulation and processing targets the formation of the following three stable crystalline phases: (1) powellite (XMoO4) where X can be (Ca, Sr, Ba, and/or Ln), (2) oxyapatite Yx,Z(10-x)Si6O26 where Y is alkaline earth, Z is Ln, and (3) lanthanide borosilicate (Ln5BSi2O13). These three phases incorporate the waste components that are above the solubility limit of a single-phase borosilicate glass. The glass ceramic is designed to be a single phase melt, just like a borosilicate glass, and then crystallize upon slow cooling to form the targeted phases. The slow cooling schedule is based on the centerline cooling profile of a 2 foot diameter canister such as the Hanford High-Level Waste canister. Up to this point, crucible testing has been used for glass ceramic development, with cold crucible induction melter (CCIM) targeted as the ultimate processing technology for the waste form. Idaho National Laboratory (INL) will conduct a scaled CCIM test in FY2012 with a glass ceramic to demonstrate the processing behavior. This Data Package documents the laboratory studies of the glass ceramic composition to support the CCIM test. Pacific Northwest National Laboratory (PNNL) measured melt viscosity, electrical conductivity, and crystallization behavior upon cooling to identify a processing window (temperature range) for melter operation and cooling profiles necessary to crystallize the targeted phases in the

  3. HIGH ALUMINUM HLW (HIGH LEVEL WASTE) GLASSES FOR HANFORD'S WTP (WASTE TREATMENT PROJECT)

    International Nuclear Information System (INIS)

    Kruger, A.A.; Bowan, B.W.; Joseph, I.; Gan, H.; Kot, W.K.; Matlack, K.S.; Pegg, I.L.

    2010-01-01

    This paper presents the results of glass formulation development and melter testing to identify high waste loading glasses to treat high-Al high level waste (HLW) at Hanford. Previous glass formulations developed for this HLW had high waste loadings but their processing rates were lower that desired. The present work was aimed at improving the glass processing rate while maintaining high waste loadings. Glass formulations were designed, prepared at crucible-scale and characterized to determine their properties relevant to processing and product quality. Glass formulations that met these requirements were screened for melt rates using small-scale tests. The small-scale melt rate screening included vertical gradient furnace (VGF) and direct feed consumption (DFC) melter tests. Based on the results of these tests, modified glass formulations were developed and selected for larger scale melter tests to determine their processing rate. Melter tests were conducted on the DuraMelter 100 (DMIOO) with a melt surface area of 0.11 m 2 and the DuraMelter 1200 (DMI200) HLW Pilot Melter with a melt surface area of 1.2 m 2 . The newly developed glass formulations had waste loadings as high as 50 wt%, with corresponding Al 2 O 3 concentration in the glass of 26.63 wt%. The new glass formulations showed glass production rates as high as 1900 kg/(m 2 .day) under nominal melter operating conditions. The demonstrated glass production rates are much higher than the current requirement of 800 kg/(m 2 .day) and anticipated future enhanced Hanford Tank Waste Treatment and Immobilization Plant (WTP) requirement of 1000 kg/(m 2 .day).

  4. Modifying the rheological properties of melter feed for the Hanford Waste Vitrification Plant

    International Nuclear Information System (INIS)

    Blair, H.T.; McMakin, A.H.

    1986-03-01

    Selected high-level nuclear wastes from the Hanford Site may be vitrified in the future Hanford Waste Vitrification Plant (HWVP) by Rockwell Hanford Company, the contractor responsible for reprocessing and waste management at the Hanford Site. The Pacific Northwest Laboratory (PNL), is responsible for providing technical support for the HWVP. In this capacity, PNL performed rheological evaluations of simulated HWVP feed in order to determine which processing factors could be modified to best optimize the vitrification process. To accomplish this goal, a simulated HWVP feed was first created and characterized. Researchers then evaluated how the chemical and physical form of the glass-forming additives affected the rheological properties and melting behavior of melter feed prepared with the simulated HWVP feed. The effects of adding formic acid to the waste were also evaluated. Finally, the maximum melter feed concentration with acceptable rheological properties was determined

  5. SETTLING OF SPINEL IN A HIGH-LEVEL WASTE GLASS MELTER

    International Nuclear Information System (INIS)

    Pavel Hrma; Pert Schill; Lubomir Nemec

    2002-01-01

    High-level nuclear waste is being vitrified, i.e., converted to a durable glass that can be stored in a safe repository for hundreds of thousands of years. Waste vitrification is accomplished in reactors called melters to which the waste is charged together with glass-forming additives. The mixture is electrically heated to a temperature as high as 1150 decrees C to create a melt that becomes glass on cooling

  6. TTP SR1-6-WT-31, Milestone C.3-2 annual report on Clemson/INEEL melter work. Revision 1

    International Nuclear Information System (INIS)

    Bickford, D.F.

    1999-01-01

    This work is performed in collaboration with RL37WT31-C and ID77WT31-B. During the first two years of radioactive operation of the DWPF process, several areas for improvement in melter design have been identified. The continuing scope of this task is to address performance limitations and deficiencies identified by the user. SRS will design and test several configurations of the melter pour spout and associated equipment to improve consistency of performance and recommend design improvements

  7. TTP SR1-6-WT-31, Milestone C.3-2 annual report on Clemson/INEEL melter work. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Bickford, D.F.

    1999-12-17

    This work is performed in collaboration with RL37WT31-C and ID77WT31-B. During the first two years of radioactive operation of the DWPF process, several areas for improvement in melter design have been identified. The continuing scope of this task is to address performance limitations and deficiencies identified by the user. SRS will design and test several configurations of the melter pour spout and associated equipment to improve consistency of performance and recommend design improvements.

  8. Fabrication of aluminum nitride crucibles for molten salt and plutonium compatibility studies

    International Nuclear Information System (INIS)

    Phillips, J.A.

    1991-01-01

    The overall objective of this research was to fabricate a calcium oxide sinter-aided aluminum nitride crucible and determine the compatibility of this crucible with molten chloride salts and plutonium metal in the DOR process. Calcium oxide sinter-aided aluminum nitride was preferred over yttrium oxide sinter-aided aluminum nitride because of (1) the presence of calcium chloride, calcium oxide, and calcium metal in the molten salts utilized in the DOR process, and (2) the higher volatility of the secondary phases formed compared with phases resulting from the addition of yttrium oxide during the aluminum nitride sintering process. The calcium oxide system may yield a higher purity crystal structure with fewer secondary phases present than in the yttrium oxide system. The secondary phases that are present in the grain boundaries may be unreactive with the calcium chloride salt due to the presence of calcium in the secondary phases

  9. Characterisation in Ward’s opera The Crucible: melodic interpretation of Salem’s witches and their accusers via historical accounts and Miller’s play

    OpenAIRE

    Cornwell McKean, Julia Margaret

    2017-01-01

    ABSTRACT Characterisation in Ward’s opera The Crucible: Melodic interpretation of Salem’s witches and their accusers via historical accounts and Miller’s play This thesis is a consideration of the transition of the characters of Robert Ward’s opera The Crucible from history through to Arthur Miller’s play of the same name, and finally to the linear elements of the opera: the libretto and the vocal melodies. Arthur Miller’s The Crucible (1953) is widely known as a play that explor...

  10. Next Generation Melter Optioneering Study - Interim Report

    International Nuclear Information System (INIS)

    Gray, M.F.; Calmus, R.B.; Ramsey, G.; Lomax, J.; Allen, H.

    2010-01-01

    The next generation melter (NOM) development program includes a down selection process to aid in determining the recommended vitrification technology to implement into the WTP at the first melter change-out which is scheduled for 2025. This optioneering study presents a structured value engineering process to establish and assess evaluation criteria that will be incorporated into the down selection process. This process establishes an evaluation framework that will be used progressively throughout the NGM program, and as such this interim report will be updated on a regular basis. The workshop objectives were achieved. In particular: (1) Consensus was reached with stakeholders and technology providers represented at the workshop regarding the need for a decision making process and the application of the D 2 0 process to NGM option evaluation. (2) A framework was established for applying the decision making process to technology development and evaluation between 2010 and 2013. (3) The criteria for the initial evaluation in 2011 were refined and agreed with stakeholders and technology providers. (4) The technology providers have the guidance required to produce data/information to support the next phase of the evaluation process. In some cases it may be necessary to reflect the data/information requirements and overall approach to the evaluation of technology options against specific criteria within updated Statements of Work for 2010-2011. Access to the WTP engineering data has been identified as being very important for option development and evaluation due to the interface issues for the NGM and surrounding plant. WRPS efforts are ongoing to establish precisely data that is required and how to resolve this Issue. It is intended to apply a similarly structured decision making process to the development and evaluation of LAW NGM options.

  11. High-Level Waste Melter Study Report

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Joseph M.; Bickford, Dennis F.; Day, Delbert E.; Kim, Dong-Sang; Lambert, Steven L.; Marra, Sharon L.; Peeler, David K.; Strachan, Denis M.; Triplett, Mark B.; Vienna, John D.; Wittman, Richard S.

    2001-07-13

    At the Hanford Site in Richland, Washington, the path to site cleanup involves vitrification of the majority of the wastes that currently reside in large underground tanks. A Joule-heated glass melter is the equipment of choice for vitrifying the high-level fraction of these wastes. Even though this technology has general national and international acceptance, opportunities may exist to improve or change the technology to reduce the enormous cost of accomplishing the mission of site cleanup. Consequently, the U.S. Department of Energy requested the staff of the Tanks Focus Area to review immobilization technologies, waste forms, and modifications to requirements for solidification of the high-level waste fraction at Hanford to determine what aspects could affect cost reductions with reasonable long-term risk. The results of this study are summarized in this report.

  12. Improvement of melter off-gas design for commercial HALW vitrification facility

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, A.; Kitamura, M.; Yamanaka, T. [Ishikawajima-Harima Heavy Industries Co., Ltd., Yokohama (Japan); Yoshioka, M.; Endo, N.; Asano, N. [Japan Nuclear Cycle Development Institute, Ibaraki (Japan)

    2001-07-01

    The Japan commercial reprocessing plant is now under construction, and it will commence the operation in 2005. The High Active Liquid Waste (HALW) generated at the plant is treated into glass product at the vitrification facility using the Liquid Fed Joule-Heated Ceramic Melter (LFCM). The characteristic of the LFCM is that the HALW is fed directly onto the molten glass surface with the glass forming material. This process was developed by the Japan Nuclear Cycle Development Institute (JNC). The JNC process was first applied to the Tokai Vitrification Facility (TVF), which is a pilot scale plant having about 1/6 capacity of the commercial facility. The TVF has been in operation since 1995. During the operation, the rapid increase of the differential pressure between the melter plenum and the dust scrubber was observed. This phenomenon is harmful to the long-term continuous operation of TVF. And, it is also anticipated that the same phenomenon will occur in commercial vitrification facility. In order to solve this problem, the countermeasures were studied and developed. Through the study on the deposit growing mechanism, it was probable that the rapid increased differential pressure was attributed to the condensation of meta-boric acid at the outlet of the air-film cooler slits. And, the heating and the humidification of purge air were judged to be effective as the countermeasures to suppress the condensation. On the other hand, the water injection into melter off-gas pipe was found to be very effective to reduce the differential pressure as the results of the various tests. The deposit adhered on the inner surface of the off-gas pipe was almost washed out. And, it was also demonstrated that the system was superior to other systems by virtue of its simplicity and stability. In order to apply the system to the commercial scale plant, the scale-up tests were conducted at JNC mock-up facility using the acrylic model. (author)

  13. Improvement of melter off-gas design for commercial HALW vitrification facility

    International Nuclear Information System (INIS)

    Ohno, A.; Kitamura, M.; Yamanaka, T.; Yoshioka, M.; Endo, N.; Asano, N.

    2001-01-01

    The Japan commercial reprocessing plant is now under construction, and it will commence the operation in 2005. The High Active Liquid Waste (HALW) generated at the plant is treated into glass product at the vitrification facility using the Liquid Fed Joule-Heated Ceramic Melter (LFCM). The characteristic of the LFCM is that the HALW is fed directly onto the molten glass surface with the glass forming material. This process was developed by the Japan Nuclear Cycle Development Institute (JNC). The JNC process was first applied to the Tokai Vitrification Facility (TVF), which is a pilot scale plant having about 1/6 capacity of the commercial facility. The TVF has been in operation since 1995. During the operation, the rapid increase of the differential pressure between the melter plenum and the dust scrubber was observed. This phenomenon is harmful to the long-term continuous operation of TVF. And, it is also anticipated that the same phenomenon will occur in commercial vitrification facility. In order to solve this problem, the countermeasures were studied and developed. Through the study on the deposit growing mechanism, it was probable that the rapid increased differential pressure was attributed to the condensation of meta-boric acid at the outlet of the air-film cooler slits. And, the heating and the humidification of purge air were judged to be effective as the countermeasures to suppress the condensation. On the other hand, the water injection into melter off-gas pipe was found to be very effective to reduce the differential pressure as the results of the various tests. The deposit adhered on the inner surface of the off-gas pipe was almost washed out. And, it was also demonstrated that the system was superior to other systems by virtue of its simplicity and stability. In order to apply the system to the commercial scale plant, the scale-up tests were conducted at JNC mock-up facility using the acrylic model. (author)

  14. Crystal growth of YBa2Cu3O(7-x) and reaction of gold crucible with Ba-Cu-rich flux

    Science.gov (United States)

    Tao, Y. K.; Chen, H. C.; Martini, L.; Bechtold, J.; Huang, Z. J.; Hor, P. H.

    1991-01-01

    YBa2Cu3O(7-x) crystals are grown in a gold crucible by a self-flux method. The flux moves along the gold surface due to surface wetting and leaves Y123 crystals behind. The obtained crystals are clean and have a size up to two millimeters and a Tc is greater than 90 K. In an effort to recycle the used crucibles, it is found that the used gold is contaminated by copper. A CuO thin film is easily formed on the surface of the crucible that is made of the used gold. This film provides good surface wetting and a buffer layer, which reduces the reaction between gold and the Y-Ba-Cu-oxide melt.

  15. Methods of Off-Gas Flammability Control for DWPF Melter Off-Gas System at Savannah River Site

    International Nuclear Information System (INIS)

    Choi, A.S.; Iverson, D.C.

    1996-01-01

    Several key operating variables affecting off-gas flammability in a slurry-fed radioactive waste glass melter are discussed, and the methods used to prevent potential off-gas flammability are presented. Two models have played a central role in developing such methods. The first model attempts to describe the chemical events occurring during the calcining and melting steps using a multistage thermodynamic equilibrium approach, and it calculates the compositions of glass and calcine gases. Volatile feed components and calcine gases are fed to the second model which then predicts the process dynamics of the entire melter off-gas system including off-gas flammability under both steady state and various transient operating conditions. Results of recent simulation runs are also compared with available data

  16. Fabricating tungsten crucibles by drawing and extrusion spinning

    International Nuclear Information System (INIS)

    Edstrom, C.M.

    1981-01-01

    The fabrication of seamless tungsten crucibles 127-mm ID x 265-mm high x 6.25-mm wall thickness (5 in. x 10 1/2 in. x 1/4 in.) involved three drawing operations and extrusion spinning. The success of the drawing operations came from a combination of low draw reduction percentage, generous draw radii, large punch-to-die clearance, and attention to drawing temperature. The extrusion spinning success related to good drawn-cup-to-spinning-mandrel fit prior to making the extrusion passes, removal of stress risers in the part prior to spinning, and special attention to part and mandrel temperature

  17. Development of the high-level waste high-temperature melter feed preparation flowsheet for vitrification process testing

    International Nuclear Information System (INIS)

    Seymour, R.G.

    1995-01-01

    High-level waste (HLW) feed preparation flowsheet development was initiated in fiscal year (FY) 1994 to evaluate alternative flowsheets for preparing melter feed for high-temperature melter (HTM) vitrification testing. Three flowsheets were proposed that might lead to increased processing capacity relative to the Hanford Waste Vitrification Plant (HWVP) and that were flexible enough to use with other HLW melter technologies. This document describes the decision path that led to the selection of flowsheets to be tested in the FY 1994 small-scale HTM tests. Feed preparation flowsheet development for the HLW HTM was based on the feed preparation flowsheet that was developed for the HWVP. This approach allowed the HLW program to build upon the extensive feed preparation flowsheet database developed under the HWVP Project. Primary adjustments to the HWVP flowsheet were to the acid adjustment and glass component additions. Developmental background regarding the individual features of the HLW feed preparation flowsheets is provided. Applicability of the HWVP flowsheet features to the new HLW vitrification mission is discussed. The proposed flowsheets were tested at the laboratory-scale at Pacific Northwest Laboratory. Based on the results of this testing and previously established criteria, a reductant-based flowsheet using glycolic acid and a nitric acid-based flowsheet were selected for the FY 1994 small-scale HTM testing

  18. Joule-Heated Ceramic-Lined Melter to Vitrify Liquid Radioactive Wastes Containing Am241 Generated From MOX Fuel Fabrication in Russia

    International Nuclear Information System (INIS)

    Smith, E C; Bowan II, B W; Pegg, I; Jardine, L J

    2004-01-01

    The governments of the United Stated of America and the Russian Federation (RF) signed an Agreement September 1, 2000 to dispose of weapons plutonium that has been designated as no longer required for defense purposes. The Agreement declares that each country will disposition 34MT of excess weapons grade plutonium from their stockpiles. The preferred disposition technology is the fabrication of mixed oxide (MOx) fuel for use or burning in pressurized water reactors to destroy the plutonium. Implementation of this Agreement will require the conversion of plutonium metal to oxide and the fabrication of MOx fuel within the Russian Federation. The MOx fuel fabrication and metal to oxide conversion processes will generate solid and liquid radioactive wastes containing trace amounts of plutonium, neptunium, americium, and uranium requiring treatment, storage, and disposal. Unique to the Russian MOx fuel fabrication facility's flow-sheet is a liquid waste stream with high concentrations (∼1 g/l) of 241 Am and non radioactive silver. The silver is used to dissolve PuO 2 feed materials to the MOx fabrication facility. Technical solutions are needed to treat and solidify this liquid waste stream. Alternative treatment technologies for this liquid waste stream are being evaluated by a Russian engineering team. The technologies being evaluated include borosilicate and phosphate vitrification alternatives. The evaluations are being performed at a conceptual design level of detail under a Lawrence Livermore National Laboratory (LLNL) contract with the Russian organization TVEL using DOE NA-26 funding. As part of this contract, the RF team is evaluating the technical and economic feasibility of the US borosilicate glass vitrification technology based on a Duratek melter to solidify this waste stream into a form acceptable for storage and geologic disposal. The composition of the glass formed from treating the waste is dictated by the concentration of silver and americium it

  19. Vitrification of SRP waste by a slurry-fed ceramic melter

    International Nuclear Information System (INIS)

    Wicks, G.G.

    1980-01-01

    Savannah River Plant (SRP) high-level waste (HLW) can be vitrified by feeding a slurry, instead of a calcine, to a joule-heated ceramic melter. Potential advantages of slurry feeding include (1) use of simpler equipment, (2) elimination of handling easily dispersed radioactive powder, (3) simpler process control, (4) effective mixing, (5) reduced off-gas volume, and (6) cost savings. Assessment of advantages and disadvantages of slurry feeding along with experimental studies indicate that slurry feeding is a promising way of vitrifying waste

  20. Final Report - Management of High Sulfur HLW, VSL-13R2920-1, Rev. 0, dated 10/31/2013

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A.; Gan, H.; Pegg, I. L.; Feng, Z.; Gan, H; Joseph, I.; Matlack, K. S.

    2013-11-13

    The present report describes results from a series of small-scale crucible tests to determine the extent of corrosion associated with sulfur containing HLW glasses and to develop a glass composition for a sulfur-rich HLW waste stream, which was then subjected to small-scale melter testing to determine the maximum acceptable sulfate loadings. In the present work, a new glass formulation was developed and tested for a projected Hanford HLW composition with sulfate concentrations high enough to limit waste loading. Testing was then performed on the DM10 melter system at successively higher waste loadings to determine the maximum waste loading without the formation of a separate sulfate salt phase. Small scale corrosion testing was also conducted using the glass developed in the present work, the glass developed in the initial phase of this work [26], and a high iron composition, all at maximum sulfur concentrations determined from melter testing, in order to assess the extent of Inconel 690 and MA758 corrosion at elevated sulfate contents.

  1. A Joule-Heated Melter Technology For The Treatment And Immobilization Of Low-Activity Waste

    International Nuclear Information System (INIS)

    Kelly, S.E.

    2011-01-01

    This report is one of four reports written to provide background information regarding immobilization technologies remaining under consideration for supplemental immobilization of Hanford's low-activity waste. This paper provides the reader a general understanding of joule-heated ceramic lined melters and their application to Hanford's low-activity waste.

  2. Forced and thermocapillary convection in silicon Czochralski crystal growth in semispherical crucible

    International Nuclear Information System (INIS)

    Mokhtari, F; Bouabdallah, A; Zizi, M; Hanchi, S; Alemany, A

    2010-01-01

    In order to understand the influence of a semispherical crucible geometry combined with different convection modes as a thermocapillary convection, natural convection and forced convection, induced by crystal rotation, on melt flow pattern in silicon Czochralski crystal growth process, a set of numerical simulations are conducted using Fluent Software. We solve the system of equations of heat and momentum transfer in classical geometry as cylindrical and modified crystal growth process geometry as cylindro-spherical. In addition, we adopt hypothesis adapted to boundary conditions near the interface and calculations are executed to determine temperature, pressure and velocity fields versus Grashof and Reynolds numbers. The analysis of the obtained results led to conclude that there is advantage to modify geometry in comparison with the traditional one. The absence of the stagnation regions of fluid in the hemispherical crucible corner and the possibility to control the melt flow using the crystal rotation enhances the quality of the process comparatively to the cylindrical one. The pressure field is strongly related to the swirl velocity.

  3. Forced and thermocapillary convection in silicon Czochralski crystal growth in semispherical crucible

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, F [Physics Department, Faculty of Science, University of Mouloud Mammeri, Tizi Ouzou (Algeria); Bouabdallah, A; Zizi, M [LTSE Laboratory, University of Science and Technology USTHB. BP 32 Elalia, Babezzouar, Algiers (Algeria); Hanchi, S [UER Mecanique/ E.M.P B.P 17, Bordj El Bahri, Algiers (Algeria); Alemany, A, E-mail: abouab2002@yahoo.f [Laboratoire EPM, CNRS, Grenoble (France)

    2010-03-01

    In order to understand the influence of a semispherical crucible geometry combined with different convection modes as a thermocapillary convection, natural convection and forced convection, induced by crystal rotation, on melt flow pattern in silicon Czochralski crystal growth process, a set of numerical simulations are conducted using Fluent Software. We solve the system of equations of heat and momentum transfer in classical geometry as cylindrical and modified crystal growth process geometry as cylindro-spherical. In addition, we adopt hypothesis adapted to boundary conditions near the interface and calculations are executed to determine temperature, pressure and velocity fields versus Grashof and Reynolds numbers. The analysis of the obtained results led to conclude that there is advantage to modify geometry in comparison with the traditional one. The absence of the stagnation regions of fluid in the hemispherical crucible corner and the possibility to control the melt flow using the crystal rotation enhances the quality of the process comparatively to the cylindrical one. The pressure field is strongly related to the swirl velocity.

  4. Nuclear waste glass melter: an update of technical progress

    International Nuclear Information System (INIS)

    Brouns, R.A.; Hanson, M.S.

    1984-08-01

    The direct slurry-fed ceramic-lined melter is currently the reference US process for treating defense and civilian high-level liquid waste. Extensive nonradioactive pilot-scale testing at Pacific Northwest Laboratory (PNL) and Savannah River Laboratory has proven the process, defined operating parameters, and identified successful equipment design concepts. Programs at PNL continue to support several of the planned US vitrification plants through preparation of equipment designs and flowsheet testing. Current emphasis is on remotization of equipment, radioactive verification testing, and resolution of remaining technical issues. Development of this technology, technical status, and planned development activities are discussed. 9 references, 4 figures

  5. ENHANCED DOE HIGH LEVEL WASTE MELTER THROUGHPUT STUDIES: SRNL GLASS SELECTION STRATEGY

    Energy Technology Data Exchange (ETDEWEB)

    Raszewski, F; Tommy Edwards, T; David Peeler, D

    2008-01-23

    The Department of Energy has authorized a team of glass formulation and processing experts at the Savannah River National Laboratory (SRNL), the Pacific Northwest National Laboratory (PNNL), and the Vitreous State Laboratory (VSL) at Catholic University of America to develop a systematic approach to increase high level waste melter throughput (by increasing waste loading with minimal or positive impacts on melt rate). This task is aimed at proof-of-principle testing and the development of tools to improve waste loading and melt rate, which will lead to higher waste throughput. Four specific tasks have been proposed to meet these objectives (for details, see WSRC-STI-2007-00483): (1) Integration and Oversight, (2) Crystal Accumulation Modeling (led by PNNL)/Higher Waste Loading Glasses (led by SRNL), (3) Melt Rate Evaluation and Modeling, and (4) Melter Scale Demonstrations. Task 2, Crystal Accumulation Modeling/Higher Waste Loading Glasses is the focus of this report. The objective of this study is to provide supplemental data to support the possible use of alternative melter technologies and/or implementation of alternative process control models or strategies to target higher waste loadings (WLs) for the Defense Waste Processing Facility (DWPF)--ultimately leading to higher waste throughputs and a reduced mission life. The glass selection strategy discussed in this report was developed to gain insight into specific technical issues that could limit or compromise the ability of glass formulation efforts to target higher WLs for future sludge batches at the Savannah River Site (SRS). These technical issues include Al-dissolution, higher TiO{sub 2} limits and homogeneity issues for coupled-operations, Al{sub 2}O{sub 3} solubility, and nepheline formation. To address these technical issues, a test matrix of 28 glass compositions has been developed based on 5 different sludge projections for future processing. The glasses will be fabricated and characterized based on

  6. Alloy Development, Processing and Characterization of Devitrified Titanium Base Microcrystalline Alloys.

    Science.gov (United States)

    1986-01-01

    1.5m wide by injecting the molten alloy onto a rotating copper ’. disk through the orifice at the bottom of the copper crucible under inert gas...icrocrystalline forms [10, 271. 7his technique adopts the combination of a water-cooled cold copper crucible with an arc heating scheme that uses non-consumable...are malted in the cold copper crucible and spun in an inert gas atmosphere. he ribbon produced has a uniform thickness of 20 to SOgm. 5’ -7 -. -F -i

  7. A JOULE-HEATED MELTER TECHNOLOGY FOR THE TREATMENT AND IMMOBILIZATION OF LOW-ACTIVITY WASTE

    Energy Technology Data Exchange (ETDEWEB)

    KELLY SE

    2011-04-07

    This report is one of four reports written to provide background information regarding immobilization technologies remaining under consideration for supplemental immobilization of Hanford's low-activity waste. This paper provides the reader a general understanding of joule-heated ceramic lined melters and their application to Hanford's low-activity waste.

  8. Metallurgical Evaluation of the Five-Inch Cylindrical Induction Melter

    International Nuclear Information System (INIS)

    Imrich, K.J.

    2000-01-01

    A metallurgical evaluation of the 5-inch cylindrical induction melter (CIM) vessel was performed by the Materials Technology Section to evaluate the metallurgical condition after operating for approximately 375 hours at 1400 to 1500 Degrees Celsius during a 2 year period. Results indicate that wall thinning and significant grain growth occurred in the lower portion of the conical section and the drain tube. No through-wall penetrations were found in the cylindrical and conical sections of the CIM vessel and only one leak site was identified in the drain tube. Failure of the drain tube was associated with a localized over heating and intercrystalline fracture

  9. The integrated melter off-gas treatment systems at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Vance, R.F.

    1991-12-01

    The West Valley Demonstration project was established by an act of Congress in 1980 to solidify the high level radioactive liquid wastes produced from operation of the Western New York Nuclear Services Center from 1966 to 1972. The waste will be solidified as borosilicate glass. This report describes the functions, the controlling design criteria, and the resulting design of the melter off-gas treatment systems

  10. FINAL REPORT SUMMARY OF DM 1200 OPERATION AT VSL VSL-06R6710-2 REV 0 9/7/06

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; DIENER G; BARDAKCI T; PEGG IL

    2011-12-29

    The principal objective of this report was to summarize the testing experience on the DuraMelter 1200 (DMI200), which is the High Level Waste (HLW) Pilot Melter located at the Vitreous State Laboratory (VSL). Further objectives were to provide descriptions of the history of all modifications and maintenance, methods of operation, problems and unit failures, and melter emissions and performance while processing a variety of simulated HL W and low activity waste (LAW) feeds for the Hanford Waste Treatment and Immobilization Plant (WTP) and employing a variety of operating methods. All of these objectives were met. The River Protection Project - Hanford Waste Treatment and Immobilization Plant (RPP-WTP) Project has undertaken a 'tiered' approach to vitrification development testing involving computer-based glass formulation, glass property-composition models, crucible melts, and continuous melter tests of increasing, more realistic scales. Melter systems ranging from 0.02 to 1.2 m{sup 2} installed at the Vitreous State Laboratory (VSL) have been used for this purpose, which, in combination with the 3.3 m{sup 2} low activity waste (LAW) Pilot Melter at Duratek, Inc., span more than two orders of magnitude in melt surface area. In this way, less-costly small-scale tests can be used to define the most appropriate tests to be conducted at the larger scales in order to extract maximum benefit from the large-scale tests. For high level waste (HLW) vitrification development, a key component in this approach is the one-third scale DuraMelter 1200 (DM 1200), which is the HLW Pilot Melter that has been installed at VSL with an integrated prototypical off-gas treatment system. That system replaced the DM1000 system that was used for HLW throughput testing during Part B1. Both melters have similar melt surface areas (1.2 m{sup 2}) but the DM1200 is prototypical of the present RPP-WTP HLW melter design whereas the DM1000 was not. In particular, the DM1200 provides for

  11. Final Report Summary Of DM 1200 Operation At VSL VSL-06R6710-2, Rev. 0, 9/7/06

    International Nuclear Information System (INIS)

    Kruger, A.A.; Matlack, K.S.; Diener, G.; Bardakci, T.; Pegg, I.L.

    2011-01-01

    The principal objective of this report was to summarize the testing experience on the DuraMelter 1200 (DMI200), which is the High Level Waste (HLW) Pilot Melter located at the Vitreous State Laboratory (VSL). Further objectives were to provide descriptions of the history of all modifications and maintenance, methods of operation, problems and unit failures, and melter emissions and performance while processing a variety of simulated HL W and low activity waste (LAW) feeds for the Hanford Waste Treatment and Immobilization Plant (WTP) and employing a variety of operating methods. All of these objectives were met. The River Protection Project - Hanford Waste Treatment and Immobilization Plant (RPP-WTP) Project has undertaken a 'tiered' approach to vitrification development testing involving computer-based glass formulation, glass property-composition models, crucible melts, and continuous melter tests of increasing, more realistic scales. Melter systems ranging from 0.02 to 1.2 m 2 installed at the Vitreous State Laboratory (VSL) have been used for this purpose, which, in combination with the 3.3 m 2 low activity waste (LAW) Pilot Melter at Duratek, Inc., span more than two orders of magnitude in melt surface area. In this way, less-costly small-scale tests can be used to define the most appropriate tests to be conducted at the larger scales in order to extract maximum benefit from the large-scale tests. For high level waste (HLW) vitrification development, a key component in this approach is the one-third scale DuraMelter 1200 (DM 1200), which is the HLW Pilot Melter that has been installed at VSL with an integrated prototypical off-gas treatment system. That system replaced the DM1000 system that was used for HLW throughput testing during Part B1. Both melters have similar melt surface areas (1.2 m 2 ) but the DM1200 is prototypical of the present RPP-WTP HLW melter design whereas the DM1000 was not. In particular, the DM1200 provides for testing on a vitrification

  12. Technical information report: Plasma melter operation, reliability, and maintenance analysis

    International Nuclear Information System (INIS)

    Hendrickson, D.W.

    1995-01-01

    This document provides a technical report of operability, reliability, and maintenance of a plasma melter for low-level waste vitrification, in support of the Hanford Tank Waste Remediation System (TWRS) Low-Level Waste (LLW) Vitrification Program. A process description is provided that minimizes maintenance and downtime and includes material and energy balances, equipment sizes and arrangement, startup/operation/maintence/shutdown cycle descriptions, and basis for scale-up to a 200 metric ton/day production facility. Operational requirements are provided including utilities, feeds, labor, and maintenance. Equipment reliability estimates and maintenance requirements are provided which includes a list of failure modes, responses, and consequences

  13. Wootz Crucible Steel: A Newly Discovered Production Site in South India

    OpenAIRE

    Sharad Srinivasan

    1994-01-01

    During the course of field investigations of copper mining and smelting in South India, the author of this paper came across a previously unrecorded archaeometallurgical site in Mel-siruvalur, South Arcot district, Tamil Nadu, which investigations have confinned was a production centre for wootz crucible steel in the Deccan. The find of this production centre supports the idea that wootz steel production was relatiYely widespread in South India, and extends the known horizons of this technolo...

  14. Transient flows occurring during the accelerated crucible rotation technique

    International Nuclear Information System (INIS)

    Horowitz, Atara; Horowitz, Yigal

    1992-11-01

    The transient flows occurring after a change in the angular velocity of the cylindrical container are described. The dependence of the transient (known as spin-up or spin-down time) on experimental parameters as kinematic viscosity, cylinder dimensions and the cylinder's initial and final angular velocities are elucidates by a review of the literature. It is emphasized that with large Rossby numbers the spin-up time is longer and the amount of fluid mixing is greater than small and moderate Rossby numbers. It is also elucidated that most crystal growth crucibles cannot be considered as infinitely-long cylinders for the evaluation of the fluid dynamics (authors)

  15. Multiphase, multi-electrode Joule heat computations for glass melter and in situ vitrification simulations

    International Nuclear Information System (INIS)

    Lowery, P.S.; Lessor, D.L.

    1991-02-01

    Waste glass melter and in situ vitrification (ISV) processes represent the combination of electrical thermal, and fluid flow phenomena to produce a stable waste-from product. Computational modeling of the thermal and fluid flow aspects of these processes provides a useful tool for assessing the potential performance of proposed system designs. These computations can be performed at a fraction of the cost of experiment. Consequently, computational modeling of vitrification systems can also provide and economical means for assessing the suitability of a proposed process application. The computational model described in this paper employs finite difference representations of the basic continuum conservation laws governing the thermal, fluid flow, and electrical aspects of the vitrification process -- i.e., conservation of mass, momentum, energy, and electrical charge. The resulting code is a member of the TEMPEST family of codes developed at the Pacific Northwest Laboratory (operated by Battelle for the US Department of Energy). This paper provides an overview of the numerical approach employed in TEMPEST. In addition, results from several TEMPEST simulations of sample waste glass melter and ISV processes are provided to illustrate the insights to be gained from computational modeling of these processes. 3 refs., 13 figs

  16. Report - Melter Testing of New High Bismuth HLW Formulations VSL-13R2770-1

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A.; Pegg, I. L.; Kot, W. K.; Gan, H.; Matlack, K. S.

    2013-11-13

    The primary objective of the work described was to test two glasses formulated for a high bismuth waste stream on the DM100 melter system. Testing was designed to determine processing characteristics and production rates, assess the tendency for foaming, and confirm glass properties. The glass compositions tested were previously developed to maintain high waste loadings and processing rates while suppressing the foaming observed in previous tests

  17. Utilizing Rice Husk Briquettes in Firing Crucible Furnace for Low Temperature Melting Metals in Nigeria

    Directory of Open Access Journals (Sweden)

    N. A. Musa

    2012-08-01

    Full Text Available The search for alternative fuels for firing crucible furnace for low temperature melting metals has become mandatory, as a result of the pollution problem associated with the use of fossil fuels, the expense of electricity and also deforestation as a result of the use of charcoal. An agricultural waste, rice husk, in briquette form was used as an alternative fuel to fire crucible furnace to melt lead, zinc and aluminium. Results showed that lead and zinc melted and reached their pouring temperatures of 3840C and 5300C in 70 minutes and 75 minutes respectively. Aluminium was raised to a maximum temperature of 5200C in 75 and 100 minutes.The average concentration of the pollutants (CO, SO2and NOX were found to be below the tolerance limit and that of TSP (Total Suspended Particulates was found to be within the tolerance limit stipulated by Federal Environmental Protection Agency (FEPA in Nigeria.

  18. Final Report - Glass Formulation Development and Testing for DWPF High AI2O3 HLW Sludges, VSL-10R1670-1, Rev. 0, dated 12/20/10

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A.; Pegg, I. L.; Kot, W. K.; Gan, H.; Matlack, K. S.

    2013-11-13

    The principal objective of the work described in this Final Report is to develop and identify glass frit compositions for a specified DWPF high-aluminum based sludge waste stream that maximizes waste loading while maintaining high production rate for the waste composition provided by ORP/SRS. This was accomplished through a combination of crucible-scale, vertical gradient furnace, and confirmation tests on the DM100 melter system. The DM100-BL unit was selected for these tests. The DM100-BL was used for previous tests on HLW glass compositions that were used to support subsequent tests on the HLW Pilot Melter. It was also used to process compositions with waste loadings limited by aluminum, bismuth, and chromium, to investigate the volatility of cesium and technetium during the vitrification of an HLW AZ-102 composition, to process glass formulations at compositional and property extremes, and to investigate crystal settling on a composition that exhibited one percent crystals at 963{degrees}C (i.e., close to the WTP limit). The same melter was selected for the present tests in order to maintain comparisons between the previously collected data. The tests provide information on melter processing characteristics and off-gas data, including formation of secondary phases and partitioning. Specific objectives for the melter tests are as follows: Determine maximum glass production rates without bubbling for a simulated SRS Sludge Batch 19 (SB19). Demonstrate a feed rate equivalent to 1125 kg/m{sup 2}/day glass production using melt pool bubbling. Process a high waste loading glass composition with the simulated SRS SB19 waste and measure the quality of the glass product. Determine the effect of argon as a bubbling gas on waste processing and the glass product including feed processing rate, glass redox, melter emissions, etc.. Determine differences in feed processing and glass characteristics for SRS SB19 waste simulated by the co-precipitated and direct

  19. HIGHLY REFRACTORY CRUCIBLES OF STABILIZED ZIRCONIA FOR INDUCTION MELTING OF THE PLATINUM GROUP METALS, FABRICATED BY VIBROCASTING

    OpenAIRE

    V. V. Primachenko; V. V. Martynenko; I. G. Szulik; I. A. Kushchenko

    2012-01-01

    As the result of the studies at PJSC « UKRNIIO them. A.S.Berezhnogo» the technology and commercial production of crucibles from stabilized zirconia for the smelting of platinum group metals are develop

  20. DEMONSTRATION AND EVALUATION OF POTENTIAL HIGH LEVEL WASTE MELTER DECONTAMINATION TECHNOLOGIES FOR SAVANNAH RIVER SITE

    International Nuclear Information System (INIS)

    Weger, Hans; Kodanda, Raja Tilek Meruva; Mazumdar, Anindra; Srivastava, Rajiv Ph.D.; Ebadian, M.A. Ph.D.

    2003-01-01

    Four hand-held tools were tested for failed high-level waste melter decontamination and decommissioning (D and D). The forces felt by the tools during operation were measured using a tri-axial accelerometer since they will be operated by a remote manipulator. The efficiency of the tools was also recorded. Melter D and D consists of three parts: (1) glass fracturing: removing from the furnace the melted glass that can not be poured out through normal means, (2) glass cleaning: removing the thin layer of glass that has formed over the surface of the refractory material, and (3) K-3 refractory breakup: removing the K-3 refractory material. Surrogate glass, from a formula provided by the Savannah River Site, was melted in a furnace and poured into steel containers. K-3 refractory material, the same material used in the Defense Waste Processing Facility, was utilized for the demonstrations. Four K-3 blocks were heated at 1150 C for two weeks with a glass layer on top to simulate the hardened glass layer on the refractory surface in the melter. Tools chosen for the demonstrations were commonly used D and D tools, which have not been tested specifically for the different aspects of melter D and D. A jackhammer and a needle gun were tested for glass fracturing; a needle gun and a rotary grinder with a diamond face wheel (diamond grinder) were tested for glass cleaning; and a jackhammer, diamond grinder, and a circular saw with a diamond blade were tested for refractory breakup. The needle gun was not capable of removing or fracturing the surrogate glass. The diamond grinder only had a removal rate of 3.0 x 10-4 kg/s for K-3 refractory breakup and needed to be held firmly against the material. However, the diamond grinder was effective for glass cleaning, with a removal rate of 3.9 cm2/s. The jackhammer was successful in fracturing glass and breaking up the K-3 refractory block. The jackhammer had a glass-fracturing rate of 0.40 kg/s. The jackhammer split the K-3 refractory

  1. Energy Dissipation Rate in an Agitated Crucible Containing Molten Metal

    Science.gov (United States)

    Li, Tao; Shimasaki, Shin-ichi; Narita, Shunsuke; Taniguchi, Shoji

    2017-10-01

    The energy dissipation rate (EDR) is an important parameter for characterizing the behavior of inclusion coagulation in agitated molten metal. To clarify the inclusion coagulation mechanism, we review previous water model studies by particularly focusing on the relation between the impeller torque and the EDR of the fluid, which indicates the ratio of energy dissipated in the viscous medium to the energy inputted by the rotating impeller. In the present study, simulations coupled with experiments were performed to determine the relation between the torque and the effective EDR for water and liquid Al in crucibles with and without baffles.

  2. Environmental Assessment for the Operation of the Glass Melter Thermal Treatment Unit at the US Department of Energy's Mound Plant, Miamisburg, Ohio

    International Nuclear Information System (INIS)

    1995-06-01

    The glass melter would thermally treat mixed waste (hazardous waste contaminated with radioactive constituents largely tritium, Pu-238, and/or Th-230) that was generated at the Mound Plant and is now in storage, by stabilizing the waste in glass blocks. Depending on the radiation level of the waste, the glass melter may operate for 1 to 6 years. Two onsite alternatives and seven offsite alternatives were considered. This environmental assessment indicates that the proposed action does not constitute a major Federal action significantly affecting the human environment according to NEPA, and therefore the finding of no significant impact is made, obviating the need for an environmental impact statement

  3. Glass science tutorial: Lecture number-sign 2, Operating electric glass melters. James N. Edmonson, Lecturer

    International Nuclear Information System (INIS)

    Kruger, A.A.

    1994-10-01

    This report contains basic information on electric furnaces used for glass melting and on the properties of glass useful for the stabilization of radioactive wastes. Furnace nomenclature, furnace types, typical silicate glass composition and properties, thermal conductivity information, kinetics of the melting process, glass furnace refractory materials composition and thermal conductivity, and equations required for the operation of glass melters are included

  4. Testing of the melter lid refractory for the West Valley Demonstration Project (WVDP)

    International Nuclear Information System (INIS)

    Gupta, A.; Jain, V.; Mahoney, J.L.; Holman, T.M.

    1991-01-01

    Monofrax H and Mulfrax 202 refractory were tested for potential application as the melter lid refractory for the WVDP. Resistance to spalling and corrosion by the slurry and offgas salts were primary criteria for selection. Test specimens were subjected to thermal cycling between 450 and 1,100C for five weeks. Visual examination indicated some corrosion but no spalling. SEM/EDS analysis was performed to determine the glass/refractory interface corrosion mechanism. The refractory selection basis will be discussed

  5. HIGHLY REFRACTORY CRUCIBLES OF STABILIZED ZIRCONIA FOR INDUCTION MELTING OF THE PLATINUM GROUP METALS, FABRICATED BY VIBROCASTING

    Directory of Open Access Journals (Sweden)

    V. V. Primachenko

    2012-01-01

    Full Text Available As the result of the studies at PJSC « UKRNIIO them. A.S.Berezhnogo» the technology and commercial production of crucibles from stabilized zirconia for the smelting of platinum group metals are develop

  6. Equipment experience in a radioactive LFCM [liquid-fed ceramic melter] vitrification facility

    International Nuclear Information System (INIS)

    Holton, L.K. Jr.; Dierks, R.D.; Sevigny, G.J.; Goles, R.W.; Surma, J.E.; Thomas, N.M.

    1986-11-01

    Since October 1984, the Pacific Northwest Laboratory (PNL) has operated a pilot-scale radioactive liquid-fed ceramic melter (RLFCM) vitrification process in shielded manipulator hot cells. This vitrification facility is being operated for the Department of Energy (DOE) to remotely test vitrification equipment components in a radioactive environment and to develop design and operation data that can be applied to production-scale projects. This paper summarizes equipment and process experience obtained from the operations of equipment systems for waste feeding, waste vitrification, canister filling, canister handling, and vitrification off-gas treatment

  7. MELTER: A model of the thermal response of cargos transported in the Safe-Secure Trailer subject to fire environments for risk assessment applications

    International Nuclear Information System (INIS)

    Larsen, M.E.

    1994-08-01

    MELTER is an analysis of cargo responses inside a fire-threatened Safe-Secure Trailer (SST) developed for the Defense Program Transportation Risk Assessment (DPTRA). Many simplifying assumptions are required to make the subject problem tractable. MELTER incorporates modeling which balances the competing requirements of execution speed, generality, completeness of essential physics, and robustness. Input parameters affecting the analysis include those defining the fire scenario, those defining the cargo loaded in the SST, and those defining properties of the SST. For a specified fire, SST, and cargo geometry MELTER predicts the critical fire duration that will lead to a failure. The principal features of the analysis include: (a) Geometric considerations to interpret fire-scenario descriptors in terms of a thermal radiation boundary condition, (b) a simple model of the SST's wall combining the diffusion model for radiation through optically-thick media with an endothermic reaction front to describe the charring of dimensional, rigid foam in the SST wall, (c) a transient radiation enclosure model, (d) a one-dimensional, spherical idealization of the shipped cargos providing modularity so that cargos of interest can be inserted into the model, and (e) associated numerical methods to integrate coupled, differential equations and find roots

  8. Environmental Assessment for the Operation of the Glass Melter Thermal Treatment Unit at the US Department of Energy`s Mound Plant, Miamisburg, Ohio

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The glass melter would thermally treat mixed waste (hazardous waste contaminated with radioactive constituents largely tritium, Pu-238, and/or Th-230) that was generated at the Mound Plant and is now in storage, by stabilizing the waste in glass blocks. Depending on the radiation level of the waste, the glass melter may operate for 1 to 6 years. Two onsite alternatives and seven offsite alternatives were considered. This environmental assessment indicates that the proposed action does not constitute a major Federal action significantly affecting the human environment according to NEPA, and therefore the finding of no significant impact is made, obviating the need for an environmental impact statement.

  9. Innovative technology summary report: Transportable vitrification system

    International Nuclear Information System (INIS)

    1998-09-01

    At the end of the cold war, many of the Department of Energy's (DOE's) major nuclear weapons facilities refocused their efforts on finding technically sound, economic, regulatory compliant, and stakeholder acceptable treatment solutions for the legacy of mixed wastes they had produced. In particular, an advanced stabilization process that could effectively treat the large volumes of settling pond and treatment sludges was needed. Based on this need, DOE and its contractors initiated in 1993 the EM-50 sponsored development effort required to produce a deployable mixed waste vitrification system. As a consequence, the Transportable Vitrification System (TVS) effort was undertaken with the primary requirement to develop and demonstrate the technology and associated facility to effectively vitrify, for compliant disposal, the applicable mixed waste sludges and solids across the various DOE complex sites. After 4 years of development testing with both crucible and pilot-scale melters, the TVS facility was constructed by Envitco, evaluated and demonstrated with surrogates, and then successfully transported to the ORNL ETTP site and demonstrated with actual mixed wastes in the fall of 1997. This paper describes the technology, its performance, the technology applicability and alternatives, cost, regulatory and policy issues, and lessons learned

  10. Evaluation of AS-CAST U-Mo alloys processed in graphite crucible coated with boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Marra, Kleiner M., E-mail: kleiner.marra@prof.una.br [Centro Universitario UNA, Belo Horizonte, MG (Brazil). Curso de Engenharia Mecânica; Reis, Sérgio C.; Paula, João B. de; Pedrosa, Tércio A., E-mail: reissc@cdtn.br, E-mail: jbp@cdtn.br, E-mail: tap@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    This paper reports the production of uranium-molybdenum alloys, which have been considered promising fuel for test and research nuclear reactors. U-Mo alloys were produced in three molybdenum contents: 5w%, 7w%, and 10w%, using an electric vacuum induction furnace. A boron nitride-coated graphite crucible was employed in the production of the alloys and, after melting, the material was immediately poured into a boron nitride-coated graphite mold. The incorporation of carbon was observed, but it happened in a lower intensity than in the case of the non-coated crucible/mold. It is observed that the carbon incorporation increased and alloys density decreased with Mo addition. It was also noticed that the increase in the carbon or molybdenum content did not seem to change the as-cast structure in terms of granulation. The three alloys presented body-centered cubic crystal structure (γ-phase), after solidification, besides a seeming negative microsegregation of molybdenum, from the center to the periphery of the grains. There were signs of macrosegregation, from the base to the top of the ingots. (author)

  11. Study on plasma melting treatment of crucibles, ceramic filter elements, asbestos, and fly ash

    International Nuclear Information System (INIS)

    Hoshi, Akiko; Nakasio, Nobuyuki; Nakajima, Mikio

    2004-01-01

    The Japan Atomic Energy Research Institute (JAERI) decided to adopt an advanced volume reduction program for low-level radioactive wastes. In this program, inorganic wastes are converted to stable glassy products suitable for disposal by a plasma melting system in the Waste Volume Reduction Facilities (WVRF). High melting point wastes such as refractories are excluded from the plasma melting treatment in the WVRF, and wastes difficult to handle such as asbestos are also excluded. However, it is describable to apply the plasma melting treatment to these wastes for stabilization and volume reduction from the viewpoint of disposal. In this paper, plasma melting test of crucibles, ceramic filter elements, asbestos, and simulated fly ashes were carried out as a part of technical support for WVRF. The plasma melting treatment was applicable for crucibles and asbestos because homogeneous and glassy products were obtained by controlling of waste and loading condition. It was found that SiC in ceramic filter elements was volatile with a plasma torch with inert gas, and adding reducer was ineffective against stabilizing volatile metals such as Zn, Pb in a solidified product in the melting test of simulated fly ash. (author)

  12. Redox Control For Hanford HLW Feeds VSL-12R2530-1, REV 0

    International Nuclear Information System (INIS)

    Kruger, A. A.; Matlack, Keith S.; Pegg, Ian L.; Kot, Wing K.; Joseph, Innocent

    2012-01-01

    The principal objectives of this work were to investigate the effects of processing simulated Hanford HLW at the estimated maximum concentrations of nitrates and oxalates and to identify strategies to mitigate any processing issues resulting from high concentrations of nitrates and oxalates. This report provides results for a series of tests that were performed on the DM10 melter system with simulated C-106/AY-102 HLW. The tests employed simulated HLW feeds containing variable amounts of nitrates and waste organic compounds corresponding to maximum concentrations proj ected for Hanford HLW streams in order to determine their effects on glass production rate, processing characteristics, glass redox conditions, melt pool foaming, and the tendency to form secondary phases. Such melter tests provide information on key process factors such as feed processing behavior, dynamic effects during processing, processing rates, off-gas amounts and compositions, foaming control, etc., that cannot be reliably obtained from crucible melts

  13. Redox Control For Hanford HLW Feeds VSL-12R2530-1, REV 0

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, A. A. [Department of Energy, Office of River Protection, Richland, Washington (United States); Matlack, Keith S. [The Catholic University of America, Washington, DC (United States); Pegg, Ian L. [The Catholic University of America, Washington, DC (United States); Kot, Wing K. [The Catholic University of America, Washington, DC (United States); Joseph, Innocent [The Catholic University of America, Washington, DC (United States)

    2012-12-13

    The principal objectives of this work were to investigate the effects of processing simulated Hanford HLW at the estimated maximum concentrations of nitrates and oxalates and to identify strategies to mitigate any processing issues resulting from high concentrations of nitrates and oxalates. This report provides results for a series of tests that were performed on the DM10 melter system with simulated C-106/AY-102 HLW. The tests employed simulated HLW feeds containing variable amounts of nitrates and waste organic compounds corresponding to maximum concentrations proj ected for Hanford HLW streams in order to determine their effects on glass production rate, processing characteristics, glass redox conditions, melt pool foaming, and the tendency to form secondary phases. Such melter tests provide information on key process factors such as feed processing behavior, dynamic effects during processing, processing rates, off-gas amounts and compositions, foaming control, etc., that cannot be reliably obtained from crucible melts.

  14. Bench scale experiments for the remediation of Hanford Waste Treatment Plant low activity waste melter off-gas condensate

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, Kathryn M.L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Poirier, Michael [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-08-11

    The Low Activity Waste (LAW) vitrification facility at the Hanford Waste Treatment and Immobilization Plant (WTP) will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The plan for disposition of this stream during baseline operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. The primary reason to recycle this stream is so that the semi-volatile 99Tc isotope eventually becomes incorporated into the glass. This stream also contains non-radioactive salt components that are problematic in the melter, so diversion of this stream to another process would eliminate recycling of these salts and would enable simplified operation of the LAW melter and the Pretreatment Facilities. This diversion from recycling this stream within WTP would have the effect of decreasing the LAW vitrification mission duration and quantity of glass waste. The concept being tested here involves removing the 99Tc so that the decontaminated aqueous stream, with the problematic salts, can be disposed elsewhere.

  15. Crystal accumulation in the Hanford Waste Treatment Plant high level waste melter: Summary of FY2016 experiements

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. [Savannah River Site (SRS), Aiken, SC (United States); Fowley, M. [Savannah River Site (SRS), Aiken, SC (United States); Miller, D. [Savannah River Site (SRS), Aiken, SC (United States)

    2016-12-01

    Five experiments were completed with the full-scale, room temperature Hanford Waste Treatment and Immobilization Plant (WTP) high-level waste (HLW) melter riser test system to observe particle flow and settling in support of a crystal tolerant approach to melter operation. A prototypic pour rate was maintained based on the volumetric flow rate. Accumulation of particles was observed at the bottom of the riser and along the bottom of the throat after each experiment. Measurements of the accumulated layer thicknesses showed that the settled particles at the bottom of the riser did not vary in thickness during pouring cycles or idle periods. Some of the settled particles at the bottom of the throat were re-suspended during subsequent pouring cycles, and settled back to approximately the same thickness after each idle period. The cause of the consistency of the accumulated layer thicknesses is not year clear, but was hypothesized to be related to particle flow back to the feed tank. Additional experiments reinforced the observation of particle flow along a considerable portion of the throat during idle periods. Limitations of the system are noted in this report and may be addressed via future modifications. Follow-on experiments will be designed to evaluate the impact of pouring rate on particle re-suspension, the influence of feed tank agitation on particle accumulation, and the effect of changes in air lance positioning on the accumulation and re-suspension of particles at the bottom of the riser. A method for sampling the accumulated particles will be developed to support particle size distribution analyses. Thicker accumulated layers will be intentionally formed via direct addition of particles to select areas of the system to better understand the ability to continue pouring and re-suspend particles. Results from the room temperature system will be correlated with observations and data from the Research Scale Melter (RSM) at Pacific Northwest National Laboratory

  16. Arc melter demonstration baseline test results

    International Nuclear Information System (INIS)

    Soelberg, N.R.; Chambers, A.G.; Anderson, G.L.; Oden, L.L.; O'Connor, W.K.; Turner, P.C.

    1994-07-01

    This report describes the test results and evaluation for the Phase 1 (baseline) arc melter vitrification test series conducted for the Buried Waste Integrated Demonstration program (BWID). Phase 1 tests were conducted on surrogate mixtures of as-incinerated wastes and soil. Some buried wastes, soils, and stored wastes at the INEL and other DOE sites, are contaminated with transuranic (TRU) radionuclides and hazardous organics and metals. The high temperature environment in an electric arc furnace may be used to process these wastes to produce materials suitable for final disposal. An electric arc furnace system can treat heterogeneous wastes and contaminated soils by (a) dissolving and retaining TRU elements and selected toxic metals as oxides in the slag phase, (b) destroying organic materials by dissociation, pyrolyzation, and combustion, and (c) capturing separated volatilized metals in the offgas system for further treatment. Structural metals in the waste may be melted and tapped separately for recycle or disposal, or these metals may be oxidized and dissolved into the slag. The molten slag, after cooling, will provide a glass/ceramic final waste form that is homogeneous, highly nonleachable, and extremely durable. These features make this waste form suitable for immobilization of TRU radionuclides and toxic metals for geologic timeframes. Further, the volume of contaminated wastes and soils will be substantially reduced in the process

  17. FINAL REPORT REGULATORY OFF GAS EMISSIONS TESTING ON THE DM1200 MELTER SYSTEM USING HLW AND LAW SIMULANTS VSL-05R5830-1 REV 0 10/31/05

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; GONG W; BARDAKCI T; D' ANGELO NA; BRANDYS M; KOT WK; PEGG IL

    2011-12-29

    The operational requirements for the River Protection Project - Waste Treatment Plant (RPP-WTP) Low Activity Waste (LAW) and High Level Waste (HLW) melter systems, together with the feed constituents, impose a number of challenges to the off-gas treatment system. The system must be robust from the standpoints of operational reliability and minimization of maintenance. The system must effectively control and remove a wide range of solid particulate matter, acid mists and gases, and organic constituents (including those arising from products of incomplete combustion of sugar and organics in the feed) to concentration levels below those imposed by regulatory requirements. The baseline design for the RPP-WTP LAW primary off-gas system includes a submerged bed scrubber (SBS), a wet electrostatic precipitator (WESP), and a high efficiency particulate air (HEPA) filter. The secondary off-gas system includes a sulfur-impregnated activated carbon bed (AC-S), a thermal catalytic oxidizer (TCO), a single-stage selective catalytic reduction NOx treatment system (SCR), and a packed-bed caustic scrubber (PBS). The baseline design for the RPP-WTP HLW primary off-gas system includes an SBS, a WESP, a high efficiency mist eliminator (HEME), and a HEPA filter. The HLW secondary off-gas system includes a sulfur-impregnated activated carbon bed, a silver mordenite bed, a TCO, and a single-stage SCR. The one-third scale HLW DM1200 Pilot Melter installed at the Vitreous State Laboratory (VSL) was equipped with a prototypical off-gas train to meet the needs for testing and confirmation of the performance of the baseline off-gas system design. Various modifications have been made to the DM1200 system as the details of the WTP design have evolved, including the installation of a silver mordenite column and an AC-S column for testing on a slipstream of the off-gas flow; the installation of a full-flow AC-S bed for the present tests was completed prior to initiation of testing. The DM1200

  18. Electrical resistivity of ceramic-metal composite materials in the percolation region: application in crucibles for induction furnaces; Resistividade eletrica de materiais compositos do tipo ceramica-metal na regiao de percolacao: aplicacao em cadinhos para fornos de inducao

    Energy Technology Data Exchange (ETDEWEB)

    Sene, Frank Ferrer

    1997-07-01

    Ceramic composite materials were produced by mixing powders of Partially Stabilized (PSZ) with titanium, niobium or nickel, and cristobalite with titanium. Pellets were produced by uniaxially pressing the material followed by cold isostatic pressing and finally sintering at 1600 deg C for 1,5 hours in argon. The metal content was varied in the range of 0-40 volume percent (v/o). Electrical resistivity measurements were performed in the temperature range of 25 - 700 deg C. Samples containing metallic inclusions above 25 v/o show the predominance of electronic type conducting. For samples with metallic inclusion below 25 v/o, a typically ionic conduction behavior has been observed. PSZ-Ti and PSZ-Ni samples containing 25 v/o of metallic inclusions show an insulator - conductor transition in a given temperature range. Cristobalite samples containing 30 v/o of titanium show a conductor - insulator transition also in a specific temperature range. Tests performed in an induction furnace showed that samples containing metallic inclusions above 25 v/o had self-heated when exposed to electro magnetic fields in the range of radio frequency (r.f.) Crucibles of PSZ-Ti were made by slip casting followed by sintering at 1600 deg C for 1.5 hours in argon. These crucibles were exposed to electromagnetic fields in the r.f. range and the maximum temperature reached was 1350 deg C. Microstructure characterization was performed on those materials by X-ray diffraction, EDS, optical and scanning electron microscopy. (author)

  19. Determination of heat conductivity of waste glass feed and its applicability for modeling the batch-to-glass conversion

    Energy Technology Data Exchange (ETDEWEB)

    Hujova, Miroslava [Laboratory of Inorganic Materials, Joint Workplace of the University of Chemistry and Technology Prague and the Institute, Institute of Rock Structure and Mechanics of the ASCR, Prague Czech Republic; Pokorny, Richard [Laboratory of Inorganic Materials, Joint Workplace of the University of Chemistry and Technology Prague and the Institute, Institute of Rock Structure and Mechanics of the ASCR, Prague Czech Republic; Klouzek, Jaroslav [Laboratory of Inorganic Materials, Joint Workplace of the University of Chemistry and Technology Prague and the Institute, Institute of Rock Structure and Mechanics of the ASCR, Prague Czech Republic; Dixon, Derek R. [Radiological Materials & Detection Group, Pacific Northwest National Laboratory, Richland Washington; Cutforth, Derek A. [Radiological Materials & Detection Group, Pacific Northwest National Laboratory, Richland Washington; Lee, Seungmin [Radiological Materials & Detection Group, Pacific Northwest National Laboratory, Richland Washington; McCarthy, Benjamin P. [Radiological Materials & Detection Group, Pacific Northwest National Laboratory, Richland Washington; Schweiger, Michael J. [Radiological Materials & Detection Group, Pacific Northwest National Laboratory, Richland Washington; Kruger, Albert A. [U.S. Department of Energy, Office of River Protection, Richland Washington; Hrma, Pavel [Radiological Materials & Detection Group, Pacific Northwest National Laboratory, Richland Washington

    2017-07-10

    The heat conductivity of reacting melter feed affects the heat transfer and conversion process in the cold cap (the reacting feed floating on molten glass). To investigate it, we simulated the feed conditions and morphology in the cold-cap by preparing “fast-dried slurry blocks”, formed by rapidly evaporating water from feed slurry poured onto a 200°C surface. A heat conductivity meter was used to measure heat conductivity of samples cut from the fast-dried slurry blocks, samples of a cold cap retrieved from a laboratory-scale melter, and loose dry powder feed samples. Our study indicates that the heat conductivity of the feed in the cold cap is significantly higher than that of loose dry powder feed, resulting from the feed solidification during the water evaporation from the feed slurry. To assess the heat transfer at higher temperatures when feed turns into foam, we developed a theoretical model that predicts the foam heat conductivity based on morphology data from in-situ X-ray computed tomography. The implications for the mathematical modeling of the cold cap are discussed.

  20. Detailed design data package: 3.1a-Film cooler pressure drop data; Item 3.2a - SBS packing selection; Item 3.2b, 3.2c - Pressure drop data for SBS distribution plate; and Item 3.2e - SBS distribution plate and liquid risers. PHTD pilot-scale melter testing system cost account milesonte 1.2.2.04.15A

    International Nuclear Information System (INIS)

    Whyatt, G.A.; Anderson, L.D.; Evans, J. II.

    1996-03-01

    This data package transmits information collected on the Liquid-Fed Ceramic Melter (LFCM) offgas system prior to melter feeding operations. Injection of steam to the melter plenum was used to simulate feeding of the melter. Steam surge cases were studied under steady-state surge conditions. Dynamic surges will be examined under data needs. The Fluor data needs included two blank tables requesting specific information for data needs 3.1 and 3.2. These tables are provided in Tables S.1 and S.2 below with the requested information filled in

  1. Feasibility study on vitrification of low- and intermediate-level radioactive waste from pressurized water reactors

    International Nuclear Information System (INIS)

    Park, J.K.; Song, M.J.

    1998-01-01

    In order to obtain annual generation volume and composition data for low- and intermediate-level radioactive waste (LILW), characteristics and generation trends for each waste which was produced at nuclear power plants (NPPs) in Korea were investigated. Of the three different types of melters, the platinum crucible was found to be most suitable for the performance of vitrification experiments and hence, was used to help better understand the optimal waste contents in borosilicate glass waste forms with respect to waste types. After the performance of vitrification experiments, compressive strength tests showed that the final waste glass product, containing up to 40 vol% of ashy pyrolyzed/oxidized at 400--800 C, showed good mechanical stability and homogeneity in the glass matrix. Economical assessment was performed with some considerations given for equipment having already been adopted for LILW treatment in Korea for four treatment strategies with melters selected from a technical assessment. For each strategy, the capital and the operation cost were estimated, and the disposal volume was calculated with reasonably estimated volume reduction factors with regard to waste type and treatment concept

  2. An Assessment of the Sulfate Solubility Limit for the FRIT 418 - Sludge Batch 2/3 System

    International Nuclear Information System (INIS)

    PEELER, D.K.

    2004-01-01

    The objective of this report is to establish a ''single point'' sulfate solubility limit or constraint for the Frit 418 - Sludge Batch 2/3 (SB2/3) system. Based on the results of this study, it is recommended that the glass limit in the Product Composition Control System (PCCS) for the Frit 418 - SB2/3 system be set at 0.60 wt%. The new limit has been set based solely on sealed crucible scale data and does not take credit or account for potential volatilization that may occur in the Defense Waste Processing Facility (DWPF) melter. Although the limit is established based on sealed crucible scale tests, supplementary testing using the Slurry-Fed Melt Rate Furnace (SMRF) provides a measure of confidence that applying the 0.6 wt% limit in PCCS will prevent the formation of a salt layer in the melter. The critical data point that was used to define the solubility limit for this system was from a ''spiked'' 30% waste loading (WL) glass targeting 0.65 wt%. The measured content in this glass was 0.62 wt%. Applying the Savannah River Technology Center - Mobile Laboratory (SRTCML) inductively coupled plasma (ICP) atomic emission spectroscopy (AES) uncertainties to establish a solubility limit for the Frit 418 - SB2/3 system of 0.60 wt% (in glass) provides a ''single point'' limit that covers the anticipated WL interval of interest. It is noted that there are glasses above the 0.60 wt% limit that were homogeneous, thus reinforcing the theory of a compositional effect on solubility within this specific system. In general, higher solubilities were observed at higher targeted waste loadings

  3. Frit screening for Rocky Flats ash and sand, slag, and crucible vitrification

    International Nuclear Information System (INIS)

    Vienna, J.D.; Li, Hong; Darab, J.G.

    1997-06-01

    Pacific Northwest National Laboratory (PNNL) is developing vitrified waste forms for plutonium-bearing ash and plutonium-bearing sand, slag, and crucible (SS ampersand C) materials from Rocky Flats. Waste forms are to meet product criteria (e.g., safeguard termination limits, storage criteria, and target plutonium loading) and processing constraints (e.g., upper temperature limits, processing time, and equipment compatibility). The target waste form for ash is an agglomerated product, while that for SS ampersand C is a fully encapsulated product. Laboratory scoping studies were conducted on glass formulations from six different glass families: (1) antimony vanadium phosphate, (2) iron vanadium phosphate, (3) tin zinc phosphate, (4) soda-lime silicate, (5) alkali borosilicate, and (6) alkali borate. Glass families were selected due to viscosity behavior in the temperature range of interest (< 800C). Scoping study tests included gradient furnace tests to determine processing range and sintering temperature, thermogravimetric analysis to determine weight loss as a function of temperature, and crucible tests to determine frit compositions tolerance to variations in processing temperature, waste loading, and waste type. The primary screening criterion for the selection of frits for future studies was processing temperature below 400C to minimize the potential for foaming in ash caused by the release of gases (main source of gas is combustion of carbon species) and to minimize processing cycle times. Based on this criterion, glass formulations from the tin zinc phosphate and alkali borosilicate families were selected for future variability testing. Variability testing will include final product evaluation, glass system tolerance to waste loading and composition variation, and identification of parameters impacting time/temperature profiles. Variability testing results will give a final frit formulation for ash and SS ampersand C, and identify key processing parameters

  4. Physical modeling of joule heated ceramic glass melters for high level waste immobilization

    International Nuclear Information System (INIS)

    Quigley, M.S.; Kreid, D.K.

    1979-03-01

    This study developed physical modeling techniques and apparatus suitable for experimental analysis of joule heated ceramic glass melters designed for immobilizing high level waste. The physical modeling experiments can give qualitative insight into the design and operation of prototype furnaces and, if properly verified with prototype data, the physical models could be used for quantitative analysis of specific furnaces. Based on evaluation of the results of this study, it is recommended that the following actions and investigations be undertaken: It was not shown that the isothermal boundary conditions imposed by this study established prototypic heat losses through the boundaries of the model. Prototype wall temperatures and heat fluxes should be measured to provide better verification of the accuracy of the physical model. The VECTRA computer code is a two-dimensional analytical model. Physical model runs which are isothermal in the Y direction should be made to provide two-dimensional data for more direct comparison to the VECTRA predictions. The ability of the physical model to accurately predict prototype operating conditions should be proven before the model can become a reliable design tool. This will require significantly more prototype operating and glass property data than were available at the time of this study. A complete set of measurements covering power input, heat balances, wall temperatures, glass temperatures, and glass properties should be attempted for at least one prototype run. The information could be used to verify both physical and analytical models. Particle settling and/or sludge buildup should be studied directly by observing the accumulation of the appropriate size and density particles during feeding in the physical model. New designs should be formulated and modeled to minimize the potential problems with melter operation identifed by this study

  5. HLW Glass Studies: Development of Crystal-Tolerant HLW Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Matyas, Josef; Huckleberry, Adam R.; Rodriguez, Carmen P.; Lang, Jesse B.; Owen, Antionette T.; Kruger, Albert A.

    2012-04-02

    In our study, a series of lab-scale crucible tests were performed on designed glasses of different compositions to further investigate and simulate the effect of Cr, Ni, Fe, Al, Li, and RuO2 on the accumulation rate of spinel crystals in the glass discharge riser of the HLW melter. The experimental data were used to expand the compositional region covered by an empirical model developed previously (Matyáš et al. 2010b), improving its predictive performance. We also investigated the mechanism for agglomeration of particles and impact of agglomerates on accumulation rate. In addition, the TL was measured as a function of temperature and composition.

  6. Numerical modeling of liquid feeding in the liquid-fed ceramic melter

    International Nuclear Information System (INIS)

    Hjelm, R.L.; Donovan, T.E.

    1979-10-01

    A modeling scheme developed by the Pacific Northwest Laboratory numerically simulates the behavior of the Liquid-Fed Ceramic Melter (LFCM) during liquid feeding. The computer code VECTRA (Vorticity Energy Code for TRansport Analysis) was used to simulate the LFCM in the idling and liquid feeding modes. Results for each simulation include molten glass temperature profiles and isotherm contour plots, stream function contour plots, heat generation rate contour plots, refractory isotherms, and heat balances. The results indicated that the model showed no major deviations from real LFCM behavior and that high throughput should be attainable. They also indicated that reboil was a possibility as a steady liquid feeding state was approached, very steep temperature gradients exist in the Monofrax K-3, and that phase separation could occur in the bottom corners during liquid feeding and over the entire floor while idling

  7. Technetium Retention In WTP Law Glass With Recycle Flow-Sheet DM10 Melter Testing VSL-12R2640-1 REV 0

    International Nuclear Information System (INIS)

    Abramowitz, Howard; Callow, Richard A.; Joseph, Innocent

    2012-01-01

    Melter tests were conducted to determine the retention of technetium and other volatiles in glass while processing simulated Low Activity Waste (LAW) streams through a DM10 melter equipped with a prototypical off-gas system that concentrates and recycles fluid effiuents back to the melter feed. To support these tests, an existing DM10 system installed at Vitreous State Laboratory (VSL) was modified to add the required recycle loop. Based on the Hanford Tank Waste Treatment and Immobilization Plant (WTP) LAW off-gas system design, suitably scaled versions of the Submerged Bed Scrubber (SBS), Wet Electrostatic Precipitator (WESP), and TLP vacuum evaporator were designed, built, and installed into the DM10 system. Process modeling was used to support this design effort and to ensure that issues associated with the short half life of the 99m Tc radioisotope that was used in this work were properly addressed and that the system would be capable of meeting the test objectives. In particular, this required that the overall time constant for the system was sufficiently short that a reasonable approach to steady state could be achieved before the 99m Tc activity dropped below the analytical limits of detection. The conceptual design, detailed design, flow sheet development, process model development, Piping and Instrumentation Diagram (P and ID) development, control system design, software design and development, system fabrication, installation, procedure development, operator training, and Test Plan development for the new system were all conducted during this project. The new system was commissioned and subjected to a series of shake-down tests before embarking on the planned test program. Various system performance issues that arose during testing were addressed through a series of modifications in order to improve the performance and reliability of the system. The resulting system provided a robust and reliable platform to address the test objectives

  8. TECHNETIUM RETENTION IN WTP LAW GLASS WITH RECYCLE FLOW-SHEET DM10 MELTER TESTING VSL-12R2640-1 REV 0

    Energy Technology Data Exchange (ETDEWEB)

    Abramowitz, Howard [Catholic Univ. of America, Washington, DC (United States). Vitreous State Lab.; Brandys, Marek [Catholic Univ. of America, Washington, DC (United States). Vitreous State Lab.; Cecil, Richard [Catholic Univ. of America, Washington, DC (United States). Vitreous State Lab.; D& #x27; Angelo, Nicholas [Catholic Univ. of America, Washington, DC (United States). Vitreous State Lab.; Matlack, Keith S. [Catholic Univ. of America, Washington, DC (United States). Vitreous State Lab.; Muller, Isabelle S. [Catholic Univ. of America, Washington, DC (United States). Vitreous State Lab.; Pegg, Ian L. [Energy Solutions, Federal EPC, Inc., Columbia, MD (United States); Callow, Richard A. [Energy Solutions, Federal EPC, Inc., Columbia, MD (United States); Joseph, Innocent

    2012-12-11

    Melter tests were conducted to determine the retention of technetium and other volatiles in glass while processing simulated Low Activity Waste (LAW) streams through a DM10 melter equipped with a prototypical off-gas system that concentrates and recycles fluid effiuents back to the melter feed. To support these tests, an existing DM10 system installed at Vitreous State Laboratory (VSL) was modified to add the required recycle loop. Based on the Hanford Tank Waste Treatment and Immobilization Plant (WTP) LAW off-gas system design, suitably scaled versions of the Submerged Bed Scrubber (SBS), Wet Electrostatic Precipitator (WESP), and TLP vacuum evaporator were designed, built, and installed into the DM10 system. Process modeling was used to support this design effort and to ensure that issues associated with the short half life of the {sup 99m}Tc radioisotope that was used in this work were properly addressed and that the system would be capable of meeting the test objectives. In particular, this required that the overall time constant for the system was sufficiently short that a reasonable approach to steady state could be achieved before the {sup 99m}Tc activity dropped below the analytical limits of detection. The conceptual design, detailed design, flow sheet development, process model development, Piping and Instrumentation Diagram (P&ID) development, control system design, software design and development, system fabrication, installation, procedure development, operator training, and Test Plan development for the new system were all conducted during this project. The new system was commissioned and subjected to a series of shake-down tests before embarking on the planned test program. Various system performance issues that arose during testing were addressed through a series of modifications in order to improve the performance and reliability of the system. The resulting system provided a robust and reliable platform to address the test objectives.

  9. FINAL REPORT START-UP AND COMMISSIONING TESTS ON THE DURAMELTER 1200 HLW PILOT MELTER SYSTEM USING AZ-101 HLW SIMULANTS VSL-01R0100-2 REV 0 1/20/03

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; KOT WK; BRANDYS M; WILSON CN; SCHATZ TR; GONG W; PEGG IL

    2011-12-29

    This document provides the final report on data and results obtained from commissioning tests performed on the one-third scale DuraMelter{trademark} 1200 (DM 1200) HLW Pilot Melter system that has been installed at VSL with an integrated prototypical off-gas treatment system. That system has replaced the DM1000 system that was used for HLW throughput testing during Part BI [1]. Both melters have similar melt surface areas (1.2 m{sup 2}) but the DM1200 is prototypical of the present RPP-WTP HLW melter design whereas the DM1000 was not. These tests were performed under a corresponding RPP-WTP Test Specification and associated Test Plan. This report is a followup to the previously issued Preliminary Data Summary Report. The DM1200 system will be used for testing and confirmation of basic design, operability, flow sheet, and process control assumptions as well as for support of waste form qualification and permitting. This will include data on processing rates, off-gas treatment system performance, recycle stream compositions, as well as process operability and reliability. Consequently, this system is a key component of the overall HLW vitrification development strategy. The results presented in this report are from the initial series of short-duration tests that were conducted to support the start-up and commissioning of this system prior to conducting the main body of development tests that have been planned for this system. These tests were directed primarily at system 'debugging,' operator training, and procedure refinement. The AZ-101 waste simulant and glass composition that was used for previous testing was selected for these tests.

  10. Final Report Start-Up And Commissioning Tests On The Duramelter 1200 HLW Pilot Melter System Using AZ-101 HLW Simulants VSL-01R0100-2, Rev. 0, 1/20/03

    International Nuclear Information System (INIS)

    Kruger, A.A.; Matlack, K.S.; Kot, W.K.; Brandys, M.; Wilson, C.N.; Schatz, T.R.; Gong, W.; Pegg, I.L.

    2011-01-01

    This document provides the final report on data and results obtained from commissioning tests performed on the one-third scale DuraMelter(trademark) 1200 (DM 1200) HLW Pilot Melter system that has been installed at VSL with an integrated prototypical off-gas treatment system. That system has replaced the DM1000 system that was used for HLW throughput testing during Part BI (1). Both melters have similar melt surface areas (1.2 m 2 ) but the DM1200 is prototypical of the present RPP-WTP HLW melter design whereas the DM1000 was not. These tests were performed under a corresponding RPP-WTP Test Specification and associated Test Plan. This report is a followup to the previously issued Preliminary Data Summary Report. The DM1200 system will be used for testing and confirmation of basic design, operability, flow sheet, and process control assumptions as well as for support of waste form qualification and permitting. This will include data on processing rates, off-gas treatment system performance, recycle stream compositions, as well as process operability and reliability. Consequently, this system is a key component of the overall HLW vitrification development strategy. The results presented in this report are from the initial series of short-duration tests that were conducted to support the start-up and commissioning of this system prior to conducting the main body of development tests that have been planned for this system. These tests were directed primarily at system 'debugging,' operator training, and procedure refinement. The AZ-101 waste simulant and glass composition that was used for previous testing was selected for these tests.

  11. Crystal accumulation in the Hanford Waste Treatment Plant high level waste melter: Summary of 2017 experiments

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fowley, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2018-01-11

    A full-scale, transparent mock-up of the Hanford Tank Waste Treatment and Immobilization Project High Level Waste glass melter riser and pour spout has been constructed to allow for testing with visual feedback of particle settling, accumulation, and resuspension when operating with a controlled fraction of crystals in the glass melt. Room temperature operation with silicone oil and magnetite particles simulating molten glass and spinel crystals, respectively, allows for direct observation of flow patterns and settling patterns. The fluid and particle mixture is recycled within the system for each test.

  12. RESULTS OF INITIAL AMMONIA OXIDATION TESTING

    Energy Technology Data Exchange (ETDEWEB)

    Nash, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fowley, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-12-30

    This memo presents an experimental survey of aqueous phase chemical processes to remove aqueous ammonia from waste process streams. Ammonia is generated in both the current Hanford waste flowsheet and in future waste processing. Much ammonia will be generated in the Low Activity Waste (LAW) melters.i Testing with simulants in glass melters at Catholic University has demonstrated the significant ammonia production.ii The primary reaction there is the reducing action of sugar on nitrate in the melter cold cap. Ammonia has been found to be a problem in secondary waste stabilization. Ammonia vapors are noxious and destruction of ammonia could reduce hazards to waste treatment process personnel. It is easily evolved especially when ammonia-bearing solutions are adjusted to high pH.

  13. Density of simulated americium/curium melter feed solution

    International Nuclear Information System (INIS)

    Rudisill, T.S.

    1997-01-01

    Vitrification will be used to stabilize an americium/curium (Am/Cm) solution presently stored in F-Canyon for eventual transport to Oak Ridge National Laboratory and use in heavy isotope production programs. Prior to vitrification, a series of in-tank oxalate precipitation and nitric/oxalic acid washes will be used to separate these elements and lanthanide fission products from the bulk of the uranium and metal impurities present in the solution. Following nitric acid dissolution and oxalate destruction, the solution will be denitrated and evaporated to a dissolved solids concentration of approximately 100 g/l (on an oxide basis). During the Am/Cm vitrification, an airlift will be used to supply the concentrated feed solution to a constant head tank which drains through a filter and an in-line orifice to the melter. Since the delivery system is sensitive to the physical properties of the feed, a simulated solution was prepared and used to measure the density as a function of temperature between 20 to 70 degrees C. The measured density decreased linearly at a rate of 0.0007 g/cm3/degree C from an average value of 1.2326 g/cm 3 at 20 degrees C to an average value of 1.1973g/cm 3 at 70 degrees C

  14. Density of simulated americium/curium melter feed solution

    Energy Technology Data Exchange (ETDEWEB)

    Rudisill, T.S.

    1997-09-22

    Vitrification will be used to stabilize an americium/curium (Am/Cm) solution presently stored in F-Canyon for eventual transport to Oak Ridge National Laboratory and use in heavy isotope production programs. Prior to vitrification, a series of in-tank oxalate precipitation and nitric/oxalic acid washes will be used to separate these elements and lanthanide fission products from the bulk of the uranium and metal impurities present in the solution. Following nitric acid dissolution and oxalate destruction, the solution will be denitrated and evaporated to a dissolved solids concentration of approximately 100 g/l (on an oxide basis). During the Am/Cm vitrification, an airlift will be used to supply the concentrated feed solution to a constant head tank which drains through a filter and an in-line orifice to the melter. Since the delivery system is sensitive to the physical properties of the feed, a simulated solution was prepared and used to measure the density as a function of temperature between 20 to 70{degrees} C. The measured density decreased linearly at a rate of 0.0007 g/cm3/{degree} C from an average value of 1.2326 g/cm{sup 3} at 20{degrees} C to an average value of 1.1973g/cm{sup 3} at 70{degrees} C.

  15. Investigation of variable compositions on the removal of technetium from Hanford Waste Treatment Plant low activity waste melter off-gas condensate simulant

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, Kathryn M. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, John M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-03-29

    The Low Activity Waste (LAW) vitrification facility at the Hanford Waste Treatment and Immobilization Plant (WTP) will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the offgas system. The plan for disposition of this stream during baseline operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. The primary reason to recycle this stream is so that the semi-volatile 99Tc isotope eventually becomes incorporated into the glass. This stream also contains non-radioactive salt components that are problematic in the melter, so diversion of this stream to another process would eliminate recycling of these salts and would enable simplified operation of the LAW melter and the Pretreatment Facilities. This diversion from recycling this stream within WTP would have the effect of decreasing the LAW vitrification mission duration and quantity of glass waste. The concept being tested here involves removing the 99Tc so that the decontaminated aqueous stream, with the problematic salts, can be disposed elsewhere.

  16. Vitrification of cesium-contaminated organic ion exchange resin

    International Nuclear Information System (INIS)

    Sargent, T.N. Jr.

    1994-08-01

    Vitrification has been declared by the Environmental Protection Agency (USEPA) as the Best Demonstrated Available Technology (BDAT) for the permanent disposal of high-level radioactive waste. Savannah River Site currently uses a sodium tetraphenylborate (NaTPB) precipitation process to remove Cs-137 from a wastewater solution created from the processing of nuclear fuel. This process has several disadvantages such as the formation of a benzene waste stream. It has been proposed to replace the precipitation process with an ion exchange process using a new resorcinol-formaldehyde resin developed by Savannah River Technical Center (SRTC). Preliminary tests, however, showed that problems such as crust formation and a reduced final glass wasteform exist when the resin is placed in the melter environment. The newly developed stirred melter could be capable of overcoming these problems. This research explored the operational feasibility of using the stirred tank melter to vitrify an organic ion exchange resin. Preliminary tests included crucible studies to determine the reducing potential of the resin and the extent of oxygen consuming reactions and oxygen transfer tests to approximate the extent of oxygen transfer into the molten glass using an impeller and a combination of the impeller and an external oxygen transfer system. These preliminary studies were used as a basis for the final test which was using the stirred tank melter to vitrify nonradioactive cesium loaded organic ion exchange resin. Results from this test included a cesium mass balance, a characterization of the semi-volatile organic compounds present in the off gas as products of incomplete combustion (PIC), a qualitative analysis of other volatile metals, and observations relating to the effect the resin had on the final redox state of the glass

  17. The University of Missouri Research Reactor facility can melter system

    International Nuclear Information System (INIS)

    Edwards, C.B. Jr.; Olson, O.L.; Stevens, R.; Brugger, R.M.

    1987-01-01

    At the University of Missouri Research Reactor (MURR), a waste compacting system for reducing the volume of radioactive aluminum cans has been designed, built and put into operation. In MURR's programs of producing radioisotopes and transmutation doping of silicon, a large volume of radioactive aluminum cans is generated. The Can Melter System (CMS) consists of a sorting station, a can masher, an electric furnace and a gas fired furnace. This system reduces the cans and other radioactive metal into barrels of solid metal close to theoretical density. The CMS has been in operation at the MURR now for over two years. Twelve hundred cu ft of cans and other metals have been reduced into 150 cu ft of shipable waste. The construction cost of the CMS was $4950.84 plus 1680 man hours of labor, and the operating cost of the CMS is $18/lb. The radiation exposure to the operator is 8.6 mR/cu ft. The yearly operating savings is $30,000. 20 figs., 10 tabs

  18. Statistical process control applied to the liquid-fed ceramic melter process

    International Nuclear Information System (INIS)

    Pulsipher, B.A.; Kuhn, W.L.

    1987-09-01

    In this report, an application of control charts to the apparent feed composition of a Liquid-Fed Ceramic Melter (LFCM) is demonstrated by using results from a simulation of the LFCM system. Usual applications of control charts require the assumption of uncorrelated observations over time. This assumption is violated in the LFCM system because of the heels left in tanks from previous batches. Methods for dealing with this problem have been developed to create control charts for individual batches sent to the feed preparation tank (FPT). These control charts are capable of detecting changes in the process average as well as changes in the process variation. All numbers reported in this document were derived from a simulated demonstration of a plausible LFCM system. In practice, site-specific data must be used as input to a simulation tailored to that site. These data directly affect all variance estimates used to develop control charts. 64 refs., 3 figs., 2 tabs

  19. RHEOLOGICAL AND ELEMENTAL ANALYSES OF SIMULANT SB5 SLURRY MIX EVAPORATOR-MELTER FEED TANK SLURRIES

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, A.

    2010-02-08

    The Defense Waste Processing Facility (DWPF) will complete Sludge Batch 5 (SB5) processing in fiscal year 2010. DWPF has experienced multiple feed stoppages for the SB5 Melter Feed Tank (MFT) due to clogs. Melter throughput is decreased not only due to the feed stoppage, but also because dilution of the feed by addition of prime water (about 60 gallons), which is required to restart the MFT pump. SB5 conditions are different from previous batches in one respect: pH of the Slurry Mix Evaporator (SME) product (9 for SB5 vs. 7 for SB4). Since a higher pH could cause gel formation, due in part to greater leaching from the glass frit into the supernate, SRNL studies were undertaken to check this hypothesis. The clogging issue is addressed by this simulant work, requested via a technical task request from DWPF. The experiments were conducted at Aiken County Technology Laboratory (ACTL) wherein a non-radioactive simulant consisting of SB5 Sludge Receipt and Adjustment Tank (SRAT) product simulant and frit was subjected to a 30 hour SME cycle at two different pH levels, 7.5 and 10; the boiling was completed over a period of six days. Rheology and supernate elemental composition measurements were conducted. The caustic run exhibited foaming once, after 30 minutes of boiling. It was expected that caustic boiling would exhibit a greater leaching rate, which could cause formation of sodium aluminosilicate and would allow gel formation to increase the thickness of the simulant. Xray Diffraction (XRD) measurements of the simulant did not detect crystalline sodium aluminosilicate, a possible gel formation species. Instead, it was observed that caustic conditions, but not necessarily boiling time, induced greater thickness, but lowered the leach rate. Leaching consists of the formation of metal hydroxides from the oxides, formation of boric acid from the boron oxide, and dissolution of SiO{sub 2}, the major frit component. It is likely that the observed precipitation of Mg

  20. The effect of slurry rheology on cold cap formation

    International Nuclear Information System (INIS)

    Yasuda, D.D.; Hrma, P.

    1991-01-01

    Yield stress, viscosity, and flow distance were measured on three simulated nuclear waste feeds at different temperatures and oxide loadings. Hydroxide, formate, and frit feeds, to produce glass of identical composition, were tested. Application of the results to a slurry fed waste glass melter is discussed

  1. Low cost Czochralski crystal growing technology. Near implementation of the flat plate photovoltaic cost reduction of the low cost solar array project

    Science.gov (United States)

    Roberts, E. G.

    1980-01-01

    Equipment developed for the manufacture of over 100 kg of silicon ingot from one crucible by rechanging from another crucible is described. Attempts were made to eliminate the cost of raising the furnace temperature to 250 C above the melting point of silicon by using an RF coil to melt polycrystalline silicon rod as a means of rechanging the crucible. Microprocessor control of the straight growth process was developed and domonstrated for both 4 inch and 6 inch diameter. Both meltdown and melt stabilization processes were achieved using operator prompting through the microprocessor. The use of the RF work coil in poly rod melting as a heat sink in the accelerated growth process was unsuccessful. The total design concept for fabrication and interfacing of the total cold crucible system was completed.

  2. Microstructure of the Ni–Fe–Cu–P melt-spun ribbons produced from the single-chamber and from the double-chamber crucibles

    Energy Technology Data Exchange (ETDEWEB)

    Ziewiec, Krzysztof, E-mail: kziewiec@up.krakow.pl [Institute of Technology, Faculty of Mathematics, Physics and Technical Science, Pedagogical University of Cracow, ul. Podchorążych 2, PL-30-084 Kraków (Poland); Błachowski, Artur; Ruebenbauer, Krzysztof [Mössbauer Spectroscopy Division, Institute of Physics, Pedagogical University, ul. Podchorążych 2, PL-30-084 Kraków (Poland); Ziewiec, Aneta [AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Al. A. Mickiewicza 30, 30-059 Kraków (Poland); Prusik, Krystian [Faculty of Computer Science and Materials Science, University of Silesia, ul. Bankowa 12, PL-40-007 Katowice (Poland); Latuch, Jerzy [Warsaw University of Technology, Faculty of Materials Science and Engineering, ul. Wołoska 141, PL-02-507 Warszawa (Poland); Zięba, Marcin; Bryła, Krzysztof [Institute of Technology, Faculty of Mathematics, Physics and Technical Science, Pedagogical University of Cracow, ul. Podchorążych 2, PL-30-084 Kraków (Poland)

    2014-12-05

    Highlights: • A new method for production of metallic amorphous/amorphous composite is proposed. • The unique microstructure was obtained by rapid cooling of the two unmixed liquids. • The composite TCMS Ni–Fe–Cu–P amorphous alloy forms ductile fracture. - Abstract: The aim of the work was to investigate the influence of the processing on the final microstructure and properties of the melt-spun Ni–Fe–Cu–P, Ni–Fe–P and Ni–Cu–P alloys ejected in two ways. In the first case, the alloy was molten in a simple single-chamber crucible, then ejected as uniform liquid. In the second case the double-chamber crucible was used, and the flux composed of the two Ni–Fe–P and Ni–Cu–P liquids was cooled on a copper roller before forming a uniform mixture. The two component melt spinning (TCMS) was performed starting from the Ni{sub 40}Fe{sub 40}P{sub 20} and Ni{sub 70}Cu{sub 10}P{sub 20} alloys. Three of the alloys i.e. Ni{sub 55}Fe{sub 20}Cu{sub 4}P{sub 20}, Ni{sub 40}Fe{sub 40}P{sub 20} and Ni{sub 70}Cu{sub 10}P{sub 20} were melt-spun from the traditional single-chamber crucible. The methods applied in this study for microstructural investigations include scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Mössbauer spectroscopy. Thermal stability of the melt-spun alloys was tested using differential scanning calorimetry (DSC). The results of the investigations are described and discussed in terms of the unique features of the TCMS amorphous microstructure. It is shown that this complex phase composition of the amorphous alloy favors formation of the ductile fracture and the multiple shear band formation.

  3. Immobilization of uranium and plutonium into boro-basalt, pyroxene and andradite mineral-like compositions

    International Nuclear Information System (INIS)

    Matyunin, Y.I.; Smelova, T.V.

    2000-01-01

    The immobilization of plutonium-containing wastes with the manufacturing of stable solid compositions is one of the problems that should be solved in the disposal of radioactive wastes. The works on the choice, preparation with the use of the cold crucible induction melter (CCIM) technology, and investigation of materials that are most suitable for immobilizing plutonium-containing wastes of different origin have been carried out at the All-Russian Scientific Research Institute of Inorganic Materials (VNIINM) and the Institute of the Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry (IGEM), Russian Academy of Sciences in the framework of the agreements with Lawrence Livermore National Laboratory (LLNL, USA) on the material and technical support. This paper presents the data on the synthesis of cerium-, uranium-, and plutonium-containing materials based on boro-basalt, pyroxene, and andradite compositions in the muffle furnace and by using the CCIM method. The compositions containing up to 15 - 18 wt % cerium oxide, 8 - 11 wt % uranium oxide, and 4.6 - 5.7 wt % plutonium oxide were obtained in laboratory facilities installed in glove boxes. Comparison studies of the materials synthesized in the muffle furnace and CCIM demonstrate the advantages of using the CCIM method. The distribution of components in the materials synthesized are investigated, and their certain physicochemical properties are determined. (authors)

  4. Development of advanced Czochralski Growth Process to produce low cost 150 KG silicon ingots from a single crucible for technology readiness

    Science.gov (United States)

    1981-01-01

    The goals in this program for advanced czochralski growth process to produce low cost 150 kg silicon ingots from a single crucible for technology readiness are outlined. To provide a modified CG2000 crystal power capable of pulling a minimum of five crystals, each of approximately 30 kg in weight, 150 mm diameter from a single crucible with periodic melt replenishment. Crystals to have: resistivity of 1 to 3 ohm cm, p-type; dislocation density below 1- to the 6th power per cm; orientation (100); after growth yield of greater than 90%. Growth throughput of greater than 2.5 kg per hour of machine operation using a radiation shield. Prototype equipment suitable for use as a production facility. The overall cost goal is $.70 per peak watt by 1986. To accomplish these goals, the modified CG2000 grower and development program includes: (1) increased automation with a microprocessor based control system; (2) sensors development which will increase the capability of the automatic controls system, and provide technology transfer of the developed systems.

  5. Demonstration test of 'multi-purpose incinerating melter system'

    International Nuclear Information System (INIS)

    Miyazaki, Hitoshi; Tanimoto, Kenichi; Wakui, Hitoshi; Oasada, Kaoru; Ishikawa, Fuyuhiko.

    1994-01-01

    A Multi-Purpose Incinerating Melter System (MIMS) has been developed as a volume reduction technique for a wide variety of radwastes including flame retardants such as spent resin, and non-combustible materials such as concrete, glass and steel. In the MIMS, these wastes are incinerated and/or melted at temperatures between 1,000 and 1,500degC generated by fossil fueled burner to produce obsidian-like ingots with high integrity. A demonstration test program was carried out from 1989 until 1991 using an engineering-scale demonstration unit. In the test program, various simulated wastes with traces of 60 Co, 54 Mn, 59 Fe, 137 Cs, 22 Na and 106 Ru were treated to obtain decontamination factor (DF) data and leach-resistance data of the products. The summarized results drawn from the 13 runs of demonstrative operations are the following: (1) Most involatile radionuclides are transferred into solidified products. (2) Global DF of the system excluding a HEPA filter ranged 1x10 4 thru 1x10 5 for 60 Co, 2x10 2 thru 2x10 3 for 137 Cs and 2x10 2 thru 1x10 4 for 106 Ru. (3) Leaching resistance of the solidified product is a match for that of a typical borosilicate glass waste form. (author)

  6. An optimized approach towards the treatment of high level liquid waste in the nuclear cycle

    International Nuclear Information System (INIS)

    Maio, V.; Todd, T.; Law, J.; Roach, J.; Sabharwall, P.

    2006-01-01

    Full text: One key long-standing issue that must be overcome to realize the successful growth of nuclear power is an economical, politically acceptable, stakeholder-compatible, and technically feasible resolution pertaining to the safe treatment and disposal of high-level liquid radioactive waste (HLLW). In addition to spent nuclear reactor fuel, HLLW poses a unique challenge in regard to environmental and security concerns, since future scenarios for a next generation of domestic and commercialized nuclear fuel cycle infrastructures must include reprocessing - the primary source of HLLW-to ensure the cost effectiveness of nuclear power as well as mitigate any threats as related to proliferation. Past attempts to immobilize HLLW - generated by both the weapons complex and the commercial power sector-have been plagued by an inability to convince the public and some technical peer reviewers that any proposed geological disposal sites (e.g., Yucca Mountain) can accommodate and contain the HLLW for a period of geological time equivalent to ten fold the radiological half-life of the longest lived of the actinides remaining after reprocessing. The paper explores combined equipment and chemical processing approaches for advancing and economizing the immobilization of high level liquid waste to ensure its long term durability, its decoupling from the unknown behavior of the repository over long geological time periods, and its economical formulation as required for the nuclear fuel cycle of the future. One approach involves the investigation of crystalline based waste forms as opposed to the glass/amorphous based waste forms, and how recent developments in crystalline forms show promise in sequestering the long lived actinides for over tens of millions of years. Another approach -compatible with the first- involves the use of an alternative melter technology-the Cold Crucible Induction Melter (CCIM)- to overcome the engineering material problems of Joule Heated Meters (JHM

  7. Description of processes for the immobilization of selected transuranic wastes

    International Nuclear Information System (INIS)

    Timmerman, C.L.

    1980-12-01

    Processed sludge and incinerator-ash wastes contaminated with transuranic (TRU) elements may require immobilization to prevent the release of these elements to the environment. As part of the TRU Waste Immobilization Program sponsored by the Department of Energy (DOE), the Pacific Northwest Laboratory is developing applicable waste-form and processing technology that may meet this need. This report defines and describes processes that are capable of immobilizing a selected TRU waste-stream consisting of a blend of three parts process sludge and one part incinerator ash. These selected waste streams are based on the compositions and generation rates of the waste processing and incineration facility at the Rocky Flats Plant. The specific waste forms that could be produced by the described processes include: in-can melted borosilicate-glass monolith; joule-heated melter borosilicate-glass monolith or marble; joule-heated melter aluminosilicate-glass monolith or marble; joule-heated melter basaltic-glass monolith or marble; joule-heated melter glass-ceramic monolith; cast-cement monolith; pressed-cement pellet; and cold-pressed sintered-ceramic pellet

  8. Defining And Characterizing Sample Representativeness For DWPF Melter Feed Samples

    Energy Technology Data Exchange (ETDEWEB)

    Shine, E. P.; Poirier, M. R.

    2013-10-29

    statisticians used carefully thought out designs that systematically and economically provided plans for data collection from the DWPF process. Key shared features of the sampling designs used at DWPF and the Gy sampling methodology were the specification of a standard for sample representativeness, an investigation that produced data from the process to study the sampling function, and a decision framework used to assess whether the specification was met based on the data. Without going into detail with regard to the seven errors identified by Pierre Gy, as excellent summaries are readily available such as Pitard [1989] and Smith [2001], SRS engineers understood, for example, that samplers can be biased (Gy's extraction error), and developed plans to mitigate those biases. Experiments that compared installed samplers with more representative samples obtained directly from the tank may not have resulted in systematically partitioning sampling errors into the now well-known error categories of Gy, but did provide overall information on the suitability of sampling systems. Most of the designs in this report are related to the DWPF vessels, not the large SRS Tank Farm tanks. Samples from the DWPF Slurry Mix Evaporator (SME), which contains the feed to the DWPF melter, are characterized using standardized analytical methods with known uncertainty. The analytical error is combined with the established error from sampling and processing in DWPF to determine the melter feed composition. This composition is used with the known uncertainty of the models in the Product Composition Control System (PCCS) to ensure that the wasteform that is produced is comfortably within the acceptable processing and product performance region. Having the advantage of many years of processing that meets the waste glass product acceptance criteria, the DWPF process has provided a considerable amount of data about itself in addition to the data from many special studies. Demonstrating representative

  9. Defining And Characterizing Sample Representativeness For DWPF Melter Feed Samples

    International Nuclear Information System (INIS)

    Shine, E. P.; Poirier, M. R.

    2013-01-01

    statisticians used carefully thought out designs that systematically and economically provided plans for data collection from the DWPF process. Key shared features of the sampling designs used at DWPF and the Gy sampling methodology were the specification of a standard for sample representativeness, an investigation that produced data from the process to study the sampling function, and a decision framework used to assess whether the specification was met based on the data. Without going into detail with regard to the seven errors identified by Pierre Gy, as excellent summaries are readily available such as Pitard [1989] and Smith [2001], SRS engineers understood, for example, that samplers can be biased (Gy's extraction error), and developed plans to mitigate those biases. Experiments that compared installed samplers with more representative samples obtained directly from the tank may not have resulted in systematically partitioning sampling errors into the now well-known error categories of Gy, but did provide overall information on the suitability of sampling systems. Most of the designs in this report are related to the DWPF vessels, not the large SRS Tank Farm tanks. Samples from the DWPF Slurry Mix Evaporator (SME), which contains the feed to the DWPF melter, are characterized using standardized analytical methods with known uncertainty. The analytical error is combined with the established error from sampling and processing in DWPF to determine the melter feed composition. This composition is used with the known uncertainty of the models in the Product Composition Control System (PCCS) to ensure that the wasteform that is produced is comfortably within the acceptable processing and product performance region. Having the advantage of many years of processing that meets the waste glass product acceptance criteria, the DWPF process has provided a considerable amount of data about itself in addition to the data from many special studies. Demonstrating representative sampling

  10. Comparison of glassy slag waste forms produced in laboratory crucibles and in a bench-scale plasma furnace

    International Nuclear Information System (INIS)

    Feng, X.; Wronkiewicz, D.J.; Brown, N.R.; Gong, M.; Whitworth, C.; Filius, K.; Battleson, D.

    1994-01-01

    Vitrification is currently the best demonstrated available technology for the disposal of high-level radioactive wastes. An innovative vitrification approach known as minimum additive waste stabilization (MAWS) is being developed. Both homogeneous glass and glassy slags have been used in implementing MAWS. Glassy slags (vitro-ceramics) are glass-crystal composites, and they are composed of various metal oxide crystalline phases embedded in an aluminosilicate glass matrix. Glassy slags with compositions developed in crucible melts at Argonne National Laboratory (ANL) were successfully produced in a bench-scale Retech plasma centrifugal furnace (PCF) by MSE, Inc. Detailed examinations of these materials showed that the crucible melts and the PCF produced similar glass and crystalline phases. The two sets of glassy slags exhibited similar chemical durability in terms of normalized releases of their major components. The slags produced in the PCF furnace using metals were usually less oxidized, although this had no effect on the corrosion behavior of the major components of the slags. However, the normalized release rate of cerium was initially lower for the PCF slags. This difference diminished with time as the redox sates of the metal oxides in slags began to be controlled by exposure to air in the tests. Thus, the deference in cerium release due to the differences in slag redox state may be transitory. The cerium solubility is a complex function of redox state and solution pH and Eh

  11. Melting method for radioactive solid wastes and device therefor

    Energy Technology Data Exchange (ETDEWEB)

    Komatsu, Masahiko; Abe, Takashi; Nakayama, Junpei; Kusamichi, Tatsuhiko; Sakamoto, Koichi

    1998-11-17

    Upon melting radioactive solid wastes mixed with radioactive metal wastes and non metal materials such as concrete by cold crucible high frequency induction heating, induction coils are wound around the outer circumference of a copper crucible having a water cooling structure to which radioactive solid wastes are charged. A heating sleeve formed by a material which generates heat by an induction heating function of graphite is disposed to the inside of the crucible at a height not in contact with molten metals in the crucible vertically movably. Radioactive solid wastes are melted collectively by the induction heat of the induction coils and thermal radiation and heat conduction of the heating sleeve heated by the induction heat. With such procedures, non metal materials such as concrete and radioactive metal wastes in a mixed state can be melt collectively continuously highly economically. (T.M.)

  12. Design features of the radioactive Liquid-Fed Ceramic Melter system

    International Nuclear Information System (INIS)

    Holton, L.K. Jr.

    1985-06-01

    During 1983, the Pacific Northwest Laboratory (PNL), at the request of the Department of Energy (DOE), undertook a program with the principal objective of testing the Liquid-Fed Ceramic Melter (LFCM) process in actual radioactive operations. This activity, termed the Radioactive LFCM (RLFCM) Operations is being conducted in existing shielded hot-cell facilities in B-Cell of the 324 Building, 300 Area, located at Hanford, Washington. This report summarizes the design features of the RLFCM system. These features include: a waste preparation and feed system which uses pulse-agitated waste preparation tanks for waste slurry agitation and an air displacement slurry pump for transferring waste slurries to the LFCM; a waste vitrification system (LFCM) - the design features, design approach, and reasoning for the design of the LFCM are described; a canister-handling turntable for positioning canisters underneath the RLFCM discharge port; a gamma source positioning and detection system for monitoring the glass fill level of the product canisters; and a primary off-gas treatment system for removing the majority of the radionuclide contamination from the RLFCM off gas. 8 refs., 48 figs., 6 tabs

  13. Preliminary experiments to simulate glass/electrode interactions within a Joule Ceramic Melter

    International Nuclear Information System (INIS)

    Dalton, J.T.; Paige, E.L.; Sutcliffe, P.W.

    1986-01-01

    Preliminary isothermal corrosion tests have been made on Inconel 690 coupon samples immersed in Harvest II M9 glass with and without excess additions of Li 2 O (1.5%) and RuO 2 (20%) together with TeO 2 (2%) at 1200 0 C for periods up to 100 hours. Inconel 690 corrosion and the products and ruthenium redox conditions within the glass approximate to those observed in the 1/3rd scale Joule Ceramic Melter operations. Corrosion takes place by an oxidation mechanism to form a chromium-rich surface oxide, and dissolution of this surface oxide by the surrounding glass. Additions of excess Li 2 O increase the corrosion rate of Inconel 690, whereas RuO 2 + TeO 2 are neutral. The latter however have a marked effect in lowering the room temperature resistivity by at least 5 orders of magnitude even though relatively small fraction of the RuO 2 precipitates were reduced to ruthenium metal. (author)

  14. Test plan for glass melter system technologies for vitrification of hign-sodium content low-level radioactive liquid waste, Project No. RDD-43288

    International Nuclear Information System (INIS)

    Higley, B.A.

    1995-01-01

    This document provides a test plan for the conduct of combustion fired cyclone vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System, Low-Level Waste Vitrification Program. The vendor providing this test plan and conducting the work detailed within it is the Babcock ampersand Wilcox Company Alliance Research Center in Alliance, Ohio. This vendor is one of seven selected for glass melter testing

  15. Continuous Czochralski growth. Development of advanced Czochralski growth process to produce low cost 150 kg silicon ingots from a single crucible for technology readiness

    Science.gov (United States)

    The improvement of growth rates using radiation shielding and investigation of the crucible melt interaction for improved yields were emphasized. Growth runs were performed from both 15 and 16 inch diameter crucibles, producing 30 and 37 kg ingots respectively. Efforts to increase the growth rate of 150 mm diameter ingots were limited by temperature instabilities believed to be caused by undesirable thermal convections in the larger melts. The radiation shield improved the growth rate somewhat, but the thermal instability was still evident, leading to nonround ingots and loss of dislocation-free structure. A 38 kg crystal was grown to demonstrate the feasibility of producing 150 kg with four growth cycles. After the grower construction phase, the Hamco microprocessor control system was interfaced to the growth facility, including the sensor for automatic control of seeding temperature, and the sensor for automatic shouldering. Efforts focused upon optimization of the seeding, necking, and shoulder growth automation programs.

  16. Demonstration test of 'multi-purpose incinerating melter system'

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, Hitoshi; Tanimoto, Kenichi [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center; Wakui, Hitoshi; Oasada, Kaoru; Ishikawa, Fuyuhiko

    1994-03-01

    A Multi-Purpose Incinerating Melter System (MIMS) has been developed as a volume reduction technique for a wide variety of radwastes including flame retardants such as spent resin, and non-combustible materials such as concrete, glass and steel. In the MIMS, these wastes are incinerated and/or melted at temperatures between 1,000 and 1,500degC generated by fossil fueled burner to produce obsidian-like ingots with high integrity. A demonstration test program was carried out from 1989 until 1991 using an engineering-scale demonstration unit. In the test program, various simulated wastes with traces of [sup 60]Co, [sup 54]Mn, [sup 59]Fe, [sup 137]Cs, [sup 22]Na and [sup 106]Ru were treated to obtain decontamination factor (DF) data and leach-resistance data of the products. The summarized results drawn from the 13 runs of demonstrative operations are the following: (1) Most involatile radionuclides are transferred into solidified products. (2) Global DF of the system excluding a HEPA filter ranged 1x10[sup 4] thru 1x10[sup 5] for [sup 60]Co, 2x10[sup 2] thru 2x10[sup 3] for [sup 137]Cs and 2x10[sup 2] thru 1x10[sup 4] for [sup 106]Ru. (3) Leaching resistance of the solidified product is a match for that of a typical borosilicate glass waste form. (author).

  17. Influence of Crucible Support Rod on the Growth Rate and Temperature Gradient in a Bridgman Growth of Tin Crystal

    OpenAIRE

    IMASHIMIZU, Yuji; MIURA, Koji; KAMATA, Masaki; WATANABE, Jiro

    2003-01-01

    Bridgman growth of tincrystal was carried out in a graphite crucible that was fixed on a quartz support rod or a copper one. The growth rate and axial temperature distribution were examined by recording the temperature variation with time at each of four prescribed positions in the solid-liquidsystem during solidification, l) Actual growth rate of crystal increased with progress of solidification while the furnace elevated at a constant rate, but the tendency was different depending on the ty...

  18. Detection of cold pain, cold allodynia and cold hyperalgesia in freely behaving rats

    Directory of Open Access Journals (Sweden)

    Woolf Clifford J

    2005-12-01

    Full Text Available Abstract Background Pain is elicited by cold, and a major feature of many neuropathic pain states is that normally innocuous cool stimuli begin to produce pain (cold allodynia. To expand our understanding of cold induced pain states we have studied cold pain behaviors over a range of temperatures in several animal models of chronic pain. Results We demonstrate that a Peltier-cooled cold plate with ± 1°C sensitivity enables quantitative measurement of a detection withdrawal response to cold stimuli in unrestrained rats. In naïve rats the threshold for eliciting cold pain behavior is 5°C. The withdrawal threshold for cold allodynia is 15°C in both the spared nerve injury and spinal nerve ligation models of neuropathic pain. Cold hyperalgesia is present in the spared nerve injury model animals, manifesting as a reduced latency of withdrawal response threshold at temperatures that elicit cold pain in naïve rats. We also show that following the peripheral inflammation produced by intraplantar injection of complete Freund's adjuvant, a hypersensitivity to cold occurs. Conclusion The peltier-cooled provides an effective means of assaying cold sensitivity in unrestrained rats. Behavioral testing of cold allodynia, hyperalgesia and pain will greatly facilitate the study of the neurobiological mechanisms involved in cold/cool sensations and enable measurement of the efficacy of pharmacological treatments to reduce these symptoms.

  19. Crystallization of nuclear glass under a thermal gradient: application to the self-crucible produced in the skull melting process

    International Nuclear Information System (INIS)

    Delattre, O.

    2013-01-01

    In the context of the vitrification of high level nuclear waste, a new industrial process has been launched in 2010 at the La Hague factory: The skull melting process. This setup applies thermal gradients to the melt, which leads to the formation of a solid layer of glass: the 'self-crucible'. The question would be to know whether these thermal gradients have an impact or not on the crystallization behaviour of the considered glasses in the self crucible. In order to answer that question, the crystallization of two glass compositions of nuclear interest has been investigated with an image analysis based method in isothermal and thermal gradient heat treatments conditions. The isothermal experiments allow for the quantification (growth speed, nucleation, crystallized fraction) of the crystallization of apatites (660 C-900 C) and powellites (630 C-900 C). The comparison of the results obtained through these two types of experimentations allows us to conclude that there is no impact of the thermal gradient on the crystallization of the studied glass compositions. In order to complete the image analysis study (based on surfaces), in and ex situ microtomography experiments have been performed at ESRF (Grenoble) on the ID19 beamline. This study allowed us to follow the crystallization of apatites in a simplified glass and to confirm the reliability of the image analysis method based on the analysis of surfaces. (author) [fr

  20. A new hybrid two-zone/crucible furnace process for the growth of epitaxial Tl{sub 2}Ba{sub 2}CaCu{sub 2}O{sub 8} superconducting films

    Energy Technology Data Exchange (ETDEWEB)

    Siegal, M.P.; Overmyer, D.L.; Venturini, E.L.; Dominguez, F.; Padilla, R.R. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1421 (United States)

    1998-12-01

    Epitaxial Tl{sub 2}Ba{sub 2}CaCu{sub 2}O{sub 8} (Tl-2212) films {approximately}5500 {Angstrom} thick are grown on LaAlO{sub 3}(100) substrates using a new hybrid two-zone/crucible furnace process enabling precise control of thallination. This method combines the best features of both conventional crucible and two-zone processing for the first time: superb film properties and reduced handling of hazardous Tl-oxide powders. Single-phase, highly {ital c}-axis oriented Tl-2212 films are grown with smooth morphology, Meissner transition {approximately}103 K, and critical current density {approximately}1.1{times}10{sup 7}A/cm{sup 2} at 5 K for twenty consecutive runs without having to change or add to the Tl-oxide source. {copyright} {ital 1998 Materials Research Society.}

  1. Conditioning processes for incinerator ashes

    International Nuclear Information System (INIS)

    Jouan, A.; Ouvrier, N.; Teulon, F.

    1990-01-01

    Three conditioning processes for alpha-bearing solid waste incineration ashes were investigated and compared according to technical and economic criteria: isostatic pressing, cold-crucible direct-induction melting and cement-resin matrix embedding

  2. Utilization of Space Shuttle External Tank materials by melting and powder metallurgy

    Science.gov (United States)

    Chern, T. S.

    1985-01-01

    The Crucible Melt Extraction Process was demonstrated to convert scraps of aluminum alloy 2219, used in the Space Shuttle External Tank, into fibers. The cast fibers were then consolidated by cold welding. The X-ray diffraction test of the cast fibers was done to examine the crystallinity and oxide content of the fibers. The compressive stress-strain behavior of the consolidated materials was also examined. Two conceptual schemes which would adapt the as-developed Crucible Melt Extraction Process to the microgravity condition in space were finally proposed.

  3. Safety assessment of the liquid-fed ceramic melter process

    International Nuclear Information System (INIS)

    Buelt, J.L.; Partain, W.L.

    1980-08-01

    As part of its development program for the solidification of high-level nuclear waste, Pacific Northwest Laboratory assessed the safety issues for a complete liquid-fed ceramic melter (LFCM) process. The LFCM process, an adaption of commercial glass-making technology, is being developed to convert high-level liquid waste from the nuclear fuel cycle into glass. This safety assessment uncovered no unresolved or significant safety problems with the LFCM process. Although in this assessment the LFCM process was not directly compared with other solidification processes, the safety hazards of the LFCM process are comparable to those of other processes. The high processing temperatures of the glass in the LFCM pose no additional significant safety concerns, and the dispersible inventory of dried waste (calcine) is small. This safety assessment was based on the nuclear power waste flowsheet, since power waste is more radioactive than defense waste at the time of solidification, and all accident conditions for the power waste would have greater radiological consequences than those for defense waste. An exhaustive list of possible off-standard conditions and equipment failures was compiled. These accidents were then classified according to severity of consequence and type of accident. Radionuclide releases to the stack were calculated for each group of accidents using conservative assumptions regarding the retention and decontamination features of the process and facility. Two recommendations that should be considered by process designers are given in the safety assessment

  4. Vitrification of high level nuclear waste inside ambient temperature disposal containers using inductive heating: The SMILE system

    International Nuclear Information System (INIS)

    Powell, J.; Reich, M.; Barletta, R.

    1996-01-01

    A new approach, termed SMILE (Small Module Inductively Loaded Energy), for the vitrification of high level nuclear wastes (HLW) is described. Present vitrification systems liquefy the HLW solids and associated frit material in large high temperature melters. The molten mix is then poured into small (∼1 m 3 ) disposal canisters, where it solidifies and cools. SMILE eliminates the separate, large high temperature melter. Instead, the BLW solids and frit melt inside the final disposal containers, using inductive heating. The contents then solidify and cool in place. The SMILE modules and the inductive heating process are designed so that the outer stainless can of the module remains at near ambient temperature during the process cycle. Module dimensions are similar to those of present disposal containers. The can is thermally insulated from the high temperature inner container by a thin layer of refractory alumina firebricks. The inner container is a graphite crucible lined with a dense alumina refractory that holds the HLW and fiit materials. After the SMILE module is loaded with a slurry of HLW and frit solids, an external multi-turn coil is energized with 30-cycle AC current. The enclosing external coil is the primary of a power transformer, with the graphite crucible acting as a single turn ''secondary.'' The induced current in the ''secondary'' heats the graphite, which in turn heats the HLW and frit materials. The first stage of the heating process is carried out at an intermediate temperature to drive off remnant liquid water and water of hydration, which takes about 1 day. The small fill/vent tube to the module is then sealed off and the interior temperature raised to the vitrification range, i.e., ∼1200C. Liquefaction is complete after approximately 1 day. The inductive heating then ceases and the module slowly loses heat to the environment, allowing the molten material to solidify and cool down to ambient temperature

  5. Application of the Rutherford backscattering analysis (RBS analysis) for detecting heavy impurity elements in pBN crucible materials

    International Nuclear Information System (INIS)

    Bethge, K.; Meyer, J.D.; Michelmann, R.; Krauskopf, J.

    1992-01-01

    By means of the Rutherford backscattering analysis evidence is given of an inhomogeneous depth distribution of the elements C, O, F, Na, Mg, Al, Si, P, S, Cl, Ca, Ti, Cr, Fe, Ni in pBN (pyrolytic boron nitride) materials of crucibles. This inhomogenous distribution is observed both at the original surface and at the surface of inner cracks. In addition, the distribution of the elements is found to differ depending on the spots chosen for analysis. The RBS measurements alone do not yield information on the volume concentration of the elements. (orig.) With 2 refs [de

  6. How cold is cold dark matter?

    International Nuclear Information System (INIS)

    Armendariz-Picon, Cristian; Neelakanta, Jayanth T.

    2014-01-01

    If cold dark matter consists of particles, these must be non-interacting and non-relativistic by definition. In most cold dark matter models however, dark matter particles inherit a non-vanishing velocity dispersion from interactions in the early universe, a velocity that redshifts with cosmic expansion but certainly remains non-zero. In this article, we place model-independent constraints on the dark matter temperature to mass ratio, whose square root determines the dark matter velocity dispersion. We only assume that dark matter particles decoupled kinetically while non-relativistic, when galactic scales had not entered the horizon yet, and that their momentum distribution has been Maxwellian since that time. Under these assumptions, using cosmic microwave background and matter power spectrum observations, we place upper limits on the temperature to mass ratio of cold dark matter today (away from collapsed structures). These limits imply that the present cold dark matter velocity dispersion has to be smaller than 54 m/s. Cold dark matter has to be quite cold, indeed

  7. Cold Antimatter Plasmas, and Aspirations for Cold Antihydrogen

    Science.gov (United States)

    2002-06-24

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP012494 TITLE: Cold Antimatter Plasmas, and Aspirations for Cold...part numbers comprise the compilation report: ADP012489 thru ADP012577 UNCLASSIFIED Cold Antimatter Plasmas, and Aspirations for Cold Antihydrogen G...and positrons. The antiprotons come initially from the new Antiproton Decel- erator facility at CERN. Good control of such cold antimatter plasmas is

  8. An evaluation of electric melter refractories for contact with glass used for the immobilisation of nuclear waste

    International Nuclear Information System (INIS)

    Hayward, P.J.; George, I.M.

    1987-01-01

    Corrosion tests have been performed on twelve candidate refractories in contact with borosilicate, titanosilicate, and aluminosilicate melts, in order to rank them for use in an all-electric melter for the production of waste form materials suitable for immobilising nuclear fuel recycle wastes. Viscosities and electrical conductivities of the melts have also been measured to enable optimum processing conditions to be determined. Of the materials tested, the choice of glass contact refractory for the Joule heated melting of the borosilicate and titanosilicate compositions is Monofrax K3 or SEPR 2161, in conjunction with tin oxide electrodes. The aluminosilicate glass waste form would require an alternative method of production (sol-gel processing, or sintering of a precursor frit), because of its high viscosity. (author)

  9. Hypothermic general cold adaptation induced by local cold acclimation.

    Science.gov (United States)

    Savourey, G; Barnavol, B; Caravel, J P; Feuerstein, C; Bittel, J H

    1996-01-01

    To study relationships between local cold adaptation of the lower limbs and general cold adaptation, eight subjects were submitted both to a cold foot test (CFT, 5 degrees C water immersion, 5 min) and to a whole-body standard cold air test (SCAT, 1 degree C, 2 h, nude at rest) before and after a local cold acclimation (LCA) of the lower limbs effected by repeated cold water immersions. The LCA induced a local cold adaptation confirmed by higher skin temperatures of the lower limbs during CFT and a hypothermic insulative general cold adaptation (decreased rectal temperature and mean skin temperature P adaptation was related to the habituation process confirmed by decreased plasma concentrations of noradrenaline (NA) during LCA (P general cold adaptation was unrelated either to local cold adaptation or to the habituation process, because an increased NA during SCAT after LCA (P syndrome" occurring during LCA.

  10. Laboratory optimization tests of technetium decontamination of Hanford Waste Treatment Plant low activity waste melter off-gas condensate simulant

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, Kathryn M.L. [Savannah River Site (SRS), Aiken, SC (United States); McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States)

    2015-11-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable simplified operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste.

  11. Nitric-glycolic flowsheet evaluation with the slurry-fed melt rate furnace

    Energy Technology Data Exchange (ETDEWEB)

    Williams, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Miller, D. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fowley, M. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Zamecnik, J. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-03-01

    The Savannah River National Laboratory (SRNL) was tasked to support validation of the Defense Waste Processing Facility (DWPF) melter offgas flammability model for the nitric-glycolic (NG) flowsheet. The work supports Deliverable 4 of the DWPF & Saltstone Facility Engineering Technical Task Request (TTR)1 and is supplemental to the Cold Cap Evaluation Furnace (CEF) testing conducted in 2014.2 The Slurry-fed Melt Rate Furnace (SMRF) was selected for the supplemental testing as it requires significantly less resources than the CEF and could provide a tool for more rapid analysis of melter feeds in the future. The SMRF platform has been used previously to evaluate melt rate behavior of DWPF glasses, but was modified to accommodate analysis of the offgas stream. Additionally, the Melt Rate Furnace (MRF) and Quartz Melt Rate Furnace (QMRF) were utilized for evaluations. MRF data was used exclusively for melt behavior observations and REDuction/OXidation (REDOX) prediction comparisons and will be briefly discussed in conjunction with its support of the SMRF testing. The QMRF was operated similarly to the SMRF for the same TTR task, but will be discussed in a separate future report. The overall objectives of the SMRF testing were to; 1) Evaluate the efficacy of the SMRF as a platform for steady state melter testing with continuous feeding and offgas analysis; and 2) Generate supplemental melter offgas flammability data to support the melter offgas flammability modelling effort for DWPF implementation of the NG flowsheet.

  12. Cold Stress

    Science.gov (United States)

    ... Publications and Products Programs Contact NIOSH NIOSH COLD STRESS Recommend on Facebook Tweet Share Compartir Workers who ... cold environments may be at risk of cold stress. Extreme cold weather is a dangerous situation that ...

  13. Recent development of levitation melting equipment; Fuyo yokai sochi (CCLM) no shinten

    Energy Technology Data Exchange (ETDEWEB)

    Tadano, H.; Kainuma, K. [Fuji Electric Furnace Co. Ltd., Mie (Japan)

    1998-05-10

    Fuji Electric Co., Ltd., is advancing its research and development efforts for cold crucible levitation melting (CCLM) equipment in which metal is caused to be levitated in the air and is melted. Such a unit consists of a water-cooled copper crucible, a water-cooled coil installed to surround the crucible, and a high-frequency power source. Eddy currents are induced in the crucible and metal upon application of a high-frequency current to the coil, and electromagnetic repulsion is generated between the eddy currents. When the force of repulsion is greater than the force of gravity acting on the metal, the metal leaves the crucible to be levitated in the air. At the same time, the metal is heated by the Joule heat produced by the eddy currents, and is melted. So far, for the stabilized levitation melting of a kilogram-level amount of metal, a double power source excitation system has been adopted and the crucible bottom configuration has been optimized. Also, non-contact tapping of molten metal from the bottom and increase of the molten metal amount to the 50 kilogram level have been achieved, these for the industrialization of the technology. Already available on the market are equipment for large-capacity CCLM, continuous casting CCLM, and the high-vacuum CCLM. 5 refs., 13 figs., 3 tabs.

  14. Prediction of waste glass melt rates

    International Nuclear Information System (INIS)

    Lee, L.

    1987-01-01

    Under contract to the Department of Energy, the Du Pont Company has begun construction of a Defense Waste Processing Facility to immobilize radioactive wastes now stored as liquids at the Department of Energy's Savannah River Plant. The immobilization process solidifies waste sludge by vitrification into a leach-resistant borosilicate glass. Development of this process has been the responsibility of the Savannah River Laboratory. As part of the development, a simple model was developed to predict the melt rates for the waste glass melter. This model is based on an energy balance for the cold cap and gives very good agreement with melt rate data obtained from experimental campaigns in smaller scale waste glass melters

  15. Kinetic model for quartz and spinel dissolution during melting of high-level-waste glass batch

    International Nuclear Information System (INIS)

    Pokorny, Richard; Rice, Jarrett A.; Crum, Jarrod V.; Schweiger, Michael J.; Hrma, Pavel

    2013-01-01

    The dissolution of quartz particles and the growth and dissolution of crystalline phases during the conversion of batch to glass potentially affects both the glass melting process and product quality. Crystals of spinel exiting the cold cap to molten glass below can be troublesome during the vitrification of iron-containing high-level wastes. To estimate the distribution of quartz and spinel fractions within the cold cap, we used kinetic models that relate fractions of these phases to temperature and heating rate. Fitting the model equations to data showed that the heating rate, apart from affecting quartz and spinel behavior directly, also affects them indirectly via concurrent processes, such as the formation and motion of bubbles. Because of these indirect effects, it was necessary to allow one kinetic parameter (the pre-exponential factor) to vary with the heating rate. The resulting kinetic equations are sufficiently simple for the detailed modeling of batch-to-glass conversion as it occurs in glass melters. The estimated fractions and sizes of quartz and spinel particles as they leave the cold cap, determined in this study, will provide the source terms needed for modeling the behavior of these solid particles within the flow of molten glass in the melter

  16. Design of electrodes in geometrical control type electrolyzer for oxide electrowinning process

    International Nuclear Information System (INIS)

    Nobuo Okamura; Kenji Koizumi; Tadahiro Washiya; Shinnichi Aose

    2005-01-01

    Japan Nuclear Cycle Development Institute (JNC) has been developing a commercial scale electrolyzer with a throughput of 25 tHM/y for an oxide electrowinning process, a kind of pyrochemical reprocessing process. But it had some significant subjects to be solved before the application to a commercial reprocessing plant. The electrolyzer has some innovative characteristics, such as cold crucible induction melting (CCIM) technology and criticality safety control by shape of the vessel, in order to solve those subjects. These characteristics make a crucible narrow and deep. Therefore an arrangement of the internal components in the crucible is difficult. Two kinds of computer cords that evaluate the temperature distribution and the current density distribution were improved to help a design of the internal constitution. Finally, the internal constitution of the commercial scale electrolyzer was designed by using them in this study. (authors)

  17. Cold injuries.

    Science.gov (United States)

    Kruse, R J

    1995-01-01

    There are two categories of cold injury. The first is hypothermia, which is a systemic injury to cold, and the second is frostbite, which is a local injury. Throughout history, entire armies, from George Washington to the Germans on the Russian Front in World War II, have fallen prey to prolonged cold exposure. Cold injury is common and can occur in all seasons if ambient temperature is lower than the core body temperature. In the 1985 Boston Marathon, even though it was 76 degrees and sunny, there were 75 runners treated for hypothermia. In general, humans adapt poorly to cold exposure. Children are at particular risk because of their relatively greater surface area/body mass ratio, causing them to cool even more rapidly than adults. Because of this, the human's best defense against cold injury is to limit his/her exposure to cold and to dress appropriately. If cold injury has occurred and is mild, often simple passive rewarming such as dry blankets and a warm room are sufficient treatment.

  18. Connecting section and associated systems concept for the spray calciner/in-can melter process

    International Nuclear Information System (INIS)

    Petkus, L.L.; Gorton, P.S.; Blair, H.T.

    1981-06-01

    For a number of years, researchers at the Pacific Northwest Laboratory have been developing processes and equipment for converting high-level liquid wastes to solid forms. One of these processes is the Spray Calciner/In-Can Melter system. To immobilize high-level liquid wastes, this system must be operated remotely, and the calcine must be reliably conveyed from the calciner to the melting furnace. A concept for such a remote conveyance system was developed at the Pacific Northwest Laboratory, and equipment was tested under full-scale, nonradioactive conditions. This concept and the design of demonstration equipment are described, and the results of equipment operation during experimental runs of 7 d are presented. The design includes a connecting section and its associated systems - a canister sypport and alignment concept and a weight-monitoring system for the melting furnace. Overall, the runs demonstrated that the concept design is an acceptable method of connecting the two pieces of process equipment together. Although the connecting section has not been optimized in all areas of concern, it provides a first-generation design of a production-oriented system

  19. Mathematical Modeling of Conversion Kinetics during Vitrification of Nuclear Waste

    International Nuclear Information System (INIS)

    Pokorny, Richard; Pierce, David A.; Chun, Jae Hun; Hrma, Pavel

    2012-01-01

    The last part of the high-level waste (HLW) glass melter that has not yet been fully understood, not to mention mathematically modeled, is the cold cap. Cold cap is a layer of dry melter feed, a mixture of the HLW with glass forming and modifying additives. It floats on the pool of molten glass from which it receives the heat necessary for melting. Mathematical modeling of the cold cap solves differential equations that express the mass and energy balances for the feed-to-glass conversion within the cold cap. The feed-to-glass conversion consists of multiple chemical reactions and phase transitions. Reaction enthalpies and mass losses to gases evolved provide an important input for the cold cap modeling. In this study, we measured the kinetics of cold cap reactions using the non-isothermal thermo-gravimetric analysis (TGA) and differential scanning calorimetry (DSC). These thermoanalytical techniques show multiple overlapping peaks, necessitating the development of a deconvolution method for the determination of the kinetics of major reactions needed for cold cap modeling. Assuming that the cold cap reactions are independent, we expressed the overall rate as a sum of rates of individual reactions that we treat as Arrheniustype processes with a power-law based kinetics. Accordingly, we fitted to experimental data the following equation: dx/dT=1/Φ N Σ 1 w i A i (1-x i ) ni exp(-B i /T) (1) where x is the fraction of material reacted, T is temperature, Φ is the heating rate, wi the weight of the i th reaction (the fraction of the total mass loss caused by the i th reaction), Ai is the i th reaction pre-exponential factor, B i is the i th reaction activation energy, and n i is the i th reaction (apparent) reaction order. Because HLW melter feeds contain a large number of constituents, such as oxides, acids, hydroxides, oxyhydrates, and ionic salts, the number of cold cap reactions is very large indeed. For example, hydroxides, oxyhydrates, boric acid, and various

  20. Laboratory Optimization Tests of Technetium Decontamination of Hanford Waste Treatment Plant Direct Feed Low Activity Waste Melter Off-Gas Condensate Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-12-23

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste.

  1. Corrosion experience in nuclear waste processing at Battelle Northwest

    International Nuclear Information System (INIS)

    Slate, S.C.; Maness, R.F.

    1976-11-01

    Emphasis is on corrosion as related to waste storage canister. Most work has been done in support of the In-Can Melter (ICM) vitrification system. It is assumed that the canister goes through the ICM process and is then stored in a water basin. The most severe corrosion effect seen is oxidation of stainless steel (SS) surfaces in contact with gases containing oxygen during processing. The processing temperature is near 1100 0 C and furnace atmosphere, used until now, has been air with unrestricted flow to the furnace. The oxidation rate at 1100 0 C is 15.8 g/cm 2 for 304L SS. Techniques for eliminating this corrosion currently being investigated include the use of different materials, such as Inconel 601, and the use of an inert cover gas. Corrosion due to the waste melt is not as rapid as the air oxidation. This effect has been studied extensively in connection with the development of a metallic crucible melter at Battelle. Data are available on the corrosion rates of several waste compositions in contact with various materials. Long-term compatibility tests between the melt and the metal have been run; it was found the corrosion rates due to the melt or its vapor do not pose a serious problem to the waste canister. However, these rates are high enough to preclude the practical use of a metallic melter. Interim water storage of the canister may be a problem if proper corrective measurements are not taken.The canister may be susceptible to stress corrosion cracking (SCC) because it will be sensitized to some extent and it will be nearly stressed to yield. The most favorable solution to SCC involves minimizing canister sensitization and stress plus providing good water quality control. It has been recommended to keep the chlorine ion concentration below 1 ppM and the pH above 10. At these conditions no failures of 304L are predicted due to SCC. It is concluded that corrosion of a canister used during the In-Can Melter process and interim storage can be controlled

  2. Evaluation of a Novel Temperature Sensing Probe for Monitoring and Controlling Glass Temperature in a Joule-Heated Glass Melter

    International Nuclear Information System (INIS)

    Watkins, A. D.; Musick, C. A.; Cannon, C.; Carlson, N. M.; Mullenix, P.D.; Tillotson, R. D.

    1999-01-01

    A self-verifying temperature sensor that employs advanced contact thermocouple probe technology was tested in a laboratory-scale, joule-heated, refractory-lined glass melter used for radioactive waste vitrification. The novel temperature probe monitors melt temperature at any given level of the melt chamber. The data acquisition system provides the real-time temperature for molten glass. Test results indicate that the self-verifying sensor is more accurate and reliable than classic platinum/rhodium thermocouple and sheath assemblies. The results of this test are reported as well as enhancements being made to the temperature probe. To obtain more reliable temperature measurements of the molten glass for improving production efficiency and ensuring consistent glass properties, optical sensing was reviewed for application in a high temperature environment

  3. Cold plate

    Energy Technology Data Exchange (ETDEWEB)

    Marroquin, Christopher M.; O' Connell, Kevin M.; Schultz, Mark D.; Tian, Shurong

    2018-02-13

    A cold plate, an electronic assembly including a cold plate, and a method for forming a cold plate are provided. The cold plate includes an interface plate and an opposing plate that form a plenum. The cold plate includes a plurality of active areas arranged for alignment over respective heat generating portions of an electronic assembly, and non-active areas between the active areas. A cooling fluid flows through the plenum. The plenum, at the non-active areas, has a reduced width and/or reduced height relative to the plenum at the active areas. The reduced width and/or height of the plenum, and exterior dimensions of cold plate, at the non-active areas allow the non-active areas to flex to accommodate surface variations of the electronics assembly. The reduced width and/or height non-active areas can be specifically shaped to fit between physical features of the electronics assembly.

  4. INTERACTION STUDIES OF CERAMIC VACUUM PLASMA SPRAYING FOR THE MELTING CRUCIBLE MATERIALS

    Directory of Open Access Journals (Sweden)

    JONG HWAN KIM

    2013-10-01

    Full Text Available Candidate coating materials for re-usable metallic nuclear fuel crucibles, TaC, TiC, ZrC, ZrO2, and Y2O3, were plasma-sprayed onto a niobium substrate. The microstructure of the plasma-sprayed coatings and thermal cycling behavior were characterized, and U-Zr melt interaction studies were carried out. The TaC and Y2O3 coating layers had a uniform thickness, and high density with only a few small closed pores showing good consolidation, while the ZrC, TiC, and ZrO2 coatings were not well consolidated with a considerable amount of porosity. Thermal cycling tests showed that the adhesion of the TiC, ZrC, and ZrO2 coating layers with niobium was relatively weak compared to the TaC and Y2O3 coatings. The TaC and Y2O3 coatings had better cycling characteristics with no interconnected cracks. In the interaction studies, ZrC and ZrO2 coated rods showed significant degradations after exposure to U-10 wt.% Zr melt at 1600°C for 15 min., but TaC, TiC, and Y2O3 coatings showed good compatibility with U-Zr melt.

  5. Summary of Pilot-Scale Activities with Mercury Contaminated Sludges (U)

    International Nuclear Information System (INIS)

    Cicero, C.A.; Hutson, N.D.; Zamecnik, J.R.; Smith, M.E.; Miller, D. H.; Ritter, J.A.; Hardy, B.J.; Jantzen, C.M.

    1995-01-01

    Technologies for treatment of low level mixed wastes (LLMW) are currently being investigated by the Mixed Waste Focus Area (MWFA) of the Department of Energy (DOE). The Savannah River Technology Center (SRTC) has been chartered by the MWFA to study vitrification treatment of the wastes through an Office of Technology Development (OTD) Technical Task Plan (TTP). SRTC's efforts have included crucible-scale studies and pilot-scale testing on simulated LLMW sludges, resins, soils, and other solid wastes. Results from the crucible-scale studies have been used as the basis for the pilot-scale demonstrations. One of the streams to be investigated in fiscal year (FY) 1995 by SRTC was a mercury waste. In FY 1995, SRTC performed crucible-scale studies with mercury contaminated soil. This waste stream was selected because of the large number of DOE sites that have an inventory of contaminated or hazardous soil. More importantly, it was readily available for treatment. Pilot-scale studies were to be completed in FY 1995, but could not be completed due to a reduction in funding. Since the main driver for focusing on a mercury waste stream was to determine how the mercury could be treated, a compilation of pilot-scale tests with mercury sludges performed under the guidance of SRTC is provided in this report. The studies summarized in this report include several pilot-scale vitrification demonstrations with simulated radioactive sludges that contained mercury. The pilot-scale studies were performed at the SRTC in the Integrated Defense Waste Processing Facility (DWPF) Melter System (IDMS). The studies involved complete glass and offgas product characterization. Future pilot-scale studies with mercury streams will likely be performed with mercury contaminated soils, sediments, or sludges because of the need to dispose of this technically challenging waste stream. (Abstract Truncated)

  6. Investigation of processing effects on the corrosion resistance of Ti20Mo alloy in saline solutions

    International Nuclear Information System (INIS)

    Bolat, G.; Izquierdo, J.; Gloriant, T.; Chelariu, R.; Mareci, D.; Souto, R.M.

    2015-01-01

    Graphical abstract: - Highlights: • Alloy fabrication method affects both surface finish and corrosion resistance. • More porous surface finish and higher wettability produced by powder sintering. • Passive layer formed on sintered alloy breaks down in saline solution. • Increase in surface porosity facilitated electron transfer through the oxide film. • More corrosion resistant alloy produced by cold crucible levitation melting. - Abstract: The electrochemical properties of Ti20Mo alloys prepared using different fabrication procedures, namely cold crucible levitation melting (CCLM) and powder sintering, were investigated using linear potentiodynamic polarization and EIS measurements. The surface condition was established using AFM, with the observation of a more porous surface finish in the case of powder sintering. A major effect of surface conditioning on the corrosion resistance of Ti20Mo alloys was observed, where the compact finish exhibits a superior corrosion resistance in chloride-containing saline solutions. Less insulating surfaces towards electron exchange resulted for the more porous finish as revealed by scanning electrochemical microscopy (SECM)

  7. Conceptualizing Cold Disasters

    DEFF Research Database (Denmark)

    Lauta, Kristian Cedervall; Dahlberg, Rasmus; Vendelø, Morten Thanning

    2017-01-01

    In the present article, we explore in more depth the particular circumstances and characteristics of governing what we call ‘cold disasters’, and thereby, the paper sets out to investigate how disasters in cold contexts distinguish themselves from other disasters, and what the implications hereof...... are for the conceptualization and governance of cold disasters. Hence, the paper can also be viewed as a response to Alexander’s (2012a) recent call for new theory in the field of disaster risk reduction. The article is structured in four overall parts. The first part, Cold Context, provides an overview of the specific...... conditions in a cold context, exemplified by the Arctic, and zooms in on Greenland to provide more specific background for the paper. The second part, Disasters in Cold Contexts, discusses “cold disasters” in relation to disaster theory, in order to, elucidate how cold disasters challenge existing...

  8. Cold urticaria. Dissociation of cold-evoked histamine release and urticara following cold challenge.

    Science.gov (United States)

    Keahey, T M; Greaves, M W

    1980-02-01

    Nine patients with acquired cold urticaria were studied to assess the effects of beta-adrenergic agents, xanthines, and corticosteroids on cold-evoked histamine release from skin in vivo. The patients, in all of whom an immediate urticarial response developed after cooling of the forearm, demonstrated release of histamine into the venous blood draining that forearm. Following treatment with aminophylline and albuterol in combination or prednisone alone, suppression of histamine release occurred in all but one patient. In some patients, this was accompanied by a subjective diminution in pruritus or buring, but there was no significant improvement in the ensuing edema or erythema. In one patient, total suppression of histamine release was achieved without any effect on whealing and erythema in response to cold challenge. Our results suggest that histamine is not central to the pathogenesis of vascular changes in acquired cold urticaria.

  9. The integrated melter off-gas treatment systems at the West Valley Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Vance, R.F. [West Valley Nuclear Services Co., Inc., NY (United States)

    1995-02-01

    The West Valley Demonstration Project was established by Public Law 96-368, the {open_quotes}West Valley Demonstration Project Act, {close_quotes} on October 1, l980. Under this act, Congress directed the Department of Energy to carry out a high level radioactive waste management demonstration project at the Western New York Nuclear Service Center in West Valley, New York. The purpose of this project is to demonstrate solidification techniques which can be used for preparing high level radioactive waste for disposal. In addition to developing this technology, the West Valley Demonstration Project Act directs the Department of Energy to: (1) develop containers suitable for permanent disposal of the high level waste; (2) transport the solidified high level waste to a Federal repository; (3) dispose of low level and transuranic waste produced under the project; and (4) decontaminate and decommission the facilities and materials associated with project activities and the storage tanks originally used to store the liquid high level radioactive waste. The process of vitrification will be used to solidify the high level radioactive liquid wastes into borosilicate glass. This report describes the functions, the controlling design criteria, and the resulting design of the melter off-gas treatment systems which are used in the vitrification process.

  10. Relationships of self-identified cold tolerance and cold-induced vasodilatation in the finger

    Science.gov (United States)

    Park, Joonhee; Lee, Joo-Young

    2016-04-01

    This study was conducted to investigate relationships of self-identified cold tolerance and cold-induced vasodilatation (CIVD) in the finger. Nine males and 34 females participated in the following 2 tests: a CIVD test and a self-reported survey. The CIVD test was conducted 30-min cold-water immersion (3.8 ± 0.3 °C) of the middle finger at an air temperature of 27.9 ± 0.1 °C. The self-reported questionnaire consisted of 28 questions about whole and local body cold and heat tolerances. By a cluster analysis on the survey results, the participants were divided into two groups: high self-identified cold tolerance (HSCT, n = 25) and low self-identified cold tolerance (LSCT, n = 18). LSCT had lower self-identified cold tolerance ( P cold or heat tolerance had relationships with cold tolerance index, T max, and amplitude ( P cold tolerance classified through a standardized survey could be a good index to predict physiological cold tolerance.

  11. Burning Cold: Involvement of TRPA1 in Noxious Cold Sensation

    OpenAIRE

    Kwan, Kelvin Y.; Corey, David P.

    2009-01-01

    Soon after its discovery ten years ago, the ion channel TRPA1 was proposed as a sensor of noxious cold. Evidence for its activation by painfully cold temperatures (below ~15° C) has been mixed, however. Some groups found that cold elicits a nonselective conductance in cells expressing TRPA1; others found no activation, or argued that activation is an indirect effect of elevated \\(Ca^{ 2+}\\) . Sensory cells from the trigeminal and dorsal root ganglia that are activated by cold were sometimes c...

  12. Cold-Hearted or Cool-Headed: Physical Coldness Promotes Utilitarian Moral Judgment

    Directory of Open Access Journals (Sweden)

    Hiroko eNakamura

    2014-10-01

    Full Text Available In the current study, we examine the effect of physical coldness on personal moral dilemma judgment. Previous studies have indicated that utilitarian moral judgment—sacrificing a few people to achieve the greater good for others—was facilitated when: (1 participants suppressed an initial emotional response and deliberately thought about the utility of outcomes; (2 participants had a high-level construal mindset and focused on abstract goals (e.g., save many; or (3 there was a decreasing emotional response to sacrificing a few. In two experiments, we exposed participants to extreme cold or typical room temperature and then asked them to make personal moral dilemma judgments. The results of Experiment 1 indicated that coldness prompted utilitarian judgment, but the effect of coldness was independent from deliberate thought or abstract high-level construal mindset. As Experiment 2 revealed, coldness facilitated utilitarian judgment via reduced empathic feelings. Therefore, physical coldness did not affect the cool-headed deliberate process or the abstract high-level construal mindset. Rather, coldness biased people toward being cold-hearted, reduced empathetic concern about a sacrificed victim, and facilitated utilitarian moral judgments.

  13. Statistical process control support during Defense Waste Processing Facility chemical runs

    International Nuclear Information System (INIS)

    Brown, K.G.

    1994-01-01

    The Product Composition Control System (PCCS) has been developed to ensure that the wasteforms produced by the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) will satisfy the regulatory and processing criteria that will be imposed. The PCCS provides rigorous, statistically-defensible management of a noisy, multivariate system subject to multiple constraints. The system has been successfully tested and has been used to control the production of the first two melter feed batches during DWPF Chemical Runs. These operations will demonstrate the viability of the DWPF process. This paper provides a brief discussion of the technical foundation for the statistical process control algorithms incorporated into PCCS, and describes the results obtained and lessons learned from DWPF Cold Chemical Run operations. The DWPF will immobilize approximately 130 million liters of high-level nuclear waste currently stored at the Site in 51 carbon steel tanks. Waste handling operations separate this waste into highly radioactive sludge and precipitate streams and less radioactive water soluble salts. (In a separate facility, soluble salts are disposed of as low-level waste in a mixture of cement slag, and flyash.) In DWPF, the precipitate steam (Precipitate Hydrolysis Aqueous or PHA) is blended with the insoluble sludge and ground glass frit to produce melter feed slurry which is continuously fed to the DWPF melter. The melter produces a molten borosilicate glass which is poured into stainless steel canisters for cooling and, ultimately, shipment to and storage in a geologic repository

  14. Test plan for evaluation of plasma melter technology for vitrification of high-sodium content low-level radioactive liquid wastes

    International Nuclear Information System (INIS)

    McLaughlin, D.F.; Lahoda, E.J.; Gass, W.R.; D'Amico, N.

    1994-01-01

    This document provides a test plan for the conduct of plasma arc vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System (TWRS) Low-Level Waste (LLW) Vitrification Program. The vendor providing this test plan and conducting the work detailed within it [one of seven selected for glass melter testing under Purchase Order MMI-SVV-384212] is the Westinghouse Science and Technology Center (WSTC) in Pittsburgh, PA. WSTC authors of the test plan are D. F. McLaughlin, E. J. Lahoda, W. R. Gass, and N. D'Amico. The WSTC Program Manager for this test is D. F. McLaughlin. This test plan is for Phase I activities described in the above Purchase Order. Test conduct includes melting of glass frit with Hanford LLW Double-Shell Slurry Feed waste simulant in a plasma arc fired furnace

  15. MELT RATE ENHANCEMENT FOR HIGH ALUMINUM HLW (HIGH LEVEL WASTE) GLASS FORMULATION FINAL REPORT 08R1360-1

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; KOT W; PEGG IL; JOSEPH I; BARDAKCI T; GAN H; GONG W; CHAUDHURI M

    2010-01-04

    This report describes the development and testing of new glass formulations for high aluminum waste streams that achieve high waste loadings while maintaining high processing rates. The testing was based on the compositions of Hanford High Level Waste (HLW) with limiting concentrations of aluminum specified by the Office of River Protection (ORP). The testing identified glass formulations that optimize waste loading and waste processing rate while meeting all processing and product quality requirements. The work included preparation and characterization of crucible melts and small scale melt rate screening tests. The results were used to select compositions for subsequent testing in a DuraMelter 100 (DM100) system. These tests were used to determine processing rates for the selected formulations as well as to examine the effects of increased glass processing temperature, and the form of aluminum in the waste simulant. Finally, one of the formulations was selected for large-scale confirmatory testing on the HLW Pilot Melter (DM1200), which is a one third scale prototype of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) HLW melter and off-gas treatment system. This work builds on previous work performed at the Vitreous State Laboratory (VSL) for Department of Energy (DOE) to increase waste loading and processing rates for high-iron HLW waste streams as well as previous tests conducted for ORP on the same high-aluminum waste composition used in the present work and other Hanford HLW compositions. The scope of this study was outlined in a Test Plan that was prepared in response to an ORP-supplied statement of work. It is currently estimated that the number of HLW canisters to be produced in the WTP is about 13,500 (equivalent to 40,500 MT glass). This estimate is based upon the inventory of the tank wastes, the anticipated performance of the sludge treatment processes, and current understanding of the capability of the borosilicate glass waste form

  16. MELT RATE ENHANCEMENT FOR HIGH ALUMINUM HLW (HIGH LEVEL WASTE) GLASS FORMULATION. FINAL REPORT 08R1360-1

    International Nuclear Information System (INIS)

    Kruger, A.A.; Matlack, K.S.; Kot, W.; Pegg, I.L.; Joseph, I.; Bardakci, T.; Gan, H.; Gong, W.; Chaudhuri, M.

    2010-01-01

    This report describes the development and testing of new glass formulations for high aluminum waste streams that achieve high waste loadings while maintaining high processing rates. The testing was based on the compositions of Hanford High Level Waste (HLW) with limiting concentrations of aluminum specified by the Office of River Protection (ORP). The testing identified glass formulations that optimize waste loading and waste processing rate while meeting all processing and product quality requirements. The work included preparation and characterization of crucible melts and small scale melt rate screening tests. The results were used to select compositions for subsequent testing in a DuraMelter 100 (DM100) system. These tests were used to determine processing rates for the selected formulations as well as to examine the effects of increased glass processing temperature, and the form of aluminum in the waste simulant. Finally, one of the formulations was selected for large-scale confirmatory testing on the HLW Pilot Melter (DM1200), which is a one third scale prototype of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) HLW melter and off-gas treatment system. This work builds on previous work performed at the Vitreous State Laboratory (VSL) for Department of Energy (DOE) to increase waste loading and processing rates for high-iron HLW waste streams as well as previous tests conducted for ORP on the same high-aluminum waste composition used in the present work and other Hanford HLW compositions. The scope of this study was outlined in a Test Plan that was prepared in response to an ORP-supplied statement of work. It is currently estimated that the number of HLW canisters to be produced in the WTP is about 13,500 (equivalent to 40,500 MT glass). This estimate is based upon the inventory of the tank wastes, the anticipated performance of the sludge treatment processes, and current understanding of the capability of the borosilicate glass waste form

  17. Grooved cold moderator tests

    International Nuclear Information System (INIS)

    Inoue, K.; Kiyanagi, Y.; Iwasa, H.; Watanabe, N.; Ikeda, S.; Carpenter, J.M.; Ishikawa, Y.

    1983-01-01

    We performed some grooved cold moderator experiments for methane at 20 K by using the Hokkaido University linac to obtain information to be used in the planning of the KENS-I' project. Cold neutron gains, spatial distribution of emitted beams and time distribution of the neutrons in the grooved cold moderator were measured. Furthermore, we assessed the effects of the grooved cold moderator on the performances of the spectrometers presently installed at the KENS-I cold source. We concluded that the grooved cold moderator benefited appreciably the performances of the spectrometers

  18. Impact Of Particle Agglomeration On Accumulation Rates In The Glass Discharge Riser Of HLW Melter

    International Nuclear Information System (INIS)

    Kruger, A. A.; Rodriguez, C. A.; Matyas, J.; Owen, A. T.; Jansik, D. P.; Lang, J. B.

    2012-01-01

    The major factor limiting waste loading in continuous high-level radioactive waste (HLW) melters is an accumulation of particles in the glass discharge riser during a frequent and periodic idling of more than 20 days. An excessive accumulation can produce robust layers a few centimeters thick, which may clog the riser, preventing molten glass from being poured into canisters. Since the accumulation rate is driven by the size of particles we investigated with x-ray microtomography, scanning electron microscopy, and image analysis the impact of spinel forming components, noble metals, and alumina on the size, concentration, and spatial distribution of particles, and on the accumulation rate. Increased concentrations of Fe and Ni in the baseline glass resulted in the formation of large agglomerates that grew over the time to an average size of ∼185+-155 μm, and produced >3 mm thick layer after 120 h at 850 deg C. The noble metals decreased the particle size, and therefore significantly slowed down the accumulation rate. Addition of alumina resulted in the formation of a network of spinel dendrites which prevented accumulation of particles into compact layers

  19. Tunable molten oxide pool assisted plasma-melter vitrification systems

    Science.gov (United States)

    Titus, Charles H.; Cohn, Daniel R.; Surma, Jeffrey E.

    1998-01-01

    The present invention provides tunable waste conversion systems and apparatus which have the advantage of highly robust operation and which provide complete or substantially complete conversion of a wide range of waste streams into useful gas and a stable, nonleachable solid product at a single location with greatly reduced air pollution to meet air quality standards. The systems provide the capability for highly efficient conversion of waste into high quality combustible gas and for high efficiency conversion of the gas into electricity by utilizing a high efficiency gas turbine or an internal combustion engine. The solid product can be suitable for various commercial applications. Alternatively, the solid product stream, which is a safe, stable material, may be disposed of without special considerations as hazardous material. In the preferred embodiment, the arc plasma furnace and joule heated melter are formed as a fully integrated unit with a common melt pool having circuit arrangements for the simultaneous independently controllable operation of both the arc plasma and the joule heated portions of the unit without interference with one another. The preferred configuration of this embodiment of the invention utilizes two arc plasma electrodes with an elongated chamber for the molten pool such that the molten pool is capable of providing conducting paths between electrodes. The apparatus may additionally be employed with reduced use or without further use of the gases generated by the conversion process. The apparatus may be employed as a net energy or net electricity producing unit where use of an auxiliary fuel provides the required level of electricity production. Methods and apparatus for converting metals, non-glass forming waste streams and low-ash producing inorganics into a useful gas are also provided. The methods and apparatus for such conversion include the use of a molten oxide pool having predetermined electrical, thermal and physical

  20. Cold acclimation increases cold tolerance independently of diapause programing in the bean bug, Riptortus pedestris.

    Science.gov (United States)

    Rozsypal, J; Moos, M; Goto, S G

    2017-10-17

    The bean bug (Riptortus pedestris) is a pest of soybeans and other legumes in Japan and other Asian countries. It enters a facultative adult diapause on exposure to short days. While photoperiodism and diapause are well understood in R. pedestris, knowledge of cold tolerance is very limited, as is information on the effect of diapause on cold tolerance. We examined the effect of photoperiod, cold acclimation, and feeding status on cold tolerance in R. pedestris. We found that cold acclimation significantly increased survival at -10°C in both long- and short-day adult R. pedestris. Since the difference in cold survival between long- and short-day cold-acclimated groups was only marginal, we conclude that entering diapause is not crucial for R. pedestris to successfully pass through cold acclimation and become cold tolerant. We observed similar effects in 5th instar nymphs, with both long- and short-day cold-acclimated groups surviving longer cold exposures compared with non-acclimated groups. Starvation, which was tested only in adult bugs, had only a negligible and negative impact on cold survival. Although cold tolerance significantly increased with cold acclimation in adult bugs, supercooling capacity unexpectedly decreased. Our results suggest that changes in supercooling capacity as well as in water content are unrelated to cold tolerance in R. pedestris. An analysis of metabolites revealed differences between the treatments, and while several metabolites markedly increased with cold acclimation, their concentrations were too low to have a significant effect on cold tolerance.

  1. Reducing the radiotoxicity of PWR cladding hulls by cold-crucible melting

    Energy Technology Data Exchange (ETDEWEB)

    Berthier, P.; Boen, R.; Piccinato, R.; Ladirat, C.

    1994-12-31

    PWR cladding wastes from spent fuel reprocessing plants are highly radiotoxic due to the presence of long-lived alpha-emitting nuclides and certain beta-gamma emitters. Various options are now under consideration for disposal of such wastes. The ``Commissariat a l`Energie Atomique`` is now developing a melting process at Marcoule that promises to diminish their radiotoxicity. Work has focused on two complementary research areas: obtaining a high quality metallic containment matrix and achieving maximum decontamination by concentrating the plutonium and minor actinides together with cesium and strontium in the slag. Vitrification represents a short-term solution for the slag; from a longer-term perspective, this waste form is ideally suited for the SPIN programme. This is an indispensable step toward the possible implementation of an advanced waste management strategy involving actinide separation and transmutation to reduce the long-term nuclear waste disposal hazard. (author). 1 ref., 2 figs., 8 tabs.

  2. HIGH ALUMINUM HLW GLASSES FOR HANFORD'S WTP

    International Nuclear Information System (INIS)

    Kruger, A.A.; Joseph, I.; Bowman, B.W.; Gan, H.; Kot, W.; Matlack, K.S.; Pegg, I.L

    2009-01-01

    The world's largest radioactive waste vitrification facility is now under construction at the United State Department of Energy's (DOE's) Hanford site. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is designed to treat nearly 53 million gallons of mixed hazardous and radioactive waste now residing in 177 underground storage tanks. This multi-decade processing campaign will be one of the most complex ever undertaken because of the wide chemical and physical variability of the waste compositions generated during the cold war era that are stored at Hanford. The DOE Office of River Protection (ORP) has initiated a program to improve the long-term operating efficiency of the WTP vitrification plants with the objective of reducing the overall cost of tank waste treatment and disposal and shortening the duration of plant operations. Due to the size, complexity and duration of the WTP mission, the lifecycle operating and waste disposal costs are substantial. As a result, gains in High Level Waste (HLW) and Low Activity Waste (LAW) waste loadings, as well as increases in glass production rate, which can reduce mission duration and glass volumes for disposal, can yield substantial overall cost savings. EnergySolutions and its long-term research partner, the Vitreous State Laboratory (VSL) of the Catholic University of America, have been involved in a multi-year ORP program directed at optimizing various aspects of the HLW and LAW vitrification flow sheets. A number of Hanford HLW streams contain high concentrations of aluminum, which is challenging with respect to both waste loading and processing rate. Therefore, a key focus area of the ORP vitrification process optimization program at EnergySolutions and VSL has been development of HLW glass compositions that can accommodate high Al 2 O 3 concentrations while maintaining high processing rates in the Joule Heated Ceramic Melters (JHCMs) used for waste vitrification at the WTP. This paper, reviews the

  3. Final Report - High Level Waste Vitrification System Improvements, VSL-07R1010-1, Rev 0, dated 04/16/07

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A.; Gan, H.; Pegg, I. L.; Gong, W.; Champman, C. C.; Joseph, I.; Matlack, K. S.

    2013-11-13

    This report describes work conducted to support the development and testing of new glass formulations that extend beyond those that have been previously investigated for the Hanford Waste Treatment and Immobilization Plant (WTP). The principal objective was to investigate maximization of the incorporation of several waste components that are expected to limit waste loading and, consequently, high level waste (HLW) processing rates and canister count. The work was performed with four waste compositions specified by the Office of River Protection (ORP); these wastes contain high concentrations of bismuth, chromium, aluminum, and aluminum plus sodium. The tests were designed to identify glass formulations that maximize waste loading while meeting all processing and product quality requirements. The work included preparation and characterization of crucible melts in support of subsequent DuraMelter 100 (DM100) tests designed to examine the effects of enhanced glass formulations, increased glass processing temperature, increased crystallinity, and feed solids content on waste processing rate and product quality.

  4. Cold formability of steels

    International Nuclear Information System (INIS)

    Lafond, G.; Leclerq, G.; Moliexe, F.; Namdar, R.; Roesch, L.; Sanz, G.

    1977-01-01

    This work was essentially aimed to the study of the following three questions. Is it possible to assess the cold formability of steels using simple material properties as criteria. What values of mechanical properties can one expect to reach in cold formed parts. Are there simple ways of characterizing the speroidization treatments carried out on steels before cold forming operations. The present report describes the results obtained during this investigation. It is logically divided into three separate parts. Experimental study of cold formability in wire drawing. Influence of metallurgical variables on mechanical properties of high carbon cold drawn wires. Contribution to the study of characterization methods of cold forming steels subjected to a spheroidization heat treatment

  5. Human whole body cold adaptation.

    Science.gov (United States)

    Daanen, Hein A M; Van Marken Lichtenbelt, Wouter D

    2016-01-01

    Reviews on whole body human cold adaptation generally do not distinguish between population studies and dedicated acclimation studies, leading to confusing results. Population studies show that indigenous black Africans have reduced shivering thermogenesis in the cold and poor cold induced vasodilation in fingers and toes compared to Caucasians and Inuit. About 40,000 y after humans left Africa, natives in cold terrestrial areas seems to have developed not only behavioral adaptations, but also physiological adaptations to cold. Dedicated studies show that repeated whole body exposure of individual volunteers, mainly Caucasians, to severe cold results in reduced cold sensation but no major physiological changes. Repeated cold water immersion seems to slightly reduce metabolic heat production, while repeated exposure to milder cold conditions shows some increase in metabolic heat production, in particular non-shivering thermogenesis. In conclusion, human cold adaptation in the form of increased metabolism and insulation seems to have occurred during recent evolution in populations, but cannot be developed during a lifetime in cold conditions as encountered in temperate and arctic regions. Therefore, we mainly depend on our behavioral skills to live in and survive the cold.

  6. The impact of cold spells on mortality and effect modification by cold spell characteristics

    Science.gov (United States)

    Wang, Lijun; Liu, Tao; Hu, Mengjue; Zeng, Weilin; Zhang, Yonghui; Rutherford, Shannon; Lin, Hualiang; Xiao, Jianpeng; Yin, Peng; Liu, Jiangmei; Chu, Cordia; Tong, Shilu; Ma, Wenjun; Zhou, Maigeng

    2016-12-01

    In China, the health impact of cold weather has received little attention, which limits our understanding of the health impacts of climate change. We collected daily mortality and meteorological data in 66 communities across China from 2006 to 2011. Within each community, we estimated the effect of cold spell exposure on mortality using a Distributed Lag Nonlinear Model (DLNM). We also examined the modification effect of cold spell characteristics (intensity, duration, and timing) and individual-specific factors (causes of death, age, gender and education). Meta-analysis method was finally used to estimate the overall effects. The overall cumulative excess risk (CER) of non-accidental mortality during cold spell days was 28.2% (95% CI: 21.4%, 35.3%) compared with non-cold spell days. There was a significant increase in mortality when the cold spell duration and intensity increased or occurred earlier in the season. Cold spell effects and effect modification by cold spell characteristics were more pronounced in south China. The elderly, people with low education level and those with respiratory diseases were generally more vulnerable to cold spells. Cold spells statistically significantly increase mortality risk in China, with greater effects in southern China. This effect is modified by cold spell characteristics and individual-level factors.

  7. Demonstration of an approach to waste form qualification through simulation of liquid-fed ceramic melter process operations

    International Nuclear Information System (INIS)

    Reimus, P.W.; Kuhn, W.L.; Peters, R.D.; Pulsipher, B.A.

    1986-07-01

    During fiscal year 1982, the US Department of Energy (DOE) assigned responsibility for managing civilian nuclear waste treatment programs in the United States to the Nuclear Waste Treatment Program (NWTP) at the Pacific Northwest Laboratory (PNL). One of the principal objectives of this program is to establish relationships between vitrification process control and glass quality. Users of the liquid-fed ceramic melter (LFCM) process will need such relationships in order to establish acceptance of vitrified high-level nuclear waste at a licensed federal repository without resorting to destructive examination of the canisters. The objective is to be able to supply a regulatory agency with an estimate of the composition, durability, and integrity of the glass in each waste glass canister produced from an LFCM process simply by examining the process data collected during the operation of the LFCM. The work described here will continue through FY-1987 and culminate in a final report on the ability to control and monitor an LFCM process through sampling and process control charting of the LFCM feed system

  8. NOBLE METAL CHEMISTRY AND HYDROGEN GENERATION DURING SIMULATED DWPF MELTER FEED PREPARATION

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D

    2008-06-25

    Simulations of the Defense Waste Processing Facility (DWPF) Chemical Processing Cell vessels were performed with the primary purpose of producing melter feeds for the beaded frit program plus obtaining samples of simulated slurries containing high concentrations of noble metals for off-site analytical studies for the hydrogen program. Eight pairs of 22-L simulations were performed of the Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles. These sixteen simulations did not contain mercury. Six pairs were trimmed with a single noble metal (Ag, Pd, Rh, or Ru). One pair had all four noble metals, and one pair had no noble metals. One supporting 4-L simulation was completed with Ru and Hg. Several other 4-L supporting tests with mercury have not yet been performed. This report covers the calculations performed on SRNL analytical and process data related to the noble metals and hydrogen generation. It was originally envisioned as a supporting document for the off-site analytical studies. Significant new findings were made, and many previous hypotheses and findings were given additional support as summarized below. The timing of hydrogen generation events was reproduced very well within each of the eight pairs of runs, e.g. the onset of hydrogen, peak in hydrogen, etc. occurred at nearly identical times. Peak generation rates and total SRAT masses of CO{sub 2} and oxides of nitrogen were reproduced well. Comparable measures for hydrogen were reproduced with more variability, but still reasonably well. The extent of the reproducibility of the results validates the conclusions that were drawn from the data.

  9. Cold/menthol TRPM8 receptors initiate the cold-shock response and protect germ cells from cold-shock-induced oxidation.

    Science.gov (United States)

    Borowiec, Anne-Sophie; Sion, Benoit; Chalmel, Frédéric; D Rolland, Antoine; Lemonnier, Loïc; De Clerck, Tatiana; Bokhobza, Alexandre; Derouiche, Sandra; Dewailly, Etienne; Slomianny, Christian; Mauduit, Claire; Benahmed, Mohamed; Roudbaraki, Morad; Jégou, Bernard; Prevarskaya, Natalia; Bidaux, Gabriel

    2016-09-01

    Testes of most male mammals present the particularity of being externalized from the body and are consequently slightly cooler than core body temperature (4-8°C below). Although, hypothermia of the testis is known to increase germ cells apoptosis, little is known about the underlying molecular mechanisms, including cold sensors, transduction pathways, and apoptosis triggers. In this study, using a functional knockout mouse model of the cold and menthol receptors, dubbed transient receptor potential melastatine 8 (TRPM8) channels, we found that TRPM8 initiated the cold-shock response by differentially modulating cold- and heat-shock proteins. Besides, apoptosis of germ cells increased in proportion to the cooling level in control mice but was independent of temperature in knockout mice. We also observed that the rate of germ cell death correlated positively with the reactive oxygen species level and negatively with the expression of the detoxifying enzymes. This result suggests that the TRPM8 sensor is a key determinant of germ cell fate under hypothermic stimulation.-Borowiec, A.-S., Sion, B., Chalmel, F., Rolland, A. D., Lemonnier, L., De Clerck, T., Bokhobza, A., Derouiche, S., Dewailly, E., Slomianny, C., Mauduit, C., Benahmed, M., Roudbaraki, M., Jégou, B., Prevarskaya, N., Bidaux, G. Cold/menthol TRPM8 receptors initiate the cold-shock response and protect germ cells from cold-shock-induced oxidation. © The Author(s).

  10. Cold stress alters transcription in meiotic anthers of cold tolerant chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Sharma, Kamal Dev; Nayyar, Harsh

    2014-10-11

    Cold stress at reproductive phase in susceptible chickpea (Cicer arietinum L.) leads to pollen sterility induced flower abortion. The tolerant genotypes, on the other hand, produce viable pollen and set seed under cold stress. Genomic information on pollen development in cold-tolerant chickpea under cold stress is currently unavailable. DDRT-PCR analysis was carried out to identify anther genes involved in cold tolerance in chickpea genotype ICC16349 (cold-tolerant). A total of 9205 EST bands were analyzed. Cold stress altered expression of 127 ESTs (90 up-regulated, 37 down-regulated) in anthers, more than two third (92) of which were novel with unknown protein identity and function. Remaining about one third (35) belonged to several functional categories such as pollen development, signal transduction, ion transport, transcription, carbohydrate metabolism, translation, energy and cell division. The categories with more number of transcripts were carbohydrate/triacylglycerol metabolism, signal transduction, pollen development and transport. All but two transcripts in these categories were up-regulated under cold stress. To identify time of regulation after stress and organ specificity, expression levels of 25 differentially regulated transcripts were also studied in anthers at six time points and in four organs (anthers, gynoecium, leaves and roots) at four time points. Limited number of genes were involved in regulating cold tolerance in chickpea anthers. Moreover, the cold tolerance was manifested by up-regulation of majority of the differentially expressed transcripts. The anthers appeared to employ dual cold tolerance mechanism based on their protection from cold by enhancing triacylglycerol and carbohydrate metabolism; and maintenance of normal pollen development by regulating pollen development genes. Functional characterization of about two third of the novel genes is needed to have precise understanding of the cold tolerance mechanisms in chickpea anthers.

  11. Cough & Cold Medicine Abuse

    Science.gov (United States)

    ... Videos for Educators Search English Español Cough & Cold Medicine Abuse KidsHealth / For Teens / Cough & Cold Medicine Abuse ... resfriado Why Do People Use Cough and Cold Medicines to Get High? There's an ingredient in many ...

  12. Minor component study for simulated high-level nuclear waste glasses (Draft)

    International Nuclear Information System (INIS)

    Li, H.; Langowskim, M.H.; Hrma, P.R.; Schweiger, M.J.; Vienna, J.D.; Smith, D.E.

    1996-02-01

    Hanford Site single-shell tank (SSI) and double-shell tank (DSI) wastes are planned to be separated into low activity (or low-level waste, LLW) and high activity (or high-level waste, HLW) fractions, and to be vitrified for disposal. Formulation of HLW glass must comply with glass processibility and durability requirements, including constraints on melt viscosity, electrical conductivity, liquidus temperature, tendency for phase segregation on the molten glass surface, and chemical durability of the final waste form. A wide variety of HLW compositions are expected to be vitrified. In addition these wastes will likely vary in composition from current estimates. High concentrations of certain troublesome components, such as sulfate, phosphate, and chrome, raise concerns about their potential hinderance to the waste vitrification process. For example, phosphate segregation in the cold cap (the layer of feed on top of the glass melt) in a Joule-heated melter may inhibit the melting process (Bunnell, 1988). This has been reported during a pilot-scale ceramic melter run, PSCM-19, (Perez, 1985). Molten salt segregation of either sulfate or chromate is also hazardous to the waste vitrification process. Excessive (Cr, Fe, Mn, Ni) spinel crystal formation in molten glass can also be detrimental to melter operation

  13. Preliminary Technology Maturation Plan for Immobilization of High-Level Waste in Glass Ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Vienna, John D.; Crum, Jarrod V.; Sevigny, Gary J.; Smith, G L.

    2012-09-30

    A technology maturation plan (TMP) was developed for immobilization of high-level waste (HLW) raffinate in a glass ceramics waste form using a cold-crucible induction melter (CCIM). The TMP was prepared by the following process: 1) define the reference process and boundaries of the technology being matured, 2) evaluate the technology elements and identify the critical technology elements (CTE), 3) identify the technology readiness level (TRL) of each of the CTE’s using the DOE G 413.3-4, 4) describe the development and demonstration activities required to advance the TRLs to 4 and 6 in order, and 5) prepare a preliminary plan to conduct the development and demonstration. Results of the technology readiness assessment identified five CTE’s and found relatively low TRL’s for each of them: • Mixing, sampling, and analysis of waste slurry and melter feed: TRL-1 • Feeding, melting, and pouring: TRL-1 • Glass ceramic formulation: TRL-1 • Canister cooling and crystallization: TRL-1 • Canister decontamination: TRL-4 Although the TRL’s are low for most of these CTE’s (TRL-1), the effort required to advance them to higher values. The activities required to advance the TRL’s are listed below: • Complete this TMP • Perform a preliminary engineering study • Characterize, estimate, and simulate waste to be treated • Laboratory scale glass ceramic testing • Melter and off-gas testing with simulants • Test the mixing, sampling, and analyses • Canister testing • Decontamination system testing • Issue a requirements document • Issue a risk management document • Complete preliminary design • Integrated pilot testing • Issue a waste compliance plan A preliminary schedule and budget were developed to complete these activities as summarized in the following table (assuming 2012 dollars). TRL Budget Year MSA FMP GCF CCC CD Overall $M 2012 1 1 1 1 4 1 0.3 2013 2 2 1 1 4 1 1.3 2014 2 3 1 1 4 1 1.8 2015 2 3 2 2 4 2 2.6 2016 2 3 2 2 4 2 4

  14. Design of a mixing system for simulated high-level nuclear waste melter feed slurries

    International Nuclear Information System (INIS)

    Peterson, M.E.; McCarthy, D.; Muhlstein, K.D.

    1986-03-01

    The Nuclear Waste Treatment Program development program consists of coordinated nonradioactive and radioactive testing combined with numerical modeling of the process to provide a complete basis for design and operation of a vitrification facility. The radioactive demonstration tests of equipment and processes are conducted before incorporation in radioactive pilot-scale melter systems for final demonstration. The mixing system evaluation described in this report was conducted as part of the nonradioactive testing. The format of this report follows the sequence in which the design of a large-scale mixing system is determined. The initial program activity was concerned with gaining an understanding of the theoretical foundation of non-Newtonian mixing systems. Section 3 of this report describes the classical rheological models that are used to describe non-Newtonian mixing systems. Since the results obtained here are only valid for the slurries utilized, Section 4, Preparation of Simulated Hanford and West Valley Slurries, describes how the slurries were prepared. The laboratory-scale viscometric and physical property information is summarized in Section 5, Laboratory Rheological Evaluations. The bench-scale mixing evaluations conducted to define the effects of the independent variables described above on the degree of mixing achieved with each slurry are described in Section 6. Bench-scale results are scaled-up to establish engineering design requirements for the full-scale mixing system in Section 7. 24 refs., 37 figs., 44 tabs

  15. Commemoration of a cold war

    DEFF Research Database (Denmark)

    Farbøl, Rosanna

    2015-01-01

    This article brings together the fields of Cold War studies and memory studies. In Denmark, a remarkable institutionalisation of Cold War memory has taken place in the midst of a heated ideological battle over the past and whether to remember the Cold War as a ‘war’. Using Danish Cold War museums...... and heritage sites as case studies, this article sheds new light on the politics of history involved in Cold War commemoration. It suggests that the Cold War is commemorated as a war, yet this war memory is of a particular kind: it is a war memory without victims....

  16. Cold thermal injury from cold caps used for the prevention of chemotherapy-induced alopecia.

    Science.gov (United States)

    Belum, Viswanath Reddy; de Barros Silva, Giselle; Laloni, Mariana Tosello; Ciccolini, Kathryn; Goldfarb, Shari B; Norton, Larry; Sklarin, Nancy T; Lacouture, Mario E

    2016-06-01

    The use of scalp cooling for the prevention of chemotherapy-induced alopecia (CIA) is increasing. Cold caps are placed onto the hair-bearing areas of the scalp for varying time periods before, during, and after cytotoxic chemotherapy. Although not yet reported, improper application procedures could result in adverse events (AEs). At present, there are no evidence-based scalp cooling protocols, and there is no regulatory oversight of their use. To report the occurrence of cold thermal injury (frostbite) on the scalp, following the use of cold caps for the prevention of CIA. We identified four patients who developed cold thermal injuries on the scalp following the application of cold caps. Medical records were analyzed to retrieve the demographic and clinical characteristics. The cold thermal injuries in our patients were grade 1/2 in severity and improved with topical interventions and interruption of cold cap use, although grade 1 persistent alopecia ensued in 3 patients. The true incidence of such injuries in this setting, however, remains unknown. Cold thermal injuries are likely infrequent and preventable AEs that may result from improper device application procedures during cold cap use. Although these untoward events are usually mild to moderate in severity, the potential occurrence of long-term sequelae (e.g., permanent alopecia and scarring) or the need to discontinue cold cap use, are not known. Prospective studies are needed to further elucidate the risk and standardize healthcare delivery methods, and to improve patient/supportive/healthcare provider education.

  17. Cold urticaria: inhibition of cold-induced histamine release by doxantrazole.

    Science.gov (United States)

    Bentley-Phillips, C B; Eady, R A; Greaves, M W

    1978-10-01

    Thirteen patients with cold urticaria were studied to assess the effect of the systemic drug doxantrazole, which has actions resembling disodium cromoglycate, on cold evoked histamine release. The patients, all of whom developed an immediate local whealing response after cooling of the forearm, demonstrated release of histamine into venous blood draining that forearm. Following doxantrazole treatment, significant suppression of histamine release occurred. In some but not all patients this was accompanied by diminution of urtication in response to cooling. A double-blind study was carried out in 3 subjects, all of whom showed diminished cold-stimulated histamine release after doxantrazole. Two of these showed clinical improvement. Doxantrazole had no effect on erythema due to intradermal histamine, but did suppress the erythematous reaction to intradermal injection of compound 48/80. Our results suggest that doxantrazole or related anti-allergic agents might be useful in the treatment of cold urticaria.

  18. Conceptual design of a joule-heated ceramic melter for the DOE Fernald silos 1, 2, and 3 wastes

    International Nuclear Information System (INIS)

    Robinson, R.A.; Janke, D.S.; Peters, R.; Fekete, L.

    1992-06-01

    Vitrification of nuclear wastes has been under investigation since the mid-1950s. Most of the international communities experience has been with vitrification of high level nuclear wastes. In the US, this technology was developed by Battelle scientists at the DOEs Pacific Northwest Laboratories located at their Hanford site. Based on Laboratory and pilot-scale testing conducted at Hanford in the early 1970s, the DOE has constructed high level nuclear waste vitrification facilities at both Savannah River, South Carolina, and West Valley, New York, and is finalizing the design of a similar treatment facility at Hanford. Although these systems were designed to be fully remote due to the extreme radioactive hazards associated with this type of nuclear waste, technology transfer was successfully applied to the design of a vitrification process for the K-65 and uranium metal oxide wastes in a semi-remote operation at Fernald. This paper describes a conceptual design of a joule-heated, slurry-fed ceramic melter that was developed for vitrification of the DOE K-65 and metal oxide low level wastes at Fernald, Ohio

  19. Scanning/friction force microscopy study of YBa2Cu3O7-δ single crystals grown in BaZrO3 crucibles

    International Nuclear Information System (INIS)

    Lang, H.P.; Jess, P.; Hubler, U.

    1996-01-01

    Very pure YBa 2 Cu 3 O 7-δ (YBCO) single crystals grown in BaZrO 3 crucibles are studied in the as-grown and the oxidized state by scanning force (SFM), friction force (FFM) and scanning tunneling microscopies (STM). The images show clean terraces with step-heights of one unit cell along YBCO(001), i.e. 1.2 nm. Only close to step edges is material contrast observed by FFM indicating traces of flux. Some crystal surfaces exhibit over-layer features, such as star-like, ribbon-like and checkerboard-like structures, which exhibit friction contrast implying the presence of different materials on the surface. Tunneling spectroscopy at 4-7 K in high vacuum reveals a superconducting energy gap of 2Δ ∼ 26 meV

  20. 77 FR 43117 - Meeting of the Cold War Advisory Committee for the Cold War Theme Study

    Science.gov (United States)

    2012-07-23

    ... the Cold War Advisory Committee for the Cold War Theme Study AGENCY: National Park Service, Interior... Committee Act, 5 U.S.C. Appendix, that the Cold War Advisory Committee for the Cold War Theme Study will... National Park Service (NPS) concerning the Cold War Theme Study. DATES: The teleconference meeting will be...

  1. Development of Cold Neutron Activation Station at HANARO Cold Neutron Source

    International Nuclear Information System (INIS)

    Sun, G. M.; Hoang, S. M. T.; Moon, J. H.; Chung, Y. S.; Cho, S. J.; Lee, K. H.; Park, B. G.; Choi, H. D.

    2012-01-01

    A new cold neutron source at the HANARO Research Reactor had been constructed in the framework of a five-year project, and ended in 2009. It has seven neutron guides, among which five guides were already allocated for a number of neutron scattering instruments. A new two-year project to develop a Cold Neutron Activation Station (CONAS) was carried out at the two neutron guides since May 2010, which was supported by the program of the Ministry of Education, Science and Technology, Korea. Fig. 1 shows the location of CONAS. CONAS is a complex facility including several radioanalytical instruments utilizing neutron capture reaction to analyze elements in a sample. It was designed to include three instruments like a CN-PGAA (Cold Neutron - Prompt Gamma Activation Analysis), a CN-NIPS (Cold Neutron - Neutron Induced Pair Spectrometer), and a CN-NDP (Cold Neutron - Neutron-induced prompt charged particle Depth Profiling). Fig. 2 shows the conceptual configuration of the CONAS concrete bioshield and the instruments. CN-PGAA and CN-NIPS measure the gamma-rays promptly emitted from the sample after neutron capture, whereas CN-NDP is a probe to measure the charged particles emitted from the sample surface after neutron capture. For this, we constructed two cold neutron guides called CG1 and CG2B guides from the CNS

  2. Support for cold neutron utilization

    International Nuclear Information System (INIS)

    Lee, Kye Hong; Han, Young Soo; Choi, Sungmin; Choi, Yong; Kwon, Hoon; Lee, Kwang Hee

    2012-06-01

    - Support for experiments by users of cold neutron scattering instrument - Short-term training of current and potential users of cold neutron scattering instrument for their effective use of the instrument - International collaboration for advanced utilization of cold neutron scattering instruments - Selection and training of qualified instrument scientists for vigorous research endeavors and outstanding achievements in experiments with cold neutron - Research on nano/bio materials using cold neutron scattering instruments - Bulk nano structure measurement using small angle neutron scattering and development of analysis technique

  3. The Nav1.9 Channel Is a Key Determinant of Cold Pain Sensation and Cold Allodynia

    Directory of Open Access Journals (Sweden)

    Stéphane Lolignier

    2015-05-01

    Full Text Available Cold-triggered pain is essential to avoid prolonged exposure to harmfully low temperatures. However, the molecular basis of noxious cold sensing in mammals is still not completely understood. Here, we show that the voltage-gated Nav1.9 sodium channel is important for the perception of pain in response to noxious cold. Nav1.9 activity is upregulated in a subpopulation of damage-sensing sensory neurons responding to cooling, which allows the channel to amplify subthreshold depolarizations generated by the activation of cold transducers. Consequently, cold-triggered firing is impaired in Nav1.9−/− neurons, and Nav1.9 null mice and knockdown rats show increased cold pain thresholds. Disrupting Nav1.9 expression in rodents also alleviates cold pain hypersensitivity induced by the antineoplastic agent oxaliplatin. We conclude that Nav1.9 acts as a subthreshold amplifier in cold-sensitive nociceptive neurons and is required for the perception of cold pain under normal and pathological conditions.

  4. Cold temperatures increase cold hardiness in the next generation Ophraella communa beetles.

    Directory of Open Access Journals (Sweden)

    Zhong-Shi Zhou

    Full Text Available The leaf beetle, Ophraella communa, has been introduced to control the spread of the common ragweed, Ambrosia artemisiifolia, in China. We hypothesized that the beetle, to be able to track host-range expansion into colder climates, can phenotypically adapt to cold temperatures across generations. Therefore, we questioned whether parental experience of colder temperatures increases cold tolerance of the progeny. Specifically, we studied the demography, including development, fecundity, and survival, as well as physiological traits, including supercooling point (SCP, water content, and glycerol content of O. communa progeny whose parents were maintained at different temperature regimes. Overall, the entire immature stage decreased survival of about 0.2%-4.2% when parents experienced cold temperatures compared to control individuals obtained from parents raised at room temperature. However, intrinsic capacity for increase (r, net reproductive rate (R 0 and finite rate of increase (λ of progeny O. communa were maximum when parents experienced cold temperatures. Glycerol contents of both female and male in progeny was significantly higher when maternal and paternal adults were cold acclimated as compared to other treatments. This resulted in the supercooling point of the progeny adults being significantly lower compared to beetles emerging from parents that experienced room temperatures. These results suggest that cold hardiness of O. communa can be promoted by cold acclimation in previous generation, and it might counter-balance reduced survival in the next generation, especially when insects are tracking their host-plants into colder climates.

  5. Effects of Quartz Particle Size and Sucrose Addition on Melting Behavior of a Melter Feed for High-Level Waste Glass

    International Nuclear Information System (INIS)

    Marcial, Jose; Hrma, Pavel R.; Schweiger, Michael J.; Swearingen, Kevin J.; Tegrotenhuis, Nathan E.; Henager, Samuel H.

    2010-01-01

    The behavior of melter feed (a mixture of nuclear waste and glass-forming additives) during waste-glass processing has a significant impact on the rate of the vitrification process. We studied the effects of silica particle size and sucrose addition on the volumetric expansion (foaming) of a high-alumina feed and the rate of dissolution of silica particles in feed samples heated at 5 C/min up to 1200 C. The initial size of quartz particles in feed ranged from 5 to 195 (micro)m. The fraction of the sucrose added ranged from 0 to 0.20 g per g glass. Extensive foaming occurred only in feeds with 5-(micro)m quartz particles; particles (ge) 150 (micro)m formed clusters. Particles of 5 (micro)m completely dissolved by 900 C whereas particles (ge) 150 (micro)m did not fully dissolve even when the temperature reached 1200 C. Sucrose addition had virtually zero impact on both foaming and the dissolution of silica particles.

  6. PHYSIOLOGICAL AND LEUKOCYTE SUBSET RESPONSES TO EXERCISE AND COLD EXPOSURE IN COLD-ACCLIMATIZED SKATERS

    Directory of Open Access Journals (Sweden)

    K. Kim

    2014-07-01

    Full Text Available We investigated physiological responses and changes in circulating immune cells following exercise in cold and thermoneutral conditions. Participants were short track skaters (n=9 who were acclimatized to cold conditions, and inline skaters (n=10 who were not acclimatized. All skaters were young, and skating at a recreational level three days per week for at least one year. Using a cross-over design, study variables were measured during 60 min of submaximal cycling (65% ·VO2max in cold (ambient temperature: 5±1°C, relative humidity: 41±9% and thermoneutral conditions (ambient temperature: 21±1°C, relative humidity: 35±5%. Heart rate, blood lactate and tympanic temperature were measured at rest, during exercise and recovery. Plasma cortisol, calprotectin and circulating blood cell numbers were measured before and after 60 min of cold or thermoneutral conditions, and during recovery from exercise. Heart rate was lower in both groups during exercise in cold versus thermoneutral conditions (P<0.05. The increase in total leukocytes during recovery was primarily due to an increase in neutrophils in both groups. The cold-acclimatized group activated neutrophils after exercise in cold exposure, whereas the non-acclimatized group activated lymphocyte and cortisol after exercise in cold exposure. Lymphocyte subsets significantly changed in both groups over time during recovery as compared to rest. Immediately after exercise in both groups, CD16+ and CD69+ cells were elevated compared to rest or before exercise in both conditions. Acclimatization to exercise in the cold does not appear to influence exercise-induced immune changes in cold conditions, with the possible exception of neutrophils, lymphocytes and cortisol concentration.

  7. Cold fusion, Alchemist's dream

    International Nuclear Information System (INIS)

    Clayton, E.D.

    1989-09-01

    In this report the following topics relating to cold fusion are discussed: muon catalysed cold fusion; piezonuclear fusion; sundry explanations pertaining to cold fusion; cosmic ray muon catalysed cold fusion; vibrational mechanisms in excited states of D 2 molecules; barrier penetration probabilities within the hydrogenated metal lattice/piezonuclear fusion; branching ratios of D 2 fusion at low energies; fusion of deuterons into 4 He; secondary D+T fusion within the hydrogenated metal lattice; 3 He to 4 He ratio within the metal lattice; shock induced fusion; and anomalously high isotopic ratios of 3 He/ 4 He

  8. Cold neutron production and application

    International Nuclear Information System (INIS)

    Inoue, Kazuhiko; Watanabe, Noboru.

    1976-01-01

    The first part gives general introduction to cold neutrons, namely the definition and the role as a probe in basic science and technology. The second part reviews various methods of cold neutron production. Some physical characteristics required for cold moderators are presented, and a list summarizes a number of cold moderators and their reactor physics constants. The definition of flux gain factor and the measured values for liquid light- and heavy-hydrogen are also given. The cold neutron spectra in methane and liquid hydrogen measured by LINAC time-of-flight method are presented to show the advantage of solid methane. The cold neutron sources using experimental reactors or linear accelerators are explained along with the examples of existing facilities. Two Japanese programs, the one is the use of a high flux reactor and the other is the use of a LINAC, are also presented. The third part of this report reviews the application areas of cold neutrons. (Aoki, K.)

  9. Effects of cold temperatures on the excitability of rat trigeminal ganglion neurons that are not for cold-sensing

    Science.gov (United States)

    Kanda, Hirosato; Gu, Jianguo G.

    2016-01-01

    Except a small population of primary afferent neurons for sensing cold to generate the sensations of innocuous and noxious cold, it is generally believed that cold temperatures suppress the excitability of other primary afferent neurons that are not for cold-sensing. These not-for-cold-sensing neurons include the majority of non-nociceptive and nociceptive afferent neurons. In the present study we have found that not-for-cold-sensing neurons of rat trigeminal ganglia (TG) change their excitability in several ways at cooling temperatures. In nearly 70% of not-for-cold-sensing TG neurons, the cooling temperature of 15°C increases their membrane excitability. We regard these neurons as cold-active neurons. For the remaining 30% of not-for-cold-sensing TG neurons, the cooling temperature of 15°C either has no effect (regarded as cold-ineffective neurons) or suppress (regarded as cold-suppressive neurons) their membrane excitability. For cold-active neurons, the cold temperature of 15°C increases their excitability as is evidenced by the increases in action potential (AP) firing numbers and/or reduction of AP rheobase when these neurons are depolarized electrically. The cold temperature of 15°C significantly inhibits M-currents and increases membrane input resistance of cold-active neurons. Retigabine, an M-current activator, abolishes the effect of cold temperatures on AP firing but not the effect of cold temperature on AP rheobase levels. The inhibition of M-currents and the increases of membrane input resistance are likely two mechanisms by which cooling temperatures increase the excitability of not-for-cold-sensing TG neurons. PMID:26709732

  10. The Nav1.9 channel is a key determinant of cold pain sensation and cold allodynia.

    Science.gov (United States)

    Lolignier, Stéphane; Bonnet, Caroline; Gaudioso, Christelle; Noël, Jacques; Ruel, Jérôme; Amsalem, Muriel; Ferrier, Jérémy; Rodat-Despoix, Lise; Bouvier, Valentine; Aissouni, Youssef; Prival, Laetitia; Chapuy, Eric; Padilla, Françoise; Eschalier, Alain; Delmas, Patrick; Busserolles, Jérôme

    2015-05-19

    Cold-triggered pain is essential to avoid prolonged exposure to harmfully low temperatures. However, the molecular basis of noxious cold sensing in mammals is still not completely understood. Here, we show that the voltage-gated Nav1.9 sodium channel is important for the perception of pain in response to noxious cold. Nav1.9 activity is upregulated in a subpopulation of damage-sensing sensory neurons responding to cooling, which allows the channel to amplify subthreshold depolarizations generated by the activation of cold transducers. Consequently, cold-triggered firing is impaired in Nav1.9(-/-) neurons, and Nav1.9 null mice and knockdown rats show increased cold pain thresholds. Disrupting Nav1.9 expression in rodents also alleviates cold pain hypersensitivity induced by the antineoplastic agent oxaliplatin. We conclude that Nav1.9 acts as a subthreshold amplifier in cold-sensitive nociceptive neurons and is required for the perception of cold pain under normal and pathological conditions. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Cold-Weather Sports

    Science.gov (United States)

    ... Videos for Educators Search English Español Cold-Weather Sports KidsHealth / For Teens / Cold-Weather Sports What's in this article? What to Do? Classes ... weather. What better time to be outdoors? Winter sports can help you burn calories, increase your cardiovascular ...

  12. Cold fusion

    International Nuclear Information System (INIS)

    Koster, J.

    1989-01-01

    In this contribution the author the phenomenom of so-called cold fusion, inspired by the memorable lecture of Moshe Gai on his own search for this effect. Thus much of what follows was presented by Dr. Gai; the rest is from independent reading. What is referred to as cold fusion is of course the observation of possible products of deuteron-deuteron (d-d) fusion within deuterium-loaded (dentended) electrodes. The debate over the two vanguard cold fusion experiments has raged under far more public attention than usually accorded new scientific phenomena. The clamor commenced with the press conference of M. Fleishmann and S. Pons on March 23, 1989 and the nearly simultaneous wide circulation of a preprint of S. Jones and collaborators. The majority of work attempting to confirm these observations has at the time of this writing yet to appear in published form, but contributions to conferences and electronic mail over computer networks were certainly filled with preliminary results. To keep what follows to a reasonable length the author limit this discussion to the searches for neutron (suggested by ref. 2) or for excessive heat production (suggested by ref. 1), following a synopsis of the hypotheses of cold fusion

  13. Buried Waste Integrated Demonstration FY-93 Deployment Plan

    International Nuclear Information System (INIS)

    Bonnenberg, R.W.; Heard, R.E.; Milam, L.M.; Watson, L.R.

    1993-02-01

    The Buried Waste Integrated Demonstration (BWID) is a program funded by the US Department of Energy Office of Technology Development. BWID supports the applied research, development, demonstration, and evaluation of a suite of advanced technologies that together form a comprehensive remediation system for the effective and efficient remediation of buried waste. The fiscal year 1993 effort will deploy seven major field demonstrations at the Idaho National Engineering Laboratory's (INEL's) Radioactive Waste Management Complex Cold Test Pit. These major demonstrations are Remote Characterization System, Remote Excavation System, Overburden Removal, Waste Isolation, Contamination Control Unit, Rapid Monitoring Unit, and Fixation of Soil Surface Contamination. This document is the basic operational planning document for BWID deployment of the INEL field demonstrations. Additional sections deal briefly with four nonINEL field and laboratory demonstrations (Buried Waste Retrieval, Arc Melter Vitrification, Graphite DC Plasma Arc Melter, and Fixed Hearth Plasma Process) and with four INEL laboratory demonstrations (Electrostatic Curtain, Thermal Kinetics, Multiaxis Crane Control System, and Dig-Face Characterization)

  14. Development of Models to Predict the Redox State of Nuclear Waste Containment Glass

    Energy Technology Data Exchange (ETDEWEB)

    Pinet, O.; Guirat, R.; Advocat, T. [Commissariat a l' Energie Atomique (CEA), Departement de Traitement et de Conditionnement des Dechets, Marcoule, BP 71171, 30207 Bagnols-sur-Ceze Cedex (France); Phalippou, J. [Universite de Montpellier II, Laboratoire des Colloides, Verres et Nanomateriaux, 34095 Montpellier Cedex 5 (France)

    2008-07-01

    Vitrification is one of the recommended immobilization routes for nuclear waste, and is currently implemented at industrial scale in several countries, notably for high-level waste. To optimize nuclear waste vitrification, research is conducted to specify suitable glass formulations and develop more effective processes. This research is based not only on experiments at laboratory or technological scale, but also on computer models. Vitrified nuclear waste often contains several multi-valent species whose oxidation state can impact the properties of the melt and of the final glass; these include iron, cerium, ruthenium, manganese, chromium and nickel. Cea is therefore also developing models to predict the final glass redox state. Given the raw materials and production conditions, the model predicts the oxygen fugacity at equilibrium in the melt. It can also estimate the ratios between the oxidation states of the multi-valent species contained in the molten glass. The oxidizing or reductive nature of the atmosphere above the glass melt is also taken into account. Unlike the models used in the conventional glass industry based on empirical methods with a limited range of application, the models proposed are based on the thermodynamic properties of the redox species contained in the waste vitrification feed stream. The thermodynamic data on which the model is based concern the relationship between the glass redox state and the oxygen fugacity in the molten glass. The model predictions were compared with oxygen fugacity measurements for some fifty glasses. The experiments carried out at laboratory and industrial scale with a cold crucible melter. The oxygen fugacity of the glass samples was measured by electrochemical methods and compared with the predicted value. The differences between the predicted and measured oxygen fugacity values were generally less than 0.5 Log unit. (authors)

  15. Definition and manufacture of vitreous matrices using innovative processes for the confinement of nuclear wastes or industrial toxic wastes

    International Nuclear Information System (INIS)

    Boen, R.; Ladirat, C.; Lacombe, J.

    1997-01-01

    Vitrification appears as a solution to toxic mineral waste confinement; this solution has been demonstrated at an industrial level for radioactive wastes. The utilization of cold crucible direct induction melting furnaces, associated to various waste pre-treatments and well-adapted gas processing, leads to the confinement of numerous toxic mineral wastes in a borosilicate vitreous matrix which quality and long term behaviour may be precisely defined

  16. Cold acclimation and cognitive performance: A review.

    Science.gov (United States)

    Jones, Douglas M; Bailey, Stephen P; Roelands, Bart; Buono, Michael J; Meeusen, Romain

    2017-12-01

    Athletes, occupational workers, and military personnel experience cold temperatures through cold air exposure or cold water immersion, both of which impair cognitive performance. Prior work has shown that neurophysiological pathways may be sensitive to the effects of temperature acclimation and, therefore, cold acclimation may be a potential strategy to attenuate cold-induced cognitive impairments for populations that are frequently exposed to cold environments. This review provides an overview of studies that examine repeated cold stress, cold acclimation, and measurements of cognitive performance to determine whether or not cold acclimation provides beneficial protection against cold-induced cognitive performance decrements. Studies included in this review assessed cognitive measures of reaction time, attention, logical reasoning, information processing, and memory. Repeated cold stress, with or without evidence of cold acclimation, appears to offer no added benefit of improving cognitive performance. However, research in this area is greatly lacking and, therefore, it is difficult to draw any definitive conclusions regarding the use of cold acclimation to improve cognitive performance during subsequent cold exposures. Given the current state of minimal knowledge on this topic, athletes, occupational workers, and military commands looking to specifically enhance cognitive performance in cold environments would likely not be advised to spend the time and effort required to become acclimated to cold. However, as more knowledge becomes available in this area, recommendations may change. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Human whole body cold adaptation.

    OpenAIRE

    Daanen, Hein A.M.; Van Marken Lichtenbelt, Wouter D.

    2016-01-01

    ABSTRACT Reviews on whole body human cold adaptation generally do not distinguish between population studies and dedicated acclimation studies, leading to confusing results. Population studies show that indigenous black Africans have reduced shivering thermogenesis in the cold and poor cold induced vasodilation in fingers and toes compared to Caucasians and Inuit. About 40,000?y after humans left Africa, natives in cold terrestrial areas seems to have developed not only behavioral adaptations...

  18. Human whole body cold adaptation.

    NARCIS (Netherlands)

    Daanen, Hein A.M.; Van Marken Lichtenbelt, Wouter D.

    2016-01-01

    Reviews on whole body human cold adaptation generally do not distinguish between population studies and dedicated acclimation studies, leading to confusing results. Population studies show that indigenous black Africans have reduced shivering thermogenesis in the cold and poor cold induced

  19. Spectroscopy with cold and ultra-cold neutrons

    Directory of Open Access Journals (Sweden)

    Abele Hartmut

    2015-01-01

    Full Text Available We present two new types of spectroscopy methods for cold and ultra-cold neutrons. The first method, which uses the R×B drift effect to disperse charged particles in a uniformly curved magnetic field, allows to study neutron β-decay. We aim for a precision on the 10−4 level. The second method that we refer to as gravity resonance spectroscopy (GRS allows to test Newton’s gravity law at short distances. At the level of precision we are able to provide constraints on any possible gravity-like interaction. In particular, limits on dark energy chameleon fields are improved by several orders of magnitude.

  20. Cold recovery during regasification of LNG part one: Cold utilization far from the regasification facility

    International Nuclear Information System (INIS)

    La Rocca, Vincenzo

    2010-01-01

    The paper deals with cold recovery during LNG regasification. The applications analyzed pertain to the use in deep freezing agro food industry and in space air conditioning facilities in commercial sector (Supermarkets and Hypermarkets) of cold recovered from the regasification process. A modular LNG regasification unit is proposed having the regasification capacity of 2 BCM/year of gas and it is based on use of a Power Cycle working with Ethane, this unit allows operation of cold energy transfer, contained in LNG to be regasified, in a range of temperatures suitable for multipurpose use of cold, reducing regasification process irreversibility. Some electric energy is produced by the Power Cycle, but the purpose of the modular unit is to deliver cold suitable for industrial and commercial use in the proper temperature range utilizing Carbon dioxide as secondary fluid to transfer cold from regasification site to far end users. The subject is divided in two papers: this paper deals with facilities delivering cold released during LNG regasification and related pipeline facilities to transfer cold at far end users while the other paper pertains to analysis of end users applications. Results of a detailed thermodynamic and economic analysis demonstrate the suitability of the proposal.