WorldWideScience

Sample records for cold cathode tubes

  1. Methods for batch fabrication of cold cathode vacuum switch tubes

    Science.gov (United States)

    Walker, Charles A [Albuquerque, NM; Trowbridge, Frank R [Albuquerque, NM

    2011-05-10

    Methods are disclosed for batch fabrication of vacuum switch tubes that reduce manufacturing costs and improve tube to tube uniformity. The disclosed methods comprise creating a stacked assembly of layers containing a plurality of adjacently spaced switch tube sub-assemblies aligned and registered through common layers. The layers include trigger electrode layer, cathode layer including a metallic support/contact with graphite cathode inserts, trigger probe sub-assembly layer, ceramic (e.g. tube body) insulator layer, and metallic anode sub-assembly layer. Braze alloy layers are incorporated into the stacked assembly of layers, and can include active metal braze alloys or direct braze alloys, to eliminate costs associated with traditional metallization of the ceramic insulator layers. The entire stacked assembly is then heated to braze/join/bond the stack-up into a cohesive body, after which individual switch tubes are singulated by methods such as sawing. The inventive methods provide for simultaneously fabricating a plurality of devices as opposed to traditional methods that rely on skilled craftsman to essentially hand build individual devices.

  2. Cathode ray tube screens

    International Nuclear Information System (INIS)

    Cockayne, B.; Robbins, D.J.; Glasper, J.L.

    1982-01-01

    An improved cathode ray tube screen is described which consists of a single- or a poly-crystalline slice of a material such as yttrium aluminium garnet in which dopants such as Tb 3 + , Eu 3 + , Ce 3 + or Tm 3 + are ion implanted to different depths or in different areas of the screen. Annealing the screen removes lattice damage caused by the ion implanting and assists the diffusion of the dopant into the crystal. (U.K.)

  3. Cathode ray tube

    International Nuclear Information System (INIS)

    1979-01-01

    A cathode ray tube comprises two electron lens means in combination to crossover the electron beam at a second crossover between the two electron lens means with one of the two lens means having a variable voltage applied thereto to control the location of the beam crossover in order to focus the beam onto a display screen at any location away from the screen center. (Auth.)

  4. Cyclotron resonance in a cathode ray tube

    International Nuclear Information System (INIS)

    Gherbanovschi, N.; Tanasa, M.; Stoican, O.

    2002-01-01

    Absorption of the RF energy by the electron beam in a cathode ray tube due to the cyclotron resonance is described. The cathode ray tube is placed within a Helmholtz coils system supplied by a sawtooth current generator. In order to generate RF field and to detect RF absorption a gate dip-meter equipped with a FET transistor is used. The bias voltage variations of the FET transistors as a function of the magnetic field are recorded. The operating point of the cathode ray tube has been chosen so that the relaxation oscillations of the detection system can be observed. (authors)

  5. Cold cathode arc model in mercury discharges

    International Nuclear Information System (INIS)

    Li, Y.M.; Byszewski, W.W.; Budinger, A.B.

    1990-01-01

    Voltage/current characteristics measured during the starting of metal halide lamps indicate a low voltage discharge when condensates (mainly mercury) are localized on the electrodes. In this case, even with a cold cathode which does not emit electrons, the current is very high and voltage across the lamp drops to about 15 to 20 V. This type of discharge is similar to the cold cathode mercury vapor arc found in mercury pool rectifiers. The cathode sheath in the mercury vapor arc is characterized by very small cathode spot size, on the order of 10 -c cm 2 , very high current density of about 10 6 A/cm 2 and very low cathode fall of approximately 10 volts. The discharge is modified and generalized to describe the cathode phenomena in the cold cathode mercury vapor arc. The sensitivity of calculated discharge parameters with respect to such modifications were examined. Results show that the cathode fall voltage remains fairly constant (7-8 volts) with large fractional variations of metastable mercury atoms bombarding the cathode. This result compares very well with experimental waveforms when anode fall and plasma voltage approximations are incorporated

  6. Cold cathode diode X-ray source

    International Nuclear Information System (INIS)

    Cooperstein, G.; Lanza, R.C.; Sohval, A.R.

    1983-01-01

    A cold cathode diode X-ray source for radiation imaging, especially computed tomography, comprises a rod-like anode and a generally cylindrical cathode, concentric with the anode. The spacing between anode and cathode is so chosen that the diode has an impedance in excess of 100 ohms. The anode may be of tungsten, or of carbon with a tungsten and carbon coating. An array of such diodes may be used with a closely packed array of detectors to produce images of rapidly moving body organs, such as the beating heart. (author)

  7. Depression cathode structure for cathode ray tubes having surface smoothness and method for producing same

    International Nuclear Information System (INIS)

    Rychlewski, T.V.

    1984-01-01

    Depression cathode structures for cathode ray tubes are produced by dispensing liquid cathode material into the depression of a metallic supporting substrate, removing excess cathode material by passing a doctor blade across the substrate surface and over the depression, and drying the cathode layer to a substantially immobile state. The cathode layer may optionally be further shaped prior to substantially complete drying thereof

  8. Cathode readout with stripped resistive drift tubes

    International Nuclear Information System (INIS)

    Bychkov, V.N.; Kekelidze, G.D.; Novikov, E.A.; Peshekhonov, V.D.; Shafranov, M.D.; Zhiltsov, V.E.

    1995-01-01

    A straw tube drift chamber prototype has been constructed and tested. The straw tube material is mylar film covered with a carbon layer with a resistivity of 0.5, 30 and 70 kΩ/□. Both the anode wire and the cathode strip signals were detected to study the behaviour of the chamber in the presence of X-ray ionization. The construction and the results of the study are presented. (orig.)

  9. Cathode readout with stripped resistive drift tubes

    Science.gov (United States)

    Bychkov, V. N.; Kekelidze, G. D.; Novikov, E. A.; Peshekhonov, V. D.; Shafranov, M. D.; Zhiltsov, V. E.

    1995-12-01

    A straw tube drift chamber prototype has been constructed and tested. The straw tube material is mylar film covered with a carbon layer with a resistivity of 0.5, 30 and 70 kΩ/□. Both the anode wire and the cathode strip signals were detected to study the behaviour of the chamber in the presence of X-ray ionization. The construction and the results of the study are presented.

  10. New discharge tube with virtual cathode

    International Nuclear Information System (INIS)

    Seidelmann, L.; Aubrecht, L.

    2003-01-01

    Till this time known methods of the excitation of the discharge between electrodes are using either secondary or thermo emission of electrons by the cathode. Usually we speak about the self-maintained discharge. Lifetime of the cathode, that is shortened by the emission, limits in principle, the lifetime of the whole discharge tube. The discharge can, according to the present state of the art, be induced also by the inductive way. Arrangement for excitation of such discharge is rather expensive. The construction of the inductive excited discharge tube is considerably influenced by the necessity of the limitation of the losses in excitation magnetic circuits. Especially length of the discharge and pressure of the working gas are limited by the economic standpoints. Function of the discharge is always connected with unwanted electromagnetic radiation, whose restraint is expensive and represents limiting factor for arrangement of the discharge tube (Authors)

  11. Cold cathodes on ultra-dispersed diamond base

    International Nuclear Information System (INIS)

    Alimova, A.N.; Zhirnov, V.V.; Chubun, N.N.; Belobrov, P.I.

    1998-01-01

    Prospects of application of nano diamond powders for fabrication of cold cathodes are discussed.Cold cathodes based on silicon pointed structures with nano diamond coatings were prepared.The deposition technique of diamond coating was dielectrophoresis from suspension of nano diamond powder in organic liquids.The cathodes were tested in sealed prototypes of vacuum electronic devices

  12. Cathode Readout with Stripped Resistive Drift Tubes

    International Nuclear Information System (INIS)

    Bychkov, V.N.; Kekelidze, G.D.; Novikov, E.A.; Peshekhonov, V.D.; Shafranov, M.D.; Zhil'tsov, V.E.

    1994-01-01

    A straw tube drift chamber prototype has been constructed and tested. The straw tube material is mylar film covered with carbon layer of resistivity 0.5, 30 and 70 k Ohm/sq. The gas mixture used was Ar/CH 4 . Both the anode wire and cathode signals were detected in order to study the behaviour of the chamber in the presence of X-ray ionization. The construction and the results of the study are presented. 7 refs., 11 figs., 1 tab

  13. Long Life Cold Cathodes for Hall effect Thrusters, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An electron source incorporating long life, high current density cold cathodes inside a microchannel plate for use with ion thrusters is proposed. Cathode lifetime...

  14. Characteristics of a cold cathode electron source combined with secondary electron emission in a FED

    International Nuclear Information System (INIS)

    Lei Wei; Zhang Xiaobing; Zhou Xuedong; Zhu Zuoya; Lou Chaogang; Zhao Hongping

    2005-01-01

    In electron beam devices, the voltage applied to the cathode (w.r.t. grid voltage) provides the initial energy for the electrons. Based on the type of electron emission, the electron sources are (mainly) classified into thermionic cathodes and cold cathodes. The power consumption of a cold cathode is smaller than that of a thermionic cathode. The delay time of the electron emission from a cold cathode following the voltage rise is also smaller. In cathode ray tubes, field emission display (=FED) panels and other devices, the electron current emitted from the cathode needs to be modulated. Since the strong electric field, which is required to extract electrons from the cold cathode, accelerates the electrons to a high velocity near the gate electrode, the required voltage swing for the current modulation is also high. The design of the driving circuit becomes quite difficult and expensive for a high driving voltage. In this paper, an insulator plate with holes is placed in front of a cold cathode. When the primary electrons hit the surface of the insulator tunnels, secondary electrons are generated. In this paper, the characteristics of the secondary electrons emitted from the gate structure are studied. Because the energies of the secondary electrons are smaller than that of the primary electron, the driving voltage for the current modulation is decreased by the introduction of the insulator tunnels, resulting in an improved energy uniformity of the electron beam. Triode structures with inclined insulator tunnels and with double insulator plates are also fabricated and lead to further improvements in the energy uniformity. The improved energy uniformity predicted by the simulation calculations is demonstrated by the improved brightness uniformity in the screen display images

  15. Method of manufacture of a cathode ray tube

    International Nuclear Information System (INIS)

    1976-01-01

    This invention reveals the method of manufacturing a cathode ray tube with an electrode system for the excitation of at least two electron beams with special attention given to mounting the electrodes accurately

  16. Development of extruded resistive plastic tubes for proportional chamber cathodes

    International Nuclear Information System (INIS)

    Kondo, K.

    1982-01-01

    Carbon mixed plastic tubes with resistivity of 10 3 approx. 10 4 Ωcm have been molded with an extrusion method and used for the d.c. cathode of a proportional counter and a multi-wire proportional chamber. The signal by gas multiplication was picked up from a strip r.f. cathode set outside the tube. The characteristics of the counter in the proportional and limited streamer modes have been studied

  17. Verification of high efficient broad beam cold cathode ion source

    Energy Technology Data Exchange (ETDEWEB)

    Abdel Reheem, A. M., E-mail: amreheem2009@yahoo.com [Accelerators and Ion Sources Department, Nuclear Research Center, Atomic Energy Authority, P.N.13759, Cairo (Egypt); Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority (AEA), Cairo (Egypt); Ahmed, M. M. [Physics Department, Faculty of Science, Helwan University, Cairo (Egypt); Abdelhamid, M. M.; Ashour, A. H. [Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority (AEA), Cairo (Egypt)

    2016-08-15

    An improved form of cold cathode ion source has been designed and constructed. It consists of stainless steel hollow cylinder anode and stainless steel cathode disc, which are separated by a Teflon flange. The electrical discharge and output characteristics have been measured at different pressures using argon, nitrogen, and oxygen gases. The ion exit aperture shape and optimum distance between ion collector plate and cathode disc are studied. The stable discharge current and maximum output ion beam current have been obtained using grid exit aperture. It was found that the optimum distance between ion collector plate and ion exit aperture is equal to 6.25 cm. The cold cathode ion source is used to deposit aluminum coating layer on AZ31 magnesium alloy using argon ion beam current which equals 600 μA. Scanning electron microscope and X-ray diffraction techniques used for characterizing samples before and after aluminum deposition.

  18. Fabrication and description of a cold cathode electron gun

    International Nuclear Information System (INIS)

    Sari, A.H.; Ghorannevis, M.; Hantehzadeh, M.R.; Yousefi, M.R.

    2003-01-01

    In this study the structure and schematic configuration of a cold cathode electron gun has been shown, which use obstructed discharge for electron producing. This type of discharge and mechanism of secondary electron emission by ions and fast neutral interaction have been described. The experiment starts in pressure of 1*10 -3 torr, in existence of helium gas. A negative DC voltage apply to a concave cathode up to -20 k V which determine electron energy

  19. New doped tungsten cathodes. Applications to power grid tubes

    International Nuclear Information System (INIS)

    Cachard, J. de; Cadoret, K; Martinez, L.; Veillet, D.; Millot, F.

    2001-01-01

    Thermionic emission behavior of tungsten/tungsten carbide modified with rare earth (La, Ce, Y) oxides is examined on account of suitability to deliver important current densities in a thermo-emissive set up and for long lifetime. Work functions of potential cathodes have been determined from Richardson plots for La 2 O 3 doped tungsten and for tungsten covered with variable compositions rare earth tungstates. The role of platinum layers covering the cathode was also examined. Given all cathodes containing mainly lanthanum oxides were good emitters, emphasis was put on service lifetime. Comparisons of lifetime in tungsten doped with rare earth oxides and with rare earth tungstates show that microstructure of the operating cathodes may play the major role in the research of very long lifetime cathodes. Based on these results, tests still running show lifetime compatible with power grid tubes applications. (author)

  20. High-Current Cold Cathode Employing Diamond and Related Materials

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay L. [Omega-P, Inc., New Haven, CT (United States)

    2014-10-22

    The essence of this project was for diamond films to be deposited on cold cathodes to improve their emission properties. Films with varying morphology, composition, and size of the crystals were deposited and the emission properties of the cathodes that utilize such films were studied. The prototype cathodes fabricated by the methods developed during Phase I were tested and evaluated in an actual high-power RF device during Phase II. These high-power tests used the novel active RF pulse compression system and the X-band magnicon test facility at US Naval Research Laboratory. In earlier tests, plasma switches were employed, while tests under this project utilized electron-beam switching. The intense electron beams required in the switches were supplied from cold cathodes embodying diamond films with varying morphology, including uncoated molybdenum cathodes in the preliminary tests. Tests with uncoated molybdenum cathodes produced compressed X-band RF pulses with a peak power of 91 MW, and a maximum power gain of 16.5:1. Tests were also carried out with switches employing diamond coated cathodes. The pulse compressor was based on use of switches employing electron beam triggering to effect mode conversion. In experimental tests, the compressor produced 165 MW in a ~ 20 ns pulse at ~18× power gain and ~ 140 MW at ~ 16× power gain in a 16 ns pulse with a ~ 7 ns flat-top. In these tests, molybdenum blade cathodes with thin diamond coatings demonstrated good reproducible emission uniformity with a 100 kV, 100 ns high voltage pulse. The new compressor does not have the limitations of earlier types of active pulse compressors and can operate at significantly higher electric fields without breakdown.

  1. Surfing Silicon Nanofacets for Cold Cathode Electron Emission Sites.

    Science.gov (United States)

    Basu, Tanmoy; Kumar, Mohit; Saini, Mahesh; Ghatak, Jay; Satpati, Biswarup; Som, Tapobrata

    2017-11-08

    Point sources exhibit low threshold electron emission due to local field enhancement at the tip. In the case of silicon, however, the realization of tip emitters has been hampered by unwanted oxidation, limiting the number of emission sites and the overall current. In contrast to this, here, we report the fascinating low threshold (∼0.67 V μm -1 ) cold cathode electron emission from silicon nanofacets (Si-NFs). The ensembles of nanofacets fabricated at different time scales, under low energy ion impacts, yield tunable field emission with a Fowler-Nordheim tunneling field in the range of 0.67-4.75 V μm -1 . The local probe surface microscopy-based tunneling current mapping in conjunction with Kelvin probe force microscopy measurements revealed that the valleys and a part of the sidewalls of the nanofacets contribute more to the field emission process. The observed lowest turn-on field is attributed to the absence of native oxide on the sidewalls of the smallest facets as well as their lowest work function. In addition, first-principle density functional theory-based simulation revealed a crystal orientation-dependent work function of Si, which corroborates well with our experimental observations. The present study demonstrates a novel way to address the origin of the cold cathode electron emission sites from Si-NFs fabricated at room temperature. In principle, the present methodology can be extended to probe the cold cathode electron emission sites from any nanostructured material.

  2. Field electron emission from pencil-drawn cold cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jiangtao; Yang, Bingjun; Liu, Xiahui; Yang, Juan; Yan, Xingbin, E-mail: xbyan@licp.cas.cn [Laboratory of Clean Energy Chemistry and Materials, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2016-05-09

    Field electron emitters with flat, curved, and linear profiles are fabricated on flexible copy papers by direct pencil-drawing method. This one-step method is free of many restricted conditions such as high-temperature, high vacuum, organic solvents, and multistep. The cold cathodes display good field emission performance and achieve high emission current density of 78 mA/cm{sup 2} at an electric field of 3.73 V/μm. The approach proposed here would bring a rapid, low-cost, and eco-friendly route to fabricate but not limited to flexible field emitter devices.

  3. Use of an electron penetration cathode ray tube in a colour display console

    International Nuclear Information System (INIS)

    Nickles, Pierre

    1972-01-01

    The objective of this research thesis is to study the possibility to obtain a colour image which can be used in cathode ray tube display console. The author describes a cathode ray tube, presents different methods to obtain a colour image (mask tube, electron penetration tube, and intensity change tube), discusses the choice of a cathode ray tube type, and describes its use in a display console. In the next part, the author addresses some theoretical aspects of corrections to be made for spot deflection, spot focussing, and spot brightness. A first version of a mock-up is presented, and experimental results are presented and discussed. A second version is then presented

  4. Operation of cold-cathode gauges in high magnetic fields

    International Nuclear Information System (INIS)

    Thomas, S.R. Jr.; Goerz, D.A.; Pickles, W.L.

    1985-01-01

    The Mirror Fusion Test Facility (MFTF-B), under construction at LLNL, requires measurement of the neutral gas density in high magnetic fields near the plasma at several axial regions. This Background Gas Pressure (BGP) diagnostic will help us understand the role of background neutrals in particle and power balance, particularly in the maintenance of the cold halo plasma that shields the hot core plasma from the returning neutrals. It consists of several cold-cathode, magnetron-type gauges stripped of their permanent magnets, and utilizes the MFTF-B ambient B-field in strengths of 5 to 25 kG. Similar gauges have operated in TMX-U in B-fields up to 3 kG. To determine how well the gauges will perform, we assembled a test stand which operated magnetron gauges in an external, uniform magnetic field of up to 30 kG, over a pressure range of 1E-8 T to 1E-5 T, at several cathode voltages. This paper describes the test stand and presents the results of the tests

  5. Signal propagation in straw tubes with resistive cathodes

    International Nuclear Information System (INIS)

    Marzec, J.; Zaremba, K.; Pawlowski, Z.; Konarzewski, B.

    2000-01-01

    The analysis presented in this paper is part of the research performed by the authors for the COMPASS experiment at CERN. They have developed a theoretical model of the signal transmission in a straw tube. In contrast to commonly used simplified models, their approach takes into account the energy losses in the cathode resistance. This model allows determination of the main electrical parameters, such as characteristic impedance and signal attenuation, as well as a detailed simulation of the pulse shape dependent on the point of the charge injection. Simulation results have been compared with the results of experimental measurements of different types of the straw detectors

  6. Signal propagation in straw tubes with resistive cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Marzec, J.; Zaremba, K.; Pawlowski, Z.; Konarzewski, B.

    2000-02-01

    The analysis presented in this paper is part of the research performed by the authors for the COMPASS experiment at CERN. They have developed a theoretical model of the signal transmission in a straw tube. In contrast to commonly used simplified models, their approach takes into account the energy losses in the cathode resistance. This model allows determination of the main electrical parameters, such as characteristic impedance and signal attenuation, as well as a detailed simulation of the pulse shape dependent on the point of the charge injection. Simulation results have been compared with the results of experimental measurements of different types of the straw detectors.

  7. Signal propagation in straw tubes with resistive cathode

    CERN Document Server

    Marzec, J; Pawlowski, Z; Konarzewski, B

    2000-01-01

    The analysis presented in this paper is part of the research performed by the authors for the COMPASS experiment at CERN. We have developed a theoretical model of the signal transmission in a straw tube. In contrast to commonly used simplified models, our approach takes into account the energy losses in the cathode resistance. This model allows determination of the main electrical parameters, such as characteristic impedance and signal attenuation, as well as a detailed simulation of the pulse shape dependent on the point of the charge injection. Simulation results have been compared with the results of experimental measurements of different types of the straw detectors. (7 refs).

  8. Corrosion Potential Profile Simulation in a Tube under Cathodic Protection

    Directory of Open Access Journals (Sweden)

    Mauricio Ohanian

    2014-01-01

    Full Text Available The potential distribution in tubes of a heat exchanger is simulated when applying cathodic polarization to its extremes. The comparison of two methods to achieve this goal is presented: a numeric solution based on boundary elements carried out with the commercial software Beasy-GID and a semianalytical method developed by the authors. The mathematical model, the simplifications considered, and the problem solving are shown. Since both approaches use polarization curves as a boundary condition, experimental polarization curves (voltage versus current density were determined in the laboratory under flow conditions and cylindrical cell geometry. The results obtained suggest the impossibility of extending the protection along the whole tube length; therefore, other protection methods are considered.

  9. Performance of the Antares large area cold cathode electron gun

    International Nuclear Information System (INIS)

    Rosocha, L.A.; Mansfield, C.R.

    1983-01-01

    The performance of the electron gun which supplies ionization for the Antares high-power electron-beam-sustained CO 2 -laser power amplifier is described. This electron gun is a coaxial cylindrical cold cathode vacuum triode having a total electron aperture area of approximately 9 m 2 . Electrons are extracted from the gun in pulses of 3 to 6 μs duration, average current densities of 40 to 60 mA/cm 2 , and electron energies of 450 to 500 keV. The main areas of discussion in this paper are the performance in terms of grid control, current-density balance, and current runaway due to breakdown limitations. Comparison of the experimental results with the predictions of a theoretical model for the electron gun are also presented

  10. Performance of the Antares large area cold cathode electron gun

    International Nuclear Information System (INIS)

    Rosocha, L.A.; Mansfield, C.R.

    1983-01-01

    The performance of the electron gun which supplies ionization for the Antares high power electron beam sustained CO 2 laser power amplifier is described. This electron gun is a coaxial cylindrical cold cathode vacuum triode having a total electron aperture area of approximately 9 m 2 . Electrons are extracted from the gun in pulses of 3-6 μs duration, average current densities of 40-60 ma/cm2, and electron energies of 450-500 keV. The main areas of discussion in this paper are the performance in terms of grid control, current density balance, and current runaway due to breakdown limitations. Comparison of the experimental results with the predictions of a theoretical model for the electron gun will also be presented

  11. Applications of Cold Cathode PIG Ion Source in Lithography

    International Nuclear Information System (INIS)

    Bassal, N.I.

    2012-01-01

    The cold cathode Penning ion source (PIG) of axial type could be modified to produce ion and electron beam with a considerable amount to use it in the lithography process. Lithography is a new applications of ion/electron beam at which one can use the ion/ or electron beam as a pencil to write and draw on a metal surface. The electron beam takes 1/3 the time needed for ion beam to make good picture. So that with the help of ion/or electron beam lithography one can mark tools, parts, instruments, and equipment with names, numbers, designs, trademark or brand name in few seconds. It is an easy process, quick and an inexpensive method. Firstly, operating characteristics of this ion source is studied. Lithography application of ion source with optimum conditions is done. Later, the hardness and the tensile strength is measured and each of them increases with increasing time

  12. Bromine-quenched high temperature G-M tube with passivated cathode

    International Nuclear Information System (INIS)

    Mitrofanov, N.

    1975-01-01

    A bromine doped self-quenching Geiger-Mueller tube having an operational life expectancy in excess of 1,200 hours at a temperature of 315 0 C is described. The tube comprises a passivated metal coated cathode which is conditioned or aged for operation at room temperature, thus obviating the necessity of thermally cycling the tube at progressively elevated temperatures. Useful metal coatings for the cathode include chromium, platinum, and nickel-copper alloys deposited in a layer less than about 1 mil thick. A method for passivating the metal coated cathode and subsequently conditioning the tube and its contents is disclosed. (auth)

  13. A cold cathode of a gas-discharge electron-ion gun

    International Nuclear Information System (INIS)

    1974-01-01

    A cold cathode of a gas-discharge electron-ion gun is constructed in order to continuously replace the eroded material by feeding a wire or a set of coaxial cylinders in the spot where the ions hit the cathode. In this way, the form of the cathode and the electric-field configuration is preserved which guarantees the conservation of a sharp narrow electron beam profile

  14. A pulse tube cryocooler with a cold reservoir

    Science.gov (United States)

    Zhang, X. B.; Zhang, K. H.; Qiu, L. M.; Gan, Z. H.; Shen, X.; Xiang, S. J.

    2013-02-01

    Phase difference between pressure wave and mass flow is decisive to the cooling capacity of regenerative cryocoolers. Unlike the direct phase shifting using a piston or displacer in conventional Stirling or GM cryocoolers, the pulse tube cyocooler (PTC) indirectly adjusts the cold phase due to the absence of moving parts at the cold end. The present paper proposed and validated theoretically and experimentally a novel configuration of PTC, termed cold reservoir PTC, in which a reservoir together with an adjustable orifice is connected to the cold end of the pulse tube. The impedance from the additional orifice to the cold end helps to increase the mass flow in phase with the pressure wave at the cold end. Theoretical analyses with the linear model for the orifice and double-inlet PTCs indicate that the cooling performance can be improved by introducing the cold reservoir. The preliminary experiments with a home-made single-stage GM PTC further validated the results on the premise of minor opening of the cold-end orifice.

  15. Study of the three-step photoionization of uranium using a hollow cathode discharge tube

    International Nuclear Information System (INIS)

    Hu, Q.; Yin, L.; Zhang, Y.; Jin, C.; Cui, J.; Su, H.; Lin, F.

    1986-01-01

    The hollow cathode discharge (HCD) tube as a spectral light source has been developed. Because any element including refractory metals can be atomized by the cathode sputtering effect in HCD, a simple and reliable atomic vapor source produced by HCD has been widely used in laser spectroscopy. To the authors' knowledge, there is no previous work on the photoionization processes of metal atoms using an HCD tube. Here the authors report their study of the resonant three-step ionization of U in a homemade HCD tube

  16. Production and guide tube transmission of very cold neutrons from pulsed cold source

    International Nuclear Information System (INIS)

    Utsuro, Masahiko; Okumura, Kiyoshi

    1982-01-01

    The intensity and the energy spectra of Very Cold Neutrons (VCN) transmitted through a curved guide tube were measured by using the time-of-flight method of VCN. In the measurements, the curved guide tube having a characteristic neutron velocity of about 70 m/s is combined to a pulsed cold source of an electron linac in an internal target geometry. A space dependence of the VCN spectra was observed on the radial positions of a detector at the guide tube exit. A simple theoretical analysis on the transmission of VCN in the curved guide tube is also presented with taking into consideration about the effects of a finite size and a finite distance of the VCN-emitting source, and simple analytical formulas for the exit spectra of the guide tube are given. Comparisons between the experimental results and the theoretical calculations show good agreements, and the satisfactory performance of the present VCN guide tube assembly was ascertained. These results present also instructive features for understanding the structures and the space dependence of the exit spectra of a neutron guide tube. The VCN spectra at the guide tube exit can be divided into a few energy regions according to the transmission processes of VCN. Thus, the present study provides useful informations for the preparations of a VCN source with a curved guide tube. (author)

  17. High precision straw tube chamber with cathode readout

    International Nuclear Information System (INIS)

    Bychkov, V.N.; Golutvin, I.A.; Ershov, Yu.V.

    1992-01-01

    The high precision straw chamber with cathode readout was constructed and investigated. The 10 mm straws were made of aluminized mylar strip with transparent longitudinal window. The X coordinate information has been taken from the cathode strips as induced charges and investigated via centroid method. The spatial resolution σ=120 μm has been obtained with signal/noise ratio about 60. The possible ways for improving the signal/noise ratio have been described. 7 refs.; 8 figs

  18. A high precision straw tube chamber with cathode readout

    International Nuclear Information System (INIS)

    Bychkov, V.N.; Golutvin, I.A.; Ershov, Yu.V.; Zubarev, E.V.; Ivanov, A.B.; Lysiakov, V.N.; Makhankov, A.V.; Movchan, S.A.; Peshekhonov, V.D.; Preda, T.

    1993-01-01

    The high precision straw chamber with cathode readout was constructed and investigated. The 10 mm diameter straws were made of aluminized Mylar with transparent longitudinal window. The X-coordinate information has been taken from cathode strips as induced charges and investigated with the centroid method. The spatial resolution σ x =103 μm was obtained at a signal-to-noise ratio of about 70. The possible ways to improve the signal-to-noise ratio are discussed. (orig.)

  19. A nano-graphite cold cathode for an energy-efficient cathodoluminescent light source

    Directory of Open Access Journals (Sweden)

    Alexander N. Obraztsov

    2013-08-01

    Full Text Available The development of new types of light sources is necessary in order to meet the growing demands of consumers and to ensure an efficient use of energy. The cathodoluminescence process is still under-exploited for light generation because of the lack of cathodes suitable for the energy-efficient production of electron beams and appropriate phosphor materials. In this paper we propose a nano-graphite film material as a highly efficient cold cathode, which is able to produce high intensity electron beams without energy consumption. The nano-graphite film material was produced by using chemical vapor deposition techniques. Prototypes of cathodoluminescent lamp devices with a construction optimized for the usage of nano-graphite cold cathodes were developed, manufactured and tested. The results indicate prospective advantages of this type of lamp and the possibility to provide advanced power efficiency as well as enhanced spectral and other characteristics.

  20. Carbon dust formation in a cold plasma from cathode sputtering

    International Nuclear Information System (INIS)

    Arnas, C.; Mouberi, A.; Hassouni, K.; Michau, A.; Lombardi, G.; Bonnin, X.; Benedic, F.; Pegourie, B.

    2009-01-01

    Nanoparticles are produced in argon glow plasmas where carbon is introduced by sputtering of a graphite cathode. A scaling law of growth is reported on as a function of the discharge time. Two successive stages of growth of concomitant agglomeration and carbon deposition are observed, followed by a final stage of growth by carbon deposition. A model of formation of molecular precursors by coagulation of neutral clusters on the one hand and of neutral-negative clusters on the other hand is presented, based on formation enthalpy and cluster geometry.

  1. Carbon dust formation in a cold plasma from cathode sputtering

    Science.gov (United States)

    Arnas, C.; Mouberi, A.; Hassouni, K.; Michau, A.; Lombardi, G.; Bonnin, X.; Bénédic, F.; Pégourié, B.

    2009-06-01

    Nanoparticles are produced in argon glow plasmas where carbon is introduced by sputtering of a graphite cathode. A scaling law of growth is reported on as a function of the discharge time. Two successive stages of growth of concomitant agglomeration and carbon deposition are observed, followed by a final stage of growth by carbon deposition. A model of formation of molecular precursors by coagulation of neutral clusters on the one hand and of neutral-negative clusters on the other hand is presented, based on formation enthalpy and cluster geometry.

  2. Electrochemical generation of mercury cold vapor and its in-situ trapping in gold-covered graphite tube atomizers

    International Nuclear Information System (INIS)

    Cerveny, Vaclav; Rychlovsky, Petr; Netolicka, Jarmila; Sima, Jan

    2007-01-01

    The combination of more efficient flow-through electrochemical mercury cold vapor generation with its in-situ trapping in a graphite tube atomizer is described. This coupled technique has been optimized to attain the maximum sensitivity for Hg determination and to minimize the limits of detection and determination. A laboratory constructed thin-layer flow-through cell with a platinum cathode served as the cold vapor generator. Various cathode arrangements with different active surface areas were tested. Automated sampling equipment for the graphite atomizer with an untreated fused silica capillary was used for the introduction of the mercury vapor. The inner surface of the graphite tube was covered with a gold foil placed against the sampling hole. The results attained for the electrochemical mercury cold vapor generation (an absolute limit of detection of 80 pg; peak absorbance, 3σ criterion) were compared with the traditional vapor generation using NaBH 4 as the reducing agent (an absolute limit of detection of 124 pg; peak absorbance, 3σ criterion). The repeatability at the 5 ng ml -1 level was better than 4.1% (RSD) for electrochemical mercury vapor generation and better than 5.6% for the chemical cold vapor generation. The proposed method was applied to the determination the of Hg contents in a certified reference material and in spiked river water samples

  3. Foaming of waste cathode ray tube panel glass via CaCO3

    DEFF Research Database (Denmark)

    König, Jakob; Petersen, Rasmus Rosenlund; Yue, Yuanzheng

    The disposal of obsolete electrical and electronic equipment has become a global environmental problem. However, with responsible collecting, dismantling and materials separation, majority of materials can be recycled. Cathode ray tube (CRT) glass represents as much as two-thirds of the weight...

  4. 77 FR 15336 - Revision to the Export Provisions of the Cathode Ray Tube (CRT) Rule

    Science.gov (United States)

    2012-03-15

    ... exporters of CRTs for recycling must submit an annual report to EPA. The purpose of these proposed revisions... reuse and recycling. Additionally, EPA would gather more information on shipments of CRTs that are sent... who export used cathode ray tubes (CRTs) and CRT glass for reuse or recycling. This action does not...

  5. Electronic waste: chemical characterization glasses of tubes cathode rays with viability for recycling

    International Nuclear Information System (INIS)

    Lima, Norma Maria O.; Morais, Crislene R. Silva; Lima, Lenilde Mergia Ribeiro

    2011-01-01

    Electronic waste, or e-waste, often makes incorrect destinations, which causes serious environmental problems. The aim of this study was to analyze the X-ray fluorescence to study the recycling technology for the glass of Cathode Ray Tubes or, popularly, 'picture tubes', identified by the acronym CRT (Cathode Ray Tubes), which integrate computer monitors. It was observed that the glass screen and funnel analyzed have different chemical compositions. As the silicon oxide (SiO2), the largest component of these glasses percentage 59.89% and 48.63% respectively for the screen and funnel this oxide is responsible for forming the vitreous network. The study of recycling of computer monitors it is important, since about 45% of existing materials on a monitor are made of glass, since it is 100% recyclable and can be reused, thus reducing the amount of waste deposited in the environment. (author)

  6. Anode wire in cylindrical cathode tube : destabilizing electrostatic force

    CERN Document Server

    Wertelaers, P

    2017-01-01

    A two-dimensional -- cross-sectional -- discussion suffices. The tube is offset, and the electrostatic potential is found analytically with perturbative methods. Then, the force is established with the Maxwell stress tensor. Alternatively, trying to find the force with energy methods, fails. Finally, finite element tests are performed in order to report on the degree of non-linearity for large offsets.

  7. Thermal, thermoelectric, and cathode poisoning effects in cold fusion experiments

    International Nuclear Information System (INIS)

    Keesing, R.G.; Greenhow, R.C.; Cohler, M.D.; McQuillan, A.J.

    1991-01-01

    This paper reports on an unsuccessful attempt to repeat the observations by Fleischmann and Pons of cold nuclear fusion in deuterium-charged palladium; no excess heat is found, nor is any gamma or neutron activity identified. Peltier heating at the palladium/platinum junction is investigated, but no effects are seen; the possibility remains, however, that a large Peltier coefficient may arise for deuterium concentrations that render the palladium-deuterium semiconducting. Finally, the effects of poisoning the palladium with cyanide were investigated

  8. Management practices for end-of-life cathode ray tube glass: Review of advances in recycling and best available technologies.

    Science.gov (United States)

    Iniaghe, Paschal O; Adie, Gilbert U

    2015-11-01

    Cathode ray tubes are image display units found in computer monitors and televisions. In recent years, cathode ray tubes have been generated as waste owing to the introduction of newer and advanced technologies in image displays, such as liquid crystal displays and high definition televisions, among others. Generation and subsequent disposal of end-of-life cathode ray tubes presents a challenge owing to increasing volumes and high lead content embedded in the funnel and neck sections of the glass. Disposal in landfills and open dumping are anti-environmental practices considering the large-scale contamination of environmental media by the potential of toxic metals leaching from glass. Mitigating such environmental contamination will require sound management strategies that are environmentally friendly and economically feasible. This review covers existing and emerging management practices for end-of-life cathode ray tubes. An in-depth analysis of available technologies (glass smelting, detoxification of cathode ray tube glass, lead extraction from cathode ray tube glass) revealed that most of the techniques are environmentally friendly, but are largely confined to either laboratory scale, or are often limited owing to high cost to mount, or generate secondary pollutants, while a closed-looped method is antiquated. However, recycling in cementitious systems (cement mortar and concrete) gives an added advantage in terms of quantity of recyclable cathode ray tube glass at a given time, with minimal environmental and economic implications. With significant quantity of waste cathode ray tube glass being generated globally, cementitious systems could be economically and environmentally acceptable as a sound management practice for cathode ray tube glass, where other technologies may not be applicable. © The Author(s) 2015.

  9. Construction and characterization of a hollow cathode tube for high sensibility laser spectroscopy

    International Nuclear Information System (INIS)

    Morage, A.; Motta, C.C.

    1998-01-01

    A new hollow cathode tube argon-iron design was developed to be used in laser atomic spectroscopy experiments, were high sensibility is required. This tube was employed in order to allow laser absorption and optogalvanic signal measurements. The tube also included fused-quartz Brewster angle windows aligned with the optical axis in each ending of the tube. Therefore, in this configuration a minimum laser intensity losses through the windows can be attained for the appropriate light polarization. The optogalvanic signal detection was accomplished using a tunable dye laser resonant with the Ar, 3p 5 4p ( 3 S 1 )--> 3p 5 4d ( 3 D 1 0 ) transition, that corresponds to 591.2 nm in air. It was also possible to determine the gas temperature by measuring the Doppler line broadening and the results were compared to those obtained from a theoretical model for gas heat conduction. To measure the temperature of the cathode external surface a thermocouple was used inside the tube. The analysis of results showed that a high signal to noise ratio can be obtained with this tube configuration, that permits experimental investigation of electronic transitions presenting low light absorption cross sections. (author)

  10. Cold cathode electron guns in the LASL high power short-pulse CO2 laser program

    International Nuclear Information System (INIS)

    Singer, S.; Ladish, J.S.; Nutter, M.J.

    1975-01-01

    The Electron Beam Controlled Discharge CO 2 Laser is now firmly established as the only high power short pulse laser amplifier that has been demonstrated to have scaling capabilities to large apertures and energies much greater than 100 J. These devices require a beam of energetic electrons to control the gas discharge that produces the required population inversion. Until recently, the electron source was usually a thermionic emitter, even for rather large lasers, whose heater requirements dwarfed the pulsed energies associated with the transient operation of the laser. With the advent of reliable cold-cathode electron guns, the operation of these lasers has been greatly simplified. At LASL, there are four electron beam controlled laser systems which are in operation, under construction, or in design: the 1 kJ system, now operational; the 2.5 kJ system; the 10 kJ system; and the 100 kJ system. Only the first uses thermionic-emitter electron guns; the remainder use or will use cold cathode sources. The operation of the 200 x 35 cm 2 two sided cold cathode electron gun used in the 2.5 kJ laser system and to be used in the 10 kJ laser is described

  11. 75 FR 36119 - In the Matter of Certain Cold Cathode Fluorescent Lamp (“CCFL”) Inverter Circuits and Products...

    Science.gov (United States)

    2010-06-24

    ... Cathode Fluorescent Lamp (``CCFL'') Inverter Circuits and Products Containing the Same; Notice of... States after importation of certain cold cathode fluorescent lamp inverter circuits and products..., and the sale within the United States after importation of CCFL inverter circuits and products...

  12. The chemistry of artificial lighting devices lamps, phosphors and cathode ray tubes

    CERN Document Server

    Ropp, Richard C

    2013-01-01

    Both the early use of artificial lighting and current manufacturing methods concerning incandescent and fluorescent lamps are covered in this book. The protocols for manufacture of fluorescent lamp phosphors and those used in cathode ray tubes are also treated in some detail. This text surveys the amazing, vast array of artificial lighting devices known to date in terms of how they arose and are, or have been used by mankind. A complete description of the formulations and methodology for manufacturing all known phosphors is given. The book will serve as a repository of such phosphor manufacturing methods, including that of cathode ray tube phosphors. Methods of manufacture of lamp parts are also presented, including that of tungsten wire. The original approaches used are described as well as improvements in technology. These will serve as comparative methods for present day manufacture of these components. A history of the lamp industry is presented. Several methods are given which may serve as a source for f...

  13. Stabilization of a cold cathode electron beam glow discharge for surface treatment

    International Nuclear Information System (INIS)

    Mingolo, N.; Gonzalez, C.R.; Martinez, O.E.; Rocca, J.J.

    1997-01-01

    We have demonstrated that the reproducibility of electron beam pulses generated by a high power, cold cathode glow discharge is greatly improved by adding a small continuous keep-alive discharge current. A current of the order of 200 μA was found to limit the shot to shot current variation to within 1.5%. This stabilization in turn reduces by an order of magnitude the fluctuations of the energy density deposited on the target, demonstrating a reliable energy source for surface treatment. copyright 1997 American Institute of Physics

  14. Stabilization of a cold cathode electron beam glow discharge for surface treatment

    Energy Technology Data Exchange (ETDEWEB)

    Mingolo, N.; Gonzalez, C.R. [Lab. de Haces Dirigidos, Depto. de Fisica, Facultad de Ingenieria, Universidad de Buenos Aires, Paseo Colon 850, 1063 Buenos Aires (Argentina); Martinez, O.E. [Lab. de Electronica Cuantica, Depto. de Fisica, Universidad de Buenos Aires, Pabellon 1, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Rocca, J.J. [Department of Electrical Engineering, Colorado State University, Fort Collins, Colorado 80523 (United States)

    1997-10-01

    We have demonstrated that the reproducibility of electron beam pulses generated by a high power, cold cathode glow discharge is greatly improved by adding a small continuous keep-alive discharge current. A current of the order of 200 {mu}A was found to limit the shot to shot current variation to within 1.5{percent}. This stabilization in turn reduces by an order of magnitude the fluctuations of the energy density deposited on the target, demonstrating a reliable energy source for surface treatment. {copyright} {ital 1997 American Institute of Physics.}

  15. The glass-like glazed coating made of cathode-ray tube faceplates cullet

    Directory of Open Access Journals (Sweden)

    N.І. Zavgorodnya

    2016-05-01

    Full Text Available The tendency of the current time is to find ways of expedient municipal solid waste recycling as a secondary raw material with similar physicochemical and mechanical characteristics for the purpose of efficient use of resources and reduction of harmful impact on the environment. Due to the termination the production of monitors and television sets with cathode-ray tubes, a significant part of them is grow out of use in the form of dimensional waste. Kinescopes of these electric devices contain valuable components including the screen and conical glass and cathode-luminophors. Existing trends in the world of CRT faceplates cullet recycling argue for reasonability of recycling ways of this valuable secondary raw materials. Aim: The aim of researches is to determine the impact of the full replacement of quartz sand by faceplates cullet and using the zinc sulfide, reconstituted of used cathode-luminophors, as a secondary raw material in the production of glass-like glaze on the basic properties of color glaze. Materials and Methods: Cathode-ray tube faceplates are cut off during removal process, washed from dirt, dried, crushed by press, milled in a cheek grinder and finally crushed in a barrel mill. The slurried impurity (clay, dyes of desired color, including ZnS, water are added to this powder. The received mix is processed of wet grinding for slip production. Slip is surfaced on glass-ceramic tile, dried up, burned at maximum temperature of 900ºС. Results: Experimental research has shown that glass-forming, modifying and intermediate oxides of inorganic substances are added to the glaze with the CRT faceplates cullet. The Chasiv Yar clay belongs to the group with significant gas emission. The water vapor arising during the clay dehydration plays role of the "carrier" of heavy non-volatile components, considerably accelerates gas processes and increases activity of gas components. Zinc sulphide, dissolved in the silicate glaze melts when heated

  16. Physical Characteristics and Technology of Glass Foam from Waste Cathode Ray Tube Glass

    Directory of Open Access Journals (Sweden)

    G. Mucsi

    2013-01-01

    Full Text Available This paper deals with the laboratory investigation of cathode-ray-tube- (CRT- glass-based glass foam, the so-called “Geofil-Bubbles” which can be applied in many fields, mainly in the construction industry (lightweight concrete aggregate, thermal and sound insulation, etc.. In this study, the main process engineering material properties of raw materials, such as particle size distribution, moisture content, density, and specific surface area, are shown. Then, the preparation of raw cathode ray tube glass waste is presented including the following steps: crushing, grinding, mixing, heat curing, coating, and sintering. Experiments were carried out to optimize process circumstances. Effects of sintering conditions—such as temperature, residence time, and particle size fraction of green pellet—on the mechanical stability and particle density of glass foam particles were investigated. The mechanical stability (abrasion resistance was tested by abrasion test in a Deval drum. Furthermore, the cell structure was examined with optical microscopy and SEM. We found that it was possible to produce foam glass (with proper mechanical stability and particle density from CRT glass. The material characteristics of the final product strongly depend on the sintering conditions. Optimum conditions were determined: particle size fraction was found to be 4–6 mm, temperature 800°C, and residence time 7.5 min.

  17. Multi-pulsed intense electron beam emission from velvet, carbon fibers, carbon nano-tubes and dispenser cathodes

    International Nuclear Information System (INIS)

    Xia Liansheng; Yang Anmin; Chen Yi; Zhang Huang; Liu Xingguang; Li Jin; Jiang Xiaoguo; Zhang Kaizhi; Shi Jinshui; Deng Jianjun; Zhang Linwen

    2010-01-01

    The experimental results of studies of four kinds of cathode emitting intense electron beams are demonstrated under multi-pulsed mode based on an experimental setup including two multi-pulse high voltage sources. The tested cathodes include velvet, carbon fibers, carbon nano-tubes (CNTs) and dispenser cathodes. The results indicate that all four are able to emit multi-pulsed beams. For velvet, carbon fiber and CNTs, the electron induced cathode plasma emission may be the main process and this means that there are differences in beam parameters from pulse to pulse. For dispenser cathodes tested in the experiment, although there is a little difference from pulse to pulse for some reason, thermal-electric field emission may be the main process. (authors)

  18. Large-area cold-cathode grid-controlled electron gun for Antares

    International Nuclear Information System (INIS)

    Scarlett, W.R.; Andrews, K.; Jansen, J.

    1979-01-01

    The CO 2 laser amplifiers used in the Antares inertial confinement fusion project require large-area radial beams of high-energy electrons to ionize the laser medium before the main discharge pulse is applied. We have designed a grid-controlled, cold-cathode electron gun with a cylindrical anode having a window area of 9.3 m 2 . A full diameter, 1/4 length prototype of the Antares gun has been built and tested. The design details of the Antares electron gun will be presented as well as test results from the prototype. Techniques used for the prevention and control of emission and breakdown from the grid will also be discussed

  19. Argon discharge characteristics in cold cathode penning ion source. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Abd El-Baki, M M; Abd El-Rahman, M M; Basal, N I [Ion Sources and Accelerators Department, Nuclear Research Center, Atomic energy Authority, Cairo, (Egypt)

    1996-03-01

    This study includes the production of argon discharge inside cold cathode penning ion source with axial d.c. extraction. The arc characteristics are investigated under the influence of the discharge parameters such as the pressure, axial magnetic field. At zero magnetic field and pressure 4.2 x 10{sup -4} torr, the arc voltage which is needed for arc initiation is relatively large V{sub arc} = 430 V, and I{sub arc} = 0.3 A. The application of the magnetic field helps the appearance of argon arc at lower voltage, e.g. at I{sub B} = 0.8 A, the arc voltage V{sub arc} = 320 V, and I{sub arc} = 0.3 A. It is found that the arc current increase with the increase of pressure, i.e. the increase of gas flow inside the source, while the arc voltage decreases. 7 fig.

  20. Beam-plasma interaction in a cold-cathodes penning discharge

    International Nuclear Information System (INIS)

    Bliman, S.L.

    1966-06-01

    The H.F. emissions from a cold-cathode reflex discharge are studied. An experimental law for the frequency variation shows that fαV 1/2 discharged if B 0 and p are constant. If B 0 is made to increase, the frequencies change such that f ce - f emitted / f ce decreases. With each emitted frequency there is associated a stationary wave system making it possible to measure the phase velocity Vφ of the waves. This phase velocity is always close to that of the fast electrons accelerated by a potential V discharge. A non-quasistatic formalism for the propagation of waves in a beam-plasma system is then established. The Maxwell equations are solved taking into account boundary conditions. Comparison of these experiments with the theory shows a satisfactory agreement. (author) [fr

  1. 78 FR 16709 - Certain Cold Cathode Fluorescent Lamp (“CCFL”) Inverter Circuits and Products Containing Same...

    Science.gov (United States)

    2013-03-18

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-666 (Modification Proceeding)] Certain Cold Cathode Fluorescent Lamp (``CCFL'') Inverter Circuits and Products Containing Same; Commission's... inverter circuits and products containing the same by reason of infringement of various U.S. patents. The...

  2. [Newly developed monitor for IVR: liquid crystal display (LCD) replaced with cathode ray tube (CRT)].

    Science.gov (United States)

    Ichida, Takao; Hosogai, Minoru; Yokoyama, Kouji; Ogawa, Takayoshi; Okusako, Kenji; Shougaki, Masachika; Masai, Hironao; Yamada, Eiji; Okuyama, Kazuo; Hatagawa, Masakatsu

    2004-09-01

    For physicians who monitor images during interventional radiology (VR), we have built and been using a system that employs a liquid crystal display (LCD) instead of the conventional cathode ray tube (CRT). The system incorporates a ceiling-suspension-type monitor (three-display monitor) with an LCD on each of the three displays for the head and abdominal regions and another ceiling-suspension-type monitor (5-display monitor) with an LCD on each display for the cardiac region. As these monitors are made to be thin and light in weight, they can be placed in a high position in the room, thereby saving space and allowing for more effective use of space in the X-ray room. The system has also improved the efficiency of operators in the IVR room. The three-display folding mechanism allows the displays to be viewed from multiple directions, thereby improving the environment so that the performance of IVR can be observed.

  3. Investigation of terahertz sheet beam traveling wave tube amplifier with nanocomposite cathode

    International Nuclear Information System (INIS)

    Shin, Young-Min; Zhao Jinfeng; Barnett, Larry R.; Luhmann, Neville C. Jr.

    2010-01-01

    Particle-in-cell simulations of a staggered double grating array traveling wave tube intended as a wideband amplifier for terahertz communications, sensing, and imaging applications showed that, for an electron beam power of 5 kW, it produces 150-275 W, corresponding to 3%-5.5% electronic efficiency, at 0.22 THz with over ∼30% bandwidth and with greater than 12 dB/cm growth rate. The circuit has been fabricated by both UV lithography and high precision computer-numerical-control machining with ∼2-3 μm dimensional tolerance and ∼50 nm surface roughness. A scandate nanocomposite (Sc 2 O 3 -W) cathode for the electron beam source has successfully emitted 120 A/cm 2 (space charge limited) at 1150 deg. C and 50 A/cm 2 at 1050 deg. C for 8000 h as required to produce the requisite high current density electron beam.

  4. Full-color laser cathode ray tube (L-CRT) projector

    Science.gov (United States)

    Kozlovskiy, Vladimir; Nasibov, Alexander S.; Popov, Yuri M.; Reznikov, Parvel V.; Skasyrsky, Yan K.

    1995-04-01

    A full color TV projector based on three laser cathode-ray tubes (L-CRT) is described. A water-cooled laser screen (LS) is the radiation element of the L-CRT. We have produced three main colors (blue, green and red) by using the LS made of three II-VI compounds: ZnSe ((lambda) equals 475 nm), CdS ((lambda) equals 530 nm) and ZnCdSe (630 nm). The total light flow reaches 1500 Lm, and the number of elements per line is not less than 1000. The LS efficiency may be about 10 Lm/W. In our experiments we have tested new electron optics: - (30 - 37) kV are applied to the cathode unit of the electron gun; the anode of the e-gun and the e-beam intensity modulator are under low potential; the LS has a potential + (30 - 37) kV. The accelerating voltage is divided into two parts, and this enables us to diminish the size and weight of the projector.

  5. Investigation on the Cathodic Protection Effect of Low Pressure Cold Sprayed AlZn Coating in Seawater via Numerical Simulation

    Directory of Open Access Journals (Sweden)

    Guosheng Huang

    2017-07-01

    Full Text Available Cold spray can deposit a composite coating simply by spraying mechanically-mixed Al and Zn powders, while no quantitative data has been reported on the anti-corrosion performance of different composite cold-sprayed coatings. In the present work, the finite element method was used to estimate the cathodic protection effect by simulating the potential distribution on a damaged cold-sprayed AlZn coating on Q235 steel. The results indicate that AlZn coating can only provide a limiting cathodic protection for substrate, because it can only polarize a very narrow zone negative to −0.78 V (vs. SCE, saturated calomel electrode. The remaining area of the steel substrate still has a very high residual corrosion rate. Computational methods can be used to predict the corrosion rate of AlZn coating, and the simulation results were validated by the results of a weight loss experiment.

  6. 40 CFR 261.40 - Conditional Exclusion for Used, Intact Cathode Ray Tubes (CRTs) Exported for Recycling.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Conditional Exclusion for Used, Intact Cathode Ray Tubes (CRTs) Exported for Recycling. 261.40 Section 261.40 Protection of Environment...) Exported for Recycling. Used, intact CRTs exported for recycling are not solid wastes if they meet the...

  7. Optimized manufacture of nuclear fuel cladding tubes by FEA of hot extrusion and cold pilgering processes

    Science.gov (United States)

    Gaillac, Alexis; Ly, Céline

    2018-05-01

    Within the forming route of Zirconium alloy cladding tubes, hot extrusion is used to deform the forged billets into tube hollows, which are then cold rolled to produce the final tubes with the suitable properties for in-reactor use. The hot extrusion goals are to give the appropriate geometry for cold pilgering, without creating surface defects and microstructural heterogeneities which are detrimental for subsequent rolling. In order to ensure a good quality of the tube hollows, hot extrusion parameters have to be carefully chosen. For this purpose, finite element models are used in addition to experimental tests. These models can take into account the thermo-mechanical coupling conditions obtained in the tube and the tools during extrusion, and provide a good prediction of the extrusion load and the thermo-mechanical history of the extruded product. This last result can be used to calculate the fragmentation of the microstructure in the die and the meta-dynamic recrystallization after extrusion. To further optimize the manufacturing route, a numerical model of the cold pilgering process is also applied, taking into account the complex geometry of the tools and the pseudo-steady state rolling sequence of this incremental forming process. The strain and stress history of the tube during rolling can then be used to assess the damage risk thanks to the use of ductile damage models. Once validated vs. experimental data, both numerical models were used to optimize the manufacturing route and the quality of zirconium cladding tubes. This goal was achieved by selecting hot extrusion parameters giving better recrystallized microstructure that improves the subsequent formability. Cold pilgering parameters were also optimized in order to reduce the potential ductile damage in the cold rolled tubes.

  8. The fabrication and evaluation of diamond cold cathodes for field emitter display applications

    International Nuclear Information System (INIS)

    Fox, N.A.

    1998-08-01

    mechanism may operate that facilitates the field emission of electrons from the p-diamond side of the interface into free space. A number of aspects relating to the junction structure could be considered to improve its performance as a cold cathode emitter: a p-diamond layer exhibiting a higher carrier mobility; a controlled number, distribution and type of defect residing at the interface; an emission surface conditioned to exhibit a stable Negative Electron Affinity (NEA). To more clearly define the operation of a diamond cold cathode emitter based upon this junction structure further exploratory effort would be required to be undertaken in the future. (author)

  9. Modular Low-Heater-Power Cathode/Electron Gun Assembly for Microwave and Millimeter Wave Traveling Wave Tubes

    Science.gov (United States)

    Wintucky, Edwin G.

    2000-01-01

    A low-cost, low-mass, electrically efficient, modular cathode/electron gun assembly has been developed by FDE Inc. of Beaverton, Oregon, under a Small Business Innovation Research (SBIR) contract with the NASA Glenn Research Center at Lewis Field. This new assembly offers significant improvements in the design and manufacture of microwave and millimeter wave traveling-wave tubes (TWT's) used for radar and communications. It incorporates a novel, low-heater-power, reduced size and mass, high-performance barium dispenser type thermionic cathode and provides for easy integration of the cathode into a large variety of conventional TWT circuits. Among the applications are TWT's for Earth-orbiting communication satellites and for deep space communications, where future missions will require smaller spacecraft, higher data transfer rates (higher frequencies and radiofrequency output power), and greater electrical efficiency. A particularly important TWT application is in the microwave power module (a hybrid microwave/millimeter wave amplifier consisting of a low-noise solid-state driver, a small TWT, and an electronic power conditioner integrated into a single compact package), where electrical efficiency and thermal loading are critical factors and lower cost is needed for successful commercialization. The design and fabrication are based on practices used in producing cathode ray tubes (CRT's), which is one of the most competitive and efficient manufacturing operations in the world today. The approach used in the design and manufacture of thermionic cathodes and electron guns for CRT's has been optimized for fully automated production, standardization of parts, and minimization of costs. It is applicable to the production of similar components for microwave tubes, with the additional benefits of low mass and significantly lower cathode heater power (less than half that of dispenser cathodes presently used in TWT s). Modular cathode/electron gun assembly. The modular

  10. Study of high frequency instabilities on a cold cathode reflex discharge; Contribution a l'etude des instabilites a haute frequence dans la decharge reflex a cathodes froides

    Energy Technology Data Exchange (ETDEWEB)

    Gregoire, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-06-01

    The cold cathode reflex discharge develops a cathode sheath of several hundreds of volts, which accelerates electrons released from the cathode to high velocities along the lines of the axial magnetic field. On the studied pressure range (4.10{sup -4} torr < p < 2.10{sup -2} torr) the plasma density is about 10{sup 11} cm{sup -3}. Under certain conditions high frequency (1 5000 MHz) instabilities appear. These instabilities are found to profoundly modify the mean characteristics of the discharge. In particular, particle flow across the lines of magnetic field is found to be considerably greater than that predicted by classical diffusion theory. Theoretical considerations are presented with complementary experimental results. They show that the high frequency instabilities are a result of the fast electronic assembly accelerated through the cathode sheath. (author) [French] Dans certaines conditions, qui sont precisees, des instabilites a haute frequence (1 5000 MHz) se developpent dans la decharge reflex a cathodes froides. Lorsque le plasma (n {approx_equal}10{sup 11} cm{sup -3}) est instable, les caracteristiques moyennes de la decharge sont profondement alterees. Les fuites de particules a travers les lignes de forces du champ magnetique statique applique deviennent en particulier trop importantes pour que le seul effet classique des collisions binaires puisse les expliquer. L'ionisation du gaz est assuree par une assemblee electronique qui acquiert dans les gaines cathodiques ({approx_equal} 500 volts) une vitesse, parallele au champ magnetique, importante. La discussion de resultats theoriques et une experience complementaire montrent que cette population d'electrons rapides, tres distincte de celle des electrons lents du plasma pour les pressions les plus faibles du domaine etudie (4.10{sup -4} torr < p < 2.10{sup -2} torr), est responsable des instabilites a haute frequence observees. (auteur)

  11. Recovery of yttrium from cathode ray tubes and lamps’ fluorescent powders: experimental results and economic simulation

    International Nuclear Information System (INIS)

    Innocenzi, V.; De Michelis, I.; Ferella, F.; Vegliò, F.

    2013-01-01

    Highlights: • Fluorescent powder of lamps. • Fluorescent powder of cathode ray rubes. • Recovery of yttrium from fluorescent powders. • Economic simulation for the processes to recover yttrium from WEEE. - Abstract: In this paper, yttrium recovery from fluorescent powder of lamps and cathode ray tubes (CRTs) is described. The process for treating these materials includes the following: (a) acid leaching, (b) purification of the leach liquors using sodium hydroxide and sodium sulfide, (c) precipitation of yttrium using oxalic acid, and (d) calcinations of oxalates for production of yttrium oxides. Experimental results have shown that process conditions necessary to purify the solutions and recover yttrium strongly depend on composition of the leach liquor, in other words, whether the powder comes from treatment of CRTs or lamp. In the optimal experimental conditions, the recoveries of yttrium oxide are about 95%, 55%, and 65% for CRT, lamps, and CRT/lamp mixture (called MIX) powders, respectively. The lower yields obtained during treatments of MIX and lamp powders are probably due to the co-precipitation of yttrium together with other metals contained in the lamps powder only. Yttrium loss can be reduced to minimum changing the experimental conditions with respect to the case of the CRT process. In any case, the purity of final products from CRT, lamps, and MIX is greater than 95%. Moreover, the possibility to treat simultaneously both CRT and lamp powders is very important and interesting from an industrial point of view since it could be possible to run a single plant treating fluorescent powder coming from two different electronic wastes

  12. Transfer of a cold atmospheric pressure plasma jet through a long flexible plastic tube

    International Nuclear Information System (INIS)

    Kostov, Konstantin G; Prysiazhnyi, Vadym; Honda, Roberto Y; Machida, Munemasa

    2015-01-01

    This work proposes an experimental configuration for the generation of a cold atmospheric pressure plasma jet at the downstream end of a long flexible plastic tube. The device consists of a cylindrical dielectric chamber where an insulated metal rod that serves as high-voltage electrode is inserted. The chamber is connected to a long (up to 4 m) commercial flexible plastic tube, equipped with a thin floating Cu wire. The wire penetrates a few mm inside the discharge chamber, passes freely (with no special support) along the plastic tube and terminates a few millimeters before the tube end. The system is flushed with Ar and the dielectric barrier discharge (DBD) is ignited inside the dielectric chamber by a low frequency ac power supply. The gas flow is guided by the plastic tube while the metal wire, when in contact with the plasma inside the DBD reactor, acquires plasma potential. There is no discharge inside the plastic tube, however an Ar plasma jet can be extracted from the downstream tube end. The jet obtained by this method is cold enough to be put in direct contact with human skin without an electric shock. Therefore, by using this approach an Ar plasma jet can be generated at the tip of a long plastic tube far from the high-voltage discharge region, which provides the safe operation conditions and device flexibility required for medical treatment. (paper)

  13. Rolling of molybdenum and niobium tubes on cold-rolling mill with high stiff stand

    Energy Technology Data Exchange (ETDEWEB)

    Potapov, I N; Shejkh-Ali, A D; Filimonov, G V; Lunev, A G

    1984-03-01

    To develop the technique of tube production the process of rolling is studied and comparative evaluation of the structure formed is carried out. It is shown that billets of rods deformed by screw rolling have the improved plastic properties and are deformed on cold-rolling mill (CRM) with a high degree of reduction without defect formation. High stiff stand of the CRM permits to produce high-quality molybdenum tubes.

  14. Multiple neutral density measurements in the lower thermosphere with cold-cathode ionization gauges

    Science.gov (United States)

    Lehmacher, G. A.; Gaulden, T. M.; Larsen, M. F.; Craven, J. D.

    2013-01-01

    Cold-cathode ionization gauges were used for rocket-borne measurements of total neutral density and temperature in the aurorally forced lower thermosphere between 90 and 200 km. A commercial gauge was adapted as a low-cost instrument with a spherical antechamber for measurements in molecular flow conditions. Three roll-stabilized payloads on different trajectories each carried two instruments for measurements near the ram flow direction along the respective upleg and downleg segments of a flight path, and six density profiles were obtained within a period of 22 min covering spatial separations up to 200 km. The density profiles were integrated below 125 km to yield temperatures. The mean temperature structure was similar for all six profiles with two mesopause minima near 110 and 101 km, however, for the downleg profiles, the upper minimum was warmer and the lower minimum was colder by 20-30 K indicating significant variability over horizontal scales of 100-200 km. The upper temperature minimum coincided with maximum horizontal winds speeds, exceeding 170 m/s.

  15. Suppression of outgassing from spindt-type cold-cathode by heat treatment

    International Nuclear Information System (INIS)

    Miyo, Yasuhiko; Ogiwara, Norio; Saidoh, Masahiro; Hayashi, Naoki; Turuta, Kouichi.

    1995-01-01

    In Spindt type cold cathode electron source (hereafter, referred to as FEA), field emission is used for extracting electrons. It was made clear that the FEA is an excellent electron source that never causes gas release by heating peripheral parts. But the gas release form the FEA was confirmed though it was slight accompanying the extraction of current. This gas release becomes a problem when pressure measurement is carried out by using the FEA in ultrahigh or extremely high vacuum. If the gas release occurs by the effect of the heat generation at the tip of an emitter accompanying the extraction of electron current, it is possible to reduce the gas release by carrying out the heat treatment of the FEA was attempted, and as the result, it was elucidated that by the heat treatment at 400degC, the gas release form the FEA was able to be suppressed. However, a new problem that the insulation between gate and emitter deteriorated and broke during the extraction of current occurred. The experimental method and the results of the reduction of gas release by heat treatment and the observation of the broken FEA with a scanning electron microscope are reported. Also the problem that in the FEA which was heat-treated at 400degC, the current has decreased from 500 μA to 100 μA in about 100 hours occurred. As to these problems, it is necessary to continue the experiment further. (K.I.)

  16. Recovery of yttrium from fluorescent powder of cathode ray tube, CRT: Zn removal by sulphide precipitation

    International Nuclear Information System (INIS)

    Innocenzi, Valentina; De Michelis, Ida; Ferella, Francesco; Beolchini, Francesca; Kopacek, Bernd; Vegliò, Francesco

    2013-01-01

    Highlights: • Treatment of fluorescent powder of CRT waste. • Factorial experimental designs to study acid leaching of fluorescent powder and the purification of leach liquors. • Recover of yttrium by precipitation using oxalic acid. • Suitable flowsheet to recover yttrium from fluorescent powder. - Abstract: This work is focused on the recovery of yttrium and zinc from fluorescent powder of cathode ray tube (CRT). Metals are extracted by sulphuric acid in the presence of hydrogen peroxide. Leaching tests are carried out according to a 2 2 full factorial plan and the highest extraction yields for yttrium and zinc equal to 100% are observed under the following conditions: 3 M of sulphuric acid, 10% v/v of H 2 O 2 concentrated solution at 30% v/v, 10% w/w pulp density, 70 °C and 3 h of reaction. Two series of precipitation tests for zinc are carried out: a 2 2 full factorial design and a completely randomized factorial design. In these series the factors investigated are pH of solution during the precipitation and the amount of sodium sulphide added to precipitate zinc sulphide. The data of these tests are used to describe two empirical mathematical models for zinc and yttrium precipitation yields by regression analysis. The highest precipitation yields for zinc are obtained under the following conditions: pH equal to 2–2.5% and 10–12% v/v of Na 2 S concentrated solution at 10% w/v. In these conditions the coprecipitation of yttrium is of 15–20%. Finally further yttrium precipitation experiments by oxalic acid on the residual solutions, after removing of zinc, show that yttrium could be recovered and calcined to obtain the final product as yttrium oxide. The achieved results allow to propose a CRT recycling process based on leaching of fluorescent powder from cathode ray tube and recovery of yttrium oxide after removing of zinc by precipitation. The final recovery of yttrium is 75–80%

  17. Exposure to hazardous substances in Cathode Ray Tube (CRT) recycling sites in France

    Energy Technology Data Exchange (ETDEWEB)

    Lecler, Marie-Thérèse, E-mail: marie-therese.lecler@inrs.fr; Zimmermann, François; Silvente, Eric; Clerc, Frédéric; Chollot, Alain; Grosjean, Jérôme

    2015-05-15

    Highlights: • Chemical risks were assessed in the nine cathode ray tube screens recycling facilities. • The main hazardous agents are dust containing lead, cadmium, barium and yttrium. • Exposure and pollutant levels are described for different operations and processes. • All the operations and processes are concerned by significant levels of pollutants. • We suggest recommendations to reduce chemical risk. - Abstract: The Waste Electrical and Electronic Equipment (WEEE) or e-waste recycling sector has grown considerably in the last fifteen years due to the ever shorter life cycles of consumables and an increasingly restrictive policy context. Cathode Ray Tubes (CRTs) from used television and computer screens represent one of the main sources of e-waste. CRTs contain toxic materials such as lead, cadmium, barium, and fluorescent powders which can be released if recycling of CRTs is not appropriate. Exposure to these harmful substances was assessed in nine workshops where CRT screens are treated. Particulate exposure levels were measured using a gravimetric method and metals were analysed by plasma emission spectrometry. The maximum levels of worker exposure were 8.8 mg/m{sup 3}, 1504.3 μg/m{sup 3}, 434.9 μg/m{sup 3}, 576.3 μg/m{sup 3} and 2894.3 μg/m{sup 3} respectively for inhalable dust, barium, cadmium, lead and yttrium. The maximum levels of airborne pollutants in static samples were 39.0 mg/m{sup 3}, 848.2 μg/m{sup 3}, 698.4 μg/m{sup 3}, 549.3 μg/m{sup 3} and 3437.9 μg/m{sup 3} for inhalable dust, barium, cadmium, lead and yttrium. The most harmful operations were identified, and preventive measures for reducing the chemical risk associated with screen recycling were proposed. Workplace measurements were used to define recommendations for reducing the chemical risks in CRT screens recycling facilities and for promoting the design and development of “clean and safe” processes in emerging recycling channels.

  18. Recovery of yttrium from fluorescent powder of cathode ray tube, CRT: Zn removal by sulphide precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Innocenzi, Valentina, E-mail: valentina.innocenzi1@univaq.it [Department of Industrial Engineering and Information and Economy, University of L’Aquila, Via Giovanni Gronchi n.18, Nucleo Ind.le di Pile, 67100 L’Aquila (Italy); De Michelis, Ida; Ferella, Francesco [Department of Industrial Engineering and Information and Economy, University of L’Aquila, Via Giovanni Gronchi n.18, Nucleo Ind.le di Pile, 67100 L’Aquila (Italy); Beolchini, Francesca [Department of Marine Sciences, Polytechnic Institute of Marche, Via Brecce Bianche, 60131 Ancona (Italy); Kopacek, Bernd [SAT, Austrian Society for Systems Engineering and Automation, Gurkasse 43/2, A-1140 Vienna (Austria); Vegliò, Francesco [Department of Industrial Engineering and Information and Economy, University of L’Aquila, Via Giovanni Gronchi n.18, Nucleo Ind.le di Pile, 67100 L’Aquila (Italy)

    2013-11-15

    Highlights: • Treatment of fluorescent powder of CRT waste. • Factorial experimental designs to study acid leaching of fluorescent powder and the purification of leach liquors. • Recover of yttrium by precipitation using oxalic acid. • Suitable flowsheet to recover yttrium from fluorescent powder. - Abstract: This work is focused on the recovery of yttrium and zinc from fluorescent powder of cathode ray tube (CRT). Metals are extracted by sulphuric acid in the presence of hydrogen peroxide. Leaching tests are carried out according to a 2{sup 2} full factorial plan and the highest extraction yields for yttrium and zinc equal to 100% are observed under the following conditions: 3 M of sulphuric acid, 10% v/v of H{sub 2}O{sub 2} concentrated solution at 30% v/v, 10% w/w pulp density, 70 °C and 3 h of reaction. Two series of precipitation tests for zinc are carried out: a 2{sup 2} full factorial design and a completely randomized factorial design. In these series the factors investigated are pH of solution during the precipitation and the amount of sodium sulphide added to precipitate zinc sulphide. The data of these tests are used to describe two empirical mathematical models for zinc and yttrium precipitation yields by regression analysis. The highest precipitation yields for zinc are obtained under the following conditions: pH equal to 2–2.5% and 10–12% v/v of Na{sub 2}S concentrated solution at 10% w/v. In these conditions the coprecipitation of yttrium is of 15–20%. Finally further yttrium precipitation experiments by oxalic acid on the residual solutions, after removing of zinc, show that yttrium could be recovered and calcined to obtain the final product as yttrium oxide. The achieved results allow to propose a CRT recycling process based on leaching of fluorescent powder from cathode ray tube and recovery of yttrium oxide after removing of zinc by precipitation. The final recovery of yttrium is 75–80%.

  19. Calculation and experimental technique of determination of rolling procedure for cold-rolling tube mills

    International Nuclear Information System (INIS)

    Igoshin, V.F.; Aleshin, V.A.; Khoroshikh, Yu.G.; Bogatov, A.A.; Mizhiritskij, O.I.

    1983-01-01

    Calculation and experimental technique of determination of tube cold rolling procedure has been developed. Rolling procedure based on the usage of regression equation epsilon=1.24 psi, where psi is the relative reduction of area, delta-permissible reduction during rolling, has been tested on 08Kh18N10T steel. The effect of tube geometry, tool calibration parameters, lubrication conditions etc. on metal deformability in taking into account experimentally. The use of the technique proposed has allowed to shorten the time of mastering of the production of tubes from different steels

  20. Determining optical and radiation characteristics of cathode ray tubes' glass to be reused as radiation shielding glass

    International Nuclear Information System (INIS)

    Zughbi, A.; Kharita, M.H.; Shehada, A.M.

    2017-01-01

    A new method of recycling glass of Cathode Ray Tubes (CRTs) has been presented in this paper. The glass from CRTs suggested being used as raw materials for the production of radiation shielding glass. Cathode ray tubes glass contains considerable amounts of environmentally hazardous toxic wastes, namely heavy metal oxides such as lead oxide (PbO). This method makes CRTs glass a favorable choice to be used as raw material for Radiation Shielding Glass and concrete. The heavy metal oxides increase its density, which make this type of glass nearly equivalent to commercially available shielding glass. CRTs glass have been characterized to determine heavy oxides content, density, refractive index, and radiation shielding properties for different Gamma-Ray energies. Empirical methods have been used by using the Gamma-Ray source cobalt-60 and computational method by using the code XCOM. Measured and calculated values were in a good compatibility. The effects of irradiation by gamma rays of cobalt-60 on the optical transparency for each part of the CRTs glass have been studied. The Results had shown that some parts of CRTs glass have more resistant to Gamma radiation than others. The study had shown that the glass of cathode ray tubes could be recycled to be used as radiation shielding glass. This proposed use of CRT glass is only limited to the available quantity of CRT world-wide. - Highlights: • A new method of recycling glass of Cathode Ray Tubes (CRTs) has been presented. • The glass from CRTs used as raw materials for radiation shielding glass. • The resulted glass have good optical properties and stability against radiations.

  1. Determining optical and radiation characteristics of cathode ray tubes' glass to be reused as radiation shielding glass

    Science.gov (United States)

    Zughbi, A.; Kharita, M. H.; Shehada, A. M.

    2017-07-01

    A new method of recycling glass of Cathode Ray Tubes (CRTs) has been presented in this paper. The glass from CRTs suggested being used as raw materials for the production of radiation shielding glass. Cathode ray tubes glass contains considerable amounts of environmentally hazardous toxic wastes, namely heavy metal oxides such as lead oxide (PbO). This method makes CRTs glass a favorable choice to be used as raw material for Radiation Shielding Glass and concrete. The heavy metal oxides increase its density, which make this type of glass nearly equivalent to commercially available shielding glass. CRTs glass have been characterized to determine heavy oxides content, density, refractive index, and radiation shielding properties for different Gamma-Ray energies. Empirical methods have been used by using the Gamma-Ray source cobalt-60 and computational method by using the code XCOM. Measured and calculated values were in a good compatibility. The effects of irradiation by gamma rays of cobalt-60 on the optical transparency for each part of the CRTs glass have been studied. The Results had shown that some parts of CRTs glass have more resistant to Gamma radiation than others. The study had shown that the glass of cathode ray tubes could be recycled to be used as radiation shielding glass. This proposed use of CRT glass is only limited to the available quantity of CRT world-wide.

  2. Creep rupture properties of solution annealed and cold worked type 316 stainless steel cladding tubes

    International Nuclear Information System (INIS)

    Mathew, M.D.; Latha, S.; Mannan, S.L.; Rodriguez, P.

    1990-01-01

    Austenitic stainless steels (mainly type 316 and its modifications) are used as fuel cladding materials in all current generation fast breeder reactors. For the Fast Breeder Test Reactor (FBTR) at Kalpakkam, modified type 316 stainless steel (SS) was chosen as the material for fuel cladding tubes. In order to evaluate the influence of cold work on the performance of the fuel element, the investigation was carried out on cladding tubes in three metallurgical conditions (solution annealed, ten percent cold worked and twenty percent cold worked). The results indicate that: (i) The creep strength of type 316 SS cladding tube increases with increasing cold work. (ii) The benificial effects of cold work are retained at almost all the test conditions investigated. (iii) The Larson Miller parameter analysis shows a two slope behaviour for 20PCW material suggesting that caution should be exercised in extrapolating the creep rupture life to stresses below 125 MPa. At very low stress levels, the LMP values fall below the values of the 10 PCW material. (author). 6 refs., 19 figs. , 10 tabs

  3. Hydraulic Validation of the LHC Cold Mass Heat Exchanger Tube

    CERN Document Server

    Provenaz, P

    1998-01-01

    The knowledge of the helium mass flow vs. the fraction of the tube wetted by the liquid helium II in the heat exchanger is a crucial input parameter for the heat exchange since the heat flux is direct ly proportional to the wetted surface. In the range of liquid and gas velocities inside the heat exchanger, the liquid flow behaves like in an open channel. Looking at the flow equations for such a s ituation, the velocity depends on the fluid properties only by the friction factor which is a function of the Reynolds number. Thus it was decided to build an experiment with water in order to check t he open channel equations in the heat exchanger geometry. This paper shows the results for water and gives the extrapolation for helium.

  4. Fabrication of seamless calandria tubes by cold pilgering route using 3-pass and 2-pass schedules

    Science.gov (United States)

    Saibaba, N.

    2008-12-01

    Calandria tube is a large diameter, extremely thin walled zirconium alloy tube which has diameter to wall thickness ratio as high as 90-95. Such tubes are conventionally produced by the 'welded route', which involves extrusion of slabs followed by a series of hot and cold rolling passes, intermediate anneals, press forming of sheets into circular shape and closing the gap by TIG welding. Though pilgering is a well established process for the fabrication of seamless tubes, production of extremely thin walled tubes offers several challenges during pilgering. Nuclear fuel complex (NFC), Hyderabad, has successfully developed a process for the production of Zircaloy-4 calandria tubes by adopting the 'seamless route' which involves hot extrusion of mother blanks followed by three-pass pilgering or two-pass pilgering schedules. This paper deals with standardization of the seamless route processes for fabrication of calandria tubes, comparison between the tubes produced by 2-pass and 3-pass pilgering schedules, role of ultrasonic test charts for control of process parameters, development of new testing methods for burst testing and other properties.

  5. Fabrication of seamless calandria tubes by cold pilgering route using 3-pass and 2-pass schedules

    International Nuclear Information System (INIS)

    Saibaba, N.

    2008-01-01

    Calandria tube is a large diameter, extremely thin walled zirconium alloy tube which has diameter to wall thickness ratio as high as 90-95. Such tubes are conventionally produced by the 'welded route', which involves extrusion of slabs followed by a series of hot and cold rolling passes, intermediate anneals, press forming of sheets into circular shape and closing the gap by TIG welding. Though pilgering is a well established process for the fabrication of seamless tubes, production of extremely thin walled tubes offers several challenges during pilgering. Nuclear fuel complex (NFC), Hyderabad, has successfully developed a process for the production of Zircaloy-4 calandria tubes by adopting the 'seamless route' which involves hot extrusion of mother blanks followed by three-pass pilgering or two-pass pilgering schedules. This paper deals with standardization of the seamless route processes for fabrication of calandria tubes, comparison between the tubes produced by 2-pass and 3-pass pilgering schedules, role of ultrasonic test charts for control of process parameters, development of new testing methods for burst testing and other properties

  6. Utilization of recycled glass derived from cathode ray tube glass as fine aggregate in cement mortar

    International Nuclear Information System (INIS)

    Ling, Tung-Chai; Poon, Chi-Sun

    2011-01-01

    Graphical abstract: Display Omitted Highlights: → A recycling/treatment process to remove lead on funnel glass surface is described. → Utilizing recycled funnel glass in mortar can reduce hazardous CRT glass wastes. → Effects of CRT glass content on the properties of cement mortar are studied. → Fly ash can effectively mitigate ASR expansion of mortar even at 100% glass content. → Alkaline medium in cement matrix successfully prevented the leaching of lead. - Abstract: Rapid advances in the electronic industry led to an excessive amount of early disposal of older electronic devices such as computer monitors and old televisions (TV) before the end of their useful life. The management of cathode ray tubes (CRT), which have been a key component in computer monitors and TV sets, has become a major environmental problem worldwide. Therefore, there is a pressing need to develop sustainable alternative methods to manage hazardous CRT glass waste. This study assesses the feasibility of utilizing CRT glass as a substitute for natural aggregates in cement mortar. The CRT glass investigated was an acid-washed funnel glass of dismantled CRT from computer monitors and old TV sets. The mechanical properties of mortar mixes containing 0%, 25%, 50%, 75% and 100% of CRT glass were investigated. The potential of the alkali-silica reaction (ASR) and leachability of lead were also evaluated. The results confirmed that the properties of the mortar mixes prepared with CRT glass was similar to that of the control mortar using sand as fine aggregate, and displayed innocuous behaviour in the ASR expansion test. Incorporating CRT glass in cement mortar successfully prevented the leaching of lead. We conclude that it is feasible to utilize CRT glass in cement mortar production.

  7. Factors influencing leaching of PBDEs from waste cathode ray tube plastic housings.

    Science.gov (United States)

    Stubbings, William A; Harrad, Stuart

    2016-11-01

    Samples of waste cathode ray tube (CRT) plastic housings were exposed to Milli-Q® water containing dissolved humic matter at concentrations of 0, 100 and 1000mgL(-1) as leaching fluid under laboratory conditions, and polybrominated diphenyl ethers (PBDEs) determined in the resulting leachate. Despite the relatively hydrophobic physicochemical properties of PBDEs, concentrations of ƩPBDEs in the leachate from the leaching experiments in this study ranged from 14,000 to 200,000ngL(-1). PBDE leaching appears to be a second order process, whereby a period of initially intense dissolution of more labile PBDEs is followed by a slower stage corresponding to external diffusion of the soluble residue in the material. The bulk of transfer of PBDEs to the leaching fluid occurs within the first 6h of contact, during which time we suggest that the most labile PBDEs are "washed" off the surface of the CRT plastics. The predominant congeners in the chips were BDE-209 (2600mgkg(-1)) and BDE 183 (220mgkg(-1)). The impacts on PBDE leaching of leachate pH and temperature were also examined. Increasing the temperature of leaching fluids from 20 to 80°C, enhances the leachability of BDE-209 and BDE-99 from plastics. In all cases, the alkaline pH8.5 examined, resulted in the greatest PBDE concentrations in leachate. Agitation of the waste/leachate mixture enhances PBDE leaching from CRT plastics. Potential evidence for debromination of heavy congeners to the lower brominated and more bioavailable BDEs was observed. Specifically, BDEs-47, -85 and -100 were detected in the leachates, but were absent from the CRT plastics themselves. Copyright © 2016. Published by Elsevier B.V.

  8. What monitor can replace the cathode-ray tube for visual stimulation to elicit multifocal electroretinograms?

    Science.gov (United States)

    Matsumoto, Celso Soiti; Shinoda, Kei; Matsumoto, Harue; Seki, Keisuke; Nagasaka, Eiichiro; Iwata, Takeshi; Mizota, Atsushi

    2014-08-05

    To compare a conventional cathode-ray tube (CRT) screen to organic light-emitting diode (OLED) and liquid crystal display (LCD) screens as visual stimulators to elicit multifocal electroretinograms (mfERGs), mfERGs were recorded from seven eyes of seven healthy volunteers (21 ± 2 years). The mfERGs elicited by a conventional CRT screen (S710, Compaq Computer Co.) were compared to those elicited by a studio-grade master OLED monitor (PVM-1741, Sony, Japan) and a conventional LCD (S1721, Flexscan, Eizo Nanao Corp., Japan). The luminance changes of each monitor were measured with a photodiode. CRT, OLED, and LCD screens with a frame frequency of 60 Hz were studied. A hexagonal stimulus array with 61 stimulus elements was created on each monitor. The serial white stimuli of the OLED screen at 60 Hz did not fuse, and that of the LCD screens fused. The amplitudes of P1 and P2 of the first-order kernels of the mfERGs were not significantly different from those elicited by the CRT and OLED screens, and the P1 amplitude of the first-order kernel elicited by the LCD stimuli was significantly smaller than that elicited by the CRT in all the groups of the averaged hexagonal elements. The implicit times were approximately 10 ms longer in almost all components elicited by the LCD screen compared to those elicited by the CRT screen. The mfERGs elicited by monitors other than the CRT should be carefully interpreted, especially those elicited by LCD screens. The OLED had good performance, and we conclude that it can replace the CRT as a stimulator for mfERGs; however, a collection of normative data is recommended. © 2014 ARVO.

  9. Environmental burdens in the management of end-of-life cathode ray tubes

    International Nuclear Information System (INIS)

    Rocchetti, Laura; Beolchini, Francesca

    2014-01-01

    Highlights: • The paper deals with different management options for end-of-life CRTs. • The environmental burdens for disposal and recycling are presented. • Recycling treatments allows to gain benefits for the environment. • Further treatments for fluorescent powders determine CO 2 credits. • More efforts should be directed towards recycling. - Abstract: We compared the environmental burdens in the management of end-of life cathode ray tubes (CRTs) within two frameworks according to the different technologies of the production of televisions/monitors. In the first case, CRT recycling is addressed to the recovery of the panel and funnel glass for the manufacturing of new CRT screens. In the second case, where flat screen technology has replaced that of CRT, the recycling is addressed to the recovery of the glass cullet and lead for other applications. The impacts were evaluated according to the problem-oriented methodology of the Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands. Our data confirm that in both cases, the recycling treatment allows benefits to be gained for the environment through the recovery of the secondary raw materials. These benefits are higher for the “CRT technology” framework (1 kg CO 2 saved per CRT) than for the “flat screen technology” (0.9 kg CO 2 saved, per CRT, as the highest possible), mainly due to the high energy consumption for lead separation from the funnel glass. Furthermore, the recovery of yttrium from the fluorescent powders that are a residue of the recycling treatment would further improve the CO 2 credit for both the frameworks considered, which would provide a further saving of about 0.75 kg CO 2 per CRT, net of the energy and raw materials needed for the recovery. Overall, this study confirms that, even with a change in the destination of the recovered materials, the recycling processes provide a benefit for the environment: indeed the higher loads for the environment are

  10. Environmental burdens in the management of end-of-life cathode ray tubes

    Energy Technology Data Exchange (ETDEWEB)

    Rocchetti, Laura; Beolchini, Francesca, E-mail: f.beolchini@univpm.it

    2014-02-15

    Highlights: • The paper deals with different management options for end-of-life CRTs. • The environmental burdens for disposal and recycling are presented. • Recycling treatments allows to gain benefits for the environment. • Further treatments for fluorescent powders determine CO{sub 2} credits. • More efforts should be directed towards recycling. - Abstract: We compared the environmental burdens in the management of end-of life cathode ray tubes (CRTs) within two frameworks according to the different technologies of the production of televisions/monitors. In the first case, CRT recycling is addressed to the recovery of the panel and funnel glass for the manufacturing of new CRT screens. In the second case, where flat screen technology has replaced that of CRT, the recycling is addressed to the recovery of the glass cullet and lead for other applications. The impacts were evaluated according to the problem-oriented methodology of the Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands. Our data confirm that in both cases, the recycling treatment allows benefits to be gained for the environment through the recovery of the secondary raw materials. These benefits are higher for the “CRT technology” framework (1 kg CO{sub 2} saved per CRT) than for the “flat screen technology” (0.9 kg CO{sub 2} saved, per CRT, as the highest possible), mainly due to the high energy consumption for lead separation from the funnel glass. Furthermore, the recovery of yttrium from the fluorescent powders that are a residue of the recycling treatment would further improve the CO{sub 2} credit for both the frameworks considered, which would provide a further saving of about 0.75 kg CO{sub 2} per CRT, net of the energy and raw materials needed for the recovery. Overall, this study confirms that, even with a change in the destination of the recovered materials, the recycling processes provide a benefit for the environment: indeed the higher loads

  11. Effect of high Xe-concentration in a plasma display panel with a SrCaO cold cathode

    International Nuclear Information System (INIS)

    Uchida, Giichiro; Kajiyama, Hiroshi; Shinoda, Tsutae; Uchida, Satoshi; Akiyama, Toshiyuki

    2010-01-01

    We present here measurements of high Xe-contents plasma display panel (PDP) with SrCaO cold cathode. Luminous efficacy (η) shows a two-step increase with Xe-concentration in Ne/Xe gas mixture: η drastically increases up to Xe-concentration of 30% (Xe: 30%), and then attains 5 lm/W at the highest Xe-concentration of Xe: 100%. The high performance PDP with Xe: 100% can be operated at low applied voltage between 230 and 377 V due to the high secondary electron emission from the SrCaO cathode. Emission measurements clearly show the change in discharge characteristics at Xe: 30%, where the discharge changes from a Ne/Xe mixture discharge to an almost pure Xe discharge, and the vacuum ultraviolet (VUV) radiation from the combination of resonance and excimer radiations to only excimer radiation. Theoretical analysis solving Boltzmann equation for electron demonstrates that increasing Xe-concentration enhances the collision frequency for electron impact excitation directly from ground state to lower levels concerned with the VUV radiation, resulting in a drastic increase in luminous efficacy up to Xe: 30%. Also, one-dimensional fluid simulation of a Ne/Xe dielectric barrier discharge clearly shows that a combination of high secondary electron emission cathode and high Xe-concentration is quite effective for high VUV radiation efficiency because it induces a drastic increase in electron-heating efficiency.

  12. Beam-plasma interaction in a cold-cathodes penning discharge; Interaction faisceau-plasma dans une decharge penning a cathodes froides

    Energy Technology Data Exchange (ETDEWEB)

    Bliman, S L [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1966-06-01

    The H.F. emissions from a cold-cathode reflex discharge are studied. An experimental law for the frequency variation shows that f{alpha}V{sup 1/2} discharged if B{sub 0} and p are constant. If B{sub 0} is made to increase, the frequencies change such that f{sub ce} - f emitted / f{sub ce} decreases. With each emitted frequency there is associated a stationary wave system making it possible to measure the phase velocity V{phi} of the waves. This phase velocity is always close to that of the fast electrons accelerated by a potential V discharge. A non-quasistatic formalism for the propagation of waves in a beam-plasma system is then established. The Maxwell equations are solved taking into account boundary conditions. Comparison of these experiments with the theory shows a satisfactory agreement. (author) [French] On etudie les emissions H.F. d'une decharge reflex a cathodes froides. Une loi experimentale de variation des frequences montre que f{alpha}V{sup 1/2} decharge, si B{sub 0} et p sont fixes. Si on fait croitre B{sub 0}, les frequences evoluent de sorte que f{sub ce} - f emise / f{sub ce} diminue. A chaque frequence emise est associe un systeme d'ondes stationnaires qui permet la mesure de la vitesse de phase V{phi} des ondes. Cette vitesse de phase est toujours voisine de celle des electrons rapides acceleres sous la tension V decharge. On etablit ensuite un formalisme non quasistatique de propagation d'ondes dans un systeme faisceau plasma. On resoud les equations de MAXWELL avec conditions aux limites. La comparaison des experiences a la theorie aboutit a un accord satisfaisant. (auteur)

  13. Beam-plasma interaction in a cold-cathodes penning discharge; Interaction faisceau-plasma dans une decharge penning a cathodes froides

    Energy Technology Data Exchange (ETDEWEB)

    Bliman, S.L. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1966-06-01

    The H.F. emissions from a cold-cathode reflex discharge are studied. An experimental law for the frequency variation shows that f{alpha}V{sup 1/2} discharged if B{sub 0} and p are constant. If B{sub 0} is made to increase, the frequencies change such that f{sub ce} - f emitted / f{sub ce} decreases. With each emitted frequency there is associated a stationary wave system making it possible to measure the phase velocity V{phi} of the waves. This phase velocity is always close to that of the fast electrons accelerated by a potential V discharge. A non-quasistatic formalism for the propagation of waves in a beam-plasma system is then established. The Maxwell equations are solved taking into account boundary conditions. Comparison of these experiments with the theory shows a satisfactory agreement. (author) [French] On etudie les emissions H.F. d'une decharge reflex a cathodes froides. Une loi experimentale de variation des frequences montre que f{alpha}V{sup 1/2} decharge, si B{sub 0} et p sont fixes. Si on fait croitre B{sub 0}, les frequences evoluent de sorte que f{sub ce} - f emise / f{sub ce} diminue. A chaque frequence emise est associe un systeme d'ondes stationnaires qui permet la mesure de la vitesse de phase V{phi} des ondes. Cette vitesse de phase est toujours voisine de celle des electrons rapides acceleres sous la tension V decharge. On etablit ensuite un formalisme non quasistatique de propagation d'ondes dans un systeme faisceau plasma. On resoud les equations de MAXWELL avec conditions aux limites. La comparaison des experiences a la theorie aboutit a un accord satisfaisant. (auteur)

  14. Utilization of ultraviolet radiation of cold hollow cathode discharge plasma for water disinfection

    International Nuclear Information System (INIS)

    Soloshenko, I.O.; Bazhenov, V.Yu.; Khomych, V.O.; Tsiolko, V.V.; Potapchenko, N.G.; Goncharuk, V.V.

    2006-01-01

    We study the possibility to use the ultraviolet radiation of a hollow cathode discharge plasma for water disinfection. We have performed the comparative experiments on the influence of ultraviolet radiation of the mentioned discharge plasma, as well as that of a standard low pressure mercury lamp

  15. HIGH-CURRENT COLD CATHODE FIELD EMISSION ARRAY FOR ELECTRON LENS APPLICATION

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay L

    2012-12-28

    During Phase I, the following goals were achieved: (1) design and fabrication of a novel, nano-dimensional CNT field emitter assembly for high current density application, with high durability; (2) fabrication of a ceramic based micro channel plate (MCP) and characterization of its secondary electron emission; and (3) characterizing the CNT/MCP cathode for high field emission and durability. As a result of these achievements, a relatively high current density of ~ 1.2 A/cm2 from a CNT cathode and single channel MCP were measured. The emission current was also extremely stable with a peak-to-peak variation of only 1.8%. The emission current could be further enhanced to meet requirements for electron lens applications by increasing the number of MCP channels. A calculation for maximum possible current density with a 1200 channel/cm2 MCP, placed over a cathode with 1200 uniformly functioning CNTs, would be ~1.46 kA/cm2, neglecting space charge limitations. Clearly this level of emission is far greater than what is needed for the electron lens application, but it does offer a highly comforting margin to account for sub-standard emitters and/or to allow the lesser challenge of building a cathode with fewer channels/cm2. A satisfactory goal for the electron lens application would be a controllable emission of 2-4 mA per channel in an ensemble of 800-1200 uniformly-functioning channels/cm2, and a cathode with overall area of about 1 cm2.

  16. Hydrometallurgical Processing and Recovery of Nickel from Spent Cathode Ray Tubes

    Directory of Open Access Journals (Sweden)

    Coman V.

    2013-04-01

    Full Text Available Scientific and technological progress required for more and more advanced electrical and electronic equipment (EEE. Therefore, EEE manufacturing became one of the most important world activities, generating at the same time huge amounts of waste. In the last decades the accumulation of waste electrical and electronic equipment (WEEE has become a global problem (Widmer et al., 2005; Babu et al., 2007; Robinson, 2009. These wastes are a threat for the environment due to their high content of toxic materials and, at the same time, they are an important source of recyclable materials, and especially valuable metals (e.g. Au, Ag, Pd, Cu, Ni, Zn. Nowadays there are various approaches for the treatment and recycling of WEEE, involving pyro-, hydro- and bio-metallurgical processes (Cui and Zhang, 2008. Among WEEE, cathode ray tubes (CRT displays, used mainly in computer monitors and television sets, are regarded as the most polluting fraction of all WEEE (Nnorom et al., 2011. CRT recycling represents a challenge due to their high accumulation rate, proportional to the evolution of modern technologies (flat panel displays, their high content of toxic and noxious substances (heavy metals and organic compounds, improper storage, and the lack of a complete, pollution-free recycling solution. Previous studies have shown that some CRT metallic components (electron gun - EG, shadow mask contain important amounts of Ni (25 – 45% and Fe (50 – 70%, and small quantities of Mn, Co and Cr (Robotin et al., 2011. Ni and Ni alloys play an important role in modern technology, especially due to their magnetic and anticorrosion properties. Unfortunately, when exposed inappropriately, Ni can have negative environmental effects and can be harmful to human health (Denkhaus and Salnikow, 2002. In this context, Ni recycling from electronic waste is important for environmental and health reasons, and, at the same time, Ni recycling could be financially sustainable due to an

  17. Optimization of the cold processing of 15-15Ti AIM1 austenitic steel cladding tubes

    International Nuclear Information System (INIS)

    Courtin, Laurine

    2015-01-01

    In order to face the next century energy demand growth, the worldwide development of the 4. generation of nuclear reactors is considered. The construction of a sodium-cooled fast reactor prototype (ASTRID) is currently envisaged at the CEA. The reference material selected for the fuel cladding of its first core is the 15-15Ti-AIM1 austenitic steel (Austenitic Improved Material). The goal of this PhD thesis work is to investigate the different ways of optimization for the cold working steps undergone by the claddings during their manufacture in order to improve their swelling resistance. The main investigations are focused on the conditions of the cold-working steps and the thermal treatments applied throughout the shaping of the claddings, especially of the last solution annealing treatment. The effects of these parameters on the microstructure are investigated (structural refinement, precipitation and the additive elements dissolution and arrangement of the dislocations). This study is divided into three main steps: An analysis of the fabrication routes applied in the past along with the study of the 'cold-work' and the thermal treatments conditions; An assessment of new shaping processes, such as the 'cold-pilgering' and the hammering, in order to verify the conformity of the manufactured tubes with respect to the required specifications; An attempt of optimization of the cold-work routes and the microstructure of the final material. The results of microstructure characterization and the mechanical behavior allow envisaging favorably the use of an alternative process such as the cold pilgering to manufacture claddings. (author) [fr

  18. A simple chemical synthesis of amorphous carbon nanotubes–MnO{sub 2} flake hybrids for cold cathode application

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Sourav [Thin Film and Nanoscience Laboratory, Department of Physics, Jadavpur University, Kolkata 700032 (India); Banerjee, Diptonil; Das, Nirmalya Sankar [School of Material Science and Nanotechnology, Jadavpur University, Kolkata 700032 (India); Chattopadhyay, Kalyan Kumar, E-mail: kalyan_chattopadhyay@yahoo.com [Thin Film and Nanoscience Laboratory, Department of Physics, Jadavpur University, Kolkata 700032 (India); School of Material Science and Nanotechnology, Jadavpur University, Kolkata 700032 (India)

    2015-08-30

    Highlights: • Amorphous carbon nanotubes (aCNTs) have been synthesized chemically. • The walls of the aCNTs have been anchored by MnO{sub 2} nanoflakes. • It is seen for the first time that MnO{sub 2} modified aCNTs show much better field emission property. • Experimental result has also been supported theoretically. • This can acts as doorstep to develop a new hybrid system as a novel cold cathode material. - Abstract: A simple approach has been implemented to synthesize amorphous carbon nanotubes (a-CNTs) and manganese oxide (MnO{sub 2}) hybrid nanostructure at temperature as low as ∼250 °C in open atmosphere. Microscopic studies of the samples revealed that the walls of the a-CNTs were coated uniformly by MnO{sub 2} nanoflakes. The composition of the as prepared sample was studied with the help of energy dispersive X-ray and X-ray photoelectron spectroscopy. Electron field emission study was done in a custom built high vacuum field emission setup for the prepared a-CNT and manganese oxide (MnO{sub 2}) hybrid nanostructure. It is seen that the performance of the a-CNTs as cold cathode emitter has been enhanced greatly when MnO{sub 2} nanoflakes were coated uniformly over it. The turn on field has been reduced from 7.17 to value as low as 3.82 V/mm with enhancement factor increases from 2428 to 6965. Finite element based simulation study theoretically confirms the enhancement of field emission properties of as prepared MnO{sub 2} nanoflake coated a-CNTs. The results have been explained due to enhanced surface roughness leading to higher enhancement factor and overall increase of emission sites.

  19. Five Tubes Rupture at Cold Side of Steam Generator Simulation Test Report Using the ATLAS

    International Nuclear Information System (INIS)

    Kang, Kyoung Ho; Park, Hyun Sik; Cho, Seok

    2010-12-01

    In this study, a postulated SGTR event of the APR1400 was experimentally investigated with the ATLAS. In order to simulate a double-ended rupture of five U-tubes in the APR1400, the SGTR-CL-02 test was performed with the ATLAS. The main objectives of this test were not only to provide a physical insight into the system response of the APR1400 during the SGTR but also to produce integral effect experimental data to validate the safety analysis code. In the present report, major thermal-hydraulic phenomena such as the system pressures, the collapsed water levels, and the break flow rate were presented and discussed. Compared to the case of a single U-tube rupture test, opening frequency of the MSSVs in the intact steam generator (SG-2) was highly reduced after 500 seconds in the present SGTR-CL-02 test. Large discharge of the primary inventory resulted in rapid depressurization of the primary system and consequently early injection of the SIP. Supply of cold ECC water by the SIPs reduced the energy transfer to the secondary side compared with the single U-tube rupture case. Less heat transfer to the secondary side had more influence on the secondary pressure of the affected steam generator than the break flow. This integral effect test data will be used to evaluate the prediction capability of existing safety analysis codes of the MARS and the RELAP5 as well as the SPACE code

  20. Electronic waste: chemical characterization glasses of tubes cathode rays with viability for recycling; Lixo eletronico: caracterizacao quimica dos vidros de tubos de raios catodicos com viabilidade para reciclagem

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Norma Maria O.; Morais, Crislene R. Silva, E-mail: normalimam@ig.com.br [Universidade Federal de Campina Grande (UFCG), Campina Grande, PB (Brazil). Unidade Academica de Engenharia de Materiais; Lima, Lenilde Mergia Ribeiro [Universidade Federal de Campina Grande (UATEC/UFCG), Campina Grande, PB (Brazil). Unidade Academica de Tecnologia do Desenvolvimento

    2011-07-01

    Electronic waste, or e-waste, often makes incorrect destinations, which causes serious environmental problems. The aim of this study was to analyze the X-ray fluorescence to study the recycling technology for the glass of Cathode Ray Tubes or, popularly, 'picture tubes', identified by the acronym CRT (Cathode Ray Tubes), which integrate computer monitors. It was observed that the glass screen and funnel analyzed have different chemical compositions. As the silicon oxide (SiO2), the largest component of these glasses percentage 59.89% and 48.63% respectively for the screen and funnel this oxide is responsible for forming the vitreous network. The study of recycling of computer monitors it is important, since about 45% of existing materials on a monitor are made of glass, since it is 100% recyclable and can be reused, thus reducing the amount of waste deposited in the environment. (author)

  1. Impulse electron gun with plasma cathode for realization of large diameter tube-shaped beams

    International Nuclear Information System (INIS)

    Antipov, V.S.; Karpukhin, V.I.; Kornilov, E.A.

    1999-01-01

    There are presented the results of investigations of a plasma electron source based on the gas discharge in a coaxial system of electrodes with longitudinal magnetic field. The examination is fulfilled from the viewpoint of applying the source as a plasma cathode for hybrid plasma-waveguide slow-wave structures on the basis of a disk-loaded coaxial. The source is optimized in order to get a powerful (up to 100 kW) nonrelativistic electron beam with the annular cross-section of a large diameter in the regime of relatively long current pulses (up to 0.2 ms) under the gas pressure ∼ 5 centre dot 10 -4 mm Hg in the area of the discharge burning

  2. Age hardening of cold-worked Zr-2.5 wt% Nb pressure tube alloy

    International Nuclear Information System (INIS)

    Kishore, R.; Singh, R.N.; Dey, G.K.; Sinha, T.K.

    1992-01-01

    Specimens for hardness and tensile tests, machined from a cold-worked zirconium-2.5% niobium pressure tube, with their axes parallel to longitudinal and transverse directions, were aged for 1 hr. at 300-500 C. The age hardening behaviour was monitored by mechanical tests, electron-microscopy and x-ray diffraction. In addition a few studies were carried on longitudinal tension specimens subjected to prolonged ageing (100-1000 hrs) at 300 C. It was observed that the short-term (1 hour) thermal ageing of this material at 300-400 C caused an increase in both strength and hardness without affecting ductility. It appears that the observed age-hardening is due to precipitation hardening by a niobium-rich phase and softening by recovery of cold-work and that the phenomenon is influenced by crystallographic texture. Further it was noted that a prolonged ageing at 300 C upto 1000 hrs, did not cause any appreciable changes in strength and ductility of the material compared to those obtained by 1 hour ageing at the same temperature. (author). 11 refs., 3 figs., 2 tabs

  3. Cold cathode emission studies on topographically modified few layer and single layer MoS2 films

    Science.gov (United States)

    Gaur, Anand P. S.; Sahoo, Satyaprakash; Mendoza, Frank; Rivera, Adriana M.; Kumar, Mohit; Dash, Saroj P.; Morell, Gerardo; Katiyar, Ram S.

    2016-01-01

    Nanostructured materials, such as carbon nanotubes, are excellent cold cathode emitters. Here, we report comparative field emission (FE) studies on topographically tailored few layer MoS2 films consisting of ⟨0001⟩ plane perpendicular (⊥) to c-axis (i.e., edge terminated vertically aligned) along with planar few layer and monolayer (1L) MoS2 films. FE measurements exhibited lower turn-on field Eto (defined as required applied electric field to emit current density of 10 μA/cm2) ˜4.5 V/μm and higher current density ˜1 mA/cm2, for edge terminated vertically aligned (ETVA) MoS2 films. However, Eto magnitude for planar few layer and 1L MoS2 films increased further to 5.7 and 11 V/μm, respectively, with one order decrease in emission current density. The observed differences in emission behavior, particularly for ETVA MoS2 is attributed to the high value of geometrical field enhancement factor (β), found to be ˜1064, resulting from the large confinement of localized electric field at edge exposed nanograins. Emission behavior of planar few layers and 1L MoS2 films are explained under a two step emission mechanism. Our studies suggest that with further tailoring the microstructure of ultra thin ETVA MoS2 films would result in elegant FE properties.

  4. Design and testing of a separate-type lighting system using solar energy and cold-cathode fluorescent lamps

    International Nuclear Information System (INIS)

    Yang, J.-P.; Hsiao, H.-C.

    2007-01-01

    This paper presents a solar-powered lighting system, using cold-cathode fluorescent-lamps (CCFLs), with its battery-charging circuit and lamp-ignition circuit being separated so that its solar panels can be installed at any distance deemed necessary away from the lighting site in order to receive the maximum solar energy available. This system adopts the maximum-power point tracking (MPPT) method to control the power output of the solar panels and uses the zero-voltage switching (ZVS) DC-DC converter, as the charging circuit, to increase the panels' power generation efficiency and the charging circuit's conversion efficiency. The electronic ballast circuit for the CCFL is constructed with a half-bridge inverter, a resonant inductor, and a Rosen-type piezoelectric transformer, which forms a piezoelectric resonant-type inverter: to simplify the circuitry and to improve the power conversion efficiency, the ballast circuit is designed to directly step up the battery voltage in igniting the lamp. We also establish the transmission-parameter model for the piezoelectric resonant-type inverter to provide the base for the electric-power circuit design. Our experimental results indicate that the proposed system possesses some advantages, such as greater energy efficiency, circuitry simplicity, and so on, and is suitable for night lighting in house yards, parks and advertising panels

  5. Design and testing of a separate-type lighting system using solar energy and cold-cathode fluorescent lamps

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J.-P. [Department of Electrical Engineering, China Institute of Technology, Taipei, Taiwan 115, Taiwan (China)]. E-mail: april4120@tp.edu.tw; Hsiao, H.-C. [Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan 106, Taiwan (China)]. E-mail: hsiao@mouse.ee.ntust.edu.tw

    2007-01-15

    This paper presents a solar-powered lighting system, using cold-cathode fluorescent-lamps (CCFLs), with its battery-charging circuit and lamp-ignition circuit being separated so that its solar panels can be installed at any distance deemed necessary away from the lighting site in order to receive the maximum solar energy available. This system adopts the maximum-power point tracking (MPPT) method to control the power output of the solar panels and uses the zero-voltage switching (ZVS) DC-DC converter, as the charging circuit, to increase the panels' power generation efficiency and the charging circuit's conversion efficiency. The electronic ballast circuit for the CCFL is constructed with a half-bridge inverter, a resonant inductor, and a Rosen-type piezoelectric transformer, which forms a piezoelectric resonant-type inverter: to simplify the circuitry and to improve the power conversion efficiency, the ballast circuit is designed to directly step up the battery voltage in igniting the lamp. We also establish the transmission-parameter model for the piezoelectric resonant-type inverter to provide the base for the electric-power circuit design. Our experimental results indicate that the proposed system possesses some advantages, such as greater energy efficiency, circuitry simplicity, and so on, and is suitable for night lighting in house yards, parks and advertising panels.

  6. Development of the ERC cold-cathode ion source for use on the PR-30 ion-implantation system

    International Nuclear Information System (INIS)

    Bird, H.M.B.; Flemming, J.P.

    1978-01-01

    The ERC cold-cathode ion source has been in routine production use on several PR-30 systems for the past three years. This source has been further developed to improve target current, lifetime, and stability. The ion-optical lens has been changed from circular to elliptical geometry in order to provide an asymmetric beam for entry into the PR-30 analyzing magnet. This measure, as well as the use of higher extraction voltages, provides higher beam currents on the PR-30 target wafers. Beam steering in the nondispersive direction has been provided to correct the effects of minor machine misalignments, further enhancing target current. The discharge chamber has been modified to increase source lifetime. A new gas-feed control system and a new method of oven temperature control have been devised to provide good source and ion beam stability. The source operates with only occasional attention by unskilled personnel, and has been used principally for boron and arsenic implants. Target currents of 1-mA boron and 4-mA arsenic can be obtained routinely. Lifetimes are of the order of 40--80 h, depending on ion species. The source has also been used to provide 5-mA phosphorus, 4-mA argon, 3-mA helium and neon, and 0.3-mA nickel and palladium ion beams

  7. Ultra-thin graphene edges at the nanowire tips: a cascade cold cathode with two-stage field amplification

    International Nuclear Information System (INIS)

    Maiti, Uday N; Majumder, Tapas Pal; Maiti, Soumen; Chattopadhyay, Kalyan K

    2011-01-01

    A multistage field emitter based on graphene-linked ZnO nanowire array is realized by means of spin-coating a graphene dispersion (reduced graphene oxide) over a nanostructured platform followed by plasma modification. Spin-coating leads to interlinking of graphene sheets between the neighboring nanowires whereas plasma etching in the subsequent step generates numerous ultra-sharp graphene edges at the nanowire tips. The inherent tendency of graphene to lay flat over a plane substrate can easily be bypassed through the currently presented nanostructure platform based technique. The turn-on and threshold field significantly downshifted compared to the individual components in the cascade emitter. Through the facile electron transfer from nanowires to graphene due to band bending at the ZnO–graphene interface together with multistage geometrical field enhancement at both the nanowire and graphene edges remain behind this enriched field emission from the composite cold cathode. This strategy will open up a new direction to integrate the functionalities of both the graphene array and several other inorganic nanostructure array for practical electronic devices.

  8. Electron Emission And Beam Generation Using Ferroelectric Cathodes (electron Beam Generation, Lead Lanthanum Zicronate Titanate, High Power Traveling Wave Tube Amplfier)

    CERN Document Server

    Flechtner, D D

    1999-01-01

    In 1989, researchers at CERN published the discovery of significant electron emission (1– 100 A/cm2) from Lead- Lanthanum-Zirconate-Titanate (PLZT). The publication of these results led to international interest in ferroelectric cathodes studies for use in pulsed power devices. At Cornell University in 1991, experiments with Lead-Zirconate-Titanate (PZT) compositions were begun to study the feasibility of using this ferroelectric material as a cathode in the electron gun section of High Power Traveling Wave Tube Amplifier Experiments. Current-voltage characteristics were documented for diode voltages ranging from 50– 500,000 V with anode cathode gaps of.5– 6 cm. A linear current-voltage relation was found for voltages less than 50 kV. For diode voltages ≥ 200 kV, a typical Child-Langmuir V3/2 dependence was observed...

  9. Use of limestone powder during incorporation of Pb-containing cathode ray tube waste in self-compacting concrete.

    Science.gov (United States)

    Sua-iam, Gritsada; Makul, Natt

    2013-10-15

    For several decades, cathode ray tubes (CRTs) were the primary display component of televisions and computers. The CRT glass envelope contains sufficient levels of lead oxide (PbO) to be considered hazardous, and there is a need for effective methods of permanently encapsulating this material during waste disposal. We examined the effect of adding limestone powder (LS) on the fresh and cured properties of self-compacting concrete (SCC) mixtures containing waste CRT glass. The SCC mixtures were prepared using Type 1 Portland cement at a constant cement content of 600 kg/m(3) and a water-to-cement ratio (w/c) of 0.38. CRT glass waste cullet was blended with river sand in proportions of 20 or 40% by weight. To suppress potential viscosity effects limestone powder was added at levels of 5, 10, or 15% by weight. The slump flow time, slump flow diameter, V-funnel flow time, Marsh cone flow time, and setting time of the fresh concrete were tested, as well as the compressive strength and ultrasonic pulse velocity of the hardened concrete. Addition of limestone powder improved the fresh and hardened properties. Pb leaching levels from the cured concrete were within US EPA allowable limits. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Preparation of lead oxide nanoparticles from cathode-ray tube funnel glass by self-propagating method.

    Science.gov (United States)

    Wang, Yu; Zhu, Jianxin

    2012-05-15

    This paper presents a novel process of extracting lead oxide nanoparticles from cathode-ray tube (CRT) funnel glass using self-propagating high-temperature synthesis (SHS) method. The impacts of added amount of funnel glass on the extraction ratio of lead, the lead extraction velocity and the micromorphology, as well as particle size of extracted nanoparticles were investigated. We found that self-propagating reaction in the presence of Mg and Fe(2)O(3) could separate lead preferentially and superfine lead oxide nanoparticles were obtained from a collecting chamber. The separation ratio was related closely to the amount of funnel glass added in the original mixture. At funnel glass addition of no more than 40wt.%, over 90wt.% of lead was recovered from funnel glass. High extraction yield reveals that the network structure of funnel glass was fractured due to the dramatic energy generated during the SHS melting process. The PbO nanoparticles collected show good dispersion and morphology with a mean grain size of 40-50nm. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Utilization of recycled cathode ray tubes glass in cement mortar for X-ray radiation-shielding applications.

    Science.gov (United States)

    Ling, Tung-Chai; Poon, Chi-Sun; Lam, Wai-Shung; Chan, Tai-Po; Fung, Karl Ka-Lok

    2012-01-15

    Recycled glass derived from cathode ray tubes (CRT) glass with a specific gravity of approximately 3.0 g/cm(3) can be potentially suitable to be used as fine aggregate for preparing cement mortars for X-ray radiation-shielding applications. In this work, the effects of using crushed glass derived from crushed CRT funnel glass (both acid washed and unwashed) and crushed ordinary beverage container glass at different replacement levels (0%, 25%, 50%, 75% and 100% by volume) of sand on the mechanical properties (strength and density) and radiation-shielding performance of the cement-sand mortars were studied. The results show that all the prepared mortars had compressive strength values greater than 30 MPa which are suitable for most building applications based on ASTM C 270. The density and shielding performance of the mortar prepared with ordinary crushed (lead-free) glass was similar to the control mortar. However, a significant enhancement of radiation-shielding was achieved when the CRT glasses were used due to the presence of lead in the glass. In addition, the radiation shielding contribution of CRT glasses was more pronounced when the mortar was subject to a higher level of X-ray energy. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Application and verification of cold air velocity technique for solving tube ash erosion problem in PC boilers

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Kisoo; Jeong, Kwon Seok [Korea Southern Power Corporation, Gimhae (Korea, Republic of)

    2012-06-15

    Fly ash erosion is a leading cause of boiler tube failure in PC boilers. Therefore, shields or baffle plates are installed in specific areas to mitigate fly ash erosion and prevent boiler tube failure. However, the tube failure problems caused by fly ash erosion cannot be eliminated with this solution alone, because each PC boiler has a different flue gas flow pattern and erosion can become severe in unexpected zones. This problem is caused by an asymmetric internal flow velocity and local growth of the flue gas velocity. For these reasons, clearly defining the flow pattern in PC boilers is important for solving the problem of tube failure caused by fly ash erosion. For this purpose, the cold air velocity technique (CAVT) can be applied to the fly ash erosion problem. In this study, CAVT was carried out on the Hadong 2 PC boiler and the feasibility of application of CAVT to conventional PC boilers was validated.

  13. Application and verification of cold air velocity technique for solving tube ash erosion problem in PC boilers

    International Nuclear Information System (INIS)

    Yoo, Kisoo; Jeong, Kwon Seok

    2012-01-01

    Fly ash erosion is a leading cause of boiler tube failure in PC boilers. Therefore, shields or baffle plates are installed in specific areas to mitigate fly ash erosion and prevent boiler tube failure. However, the tube failure problems caused by fly ash erosion cannot be eliminated with this solution alone, because each PC boiler has a different flue gas flow pattern and erosion can become severe in unexpected zones. This problem is caused by an asymmetric internal flow velocity and local growth of the flue gas velocity. For these reasons, clearly defining the flow pattern in PC boilers is important for solving the problem of tube failure caused by fly ash erosion. For this purpose, the cold air velocity technique (CAVT) can be applied to the fly ash erosion problem. In this study, CAVT was carried out on the Hadong 2 PC boiler and the feasibility of application of CAVT to conventional PC boilers was validated

  14. Production of the heat exchanger tubes, which will cool down the LHC magnets, and of the cold bore tubes, in which the proton beams will circulate, is due to be completed around the end of 2004. These essential components of the LHC magnets are receiving their finishing touches at CERN : cold bore tubes

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    Insulation of the cold bore tubes in which the LHC beams will circulate takes place in Building 927. In the background, Bruno Meunier checks the wrapping machine while, in the foreground, Olivier Vasseur removes the polyester wrapping that covers the tube's insulating layers.

  15. Utilization of recycled cathode ray tubes glass in cement mortar for X-ray radiation-shielding applications

    International Nuclear Information System (INIS)

    Ling, Tung-Chai; Poon, Chi-Sun; Lam, Wai-Shung; Chan, Tai-Po; Fung, Karl Ka-Lok

    2012-01-01

    Highlights: ► It is feasible to use recycled CRT glass in mortar as shield against X-ray radiation. ► Shielding properties of CRT mortar is strongly depended on CRT content. ► Linear attenuation coefficient was reduced by 142% upon 100% CRT glass in mortar. ► Effect of mortar thickness and irradiation energies on shielding was investigated. - Abstract: Recycled glass derived from cathode ray tubes (CRT) glass with a specific gravity of approximately 3.0 g/cm 3 can be potentially suitable to be used as fine aggregate for preparing cement mortars for X-ray radiation-shielding applications. In this work, the effects of using crushed glass derived from crushed CRT funnel glass (both acid washed and unwashed) and crushed ordinary beverage container glass at different replacement levels (0%, 25%, 50%, 75% and 100% by volume) of sand on the mechanical properties (strength and density) and radiation-shielding performance of the cement–sand mortars were studied. The results show that all the prepared mortars had compressive strength values greater than 30 MPa which are suitable for most building applications based on ASTM C 270. The density and shielding performance of the mortar prepared with ordinary crushed (lead-free) glass was similar to the control mortar. However, a significant enhancement of radiation-shielding was achieved when the CRT glasses were used due to the presence of lead in the glass. In addition, the radiation shielding contribution of CRT glasses was more pronounced when the mortar was subject to a higher level of X-ray energy.

  16. Lead removal from cathode ray tube glass by the action of calcium hydroxide and poly(vinyl chloride)

    International Nuclear Information System (INIS)

    Grause, Guido; Takahashi, Kenshi; Kameda, Tomohito; Yoshioka, Toshiaki

    2014-01-01

    Highlights: • About 99.9% of lead is removed from CRT glass by PbCl 2 volatilization. • PVC is used as chlorination agent with the aid of Ca(OH) 2 as HCl absorbing material. • The residual calcium silicate has a lead content as low as 140 mg kg −1 . • Lead leaching from the residue was below the detection limit. - Abstract: With the development of flat screen technology, the cathode ray tubes (CRTs) used in TV sets became obsolete, leaving huge amounts of lead-containing CRT glass for disposal. We developed a novel lead volatilization process in which PbCl 2 was generated in the presence of poly(vinyl chloride) (PVC) as a chlorination agent and Ca(OH) 2 as an HCl absorber. PVC was incinerated in air atmosphere and the resulting HCl was captured by Ca(OH) 2 before exiting the reactor with the air flow. CaCl 2 and Ca(OH) 2 reacted with the lead glass forming volatile PbCl 2 and crystalline Ca-silicates. Since the reactivity of lead glass with gaseous HCl is negligible, the presence of Ca(OH) 2 was essential for the success of this method. At a temperature of 1000 °C, a molar Cl/Pb ratio of 16, and a molar Ca/Si ratio of about 2, approximately 99.9% of the lead was volatilized, leaving a residue with a lead content of 140 mg kg −1 . The residual calcium silicate, with its low lead level, has the potential to be repurposed for other uses

  17. Study of tensile test behavior of austenitic stainless steel type 347 seamless thin-walled tubes in cold worked condition

    Energy Technology Data Exchange (ETDEWEB)

    Terui, Clarice, E-mail: clarice.terui@marinha.mil.br [Centro Tecnológico da Marinha em São Paulo (CINA/CTMSP), Iperó, SP (Brazil). Centro Industrial Nuclear da Marinha; Lima, Nelson B. de, E-mail: nblima@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNE-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    These austenitic stainless steel type 347 seamless thin-walled tubes are potential candidates to be used in fuel elements of nuclear power plants (as PWR - Pressurized Water Reactor). So, their metallurgical condition and mechanical properties, as the tensile strength and yield strength, normally are very restrict in demanding project and design requirements. Several full size tensile tests at room temperature and high temperature (315 deg C) were performed in these seamless tubes in cold-worked condition. The results of specified tensile and yield strengths were achieved but the elongation of the tube, in the geometry of the component, could not be measured at high temperature due to unconventional mode of rupture (helical mode without separation of parts). The average value of elongation was obtained from stress-strain curves of hot tensile tests and was around 5%. The results obtained in this research show that this behavior of the full size tensile test samples of thin-walled tube (wall thickness less than 0.5 mm) in high temperature (315°C) is due to the combination of the manufacturing process, the material (crystallographic structure and chemical composition) and the final geometry of the component. In other words, the strong crystallographic texture of material induced by tube drawing process in addition with the geometry of the component are responsible for the behavior in hot uniaxial tensile tests. (author)

  18. Nitric oxide participates in cold-inhibited Camellia sinensis pollen germination and tube growth partly via cGMP in vitro.

    Directory of Open Access Journals (Sweden)

    Yu-Hua Wang

    Full Text Available Nitric oxide (NO plays essential roles in many biotic and abiotic stresses in plant development procedures, including pollen tube growth. Here, effects of NO on cold stress inhibited pollen germination and tube growth in Camellia sinensis were investigated in vitro. The NO production, NO synthase (NOS-like activity, cGMP content and proline (Pro accumulation upon treatment with NO scavenger cPTIO, NOS inhibitor L-NNA, NO donor DEA NONOate, guanylate cyclase (GC inhibitor ODQ or phosphodiesterase (PDE inhibitor Viagra at 25°C (control or 4°C were analyzed. Exposure to 4°C for 2 h reduced pollen germination and tube growth along with increase of NOS-like activity, NO production and cGMP content in pollen tubes. DEA NONOate treatment inhibited pollen germination and tube growth in a dose-dependent manner under control and reinforced the inhibition under cold stress, during which NO production and cGMP content promoted in pollen tubes. L-NNA and cPTIO markedly reduced the generation of NO induced by cold or NO donor along with partly reverse of cold- or NO donor-inhibited pollen germination and tube growth. Furthermore, ODQ reduced the cGMP content under cold stress and NO donor treatment in pollen tubes. Meanwhile, ODQ disrupted the reinforcement of NO donor on the inhibition of pollen germination and tube growth under cold condition. Additionally, Pro accumulation of pollen tubes was reduced by ODQ compared with that receiving NO donor under cold or control condition. Effects of cPTIO and L-NNA in improving cold-treated pollen germination and pollen tube growth could be lowered by Viagra. Moreover, the inhibitory effects of cPTIO and L-NNA on Pro accumulation were partly reversed by Viagra. These data suggest that NO production from NOS-like enzyme reaction decreased the cold-responsive pollen germination, inhibited tube growth and reduced Pro accumulation, partly via cGMP signaling pathway in C. sinensis.

  19. Slit-burst testing of cold-worked Zr-2.5 wt.% Nb pressure tubing for CANDU-PHW reactors

    International Nuclear Information System (INIS)

    Wilkins, B.J.S.; Barrie, J.N.; Zink, R.J.

    1978-12-01

    This report documents the available data on critical crack length of cold-worked Zr-2.5 wt.% Nb pressure tubing in CANDU reactors. In particular, it includes data for tubing removed from the Pickering 3 and 4 reactors. (author)

  20. Ferruleless coupled-cavity traveling-wave tube cold-test characteristics simulated with micro-SOS

    Science.gov (United States)

    Schroeder, Dana L.; Wilson, Jeffrey D.

    1993-01-01

    The three-dimensional, electromagnetic circuit analysis code, Micro-SOS, can be used to reduce expensive and time consuming experimental 'cold-testing' of traveling-wave tube (TWT) circuits. The frequency-phase dispersion and beam interaction impedance characteristics of a ferruleless coupled-cavity traveling-wave tube slow-wave circuit were simulated using the code. Computer results agree closely with experimental data. Variations in the cavity geometry dimensions of period length and gap-to-period ratio were modeled. These variations can be used in velocity taper designs to reduce the radiofrequency (RF) phase velocity in synchronism with the decelerating electron beam. Such circuit designs can result in enhanced TWT power and efficiency.

  1. Evaluation of single crystal LaB6 cathodes for use in a high frequency backward wave oscillator tube

    Science.gov (United States)

    Swanson, L. W.; Davis, P. R.; Schwind, G. A.

    1984-01-01

    The results of thermionic emission and evaporation studies of single crystal LaB6 cathodes are given. A comparison between the (100), (210) and (310) crystal planes shows the (310) and (210) planes to possess a work function approx 0.2 eV lower than (100). This translates into a significant increase in current density, J, at a specified temperature. Comparison with a state-of-the-art impregnated dispenser cathode shows that LaB6 (310) is a superior cathode in nearly all respects except operating temperature at j 10 A/sq cm. The 1600 K thermionic and room temperature retarding potential work functions for LaB6 (310) are 2.42 and 2.50 respectively.

  2. Evaluation of Two Passes Cold Pilgering Property for PLUS7TM Guide Thimble and Instrumentation Tubing

    Energy Technology Data Exchange (ETDEWEB)

    Park, Min Young; Park, Ki Bum; Kim, In Kyu; Lee, Young Hee; Kahng, Jong Yeol [KEPCO Nuclear Fuel Co., Daejeon (Korea, Republic of)

    2015-05-15

    The thermo-mechanical property of zirconium alloy tube is well known to be influenced by pilgering pass schedule and its tooling; thus the control of its microstructure and mechanical property in the final tube production stage for nuclear fuel applications is a major concern of tube manufacture. To fabricate final tube, the 3 passes pilgering is applied in general by using TREX(Tube Reduced EXtrusion), 63.5mm outer diameter(OD), in KEPCO NF and most of Zr tube manufacturing companies. They are also taking big efforts to reduce pilgering step for the sake of increasing the efficiency of production in the forming stage of tube. The objective of this study is to develop two passes of pilgering schedule from the conventional three passes of pilgering schedule for manufacturing the Guide Thimble and Instrumentation tube conforming to specification, which are newly developing component for the advanced nuclear fuel assembly in KEPCO NF. CSR, hydride orientation, and structural integrity are well conformed to the desired targets so it is expected that both die and mandrel were newly designed for the PLUS7TM guide thimble and instrumentation tube with higher Q factor for two passes of pilgering at 50LC and 25LC pilger machine, instead of three passes of pilgering, are able to be applicable to this design of fuel component. If developed two passes pilgering is applied to current manufacturing process, it would improve not only productivity but also yield rate by reducing 3 steps(pilgering, heat-treatment, pickiling and cleaning) of manufacturing process. But additional tests(including in-pile test) should be performed in order to evaluate integrity in reactor.

  3. Effect of Cold Drawing Pass Schedule on Mechanical Properties and Microstructure of ST 52 during Cold Drawing of Seamless Tubes and its Influence on Springback

    Directory of Open Access Journals (Sweden)

    Dadabhau Baban Karanjule

    2017-07-01

    Full Text Available In-elastic recovery behavior of seamless tube material has been investigated by uniaxial tensile tests. Unloading Stress–Strain curves obtained under different passes of cold drawing process shows that the percentage of in-elastic recovery to the total recovery increased with plastic deformation. This paper is an experimental study that shows Young’s Modulus decreases with plastic strain for ST 52 material. It is found that with increase in plastic strain, Young’s Modulus reduces rapidly initially then reduces more slowly and finally settles to stable value due to increase in plastic deformation and ultimately increased residual stresses. This variation of Young’s’ Modulus is related to internal stresses, residual stresses, micro cracks, dislocations during plastic deformation. Similarly, Scan Electron Microscopy (SEM and Micro-hardness testing reveals that mechanical properties are better in the first pass sample of multiple cold drawing passes. The results of this study reveals that 10-20% degradation occurs in Young’s Modulus for 5-7% plastic strain and better mechanical properties are achieved in the first pass sample.

  4. Analysis and development of the method for calculating calibration of the working plank in the cold tube roller rolling mills

    Directory of Open Access Journals (Sweden)

    S. V. Pilipenko

    2017-05-01

    Full Text Available Analysis and development of the existing method of calculation of the calibrated profile of the working strips mills CTRR roller cold rolling pipe to ensure the required distribution of energy-power parameters along the cone. In presented paper, which has for aim the development of existing method for calculating the profile of calibrated working plank in the cold tube roller rolling mills, the analysis had been made and it was proposed to use Besier-lines while building the the profile of the plank working surface. It was established that the use of Besier spline-curve for calculating the calibration of supporting planks creates the possibility to calculate the parameters proceeding from reduction over the external diameter. The proposed method for calculating deformation parameters in CTRR mills is the result of development of existing method and as such shows the scientific novelty. Comparison of the plots for distribution of the force parameters of the CTRR process along the cone of deformation presents as evidence the advantage of the method to be proposed. The decrease of reduction value at the end of deformation zone favors the manufacture of tubes with lesser wall thickness deviation (especially longitudinal one, caused with waviness induced by the cold pilgering process. Joined the further development of the method of calculating the deformation parameters CTRR. It is proposed for the calculation of the calibration work surface support bracket mills CTRR to use a spline Bezier. The practical significance of the proposed method consists in the fact that calculation of all zones of the plank by means of one dependence allows simplifying the process of manufacturing the latter in machines with programmed numerical control. In this case the change of reduction parameters over the thickness of the wall will not exert the considerable influence on the character of the force parameters (the character and not the value distribution along the

  5. Preliminary design of experiment high power density laser beam interaction with plasmas and development of a cold cathode electron beam laser amplifier

    International Nuclear Information System (INIS)

    Mosavi, R.K.; Kohanzadeh, Y.; Taherzadeh, M.; Vaziri, A.

    1976-01-01

    This experiment is designed to produce plasma by carbon dioxide pulsed laser, to measure plasma parameters and to study the interaction of the produced plasma with intense laser beams. The objectives of this experiment are the following: 1. To set up a TEA CO 2 laser oscillator and a cold cathode electron beam laser amplifier together as a system, to produce high energy optical pulses of short duration. 2. To achieve laser intensities of 10 11 watt/cm 2 or more at solid targets of polyethylene (C 2 H 4 )n, lithium hydride (LiH), and lithium deuteride in order to produce high temperature plasmas. 3. To design and develop diagnostic methods for studies of laser-induced plasmas. 4. To develop a high power CO 2 laser amplifier for the purpose of upgrading the optical energy delivered to the targets

  6. The combined effects of cold therapy and music therapy on pain following chest tube removal among patients with cardiac bypass surgery.

    Science.gov (United States)

    Yarahmadi, Sajad; Mohammadi, Nooredin; Ardalan, Arash; Najafizadeh, Hassan; Gholami, Mohammad

    2018-05-01

    Chest tube removal is an extremely painful procedure and patients may not respond well to palliative therapies. This study aimed to examine the effect of cold and music therapy individually, as well as a combination of these interventions on reducing pain following chest tube removal. A factorial randomized-controlled clinical trial was performed on 180 patients who underwent cardiac surgery. Patients were randomized into four groups of 45. Group A used ice packs for 20 minutes prior to chest tube removal. Group B was assigned to listen to music for a total length of 30 minutes which started 15 minutes prior to chest tube removal. Group C received a combination of both interventions; and Group D received no interventions. Pain intensity was measured in each group every 15 minutes for a total of 3 readings. Analysis of variance, Tukey and Bonferroni post hoc tests, as well as repeated measures ANOVA were employed for data analysis. Cold therapy and combined method intervention effectively reduced the pain caused by chest tube removal (P < 0.001). Additionally, there were no statistically significant difference in pain intensity scores between groups at 15 minutes following chest tube removal (P = 0.07). Cold and music therapy can be used by nursing staff in clinical practice as a combined approach to provide effective pain control following chest tube removal. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Quantitative texture determination in pressure tube (Zr-2.5 Wt% Nb alloy) material as a function of cold work

    International Nuclear Information System (INIS)

    Dey, G.K.; Tewari, R.; Srivastava, D.; De, P.K.; Banerjee, S.; Kiran Kumar, M.; Samajdar, I.

    2003-06-01

    The texture studies on the pressure tube Zr-2.5 Nb alloy have mainly been confined to the determination of the basal pole distribution along certain direction or the inverse pole presentation in the material. This information though useful does not provide an insight into micro-textural development upon cold working. In the present study, complete bulk as well as micro texture development as a function of cold work has been obtained by determining orientation distribution function. In this work, two distinct starting microstructures of Zr-2.5 wt% Nb have been used -(a) single-phase α(hcp) martensitic structure and (b) two-phase, β(bcc) + α, Widmanstaetten structure. In the second case, the α phase was present in lamellar morphology and β stringers were sandwiched between these a lamella. In some instances single-phase α were present. However, both microstructures had similar starting crystallographic texture. Samples were deformed by unidirectional and cross rolling at room temperature. In the two-phase structure the changes in the bulk texture on cold rolling was found to be insignificant, while in the single-phase material noticeable textural changes were observed. Taylor type deformation texture models predicted textural changes in single-phase structure but failed to predict the observed lack of textural development in the two-phase material. Microtexture observations showed that a plates remained approximately single crystalline after cold rolling, while the β matrix underwent significant orientational changes. Based on microstructural and microtextural observations, a simple model is proposed in which the plastic flow is mainly confined to the β matrix within which the α plates are subjected to in-plane rigid body rotation. The model explains the observed lack of textural developments in the two-phase structure. (author)

  8. Modeling of the cold work stress relieved Zircaloy-4 cladding tubes mechanical behavior under PWR operating conditions

    International Nuclear Information System (INIS)

    Richard, F.; Delobelle, P.; Leclercq, S.; Bouffioux, P.; Rousselier, G.

    2003-01-01

    This paper proposes a damaged viscoplastic model to simulate, for different isotherms (320, 350, 380, 400 and 420 degC), the out-of-flux anisotropic mechanical behavior of cold work stress relieved Zircaloy-4 cladding tubes over the fluence range 0-85.1024 nm -2 (E > 1 MeV). The model, identified from uni and biaxial tests conducted at 350 and 400 degC, is validated from tests performed at 320, 380 and 420 degC. This model is able to simulate strain hardening under internal pressure followed by a stress relaxation period (thermal creep), which is representative of a pellet cladding mechanical interaction occurring during a power transient (class 2 incidental condition). Both the integration of a scalar state variable, characterizing the damage caused by a bombardment with neutrons, and the modification of the static recovery law allowed us to simulate the fast neutron flux effect (irradiation creep). (author)

  9. Efficient cold cathode emission in crystalline-amorphous hybrid: Study on carbon nanotube-cadmium selenide system

    Science.gov (United States)

    Sarkar, S.; Banerjee, D.; Das, N. S.; Ghorai, U. K.; Sen, D.; Chattopadhyay, K. K.

    2018-03-01

    Cadmium Selenide (CdSe) quantum dot (QD) decorated amorphous carbon nanotubes (a-CNTs) hybrids have been synthesized by simple chemical process. The samples were characterized by field emission scanning and transmission electron microscopy, Fourier transformed infrared spectroscopy, Raman and UV-Vis spectroscopy. Lattice image obtained from transmission electron microscopic study confirms the successful attachment of CdSe QDs. It is seen that hybrid samples show an enhanced cold emission properties with good stability. The results have been explained in terms of increased roughness, more numbers of emitting sites and favorable band bending induced electron transport. ANSYS software based calculation has also supported the result. Also a first principle based study has been done which shows that due to the formation of hybrid structure there is a profound upward shift in the Fermi level, i.e. a decrease of work function, which is believed to be another key reason for the observed improved field emission performance.

  10. Single Tube Rupture at Cold Side of Steam Generator Simulation Test Report Using the ATLAS

    International Nuclear Information System (INIS)

    Kang, Kyoung Ho; Park, Hyun Sik; Cho, Seok

    2010-12-01

    In this study, a postulated SGTR event of the APR1400 was experimentally investigated with the ATLAS. In order to simulate a double-ended rupture of a single U-tube in the APR1400, the SGTR-CL-01 test was performed with the ATLAS. The main objectives of this test were not only to provide a physical insight into the system response of the APR1400 during the SGTR but also to produce integral effect experimental data to validate the safety analysis code. In the present report, major thermal-hydraulic phenomena such as the system pressures, the collapsed water levels, and the break flow rate were presented and discussed. Following the reactor trip induced by high steam generator level (HSGL) signal, the primary system pressure decreased and the secondary system pressure increased until the MSSVs was opened. The MSSVs repeated on and off status depending on the secondary system pressure during the whole test period. Due to the break flow, the collapsed water level of the affected steam generator showed milder decrease than that of the intact steam generator. This integral effect test data will be used to evaluate the prediction capability of existing safety analysis codes of the MARS and the RELAP5 as well as the SPACE code. Furthermore, this data can be utilized to identify any code deficiency for a SGTR simulation, especially for DVI-adapted plants

  11. Characterization of a cold cathode Penning ion source for the implantation of noble gases beneath 2D monolayers on metals: Ions and neutrals

    Energy Technology Data Exchange (ETDEWEB)

    Cun, Huanyao, E-mail: hycun1@physik.uzh.ch, E-mail: greber@physik.uzh.ch; Spescha, Annina; Schuler, Adrian; Hengsberger, Matthias; Osterwalder, Jürg; Greber, Thomas, E-mail: hycun1@physik.uzh.ch, E-mail: greber@physik.uzh.ch [Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich (Switzerland)

    2016-03-15

    Argon ion kinetic energy spectra at different discharge voltages (between 480 and 600 V) of a commercial cold cathode ion source IQP10/63 are reported. The high kinetic energy cut-off depends on the discharge voltage and the corresponding plasma potential due to excess positive charges which is found to be about 136 V. Exposure of single layer hexagonal boron nitride on rhodium to the beam of the ion source leads to the formation of nanotents, i.e., stable atomic protrusions. A positive bias voltage is applied to the target sample to block the positive ions produced by the ion source. However, application of a positive bias potential (800 eV), which is higher than the kinetic energy cut-off, still allows the formation of nanotents and its observation with scanning tunneling microscopy. This indicates that the ion source also produces neutral atoms with kinetic energies higher than the penetration threshold across a single layer of hexagonal boron nitride.

  12. Flow behaviour of autoclaved, 20% cold worked, Zr-2.5Nb alloy pressure tube material in the temperature range of room temperature to 800 deg. C

    International Nuclear Information System (INIS)

    Dureja, A.K.; Sinha, S.K.; Srivastava, Ankit; Sinha, R.K.; Chakravartty, J.K.; Seshu, P.; Pawaskar, D.N.

    2011-01-01

    Pressure tube material of Indian Heavy Water Reactors is 20% cold-worked and stress relieved Zr-2.5Nb alloy. Inherent variability in the process parameters during the fabrication stages of pressure tube and also along the length of component have their effect on micro-structural and texture properties of the material, which in turn affect its strength parameters (yield strength and ultimate tensile strength) and flow characteristics. Data of tensile tests carried out in the temperature range from room temperature to 800 deg. C using the samples taken out from a single pressure tube have been used to develop correlations for characterizing the strength parameters' variation as a function of axial location along length of the tube and the test temperature. Applicability of Ramberg-Osgood, Holloman and Voce's correlations for defining the post yield behaviour of the material has been investigated. Effect of strain rate change on the deformation behaviour has also been studied.

  13. Two-beam virtual cathode accelerator

    International Nuclear Information System (INIS)

    Peter, W.

    1992-01-01

    A proposed method to control the motion of a virtual cathode is investigated. Applications to collective ion acceleration and microwave generation are indicated. If two counterstreaming relativistic electron beams of current I are injected into a drift tube of space-charge-limiting current I L = 2I, it is shown that one beam can induce a moving virtual cathode in the other beam. By dynamically varying the current injected into the drift tube region, the virtual cathode can undergo controlled motion. For short drift tubes, the virtual cathodes on each end are strongly-coupled and undergo coherent large-amplitude spatial oscillations within the drift tube

  14. Cathodic corrosion protection in jacket tube steel pipes. Practical experience after five years of operation, a summary; Kathodischer Korrosionsschutz von Stahlrohrleitungen in Mantelrohren. Praxishinweise nach 5 Jahren - eine Zusammenfassung

    Energy Technology Data Exchange (ETDEWEB)

    Lemkemeyer, Marc [RWE Westfalen-Weser-Ems Netz-service GmbH, Dortmund (Germany)

    2011-07-01

    In november 2006, the completely revised AfK recommendation No. 1 came into force. It was the first of its kind to contain concrete calculation methods for calculating the effects of cathodic corrosion protection in jacket tubes. In the five years that followed, a large number of jacket tubes was investigated by this method. It was found that some input parameters that are only estimated still require further specification. Further, some further calculation algorithms have been defined. Some of the specifications are described in more detail in this article.

  15. Simulation of TunneLadder traveling-wave tube cold-test characteristics: Implementation of the three-dimensional, electromagnetic circuit analysis code micro-SOS

    Science.gov (United States)

    Kory, Carol L.; Wilson, Jeffrey D.

    1993-01-01

    The three-dimensional, electromagnetic circuit analysis code, Micro-SOS, can be used to reduce expensive time-consuming experimental 'cold-testing' of traveling-wave tube (TWT) circuits. The frequency-phase dispersion characteristics and beam interaction impedance of a TunneLadder traveling-wave tube slow-wave structure were simulated using the code. When reasonable dimensional adjustments are made, computer results agree closely with experimental data. Modifications to the circuit geometry that would make the TunneLadder TWT easier to fabricate for higher frequency operation are explored.

  16. Analytical approaches and experimental verification to describe the influence of cold work and heat treatment on the mechanical properties of zircaloy cladding tubes

    International Nuclear Information System (INIS)

    Steinberg, E.; Schaa, A.; Weidinger, H.G.

    1984-01-01

    Well-controlled laboratory heat treatments were performed in the range from 460 to 610 0 C(733 to 883 K) and from 1 to 8 h at temperature on Zircaloy-4 cladding tubes with three different degrees of initial cold work (40%, 64%, and 76%). Within this range the influence of annealing temperature T and time t and of cold work on the yield strength R /SUB pO.2/ at 400 0 C(673 K) and on the degree R of recrystallization was experimentally determined. This data base was used to verify a semi-empirical approach to describe analytically the dependence of yield strength and recrystallization on the aforementioned technological parameters T and t for the annealing and /phi/ = ln l/l /SUB o/ as a measure for the applied cold work

  17. Cross-talk in straw tube chambers

    Energy Technology Data Exchange (ETDEWEB)

    Marzec, J. E-mail: janusz.marzec@ire.pw.edu.pl

    2003-05-11

    An analytical model of the signal transmission between neighboring straw tubes with resistive cathodes (cross-talk) is presented. The dependence of the cross-talk level on the cathode resistance, tube length, particle detection point, the distance of the tube from the shielding planes, and termination of the tube ends is analyzed.

  18. Cross-talk in straw tube chambers

    International Nuclear Information System (INIS)

    Marzec, J.

    2003-01-01

    An analytical model of the signal transmission between neighboring straw tubes with resistive cathodes (cross-talk) is presented. The dependence of the cross-talk level on the cathode resistance, tube length, particle detection point, the distance of the tube from the shielding planes, and termination of the tube ends is analyzed

  19. Comparison of 5-megapixel cathode ray tube monitors and 5-megapixel liquid crystal monitors for soft-copy reading in full-field digital mammography

    International Nuclear Information System (INIS)

    Schueller, Gerd; Schueller-Weidekamm, Claudia; Pinker, Katja; Memarsadeghi, Mazda; Weber, Michael; Helbich, Thomas H.

    2010-01-01

    Purpose: To retrospectively compare the image quality, lesion detection, and the diagnostic efficacy of 5-megapixel (MP) cathode ray tube monitors (CRTs) and 5-MP liquid crystal display monitors (LCDs) for soft-copy reading in full-field digital mammography (FFDM). Materials and methods: Informed consent was waived by the Institutional Review Board for the data analysis. A total of 220 cases were compared with two 5-MP (2048 x 2560 pixels) CRTs and two 5-MP (2048 x 2560 pixels) LCDs. Nine aspects of image quality (brightness, contrast, sharpness, noise, skin, fat, retromamillary space, glandular tissue, and detection of calcifications) were evaluated. In addition, the detection of breast lesions (mass, calcifications) and diagnostic efficacy, based on the BI-RADS classification, were correlated with histologic results (n = 70) and follow-up (n = 150). Results: Each aspect of the image quality was rated significantly better for 5-MP LCDs (p < 0.05) compared to the 5-MP CRTs. With 5-MP CRTs, 31 masses and 119 calcifications were detected, compared to 30 and 121 with 5-MP LCDs. The differences in diagnostic efficacy between 5-MP CRTs and 5-MP LCDs were not significant (p = 0.157) although 5-MP CRTs yielded two false-negative results. Both lesions were rated BI-RADS 3 with 5-MP CRTs. Both were invasive carcinomas at histology. The sensitivity, specificity, positive and negative predictive values, and accuracy were 0.966, 0.975, 0.933, 0.988, and 0.973 for 5-MP CRTs, compared to 1.0, 0.963, 0.903, 1.0, 0.973 for 5-MP LCDs. Conclusion: The image quality of 5-MP LCDs is significantly better than that of 5-MP CRTs for soft-copy reading in FFDM, based on histologic and follow-up correlation. However, lesion detection and diagnostic efficacy are comparable to 5-MP CRTs. The interpretation of the false-negative results suggests that the characterization of breast lesions with FFDM is not defined solely by the monitors, but is strongly influenced by the radiologist.

  20. Effect of young’s modulus on springback for low, medium and high carbon steels during cold drawing of seamless tubes

    Science.gov (United States)

    Karanjule, D. B.; Bhamare, S. S.; Rao, T. H.

    2018-04-01

    Cold drawing is widely used deformation process for seamless tube manufacturing. Springback is one of the major problem faced in tube drawing. Springback is due to the elastic energy stored in the tubes during forming process. It is found that this springback depends upon Young’s modulus of the material. This paper reports mechanical testing of three grades of steels viz. low carbon steel, medium carbon steel and high carbon steel to measure their Young’s modulus and corresponding springback. The results shows that there is 10-20 % variation in the Young’s modulus and inverse proportion between the springback and Young’s modulus. More the percentage of carbon, more the strength, less the value of Young’s modulus and more will springback. The study further leads to identify optimum die semi angle of 15 degree, land width of 10 mm and drawing speed of 8, 6 and 4 m/min for least springback in all the three grades respectively and die semi angle as a most dominant factor causing springback.

  1. Report on preceding surveys and researches in fiscal 1999. Surveys and researches on the next generation cold emission technology; 1999 nendo jisedai cold emission gijutsu no chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The cold emission (CE) technology must be developed as the base technology to realize the next generation flat panel displays, fluorescent display tubes, communication use microwave tubes, electron microscopes, electric power conversion elements, image photographing tubes, and different kinds of sensors. Therefore, this paper describes surveys and researches performed on technological problems and technological seeds in a hyperfine processing technology for cold emitters, and technologies to control, evaluate and simulate solid surface of cold emitters. Different kinds of applied devices that can be realized by using the CE technology are also surveyed and researched. Section 1 summarizes the progress in information communicating technologies and the changes in terminal utilization environment. Section 2 describes the application of a display technology for information terminals and a cold cathode. Section 3 investigates elementary technologies for developing electric field radiation display. Section 4 investigates physics and an evaluation technology for the next generation cold cathode. Section 5 describes the result of the investigations re-commissioned to Tsukuba University for measuring microscopic work function on solid surface by using the scanning probe process. Section 6 proposes a research and development project for the 'next generation CE technology'. (NEDO)

  2. Hollow cathode for positive ion sources

    International Nuclear Information System (INIS)

    Schechter, D.E.; Kim, J.; Tsai, C.C.

    1979-01-01

    Development to incorporate hollow cathodes into high power ion sources for neutral beam injection systems is being pursued. Hollow tube LaB 6 -type cathodes, similar to a UCLA design, have been constructed and tested in several ORNL ion source configurations. Results of testing include arc discharge parameters of >1000 and 500 amps for 0.5 and 10 second pulse lengths, respectively. Details of cathode construction and additional performance results are discussed

  3. Cold nuclear fusion device

    International Nuclear Information System (INIS)

    Ogino, Shinji.

    1991-01-01

    Selection of cathode material is a key to the attainment of cold nuclear fusion. However, there are only few reports on the cathode material at present and an effective development has been demanded. The device comprises an anode and a cathode and an electrolytic bath having metal salts dissolved therein and containing heavy water in a glass container. The anode is made of gold or platinum and the cathode is made of metals of V, Sr, Y, Nb, Hf or Ta, and a voltage of 3-25V is applied by way of a DC power source between them. The metal comprising V, Sr, Y, Nb, Hf or Ta absorbs deuterium formed by electrolysis of heavy water effectively to cause nuclear fusion reaction at substantially the same frequency and energy efficiency as palladium and titanium. Accordingly, a cold nuclear fusion device having high nuclear fusion generation frequency can be obtained. (N.H.)

  4. Modelling flow and work hardening behaviour of cold worked Zr–2.5Nb pressure tube material in the temperature range of 30–600 oC

    International Nuclear Information System (INIS)

    Dureja, A.K.; Sinha, S.K.; Pawaskar, D.N.; Seshu, P.; Chakravartty, J.K.; Sinha, R.K.

    2014-01-01

    Under a postulated accident scenario of loss of cooling medium in an Indian Pressurised Heavy Water Reactor (IPHWR), temperature of the pressure tubes can rise and lead to large deformations. In order to investigate the modes of deformation of pressure tube – calandria tube assembly, material property data defining the flow behaviour over a temperature range from room temperature (RT) to 800 o C are needed. It is of practical importance to formulate mathematical equations to describe the stress–strain relationships of a material for a variety of reasons, such as the analysis of forming operations and the assessment of component's performance in service. A number of constitutive relations of empirical nature have been proposed and they have been found very suitable to describe the behaviour of a material. Although these relations are of empirical nature, various metallurgical factors appear to decide applicability of each of these relations. For example, grain size influences mainly the friction stress while the strain hardening is governed by dislocation density. In a recent work, tensile deformation behaviour of pressure tube material of IPHWR has been carried out over a range of temperature and strain rates (Dureja et al., 2011). It has been found that the strength parameters (yield and ultimate tensile strength) vary along the length of the tube with higher strength at the trailing end as compared to the leading end. This stems from cooling of the billet during the extrusion process which results in the variation of microstructure, texture and dislocation density from the leading to the trailing end. In addition, the variation in metallurgical parameters is also expected to influence the work hardening behaviour, which is known to control the plastic instability (related to uniform strain). In the present investigation, the tensile flow and work-hardening behaviour of a cold worked Zr–2.5Nb pressure tube material of IPHWRs has been studied over the

  5. Use of Zircaloy 4 material for the pressure vessels of hot and cold neutron sources and beam tubes for research reactors

    International Nuclear Information System (INIS)

    Scheuer, A.; Gutsmiedl, E.

    1999-01-01

    The material Zircaloy 4 can be used for the pressure retaining walls for the cold and hot neutron sources and beam tubes. For the research reactor FRM-II of the Technical University Munich, Germany, the material Zircaloy 4 were chosen for the vessels of the cold and hot neutron source and for the beam tube No. 6. The sheets and forgings of Zircaloy 4 were examined in the temperature range between -256 deg. C and 250 deg. C. The thickness of the sheets are 3, 4, 5 and 10 mm, the maximum diameter of the forgings was 560 mm. This great forging diameters are not be treated in the ASTM rule B 351 for nuclear material, so a special approval with independent experts was necessary. The requirements for the material examinations were specified in a material specification and material test sheets which based on the ASTM rules B 351 and B 352 with additional restriction and additional requirements of the basic safety concept for nuclear power plants in Germany, which was take into consideration in the nuclear licensing procedure. Charpy-V samples were carried out in the temperature range between -256 deg. C and 150 deg. C to get more information on the ductile behaviour of the Zircaloy 4. The results of the sheet examination confirm the requirements of the specifications, the results of the forging examination in the tangential testing direction are lower than specified and expected for the tensile strength. The axial and transverse values confirm the specification requirements. For the strength calculation of the pressure retaining wall a reduced material value for the forgings has to take into consideration. The material behaviour of Zircaloy 4 under irradiation up to a fluence of ∼ 1x10 22 n/cm 2 was investigated. The loss of ductility was determined. As an additional criteria the variation of the fracture toughness was studies. Fracture mechanic calculations of the material were carried out in the licensing procedure with the focus to fulfill the leak before rupture

  6. Use of Zircaloy 4 material for the pressure vessels of hot and cold neutron sources and beam tubes for research reactors

    International Nuclear Information System (INIS)

    Gutsmiedl, Erwin

    2001-01-01

    The material Zircaloy 4 can be used for the pressure retaining walls for the cold and hot neutron sources and beam tubes. For the research reactor FRM-II of the Technical University Munich, Germany, the material Zircaloy 4 were chosen for the vessels of the cold and hot neutron source and for the beam tube No. 6. The sheets and forgings of Zircaloy 4 were examined in the temperature range between -256degC and 250degC. The thickness of the sheets are 3, 4, 5 and 10 mm, the maximum diameter of the forgings was 560 mm. This great forging diameters are not be treated in the ASTM rule B 351 for nuclear material, so a special approval with independent experts was necessary. The requirements for the material examinations were specified in a material specification and material test sheets which based on the ASTM rules B 351 and B 352 with additional restriction and additional requirements of the basic safety concept for nuclear power plants in Germany, which was taken into consideration in the nuclear licensing procedure. Charpy-V samples were carried out in the temperature range between -256degC and 150degC to get more information on the ductile behaviour of the Zircaloy 4. The results of the sheet examination confirm the requirements of the specifications, the results of the forging examination in the tangential testing direction are lower than specified and expected for the tensile strength. The axial and transverse values confirm the specification requirements. For the strength calculation of the pressure retaining wall a reduced material value for the forgings has to taken into consideration. The material behaviour of Zircaloy 4 under irradiation up to a fluence of ∼1·10 22 n/cm 2 was investigated. The loss of ductility was determined. As an additional criteria the variation of the fracture toughness was studies. Fracture mechanic calculations of the material were carried out in the licensing procedure with the focus to fulfill the leak before rupture criteria of

  7. A study on the delayed hydride cracking mechanism in cold worked Zr-2.5Nb, heat treated Zr-2.5Nb and zircaloy-2 pressure tubes

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kwang Sik

    1992-02-15

    Cold worked Zr-2.5Nb, heat treated Zr-2.5Nb and Zircaloy-2 pressure tubes were hydrided to the hydrogen concentration of 68 ppm, 49 ppm and 242-411 ppm, respectively, and compact tension specimens were machined from the hydrided materials. The crack growth rate by delayed hydride cracking was measured by potential drop method at various temperatures on the above mentioned three types of specimens. The activation energy obtained were 43 KJ/mol for cold worked Zr-2.5Nb and 37 KJ/mol for heat treated Zr-2.5Nb, which were in good agreements with that of Coleman (1977), while they were lower than the activation energy of 65.5 KJ/mol obtained by Simpson-puls (1979) and 71.5 KJ/mol by Ambler (1984). The DHC growth rate in Zircaloy-2 were about one fifth of that of Zr-2.5Nb, which is due to the texture and material strength effects. Striations which indicate stepwise DHC growth were observed at fracture surface by scanning electron microscope and unsymmetric crack tunnellings were also observed, which seems to be due to the difference in hydrogen diffusion rate caused by the difference in stress fields between inner and outer surface. The comparison of test results with the DHC growth rate calculated by Simpson-puls model showed good agreement at high temperatures, whereas at the lower temperatures the crack growth rates were 2.5 times higher than the calculated values.

  8. A study on the delayed hydride cracking mechanism in cold worked Zr-2.5Nb, heat treated Zr-2.5Nb and zircaloy-2 pressure tubes

    International Nuclear Information System (INIS)

    Choi, Kwang Sik

    1992-02-01

    Cold worked Zr-2.5Nb, heat treated Zr-2.5Nb and Zircaloy-2 pressure tubes were hydrided to the hydrogen concentration of 68 ppm, 49 ppm and 242-411 ppm, respectively, and compact tension specimens were machined from the hydrided materials. The crack growth rate by delayed hydride cracking was measured by potential drop method at various temperatures on the above mentioned three types of specimens. The activation energy obtained were 43 KJ/mol for cold worked Zr-2.5Nb and 37 KJ/mol for heat treated Zr-2.5Nb, which were in good agreements with that of Coleman (1977), while they were lower than the activation energy of 65.5 KJ/mol obtained by Simpson-puls (1979) and 71.5 KJ/mol by Ambler (1984). The DHC growth rate in Zircaloy-2 were about one fifth of that of Zr-2.5Nb, which is due to the texture and material strength effects. Striations which indicate stepwise DHC growth were observed at fracture surface by scanning electron microscope and unsymmetric crack tunnellings were also observed, which seems to be due to the difference in hydrogen diffusion rate caused by the difference in stress fields between inner and outer surface. The comparison of test results with the DHC growth rate calculated by Simpson-puls model showed good agreement at high temperatures, whereas at the lower temperatures the crack growth rates were 2.5 times higher than the calculated values

  9. A carbon fiber-ZnS nanocomposite for dual application as an efficient cold cathode as well as a luminescent anode for display technology

    Science.gov (United States)

    Jha, Arunava; Sarkar, Sudipta Kumar; Sen, Dipayan; Chattopadhyay, K. K.

    2015-01-01

    In the current work we present a simple technique to develop a carbon nanofiber (CNF)/zinc sulfide (ZnS) composite material for excellent FED application. CNFs and ZnS microspheres were synthesized by following a simple thermal chemical vapor deposition and hydrothermal procedure, respectively. A rigorous chemical mixture of CNF and ZnS was prepared to produce the CNF-ZnS composite material. The cathodo-luminescence intensity of the composite improved immensely compared to pure ZnS, also the composite material showed better field emission than pure CNFs. For pure CNF the turn-on field was found to be 2.1 V μm-1 whereas for the CNF-ZnS composite it reduced to a value of 1.72 V μm-1. Altogether the composite happened to be an ideal element for both the anode and cathode of a FED system. Furthermore, simulation of our CNF-ZnS composite system using the finite element modeling method also ensured the betterment of field emission from CNF after surface attachment of ZnS nanoclusters.

  10. Plasma Sputtering Robotic Device for In-Situ Thick Coatings of Long, Small Diameter Vacuum Tubes

    Science.gov (United States)

    Hershcovitch, Ady

    2014-10-01

    A novel robotic plasma magnetron mole with a 50 cm long cathode was designed fabricated & operated. Reason for this endeavor is to alleviate the problems of unacceptable ohmic heating of stainless steel vacuum tubes and of electron clouds, due to high secondary electron yield (SEY), in the BNL Relativistic Heavy Ion Collider (RHIC). The magnetron mole was successfully operated to copper coat an assembly containing a full-size, stainless steel, cold bore, RHIC magnet tubing connected to two types of RHIC bellows, to which two additional pipes made of RHIC tubing were connected. To increase cathode lifetime, movable magnet package was developed, and thickest possible cathode was made, with a rather challenging target to substrate (de facto anode) distance of less than 1.5 cm. Achieving reliable steady state magnetron discharges at such a short cathode to anode gap was rather challenging, when compared to commercial coating equipment, where the target to substrate distance is 10's cm; 6.3 cm is the lowest experimental target to substrate distance found in the literature. Additionally, the magnetron developed during this project provides unique omni-directional uniform coating. The magnetron is mounted on a carriage with spring loaded wheels that successfully crossed bellows and adjusted for variations in vacuum tube diameter, while keeping the magnetron centered. Electrical power and cooling water were fed through a cable bundle. The umbilical cabling system is driven by a motorized spool. Excellent coating adhesion was achieved. Measurements indicated that well-scrubbed copper coating reduced SEY to 1, i.e., the problem of electron clouds can be eliminated. Room temperature RF resistivity measurement indicated that 10 μm Cu coated stainless steel RHIC tube has conductivity close to that of pure copper tubing. Excellent coating adhesion was achieved. Device detail and experimental results will be presented. Work supported by Brookhaven Science Associates, LLC under

  11. Plasma sputtering robotic device for in-situ thick coatings of long, small diameter vacuum tubes

    Energy Technology Data Exchange (ETDEWEB)

    Hershcovitch, A., E-mail: hershcovitch@bnl.gov; Blaskiewicz, M.; Brennan, J. M.; Fischer, W.; Liaw, C.-J.; Meng, W.; Todd, R. [Brookhaven National Laboratory, Upton, New York 11973 (United States); Custer, A.; Dingus, A.; Erickson, M.; Jamshidi, N.; Laping, R.; Poole, H. J. [PVI, Oxnard, California 93031 (United States)

    2015-05-15

    A novel robotic plasma magnetron mole with a 50 cm long cathode was designed, fabricated, and operated. The reason for this endeavor is to alleviate the problems of unacceptable resistive heating of stainless steel vacuum tubes in the BNL Relativistic Heavy Ion Collider (RHIC). The magnetron mole was successfully operated to copper coat an assembly containing a full-size, stainless steel, cold bore, RHIC magnet tubing connected to two types of RHIC bellows, to which two additional pipes made of RHIC tubing were connected. To increase the cathode lifetime, a movable magnet package was developed, and the thickest possible cathode was made, with a rather challenging target to substrate (de facto anode) distance of less than 1.5 cm. Achieving reliable steady state magnetron discharges at such a short cathode to anode gap was rather challenging, when compared to commercial coating equipment, where the target to substrate distance is 10's cm; 6.3 cm is the lowest experimental target to substrate distance found in the literature. Additionally, the magnetron developed during this project provides unique omni-directional uniform coating. The magnetron is mounted on a carriage with spring loaded wheels that successfully crossed bellows and adjusted for variations in vacuum tube diameter, while keeping the magnetron centered. Electrical power and cooling water were fed through a cable bundle. The umbilical cabling system is driven by a motorized spool. Excellent coating adhesion was achieved. Measurements indicated that well-scrubbed copper coating reduced secondary electron yield to 1, i.e., the problem of electron clouds can be eliminated. Room temperature RF resistivity measurement indicated that a 10 μm copper coated stainless steel RHIC tube has a conductivity close to that of pure copper tubing. Excellent coating adhesion was achieved. The device details and experimental results are described.

  12. Barium-Dispenser Thermionic Cathode

    Science.gov (United States)

    Wintucky, Edwin G.; Green, M.; Feinleib, M.

    1989-01-01

    Improved reservoir cathode serves as intense source of electrons required for high-frequency and often high-output-power, linear-beam tubes, for which long operating lifetime important consideration. High emission-current densities obtained through use of emitting surface of relatively-low effective work function and narrow work-function distribution, consisting of coat of W/Os deposited by sputtering. Lower operating temperatures and enhanced electron emission consequently possible.

  13. Rf Gun with High-Current Density Field Emission Cathode

    International Nuclear Information System (INIS)

    Jay L. Hirshfield

    2005-01-01

    High current-density field emission from an array of carbon nanotubes, with field-emission-transistor control, and with secondary electron channel multiplication in a ceramic facing structure, have been combined in a cold cathode for rf guns and diode guns. Electrodynamic and space-charge flow simulations were conducted to specify the cathode configuration and range of emission current density from the field emission cold cathode. Design of this cathode has been made for installation and testing in an existing S-band 2-1/2 cell rf gun. With emission control and modulation, and with current density in the range of 0.1-1 kA/cm2, this cathode could provide performance and long-life not enjoyed by other currently-available cathodes

  14. Improved Rare-Earth Emitter Hollow Cathode

    Science.gov (United States)

    Goebel, Dan M.

    2011-01-01

    An improvement has been made to the design of the hollow cathode geometry that was created for the rare-earth electron emitter described in Compact Rare Earth Emitter Hollow Cathode (NPO-44923), NASA Tech Briefs, Vol. 34, No. 3 (March 2010), p. 52. The original interior assembly was made entirely of graphite in order to be compatible with the LaB6 material, which cannot be touched by metals during operation due to boron diffusion causing embrittlement issues in high-temperature refractory materials. Also, the graphite tube was difficult to machine and was subject to vibration-induced fracturing. This innovation replaces the graphite tube with one made out of refractory metal that is relatively easy to manufacture. The cathode support tube is made of molybdenum or molybdenum-rhenium. This material is easily gun-bored to near the tolerances required, and finish machined with steps at each end that capture the orifice plate and the mounting flange. This provides the manufacturability and robustness needed for flight applications, and eliminates the need for expensive e-beam welding used in prior cathodes. The LaB6 insert is protected from direct contact with the refractory metal tube by thin, graphite sleeves in a cup-arrangement around the ends of the insert. The sleeves, insert, and orifice plate are held in place by a ceramic spacer and tungsten spring inserted inside the tube. To heat the cathode, an insulating tube is slipped around the refractory metal hollow tube, which can be made of high-temperature materials like boron nitride or aluminum nitride. A screw-shaped slot, or series of slots, is machined in the outside of the ceramic tube to constrain a refractory metal wire wound inside the slot that is used as the heater. The screw slot can hold a single heater wire that is then connected to the front of the cathode tube by tack-welding to complete the electrical circuit, or it can be a double slot that takes a bifilar wound heater with both leads coming out

  15. Wire winding increases lifetime of oxide coated cathodes

    Science.gov (United States)

    Kerslake, W.; Vargo, D.

    1965-01-01

    Refractory-metal heater base wound with a thin refractory metal wire increases the longevity of oxide-coated cathodes. The wire-wound unit is impregnated with the required thickness of metal oxide. This cathode is useful in magnetohydrodynamic systems and in electron tubes.

  16. Development of spark cathode E-guns. Draft final reprt, Phase I, July--October 1978

    International Nuclear Information System (INIS)

    Loda, G.; Lindstrand, R.

    1979-01-01

    A 12 sided spark cathode is designed and constructed to replace the bladed, cold cathode structure in the electron gun of the Los Alamos Scientific Laboratory Antares prototype power amplifier. Design work includes computer modeling and full scale low voltage modeling. Life testing to 100,000 pulses is documented. The spark cathode offers precise control of emission site location and a high reliability

  17. Nanotube cathodes.

    Energy Technology Data Exchange (ETDEWEB)

    Overmyer, Donald L.; Lockner, Thomas Ramsbeck; Siegal, Michael P.; Miller, Paul Albert

    2006-11-01

    Carbon nanotubes have shown promise for applications in many diverse areas of technology. In this report we describe our efforts to develop high-current cathodes from a variety of nanotubes deposited under a variety of conditions. Our goal was to develop a one-inch-diameter cathode capable of emitting 10 amperes of electron current for one second with an applied potential of 50 kV. This combination of current and pulse duration significantly exceeds previously reported nanotube-cathode performance. This project was planned for two years duration. In the first year, we tested the electron-emission characteristics of nanotube arrays fabricated under a variety of conditions. In the second year, we planned to select the best processing conditions, to fabricate larger cathode samples, and to test them on a high-power relativistic electron beam generator. In the first year, much effort was made to control nanotube arrays in terms of nanotube diameter and average spacing apart. When the project began, we believed that nanotubes approximately 10 nm in diameter would yield sufficient electron emission properties, based on the work of others in the field. Therefore, much of our focus was placed on measured field emission from such nanotubes grown on a variety of metallized surfaces and with varying average spacing between individual nanotubes. We easily reproduced the field emission properties typically measured by others from multi-wall carbon nanotube arrays. Interestingly, we did this without having the helpful vertical alignment to enhance emission; our nanotubes were randomly oriented. The good emission was most likely possible due to the improved crystallinity, and therefore, electrical conductivity, of our nanotubes compared to those in the literature. However, toward the end of the project, we learned that while these 10-nm-diameter CNTs had superior crystalline structure to the work of others studying field emission from multi-wall CNT arrays, these nanotubes still

  18. Nanotube cathodes

    International Nuclear Information System (INIS)

    Overmyer, Donald L.; Lockner, Thomas Ramsbeck; Siegal, Michael P.; Miller, Paul Albert

    2006-01-01

    Carbon nanotubes have shown promise for applications in many diverse areas of technology. In this report we describe our efforts to develop high-current cathodes from a variety of nanotubes deposited under a variety of conditions. Our goal was to develop a one-inch-diameter cathode capable of emitting 10 amperes of electron current for one second with an applied potential of 50 kV. This combination of current and pulse duration significantly exceeds previously reported nanotube-cathode performance. This project was planned for two years duration. In the first year, we tested the electron-emission characteristics of nanotube arrays fabricated under a variety of conditions. In the second year, we planned to select the best processing conditions, to fabricate larger cathode samples, and to test them on a high-power relativistic electron beam generator. In the first year, much effort was made to control nanotube arrays in terms of nanotube diameter and average spacing apart. When the project began, we believed that nanotubes approximately 10 nm in diameter would yield sufficient electron emission properties, based on the work of others in the field. Therefore, much of our focus was placed on measured field emission from such nanotubes grown on a variety of metallized surfaces and with varying average spacing between individual nanotubes. We easily reproduced the field emission properties typically measured by others from multi-wall carbon nanotube arrays. Interestingly, we did this without having the helpful vertical alignment to enhance emission; our nanotubes were randomly oriented. The good emission was most likely possible due to the improved crystallinity, and therefore, electrical conductivity, of our nanotubes compared to those in the literature. However, toward the end of the project, we learned that while these 10-nm-diameter CNTs had superior crystalline structure to the work of others studying field emission from multi-wall CNT arrays, these nanotubes still

  19. Biogeochemical analysis of the calcification patterns of cold-water corals Madrepora oculata and Lophelia pertusa along contact surfaces with calcified tubes of the symbiotic polychaete Eunice norvegica: Evaluation of a 'mucus' calcification hypothesis

    Science.gov (United States)

    Oppelt, Alexandra; López Correa, Matthias; Rocha, Carlos

    2017-09-01

    The scleractinian cold-water corals (CWCs), including the species Madrepora oculata and especially Lophelia pertusa, have been studied extensively in an attempt to decipher environmental signals recorded during biomineralisation in order to extract environmental chronologies. However, understanding the mechanisms of carbonate precipitation is a prerequisite to interpret variations in geochemical signatures locked into the skeleton during coral growth; to date results are still inconclusive. Here a novel approach, comparing the calcification patterns within the coral microstructure of species L. pertusa and M. oculata and the geochemistry along the contact surfaces with calcified polychaete tubes is undertaken to provide additional information on the mechanisms of biomineralisation in colonial corals. The fact that no significant difference in microstructures, variations in growth rate, or geochemical composition between the corallite theca and the calcified polychaete tube was detectable leads to the conclusion that both have been deposited by the coral tissue in L. pertusa and M. oculata. Based on prior knowledge on the symbiotic relationship between CWCs and the polychaete Eunice norvegica, an involvement of mucus in the calcification of the parchment tubes had been suspected. However, we found only evidence for aragonite precipitated by coral tissue, without evidence for an involvement of mucus in the calcification.

  20. Barium depletion study on impregnated cathodes and lifetime prediction

    International Nuclear Information System (INIS)

    Roquais, J.M.; Poret, F.; Doze, R. le; Ricaud, J.L.; Monterrin, A.; Steinbrunn, A.

    2003-01-01

    In the thermionic cathodes used in cathode ray-tubes (CRTs), barium is the key element for the electronic emission. In the case of the dispenser cathodes made of a porous tungsten pellet impregnated with Ba, Ca aluminates, the evaporation of Ba determines the cathode lifetime with respect to emission performance in the CRT. The Ba evaporation results in progressive depletion of the impregnating material inside the pellet. In the present work, the Ba depletion with time has been extensively characterized over a large range of cathode temperature. Calculations using the depletion data allowed modeling of the depletion as a function of key parameters. The link between measured depletion and emission in tubes has been established, from which an end-of-life criterion was deduced. Taking modeling into account, predicting accelerated life-tests were performed using high-density maximum emission current (MIK)

  1. Focused cathode design to reduce anode heating during vircator operation

    Energy Technology Data Exchange (ETDEWEB)

    Lynn, Curtis F.; Dickens, James C.; Neuber, Andreas A. [Center for Pulsed Power and Power Electronics, Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409 (United States)

    2013-10-15

    Virtual cathode oscillators, or vircators, are a type of high power microwave device which operates based on the instability of a virtual cathode, or cloud of electrons, which forms when electron current injected into the drift tube exceeds the space charge limited current within the drift tube. Anode heating by the electron beam during vircator operation ultimately limits achievable pulse lengths, repetition rates, and the duration of burst mode operation. This article discusses a novel cathode design that focuses electrons through holes in the anode, thus significantly reducing anode heating by the electrons emitted from the cathode during the first transit through the A-K gap. Reflexing electrons continue to deposit energy on the anode; however, the discussed minimization of anode heating by main beam electrons has the potential to enable higher repetition rates as well as efficiency and longer diode lifetime. A simulation study of this type of cathode design illustrates possible advantages.

  2. Influence of structure and properties of tubular billets of the 12 Kh 18N10T steel on deformability of tubes at cold-rolling mills

    International Nuclear Information System (INIS)

    Vil'yams, O.S.; Bol'shova, N.M.; Olejnik, O.V.; Velikotnaya, E.S.

    1979-01-01

    Metallographic analysis of the defects of the ''oblique cracks'' type on the surface of hot-rolled tubes of the 12Kh18N10T steel has been carried out. Recommended is the complex of mechanical properties and the structure factors (grain size) of conversion hot-rolled tubes, providing the combination of ductility and high rapture strength during rolling at pilger mills. At a grain size not coarser than number 5, a billet must have σsub(T) 5 >=40 %. Hot-rolled coarse-grained billet is not recommended for warm rolng because of high strain hardening

  3. HF electronic tubes. Technologies, grid tubes and klystrons

    International Nuclear Information System (INIS)

    Lemoine, Th.

    2009-01-01

    This article gives an overview of the basic technologies of electronic tubes: cathodes, electronic optics, vacuum and high voltage. Then the grid tubes, klystrons and inductive output tubes (IOT) are introduced. Content: 1 - context and classification; 2 - electronic tube technologies: cathodes, electronic optics, magnetic confinement (linear tubes), periodic permanent magnet (PPM) focussing, collectors, depressed collectors; 3 - vacuum technologies: vacuum quality, surface effects and interaction with electrostatic and RF fields, secondary emission, multipactor effect, thermo-electronic emission; 4 - grid tubes: operation of a triode, tetrodes, dynamic operation and classes of use, 'common grid' and 'common cathode' operation, ranges of utilisation and limitations, operation of a tetrode on unadjusted load, lifetime of a tetrode, uses of grid tubes; 5 - klystrons: operation, impact of space charge, multi-cavity klystrons, interaction efficiency, extended interaction klystrons, relation between interaction efficiency, perveance and efficiency, ranges of utilization and power limitations, multi-beam klystrons and sheet beam klystrons, operation on unadjusted load, klystron band pass and lifetime, uses; 6 - IOT: principle of operation, ranges of utilisation and limitations, interaction efficiency and depressed collector IOT, IOT lifetime and uses. (J.S.)

  4. Cold Stress

    Science.gov (United States)

    ... Publications and Products Programs Contact NIOSH NIOSH COLD STRESS Recommend on Facebook Tweet Share Compartir Workers who ... cold environments may be at risk of cold stress. Extreme cold weather is a dangerous situation that ...

  5. Cathodic protection -- Rectifier 46

    International Nuclear Information System (INIS)

    Lane, W.M.

    1995-01-01

    This Acceptance Test Procedure (ATP) has been prepared to demonstrate that the cathodic protection system functions as required by project criteria. The cathodic protection system is for the tank farms on the Hanford Reservation. The tank farms store radioactive waste

  6. Cathodic protection -- Rectifier 47

    International Nuclear Information System (INIS)

    Lane, W.M.

    1995-01-01

    This Acceptance Test Procedure (ATP) has been prepared to demonstrate that the cathodic protection system functions as required by project criteria. The cathodic protection system is for the tank farms at the Hanford Reservation. The tank farms store radioactive waste

  7. Creep-rupture, steam oxidation and recovery behaviours upon dynamic transients up to 1300 C of cold-worked 304 stainless steel tubes dedicated to nuclear core fuel cladding

    International Nuclear Information System (INIS)

    Portier, L.; Brachet, J.C.; Vandenberghe, V.; Guilbert, T.; Lezaud-Chaillioux, V.; Bernard, C.; Rabeau, V.

    2011-01-01

    An ambitious mechanical tests program was conducted on the fuel rod cladding of the CABRI facility between 2004 and 2009 to re-evaluate the cladding tubes materials behaviour. As an offspring of this major scientific investment several conclusions of interest could be drawn on the 304 stainless steel material. In particular, the specific behaviour of the materials during hypothetical and extreme 'dry-out' conditions was investigated. In such a scenario, the cladding tube materials should experience a very brief incursion at high temperatures, in a steam environment, up to 1300 C, before cladding rewetting. Some of the measurements performed in the range of interest for the safety case were on purpose developed beyond the conservatively safe domain. Some of the results obtained for these non-conventional heating rates, pressures and temperature ranges will be presented. First in order to assess the high temperature creep-rupture material behaviour under internal pressure upon dynamic transient conditions, tests have been performed on cold-worked 304 stainless cladding tubes in a steam environment, for heating rates up to 100 C*s -1 and pressure ramp rates up to 10 bar*s -1 thanks to the use of the EDGAR facility. Other tests performed at a given pressure allowed us to check the steady-state secondary creep rate of the materials in the 1100-1200 C temperature range. It was also possible to determine the rupture strength value and the failure mode as a function of the thermal and pressure loading history applied. It is worth noticing that, for very specific conditions, a surprising pure intergranular brittle failure mode of the clad has been observed. Secondly, in order to check the materials oxidation resistance of the materials, two-side steam oxidation tests have been performed at 1300 C, using the DEZIROX facility. It was shown that, thanks to the use of Ring Compression tests, the 304 cladding tube keeps significant ductility for oxidation times up to at least

  8. Cold fusion

    International Nuclear Information System (INIS)

    Bush, R.T.

    1991-01-01

    The transmission resonance model (TRM) is combined with some electrochemistry of the cathode surface and found to provide a good fit to new data on excess heat. For the first time, a model for cold fusion not only fits calorimetric data but also predicts optimal trigger points. This suggests that the model is meaningful and that the excess heat phenomenon claimed by Fleischmann and Pons is genuine. A crucial role is suggested for the overpotential and, in particular, for the concentration overpotential, i.e., the hydrogen overvoltage. Self-similar geometry, or scale invariance, i.e., a fractal nature, is revealed by the relative excess power function. Heat bursts are predicted with a scale invariance in time, suggesting a possible link between the TRM and chaos theory. The model describes a near-surface phenomenon with an estimated excess power yield of ∼1 kW/cm 3 Pd, as compared to 50 W/cm 3 of reactor core for a good fission reactor. Transmission resonance-induced nuclear transmutation, a new type of nuclear reaction, is strongly suggested with two types emphasized: transmission resonance-induced neutron transfer reactions yielding essentially the same end result as Teller's hypothesized catalytic neutron transfer and a three-body reaction promoted by standing de Broglie waves. In this paper suggestions for the anomalous production of heat, particles, and radiation are given

  9. Streak tube development

    International Nuclear Information System (INIS)

    Hinrichs, C.K.; Estrella, R.M.

    1979-01-01

    A research program for the development of a high-speed, high-resolution streak image tube is described. This is one task in the development of a streak camera system with digital electronic readout, whose primary application is for diagnostics in underground nuclear testing. This program is concerned with the development of a high-resolution streak image tube compatible with x-ray input and electronic digital output. The tube must be capable of time resolution down to 100 psec and spatial resolution to provide greater than 1000 resolution elements across the cathode (much greater than presently available). Another objective is to develop the capability to make design changes in tube configurations to meet different experimental requirements. A demountable prototype streak tube was constructed, mounted on an optical bench, and placed in a vacuum system. Initial measurements of the tube resolution with an undeflected image show a resolution of 32 line pairs per millimeter over a cathode diameter of one inch, which is consistent with the predictions of the computer simulations. With the initial set of unoptmized deflection plates, the resolution pattern appeared to remain unchanged for static deflections of +- 1/2-inch, a total streak length of one inch, also consistent with the computer simulations. A passively mode-locked frequency-doubled dye laser is being developed as an ultraviolet pulsed light source to measure dynamic tube resolution during streaking. A sweep circuit to provide the deflection voltage in the prototype tube has been designed and constructed and provides a relatively linear ramp voltage with ramp durations adjustable between 10 and 1000 nsec

  10. Tritium application: self-luminous glass tube(SLGT)

    International Nuclear Information System (INIS)

    Kim, K.; Lee, S.K.; Chung, E.S.; Kim, K.S.; Kim, W.S.; Nam, G.J.

    2005-01-01

    To manufacture SLGTs (self-luminous glass tubes), 4 core technologies are needed: coating technology, tritium injection technology, laser sealing/cutting technology and tritium handling technology. The inside of the glass tubes is coated with greenish ZnS phosphor particles with sizes varying from 4∝5 [μm], and Cu, and Al as an activator and a co-dopant, respectively. We also found that it would be possible to produce a phosphor coated glass tube for the SLGT using the well established cold cathode fluorescent lamp (CCFL) bulb manufacturing technology. The conceptual design of the main process loop (PL) is almost done. A delicate technique will be needed for the sealing/cutting of the glass tubes. Instead of the existing torch technology, a new technology using a pulse-type laser is under investigation. The design basis of the tritium handling facilities is to minimize the operator's exposure to tritium uptake and the emission of tritium to the environment. To fulfill the requirements, major tritium handling components are located in the secondary containment such as the glove boxes (GBs) and/or the fume hoods. The tritium recovery system (TRS) is connected to a GB and PL to minimize the release of tritium as well as to remove the moisture and oxygen in the GB. (orig.)

  11. Tritium application: self-luminous glass tube(SLGT)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.; Lee, S.K.; Chung, E.S.; Kim, K.S.; Kim, W.S. [Nuclear Power Lab., Korea Electric Power Research Inst. (KEPRI), Daejeon (Korea); Nam, G.J. [Engineering Information Technology Center, Inst. for Advanced Engineering (IAE), Kyonggi-do (Korea)

    2005-07-01

    To manufacture SLGTs (self-luminous glass tubes), 4 core technologies are needed: coating technology, tritium injection technology, laser sealing/cutting technology and tritium handling technology. The inside of the glass tubes is coated with greenish ZnS phosphor particles with sizes varying from 4{proportional_to}5 [{mu}m], and Cu, and Al as an activator and a co-dopant, respectively. We also found that it would be possible to produce a phosphor coated glass tube for the SLGT using the well established cold cathode fluorescent lamp (CCFL) bulb manufacturing technology. The conceptual design of the main process loop (PL) is almost done. A delicate technique will be needed for the sealing/cutting of the glass tubes. Instead of the existing torch technology, a new technology using a pulse-type laser is under investigation. The design basis of the tritium handling facilities is to minimize the operator's exposure to tritium uptake and the emission of tritium to the environment. To fulfill the requirements, major tritium handling components are located in the secondary containment such as the glove boxes (GBs) and/or the fume hoods. The tritium recovery system (TRS) is connected to a GB and PL to minimize the release of tritium as well as to remove the moisture and oxygen in the GB. (orig.)

  12. Plasma processes inside dispenser hollow cathodes

    International Nuclear Information System (INIS)

    Mikellides, Ioannis G.; Katz, Ira; Goebel, Dan M.; Polk, James E.; Jameson, Kristina K.

    2006-01-01

    A two-dimensional fluid model of the plasma and neutral gas inside dispenser orificed hollow cathodes has been developed to quantify plasma processes that ultimately determine the life of the porous emitters inserted in these devices. The model self-consistently accounts for electron emission from the insert as well as for electron and ion flux losses from the plasma. Two cathodes, which are distinctively different in size and operating conditions, have been simulated numerically. It is found that the larger cathode, with outer tube diameter of 1.5 cm and orifice diameter of 0.3 cm, establishes an effective emission zone that spans approximately the full length of the emitter when operated at a discharge current of 25 A and a flow rate of 5.5 sccm. The net heating of the emitter is caused by ions that are produced by ionization of the neutral gas inside the tube and are then accelerated by the sheath along the emitter. The smaller cathode, with an outer diameter of 0.635 cm and an orifice diameter of 0.1 cm, does not exhibit the same operational characteristics. At a flow rate of 4.25 sccm and discharge current of 12 A, the smaller cathode requires 4.5 times the current density near the orifice and operates with more than 6 times the neutral particle density compared to the large cathode. As a result, the plasma particle density is almost one order of magnitude higher compared to the large cathode. The plasma density in this small cathode is high enough such that the Debye length is sufficiently small to allow 'sheath funneling' into the pores of the emitter. By accessing areas deeper into the insert material, it is postulated that the overall emission of electrons is significantly enhanced. The maximum emission current density is found to be about 1 A/mm 2 in the small cathode, which is about one order of magnitude higher than attained in the large cathode. The effective emission zone in the small cathode extends to about 15% of the emitter length only, and the

  13. Power generation using an activated carbon and metal mesh cathode in a microbial fuel cell

    KAUST Repository

    Zhang, Fang

    2009-11-01

    An inexpensive activated carbon (AC) air cathode was developed as an alternative to a platinum-catalyzed electrode for oxygen reduction in a microbial fuel cell (MFC). AC was cold-pressed with a polytetrafluoroethylene (PTFE) binder to form the cathode around a Ni mesh current collector. This cathode construction avoided the need for carbon cloth or a metal catalyst, and produced a cathode with high activity for oxygen reduction at typical MFC current densities. Tests with the AC cathode produced a maximum power density of 1220 mW/m2 (normalized to cathode projected surface area; 36 W/m3 based on liquid volume) compared to 1060 mW/m2 obtained by Pt catalyzed carbon cloth cathode. The Coulombic efficiency ranged from 15% to 55%. These findings show that AC is a cost-effective material for achieving useful rates of oxygen reduction in air cathode MFCs. © 2009 Elsevier B.V. All rights reserved.

  14. Hollow Cathode Studies for the Next Generation Ion Engines in JAXA

    Science.gov (United States)

    Ohkawa, Yasushi; Hayakawa, Yukio; Yoshida, Hideki; Miyazaki, Katsuhiro; Kitamura, Shoji; Kajiwara, Kenichi

    The current status of experimental studies of hollow cathodes for the next-generation ion engines in the Aerospace Research and Development Directorate, JAXA is described. One of the topics on the hollow cathode studies is a life test of a discharge cathode. The keeper disk, orifice plate, and cathode tube of this discharge cathode are made of "high density graphite," which possesses much higher tolerance to ion impingement compared with conventional metal materials. The life test had started in March 2006 and the cumulative operation time reached 15,600 hours in April 2008. No severe degradation has been found both in the operation voltages and electrodes so far, and the test is favorably in progress. In addition to the life test of the discharge cathode, some experiments for design optimization of neutralizer cathodes have been performed. A life test of the neutralizer cathode is being started in June 2008.

  15. Cathodic Protection Model Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Performs Navy design and engineering of ship and submarine impressed current cathodic protection (ICCP) systems for underwater hull corrosion control and...

  16. Small size neutron tube UNG-1

    International Nuclear Information System (INIS)

    Bespalov, D.F.; Mints, A.Z.; Shkol'nikov, A.S.

    A tube UNG-1 (universal neutron gas-filled) is designed for the use in the well neutron generators IGN-1 and IGN-1-M (a pulse neutron generator). Their serial production in the USSR has been started in 1963. At the same year, the serial production of the tubes UNG-1 has been started. Thus, this tube is the first serial logging accelerating tube in the USSR. A Penning source, equipped with a hot cathode, was selected as an ion source of the tube

  17. Neutron accelerator tube having improved ionization section

    International Nuclear Information System (INIS)

    Givens, W.W.

    1982-01-01

    A neutron accelerator tube is described having a target section, an ionization section, and a replenisher section for supplying accelerator gas to the ionization section. The ionization section is located between the target and the replenisher section and includes an ionization chamber adapted to receive accelerator gas from the replenisher section. The ionization section further includes spaced cathodes having opposed active surfaces exposed to the interior of the ionization chamber. An anode is located intermediate the cathodes whereby in response to an applied positive voltage, electrons created by field emission are transmitted between the opposed active surfaces of the cathodes and produce the emission of secondary electrons. The active surface of at least one of the cathodes is formulated of a material having a secondary electron emission factor of at least one cathode member located in the tube adjacent to th replenisher section may have a protuberant portion extending axially into the ionization chamber. The other cathode spaced from the first cathode member in the direction of the target has an aperture therein along the axis of the protuberant portion. An annular magnet extends around the exterior of the ionization chamber and envelops the anode member. Means are provided to establish a high permeability magnetic flux path extending outwardly from the opposed poles from the magnet to the active surfaces of the cathode members

  18. Neutron accelerator tube having improved ionization section

    International Nuclear Information System (INIS)

    Givens, W.W.

    1981-01-01

    A neutron accelerator tube having a target section, an ionization section, and a replenisher section for supplying accelerator gas to the ionization section. The ionization section is located between the target and the replenisher section and includes an ionization chamber adapted to receive accelerator gas from the replenisher section. The ionization section further includes spaced cathodes having opposed active surfaces exposed to the interior of the ionization chamber. An anode is located intermediate the cathodes whereby in response to an applied positive voltage, electrons created by field emmission are transmitted between the opposed active surfaces of the cathodes and produce the emission of secondary electrons. The active surface of at least one of the cathodes is formulated of a material having a secondary electron emission factor of at least 2. One cathode member located in the tube adjacent to the replenisher section may have a protuberant portion extending axially into the ioization chamber. The other cathode spaced from the first cathode member in the direction of the target has an aperture therein along the axis of the protuberant portion. An annular magnet extends around the exterior of the ionization chamber and envelops the anode member. Means are provided to establish a high permeability magnetic flux path extending outwardly from the opposed poles from the magnet to the active surfaces of the cathode members

  19. Fabrication of seamless calandria tubes

    International Nuclear Information System (INIS)

    Saibaba, N.; Phanibabu, C.; Bhaskara Rao, C.V.; Kalidas, R.; Ganguly, C.

    2002-01-01

    Full text: Calandria tube is a large diameter, thin walled zircaloy-4 tube and is an important structural component of PHWR type of reactors. These tubes are lifetime components and remain during the full life of the reactor. Calandria tubes are classified as extremely thin walled tubes with a diameter to wall thickness ratio of around 96. Such thin walled tubes are conventionally produced by seam welded route comprising of extrusion of slabs followed by a series of hot and rolling passes, shaping into O-shape and eventual welding. An alternative and superior method of fabricating the calandria tubes, the seamless route, has been developed, which involves hot extrusion of mother blanks followed by three successive cold pilger reductions. Eccentricity correction of the extruded blanks is carried out on a special purpose grinding equipment to bring the wall thickness variation within permissible limits. Predominant wall thickness reductions are given during cold pilgering to ensure high Q-factor values. The texture in the finished tubes could be closely, controlled with an average f r value of 0.65. Pilgering parameters and tube guiding system have been specially designed to facilities rolling of thin walled tubes. Seamless calandria tubes have distinct advantages over welded tubes. In addition to the absence of weld, they are dimensionally more stable, lighter in weight and possess uniform grains with superior grain size. The cycle time from billet to finished product is substantially reduced and the product is amenable to high level of quality assurance. The most significant feature of the seamless route is its material recovery over welded route. Residual stresses measured in the tubes indicate that these are negligible and uniform along the length of the tube. In view of their superior quality, the first charge of seamless calandria tubes will be rolled into the first 500 MWe Pressurised Heavy Water Reactor at Tarapur

  20. Hollow-cathode electrode for high-power, high-pressure discharge devices

    Science.gov (United States)

    Chang, J.J.; Alger, T.W.

    1995-08-22

    Several different cold cathode configurations are disclosed for a gas discharge device each having a plurality of grooves of selected spacing, depth and width to improve the emission of electrons in a gas discharge device. Each of the cold cathode configurations can be machined from a single piece of a selected material. Several of the configurations can be assembled with individual elements which is easily seen from the various figures. 8 figs.

  1. Tube plug

    International Nuclear Information System (INIS)

    Zafred, P. R.

    1985-01-01

    The tube plug comprises a one piece mechanical plug having one open end and one closed end which is capable of being inserted in a heat exchange tube and internally expanded into contact with the inside surface of the heat exchange tube for preventing flow of a coolant through the heat exchange tube. The tube plug also comprises a groove extending around the outside circumference thereof which has an elastomeric material disposed in the groove for enhancing the seal between the tube plug and the tube

  2. Nanostructured sulfur cathodes

    KAUST Repository

    Yang, Yuan

    2013-01-01

    Rechargeable Li/S batteries have attracted significant attention lately due to their high specific energy and low cost. They are promising candidates for applications, including portable electronics, electric vehicles and grid-level energy storage. However, poor cycle life and low power capability are major technical obstacles. Various nanostructured sulfur cathodes have been developed to address these issues, as they provide greater resistance to pulverization, faster reaction kinetics and better trapping of soluble polysulfides. In this review, recent developments on nanostructured sulfur cathodes and mechanisms behind their operation are presented and discussed. Moreover, progress on novel characterization of sulfur cathodes is also summarized, as it has deepened the understanding of sulfur cathodes and will guide further rational design of sulfur electrodes. © 2013 The Royal Society of Chemistry.

  3. TPC cathode read-out with C-pads

    International Nuclear Information System (INIS)

    Janik, R.; Pikna, M.; Sitar, B.; Strmen, P.; Szarka, I.

    2009-01-01

    A Time Projection Chamber with 'C' like shaped cathode pads was built and tested. It offers a low gas gain operation, a good pulse shape and a lightweight construction. The Pad Response Function (PRF), the cathode to anode pulse height ratios and the pad pulse shapes of the C-pad structure were measured and compared with planar cathode structures in two different wire geometries. The cathode to anode signal ratio was improved from between 0.2 and 0.4 up to 0.7. The PRF was considerably improved, it has a Gaussian shape and is narrower than in the case of the planar pads. The pulse shape from the C-pad read-out is similar to the pulse shape from a detector with a cylindrical shape of electrodes. A method for aluminum pad mass production based on a precise cold forging was developed and tested.

  4. Arcjet cathode phenomena

    Science.gov (United States)

    Curran, Francis M.; Haag, Thomas W.; Raquet, John F.

    1989-01-01

    Cathode tips made from a number of different materials were tested in a modular arcjet thruster in order to examine cathode phenomena. Periodic disassembly and examination, along with the data collected during testing, indicated that all of the tungsten-based materials behaved similarly despite the fact that in one of these samples the percentage of thorium oxide was doubled and another was 25 percent rhenium. The mass loss rate from a 2 percent thoriated rhenium cathode was found to be an order of magnitude greater than that observed using 2 percent thoriated tungsten. Detailed analysis of one of these cathode tips showed that the molten crater contained pure tungsten to a depth of about 150 microns. Problems with thermal stress cracking were encountered in the testing of a hafnium carbide tip. Post test analysis showed that the active area of the tip had chemically reacted with the propellant. A 100 hour continuous test was run at about 1 kW. Post test analysis revealed no dendrite formation, such as observed in a 30 kW arcjet lifetest, near the cathode crater. The cathodes from both this test and a previously run 1000 hour cycled test displayed nearly identical arc craters. Data and calculations indicate that the mass losses observed in testing can be explained by evaporation.

  5. Gastrostomy Tube (G-Tube)

    Science.gov (United States)

    ... any of these problems: a dislodged tube a blocked or clogged tube any signs of infection (including redness, swelling, or warmth at the tube site; discharge that's yellow, green, or foul-smelling; fever) excessive bleeding or drainage from the tube site severe abdominal pain lasting ...

  6. Characteristics of uranium oxide cathode for neutron streak camera

    International Nuclear Information System (INIS)

    Niki, H.; Itoga, K.; Yamanaka, M.; Yamanaka, T.; Yamanaka, C.

    1986-01-01

    In laser fusion research, time-resolved neutron measurements require 20ps resolution in order to obtain the time history of the D-T burn. Uranium oxide was expected to be a sensitive material as a cathode of a neutron streak camera because of its large fission cross section. The authors report their measurements of some characteristics of the uranium oxide cathode connected to a conventional streak tube. 14 MeV neutron signal were observed as the bright spots on a TV monitor using a focus mode opration. Detection efficiency was ∼ 1 x 10 -6 for 1 μm thick cathode. Each signal consisted of more than several tens of components, which were corresponding to the secondary electrons dragged out from the cathode by a fission fragment. Time resolution is thought to be limited mainly by the transit time spread of the secondary electrons. 14ps resolution was obtained by a streak mode operation for a single fission event

  7. Study of the hollow cathode plasma electron-gun

    International Nuclear Information System (INIS)

    Zhang Yonghui; Jiang Jinsheng; Chang Anbi

    2003-01-01

    For developing a novel high-current, long pulse width electron source, the theoretics and mechanism of the hollow cathode plasma electron-gun are analyzed in detail in this paper, the structure and the physical process of hollow cathode plasma electron-gun are also studied. This gun overcomes the limitations of most high-power microwave tubes, which employ either thermionic cathodes that produce low current-density beams because of the limitation of the space charge, or field-emission cathodes that offer high current density but provide only short pulse width because of plasma closure of the accelerating gap. In the theories studying on hollow cathode plasma electron-gun, the characteristic of the hollow-cathode discharge is introduced, the action during the forming of plasma of the stimulating electrode and the modulating anode are discussed, the movement of electrons and ions and the primary parameters are analyzed, and the formulas of the electric field, beam current density and the stabilization conditions of the beam current are also presented in this paper. The numerical simulation is carried out based on Poisson's equation, and the equations of current continuity and movement. And the optimized result is reported. On this basis, we have designed a hollow-cathode-plasma electron-gun, whose output pulse current is 2 kA, and pulse width is 1 microsecond

  8. Cathode materials review

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, Claus, E-mail: danielc@ornl.gov; Mohanty, Debasish, E-mail: danielc@ornl.gov; Li, Jianlin, E-mail: danielc@ornl.gov; Wood, David L., E-mail: danielc@ornl.gov [Oak Ridge National Laboratory, 1 Bethel Valley Road, MS6472 Oak Ridge, TN 37831-6472 (United States)

    2014-06-16

    The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403-431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead-acid with a lead oxide cathode and a terminal voltage of 2.1 V and later the NiCd with a nickel(III) oxide-hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J. Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783-789) demonstrated a high-energy and high-power LiCoO{sub 2} cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research.

  9. Cathode materials review

    International Nuclear Information System (INIS)

    Daniel, Claus; Mohanty, Debasish; Li, Jianlin; Wood, David L.

    2014-01-01

    The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403-431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead-acid with a lead oxide cathode and a terminal voltage of 2.1 V and later the NiCd with a nickel(III) oxide-hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J. Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783-789) demonstrated a high-energy and high-power LiCoO 2 cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research

  10. Cathode materials review

    Science.gov (United States)

    Daniel, Claus; Mohanty, Debasish; Li, Jianlin; Wood, David L.

    2014-06-01

    The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403-431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead-acid with a lead oxide cathode and a terminal voltage of 2.1 V and later the NiCd with a nickel(III) oxide-hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J. Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783-789) demonstrated a high-energy and high-power LiCoO2 cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research.

  11. 77 FR 32508 - Circular Welded Carbon Steel Pipes and Tubes From Turkey: Notice of Preliminary Results of...

    Science.gov (United States)

    2012-06-01

    ... pipe, oil country tubular goods, boiler tubing, cold- drawn or cold-rolled mechanical tubing, pipe and... in the marketing process and selling functions along the chain of distribution between the producer...

  12. Study on the cathode of ion source for neutral beam injector

    International Nuclear Information System (INIS)

    Tanaka, Shigeru

    1983-08-01

    Durability of the cathode is an important problem in developing a high power long pulse ion source for neutral beam injector. The Purpose of this study is to develope a long life cathode and investigate the applicability of it to the source. Directly heated filaments which are commonly used as the cathode of injector source do not live very long in general. In the present work, an indirectly heated hollow cathode made of impregnated porous tungsten tube is proposed as the alternative of the directly heated cathode. At first, we fabricated a small hollow cathode to study the discharge characteristcs in a bell-jar configuration and to apply it to a duoPIGatron hydrogen ion source. The experiment showed that the gas flow rate for sustaining the stable arc discharge in the discharge chamber becomes higher than that when the filament cathode is used. To solve this problem, an experiment for gas reduction was made using a newly fabricated larger hollow cathode and a magnetic multi-pole ion source. The influence of the orifice diameter, the effect of a button and of magnetic field on the gas flow rate were experimentally studied and a method for gas reduction was found. In addition, effect of the magnetic field on the characteristics of the hollow cathode ion source was examined in detail and an optimum field configuration around the cathode was found. Finally, beam extraction from an intensively cooled hollow cathode ion source for up to 10 sec was successfully carried out. (author)

  13. Cold plate

    Energy Technology Data Exchange (ETDEWEB)

    Marroquin, Christopher M.; O' Connell, Kevin M.; Schultz, Mark D.; Tian, Shurong

    2018-02-13

    A cold plate, an electronic assembly including a cold plate, and a method for forming a cold plate are provided. The cold plate includes an interface plate and an opposing plate that form a plenum. The cold plate includes a plurality of active areas arranged for alignment over respective heat generating portions of an electronic assembly, and non-active areas between the active areas. A cooling fluid flows through the plenum. The plenum, at the non-active areas, has a reduced width and/or reduced height relative to the plenum at the active areas. The reduced width and/or height of the plenum, and exterior dimensions of cold plate, at the non-active areas allow the non-active areas to flex to accommodate surface variations of the electronics assembly. The reduced width and/or height non-active areas can be specifically shaped to fit between physical features of the electronics assembly.

  14. Application of M-type cathodes to high-power cw klystrons

    Science.gov (United States)

    Isagawa, S.; Higuchi, T.; Kobayashi, K.; Miyake, S.; Ohya, K.; Yoshida, M.

    1999-05-01

    Two types of high-power cw klystrons have been widely used at KEK in both TRISTAN and KEKB e +e - collider projects: one is a 0.8 MW/1.0 MW tube, called YK1302/YK1303 (Philips); the other is a 1.2 MW tube, called E3786/E3732 (Toshiba). Normally, the dispenser cathodes of the `B-type' and the `S-type' have been used, respectively, but for improved versions they have been replaced by low-temperature cathodes, called the `M-type'. An Os/Ru coating was applied to the former, whereas an Ir one was applied to the latter. Until now, all upgraded tubes installing M-type cathodes, 9 and 8 in number, respectively, have worked successfully without any dropout. A positive experience concerning the lifetime under real operation conditions has been obtained. M-type cathodes are, however, more easily poisoned. One tube installing an Os/Ru-coated cathode showed a gradual, and then sudden decrease in emission during an underheating test, although the emission could fortunately be recovered by aging at the KEK test field. Once sufficiently aged, the emission of an Ir-coated cathode proved to be very high and stable, and its lifetime is expected to be very long. One disadvantage of this cathode is, however, susceptibility to gas poisoning and the necessity of long-term initial aging. New techniques, like ion milling and fine-grained tungsten top layers, were not as successful as expected from their smaller scale applications to shorten the initial aging period. A burn-in process at higher cathode loading was efficient to make the poisoned cathode active and to decrease unwanted Wehnelt emission. On top of that, the emission cooling, and thus thermal conductivity near the emitting layer could play an important role in such large-current cathodes as ours.

  15. Filtered cathodic arc source

    International Nuclear Information System (INIS)

    Falabella, S.; Sanders, D.M.

    1994-01-01

    A continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge is described. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45 degree to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles. 3 figures

  16. Design and experiment of high-current low-pressure plasma-cathode e-gun

    International Nuclear Information System (INIS)

    Xie Wenkai; Li Xiaoyun; Wang Bin; Meng Lin; Yan Yang; Gao Xinyan

    2006-01-01

    The preliminary design of a new high-power low pressure plasma-cathode e-gun is presented. Based on the hollow cathode effect and low-pressure glow discharge empirical formulas, the hollow cathode, the accelerating gap, and the working gas pressure region are given. The general experimental device of the low-pressure plasma cathode electron-gun generating high current density e-beam source is shown. Experiments has been done in continuous filled-in gases and gases-puff condition, and the discharging current of 150-200 A, the width of 60 μs and the collector current of 30-80 A, the width of 60 μs are obtained. The results show that the new plasma cathode e-gun can take the place of material cathode e-gun, especially in plasma filled microwave tubes. (authors)

  17. Cold injuries.

    Science.gov (United States)

    Kruse, R J

    1995-01-01

    There are two categories of cold injury. The first is hypothermia, which is a systemic injury to cold, and the second is frostbite, which is a local injury. Throughout history, entire armies, from George Washington to the Germans on the Russian Front in World War II, have fallen prey to prolonged cold exposure. Cold injury is common and can occur in all seasons if ambient temperature is lower than the core body temperature. In the 1985 Boston Marathon, even though it was 76 degrees and sunny, there were 75 runners treated for hypothermia. In general, humans adapt poorly to cold exposure. Children are at particular risk because of their relatively greater surface area/body mass ratio, causing them to cool even more rapidly than adults. Because of this, the human's best defense against cold injury is to limit his/her exposure to cold and to dress appropriately. If cold injury has occurred and is mild, often simple passive rewarming such as dry blankets and a warm room are sufficient treatment.

  18. Cathode material for lithium batteries

    Science.gov (United States)

    Park, Sang-Ho; Amine, Khalil

    2013-07-23

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  19. Using Multispectral Imaging to Measure Temperature Profiles and Emissivity of Large Thermionic Dispenser, Cathodes

    International Nuclear Information System (INIS)

    Simmons, D.F.; Fortgang, C.M.; Holtkamp, D.B.

    2001-01-01

    Thermionic dispenser cathodes are widely used in modern high-power microwave tubes. Use of these cathodes has led to significant improvement in performance. In recent years these cathodes have been used in electron linear accelerators (LINACs), particularly in induction LINACs, such as the Experimental Test Accelerator at Lawrence Livermore National Laboratory and the Relativistic Test Accelerator at Lawrence Berkeley National Laboratory. For induction LINACs, the thermionic dispenser cathode provides greater reproducibility, longer pulse lengths, and lower emittance beams than does a field emission cathode. Los Alamos National Laboratory is fabricating a dual-axis X-ray radiography machine called dual-axis radiograph hydrodynamic test (DARHT). The second axis of DARHT consists of a 2-kA, 20-MeV induction LINAC that uses a 3.2-MeV electron gun with a tungsten thermionic-dispenser cathode. Typically the DARHT cathode current density is 10 A/cm 2 at 1050 C. Under these conditions current density is space-charge limited, which is desirable since current density is independent of temperature. At lower temperature (the temperature-limited regime) there are variations in the local current density due to a nonuniform temperature profile. To obtain the desired uniform current density associated with space-charge limited operation, the coolest area on the cathode must be at a sufficiently high temperature so that the emission is space-charge limited. Consequently, the rest of the cathode is emitting at the same space-charge-limited current density but is at a higher temperature than necessary. Because cathode lifetime is such a strong function of cathode temperature, there is a severe penalty for nonuniformity in the cathode temperature. For example, a temperature increase of 50 C means cathode lifetime will decrease by a factor of at least four. Therefore, we are motivated to measure the temperature profiles of our large-area cathodes

  20. Smart cathodic protection systems

    NARCIS (Netherlands)

    Polder, R.B.; Leggedoor, J.; Schuten, G.; Sajna, S.; Kranjc, A.

    2010-01-01

    Cathodic protection delivers corrosion protection in concrete structures exposed to aggressive environments, e.g. in de-icing salt and marine climates. Working lives of a large number of CP systems are at least more than 13 years and probably more than 25 years, provided a minimum level of

  1. Drift chambers on the basis of Mylar tube blocks

    Science.gov (United States)

    Budagov, Yu.; Chirikov-Zorin, I.; Golovanov, L.; Khazins, D.; Kuritsin, A.; Pukhov, O.; Zhukov, V.

    1993-06-01

    Prototypes of drift chambers constructed of Mylar tube blocks were tested. The purpose of developing tube blocks technology was to create long chambers (up to 3-4 m). Counting and drift characteristics of the chambers for different values of the gas pressure and different diameters of sense wires are presented. The lifetime of the chambers is determined. A photoeffect in the visible spectrum on the surface of the thin film aluminium cathode, which covers the Mylar tubes was observed.

  2. Drift chambers on the basis of Mylar tube blocks

    International Nuclear Information System (INIS)

    Budagov, Yu.; Chirikov-Zorin, I.; Golovanov, L.; Khazins, D.; Kuritsin, A.; Pukhov, U.; Zhukov, V.

    1993-01-01

    Prototypes of drift chambers constructed of Mylar tube blocks were tested. The purpose of developing tube blocks technology was to create chambers (up to 3-4 m). Counting and drift chracteristics of the chambers for different values of the gas pressure and different diameters of sense wires are presented. The lifetime of the chambers is determined. A photoeffect in the visible spectrum on the surface of the thin film aluminium cathode, which covers the Mylar tubes was observed. (orig.)

  3. Long pulse, plasma cathode E-gun

    International Nuclear Information System (INIS)

    Goebel, D.M.; Schumacher, R.W.; Watkins, R.M.

    1993-01-01

    A unique, long-pulse E-gun has been developed for high-power tube applications. The Hollow-Cathode-Plasma (HCP) E-gun overcomes the limitations of conventional thermionic-cathode guns that have limited current density (typically ≤ 10 A/cm 2 ) or field-emission guns that offer high current density but suffer from short pulsewidth capability (typically 50 A/cm 2 ), long-pulse operation without gap closure, and also requires no cathode-heater power. The gun employs a low-pressure glow discharge inside a hollow cathode (HC) structure to provide a stable, uniform plasma surface from which a high current-density electron beam can be extracted. The plasma density is controlled by a low-voltage HC discharge pulser to produce the desired electron current density at the first grid of a multi-grid accelerator system. A dc high-voltage electron-beam supply accelerates the electrons across the gap, while the HC pulser modulates the beam current to generate arbitrary pulse waveforms. The electron accelerator utilizes a multi-aperture array that produces a large area, high perveance (>35 μpervs) beam consisting initially of many individual beamlets. The E-beam is normally operated without an applied magnetic field in the ion-focused regime, where the plasma produced by beam ionization of a background gas space-charge neutralizes the beam, and the Bennett self-pinch compresses the beamlets and increases the current density. The self-pinched beam has been observed to propagate over a meter without beam breakup or instabilities. The HCP E-gun has been operated at voltages up to 150 kV, currents up to 750 A, and pulse lengths of up to 120 μsec

  4. Cold Sore

    Science.gov (United States)

    ... may reduce how often they return. Symptoms A cold sore usually passes through several stages: Tingling and itching. Many people feel an itching, burning or tingling sensation around their lips for a day or so ...

  5. Air cathode structure manufacture

    Science.gov (United States)

    Momyer, William R.; Littauer, Ernest L.

    1985-01-01

    An improved air cathode structure for use in primary batteries and the like. The cathode structure includes a matrix active layer, a current collector grid on one face of the matrix active layer, and a porous, nonelectrically conductive separator on the opposite face of the matrix active layer, the collector grid and separator being permanently bonded to the matrix active layer. The separator has a preselected porosity providing low IR losses and high resistance to air flow through the matrix active layer to maintain high bubble pressure during operation of the battery. In the illustrated embodiment, the separator was formed of porous polypropylene. A thin hydrophobic film is provided, in the preferred embodiment, on the current collecting metal grid.

  6. Arc cathode spots

    International Nuclear Information System (INIS)

    Schrade, H.O.

    1989-01-01

    Arc spots are usually highly unstable and jump statistically over the cathode surface. In a magnetic field parallel to the surface, preferably they move in the retrograde direction; i.e., opposite to the Lorentzian rule. If the field is inclined with respect to the surface, the spots drift away at a certain angle with respect to the proper retrograde direction (Robson drift motion). These well-known phenomena are explained by one stability theory

  7. Experimental study on a simple Ranque-Hilsch vortex tube

    NARCIS (Netherlands)

    Gao, C.; Bosschaart, K.J.; Zeegers, J.C.H.; Waele, de A.T.A.M.

    2005-01-01

    The Ranque-Hilsch vortex tube is a device by which cold gas can be generated using compressed gas. To understand the cooling mechanism of this device, it is necessary to know the pressure, temperature, and velocity distributions inside the tube. In order to investigate this, a simple vortex tube is

  8. Gas-discharge sources with charged particle emission from the plasma of glow discharge with a hollow cathode

    CERN Document Server

    Semenov, A P

    2001-01-01

    One studied properties of a magnetron discharge with a cold hollow and uncooled rod cathodes. One demonstrated the dominant effect of thermoelectron emission of a rod cathode heated in a discharge on characteristics of discharge and on emission properties of a gas-discharge plasma and the possibility pf a smooth transition of glow discharge to diffusion mode of arc discharge combustion. Paper describes sources of ions and electrons with improved physical and generalized design and engineering parameters. One shows the promise of the electrode structure of a hollow cathode magnetron discharge to be used as a source, in particular, of the atomic hydrogen and of atom flow of a working rod cathode

  9. 100-ps framing-camera tube

    International Nuclear Information System (INIS)

    Kalibjian, R.

    1978-01-01

    The optoelectronic framing-camera tube described is capable of recording two-dimensional image frames with high spatial resolution in the <100-ps range. Framing is performed by streaking a two-dimensional electron image across narrow slits. The resulting dissected electron line images from the slits are restored into framed images by a restorer deflector operating synchronously with the dissector deflector. The number of framed images on the tube's viewing screen equals the number of dissecting slits in the tube. Performance has been demonstrated in a prototype tube by recording 135-ps-duration framed images of 2.5-mm patterns at the cathode. The limitation in the framing speed is in the external drivers for the deflectors and not in the tube design characteristics. Faster frame speeds in the <100-ps range can be obtained by use of faster deflection drivers

  10. Reduction of cathodic delamination rates of anticorrosive coatings using free radical scavengers

    DEFF Research Database (Denmark)

    Sørensen, Per Aggerholm; Weinell, C. E.; Dam-Johansen, Kim

    2010-01-01

    Cathodic delamination is one of the major modes of failure for anticorrosive coatings subjected to a physical damage and immersed in seawater. The cause of cathodic delamination has been reported to be the result of a chemical attack at the coating-steel interface by free radicals and peroxides...... formed as intermediates in the cathodic reaction during the corrosion process. In this study, antioxidants (i.e., free radical scavengers and peroxide decomposers) have been incorporated into various generic types of coatings to investigate the effect of antioxidants on the rate of cathodic delamination...... of epoxy coatings on cold rolled steel. The addition of free radical scavengers to epoxy coatings improved the resistance toward cathodic delamination by up to 50% during seawater immersion, while peroxide decomposers had a limited effect. Testing using substrates prepared from stainless steel...

  11. Development and performance of resistive seamless straw-tube gas chambers

    International Nuclear Information System (INIS)

    Takubo, Y.; Aoki, M.; Ishihara, A.; Ishii, J.; Kuno, Y.; Maeda, F.; Nakahara, K.; Nosaka, N.; Sakamoto, H.; Sato, A.; Terai, K.; Igarashi, Y.; Yokoi, T.

    2005-01-01

    A new straw-tube gas chamber which is made of seamless straw-tubes, instead of ordinary wound-type straw-tubes is developed. Seamless straw-tubes have various advantages over ordinary wound-type ones, in particular, in terms of mechanical strength and lesser wall thickness. Our seamless straw-tubes are fabricated to be resistive so that the hit positions along the straw axis can be read by cathode planes placed outside the straw-tube chambers, where the cathode strips run transverse to the straw axis. A beam test was carried out at KEK to study their performance. As a result of the beam test, the position resolution of the cathode strips of 220μm is achieved, and an anode position resolution of 112μm is also obtained

  12. The Effect of Cold Rolling on the Hydrogen Susceptibility of 5083 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    E.P. Georgiou

    2017-10-01

    Full Text Available This work focuses in investigating the effect of cold deformation on the cathodic hydrogen charging of 5083 aluminum alloy. The aluminium alloy was submitted to a cold rolling process, until the average thickness of the specimens was reduced by 7% and 15%, respectively. A study of the structure, microhardness, and tensile properties of the hydrogen charged aluminium specimens, with and without cold rolling, indicated that the cold deformation process led to an increase of hydrogen susceptibility of this aluminum alloy.

  13. Feeding Tubes

    Science.gov (United States)

    ... feeding therapies have been exhausted. Please review product brand and method of placement carefully with your physician ... Total Parenteral Nutrition. Resources: Oley Foundation Feeding Tube Awareness Foundation Children’s Medical Nutrition Alliance APFED’s Educational Webinar ...

  14. Comment on the mechanism of operation of the impregnated tungsten cathode

    Science.gov (United States)

    Forman, R.

    1979-01-01

    Recent life-test measurements, over 20,000-30,000 h, on impregnated tungsten cathodes in tubes employing an open-type electron-gun structure, show emission current degradation with time. This is in contrast to those recently published by Rittner on B-type cathodes, run in close-spaced diodes, taken some years ago. These more recent life-test results are consistent with the model suggested by Forman and disputed by Rittner that the barium coverage on an impregnated cathode is less than a monolayer for most of its life and decreases with time.

  15. Preliminary results on the chemical characterisation of the cathode nickel--emissive layer interface in oxide cathodes

    International Nuclear Information System (INIS)

    Jenkins, S.N.; Barber, D.K.; Whiting, M.J.; Baker, M.A.

    2003-01-01

    In cathode ray tube (CRT) thermionic oxide cathodes, the nickel-oxide interface properties are key to understanding the mechanisms of operation. At the elevated operational temperatures, free barium is formed at the interface by the reaction of reducing activators, from the nickel alloy, with barium oxide. The free barium diffuses to the outer surface of the oxide providing a low work function electron-emitting surface. However, during cathode life an interface layer grows between the nickel alloy and oxide, comprised of reaction products. The interfacial layer sets limits on the cathode performance and useful operational lifetime by inhibiting the barium reducing reaction. This paper discusses sample preparation procedures for exposure of the interface and the use of several surface and bulk analytical techniques to study interface layer formation. SEM, AES and SIMS data are presented, which provide preliminary insight into the mechanisms operating during the cathode's lifetime. There is evidence that the activator elements in the nickel alloy base, Al and Mg, are able to diffuse to the surface of the oxide during activation and ageing and that these elements are enriched at the interface after accelerated life

  16. Cold plasmas

    International Nuclear Information System (INIS)

    Franz, G.

    1990-01-01

    This textbook discusses the following topics: Phenomenological description of a direct current glow discharge; the plasma (temperature distribution and measurement, potential variation, electron energy distribution function, charge neutralization, wall potentials, plasma oscillations); Production of charge carriers (ions, electrons, ionization in the cathode zone, negative glowing zone, Faraday dark space, positive column, anode zone, hollow cathode discharges); RF-discharges (charge carrier production, RF-Shields, scattering mechanisms); Sputtering (ion-surface interaction, kinetics, sputtering yield and energy distribution, systems and conditions, film formation and stresses, contamination, bias techniques, multicomponent film deposition, cohesion, magnetrons, triode systems, plasma enhanced chemical vapor deposition); Dry etching (sputter etching, reactive etching, topography, process control, quantitative investigations); Etching mechanisms (etching of Si and SiO 2 with CF 4 , of III/V-compound-semiconductors, combination of isotrope and anisotrope etching methods, surface cleaning); ion beam systems (applications, etching); Dyclotron-resonance-systems (electron cyclotron resonance systems, whistler-sources and 'resonant inductive plasma etching'); Appendix (electron energy distribution functions, Bohm's transition zone, plasma oscillations, scattering cross sections and mean free path, metastable states, Child-Langmuir-Schottky equation, loss mechanisms, charge carrier distribution in the positive column, breakdown at high frequencies, motion in a magnetic field, skin depth of an electric field for a HF-discharge, whistler waves, dispersion relations for plane wave propagation). (orig.) With 138 figs

  17. Cold fusion

    International Nuclear Information System (INIS)

    Koster, J.

    1989-01-01

    In this contribution the author the phenomenom of so-called cold fusion, inspired by the memorable lecture of Moshe Gai on his own search for this effect. Thus much of what follows was presented by Dr. Gai; the rest is from independent reading. What is referred to as cold fusion is of course the observation of possible products of deuteron-deuteron (d-d) fusion within deuterium-loaded (dentended) electrodes. The debate over the two vanguard cold fusion experiments has raged under far more public attention than usually accorded new scientific phenomena. The clamor commenced with the press conference of M. Fleishmann and S. Pons on March 23, 1989 and the nearly simultaneous wide circulation of a preprint of S. Jones and collaborators. The majority of work attempting to confirm these observations has at the time of this writing yet to appear in published form, but contributions to conferences and electronic mail over computer networks were certainly filled with preliminary results. To keep what follows to a reasonable length the author limit this discussion to the searches for neutron (suggested by ref. 2) or for excessive heat production (suggested by ref. 1), following a synopsis of the hypotheses of cold fusion

  18. Project COLD.

    Science.gov (United States)

    Kazanjian, Wendy C.

    1982-01-01

    Describes Project COLD (Climate, Ocean, Land, Discovery) a scientific study of the Polar Regions, a collection of 35 modules used within the framework of existing subjects: oceanography, biology, geology, meterology, geography, social science. Includes a partial list of topics and one activity (geodesic dome) from a module. (Author/SK)

  19. Cold fusion

    International Nuclear Information System (INIS)

    Seo, Suk Yong; You, Jae Jun

    1996-01-01

    Nearly every technical information is chased in the world. All of them are reviewed and analyzed. Some of them are chosen to study further more to review every related documents. And a probable suggestion about the excitonic process in deuteron absorbed condensed matter is proposed a way to cold fusion. 8 refs. (Author)

  20. Organic nanowire hierarchy over fabric platform for flexible cold cathode

    Science.gov (United States)

    Maiti, Soumen; Narayan Maiti, Uday; Pal, Shreyasi; Chattopadhyay, Kalyan Kumar

    2013-11-01

    Organic charge transfer (CT) complexes initiated a growing interest in modern electronic devices owing to their easy processability and unique characteristics. In this work, three-dimensional field emitters comprising metal-organic charge transfer complex nanostructures of AgTCNQ and CuTCNQ (TCNQ, 7,7,8,8-tetracyanoquinodimethane) over flexible fabric substrate are realized. Deliberate control over the reaction parameter during organic solid phase reaction leads to modification in structural parameters of the nanowires (i.e. length, diameter) as well as their arrangement atop the carbon fibers. The optimized arrays of AgTCNQ and CuTCNQ nanowires exhibit excellent field electron emission performance with very low turn-on (1.72 and 2.56 V μm-1) and threshold fields (4.21 and 6.33 V μm-1) respectively, which are comparable to those of the best organic field emitters reported to date. The underlying conducting carbon cloth with special woven-like geometry not only offers a flexible platform for nanowire growth, but also provides an additional field enhancement to ease the electron emission.

  1. Organic nanowire hierarchy over fabric platform for flexible cold cathode

    International Nuclear Information System (INIS)

    Maiti, Soumen; Pal, Shreyasi; Chattopadhyay, Kalyan Kumar; Maiti, Uday Narayan

    2013-01-01

    Organic charge transfer (CT) complexes initiated a growing interest in modern electronic devices owing to their easy processability and unique characteristics. In this work, three-dimensional field emitters comprising metal–organic charge transfer complex nanostructures of AgTCNQ and CuTCNQ (TCNQ, 7,7,8,8-tetracyanoquinodimethane) over flexible fabric substrate are realized. Deliberate control over the reaction parameter during organic solid phase reaction leads to modification in structural parameters of the nanowires (i.e. length, diameter) as well as their arrangement atop the carbon fibers. The optimized arrays of AgTCNQ and CuTCNQ nanowires exhibit excellent field electron emission performance with very low turn-on (1.72 and 2.56 V μm −1 ) and threshold fields (4.21 and 6.33 V μm −1 ) respectively, which are comparable to those of the best organic field emitters reported to date. The underlying conducting carbon cloth with special woven-like geometry not only offers a flexible platform for nanowire growth, but also provides an additional field enhancement to ease the electron emission. (paper)

  2. Observation of tritium in cold fusion experiments

    International Nuclear Information System (INIS)

    Krishnan, M.S.; Malhotra, S.K.; Gaonkar, D.G.; Sadhukhan, H.K.

    1990-01-01

    This paper describes the results of tritium measurements carried out during the electrolysis of heavy water in different electrolysers employing palladium and titanium as cathodes. The tritium level of electrolytes have been found to be many orders of magnitudes higher than what can be explained on the basis of isotope enrichment and evaporation during electrolysis. The neutron measurement results have also been included and these observations have been attributed to the phenomenon of cold fusion. (author). 6 refs., 1 tab

  3. Studies on the causes of failures in titanium tube condensers of nuclear power plants

    International Nuclear Information System (INIS)

    Kim, Uh Chul; Kim, Joung Soo; Chung, Han Sub; Hwang, Seong Sik; Hur, Do Haeng

    1991-02-01

    The amount of hydrogen absorbed in Ti tubes varies as the surface condition of Ti tubes changes. It was observed that the amount of hydrogen absorbed in Ti tubes was highest in as-received and welded specimens, while that could be reduced by oxidizing them to make stable oxide surface film or by pickling them. The results of the experiments done by varing the applied cathodic potentials show that hydrogen content absorbed in Ti tubes increases very sharply at or below the potential of -0.9 V versus SCE, which suggests that critical potential for cathodic protection should be above -0.9 V versus SCE. (Author)

  4. Steam generator tube extraction

    International Nuclear Information System (INIS)

    Delorme, H.

    1985-05-01

    To enable tube examination on steam generators in service, Framatome has now developed a process for removing sections of steam generator tubes. Tube sections can be removed without being damaged for treating the tube section expanded in the tube sheet

  5. Nanostructured lanthanum manganate composite cathode

    DEFF Research Database (Denmark)

    Wang, Wei Guo; Liu, Yi-Lin; Barfod, Rasmus

    2005-01-01

    that the (La1-xSrx)(y)MnO3 +/-delta (LSM) composite cathodes consist of a network of homogenously distributed LSM, yttria-stabilized zirconia (YSZ), and pores. The individual grain size of LSM or YSZ is approximately 100 nm. The degree of contact between cathode and electrolyte is 39% on average. (c) 2005...

  6. Testing of a cathode fabricated by painting with a brush pen for anode-supported tubular solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Renzhu; Zhao, Chunhua; Li, Junliang; Wang, Shaorong; Wen, Zhaoyin; Wen, Tinglian [CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), 1295 Dingxi Road, Shanghai 200050 (China)

    2010-01-15

    We have studied the properties of a cathode fabricated by painting with a brush pen for use with anode-supported tubular solid oxide fuel cells (SOFCs). The porous cathode connects well with the electrolyte. A preliminary examination of a single tubular cell, consisting of a Ni-YSZ anode support tube, a Ni-ScSZ anode functional layer, a ScSZ electrolyte film, and a LSM-ScSZ cathode fabricated by painting with a brush pen, has been carried out, and an improved performance is obtained. The ohmic resistance of the cathode side clearly decreases, falling to a value only 37% of that of the comparable cathode made by dip-coating at 850 C. The single cell with the painted cathode generates a maximum power density of 405 mW cm{sup -2} at 850 C, when operating with humidified hydrogen. (author)

  7. Source Terms for HFIR Beam Tube Shielding Analyses, and a Complete Shielding Analysis of the HB-3 Tube

    International Nuclear Information System (INIS)

    Bucholz, J.A.

    2000-01-01

    The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory is in the midst of a massive upgrade program to enhance experimental facilities. The reactor presently has four horizontal experimental beam tubes, all of which will be replaced or redesigned. The HB-2 beam tube will be enlarged to support more guide tubes, while the HB-4 beam tube will soon include a cold neutron source

  8. Source Terms for HFIR Beam Tube Shielding Analyses, and a Complete Shielding Analysis of the HB-3 Tube

    Energy Technology Data Exchange (ETDEWEB)

    Bucholz, J.A.

    2000-07-01

    The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory is in the midst of a massive upgrade program to enhance experimental facilities. The reactor presently has four horizontal experimental beam tubes, all of which will be replaced or redesigned. The HB-2 beam tube will be enlarged to support more guide tubes, while the HB-4 beam tube will soon include a cold neutron source.

  9. Shielded helix traveling wave cathode ray tube deflection structure

    Science.gov (United States)

    Norris, N.J.; Hudson, C.L.

    1992-12-15

    Various embodiments of a helical coil deflection structure of a CRT are described and illustrated which provide shielding between adjacent turns of the coil on either three or four sides of each turn in the coil. Threaded members formed with either male or female threads and having the same pitch as the deflection coil are utilized for shielding the deflection coil with each turn of the helical coil placed between adjacent threads which act to shield each coil turn from adjacent turns and to confine the field generated by the coil to prevent or inhibit cross-coupling between adjacent turns of the coil to thereby prevent generation of fast fields which might otherwise deflect the beam out of time synchronization with the electron beam pulse. 13 figs.

  10. Cold fusion

    International Nuclear Information System (INIS)

    Suh, Suk Yong; Sung, Ki Woong; Kang, Joo Sang; Lee, Jong Jik

    1995-02-01

    So called 'cold fusion phenomena' are not confirmed yet. Excess heat generation is very delicate one. Neutron generation is most reliable results, however, the records are erratic and the same results could not be repeated. So there is no reason to exclude the malfunction of testing instruments. The same arguments arise in recording 4 He, 3 He, 3 H, which are not rich in quantity basically. An experiment where plenty of 4 He were recorded is attached in appendix. The problem is that we are trying to search cold fusion which is permitted by nature or not. The famous tunneling effect in quantum mechanics will answer it, however, the most fusion rate is known to be negligible. The focus of this project is on the theme that how to increase that negligible fusion rate. 6 figs, 4 tabs, 1512 refs. (Author)

  11. Cold fusion

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Suk Yong; Sung, Ki Woong; Kang, Joo Sang; Lee, Jong Jik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-02-01

    So called `cold fusion phenomena` are not confirmed yet. Excess heat generation is very delicate one. Neutron generation is most reliable results, however, the records are erratic and the same results could not be repeated. So there is no reason to exclude the malfunction of testing instruments. The same arguments arise in recording {sup 4}He, {sup 3}He, {sup 3}H, which are not rich in quantity basically. An experiment where plenty of {sup 4}He were recorded is attached in appendix. The problem is that we are trying to search cold fusion which is permitted by nature or not. The famous tunneling effect in quantum mechanics will answer it, however, the most fusion rate is known to be negligible. The focus of this project is on the theme that how to increase that negligible fusion rate. 6 figs, 4 tabs, 1512 refs. (Author).

  12. Cold neutron source with self-regulation

    International Nuclear Information System (INIS)

    Kawai, T.

    2003-01-01

    A way to increase the cold neutron flux is to cool moderator from where cold neutrons are extracted. Although various kinds of cooling system are considered, the closed thermo-siphon cooling system is adopted in many institutes. The notable feature of this system is to be able to keep the liquid level stable in the moderator cell against thermal disturbances, by using self-regulation, which allows a stable supply of cold neutrons. The main part of the closed thermo-siphon consists of a condenser, a moderator transfer tube and moderator cell, which is called the hydrogen cold system. When an extra heat load is applied to the hydrogen cold system having no flow resistance in a moderator transfer tube, the system pressure rises by evaporation of liquid hydrogen. Then the boiling point of hydrogen rises. The liquefaction capacity of the condenser is increasing with a rise of temperature, because a refrigerating power of the helium refrigerator increases linearly with temperature rise of the system. Therefore, the effect of thermal heat load increase is compensated and cancelled out. The closed thermo-siphon has this feature generally, when the moderator transfer tube is designed to be no flow resistance. The report reviews the concept of self-regulation, and how to design and construct the cold neutron source with self-regulation. (author)

  13. Cryocooler With Cold Compressor for Deep Space Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The unique built-in design features of the proposed mini pulse tube cryocooler avoid all thermal expansion issues enabling it to operate within a cold, 150 K...

  14. Electron emission from pseudospark cathodes

    International Nuclear Information System (INIS)

    Anders, A.; Anders, S.; Gundersen, M.A.

    1994-01-01

    The pseudospark cathode has the remarkable property of macroscopically homogeneous electron emission at very high current density (>1 kA/cm 2 ) over a large area (some cm 2 ). The model of electron emission presented here is based on the assumption that the pseudospark microscopically utilizes explosive arc processes, as distinct from earlier models of ''anomalous emission in superdense glow discharges.'' Explosive emission similar to vacuum are cathode spots occurs rapidly when the field strength is sufficiently high. The plasma remains macroscopically homogeneous since the virtual plasma anode adapts to the cathode morphology so that the current is carried by a large number of homogeneously distributed cathode spots which are similar to ''type 1'' and ''type 2'' spots of vacuum arc discharges. The net cathode erosion is greatly reduced relative to ''spark gap-type'' emission. At very high current levels, a transition to highly erosive spot types occurs, and this ''arcing'' leads to a significant reduction in device lifetime. Assuming vacuum-arc-like cathode spots, the observed current density and time constants can be easily explained. The observed cathode erosion rate and pattern, recent fast-camera data, laser-induced fluorescence, and spectroscopic measurements support this approach. A new hypothesis is presented explaining current quenching at relatively low currents. From the point of view of electron emission, the ''superdense glow'' or ''superemissive phase'' of pseudosparks represents an arc and not a glow discharge even if no filamentation or ''arcing'' is observed

  15. Photomultiplier tubes for Low Level Cerenkov Detectors

    International Nuclear Information System (INIS)

    Strindehag, O.

    1965-03-01

    Tube backgrounds of several 2-inch photomultiplier types having S11, 'S' , S13 and S20 cathodes are compared by measuring signal and background pulse height distributions at pulse heights corresponding to a few photo-electrons. The reference signal is generated by means of a β-source and a plexiglass radiator. It is found that comparatively good results are obtained with selected tubes of the EMI types 6097B and 9514B having equivalent dark current dc values down to 10 -12 input lumens. Special interest is devoted to the correlation between the measured tube backgrounds and the dark current dc values of the tubes, as a good correlation between these parameters simplifies the selection of photomultiplier tubes. The equivalent dark currents of the tested tubes extend over the range 10 -12 to 10 -9 input lumens. Although the investigation deals with photomultiplier tubes intended for use in low level Cerenkov detectors it is believed that the results could be valuable in other fields where photomultiplier tubes are utilized for the detection of weak light pulses

  16. Photomultiplier tubes for Low Level Cerenkov Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Strindehag, O

    1965-03-15

    Tube backgrounds of several 2-inch photomultiplier types having S11, 'S' , S13 and S20 cathodes are compared by measuring signal and background pulse height distributions at pulse heights corresponding to a few photo-electrons. The reference signal is generated by means of a {beta}-source and a plexiglass radiator. It is found that comparatively good results are obtained with selected tubes of the EMI types 6097B and 9514B having equivalent dark current dc values down to 10{sup -12} input lumens. Special interest is devoted to the correlation between the measured tube backgrounds and the dark current dc values of the tubes, as a good correlation between these parameters simplifies the selection of photomultiplier tubes. The equivalent dark currents of the tested tubes extend over the range 10{sup -12} to 10{sup -9} input lumens. Although the investigation deals with photomultiplier tubes intended for use in low level Cerenkov detectors it is believed that the results could be valuable in other fields where photomultiplier tubes are utilized for the detection of weak light pulses.

  17. Ear Tubes

    Science.gov (United States)

    ... of the ear drum or eustachian tube, Down Syndrome, cleft palate, and barotrauma (injury to the middle ear caused by a reduction of air pressure, ... specialist) may be warranted if you or your child has experienced repeated ... fluid in the middle ear, barotrauma, or have an anatomic abnormality that ...

  18. Confined Tube Crimp Using Portable Hand Tools

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, Joseph James [Los Alamos National Laboratory; Pereyra, R. A. [LANL Retired; Archuleta, Jeffrey Christopher [Los Alamos National Laboratory; Martinez, Isaac P. [Los Alamos National Laboratory; Nelson, A. M. [MST-16 Summer Student (2007); Allen, Ronald Scott [Los Alamos National Laboratory; Page, R. L. [LANL Retired; Freer, Jerry Eugene [Los Alamos National Laboratory; Dozhier, Nathan Gus [Los Alamos National Laboratory

    2016-04-04

    The Lawrence Radiation Laboratory developed handheld tools that crimp a 1/16 inch OD tube, forming a leak tight seal1 (see Figure 1). The leak tight seal forms by confining the 1/16 inch OD tubing inside a die while applying crimp pressure. Under confined pressure, the tube walls weld at the crimp. The purpose of this study was to determine conditions for fabricating a leak tight tube weld. The equipment was used on a trial-and-error basis, changing the conditions after each attempt until successful welds were fabricated. To better confine the tube, the die faces were polished. Polishing removed a few thousandths of an inch from the die face, resulting in a tighter grip on the tubing wall. Using detergent in an ultrasonic bath, the tubing was cleaned. Also, the time under crimp pressure was increased to 30 seconds. With these modifications, acceptable cold welds were fabricated. After setting the conditions for an acceptable cold weld, the tube was TIG welded across the crimped face.

  19. Optimizing the Thermoacoustic Pulse Tube Refrigerator Performances

    Directory of Open Access Journals (Sweden)

    E. V. Blagin

    2014-01-01

    Full Text Available The article deals with research and optimization of the thermoacoustic pulse tube refrigerator to reach a cryogenic temperature level. The refrigerator is considered as a thermoacoustic converter based on the modified Stirling cycle with helium working fluid. A sound pressure generator runs as a compressor. Plant model comprises an inner heat exchanger, a regenerative heat exchanger, a pulse tube, hot and cold heat exchangers at its ends, an inertial tube with the throttle, and a reservoir. A model to calculate the pulse tube thermoacoustic refrigerator using the DeltaEC software package has been developed to be a basis for calculation techniques of the pulse tube refrigerator. Momentum, continuity, and energy equations for helium refrigerant are solved according to calculation algorithm taking into account the porosity of regenerator and heat exchangers. Optimization of the main geometric parameters resulted in decreasing temperature of cold heat exchanger by 41,7 K. After optimization this value became equal to 115,01 K. The following parameters have been optimized: diameters of the feeding and pulse tube and heat exchangers, regenerator, lengths of the regenerator and pulse and inertial tubes, as well as initial pressure. Besides, global minimum of temperatures has been searched at a point of local minima corresponding to the optimal values of abovementioned parameters. A global-local minima difference is 0,1%. Optimized geometric and working parameters of the thermoacoustic pulse tube refrigerator are presented.

  20. Bookshelf (John R. Huizenga, 'Cold Fusion: the Scientific Fiasco of the Century')

    International Nuclear Information System (INIS)

    Morrison, Douglas R.O.

    1994-01-01

    ''Cold fusion is dead, isn't it?'' is a question I am often asked. The reply is a strange one, ''Yes, scientifically it is dead, but not from a media point of view or from funding'' In 1989 two electrochemists, Martin Fleischmann and Stanley Pons, claimed sustained nuclear fusion had been achieved in a test-tube with a palladium cathode and deuterium, observing excess heat, neutrons and tritium. A series of encouraging confirmations and successively greater excess heat claims were seized on by the world's media. The US Government set up a panel of some 20 world-class scientists from several disciplines under John Huizenga, distinguished professor of Chemistry and Physics at the University of Rochester. They concluded that there was no present evidence for the discovery of a new nuclear process termed cold fusion. It might be thought that would end cold fusion, but for interesting reasons, it did not entirely. John Huizenga has written a book describing the curious claims and evidence for cold fusion and has given an excellent explanation of the science involved. This was published as a hardback book of 236 pages, telling the story up to the end of June 1990. Again one might think it was the end of the cold fusion story. Now he has written about what happened in the next two years in a paperback book which contains an epilogue of 51 pages. If you thought the first year was extraordinary, the next two years described in the new edition were even more incredible! In the main part of the book, the basic science is simply and clearly explained. The number of ''miracles'' required for each results or theory is described - a ''miracle'' is a gross violation of previous knowledge and experimental results such as energy conservation. Thus some theories are classified as ''triple miracles''. It might be thought that people who claimed to have observed cold fusion

  1. Influence of the radial spacing between cathodes on the surface composition of iron samples sintered by hollow cathode electric discharge

    Directory of Open Access Journals (Sweden)

    Brunatto S.F.

    2001-01-01

    Full Text Available The present work reports an investigation of the influence of the radial spacing between cathodes on the iron sintering process by hollow cathode electrical discharge, with surface enrichment of the alloying elements Cr and Ni. Pressed cylindrical samples of 9.5 mm diameter and density of 7.0 ± 0.1 g/cm³ were prepared by compaction of Ancorsteel 1000C iron powder. These samples, constituting the central cathode, were positioned concentrically in the interior of an external cathode machined from a tube of stainless steel AISI 310 (containing: 25% Cr, 16% Ni, 1.5% Mn, 1.5% Si, 0.03% C and the remainder Fe. Sintering was done at 1150 °C, for 120 min, utilizing radial spacings between the central and hollow cathodes of 3, 6 and 9 mm and a gas mixture of 80% Ar and 20% H2, with a flow rate of 5 cm³/s at a pressure of 3 Torr. The electric discharge was generated using a pulsed voltage power source, with a period of 200 mus. The radial spacing had only a slight influence on the quantity of atoms of alloying elements deposited and diffused on the surface of the sample. Analysis with a microprobe showed the presence of chrome (up to 4.0% and nickel (up to 3.0%, in at. % at the surface of the samples. This surface enrichment can be attributed to the mechanism of sputtering of the metallic atoms present in the external cathode, with the deposition of these elements on the sample surface and consequent diffusion within the sample.

  2. Characteristics of Pilger Die Materials for Nuclear Zirconium Alloy Tubes

    International Nuclear Information System (INIS)

    Park, Ki Bum; Kim, In Kyu; Park, Min Young; Kahng, Jong Yeol; Kim, Sun Doo

    2011-01-01

    KEPCO Nuclear Fuel Company's (KEPCO NF) tube manufacturing facility, Techno Special Alloy (TSA) Plant, has started cold pilgering operation since 2008. It is obvious that the cold pilgering process is one of the key processes controlling the quality and the characteristics of the tubes manufactured, i.e. nuclear zirconium alloy tube in KEPCO NF. Cold pilgering is a rolling process for forming metal tubes in which diameter and wall thickness are reduced in a number of forming steps, using ring dies at outside of the tube and a curved mandrel at inside to reduce tube cross sections by up to 90 percent. The OD size of tube is reduced by a pair of dies, and ID size and wall thickness is controlled simultaneously by mandrel. During the cold pilgering process, both tools are the critical components for providing qualified tube. Development of pilger die and mandrel has been a significant importance in the zirconium tube manufacturing and a major goal of KEPCO NF. The objective of this study is to evaluate the life time of pilger die during pilgering. Therefore, a comparison of the heat treatment and mechanical properties of between AISI 52100 and AISI H13 materials was made in this study

  3. Research on an improved explosive emission cathode

    International Nuclear Information System (INIS)

    Liu Guozhi; Sun Jun; Shao Hao; Chen Changhua; Zhang Xiaowei

    2009-01-01

    This paper presents a physical description of the cathode plasma process of an explosive emission cathode (EEC) and experimental results on a type of oil-immersed graphite EEC. It is believed that the generation of a cathode plasma is mainly dependent on the state of the cathode surface, and that adsorbed gases and dielectrics on the cathode surface play a leading role in the formation of the cathode plasma. Based on these ideas, a type of oil-immersed graphite EEC is proposed and fabricated. The experiments indicate that the oil-immersed cathodes have improved emissive properties and longer lifetimes.

  4. Analysis of microwave amplifier and frequency multiplier tube with a multipactor electron gun

    International Nuclear Information System (INIS)

    Yokoo, Kuniyoshi; Ono, Shoichi; Tai, Dong-Zhe.

    1983-01-01

    The performance analysis was made for a multipactor microwave tube with the aim of realizing a microwave amplifier or a frequency multiplier tube with a multipactor cathode with high efficiency and high power. The possibility for producing the multipactor tube with high efficiency and high power was shown by using effectively the characteristics of the multipactor cathode which emits pulsed electron current with narrow band, synchronizing with high frequency period. As the operating conditions for the multipactor cathode, it was shown that the wide spacing of the cathode was needed for the operation in high operating power, and the narrow spacing was needed for the operation in high efficiency and for reducing power consumption. It was also shown that there were the best values of the high-frequency voltage for the cathode operation. The study by the simulation for the multipactor cathode and for the acceleration zone of electron current was also performed to examine the possible performance for a microwave amplifier and a frequency multiplier tube. For the use of the multipactor cathode with a spacing of 1 mm, the conversion efficiency for d. c. input power was 86, 56 and 31 % for the primary, the secondary and the tertiary harmonic wave amplifications, respectively. (Asami, T.)

  5. Electron tube

    Science.gov (United States)

    Suyama, Motohiro [Hamamatsu, JP; Fukasawa, Atsuhito [Hamamatsu, JP; Arisaka, Katsushi [Los Angeles, CA; Wang, Hanguo [North Hills, CA

    2011-12-20

    An electron tube of the present invention includes: a vacuum vessel including a face plate portion made of synthetic silica and having a surface on which a photoelectric surface is provided, a stem portion arranged facing the photoelectric surface and made of synthetic silica, and a side tube portion having one end connected to the face plate portion and the other end connected to the stem portion and made of synthetic silica; a projection portion arranged in the vacuum vessel, extending from the stem portion toward the photoelectric surface, and made of synthetic silica; and an electron detector arranged on the projection portion, for detecting electrons from the photoelectric surface, and made of silicon.

  6. Finishing of the cold mass assembly

    CERN Multimedia

    Maximilien Brice

    2001-01-01

    Photo 1 General view of the finishing station showing the special supporting structures (blue and yellow structures) needed for the geometric measurements and for the alignment operations. Around the magnet, there are datum points (on the tripodes) needed to build up the coordinates system for the measurements. Photo 2 The corrector magnets that are sextupoles are prepared for a plug-in fixation on their mechanical support. Photo 3 A corretor magnet has been installed on the left cold bore tube. The second one is waiting on the table for installation. Photo 4 The mechanical mole holding the corner cube reflector of the 3-D measuring machine is introduced in the cold bore tube (the right one on the picture). This will allow to pick up the X-Y-Z coordinates of the centre of the cold bore tube on its entire length. Photo 5 This picture shows the driving system that is completely computer controlled to pull the mechanical mole inside the cold bore tube. Photo 6 This picture shows details of the driving system...

  7. Chest tube insertion

    Science.gov (United States)

    Chest drainage tube insertion; Insertion of tube into chest; Tube thoracostomy; Pericardial drain ... Be careful there are no kinks in your tube. The drainage system should always sit upright and be placed ...

  8. Etching of Copper Coated Mylar Tubes With CF-4 Gas

    International Nuclear Information System (INIS)

    Ecklund, Karl M.; Hartman, Keith W.; Hebert, Michael J.; Wojcicki, Stanley G.

    1996-01-01

    Using 5 mm diameter copper coated mylar straw tubes at a potential of 2.30 KV relative to a concentric 20 (mu)m diameter gold-plated tungsten anode, it has been observed that with very low flow rates of CF4-based gases the conductive copper cathode material may be removed entirely from the mylar surface

  9. Titanium condenser tubes. Problems and their solution for wider application to large surface condensers. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Sato, S; Sugiyama, S; Nagata, K; Nanba, K; Shimono, M [Sumitomo Light Metal Industries Ltd., Tokyo (Japan)

    1977-06-01

    The corrosion resistance of titanium in sea water is extremely excellent, but titanium tubes are expensive, and the copper alloy tubes resistant in polluted sea water were developed, therefore they were not used practically. In 1970, ammonia attack was found on the copper alloy tubes in the air-cooled portion of condensers, and titanium tubes have been used as the countermeasure. As the result of the use, the galvanic attack on copper alloy tube plates with titanium tubes as cathode and the hydrogen absorption at titanium tube ends owing to excess electrolytic protection was observed, but the corrosion resistance of titanium tubes was perfect. These problems can be controlled by the application of proper electrolytic protection. The condensers with all titanium tubes adopted recently in USA are intended to realize perfectly no-leak condensers as the countermeasure to the corrosion in steam generators of PWR plants. Regarding large condensers of nowadays, three problems are pointed out, namely the vibration of condenser tubes, the method of joining tubes and tube plates, and the tubes of no coolant leak. These three problems in case of titanium tubes were studied, and the problem of the fouling of tubes was also examined. The intervals of supporting plates for titanium tubes should be narrowed. The joining of titanium tubes and titanium tube plates by welding is feasible and promising. The cleaning with sponge balls is effective to control fouling.

  10. LHC tubes near the end of their journey

    CERN Multimedia

    2004-01-01

    Production of the heat exchanger tubes, which will cool down the LHC magnets, and of the cold bore tubes, in which the proton beams will circulate, is due to be completed around the end of 2004. These essential components of the LHC magnets are receiving their finishing touches at CERN.

  11. Ultracold and very cold neutron facility in KUR

    International Nuclear Information System (INIS)

    Kawabata, Yuji; Utsuro, Masahiko

    1992-01-01

    The present status of the ultracold and very cold neutron facility installed in the Kyoto University Reactor (KUR) is described in this presentation. It consists of a VCN (very cold neutrons) guide tube, a VCN bender and a supermirror neutron turbine. The guide tube extracts VCN from a liquid deuterium cold neutron source in a graphite thermal column and the neutron turbine converts VCN to UCN (ultracold neutrons). As for the utilization of the present facility, VCN radiography and an UCN gravity spectrometer are shown for the practical examples of the research with VCN and UCN. (author)

  12. Sealed drift tube cosmic ray veto counters

    International Nuclear Information System (INIS)

    Rios, R.; Tatar, E.; Bacon, J.D.; Bowles, T.J.; Hill, R.; Green, J.A.; Hogan, G.E.; Ito, T.M.; Makela, M.; Morris, C.L.; Mortenson, R.; Pasukanics, F.E.; Ramsey, J.; Saunders, A.; Seestrom, S.J.; Sondheim, W.E.; Teasdale, W.; Saltus, M.; Back, H.O.; Cottrell, C.R.

    2011-01-01

    We describe a simple drift tube counter that has been used as a cosmic ray veto for the UCNA experiment, a first-ever measurement of the neutron beta-asymmetry using ultra-cold neutrons. These detectors provide an inexpensive alternative to more conventional scintillation detectors for large area cosmic ray anticoincidence detectors.

  13. photomultiplier tubes

    CERN Multimedia

    photomultiplier tubes. A device to convert light into an electric signal (the name is often abbreviated to PM). Photomultipliers are used in all detectors based on scintillating material (i.e. based on large numbers of fibres which produce scintillation light at the passage of a charged particle). A photomultiplier consists of 3 main parts: firstly, a photocathode where photons are converted into electrons by the photoelectric effect; secondly, a multiplier chain consisting of a serie of dynodes which multiply the number of electron; finally, an anode, which collects the resulting current.

  14. photomultiplier tube

    CERN Multimedia

    photomultiplier tubes. A device to convert light into an electric signal (the name is often abbreviated to PM). Photomultipliers are used in all detectors based on scintillating material (i.e. based on large numbers of fibres which produce scintillation light at the passage of a charged particle). A photomultiplier consists of 3 main parts: firstly, a photocathode where photons are converted into electrons by the photoelectric effect; secondly, a multiplier chain consisting of a serie of dynodes which multiply the number of electron; finally, an anode, which collects the resulting current.

  15. Improvements to the power supply and control systems of Geiger-Mueller counter tubes

    International Nuclear Information System (INIS)

    Gavin, Gerard; Amberny, Philippe.

    1977-01-01

    This invention aims to provide a power supply and control system for Geiger-Mueller counter tubes requiring only one high voltage output, corresponding to the 'active' phase voltage. With this in view, the invention proposes, inter alia, a system comprising a high voltage source connected to the anode of the GM tube whose cathode is connected to a determination and counting circuit, featuring a cathode connected to the source via an electronic switch and to earth by a component for holding the potential difference at a given level and by another electronic switch, placed in series. The switches are controlled in turn so as alternately to bring the cathode to a first voltage, enabling the tube to function, and to a second voltage, causing the blocking of the tube, this second voltage being set by the component creating the voltage difference [fr

  16. Improvements to the power supply and control systems of Geiger-Mueller counter tubes

    Energy Technology Data Exchange (ETDEWEB)

    Gavin, G; Amberny, P

    1977-10-19

    This invention aims to provide a power supply and control system for Geiger-Mueller counter tubes requiring only one high voltage output, corresponding to the 'active' phase voltage. With this in view, the invention proposes, inter alia, a system comprising a high voltage source connected to the anode of the GM tube whose cathode is connected to a determination and counting circuit, featuring a cathode connected to the source via an electronic switch and to earth by a component for holding the potential difference at a given level and by another electronic switch, placed in series. The switches are controlled in turn so as alternately to bring the cathode to a first voltage, enabling the tube to function, and to a second voltage, causing the blocking of the tube, this second voltage being set by the component creating the voltage difference.

  17. Electron emission mechanism of carbon fiber cathode

    International Nuclear Information System (INIS)

    Liu Lie; Li Limin; Wen Jianchun; Wan Hong

    2005-01-01

    Models of electron emission mechanism are established concerning metal and carbon fiber cathodes. Correctness of the electron emission mechanism was proved according to micro-photos and electron scanning photos of cathodes respectively. The experimental results and analysis show that the surface flashover induces the electron emission of carbon fiber cathode and there are electron emission phenomena from the top of the carbon and also from its side surface. In addition, compared with the case of the stainless steel cathode, the plasma expansion velocity for the carbon fiber cathode is slower and the pulse duration of output microwave can be widened by using the carbon fiber cathode. (authors)

  18. Cough & Cold Medicine Abuse

    Science.gov (United States)

    ... Videos for Educators Search English Español Cough & Cold Medicine Abuse KidsHealth / For Teens / Cough & Cold Medicine Abuse ... resfriado Why Do People Use Cough and Cold Medicines to Get High? There's an ingredient in many ...

  19. The cold neutron facility of the JRR-3M

    International Nuclear Information System (INIS)

    Kumai, T.; Suzuki, M.; Kakefuda, K.

    1992-01-01

    A description is given of a cold neutron source and neutron guide tubes of the JRR-3M. The installation of the cold neutron source (CNS) together with the neutron guide system is one of the principal objectives of the remodeling project of the JRR-3 and this CNS is the first one that was installed in the high neutron flux reactors of 14 orders of magnitude in Japan. The CNS is a liquid hydrogen moderator and vertical thermosyphon type. It mainly consists of a hydrogen plant for liquid hydrogen and helium refrigerator plant for cold helium gas. Five neutron guide tubes are installed to get thermal and cold neutron beams in the beam hall. The CNS and the guide tubes have been operated very well since August 1990. (author)

  20. The dynamic single-tube concept; Le mono-tube dynamique

    Energy Technology Data Exchange (ETDEWEB)

    Rivet, P. [Ste MC International (France)

    1997-12-31

    In the framework of greenhouse gas emission reduction and the utilization of cooling intermediate fluids with indirect refrigerating systems, a new concept of dynamical single-tube has been developed, which allows for the simultaneous cold distribution from a centralized plant towards various required temperature systems (as for example in a supermarket refrigerating system) with optimized efficiency, fluid flow and defrosting conditions; moreover, the dynamic single-tube concept is very well adapted to two-phase flows

  1. Consideration of LH2 and LD2 cold neutron sources in heavy water reactor reflector

    International Nuclear Information System (INIS)

    Potapov, I.A.; Serebrov, A.P.

    2001-01-01

    The reactor power, the required CNS dimensions and power of the cryogenic equipment define the CNS type with maximized cold neutron production. Cold neutron fluxes from liquid hydrogen (LH 2 ) and liquid deuterium (LD 2 ) cold neutron sources (CNS) are analyzed. Different CNS volumes, presents and absence of reentrant holes inside the CNS, different adjustment of beam tube and containment are considered. (orig.)

  2. Atomization of thorium in a hollow-cathode type discharge

    International Nuclear Information System (INIS)

    Pianarosa, P.; Demers, Y.; Gagne, J.M.

    1984-01-01

    The atomization of thorium metal in a hollow-cathode electrical discharge has been investigated. Laser absorption spectroscopy with the laser tuned on the 5760.55 A (0-17355 1 cm -1 ) transition of Th I was used to evaluate the density of atoms in the 3 F 2 ground state. The results obtained (densities up to 10 13 atoms cm -3 ) show that our discharge tube is a suitable source of thorium metal atoms for laser assisted spectroscopic analysis of this element. (author)

  3. Low in reactor creep Zr-base alloy tubes

    International Nuclear Information System (INIS)

    Cheadle, B.A.; Holt, R.A.

    1984-01-01

    This invention relates to zirconium alloy tubes especially for use in nuclear power reactors. More particularly it relates to quaternary 3.5 percent Sn, 1 percent Mo, 1 percent Nb, balance Zr alloy tubes which have been extruded, cold worked and heat treated to lower their dislocation density. In one embodiment the alloys are cold worked less than 5 percent and stress relieved to produce a low dislocation density and in another embodiment the alloys are cold worked up to about 50 percent and annealed to produce a very low dislocation density and also small equiaxed β grains

  4. Development of heat treated Zr-2.5% Nb alloy tubes for pressure tubes

    International Nuclear Information System (INIS)

    Saibaba, N.; Jha, S.K.; Tonpe, S.

    2011-01-01

    Zr-2.5% Nb alloy is the candidate material for pressure tubes of Pressurized Heavy Water Reactors (PHWR), and are manufactured in cold working condition while heat treated pressure tubes are used in RBMK and FUGEN type of reactors. The diametral creep of these tubes is the life limiting factor. This paper presents the extensive work carried out for the optimization of process parameters to manufacture heat treated Zr-2.5% Nb pressure tubes. Extensive dilactometry study was carried out to establish the transus temperature for the alloy and the effect of soaking temperature and cooling rate on the microstructure was characterized. On the basis of the study, water quenching (at 883 deg C) in the a b region with 20-25% primary a phase was selected, further cold worked, aged and finally autoclaved. Mechanical properties of the finished tubes were found to be comparable to the cold worked route. Large number of full sized tubes of about 700 - 800 mm long was produced to establish the repeatability. (author)

  5. Plasma Deposition of Oxide-Coated Cathodes

    National Research Council Canada - National Science Library

    Umstattd, Ryan

    1998-01-01

    ...; such cathodes may also have applicability for lower current density continuous wave devices. This novel approach to manufacturing an oxide cathode eliminates the binders that may subsequently (and unpredictably...

  6. Annular gap measurement between pressure tube and calandria tube by eddy current technique

    International Nuclear Information System (INIS)

    Bhole, V.M.; Rastogi, P.K.; Kulkarni, P.G.

    1992-01-01

    In pressurised heavy water reactor (PHWR) major distinguishing feature is that there are number of identical fuel channels in the reactor core. Each channel consists of pressure tube of Zr-2.5 Nb or zircaloy-2 through which high temperature, high pressure primary coolant is passing. The pressure tube contains fuel. Surrounding the pressure tube there is low pressure, cool heavy water (moderator). The moderator is thermally separated from coolant by the tube which is nominally concentric with pressure tube called calandria tube. There are four garter springs in the annular gap between pressure tube and calandria tube. During the life of the reactor there are number of factors by which the pressure tube sags, most important factors are irradiation creep, thermal creep, fuel load etc. Because of the sag of pressure tube it can touch the calandria tube resulting in formation of cold spot. This leads to hydrogen concentration at that spot by which the material at that place becomes brittle and can lead to catastrophic failure of pressure tube. There is no useful access for measurement of annular gap either through the gas annular space or from exterior of calandria tube. So the annular gap was measured from inside surface of pressure tube which is accessible. Eddy current technique was used for finding the gap. The paper describe the details of split coil design of bobbin probe, selection of operating point on normalised impedance diagram by choosing frequency. Experimental results on full scale mock up, and actual gap measurement in reactor channel, are also given. (author). 7 figs

  7. Mechanistic Enhancement of SOFC Cathode Durability

    Energy Technology Data Exchange (ETDEWEB)

    Wachsman, Eric [Univ. of Maryland, College Park, MD (United States)

    2016-02-01

    Durability of solid oxide fuel cells (SOFC) under “real world” conditions is an issue for commercial deployment. In particular cathode exposure to moisture, CO2, Cr vapor (from interconnects and BOP), and particulates results in long-term performance degradation issues. Here, we have conducted a multi-faceted fundamental investigation of the effect of these contaminants on cathode performance degradation mechanisms in order to establish cathode composition/structures and operational conditions to enhance cathode durability.

  8. Influence of soil on St3 surface spectroscopic characteristics under cathode protection conditions

    International Nuclear Information System (INIS)

    Kuznetsova, E.G.; Lazorenko-Manevich, R.M.; Sokolova, L.A.; Remezkova, L.V.

    1992-01-01

    Using electroreflection spectra it is shown, that St3 surface following long holding in cold clay without cathode protection is less heterogeneous relative to water absorption, than surface of initial specimens, as well as, of specimens holded in wet clay. This variation of distribution of adsorption centres by heats of water absorption results from stable absorption of surface-and-active components of clayed soil and is accompanied by increase of St3 corrosion stability. Long-term cathode polarization reduces initial distribution and decreases corrosion stability of St3

  9. HFIR cold neutron source moderator vessel design analysis

    International Nuclear Information System (INIS)

    Chang, S.J.

    1998-04-01

    A cold neutron source capsule made of aluminum alloy is to be installed and located at the tip of one of the neutron beam tubes of the High Flux Isotope Reactor. Cold hydrogen liquid of temperature approximately 20 degree Kelvin and 15 bars pressure is designed to flow through the aluminum capsule that serves to chill and to moderate the incoming neutrons produced from the reactor core. The cold and low energy neutrons thus produced will be used as cold neutron sources for the diffraction experiments. The structural design calculation for the aluminum capsule is reported in this paper

  10. Cold atoms in singular potentials

    International Nuclear Information System (INIS)

    Denschlag, J. P.

    1998-09-01

    We studied both theoretically and experimentally the interaction between cold Li atoms from a magnetic-optical trap (MOT) and a charged or current-carrying wire. With this system, we were able to realize 1/r 2 and 1/r potentials in two dimensions and to observe the motion of cold atoms in both potentials. For an atom in an attractive 1/r 2 potential, there exist no stable trajectories, instead there is a characteristic class of trajectories for which atoms fall into the singularity. We were able to observe this falling of atoms into the center of the potential. Moreover, by probing the singular 1/r 2 potential with atomic clouds of varying size and temperature we extracted scaling properties of the atom-wire interaction. For very cold atoms, and very thin wires the motion of the atoms must be treated quantum mechanically. Here we predict that the absorption cross section for the 1/r 2 potential should exhibit quantum steps. These quantum steps are a manifestation of the quantum mechanical decomposition of plane waves into partial waves. For the second part of this work, we realized a two dimensional 1/r potential for cold atoms. If the potential is attractive, the atoms can be bound and follow Kepler-like orbits around the wire. The motion in the third dimension along the wire is free. We were able to exploit this property and constructed a novel cold atom guide, the 'Kepler guide'. We also demonstrated another type of atom guide (the 'side guide'), by combining the magnetic field of the wire with a homogeneous offset magnetic field. In this case, the atoms are held in a potential 'tube' on the side of the wire. The versatility, simplicity, and scaling properties of this guide make it an interesting technique. (author)

  11. X-Band Thermionic Cathode RF Gun at UTNL

    CERN Document Server

    Fukasawa, Atsushi; Dobashi, Katsuhiro; Ebina, Futaro; Hayano, Hitoshi; Higo, Toshiyasu; Kaneyasu, Tatsuo; Matsuo, Kennichi; Ogino, Haruyuki; Sakae, Hisaharu; Sakamoto, Fumito; Uesaka, Mitsuru; Urakawa, Junji

    2005-01-01

    The X-band (11.424 GHz) linac for compact Compton scattering hard X-ray source are under construction at Nuclear Engineering Research Laboratory, University of Tokyo. This linac designed to accelerate up to 35 MeV, and this electron beam will be used to produce hard X-ray by colliding with laser. It consists of a thermionic cathode RF gun, an alpha magnet, and a traveling wave tube. The gun has 3.5 cells (unloaded Q is 8250) and will be operated at pi-mode. A dispenser cathode is introduced. Since the energy spread of the beam from the gun is predicted to be broad due to the continuous emission from the thermionic cathode, a slit is placed in the alpha magnet to eliminate low energy electrons. The simulation on the injector shows the beam energy 2.9 MeV, the charge 23 pC/bunch, and the emittance less than 10 mm.mrad. The experiment on the gun is planed in the beginning of 2005, and the details will be discussed on the spot.

  12. Eustachian tube patency

    Science.gov (United States)

    Eustachian tube patency refers to how much the eustachian tube is open. The eustachian tube runs between the middle ear and the throat. It controls the pressure behind the eardrum and middle ear space. This helps keep ...

  13. Feeding tube - infants

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007235.htm Feeding tube - infants To use the sharing features on this page, please enable JavaScript. A feeding tube is a small, soft, plastic tube placed ...

  14. Basic study of cold fusion. 1. The development of excess heat measurement system in electrolysis

    International Nuclear Information System (INIS)

    Asaoka, Yoshiyuki; Fujita, Tomonari

    1994-01-01

    We have an opportunity ripe to investigate the cold fusion phenomena. In order to declare the subjects to be examined, the precision calorimetry system was developed to try to reproduce the phenomena. The electrolysis of heavy water with palladium cathode was conducted based on the thought that it is important to confirm the cold fusion phenomena. For precision excess power measurement, the closed cell with recombiner and flow-calorimetry were adopted. The obtained accuracy for the excess power measurement of the system was ±0.2 W at up to 9 W of applied power. This is enough for the excess power reported as the cold fusion phenomena. For farther investigation, measurement of loading ratio of deuterium in the palladium cathode, maintenance of high deuterium loading and analysis of the palladium cathode are to be conducted. (author)

  15. Baking of tandem accelerator tube by low voltage arc discharge

    International Nuclear Information System (INIS)

    Nakajima, Yutaka

    1982-01-01

    In designing the accelerating tube for a static tandem accelerator in Kyushu University, the basic policy was as described below: individual unit composing the accelerating tube should fully withstand the electric field of 2 MV/m, and electric discharge must not be propagated from one unit to the adjacent unit when these are assembled to the accelerating tube. The accelerating tube units are each 25 cm in length, and both high and low energy sides are composed of 20 units, respectively. Although about 10 -9 Torr vacuum was obtained at the both ends of the accelerating tube by baking the tube at 300 to 350 deg C with electric heaters wound outside the tube in the conventional method, vast outgas was generated, which decreased vacuum by two or three figures if breakdown occurred through the intermediary of outgas. As a method of positively outgassing and cleaning the electrodes inside the accelerating tube, it was attempted to directly bake all the electrodes in the accelerating tube by causing strong arc discharge flowing H 2 gas in the tube. As a result of considering the conditions for this method, the low voltage arc discharge was employed using oxide cathodes. Thus, after implementing 10A arc discharge for several hours, the voltage was able to be raised to 10 MV almost immediately after the vacuum recovery, and further, after another conditioning for several hours, it was successful to raise voltage up to 11 MV. (Wakatsuki, Y.)

  16. Characteristics of the JRR-3M neutron guide tubes

    International Nuclear Information System (INIS)

    Suzuki, Masatoshi; Ichikawa, Hiroki; Kawabata, Yuji.

    1993-01-01

    Large scale neutron guide tubes have been installed in the upgraded JRR-3 (Japan Research Reactor No.3, JRR-3M). The total length of the guide tubes is 232m. The neutron fluxes and spectra were measured at the end of the neutron guide tubes. The neutron fluxes of thermal neutron guide tubes with characteristic wavelength of 2A are 1.2 x 10 8 n/cm 2 · s. The neutron fluxes of cold guide tubes are 1.4 x 10 8 n/cm 2 · s with characteristic wavelength of 4A and 2.0 x 10 8 n/cm 2 · s with 6A when the cold neutron source is operated. The neutron spectra measured by time-of-flight method agree well with their designed ones. (author)

  17. Tube holding system

    International Nuclear Information System (INIS)

    Cunningham, R.C.

    1978-01-01

    A tube holding rig is described for the lateral support of tubes arranged in tight parcels in a heat exchanger. This tube holding rig includes not less than two tube supporting assemblies, with a space between them, located crosswise with respect to the tubes, each supporting assembly comprising a first set of parallel components in contact with the tubes, whilst a second set of components is also in contact with the tubes. These two sets of parts together define apertures through which the tubes pass [fr

  18. Status of the tube elongation problem as of June 1976

    International Nuclear Information System (INIS)

    Alexander, W.K.

    1976-01-01

    It was discovered in May of 1971 that the N Reactor process tubes had apparently increased in length by as much as one inch. Preliminary observations and measurements led to the tentative conclusion that this observed elongation was linear with accumulated tube exposure and also that it was related in some manner to the tube fabrication process. It appeared that the observed elongation was approximately proportional to the degree of cold work retained in the finished tubes. This latter conclusion was based on the observation that those tubes with approximately 17-18 percent cold work had elongated only about half as much as the standard 30-percent-cold-worked tubes. It was immediately recognized that if such elongation was to continue unchecked it could pose a limit to reactor life since total possible tube expansion, from all causes, is limited to 1.75 inches by nozzle design considerations as shown in Figure 1. Thermal and hydraulic expansion were calculated to total approximately 0.75 inches which left only one inch available to accommodate tube growth or creep. Since discovery of this phenomenon, an extensive measurements program has been carried out to evaluate the extent and rate of tube elongation. Two corrective approaches have been developed and a small number of tubes were modified by each method during the 1976 summer outage. During the 1974, 1975 and 1976 Summer Outages, measurements were made on all tubes to determine the clearance remaining between the nozzle keys and the gas packing ring. These readings not only give an overall picture of the extent of elongation, but also provide immediate data indicating which tubes are about out of clearance. The report presents an evaluation of the measurements taken to date

  19. Synopsis of Cathode No.4 Activation

    International Nuclear Information System (INIS)

    Kwan, Joe; Ekdahl, C.; Harrison, J.; Kwan, J.; Leitner, M.; McCruistian, T.; Mitchell, R.; Prichard, B.; Roy, P.

    2006-01-01

    The purpose of this report is to describe the activation of the fourth cathode installed in the DARHT-II Injector. Appendices have been used so that an extensive amount of data could be included without danger of obscuring important information contained in the body of the report. The cathode was a 612 M type cathode purchased from Spectra-Mat. Section II describes the handling and installation of the cathode. Section III is a narrative of the activation based on information located in the Control Room Log Book supplemented with time plots of pertinent operating parameters. Activation of the cathode was performed in accordance with the procedure listed in Appendix A. The following sections provide more details on the total pressure and constituent partial pressures in the vacuum vessel, cathode heater power/filament current, and cathode temperature

  20. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    Energy Technology Data Exchange (ETDEWEB)

    Harlan U. Anderson; Fatih Dogan; Vladimir Petrovsky

    2002-03-31

    This project has three main goals: Thin Films Studies, Preparation of Graded Porous Substrates and Basic Electrical Characterization and testing of Planar Single Cells. This period has continued to address the problem of making dense 1/2 to 5 {micro}m thick dense layers on porous substrates (the cathode LSM). Our current status is that we are making structures of 2-5 cm{sup 2} in area, which consist of either dense YSZ or CGO infiltrated into a 2-5 {micro}m thick 50% porous layer made of either nanoncrystalline CGO or YSZ powder. This composite structure coats a macroporous cathode or anode; which serves as the structural element of the bi-layer structure. These structures are being tested as SOFC elements. A number of structures have been evaluated both as symmetrical and as button cell configuration. Results of this testing indicates that the cathodes contribute the most to cell losses for temperatures below 750 C. In this investigation different cathode materials were studied using impedance spectroscopy of symmetric cells and IV characteristics of anode supported fuel cells. Cathode materials studied included La{sub 0.8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (LSCF), La{sub 0.7}Sr{sub 0.2}MnO{sub 3} (LSM), Pr{sub 0.8}Sr{sub 0.2}Fe{sub 0.8}O{sub 3} (PSCF), Sm{sub 0.8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (SSCF), and Yb{sub .8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (SSCF). A new technique for filtering the Fourier transform of impedance data was used to increase the sensitivity of impedance analysis. By creating a filter specifically for impedance spectroscopy the resolution was increased. The filter was tailored to look for specific circuit elements like R//C, Warburg, or constant phase elements. As many as four peaks can be resolved using the filtering technique on symmetric cells. It may be possible to relate the different peaks to material parameters, like the oxygen exchange coefficient. The cathode grouped in order from lowest to highest ASR is

  1. Neutron radiography of irradiated zircaloy coupons of pressure tubes from PHWR`s

    Energy Technology Data Exchange (ETDEWEB)

    Gangotra, S; Ouseph, P M; Tamhane, A B; Singh, H N; Sahoo, K C [Bhabha Atomic Research Centre, Bombay (India). Radiometallurgy Div.

    1994-12-31

    The Indian Pressurised Heavy Water Reactors (PHWR`s) are of CANDU type, consisting of 304 zircaloy-2 pressure tubes. These pressure tubes contain the fuel bundles, where the heat is generated and is removed by the heavy water flowing through these pressure tubes at high temperature and pressure. These pressure tubes are surrounded by the calandria tubes, and are separated from them by a pair of garter springs. Over a period of time, as a result of the irradiation creep and assisted by the displacement of the garter springs, the hot pressure tube may come in contact with the cold calandria tube. This would result in the hydrogen migrating to the cold contact location and formation of hydride blisters. These blisters could eventually rupture the pressure tube by the DHC (delayed hydrogen cracking) mechanism. 2 refs., 2 figs.

  2. Electron emission regulator for an x-ray tube filament

    International Nuclear Information System (INIS)

    Daniels, H.E.; Randall, H.G.

    1982-01-01

    An x-ray tube ma regulator has an scr phase shift voltage regulator supplying the primary winding of a transformer whose secondary is coupled to the x-ray tube filament. Prior to initiation of an x-ray exposure, the filament is preheated to a temperature corresponding substantially to the electron emissivity needed for obtaining the desired tube ma during an exposure. During the preexposure interval, the phase shift regulator is controlled by a signal corresponding to the sum of signals representative of the voltage applied to the filament transformer, the desired filament voltage and the space charge compensation needed for the selected x-ray tube anode to cathode voltage. When an exposure is initiated, control of the voltage regulator is switched to a circuit that responds to the tube current by controlling the amount of phase shift and, hence, the voltage supplied to the transformer. Transformer leakage current compensation is provided during the exposure interval with a circuit that includes an element whose impedance is varied in accordance with the anode-to-cathode voltage setting so the element drains off tube current as required to cancel the effect of leakage current variations

  3. Analytical model of heat transfer in porous insulation around cold pipes

    DEFF Research Database (Denmark)

    Guldbrandsen, Tom; Karlsson, Per W.; Korsgaard, Vagn

    2011-01-01

    cloth is wrapped around the cold tube and extended through a slit in the tubular insulation and a slot in the facing to the ambient so that condensed water can evaporate into the air. Some of the moisture in that part of the wicking cloth situated in the slit in the tubular insulation will diffuse......A thermal insulation system is analysed that consists of a cold tube insulated with a porous material faced with a vapour retarding foil.Water vapour will diffuse through the vapour retarding foil and condense on the cold tube. To avoid build-up of water in the insulation a hydrophilic wicking...

  4. Grooved cold moderator tests

    International Nuclear Information System (INIS)

    Inoue, K.; Kiyanagi, Y.; Iwasa, H.; Watanabe, N.; Ikeda, S.; Carpenter, J.M.; Ishikawa, Y.

    1983-01-01

    We performed some grooved cold moderator experiments for methane at 20 K by using the Hokkaido University linac to obtain information to be used in the planning of the KENS-I' project. Cold neutron gains, spatial distribution of emitted beams and time distribution of the neutrons in the grooved cold moderator were measured. Furthermore, we assessed the effects of the grooved cold moderator on the performances of the spectrometers presently installed at the KENS-I cold source. We concluded that the grooved cold moderator benefited appreciably the performances of the spectrometers

  5. Pulse tube coolers for Meteosat third generation

    International Nuclear Information System (INIS)

    Butterworth, James; Aigouy, Gérald; Chassaing, Clement; Debray, Benoît; Huguet, Alexandre

    2014-01-01

    Air Liquide's Large Pulse Tube Coolers (LPTC) will be used to cool the focal planes of the Infrared Sounder (IRS) and Flexible Combined Imager (FCI) instruments aboard the ESA/Eumetsat satellites Meteosat Third Generation (MTG). This cooler consists of an opposed piston linear compressor driving a pulse tube cold head and the associated drive electronics including temperature regulation and vibration cancellation algorithms. Preparations for flight qualification of the cooler are now underway. In this paper we present results of the optimization and qualification activities as well as an update on endurance testing

  6. Study of a DC gas discharge with a copper cathode in a water flow

    Science.gov (United States)

    Tazmeev, G. Kh.; Timerkaev, B. A.; Tazmeev, Kh. K.

    2017-07-01

    A dc gas discharge between copper electrodes in the current range of 5-20 A was studied experimentally. The discharge gap length was varied within 45-70 mm. The cathode was a 10-mm-diameter rod placed in the water flowing out from a dielectric tube. Three discharge configurations differing in the position of the cathode upper end with respect to the water surface were considered: (i) above water; (ii) flush with the water surface, and (iii) under water. The electric and optical characteristics of the discharge in the second configuration were studied in more detail. It is established that the discharge properties are similar to those of an electric arc. Considerable cathode erosion was observed in the third configuration. It is revealed that fine-dispersed copper grains form in the course of erosion.

  7. Thinking about the cold fusion fever

    International Nuclear Information System (INIS)

    Kitsunezaki, Akio

    1989-01-01

    The excitement since March 23 on cold fusion seems to be unprecedented evidence that the people of the world are waiting for fusion power with much enthusiasm. Cold fusion is really a surprise because it does not need high temperature and because it seems to be easy to enlarge the test tube into a useful power source if the claim by Professors Pons and Fleischmann at the University of Utah are true. The second announcement of cold fusion came from the Brigham Young University, also in the state of Utah, by Professor Jones, but his report was totally different from that given by Pons and Fleischmann. From the beginning of the 'fever', physicists have been very skeptical about cold fusion. Most of the critics and criticisms are targeted on Pons and Fleischmann rather than Jones, because not only was their paper poor but also their statements have not been scientific. They insisted that the heat came from fusion reaction, but without any scientific proof. They had not carried out the basic control experiment by running the same test with ordinary water instead of heavy water. A meeting on cold fusion was held at JAERI on May 15. At the end of the meeting, the some 260 attendants knew that cold fusion was not conceivable with the current scientific knowledge. (N.K.)

  8. Bender/Coiler for Tubing

    Science.gov (United States)

    Stoltzfus, J. M.

    1983-01-01

    Easy-to-use tool makes coils of tubing. Tubing to be bend clamped with stop post. Die positioned snugly against tubing. Operator turns handle to slide die along tubing, pushing tubing into spiral groove on mandrel.

  9. Conceptualizing Cold Disasters

    DEFF Research Database (Denmark)

    Lauta, Kristian Cedervall; Dahlberg, Rasmus; Vendelø, Morten Thanning

    2017-01-01

    In the present article, we explore in more depth the particular circumstances and characteristics of governing what we call ‘cold disasters’, and thereby, the paper sets out to investigate how disasters in cold contexts distinguish themselves from other disasters, and what the implications hereof...... are for the conceptualization and governance of cold disasters. Hence, the paper can also be viewed as a response to Alexander’s (2012a) recent call for new theory in the field of disaster risk reduction. The article is structured in four overall parts. The first part, Cold Context, provides an overview of the specific...... conditions in a cold context, exemplified by the Arctic, and zooms in on Greenland to provide more specific background for the paper. The second part, Disasters in Cold Contexts, discusses “cold disasters” in relation to disaster theory, in order to, elucidate how cold disasters challenge existing...

  10. Working in the Cold

    Centers for Disease Control (CDC) Podcasts

    During the winter, many workers are outdoors, working in cold, wet, icy, or snowy conditions. Learn how to identify symptoms that tell you there may be a problem and protect yourself from cold stress.

  11. Colds and the Flu

    Science.gov (United States)

    ... disease (COPD). What medicines can I give my child? There is no cure for the cold or the flu, and antibiotics do not work against the viruses that cause colds and the flu. Pain relievers such as ...

  12. Cold knife cone biopsy

    Science.gov (United States)

    ... biopsy; Pap smear - cone biopsy; HPV - cone biopsy; Human papilloma virus - cone biopsy; Cervix - cone biopsy; Colposcopy - cone biopsy Images Female reproductive anatomy Cold cone biopsy Cold cone removal References Baggish ...

  13. Cold medicines and children

    Science.gov (United States)

    ... ingredient. Avoid giving more than one OTC cold medicine to your child. It may cause an overdose with severe side ... the dosage instructions strictly while giving an OTC medicine to your child. When giving OTC cold medicines to your child: ...

  14. Electron beam generation form a superemissive cathode

    International Nuclear Information System (INIS)

    Hsu, T.-Y.; Liou, R.-L.; Kirkman-Amemiya, G.; Gundersen, M.A.

    1991-01-01

    An experimental study of electron beams produced by a superemissive cathode in the Back-Lighted Thyratron (BLT) and the pseudospark is presented. This work is motivated by experiments demonstrating very high current densities (≥10 kA/cm 2 over an area of 1 cm 2 ) from the pseudospark and BLT cathode. This high-density current is produced by field-enhanced thermionic emission from the ion beam-heated surface of a molybdenum cathode. This work reports the use of this cathode as a beam source, and is to be distinguished from previous work reporting hollow cathode-produced electron beams. An electron beam of more than 260 A Peak current has been produced with 15 kV applied voltage. An efficiency of ∼10% is estimated. These experimental results encourage further investigation of the super-emissive cathode as an intense electron beam source for applications including accelerator technology

  15. Reflective article having a sacrificial cathodic layer

    Science.gov (United States)

    Kabagambe, Benjamin; Buchanan, Michael J.; Scott, Matthew S.; Rearick, Brian K.; Medwick, Paul A.; McCamy, James W.

    2017-09-12

    The present invention relates to reflective articles, such as solar mirrors, that include a sacrificial cathodic layer. The reflective article, more particularly includes a substrate, such as glass, having a multi-layered coating thereon that includes a lead-free sacrificial cathodic layer. The sacrificial cathodic layer includes at least one transition metal, such as a particulate transition metal, which can be in the form of flakes (e.g., zinc flakes). The sacrificial cathodic layer can include an inorganic matrix formed from one or more organo-titanates. Alternatively, the sacrificial cathodic layer can include an organic polymer matrix (e.g., a crosslinked organic polymer matrix formed from an organic polymer and an aminoplast crosslinking agent). The reflective article also includes an outer organic polymer coating, that can be electrodeposited over the sacrificial cathodic layer.

  16. Preventing Corrosion by Controlling Cathodic Reaction Kinetics

    Science.gov (United States)

    2016-03-25

    3. DATES COVERED (From - To) 09/23/15 - 04/22/16 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER Preventing Corrosion by Controlling Cathodic Reaction...Preventing corrosion by controlling cathodic reaction kinetics Progress Report for Period: 1 SEP 2015-31 MAR 2016 John Keith Department of...25 March 2016 Preventing corrosion by controlling cathodic reaction kinetics Annual Summary Report: FY16 PI: John Keith, 412-624-7016,jakeith

  17. A novel investigation of heat transfer characteristics in rifled tubes

    Science.gov (United States)

    Jegan, C. Dhayananth; Azhagesan, N.

    2018-05-01

    The experimental investigation of heat transfer of water flowing in a rifled tube was explored at different pressures and at various operating conditions in a rifled tube heat exchanger. The specifications for the inner and outer diameters of the inner tube are 25.8 and 50.6 mm, respectively. The working fluids used in shell side and tube side are cold and hot water. The rifled tube was made of the stainless steel with 4 ribs, 50.6 mm outer diameter, 0.775 mm rib height, 58o helix angle and the length 1500 mm. The effect of pressure, wall heat flux and friction factor were discussed. The results confirm that even at low pressures the rifled tubes has an obvious enhancement in heat transfer compared with smooth tube. Results depicts that the Nusselt number increases with Reynolds number and the friction factor decreases with increase in Reynolds number and the heat transfer rate is higher for the rifled tube when compared to smooth tube, because of strong swirl flow due to centrifugal action. It also confirms that, the friction factor obtained from the rifled tube is significantly higher than that of smooth tube.

  18. Development of nondestructive measurement of cold work rate, (2)

    International Nuclear Information System (INIS)

    Kamimura, Hideaki; Igarashi, Miyuki; Satoh, Masakazu; Miura, Makoto

    1978-01-01

    Cold-worked type 316 stainless steel will be used as fuel cladding material for the proto-type fast reactor MONJU. Cold work rate is an important parameter in swelling behavior of fuel cladding. It has been shown that austenitic stainless steel undergoes martensitic transformation during cold working. Nondestructive evaluation of cold work rate will be expected by measuring residual magnetism produced in the presence of martensitic phase when cold worked austenitic stainless steel is magnetized. In the previous work, the residual magnetism of cladding tubes of type 316 stainless steel was measured. The results have shown high degree of the correlation between residual magnetism and cold work rate. This paper reports the results of measurement on cold-rolled type 316 stainless steel plate samples. Dimensions of the specimens are 100 mm long and 3.5 and 7 mm wide. The apparatus and experimental procedures were similar to the previous work. Good agreement was found between the estimated cold work rate obtained in the previous work and that for cold rolled plate specimens. Measurement of residual magnetism in identical direction with magnetization showed smaller dispersion of data as compared with that in transverse direction. The residual magnetism near specimen surface hardly decreased when the surface of specimen was chemically removed. The reason for the comparative decrease in residual magnetism at 10% and 15% cold work rate is not clear. (Wakatsuki, Y.)

  19. Investigation of electron emission properties of Ba-activated tungsten cathodes

    International Nuclear Information System (INIS)

    Beck, I; Josepovits, V K; Sneider, J; Toth, Z

    2005-01-01

    In this work we investigated the electron emission properties of high-pressure discharge lamp cathode tips. The work function (Φ) of the cathode tip was measured by using the Kelvin probe method and by work function spectroscopy (WFS). The Kelvin probe method was used to measure the average work function of tips under atmospheric pressure in air. By WFS we could measure the local work function value of tips in the selected spots under ultra high vacuum conditions. The chemical composition analysis was carried out in the same chamber by Auger electron spectroscopy. The focus of this study is to investigate the influence of sintering temperature of cathodes (1500-1700 deg. C) and lamp operation time (0-12 000 h) on the work function. The comparison of the work function of both cathodes as a function of operation time originating from the two different ends of the ceramic tube is also considered. In order to understand the structure of the layers on the cathode tips we also give results obtained on a flat tungsten foil covered with Ba-containing emission material. The flat samples were measured using x-ray photoelectron spectroscopy and WFS

  20. Mechanistic modelling of a cathode-supported tubular solid oxide fuel cell

    Science.gov (United States)

    Suwanwarangkul, R.; Croiset, E.; Pritzker, M. D.; Fowler, M. W.; Douglas, P. L.; Entchev, E.

    A two-dimensional mechanistic model of a tubular solid oxide fuel cell (SOFC) considering momentum, energy, mass and charge transport is developed. The model geometry of a single cell comprises an air-preheating tube, air channel, fuel channel, anode, cathode and electrolyte layers. The heat radiation between cell and air-preheating tube is also incorporated into the model. This allows the model to predict heat transfer between the cell and air-preheating tube accurately. The model is validated and shows good agreement with literature data. It is anticipated that this model can be used to help develop efficient fuel cell designs and set operating variables under practical conditions. The transport phenomena inside the cell, including gas flow behaviour, temperature, overpotential, current density and species concentration, are analysed and discussed in detail. Fuel and air velocities are found to vary along flow passages depending on the local temperature and species concentrations. This model demonstrates the importance of incorporating heat radiation into a tubular SOFC model. Furthermore, the model shows that the overall cell performance is limited by O 2 diffusion through the thick porous cathode and points to the development of new cathode materials and designs being important avenues to enhance cell performance.

  1. Drift chambers on the basis of mylar tubing blocks

    International Nuclear Information System (INIS)

    Budagov, Yu.A.; Golovanov, L.B.; Kuritsin, A.A.; Pukhov, O.E.; Khazins, D.M.; Chirikov-Zorin, I.E.; Joint Inst. for Nuclear Research, Dubna; Zhukov, V.Yu.

    1992-01-01

    We tested the models of the drift chambers, which are constructed of mylar tubing blocks. The purpose of the tubing block forming technology is to create long chambers (up to 3-4 meters). There are count and drift characteristics of the chambers for different gas pressures and different diameters of sense wires. The service time of the chambers is defined. We registered a photoeffect in the visible spectrum area, which is displayed on the surface of the mylar film cathode, covered by aluminium. 8 refs.; 5 figs

  2. Cathode materials: A personal perspective

    Energy Technology Data Exchange (ETDEWEB)

    Goodenough, John B. [Texas Materials Institute, University of Texas at Austin, ETC 9.102, 1 University Station, Austin, TX 78712-1063 (United States)

    2007-12-06

    A thermodynamically stable rechargeable battery has a voltage limited by the window of the electrolyte. An aqueous electrolyte has a window of 1.2 eV, which prevents achieving the high energy density desired for many applications. A non-aqueous electrolyte with a window of 5 eV requires Li{sup +} rather than H{sup +} as the working ion. Early experiments with Li{sub x}TiS{sub 2} cathodes showed competitive capacity and rate capability, but problems with a lithium anode made the voltage of a safe cell based on a sulfide cathode too low to be competitive with a nickel/metal-hydride battery. Transition-metal oxides can give voltages of 4.5 V versus Li{sup +}/Li{sup 0}. However, the challenge with oxides has been to obtain a competitive capacity and rate capability while retaining a high voltage with low-cost, environmentally friendly cathode materials. Comparisons will be made between layered Li{sub 1-x}MO{sub 2}, spinels Li{sub 1-x}[M{sub 2}]O{sub 4}, and olivines Li{sub 1-x}MPO{sub 4} having 0 < x < 1. Although higher capacities can be obtained with layered Li{sub 1-x}MO{sub 2} compounds, which have enabled the wireless revolution, their metastability makes them unlikely to be used in power applications. The spinel and olivine framework structures have been shown to be capable of charge/discharge rates of over 10C with a suitable temperature range for plug-in hybrid vehicles. (author)

  3. Some characteristics of the long straw drift tubes

    International Nuclear Information System (INIS)

    Bychkov, V.N.; Kekelidze, G.D.; Ivanov, A.B.; Livinskij, V.V.; Lobastov, S.P.; Lysan, V.M.; Mishin, S.V.; Peshekhonov, V.D.

    1998-01-01

    This article represents the construction and testing of the long straw drift tubes of different types. The diameter and the length of each straw were equal to 15 mm and 3 m respectively. The cathode resistance of these straws has a small value, i.e. about 100 Ohm/m. Thus, they do not have a large attenuation length. Installation of the spacers reduces the effective straw length by 0.5 % per meter, at least

  4. An image-tube camera for cometary spectrography

    Science.gov (United States)

    Mamadov, O.

    The paper discusses the mounting of an image tube camera. The cathode is of antimony, sodium, potassium, and cesium. The parts used for mounting are of acrylic plastic and a fabric-based laminate. A mounting design that does not include cooling is presented. The aperture ratio of the camera is 1:27. Also discussed is the way that the camera is joined to the spectrograph.

  5. High Flux Isotope Reactor cold neutron source reference design concept

    International Nuclear Information System (INIS)

    Selby, D.L.; Lucas, A.T.; Hyman, C.R.

    1998-05-01

    In February 1995, Oak Ridge National Laboratory's (ORNL's) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH 2 ) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH 2 cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept

  6. High Flux Isotope Reactor cold neutron source reference design concept

    Energy Technology Data Exchange (ETDEWEB)

    Selby, D.L.; Lucas, A.T.; Hyman, C.R. [and others

    1998-05-01

    In February 1995, Oak Ridge National Laboratory`s (ORNL`s) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH{sub 2}) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH{sub 2} cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept.

  7. Fundamental aspects of cathodic sputtering

    International Nuclear Information System (INIS)

    Harman, R.

    1979-01-01

    The main fundamental aspects and problems of cathodic sputtering used mainly for thin film deposition and sputter etching are discussed. Among many types of known sputtering techniques the radiofrequency /RF/ diode sputtering is the most universal one and is used for deposition of metals, alloys, metallic compounds, semiconductors and insulators. It seems that nowadays the largest number of working sputtering systems is of diode type. Sometimes also the dc or rf triode sputtering systems are used. The problems in these processes are practically equivalent and comparable with the problems in the diode method and therefore our discussion will be, in most cases applicable for both, the diode and triode methods

  8. Cathode-follower power amplifier

    International Nuclear Information System (INIS)

    Giordano, S.; Puglisi, M.

    1983-01-01

    In circular accelerators and particularly in storage rings it is essential that the total impedance, as seen by the beam, be kept below some critical value. A model of the accelerating system was built using a single-ended cathode-follower amplifier driving a ferrite-loaded cavity. The system operated at 234.5 kHz with a peak output voltage of +-10 kV on the gap. The dynamic output impedance, as measured on the gap, was < 15 ohms

  9. Suppression of acoustic streaming in tapered pulse tubes

    International Nuclear Information System (INIS)

    Olson, J.R.; Swift, G.W.

    1998-01-01

    In a pulse tube cryocooler, the gas in the pulse tube can be thought of as an insulating piston, transmitting pressure and velocity from the cold heat exchanger to the hot end of the pulse tube. Unfortunately, convective heat transfer can carry heat from the hot end to the cold end and reduce the net cooling power. Here, the authors discuss one driver of such convection: steady acoustic streaming as generated by interactions between the boundary and the oscillating pressure, velocity, and temperature. Using a perturbation method, they have derived an analytical expression for the streaming in a tapered pulse tube with axially varying mean temperature in the acoustic boundary layer limit. The calculations showed that the streaming depends strongly on the taper angle, the ratio of velocity and pressure amplitudes, and the phase between the velocity and pressure, but it depends only weakly on the mean temperature profile and is independent of the overall oscillatory amplitude. With the appropriate tapering of the tube, streaming can be eliminated for a particular operating condition. Experimentally, the authors have demonstrated that an orifice pulse tube cryocooler with the calculated zero-streaming taper has more cooling power than one with either a cylindrical tube or a tapered pulse tube with twice the optimum taper angle

  10. How cold is cold dark matter?

    International Nuclear Information System (INIS)

    Armendariz-Picon, Cristian; Neelakanta, Jayanth T.

    2014-01-01

    If cold dark matter consists of particles, these must be non-interacting and non-relativistic by definition. In most cold dark matter models however, dark matter particles inherit a non-vanishing velocity dispersion from interactions in the early universe, a velocity that redshifts with cosmic expansion but certainly remains non-zero. In this article, we place model-independent constraints on the dark matter temperature to mass ratio, whose square root determines the dark matter velocity dispersion. We only assume that dark matter particles decoupled kinetically while non-relativistic, when galactic scales had not entered the horizon yet, and that their momentum distribution has been Maxwellian since that time. Under these assumptions, using cosmic microwave background and matter power spectrum observations, we place upper limits on the temperature to mass ratio of cold dark matter today (away from collapsed structures). These limits imply that the present cold dark matter velocity dispersion has to be smaller than 54 m/s. Cold dark matter has to be quite cold, indeed

  11. X-ray tubes

    International Nuclear Information System (INIS)

    Young, R.W.

    1979-01-01

    A form of x-ray tube is described which provides satisfactory focussing of the electron beam when the beam extends for several feet from gun to target. Such a tube can be used for computerised tomographic scanning. (UK)

  12. Pressure tube type reactors

    International Nuclear Information System (INIS)

    Komada, Masaoki.

    1981-01-01

    Purpose: To increase the safety of pressure tube type reactors by providing an additional ECCS system to an ordinary ECCS system and injecting heavy water in the reactor core tank into pressure tubes upon fractures of the tubes. Constitution: Upon fractures of pressure tubes, reduction of the pressure in the fractured tubes to the atmospheric pressure in confirmed and the electromagnetic valve is operated to completely isolate the pressure tubes from the fractured portion. Then, the heavy water in the reactor core tank flows into and spontaneously recycles through the pressure tubes to cool the fuels in the tube to prevent their meltdown. By additionally providing the separate ECCS system to the ordinary ECCS system, fuels can be cooled upon loss of coolant accidents to improve the safety of the reactors. (Moriyama, K.)

  13. Gastrostomy feeding tube - bolus

    Science.gov (United States)

    Feeding - gastrostomy tube - bolus; G-tube - bolus; Gastrostomy button - bolus; Bard Button - bolus; MIC-KEY - bolus ... KEY, 3 to 8 weeks after surgery. These feedings will help your child grow strong and healthy. ...

  14. Feeding tube insertion - gastrostomy

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002937.htm Feeding tube insertion - gastrostomy To use the sharing features on this page, please enable JavaScript. A gastrostomy feeding tube insertion is the placement of a feeding ...

  15. Neural Tube Defects

    Science.gov (United States)

    Neural tube defects are birth defects of the brain, spine, or spinal cord. They happen in the ... that she is pregnant. The two most common neural tube defects are spina bifida and anencephaly. In ...

  16. Cathodic hydrogen charging of zinc

    International Nuclear Information System (INIS)

    Panagopoulos, C.N.; Georgiou, E.P.; Chaliampalias, D.

    2014-01-01

    Highlights: •Incorporation of hydrogen into zinc and formation of zinc hydrides. •Investigation of surface residual stresses due to hydrogen diffusion. •Effect of hydrogen diffusion and hydride formation on mechanical properties of Zn. •Hydrogen embrittlement phenomena in zinc. -- Abstract: The effect of cathodic hydrogen charging on the structural and mechanical characteristics of zinc was investigated. Hardening of the surface layers of zinc, due to hydrogen incorporation and possible formation of ZnH 2 , was observed. In addition, the residual stresses brought about by the incorporation of hydrogen atoms into the metallic matrix, were calculated by analyzing the obtained X-ray diffraction patterns. Tensile testing of the as-received and hydrogen charged specimens revealed that the ductility of zinc decreased significantly with increasing hydrogen charging time, for a constant value of charging current density, and with increasing charging current density, for a constant value of charging time. However, the ultimate tensile strength of this material was slightly affected by the hydrogen charging procedure. The cathodically charged zinc exhibited brittle transgranular fracture at the surface layers and ductile intergranular fracture at the deeper layers of the material

  17. Ion source with plasma cathode

    International Nuclear Information System (INIS)

    Yabe, E.

    1987-01-01

    A long lifetime ion source with plasma cathode has been developed for use in ion implantation. In this ion source, a plasma of a nonreactive working gas serves as a cathode in place of a thermionic tungsten filament used in the Freeman ion source. In an applied magnetic field, the plasma is convergent, i.e., filamentlike; in zero magnetic field, it turns divergent and spraylike. In the latter case, the plasma exhibits a remarkable ability when the working gas has an ionization potential larger than the feed gas. By any combination of a working gas of either argon or neon and a feed gas of AsF 5 or PF 5 , the lifetime of this ion source was found to be more than 90 h with an extraction voltage of 40 kV and the corresponding ion current density 20 mA/cm 2 . Mass spectrometry results show that this ion source has an ability of generating a considerable amount of As + and P + ions from AsF 5 and PF 5 , and hence will be useful for realizing a fully cryopumped ion implanter system. This ion source is also eminently suitable for use in oxygen ion production

  18. Low temperature high frequency coaxial pulse tube for space application

    Energy Technology Data Exchange (ETDEWEB)

    Charrier, Aurelia; Charles, Ivan; Rousset, Bernard; Duval, Jean-Marc [SBT, UMR-E CEA / UJF-Grenoble 1, INAC, 17, rue des Martyrs, Grenoble, F-38054 (France); Daniel, Christophe [CNES, 18, avenue Edouard Belin, Toulouse, F-31401 (France)

    2014-01-29

    The 4K stage is a critical step for space missions. The Hershel mission is using a helium bath, which is consumed day by day (after depletion, the space mission is over) while the Plank mission is equipped with one He4 Joule-Thomson cooler. Cryogenic chain without helium bath is a challenge for space missions and 4.2K Pulse-Tube working at high frequency (around 30Hz) is one option to take it up. A low temperature Pulse-Tube would be suitable for the ESA space mission EChO (Exoplanet Characterisation Observatory, expected launch in 2022), which requires around 30mW cooling power at 6K; and for the ESA space mission ATHENA (Advanced Telescope for High ENergy Astrophysics), to pre-cool the sub-kelvin cooler (few hundreds of mW at 15K). The test bench described in this paper combines a Gifford-McMahon with a coaxial Pulse-Tube. A thermal link is joining the intercept of the Pulse-Tube and the second stage of the Gifford-McMahon. This intercept is a separator between the hot and the cold regenerators of the Pulse-Tube. The work has been focused on the cold part of this cold finger. Coupled with an active phase shifter, this Pulse-Tube has been tested and optimized and temperatures as low as 6K have been obtained at 30Hz with an intercept temperature at 20K.

  19. Pipelines cathodic protection design methodologies for impressed ...

    African Journals Online (AJOL)

    Several inadequate designs of cathodically polarized offshore and onshore pipelines have been reported in Nigeria owing to design complexity and application of the cathodic protection system. The present study focused on critical and detailed approach in impressed current and sacrificial anode design calculation ...

  20. Experiments on cold trap regeneration by NaH decomposition

    International Nuclear Information System (INIS)

    McPheeters, C.C.; Skladzien, S.B.; Raue, D.J.

    1979-10-01

    Cold trap regeneration may be very important in future LMFBRs because of the expected high hydrogen source from the steam generators. This hydrogen precipitates as NaH in the cold trap and may fill the trap within one year of operation. Several methods of cold trap regeneration were considered, but the simplest and least expensive appears to be decomposition of NaH under vacuum at elevated temperatures. Experiments were done to assess the feasibility of this method for cold trap regeneration. Small-scale simulated cold traps (SCT) were located with NaH and NaH plus Na 2 O, and were heated both under vacuum and under a sweep gas at 100 kPa. The evolved hydrogen was converted to water by a CuO bed and collected in a weighting tube

  1. The State of the Art in Cold Forging Lubrication

    DEFF Research Database (Denmark)

    Bay, Niels

    1994-01-01

    The manufature of components in steel, aluminium and copper alloys by cold forging production has increased ever since the 1950's. Typical processes are forward rod extrusion and backward can extrusion, upsetting, ironing, tube extrusion and radial extrusion. The tribological conditions in cold...... forging are extremely severe due to large surface expansion and normal pressure in the tool/workpiece interface combined with elevated tool temperatures. Except for the more simple cold forging operations successful production therefore requires advanced lubrication systems. The present paper gives...... a detailed description of the state of art for lubricant systems for cold forging of C-steels and low alloy steels as well as aluminium alloys including all the basic operations such as cleaning of the slugs, application of eventual conversion coating and lubrication. As regards cold forging of steel...

  2. Model of dopant action in oxide cathodes

    International Nuclear Information System (INIS)

    Engelsen, Daniel den; Gaertner, Georg

    2005-01-01

    The paper describes an electrochemical model, which largely explains the formation of Ba in the oxide cathode at activation and normal operation. In a non-doped oxide cathode electrolysis of BaO is, besides the exchange reaction from the activators in the cathode nickel, an important source of Ba. By doping with rare earth oxides the conductivity of the oxide layer increases, which implies that the potential difference during current drawing over the oxide layer becomes lower and electrolysis of BaO is suppressed. This implies that the part of the electronic conductivity of the (Ba,Sr)O layer induced by the dopants also controls the sensitivity for poisoning: the higher the dopant level, the larger the sensitivity for poisoning. Furthermore, the suppression of electrolysis during normal operation largely explains why doped oxide cathodes have a better life performance than non-doped cathodes. Finally a hypothesis on the enhancement of sintering upon doping is presented

  3. Cathode Effects in Cylindrical Hall Thrusters

    Energy Technology Data Exchange (ETDEWEB)

    Granstedt, E.M.; Raitses, Y.; Fisch, N. J.

    2008-09-12

    Stable operation of a cylindrical Hall thruster (CHT) has been achieved using a hot wire cathode, which functions as a controllable electron emission source. It is shown that as the electron emission from the cathode increases with wire heating, the discharge current increases, the plasma plume angle reduces, and the ion energy distribution function shifts toward higher energies. The observed effect of cathode electron emission on thruster parameters extends and clarifies performance improvements previously obtained for the overrun discharge current regime of the same type of thruster, but using a hollow cathode-neutralizer. Once thruster discharge current saturates with wire heating, further filament heating does not affect other discharge parameters. The saturated values of thruster discharge parameters can be further enhanced by optimal placement of the cathode wire with respect to the magnetic field.

  4. Cold formability of steels

    International Nuclear Information System (INIS)

    Lafond, G.; Leclerq, G.; Moliexe, F.; Namdar, R.; Roesch, L.; Sanz, G.

    1977-01-01

    This work was essentially aimed to the study of the following three questions. Is it possible to assess the cold formability of steels using simple material properties as criteria. What values of mechanical properties can one expect to reach in cold formed parts. Are there simple ways of characterizing the speroidization treatments carried out on steels before cold forming operations. The present report describes the results obtained during this investigation. It is logically divided into three separate parts. Experimental study of cold formability in wire drawing. Influence of metallurgical variables on mechanical properties of high carbon cold drawn wires. Contribution to the study of characterization methods of cold forming steels subjected to a spheroidization heat treatment

  5. Low pressure arc discharges with hollow cathodes and their using in plasma generators and charged particle sources

    CERN Document Server

    Vintizenko, L G; Koval, N N; Tolkachev, V S; Lopatin, I V; Shchanin, P M

    2001-01-01

    Paper presents the results of investigation into arc discharges with a hollow cathode generating 10 sup 1 sup 0 -10 sup 1 sup 2 concentration gas-discharge plasma in essential (approx 1 m sup 3) volumes at low (10 sup - sup 2 -1 Pa) pressures and up to 200 A discharge currents. One studied design of discharge systems with heated and cold cathodes their peculiar features, presented the parameters of plasma generators and of charged particle sources based on arc discharges and discussed, as well, the problems of more rational application of those systems in the processes for surface modification of solids

  6. Ampère-Class Pulsed Field Emission from Carbon-Nanotube Cathodes in a Radiofrequency Resonator

    Energy Technology Data Exchange (ETDEWEB)

    Mihalcea, D. [Northern Illinois U.; Faillace, L. [RadiaBeam Tech.; Hartzell, J. [RadiaBeam Tech.; Panuganti, H. [Northern Illinois U.; Boucher, S. M. [RadiaBeam Tech.; Murokh, A. [RadiaBeam Tech.; Piot, P. [Fermilab; Thangaraj, J. C.T. [Fermilab

    2014-12-01

    Pulsed field emission from cold carbon-nanotube cathodes placed in a radiofrequency resonant cavity was observed. The cathodes were located on the backplate of a conventional $1+\\frac{1}{2}$-cell resonant cavity operating at 1.3-GHz and resulted in the production of bunch train with maximum average current close to 0.7 Amp\\`ere. The measured Fowler-Nordheim characteristic, transverse emittance, and pulse duration are presented and, when possible, compared to numerical simulations. The implications of our results to high-average-current electron sources are briefly discussed.

  7. 21 CFR 868.5800 - Tracheostomy tube and tube cuff.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tracheostomy tube and tube cuff. 868.5800 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5800 Tracheostomy tube and tube cuff. (a) Identification. A tracheostomy tube and tube cuff is a device intended to be placed into a...

  8. The High Flux Isotope Reactor (HFIR) cold source project at ORNL

    International Nuclear Information System (INIS)

    Selby, D.

    1998-01-01

    The scope of this project includes the development, design, procurement/fabrication, testing, and installation of all of the components necessary to produce a working cold source within an existing HFIR beam tube hole in the pressure vessel. All aspects of the cold source design will be based on demonstrated technology adapted to the HFIR design and operating conditions

  9. Cold fusion, Alchemist's dream

    International Nuclear Information System (INIS)

    Clayton, E.D.

    1989-09-01

    In this report the following topics relating to cold fusion are discussed: muon catalysed cold fusion; piezonuclear fusion; sundry explanations pertaining to cold fusion; cosmic ray muon catalysed cold fusion; vibrational mechanisms in excited states of D 2 molecules; barrier penetration probabilities within the hydrogenated metal lattice/piezonuclear fusion; branching ratios of D 2 fusion at low energies; fusion of deuterons into 4 He; secondary D+T fusion within the hydrogenated metal lattice; 3 He to 4 He ratio within the metal lattice; shock induced fusion; and anomalously high isotopic ratios of 3 He/ 4 He

  10. Heat exchanger tube tool

    International Nuclear Information System (INIS)

    Gugel, G.

    1976-01-01

    Certain types of heat-exchangers have tubes opening through a tube sheet to a manifold having an access opening offset from alignment with the tube ends. A tool for inserting a device, such as for inspection or repair, is provided for use in such instances. The tool is formed by a flexible guide tube insertable through the access opening and having an inner end provided with a connector for connection with the opening of the tube in which the device is to be inserted, and an outer end which remains outside of the chamber, the guide tube having adequate length for this arrangement. A flexible transport hose for internally transporting the device slides inside of the guide tube. This hose is long enough to slide through the guide tube, into the heat-exchanger tube, and through the latter to the extent required for the use of the device. The guide tube must be bent to reach the end of the heat-exchanger tube and the latter may be constructed with a bend, the hose carrying anit-friction elements at interspaced locations along its length to make it possible for the hose to negotiate such bends while sliding to the location where the use of the device is required

  11. Cold Antimatter Plasmas, and Aspirations for Cold Antihydrogen

    Science.gov (United States)

    2002-06-24

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP012494 TITLE: Cold Antimatter Plasmas, and Aspirations for Cold...part numbers comprise the compilation report: ADP012489 thru ADP012577 UNCLASSIFIED Cold Antimatter Plasmas, and Aspirations for Cold Antihydrogen G...and positrons. The antiprotons come initially from the new Antiproton Decel- erator facility at CERN. Good control of such cold antimatter plasmas is

  12. Applicability of the Child-Langmuir laws versions for describing the glow discharge cathode sheath in CO2

    Science.gov (United States)

    Lisovskiy, Valeriy; Krol, Hennadii; Osmayev, Ruslan; Yegorenkov, Vladimir

    2016-09-01

    This work is devoted to the determination of the law that may be applicable to the description of the cathode sheath in CO2. To this end three versions of the Child-Langmuir law have been considered - a collision free one (for the ions moving through a cathode sheath without collisions with gas molecules) as well as two collision- related versions- one for a constant mean free path of positive ions and one for a constant mobility of positive ions. The current-voltage characteristics and the cathode sheath thickness of the glow discharge in carbon oxide have been simultaneously measured in the pressure range from 0.05 to 1 Torr and with the discharge current values up to 80 mA. The inter-electrode distance has been chosen such that the discharge consists only of the cathode sheath and a small portion of the negative glow, i.e. the experiments have been performed in short tubes. In this case the voltage drop across the cathode sheath is equal approximately to the voltage drop across the electrodes. In the whole range of the discharge conditions we have studied the cathode sheath characteristics are found to obey correctly only to the Child-Langmuir law version with a constant ion mobility. The reason for this phenomenon may be related with a significant conversion of carbon dioxide molecules.

  13. Cold weather effects on Dresden Unit 1

    Energy Technology Data Exchange (ETDEWEB)

    Anagnostopoulos, H. [Commonwealth Edison Co., Morris, IL (United States)

    1995-03-01

    Dresden Unit 1 is in the final stages of a decommissioning effort directed at preparing the unit to enter a SAFSTOR status. Following an extended sub-zero cold wave, about 55,000 gallons of water were discovered in the lowest elevation of the spherical reactor enclosure. Cold weather had caused the freezing and breaking of several service water lines that had not been completely isolated. Two days later, at a regularly scheduled decommissioning meeting, the event was communicated to the decommissioning team, who quickly recognized the potential for freezing of a 42 inches diameter Fuel Transfer Tube that connects the sphere to the Spent Fuel Pool. The team directed that the pool gates between the adjacent Spent Fuel Pool and the Fuel Transfer Pool be installed, and a portable source of heat was installed on the Fuel Transfer Tube. It was later determined that, with the fuel pool gates removed, and with a worst case freeze break at the 502 elevation on the Fuel Transfer Tube (in the Sphere), the fuel in the Spent Fuel Pool could be uncovered to a level 3 below the top of active fuel.

  14. Analysis of cathode geometry to minimize cathode erosion in direct current microplasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Causa, Federica [Dipartimento di Scienze dell' Ambiente, della Sicurezza, del Territorio, degli Alimenti e della Salute, Universita degli studi di Messina, 98122 Messina (Italy); Ghezzi, Francesco; Caniello, Roberto; Grosso, Giovanni [Istituto di Fisica del Plasma, Consiglio Nazionale delle Ricerche, EURATOM-ENEA-CNR Association, Via R. Cozzi 53, 20125 Milano (Italy); Dellasega, David [Istituto di Fisica del Plasma, Consiglio Nazionale delle Ricerche, EURATOM-ENEA-CNR Association, Via R. Cozzi 53, 20125 Milano (Italy); Dipartimento di Energia, Politecnico di Milano, Via Ponzio 34/3, 20133 Milano (Italy)

    2012-12-15

    Microplasma jets are now widely used for deposition, etching, and materials processing. The present study focuses on the investigation of the influence of cathode geometry on deposition quality, for microplasma jet deposition systems in low vacuum. The interest here is understanding the influence of hydrogen on sputtering and/or evaporation of the electrodes. Samples obtained with two cathode geometries with tapered and rectangular cross-sections have been investigated experimentally by scanning electron microscopy and energy dispersion X-ray spectroscopy. Samples obtained with a tapered-geometry cathode present heavy contamination, demonstrating cathode erosion, while samples obtained with a rectangular-cross-section cathode are free from contamination. These experimental characteristics were explained by modelling results showing a larger radial component of the electric field at the cathode inner wall of the tapered cathode. As a result, ion acceleration is larger, explaining the observed cathode erosion in this case. Results from the present investigation also show that the ratio of radial to axial field components is larger for the rectangular geometry case, thus, qualitatively explaining the presence of micro-hollow cathode discharge over a wide range of currents observed in this case. In the light of the above findings, the rectangular cathode geometry is considered to be more effective to achieve cleaner deposition.

  15. Intercostal drainage tube or intracardiac drainage tube?

    Directory of Open Access Journals (Sweden)

    N Anitha

    2016-01-01

    Full Text Available Although insertion of chest drain tubes is a common medical practice, there are risks associated with this procedure, especially when inexperienced physicians perform it. Wrong insertion of the tube has been known to cause morbidity and occasional mortality. We report a case where the left ventricle was accidentally punctured leading to near-exsanguination. This report is to highlight the need for experienced physicians to supervise the procedure and train the younger physician in the safe performance of the procedure.

  16. Intercostal drainage tube or intracardiac drainage tube?

    Science.gov (United States)

    Anitha, N; Kamath, S Ganesh; Khymdeit, Edison; Prabhu, Manjunath

    2016-01-01

    Although insertion of chest drain tubes is a common medical practice, there are risks associated with this procedure, especially when inexperienced physicians perform it. Wrong insertion of the tube has been known to cause morbidity and occasional mortality. We report a case where the left ventricle was accidentally punctured leading to near-exsanguination. This report is to highlight the need for experienced physicians to supervise the procedure and train the younger physician in the safe performance of the procedure.

  17. Beam tube vacuum in future superconducting proton colliders

    International Nuclear Information System (INIS)

    Turner, W.

    1994-10-01

    The beam tube vacuum requirements in future superconducting proton colliders that have been proposed or discussed in the literature -- SSC, LHC, and ELN -- are reviewed. The main beam tube vacuum problem encountered in these machines is how to deal with the magnitude of gas desorption and power deposition by synchrotron radiation while satisfying resistivity, impedance, and space constraints in the cryogenic environment of superconducting magnets. A beam tube vacuum model is developed that treats photodesorption of tightly bound H, C, and 0, photodesorption of physisorbed molecules, and the isotherm vapor pressure of H 2 . Experimental data on cold tube photodesorption experiments are reviewed and applied to model calculations of beam tube vacuum performance for simple cold beam tube and liner configurations. Particular emphasis is placed on the modeling and interpretation of beam tube photodesorpiion experiments at electron synchrotron light sources. The paper also includes discussion of the constraints imposed by beam image current heating, the growth rate of the resistive wall instability, and single-bunch instability impedance limits

  18. NEI You Tube Videos: Amblyopia

    Medline Plus

    Full Text Available ... YouTube Videos » NEI YouTube Videos: Amblyopia Listen NEI YouTube Videos YouTube Videos Home Age-Related Macular Degeneration ... Retinopathy of Prematurity Science Spanish Videos Webinars NEI YouTube Videos: Amblyopia Embedded video for NEI YouTube Videos: ...

  19. Batteries: Overview of Battery Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Doeff, Marca M

    2010-07-12

    The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as

  20. Computer analysis of sodium cold trap design and performance

    International Nuclear Information System (INIS)

    McPheeters, C.C.; Raue, D.J.

    1983-11-01

    Normal steam-side corrosion of steam-generator tubes in Liquid Metal Fast Breeder Reactors (LMFBRs) results in liberation of hydrogen, and most of this hydrogen diffuses through the tubes into the heat-transfer sodium and must be removed by the purification system. Cold traps are normally used to purify sodium, and they operate by cooling the sodium to temperatures near the melting point, where soluble impurities including hydrogen and oxygen precipitate as NaH and Na 2 O, respectively. A computer model was developed to simulate the processes that occur in sodium cold traps. The Model for Analyzing Sodium Cold Traps (MASCOT) simulates any desired configuration of mesh arrangements and dimensions and calculates pressure drops and flow distributions, temperature profiles, impurity concentration profiles, and impurity mass distributions

  1. Study of low vibration 4 K pulse tube cryocoolers

    Science.gov (United States)

    Xu, Mingyao; Nakano, Kyosuke; Saito, Motokazu; Takayama, Hirokazu; Tsuchiya, Akihiro; Maruyama, Hiroki

    2012-06-01

    Sumitomo Heavy Industries, Ltd. (SHI) has been continuously improving the efficiency and reducing the vibration of a 4 K pulse tube cryocooler. One advantage of a pulse tube cryocooler over a GM cryocooler is low vibration. In order to reduce vibration, both the displacement and the acceleration have to be reduced. The vibration acceleration can be reduced by splitting the valve unit from the cold head. One simple way to reduce vibration displacement is to increase the wall thickness of the tubes on the cylinder. However, heat conduction loss increases while the wall thickness increases. To overcome this dilemma, a novel concept, a tube with non-uniform wall thickness, is proposed. Theoretical analysis of this concept, and the measured vibration results of an SHI lowvibration pulse tube cryocooler, will be introduced in this paper.

  2. Vortex Tube Modeling Using the System Identification Method

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jaeyoung; Jeong, Jiwoong; Yu, Sangseok [Chungnam Nat’l Univ., Daejeon (Korea, Republic of); Im, Seokyeon [Tongmyong Univ., Busan (Korea, Republic of)

    2017-05-15

    In this study, vortex tube system model is developed to predict the temperature of the hot and the cold sides. The vortex tube model is developed based on the system identification method, and the model utilized in this work to design the vortex tube is ARX type (Auto-Regressive with eXtra inputs). The derived polynomial model is validated against experimental data to verify the overall model accuracy. It is also shown that the derived model passes the stability test. It is confirmed that the derived model closely mimics the physical behavior of the vortex tube from both the static and dynamic numerical experiments by changing the angles of the low-temperature side throttle valve, clearly showing temperature separation. These results imply that the system identification based modeling can be a promising approach for the prediction of complex physical systems, including the vortex tube.

  3. Remote ultrasonic characterisation of an irradiated pressure tube from RAPS-II

    Energy Technology Data Exchange (ETDEWEB)

    Gangotra, S; Muralidhar, S; Raut, S D; Ouseph, P M; Ghosh, J K; Sahoo, K C [Bhabha Atomic Research Centre, Bombay (India). Radiometallurgy Div.

    1994-12-31

    The Rajasthan Atomic Power Station Unit-2 (RAPS-2) has reached a stage of operation where the contacting pressure tubes are suspect to failure as a result of irradiation creep and displacement of the garter springs, the hot pressure tube coming in contact with the cold calandria tube. To study and assess the safety of these pressure tubes, two channels believed to be in contact with the calandria tubes, have been removed from the reactor for detailed full length post irradiation examination. Some of the test results are presented. 2 refs., 3 figs., 1 tab.

  4. Design Of Photovoltaic Powered Cathodic Protection System

    Directory of Open Access Journals (Sweden)

    Golina Samir Adly

    2017-07-01

    Full Text Available The corrosion caused by chemical reaction between metallic structures and surrounding mediums such as soil or water .the CP cathodic protection system is used to protect metallic structure against corrosion. Cathodic protection CP used to minimize corrosion by utilizing an external source of electrical current which forces the entire structure to become a cathode. There are two Types of cathodic protection system Galvanic current Impressed current.the Galvanic current is called a sacrificial anode is connected to the protected structure cathode through a DC power supply. In Galvanic current system a current passes from the sacrificing anode to the protected structure .the sacrificial anode is corroded rather than causing the protected structure corrosion .protected structure requires a constant current to stop the corrosion which determined by area structure metal and the surrounding medium. The rains humidity are decrease soil resistivity and increase the DC current .The corrosion and over protection resulting from increase in the DC current is harmful for the metallic structure. This problem can be solved by conventional cathodic protection system by manual adjustment of DC voltage periodically to obtain a constant current .the manual adjustment of DC voltage depends on experience of the technician and using the accuracy of the measuring equipment. The errors of measuring current depend on error from the technician or error from the measuring equipment. the corrosion of structure may occur when the interval between two successive adjustment is long .An automatically regulated cathodic protection system is used to overcome problems from conventional cathodic protection system .the regulated cathodic protection system adjust the DC voltage of the system automatically when it senses the variations of surrounding medium resistivity so the DC current is constant at the required level.

  5. Plasma-induced evolution behavior of space-charge-limited current for multiple-needle cathodes

    International Nuclear Information System (INIS)

    Li Limin; Liu Lie; Zhang Jun; Wen Jianchun; Liu Yonggui; Wan Hong

    2009-01-01

    Properties of the plasma and beam flow produced by tufted carbon fiber cathodes in a diode powered by a ∼500 kV, ∼400 ns pulse are investigated. Under electric fields of 230-260 kV cm -1 , the electron current density was in the range 210-280 A cm -2 , and particularly at the diode gap of 20 mm, a maximum beam power density of about 120 MW cm -2 was obtained. It was found that space-charge-limited current exhibited an evolution behavior as the accelerating pulse proceeded. There exists a direct relation between the movement of plasma within the diode and the evolution of space-charge-limited current. Initially in the accelerating pulse, the application of strong electric fields caused the emission sites to explode, forming cathode flares or plasma spots, and in this stage the space-charge-limited current was approximately described by a multiple-needle cathode model. As the pulse proceeded, these plasma spots merged and expanded towards the anode, thus increasing the emission area and shortening the diode gap, and the corresponding space-charge-limited current followed a planar cathode model. Finally, the space-charge-limited current is developed from a unipolar flow into a bipolar flow as a result of the appearance of anode plasma. In spite of the nonuniform distribution of cathode plasma, the cross-sectional uniformity of the extracted electron beam is satisfactory. The plasma expansion within the diode is found to be a major factor in the diode perveance growth and instability. These results show that these types of cathodes can offer promising applications for high-power microwave tubes.

  6. Numerical simulation of a three-stage Stirling-type pulse-tube refrigerator

    NARCIS (Netherlands)

    Etaati, M.A.

    2011-01-01

    The pulse-tube refrigerator (PTR) is a rather new device for cooling down to extremely low temperatures, i.e. below 4 K. The PTR works by the cyclic compression and expansion of helium that flows through a regenerator made of porous material, a cold heat exchanger, a tube, a hot heat exchanger and

  7. Working in the Cold

    Centers for Disease Control (CDC) Podcasts

    2016-02-08

    During the winter, many workers are outdoors, working in cold, wet, icy, or snowy conditions. Learn how to identify symptoms that tell you there may be a problem and protect yourself from cold stress.  Created: 2/8/2016 by National Institute for Occupational Safety and Health (NIOSH).   Date Released: 2/8/2016.

  8. Cold-Weather Sports

    Science.gov (United States)

    ... Videos for Educators Search English Español Cold-Weather Sports KidsHealth / For Teens / Cold-Weather Sports What's in this article? What to Do? Classes ... weather. What better time to be outdoors? Winter sports can help you burn calories, increase your cardiovascular ...

  9. Cold fusion research

    International Nuclear Information System (INIS)

    1989-11-01

    I am pleased to forward to you the Final Report of the Cold Fusion Panel. This report reviews the current status of cold fusion and includes major chapters on Calorimetry and Excess Heat, Fusion Products and Materials Characterization. In addition, the report makes a number of conclusions and recommendations, as requested by the Secretary of Energy

  10. COLD-WORKED HARDWARE

    Directory of Open Access Journals (Sweden)

    N. M. Strizhak

    2007-01-01

    Full Text Available The different types of cold-worked accessory are examined in the article. The necessity of development of such type of accessory in the Republic of Belarus due to requirements of market is shown. High emphasis is placed on the methods of increase of plasticity of cold-worked accessory from usual mill of RUP and CIS countries.

  11. Liquid metal cold trap

    International Nuclear Information System (INIS)

    Hundal, R.

    1976-01-01

    A cold trap assembly for removing impurities from a liquid metal is described. A hole between the incoming impure liquid metal and purified outgoing liquid metal acts as a continuous bleed means and thus prevents the accumulation of cover gases within the cold trap assembly

  12. Analysis of Tube Drawing Process – A Finite Element Approach ...

    African Journals Online (AJOL)

    In this paper the effect of die semi angle on drawing load in cold tube drawing has been investigated numerically using the finite element method. The equation governing the stress distribution was derived and solved using Galerkin finite element method. An isoparametric formulation for the governing equation was utilized ...

  13. Gas Separation in the Ranque-Hilsch Vortex tube

    DEFF Research Database (Denmark)

    Linderstrøm-Lang, C. U.

    1964-01-01

    The gas separation taking place in the vortex tube is studied in detail. Both enrichment and depletion of a given component in any one of the two resultant streams may take place; the sign of this separation effect depends on certain parameters, notably the hot to cold flow ratio. A comparison...

  14. Cathodic behavior of zirconium in aqueous solutions

    International Nuclear Information System (INIS)

    Hine, F.; Yasuda, M.; Sato, H.

    1977-01-01

    The electrochemical behavior of Zr was studied by polarization measurements. The surface oxide and zirconium hydride formed by cathodic polarization of Zr have been examined by X-ray, SEM, and a hardness tester. Zirconium hydride would form on Zr cathode after the surface oxide is reduced at the potential, which is several hundred mV more noble than the predicted value shown by the Pourbaix diagram. The parameters for the hydrogen evolution reaction on the hydride formed Zr cathode differs from that on the oxide covered surface, which means that hydrogen evolution takes place on both surfaces under a different mechanism, while details are still veiled at present

  15. Rechargeable lithium/polymer cathode batteries

    Science.gov (United States)

    Osaka, Tetsuya; Nakajima, Toshiki; Shiota, Koh; Owens, Boone B.

    1989-06-01

    Polypyrrole (PPy) and polyaniline (PAn) were investigated for cathode materials of rechargeable lithium batteries. PPy films prepared with PF6(-) anion and/or platinum substrate precoated with nitrile butadiene rubber (NBR) were excellent cathode materials because of rough and/or highly oriented film structure. PAn films were successfully prepared from non-aqueous propylene carbonate solution containing aniline, CF3COOH and lithium perchlorate. Its acidity strongly affects the anion doping-undoping behavior. The PAn cathode prepared in high acidic solution (e.g., 4:1 ratio of acid:aniline) gives the excellent battery performance.

  16. Numerical study on rectangular microhollow cathode discharge

    International Nuclear Information System (INIS)

    He Shoujie; Ouyang Jiting; He Feng; Li Shang

    2011-01-01

    Rectangular microhollow cathode discharge in argon is investigated by using two-dimensional time-dependent self-consistent fluid model. The electric potential, electric field, particle density, and mean electron energy are calculated. The results show that hollow cathode effect can be onset in the present configuration, with strong electric field and high mean electron energy in the cathode fall while high density and quasineutral plasma in the negative glow. The potential well and electric filed reversal are formed in the negative glow region. It is suggested that the presence of large electron diffusion flux necessitates the field reversal and potential well.

  17. Plasma distribution of cathodic ARC deposition system

    International Nuclear Information System (INIS)

    Anders, S.; Raoux, S.; Krishnan, K.; MacGill, R.A.; Brown, I.G.

    1996-01-01

    The plasma distribution using a cathodic arc plasma source with and without magnetic macroparticle filter has been determined by depositing on a transparent plastic substrate and measuring the film absorption. It was found that the width of the distribution depends on the arc current, and it also depends on the cathode material which leads to a spatial separation of the elements when an alloy cathode is used. By applying a magnetic multicusp field near the exit of the magnetic filter, it was possible to modify the plasma distribution and obtain a flat plasma profile with a constant and homogeneous elemental distribution

  18. Cathode protection for underground steel tanks

    International Nuclear Information System (INIS)

    Angelovski, Zoran

    1998-01-01

    Cathodic protection of underground petroleum storage tanks and piping systems is acceptable for both economic and ecological reasons. With out the cathodic protection of underground steel reservoirs, short time after the exploitation, there was a bore as a result of underground corrosion. The bore causes ecological consequences and at the same time its repair needs big investments. Furthermore, there are great number of tanks placed near cities, so in the future this problem needs a special attention in order to preserve ecological surrounding. The topic of this paper is underground corrosion as well as cathodic protection of steel tanks for oil derivatives storage. (author)

  19. Pediatric cuffed endotracheal tubes

    Directory of Open Access Journals (Sweden)

    Neerja Bhardwaj

    2013-01-01

    Full Text Available Endotracheal intubation in children is usually performed utilizing uncuffed endotracheal tubes for conduct of anesthesia as well as for prolonged ventilation in critical care units. However, uncuffed tubes may require multiple changes to avoid excessive air leak, with subsequent environmental pollution making the technique uneconomical. In addition, monitoring of ventilatory parameters, exhaled volumes, and end-expiratory gases may be unreliable. All these problems can be avoided by use of cuffed endotracheal tubes. Besides, cuffed endotracheal tubes may be of advantage in special situations like laparoscopic surgery and in surgical conditions at risk of aspiration. Magnetic resonance imaging (MRI scans in children have found the narrowest portion of larynx at rima glottides. Cuffed endotracheal tubes, therefore, will form a complete seal with low cuff pressure of <15 cm H 2 O without any increase in airway complications. Till recently, the use of cuffed endotracheal tubes was limited by variations in the tube design marketed by different manufacturers. The introduction of a new cuffed endotracheal tube in the market with improved tracheal sealing characteristics may encourage increased safe use of these tubes in clinical practice. A literature search using search words "cuffed endotracheal tube" and "children" from 1980 to January 2012 in PUBMED was conducted. Based on the search, the advantages and potential benefits of cuffed ETT are reviewed in this article.

  20. Methodologies for assessment of the service life of pressure tubes in Indian PHWRs

    International Nuclear Information System (INIS)

    Sinha, R.K.; Sharma, A.; Madhusoodanan, K.; Sinha, S.K.; Malshe, U.D.

    1997-01-01

    For estimating safe service life of pressure tubes in Indian PHWRs, analytical methodologies have been developed to evaluate creep deformation, deuterium pick-up rate, blister growth at cold spot, and operating domain required for achieving leak-before-break. The paper provides an overview of these methodologies, and results of some studies carried out towards evolution of proposed fitness-for-service criteria for a pressure tube in contact with its calandria tube. (author)

  1. Lunar Lava Tube Sensing

    Science.gov (United States)

    York, Cheryl Lynn; Walden, Bryce; Billings, Thomas L.; Reeder, P. Douglas

    1992-01-01

    Large (greater than 300 m diameter) lava tube caverns appear to exist on the Moon and could provide substantial safety and cost benefits for lunar bases. Over 40 m of basalt and regolith constitute the lava tube roof and would protect both construction and operations. Constant temperatures of -20 C reduce thermal stress on structures and machines. Base designs need not incorporate heavy shielding, so lightweight materials can be used and construction can be expedited. Identification and characterization of lava tube caverns can be incorporated into current precursor lunar mission plans. Some searches can even be done from Earth. Specific recommendations for lunar lava tube search and exploration are (1) an Earth-based radar interferometer, (2) an Earth-penetrating radar (EPR) orbiter, (3) kinetic penetrators for lunar lava tube confirmation, (4) a 'Moon Bat' hovering rocket vehicle, and (5) the use of other proposed landers and orbiters to help find lunar lava tubes.

  2. Categorising YouTube

    DEFF Research Database (Denmark)

    Simonsen, Thomas Mosebo

    2011-01-01

    This article provides a genre analytical approach to creating a typology of the User Generated Content (UGC) of YouTube. The article investigates the construction of navigation processes on the YouTube website. It suggests a pragmatic genre approach that is expanded through a focus on YouTube......’s technological affordances. Through an analysis of the different pragmatic contexts of YouTube, it is argued that a taxonomic understanding of YouTube must be analysed in regards to the vacillation of a user-driven bottom-up folksonomy and a hierarchical browsing system that emphasises a culture of competition...... and which favours the already popular content of YouTube. With this taxonomic approach, the UGC videos are registered and analysed in terms of empirically based observations. The article identifies various UGC categories and their principal characteristics. Furthermore, general tendencies of the UGC within...

  3. Steam generator tube performance

    International Nuclear Information System (INIS)

    Tatone, O.S.; Pathania, R.S.

    1983-08-01

    A review of the performance of steam generator tubes in 110 water-cooled nuclear power reactors showed that tubes were plugged at 46 (42 percent) of the reactors. The number of tubes removed from service increased from 1900 (0.14 percent) in 1980 to 4692 (0.30 percent) in 1981. The leading causes of tube failures were stress corrosion cracking from the primary side, stress corrosion cracking (or intergranular attack) from the secondary side and pitting corrosion. The lowest incidence of corrosion-induced defects from the secondary side occurred in reactors that used all-volatile treatment since start-up. At one reactor a large number of degraded tubes were repaired by sleeving which is expected to become an important method of tube repair in the future

  4. Cold Leak Tests of LHC Beam Screens

    CERN Document Server

    Collomb-Patton, C; Jenninger, B; Kos, N

    2009-01-01

    In order to guide the high energy proton beams inside its two 27 km long vacuum rings, the Large Hadron Collider (LHC) at CERN, Geneva, makes use of superconducting technology to create the required magnetic fields. More than 4000 beam screens, cooled at 7 20 K, are inserted inside the 1.9 K beam vacuum tubes to intercept beam induced heat loads and to provide dynamic vacuum stability. As extremely high helium leak tightness is required, all beam screens have been leak tested under cold conditions in a dedicated test stand prior to their installation. After describing the beam screen design and its functions, this report focuses on the cold leak test sequence and discusses the results.

  5. Delayed hydrogen cracking test design for pressure tubes

    International Nuclear Information System (INIS)

    Haddad, Roberto; Loberse, Antonio N.; Yawny, Alejandro A.; Riquelme, Pablo

    1999-01-01

    CANDU nuclear power stations pressure tubes of alloy Zr-2,5 % Nb present a cracking phenomenon known as delayed hydrogen cracking (DHC). This is a brittle fracture of zirconium hydrides that are developed by hydrogen due to aqueous corrosion on the metal surface. This hydrogen diffuses to the crack tip where brittle zirconium hydrides develops and promotes the crack propagation. A direct current potential decay (DCPD) technique has been developed to measure crack propagation rates on compact test (CT) samples machined from a non irradiated pressure tube. Those test samples were hydrogen charged by cathodic polarization in an acid solution and then pre cracked in a fatigue machine. This technique proved to be useful to measure crack propagation rates with at least 1% accuracy for DHC in pressure tubes. (author)

  6. Human whole body cold adaptation.

    NARCIS (Netherlands)

    Daanen, Hein A.M.; Van Marken Lichtenbelt, Wouter D.

    2016-01-01

    Reviews on whole body human cold adaptation generally do not distinguish between population studies and dedicated acclimation studies, leading to confusing results. Population studies show that indigenous black Africans have reduced shivering thermogenesis in the cold and poor cold induced

  7. Reduction of gas flow into a hollow cathode ion source for a neutral beam injector

    International Nuclear Information System (INIS)

    Tanaka, S.; Akiba, M.; Arakawa, Y.; Horiike, H.; Sakuraba, J.

    1982-01-01

    Experimental studies have been made on the reduction of the gas flow rate into ion sources which utilize a hollow cathode. The electron emitter of the hollow cathode was a barium oxide impregnated porous tungsten tube. The hollow cathode was mounted to a circular or a rectangular bucket source and the following results were obtained. There was a tendency for the minimum gas flow rate for the stable source operation to decrease with increasing orifice diameter of the hollow cathode up to 10 mm. A molybdenum button with an appropriate diameter set in front of the orifice reduced the minimum gas flow rate to one half of that without button. An external magnetic field applied antiparallel to the field generated by the heater current stabilized the discharges and reduced the minimum gas flow rate to one half of that without field. Combination of the button and the antiparallel field reduced the minimum gas flow rate from the initial value (9.5 Torr 1/s) to 2.4 Torr 1/s. The reason for these effects was discussed on the basis of the theory for arc starvation

  8. Rectangular drift tube characteristics

    International Nuclear Information System (INIS)

    Denisov, D.S.; Musienko, Yu.V.

    1985-01-01

    Results on the study of the characteristics of a 50 x 100 mm aluminium drift tube are presented. The tube was filled with argon-methane and argon-isobutane mixtures. With 16 per cent methane concentration the largest deviation from a linear relation between the drift time and the drift path over 50 mm is less than 2 mm. The tube filled with argon-isobutane mixture is capable of operating in a limited streamer mode

  9. Modeling High Pressure Micro Hollow Cathode Discharges

    National Research Council Canada - National Science Library

    Boeuf, Jean-Pierre; Pitchford, Leanne

    2004-01-01

    This report results from a contract tasking CPAT as follows: The Grantee will perform theoretical modeling of point, surface, and volume high-pressure plasmas created using Micro Hollow Cathode Discharge sources...

  10. RF Electron Gun with Driven Plasma Cathode

    CERN Document Server

    Khodak, Igor

    2005-01-01

    It's known that RF guns with plasma cathodes based on solid-state dielectrics are able to generate an intense electron beam. In this paper we describe results of experimental investigation of the single cavity S-band RF gun with driven plasma cathode. The experimental sample of the cathode based on ferroelectric ceramics has been designed. Special design of the cathode permits to separate spatially processes of plasma development and electron acceleration. It has been obtained at RF gun output electron beam with particle energy ~500 keV, pulse current of 4 A and pulse duration of 80 ns. Results of experimental study of beam parameters are referred in. The gun is purposed to be applied as the intense electron beam source for electron linacs.

  11. Rare earth oxide doping in oxide cathodes

    International Nuclear Information System (INIS)

    Engelsen, Daniel den; Gaertner, Georg

    2006-01-01

    The effect on life performance and poisoning with O 2 by doping oxide cathodes with rare earth oxides and pseudo rare earth oxides, notably yttria, is qualitatively explained in terms of electrolysis of BaO during emission of electrons. Doped cathodes show less electrolysis and consume therefore less Ba during life: consequently, doped cathodes have a better life performance. However, the lower Ba-production makes doped cathodes more sensitive to oxygen poisoning. The experimentally found relation between conductivity and yttria concentration was the motive to propose a new model for the crystal imperfections in BaO. In this new imperfection model most Y 3+ -ions will combine with barium vacancies, therefore, the increase of the conductivity is modest and also the effect on the position of the Fermi level is modest. By assuming a combination of bulk and surface conductivity, the agreement between experiment and theory can be improved further

  12. Concentration changes due to cathodic protection

    NARCIS (Netherlands)

    Gellings, P.J.

    1978-01-01

    By solving the appropriate diffusion equations the concentration changes are calculated in the environment of underground structures protected cathodically. It is shown that these changes are negligible under all practical circumstances.

  13. Categorising YouTube

    OpenAIRE

    Simonsen, Thomas Mosebo

    2011-01-01

    This article provides a genre analytical approach to creating a typology of the User Generated Content (UGC) of YouTube. The article investigates the construction of navigation processes on the YouTube website. It suggests a pragmatic genre approach that is expanded through a focus on YouTube’s technological affordances. Through an analysis of the different pragmatic contexts of YouTube, it is argued that a taxonomic understanding of YouTube must be analysed in regards to the vacillation of a...

  14. Pressure tube reactor

    International Nuclear Information System (INIS)

    Susuki, Akira; Murata, Shigeto; Minato, Akihiko.

    1993-01-01

    In a pressure tube reactor, a reactor core is constituted by arranging more than two units of a minimum unit combination of a moderator sealing pipe containing a calandria tube having moderators there between and a calandria tube and moderators. The upper header and a lower header of the calandria tank containing moderators are communicated by way of the moderator sealing tube. Further, a gravitationally dropping mechanism is disposed for injecting neutron absorbing liquid to a calandria gas injection portion. A ratio between a moderator volume and a fuel volume is defined as a function of the inner diameter of the moderator sealing tube, the outer diameter of the calandria tube and the diameter of fuel pellets, and has no influence to intervals of a pressure tube lattice. The interval of the pressure tube lattice is enlarged without increasing the size of the pressure tube, to improve production efficiency of the reactor and set a coolant void coefficient more negative, thereby enabling to improve self controllability and safety. Further, the reactor scram can be conducted by injecting neutron absorbing liquid. (N.H.)

  15. Heated Tube Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Heated Tube Facility at NASA GRC investigates cooling issues by simulating conditions characteristic of rocket engine thrust chambers and high speed airbreathing...

  16. Steam generator tube performance

    International Nuclear Information System (INIS)

    Tatone, O.S.; Pathania, R.S.

    1984-10-01

    A review of the performance of steam generator tubes in 116 water-cooled nuclear power reactors showed that tubes were plugged at 54 (46 percent) of the reactors. The number of tubes removed from service decreased from 4 692 (0.30 percent) in 1981 to 3 222 (0.20 percent) in 1982. The leading causes of tube failures were stress corrosion cracking from the primary side, stress corrosion cracking (or intergranular attack) from the secondary side and pitting corrosion. The lowest incidence of corrosion-induced defects from the secondary side occurred in reactors that have used only volatile treatment, with or without condensate demineralization

  17. Steam generator tube performance

    International Nuclear Information System (INIS)

    Tatone, O.S.; Tapping, R.L.; Stipan, L.

    1992-03-01

    A survey of steam generator operating experience for 1986 has been carried out for 184 pressurized water and pressurized heavy-water reactors, and 1 water-cooled, graphite-moderated reactor. Tubes were plugged at 75 of the reactors (40.5%). In 1986, 3737 tubes were plugged (0.14% of those in service) and 3148 tubes were repaired by sleeving. A small number of reactors accounted for the bulk of the plugged tubes, a phenomenon consistent with previous years. For 1986, the available tubesheet sludge data for 38 reactors has been compiled into tabular form, and sludge/deposit data will be incorporated into all future surveys

  18. Electrodeposition of uranium in stirred liquid cadmium cathode

    International Nuclear Information System (INIS)

    Koyama, T.; Tanaka, H.

    1997-01-01

    The electrodeposition of U in a liquid Cd cathode was known to be hampered by the formation of dendritic U on the Cd surface. Electrotransports of uranium to the stirred liquid Cd cathode were carried out at 773 K for different cathode current densities and different Reynolds number of stirring. The maximum amount of U taken in the liquid Cd cathode without forming dendrites was found to increase with an increasing Reynolds number of stirring and decrease with increasing cathode current density. (orig.)

  19. Plasma generation using the hollow cathod

    International Nuclear Information System (INIS)

    Moon, K.J.

    1983-01-01

    A hollow cathode of tungsten was adapted to an University of California, Berkely, LBL bucket ion source to investigate ion density fluctuations at the extractior grid. Fluctuations in plasma ion density are observed to range between 100kHz to 2 MHz. The observed fluctuation frequencies of plasma ion density are found to be inversely proportional to the square root of ion masses. It is guessed that the plasma fluctuation are also correlated with the hollow cathode length. (Author)

  20. Surface interactions in a cold plasma atmosphere

    International Nuclear Information System (INIS)

    Inspector, A.

    1981-10-01

    The formation of pyrocoating on conmercial grade graphite in a cold plasma atmosphere of argon and propylene mixtures was investigated. The experiments were performed in an evacuated glass tube at low pressure ( 6 Hz), and in some experiments by micro-wave frequency irradiation (2.45x10 6 Hz) through an external antenna that was located around the middle of the tube. The research was performed in four complementary directions: (a) Characterization of the plasma. The effect of various experimental parameters on the composition of the plasma was investigated; the density of the positive ions; the temperature of the electrons. The following parameters were investigated: the concentration of the hydrocarbon in the feed mixture; the total gas pressure in the tube; the induced power; the location of the sampling position in relation to the location of the antenna and the direction of the gas flow. (b) Measurements of the deposition rate as a function of the concentration of the propylene in the feed mixture and of the total gas pressure in the tube. (c) Characterization of the coating. The characterization included structure and morphology analysis, and measurements of microporosity, composition, optical anisotropy and density. (d) Development of a theoretical model of the deposition process which is based on the plasma-surface interactions, and relates the characteristics of the plasma to those of the deposited coating. The values for the composition of the coating and its rate of deposition that were calculated using the model agree well with those that were measured experimentally

  1. A Refined Model for Calculation of the Vortex Tube Thermal Characteristics

    Science.gov (United States)

    Biryuk, V. V.; Gorshkalev, A. A.; Uglanov, D. A.; Urlapkin, V. V.; Korneev, S. S.

    2018-01-01

    The article deals with the main types of vortex tubes, provides a brief description of the fundamental principles of the vortex interaction hypothesis. A physical process is represented reflecting the physical essence of the gas flow energetic separation process in the vortex tube due to the intensive turbulent heat exchange from the forced vortex to the free one. A method for refinement of the design characteristics for the cold and hot gas temperatures in a vortex tube through the employment of the gas-dynamic and thermodynamic corrections is proposed. A refined calculation method allows reaching close agreement between the cold gas temperature and the experimental values.

  2. Development of plasma cathode electron guns

    Science.gov (United States)

    Oks, Efim M.; Schanin, Peter M.

    1999-05-01

    The status of experimental research and ongoing development of plasma cathode electron guns in recent years is reviewed, including some novel upgrades and applications to various technological fields. The attractiveness of this kind of e-gun is due to its capability of creating high current, broad or focused beams, both in pulsed and steady-state modes of operation. An important characteristic of the plasma cathode electron gun is the absence of a thermionic cathode, a feature which leads to long lifetime and reliable operation even in the presence of aggressive background gas media and at fore-vacuum gas pressure ranges such as achieved by mechanical pumps. Depending on the required beam parameters, different kinds of plasma discharge systems can be used in plasma cathode electron guns, such as vacuum arcs, constricted gaseous arcs, hollow cathode glows, and two kinds of discharges in crossed E×B fields: Penning and magnetron. At the present time, plasma cathode electron guns provide beams with transverse dimension from fractional millimeter up to about one meter, beam current from microamperes to kiloamperes, beam current density up to about 100 A/cm2, pulse duration from nanoseconds to dc, and electron energy from several keV to hundreds of keV. Applications include electron beam melting and welding, surface treatment, plasma chemistry, radiation technologies, laser pumping, microwave generation, and more.

  3. Copper Refinement from Anode to Cathode and then to Wire Rod: Effects of Impurities on Recrystallization Kinetics and Wire Ductility.

    Science.gov (United States)

    Helbert, Anne-Laure; Moya, Alice; Jil, Tomas; Andrieux, Michel; Ignat, Michel; Brisset, François; Baudin, Thierry

    2015-10-01

    In this paper, the traceability of copper from the anode to the cathode and then the wire rod has been studied in terms of impurity content, microstructure, texture, recrystallization kinetics, and ductility. These characterizations were obtained based on secondary ion mass spectrometry, differential scanning calorimetry (DSC), X-ray diffraction, HV hardness, and electron backscattered diffraction. It is shown that the recrystallization was delayed by the total amount of impurities. From tensile tests performed on cold drawn and subsequently annealed wires for a given time, a simplified model has been developed to link tensile elongation to the chemical composition. This model allowed quantification of the contribution of some additional elements, present in small quantity, on the recrystallization kinetics. The proposed model adjusted for the cold-drawn wires was also validated on both the cathode and wire rod used for the study of traceability.

  4. Hydrothermal synthesis of cathode materials

    Science.gov (United States)

    Chen, Jiajun; Wang, Shijun; Whittingham, M. Stanley

    A number of cathodes are being considered for the next generation of lithium ion batteries to replace the expensive LiCoO 2 presently used. Besides the layered oxides, such as LiNi yMn yCo 1-2 yO 2, a leading candidate is lithium iron phosphate with the olivine structure. Although this material is inherently low cost, a manufacturing process that produces electrochemically active LiFePO 4 at a low cost is also required. Hydrothermal reactions are one such possibility. A number of pure phosphates have been prepared using this technique, including LiFePO 4, LiMnPO 4 and LiCoPO 4; this method has also successfully produced mixed metal phosphates, such as LiFe 0.33Mn 0.33Co 0.33PO 4. Ascorbic acid was found to be better than hydrazine or sugar at preventing the formation of ferric ions in aqueous media. When conductive carbons are added to the reaction medium excellent electrochemical behavior is observed.

  5. Experimental investigation of a 1 kA/cm² sheet beam plasma cathode electron gun.

    Science.gov (United States)

    Kumar, Niraj; Pal, Udit Narayan; Pal, Dharmendra Kumar; Prajesh, Rahul; Prakash, Ram

    2015-01-01

    In this paper, a cold cathode based sheet-beam plasma cathode electron gun is reported with achieved sheet-beam current density ∼1 kA/cm(2) from pseudospark based argon plasma for pulse length of ∼200 ns in a single shot experiment. For the qualitative assessment of the sheet-beam, an arrangement of three isolated metallic-sheets is proposed. The actual shape and size of the sheet-electron-beam are obtained through a non-conventional method by proposing a dielectric charging technique and scanning electron microscope based imaging. As distinct from the earlier developed sheet beam sources, the generated sheet-beam has been propagated more than 190 mm distance in a drift space region maintaining sheet structure without assistance of any external magnetic field.

  6. Steam generator tube failures

    International Nuclear Information System (INIS)

    MacDonald, P.E.; Shah, V.N.; Ward, L.W.; Ellison, P.G.

    1996-04-01

    A review and summary of the available information on steam generator tubing failures and the impact of these failures on plant safety is presented. The following topics are covered: pressurized water reactor (PWR), Canadian deuterium uranium (CANDU) reactor, and Russian water moderated, water cooled energy reactor (VVER) steam generator degradation, PWR steam generator tube ruptures, the thermal-hydraulic response of a PWR plant with a faulted steam generator, the risk significance of steam generator tube rupture accidents, tubing inspection requirements and fitness-for-service criteria in various countries, and defect detection reliability and sizing accuracy. A significant number of steam generator tubes are defective and are removed from service or repaired each year. This wide spread damage has been caused by many diverse degradation mechanisms, some of which are difficult to detect and predict. In addition, spontaneous tube ruptures have occurred at the rate of about one every 2 years over the last 20 years, and incipient tube ruptures (tube failures usually identified with leak detection monitors just before rupture) have been occurring at the rate of about one per year. These ruptures have caused complex plant transients which have not always been easy for the reactor operators to control. Our analysis shows that if more than 15 tubes rupture during a main steam line break, the system response could lead to core melting. Although spontaneous and induced steam generator tube ruptures are small contributors to the total core damage frequency calculated in probabilistic risk assessments, they are risk significant because the radionuclides are likely to bypass the reactor containment building. The frequency of steam generator tube ruptures can be significantly reduced through appropriate and timely inspections and repairs or removal from service

  7. Machinability of Al 6061 Deposited with Cold Spray Additive Manufacturing

    Science.gov (United States)

    Aldwell, Barry; Kelly, Elaine; Wall, Ronan; Amaldi, Andrea; O'Donnell, Garret E.; Lupoi, Rocco

    2017-10-01

    Additive manufacturing techniques such as cold spray are translating from research laboratories into more mainstream high-end production systems. Similar to many additive processes, finishing still depends on removal processes. This research presents the results from investigations into aspects of the machinability of aluminum 6061 tubes manufactured with cold spray. Through the analysis of cutting forces and observations on chip formation and surface morphology, the effect of cutting speed, feed rate, and heat treatment was quantified, for both cold-sprayed and bulk aluminum 6061. High-speed video of chip formation shows changes in chip form for varying material and heat treatment, which is supported by the force data and quantitative imaging of the machined surface. The results shown in this paper demonstrate that parameters involved in cold spray directly impact on machinability and therefore have implications for machining parameters and strategy.

  8. High current density M-type cathodes for vacuum electron devices

    International Nuclear Information System (INIS)

    Li Ji; Yu Zhiqiang; Shao Wensheng; Zhang Ke; Gao Yujuan; Yuan Haiqing; Wang Hui; Huang Kaizhi; Chen Qilue; Yan Suqiu; Cai Shaolun

    2005-01-01

    We investigated high current density emission capabilities of M-type cathodes used for vacuum electron devices (VEDs). The experimental results of emission and lifetime evaluating in both close-spaced diode structure and electron gun testing vehicles are given. Emission current densities measured in the diode structure at 1020 deg. C Br in the CW mode were above 10 A/cm 2 ; while in electron gun testing vehicles, emission current densities were above 8 A/cm 2 in CW mode and above 32 A/cm 2 in pulsed mode, respectively. The current density above 94 A/cm 2 has been acquired in no. 0306 electron gun vehicle while the practical temperature is 1060 deg. C Br . For a comparison some of the data from I-scandate cathodes are presented. Finally, several application examples in practical travelling wave tubes (TWTs) and multi beam klystrons (MBKs) are also reported

  9. Electron Sources of the Diode Type with Cathode and Anode of High Temperature Superconductors

    International Nuclear Information System (INIS)

    Korenev, S.A.

    1994-01-01

    The planar electron sources of the diode type with cathode and anode of high temperature superconductors (HTSC) are considered. Explosive emission cathode on the basis of bismuth ceramics (Bi-Ca-Sr-Cu-O) allows forming microsecond pulse (duration > 1 μs) and low energy electron beams (10-25 keV). Tube anode of HTSC in superconducting phase compresses the pulsed electron beam (K = 2-8). It leads to an increase of the beam power density. The high voltage of the generator of Arkad'ev-Marx type (U = 100-600 kV) and the generator with double L C-line are used for experiments. The pulsed method of measuring of the HTSC critical current with the help of pulsed high current electron beam is described. (author). 16 refs., 13 figs

  10. Chilling Out With Colds

    Science.gov (United States)

    ... and use the time to read, listen to music, or watch a movie. In other words, chill out and you might prevent a cold! Reviewed by: Patricia ... Policy Permissions Guidelines Privacy Policy & Terms of Use Notice ...

  11. Cold Vacuum Drying Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Located near the K-Basins (see K-Basins link) in Hanford's 100 Area is a facility called the Cold Vacuum Drying Facility (CVDF).Between 2000 and 2004, workers at the...

  12. Method for shaping polyethylene tubing

    Science.gov (United States)

    Kramer, R. C.

    1981-01-01

    Method forms polyethylene plastic tubing into configurations previously only possible with metal tubing. By using polyethylene in place of copper or stain less steel tubing inlow pressure systems, fabrication costs are significantly reduced. Polyethylene tubing can be used whenever low pressure tubing is needed in oil operations, aircraft and space applications, powerplants, and testing laboratories.

  13. Pyrotechnic Tubing Connector

    Science.gov (United States)

    Graves, Thomas J.; Yang, Robert A.

    1988-01-01

    Tool forms mechanical seal at joint without levers or hydraulic apparatus. Proposed tool intended for use in outer space used on Earth by heavily garbed workers to join tubing in difficult environments. Called Pyrotool, used with Lokring (or equivalent) fittings. Piston slides in cylinder when pushed by gas from detonating pyrotechnic charge. Impulse of piston compresses fittings, sealing around butting ends of tubes.

  14. Dence Cold Matter

    Directory of Open Access Journals (Sweden)

    Stavinskiy Alexey

    2014-04-01

    Full Text Available Possible way to create dense cold baryonic matter in the laboratory is discussed. The density of this matter is comparable or even larger than the density of neutron star core. The properties of this matter can be controlled by trigger conditions. Experimental program for the study of properties of dense cold matter for light and heavy ion collisions at initial energy range √sNN~2-3GeV is proposed..

  15. Quenching behaviour of hot zircaloy tube

    International Nuclear Information System (INIS)

    Chinchole, A.S.; Kulkarni, P.P.; Nayak, A.K.; Vijayan, P.K.

    2015-01-01

    The quenching process plays a very important role in case of safety of nuclear reactors. During large break Loss of Coolant Accident in a nuclear reactor, the cooling water from the system is lost. Under this condition, cold water is injected from emergency core cooling system. Quenching behaviour of such heated rod bundle is really complex. It is well known that nanofluids have better heat removal capability and high heat transfer coefficient owing to enhanced thermal properties. Alumina nano-particles result in better cooling abilities compared with the traditionally used quenching media. In this paper, the authors have carried out experiments on quenching behaviour of hot zircaloy tube with demineralized water and nanofluids. It was observed that, the tube got quenched within few seconds even with the presence of decay heat and shows slightly reduced quenching time compared with DM water. (author)

  16. Molybdenum Tube Characterization report

    Energy Technology Data Exchange (ETDEWEB)

    Beaux II, Miles Frank [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Usov, Igor Olegovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-07

    Chemical vapor deposition (CVD) techniques have been utilized to produce free-standing molybdenum tubes with the end goal of nuclear fuel clad applications. In order to produce tubes with properties desirable for this application, deposition rates were lowered requiring long deposition durations on the order of 50 hours. Standard CVD methods as well as fluidized-bed CVD (FBCVD) methods were applied towards these objectives. Characterization of the tubes produced in this manner revealed material suitable for fuel clad applications, but lacking necessary uniformity across the length of the tubes. The production of freestanding Mo tubes that possess the desired properties across their entire length represents an engineering challenge that can be overcome in a next iteration of the deposition system.

  17. Compact Rare Earth Emitter Hollow Cathode

    Science.gov (United States)

    Watkins, Ronald; Goebel, Dan; Hofer, Richard

    2010-01-01

    A compact, high-current, hollow cathode utilizing a lanthanum hexaboride (LaB6) thermionic electron emitter has been developed for use with high-power Hall thrusters and ion thrusters. LaB6 cathodes are being investigated due to their long life, high current capabilities, and less stringent xenon purity and handling requirements compared to conventional barium oxide (BaO) dispenser cathodes. The new cathode features a much smaller diameter than previously developed versions that permit it to be mounted on axis of a Hall thruster ( internally mounted ), as opposed to the conventional side-mount position external to the outer magnetic circuit ("externally mounted"). The cathode has also been reconfigured to be capable of surviving vibrational loads during launch and is designed to solve the significant heater and materials compatibility problems associated with the use of this emitter material. This has been accomplished in a compact design with the capability of high-emission current (10 to 60 A). The compact, high-current design has a keeper diameter that allows the cathode to be mounted on the centerline of a 6- kW Hall thruster, inside the iron core of the inner electromagnetic coil. Although designed for electric propulsion thrusters in spacecraft station- keeping, orbit transfer, and interplanetary applications, the LaB6 cathodes are applicable to the plasma processing industry in applications such as optical coatings and semiconductor processing where reactive gases are used. Where current electrical propulsion thrusters with BaO emitters have limited life and need extremely clean propellant feed systems at a significant cost, these LaB6 cathodes can run on the crudest-grade xenon propellant available without impact. Moreover, in a laboratory environment, LaB6 cathodes reduce testing costs because they do not require extended conditioning periods under hard vacuum. Alternative rare earth emitters, such as cerium hexaboride (CeB6) can be used in this

  18. Experimental and numerical studies in a vortex tube

    International Nuclear Information System (INIS)

    Sohn, Chang Hyun; Kim, Chang Soo; Gowda, B. H. L Lakshmana; Jung, Ui Hyun

    2006-01-01

    The present investigation deals with the study of the internal flow phenomena of the counter-flow type vortex tube using experimental testing and numerical simulation. Visualization was carried out using the surface tracing method, injecting dye on the vortex tube wall using a needle. Vortex tube is made of acrylic to visualize the surface particle tracing and the input air pressure was varied from 0.1 MPa to 0.3 MPa. The experimentally visualized results on the tube show that there is an apparent sudden changing of the trajectory on the vortex tube wall which was observed in every experimental test case. This may indicate the stagnation position of the vortex flow. The visualized stagnation position moves towards the vortex generator with increase in cold flow ratio and input pressure. Three-dimensional computational study is also conducted to obtain more detailed flow information in the vortex tube. Calculated total pressure, static pressure and total temperature distributions in the vortex tube were in good agreement with the experimental data. The computational particle trace on the vortex tube wall is very similar to that observed in experiments

  19. Hypothermic general cold adaptation induced by local cold acclimation.

    Science.gov (United States)

    Savourey, G; Barnavol, B; Caravel, J P; Feuerstein, C; Bittel, J H

    1996-01-01

    To study relationships between local cold adaptation of the lower limbs and general cold adaptation, eight subjects were submitted both to a cold foot test (CFT, 5 degrees C water immersion, 5 min) and to a whole-body standard cold air test (SCAT, 1 degree C, 2 h, nude at rest) before and after a local cold acclimation (LCA) of the lower limbs effected by repeated cold water immersions. The LCA induced a local cold adaptation confirmed by higher skin temperatures of the lower limbs during CFT and a hypothermic insulative general cold adaptation (decreased rectal temperature and mean skin temperature P adaptation was related to the habituation process confirmed by decreased plasma concentrations of noradrenaline (NA) during LCA (P general cold adaptation was unrelated either to local cold adaptation or to the habituation process, because an increased NA during SCAT after LCA (P syndrome" occurring during LCA.

  20. 2013 Estorm - Invited Paper - Cathode Materials Review

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, Claus [ORNL; Mohanty, Debasish [ORNL; Li, Jianlin [ORNL; Wood III, David L [ORNL

    2014-01-01

    The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403 431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead acid with a lead oxide cathode and a terminal voltage of 2.1 V and later the NiCd with a nickel(III) oxide hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783 789) demonstrated a high-energy and high-power LiCoO2 cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research.

  1. 78 FR 286 - Circular Welded Carbon Steel Pipes and Tubes From Turkey; Amended Final Results of Antidumping...

    Science.gov (United States)

    2013-01-03

    ... the scope of this order, except for line pipe, oil country tubular goods, boiler tubing, cold-drawn or... order (``APO'') of their responsibility concerning the disposition of proprietary information disclosed...

  2. Physics Analyses in the Design of the HFIR Cold Neutron Source

    International Nuclear Information System (INIS)

    Bucholz, J.A.

    1999-01-01

    Physics analyses have been performed to characterize the performance of the cold neutron source to be installed in the High Flux Isotope Reactor at the Oak Ridge National Laboratory in the near future. This paper provides a description of the physics models developed, and the resulting analyses that have been performed to support the design of the cold source. These analyses have provided important parametric performance information, such as cold neutron brightness down the beam tube and the various component heat loads, that have been used to develop the reference cold source concept

  3. Atmospheric pressure cold plasma as an antifungal therapy

    International Nuclear Information System (INIS)

    Sun Peng; Wu Haiyan; Sun Yi; Liu Wei; Li Ruoyu; Zhu Weidong; Lopez, Jose L.; Zhang Jue; Fang Jing

    2011-01-01

    A microhollow cathode based, direct-current, atmospheric pressure, He/O 2 (2%) cold plasma microjet was used to inactive antifungal resistants Candida albicans, Candida krusei, and Candida glabrata in air and in water. Effective inactivation (>90%) was achieved in 10 min in air and 1 min in water. Antifungal susceptibility tests showed drastic reduction of the minimum inhibitory concentration after plasma treatment. The inactivation was attributed to the reactive oxygen species generated in plasma or in water. Hydroxyl and singlet molecular oxygen radicals were detected in plasma-water system by electron spin resonance spectroscopy. This approach proposed a promising clinical dermatology therapy.

  4. Investigation of barium-calcium aluminate process to manufacture and characterize impregnated thermionic cathode for power microwave devices

    International Nuclear Information System (INIS)

    Higashi, Cristiane

    2006-01-01

    In the present work it is described the barium calcium aluminate manufacture processes employed to produce impregnated cathodes to be used in a traveling-wave tube (TWT). The cathodes were developed using a tungsten body impregnated with barium and calcium aluminate with a 5:3:2 proportion (molar). Three different processes were investigated to obtain this material: solid-state reaction, precipitation and crystallization. Thermal analysis, thermogravimetry specifically, supported to determine an adequate preparation procedure (taking into account temperature, time and pyrolysis atmosphere). It was verified that the crystallization showed a better result when compared to those investigated (solid-state reaction and precipitation techniques - formation temperature is about 1000 deg C in hydrogen atmosphere), whereas it presented the lower formation temperature (800 deg C) in oxidizing atmosphere (O 2 ). It was used the practical work function distribution theory (PWFD) of Miram to characterize thermionic impregnated cathode. The PWFD curves were used to characterize the barium-calcium aluminate cathode. PWFD curves shown that the aluminate cathode work function is about 2,00 eV. (author)

  5. Analysis of steam generator tube sections removed from Gentilly-2 nuclear generating station

    International Nuclear Information System (INIS)

    Semmler, J.; Lockley, A.J.; Doyon, D.

    2010-01-01

    In order to meet the requirements of CSA Standards CAN/CSA N285.4-94, which states, 'A section of one tube in a deposit region shall be removed from one steam generator for metallurgical examination', Gentilly-2 has been removing steam generator tube sections on a regular basis for analysis at Chalk River Laboratories. In 2009 April, sections from the hot leg and the cold leg of a steam generator tube were removed for detailed metallographic examination and characterization. The hot leg tube section covered the area from within the tube sheet up to below the second support plate, and the cold leg tube section covered the area from within the tube sheet to below the third preheater support plate. After a general visual and photographic examination, the area above the tube sheet on the hot leg side where the sludge pile is highest was examined in detail. Visual and macro-photography of the two tube sections within the tube sheet were also examined. Additional metallographic and surface examinations of both tube inner diameter and tube outer diameter, and surface roughness measurements of tube inner diameter were also completed. The surface activities (μCi/cm 2 ) of cold leg and hot leg specimens were measured before and after electrolytic descaling, and major and minor radionuclides were identified; a comparison of the surface activities for hot leg with the values for the cold leg were made. The results from the initial γ-spectroscopy measurements, and the measurements after the descaling of the specimens were used to estimate decontamination factors for each specimen and for each radionuclide. The tube specimens had thin outer diameter oxides; all four steam generators were chemically cleaned in 2005. All specimens had inner diameter deposits; the inner diameter deposits on the cold leg were heavier than those on the hot leg as expected. Primary side oxide loadings of specimens were used to estimate the total oxide inventory in 2009. The oxide

  6. Measurement of leakage dose distribution from Crookes tube using imaging plate

    International Nuclear Information System (INIS)

    Fujibuchi, Toshioh; Obara, Satoshi; Inoue, Hajime; Kato, Hideyuki; Kobayashi, Ikuo; Hosoda, Masahiro

    2011-01-01

    Crookes tube is used on an educational site in the junior high school and the high school, etc. for the purpose to learn the character of cathode rays. When using the tube, X rays are generated, however, there is few example of confirming in which direction to scatter in detail. Understanding how the distribution of the leakage dose is important because of efficient exposure decrease. The distribution of X rays generated from Crookes tube was measured by arranging imaging plates in six surroundings to enclose Crookes tube. The electron collided with a metal target and X rays had extended backward. The dose was greatly different depending on the direction. When experimenting with Crookes tube, it is necessary to consider not only the dose but also distribution. (author)

  7. Cold moderators at ORNL

    International Nuclear Information System (INIS)

    Lucas, A. T.

    1997-09-01

    The Advanced Neutron Source (ANS) cold moderators were not an 'Oak Ridge first', but would have been the largest both physically and in terms of cold neutron flux. Two cold moderators were planned each 410 mm in diameter and containing about 30L of liquid deuterium. They were to be completely independent of each other. A modular system design was used to provide greater reliability and serviceability. When the ANS was terminated, upgrading of the resident High Flux Isotope Reactor (HFIR) was examined and an initial study was made into the feasibility of adding a cold source. Because the ANS design was modular, it was possible to use many identical design features. Sub-cooled liquid at 4 bar abs was initially chosen for the HFIR design concept, but this was subsequently changed to 15 bar abs to operate above the critical pressure. As in the ANS, the hydrogen will operate at a constant pressure throughout the temperature range and a completely closed loop with secondary containment was adopted. The heat load of 2 kW made the heat flux comparable with that of the ANS. Subsequent studies into the construction of cryogenic moderators for the proposed new Synchrotron Neutron source indicated that again many of the same design concepts could be used. By connecting the two cold sources together in series, the total heat load of 2 kW is very close to that of the HFIR allowing a very similar supercritical hydrogen system to be configured. The two hydrogen moderators of the SNS provide a comparable heat load to the HFIR moderator. It is subsequently planned to connect the two in series and operate from a single cold loop system, once again using supercritical hydrogen. The spallation source also provided an opportunity to re-examine a cold pellet solid methane moderator operating at 20K.

  8. Beryllium electrodeposition on aluminium cathode from chloride melts

    International Nuclear Information System (INIS)

    Nichkov, I.F.; Novikov, E.A.; Serebryakov, G.A.; Kanashin, Yu.P.; Sardyko, G.N.

    1980-01-01

    Cathodic processes during beryllium deposition on liquid and solid aluminium cathodes are investigated. Mixture of sodium, potassium and beryllium chloride melts served as an lectrolyte. Beryllium ion discharge at the expense of alloy formation takes place at more positive potentials than on an indifferent cathode at low current densities ( in the case of liquid aluminium cathode). Metallographic analysis and measurements of microhardness have shown, that the cathodic product includes two phases: beryllium solid solution in aluminium and metallic beryllium. It is concluded, that aluminium-beryllium alloys with high cathodic yield by current can be obtained by the electrolytic method

  9. Comparison of hollow cathode discharge plasma configurations

    International Nuclear Information System (INIS)

    Farnell, Casey C; Farnell, Cody C; Williams, John D

    2011-01-01

    Hollow cathodes used in plasma contactor and electric propulsion devices provide electrons for sustaining plasma discharges and enabling plasma bridge neutralization. Life tests show erosion on hollow cathodes exposed to the plasma environment produced in the region downstream of these devices. To explain the observed erosion, plasma flow field measurements are presented for hollow cathode generated plasmas using both directly immersed probes and remotely located plasma diagnostics. Measurements on two cathode discharge configurations are presented: (1) an open, no magnetic field configuration and (2) a setup simulating the discharge chamber environment of an ion thruster. In the open cathode configuration, large amplitude plasma potential oscillations, ranging from 20 to 85 V within a 34 V discharge, were observed using a fast response emissive probe. These oscillations were observed over a dc potential profile that included a well-defined potential hill structure. A remotely located electrostatic analyzer (ESA) was used to measure the energy of ions produced within the plasma, and energies were detected that met, and in some cases exceeded, the peak oscillatory plasma potentials detected by the emissive probe. In the ion thruster discharge chamber configuration, plasma potentials from the emissive probe again agreed with ion energies recorded by the remotely located ESA; however, much lower ion energies were detected compared with the open configuration. A simplified ion-transit model that uses temporal and spatial plasma property measurements is presented and used to predict far-field plasma streaming properties. Comparisons between the model and remote measurements are presented.

  10. Investigations Of A Pulsed Cathodic Vacuum Arc

    Science.gov (United States)

    Oates, T. W. H.; Pigott, J.; Denniss, P.; Mckenzie, D. R.; Bilek, M. M. M.

    2003-06-01

    Cathodic vacuum arcs are well established as a method for producing thin films for coatings and as a source of metal ions. Research into DC vacuum arcs has been going on for over ten years in the School of Physics at the University of Sydney. Recently a project was undertaken in the school to design and build a pulsed CVA for use in the investigation of plasma sheaths and plasma immersion ion implantation. Pulsed cathodic vacuum arcs generally have a higher current and plasma density and also provide a more stable and reproducible plasma density than their DC counterparts. Additionally it has been shown that if a high repetition frequency can be established the deposition rate of pulsed arcs is equal to or greater than that of DC arcs with a concomitant reduction in the rate of macro-particle formation. We present here results of our investigations into the building of a center-triggered pulsed cathodic vacuum arc. The design of the power supply and trigger mechanism and the geometry of the anode and cathode are examined. Observations of type I and II arc spots using a CCD camera, and cathode spot velocity dependence on arc current will be presented. The role of retrograde motion in a high current pulsed arc is discussed.

  11. Manganese Dioxide As Rechargeable Magnesium Battery Cathode

    International Nuclear Information System (INIS)

    Ling, Chen; Zhang, Ruigang

    2017-01-01

    Rechargeable magnesium battery (rMB) has received increased attention as a promising alternative to current Li-ion technology. However, the lack of appropriate cathode that provides high-energy density and good sustainability greatly hinders the development of practical rMBs. To date, the successful Mg 2+ -intercalation was only achieved in only a few cathode hosts, one of which is manganese dioxide. This review summarizes the research activity of studying MnO 2 in magnesium cells. In recent years, the cathodic performance of MnO 2 was impressively improved to the capacity of >150–200 mAh g −1 at voltage of 2.6–2.8 V with cyclability to hundreds or more cycles. In addition to reviewing electrochemical performance, we sketch a mechanistic picture to show how the fundamental understanding about MnO 2 cathode has been changed and how it paved the road to the improvement of cathode performance.

  12. Manganese Dioxide As Rechargeable Magnesium Battery Cathode

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Chen, E-mail: chen.ling@toyota.com; Zhang, Ruigang [Toyota Research Institute of North America, Ann Arbor, MI (United States)

    2017-11-03

    Rechargeable magnesium battery (rMB) has received increased attention as a promising alternative to current Li-ion technology. However, the lack of appropriate cathode that provides high-energy density and good sustainability greatly hinders the development of practical rMBs. To date, the successful Mg{sup 2+}-intercalation was only achieved in only a few cathode hosts, one of which is manganese dioxide. This review summarizes the research activity of studying MnO{sub 2} in magnesium cells. In recent years, the cathodic performance of MnO{sub 2} was impressively improved to the capacity of >150–200 mAh g{sup −1} at voltage of 2.6–2.8 V with cyclability to hundreds or more cycles. In addition to reviewing electrochemical performance, we sketch a mechanistic picture to show how the fundamental understanding about MnO{sub 2} cathode has been changed and how it paved the road to the improvement of cathode performance.

  13. Investigations Of A Pulsed Cathodic Vacuum Arc

    International Nuclear Information System (INIS)

    Oates, T.W.H.; Pigott, J.; Denniss, P.; Mckenzie, D.R.; Bilek, M.M.M.

    2003-01-01

    Cathodic vacuum arcs are well established as a method for producing thin films for coatings and as a source of metal ions. Research into DC vacuum arcs has been going on for over ten years in the School of Physics at the University of Sydney. Recently a project was undertaken in the school to design and build a pulsed CVA for use in the investigation of plasma sheaths and plasma immersion ion implantation. Pulsed cathodic vacuum arcs generally have a higher current and plasma density and also provide a more stable and reproducible plasma density than their DC counterparts. Additionally it has been shown that if a high repetition frequency can be established the deposition rate of pulsed arcs is equal to or greater than that of DC arcs with a concomitant reduction in the rate of macro-particle formation. We present here results of our investigations into the building of a center-triggered pulsed cathodic vacuum arc. The design of the power supply and trigger mechanism and the geometry of the anode and cathode are examined. Observations of type I and II arc spots using a CCD camera, and cathode spot velocity dependence on arc current will be presented. The role of retrograde motion in a high current pulsed arc is discussed

  14. Tube manufacturing and characterization of oxide dispersion strengthened ferritic steels

    International Nuclear Information System (INIS)

    Ukai, Shigeharu; Mizuta, Shunji; Yoshitake, Tunemitsu; Okuda, Takanari; Fujiwara, Masayuki; Hagi, Shigeki; Kobayashi, Toshimi

    2000-01-01

    Oxide dispersion strengthened (ODS) ferritic steels have an advantage in radiation resistance and superior creep rupture strength at elevated temperature due to finely distributed Y 2 O 3 particles in the ferritic matrix. Using a basic composition of low activation ferritic steel (Fe-12Cr-2W-0.05C), cladding tube manufacturing by means of pilger mill rolling and subsequent recrystallization heat-treatment was conducted while varying titanium and yttria contents. The recrystallization heat-treatment, to soften the tubes hardened due to cold-rolling and to subsequently improve the degraded mechanical properties, was demonstrated to be effective in the course of tube manufacturing. For a titanium content of 0.3 wt% and yttria of 0.25 wt%, improvement of the creep rupture strength can be attained for the manufactured cladding tubes. The ductility is also adequately maintained

  15. Process for forming seamless tubing of zirconium or titanium alloys from welded precursors

    International Nuclear Information System (INIS)

    Sabol, G.P.; Barry, R.F.

    1987-01-01

    A process is described for forming seamless tubing of a material selected from zirconium, zirconium alloys, titanium, and titanium alloys, from welded precursor tubing of the material, having a heterogeneous structure resulting from the welding thereof. The process consists of: heating successive axial segments of the welded tubing, completely through the wall thereof, including the weld, to uniformly transform the heterogeneous, as welded, material into the beta phase; quenching the beta phase tubing segments, the heating and quenching effected sufficiently rapid enough to produce a fine sized beta grain structure completely throughout the precursor tubing, including the weld, and to prevent growth of beta grains within the material larger than 200 micrometers in diameter; and subsequently uniformly deforming the quenched precursor tubing by cold reduction steps to produce a seamless tubing of final size and shape

  16. Automation in tube finishing bay

    International Nuclear Information System (INIS)

    Bhatnagar, Prateek; Satyadev, B.; Raghuraman, S.; Syama Sundara Rao, B.

    1997-01-01

    Automation concept in tube finishing bay, introduced after the final pass annealing of PHWR tubes resulted in integration of number of sub-systems in synchronisation with each other to produce final cut fuel tubes of specified length, tube finish etc. The tube finishing bay which was physically segregated into four distinct areas: 1. tube spreader and stacking area, 2. I.D. sand blasting area, 3. end conditioning, wad blowing, end capping and O.D. wet grinding area, 4. tube inspection, tube cutting and stacking area has been studied

  17. The influence of cathode excavation of cathodic arc evaporator on thickness uniformity and erosion products angle distribution

    Directory of Open Access Journals (Sweden)

    D. V. Duhopel'nikov

    2014-01-01

    Full Text Available Cathodic arc evaporators are used for coating with functional films. Prolonged or buttend evaporators may be used for this purposes. In butt-end evaporator the cathode spots move continuously on the cathode work surface and evaporate cathode material. High depth excavation profile forms on the cathode work surface while the thick coating precipitation (tens or hundreds of microns. The cathode excavation profile is shaped like a “cup” with high walls for electrostatic discharge stabilization systems with axial magnetic fields. Cathode spots move on the bottom of the “cup”. It is very likely that high “cup” walls are formed as a result of lasting work time influence on the uniformity of precipitated films.In the present work the influence of excavation profile walls height on the uniformity of precipitated coating was carried out. The high profile walls are formed due to lasting work of DC vacuum arc evaporator. The cathode material used for tests was 3003 aluminum alloy. The extended substrate was placed parallel to the cathode work surface. Thickness distribution along the substrate length with the new cathode was obtained after 6 hours and after 12 hours of continuous operation.The thickness distribution of precipitated coating showed that the cathode excavation has an influence on the angular distribution of the matter escaping the cathode. It can be clearly seen from the normalized dependence coating thickness vs the distance from the substrate center. Also the angular distribution of the matter flow from the cathode depending on the cathode working time was obtained. It was shown that matter flow from the cathode differs from the LambertKnudsen law. The more the cathode excavation the more this difference.So, cathode excavation profile has an influence on the uniformity of precipitated coating and it is necessary to take in account the cathode excavation profile while coating the thick films.

  18. Cold water injection nozzles

    International Nuclear Information System (INIS)

    Kura, Masaaki; Maeda, Masamitsu; Endo, Takio.

    1979-01-01

    Purpose: To inject cold water in a reactor without applying heat cycles to a reactor container and to the inner wall of a feedwater nozzle by securing a perforated plate at the outlet of the cold water injection nozzle. Constitution: A disc-like cap is secured to the final end of a return nozzle of a control rod drive. The cap prevents the flow of a high temperature water flowing downward in the reactor from entering into the nozzle. The cap is perforated with a plurality of bore holes for injecting cold water into the reactor. The cap is made to about 100 mm in thickness so that the cold water passing through the bore holes is heated by the heat conduction in the cap. Accordingly, the flow of high temperature water flowing downwardly in the reactor is inhibited by the cap from backward flowing into the nozzle. Moreover, the flow of the cold water in the nozzle is controlled and rectified when passed through the bore holes in the cap and then injected into the reactor. (Yoshino, Y.)

  19. Oxide cathodes produced by plasma deposition

    International Nuclear Information System (INIS)

    Scheitrum, G.; Caryotakis, G.; Pi, T.; Umstattd, R.; Brown, I.; Montiero, O.

    1997-01-01

    These are two distinct applications for high-current-density, long-life thermionic cathodes. The first application is as a substitute for explosive emission cathodes used in high-power microwave (HPM) devices being developed for Air Force programs. The second application is in SLAC's X-band klystrons for the Next Linear Collider (NLC). SLAC, UCD, and LBL are developing a plasma deposition process that eliminates the problems with binders, carbonate reduction, peeling, and porosity. The emission layer is deposited using plasma deposition of metallic barium in vacuum with an oxygen background gas. An applied bias voltage drives the oxide plasma into the nickel surface. Since the oxide is deposited directly, it does not have problems with poisoning from a hydrocarbon binder. The density of the oxide layer is increased from the 40--50% for standard oxide cathodes to nearly 100% for plasma deposition

  20. Synchrotron Investigations of SOFC Cathode Degradation

    Energy Technology Data Exchange (ETDEWEB)

    Idzerda, Yves

    2013-09-30

    The atomic variations occurring in cathode/electrolyte interface regions of La{sub 1-x}Sr{sub x}Co{sub y}Fe{sub 1-y}O{sub 3-δ} (LSCF) cathodes and other SOFC related materials have been investigated and characterized using soft X-ray Absorption Spectroscopy (XAS) and diffuse soft X-ray Resonant Scattering (XRS). X-ray Absorption Spectroscopy in the soft X-ray region (soft XAS) is shown to be a sensitive technique to quantify the disruption that occurs and can be used to suggest a concrete mechanism for the degradation. For LSC, LSF, and LSCF films, a significant degradation mechanism is shown to be Sr out-diffusion. By using the XAS spectra of hexavalent Cr in SrCrO4 and trivalent Cr in Cr2O3, the driving factor for Sr segregation was identified to be the oxygen vacancy concentration at the anode and cathode side of of symmetric LSCF/GDC/LSCF heterostructures. This is direct evidence of vacancy induced cation diffusion and is shown to be a significant indicator of cathode/electrolyte interfacial degradation. X-ray absorption spectroscopy is used to identify the occupation of the A-sites and B-sites for LSC, LSF, and LSCF cathodes doped with other transition metals, including doping induced migration of Sr to the anti-site for Sr, a significant cathode degradation indicator. By using spatially resolved valence mapping of Co, a complete picture of the surface electrochemistry can be determined. This is especially important in identifying degradation phenomena where the degradation is spatially localized to the extremities of the electrochemistry and not the average. For samples that have electrochemical parameters that are measured to be spatially uniform, the Co valence modifications were correlated to the effects of current density, overpotential, and humidity.

  1. Helically coiled tube heat exchanger

    International Nuclear Information System (INIS)

    Harris, A.M.

    1981-01-01

    In a heat exchanger such as a steam generator for a nuclear reactor, two or more bundles of helically coiled tubes are arranged in series with the tubes in each bundle integrally continuing through the tube bundles arranged in series therewith. Pitch values for the tubing in any pair of tube bundles, taken transverse to the path of the reactor coolant flow about the tubes, are selected as a ratio of two unequal integers to permit efficient operation of each tube bundle while maintaining the various tube bundles of the heat exchanger within a compact envelope. Preferably, the helix angle and tube pitch parallel to the path of coolant flow are constant for all tubes in a single bundle so that the tubes are of approximately the same length within each bundle

  2. Steam generator tube performance

    International Nuclear Information System (INIS)

    Tatone, O.S.; Pathania, R.S.

    1982-04-01

    The performance of steam generator tubes in water-cooled nuclear power reactors has been reviewed for 1980. Tube defects occurred at 38% of the 97 reactors surveyed. This is a marginal improvement over 1979 when defects occurred at 41% of the reactors. The number of failed tubes was also lower, 0.14% of the tubes in service in 1980 compared with 0.20% of those in service in 1979. Analysis of the causes of these failures indicates that stress corrosion cracking was the leading failure mechanism. Reactors that used all-volatile treatment of secondary water, with or without full-flow condensate demineralization since start-up showed the lowest incidence of corrosion-related defects

  3. X-ray tube

    International Nuclear Information System (INIS)

    Webley, R.S.

    1975-01-01

    The object of the invention described is to provide an X-ray tube providing a scanned X-ray output which does not require a scanned electron beam. This is obtained by an X-ray tube including an anode which is rotatable about an axis, and a source of a beam of energy, for example an electron beam, arranged to impinge on a surface of the anode to generate X-radiation substantially at the region of incidence on the anode surface. The anode is rotatable about the axis to move the region of incidence over the surface. The anode is so shaped that the rotation causes the region of incidence to move in a predetermined manner relative to fixed parts of the tube so that the generated X-radiation is scanned in a predetermined manner relative to the tube. (UK)

  4. Fuel assembly guide tube

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1979-01-01

    This invention is directed toward a nuclear fuel assembly guide tube arrangement which restrains spacer grid movement due to coolant flow and which offers secondary means for supporting a fuel assembly during handling and transfer operations

  5. Bull Moose Tube Company

    Science.gov (United States)

    The EPA is providing notice of a proposed Administrative Penalty Assessment against the Bull Moose Tube Company, a business located at 1819 Clarkson Road, Chesterfield, MO, 63017, for alleged violations at the facility located at 406 East Industrial Drive,

  6. Tracheostomy tube - eating

    Science.gov (United States)

    Trach - eating ... take your first bites. Certain factors may make eating or swallowing harder, such as: Changes in the ... easier to swallow. Suction the tracheostomy tube before eating. This will keep you from coughing while eating, ...

  7. The University of Texas Cold Neutron Source

    International Nuclear Information System (INIS)

    Uenlue, Kenan; Rios-Martinez, Carlos; Wehring, B.W.

    1994-01-01

    A cold neutron source has been designed, constructed, and tested by the Nuclear Engineering Teaching Laboratory (NETL) at The University of Texas at Austin. The Texas Cold Neutron Source (TCNS) is located in one of the beam ports of the NETL 1-MW TRIGA Mark II research reactor. The main components of the TCNS are a cooled moderator, a heat pipe, a cryogenic refrigerator, and a neutron guide. 80 ml of mesitylene moderator are maintained at about 30 K in a chamber within the reactor graphite reflector by the heat pipe and cryogenic refrigerator. The heat pipe is a 3-m long aluminum tube that contains neon as the working fluid. The cold neutrons obtained from the moderator are transported by a curved 6-m long neutron guide. This neutron guide has a radius of curvature of 300 m, a 50x15 mm cross-section, 58 Ni coating, and is separated into three channels. The TCNS will provide a low-background subthermal neutron beam for neutron capture and scattering research. After the installation of the external portion of the neutron guide, a neutron focusing system and a Prompt Gamma Activation Analysis facility will be set up at the TCNS. ((orig.))

  8. Researching YouTube

    OpenAIRE

    Arthurs, Jane; Drakopoulou, Sophia; Gandini, Alessandro

    2018-01-01

    ‘Researching YouTube’ introduces the special issue of Convergence which arose out of an international academic conference on YouTube that was held in London at Middlesex University in September 2016. The conference aimed to generate a robust overview of YouTube’s changing character and significance after its first ten years of development by creating a productive dialogue between speakers from different disciplines and cultures, and between YouTube-specific research and wider debates in media...

  9. Tubing crimping pliers

    Science.gov (United States)

    Lindholm, G.T.

    1981-02-27

    The disclosure relates to pliers and more particularly to pliers for crimping two or more pieces of copper tubing together prior to their being permanently joined by brazing, soldering or the like. A die containing spring-loaded pins rotates within a cammed ring in the head of the pliers. As the die rotates, the pins force a crimp on tubing held within the pliers.

  10. Ferroelectric Cathodes in Transverse Magnetic Fields

    International Nuclear Information System (INIS)

    Alexander Dunaevsky; Yevgeny Raitses; Nathaniel J. Fisch

    2002-01-01

    Experimental investigations of a planar ferroelectric cathode in a transverse magnetic field up to 3 kGs are presented. It is shown that the transverse magnetic field affects differently the operation of ferroelectric plasma cathodes in ''bright'' and ''dark'' modes in vacuum. In the ''bright'' mode, when the surface plasma is formed, the application of the transverse magnetic field leads to an increase of the surface plasma density. In the ''dark'' mode, the magnetic field inhibits the development of electron avalanches along the surface, as it does similarly in other kinds of surface discharges in the pre-breakdown mode

  11. Cathode architectures for alkali metal / oxygen batteries

    Science.gov (United States)

    Visco, Steven J; Nimon, Vitaliy; De Jonghe, Lutgard C; Volfkovich, Yury; Bograchev, Daniil

    2015-01-13

    Electrochemical energy storage devices, such as alkali metal-oxygen battery cells (e.g., non-aqueous lithium-air cells), have a cathode architecture with a porous structure and pore composition that is tailored to improve cell performance, especially as it pertains to one or more of the discharge/charge rate, cycle life, and delivered ampere-hour capacity. A porous cathode architecture having a pore volume that is derived from pores of varying radii wherein the pore size distribution is tailored as a function of the architecture thickness is one way to achieve one or more of the aforementioned cell performance improvements.

  12. DARHT 2 kA Cathode Development

    Energy Technology Data Exchange (ETDEWEB)

    Henestroza, E.; Houck, T.; Kwan, J.W.; Leitner, M.; Miram, G.; Prichard, B.; Roy, P.K.; Waldron, W.; Westenskow, G.; Yu, S.; Bieniosek, F.M.

    2009-03-09

    In the campaign to achieve 2 kA of electron beam current, we have made several changes to the DARHT-II injector during 2006-2007. These changes resulted in a significant increase in the beam current, achieving the 2 kA milestone. Until recently (before 2007), the maximum beam current that was produced from the 6.5-inch diameter (612M) cathode was about 1300 A when the cathode was operating at a maximum temperature of 1140 C. At this temperature level, the heat loss was dominated by radiation which is proportional to temperature to the fourth power. The maximum operating temperature was limited by the damage threshold of the potted filament and the capacity of the filament heater power supply, as well as the shortening of the cathode life time. There were also signs of overheating at other components in the cathode assembly. Thus it was clear that our approach to increase beam current could not be simply trying to run at a higher temperature and the preferred way was to operate with a cathode that has a lower work function. The dispenser cathode initially used was the type 612M made by SpectraMat. According to the manufacturer's bulletin, this cathode should be able to produce more than 10 A/cm{sup 2} of current density (corresponding to 2 kA of total beam current) at our operating conditions. Instead the measured emission (space charge limited) was 6 A/cm{sup 2}. The result was similar even after we had revised the activation and handling procedures to adhere more closely to the recommend steps (taking longer time and nonstop to do the out-gassing). Vacuum was a major concern in considering the cathode's performance. Although the vacuum gauges at the injector vessel indicated 10{sup -8} Torr, the actual vacuum condition near the cathode in the central region of the vessel, where there might be significant out-gassing from the heater region, was never determined. Poor vacuum at the surface of the cathode degraded the emission (by raising the work function

  13. DARHT 2 kA Cathode Development

    International Nuclear Information System (INIS)

    Henestroza, E.; Houck, T.; Kwan, J.W.; Leitner, M.; Miram, G.; Prichard, B.; Roy, P.K.; Waldron, W.; Westenskow, G.; Yu, S.; Bieniosek, F.M.

    2009-01-01

    In the campaign to achieve 2 kA of electron beam current, we have made several changes to the DARHT-II injector during 2006-2007. These changes resulted in a significant increase in the beam current, achieving the 2 kA milestone. Until recently (before 2007), the maximum beam current that was produced from the 6.5-inch diameter (612M) cathode was about 1300 A when the cathode was operating at a maximum temperature of 1140 C. At this temperature level, the heat loss was dominated by radiation which is proportional to temperature to the fourth power. The maximum operating temperature was limited by the damage threshold of the potted filament and the capacity of the filament heater power supply, as well as the shortening of the cathode life time. There were also signs of overheating at other components in the cathode assembly. Thus it was clear that our approach to increase beam current could not be simply trying to run at a higher temperature and the preferred way was to operate with a cathode that has a lower work function. The dispenser cathode initially used was the type 612M made by SpectraMat. According to the manufacturer's bulletin, this cathode should be able to produce more than 10 A/cm 2 of current density (corresponding to 2 kA of total beam current) at our operating conditions. Instead the measured emission (space charge limited) was 6 A/cm 2 . The result was similar even after we had revised the activation and handling procedures to adhere more closely to the recommend steps (taking longer time and nonstop to do the out-gassing). Vacuum was a major concern in considering the cathode's performance. Although the vacuum gauges at the injector vessel indicated 10 -8 Torr, the actual vacuum condition near the cathode in the central region of the vessel, where there might be significant out-gassing from the heater region, was never determined. Poor vacuum at the surface of the cathode degraded the emission (by raising the work function value). We reexamined

  14. Studies on pulsed hollow cathode capillary discharges

    Energy Technology Data Exchange (ETDEWEB)

    Choi, P; Dumitrescu-Zoita, C; Larour, J; Rous, J [Ecole Polytechnique, 91 - Palaiseau (France). Lab. de Physique des Milieux Ionises; Favre, M; Moreno, J; Chuaqui, H; Wyndham, E [Pontificia Univ. Catolica de Chile, Santiago (Chile). Facultad de Fisica; Zambra, M [Comision Chilena de Energia Nuclear, Santiago (Chile); Wong, C S [Univ. of Malaya, Kuala Lumpur (Malaysia). Plasma Research Lab

    1997-12-31

    Preliminary results on radiation characteristics of pulsed hollow cathode capillary discharges are presented. The device combines the on axis electron beam assisted ionization capabilities of the transient hollow cathode discharge with a novel high voltage low inductance geometrical design, which integrates the local energy storage into the electrode system. A nanosecond regime high temperature plasma is produced in a long, high aspect ratio capillary, with light emission in the UV to XUV region. The discharge is operated from near vacuum to pressure in the 1000 mTorr range. (author). 2 figs., 7 refs.

  15. Method for estimating off-axis pulse tube losses

    Science.gov (United States)

    Fang, T.; Mulcahey, T. I.; Taylor, R. P.; Spoor, P. S.; Conrad, T. J.; Ghiaasiaan, S. M.

    2017-12-01

    Some Stirling-type pulse tube cryocoolers (PTCs) exhibit sensitivity to gravitational orientation and often exhibit significant cooling performance losses unless situated with the cold end pointing downward. Prior investigations have indicated that some coolers exhibit sensitivity while others do not; however, a reliable method of predicting the level of sensitivity during the design process has not been developed. In this study, we present a relationship that estimates an upper limit to gravitationally induced losses as a function of the dimensionless pulse tube convection number (NPTC) that can be used to ensure that a PTC would remain functional at adverse static tilt conditions. The empirical relationship is based on experimental data as well as experimentally validated 3-D computational fluid dynamics simulations that examine the effects of frequency, mass flow rate, pressure ratio, mass-pressure phase difference, hot and cold end temperatures, and static tilt angle. The validation of the computational model is based on experimental data collected from six commercial pulse tube cryocoolers. The simulation results are obtained from component-level models of the pulse tube and heat exchangers. Parameter ranges covered in component level simulations are 0-180° for tilt angle, 4-8 for length to diameter ratios, 4-80 K cold tip temperatures, -30° to +30° for mass flow to pressure phase angles, and 25-60 Hz operating frequencies. Simulation results and experimental data are aggregated to yield the relationship between inclined PTC performance and pulse tube convection numbers. The results indicate that the pulse tube convection number can be used as an order of magnitude indicator of the orientation sensitivity, but CFD simulations should be used to calculate the change in energy flow more accurately.

  16. Cold regions isotope applications

    International Nuclear Information System (INIS)

    Perrigo, L.D.; Divine, T.E.

    1976-04-01

    Pacific Northwest Laboratories (PNL) started the Cold Regions Isotope Applications Program in FY-1975 to identify special conditions in the Arctic and similar geographic areas (Cold Regions) where radioisotope power, heater, or sterilization systems would be desirable and economically viable. Significant progress was made in the first year of this program and all objectives for this initial 12-month period were achieved. The major conclusions and recommendations resulting for this effort are described below. The areas of interest covered include: radiosterilization of sewage; heating of septic tanks; and radioisotope thermoelectric generators as power sources for meteorological instruments and navigational aids

  17. A compact large-format streak tube for imaging lidar

    Science.gov (United States)

    Hui, Dandan; Luo, Duan; Tian, Liping; Lu, Yu; Chen, Ping; Wang, Junfeng; Sai, Xiaofeng; Wen, Wenlong; Wang, Xing; Xin, Liwei; Zhao, Wei; Tian, Jinshou

    2018-04-01

    The streak tubes with a large effective photocathode area, large effective phosphor screen area, and high photocathode radiant sensitivity are essential for improving the field of view, depth of field, and detectable range of the multiple-slit streak tube imaging lidar. In this paper, a high spatial resolution, large photocathode area, and compact meshless streak tube with a spherically curved cathode and screen is designed and tested. Its spatial resolution reaches 20 lp/mm over the entire Φ28 mm photocathode working area, and the simulated physical temporal resolution is better than 30 ps. The temporal distortion in our large-format streak tube, which is shown to be a non-negligible factor, has a minimum value as the radius of curvature of the photocathode varies. Furthermore, the photocathode radiant sensitivity and radiant power gain reach 41 mA/W and 18.4 at the wavelength of 550 nm, respectively. Most importantly, the external dimensions of our streak tube are no more than Φ60 mm × 110 mm.

  18. Cathode characterization system: preliminary results with (Ba,Sr,Ca) O coated cathodes

    International Nuclear Information System (INIS)

    Nono, M.C.A.; Goncalves, J.A.N.; Barroso, J.J.; Dallaqua, R.S.; Spassovsky, I.

    1993-01-01

    The performance of a cathode characterization system for studying the emission parameters of thermal electron emitters is reported. The system consists of vacuum chamber, power supplies and equipment for measuring and control. Measurements have been taken of the emission current as function of cathode temperature and anode voltage. Several (Ba, Sr) O coated cathodes were tested and the results have shown good agreement with Child's and Richardson's laws. The experimental work function is between 1.0 and 2.0 e V. All emission parameters measured are consistent with international literature data. (author)

  19. A Novel Cathode Material for Cathodic Dehalogenation of 1,1-Dibromo Cyclopropane Derivatives.

    Science.gov (United States)

    Gütz, Christoph; Selt, Maximilian; Bänziger, Markus; Bucher, Christoph; Römelt, Christina; Hecken, Nadine; Gallou, Fabrice; Galvão, Tomás R; Waldvogel, Siegfried R

    2015-09-28

    Leaded bronze turned out to be an excellent cathode material for the dehalogenation reaction of cyclopropanes without affecting the strained molecular entity. With this particular alloy, beneficial properties of lead cathodes are conserved, whereas the corrosion of cathode is efficiently suppressed. The solvent in the electrolyte determines whether a complete debromination reaction is achieved or if the process can be selectively stopped at the monobromo cyclopropane intermediate. The electroorganic conversion tolerates a variety of functional groups and can be conducted at rather complex substrates like cyclosporine A. This approach allows the sustainable preparation of cyclopropane derivatives. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Pressure tube reactor

    International Nuclear Information System (INIS)

    Seki, Osamu; Kumasaka, Katsuyuki.

    1988-01-01

    Purpose: To remove the heat of reactor core using a great amount of moderators at the periphery of the reactor core as coolants. Constitution: Heat of a reactor core is removed by disposing a spontaneous recycling cooling device for cooling moderators in a moderator tank, without using additional power driven equipments. That is, a spontaneous recycling cooling device for cooling the moderators in the moderator tank is disposed. Further, the gap between the inner wall of a pressure tube guide pipe disposed through the vertical direction of a moderator tank and the outer wall of a pressure tube inserted through the guide pipe is made smaller than the rupture distortion caused by the thermal expansion upon overheating of the pressure tube and greater than the minimum gap required for heat shiels between the pressure tube and the pressure tube guide pipe during usual operation. In this way, even if such an accident as can not using a coolant cooling device comprising power driven equipment should occur in the pressure tube type reactor, the rise in the temperature of the reactor core can be retarded to obtain a margin with time. (Kamimura, M.)

  1. Li- and Mn-Rich Cathode Materials: Challenges to Commercialization

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jianming [Energy and Environmental Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Myeong, Seungjun [School of Energy and Chemical Engineering, Green Energy Materials Development Center, Ulsan National Institute of Science and Technology (UNIST), Korea 689-798; Cho, Woongrae [School of Energy and Chemical Engineering, Green Energy Materials Development Center, Ulsan National Institute of Science and Technology (UNIST), Korea 689-798; Yan, Pengfei [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Xiao, Jie [Energy and Environmental Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Wang, Chongmin [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Cho, Jaephil [School of Energy and Chemical Engineering, Green Energy Materials Development Center, Ulsan National Institute of Science and Technology (UNIST), Korea 689-798; Zhang, Ji-Guang [Energy and Environmental Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA

    2016-12-14

    The lithium- and manganese-rich (LMR) layered structure cathode exhibit one of the highest specific energy (~900 Wh kg-1) among all the cathode materials. However, the practical applications of LMR cathodes are still hindered by several significant challenges including voltage fade, large initial capacity loss, poor rate capability and limited cycle life. Herein, we review the recent progresses and understandings on the application of LMR cathode materials from practical point of view. Several key parameters of LMR cathodes that affect the LMR/graphite full cell operation are systematically analysed. These factors include the first cycle capacity loss, voltage fade, powder tap density, electrode density of LMR based cathode etc. New approaches to minimize the detrimental effect of these factors are highlighted in this work. We also provided the perspectives for the future research on LMR cathode materials, focusing on addressing the fundamental problems of LMR cathodes while always keeping practical considerations in mind.

  2. Reservoir Cathode for Electric Space Propulsion, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a hollow reservoir cathode to improve performance in ion and Hall thrusters. We will adapt our existing reservoir cathode technology to this purpose....

  3. Impressed current cathodic protection of deep water structures

    Digital Repository Service at National Institute of Oceanography (India)

    Venkatesan, R.

    that the cathodic protection design approaches for shallow water may not be adequate for deeper water. This paper discusses on environmental factors encountered in deep water and their effect on cathodic protection behaviour of steel. Further, current CP design...

  4. Tube spacer grid for a heat-exchanger tube bundle

    International Nuclear Information System (INIS)

    Scheidl, H.

    1976-01-01

    A tube spacer grid for a heat-exchanger tube bundle is formed by an annular grid frame having a groove formed in its inner surface in which the interspaced grid bars have their ends positioned and held in interspaced relationship by short sections of tubes passed through holes axially formed in the grid frame so that the tubes are positioned between the ends of the grid bars in the grooves. The tube sections may be cut from the same tubes used to form the tube bundle. 5 claims, 3 drawing figures

  5. A high efficiency hybrid stirling-pulse tube cryocooler

    Directory of Open Access Journals (Sweden)

    Xiaotao Wang

    2015-03-01

    Full Text Available This article presented a hybrid cryocooler which combines the room temperature displacers and the pulse tube in one system. Compared with a traditional pulse tube cryocooler, the system uses the rod-less ambient displacer to recover the expansion work from the pulse tube cold end to improve the efficiency while still keeps the advantage of the pulse tube cryocooler with no moving parts at the cold region. In the meantime, dual-opposed configurations for both the compression pistons and displacers reduce the cooler vibration to a very low level. In the experiments, a lowest no-load temperature of 38.5 K has been obtained and the cooling power at 80K was 26.4 W with an input electric power of 290 W. This leads to an efficiency of 24.2% of Carnot, marginally higher than that of an ordinary pulse tube cryocooler. The hybrid configuration herein provides a very competitive option when a high efficiency, high-reliability and robust cryocooler is desired.

  6. Steam generator tube rupture effects on a LOCA

    International Nuclear Information System (INIS)

    LaChance, J.L.

    1979-01-01

    A problem currently experienced in commercial operating pressurized water reactors (PWR) in the United States is the degradation of steam generator tubes. Safety questions have arisen concerning the effect of these degraded tubes rupturing during a postulated loss-of-coolant accident (LOCA). To determine the effect of a small number of tube ruptures on the behavior of a large PWR during a postulated LOCA, a series of computer simulations was performed. The primary concern of the study was to determine whether a small number (10 or less of steam generator tubes rupturing at the beginning surface temperatures. Additional reflood analyses were performed to determine the system behavior when from 10 to 60 tubes rupture at the beginning of core reflood. The FLOOD4 code was selected as being the most applicable code for use in this study after an extensive analysis of the capabilities of existing codes to perform simulations of a LOCA with concurrent steam generator tube ruptures. The results of the study indicate that the rupturing of 10 or less steam generator tubes in any of the steam generators during a 200% cold leg break will not result in a significant increase in the peak cladding temperature. However, because of the vaporization of the steam generator secondary water in the primary side of the steam generator, a significant increase in the core pressure occurs which retards the reflooding process

  7. Manufacture of seamless stainless steel tubings and related equipment

    International Nuclear Information System (INIS)

    Wali, D.K.; Chaudhary, S.

    1997-01-01

    Production of seamless tubes for special application is one of the important production activities of Nuclear Fuel Complex (NFC), Hyderabad. NFC had set up facility of Hot Extrusion Press and Cold Pilger Mills with related finishing and inspection equipment for manufacturing quality seamless tubes of zirconium alloy for application in nuclear power reactors in early 70''s. Being aware that the demand for seamless tube in a developing economy gradually increases till it reaches around 30 to 40% of the total requirement of tubes and pipes and also of the fact that manufacturing technology developed for production of zircaloy seamless tubes for nuclear application, can easily be harnessed and spinned off for production of seamless tubes in materials generally difficult to hot roll (in other than extrusion process), NFC augmented its seamless tube manufacturing facility by adding, a vertical piercing press, series of induction furnaces and large size pilger mills to meet existing market demand of power sector, engineering, fertilisers and petro chemical industries and any other specialised applications

  8. The NIST NBSR and Cold Neutron Research Facility

    Energy Technology Data Exchange (ETDEWEB)

    Rush, J.J. [National Inst. of Standards and Technology, Guthersburg, MD (United States)

    1994-12-31

    The 20 MW Neutron Beam Split-Core Reactor (NBSR) has nine radial thermal beam tubes, and a large, highly accessible (35cm) cold source serving an extensive network of eight guide tubes. In operation or under construction are twenty-five neutron beam instruments (20 for neutron scattering) and about a dozen other facilities for neutron trace analysis, dosimetry and irradiation. The 6 x 15cm cold neutron guides are coated with {sup 58}Ni, and the last three being installed this fall are coated top and bottom with supermirrors for further increases in intensity. The new semi-spherical liquid hydrogen source will be described, along with the eight scattering instruments (reflectometry, SANS and high-resolution spectroscopy) which have, or will have, an extensive use in biological research. These instruments will likely provide the best overall capability in the U.S. for the next decade for a number of applications in biomolecular structure and dynamics.

  9. Wire- and cathode pulses in a counter of square cross section with a thin wire as central conductor operating in limited streamer mode

    Science.gov (United States)

    Carli, Ch.; Erd, Ch.; Leder, G.; Pernicka, M.; Regler, M.; Schnizer, B.

    1989-11-01

    Streamer tubes are becoming increasingly important in high-energy physics experiments. They are used as drift tubes for the localisation of charged-particle tracks, and also as sampling devices in sandwich calorimeters with cathode readout only. The streamer pulses carry charges which are several orders of magnitude larger than pulses from proportional chambers; this provides a good signal-to-noise ratio and makes them appropriate for a wide field of applications in highly compact detectors. The signals induced on the cathodes are also important for measuring — in addition to the anode wire - a second coordinate, and for resolving ambiguities in track recognition. When connecting the signals from two opposite cathodes to the two inputs of a differential amplifier, a left/right bit could be added after suitable buffering via the same signal line as used for time digitalisation. Another essential feature is the association of time information from the anode wire and the cathode. For the streamer tube used in this experiment the pulses induced on the cathode on either side of the particle, and on the anode, are measured by a fast analog-to-digital converter. A simple two-dimensional model ρ( r, θ) at t = 0, without any time-dependent effects other than a constant electron drift velocity of 50 μm/ns, is used to compare the charge distribution in a streamer with the measurements of the pulse lengths at the two opposite cathode strips. First the field generated by a static voltage is calculated. Then the effect of a "space charge" is evaluated. The Green's function of the square domain is a prerequisite for determining the field and the surface charge distribution on the electrodes. It is obtained from that of a concentric circular counter by a conformal mapping. Representations of Green's functions are calculated by series expansions.

  10. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    Energy Technology Data Exchange (ETDEWEB)

    Harlan U. Anderson

    2000-03-31

    . However, they have the potential of being useful as an interface on the anode side of the electrolyte. NexTech has focused much of its effort during the past few months on establishing tape casting methods for porous LSM substrates. This work, performed under a separate DOE-funded program, involved tape casting formulations comprising LSM powders with bi-modal particle size distributions and fugitive pore forming additives. Sintered LSM substrates with porosities in the 30 to 40 vol% range, and pore sizes of 10 {approx} 20 microns have been prepared. In addition, tape casting formulations involving composite mixtures of LSM and Sm-doped ceria (SDC) have been evaluated. The LSM/SDC cathode substrates are expected to provide better performance at low temperatures. Characterization of these materials is currently underway.

  11. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    Energy Technology Data Exchange (ETDEWEB)

    Harlan U. Anderson; Wayne Huebner; Igor Kosacki

    2001-09-30

    This project has three main goals: Thin Films Studies, Preparation of Graded Porous Substrates and Basic Electrical Characterization and testing of Planar Single Cells. In this portion of study we have focused on producing YSZ films on porous LSM substrates. When using the polymer precursor there are a number of obstacles to overcome in order to form dense electrolyte layers on porous substrates (cathode or anode). Probably the most difficult problems are: (1) Extreme penetration of the polymer into the substrate must be prevented. (2) Shrinkage cracking must be avoided. (3) Film thickness in the 1 to 5{micro}m range must be achieved. We have demonstrated that cracking due to shrinkage involved during the elimination of solvents and organic matter and densification of the remaining oxide is not a problem as long as the resulting oxide film is < {approx} 0.15 {micro}m in thickness. We have also shown that we can make thicker films by making multiple depositions if the substrate is smooth (roughness {le} 0.1 {micro}m) and contains no surface pores > 0.2 {micro}m. The penetration of the polymer into the porous substrate can be minimized by increasing the viscosity of the polymer and reducing the largest pore at the surface of the substrate to {le} 0.2 {micro}m. We have shown that this can be done, but we have also shown that it is difficult to make dense films that are defect free with areas > 1 cm{sup 2}. This is because of the roughness of the substrate and the difficulty in making a substrate which does not have surface voids > 0.2 {micro}m. Thus the process works well for dense, smooth substrates for films < 1 {micro}m thick, but is difficult to apply to rough, porous surfaces and to make film thickness > 1 {micro}m. As a result of these problems, we have been addressing the issue of how to make dense films in the thickness range of 1 to 5 {micro}m on sintered porous substrates without introducing cracks and holes due to shrinkage and surface voids? These

  12. Commemoration of a cold war

    DEFF Research Database (Denmark)

    Farbøl, Rosanna

    2015-01-01

    This article brings together the fields of Cold War studies and memory studies. In Denmark, a remarkable institutionalisation of Cold War memory has taken place in the midst of a heated ideological battle over the past and whether to remember the Cold War as a ‘war’. Using Danish Cold War museums...... and heritage sites as case studies, this article sheds new light on the politics of history involved in Cold War commemoration. It suggests that the Cold War is commemorated as a war, yet this war memory is of a particular kind: it is a war memory without victims....

  13. In-situ inspection of grooves in reactor tube sheet using a remotely operated cast impression taking device

    International Nuclear Information System (INIS)

    Rajendran, S.; Ramakumar, M.S.

    1996-01-01

    Utmost importance is given to the in-service inspection of critical components of a reactor to ensure its reliable performance during the reactor operation. This paper describes a cast taking device using cold setting resin to take impression of the grooves being made in the tube sheet for sparger tube installation in pressurised heavy water reactor. (author)

  14. NEI You Tube Videos: Amblyopia

    Medline Plus

    Full Text Available ... search for current job openings visit HHS USAJobs Home >> NEI YouTube Videos >> NEI YouTube Videos: Amblyopia Listen NEI YouTube Videos YouTube Videos Home Age-Related Macular Degeneration Amblyopia Animations Blindness Cataract ...

  15. NEI You Tube Videos: Amblyopia

    Medline Plus

    Full Text Available ... search for current job openings visit HHS USAJobs Home » NEI YouTube Videos » NEI YouTube Videos: Amblyopia Listen NEI YouTube Videos YouTube Videos Home Age-Related Macular Degeneration Amblyopia Animations Blindness Cataract ...

  16. Polymer coatings as separator layers for microbial fuel cell cathodes

    KAUST Repository

    Watson, Valerie J.; Saito, Tomonori; Hickner, Michael A.; Logan, Bruce E.

    2011-01-01

    and increased coulombic efficiency (CE = 56-64%) relative to an uncoated cathode (29 ± 8%), but decreased power production (255-574 mW m-2). Electrochemical characterization of the cathodes ex situ to the MFC showed that the cathodes with the lowest charge

  17. Coating for lithium anode, thionyl chloride active cathode electrochemical cell

    Energy Technology Data Exchange (ETDEWEB)

    Catanzarite, V.O.

    1983-01-04

    Electrochemical power cells having a cathode current collector, a combination liquid active cathode depolarizer electrolyte solvent and an anode that forms surface compounds when in intimate contact with the liquid cathode are enhanced by the addition of a passivation limiting film contiguous to said anode. The passivating film is a member of the cyanoacrilate family of organic compounds.

  18. Coating for lithium anode, thionyl chloride active cathode electrochemical cell

    Energy Technology Data Exchange (ETDEWEB)

    Catanzarite, V.O.

    1981-10-20

    Electrochemical power cells having a cathode current collector, a combination liquid active cathode depolarizer electrolyte solvent and an anode that forms surface compounds when in intimate contact with the liquid cathode are enhanced by the addition of a passivation limiting film contiguous to said anode. The passivating film is a member of the cyanoacrilate family of organic compounds.

  19. Explosive-emission cathode fabricated using track method

    International Nuclear Information System (INIS)

    Akap'ev, G.N.; Korenev, S.A.

    1989-01-01

    Fabrication technique for large area multipoint cathodes is described. The technique is based on channels filling with metal in the ion-irradiated dielectric film producted after channel etching. It is shown, that cathode may be used under explosive emission conditions. Characteristics of diode with the mentioned type cathodes are measured

  20. Study of the phenomenon of cathodic pulverisation at low energy; Etude du phenomene de la pulverisation cathodique a basse energie

    Energy Technology Data Exchange (ETDEWEB)

    Druaux, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1957-07-01

    Every time positive ions bombard the cathode of a discharge tube, a continuous destruction of the cathode and a corresponding deposit on the surrounding walls are observed. This phenomenon is known as 'cathodic pulverisation'. It has been known for about a century, but the difficulties of observation and the numerous secondary phenomena which accompany it have for a long time held up the correct explanation of its physical mechanism. At the present time, it can be said that no theory can yet claim to make it completely intelligible. However, cathodic pulverisation can be considered as a particular case of the phenomenon of collisions between atomic particles; in this instance it is a question of the impact of positive ions accelerated by U volts (I{sub U}{sup +}) on the atoms of a solid or liquid target X. (author) [French] Chaque fois que des ions positifs bombardent la cathode d'un tube a decharge, on observe une destruction continue de celle-ci et un depot correspondant sur les parois environnantes. Ce phenomene est appele 'pulverisation cathodique'. Il est connu depuis un siecle environ, mais les difficultes d'observation et les nombreux phenomenes secondaires qui l'accompagnent ont retarde pendant longtemps l'explication correcte de son mecanisme physique. A l'heure actuelle, on peut dire qu'aucune theorie ne peut encore pretendre a son intelligibilite complete. Cependant, on peut considerer la pulverisation cathodique comme un cas particulier du phenomene de chocs entre particules atomiques; en l'occurrence, il s'agit de l'impact d'ions positifs acceleres par U volts (I{sub U}{sup +}) sur les atomes d'une cible X solide ou liquide. (auteur)

  1. ANFSQ-7 the computer that shaped the cold war

    CERN Document Server

    Ulmann, Bernd

    2014-01-01

    One of the most impressive computer systems ever was the vacuum tube based behemoth AN/FSQ-7, which was the heart of the ""Semi Automatic Ground Environment"". Machines of this type were children of the Cold War and had a tremendous effect not only on this episode in politics but also generated a vast amount of spin-offs which still shape our world.

  2. Cold spray nozzle design

    Science.gov (United States)

    Haynes, Jeffrey D [Stuart, FL; Sanders, Stuart A [Palm Beach Gardens, FL

    2009-06-09

    A nozzle for use in a cold spray technique is described. The nozzle has a passageway for spraying a powder material, the passageway having a converging section and a diverging section, and at least the diverging section being formed from polybenzimidazole. In one embodiment of the nozzle, the converging section is also formed from polybenzimidazole.

  3. Cold fusion - todays situation

    International Nuclear Information System (INIS)

    Malmqvist, K.

    1993-01-01

    A brief review of the history of cold fusion is given. It is noted that it is not possible to draw any definite conclusions about all the experimental and theoretical details, but that some of the results presented do not seem to be reached according to the normal scientific methods. 6 figs

  4. Recent Cold War Studies

    Science.gov (United States)

    Pineo, Ronn

    2003-01-01

    Cold War historiography has undergone major changes since the 1991 collapse of the Soviet Union. For two years (1992-1993) the principal Soviet archives fell open to scholars, and although some of the richest holdings are now once again closed, new information continues to find its way out. Moreover, critical documentary information has become…

  5. Expert Cold Structure Development

    Science.gov (United States)

    Atkins, T.; Demuysere, P.

    2011-05-01

    The EXPERT Program is funded by ESA. The objective of the EXPERT mission is to perform a sub-orbital flight during which measurements of critical aero- thermodynamic phenomena will be obtained by using state-of-the-art instrumentation. As part of the EXPERT Flight Segment, the responsibility of the Cold Structure Development Design, Manufacturing and Validation was committed to the Belgian industrial team SONACA/SABCA. The EXPERT Cold Structure includes the Launcher Adapter, the Bottom Panel, the Upper Panel, two Cross Panels and the Parachute Bay. An additional Launcher Adapter was manufactured for the separation tests. The selected assembly definition and manufacturing technologies ( machined parts and sandwich panels) were dictated classically by the mass and stiffness, but also by the CoG location and the sensitive separation interface. Used as support for the various on-board equipment, the Cold Structure is fixed to but thermally uncoupled from the PM 1000 thermal shield. It is protect on its bottom panel by a thermal blanket. As it is a protoflight, analysis was the main tool for the verification. Low level stiffness and modal analysis tests have also been performed on the Cold Structure equipped with its ballast. It allowed to complete its qualification and to prepare SONACA/SABCA support for the system dynamic tests foreseen in 2011. The structure was finally coated with a thermal control black painting and delivered on time to Thales Alenia Space-Italy end of March 201.

  6. Numerical simulation of tubes-in-tube heat exchanger in a mixed refrigerant Joule-Thomson cryocooler

    Science.gov (United States)

    Damle, R. M.; Ardhapurkar, P. M.; Atrey, M. D.

    2017-02-01

    Mixed refrigerant Joule-Thomson (MRJT) cryocoolers can produce cryogenic temperatures with high efficiency and low operating pressures. As compared to the high system pressures of around 150-200 bar with nitrogen, the operational pressures with non-azeotropic mixtures (e.g., nitrogen-hydrocarbons) come down to 10-25 bar. With mixtures, the heat transfer in the recuperative heat exchanger takes place in the two-phase region. The simultaneous boiling and condensation of the cold and hot gas streams lead to higher heat transfer coefficients as compared to single phase heat exchange. The two-phase heat transfer in the recuperative heat exchanger drastically affects the performance of a MRJT cryocooler. In this work, a previously reported numerical model for a simple tube-in-tube heat exchanger is extended to a multi tubes-in-tube heat exchanger with a transient formulation. Additionally, the J-T expansion process is also considered to simulate the cooling process of the heat exchanger from ambient temperature conditions. A tubes-in-tube heat exchanger offers more heat transfer area per unit volume resulting in a compact design. Also, the division of flow in multiple tubes reduces the pressure drop in the heat exchanger. Simulations with different mixtures of nitrogen-hydrocarbons are carried out and the numerical results are compared with the experimental data.

  7. Electrochemical 'cold fusion' trials at IPP Garching

    International Nuclear Information System (INIS)

    Bosch, H.S.; Gernhardt, J.; Karger, F.; Perchermeier, J.; Wurden, G.A.

    1989-07-01

    Following the report of Fleischmann and Pons, we (The Bavarian Bubble Bottle Team) have attempted to reproduce their claims of cold nuclear fusion, and failed. We note that our measurements would not be able to detect neutrons at the level of Jones et al. Three electrolytic cell experiments were conducted using palladium cathodes and Platinum anodes, in a 0.1 Molar solution of LiD in heavy water, without any signs of neutrons, tritium or gammas above backgrounds, and within ±0.3 Watt accuracy calorimetry, no excess heating. Excess heating at the levels of F P would have been easily detected, if present. Intrinsic tritium, differing from each D 2 O bottle tested, was however observed. The longest duration experiment ran for 21 days, and was an attempt to duplicate the large 'melting incident' of F P . This was terminated on April 28, 1989, by throwing the vacuum-cast 22 gram, deuterium-loaded palladium cathode directly into liquid nitrogen, immediately next to a bare BF 3 counter (backed by 25 cm of moderator), in order to attempt one of the Italian ENEA neutron production variants. No neutrons above backgrounds were seen, while counting for one hour, and also none while the piece warmed to room temperature over the next hour. Post mortem analysis of the darkened, hardened Pd piece showed large crystal grains (up to 2 mmx2 mm), and continuing evolution of gas bubbles at the grain boundaries even four days after the experiment was ended. Eight weeks after loading, the catalytically active palladium piece continued to create heavy water (with exposure to oxygen in the air). (orig.)

  8. Detection of cold pain, cold allodynia and cold hyperalgesia in freely behaving rats

    Directory of Open Access Journals (Sweden)

    Woolf Clifford J

    2005-12-01

    Full Text Available Abstract Background Pain is elicited by cold, and a major feature of many neuropathic pain states is that normally innocuous cool stimuli begin to produce pain (cold allodynia. To expand our understanding of cold induced pain states we have studied cold pain behaviors over a range of temperatures in several animal models of chronic pain. Results We demonstrate that a Peltier-cooled cold plate with ± 1°C sensitivity enables quantitative measurement of a detection withdrawal response to cold stimuli in unrestrained rats. In naïve rats the threshold for eliciting cold pain behavior is 5°C. The withdrawal threshold for cold allodynia is 15°C in both the spared nerve injury and spinal nerve ligation models of neuropathic pain. Cold hyperalgesia is present in the spared nerve injury model animals, manifesting as a reduced latency of withdrawal response threshold at temperatures that elicit cold pain in naïve rats. We also show that following the peripheral inflammation produced by intraplantar injection of complete Freund's adjuvant, a hypersensitivity to cold occurs. Conclusion The peltier-cooled provides an effective means of assaying cold sensitivity in unrestrained rats. Behavioral testing of cold allodynia, hyperalgesia and pain will greatly facilitate the study of the neurobiological mechanisms involved in cold/cool sensations and enable measurement of the efficacy of pharmacological treatments to reduce these symptoms.

  9. Burning Cold: Involvement of TRPA1 in Noxious Cold Sensation

    OpenAIRE

    Kwan, Kelvin Y.; Corey, David P.

    2009-01-01

    Soon after its discovery ten years ago, the ion channel TRPA1 was proposed as a sensor of noxious cold. Evidence for its activation by painfully cold temperatures (below ~15° C) has been mixed, however. Some groups found that cold elicits a nonselective conductance in cells expressing TRPA1; others found no activation, or argued that activation is an indirect effect of elevated \\(Ca^{ 2+}\\) . Sensory cells from the trigeminal and dorsal root ganglia that are activated by cold were sometimes c...

  10. Beam Current Increase and Cathode Lifetime Improvement of KOTRON-13 Ion Source

    International Nuclear Information System (INIS)

    Lee, W. K.; Chae, S. K.; Song, J. Y.; Im, G. S.; Cho, B. O.

    2010-01-01

    Technology of cyclotron has been actively developed to meet the increasing requirement output of medical radioactive isotopes for PET. KOTRON-13 is produced with low negative hydrogen ion beam current owing to the low efficiency of proton beam current compared with foreign cyclotron. In the defect there from, the lifetime of cathode is around 5,000min, which requires frequent maintenance period, and the target beam current is maximum 50uA at a poor efficiency compared with the inflow quantity of hydrogen gas and that of inflicting arc current. Considering above affairs, we have to improve the PIG ion source extraction efficiency of KOTRON-13 in order to lift beam current. Mostly the ion source of cyclotron less than 30Mev comes from the use of PIG ion source mainly with the method of cold cathode or hot cathode. However, the cyclotron of 30Mev grade of EBCO or IBA uses the external ion source and uses ion source with cusp type of good withdrawal efficiency. This type requires high voltage, and transports ion from ion source to cyclotron, which requires precise transportation equipment. And entering cyclotron requires a high quality of inflictor with a high defect rate, but high current cyclotron has no choice but to use ion source of such a method. But the cyclotron using PET with the beam current less than 100uA uses PIG ion source of KOTRON-13 with a reasonable maintenance cost

  11. RF Photoelectric injectors using needle cathodes

    International Nuclear Information System (INIS)

    Lewellen, J.W.; Brau, C.A.

    2003-01-01

    Photocathode RF guns, in various configurations, are the injectors of choice for both current and future applications requiring high-brightness electron beams. Many of these applications, such as single-pass free-electron lasers, require beams with high brilliance but not necessarily high charge per bunch. Field-enhanced photoelectric emission has demonstrated electron-beam current density as high as 10 10 A/m 2 , with a quantum efficiency in the UV that approaches 10% at fields on the order of 10 10 V/m. Thus, the use of even a blunt needle holds promise for increasing cathode quantum efficiency without sacrificing robustness. We present an initial study on the use of needle cathodes in photoinjectors to enhance beam brightness while reducing beam charge. Benefits include lower drive-laser power requirements, easier multibunch operation, lower emittance, and lower beam degradation due to charge-dependent effects in the postinjector accelerator. These benefits result from a combination of a smaller cathode emission area, greatly enhanced RF field strength at the cathode, and the charge scaling of detrimental postinjector linac effects, e.g., transverse wakefields and CSR

  12. RF Photoelectric injectors using needle cathodes

    Science.gov (United States)

    Lewellen, J. W.; Brau, C. A.

    2003-07-01

    Photocathode RF guns, in various configurations, are the injectors of choice for both current and future applications requiring high-brightness electron beams. Many of these applications, such as single-pass free-electron lasers, require beams with high brilliance but not necessarily high charge per bunch. Field-enhanced photoelectric emission has demonstrated electron-beam current density as high as 10 10 A/m 2, with a quantum efficiency in the UV that approaches 10% at fields on the order of 10 10 V/m. Thus, the use of even a blunt needle holds promise for increasing cathode quantum efficiency without sacrificing robustness. We present an initial study on the use of needle cathodes in photoinjectors to enhance beam brightness while reducing beam charge. Benefits include lower drive-laser power requirements, easier multibunch operation, lower emittance, and lower beam degradation due to charge-dependent effects in the postinjector accelerator. These benefits result from a combination of a smaller cathode emission area, greatly enhanced RF field strength at the cathode, and the charge scaling of detrimental postinjector linac effects, e.g., transverse wakefields and CSR.

  13. Barium depletion in hollow cathode emitters

    International Nuclear Information System (INIS)

    Polk, James E.; Mikellides, Ioannis G.; Katz, Ira; Capece, Angela M.

    2016-01-01

    Dispenser hollow cathodes rely on a consumable supply of Ba released by BaO-CaO-Al 2 O 3 source material in the pores of a tungsten matrix to maintain a low work function surface. The examination of cathode emitters from long duration tests shows deposits of tungsten at the downstream end that appear to block the flow of Ba from the interior. In addition, a numerical model of Ba transport in the cathode plasma indicates that the Ba partial pressure in the insert may exceed the equilibrium vapor pressure of the dominant Ba-producing reaction, and it was postulated previously that this would suppress Ba loss in the upstream part of the emitter. New measurements of the Ba depletion depth from a cathode insert operated for 8200 h reveal that Ba loss is confined to a narrow region near the downstream end, confirming this hypothesis. The Ba transport model was modified to predict the depletion depth with time. A comparison of the calculated and measured depletion depths gives excellent qualitative agreement, and quantitative agreement was obtained assuming an insert temperature 70 °C lower than measured beginning-of-life values

  14. Cathode follower RF system with frequency modulation

    International Nuclear Information System (INIS)

    Irie, Y.; Yano, Y.; Kaneko, N.; Kobayashi, Y.

    1994-01-01

    A model RF system with a cathode follower was tested under frequency modulation in the 1-3.5 MHz range. The repetition rate was 40 Hz. The oscillation was stable, and the output impedance was measured to be around 20 ohm. (author)

  15. Renovation of the cathodic protection system

    NARCIS (Netherlands)

    Schuten, G.; Leggedoor, J.; Polder, R.B.; Peelen, W.H.A.

    2003-01-01

    The first system for Cathodic Protection of concrete in the Netherlands was applied to a one bicycle lane of a bridge suffering corrosion due to de-icing salt penetration in 1986. This CP system was based on the Ferex 100S conducting polymer cable anode in a cementitious overlay. Its functioning was

  16. Flow Injection Photochemical Vapor Generation Coupled with Miniaturized Solution-Cathode Glow Discharge Atomic Emission Spectrometry for Determination and Speciation Analysis of Mercury.

    Science.gov (United States)

    Mo, Jiamei; Li, Qing; Guo, Xiaohong; Zhang, Guoxia; Wang, Zheng

    2017-10-03

    A novel, compact, and green method was developed for the determination and speciation analysis of mercury, based on flow injection photochemical vapor generation (PVG) coupled with miniaturized solution cathode glow discharge-atomic emission spectroscopy (SCGD-AES). The SCGD was generated between a miniature hollow titanium tube and a solution emerging from a glass capillary. Cold mercury vapor (Hg(0)) was generated by PVG and subsequently delivered to the SCGD for excitation, and finally the emission signals were recorded by a miniaturized spectrograph. The detection limits (DLs) of Hg(II) and methylmercury (MeHg) were both determined to be 0.2 μg L -1 . Moreover, mercury speciation analysis could also be performed by using different wavelengths and powers from the UV lamp and irradiation times. Both Hg(II) and MeHg can be converted to Hg(0) for the determination of total mercury (T-Hg) with 8 W/254 nm UV lamp and 60 s irradiation time; while only Hg(II) can be reduced to Hg(0) and determined selectively with 4 W/365 nm UV lamp and 20 s irradiation time. Then, the concentration of MeHg can be calculated by subtracting the Hg(II) from the T-Hg. Because of its similar sensitivity and DL at 8 W/254 nm, the simpler and less toxic Hg(II) was used successfully as a primary standard for the quantification of T-Hg. The novel PVG-SCGD-AES system provides not only a 365-fold improvement in the DL for Hg(II) but also a nonchromatographic method for the speciation analysis of mercury. After validating its accuracy, this method was successfully used for mercury speciation analysis of water and biological samples.

  17. Chemical behavior of lanthanides-tungsten composite materials used in thermo-emissive cathodes

    International Nuclear Information System (INIS)

    Cadoret, K.; Cachard, J. de; Martinez, L.; Millot, F.; Hennet, L.; Douy, A.; Licheron, M.

    2001-01-01

    This work presents the crystallography and chemistry of new lanthanides-tungsten composite materials developed to manufacture thermionic cathodes for power grid tubes, based on the same principle than thorium-free cathodes. By mean of x-Ray diffraction at high temperature and under vacuum with synchrotron radiation facilities, we followed in real time the different phases and phase transitions that can occur during the heating process and the carburization at 1550 o C of such tungstates deposits on thin tungsten ribbons. Melting points for composition between 9 La 2 O 3 - 1 WO 3 and 2 La 2 O 3 - 9 WO 3 were specified under the pressure of 1x10 -6 mbar. After interpretation of x-ray diffraction results, phase diagram of n La 2 O 3 - m WO 3 system under vacuum in equilibrium with metallic tungsten have been deduced. Moreover we underline by these works the fact that using a lanthanum-rich tungstate involves better stability and chemical homogeneity of the cathodes surfaces with temperature. (author)

  18. Tube plug removal machine

    International Nuclear Information System (INIS)

    Hawkins, P.J.

    1987-01-01

    In a nuclear steam generator wherein some faulty tubes have been isolated by mechanical plugging, to remove a selected plug without damaging the associated tube, a plug removal machine is used. The machine drills into a plug portion with a tap drill bit having a drill portion a tap portion and a threaded portion, engaging that plug portion with the threaded portion after the drilled hole has been threaded by the tap portion thereof, and removing a portion of the plug in the tube with a counterbore drill bit mounted concentrically about the tap drill bit. A trip pin and trip spline disengage the tap drill bit from the motor. The counterbore drill bit is thereafter self-centered with respect to the tube and plug about the now stationary tap drill bit. After a portion of the plug has been removed by the counterbore drill bit, pulling on the top drill bit by grippers on slots will remove the remaining plug portion from the tube. (author)

  19. Categorising YouTube

    Directory of Open Access Journals (Sweden)

    Thomas Mosebo Simonsen

    2011-09-01

    Full Text Available This article provides a genre analytical approach to creating a typology of the User Generated Content (UGC of YouTube. The article investigates the construction of navigationprocesses on the YouTube website. It suggests a pragmatic genre approach that is expanded through a focus on YouTube’s technological affordances. Through an analysis of the different pragmatic contexts of YouTube, it is argued that a taxonomic understanding of YouTube must be analysed in regards to the vacillation of a user-driven bottom-up folksonomy and a hierarchical browsing system that emphasises a culture of competition and which favours the already popular content of YouTube. With this taxonomic approach, the UGC videos are registered and analysed in terms of empirically based observations. The article identifies various UGC categories and their principal characteristics. Furthermore, general tendencies of the UGC within the interacting relationship of new and old genres are discussed. It is argued that the utility of a conventional categorical system is primarily of analytical and theoretical interest rather than as a practical instrument.

  20. Measuring of tube expansion

    International Nuclear Information System (INIS)

    Vogeleer, J. P.

    1985-01-01

    The expansion of the primary tubes or sleeves of the steam generator of a nuclear reactor plant are measured while the tubes or sleeves are being expanded. A primary tube or sleeve is expanded by high pressure of water which flows through a channel in an expander body. The water is supplied through an elongated conductor and is introduced through a connector on the shank connected to the conductor at its outer end. A wire extends through the mandrel and through the conductor to the end of the connector. At its inner end the wire is connected to a tapered pin which is subject to counteracting forces produced by the pressure of the water. The force on the side where the wire is connected to the conductor is smaller than on the opposite side. The tapered pin is moved in the direction of the higher force and extrudes the wire outwardly of the conductor. The tapered surface of the tapered pin engages transverse captive plungers which are maintained in engagement with the expanding tube or sleeve as they are moved outwardly by the tapered pin. The wire and the connector extend out of the generator and, at its outer end, the wire is connected to an indicator which measures the extent to which the wire is moved by the tapered pin, thus measuring the expansion of the tube or sleeve as it progresses

  1. Flu and Colds: In Depth

    Science.gov (United States)

    ... to prevent colds or relieve cold symptoms. Andrographis (Andrographis paniculata) Chinese herbal medicines Green tea Guided imagery Hydrotherapy ... measurements (VAS) to assess the effectiveness of standardized Andrographis paniculata extract SHA-10 in reducing the symptoms of ...

  2. Herpes Simplex Virus (Cold Sores)

    Science.gov (United States)

    ... Print Share Cold Sores in Children: About the Herpes Simplex Virus Page Content ​A child's toddler and ... Cold sores (also called fever blisters or oral herpes) start as small blisters that form around the ...

  3. A miniature pulse tube cryocooler used in a superspectral imager

    Science.gov (United States)

    Jiang, Zhenhua; Wu, Yinong

    2017-05-01

    In this paper, we describe a hihg0 frequency pulse tube cryocooler used in a superspectral imager to be launched in 2020. The superspectral imager is a field-dividing optical imaging system and uses 14 sets of integrated IR detector cryocooler dewar assembly. For the requirements of less heat loss an smaller size, each set is highly integrated by directly mounting the IR dectector's sapphire substrate on the pulse tube's cold tip, and welding the dewar's housing to the flange of the cold finger. Driven by a pair of moving magnet linear motors, the dual-opposed piston compressor of the croycooler is running at 120Hz. Filled with customized stainless screens in the regenerator, the cryolooler reaches 8.1% carnot efficiency at the cooling power of 1W@80K with 34Wac input power.

  4. Microhollow cathode discharge stability with flow and reaction

    International Nuclear Information System (INIS)

    Hsu, David D; Graves, David B

    2003-01-01

    Under certain conditions, microhollow cathode (MHC) discharges display self-pulsing, with relaxation oscillations in voltage (V d ) and current (I d ). An equivalent circuit model of the discharge and circuit demonstrates that relaxation oscillations occur only if the load line crosses the discharge characteristic in the region of negative differential resistivity R d ≡ ∂V d /∂I d . The pulsing and steady-state current regimes could have implications on the use of the discharges as reactors. We present measurements and model results in a study of high pressure MHC discharges as flow reactors in the steady-state current regime. Flow of molecular gases through the intense discharge induces chemical modifications such as molecular decomposition. The MHC behaves approximately as a plug flow reactor with reactant conversion depending primarily on residence time in the plasma. Measured peak gas temperatures in the plasma of the order of 1000-2000 K suggest that endothermic reaction conversion should be thermodynamically favoured. Comparisons to literature values of thermal decomposition kinetics indicate that the MHC plasma has the decomposition activity of gas at 2000-3000 K. High gas temperatures and molecular dissociation induce a significant pressure drop through the plasma. A model calculation for flow through a cylindrical tube containing an intense plasma demonstrates that the increase of pressure drop across the plasma zone is due to the increase in gas mass-averaged velocity as a result of lower mass density associated with the temperature increase and creation of molecular fragments

  5. Imaging with cold neutrons

    International Nuclear Information System (INIS)

    Lehmann, E.H.; Kaestner, A.; Josic, L.; Hartmann, S.; Mannes, D.

    2011-01-01

    Neutrons for imaging purposes are provided mainly from thermal beam lines at suitable facilities around the world. The access to cold neutrons is presently limited to very few places only. However, many challenging options for imaging with cold neutrons have been found out, given by the interaction behavior of the observed materials with neutrons in the cold energy range (3-10 A). For absorbing materials, the interaction probability increases proportionally with the wavelength with the consequence of more contrast but less transmission with cold neutrons. Many materials are predominantly scattering neutrons, in particular most of crystalline structural materials. In these cases, cold neutrons play an important role by covering the energy range of the most important Bragg edges given by the lattice planes of the crystallites. This particular behavior can be used for at least two important aspects-choosing the right energy of the initial beam enables to have a material more or less transparent, and a direct macroscopic visualization of the crystalline structure and its change in a manufacturing process. Since 2006, PSI operates its second beam line for neutron imaging, where cold neutrons are provided from a liquid deuterium cold source (operated at 25 K). It has been designed to cover the most current aspects in neutron imaging research with the help of high flexibility. This has been done with changeable inlet apertures, a turbine based velocity selector, two beam positions and variable detector systems, satisfying the demands of the individual investigation. The most important detection system was found to be a micro-tomography system that enables studies in the presently best spatial resolution. In this case, the high contrast from the sample interaction process and the high detection probability for the cold neutrons combines in an ideal combination for the best possible performance. Recently, it was found out that the energy selective studies might become a

  6. Human whole body cold adaptation.

    OpenAIRE

    Daanen, Hein A.M.; Van Marken Lichtenbelt, Wouter D.

    2016-01-01

    ABSTRACT Reviews on whole body human cold adaptation generally do not distinguish between population studies and dedicated acclimation studies, leading to confusing results. Population studies show that indigenous black Africans have reduced shivering thermogenesis in the cold and poor cold induced vasodilation in fingers and toes compared to Caucasians and Inuit. About 40,000?y after humans left Africa, natives in cold terrestrial areas seems to have developed not only behavioral adaptations...

  7. Cold vacuum chamber for diagnostics: Instrumentation and first results

    Science.gov (United States)

    Gerstl, S.; Voutta, R.; Casalbuoni, S.; Grau, A. W.; Holubek, T.; de Jauregui, D. Saez; Bartolini, R.; Cox, M. P.; Longhi, E. C.; Rehm, G.; Schouten, J. C.; Walker, R. P.; Sikler, G.; Migliorati, M.; Spataro, B.

    2014-10-01

    For a proper design of the cryogenic layout of superconducting insertion devices it is necessary to take into account the heat load from the beam to the cold beam tube. In order to measure and possibly understand the beam heat load to a cold bore, a cold vacuum chamber for diagnostics (COLDDIAG) has been built. COLDDIAG is designed in a flexible way, to allow its installation in different light sources. In order to study the beam heat load and the influence of the cryosorbed gas layer, the instrumentation comprises temperature sensors, pressure gauges, and mass spectrometers as well as retarding field analyzers with which it is possible to measure the beam heat load, total pressure, and gas content as well as the flux of particles hitting the chamber walls. In this paper we describe the experimental equipment, the installation of COLDDIAG in the Diamond Light Source and selected examples of the measurements performed to show the capabilities of this unique instrument.

  8. Research for the concept of Hanaro cold neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chang Oong; Cho, M. S.; Lee, M. W.; Sohn, J. M.; Park, K. N.; Park, S. H.; Yang, S. Y.; Kang, S. H.; Yang, S. H.; Chang, J. H.; Lee, Y. W.; Chang, C. I.; Cho, Y. S.

    1997-09-01

    This report consists of two parts, one is the conceptual design performed on the collaboration work with PNPI Russia and another is review of Hanaro CNS conceptual design report by Technicatome France, both of which are contained at vol. I and vol. II. representatively. In the vol. I, the analysis for the status of technology development, the technical characteristics of CNS is included, and the conceptual design of Hanaro cold neutron source is contained to establish the concept suitable to Hanaro. The cold neutron experimental facilities, first of all, have been selected to propose the future direction of physics concerning properties of the matter at Korea. And neutron guide tubes, the experimental hall and cold neutron source appropriate to these devices have been selected and design has been reviewed in view of securing safety and installing at Hanaro. (author). 38 refs., 49 tabs., 17 figs.

  9. Progress of air-breathing cathode in microbial fuel cells

    Science.gov (United States)

    Wang, Zejie; Mahadevan, Gurumurthy Dummi; Wu, Yicheng; Zhao, Feng

    2017-07-01

    Microbial fuel cell (MFC) is an emerging technology to produce green energy and vanquish the effects of environmental contaminants. Cathodic reactions are vital for high electrical power density generated from MFCs. Recently tremendous attentions were paid towards developing high performance air-breathing cathodes. A typical air-breathing cathode comprises of electrode substrate, catalyst layer, and air-diffusion layer. Prior researches demonstrated that each component influenced the performance of air-breathing cathode MFCs. This review summarized the progress in development of the individual component and elaborated main factors to the performance of air-breathing cathode.

  10. Cathode Composition in a Saltwater Metal-Air Battery

    Directory of Open Access Journals (Sweden)

    William Shen

    2017-01-01

    Full Text Available Metal-air batteries consist of a solid metal anode and an oxygen cathode of ambient air, typically separated by an aqueous electrolyte. Here, simple saltwater-based models of aluminum-air and zinc-air cells are used to determine the differences between theoretical cell electric potentials and experimental electric potentials. A substantial difference is observed. It is also found that the metal cathode material is crucial to cell electric potential, despite the cathode not participating in the net reaction. Finally, the material composition of the cathode appears to have a more significant impact on cell potential than the submerged surface area of the cathode.

  11. Emission ability of La-Sc-Mo cathode

    International Nuclear Information System (INIS)

    Yang Jiancan; Nie Zuoren; Xi Xiaoli; Wang Yiman

    2004-01-01

    In this paper La-Sc-Mo cathode has been prepared and its electron emission ability was measured. This type of cathode shows good electron emission performance that the saturated current density is 6.74 A cm -1 and the work function is about 2.59 eV at 1300 deg. C, which is much lower than thoriated tungsten cathode (Th-W). So it is a potential cathode to replace the Th-W cathode with radioactive pollution. Surface analysis shows that good emission ability due to the 20 nm surplus La layer and the element Sc may do good to the La diffusion to the surface

  12. Explosive emission cathode on the base of carbon plastic fibre

    International Nuclear Information System (INIS)

    Korenev, S.A.; Baranov, A.M.; Kostyuchenko, S.V.; Chernenko, N.M.

    1989-01-01

    A fabrication process for explosive emission cathodes on the base of carbon plastic fibre of practically any geometrical shape and dimensions is developed. Experimental studies of electron beam current collection from cathodes, 2cm in diameter, at voltages across the diode of 10 and 150-250kV. It is shown that the ignition voltage for cathode plasma is ∼2kV at the interelectrode diode gap of 5mm and residual gas pressure of ∼5x10 -5 Torr. The carbon-fibre cathode, fabricated in this way, provides more stable current collection of an electron beam (without oscillations) than other cathodes

  13. Co-deposition of metallic actinides on a solid cathode

    Energy Technology Data Exchange (ETDEWEB)

    Limmer, S. J.; Williamson, M. A.; Willit, J. L. [Argonne National Laboratory, Argonne (United States)

    2008-08-15

    The amount of rare earth contamination that will be found in a co-deposit of actinides is a function of the type of cathode used. A non-alloying solid cathode will result in a significantly lower rare earth contamination in the actinide co-deposit than a liquid cadmium cathode. With proper control of the cathode potential vs. a stable reference electrode, co-deposition of uranium with other more electroactive metals has been demonstrated using a non-alloying solid cathode.

  14. Co-deposition of metallic actinides on a solid cathode

    International Nuclear Information System (INIS)

    Limmer, S. J.; Williamson, M. A.; Willit, J. L.

    2008-01-01

    The amount of rare earth contamination that will be found in a co-deposit of actinides is a function of the type of cathode used. A non-alloying solid cathode will result in a significantly lower rare earth contamination in the actinide co-deposit than a liquid cadmium cathode. With proper control of the cathode potential vs. a stable reference electrode, co-deposition of uranium with other more electroactive metals has been demonstrated using a non-alloying solid cathode

  15. Advanced evacuated tube collectors

    Science.gov (United States)

    Schertz, W. W.; Hull, J. R.; Winston, R.; Ogallagher, J.

    1985-04-01

    The essence of the design concept for these new collectors is the integration of moderate levels of nonimaging concentration inside the evacuated tube itself. This permanently protects the reflection surfaces and allows the use of highly reflecting front surface mirrors with reflectances greater than 95%. Previous fabrication and long term testing of a proof-of-concept prototype has established the technical success of the concept. Present work is directed toward the development of a manufacturable unit that will be suitable for the widest possible range of applications. Design alternatives include scaling up the original prototype's tube diameter from 5 cm to 10 cm, using an internal shaped metal concentrating reflector, using a variety of profile shapes to minimize so-called gap losses and accommodate both single ended and double-ended flow geometries, and allowing the use of heat pipes for the absorber tube.

  16. Square through tube

    International Nuclear Information System (INIS)

    Akita, Junji; Honma, Toei.

    1975-01-01

    Object: To provide a square through tube involving thermal movement in pipelines such as water supply pump driving turbine exhaust pipe (square-shaped), which is wide in freedom with respect to shape and dimension thereof for efficient installation at site. Structure: In a through tube to be airtightly retained for purpose of decontamination in an atomic power plant, comprising a seal rubber plate, a band and a bolt and a nut for securing said plate, the seal rubber plate being worked into the desired shape so that it may be placed in intimate contact with the concrete floor surface by utilization of elasticity of rubber, thereby providing airtightness at a corner portion of the square tube. (Kamimura, M.)

  17. SG tube identification

    International Nuclear Information System (INIS)

    Hoogstraten, P. van

    1994-01-01

    A ''Tracker'' system is described which is designed to identify any tube in a reactor steam generator quickly and safely. Occupational radiation doses to maintenance workers are reduced by using a Tracker and emergency down times are shortened. The system employs a television camera and light source in a stainless steel box with a large window. Both the camera and spotlight can be panned and tilted to reach any point on the tubesheet and are remotely controlled. An operator at a safe working distance can identify any tube visible on a real time video by comparison with the tubesheet pattern stored earlier in the computer memory. The identified tube can then be spotlighted and dealt with quickly by a maintenance worker inside the channel head. (UK)

  18. Human whole body cold adaptation.

    Science.gov (United States)

    Daanen, Hein A M; Van Marken Lichtenbelt, Wouter D

    2016-01-01

    Reviews on whole body human cold adaptation generally do not distinguish between population studies and dedicated acclimation studies, leading to confusing results. Population studies show that indigenous black Africans have reduced shivering thermogenesis in the cold and poor cold induced vasodilation in fingers and toes compared to Caucasians and Inuit. About 40,000 y after humans left Africa, natives in cold terrestrial areas seems to have developed not only behavioral adaptations, but also physiological adaptations to cold. Dedicated studies show that repeated whole body exposure of individual volunteers, mainly Caucasians, to severe cold results in reduced cold sensation but no major physiological changes. Repeated cold water immersion seems to slightly reduce metabolic heat production, while repeated exposure to milder cold conditions shows some increase in metabolic heat production, in particular non-shivering thermogenesis. In conclusion, human cold adaptation in the form of increased metabolism and insulation seems to have occurred during recent evolution in populations, but cannot be developed during a lifetime in cold conditions as encountered in temperate and arctic regions. Therefore, we mainly depend on our behavioral skills to live in and survive the cold.

  19. Performance of pressure tubes in CANDU reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, D.; Griffiths, M.; Bickel, G.; Buyers, A.; Coleman, C.; Nordin, H.; St Lawrence, S. [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2016-06-15

    The pressure tubes in CANDU reactors typically operate for times up to about 30 years prior to refurbishment. The in-reactor performance of Zr-2.5Nb pressure tubes has been evaluated by sampling and periodic inspection. This paper describes the behavior and discusses the factors controlling the behaviour of these components. The Zr–2.5Nb pressure tubes are nominally extruded at 815{sup o}C, cold worked nominally 27%, and stress relieved at 400 {sup o}C for 24 hours, resulting in a structure consisting of elongated grains of hexagonal close-packed alpha-Zr, partially surrounded by a thin network of filaments of body-centred-cubic beta-Zr. These beta-Zr filaments are meta-stable and contain about 20% Nb after extrusion. The stress-relief treatment results in partial decomposition of the beta-Zr filaments with the formation of hexagonal close-packed alpha-phase particles that are low in Nb, surrounded by a Nb-enriched beta-Zr matrix. The material properties of pressure tubes are determined by variations in alpha-phase texture, alpha-phase grain structure, network dislocation density, beta-phase decomposition, and impurity concentration that are a function of manufacturing variables. The pressure tubes operate at temperatures between 250 {sup o}C and 310 {sup o}C with coolant pressures up to about 11 MPa in fast neutron fluxes up to 4 x 10{sup 17} n·m{sup -2}·s{sup -1} (E > 1 MeV) and the properties are modified by these conditions. The properties of the pressure tubes in an operating reactor are therefore a function of both manufacturing and operating condition variables. The ultimate tensile strength, fracture toughness, and delayed hydride-cracking properties (velocity (V) and threshold stress intensity factor (K{sub IH})) change with irradiation, but all reach a nearly limiting value at a fluence of less than 10{sup 25} n·m{sup -2} (E > 1 MeV). At this point the ultimate tensile strength is raised about 200 MPa, toughness is reduced by about 50%, V increases

  20. Polymer coatings as separator layers for microbial fuel cell cathodes

    KAUST Repository

    Watson, Valerie J.

    2011-03-01

    Membrane separators reduce oxygen flux from the cathode into the anolyte in microbial fuel cells (MFCs), but water accumulation and pH gradients between the separator and cathode reduces performance. Air cathodes were spray-coated (water-facing side) with anion exchange, cation exchange, and neutral polymer coatings of different thicknesses to incorporate the separator into the cathode. The anion exchange polymer coating resulted in greater power density (1167 ± 135 mW m-2) than a cation exchange coating (439 ± 2 mW m-2). This power output was similar to that produced by a Nafion-coated cathode (1114 ± 174 mW m-2), and slightly lower than the uncoated cathode (1384 ± 82 mW m-2). Thicker coatings reduced oxygen diffusion into the electrolyte and increased coulombic efficiency (CE = 56-64%) relative to an uncoated cathode (29 ± 8%), but decreased power production (255-574 mW m-2). Electrochemical characterization of the cathodes ex situ to the MFC showed that the cathodes with the lowest charge transfer resistance and the highest oxygen reduction activity produced the most power in MFC tests. The results on hydrophilic cathode separator layers revealed a trade off between power and CE. Cathodes coated with a thin coating of anion exchange polymer show promise for controlling oxygen transfer while minimally affecting power production. © 2010 Elsevier B.V. All rights reserved.