WorldWideScience

Sample records for cohesive fracture modeling

  1. Investigating Some Technical Issues on Cohesive Zone Modeling of Fracture

    Wang, John T.

    2011-01-01

    This study investigates some technical issues related to the use of cohesive zone models (CZMs) in modeling fracture processes. These issues include: why cohesive laws of different shapes can produce similar fracture predictions; under what conditions CZM predictions have a high degree of agreement with linear elastic fracture mechanics (LEFM) analysis results; when the shape of cohesive laws becomes important in the fracture predictions; and why the opening profile along the cohesive zone length needs to be accurately predicted. Two cohesive models were used in this study to address these technical issues. They are the linear softening cohesive model and the Dugdale perfectly plastic cohesive model. Each cohesive model constitutes five cohesive laws of different maximum tractions. All cohesive laws have the same cohesive work rate (CWR) which is defined by the area under the traction-separation curve. The effects of the maximum traction on the cohesive zone length and the critical remote applied stress are investigated for both models. For a CZM to predict a fracture load similar to that obtained by an LEFM analysis, the cohesive zone length needs to be much smaller than the crack length, which reflects the small scale yielding condition requirement for LEFM analysis to be valid. For large-scale cohesive zone cases, the predicted critical remote applied stresses depend on the shape of cohesive models used and can significantly deviate from LEFM results. Furthermore, this study also reveals the importance of accurately predicting the cohesive zone profile in determining the critical remote applied load.

  2. Relating Cohesive Zone Model to Linear Elastic Fracture Mechanics

    Wang, John T.

    2010-01-01

    The conditions required for a cohesive zone model (CZM) to predict a failure load of a cracked structure similar to that obtained by a linear elastic fracture mechanics (LEFM) analysis are investigated in this paper. This study clarifies why many different phenomenological cohesive laws can produce similar fracture predictions. Analytical results for five cohesive zone models are obtained, using five different cohesive laws that have the same cohesive work rate (CWR-area under the traction-separation curve) but different maximum tractions. The effect of the maximum traction on the predicted cohesive zone length and the remote applied load at fracture is presented. Similar to the small scale yielding condition for an LEFM analysis to be valid. the cohesive zone length also needs to be much smaller than the crack length. This is a necessary condition for a CZM to obtain a fracture prediction equivalent to an LEFM result.

  3. Cohesive fracture model for functionally graded fiber reinforced concrete

    Park, Kyoungsoo; Paulino, Glaucio H.; Roesler, Jeffery

    2010-01-01

    A simple, effective, and practical constitutive model for cohesive fracture of fiber reinforced concrete is proposed by differentiating the aggregate bridging zone and the fiber bridging zone. The aggregate bridging zone is related to the total fracture energy of plain concrete, while the fiber bridging zone is associated with the difference between the total fracture energy of fiber reinforced concrete and the total fracture energy of plain concrete. The cohesive fracture model is defined by experimental fracture parameters, which are obtained through three-point bending and split tensile tests. As expected, the model describes fracture behavior of plain concrete beams. In addition, it predicts the fracture behavior of either fiber reinforced concrete beams or a combination of plain and fiber reinforced concrete functionally layered in a single beam specimen. The validated model is also applied to investigate continuously, functionally graded fiber reinforced concrete composites.

  4. Cohesive zone modelling and the fracture process of structural tape

    Stigh, Ulf; Biel, Anders; Svensson, Daniel

    2016-01-01

    and the separation is measured experimentally using methods based on the path independence of the J-integral. Repeated experiments are performed at quasi-static loading. A mixed mode cohesive law is adapted to the experimental data. The law is implemented as a UMAT in Abaqus. Simulations show minor thermal...

  5. A cohesive finite element formulation for modelling fracture and ...

    cohesive elements experience material softening and lose their stress carrying capacity. A few simple ..... In the present work, a Lagrangian finite element procedure is employed. In this formu clation ...... o, is related to 'c o by,. 't o='c o ¼ 1 ہ. 1.

  6. Investigation of translaminar fracture in fibrereinforced composite laminates---applicability of linear elastic fracture mechanics and cohesive-zone model

    Hou, Fang

    With the extensive application of fiber-reinforced composite laminates in industry, research on the fracture mechanisms of this type of materials have drawn more and more attentions. A variety of fracture theories and models have been developed. Among them, the linear elastic fracture mechanics (LEFM) and cohesive-zone model (CZM) are two widely-accepted fracture models, which have already shown applicability in the fracture analysis of fiber-reinforced composite laminates. However, there remain challenges which prevent further applications of the two fracture models, such as the experimental measurement of fracture resistance. This dissertation primarily focused on the study of the applicability of LEFM and CZM for the fracture analysis of translaminar fracture in fibre-reinforced composite laminates. The research for each fracture model consisted of two sections: the analytical characterization of crack-tip fields and the experimental measurement of fracture resistance parameters. In the study of LEFM, an experimental investigation based on full-field crack-tip displacement measurements was carried out as a way to characterize the subcritical and steady-state crack advances in translaminar fracture of fiber-reinforced composite laminates. Here, the fiber-reinforced composite laminates were approximated as anisotropic solids. The experimental investigation relied on the LEFM theory with a modification with respect to the material anisotropy. Firstly, the full-field crack-tip displacement fields were measured by Digital Image Correlation (DIC). Then two methods, separately based on the stress intensity approach and the energy approach, were developed to measure the crack-tip field parameters from crack-tip displacement fields. The studied crack-tip field parameters included the stress intensity factor, energy release rate and effective crack length. Moreover, the crack-growth resistance curves (R-curves) were constructed with the measured crack-tip field parameters

  7. Simulating Dynamic Fracture in Oxide Fuel Pellets Using Cohesive Zone Models

    R. L. Williamson

    2009-08-01

    It is well known that oxide fuels crack during the first rise to power, with continued fracture occurring during steady operation and especially during power ramps or accidental transients. Fractures have a very strong influence on the stress state in the fuel which, in turn, drives critical phenomena such as fission gas release, fuel creep, and eventual fuel/clad mechanical interaction. Recently, interest has been expressed in discrete fracture methods, such as the cohesive zone approach. Such models are attractive from a mechanistic and physical standpoint, since they reflect the localized nature of cracking. The precise locations where fractures initiate, as well as the crack evolution characteristics, are determined as part of the solution. This paper explores the use of finite element cohesive zone concepts to predict dynamic crack behavior in oxide fuel pellets during power-up, steady operation, and power ramping. The aim of this work is first to provide an assessment of cohesive zone models for application to fuel cracking and explore important numerical issues associated with this fracture approach. A further objective is to provide basic insight into where and when cracks form, how they interact, and how cracking effects the stress field in a fuel pellet. The ABAQUS commercial finite element code, which includes powerful cohesive zone capabilities, was used for this study. Fully-coupled thermo-mechanical behavior is employed, including the effects of thermal expansion, swelling due to solid and gaseous fission products, and thermal creep. Crack initiation is determined by a temperature-dependent maximum stress criterion, based on measured fracture strengths for UO2. Damage evolution is governed by a traction-separation relation, calibrated to data from temperature and burn-up dependent fracture toughness measurements. Numerical models are first developed in 2D based on both axisymmetric (to explore axial cracking) and plane strain (to explore radial

  8. Finite element analysis of an atomistically derived cohesive model for brittle fracture

    Lloyd, J T; McDowell, D L; Zimmerman, J A; Jones, R E; Zhou, X W

    2011-01-01

    In order to apply information from molecular dynamics (MD) simulations in problems governed by engineering length and time scales, a coarse graining methodology must be used. In previous work by Zhou et al (2009 Acta Mater. 57 4671–86), a traction-separation cohesive model was developed using results from MD simulations with atomistic-to-continuum measures of stress and displacement. Here, we implement this cohesive model within a combined finite element/cohesive surface element framework (referred to as a finite element approach or FEA), and examine the ability for the atomistically informed FEA to directly reproduce results from MD. We find that FEA shows close agreement of both stress and crack opening displacement profiles at the cohesive interface, although some differences do exist that can be attributed to the stochastic nature of finite temperature MD. The FEA methodology is then used to study slower loading rates that are computationally expensive for MD. We find that the crack growth process initially exhibits a rate-independent relationship between crack length and boundary displacement, followed by a rate-dependent regime where, at a given amount of boundary displacement, a lower applied strain rate produces a longer crack length. Our method is also extended to larger length scales by simulating a compact tension fracture-mechanics specimen with sub-micrometer dimensions. Such a simulation shows a computational speedup of approximately four orders of magnitude over conventional atomistic simulation, while exhibiting the expected fracture-mechanics response. Finally, differences between FEA and MD are explored with respect to ensemble and temperature effects in MD, and their impact on the cohesive model and crack growth behavior. These results enable us to make several recommendations to improve the methodology used to derive cohesive laws from MD simulations. In light of this work, which has critical implications for efforts to derive continuum laws

  9. Avalanche weak layer shear fracture parameters from the cohesive crack model

    McClung, David

    2014-05-01

    Dry slab avalanches release by mode II shear fracture within thin weak layers under cohesive snow slabs. The important fracture parameters include: nominal shear strength, mode II fracture toughness and mode II fracture energy. Alpine snow is not an elastic material unless the rate of deformation is very high. For natural avalanche release, it would not be possible that the fracture parameters can be considered as from classical fracture mechanics from an elastic framework. The strong rate dependence of alpine snow implies that it is a quasi-brittle material (Bažant et al., 2003) with an important size effect on nominal shear strength. Further, the rate of deformation for release of an avalanche is unknown, so it is not possible to calculate the fracture parameters for avalanche release from any model which requires the effective elastic modulus. The cohesive crack model does not require the modulus to be known to estimate the fracture energy. In this paper, the cohesive crack model was used to calculate the mode II fracture energy as a function of a brittleness number and nominal shear strength values calculated from slab avalanche fracture line data (60 with natural triggers; 191 with a mix of triggers). The brittleness number models the ratio of the approximate peak value of shear strength to nominal shear strength. A high brittleness number (> 10) represents large size relative to fracture process zone (FPZ) size and the implications of LEFM (Linear Elastic Fracture Mechanics). A low brittleness number (e.g. 0.1) represents small sample size and primarily plastic response. An intermediate value (e.g. 5) implies non-linear fracture mechanics with intermediate relative size. The calculations also implied effective values for the modulus and the critical shear fracture toughness as functions of the brittleness number. The results showed that the effective mode II fracture energy may vary by two orders of magnitude for alpine snow with median values ranging from 0

  10. Development of an evaluation method for fracture mechanical tests on small samples based on a cohesive zone model

    Mahler, Michael

    2016-01-01

    The safety and reliability of nuclear power plants of the fourth generation is an important issue. It is based on a reliable interpretation of the components for which, among other fracture mechanical material properties are required. The existing irradiation in the power plants significantly affects the material properties which therefore need to be determined on irradiated material. Often only small amounts of irradiated material are available for characterization. In that case it is not possible to manufacture sufficiently large specimens, which are necessary for fracture mechanical testing in agreement with the standard. Small specimens must be used. From this follows the idea of this study, in which the fracture toughness can be predicted with the developed method based on tests of small specimens. For this purpose, the fracture process including the crack growth is described with a continuum mechanical approach using the finite element method and the cohesive zone model. The experiments on small specimens are used for parameter identification of the cohesive zone model. The two parameters of the cohesive zone model are determined by tensile tests on notched specimens (cohesive stress) and by parameter fitting to the fracture behavior of smalls specimens (cohesive energy). To account the different triaxialities of the specimens, the cohesive stress is used depending on the triaxiality. After parameter identification a large specimen can be simulated with the cohesive zone parameters derived from small specimens. The predicted fracture toughness of this big specimen fulfills the size requirements in the standard (ASTM E1820 or ASTM E399) in contrast to the small specimen. This method can be used for ductile and brittle material behavior and was validated in this work. In summary, this method offers the possibility to determine the fracture toughness indirectly based on small specimen testing. Main advantage is the low required specimen volume. Thereby massively

  11. Cohesive zone modelling of wafer bonding and fracture: effect of patterning and toughness variations

    Kubair, D. V.; Spearing, S. M.

    2006-03-01

    Direct wafer bonding has increasingly become popular in the manufacture of microelectromechanical systems and semiconductor microelectronics components. The success of the bonding process is controlled by variables such as wafer flatness and surface preparation. In order to understand the effects of these variables, spontaneous planar crack propagation simulations were performed using the spectral scheme in conjunction with a cohesive zone model. The fracture-toughness on the bond interface is varied to simulate the effect of surface roughness (nanotopography) and patterning. Our analysis indicated that the energetics of crack propagation is sensitive to the local surface property variations. The patterned wafers are tougher (well bonded) than the unpatterned ones of the same average fracture-toughness.

  12. Study of the brickwork masonry cracking with a cohesive fracture model

    Reyes, E.

    2011-09-01

    Full Text Available This paper presents a numerical procedure to simulate the cracking process of the brickwork masonry under tensile/shear loading. The model is an extension of the cohesive model prepared by the authors for concrete, and takes into account the anisotropy of the material. The numerical procedure includes two steps: 1 calculation of the crack path with a linear elastic fracture model, 2 after the crack path is obtained, an interface finite element (using the cohesive fracture model is incorporated into the trajectory. Such a model is then implemented into a commercial code by means of a user subroutine, consequently being contrasted with experimental results. Fracture properties of masonry are independently measured for two directions on the composed masonry, and then input in the numerical model. This numerical procedure accurately predicts the experimental mixed mode fracture records for different orientations of the brick layers on masonry panels.

    Este artículo presenta un modelo de cálculo que permite simular el comportamiento en rotura de la fábrica de ladrillo bajo solicitaciones de tracción y cortante. El modelo extiende el modelo cohesivo formulado por los autores para hormigón, considerando la anisotropía del material. El procedimiento de cálculo consta de dos fases: 1 obtención de la trayectoria de grieta mediante un cálculo elástico lineal, 2 incorporación del modelo cohesivo en la misma mediante elementos de intercara. El modelo se ha implementado en un programa de elementos finitos comercial con una subrutina de usuario y se ha contrastado con los resultados experimentales de los ensayos a escala. Las propiedades mecánicas de la fábrica, en especial las de fractura, se miden con ensayos de caracterización en dos direcciones. Éstas se incorporan al modelo de cálculo para simular los ensayos de fractura en modo mixto, prediciendo los resultados adecuadamente para distintas orientaciones de los tendeles.

  13. Cohesive cracked-hinge model for simulation of fracture in one-way slabs on grade

    Skar, Asmus; Poulsen, Peter Noe; Olesen, John Forbes

    2017-01-01

    Numerical analysis of slab on grade structures subjected to mechanical loads is a complex matter often requiring computationally expensive models. In order to develop a simplified and general concept for non-linear analysis of slab on grade structures, this paper presents a cohesive cracked-hinge...

  14. Effect of softening function on the cohesive crack fracture ...

    The cohesive crack model with linear softening yields the fracture process zones lower by ..... ignored during numerical simulation. In the crack band ..... performed with developed computer program using MATLAB for the following numerical.

  15. Time dependent fracture and cohesive zones

    Knauss, W. G.

    1993-01-01

    This presentation is concerned with the fracture response of materials which develop cohesive or bridging zones at crack tips. Of special interest are concerns regarding crack stability as a function of the law which governs the interrelation between the displacement(s) or strain across these zones and the corresponding holding tractions. It is found that for some materials unstable crack growth can occur, even before the crack tip has experienced a critical COD or strain across the crack, while for others a critical COD will guarantee the onset of fracture. Also shown are results for a rate dependent nonlinear material model for the region inside of a craze for exploring time dependent crack propagation of rate sensitive materials.

  16. Elongational rheology and cohesive fracture of photo-oxidated LDPE

    Rolón-Garrido, Víctor H., E-mail: victor.h.rolongarrido@tu-berlin.de; Wagner, Manfred H. [Chair of Polymer Engineering/Polymer Physics, Berlin Institute of Technology (TU Berlin), Fasanenstrasse 90, D-10623 Berlin (Germany)

    2014-01-15

    It was found recently that low-density polyethylene (LDPE) samples with different degrees of photo-oxidation represent an interesting system to study the transition from ductile to cohesive fracture and the aspects of the cohesive rupture in elongational flow. Sheets of LDPE were subjected to photo-oxidation in the presence of air using a xenon lamp to irradiate the samples for times between 1 day and 6 weeks. Characterisation methods included Fourier transform infrared spectroscopy, solvent extraction method, and rheology in shear and uniaxial extensional flows. Linear viscoelasticity was increasingly affected by increasing photo-oxidation due to crosslinking of LDPE, as corroborated by the carbonyl index, acid and aldehydes groups, and gel fraction. The molecular stress function model was used to quantify the experimental data, and the nonlinear model parameter β was found to be correlated with the gel content. The uniaxial data showed that the transition from ductile to cohesive fracture was shifted to lower elongational rates, the higher the gel content was. From 2 weeks photo-oxidation onwards, cohesive rupture occurred at every strain rate investigated. The true strain and true stress at cohesive fracture as well as the energy density applied to the sample up to fracture were analyzed. At low gel content, rupture was mainly determined by the melt fraction while at high gel content, rupture occurred predominantly in the gel structure. The strain at break was found to be independent of strain rate, contrary to the stress at break and the energy density. Thus, the true strain and not the stress at break or the energy density was found to be the relevant physical quantity to describe cohesive fracture behavior of photo-oxidated LDPE. The equilibrium modulus of the gel structures was correlated with the true strain at rupture. The stiffer the gel structure, the lower was the deformation tolerated before the sample breaks.

  17. A partly and fully cracked triangular XFEM element for modeling cohesive fracture

    Mougaard, Jens Falkenskov; Poulsen, Peter Noe; Nielsen, Leif Otto

    2011-01-01

    This paper discusses the build‐up of a partly cracked cohesive crack tip element. The crack tip element is based on the principles of the eXtended Finite Element Method (XFEM) and is of Linear Strain Triangle (LST) type. The composition of the enrichment has been in focus to achieve as complete...... as a fully cracked element with a few restrictions in the displacement field. The performance of the developed element has been tested in three examples. One example is an infinite sheet with an initial flaw in pure tension, where a semianalytical solution exists. The two other examples are the two benchmark...

  18. Fracture assessment of laser welde joints using numerical crack propagation simulation with a cohesive zone model; Bruchmechanische Bewertung von Laserschweissverbindungen durch numerische Rissfortschrittsimulation mit dem Kohaesivzonenmodell

    Scheider, I.

    2001-07-01

    This thesis introduces a concept for fracture mechanical assessment of structures with heterogenuous material properties like weldments. It is based on the cohesive zone model for numerical crack propagation analysis. With that model the failure of examined structures due to fracture can be determined. One part of the thesis contains the extension of the capabilities of the cohesive zone model regarding modelling threedimensional problems, shear fracture and unloading. In a second part new methods are developed for determination of elastic-plastic and fracture mechanical material properties, resp., which are based on optical determination of the specimen deformation. The whole concept has been used successfully for the numerical simulation of small laser welded specimens. (orig.) [German] In der vorliegenden Arbeit wird ein Konzept vorgestellt, mit dem es moeglich ist, Bauteile mit heterogenen Materialeigenschaften, wie z.B. Schweissverbindungen, bruchmechanisch zu bewerten. Es basiert auf einem Modell zur numerischen Rissfortschrittsimulation, dem Kohaesivzonenmodell, um das Versagen des zu untersuchenden Bauteils infolge von Bruch zu bestimmen. Ein Teil der Arbeit umfasst die Weiterentwicklung des Kohaesivzonenmodells zur Vorhersage des Bauteilversagens in Bezug auf die Behandlung dreidimensionaler Probleme, Scherbuch und Entlastung. In einem zweiten Teil werden Methoden zur Bestimmung sowohl der elastischplastischen als auch der bruchmechanischen Materialparameter entwickelt, die zum grossen Teil auf optischen Auswertungsmethoden der Deformationen beruhen. Das geschlossene Konzept wird erfolgreich auf lasergeschweisste Kleinproben angewendet. (orig.)

  19. Thermal shale fracturing simulation using the Cohesive Zone Method (CZM)

    Enayatpour, Saeid; van Oort, Eric; Patzek, Tadeusz

    2018-01-01

    Extensive research has been conducted over the past two decades to improve hydraulic fracturing methods used for hydrocarbon recovery from tight reservoir rocks such as shales. Our focus in this paper is on thermal fracturing of such tight rocks to enhance hydraulic fracturing efficiency. Thermal fracturing is effective in generating small fractures in the near-wellbore zone - or in the vicinity of natural or induced fractures - that may act as initiation points for larger fractures. Previous analytical and numerical results indicate that thermal fracturing in tight rock significantly enhances rock permeability, thereby enhancing hydrocarbon recovery. Here, we present a more powerful way of simulating the initiation and propagation of thermally induced fractures in tight formations using the Cohesive Zone Method (CZM). The advantages of CZM are: 1) CZM simulation is fast compared to similar models which are based on the spring-mass particle method or Discrete Element Method (DEM); 2) unlike DEM, rock material complexities such as scale-dependent failure behavior can be incorporated in a CZM simulation; 3) CZM is capable of predicting the extent of fracture propagation in rock, which is more difficult to determine in a classic finite element approach. We demonstrate that CZM delivers results for the challenging fracture propagation problem of similar accuracy to the eXtended Finite Element Method (XFEM) while reducing complexity and computational effort. Simulation results for thermal fracturing in the near-wellbore zone show the effect of stress anisotropy in fracture propagation in the direction of the maximum horizontal stress. It is shown that CZM can be used to readily obtain the extent and the pattern of induced thermal fractures.

  20. Thermal shale fracturing simulation using the Cohesive Zone Method (CZM)

    Enayatpour, Saeid

    2018-05-17

    Extensive research has been conducted over the past two decades to improve hydraulic fracturing methods used for hydrocarbon recovery from tight reservoir rocks such as shales. Our focus in this paper is on thermal fracturing of such tight rocks to enhance hydraulic fracturing efficiency. Thermal fracturing is effective in generating small fractures in the near-wellbore zone - or in the vicinity of natural or induced fractures - that may act as initiation points for larger fractures. Previous analytical and numerical results indicate that thermal fracturing in tight rock significantly enhances rock permeability, thereby enhancing hydrocarbon recovery. Here, we present a more powerful way of simulating the initiation and propagation of thermally induced fractures in tight formations using the Cohesive Zone Method (CZM). The advantages of CZM are: 1) CZM simulation is fast compared to similar models which are based on the spring-mass particle method or Discrete Element Method (DEM); 2) unlike DEM, rock material complexities such as scale-dependent failure behavior can be incorporated in a CZM simulation; 3) CZM is capable of predicting the extent of fracture propagation in rock, which is more difficult to determine in a classic finite element approach. We demonstrate that CZM delivers results for the challenging fracture propagation problem of similar accuracy to the eXtended Finite Element Method (XFEM) while reducing complexity and computational effort. Simulation results for thermal fracturing in the near-wellbore zone show the effect of stress anisotropy in fracture propagation in the direction of the maximum horizontal stress. It is shown that CZM can be used to readily obtain the extent and the pattern of induced thermal fractures.

  1. Development of an evaluation method for fracture mechanical tests on small samples based on a cohesive zone model; Entwicklung einer Auswertemethode fuer bruchmechanische Versuche an kleinen Proben auf der Basis eines Kohaesivzonenmodells

    Mahler, Michael

    2016-07-01

    The safety and reliability of nuclear power plants of the fourth generation is an important issue. It is based on a reliable interpretation of the components for which, among other fracture mechanical material properties are required. The existing irradiation in the power plants significantly affects the material properties which therefore need to be determined on irradiated material. Often only small amounts of irradiated material are available for characterization. In that case it is not possible to manufacture sufficiently large specimens, which are necessary for fracture mechanical testing in agreement with the standard. Small specimens must be used. From this follows the idea of this study, in which the fracture toughness can be predicted with the developed method based on tests of small specimens. For this purpose, the fracture process including the crack growth is described with a continuum mechanical approach using the finite element method and the cohesive zone model. The experiments on small specimens are used for parameter identification of the cohesive zone model. The two parameters of the cohesive zone model are determined by tensile tests on notched specimens (cohesive stress) and by parameter fitting to the fracture behavior of smalls specimens (cohesive energy). To account the different triaxialities of the specimens, the cohesive stress is used depending on the triaxiality. After parameter identification a large specimen can be simulated with the cohesive zone parameters derived from small specimens. The predicted fracture toughness of this big specimen fulfills the size requirements in the standard (ASTM E1820 or ASTM E399) in contrast to the small specimen. This method can be used for ductile and brittle material behavior and was validated in this work. In summary, this method offers the possibility to determine the fracture toughness indirectly based on small specimen testing. Main advantage is the low required specimen volume. Thereby massively

  2. Mode-I Fracture Toughness Testing and Coupled Cohesive Zone Modeling at In Situ P, T, and Chemical (H2O-CO2-NaCl) Conditions

    Dewers, T. A.; Choens, R. C., II; Regueiro, R. A.; Eichhubl, P.; Bryan, C. R.; Rinehart, A. J.; Su, J. C.; Heath, J. E.

    2017-12-01

    Propagation of mode I cracks is fundamental to subsurface engineering endeavors, but the majority of fracture toughness measurements are performed at ambient conditions. A novel testing apparatus was used to quantify the relationship between supercritical carbon dioxide (scCO2), water vapor, and fracture toughness in analogs for reservoir rock and caprock lithologies at temperature and pressure conditions relevant to geologic carbon storage. Samples of Boise Sandstone and Marcellus Shale were subject to fracture propagation via a novel short rod fracture toughness tester composed of titanium and Hastelloy® and designed to fit inside a pressure vessel. The tester is controlled by a hydraulically-driven ram and instrumented with a LVDT to monitor displacement. We measure fracture toughness under conditions of dry supercritical CO2 (scCO2), scCO2-saturated brine, and scCO2 with varying water content ( 25%, 90%, and 100% humidity) at 13.8 MPa and 70oC. Water film development as a function of humidity is determined in situ during the experiments with a quartz crystal microbalance. Two orientations of the Marcellus are included in the testing matrix. Dry CO2 has a negligible to slightly strengthening effect compared to a control, however hydrous scCO2 can decrease the fracture toughness, and the effect increases with increasing humidity, which likely is due to capillary condensation of reactive water films at nascent crack tips and associated subcritical weakening. A 2D poromechanical finite element model with cohesive surface elements (CSEs) and a chemo-plasticity phenomenology is being used to describe the chemical weakening/softening effects observed in the testing. The reductions in fracture toughness seen in this study could be important in considerations of borehole stability, in situ stress measurements, changes in fracture gradient, and reservoir caprock integrity during CO2 injection and storage. Sandia National Laboratories is a multimission laboratory managed

  3. Cohesive phase-field fracture and a PDE constrained optimization approach to fracture inverse problems

    Tupek, Michael R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-06-30

    In recent years there has been a proliferation of modeling techniques for forward predictions of crack propagation in brittle materials, including: phase-field/gradient damage models, peridynamics, cohesive-zone models, and G/XFEM enrichment techniques. However, progress on the corresponding inverse problems has been relatively lacking. Taking advantage of key features of existing modeling approaches, we propose a parabolic regularization of Barenblatt cohesive models which borrows extensively from previous phase-field and gradient damage formulations. An efficient explicit time integration strategy for this type of nonlocal fracture model is then proposed and justified. In addition, we present a C++ computational framework for computing in- put parameter sensitivities efficiently for explicit dynamic problems using the adjoint method. This capability allows for solving inverse problems involving crack propagation to answer interesting engineering questions such as: 1) what is the optimal design topology and material placement for a heterogeneous structure to maximize fracture resistance, 2) what loads must have been applied to a structure for it to have failed in an observed way, 3) what are the existing cracks in a structure given various experimental observations, etc. In this work, we focus on the first of these engineering questions and demonstrate a capability to automatically and efficiently compute optimal designs intended to minimize crack propagation in structures.

  4. Derivation of Path Independent Coupled Mix Mode Cohesive Laws from Fracture Resistance Curves

    Goutianos, Stergios

    2016-01-01

    A generalised approach is presented to derive coupled mixed mode cohesive laws described with physical parameters such as peak traction, critical opening, fracture energy and cohesive shape. The approach is based on deriving mix mode fracture resistance curves from an effective mix mode cohesive...... law at different mode mixities. From the fracture resistance curves, the normal and shear stresses of the cohesive laws can be obtained by differentiation. Since, the mixed mode cohesive laws are obtained from a fracture resistance curve (potential function), path independence is automatically...

  5. Molecular-dynamics Simulation-based Cohesive Zone Representation of Intergranular Fracture Processes in Aluminum

    Yamakov, Vesselin I.; Saether, Erik; Phillips, Dawn R.; Glaessgen, Edward H.

    2006-01-01

    A traction-displacement relationship that may be embedded into a cohesive zone model for microscale problems of intergranular fracture is extracted from atomistic molecular-dynamics simulations. A molecular-dynamics model for crack propagation under steady-state conditions is developed to analyze intergranular fracture along a flat 99 [1 1 0] symmetric tilt grain boundary in aluminum. Under hydrostatic tensile load, the simulation reveals asymmetric crack propagation in the two opposite directions along the grain boundary. In one direction, the crack propagates in a brittle manner by cleavage with very little or no dislocation emission, and in the other direction, the propagation is ductile through the mechanism of deformation twinning. This behavior is consistent with the Rice criterion for cleavage vs. dislocation blunting transition at the crack tip. The preference for twinning to dislocation slip is in agreement with the predictions of the Tadmor and Hai criterion. A comparison with finite element calculations shows that while the stress field around the brittle crack tip follows the expected elastic solution for the given boundary conditions of the model, the stress field around the twinning crack tip has a strong plastic contribution. Through the definition of a Cohesive-Zone-Volume-Element an atomistic analog to a continuum cohesive zone model element - the results from the molecular-dynamics simulation are recast to obtain an average continuum traction-displacement relationship to represent cohesive zone interaction along a characteristic length of the grain boundary interface for the cases of ductile and brittle decohesion. Keywords: Crack-tip plasticity; Cohesive zone model; Grain boundary decohesion; Intergranular fracture; Molecular-dynamics simulation

  6. Calculation of adhesive and cohesive fracture toughness of a thin brittle coating on a polymer substrate

    Jansson, N.E.; Leterrier, Y.; Medico, L.; Manson, J.-A.E.

    2006-01-01

    Determination of fracture parameters for brittle coatings with a sub-micron thickness is not a straightforward task. Since direct evaluation through testing with for instance a double cantilever beam or compact tension tests is hardly applicable due to the extreme thinness of the coating, methods such as the fragmentation test are used. When a structure with a brittle coating on a soft substrate is strained, the coating develops a crack pattern with parallel cracks perpendicular to the loading direction. The crack density (number of cracks per unit length) increases with strain up to a saturation value. Analytical formulas to model the fragmentation process exist but are limited to elastic materials. In this work finite element simulations are applied in order to deduce the adhesive and cohesive fracture properties of the interface and coating respectively from experimental data. The simulations include both the plastic behaviour of the substrate and debonding of the coating from the substrate, the latter achieved by application of a cohesive zone model. The main conclusion is that the plastic dissipation within the substrate must be correctly accounted for to get realistic interfacial and coating fracture toughness values

  7. Simulation of debonding in Al/epoxy T-peel joints using a potential-based cohesive zone model

    Alfano, Marco; Furgiuele, Franco; Lubineau, Gilles; Paulino, Glaucio H.

    2011-01-01

    In this work, a cohesive zone model of fracture is employed to study debonding in plastically deforming Al/epoxy T-peel joints. In order to model the adhesion between the bonded metal strips, the Park-Paulino-Roesler (PPR) potential based cohesive model (J Mech Phys Solids, 2009;57:891-908) is employed, and interface elements are implemented in a finite element com-mercial code. A study on the influence of the cohesive properties (i.e. cohesive strength, fracture energy, shape parameter and slope indicator) on the predicted peel-force versus displacement plots reveals that the numerical results are mostly sensitive to cohesive strength and fracture energy. In turn, these parameters are tuned until a match between experimental and simulated load displacement curves is achieved.

  8. Simulation of debonding in Al/epoxy T-peel joints using a potential-based cohesive zone model

    Alfano, Marco

    2011-06-10

    In this work, a cohesive zone model of fracture is employed to study debonding in plastically deforming Al/epoxy T-peel joints. In order to model the adhesion between the bonded metal strips, the Park-Paulino-Roesler (PPR) potential based cohesive model (J Mech Phys Solids, 2009;57:891-908) is employed, and interface elements are implemented in a finite element com-mercial code. A study on the influence of the cohesive properties (i.e. cohesive strength, fracture energy, shape parameter and slope indicator) on the predicted peel-force versus displacement plots reveals that the numerical results are mostly sensitive to cohesive strength and fracture energy. In turn, these parameters are tuned until a match between experimental and simulated load displacement curves is achieved.

  9. Micromechanical modeling and inverse identification of damage using cohesive approaches

    Blal, Nawfal

    2013-01-01

    In this study a micromechanical model is proposed for a collection of cohesive zone models embedded between two each elements of a standard cohesive-volumetric finite element method. An equivalent 'matrix-inclusions' composite is proposed as a representation of the cohesive-volumetric discretization. The overall behaviour is obtained using homogenization approaches (Hashin Shtrikman scheme and the P. Ponte Castaneda approach). The derived model deals with elastic, brittle and ductile materials. It is available whatever the triaxiality loading rate and the shape of the cohesive law, and leads to direct relationships between the overall material properties and the local cohesive parameters and the mesh density. First, rigorous bounds on the normal and tangential cohesive stiffnesses are obtained leading to a suitable control of the inherent artificial elastic loss induced by intrinsic cohesive models. Second, theoretical criteria on damageable and ductile cohesive parameters are established (cohesive peak stress, critical separation, cohesive failure energy,... ). These criteria allow a practical calibration of the cohesive zone parameters as function of the overall material properties and the mesh length. The main interest of such calibration is its promising capacity to lead to a mesh-insensitive overall response in surface damage. (author) [fr

  10. A Molecular-Scale Understanding of Cohesion and Fracture in P3HT:Fullerene Blends

    Tummala, Naga Rajesh

    2015-04-21

    Quantifying cohesion and understanding fracture phenomena in thin-film electronic devices are necessary for improved materials design and processing criteria. For organic photovoltaics (OPVs), the cohesion of the photoactive layer portends its mechanical flexibility, reliability, and lifetime. Here, the molecular mechanism for the initiation of cohesive failure in bulk heterojunction (BHJ) OPV active layers derived from the semiconducting polymer poly-(3-hexylthiophene) [P3HT] and two mono-substituted fullerenes is examined experimentally and through molecular-dynamics simulations. The results detail how, under identical conditions, cohesion significantly changes due to minor variations in the fullerene adduct functionality, an important materials consideration that needs to be taken into account across fields where soluble fullerene derivatives are used.

  11. Comparative studies on constitutive models for cohesive interface cracks of quasi-brittle materials

    Shen Xinpu; Shen Guoxiao; Zhou Lin

    2005-01-01

    In this paper, Concerning on the modelling of quasi-brittle fracture process zone at interface crack of quasi-brittle materials and structures, typical constitutive models of interface cracks were compared. Numerical calculations of the constitutive behaviours of selected models were carried out at local level. Aiming at the simulation of quasi-brittle fracture of concrete-like materials and structures, the emphases of the qualitative comparisons of selected cohesive models are focused on: (1) the fundamental mode I and mode II behaviours of selected models; (2) dilatancy properties of the selected models under mixed mode fracture loading conditions. (authors)

  12. Cohesive zone model for direct silicon wafer bonding

    Kubair, D. V.; Spearing, S. M.

    2007-05-01

    Direct silicon wafer bonding and decohesion are simulated using a spectral scheme in conjunction with a rate-dependent cohesive model. The cohesive model is derived assuming the presence of a thin continuum liquid layer at the interface. Cohesive tractions due to the presence of a liquid meniscus always tend to reduce the separation distance between the wafers, thereby opposing debonding, while assisting the bonding process. In the absence of the rate-dependence effects the energy needed to bond a pair of wafers is equal to that needed to separate them. When rate-dependence is considered in the cohesive law, the experimentally observed asymmetry in the energetics can be explained. The derived cohesive model has the potential to form a bridge between experiments and a multiscale-modelling approach to understand the mechanics of wafer bonding.

  13. Guidelines for Applying Cohesive Models to the Damage Behaviour of Engineering Materials and Structures

    Schwalbe, Karl-Heinz; Cornec, Alfred

    2013-01-01

    This brief provides guidance for the application of cohesive models to determine damage and fracture in materials and structural components. This can be done for configurations with or without a pre-existing crack. Although the brief addresses structural behaviour, the methods described herein may also be applied to any deformation induced material damage and failure, e.g. those occurring during manufacturing processes. The methods described are applicable to the behaviour of ductile metallic materials and structural components made thereof. Hints are also given for applying the cohesive model to other materials.

  14. Development of a Fatigue Model for Low Alloy Steels Using a Cycle-Dependent Cohesive Zone Law

    Kyungmok Kim

    2014-03-01

    Full Text Available A fatigue model for SAE 4130 steels is developed using a cycle-dependent cohesive zone law. Reduction of fracture energy and degradation of stiffness are considered to describe failure resistance after certain number of cycles. The reduction rate of fracture energy is determined with experimental stress (S- number of cycles to failure (N scatter found in the literature. Three-dimensional finite element models containing a cohesive zone are generated with commercial software (ABAQUS. Calculated fatigue lives at different stress ratios are in good agreement with experimental ones. In addition, fatigue behavior of hardened SAE 4130 steels is predicted with that of normalized material.

  15. Network cohesion

    Cavalcanti, Tiago Vanderlei; Giannitsarou, Chrysi; Johnson, CR

    2017-01-01

    We define a measure of network cohesion and show how it arises naturally in a broad class of dynamic models of endogenous perpetual growth with network externalities. Via a standard growth model, we show why network cohesion is crucial for conditional convergence and explain that as cohesion increases, convergence is faster. We prove properties of network cohesion and define a network aggregator that preserves network cohesion.

  16. On the application of cohesive crack modeling in cementitious materials

    Stang, Henrik; Olesen, John Forbes; Poulsen, Peter Noe

    2007-01-01

    typically for multi scale problems such as crack propagation in fiber reinforced composites. Mortar and concrete, however, are multi-scale materials and the question naturally arises, if bridged crack models in fact are more suitable for concrete and mortar as well? In trying to answer this question a model......Cohesive crack models-in particular the Fictitious Crack Model - are applied routinely in the analysis of crack propagation in concrete and mortar. Bridged crack models-where cohesive stresses are assumed to exist together with a stress singularity at the crack tip-on the other hand, are used...

  17. SIAM CM 09 - The SIAM method for applying cohesive models to the damage behaviour of engineering materials and structures

    Scheider, Ingo; Cornec, Alfred; Schwalbe, Karl-Heinz

    2009-01-01

    This document provides guidance on the determination of damage and fracture of ductile metallic materials and structures made thereof, based mainly on experience obtained at GKSS. The method used for the fracture prediction is the cohesive model, in which material separation is represented by interface elements and their constitutive behaviour, the so-called traction-separation law, in the framework of finite elements. Several traction-separation laws are discussed, some of which are already implemented in commercial finite element codes and therefore easy applicable. Methods are described for the determination of the cohesive parameters, using a hybrid experimental/numerical approach. (orig.)

  18. SIAM CM 09 - The SIAM method for applying cohesive models to the damage behaviour of engineering materials and structures

    Scheider, Ingo; Cornec, Alfred [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Materialforschung; Schwalbe, Karl-Heinz

    2009-12-19

    This document provides guidance on the determination of damage and fracture of ductile metallic materials and structures made thereof, based mainly on experience obtained at GKSS. The method used for the fracture prediction is the cohesive model, in which material separation is represented by interface elements and their constitutive behaviour, the so-called traction-separation law, in the framework of finite elements. Several traction-separation laws are discussed, some of which are already implemented in commercial finite element codes and therefore easy applicable. Methods are described for the determination of the cohesive parameters, using a hybrid experimental/numerical approach. (orig.)

  19. Global sensitivity analysis in the identification of cohesive models using full-field kinematic data

    Alfano, Marco; Lubineau, Gilles; Paulino, Glá ucio Hermogenes

    2015-01-01

    Failure of adhesive bonded structures often occurs concurrent with the formation of a non-negligible fracture process zone in front of a macroscopic crack. For this reason, the analysis of damage and fracture is effectively carried out using the cohesive zone model (CZM). The crucial aspect of the CZM approach is the precise determination of the traction-separation relation. Yet it is usually determined empirically, by using calibration procedures combining experimental data, such as load-displacement or crack length data, with finite element simulation of fracture. Thanks to the recent progress in image processing, and the availability of low-cost CCD cameras, it is nowadays relatively easy to access surface displacements across the fracture process zone using for instance Digital Image Correlation (DIC). The rich information provided by correlation techniques prompted the development of versatile inverse parameter identification procedures combining finite element (FE) simulations and full field kinematic data. The focus of the present paper is to assess the effectiveness of these methods in the identification of cohesive zone models. In particular, the analysis is developed in the framework of the variance based global sensitivity analysis. The sensitivity of kinematic data to the sought cohesive properties is explored through the computation of the so-called Sobol sensitivity indexes. The results show that the global sensitivity analysis can help to ascertain the most influential cohesive parameters which need to be incorporated in the identification process. In addition, it is shown that suitable displacement sampling in time and space can lead to optimized measurements for identification purposes.

  20. Global sensitivity analysis in the identification of cohesive models using full-field kinematic data

    Alfano, Marco

    2015-03-01

    Failure of adhesive bonded structures often occurs concurrent with the formation of a non-negligible fracture process zone in front of a macroscopic crack. For this reason, the analysis of damage and fracture is effectively carried out using the cohesive zone model (CZM). The crucial aspect of the CZM approach is the precise determination of the traction-separation relation. Yet it is usually determined empirically, by using calibration procedures combining experimental data, such as load-displacement or crack length data, with finite element simulation of fracture. Thanks to the recent progress in image processing, and the availability of low-cost CCD cameras, it is nowadays relatively easy to access surface displacements across the fracture process zone using for instance Digital Image Correlation (DIC). The rich information provided by correlation techniques prompted the development of versatile inverse parameter identification procedures combining finite element (FE) simulations and full field kinematic data. The focus of the present paper is to assess the effectiveness of these methods in the identification of cohesive zone models. In particular, the analysis is developed in the framework of the variance based global sensitivity analysis. The sensitivity of kinematic data to the sought cohesive properties is explored through the computation of the so-called Sobol sensitivity indexes. The results show that the global sensitivity analysis can help to ascertain the most influential cohesive parameters which need to be incorporated in the identification process. In addition, it is shown that suitable displacement sampling in time and space can lead to optimized measurements for identification purposes.

  1. Challenges in Continuum Modelling of Intergranular Fracture

    Coffman, Valerie; Sethna, James P.; Ingraffea, A. R.

    2011-01-01

    of grain boundaries, but also in crucial ways on edges, corners and triple junctions of even greater geometrical complexity. To address the first two challenges, we explore the physical underpinnings for creating functional forms to capture the hierarchical commensurability structure in the grain boundary......Intergranular fracture in polycrystals is often simulated by finite elements coupled to a cohesive zone model for the interfaces, requiring cohesive laws for grain boundaries as a function of their geometry. We discuss three challenges in understanding intergranular fracture in polycrystals. First...... properties. To address the last challenge, we demonstrate a method for atomistically extracting the fracture properties of geometrically complex local regions on the fly from within a finite element simulation....

  2. Extended Finite Element Method XFEM for ductile tearing: Large crack growth modelization based on the transition from a continuous medium to the crack via a cohesive zone model

    Simatos, A.

    2010-01-01

    This work extends the applicability of local models for ductile fracture to large crack growth modelization for ductile tearing. This is done inserting a cohesive zone model whose constitutive law is identified in order to be consistent with the local model. The consistency is obtained through the cohesive law incremental construction which ensures the equivalence of the energy and of the mechanical response of the models. The extension of the applicability domain of the local modelization is enabled via the XFEM framework which allows for maintaining the mechanical energy during the crack extension step. This method permits also to introduce the cohesive zone model during the calculation without regards to the mesh of the structure for its maximal tensile stress. To apply the XFEM to ductile tearing, this method is extended to non linear problems (Updated Lagrangian Formulation, large scale yield plasticity). The cohesive zone model grows when the criterion defined in term of porosity, tested at the front of the cohesive crack front, is verified. The cohesive zone growth criterion is determined in order to model most of the damaging phase with the local model to ensure that the modelization takes into account the triaxiality ratio history accurately. The proposed method is applied to the Rousselier local model for ductile fracture in the XFEM framework of Cast3M, the FE software of the CEA. (author) [fr

  3. Determination of a cohesive law for delamination modelling - Accounting for variation in crack opening and stress state across the test specimen width

    Joki, R. K.; Grytten, F.; Hayman, Brian

    2016-01-01

    by differentiating the fracture resistance with respect to opening displacement at the initial location of the crack tip, measured at the specimen edge. 2) Extend the bridging law to a cohesive law by accounting for crack tip fracture energy. 3) Fine-tune the cohesive law through an iterative modelling approach so......The cohesive law for Mode I delamination in glass fibre Non-Crimped Fabric reinforced vinylester is determined for use in finite element models. The cohesive law is derived from a delamination test based on DCB specimens loaded with pure bending moments taking into account the presence of large...... that the changing state of stress and deformation across the width of the test specimen is taken into account. The changing state of stress and deformation across the specimen width is shown to be significant for small openings (small fracture process zone size). This will also be important for the initial part...

  4. An enriched cohesive zone model for delamination in brittle interfaces

    Samimi, M.; Dommelen, van J.A.W.; Geers, M.G.D.

    2009-01-01

    Application of standard cohesive zone models in a finite element framework to simulate delamination in brittle interfaces may trigger non-smooth load-displacement responses that lead to the failure of iterative solution procedures. This non-smoothness is an artifact of the discretization; and hence

  5. Modeling interfacial fracture in Sierra.

    Brown, Arthur A.; Ohashi, Yuki; Lu, Wei-Yang; Nelson, Stacy A. C.; Foulk, James W.,; Reedy, Earl David,; Austin, Kevin N.; Margolis, Stephen B.

    2013-09-01

    This report summarizes computational efforts to model interfacial fracture using cohesive zone models in the SIERRA/SolidMechanics (SIERRA/SM) finite element code. Cohesive surface elements were used to model crack initiation and propagation along predefined paths. Mesh convergence was observed with SIERRA/SM for numerous geometries. As the funding for this project came from the Advanced Simulation and Computing Verification and Validation (ASC V&V) focus area, considerable effort was spent performing verification and validation. Code verification was performed to compare code predictions to analytical solutions for simple three-element simulations as well as a higher-fidelity simulation of a double-cantilever beam. Parameter identification was conducted with Dakota using experimental results on asymmetric double-cantilever beam (ADCB) and end-notched-flexure (ENF) experiments conducted under Campaign-6 funding. Discretization convergence studies were also performed with respect to mesh size and time step and an optimization study was completed for mode II delamination using the ENF geometry. Throughout this verification process, numerous SIERRA/SM bugs were found and reported, all of which have been fixed, leading to over a 10-fold increase in convergence rates. Finally, mixed-mode flexure experiments were performed for validation. One of the unexplained issues encountered was material property variability for ostensibly the same composite material. Since the variability is not fully understood, it is difficult to accurately assess uncertainty when performing predictions.

  6. Cohesive zone modeling of intergranular cracking in polycrystalline aggregates

    Simonovski, Igor; Cizelj, Leon

    2015-01-01

    Highlights: • Alternative approach to cohesive elements is proposed: cohesive-zone contact. • Applicability to measured and simulated grain structures is demonstrated. • Normal and normal/shear separation as a damage initialization is explored. • Normal/shear damage initialization significantly reduces ductility. • Little difference in Voronoi aggregate size on macroscopic response. - Abstract: Understanding and controlling early damage initiation and evolution are amongst the most important challenges in nuclear power plants, occurring in ferritic, austenitic steels and nickel based alloys. In this work a meso-scale approach to modeling initiation and evolution of early intergranular cracking is presented. This damage mechanism is present in a number of nuclear power plant components and depends on the material (e.g. composition, heat treatment, microstructure), environment and load. Finite element modeling is used to explicitly model the microstructure – both the grains and the grain boundaries. Spatial Voronoi tessellation is used to obtain the grain topology. In addition, measured topology of a 0.4 mm stainless steel wire is used. Anisotropic elasticity and crystal plasticity are used as constitutive laws for the grains. Grain boundaries are modeled using the cohesive zone approach. Different modeling assumptions/parameters are evaluated against the numerical stability criteria. The biggest positive contribution to numerical stability is the use of cohesive-type contact instead of cohesive elements. A small amount of viscous regularization should be also used along with the addition of a small amount of viscous forces to the global equilibrium equations. Two cases of grain boundary damage initiation are explored: (1) initiation due to normal separation and (2) initiation due to a combination of normal and shear separation. The second criterion significantly decreases the ductility of an aggregate and slightly improves the numerical stability

  7. Long Fibre Composite Modelling Using Cohesive User's Element

    Kozak, Vladislav; Chlup, Zdenek

    2010-01-01

    The development glass matrix composites reinforced by unidirectional long ceramic fibre has resulted in a family of very perspective structural materials. The only disadvantage of such materials is relatively high brittleness at room temperature. The main micromechanisms acting as toughening mechanism are the pull out, crack bridging, matrix cracking. There are other mechanisms as crack deflection etc. but the primer mechanism is mentioned pull out which is governed by interface between fibre and matrix. The contribution shows a way how to predict and/or optimise mechanical behaviour of composite by application of cohesive zone method and write user's cohesive element into the FEM numerical package Abaqus. The presented results from numerical calculations are compared with experimental data. Crack extension is simulated by means of element extinction algorithms. The principal effort is concentrated on the application of the cohesive zone model with the special traction separation (bridging) law and on the cohesive zone modelling. Determination of micro-mechanical parameters is based on the combination of static tests, microscopic observations and numerical calibration procedures.

  8. Modelling of composite concrete block pavement systems applying a cohesive zone model

    Skar, Asmus; Poulsen, Peter Noe

    This paper presents a numerical analysis of the fracture behaviour of the cement bound base material in composite concrete block pavement systems, using a cohesive zone model. The functionality of the proposed model is tested on experimental and numerical investigations of beam bending tests....... The pavement is modelled as a simple slab on grade structure and parameters influencing the response, such as analysis technique, geometry and material parameters are studied. Moreover, the analysis is extended to a real scale example, modelling the pavement as a three-layered structure. It is found...... block pavements. It is envisaged that the methodology implemented in this study can be extended and thereby contribute to the ongoing development of rational failure criteria that can replace the empirical formulas currently used in pavement engineering....

  9. 3-D cohesive finite element model for application in structural analysis of heavy duty composite pavements

    Skar, Asmus; Poulsen, Peter Noe

    2015-01-01

    The problem of stiffness degradation in composite pavement systems from localised fracture damage in the quasibrittle cement bound granular mixture are today taken into account only by empirical formulas. These formulas deals with a limited number of materials in a restricted range of design...... this paper presents a numerical analysis of the fracture behaviour of cement bound granular mixtures in composite concrete block pavement systems applying a cohesive model. The functionality of the proposed model is compared to experimental investigations of beam bending tests. The pavement is modelled......, it can be shown that adequately good prediction of the structural response of composite pavements is obtained for monotonic loading without significant computational cost, making the model applicable for engineering design purpose. It is envisaged that the methodology implemented in this study can...

  10. A Study on the Effect of Cohesive Laws on Finite Element Analysis of Crack Propagation Using Cohesive Elements

    Seo, Hyeongseok; Baek, Hyungchan; Kim, Hyungyu [Seoul Nat' l Univ. of Sci. and Tech., Seoul (Korea, Republic of)

    2014-04-15

    In this paper, the effect of cohesive laws on the finite element analysis of crack propagation using cohesive elements is investigated through three-point bending and double cantilever beam problems. The cohesive elements are implemented into ABAQUS/Standard user subroutines(UEL), and the shape of cohesive law is varied by changing parameters in polynomial functions of cohesive traction-separation relations. In particular, crack propagation behaviors are studied by comparing load-displacement curves of the analysis models which have different shapes of cohesive laws with the same values of fracture energy and cohesive strength. Furthermore, the influence of the element size on crack propagation is discussed in this study.

  11. Simulación numérica del proceso de fractura en modo I de vigas de concreto con trayectoria de fisuración conocida mediante un modelo discreto de fisura cohesiva Numerical modeling of the fracture process in mode I of concrete beams with known cracking path by means of a discrete model of cohesive crack

    Rubén Graffe

    2010-01-01

    Full Text Available Este trabajo describe la formulación, implementación y aplicación de un modelo discreto de fisura cohesiva el cual permite simular el proceso de fractura en modo I de vigas de concreto simple cuya trayectoria de fisuración está definida. En el proceso de fractura se establece una relación entre el esfuerzo normal de cohesión y la apertura de una fisura, donde el material ubicado fuera de la zona de fractura conserva un comportamiento elástico lineal en carga o descarga, mientras que el material en el interior de la zona de fractura tiene un comportamiento inelástico con ablandamiento por deformación. En la malla se ubican parejas de nudos en la misma posición espacial sobre la trayectoria de la fisura, las cuales desligan a los elementos bidimensionales contiguos. Estos nudos duplicados están conectados entre sí por resortes elasto - plásticos que representan el proceso de fractura. Se simulan numéricamente tres vigas de concreto de diferentes dimensiones que soportan una carga en el centro de la luz. Cada simulación es un análisis no lineal estático con elementos finitos en condición plana de esfuerzos, considerando deformaciones infinitesimales y aplicando un desplazamiento vertical incremental sobre la cara superior de la mitad de la luz de la viga. Se obtuvieron resultados satisfactorios de la respuesta estructural de las vigas, en comparación con los ensayos experimentales y modelaciones numéricas desarrolladas por otros autores.This work describes the formulation, implementation and application of a cohesive crack discrete model, which can simulate the fracture process in mode I of simple concrete beams with defined cracking pattern. In the fracture process, a relationship between the cohesive normal stress and crack opening is established, where the material outside the fracture zone has a lineal elastic behavior in loading and unloading, whereas the material inside the fracture zone has an inelastic behavior with

  12. A cohesive zone model to simulate the hydrogen embrittlement effect on a high-strength steel

    G. Gobbi

    2016-01-01

    Full Text Available The present work aims to model the fracture mechanical behavior of a high-strength low carbon steel, AISI 4130 operating in hydrogen contaminated environment. The study deals with the development of 2D finite element cohesive zone model (CZM reproducing a toughness test. Along the symmetry plane over the crack path of a C(T specimen a zero thickness layer of cohesive elements are implemented in order to simulate the crack propagation. The main feature of this kind of model is the definition of a traction-separation law (TSL that reproduces the constitutive response of the material inside to the cohesive elements. Starting from a TSL calibrated on hydrogen non-contaminated material, the embrittlement effect is simulated by reducing the cohesive energy according to the total hydrogen content including the lattice sites (NILS and the trapped amount. In this perspective, the proposed model consists of three steps of simulations. First step evaluates the hydrostatic pressure. It drives the initial hydrogen concentration assigned in the second step, a mass diffusion analysis, defining in this way the contribution of hydrogen moving across the interstitial lattice sites. The final stress analysis, allows getting the total hydrogen content, including the trapped amount, and evaluating the new crack initiation and propagation due to the hydrogen presence. The model is implemented in both plane strain and plane stress configurations; results are compared in the discussion. From the analyses, it resulted that hydrogen is located only into lattice sites and not in traps, and that the considered steel experiences a high hydrogen susceptibility. By the proposed procedure, the developed numerical model seems a reliable and quick tool able to estimate the mechanical behavior of steels in presence of hydrogen.

  13. Network cohesion

    Cavalcanti, Tiago V. V.; Giannitsarou, Chryssi; Johnson, Charles R.

    2016-01-01

    This is the final version of the article. It first appeared from Springer via http://dx.doi.org/10.1007/s00199-016-0992-1 We define a measure of network cohesion and show how it arises naturally in a broad class of dynamic models of endogenous perpetual growth with network externalities. Via a standard growth model, we show why network cohesion is crucial for conditional convergence and explain that as cohesion increases, convergence is faster. We prove properties of network cohesion and d...

  14. An XFEM Model for Hydraulic Fracturing in Partially Saturated Rocks

    Salimzadeh Saeed

    2016-01-01

    Full Text Available Hydraulic fracturing is a complex multi-physics phenomenon. Numerous analytical and numerical models of hydraulic fracturing processes have been proposed. Analytical solutions commonly are able to model the growth of a single hydraulic fracture into an initially intact, homogeneous rock mass. Numerical models are able to analyse complex problems such as multiple hydraulic fractures and fracturing in heterogeneous media. However, majority of available models are restricted to single-phase flow through fracture and permeable porous rock. This is not compatible with actual field conditions where the injected fluid does not have similar properties as the host fluid. In this study we present a fully coupled hydro-poroelastic model which incorporates two fluids i.e. fracturing fluid and host fluid. Flow through fracture is defined based on lubrication assumption, while flow through matrix is defined as Darcy flow. The fracture discontinuity in the mechanical model is captured using eXtended Finite Element Method (XFEM while the fracture propagation criterion is defined through cohesive fracture model. The discontinuous matrix fluid velocity across fracture is modelled using leak-off loading which couples fracture flow and matrix flow. The proposed model has been discretised using standard Galerkin method, implemented in Matlab and verified against several published solutions. Multiple hydraulic fracturing simulations are performed to show the model robustness and to illustrate how problem parameters such as injection rate and rock permeability affect the hydraulic fracturing variables i.e. injection pressure, fracture aperture and fracture length. The results show the impact of partial saturation on leak-off and the fact that single-phase models may underestimate the leak-off.

  15. DEM Particle Fracture Model

    Zhang, Boning [Univ. of Colorado, Boulder, CO (United States); Herbold, Eric B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Homel, Michael A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Regueiro, Richard A. [Univ. of Colorado, Boulder, CO (United States)

    2015-12-01

    An adaptive particle fracture model in poly-ellipsoidal Discrete Element Method is developed. The poly-ellipsoidal particle will break into several sub-poly-ellipsoids by Hoek-Brown fracture criterion based on continuum stress and the maximum tensile stress in contacts. Also Weibull theory is introduced to consider the statistics and size effects on particle strength. Finally, high strain-rate split Hopkinson pressure bar experiment of silica sand is simulated using this newly developed model. Comparisons with experiments show that our particle fracture model can capture the mechanical behavior of this experiment very well, both in stress-strain response and particle size redistribution. The effects of density and packings o the samples are also studied in numerical examples.

  16. A Molecular-Scale Understanding of Cohesion and Fracture in P3HT:Fullerene Blends

    Tummala, Naga Rajesh; Bruner, Christopher; Risko, Chad; Bredas, Jean-Luc; Dauskardt, Reinhold H.

    2015-01-01

    mechanical flexibility, reliability, and lifetime. Here, the molecular mechanism for the initiation of cohesive failure in bulk heterojunction (BHJ) OPV active layers derived from the semiconducting polymer poly-(3-hexylthiophene) [P3HT] and two mono

  17. Computer model for ductile fracture

    Moran, B.; Reaugh, J. E.

    1979-01-01

    A computer model is described for predicting ductile fracture initiation and propagation. The computer fracture model is calibrated by simple and notched round-bar tension tests and a precracked compact tension test. The model is used to predict fracture initiation and propagation in a Charpy specimen and compare the results with experiments. The calibrated model provides a correlation between Charpy V-notch (CVN) fracture energy and any measure of fracture toughness, such as J/sub Ic/. A second simpler empirical correlation was obtained using the energy to initiate fracture in the Charpy specimen rather than total energy CVN, and compared the results with the empirical correlation of Rolfe and Novak

  18. Fatigue damage modeling in solder interconnects using a cohesive zone approach

    Abdul-Baqi, A.J.J.; Schreurs, P.J.G.; Geers, M.G.D.

    2005-01-01

    The objective of this work is to model the fatigue damage process in a solder bump subjected to cyclic loading conditions. Fatigue damage is simulated using the cohesive zone methodology. Damage is assumed to occur at interfaces modeled through cohesive zones in the material, while the bulk material

  19. Spatially balanced topological interaction grants optimal cohesion in flocking models.

    Camperi, Marcelo; Cavagna, Andrea; Giardina, Irene; Parisi, Giorgio; Silvestri, Edmondo

    2012-12-06

    Models of self-propelled particles (SPPs) are an indispensable tool to investigate collective animal behaviour. Originally, SPP models were proposed with metric interactions, where each individual coordinates with neighbours within a fixed metric radius. However, recent experiments on bird flocks indicate that interactions are topological: each individual interacts with a fixed number of neighbours, irrespective of their distance. It has been argued that topological interactions are more robust than metric ones against external perturbations, a significant evolutionary advantage for systems under constant predatory pressure. Here, we test this hypothesis by comparing the stability of metric versus topological SPP models in three dimensions. We show that topological models are more stable than metric ones. We also show that a significantly better stability is achieved when neighbours are selected according to a spatially balanced topological rule, namely when interacting neighbours are evenly distributed in angle around the focal individual. Finally, we find that the minimal number of interacting neighbours needed to achieve fully stable cohesion in a spatially balanced model is compatible with the value observed in field experiments on starling flocks.

  20. Numerical modelling in non linear fracture mechanics

    Viggo Tvergaard

    2007-07-01

    Full Text Available Some numerical studies of crack propagation are based on using constitutive models that accountfor damage evolution in the material. When a critical damage value has been reached in a materialpoint, it is natural to assume that this point has no more carrying capacity, as is done numerically in the elementvanish technique. In the present review this procedure is illustrated for micromechanically based materialmodels, such as a ductile failure model that accounts for the nucleation and growth of voids to coalescence, and a model for intergranular creep failure with diffusive growth of grain boundary cavities leading to micro-crack formation. The procedure is also illustrated for low cycle fatigue, based on continuum damage mechanics. In addition, the possibility of crack growth predictions for elastic-plastic solids using cohesive zone models to represent the fracture process is discussed.

  1. Mathematical modelling of fracture hydrology

    Herbert, A.W.; Hodgkinson, D.P.; Lever, D.A.; Robinson, P.C.; Rae, J.

    1985-06-01

    This report summarises the work performed between January 1983 and December 1984 for the CEC/DOE contract 'Mathematical Modelling of Fracture Hydrology', under the following headings: 1) Statistical fracture network modelling, 2) Continuum models of flow and transport, 3) Simplified models, 4) Analysis of laboratory experiments and 5) Analysis of field experiments. (author)

  2. Effect of Processing Conditions on Fracture Resistance and Cohesive Laws of Binderfree All-Cellulose Composites

    Goutianos, Stergios; Arévalo, R.; Sørensen, Bent F.

    2014-01-01

    molecules during the drying process. Defibrilation of the raw cellulose material is done in wet medium in a paper-like process. Panels with different refining time were tested and it was found than an increase in fibre fibrillation results in a lower fracture resistance. © 2014 Springer Science......The fracture properties of all-cellulose composites without matrix were studied using Double Cantilever Beam (DCB) sandwich specimens loaded with pure monotonically increasing bending moments, which give stable crack growth. The experiments were conducted in an environmental scanning electron...... microscope to a) perform accurate measurements of both the fracture energy for crack initiation and the fracture resistance and b) observe the microscale failure mechanisms especially in the the wake of the crack tip. Since the mechanical behaviour of the all-cellulose composites was non-linear, a general...

  3. A Process and Environment Aware Sierra/SolidMechanics Cohesive Zone Modeling Capability for Polymer/Solid Interfaces

    Reedy, E. D. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Chambers, Robert S. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Hughes, Lindsey Gloe [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Kropka, Jamie Michael [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Stavig, Mark E. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Stevens, Mark J. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    The performance and reliability of many mechanical and electrical components depend on the integrity of po lymer - to - solid interfaces . Such interfaces are found in adhesively bonded joints, encapsulated or underfilled electronic modules, protective coatings, and laminates. The work described herein was aimed at improving Sandia's finite element - based capability to predict interfacial crack growth by 1) using a high fidelity nonlinear viscoelastic material model for the adhesive in fracture simulations, and 2) developing and implementing a novel cohesive zone fracture model that generates a mode - mixity dependent toughness as a natural consequence of its formulation (i.e., generates the observed increase in interfacial toughness wi th increasing crack - tip interfacial shear). Furthermore, molecular dynamics simulations were used to study fundamental material/interfa cial physics so as to develop a fuller understanding of the connection between molecular structure and failure . Also reported are test results that quantify how joint strength and interfacial toughness vary with temperature.

  4. Relationship between Family Adaptability, Cohesion and Adolescent Problem Behaviors: Curvilinearity of Circumplex Model

    Joh, Ju Youn; Kim, Sun; Park, Jun Li; Kim, Yeon Pyo

    2013-01-01

    Background The Family Adaptability and Cohesion Evaluation Scale (FACES) III using the circumplex model has been widely used in investigating family function. However, the criticism of the curvilinear hypothesis of the circumplex model has always been from an empirical point of view. This study examined the relationship between adolescent adaptability, cohesion, and adolescent problem behaviors, and especially testing the consistency of the curvilinear hypotheses with FACES III. Methods We us...

  5. Cohesive granular media modelization with non-convex particles shape: Application to UO2 powder compaction

    Saint-Cyr, B.

    2011-01-01

    We model in this work granular materials composed of non-convex and cohesive aggregates, in view of application to the rheology of UO 2 powders. The effect of non convexity is analyzed in terms of bulk quantities (Coulomb internal friction and cohesion) and micromechanical parameters such as texture anisotropy and force transmission. In particular, we find that the packing fraction evolves in a complex manner with the shape non convexity and the shear strength increases but saturates due to interlocking between the aggregates. We introduce simple models to describe these features in terms of micro-mechanical parameters. Furthermore, a systematic investigation of shearing, uniaxial compaction and simple compression of cohesive packings show that bulk cohesion increases with non-convexity but is strongly influenced by the boundary conditions and shear bands or stress concentration. (author) [fr

  6. Modeling the effect of preexisting joints on normal fault geometries using a brittle and cohesive material

    Kettermann, M.; van Gent, H. W.; Urai, J. L.

    2012-04-01

    Brittle rocks, such as for example those hosting many carbonate or sandstone reservoirs, are often affected by different kinds of fractures that influence each other. Understanding the effects of these interactions on fault geometries and the formation of cavities and potential fluid pathways might be useful for reservoir quality prediction and production. Analogue modeling has proven to be a useful tool to study faulting processes, although usually the used materials do not provide cohesion and tensile strength, which are essential to create open fractures. Therefore, very fine-grained, cohesive, hemihydrate powder was used for our experiments. The mechanical properties of the material are scaling well for natural prototypes. Due to the fine grain size structures are preserved in in great detail. The used deformation box allows the formation of a half-graben and has initial dimensions of 30 cm width, 28 cm length and 20 cm height. The maximum dip-slip along the 60° dipping predefined basement fault is 4.5 cm and was fully used in all experiments. To setup open joints prior to faulting, sheets of paper placed vertically within the box to a depth of about 5 cm from top. The powder was then sieved into the box, embedding the paper almost entirely. Finally strings were used to remove the paper carefully, leaving open voids. Using this method allows the creation of cohesionless open joints while ensuring a minimum impact on the sensitive surrounding material. The presented series of experiments aims to investigate the effect of different angles between the strike of a rigid basement fault and a distinct joint set. All experiments were performed with a joint spacing of 2.5 cm and the fault-joint angles incrementally covered 0°, 4°, 8°, 12°, 16°, 20° and 25°. During the deformation time lapse photography from the top and side captured every structural change and provided data for post-processing analysis using particle imaging velocimetry (PIV). Additionally

  7. Numerical model of glulam beam delamination in dependence on cohesive strength

    Kawecki, Bartosz; Podgórski, Jerzy

    2018-01-01

    This paper presents an attempt of using a finite element method for predicting delamination of a glue laminated timber beam through a cohesive layer. There were used cohesive finite elements, quadratic stress damage initiation criterion and mixed mode energy release rate failure model. Finite element damage was equal to its complete stiffness degradation. Timber material was considered to be an orthotropic with plastic behaviour after reaching bending limit.

  8. Cohesive zone model for intergranular slow crack growth in ceramics: influence of the process and the microstructure

    Romero de la Osa, M; Olagnon, C; Chevalier, J; Estevez, R; Tallaron, C

    2011-01-01

    Ceramic polycrystals are prone to slow crack growth (SCG) which is stress and environmentally assisted, similarly to observations reported for silica glasses. The kinetics of fracture are known to be dependent on the load level, the temperature and the relative humidity. In addition, evidence is available on the influence of the microstructure on the SCG rate with an increase in the crack velocity with decreasing the grain size. Crack propagation takes place beyond a load threshold, which is grain size dependent. We present a cohesive zone model for the intergranular failure process. The methodology accounts for an intrinsic opening that governs the length of the cohesive zone and allows the investigation of grain size effects. A rate and temperature-dependent cohesive model is proposed (Romero de la Osa M, Estevez R et al 2009 J. Mech. Adv. Mater. Struct. 16 623–31) to mimic the reaction–rupture mechanism. The formulation is inspired by Michalske and Freiman's picture (Michalske and Freiman 1983 J. Am. Ceram. Soc. 66 284–8) together with a recent study by Zhu et al (2005 J. Mech. Phys. Solids 53 1597–623) of the reaction–rupture mechanism. The present investigation extends a previous work (Romero de la Osa et al 2009 Int. J. Fracture 158 157–67) in which the problem is formulated. Here, we explore the influence of the microstructure in terms of grain size, their elastic properties and residual thermal stresses originating from the cooling from the sintering temperature down to ambient conditions. Their influence on SCG for static loadings is reported and the predictions compared with experimental trends. We show that the initial stress state is responsible for the grain size dependence reported experimentally for SCG. Furthermore, the account for the initial stresses enables the prediction of a load threshold below which no crack growth is observed: a crack arrest takes place when the crack path meets a region in compression

  9. Modelling the double cantilever beam test with bending moments by using bilinear discontinuous cohesive laws

    Valvo, Paolo S.; Sørensen, Bent F.; Toftegaard, Helmuth Langmaack

    2015-01-01

    A theoretical model of the double cantilever beam tests with bending moments (DCB-UBM) is presented. The specimen is modelled as the assemblage of two laminated beams connected by a cohesive interface. It is assumed that the traction-separation laws – i.e. the relationships between the interfacial...... the cohesive law parameters from experiments. Experimental tests have been conducted on glass fibre reinforced specimens under pure mode I and II loading conditions. The predictions of the theoretical model turn out to be in very good agreement with the experimental results....

  10. Relationship between Family Adaptability, Cohesion and Adolescent Problem Behaviors: Curvilinearity of Circumplex Model

    Joh, Ju Youn; Kim, Sun; Park, Jun Li

    2013-01-01

    Background The Family Adaptability and Cohesion Evaluation Scale (FACES) III using the circumplex model has been widely used in investigating family function. However, the criticism of the curvilinear hypothesis of the circumplex model has always been from an empirical point of view. This study examined the relationship between adolescent adaptability, cohesion, and adolescent problem behaviors, and especially testing the consistency of the curvilinear hypotheses with FACES III. Methods We used the data from 398 adolescent participants who were in middle school. A self-reported questionnaire was used to evaluate the FACES III and Youth Self Report. Results According to the level of family adaptability, significant differences were evident in internalizing problems (P = 0.014). But, in externalizing problems, the results were not significant (P = 0.305). Also, according to the level of family cohesion, significant differences were in internalizing problems (P = 0.002) and externalizing problems (P = 0.004). Conclusion The relationship between the dimensions of adaptability, cohesion and adolescent problem behaviors was not curvilinear. In other words, adolescents with high adaptability and high cohesion showed low problem behaviors. PMID:23730484

  11. Relationship between Family Adaptability, Cohesion and Adolescent Problem Behaviors: Curvilinearity of Circumplex Model.

    Joh, Ju Youn; Kim, Sun; Park, Jun Li; Kim, Yeon Pyo

    2013-05-01

    The Family Adaptability and Cohesion Evaluation Scale (FACES) III using the circumplex model has been widely used in investigating family function. However, the criticism of the curvilinear hypothesis of the circumplex model has always been from an empirical point of view. This study examined the relationship between adolescent adaptability, cohesion, and adolescent problem behaviors, and especially testing the consistency of the curvilinear hypotheses with FACES III. We used the data from 398 adolescent participants who were in middle school. A self-reported questionnaire was used to evaluate the FACES III and Youth Self Report. According to the level of family adaptability, significant differences were evident in internalizing problems (P = 0.014). But, in externalizing problems, the results were not significant (P = 0.305). Also, according to the level of family cohesion, significant differences were in internalizing problems (P = 0.002) and externalizing problems (P = 0.004). The relationship between the dimensions of adaptability, cohesion and adolescent problem behaviors was not curvilinear. In other words, adolescents with high adaptability and high cohesion showed low problem behaviors.

  12. Modeling grain boundaries in polycrystals using cohesive elements: Qualitative and quantitative analysis

    El Shawish, Samir, E-mail: Samir.ElShawish@ijs.si [Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Cizelj, Leon [Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Simonovski, Igor [European Commission, DG-JRC, Institute for Energy and Transport, P.O. Box 2, NL-1755 ZG Petten (Netherlands)

    2013-08-15

    Highlights: ► We estimate the performance of cohesive elements for modeling grain boundaries. ► We compare the computed stresses in ABAQUS finite element solver. ► Tests are performed in analytical and realistic models of polycrystals. ► Most severe issue is found within the plastic grain response. ► Other identified issues are related to topological constraints in modeling space. -- Abstract: We propose and demonstrate several tests to estimate the performance of the cohesive elements in ABAQUS for modeling grain boundaries in complex spatial structures such as polycrystalline aggregates. The performance of the cohesive elements is checked by comparing the computed stresses with the theoretically predicted values for a homogeneous material under uniaxial tensile loading. Statistical analyses are performed under different loading conditions for two elasto-plastic models of the grains: isotropic elasticity with isotropic hardening plasticity and anisotropic elasticity with crystal plasticity. Tests are conducted on an analytical finite element model generated from Voronoi tessellation as well as on a realistic finite element model of a stainless steel wire. The results of the analyses highlight several issues related to the computation of normal and shear stresses. The most severe issue is found within the plastic grain response where the computed normal stresses on a particularly oriented cohesive elements are significantly underestimated. Other issues are found to be related to topological constraints in the modeling space and result in the increased scatter of the computed stresses.

  13. Cohesion, team mental models, and collective efficacy: towards an integrated framework of team dynamics in sport.

    Filho, Edson; Tenenbaum, Gershon; Yang, Yanyun

    2015-01-01

    A nomological network on team dynamics in sports consisting of a multiframework perspective is introduced and tested. The aim was to explore the interrelationship among cohesion, team mental models (TMMs), collective efficacy (CE) and perceived performance potential (PPP). Three hundred and forty college-aged soccer players representing 17 different teams (8 female and 9 male) participated in the study. They responded to surveys on team cohesion, TMMs, CE and PPP. Results are congruent with the theoretical conceptualisation of a parsimonious view of team dynamics in sports. Specifically, cohesion was found to be an exogenous variable predicting both TMMs and CE beliefs. TMMs and CE were correlated and predicted PPP, which in turn accounted for 59% of the variance of objective performance scores as measured by teams' season record. From a theoretical standpoint, findings resulted in a parsimonious view of team dynamics, which may represent an initial step towards clarifying the epistemological roots and nomological network of various team-level properties. From an applied standpoint, results suggest that team expertise starts with the establishment of team cohesion. Following the establishment of cohesiveness, teammates are able to advance team-related schemas and a collective sense of confidence. Limitations and key directions for future research are outlined.

  14. Identification of parameters of cohesive elements for modeling of adhesively bonded joints of epoxy composites

    Kottner R.

    2013-12-01

    Full Text Available Adhesively bonded joints can be numerically simulated using the cohesive crack model. The critical strain energy release rate and the critical opening displacement are the parameters which must be known when cohesive elements in MSC.Marc software are used. In this work, the parameters of two industrial adhesives Hunstman Araldite 2021 and Gurit Spabond 345 for bonding of epoxy composites are identified. Double Cantilever Beam (DCB and End Notched Flexure (ENF test data were used for the identification. The critical opening displacements were identified using an optimization algorithm where the tests and their numerical simulations were compared.

  15. Development and Application of a Cohesive Sediment Transport Model in Coastal Louisiana

    Sorourian, S.; Nistor, I.

    2017-12-01

    The Louisiana coast has suffered from rapid land loss due to the combined effects of increasing the rate of eustatic sea level rise, insufficient riverine sediment input and subsidence. The sediment in this region is dominated by cohesive sediments (up to 80% of clay). This study presents a new model for calculating suspended sediment concentration (SSC) of cohesive sediments. Several new concepts are incorporated into the proposed model, which is capable of estimating the spatial and temporal variation in the concentration of cohesive sediment. First, the model incorporates the effect of electrochemical forces between cohesive sediment particles. Second, the wave friction factor is expressed in terms of the median particle size diameter in order to enhance the accuracy of the estimation of bed shear stress. Third, the erosion rate of cohesive sediments is also expressed in time-dependent form. Simulated SSC profiles are compared with field data collected from Vermilion Bay, Louisiana. The results of the proposed model agree well with the experimental data, as soon as steady state condition is achieved. The results of the new numerical models provide a better estimation of the suspended sediment concentration profile compared to the initial model developed by Mehta and Li, 2003. Among the proposed developments, the formulation of a time-dependent erosion rate shows the most accurate results. Coupling of present model with the Finite-Volume, primitive equation Community Ocean Model (FVCOM) would shed light on the fate of fine-grained sediments in order to increase overall retention and restoration of the Louisiana coastal plain.

  16. Numerical simulation of fatigue crack growth rate and crack retardation due to an overload using a cohesive zone model

    Silitonga, S.; Maljaars, J.; Soetens, F.; Snijder, H.H.

    2014-01-01

    In this work, a numerical method is pursued based on a cohesive zone model (CZM). The method is aimed at simulating fatigue crack growth as well as crack growth retardation due to an overload. In this cohesive zone model, the degradation of the material strength is represented by a variation of the

  17. Hydraulic fracture propagation modeling and data-based fracture identification

    Zhou, Jing

    Successful shale gas and tight oil production is enabled by the engineering innovation of horizontal drilling and hydraulic fracturing. Hydraulically induced fractures will most likely deviate from the bi-wing planar pattern and generate complex fracture networks due to mechanical interactions and reservoir heterogeneity, both of which render the conventional fracture simulators insufficient to characterize the fractured reservoir. Moreover, in reservoirs with ultra-low permeability, the natural fractures are widely distributed, which will result in hydraulic fractures branching and merging at the interface and consequently lead to the creation of more complex fracture networks. Thus, developing a reliable hydraulic fracturing simulator, including both mechanical interaction and fluid flow, is critical in maximizing hydrocarbon recovery and optimizing fracture/well design and completion strategy in multistage horizontal wells. A novel fully coupled reservoir flow and geomechanics model based on the dual-lattice system is developed to simulate multiple nonplanar fractures' propagation in both homogeneous and heterogeneous reservoirs with or without pre-existing natural fractures. Initiation, growth, and coalescence of the microcracks will lead to the generation of macroscopic fractures, which is explicitly mimicked by failure and removal of bonds between particles from the discrete element network. This physics-based modeling approach leads to realistic fracture patterns without using the empirical rock failure and fracture propagation criteria required in conventional continuum methods. Based on this model, a sensitivity study is performed to investigate the effects of perforation spacing, in-situ stress anisotropy, rock properties (Young's modulus, Poisson's ratio, and compressive strength), fluid properties, and natural fracture properties on hydraulic fracture propagation. In addition, since reservoirs are buried thousands of feet below the surface, the

  18. Cohesive Zone Model Based Numerical Analysis of Steel-Concrete Composite Structure Push-Out Tests

    J. P. Lin

    2014-01-01

    Full Text Available Push-out tests were widely used to determine the shear bearing capacity and shear stiffness of shear connectors in steel-concrete composite structures. The finite element method was one efficient alternative to push-out testing. This paper focused on a simulation analysis of the interface between concrete slabs and steel girder flanges as well as the interface of the shear connectors and the surrounding concrete. A cohesive zone model was used to simulate the tangential sliding and normal separation of the interfaces. Then, a zero-thickness cohesive element was implemented via the user-defined element subroutine UEL in the software ABAQUS, and a multiple broken line mode was used to define the constitutive relations of the cohesive zone. A three-dimensional numerical analysis model was established for push-out testing to analyze the load-displacement curves of the push-out test process, interface relative displacement, and interface stress distribution. This method was found to accurately calculate the shear capacity and shear stiffness of shear connectors. The numerical results showed that the multiple broken lines mode cohesive zone model could describe the nonlinear mechanical behavior of the interface between steel and concrete and that a discontinuous deformation numerical simulation could be implemented.

  19. Mathematical modelling of fracture hydrology

    Herbert, A.W.; Hodgkindon, D.P.; Lever, D.A.; Robinson, P.C.; Rae, J.

    1985-01-01

    This report reviews work carried out between January 1983 and December 1984 for the CEC/DOE contract 'Mathematical Modelling of Fracture Hydrology' which forms part of the CEC Mirage project (CEC 1984. Come 1985. Bourke et. al. 1983). It describes the development and use of a variety of mathematical models for the flow of water and transport of radionuclides in flowing groundwater. These models have an important role to play in assessing the long-term safety of radioactive waste burial, and in the planning and interpretation of associated experiments. The work is reported under five headings, namely 1) Statistical fracture network modelling, 2) Continuum models of flow and transport, 3) Simplified models, 4) Analysis of laboratory experiments, 5) Analysis of field experiments

  20. Mathematical modelling of fracture hydrology

    Rae, J.; Hodgkinson, D.P.; Robinson, P.C.; Herbert, A.W.

    1984-04-01

    This progress report contains notes on three aspects of hydrological modelling. Work on hydrodynamic dispersion in fractured media has been extended to transverse dispersion. Further work has been done on diffusion into the rock matrix and its effect on solute transport. The program NAMSOL has been used for the MIRAGE code comparison exercise being organised by Atkins R and D. (author)

  1. Fracture mechanics model of fragmentation

    Glenn, L.A.; Gommerstadt, B.Y.; Chudnovsky, A.

    1986-01-01

    A model of the fragmentation process is developed, based on the theory of linear elastic fracture mechanics, which predicts the average fragment size as a function of strain rate and material properties. This approach permits a unification of previous results, yielding Griffith's solution in the low-strain-rate limit and Grady's solution at high strain rates

  2. The Structure of Group Cohesion.

    Cota, Albert A.; And Others

    1995-01-01

    Reviews the literature on unidimensional and multidimensional models of cohesion and describes cohesion as a multidimensional construct with primary and secondary dimensions. Found that primary dimensions described the cohesiveness of all or most types of groups, whereas secondary dimensions only described the cohesiveness of specific types of…

  3. Application of a Cohesive Zone Model for Simulating Fatigue Crack Growth from Moderate to High ΔK Levels of Inconel 718

    Huan Li

    2018-01-01

    Full Text Available A cyclic cohesive zone model is applied to characterize the fatigue crack growth behavior of a IN718 superalloy which is frequently used in aerospace components. In order to improve the limitation of fracture mechanics-based models, besides the predictions of the moderate fatigue crack growth rates at the Paris’ regime and the high fatigue crack growth rates at the high stress intensity factor ΔK levels, the present work is also aimed at simulating the material damage uniformly and examining the influence of the cohesive model parameters on fatigue crack growth systematically. The gradual loss of the stress-bearing ability of the material is considered through the degradation of a novel cohesive envelope. The experimental data of cracked specimens are used to validate the simulation result. Based on the reasonable estimation for the model parameters, the fatigue crack growth from moderate to high ΔK levels can be reproduced under the small-scale yielding condition, which is in fair agreement with the experimental results.

  4. Micromechanics modelling of ductile fracture

    Chen, Zengtao

    2013-01-01

    This book summarizes research advances in micromechanics modelling of ductile fractures made in the past two decades. The ultimate goal of this book is to reach manufacturing frontline designers and materials engineers by providing a user-oriented, theoretical background of micromechanics modeling. Accordingly, the book is organized in a unique way and presents a vigorous damage percolation model developed by the authors over the last ten years. This model overcomes almost all difficulties of the existing models and can be used to completely accommodate ductile damage development within a single, measured microstructure frame. Related void damage criteria including nucleation, growth and coalescence are then discussed in detail: how they are improved, when and where they are used in the model, and how the model performs in comparison with the existing models. Sample forming simulations are provided to illustrate the model’s performance.

  5. Computer simulation of model cohesive powders: Plastic consolidation, structural changes and elasticity under isotropic loads

    Gilabert, Francisco; Roux, Jean-Noël; Castellanos, Antonio

    2008-01-01

    International audience; The quasistatic behavior of a simple 2D model of a cohesive powder under isotropic loads is investigated by Discrete Element simulations. The loose packing states, as studied in a previous paper, undergo important structural changes under growing confining pressure P, while solid fraction \\Phi irreversibly increases by large amounts. The system state goes through three stages, with different forms of the plastic consolidation curve \\Phi(P*), under growing reduced press...

  6. A cohesive plastic/damage-zone model for ductile crack analysis

    Zhang, C.; Gross, D.

    1995-01-01

    A cohesive plastic/damage-zone model of the Dugdale-Barenblatt type (G.I. Barenblatt, Adv. Appl. Mech. 7 (1962) 55-129; D.S. Dugdale, J. Mech. Phys. Solids 8 (1960) 100-104) is presented for analyzing crack growth in ductile materials with damage evolution. A semi-infinite Mode I crack in plane stress or plane stress is considered. The damage is assumed to be present in form of dispersed microvoids which are localized into a narrow strip ahead of the crack-tip. A simple damage model of the Gurson model type (A.L. Gurson, J. Eng. Mater. Technol. 99 (1977) 2-15; V. Tvergaard, Advances in Applied Mechanics, Vol. 27, Academic Press, 1990, pp. 83-151) is developed for uniaxial tension to describe the macroscopic properties of the cohesive plastic/damage-zone. Under small-scale yielding and small-scale damage conditions, a system of nonlinear integral equations for the plastic strain and the length of the cohesive plastic/damage-zone is derived. Numerical results are presented and discussed to reveal the effect of damage evolution on the ductile crack growth. (orig.)

  7. Continuous and Discontinuous Modelling of Fracture in Concrete Using FEM

    Tejchman, Jacek

    2013-01-01

    The book analyzes a quasi-static fracture process in concrete and reinforced concrete by means of constitutive models formulated within continuum mechanics. A continuous and discontinuous modelling approach was used. Using a continuous approach, numerical analyses were performed using a finite element method and three different enhanced continuum models: isotropic elasto-plastic, isotropic damage and anisotropic smeared crack one. The models were equipped with a characteristic length of micro-structure by means of a non-local and a second-gradient theory. So they could properly describe the formation of localized zones with a certain thickness and spacing and a related deterministic size effect. Using a discontinuous FE approach, numerical results of cracks using a cohesive crack model and XFEM were presented which were also properly regularized. Finite element analyses were performed with concrete elements under monotonic uniaxial compression, uniaxial tension, bending and shear-extension. Concrete beams un...

  8. Application of the cohesive zone model for the evaluation of stiffness losses in a rotor with a transverse breathing crack

    Toni Liong, Rugerri; Proppe, Carsten

    2013-04-01

    The breathing mechanism of a transversely cracked rotor and its influence on a rotor system that appears due to shaft weight and inertia forces is studied. A method is proposed for the evaluation of the stiffness losses in the cross-section that contains the crack. This method is based on a cohesive zone model (CZM) instead of linear elastic fracture mechanics (LEFM). The CZM is developed for mode-I plane strain conditions and accounts explicitly for triaxiality of the stress state by using constitutive relations. The breathing crack is modelled by a parabolic shape. As long as the relative crack depth is small, a crack closure straight line model may be used, while the crack closure parabolic line should be used in the case of a deep crack. The CZM is also implemented in a one-dimensional continuum rotor model by means of finite element (FE) discretisation in order to predict and to analyse the dynamic behavior of a cracked rotor. The proposed method provides a useful tool for the analysis of rotor systems containing cracks.

  9. Assessing alternative conceptual models of fracture flow

    Ho, C.K.

    1995-01-01

    The numerical code TOUGH2 was used to assess alternative conceptual models of fracture flow. The models that were considered included the equivalent continuum model (ECM) and the dual permeability (DK) model. A one-dimensional, layered, unsaturated domain was studied with a saturated bottom boundary and a constant infiltration at the top boundary. Two different infiltration rates were used in the studies. In addition, the connection areas between the fracture and matrix elements in the dual permeability model were varied. Results showed that the two conceptual models of fracture flow produced different saturation and velocity profiles-even under steady-state conditions. The magnitudes of the discrepancies were sensitive to two parameters that affected the flux between the fractures and matrix in the dual permeability model: (1) the fracture-matrix connection areas and (2) the capillary pressure gradients between the fracture and matrix elements

  10. Physical scale modeling of single free head piles under lateral loading in cohesive soils

    Edgar Leonardo Salamanca-Medina

    2017-06-01

    Full Text Available This paper presents the results of the small scale modeling of free head wood piles under horizontal loading in cohesive soils, tested in order to compare the results with analytical models proposed by various authors. Characteristic Load (CLM and P-Y Curves methods were used for the prediction of lateral deflections at the head of the piles and the method proposed by Broms for estimating the ultimate lateral load. These predictions were compared with the results of the physical modeling, obtaining a good approximation between them.

  11. Model of T-Type Fracture in Coal Fracturing and Analysis of Influence Factors of Fracture Morphology

    Yuwei Li

    2018-05-01

    Full Text Available Special T-type fractures can be formed when coal is hydraulically fractured and there is currently no relevant theoretical model to calculate and describe them. This paper first establishes the height calculation model of vertical fractures in multi-layered formations and deduces the stress intensity factor (SIF at the upper and lower sides of the fracture in the process of vertical fracture extension. Combined with the fracture tip stress analysis method of fracture mechanics theory, the horizontal bedding is taken into account for tensile and shear failure, and the critical mechanical conditions for the formation of horizontal fracture in coal are obtained. Finally, the model of T-type fracture in coal fracturing is established, and it is verified by fracturing simulation experiments. The model calculation result shows that the increase of vertical fracture height facilitates the increase of horizontal fracture length. The fracture toughness of coal has a significant influence on the length of horizontal fracture and there is a threshold. When the fracture toughness is less than the threshold, the length of horizontal fracture remains unchanged, otherwise, the length of horizontal fracture increases rapidly with the increase of fracture toughness. When the shear strength of the interface between the coalbed and the interlayer increases, the length of the horizontal fracture of the T-type fracture rapidly decreases.

  12. Finite Element Multibody Simulation of a Breathing Crack in a Rotor with a Cohesive Zone Model

    Liong, Rugerri Toni; Proppe, Carsten

    2013-01-01

    The breathing mechanism of a transversely cracked shaft and its influence on a rotor system that appears due to shaft weight and inertia forces is studied. The presence of a crack reduces the stiffness of the rotor system and introduces a stiffness variation during the revolution of the shaft. Here, 3D finite element (FE) model and multibody simulation (MBS) are introduced to predict and to analyse the breathing mechanism on a transverse cracked shaft. It is based on a cohesive zone model (CZ...

  13. Cohesive Modeling of Transverse Cracking in Laminates with a Single Layer of Elements per Ply

    VanDerMeer, Frans P.; Davila, Carlos G.

    2013-01-01

    This study aims to bridge the gap between classical understanding of transverse cracking in cross-ply laminates and recent computational methods for the modeling of progressive laminate failure. Specifically, the study investigates under what conditions a finite element model with cohesive X-FEM cracks can reproduce the in situ effect for the ply strength. It is shown that it is possible to do so with a single element across the thickness of the ply, provided that the interface stiffness is properly selected. The optimal value for this interface stiffness is derived with an analytical shear lag model. It is also shown that, when the appropriate statistical variation of properties has been applied, models with a single element through the thickness of a ply can predict the density of transverse matrix cracks

  14. Application of trilinear softening functions based on a cohesive crack approach to the simulation of the fracture behaviour of fibre reinforced cementitious materials.

    Enfedaque, A.; Alberti, M. G.; Gálvez, J. C.

    2017-09-01

    The relevance of fibre reinforced cementitious materials (FRC) has increased due to the appearance of regulations that establish the requirements needed to take into account the contribution of the fibres in the structural design. However, in order to exploit the properties of such materials it is a key aspect being able to simulate their behaviour under fracture conditions. Considering a cohesive crack approach, several authors have studied the suitability of using several softening functions. However, none of these functions can be directly applied to FRC. The present contribution analyses the suitability of multilinear softening functions in order to obtain simulation results of fracture tests of a wide variety of FRC. The implementation of multilinear softening functions has been successfully performed by means of a material user subroutine in a commercial finite element code obtaining accurate results in a wide variety of FRC. Such softening functions were capable of simulating a ductile unloading behaviour as well as a rapid unloading followed by a reloading and afterwards a slow unloading. Moreover, the implementation performed has been proven as versatile, robust and efficient from a numerical point of view.

  15. A multiscale model of distributed fracture and permeability in solids in all-round compression

    De Bellis, Maria Laura; Della Vecchia, Gabriele; Ortiz, Michael; Pandolfi, Anna

    2017-07-01

    We present a microstructural model of permeability in fractured solids, where the fractures are described in terms of recursive families of parallel, equidistant cohesive faults. Faults originate upon the attainment of tensile or shear strength in the undamaged material. Secondary faults may form in a hierarchical organization, creating a complex network of connected fractures that modify the permeability of the solid. The undamaged solid may possess initial porosity and permeability. The particular geometry of the superposed micro-faults lends itself to an explicit analytical quantification of the porosity and permeability of the damaged material. The model is the finite kinematics version of a recently proposed porous material model, applied with success to the simulation of laboratory tests and excavation problems [De Bellis, M. L., Della Vecchia, G., Ortiz, M., Pandolfi, A., 2016. A linearized porous brittle damage material model with distributed frictional-cohesive faults. Engineering Geology 215, 10-24. Cited By 0. 10.1016/j.enggeo.2016.10.010]. The extension adds over and above the linearized kinematics version for problems characterized by large deformations localized in narrow zones, while the remainder of the solid undergoes small deformations, as typically observed in soil and rock mechanics problems. The approach is particularly appealing as a means of modeling a wide scope of engineering problems, ranging from the prevention of water or gas outburst into underground mines, to the prediction of the integrity of reservoirs for CO2 sequestration or hazardous waste storage, to hydraulic fracturing processes.

  16. Experimental Characterization and Cohesive Laws for Delamination of Off-Axis GFRP Laminates

    Lindgaard, Esben; Bak, Brian Lau Verndal

    2015-01-01

    This work experimentally characterizes mixed mode delamination in glass fibre reinforced polymer laminates taking into account the influence of the off-axis angle between the lamina orientation and the crack growth direction on the fracture properties. Thus, providing a cohesive law that enables...... analysis of 3D models in which mixed mode crack growth within laminates having anisotropic fracture properties takes place....

  17. Multiphase flow models for hydraulic fracturing technology

    Osiptsov, Andrei A.

    2017-10-01

    The technology of hydraulic fracturing of a hydrocarbon-bearing formation is based on pumping a fluid with particles into a well to create fractures in porous medium. After the end of pumping, the fractures filled with closely packed proppant particles create highly conductive channels for hydrocarbon flow from far-field reservoir to the well to surface. The design of the hydraulic fracturing treatment is carried out with a simulator. Those simulators are based on mathematical models, which need to be accurate and close to physical reality. The entire process of fracture placement and flowback/cleanup can be conventionally split into the following four stages: (i) quasi-steady state effectively single-phase suspension flow down the wellbore, (ii) particle transport in an open vertical fracture, (iii) displacement of fracturing fluid by hydrocarbons from the closed fracture filled with a random close pack of proppant particles, and, finally, (iv) highly transient gas-liquid flow in a well during cleanup. The stage (i) is relatively well described by the existing hydralics models, while the models for the other three stages of the process need revisiting and considerable improvement, which was the focus of the author’s research presented in this review paper. For stage (ii), we consider the derivation of a multi-fluid model for suspension flow in a narrow vertical hydraulic fracture at moderate Re on the scale of fracture height and length and also the migration of particles across the flow on the scale of fracture width. At the stage of fracture cleanaup (iii), a novel multi-continua model for suspension filtration is developed. To provide closure relationships for permeability of proppant packings to be used in this model, a 3D direct numerical simulation of single phase flow is carried out using the lattice-Boltzmann method. For wellbore cleanup (iv), we present a combined 1D model for highly-transient gas-liquid flow based on the combination of multi-fluid and

  18. A numerical insight into elastomer normally closed micro valve actuation with cohesive interfacial cracking modelling

    Wang, Dongyang; Ba, Dechun; Hao, Ming; Duan, Qihui; Liu, Kun; Mei, Qi

    2018-05-01

    Pneumatic NC (normally closed) valves are widely used in high density microfluidics systems. To improve actuation reliability, the actuation pressure needs to be reduced. In this work, we utilize 3D FEM (finite element method) modelling to get an insight into the valve actuation process numerically. Specifically, the progressive debonding process at the elastomer interface is simulated with CZM (cohesive zone model) method. To minimize the actuation pressure, the V-shape design has been investigated and compared with a normal straight design. The geometrical effects of valve shape has been elaborated, in terms of valve actuation pressure. Based on our simulated results, we formulate the main concerns for micro valve design and fabrication, which is significant for minimizing actuation pressures and ensuring reliable operation.

  19. Cohesive zone model of carbon nanotube-coated carbon fiber/polyester composites

    Agnihotri, Prabhat Kamal; Kar, Kamal K; Basu, Sumit

    2012-01-01

    It has been previously reported that the average properties of carbon nanotube-coated carbon fiber/polyester multiscale composites critically depend on the length and density of nanotubes on the fiber surface. In this paper the effect of nanotube length and density on the interfacial properties of the carbon nanotube-coated carbon fiber–polymer interface has been studied using shear lag and a cohesive zone model. The latter model incorporates frictional sliding after complete debonding between the fiber and matrix and has been developed to quantify the effect of nanotube coating on various interfacial characterizing parameters. Our numerical results indicate that fibers with an optimal coverage and length of nanotubes significantly increase the interfacial strength and friction between the fiber and polymer. However, they also embrittle the interface compared with bare fibers. (paper)

  20. Cohesion between two clay lamellae: From Primitive Model to Full Molecular Simulation

    Carrier, Benoit; Vandamme, Matthieu; Pellenq, Roland; Van Damme, Henri

    2012-01-01

    Document available in extended abstract form only. The objective of this work is to investigate the range of validity of various models to describe accurately the cohesion between two charged clay lamellae. These models, in order of increasing complexity, are the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, the primitive model, the explicit solvent primitive model and the full molecular model. We aim at providing a clear picture of which physical mechanisms play a significant role for various interlayer spacings, surface charges and cationic charges. The up-scaling of the mechanical properties starting from the lamellar microstructure of a smectite is usually performed within the framework of the DLVO theory. In this case, the interaction between two charged lamellae with cations between them is the sum of the repulsive double layer electrostatic interaction and of the attractive Van der Waals interaction. However, the Primitive Model shows that concentration fluctuations of counter-ions can generate a strongly attractive ionic correlation force. The Primitive Model is a Monte-Carlo simulation of hydrated counter-ions between two infinite charges surfaces and the water is implicitly modeled by scaling all electrostatic interactions by the dielectric permittivity of bulk water. Nevertheless, for very small inter-layer spacings (1 nm), molecular simulations and experiments show that water is organized in a layered structure and does not behave like bulk water. Therefore, we investigate the role of the solvent in the cohesion of clay lamellae. For this purpose, we use a modified version of the original Primitive Model in which the solvent is modeled by point-dipoles: This model is called the Explicit Solvent Primitive Model. We consider four different systems: A Na + -montmorillonite, a Ca 2+ -montmorillonite, a Na + -vermiculite, a Ca 2+ -vermiculite. The vermiculite layers are twice as charged as the montmorillonite layers. We use a full molecular model as a

  1. An Atomistic Modeling Study of Alloying Element Impurity Element, and Transmutation Products on the cohesion of A Nickel E5 {001} Twist Grain Boundary

    Young, G.A. Jr.; Najafabadi, R.; Strohmayer, W.; Baldrey, D.G.; Hamm, B.; Harris, J.; Sticht, J.; Wimmer, E.

    2003-01-01

    Atomistic modeling methods were employed to investigate the effects of impurity elements on the metallurgy, irradiation embrittlement, and environmentally assisted cracking of nickel-base alloys exposed to nuclear environments. Calculations were performed via ab initio atomistic modeling methods to ensure the accuracy and reliability of the results. A Griffith-type fracture criterion was used to quantitatively assess the effect of elements or element pairs on the grain boundary cohesive strength. In order of most embrittling to most strengthening, the elements are ranked as: He, Li, S, H, C, Zr, P, Fe, Mn, Nb, Cr, and B. Helium is strongly embrittling (-2.04 eV/atom lowering of the Griffith energy), phosphorus has little effect on the grain boundary (0.1 eV/atom), and boron offers appreciable strengthening (1.03 eV/atom increase in the Griffith energy). Calculations for pairs of elements (H-Li, H-B, H-C, H-P, and H-S) show little interaction on the grain boundary cohesive energy, so that for the conditions studied, linear superposition of elemental effects is a good approximation. These calculations help explain metallurgical effects (e.g. why boron can strengthen grain boundaries), irradiation embrittlement (e.g. how boron transmutation results in grain boundary embrittlement), as well as how grain boundary impurity elements can affect environmentally assisted cracking (i.e. low temperature crack propagation and stress corrosion cracking) of nickel-base alloys

  2. A three-dimensional cohesive sediment transport model with data assimilation: Model development, sensitivity analysis and parameter estimation

    Wang, Daosheng; Cao, Anzhou; Zhang, Jicai; Fan, Daidu; Liu, Yongzhi; Zhang, Yue

    2018-06-01

    Based on the theory of inverse problems, a three-dimensional sigma-coordinate cohesive sediment transport model with the adjoint data assimilation is developed. In this model, the physical processes of cohesive sediment transport, including deposition, erosion and advection-diffusion, are parameterized by corresponding model parameters. These parameters are usually poorly known and have traditionally been assigned empirically. By assimilating observations into the model, the model parameters can be estimated using the adjoint method; meanwhile, the data misfit between model results and observations can be decreased. The model developed in this work contains numerous parameters; therefore, it is necessary to investigate the parameter sensitivity of the model, which is assessed by calculating a relative sensitivity function and the gradient of the cost function with respect to each parameter. The results of parameter sensitivity analysis indicate that the model is sensitive to the initial conditions, inflow open boundary conditions, suspended sediment settling velocity and resuspension rate, while the model is insensitive to horizontal and vertical diffusivity coefficients. A detailed explanation of the pattern of sensitivity analysis is also given. In ideal twin experiments, constant parameters are estimated by assimilating 'pseudo' observations. The results show that the sensitive parameters are estimated more easily than the insensitive parameters. The conclusions of this work can provide guidance for the practical applications of this model to simulate sediment transport in the study area.

  3. Inclusion-initiated fracture model for ceramics

    Sung, J.; Nicholson, P.S.

    1990-01-01

    The fracture of ceramics initiating from a typical inclusion is analyzed. The inclusion is considered to have a thermal expansion coefficient and fracture toughness lower than those of the matrix and a Young's modulus higher than that of the matrix. Inclusion-initiated fracture is modeled for a spherical inclusion using a weight function method to compute the residual stress intensity factor for a part-through elliptical crack. The results are applied to an α-Al 2 O 3 inclusion embedded in a tetragonal ZrO 2 ceramic. The strength predictions agree well with experimental data

  4. A self-adaptive finite element approach for simulation of mixed-mode delamination using cohesive zone models

    Samimi, M.; Dommelen, van J.A.W.; Geers, M.G.D.

    2011-01-01

    Oscillations observed in the load–displacement response of brittle interfaces modeled by cohesive zone elements in a quasi-static finite element framework are artifacts of the discretization. The typical limit points in this oscillatory path can be traced by application of path-following techniques,

  5. Numerical modelling of fracture displacements due to thermal load from a KBS-3 repository

    Hakami, Eva; Olofsson, Stig-Olof [Itasca Geomekanik AB, Stockholm (Sweden)

    2002-01-01

    The objective of the project has been to estimate the largest shear displacements that could be expected on a pre-existing fracture located in the repository area, due to the heat release from the deposited waste. Two-dimensional numerical analyses using the 'Universal Distinct Element Code' (UDEC) have been performed. The UDEC models represent a vertical cross section of a KBS-3 type repository with a large planar fracture intersecting a deposition hole at the repository centre. The extension, dip and mechanical properties of the fracture were changed in different models to evaluate the influence of these parameters on fracture shear displacements. The fracture was modelled using a Coulomb slip criterion with no cohesion and no dilation. The rock mass surrounding the fracture was modelled as a homogeneous, isotropic and elastic material, with a Young's modulus of 40 GPa. The initial heat release per unit repository area was assumed to be 8W/m{sup 2} (total power/total repository area). The shear displacements occur due to the thermal expansion of the rock surrounding the heat generating canisters. The rock mass is almost free to expand vertically, but is constrained horizontally, which gives a temperature-induced addition of shear stresses in the plane of the fracture. The shear movement of the fracture therefore follows the temperature development in the surrounding rock and the maximum shear displacement develops about 200 years after the waste deposition. Altogether, twenty cases are analysed. The maximum shear displacement, which occurs at the fracture centre, amounts to 0.2-13.8 cm depending on the fracture parameters. Among the analysed cases, the largest shear values, about 13 cm, was calculated for the cases with about 700 m long fractures with a shear stiffness of 0.005 GPa/m. Also, for large fractures with a higher shear stiffness of 5 GPa/m, but with a low friction angle (15 deg), the shear displacement reaches similar magnitudes, about

  6. A consistency assessment of coupled cohesive zone models for mixed-mode debonding problems

    R. Dimitri

    2014-07-01

    Full Text Available Due to their simplicity, cohesive zone models (CZMs are very attractive to describe mixed-mode failure and debonding processes of materials and interfaces. Although a large number of coupled CZMs have been proposed, and despite the extensive related literature, little attention has been devoted to ensuring the consistency of these models for mixed-mode conditions, primarily in a thermodynamical sense. A lack of consistency may affect the local or global response of a mechanical system. This contribution deals with the consistency check for some widely used exponential and bilinear mixed-mode CZMs. The coupling effect on stresses and energy dissipation is first investigated and the path-dependance of the mixed-mode debonding work of separation is analitically evaluated. Analytical predictions are also compared with results from numerical implementations, where the interface is described with zero-thickness contact elements. A node-to-segment strategy is here adopted, which incorporates decohesion and contact within a unified framework. A new thermodynamically consistent mixed-mode CZ model based on a reformulation of the Xu-Needleman model as modified by van den Bosch et al. is finally proposed and derived by applying the Coleman and Noll procedure in accordance with the second law of thermodynamics. The model holds monolithically for loading and unloading processes, as well as for decohesion and contact, and its performance is demonstrated through suitable examples.

  7. Cohesive traction-separation relations for plate tearing under mixed mode loading

    Andersen, R. G.; Woelke, P. B.; Nielsen, K. L.

    2018-01-01

    The present study investigates a sequence of failure events related to steady-state tearing of large-scale ductile plates by employing the micro-mechanics based Gurson-Tvergaard-Needleman (GTN) model. The fracture process in front of an advancing crack is approximated by a series of 2D plane strain...... finite element models to facilitate a comprehensive study of mixed mode fracture behavior as well as a parameter study of the cohesive energy and tractions involved in the process. The results from the conducted GTN model simulations are used to define cohesive zone models suitable for plate tearing...

  8. RECENT ADVANCES IN NATURALLY FRACTURED RESERVOIR MODELING

    ORDOÑEZ, A; PEÑUELA, G; IDROBO, E. A; MEDINA, C. E

    2001-01-01

    Large amounts of oil reserves are contained in naturally fractured reservoirs. Most of these hydrocarbon volumes have been left behind because of the poor knowledge and/or description methodology of those reservoirs. This lack of knowledge has lead to the nonexistence of good quantitative models for this complicated type of reservoirs. The complexity of naturally fractured reservoirs causes the need for integration of all existing information at all scales (drilling, well logging, seismic, we...

  9. Modeling and simulation of deformation and fracture behavior of components made of fully lamellar {gamma}TiAl alloy

    Kabir, Mohammad Rizviul [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Materialforschung

    2008-07-01

    The present work deals with the modeling and simulation of deformation and fracture behavior of fully lamellar {gamma}TiAl alloy; focusing on understanding the variability of local material properties and their influences on translamellar fracture. Afracture model has been presented that takes the inhomogeneity of the local deformation behavior of the lamellar colonies as well as the variability in fracture strength and toughness into consideration. To obtain the necessary model parameters, a hybrid methodology of experiments and simulations has been adopted. The experiments were performed at room temperature that demonstrates quasi-brittle response of the TiAl polycrystal. Aremarkable variation in stress-strain curves has been found in the tensile tests. Additional fracture tests showed significant variations in crack initiation and propagation during translamellar fracture. Analyzing the fracture surfaces, the micromechanical causes of these macroscopic scatter have been explained. The investigation shows that the global scatter in deformation and fracture response is highly influenced by the colony orientation and tilting angle with respect to the loading axis. The deformation and fracture behavior have been simulated by a finite element model including the material decohesion process described by a cohesive model. In order to capture the scatter of the macroscopic behavior, a stochastic approach is chosen. The local variability of stressstrain in the polycrystal and the variability of fracture parameters of the colonies are implemented in the stochastic approach of the cohesive model. It has been shown that the proposed approach is able to predict the stochastic nature of crack initiation and propagation as observed from the experiments. The global specimen failure with stable or unstable crack propagation can be explained in terms of the local variation of material properties. (orig.)

  10. Modeling contaminant plumes in fractured limestone aquifers

    Mosthaf, Klaus; Brauns, Bentje; Fjordbøge, Annika Sidelmann

    Determining the fate and transport of contaminant plumes from contaminated sites in limestone aquifers is important because they are a major drinking water resource. This is challenging because they are often heavily fractured and contain chert layers and nodules, resulting in a complex transport...... model. The paper concludes with recommendations on how to identify and employ suitable models to advance the conceptual understanding and as decision support tools for risk assessment and the planning of remedial actions....... behavior. Improved conceptual models are needed for this type of site. Here conceptual models are developed by combining numerical models with field data. Several types of fracture flow and transport models are available for the modeling of contaminant transport in fractured media. These include...... the established approaches of the equivalent porous medium, discrete fracture and dual continuum models. However, these modeling concepts are not well tested for contaminant plume migration in limestone geologies. Our goal was to develop and evaluate approaches for modeling the transport of dissolved contaminant...

  11. Pile-Reinforcement Behavior of Cohesive Soil Slopes: Numerical Modeling and Centrifuge Testing

    Liping Wang

    2013-01-01

    Full Text Available Centrifuge model tests were conducted on pile-reinforced and unreinforced cohesive soil slopes to investigate the fundamental behavior and reinforcement mechanism. A finite element analysis model was established and confirmed to be effective in capturing the primary behavior of pile-reinforced slopes by comparing its predictions with experimental results. Thus, a comprehensive understanding of the stress-deformation response was obtained by combining the numerical and physical simulations. The response of pile-reinforced slope was indicated to be significantly affected by pile spacing, pile location, restriction style of pile end, and inclination of slope. The piles have a significant effect on the behavior of reinforced slope, and the influencing area was described using a continuous surface, denoted as W-surface. The reinforcement mechanism was described using two basic concepts, compression effect and shear effect, respectively, referring to the piles increasing the compression strain and decreasing the shear strain of the slope in comparison with the unreinforced slope. The pile-soil interaction induces significant compression effect in the inner zone near the piles; this effect is transferred to the upper part of the slope, with the shear effect becoming prominent to prevent possible sliding of unreinforced slope.

  12. Reduced Fracture Finite Element Model Analysis of an Efficient Two-Scale Hybrid Embedded Fracture Model

    Amir, Sahar Z.

    2017-06-09

    A Hybrid Embedded Fracture (HEF) model was developed to reduce various computational costs while maintaining physical accuracy (Amir and Sun, 2016). HEF splits the computations into fine scale and coarse scale. Fine scale solves analytically for the matrix-fracture flux exchange parameter. Coarse scale solves for the properties of the entire system. In literature, fractures were assumed to be either vertical or horizontal for simplification (Warren and Root, 1963). Matrix-fracture flux exchange parameter was given few equations built on that assumption (Kazemi, 1968; Lemonnier and Bourbiaux, 2010). However, such simplified cases do not apply directly for actual random fracture shapes, directions, orientations …etc. This paper shows that the HEF fine scale analytic solution (Amir and Sun, 2016) generates the flux exchange parameter found in literature for vertical and horizontal fracture cases. For other fracture cases, the flux exchange parameter changes according to the angle, slop, direction, … etc. This conclusion rises from the analysis of both: the Discrete Fracture Network (DFN) and the HEF schemes. The behavior of both schemes is analyzed with exactly similar fracture conditions and the results are shown and discussed. Then, a generalization is illustrated for any slightly compressible single-phase fluid within fractured porous media and its results are discussed.

  13. Reduced Fracture Finite Element Model Analysis of an Efficient Two-Scale Hybrid Embedded Fracture Model

    Amir, Sahar Z.; Chen, Huangxin; Sun, Shuyu

    2017-01-01

    A Hybrid Embedded Fracture (HEF) model was developed to reduce various computational costs while maintaining physical accuracy (Amir and Sun, 2016). HEF splits the computations into fine scale and coarse scale. Fine scale solves analytically for the matrix-fracture flux exchange parameter. Coarse scale solves for the properties of the entire system. In literature, fractures were assumed to be either vertical or horizontal for simplification (Warren and Root, 1963). Matrix-fracture flux exchange parameter was given few equations built on that assumption (Kazemi, 1968; Lemonnier and Bourbiaux, 2010). However, such simplified cases do not apply directly for actual random fracture shapes, directions, orientations …etc. This paper shows that the HEF fine scale analytic solution (Amir and Sun, 2016) generates the flux exchange parameter found in literature for vertical and horizontal fracture cases. For other fracture cases, the flux exchange parameter changes according to the angle, slop, direction, … etc. This conclusion rises from the analysis of both: the Discrete Fracture Network (DFN) and the HEF schemes. The behavior of both schemes is analyzed with exactly similar fracture conditions and the results are shown and discussed. Then, a generalization is illustrated for any slightly compressible single-phase fluid within fractured porous media and its results are discussed.

  14. Modelling the cohesive sediment transport in the marine environment: the case of Thermaikos Gulf

    Y. N. Krestenitis

    2007-01-01

    Full Text Available The transport of fine-grained sediments in the marine environment entails risks of pollutant intrusions from substances absorbed onto the cohesive flocks' surface, gradually released to the aquatic field. These substances include nutrients such as nitrate, phosphate and silicate compounds from drainage from fertilization of adjacent cultivated areas that enter the coastal areas through rivers and streams, or trace metals as remainders from urban and industrial activities. As a consequence, knowledge on the motion and distribution of sediment particles coming from a given pollutant source is expected to provide the 'bulk' information on pollutant distribution, necessary for determining the region of influence of the source and to estimate probable trophic levels of the seawater and potential environmental risks. In that aim a numerical model has been developed to predict the fate of the sediments introduced to the marine environment from different pollution sources, such as river outflows, erosion of the seabed, aeolian transported material and drainage systems. The proposed three-dimensional mathematical model is based on the particle tracking method, according to which matter concentration is expressed by particles, each representing a particular amount of sedimentary mass, passively advected and dispersed by the currents. The processes affecting characteristics and propagation of sedimentary material in the marine environment, incorporated in the parameterization, apart from advection and dispersion, include cohesive sediment and near-bed processes. The movement of the particles along with variations in sedimentary characteristics and state, carried by each particle as personal information, are traced with time. Specifically, concerning transport processes, the local seawater velocity and the particle's settling control advection, whereas the random Brownian motion due to turbulence simulates turbulent diffusion. The

  15. Modeling the effects of cohesive energy for single particle on the material removal in chemical mechanical polishing at atomic scale

    Wang Yongguang; Zhao Yongwu; An Wei; Wang Jun

    2007-01-01

    This paper proposes a novel mathematical model for chemical mechanical polishing (CMP) based on interface solid physical and chemical theory in addition to energy equilibrium knowledge. And the effects of oxidation concentration and particle size on the material removal in CMP are investigated. It is shown that the mechanical energy and removal cohesive energy couple with the particle size, and being a cause of the non-linear size-removal rate relation. Furthermore, it also shows a nonlinear dependence of removal rate on removal cohesive energy. The model predictions are in good qualitative agreement with the published experimental data. The current study provides an important starting point for delineating the micro-removal mechanism in the CMP process at atomic scale

  16. Compartmentalization analysis using discrete fracture network models

    La Pointe, P.R.; Eiben, T.; Dershowitz, W. [Golder Associates, Redmond, VA (United States); Wadleigh, E. [Marathon Oil Co., Midland, TX (United States)

    1997-08-01

    This paper illustrates how Discrete Fracture Network (DFN) technology can serve as a basis for the calculation of reservoir engineering parameters for the development of fractured reservoirs. It describes the development of quantitative techniques for defining the geometry and volume of structurally controlled compartments. These techniques are based on a combination of stochastic geometry, computational geometry, and graph the theory. The parameters addressed are compartment size, matrix block size and tributary drainage volume. The concept of DFN models is explained and methodologies to compute these parameters are demonstrated.

  17. From Cascade to Bottom-Up Ecosystem Services Model: How Does Social Cohesion Emerge from Urban Agriculture?

    Anna Petit-Boix

    2018-03-01

    Full Text Available Given the expansion of urban agriculture (UA, we need to understand how this system provides ecosystem services, including foundational societal needs such as social cohesion, i.e., people’s willingness to cooperate with one another. Although social cohesion in UA has been documented, there is no framework for its emergence and how it can be modeled within a sustainability framework. In this study, we address this literature gap by showing how the popular cascade ecosystem services model can be modified to include social structures. We then transform the cascade model into a bottom-up causal framework for UA. In this bottom-up framework, basic biophysical (e.g., land availability and social (e.g., leadership ecosystem structures and processes lead to human activities (e.g., learning that can foster specific human attitudes and feelings (e.g., trust. These attitudes and feelings, when aggregated (e.g., social network, generate an ecosystem value of social cohesion. These cause-effect relationships can support the development of causality pathways in social life cycle assessment (S-LCA and further our understanding of the mechanisms behind social impacts and benefits. The framework also supports UA studies by showing the sustainability of UA as an emergent food supplier in cities.

  18. Discrete fracture modelling for the Stripa tracer validation experiment predictions

    Dershowitz, W.; Wallmann, P.

    1992-02-01

    Groundwater flow and transport through three-dimensional networks of discrete fractures was modeled to predict the recovery of tracer from tracer injection experiments conducted during phase 3 of the Stripa site characterization and validation protect. Predictions were made on the basis of an updated version of the site scale discrete fracture conceptual model used for flow predictions and preliminary transport modelling. In this model, individual fractures were treated as stochastic features described by probability distributions of geometric and hydrologic properties. Fractures were divided into three populations: Fractures in fracture zones near the drift, non-fracture zone fractures within 31 m of the drift, and fractures in fracture zones over 31 meters from the drift axis. Fractures outside fracture zones are not modelled beyond 31 meters from the drift axis. Transport predictions were produced using the FracMan discrete fracture modelling package for each of five tracer experiments. Output was produced in the seven formats specified by the Stripa task force on fracture flow modelling. (au)

  19. Towards a Cohesive Theory of Cohesion

    Janet McLeod

    2013-12-01

    Full Text Available Conventional wisdom suggests that group cohesion is strongly related to performance. This may be based on the notion that better cohesion leads to the sharing of group goals. However, empirical and meta-analytic studies have been unable to consistently demonstrate a relationship between cohesion and performance. Partially, this problem could be attributed to the disagreement on the precise definition of cohesion and its components. Further, when the cohesion construct is evaluated under Cohen’s Cumulative Research Program (CRP, it is surprisingly found to belong to the category of early-to-intermediate stage of theory development. Therefore, a thorough re-examination of the cohesion construct is essential to advance our understanding of the cohesion-productivity relationship. We propose a qualitative approach because it will help establish the definitions, enable us to better test our theories about cohesion and its moderators, and provide insights into how best to enlist cohesion to improve team performance.

  20. Evaluation of scale effects on hydraulic characteristics of fractured rock using fracture network model

    Ijiri, Yuji; Sawada, Atsushi; Uchida, Masahiro; Ishiguro, Katsuhiko; Umeki, Hiroyuki; Sakamoto, Kazuhiko; Ohnishi, Yuzo

    2001-01-01

    It is important to take into account scale effects on fracture geometry if the modeling scale is much larger than the in-situ observation scale. The scale effect on fracture trace length, which is the most scale dependent parameter, is investigated using fracture maps obtained at various scales in tunnel and dam sites. We found that the distribution of fracture trace length follows negative power law distribution in regardless of locations and rock types. The hydraulic characteristics of fractured rock is also investigated by numerical analysis of discrete fracture network (DFN) model where power law distribution of fracture radius is adopted. We found that as the exponent of power law distribution become larger, the hydraulic conductivity of DFN model increases and the travel time in DFN model decreases. (author)

  1. a Fractal Network Model for Fractured Porous Media

    Xu, Peng; Li, Cuihong; Qiu, Shuxia; Sasmito, Agus Pulung

    2016-04-01

    The transport properties and mechanisms of fractured porous media are very important for oil and gas reservoir engineering, hydraulics, environmental science, chemical engineering, etc. In this paper, a fractal dual-porosity model is developed to estimate the equivalent hydraulic properties of fractured porous media, where a fractal tree-like network model is used to characterize the fracture system according to its fractal scaling laws and topological structures. The analytical expressions for the effective permeability of fracture system and fractured porous media, tortuosity, fracture density and fraction are derived. The proposed fractal model has been validated by comparisons with available experimental data and numerical simulation. It has been shown that fractal dimensions for fracture length and aperture have significant effect on the equivalent hydraulic properties of fractured porous media. The effective permeability of fracture system can be increased with the increase of fractal dimensions for fracture length and aperture, while it can be remarkably lowered by introducing tortuosity at large branching angle. Also, a scaling law between the fracture density and fractal dimension for fracture length has been found, where the scaling exponent depends on the fracture number. The present fractal dual-porosity model may shed light on the transport physics of fractured porous media and provide theoretical basis for oil and gas exploitation, underground water, nuclear waste disposal and geothermal energy extraction as well as chemical engineering, etc.

  2. Model behavior and sensitivity in an application of the cohesive bed component of the community sediment transport modeling system for the York River estuary, VA, USA

    Fall, Kelsey A.; Harris, Courtney K.; Friedrichs, Carl T.; Rinehimer, J. Paul; Sherwood, Christopher R.

    2014-01-01

    The Community Sediment Transport Modeling System (CSTMS) cohesive bed sub-model that accounts for erosion, deposition, consolidation, and swelling was implemented in a three-dimensional domain to represent the York River estuary, Virginia. The objectives of this paper are to (1) describe the application of the three-dimensional hydrodynamic York Cohesive Bed Model, (2) compare calculations to observations, and (3) investigate sensitivities of the cohesive bed sub-model to user-defined parameters. Model results for summer 2007 showed good agreement with tidal-phase averaged estimates of sediment concentration, bed stress, and current velocity derived from Acoustic Doppler Velocimeter (ADV) field measurements. An important step in implementing the cohesive bed model was specification of both the initial and equilibrium critical shear stress profiles, in addition to choosing other parameters like the consolidation and swelling timescales. This model promises to be a useful tool for investigating the fundamental controls on bed erodibility and settling velocity in the York River, a classical muddy estuary, provided that appropriate data exists to inform the choice of model parameters.

  3. Fracture modelling of a high performance armour steel

    Skoglund, P.; Nilsson, M.; Tjernberg, A.

    2006-08-01

    The fracture characteristics of the high performance armour steel Armox 500T is investigated. Tensile mechanical experiments using samples with different notch geometries are used to investigate the effect of multi-axial stress states on the strain to fracture. The experiments are numerically simulated and from the simulation the stress at the point of fracture initiation is determined as a function of strain and these data are then used to extract parameters for fracture models. A fracture model based on quasi-static experiments is suggested and the model is tested against independent experiments done at both static and dynamic loading. The result show that the fracture model give reasonable good agreement between simulations and experiments at both static and dynamic loading condition. This indicates that multi-axial loading is more important to the strain to fracture than the deformation rate in the investigated loading range. However on-going work will further characterise the fracture behaviour of Armox 500T.

  4. Ongoing Model Development Analyzing Glass Fracture

    Molnar, G.; Bojtar, I.; Nielsen, Jens Henrik

    2013-01-01

    Present subject deals with an ongoing experimental and numerical analysis of inplane loaded glass plates. The main goal of the investigation is to develop a hybrid – discrete and finite element – model which could follow the fracture process in annealed and in tempered glass. Measurements of the ...... an overview of the structure of the research and a summary of current status archived so far.......Present subject deals with an ongoing experimental and numerical analysis of inplane loaded glass plates. The main goal of the investigation is to develop a hybrid – discrete and finite element – model which could follow the fracture process in annealed and in tempered glass. Measurements...... of the residual stress state before failure and high-speed camera recordings of the failure are being performed in order to verify the numerical model. The primary goal of this research is to follow the overall fracture of a structural element – e.g. beam – loaded inplane. Present paper would like to give...

  5. Fracture resistance enhancement of layered structures by multiple cracks

    Goutianos, Stergios; Sørensen, Bent F.

    2016-01-01

    A theoretical model is developed to test if the fracture resistance of a layered structure can be increased by introducing weak layers changing the cracking mechanism. An analytical model, based on the J integral, predicts a linear dependency between the number of cracks and the steady state...... fracture resistance. A finite element cohesive zone model, containing two cracking planes for simplicity, is used to check the theoretical model and its predictions. It is shown that for a wide range of cohesive law parameters, the numerical predictions agree well quantitatively with the theoretical model....... Thus, it is possible to enhance considerably the fracture resistance of a structure by adding weak layers....

  6. Colloid transport in model fracture filling materials

    Wold, S.; Garcia-Garcia, S.; Jonsson, M.

    2010-12-01

    Colloid transport in model fracture filling materials Susanna Wold*, Sandra García-García and Mats Jonsson KTH Chemical Science and Engineering Royal Institute of Technology, SE-100 44 Stockholm, Sweden *Corresponding author: E-mail: wold@kth.se Phone: +46 8 790 6295 In colloid transport in water-bearing fractures, the retardation depends on interactions with the fracture surface by sorption or filtration. These mechanisms are difficult to separate. A rougher surface will give a larger area available for sorption, and also when a particle is physically hindered, it approaches the surface and enables further sorption. Sorption can be explained by electrostatics were the strongest sorption on minerals always is observed at pH below pHpzc (Filby et al., 2008). The adhesion of colloids to mineral surfaces is related to the surface roughness according to a recent study (Darbha et al., 2010). There is a large variation in the characteristics of water-bearing fractures in bedrock in terms of aperture distribution, flow velocity, surface roughness, mineral distributions, presence of fracture filling material, and biological and organic material, which is hard to implement in modeling. The aim of this work was to study the transport of negatively charged colloids in model fracture filling material in relation to flow, porosity, mineral type, colloid size, and surface charge distribution. In addition, the impact on transport of colloids of mixing model fracture filling materials with different retention and immobilization capacities, determined by batch sorption experiments, was investigated. The transport of Na-montmorillonite colloids and well-defined negatively charged latex microspheres of 50, 100, and 200 nm diameter were studied in either columns containing quartz or quartz mixed with biotite. The ionic strength in the solution was exclusively 0.001 and pH 6 or 8.5. The flow rates used were 0.002, 0.03, and 0.6 mL min-1. Sorption of the colloids on the model fracture

  7. AN ACTIVE FRACTURE MODEL FOR UNSATURATED FLOW AND TRANSPORT

    HUI-HAI LIU, GUDMUNDUR S. BODVARSSON AND CHRISTINE DOUGHTY

    1999-01-01

    Fracture/matrix (F/M) interaction is a key factor affecting flow and transport in unsaturated fractured rocks. In classic continuum approaches (Warren and Root, 1963), it is assumed that flow occurs through all the connected fractures and is uniformly distributed over the entire fracture area, which generally gives a relatively large F/M interaction. However, fractures seem to have limited interaction with the surrounding matrix at Yucca Mountain, Nevada, as suggested by geochemical nonequilibrium between the perched water (resulting mainly from fracture flow) and pore water in the rock matrix. Because of the importance of the F/M interaction and related issues, there is a critical need to develop new approaches to accurately consider the interaction reduction inferred from field data at the Yucca Mountain site. Motivated by this consideration, they have developed an active fracture model based on the hypothesis that not all connected fractures actively conduct water in unsaturated fractured rocks

  8. XFEM modeling of hydraulic fracture in porous rocks with natural fractures

    Wang, Tao; Liu, ZhanLi; Zeng, QingLei; Gao, Yue; Zhuang, Zhuo

    2017-08-01

    Hydraulic fracture (HF) in porous rocks is a complex multi-physics coupling process which involves fluid flow, diffusion and solid deformation. In this paper, the extended finite element method (XFEM) coupling with Biot theory is developed to study the HF in permeable rocks with natural fractures (NFs). In the recent XFEM based computational HF models, the fluid flow in fractures and interstitials of the porous media are mostly solved separately, which brings difficulties in dealing with complex fracture morphology. In our new model the fluid flow is solved in a unified framework by considering the fractures as a kind of special porous media and introducing Poiseuille-type flow inside them instead of Darcy-type flow. The most advantage is that it is very convenient to deal with fluid flow inside the complex fracture network, which is important in shale gas extraction. The weak formulation for the new coupled model is derived based on virtual work principle, which includes the XFEM formulation for multiple fractures and fractures intersection in porous media and finite element formulation for the unified fluid flow. Then the plane strain Kristianovic-Geertsma-de Klerk (KGD) model and the fluid flow inside the fracture network are simulated to validate the accuracy and applicability of this method. The numerical results show that large injection rate, low rock permeability and isotropic in-situ stresses tend to lead to a more uniform and productive fracture network.

  9. Numerical modelling of intergranular fracture in polycrystalline materials and grain size effects

    P. Wriggers

    2011-07-01

    Full Text Available In this paper, the phenomenon of intergranular fracture in polycrystalline materials is investigated using a nonlinear fracture mechanics approach. The nonlocal cohesive zone model (CZM for finite thickness interfaces recently proposed by the present authors is used to describe the phenomenon of grain boundary separation. From the modelling point of view, considering the dependency of the grain boundary thickness on the grain size observed in polycrystals, a distribution of interface thicknesses is obtained. Since the shape and the parameters of the nonlocal CZM depend on the interface thickness, a distribution of interface fracture energies is obtained as a consequence of the randomness of the material microstructure. Using these data, fracture mechanics simulations are performed and the homogenized stress-strain curves of 2D representative volume elements (RVEs are computed. Failure is the result of a diffuse microcrack pattern leading to a main macroscopic crack after coalescence, in good agreement with the experimental observation. Finally, testing microstructures characterized by different average grain sizes, the computed peak stresses are found to be dependent on the grain size, in agreement with the trend expected according to the Hall-Petch law.

  10. Estimation of Enthalpy of Formation of Liquid Transition Metal Alloys: A Modified Prescription Based on Macroscopic Atom Model of Cohesion

    Raju, Subramanian; Saibaba, Saroja

    2016-09-01

    The enthalpy of formation Δo H f is an important thermodynamic quantity, which sheds significant light on fundamental cohesive and structural characteristics of an alloy. However, being a difficult one to determine accurately through experiments, simple estimation procedures are often desirable. In the present study, a modified prescription for estimating Δo H f L of liquid transition metal alloys is outlined, based on the Macroscopic Atom Model of cohesion. This prescription relies on self-consistent estimation of liquid-specific model parameters, namely electronegativity ( ϕ L) and bonding electron density ( n b L ). Such unique identification is made through the use of well-established relationships connecting surface tension, compressibility, and molar volume of a metallic liquid with bonding charge density. The electronegativity is obtained through a consistent linear scaling procedure. The preliminary set of values for ϕ L and n b L , together with other auxiliary model parameters, is subsequently optimized to obtain a good numerical agreement between calculated and experimental values of Δo H f L for sixty liquid transition metal alloys. It is found that, with few exceptions, the use of liquid-specific model parameters in Macroscopic Atom Model yields a physically consistent methodology for reliable estimation of mixing enthalpies of liquid alloys.

  11. An Embedded 3D Fracture Modeling Approach for Simulating Fracture-Dominated Fluid Flow and Heat Transfer in Geothermal Reservoirs

    Johnston, Henry [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wang, Cong [Colorado School of Mines; Winterfeld, Philip [Colorado School of Mines; Wu, Yu-Shu [Colorado School of Mines

    2018-02-14

    An efficient modeling approach is described for incorporating arbitrary 3D, discrete fractures, such as hydraulic fractures or faults, into modeling fracture-dominated fluid flow and heat transfer in fractured geothermal reservoirs. This technique allows 3D discrete fractures to be discretized independently from surrounding rock volume and inserted explicitly into a primary fracture/matrix grid, generated without including 3D discrete fractures in prior. An effective computational algorithm is developed to discretize these 3D discrete fractures and construct local connections between 3D fractures and fracture/matrix grid blocks of representing the surrounding rock volume. The constructed gridding information on 3D fractures is then added to the primary grid. This embedded fracture modeling approach can be directly implemented into a developed geothermal reservoir simulator via the integral finite difference (IFD) method or with TOUGH2 technology This embedded fracture modeling approach is very promising and computationally efficient to handle realistic 3D discrete fractures with complicated geometries, connections, and spatial distributions. Compared with other fracture modeling approaches, it avoids cumbersome 3D unstructured, local refining procedures, and increases computational efficiency by simplifying Jacobian matrix size and sparsity, while keeps sufficient accuracy. Several numeral simulations are present to demonstrate the utility and robustness of the proposed technique. Our numerical experiments show that this approach captures all the key patterns about fluid flow and heat transfer dominated by fractures in these cases. Thus, this approach is readily available to simulation of fractured geothermal reservoirs with both artificial and natural fractures.

  12. Predictions of mixed mode interface crack growth using a cohesive zone model for ductile fracture

    Tvergaard, Viggo

    2004-01-01

    Special interface elements that account for ductile failure by the nucleation and growth of voids to coalescence are used to analyse crack growth. In these elements the stress component tangential to the interface is accounted for, as determined by the requirement of compatibility with the surrou......Special interface elements that account for ductile failure by the nucleation and growth of voids to coalescence are used to analyse crack growth. In these elements the stress component tangential to the interface is accounted for, as determined by the requirement of compatibility...

  13. A coupled interface-body nonlocal damage model for the analysis of FRP strengthening detachment from cohesive material

    J. Toti

    2011-10-01

    Full Text Available In the present work, a new model of the FRP-concrete or masonry interface, which accounts for the coupling occurring between the degradation of the cohesive material and the FRP detachment, is presented; in particular, a coupled interface-body nonlocal damage model is proposed. A nonlocal damage and plasticity model is developed for the quasi-brittle material. For the interface, a model which accounts for the mode I, mode II and mixed mode of damage and for the unilateral contact and friction effects is developed. Two different ways of performing the coupling between the body damage and the interface damage are proposed and compared. Some numerical applications are carried out in order to assess the performances of the proposed model in reproducing the mechanical behavior of the masonry elements strengthened with external FRP reinforcements.

  14. Synthesis of industrial applications of local approach to fracture models

    Eripret, C.

    1993-03-01

    This report gathers different applications of local approach to fracture models to various industrial configurations, such as nuclear pressure vessel steel, cast duplex stainless steels, or primary circuit welds such as bimetallic welds. As soon as models are developed on the basis of microstructural observations, damage mechanisms analyses, and fracture process, the local approach to fracture proves to solve problems where classical fracture mechanics concepts fail. Therefore, local approach appears to be a powerful tool, which completes the standard fracture criteria used in nuclear industry by exhibiting where and why those classical concepts become unvalid. (author). 1 tab., 18 figs., 25 refs

  15. Sensitivity and spin-up times of cohesive sediment transport models used to simulate bathymetric change: Chapter 31

    Schoellhamer, D.H.; Ganju, N.K.; Mineart, P.R.; Lionberger, M.A.; Kusuda, T.; Yamanishi, H.; Spearman, J.; Gailani, J. Z.

    2008-01-01

    Bathymetric change in tidal environments is modulated by watershed sediment yield, hydrodynamic processes, benthic composition, and anthropogenic activities. These multiple forcings combine to complicate simple prediction of bathymetric change; therefore, numerical models are necessary to simulate sediment transport. Errors arise from these simulations, due to inaccurate initial conditions and model parameters. We investigated the response of bathymetric change to initial conditions and model parameters with a simplified zero-dimensional cohesive sediment transport model, a two-dimensional hydrodynamic/sediment transport model, and a tidally averaged box model. The zero-dimensional model consists of a well-mixed control volume subjected to a semidiurnal tide, with a cohesive sediment bed. Typical cohesive sediment parameters were utilized for both the bed and suspended sediment. The model was run until equilibrium in terms of bathymetric change was reached, where equilibrium is defined as less than the rate of sea level rise in San Francisco Bay (2.17 mm/year). Using this state as the initial condition, model parameters were perturbed 10% to favor deposition, and the model was resumed. Perturbed parameters included, but were not limited to, maximum tidal current, erosion rate constant, and critical shear stress for erosion. Bathymetric change was most sensitive to maximum tidal current, with a 10% perturbation resulting in an additional 1.4 m of deposition over 10 years. Re-establishing equilibrium in this model required 14 years. The next most sensitive parameter was the critical shear stress for erosion; when increased 10%, an additional 0.56 m of sediment was deposited and 13 years were required to re-establish equilibrium. The two-dimensional hydrodynamic/sediment transport model was calibrated to suspended-sediment concentration, and despite robust solution of hydrodynamic conditions it was unable to accurately hindcast bathymetric change. The tidally averaged

  16. Modelling of Local Necking and Fracture in Aluminium Alloys

    Achani, D.; Eriksson, M.; Hopperstad, O. S.; Lademo, O.-G.

    2007-01-01

    Non-linear Finite Element simulations are extensively used in forming and crashworthiness studies of automotive components and structures in which fracture need to be controlled. For thin-walled ductile materials, the fracture-related phenomena that must be properly represented are thinning instability, ductile fracture and through-thickness shear instability. Proper representation of the fracture process relies on the accuracy of constitutive and fracture models and their parameters that need to be calibrated through well defined experiments. The present study focuses on local necking and fracture which is of high industrial importance, and uses a phenomenological criterion for modelling fracture in aluminium alloys. As an accurate description of plastic anisotropy is important, advanced phenomenological constitutive equations based on the yield criterion YLD2000/YLD2003 are used. Uniaxial tensile tests and disc compression tests are performed for identification of the constitutive model parameters. Ductile fracture is described by the Cockcroft-Latham fracture criterion and an in-plane shear tests is performed to identify the fracture parameter. The reason is that in a well designed in-plane shear test no thinning instability should occur and it thus gives more direct information about the phenomenon of ductile fracture. Numerical simulations have been performed using a user-defined material model implemented in the general-purpose non-linear FE code LS-DYNA. The applicability of the model is demonstrated by correlating the predicted and experimental response in the in-plane shear tests and additional plane strain tension tests

  17. Getting a Cohesive Answer from a Common Start: Scalable Multidisciplinary Analysis through Transformation of a Systems Model

    Cole, Bjorn; Chung, Seung

    2012-01-01

    One of the challenges of systems engineering is in working multidisciplinary problems in a cohesive manner. When planning analysis of these problems, system engineers must trade between time and cost for analysis quality and quantity. The quality often correlates with greater run time in multidisciplinary models and the quantity is associated with the number of alternatives that can be analyzed. The trade-off is due to the resource intensive process of creating a cohesive multidisciplinary systems model and analysis. Furthermore, reuse or extension of the models used in one stage of a product life cycle for another is a major challenge. Recent developments have enabled a much less resource-intensive and more rigorous approach than hand-written translation scripts between multi-disciplinary models and their analyses. The key is to work from a core systems model defined in a MOF-based language such as SysML and in leveraging the emerging tool ecosystem, such as Query/View/Transformation (QVT), from the OMG community. SysML was designed to model multidisciplinary systems. The QVT standard was designed to transform SysML models into other models, including those leveraged by engineering analyses. The Europa Habitability Mission (EHM) team has begun to exploit these capabilities. In one case, a Matlab/Simulink model is generated on the fly from a system description for power analysis written in SysML. In a more general case, symbolic analysis (supported by Wolfram Mathematica) is coordinated by data objects transformed from the systems model, enabling extremely flexible and powerful design exploration and analytical investigations of expected system performance.

  18. Getting a Cohesive Answer from a Common Start: Scalable Multidisciplinary Analysis through Transformation of a System Model

    Cole, Bjorn; Chung, Seung H.

    2012-01-01

    One of the challenges of systems engineering is in working multidisciplinary problems in a cohesive manner. When planning analysis of these problems, system engineers must tradeoff time and cost for analysis quality and quantity. The quality is associated with the fidelity of the multidisciplinary models and the quantity is associated with the design space that can be analyzed. The tradeoff is due to the resource intensive process of creating a cohesive multidisciplinary system model and analysis. Furthermore, reuse or extension of the models used in one stage of a product life cycle for another is a major challenge. Recent developments have enabled a much less resource-intensive and more rigorous approach than handwritten translation scripts or codes of multidisciplinary models and their analyses. The key is to work from a core system model defined in a MOF-based language such as SysML and in leveraging the emerging tool ecosystem, such as Query-View- Transform (QVT), from the OMG community. SysML was designed to model multidisciplinary systems and analyses. The QVT standard was designed to transform SysML models. The Europa Hability Mission (EHM) team has begun to exploit these capabilities. In one case, a Matlab/Simulink model is generated on the fly from a system description for power analysis written in SysML. In a more general case, a symbolic mathematical framework (supported by Wolfram Mathematica) is coordinated by data objects transformed from the system model, enabling extremely flexible and powerful tradespace exploration and analytical investigations of expected system performance.

  19. Simulation of counter-current imbibition in water-wet fractured reservoirs based on discrete-fracture model

    Wang Yueying

    2017-08-01

    Full Text Available Isolated fractures usually exist in fractured media systems, where the capillary pressure in the fracture is lower than that of the matrix, causing the discrepancy in oil recoveries between fractured and non-fractured porous media. Experiments, analytical solutions and conventional simulation methods based on the continuum model approach are incompetent or insufficient in describing media containing isolated fractures. In this paper, the simulation of the counter-current imbibition in fractured media is based on the discrete-fracture model (DFM. The interlocking or arrangement of matrix and fracture system within the model resembles the traditional discrete fracture network model and the hybrid-mixed-finite-element method is employed to solve the associated equations. The Behbahani experimental data validates our simulation solution for consistency. The simulation results of the fractured media show that the isolated-fractures affect the imbibition in the matrix block. Moreover, the isolated fracture parameters such as fracture length and fracture location influence the trend of the recovery curves. Thus, the counter-current imbibition behavior of media with isolated fractures can be predicted using this method based on the discrete-fracture model.

  20. Cohesive and mixed sediment in the Regional Ocean Modeling System (ROMS v3.6 implemented in the Coupled Ocean–Atmosphere–Wave–Sediment Transport Modeling System (COAWST r1234

    C. R. Sherwood

    2018-05-01

    Full Text Available We describe and demonstrate algorithms for treating cohesive and mixed sediment that have been added to the Regional Ocean Modeling System (ROMS version 3.6, as implemented in the Coupled Ocean–Atmosphere–Wave–Sediment Transport Modeling System (COAWST Subversion repository revision 1234. These include the following: floc dynamics (aggregation and disaggregation in the water column; changes in floc characteristics in the seabed; erosion and deposition of cohesive and mixed (combination of cohesive and non-cohesive sediment; and biodiffusive mixing of bed sediment. These routines supplement existing non-cohesive sediment modules, thereby increasing our ability to model fine-grained and mixed-sediment environments. Additionally, we describe changes to the sediment bed layering scheme that improve the fidelity of the modeled stratigraphic record. Finally, we provide examples of these modules implemented in idealized test cases and a realistic application.

  1. Linking advanced fracture models to structural analysis

    Chiesa, Matteo

    2001-07-01

    Shell structures with defects occur in many situations. The defects are usually introduced during the welding process necessary for joining different parts of the structure. Higher utilization of structural materials leads to a need for accurate numerical tools for reliable prediction of structural response. The direct discretization of the cracked shell structure with solid finite elements in order to perform an integrity assessment of the structure in question leads to large size problems, and makes such analysis infeasible in structural application. In this study a link between local material models and structural analysis is outlined. An ''ad hoc'' element formulation is used in order to connect complex material models to the finite element framework used for structural analysis. An improved elasto-plastic line spring finite element formulation, used in order to take cracks into account, is linked to shell elements which are further linked to beam elements. In this way one obtain a global model of the shell structure that also accounts for local flexibilities and fractures due to defects. An important advantage with such an approach is a direct fracture mechanics assessment e.g. via computed J-integral or CTOD. A recent development in this approach is the notion of two-parameter fracture assessment. This means that the crack tip stress tri-axiality (constraint) is employed in determining the corresponding fracture toughness, giving a much more realistic capacity of cracked structures. The present thesis is organized in six research articles and an introductory chapter that reviews important background literature related to this work. Paper I and II address the performance of shell and line spring finite elements as a cost effective tool for performing the numerical calculation needed to perform a fracture assessment. In Paper II a failure assessment, based on the testing of a constraint-corrected fracture mechanics specimen under tension, is

  2. Modelling deformation and fracture in confectionery wafers

    Mohammed, Idris K.; Charalambides, Maria N.; Williams, J. Gordon; Rasburn, John [Mechanical Engineering Department, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom and Nestec York Ltd., Nestlé Product Technology Centre, Haxby Road, PO Box 204, York YO91 1XY (United Kingdom)

    2015-01-22

    The aim of this research is to model the deformation and fracture behaviour of brittle wafers often used in chocolate confectionary products. Three point bending and compression experiments were performed on beam and circular disc samples respectively to determine the 'apparent' stress-strain curves in bending and compression. The deformation of the wafer for both these testing types was observed in-situ within an SEM. The wafer is modeled analytically and numerically as a composite material with a core which is more porous than the skins. X-ray tomography was used to generate a three dimensional volume of the wafer microstructure which was then meshed and used for quantitative analysis. A linear elastic material model, with a damage function and element deletion, was used and the XMT generated architecture was loaded in compression. The output from the FE simulations correlates closely to the load-deflection deformation observed experimentally.

  3. Developing Indicators of Territorial Cohesion

    Gallina, Andrea; Farrugia, Nadia

    setting. The concept of territorial cohesion attaches importance to the diversity of the European territory which is seen as a key competitive advantage, the preservation of the European social model, and the ability of the citizens of Europe's nations and regions to be able to continue to live within...... (EU). The objective of territorial cohesion, which builds on the European Spatial Development Perspective (ESDP), is to help achieve a more balanced development by reducing existing disparities, avoiding territorial imbalances and by making sectoral policies, which have a spatial impact and regional...... policy more coherent. It also aims to improve territorial integration and encourage cooperation between regions. Territorial cohesion complements the notions of economic and social cohesion by translating the fundamental EU goal of a balanced competitiveness and sustainable development into a territorial...

  4. The effect of em>Hydrobia ulvaeem> and microphytobenthos on cohesive sediment dynamics on an intertidal mudflat described by means of numerical modelling

    Lumborg, Ulrik; Andersen, Thorbjørn Joest; Pejrup, Morten

    2006-01-01

    been used as input to the 2D hydrodynamic numerical model MIKE 21 MT. The model was used to investigate the effect that differences in the benthic communities may have on the net deposition. The model included computation of hydrodynamics, wave fields and cohesive sediment dynamics. Based...

  5. Specimen-specific modeling of hip fracture pattern and repair.

    Ali, Azhar A; Cristofolini, Luca; Schileo, Enrico; Hu, Haixiang; Taddei, Fulvia; Kim, Raymond H; Rullkoetter, Paul J; Laz, Peter J

    2014-01-22

    Hip fracture remains a major health problem for the elderly. Clinical studies have assessed fracture risk based on bone quality in the aging population and cadaveric testing has quantified bone strength and fracture loads. Prior modeling has primarily focused on quantifying the strain distribution in bone as an indicator of fracture risk. Recent advances in the extended finite element method (XFEM) enable prediction of the initiation and propagation of cracks without requiring a priori knowledge of the crack path. Accordingly, the objectives of this study were to predict femoral fracture in specimen-specific models using the XFEM approach, to perform one-to-one comparisons of predicted and in vitro fracture patterns, and to develop a framework to assess the mechanics and load transfer in the fractured femur when it is repaired with an osteosynthesis implant. Five specimen-specific femur models were developed from in vitro experiments under a simulated stance loading condition. Predicted fracture patterns closely matched the in vitro patterns; however, predictions of fracture load differed by approximately 50% due to sensitivity to local material properties. Specimen-specific intertrochanteric fractures were induced by subjecting the femur models to a sideways fall and repaired with a contemporary implant. Under a post-surgical stance loading, model-predicted load sharing between the implant and bone across the fracture surface varied from 59%:41% to 89%:11%, underscoring the importance of considering anatomic and fracture variability in the evaluation of implants. XFEM modeling shows potential as a macro-level analysis enabling fracture investigations of clinical cohorts, including at-risk groups, and the design of robust implants. © 2013 Published by Elsevier Ltd.

  6. A new computer code for discrete fracture network modelling

    Xu, Chaoshui; Dowd, Peter

    2010-03-01

    The authors describe a comprehensive software package for two- and three-dimensional stochastic rock fracture simulation using marked point processes. Fracture locations can be modelled by a Poisson, a non-homogeneous, a cluster or a Cox point process; fracture geometries and properties are modelled by their respective probability distributions. Virtual sampling tools such as plane, window and scanline sampling are included in the software together with a comprehensive set of statistical tools including histogram analysis, probability plots, rose diagrams and hemispherical projections. The paper describes in detail the theoretical basis of the implementation and provides a case study in rock fracture modelling to demonstrate the application of the software.

  7. Hydromechanical modeling of clay rock including fracture damage

    Asahina, D.; Houseworth, J. E.; Birkholzer, J. T.

    2012-12-01

    Argillaceous rock typically acts as a flow barrier, but under certain conditions significant and potentially conductive fractures may be present. Fracture formation is well-known to occur in the vicinity of underground excavations in a region known as the excavation disturbed zone. Such problems are of particular importance for low-permeability, mechanically weak rock such as clays and shales because fractures can be relatively transient as a result of fracture self-sealing processes. Perhaps not as well appreciated is the fact that natural fractures can form in argillaceous rock as a result of hydraulic overpressure caused by phenomena such as disequlibrium compaction, changes in tectonic stress, and mineral dehydration. Overpressure conditions can cause hydraulic fracturing if the fluid pressure leads to tensile effective stresses that exceed the tensile strength of the material. Quantitative modeling of this type of process requires coupling between hydrogeologic processes and geomechanical processes including fracture initiation and propagation. Here we present a computational method for three-dimensional, hydromechanical coupled processes including fracture damage. Fractures are represented as discrete features in a fracture network that interact with a porous rock matrix. Fracture configurations are mapped onto an unstructured, three-dimensonal, Voronoi grid, which is based on a random set of spatial points. Discrete fracture networks (DFN) are represented by the connections of the edges of a Voronoi cells. This methodology has the advantage that fractures can be more easily introduced in response to coupled hydro-mechanical processes and generally eliminates several potential issues associated with the geometry of DFN and numerical gridding. A geomechanical and fracture-damage model is developed here using the Rigid-Body-Spring-Network (RBSN) numerical method. The hydrogelogic and geomechanical models share the same geometrical information from a 3D Voronoi

  8. Modeling of flow through fractured tuff at Fran Ridge

    Eaton, R.R.; Ho, C.K.; Glass, R.J.; Nicholl, M.J.; Arnold, B.W.

    1996-01-01

    Numerical studies have modeled an infiltration experiment at Fran Ridge, using the TOUGH2 code, to aid in the selection of computational models for waste repository performance assessment. This study investigates the capabilities of TOUGH2 to simulate transient flows through highly fractured tuff, and provides a possible means of calibrating hydrologic parameters such as effective fracture aperture and fracture-matrix connectivity. Two distinctly different conceptual models were used in the TOUGH2 code, the dual permeability model and the equivalent continuum model. The field experiments involved the infiltration of dyed ponded water in highly fractured tuff. The infiltration observed in the experiment was subsequently modeled using Fran Ridge fracture frequencies, obtained during post-experiment site excavation. Comparison of the TOUGH2 results obtained using the two conceptual models gives insight into their relative strengths and weaknesses

  9. Streaming potential modeling in fractured rock: Insights into the identification of hydraulically active fractures

    Roubinet, D.; Linde, N.; Jougnot, D.; Irving, J.

    2016-05-01

    Numerous field experiments suggest that the self-potential (SP) geophysical method may allow for the detection of hydraulically active fractures and provide information about fracture properties. However, a lack of suitable numerical tools for modeling streaming potentials in fractured media prevents quantitative interpretation and limits our understanding of how the SP method can be used in this regard. To address this issue, we present a highly efficient two-dimensional discrete-dual-porosity approach for solving the fluid flow and associated self-potential problems in fractured rock. Our approach is specifically designed for complex fracture networks that cannot be investigated using standard numerical methods. We then simulate SP signals associated with pumping conditions for a number of examples to show that (i) accounting for matrix fluid flow is essential for accurate SP modeling and (ii) the sensitivity of SP to hydraulically active fractures is intimately linked with fracture-matrix fluid interactions. This implies that fractures associated with strong SP amplitudes are likely to be hydraulically conductive, attracting fluid flow from the surrounding matrix.

  10. Discrete fracture modelling of the Finnsjoen rock mass: Phase 2

    Geier, J.E.; Axelsson, C.L.; Haessler, L.; Benabderrahmane, A.

    1992-04-01

    A discrete fracture network (DFN) model of the Finnsjoen site was derived from field data, and used to predict block-scale flow and transport properties. The DFN model was based on a compound Poisson process, with stochastic fracture zones, and individual fracture concentrated around the fracture zones. This formulation was used to represent the multitude of fracture zones at the site which could be observed on lineament maps and in boreholes, but were not the focus of detailed characterization efforts. Due to a shortage of data for fracture geometry at depth, distributions of fracture orientation and size were assumed to be uniform throughout the site. Transmissivity within individual fracture planes was assumed to vary according to a fractal model. Constant-head packer tests were simulated with the model, and the observed transient responses were compared with actual tests in terms of distributions of interpreted transmissivity and flow dimension, to partially validate the model. Both simulated and actual tests showed a range of flow dimension from sublinear to spherical, indicating local variations in the connectivity of the fracture population. A methodology was developed for estimation of an effective stochastic continuum from the DFN model, but this was only partly demonstrated. Directional conductivities for 40 m block were estimated using the DFN model. These show extremely poor correlation with results of multiple packer tests in the same blocks, indicating possible limitation of small-scale packer tests for predicting block-scale properties. Estimates are given of effective flow porosity and flow wetted surface, based on the block-scale flow fields calculated by the DFN model, and probabilistic models for the relationships among local fracture transmissivity, void space, and specific surface. The database for constructing these models is extremely limited. A review is given of the existing database for single fracture hydrologic properties. (127 refs

  11. Modeling Dynamic Fracture of Cryogenic Pellets

    Parks, Paul [General Atomics, San Diego, CA (United States)

    2016-06-30

    This work is part of an investigation with the long-range objective of predicting the size distribution function and velocity dispersion of shattered pellet fragments after a large cryogenic pellet impacts a solid surface at high velocity. The study is vitally important for the shattered pellet injection (SPI) technique, one of the leading technologies being implemented at ORNL for the mitigation of disruption damage on current tokamaks and ITER. The report contains three parts that are somewhat interwoven. In Part I we formulated a self-similar model for the expansion dynamics and velocity dispersion of the debris cloud following pellet impact against a thick (rigid) target plate. Also presented in Part I is an analytical fracture model that predicts the nominal or mean size of the fragments in the debris cloud and agrees well with known SPI data. The aim of Part II is to gain an understanding of the pellet fracturing process when a pellet is shattered inside a miter tube with a sharp bend. Because miter tubes have a thin stainless steel (SS) wall a permanent deformation (dishing) of the wall is produced at the site of the impact. A review of the literature indicates that most projectile impact on thin plates are those for which the target is deformed and the projectile is perfectly rigid. Such impacts result in “projectile embedding” where the projectile speed is reduced to zero during the interaction so that all the kinetic energy (KE) of the projectile goes into the energy stored in plastic deformation. Much of the literature deals with perforation of the target. The problem here is quite different; the softer pellet easily undergoes complete material failure causing only a small transfer of KE to stored energy of wall deformation. For the real miter tube, we derived a strain energy function for the wall deflection using a non-linear (plastic) stress-strain relation for 304 SS. Using a dishing profile identical to the linear Kirchkoff-Love profile (for lack

  12. Analytical model based on cohesive energy to indicate the edge and corner effects on melting temperature of metallic nanoparticles

    Shidpour, Reza; Hamid, Delavari H.; Vossoughi, M.

    2010-01-01

    Graphical abstract: The effect of edge and corner atoms of nanoparticle (solid line) cause melting temperature drops more compared to considering them as same as only surface atoms (dash line). This reduction is significant especially when the size of nanoparticle is below 10 nm. - Abstract: An analytical model based on cohesive energy has been conducted to study the effects of edge, corner, and inward surface relaxation as varying parameters on melting temperature of nanoparticles. It is shown that taking into account the edge and corner (EC) atoms of nanoparticle, causes to drop melting temperature more, when compared to consider them the same as only surface atoms. This reduction is significant especially when the size of nanoparticle is below 10 nm. The results are supported by available experimental results of tin, lead and gold melting temperature (T m ). Finally, it is shown that inward relaxation increases melting temperature slightly.

  13. Anisotropic composite human skull model and skull fracture validation against temporo-parietal skull fracture.

    Sahoo, Debasis; Deck, Caroline; Yoganandan, Narayan; Willinger, Rémy

    2013-12-01

    A composite material model for skull, taking into account damage is implemented in the Strasbourg University finite element head model (SUFEHM) in order to enhance the existing skull mechanical constitutive law. The skull behavior is validated in terms of fracture patterns and contact forces by reconstructing 15 experimental cases. The new SUFEHM skull model is capable of reproducing skull fracture precisely. The composite skull model is validated not only for maximum forces, but also for lateral impact against actual force time curves from PMHS for the first time. Skull strain energy is found to be a pertinent parameter to predict the skull fracture and based on statistical (binary logistical regression) analysis it is observed that 50% risk of skull fracture occurred at skull strain energy of 544.0mJ. © 2013 Elsevier Ltd. All rights reserved.

  14. A fractal model for intergranular fractures in nanocrystals

    Lung, C.W.; Xiong, L.Y.; Zhou, X.Z.

    1993-09-01

    A fractal model for intergranular fractures in nanocrystals is proposed to explain the dependence of fracture toughness with grain size in this range of scale. Based on positron annihilation and internal friction experimental results, we point out that the assumption of a constant grain boundary thickness in previous models is too simplified to be true. (author). 7 refs, 6 figs

  15. Lean business model and implementation of a geriatric fracture center.

    Kates, Stephen L

    2014-05-01

    Geriatric hip fracture is a common event associated with high costs of care and often with suboptimal outcomes for the patients. Ideally, a new care model to manage geriatric hip fractures would address both quality and safety of patient care as well as the need for reduced costs of care. The geriatric fracture center model of care is one such model reported to improve both outcomes and quality of care. It is a lean business model applied to medicine. This article describes basic lean business concepts applied to geriatric fracture care and information needed to successfully implement a geriatric fracture center. It is written to assist physicians and surgeons in their efforts to implement an improved care model for their patients. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Fracture mechanics model of stone comminution in ESWL and implications for tissue damage

    Lokhandwalla, Murtuza; Sturtevant, Bradford

    2000-07-01

    Focused shock waves administered during extracorporeal shock-wave lithotripsy (ESWL) cause stone fragmentation. The process of stone fragmentation is described in terms of a dynamic fracture process. As is characteristic of all brittle materials, fragmentation requires nucleation, growth and coalescence of flaws, caused by a tensile or shear stress. The mechanisms, operative in the stone, inducing these stresses have been identified as spall and compression-induced tensile microcracks, nucleating at pre-existing flaws. These mechanisms are driven by the lithotripter-generated shock wave and possibly also by cavitation effects in the surrounding fluid. In this paper, the spall mechanism has been analysed, using a cohesive-zone model for the material. The influence of shock wave parameters, and physical properties of stone, on stone comminution is described. The analysis suggests a potential means to exploit the difference between the stone and tissue physical properties, so as to make stone comminution more effective, without increasing tissue damage.

  17. Modelling Laccoliths: Fluid-Driven Fracturing in the Lab

    Ball, T. V.; Neufeld, J. A.

    2017-12-01

    Current modelling of the formation of laccoliths neglects the necessity to fracture rock layers for propagation to occur [1]. In magmatic intrusions at depth the idea of fracture toughness is used to characterise fracturing, however an analogue for near surface intrusions has yet to be explored [2]. We propose an analytical model for laccolith emplacement that accounts for the energy required to fracture at the tip of an intrusion. For realistic physical parameters we find that a lag region exists between the fluid magma front and the crack tip where large negative pressures in the tip cause volatiles to exsolve from the magma. Crucially, the dynamics of this tip region controls the spreading due to the competition between viscous forces and fracture energy. We conduct a series of complementary experiments to investigate fluid-driven fracturing of adhered layers and confirm the existence of two regimes: viscosity dominant spreading, controlled by the pressure in the lag region, and fracture energy dominant spreading, controlled by the energy required to fracture layers. Our experiments provide the first observations, and evolution, of a vapour tip. These experiments and our simplified model provide insight into the key physical processes in near surface magmatic intrusions with applications to fluid-driven fracturing more generally. Michaut J. Geophys. Res. 116(B5), B05205. Bunger & Cruden J. Geophys. Res. 116(B2), B02203.

  18. Sustaining exercise participation through group cohesion.

    Estabrooks, P A

    2000-04-01

    The general hypothesis to be examined by this article is that increased group cohesion leads to an increase in adherence to an exercise program over time. Although preliminary research is promising, there is a need for further research aimed at examining the model of group development in exercise classes, the impact of group cohesion on both group and individual exercise behavior, and the measurement of group cohesion.

  19. Modelling of ductile and cleavage fracture by local approach

    Samal, M.K.; Dutta, B.K.; Kushwaha, H.S.

    2000-08-01

    This report describes the modelling of ductile and cleavage fracture processes by local approach. It is now well known that the conventional fracture mechanics method based on single parameter criteria is not adequate to model the fracture processes. It is because of the existence of effect of size and geometry of flaw, loading type and rate on the fracture resistance behaviour of any structure. Hence, it is questionable to use same fracture resistance curves as determined from standard tests in the analysis of real life components because of existence of all the above effects. So, there is need to have a method in which the parameters used for the analysis will be true material properties, i.e. independent of geometry and size. One of the solutions to the above problem is the use of local approaches. These approaches have been extensively studied and applied to different materials (including SA33 Gr.6) in this report. Each method has been studied and reported in a separate section. This report has been divided into five sections. Section-I gives a brief review of the fundamentals of fracture process. Section-II deals with modelling of ductile fracture by locally uncoupled type of models. In this section, the critical cavity growth parameters of the different models have been determined for the primary heat transport (PHT) piping material of Indian pressurised heavy water reactor (PHWR). A comparative study has been done among different models. The dependency of the critical parameters on stress triaxiality factor has also been studied. It is observed that Rice and Tracey's model is the most suitable one. But, its parameters are not fully independent of triaxiality factor. For this purpose, a modification to Rice and Tracery's model is suggested in Section-III. Section-IV deals with modelling of ductile fracture process by locally coupled type of models. Section-V deals with the modelling of cleavage fracture process by Beremins model, which is based on Weibulls

  20. Development of Reservoir Characterization Techniques and Production Models for Exploiting Naturally Fractured Reservoirs

    Wiggins, Michael L.; Brown, Raymon L.; Civan, Frauk; Hughes, Richard G.

    2001-08-15

    Research continues on characterizing and modeling the behavior of naturally fractured reservoir systems. Work has progressed on developing techniques for estimating fracture properties from seismic and well log data, developing naturally fractured wellbore models, and developing a model to characterize the transfer of fluid from the matrix to the fracture system for use in the naturally fractured reservoir simulator.

  1. Simulated evolution of fractures and fracture networks subject to thermal cooling: A coupled discrete element and heat conduction model

    Huang, Hai; Plummer, Mitchell; Podgorney, Robert

    2013-02-01

    Advancement of EGS requires improved prediction of fracture development and growth during reservoir stimulation and long-term operation. This, in turn, requires better understanding of the dynamics of the strongly coupled thermo-hydro-mechanical (THM) processes within fractured rocks. We have developed a physically based rock deformation and fracture propagation simulator by using a quasi-static discrete element model (DEM) to model mechanical rock deformation and fracture propagation induced by thermal stress and fluid pressure changes. We also developed a network model to simulate fluid flow and heat transport in both fractures and porous rock. In this paper, we describe results of simulations in which the DEM model and network flow & heat transport model are coupled together to provide realistic simulation of the changes of apertures and permeability of fractures and fracture networks induced by thermal cooling and fluid pressure changes within fractures. Various processes, such as Stokes flow in low velocity pores, convection-dominated heat transport in fractures, heat exchange between fluid-filled fractures and solid rock, heat conduction through low-permeability matrices and associated mechanical deformations are all incorporated into the coupled model. The effects of confining stresses, developing thermal stress and injection pressure on the permeability evolution of fracture and fracture networks are systematically investigated. Results are summarized in terms of implications for the development and evolution of fracture distribution during hydrofracturing and thermal stimulation for EGS.

  2. Three-Dimensional Modeling of Fracture Clusters in Geothermal Reservoirs

    Ghassemi, Ahmad [Univ. of Oklahoma, Norman, OK (United States)

    2017-08-11

    The objective of this is to develop a 3-D numerical model for simulating mode I, II, and III (tensile, shear, and out-of-plane) propagation of multiple fractures and fracture clusters to accurately predict geothermal reservoir stimulation using the virtual multi-dimensional internal bond (VMIB). Effective development of enhanced geothermal systems can significantly benefit from improved modeling of hydraulic fracturing. In geothermal reservoirs, where the temperature can reach or exceed 350oC, thermal and poro-mechanical processes play an important role in fracture initiation and propagation. In this project hydraulic fracturing of hot subsurface rock mass will be numerically modeled by extending the virtual multiple internal bond theory and implementing it in a finite element code, WARP3D, a three-dimensional finite element code for solid mechanics. The new constitutive model along with the poro-thermoelastic computational algorithms will allow modeling the initiation and propagation of clusters of fractures, and extension of pre-existing fractures. The work will enable the industry to realistically model stimulation of geothermal reservoirs. The project addresses the Geothermal Technologies Office objective of accurately predicting geothermal reservoir stimulation (GTO technology priority item). The project goal will be attained by: (i) development of the VMIB method for application to 3D analysis of fracture clusters; (ii) development of poro- and thermoelastic material sub-routines for use in 3D finite element code WARP3D; (iii) implementation of VMIB and the new material routines in WARP3D to enable simulation of clusters of fractures while accounting for the effects of the pore pressure, thermal stress and inelastic deformation; (iv) simulation of 3D fracture propagation and coalescence and formation of clusters, and comparison with laboratory compression tests; and (v) application of the model to interpretation of injection experiments (planned by our

  3. Optimization of flow modeling in fractured media with discrete fracture network via percolation theory

    Donado-Garzon, L. D.; Pardo, Y.

    2013-12-01

    Fractured media are very heterogeneous systems where occur complex physical and chemical processes to model. One of the possible approaches to conceptualize this type of massifs is the Discrete Fracture Network (DFN). Donado et al., modeled flow and transport in a granitic batholith based on this approach and found good fitting with hydraulic and tracer tests, but the computational cost was excessive due to a gigantic amount of elements to model. We present in this work a methodology based on percolation theory for reducing the number of elements and in consequence, to reduce the bandwidth of the conductance matrix and the execution time of each network. DFN poses as an excellent representation of all the set of fractures of the media, but not all the fractures of the media are part of the conductive network. Percolation theory is used to identify which nodes or fractures are not conductive, based on the occupation probability or percolation threshold. In a fractured system, connectivity determines the flow pattern in the fractured rock mass. This volume of fluid is driven through connection paths formed by the fractures, when the permeability of the rock is negligible compared to the fractures. In a population of distributed fractures, each of this that has no intersection with any connected fracture do not contribute to generate a flow field. This algorithm also permits us to erase these elements however they are water conducting and hence, refine even more the backbone of the network. We used 100 different generations of DFN that were optimized in this study using percolation theory. In each of the networks calibrate hydrodynamic parameters as hydraulic conductivity and specific storage coefficient, for each of the five families of fractures, yielding a total of 10 parameters to estimate, at each generation. Since the effects of the distribution of fault orientation changes the value of the percolation threshold, but not the universal laws of classical

  4. Connectivity, flow and transport in network models of fractured media

    Robinson, P.C.

    1984-10-01

    In order to evaluate the safety of radioactive waste disposal underground it is important to understand the way in which radioactive material is transported through the rock to the surface. If the rock is fractured the usual models may not be applicable. In this work we look at three aspects of fracture networks: connectivity, flow and transport. These are studied numerically by generating fracture networks in a computer and modelling the processes which occur. Connectivity relates to percolation theory, and critical densities for fracture systems are found in two and three dimensions. The permeability of two-dimensional networks is studied. The way that permeability depends on fracture density, network size and spread of fracture length can be predicted using a cut lattice model. Transport through the fracture network by convection through the fractures and mixing at the intersections is studied. The Fickian dispersion equation does not describe the resulting hydrodynamic dispersion. Extensions to the techniques to three dimensions and to include other processes are discussed. (author)

  5. Drought limitations to leaf-level gas exchange: results from a model linking stomatal optimization and cohesion-tension theory.

    Novick, Kimberly A; Miniat, Chelcy F; Vose, James M

    2016-03-01

    We merge concepts from stomatal optimization theory and cohesion-tension theory to examine the dynamics of three mechanisms that are potentially limiting to leaf-level gas exchange in trees during drought: (1) a 'demand limitation' driven by an assumption of optimal stomatal functioning; (2) 'hydraulic limitation' of water movement from the roots to the leaves; and (3) 'non-stomatal' limitations imposed by declining leaf water status within the leaf. Model results suggest that species-specific 'economics' of stomatal behaviour may play an important role in differentiating species along the continuum of isohydric to anisohydric behaviour; specifically, we show that non-stomatal and demand limitations may reduce stomatal conductance and increase leaf water potential, promoting wide safety margins characteristic of isohydric species. We used model results to develop a diagnostic framework to identify the most likely limiting mechanism to stomatal functioning during drought and showed that many of those features were commonly observed in field observations of tree water use dynamics. Direct comparisons of modelled and measured stomatal conductance further indicated that non-stomatal and demand limitations reproduced observed patterns of tree water use well for an isohydric species but that a hydraulic limitation likely applies in the case of an anisohydric species. Published 2015. This article is a US Government work and is in the public domain in the USA.

  6. The hydro-mechanical modeling of the fractured media; Modelisation hydromecanique des milieux fractures

    Kadiri, I

    2002-10-15

    The hydro-mechanical modeling of the fractured media is quite complex. Simplifications are necessary for the modeling of such media, but, not always justified, Only permeable fractures are often considered. The rest of the network is approximated by an equivalent continuous medium. Even if we suppose that this approach is validated, the hydraulic and mechanical properties of the fractures and of the continuous medium are seldom known. Calibrations are necessary for the determination of these properties. Until now, one does not know very well the nature of measurements which must be carried out in order to carry on a modeling in discontinuous medium, nor elements of enough robust validation for this kind of modeling. For a better understanding of the hydro-mechanical phenomena in fractured media, two different sites have been selected for the work. The first is the site of Grimsel in Switzerland in which an underground laboratory is located at approximately 400 m of depth. The FEBEX experiment aims at the in-situ study of the consecutive phenomena due to the installation of a heat source representative of radioactive waste in the last 17 meters of the FEBEX tunnel in the laboratory of Grimsel. Only, the modeling of the hydro-mechanical of the excavation was model. The modeling of the Febex enabled us to establish a methodology of calibration of the hydraulic properties in the discontinuous media. However, this kind of study on such complex sites does not make possible to answer all the questions which arise on the hydro-mechanical behavior of the fractured media. We thus carried out modeling on an other site, smaller than the fist one and more accessible. The experimental site of Coaraze, in the Maritime Alps, is mainly constituted of limestone and fractures. Then the variation of water pressure along fractures is governed by the opening/closure sequence of a water gate. Normal displacement as well as the pore pressure along these fractures are recorded, and then

  7. Modeling CO2 Storage in Fractured Reservoirs: Fracture-Matrix Interactions of Free-Phase and Dissolved CO2

    Oldenburg, C. M.; Zhou, Q.; Birkholzer, J. T.

    2017-12-01

    The injection of supercritical CO2 (scCO2) in fractured reservoirs has been conducted at several storage sites. However, no site-specific dual-continuum modeling for fractured reservoirs has been reported and modeling studies have generally underestimated the fracture-matrix interactions. We developed a conceptual model for enhanced CO2 storage to take into account global scCO2 migration in the fracture continuum, local storage of scCO2 and dissolved CO2 (dsCO2) in the matrix continuum, and driving forces for scCO2 invasion and dsCO2 diffusion from fractures. High-resolution discrete fracture-matrix models were developed for a column of idealized matrix blocks bounded by vertical and horizontal fractures and for a km-scale fractured reservoir. The column-scale simulation results show that equilibrium storage efficiency strongly depends on matrix entry capillary pressure and matrix-matrix connectivity while the time scale to reach equilibrium is sensitive to fracture spacing and matrix flow properties. The reservoir-scale modeling results shows that the preferential migration of scCO2 through fractures is coupled with bulk storage in the rock matrix that in turn retards the fracture scCO2 plume. We also developed unified-form diffusive flux equations to account for dsCO2 storage in brine-filled matrix blocks and found solubility trapping is significant in fractured reservoirs with low-permeability matrix.

  8. Modeling Flow in Naturally Fractured Reservoirs : Effect of Fracture Aperture Distribution on Critical Sub-Network for Flow

    Gong, J.; Rossen, W.R.

    2014-01-01

    Fracture network connectivity and aperture (or conductivity) distribution are two crucial features controlling the flow behavior of fractured formations. The effect of connectivity on flow properties is well documented. We focus here on the influence of fracture aperture distribution. We model a

  9. Modeling flow and transport in fracture networks using graphs

    Karra, S.; O'Malley, D.; Hyman, J. D.; Viswanathan, H. S.; Srinivasan, G.

    2018-03-01

    Fractures form the main pathways for flow in the subsurface within low-permeability rock. For this reason, accurately predicting flow and transport in fractured systems is vital for improving the performance of subsurface applications. Fracture sizes in these systems can range from millimeters to kilometers. Although modeling flow and transport using the discrete fracture network (DFN) approach is known to be more accurate due to incorporation of the detailed fracture network structure over continuum-based methods, capturing the flow and transport in such a wide range of scales is still computationally intractable. Furthermore, if one has to quantify uncertainty, hundreds of realizations of these DFN models have to be run. To reduce the computational burden, we solve flow and transport on a graph representation of a DFN. We study the accuracy of the graph approach by comparing breakthrough times and tracer particle statistical data between the graph-based and the high-fidelity DFN approaches, for fracture networks with varying number of fractures and degree of heterogeneity. Due to our recent developments in capabilities to perform DFN high-fidelity simulations on fracture networks with large number of fractures, we are in a unique position to perform such a comparison. We show that the graph approach shows a consistent bias with up to an order of magnitude slower breakthrough when compared to the DFN approach. We show that this is due to graph algorithm's underprediction of the pressure gradients across intersections on a given fracture, leading to slower tracer particle speeds between intersections and longer travel times. We present a bias correction methodology to the graph algorithm that reduces the discrepancy between the DFN and graph predictions. We show that with this bias correction, the graph algorithm predictions significantly improve and the results are very accurate. The good accuracy and the low computational cost, with O (104) times lower times than

  10. Measuring and Modeling Flow in Welded Fractured Tuffs

    R. Salve; C. Doughty; J.S. Wang

    2001-01-01

    We have carried out a series of in situ liquid-release experiments in conjunction with a numerical modeling study to examine the effect of the rock matrix on liquid flow and transport occurring primarily through the fracture network. Field experiments were conducted in the highly fractured Topopah Spring welded tuff at a site accessed from the Exploratory Studies Facility (ESFS), an underground laboratory in the unsaturated zone at Yucca Mountain, Nevada. During the experiment, wetting-front movement, flow-field evolution, and drainage of fracture flow paths were evaluated. Modeling was used to aid in experimental design, predict experimental results, and study the physical processes accompanying liquid flow through unsaturated fractured welded tuff. Field experiments and modeling suggest that it may not be sufficient to conceptualize the fractured tuff as consisting of a single network of high-permeability fractures embedded in a low-permeability matrix. The need to include a secondary fracture network is demonstrated by comparison to the liquid flow observed in the field

  11. Adaptive Multiscale Modeling of Geochemical Impacts on Fracture Evolution

    Molins, S.; Trebotich, D.; Steefel, C. I.; Deng, H.

    2016-12-01

    Understanding fracture evolution is essential for many subsurface energy applications, including subsurface storage, shale gas production, fracking, CO2 sequestration, and geothermal energy extraction. Geochemical processes in particular play a significant role in the evolution of fractures through dissolution-driven widening, fines migration, and/or fracture sealing due to precipitation. One obstacle to understanding and exploiting geochemical fracture evolution is that it is a multiscale process. However, current geochemical modeling of fractures cannot capture this multi-scale nature of geochemical and mechanical impacts on fracture evolution, and is limited to either a continuum or pore-scale representation. Conventional continuum-scale models treat fractures as preferential flow paths, with their permeability evolving as a function (often, a cubic law) of the fracture aperture. This approach has the limitation that it oversimplifies flow within the fracture in its omission of pore scale effects while also assuming well-mixed conditions. More recently, pore-scale models along with advanced characterization techniques have allowed for accurate simulations of flow and reactive transport within the pore space (Molins et al., 2014, 2015). However, these models, even with high performance computing, are currently limited in their ability to treat tractable domain sizes (Steefel et al., 2013). Thus, there is a critical need to develop an adaptive modeling capability that can account for separate properties and processes, emergent and otherwise, in the fracture and the rock matrix at different spatial scales. Here we present an adaptive modeling capability that treats geochemical impacts on fracture evolution within a single multiscale framework. Model development makes use of the high performance simulation capability, Chombo-Crunch, leveraged by high resolution characterization and experiments. The modeling framework is based on the adaptive capability in Chombo

  12. Hospitality Invites Sociability, Which Builds Cohesion: a Model for the Role of Main Streets in Population Mental Health.

    Izenberg, Jacob M; Fullilove, Mindy Thompson

    2016-04-01

    The aim of this study was to investigate the contribution of main streets to community social cohesion, a factor important to health. Prior work suggests that casual contact in public space, which we call "sociability," facilitates more sustained social bonds in the community. We appropriate the term "hospitality" to describe a main street's propensity to support a density of such social interactions. Hospitality is a result of the integrity and complex contents of the main street and surrounding area. We examine this using a typology we term "box-circle-line" to represent the streetscape (the box), the local neighborhood (the circle), and the relationship to the regional network of streets (the line). Through field visits to 50 main streets in New Jersey and elsewhere, and a systematic qualitative investigation of main streets in a densely interconnected urban region (Essex County, New Jersey), we observed significant variation in main street hospitality, which generally correlated closely with sociability. Physical elements such as street wall, neighborhood elements such as connectivity, inter-community elements such as access and perceived welcome, and socio-political elements such as investment and racial discrimination were identified as relevant to main street hospitality. We describe the box-circle-line as a theoretical model for main street hospitality that links these various factors and provides a viable framework for further research into main street hospitality, particularly with regard to geographic health disparities.

  13. Radon transport in fractured soil. Laboratory experiments and modelling

    Hoff, A.

    1997-10-01

    Radon (Rn-222) transport in fractured soil has been investigated by laboratory experiments and by modelling. Radon transport experiments have been performed with two sand columns (homogeneous and inhomogeneous) and one undisturbed clayey till column containing a net of preferential flow paths (root holes). A numerical model (the finite-element model FRACTRAN) and an analytic model (a pinhole model) have been applied in simulations if soil gas and radon transport in fractured soil. Experiments and model calculations are included in a discussion of radon entry rates into houses placed on fractured soil. The main conclusion is, that fractures does not in general alter transport of internally generated radon out of soil, when the pressure and flow conditions in the soil is comparable to the conditions prevailing under a house. This indicates the important result, that fractures in soil have no impact on radon entry into a house beyond that of an increased gas permeability, but a more thorough investigation of this subject is needed. Only in the case where the soil is exposed to large pressure gradients, relative to gradients induced by a house, may it be possible to observe effects of radon exchange between fractures and matrix. (au) 52 tabs., 60 ill., 5 refs

  14. Radon transport in fractured soil. Laboratory experiments and modelling

    Hoff, A

    1997-10-01

    Radon (Rn-222) transport in fractured soil has been investigated by laboratory experiments and by modelling. Radon transport experiments have been performed with two sand columns (homogeneous and inhomogeneous) and one undisturbed clayey till column containing a net of preferential flow paths (root holes). A numerical model (the finite-element model FRACTRAN) and an analytic model (a pinhole model) have been applied in simulations if soil gas and radon transport in fractured soil. Experiments and model calculations are included in a discussion of radon entry rates into houses placed on fractured soil. The main conclusion is, that fractures does not in general alter transport of internally generated radon out of soil, when the pressure and flow conditions in the soil is comparable to the conditions prevailing under a house. This indicates the important result, that fractures in soil have no impact on radon entry into a house beyond that of an increased gas permeability, but a more thorough investigation of this subject is needed. Only in the case where the soil is exposed to large pressure gradients, relative to gradients induced by a house, may it be possible to observe effects of radon exchange between fractures and matrix. (au) 52 tabs., 60 ill., 5 refs.

  15. Modelling tracer transport in fractured rock at Stripa

    Herbert, A.

    1992-01-01

    We present the results of a modelling study, making predictions for tracer transport experiments carried out within the H-zone feature in the Stripa mine. We use a direct fracture network approach to represent the system of interconnected flow-conducting fractures comprising this zone. It is a highly fractured granite, and our fracture-network models include up to 60000 fractures. We have had to develop efficient algorithms to calculate the flow and transport through these networks; these techniques are described and justified. The first stage of modelling addressed two saline injection experiments. The results of these were known to us and so in addition to 'predicting' the results of these experiments, we used them to calibrate a flow model of the experimental site. This model was then used to make true 'blind' predictions for a set of tracer experiments carried out in the natural head-field, caused by an open drift. Where our flow model was good, our predictions were found to be very accurate, explaining the dispersion in the tracer breakthrough in terms of the fracture network geometry. Discrepancies for experiments in less well characterised regions of the H-zone are presented, and we suggest that the errors in these predictions are a consequence of the inaccuracies of the flow-field. We have demonstrated the use of large-scale fracture network modelling. It has proved very successful, and made very accurate predictions of field experiments carried out at the Stripa mine. The measured dispersion of tracers can be accounted for by the geometry of the fracture network flow system. (14 refs.) (au)

  16. Numerical simulation of cracks and interfaces with cohesive zone models in the extended finite element method, with EDF R and D software Code Aster

    Ferte, Guilhem

    2014-01-01

    In order to assess the harmfulness of detected defects in some nuclear power plants, EDF Group is led to develop advanced simulation tools. Among the targeted mechanisms are 3D non-planar quasi-static crack propagation, but also dynamic transients during unstable phases. In the present thesis, quasi-brittle crack growth is simulated based on the combination of the XFEM and cohesive zone models. These are inserted over large potential crack surfaces, so that the cohesive law will naturally separate adherent and de-bonding zones, resulting in an implicit update of the crack front, which makes the originality of the approach. This requires a robust insertion of non-smooth interface laws in the XFEM, which is achieved in quasi-statics with the use of XFEM-suited multiplier spaces in a consistent formulation, block-wise diagonal interface operators and an augmented Lagrangian formalism to write the cohesive law. Based on this concept and a novel directional criterion appealing to cohesive integrals, a propagation procedure over non-planar crack paths is proposed and compared with literature benchmarks. As for dynamics, an initially perfectly adherent cohesive law is implicitly treated within an explicit time-stepping scheme, resulting in an analytical determination of interface tractions if appropriate discrete spaces are used. Implementation is validated on a tapered DCB test. Extension to quadratic elements is then investigated. For stress-free cracks, it was found that a subdivision into quadratic sub-cells is needed for optimality. Theory expects enriched quadrature to be necessary for distorted sub-cells, but this could not be observed in practice. For adherent interfaces, a novel discrete multiplier space was proposed which has both numerical stability and produces quadratic convergence if used along with quadratic sub-cells. (author)

  17. Slug flow model for infiltration into fractured porous media

    Martinez, M.J.

    1999-01-01

    A model for transient infiltration into a periodically fractured porous layer is presented. The fracture is treated as a permeable-walled slot and the moisture distribution is in the form of a slug being an advancing meniscus. The wicking of moisture from the fracture to the unsaturated porous matrix is a nonlinear diffusion process and is approximately by self-similar solutions. The resulting model is a nonlinear Volterra integral equation with a weakly singular kernel. Numerical analysis provides solutions over a wide range of the parameter space and reveals the asymptotic forms of the penetration of this slug in terms of dimensionless variables arising in the model. The numerical solutions corroborate asymptotic results given earlier by Nitao and Buscheck (1991), and by Martinez (1988). Some implications for the transport of liquid in fractured rock are discussed

  18. Dynamical Modeling of Collective Behavior from Pigeon Flight Data: Flock Cohesion and Dispersion

    Xu, Xiao-Ke; Small, Michael

    2012-01-01

    Several models of flocking have been promoted based on simulations with qualitatively naturalistic behavior. In this paper we provide the first direct application of computational modeling methods to infer flocking behavior from experimental field data. We show that this approach is able to infer general rules for interaction, or lack of interaction, among members of a flock or, more generally, any community. Using experimental field measurements of homing pigeons in flight we demonstrate the existence of a basic distance dependent attraction/repulsion relationship and show that this rule is sufficient to explain collective behavior observed in nature. Positional data of individuals over time are used as input data to a computational algorithm capable of building complex nonlinear functions that can represent the system behavior. Topological nearest neighbor interactions are considered to characterize the components within this model. The efficacy of this method is demonstrated with simulated noisy data generated from the classical (two dimensional) Vicsek model. When applied to experimental data from homing pigeon flights we show that the more complex three dimensional models are capable of simulating trajectories, as well as exhibiting realistic collective dynamics. The simulations of the reconstructed models are used to extract properties of the collective behavior in pigeons, and how it is affected by changing the initial conditions of the system. Our results demonstrate that this approach may be applied to construct models capable of simulating trajectories and collective dynamics using experimental field measurements of herd movement. From these models, the behavior of the individual agents (animals) may be inferred. PMID:22479176

  19. Dynamical modeling of collective behavior from pigeon flight data: flock cohesion and dispersion.

    Graciano Dieck Kattas

    Full Text Available Several models of flocking have been promoted based on simulations with qualitatively naturalistic behavior. In this paper we provide the first direct application of computational modeling methods to infer flocking behavior from experimental field data. We show that this approach is able to infer general rules for interaction, or lack of interaction, among members of a flock or, more generally, any community. Using experimental field measurements of homing pigeons in flight we demonstrate the existence of a basic distance dependent attraction/repulsion relationship and show that this rule is sufficient to explain collective behavior observed in nature. Positional data of individuals over time are used as input data to a computational algorithm capable of building complex nonlinear functions that can represent the system behavior. Topological nearest neighbor interactions are considered to characterize the components within this model. The efficacy of this method is demonstrated with simulated noisy data generated from the classical (two dimensional Vicsek model. When applied to experimental data from homing pigeon flights we show that the more complex three dimensional models are capable of simulating trajectories, as well as exhibiting realistic collective dynamics. The simulations of the reconstructed models are used to extract properties of the collective behavior in pigeons, and how it is affected by changing the initial conditions of the system. Our results demonstrate that this approach may be applied to construct models capable of simulating trajectories and collective dynamics using experimental field measurements of herd movement. From these models, the behavior of the individual agents (animals may be inferred.

  20. Interfacial separation of a mature biofilm from a glass surface - A combined experimental and cohesive zone modelling approach.

    Safari, Ashkan; Tukovic, Zeljko; Cardiff, Philip; Walter, Maik; Casey, Eoin; Ivankovic, Alojz

    2016-02-01

    A good understanding of the mechanical stability of biofilms is essential for biofouling management, particularly when mechanical forces are used. Previous biofilm studies lack a damage-based theoretical model to describe the biofilm separation from a surface. The purpose of the current study was to investigate the interfacial separation of a mature biofilm from a rigid glass substrate using a combined experimental and numerical modelling approach. In the current work, the biofilm-glass interfacial separation process was investigated under tensile and shear stresses at the macroscale level, known as modes I and II failure mechanisms respectively. The numerical simulations were performed using a Finite Volume (FV)-based simulation package (OpenFOAM®) to predict the separation initiation using the cohesive zone model (CZM). Atomic force microscopy (AFM)-based retraction curve was used to obtain the separation properties between the biofilm and glass colloid at microscale level, where the CZM parameters were estimated using the Johnson-Kendall-Roberts (JKR) model. In this study CZM is introduced as a reliable method for the investigation of interfacial separation between a biofilm and rigid substrate, in which a high local stress at the interface edge acts as an ultimate stress at the crack tip.This study demonstrated that the total interfacial failure energy measured at the macroscale, was significantly higher than the pure interfacial separation energy obtained by AFM at the microscale, indicating a highly ductile deformation behaviour within the bulk biofilm matrix. The results of this study can significantly contribute to the understanding of biofilm detachments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Auto consolidated cohesive sediments erosion

    Ternat, F.

    2007-02-01

    Pollutants and suspended matters of a river can accumulate into the sedimentary column. Once deposited, they are submitted to self-weight consolidation processes, ageing and burying, leading to an increase of their erosion resistance. Pollutant fluxes can be related to sedimentary fluxes, determined by threshold laws. In this work, an erosion threshold model is suggested by introducing a cohesion force into the usual force balance. A model of cohesion is developed on the basis of interactions between argillaceous cohesive particles (clays), particularly the Van der Waals force, whose parameterization is ensured by means of granulometry and porosity. Artificial erosion experiments were performed in a recirculating erosion flume with natural cored sediments where critical shear stress measurements were performed. Other analyses provided granulometry and porosity. The results obtained constitute a good database for the literature. The model is then applied to the experimental conditions and gives good agreement with measurements. An example of the accounting for self-weight consolidation processes is finally suggested, before finishing on a Mohr like diagram dedicated to soft cohesive sediment erosion. (author)

  2. Mixed Mode cohesive law with interface dilatation

    Sørensen, Bent F.; Goutianos, Stergios

    2014-01-01

    displacements. As the crack faces displace relatively to each other, the roughness asperities ride on top of each other and result in an opening (dilatation) in the normal direction. Furthermore, the interaction of the crack surfaces in the contact zone gives rise to compressive normal stresses and frictional...... shear stresses opposing the crack face displacements. A phenomenological Mixed Mode cohesive zone law, derived from a potential function, is developed to describe the above mentioned fracture behaviour under monotonic opening. The interface dilatation introduces two new lengths. The cohesive law...

  3. Modeling fracture in the context of a strain-limiting theory of elasticity: a single anti-plane shear crack

    Rajagopal, K. R.

    2011-01-06

    This paper is the first part of an extended program to develop a theory of fracture in the context of strain-limiting theories of elasticity. This program exploits a novel approach to modeling the mechanical response of elastic, that is non-dissipative, materials through implicit constitutive relations. The particular class of models studied here can also be viewed as arising from an explicit theory in which the displacement gradient is specified to be a nonlinear function of stress. This modeling construct generalizes the classical Cauchy and Green theories of elasticity which are included as special cases. It was conjectured that special forms of these implicit theories that limit strains to physically realistic maximum levels even for arbitrarily large stresses would be ideal for modeling fracture by offering a modeling paradigm that avoids the crack-tip strain singularities characteristic of classical fracture theories. The simplest fracture setting in which to explore this conjecture is anti-plane shear. It is demonstrated herein that for a specific choice of strain-limiting elasticity theory, crack-tip strains do indeed remain bounded. Moreover, the theory predicts a bounded stress field in the neighborhood of a crack-tip and a cusp-shaped opening displacement. The results confirm the conjecture that use of a strain limiting explicit theory in which the displacement gradient is given as a function of stress for modeling the bulk constitutive behavior obviates the necessity of introducing ad hoc modeling constructs such as crack-tip cohesive or process zones in order to correct the unphysical stress and strain singularities predicted by classical linear elastic fracture mechanics. © 2011 Springer Science+Business Media B.V.

  4. Fictitious Crack Model of Concrete Fracture

    Brincker, Rune; Dahl, H.

    1989-01-01

    The substructure method introduced by Petersson is reformulated for the three-point bending specimen in order to obtain complete load-displacement relations without significant truncation. The problem of instability caused by the linearization of the softening in the fracture zone is discussed, a...

  5. Groundwater degassing in fractured rock: Modelling and data comparison

    Jarsjoe, J.; Destouni, G. [Royal Inst. of Tech., Stockholm (Sweden). Water Resources Engineering

    1998-11-01

    Dissolved gas may be released from deep groundwater in the vicinity of open boreholes and drifts, where the water pressures are relatively low. Degassing of groundwater may influence observations of hydraulic conditions made in drifts, interpretation of experiments performed close to drifts, and buffer mass and backfill performance, particularly during emplacement and repository closure. Under certain conditions, considerable fracture inflow and transmissivity reductions have been observed during degassing experiments in the field and in the laboratory; such reductions affect the outcome and interpretation of both hydraulic and tracer tests. We develop models for the estimation of the resulting degree of fracture gas saturation and the associated transmissivity reduction due to groundwater degassing in fractured rock. Derived expressions for bubble trapping probability show that fracture aperture variability and correlation length influence the conditions for capillary bubble trapping and gas accumulation. The laboratory observations of bubble trapping in an Aespoe fracture replica are consistent with the prediction of a relatively high probability of bubble trapping in this fracture. The prediction was based on the measured aperture distribution of the Aespoe fracture and the applied hydraulic gradient. Results also show that the conceptualisation of gas and water occupancy in a fracture greatly influences model predictions of gas saturation and relative transmissivity. Images from laboratory degassing experiments indicate that tight apertures are completely filled with water, whereas both gas and water exist in wider apertures under degassing conditions; implementation of this relation in our model resulted in the best agreement between predictions and laboratory observations. Model predictions for conditions similar to those prevailing in field for single fractures at great depths indicate that degassing effects in boreholes should generally be small, unless the

  6. A Simulation Method for High-Cycle Fatigue-Driven Delamination using a Cohesive Zone Model

    Bak, Brian Lau Verndal; Turon, A.; Lindgaard, Esben

    2016-01-01

    on parameter fitting of any kind. The method has been implemented as a zero-thickness eight-node interface element for Abaqus and as a spring element for a simple finite element model in MATLAB. The method has been validated in simulations of mode I, mode II, and mixed-mode crack loading for both self...

  7. A Numerical Modeling Framework for Cohesive Sediment Transport Driven by Waves and Tidal Currents

    2012-09-30

    for sediment transport. The successful extension to multi-dimensions is benefited from an open-source CFD package, OpenFOAM (www.openfoam.org). This...linz.at/Drupal/), which couples the fluid solver OpenFOAM with the Discrete Element Model (DEM) solver LIGGGHTS (an improved LAMMPS for granular flow

  8. Mass transport in fracture media: impact of the random function model assumed for fractures conductivity

    Capilla, J. E.; Rodrigo, J.; Gomez Hernandez, J. J.

    2003-01-01

    Characterizing the uncertainty of flow and mass transport models requires the definition of stochastic models to describe hydrodynamic parameters. Porosity and hydraulic conductivity (K) are two of these parameters that exhibit a high degree of spatial variability. K is usually the parameter whose variability influence to a more extended degree solutes movement. In fracture media, it is critical to properly characterize K in the most altered zones where flow and solutes migration tends to be concentrated. However, K measurements use to be scarce and sparse. This fact calls to consider stochastic models that allow quantifying the uncertainty of flow and mass transport predictions. This paper presents a convective transport problem solved in a 3D block of fractured crystalline rock. the case study is defined based on data from a real geological formation. As the scarcity of K data in fractures does not allow supporting classical multi Gaussian assumptions for K in fractures, the non multi Gaussian hypothesis has been explored, comparing mass transport results for alternative Gaussian and non-Gaussian assumptions. The latter hypothesis allows reproducing high spatial connectivity for extreme values of K. This feature is present in nature, might lead to reproduce faster solute pathways, and therefore should be modeled in order to obtain reasonably safe prediction of contaminants migration in a geological formation. The results obtained for the two alternative hypotheses show a remarkable impact of the K random function model in solutes movement. (Author) 9 refs

  9. Scour in cohesive soils

    2015-05-01

    This study of scour in cohesive soils had two objectives. The first was to introduce and demonstrate a new ex situ erosion testing device (ESTD) that can mimic the near-bed flow of open channels to erode cohesive soils within a specified range of she...

  10. Dynamics of Cohesive Sediments

    Johansen, Claus

    The present thesis considers the transport processes of cohesive sediments. The cohesive sediment used in the laboratory experiments was kaolinite, a clay mineral, in order to be able to reproduce the individual experiments. In the first part of the thesis, the theoretical considerations regarding...

  11. Modeling biogechemical reactive transport in a fracture zone

    Molinero, Jorge; Samper, Javier; Yang, Chan Bing, and Zhang, Guoxiang; Guoxiang, Zhang

    2005-01-14

    A coupled model of groundwater flow, reactive solute transport and microbial processes for a fracture zone of the Aspo site at Sweden is presented. This is the model of the so-called Redox Zone Experiment aimed at evaluating the effects of tunnel construction on the geochemical conditions prevailing in a fracture granite. It is found that a model accounting for microbially-mediated geochemical processes is able to reproduce the unexpected measured increasing trends of dissolved sulfate and bicarbonate. The model is also useful for testing hypotheses regarding the role of microbial processes and evaluating the sensitivity of model results to changes in biochemical parameters.

  12. Modeling biogeochemical reactive transport in a fracture zone

    Molinero, Jorge; Samper, Javier; Yang, Chan Bing; Zhang, Guoxiang; Guoxiang, Zhang

    2005-01-01

    A coupled model of groundwater flow, reactive solute transport and microbial processes for a fracture zone of the Aspo site at Sweden is presented. This is the model of the so-called Redox Zone Experiment aimed at evaluating the effects of tunnel construction on the geochemical conditions prevailing in a fracture granite. It is found that a model accounting for microbially-mediated geochemical processes is able to reproduce the unexpected measured increasing trends of dissolved sulfate and bicarbonate. The model is also useful for testing hypotheses regarding the role of microbial processes and evaluating the sensitivity of model results to changes in biochemical parameters

  13. Sensitivity Analysis of the Bone Fracture Risk Model

    Lewandowski, Beth; Myers, Jerry; Sibonga, Jean Diane

    2017-01-01

    Introduction: The probability of bone fracture during and after spaceflight is quantified to aid in mission planning, to determine required astronaut fitness standards and training requirements and to inform countermeasure research and design. Probability is quantified with a probabilistic modeling approach where distributions of model parameter values, instead of single deterministic values, capture the parameter variability within the astronaut population and fracture predictions are probability distributions with a mean value and an associated uncertainty. Because of this uncertainty, the model in its current state cannot discern an effect of countermeasures on fracture probability, for example between use and non-use of bisphosphonates or between spaceflight exercise performed with the Advanced Resistive Exercise Device (ARED) or on devices prior to installation of ARED on the International Space Station. This is thought to be due to the inability to measure key contributors to bone strength, for example, geometry and volumetric distributions of bone mass, with areal bone mineral density (BMD) measurement techniques. To further the applicability of model, we performed a parameter sensitivity study aimed at identifying those parameter uncertainties that most effect the model forecasts in order to determine what areas of the model needed enhancements for reducing uncertainty. Methods: The bone fracture risk model (BFxRM), originally published in (Nelson et al) is a probabilistic model that can assess the risk of astronaut bone fracture. This is accomplished by utilizing biomechanical models to assess the applied loads; utilizing models of spaceflight BMD loss in at-risk skeletal locations; quantifying bone strength through a relationship between areal BMD and bone failure load; and relating fracture risk index (FRI), the ratio of applied load to bone strength, to fracture probability. There are many factors associated with these calculations including

  14. Transfer and Cohesion in Interdisciplinary Education

    Søren Harnow Klausen

    2014-06-01

    Full Text Available One of the great challenges of interdisciplinary education is to create sufficient cohesion between disciplines. It is suggested that cohesion depends on the transfer of knowledge (in a broad sense, which includes skill and competences among the disciplines involved. Some of the most characteristic types of such transfer are identified and analyzed: Transfer of factual knowledge, theories, methods, models, skills, modes of collaboration and organization, meta-competences, disciplinary self-consciousness, problem selection, framework construction and motivation. Though some of these types of transfer may have a greater or smaller potential for creating cohesion, different kinds of cohesion may serve different interests, and there is no reason to assume that e.g. joint problem solving or theoretical integration should be more conducive to cohesion than e.g. contributions to motivation or disciplinary self-consciousness.

  15. Development of a user element in ABAQUS for modelling of cohesive laws in composite structures

    Feih, S.

    2006-01-01

    forward, and most existing publications consider theoretical and therefore simpler softening shapes. In this article, bridging laws were implemented intoan interface element in the UEL user subroutine in the finite element code ABAQUS. Comparison with different experimental data points for crack opening...... measurements of the crack growth resistance and the end opening of the notch. The advantage of this method is that these bridging laws represent material laws independent of the specimen geometry. However, theadaption of the experimentally determined shape to a numerically valid model shape is not straight...

  16. Comparative Model Tests of SDP and CFA Pile Groups in Non-Cohesive Soil

    Krasiński, Adam; Kusio, Tomasz

    2015-02-01

    The research topic relates to the subject of deep foundations supported on continuous flight auger (CFA) piles and screw displacement piles (SDP). The authors have decided to conduct model tests of foundations supported on the group of piles mentioned above and also the tests of the same piles working as a single. The tests are ongoing in Geotechnical Laboratory of Gdaňsk University of Technology. The description of test procedure, interpretation and analysis of the preliminary testing series results are presented in the paper.

  17. Comparative Model Tests of SDP and CFA Pile Groups in Non-Cohesive Soil

    Krasiński Adam

    2015-02-01

    Full Text Available The research topic relates to the subject of deep foundations supported on continuous flight auger (CFA piles and screw displacement piles (SDP. The authors have decided to conduct model tests of foundations supported on the group of piles mentioned above and also the tests of the same piles working as a single. The tests are ongoing in Geotechnical Laboratory of Gdaňsk University of Technology. The description of test procedure, interpretation and analysis of the preliminary testing series results are presented in the paper.

  18. A Multiscale Time-Splitting Discrete Fracture Model of Nanoparticles Transport in Fractured Porous Media

    El-Amin, Mohamed F.; Kou, Jisheng; Sun, Shuyu

    2017-01-01

    Recently, applications of nanoparticles have been considered in many branches of petroleum engineering, especially, enhanced oil recovery. The current paper is devoted to investigate the problem of nanoparticles transport in fractured porous media, numerically. We employed the discrete-fracture model (DFM) to represent the flow and transport in the fractured formations. The system of the governing equations consists of the mass conservation law, Darcy's law, nanoparticles concentration in water, deposited nanoparticles concentration on the pore-wall, and entrapped nanoparticles concentration in the pore-throat. The variation of porosity and permeability due to the nanoparticles deposition/entrapment on/in the pores is also considered. We employ the multiscale time-splitting strategy to control different time-step sizes for different physics, such as pressure and concentration. The cell-centered finite difference (CCFD) method is used for the spatial discretization. Numerical examples are provided to demonstrate the efficiency of the proposed multiscale time splitting approach.

  19. A Multiscale Time-Splitting Discrete Fracture Model of Nanoparticles Transport in Fractured Porous Media

    El-Amin, Mohamed F.

    2017-06-06

    Recently, applications of nanoparticles have been considered in many branches of petroleum engineering, especially, enhanced oil recovery. The current paper is devoted to investigate the problem of nanoparticles transport in fractured porous media, numerically. We employed the discrete-fracture model (DFM) to represent the flow and transport in the fractured formations. The system of the governing equations consists of the mass conservation law, Darcy\\'s law, nanoparticles concentration in water, deposited nanoparticles concentration on the pore-wall, and entrapped nanoparticles concentration in the pore-throat. The variation of porosity and permeability due to the nanoparticles deposition/entrapment on/in the pores is also considered. We employ the multiscale time-splitting strategy to control different time-step sizes for different physics, such as pressure and concentration. The cell-centered finite difference (CCFD) method is used for the spatial discretization. Numerical examples are provided to demonstrate the efficiency of the proposed multiscale time splitting approach.

  20. Numerical simulation on ferrofluid flow in fractured porous media based on discrete-fracture model

    Huang, Tao; Yao, Jun; Huang, Zhaoqin; Yin, Xiaolong; Xie, Haojun; Zhang, Jianguang

    2017-06-01

    Water flooding is an efficient approach to maintain reservoir pressure and has been widely used to enhance oil recovery. However, preferential water pathways such as fractures can significantly decrease the sweep efficiency. Therefore, the utilization ratio of injected water is seriously affected. How to develop new flooding technology to further improve the oil recovery in this situation is a pressing problem. For the past few years, controllable ferrofluid has caused the extensive concern in oil industry as a new functional material. In the presence of a gradient in the magnetic field strength, a magnetic body force is produced on the ferrofluid so that the attractive magnetic forces allow the ferrofluid to be manipulated to flow in any desired direction through the control of the external magnetic field. In view of these properties, the potential application of using the ferrofluid as a new kind of displacing fluid for flooding in fractured porous media is been studied in this paper for the first time. Considering the physical process of the mobilization of ferrofluid through porous media by arrangement of strong external magnetic fields, the magnetic body force was introduced into the Darcy equation and deals with fractures based on the discrete-fracture model. The fully implicit finite volume method is used to solve mathematical model and the validity and accuracy of numerical simulation, which is demonstrated through an experiment with ferrofluid flowing in a single fractured oil-saturated sand in a 2-D horizontal cell. At last, the water flooding and ferrofluid flooding in a complex fractured porous media have been studied. The results showed that the ferrofluid can be manipulated to flow in desired direction through control of the external magnetic field, so that using ferrofluid for flooding can raise the scope of the whole displacement. As a consequence, the oil recovery has been greatly improved in comparison to water flooding. Thus, the ferrofluid

  1. An efficient hydro-mechanical model for coupled multi-porosity and discrete fracture porous media

    Yan, Xia; Huang, Zhaoqin; Yao, Jun; Li, Yang; Fan, Dongyan; Zhang, Kai

    2018-02-01

    In this paper, a numerical model is developed for coupled analysis of deforming fractured porous media with multiscale fractures. In this model, the macro-fractures are modeled explicitly by the embedded discrete fracture model, and the supporting effects of fluid and fillings in these fractures are represented explicitly in the geomechanics model. On the other hand, matrix and micro-fractures are modeled by a multi-porosity model, which aims to accurately describe the transient matrix-fracture fluid exchange process. A stabilized extended finite element method scheme is developed based on the polynomial pressure projection technique to address the displacement oscillation along macro-fracture boundaries. After that, the mixed space discretization and modified fixed stress sequential implicit methods based on non-matching grids are applied to solve the coupling model. Finally, we demonstrate the accuracy and application of the proposed method to capture the coupled hydro-mechanical impacts of multiscale fractures on fractured porous media.

  2. The hydro-mechanical modeling of the fractured media

    Kadiri, I.

    2002-10-01

    The hydro-mechanical modeling of the fractured media is quite complex. Simplifications are necessary for the modeling of such media, but, not always justified, Only permeable fractures are often considered. The rest of the network is approximated by an equivalent continuous medium. Even if we suppose that this approach is validated, the hydraulic and mechanical properties of the fractures and of the continuous medium are seldom known. Calibrations are necessary for the determination of these properties. Until now, one does not know very well the nature of measurements which must be carried out in order to carry on a modeling in discontinuous medium, nor elements of enough robust validation for this kind of modeling. For a better understanding of the hydro-mechanical phenomena in fractured media, two different sites have been selected for the work. The first is the site of Grimsel in Switzerland in which an underground laboratory is located at approximately 400 m of depth. The FEBEX experiment aims at the in-situ study of the consecutive phenomena due to the installation of a heat source representative of radioactive waste in the last 17 meters of the FEBEX tunnel in the laboratory of Grimsel. Only, the modeling of the hydro-mechanical of the excavation was model. The modeling of the Febex enabled us to establish a methodology of calibration of the hydraulic properties in the discontinuous media. However, this kind of study on such complex sites does not make possible to answer all the questions which arise on the hydro-mechanical behavior of the fractured media. We thus carried out modeling on an other site, smaller than the fist one and more accessible. The experimental site of Coaraze, in the Maritime Alps, is mainly constituted of limestone and fractures. Then the variation of water pressure along fractures is governed by the opening/closure sequence of a water gate. Normal displacement as well as the pore pressure along these fractures are recorded, and then

  3. Modeling the Fracture of Ice Sheets on Parallel Computers

    Waisman, Haim [Columbia Univ., New York, NY (United States); Tuminaro, Ray [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-10-10

    The objective of this project was to investigate the complex fracture of ice and understand its role within larger ice sheet simulations and global climate change. This objective was achieved by developing novel physics based models for ice, novel numerical tools to enable the modeling of the physics and by collaboration with the ice community experts. At the present time, ice fracture is not explicitly considered within ice sheet models due in part to large computational costs associated with the accurate modeling of this complex phenomena. However, fracture not only plays an extremely important role in regional behavior but also influences ice dynamics over much larger zones in ways that are currently not well understood. To this end, our research findings through this project offers significant advancement to the field and closes a large gap of knowledge in understanding and modeling the fracture of ice sheets in the polar regions. Thus, we believe that our objective has been achieved and our research accomplishments are significant. This is corroborated through a set of published papers, posters and presentations at technical conferences in the field. In particular significant progress has been made in the mechanics of ice, fracture of ice sheets and ice shelves in polar regions and sophisticated numerical methods that enable the solution of the physics in an efficient way.

  4. Transport modeling of sorbing tracers in artificial fractures

    Keum, Dong Kwon; Baik, Min Hoon; Park, Chung Kyun; Cho, Young Hwan; Hahn, Phil Soo.

    1998-02-01

    This study was performed as part of a fifty-man year attachment program between AECL (Atomic Energy Canada Limited) and KAERI. Three kinds of computer code, HDD, POMKAP and VAMKAP, were developed to predict transport of contaminants in fractured rock. MDDM was to calculate the mass transport of contaminants in a single fracture using a simple hydrodynamic dispersion diffusion model. POMKAP was to predict the mass transport of contaminants by a two-dimensional variable aperture model. In parallel with modeling, the validation of models was also performed through the analysis of the migration experimental data obtained in acrylic plastic and granite artificial fracture system at the Whiteshell laboratories, AECL, Canada. (author). 34 refs., 11 tabs., 76 figs

  5. Transport modeling of sorbing tracers in artificial fractures

    Keum, Dong Kwon; Baik, Min Hoon; Park, Chung Kyun; Cho, Young Hwan; Hahn, Phil Soo

    1998-02-01

    This study was performed as part of a fifty-man year attachment program between AECL (Atomic Energy Canada Limited) and KAERI. Three kinds of computer code, HDD, POMKAP and VAMKAP, were developed to predict transport of contaminants in fractured rock. MDDM was to calculate the mass transport of contaminants in a single fracture using a simple hydrodynamic dispersion diffusion model. POMKAP was to predict the mass transport of contaminants by a two-dimensional variable aperture model. In parallel with modeling, the validation of models was also performed through the analysis of the migration experimental data obtained in acrylic plastic and granite artificial fracture system at the Whiteshell laboratories, AECL, Canada. (author). 34 refs., 11 tabs., 76 figs.

  6. Hydraulic Fracture Growth in a Layered Formation based on Fracturing Experiments and Discrete Element Modeling

    Yushi, Zou; Xinfang, Ma; Tong, Zhou; Ning, Li; Ming, Chen; Sihai, Li; Yinuo, Zhang; Han, Li

    2017-09-01

    Hydraulic fracture (HF) height containment tends to occur in layered formations, and it significantly influences the entire HF geometry or the stimulated reservoir volume. This study aims to explore the influence of preexisting bedding planes (BPs) on the HF height growth in layered formations. Laboratory fracturing experiments were performed to confirm the occurrence of HF height containment in natural shale that contains multiple weak and high-permeability BPs under triaxial stresses. Numerical simulations were then conducted to further illustrate the manner in which vertical stress, BP permeability, BP density(or spacing), pump rate, and fluid viscosity control HF height growth using a 3D discrete element method-based fracturing model. In this model, the rock matrix was considered transversely isotropic and multiple BPs can be explicitly represented. Experimental and numerical results show that the vertically growing HF tends to be limited by multi-high-permeability BPs, even under higher vertical stress. When the vertically growing HF intersects with the multi-high-permeability BPs, the injection pressure will be sharply reduced. If a low pumping rate or a low-viscosity fluid is used, the excess fracturing fluid leak-off into the BPs obviously decreases the rate of pressure build up, which will then limit the growth of HF. Otherwise, a higher pumping rate and/or a higher viscosity will reduce the leak-off time and fluid volume, but increase the injection pressure to drive the HF to grow and to penetrate through the BPs.

  7. Parameter estimation for a cohesive sediment transport model by assimilating satellite observations in the Hangzhou Bay: Temporal variations and spatial distributions

    Wang, Daosheng; Zhang, Jicai; He, Xianqiang; Chu, Dongdong; Lv, Xianqing; Wang, Ya Ping; Yang, Yang; Fan, Daidu; Gao, Shu

    2018-01-01

    Model parameters in the suspended cohesive sediment transport models are critical for the accurate simulation of suspended sediment concentrations (SSCs). Difficulties in estimating the model parameters still prevent numerical modeling of the sediment transport from achieving a high level of predictability. Based on a three-dimensional cohesive sediment transport model and its adjoint model, the satellite remote sensing data of SSCs during both spring tide and neap tide, retrieved from Geostationary Ocean Color Imager (GOCI), are assimilated to synchronously estimate four spatially and temporally varying parameters in the Hangzhou Bay in China, including settling velocity, resuspension rate, inflow open boundary conditions and initial conditions. After data assimilation, the model performance is significantly improved. Through several sensitivity experiments, the spatial and temporal variation tendencies of the estimated model parameters are verified to be robust and not affected by model settings. The pattern for the variations of the estimated parameters is analyzed and summarized. The temporal variations and spatial distributions of the estimated settling velocity are negatively correlated with current speed, which can be explained using the combination of flocculation process and Stokes' law. The temporal variations and spatial distributions of the estimated resuspension rate are also negatively correlated with current speed, which are related to the grain size of the seabed sediments under different current velocities. Besides, the estimated inflow open boundary conditions reach the local maximum values near the low water slack conditions and the estimated initial conditions are negatively correlated with water depth, which is consistent with the general understanding. The relationships between the estimated parameters and the hydrodynamic fields can be suggestive for improving the parameterization in cohesive sediment transport models.

  8. An Improved Computing Method for 3D Mechanical Connectivity Rates Based on a Polyhedral Simulation Model of Discrete Fracture Network in Rock Masses

    Li, Mingchao; Han, Shuai; Zhou, Sibao; Zhang, Ye

    2018-06-01

    Based on a 3D model of a discrete fracture network (DFN) in a rock mass, an improved projective method for computing the 3D mechanical connectivity rate was proposed. The Monte Carlo simulation method, 2D Poisson process and 3D geological modeling technique were integrated into a polyhedral DFN modeling approach, and the simulation results were verified by numerical tests and graphical inspection. Next, the traditional projective approach for calculating the rock mass connectivity rate was improved using the 3D DFN models by (1) using the polyhedral model to replace the Baecher disk model; (2) taking the real cross section of the rock mass, rather than a part of the cross section, as the test plane; and (3) dynamically searching the joint connectivity rates using different dip directions and dip angles at different elevations to calculate the maximum, minimum and average values of the joint connectivity at each elevation. In a case study, the improved method and traditional method were used to compute the mechanical connectivity rate of the slope of a dam abutment. The results of the two methods were further used to compute the cohesive force of the rock masses. Finally, a comparison showed that the cohesive force derived from the traditional method had a higher error, whereas the cohesive force derived from the improved method was consistent with the suggested values. According to the comparison, the effectivity and validity of the improved method were verified indirectly.

  9. An approach to ductile fracture resistance modelling in pipeline steels

    Pussegoda, L.N.; Fredj, A. [BMT Fleet Technology Ltd., Kanata (Canada)

    2009-07-01

    Ductile fracture resistance studies of high grade steels in the pipeline industry often included analyses of the crack tip opening angle (CTOA) parameter using 3-point bend steel specimens. The CTOA is a function of specimen ligament size in high grade materials. Other resistance measurements may include steady state fracture propagation energy, critical fracture strain, and the adoption of damage mechanisms. Modelling approaches for crack propagation were discussed in this abstract. Tension tests were used to calibrate damage model parameters. Results from the tests were then applied to the crack propagation in a 3-point bend specimen using modern 1980 vintage steels. Limitations and approaches to overcome the difficulties associated with crack propagation modelling were discussed.

  10. Modeling of Hydrodynamic Chromatography for Colloid Migration in Fractured Rock

    Li Shihhai; Jen, C.-P.

    2001-01-01

    The role of colloids in the migration of radionuclides in the geosphere has been emphasized in the performance assessment of high-level radioactive waste disposal. The literature indicates that the colloid velocity may not be equal to the velocity of groundwater owing to hydrodynamic chromatography. A theoretical model for hydrodynamic chromatography of colloid migration in the fracture is proposed in the present work. In this model, the colloids are treated as nonreactive and the external forces acting on colloidal particles are considered including the inertial force, the van der Waals attractive force, and the electrical double-layer repulsive force, as well as the gravitational force. A fully developed concentration profile for colloids is obtained to elucidate migration behavior for colloids in the fracture. The effects of parameters governing these forces and the aperture of the fracture are determined using a theoretical model

  11. Numerical modelling of flow and transport in rough fractures

    Scott Briggs

    2014-12-01

    Full Text Available Simulation of flow and transport through rough walled rock fractures is investigated using the lattice Boltzmann method (LBM and random walk (RW, respectively. The numerical implementation is developed and validated on general purpose graphic processing units (GPGPUs. Both the LBM and RW method are well suited to parallel implementation on GPGPUs because they require only next-neighbour communication and thus can reduce expenses. The LBM model is an order of magnitude faster on GPGPUs than published results for LBM simulations run on modern CPUs. The fluid model is verified for parallel plate flow, backward facing step and single fracture flow; and the RW model is verified for point-source diffusion, Taylor-Aris dispersion and breakthrough behaviour in a single fracture. Both algorithms place limitations on the discrete displacement of fluid or particle transport per time step to minimise the numerical error that must be considered during implementation.

  12. Multiscale model reduction for shale gas transport in fractured media

    Akkutlu, I. Y.

    2016-05-18

    In this paper, we develop a multiscale model reduction technique that describes shale gas transport in fractured media. Due to the pore-scale heterogeneities and processes, we use upscaled models to describe the matrix. We follow our previous work (Akkutlu et al. Transp. Porous Media 107(1), 235–260, 2015), where we derived an upscaled model in the form of generalized nonlinear diffusion model to describe the effects of kerogen. To model the interaction between the matrix and the fractures, we use Generalized Multiscale Finite Element Method (Efendiev et al. J. Comput. Phys. 251, 116–135, 2013, 2015). In this approach, the matrix and the fracture interaction is modeled via local multiscale basis functions. In Efendiev et al. (2015), we developed the GMsFEM and applied for linear flows with horizontal or vertical fracture orientations aligned with a Cartesian fine grid. The approach in Efendiev et al. (2015) does not allow handling arbitrary fracture distributions. In this paper, we (1) consider arbitrary fracture distributions on an unstructured grid; (2) develop GMsFEM for nonlinear flows; and (3) develop online basis function strategies to adaptively improve the convergence. The number of multiscale basis functions in each coarse region represents the degrees of freedom needed to achieve a certain error threshold. Our approach is adaptive in a sense that the multiscale basis functions can be added in the regions of interest. Numerical results for two-dimensional problem are presented to demonstrate the efficiency of proposed approach. © 2016 Springer International Publishing Switzerland

  13. On modeling the large strain fracture behaviour of soft viscous foods

    Skamniotis, C. G.; Elliott, M.; Charalambides, M. N.

    2017-12-01

    Mastication is responsible for food breakdown with the aid of saliva in order to form a cohesive viscous mass, known as the bolus. This influences the rate at which the ingested food nutrients are later absorbed into the body, which needs to be controlled to aid in epidemic health problems such as obesity, diabetes, and dyspepsia. The aim of our work is to understand and improve food oral breakdown efficiency in both human and pet foods through developing multi-scale models of oral and gastric processing. The latter has been a challenging task and the available technology may be still immature, as foods usually exhibit a complex viscous, compliant, and tough mechanical behaviour. These are all addressed here through establishing a novel material model calibrated through experiments on starch-based food. It includes a new criterion for the onset of material stiffness degradation, a law for the evolution of degradation governed by the true material's fracture toughness, and a constitutive stress-strain response, all three being a function of the stress state, i.e., compression, shear, and tension. The material model is used in a finite element analysis which reproduces accurately the food separation patterns under a large strain indentation test, which resembles the boundary conditions applied in chewing. The results lend weight to the new methodology as a powerful tool in understanding how different food structures breakdown and in optimising these structures via parametric analyses to satisfy specific chewing and digestion attributes.

  14. Modelling of 3D fractured geological systems - technique and application

    Cacace, M.; Scheck-Wenderoth, M.; Cherubini, Y.; Kaiser, B. O.; Bloecher, G.

    2011-12-01

    All rocks in the earth's crust are fractured to some extent. Faults and fractures are important in different scientific and industry fields comprising engineering, geotechnical and hydrogeological applications. Many petroleum, gas and geothermal and water supply reservoirs form in faulted and fractured geological systems. Additionally, faults and fractures may control the transport of chemical contaminants into and through the subsurface. Depending on their origin and orientation with respect to the recent and palaeo stress field as well as on the overall kinematics of chemical processes occurring within them, faults and fractures can act either as hydraulic conductors providing preferential pathways for fluid to flow or as barriers preventing flow across them. The main challenge in modelling processes occurring in fractured rocks is related to the way of describing the heterogeneities of such geological systems. Flow paths are controlled by the geometry of faults and their open void space. To correctly simulate these processes an adequate 3D mesh is a basic requirement. Unfortunately, the representation of realistic 3D geological environments is limited by the complexity of embedded fracture networks often resulting in oversimplified models of the natural system. A technical description of an improved method to integrate generic dipping structures (representing faults and fractures) into a 3D porous medium is out forward. The automated mesh generation algorithm is composed of various existing routines from computational geometry (e.g. 2D-3D projection, interpolation, intersection, convex hull calculation) and meshing (e.g. triangulation in 2D and tetrahedralization in 3D). All routines have been combined in an automated software framework and the robustness of the approach has been tested and verified. These techniques and methods can be applied for fractured porous media including fault systems and therefore found wide applications in different geo-energy related

  15. An Improved Rate-Transient Analysis Model of Multi-Fractured Horizontal Wells with Non-Uniform Hydraulic Fracture Properties

    Youwei He

    2018-02-01

    Full Text Available Although technical advances in hydraulically fracturing and drilling enable commercial production from tight reservoirs, oil/gas recovery remains at a low level. Due to the technical and economic limitations of well-testing operations in tight reservoirs, rate-transient analysis (RTA has become a more attractive option. However, current RTA models hardly consider the effect of the non-uniform production on rate decline behaviors. In fact, PLT results demonstrate that production profile is non-uniform. To fill this gap, this paper presents an improved RTA model of multi-fractured horizontal wells (MFHWs to investigate the effects of non-uniform properties of hydraulic fractures (production of fractures, fracture half-length, number of fractures, fracture conductivity, and vertical permeability on rate transient behaviors through the diagnostic type curves. Results indicate obvious differences on the rate decline curves among the type curves of uniform properties of fractures (UPF and non-uniform properties of fractures (NPF. The use of dimensionless production integral derivative curve magnifies the differences so that we can diagnose the phenomenon of non-uniform production. Therefore, it’s significant to incorporate the effects of NPF into the RDA models of MFHWs, and the model proposed in this paper enables us to better evaluate well performance based on long-term production data.

  16. Fracture flow modelling. Proof of evidence

    Hencher, S.R.

    1996-01-01

    Proof of Evidence by an expert witness is presented in support of the case by Friends of the Earth (FOE) against the proposed construction by UK Nirex Ltd of an underground Rock Characterisation Facility (RCF) at a site in the Sellafield area. The RCF is part of an investigation by Nirex into a suitable site for an underground repository for the disposal of radioactive waste. The objections were raised at a Planning Inquiry in 1995. The evidence points out that current understanding of the factors which control flow through a network of interconnecting fractures, such as that at the Sellafield site, is at a very early stage of development. Neither are the methods of investigation and analysis required for a post-closure performance assessment (PCPA) for a repository well developed. These issues are being investigated in international underground research laboratories but the proposed RCF is intended to be confirmatory rather than experimental. (23 references). (UK)

  17. Drought limitations to leaf-level gas exchange: results from a model linking stomatal optimization and cohesion-tension theory

    Kimberly A. Novick; Chelcy F. Miniat; James M. Vose

    2016-01-01

    We merge concepts from stomatal optimization theory and cohesion–tension theory to examine the dynamics of three mechanisms that are potentially limiting to leaf-level gas exchange in trees during drought: (1) a ‘demand limitation’ driven by an assumption of optimal stomatal functioning; (2) ‘hydraulic limitation’ of water movement from the roots to the leaves...

  18. A Lateral Tensile Fracturing Model for Listric Fault

    Qiu, Z.

    2007-12-01

    The new discovery of a major seismic fault of the great 1976 Tangshan earthquake suggests a lateral tensile fracturing process at the seismic source. The fault is in listric shape but can not be explained with the prevailing model of listric fault. A double-couple of forces without moment is demonstrated to be applicable to simulate the source mechanism. Based on fracture mechanics, laboratory experiments as well as numerical simulations, the model is against the assumption of stick-slip on existing fault as the cause of the earthquake but not in conflict with seismological observations. Global statistics of CMT solutions of great earthquakes raises significant support to the idea that lateral tensile fracturing might account for not only the Tangshan earthquake but also others.

  19. Coupled models in porous media: reactive transport and fractures

    Amir, L.

    2008-12-01

    This thesis deals with numerical simulation of coupled models for flow and transport in porous media. We present a new method for coupling chemical reactions and transport by using a Newton-Krylov method, and we also present a model of flow in fractured media, based on a domain decomposition method that takes into account the case of intersecting fractures. This study is composed of three parts: the first part contains an analysis, and implementation, of various numerical methods for discretizing advection-diffusion problems, in particular by using operator splitting methods. The second part is concerned with a fully coupled method for modeling transport and chemistry problems. The coupled transport-chemistry model is described, after discretization in time, by a system of nonlinear equations. The size of the system, namely the number of grid points times the number a chemical species, precludes a direct solution of the linear system. To alleviate this difficulty, we solve the system by a Newton-Krylov method, so as to avoid forming and factoring the Jacobian matrix. In the last part, we present a model of flow in 3D for intersecting fractures, by using a domain decomposition method. The fractures are treated as interfaces between sub-domains. We show existence and uniqueness of the solution, and we validate the model by numerical tests. (author)

  20. The brush model - a new approach to numerical modeling of matrix diffusion in fractured clay stone

    Lege, T.; Shao, H.

    1998-01-01

    A special approach for numerical modeling of contaminant transport in fractured clay stone is presented. The rock matrix and the fractures are simulated with individual formulations for FE grids and transport, coupled into a single model. The capacity of the rock matrix to take up contaminants is taken into consideration with a discrete simulation of matrix diffusion. Thus, the natural process of retardation due to matrix diffusion can be better simulated than by a standard introduction of an empirical parameter into the transport equation. Transport in groundwater in fractured clay stone can be simulated using a model called a 'brush model'. The 'brush handle' is discretized by 2-D finite elements. Advective-dispersive transport in groundwater in the fractures is assumed. The contaminant diffuses into 1D finite elements perpendicular to the fractures, i.e., the 'bristles of the brush'. The conclusion is drawn that matrix diffusion is an important property of fractured clay stone for contaminant retardation. (author)

  1. Numerical modeling of thermal conductive heating in fractured bedrock.

    Baston, Daniel P; Falta, Ronald W; Kueper, Bernard H

    2010-01-01

    Numerical modeling was employed to study the performance of thermal conductive heating (TCH) in fractured shale under a variety of hydrogeological conditions. Model results show that groundwater flow in fractures does not significantly affect the minimum treatment zone temperature, except near the beginning of heating or when groundwater influx is high. However, fracture and rock matrix properties can significantly influence the time necessary to remove all liquid water (i.e., reach superheated steam conditions) in the treatment area. Low matrix permeability, high matrix porosity, and wide fracture spacing can contribute to boiling point elevation in the rock matrix. Consequently, knowledge of these properties is important for the estimation of treatment times. Because of the variability in boiling point throughout a fractured rock treatment zone and the absence of a well-defined constant temperature boiling plateau in the rock matrix, it may be difficult to monitor the progress of thermal treatment using temperature measurements alone. Copyright © 2010 The Author(s). Journal compilation © 2010 National Ground Water Association.

  2. A Two-Scale Reduced Model for Darcy Flow in Fractured Porous Media

    Chen, Huangxin; Sun, Shuyu

    2016-01-01

    scale, and the effect of fractures on each coarse scale grid cell intersecting with fractures is represented by the discrete fracture model (DFM) on the fine scale. In the DFM used on the fine scale, the matrix-fracture system are resolved

  3. Fracture initiation associated with chemical degradation: observation and modeling

    Byoungho Choi; Zhenwen Zhou; Chudnovsky, Alexander [Illinois Univ., Dept. of Civil and Materials Engineering (M/C 246), Chicago, IL (United States); Stivala, Salvatore S. [Stevens Inst. of Technology, Dept. of Chemistry and Chemical Biology, Hoboken, NJ (United States); Sehanobish, Kalyan; Bosnyak, Clive P. [Dow Chemical Co., Freeport, TX (United States)

    2005-01-01

    The fracture initiation in engineering thermoplastics resulting from chemical degradation is usually observed in the form of a microcrack network within a surface layer of degraded polymer exposed to a combined action of mechanical stresses and chemically aggressive environment. Degradation of polymers is usually manifested in a reduction of molecular weight, increase of crystallinity in semi crystalline polymers, increase of material density, a subtle increase in yield strength, and a dramatic reduction in toughness. An increase in material density, i.e., shrinkage of the degraded layer is constrained by adjacent unchanged material results in a buildup of tensile stress within the degraded layer and compressive stress in the adjacent unchanged material due to increasing incompatibility between the two. These stresses are an addition to preexisting manufacturing and service stresses. At a certain level of degradation, a combination of toughness reduction and increase of tensile stress result in fracture initiation. A quantitative model of the described above processes is presented in these work. For specificity, the internally pressurized plastic pipes that transport a fluid containing a chemically aggressive (oxidizing) agent is used as the model of fracture initiation. Experimental observations of material density and toughness dependence on degradation reported elsewhere are employed in the model. An equation for determination of a critical level of degradation corresponding to the offset of fracture is constructed. The critical level of degradation for fracture initiation depends on the rates of toughness deterioration and build-up of the degradation related stresses as well as on the manufacturing and service stresses. A method for evaluation of the time interval prior to fracture initiation is also formulated. (Author)

  4. Mineral Precipitation in Fractures: Multiscale Imaging and Geochemical Modeling

    Hajirezaie, S.; Peters, C. A.; Swift, A.; Sheets, J. M.; Cole, D. R.; Crandall, D.; Cheshire, M.; Stack, A. G.; Anovitz, L. M.

    2017-12-01

    For subsurface energy technologies such as geologic carbon sequestration, fractures are potential pathways for fluid migration from target formations. Highly permeable fractures may become sealed by mineral precipitation. In this study, we examined shale specimens with existing cemented fractures as natural analogues, using an array of imaging methods to characterize mineralogy and porosity at several spatial scales. In addition, we used reactive transport modeling to investigate geochemical conditions that can lead to extensive mineral precipitation and to simulate the impacts on fracture hydraulic properties. The naturally-cemented fractured rock specimens were from the Upper Wolfcamp formation in Texas, at 10,000 ft depth. The specimens were scanned using x-ray computed tomography (xCT) at resolution of 13 microns. The xCT images revealed an original fracture aperture of 1.9 mm filled with several distinct mineral phases and vuggy void regions, and the mineral phase volumes and surface areas were quantified and mapped in 3D. Specimens were thin-sectioned and examined at micron- and submicron-scales using petrographic microscopy (PM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and small angle X-ray scattering (SAXS). Collectively these methods revealed crystals of dolomite as large as 900 microns in length overlain with a heterogeneous mixture of carbonate minerals including calcite, dolomite, and Fe-rich dolomite, interspersed at spatial scales as small as 5 microns. In addition, secondary precipitation of SiO2 was found to fill some of the void space. This multiscale imaging was used to inform the reactive transport modeling employed to examine the conditions that can cause the observed mineral precipitation in fractures at a larger scale. Two brines containing solutions that when mixed would lead to precipitation of various carbonate minerals were simulated as injectants into a fracture domain. In particular, the competing

  5. Mode I Cohesive Law Characterization of Through-Crack Propagation in a Multidirectional Laminate

    Bergan, Andrew C.; Davila, Carlos G.; Leone, Frank A.; Awerbuch, Jonathan; Tan, Tein-Min

    2014-01-01

    A method is proposed and assessed for the experimental characterization of through-the-thickness crack propagation in multidirectional composite laminates with a cohesive law. The fracture toughness and crack opening displacement are measured and used to determine a cohesive law. Two methods of computing fracture toughness are assessed and compared. While previously proposed cohesive characterizations based on the R-curve exhibit size effects, the proposed approach results in a cohesive law that is a material property. The compact tension specimen configuration is used to propagate damage while load and full-field displacements are recorded. These measurements are used to compute the fracture toughness and crack opening displacement from which the cohesive law is characterized. The experimental results show that a steady-state fracture toughness is not reached. However, the proposed method extrapolates to steady-state and is demonstrated capable of predicting the structural behavior of geometrically-scaled specimens.

  6. Stabilization of multiple rib fractures in a canine model.

    Huang, Ke-Nan; Xu, Zhi-Fei; Sun, Ju-Xian; Ding, Xin-Yu; Wu, Bin; Li, Wei; Qin, Xiong; Tang, Hua

    2014-12-01

    Operative stabilization is frequently used in the clinical treatment of multiple rib fractures (MRF); however, no ideal material exists for use in this fixation. This study investigates a newly developed biodegradable plate system for the stabilization of MRF. Silk fiber-reinforced polycaprolactone (SF/PCL) plates were developed for rib fracture stabilization and studied using a canine flail chest model. Adult mongrel dogs were divided into three groups: one group received the SF/PCL plates, one group received standard clinical steel plates, and the final group did not undergo operative fracture stabilization (n = 6 for each group). Radiographic, mechanical, and histologic examination was performed to evaluate the effectiveness of the biodegradable material for the stabilization of the rib fractures. No nonunion and no infections were found when using SF-PCL plates. The fracture sites collapsed in the untreated control group, leading to obvious chest wall deformity not encountered in the two groups that underwent operative stabilization. Our experimental study shows that the SF/PCL plate has the biocompatibility and mechanical strength suitable for fixation of MRF and is potentially ideal for the treatment of these injuries. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Numerical modeling of ductile tearing effects on cleavage fracture toughness

    Dodds, R.H. Jr.; Tang, M.; Anderson, T.L.

    1994-05-01

    Experimental studies demonstrate a significant effect of specimen size, a/W ratio and prior ductile tearing on cleavage fracture toughness values (J c ) measured in the ductile-to-brittle transition region of ferritic materials. In the lower-transition region, cleavage fracture often occurs under conditions of large-scale yielding but without prior ductile crack extension. The increased toughness develops when plastic zones formed at the crack tip interact with nearby specimen surfaces which relaxes crack-tip constraint (stress triaxiality). In the mid-to-upper transition region, small amounts of ductile crack extension (often c -values. Previous work by the authors described a micromechanics fracture model to correct measured J c -values for the mechanistic effects of large-scale yielding. This new work extends the model to also include the influence of ductile crack extension prior to cleavage. The paper explores development of the new model, provides necessary graphs and procedures for its application and demonstrates the effects of the model on fracture data sets for two pressure vessel steels (A533B and A515)

  8. Modeling of 1D Anomalous Diffusion in Fractured Nanoporous Media

    Albinali Ali

    2016-07-01

    Full Text Available Fractured nanoporous reservoirs include multi-scale and discontinuous fractures coupled with a complex nanoporous matrix. Such systems cannot be described by the conventional dual-porosity (or multi-porosity idealizations due to the presence of different flow mechanisms at multiple scales. More detailed modeling approaches, such as Discrete Fracture Network (DFN models, similarly suffer from the extensive data requirements dictated by the intricacy of the flow scales, which eventually deter the utility of these models. This paper discusses the utility and construction of 1D analytical and numerical anomalous diffusion models for heterogeneous, nanoporous media, which is commonly encountered in oil and gas production from tight, unconventional reservoirs with fractured horizontal wells. A fractional form of Darcy’s law, which incorporates the non-local and hereditary nature of flow, is coupled with the classical mass conservation equation to derive a fractional diffusion equation in space and time. Results show excellent agreement with established solutions under asymptotic conditions and are consistent with the physical intuitions.

  9. Hydraulic Fracturing and Production Optimization in Eagle Ford Shale Using Coupled Geomechanics and Fluid Flow Model

    Suppachoknirun, Theerapat; Tutuncu, Azra N.

    2017-12-01

    With increasing production from shale gas and tight oil reservoirs, horizontal drilling and multistage hydraulic fracturing processes have become a routine procedure in unconventional field development efforts. Natural fractures play a critical role in hydraulic fracture growth, subsequently affecting stimulated reservoir volume and the production efficiency. Moreover, the existing fractures can also contribute to the pressure-dependent fluid leak-off during the operations. Hence, a reliable identification of the discrete fracture network covering the zone of interest prior to the hydraulic fracturing design needs to be incorporated into the hydraulic fracturing and reservoir simulations for realistic representation of the in situ reservoir conditions. In this research study, an integrated 3-D fracture and fluid flow model have been developed using a new approach to simulate the fluid flow and deliver reliable production forecasting in naturally fractured and hydraulically stimulated tight reservoirs. The model was created with three key modules. A complex 3-D discrete fracture network model introduces realistic natural fracture geometry with the associated fractured reservoir characteristics. A hydraulic fracturing model is created utilizing the discrete fracture network for simulation of the hydraulic fracture and flow in the complex discrete fracture network. Finally, a reservoir model with the production grid system is used allowing the user to efficiently perform the fluid flow simulation in tight formations with complex fracture networks. The complex discrete natural fracture model, the integrated discrete fracture model for the hydraulic fracturing, the fluid flow model, and the input dataset have been validated against microseismic fracture mapping and commingled production data obtained from a well pad with three horizontal production wells located in the Eagle Ford oil window in south Texas. Two other fracturing geometries were also evaluated to optimize

  10. Numerical research of two-phase flow in fractured-porous media based on discrete fracture fetwork model

    Pyatkov, A. A.; Kosyakov, V. P.; Rodionov, S. P.; Botalov, A. Y.

    2018-03-01

    In this work was the study of the processes of isothermal and non-isothermal flow of high viscosity oil in a fractured-porous reservoir. The numerical experiment was done using our own reservoir simulator with the possibility of modeling of fluid motion in conditions of non-isothermal processes and long fractures in the formation.

  11. Modeling of the fracture behavior of spot welds using advanced micro-mechanical damage models

    Sommer, Silke

    2010-01-01

    This paper presents the modeling of deformation and fracture behavior of resistance spot welded joints in DP600 steel sheets. Spot welding is still the most commonly used joining technique in automotive engineering. In overloading situations like crash joints are often the weakest link in a structure. For those reasons, crash simulations need reliable and applicable tools to predict the load bearing capacity of spot welded components. Two series of component tests with different spot weld diameters have shown that the diameter of the weld nugget is the main influencing factor affecting fracture mode (interfacial or pull-out fracture), load bearing capacity and energy absorption. In order to find a correlation between nugget diameter, load bearing capacity and fracture mode, the spot welds are simulated with detailed finite element models containing base metal, heat affected zone and weld metal in lap-shear loading conditions. The change in fracture mode from interfacial to pull-out or peel-out fracture with growing nugget diameter under lap-shear loading was successfully modeled using the Gologanu-Leblond model in combination with the fracture criteria of Thomason and Embury. A small nugget diameter is identified to be the main cause for interfacial fracture. In good agreement with experimental observations, the calculated pull-out fracture initiates in the base metal at the boundary to the heat affected zone.

  12. Development of a molecular dynamic based cohesive zone model for prediction of an equivalent material behavior for Al/Al2O3 composite

    Sazgar, A. [Center of Excellence in Design, Robotics and Automation, Department of Mechanical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Movahhedy, M.R., E-mail: movahhed@sharif.edu [Center of Excellence in Design, Robotics and Automation, Department of Mechanical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Mahnama, M. [School of Mechanical Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Sohrabpour, S. [Center of Excellence in Design, Robotics and Automation, Department of Mechanical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2017-01-02

    The interfacial behavior of composites is often simulated using a cohesive zone model (CZM). In this approach, a traction-separation (T-S) relation between the matrix and reinforcement particles, which is often obtained from experimental results, is employed. However, since the determination of this relation from experimental results is difficult, the molecular dynamics (MD) simulation may be used as a virtual environment to obtain this relation. In this study, MD simulations under the normal and shear loadings are used to obtain the interface behavior of Al/Al2O3 composite material and to derive the T-S relation. For better agreement with Al/Al2O3 interfacial behavior, the exponential form of the T-S relation suggested by Needleman [1] is modified to account for thermal effects. The MD results are employed to develop a parameterized cohesive zone model which is implemented in a finite element model of the matrix-particle interactions. Stress-strain curves obtained from simulations under different loading conditions and volume fractions show a close correlation with experimental results. Finally, by studying the effects of strain rate and volume fraction of particles in Al(6061-T6)/Al2O3 composite, an equivalent homogeneous model is introduced which can predict the overall behavior of the composite.

  13. Fracture properties of hydrogenated amorphous silicon carbide thin films

    Matsuda, Y.; King, S.W.; Bielefeld, J.; Xu, J.; Dauskardt, R.H.

    2012-01-01

    The cohesive fracture properties of hydrogenated amorphous silicon carbide (a-SiC:H) thin films in moist environments are reported. Films with stoichiometric compositions (C/Si ≈ 1) exhibited a decreasing cohesive fracture energy with decreasing film density similar to other silica-based hybrid organic–inorganic films. However, lower density a-SiC:H films with non-stoichiometric compositions (C/Si ≈ 5) exhibited much higher cohesive fracture energy than the films with higher density stoichiometric compositions. One of the non-stoichiometric films exhibited fracture energy (∼9.5 J m −2 ) greater than that of dense silica glasses. The increased fracture energy was due to crack-tip plasticity, as demonstrated by significant pileup formation during nanoindentation and a fracture energy dependence on film thickness. The a-SiC:H films also exhibited a very low sensitivity to moisture-assisted cracking compared with other silica-based hybrid films. A new atomistic fracture model is presented to describe the observed moisture-assisted cracking in terms of the limited Si-O-Si suboxide bond formation that occurs in the films.

  14. Pipe fracture evaluations for leak-rate detection: Probabilistic models

    Rahman, S.; Wilkowski, G.; Ghadiali, N.

    1993-01-01

    This is the second in series of three papers generated from studies on nuclear pipe fracture evaluations for leak-rate detection. This paper focuses on the development of novel probabilistic models for stochastic performance evaluation of degraded nuclear piping systems. It was accomplished here in three distinct stages. First, a statistical analysis was conducted to characterize various input variables for thermo-hydraulic analysis and elastic-plastic fracture mechanics, such as material properties of pipe, crack morphology variables, and location of cracks found in nuclear piping. Second, a new stochastic model was developed to evaluate performance of degraded piping systems. It is based on accurate deterministic models for thermo-hydraulic and fracture mechanics analyses described in the first paper, statistical characterization of various input variables, and state-of-the-art methods of modem structural reliability theory. From this model. the conditional probability of failure as a function of leak-rate detection capability of the piping systems can be predicted. Third, a numerical example was presented to illustrate the proposed model for piping reliability analyses. Results clearly showed that the model provides satisfactory estimates of conditional failure probability with much less computational effort when compared with those obtained from Monte Carlo simulation. The probabilistic model developed in this paper will be applied to various piping in boiling water reactor and pressurized water reactor plants for leak-rate detection applications

  15. Computational models of the hydrodynamics of fractured-porous media

    Grandi, G.M.

    1989-01-01

    The prediction of the flow pattern in fractured-porous media has great importance in the assessment of the local thermohydrological effects of the siting of a nuclear waste repository, among many other technological applications. Computational models must be used due to the complexity of the different phenomena involved which restricts the use of analytical techniques. A new numerical method, based on the boundary-fitted finite-difference technique, is presented in this thesis. The boundaries are external (the boundary of the physical domain), and internal (which correspond to the fracture network). The inclusion of the discrete fracture representation in the volume that represents the porous medium is the difference between the usual approach and the present one. The numerical model has been used in the prediction of the flow pattern in several internationally recognized verification cases and to hypothetical problems of our interest. The results obtained proved that the numerical approach considered gives accurate and reliable predictions of the hydrodynamics of fractured-porous media, allowing its use for the above mentioned studies. (Author) [es

  16. Fracture network modeling and GoldSim simulation support

    Sugita, Kenichirou; Dershowitz, W.

    2005-01-01

    During Heisei-16, Golder Associates provided support for JNC Tokai through discrete fracture network data analysis and simulation of the Mizunami Underground Research Laboratory (MIU), participation in Task 6 of the AEspoe Task Force on Modeling of Groundwater Flow and Transport, and development of methodologies for analysis of repository site characterization strategies and safety assessment. MIU support during H-16 involved updating the H-15 FracMan discrete fracture network (DFN) models for the MIU shaft region, and developing improved simulation procedures. Updates to the conceptual model included incorporation of 'Step2' (2004) versions of the deterministic structures, and revision of background fractures to be consistent with conductive structure data from the DH-2 borehole. Golder developed improved simulation procedures for these models through the use of hybrid discrete fracture network (DFN), equivalent porous medium (EPM), and nested DFN/EPM approaches. For each of these models, procedures were documented for the entire modeling process including model implementation, MMP simulation, and shaft grouting simulation. Golder supported JNC participation in Task 6AB, 6D and 6E of the AEspoe Task Force on Modeling of Groundwater Flow and Transport during H-16. For Task 6AB, Golder developed a new technique to evaluate the role of grout in performance assessment time-scale transport. For Task 6D, Golder submitted a report of H-15 simulations to SKB. For Task 6E, Golder carried out safety assessment time-scale simulations at the block scale, using the Laplace Transform Galerkin method. During H-16, Golder supported JNC's Total System Performance Assessment (TSPA) strategy by developing technologies for the analysis of the use site characterization data in safety assessment. This approach will aid in the understanding of the use of site characterization to progressively reduce site characterization uncertainty. (author)

  17. Modeling climate effects on hip fracture rate by the multivariate GARCH model in Montreal region, Canada

    Modarres, Reza; Ouarda, Taha B. M. J.; Vanasse, Alain; Orzanco, Maria Gabriela; Gosselin, Pierre

    2014-07-01

    Changes in extreme meteorological variables and the demographic shift towards an older population have made it important to investigate the association of climate variables and hip fracture by advanced methods in order to determine the climate variables that most affect hip fracture incidence. The nonlinear autoregressive moving average with exogenous variable-generalized autoregressive conditional heteroscedasticity (ARMA X-GARCH) and multivariate GARCH (MGARCH) time series approaches were applied to investigate the nonlinear association between hip fracture rate in female and male patients aged 40-74 and 75+ years and climate variables in the period of 1993-2004, in Montreal, Canada. The models describe 50-56 % of daily variation in hip fracture rate and identify snow depth, air temperature, day length and air pressure as the influencing variables on the time-varying mean and variance of the hip fracture rate. The conditional covariance between climate variables and hip fracture rate is increasing exponentially, showing that the effect of climate variables on hip fracture rate is most acute when rates are high and climate conditions are at their worst. In Montreal, climate variables, particularly snow depth and air temperature, appear to be important predictors of hip fracture incidence. The association of climate variables and hip fracture does not seem to change linearly with time, but increases exponentially under harsh climate conditions. The results of this study can be used to provide an adaptive climate-related public health program and ti guide allocation of services for avoiding hip fracture risk.

  18. Using outcrop data for geological well test modelling in fractured reservoirs

    Aljuboori, F.; Corbett, P.; Bisdom, K.; Bertotti, G.; Geiger, S.

    2015-01-01

    Outcrop fracture data sets can now be acquired with ever more accuracy using drone technology augmented by field observations. These models can be used to form realistic, deterministic models of fractured reservoirs. Fractured well test models are traditionally seen to be finite or infinite

  19. Fracture Mechanical Markov Chain Crack Growth Model

    Gansted, L.; Brincker, Rune; Hansen, Lars Pilegaard

    1991-01-01

    propagation process can be described by a discrete space Markov theory. The model is applicable to deterministic as well as to random loading. Once the model parameters for a given material have been determined, the results can be used for any structure as soon as the geometrical function is known....

  20. Fracture network modelling: an integrated approach for realisation of complex fracture network geometries

    Srivastava, R.M.

    2007-01-01

    In its efforts to improve geological support of the safety case, Ontario Power Generation's Deep Geologic Repository Technology Programme (DGRTP) has developed a procedure (Srivastava, 2002) for creating realistic 3-D fracture network models (FNMs) that honor information typically available at the time of preliminary site characterisation: By accommodating all of the these various pieces of 'hard' and 'soft' data, these FNMs provide a single, coherent and consistent model that can serve the needs of many preliminary site characterisation studies. The detailed, complex and realistic models of 3-D fracture geometry produced by this method can serve as the basis for developing rock property models to be used in flow and transport studies. They can also be used for exploring the suitability of a proposed site by providing quantitative assessments of the probability that a proposed repository with a specified geometry will be intersected by fractures. When integrated with state-of-the-art scientific visualisation, these models can also help in the planning of additional data gathering activities by identifying critical fractures that merit further detailed investigation. Finally, these FNMs can serve as one of the central elements of the presentation and explanation of the Descriptive Conceptual Geosphere Model (DCM) to other interested parties, including non-technical audiences. In addition to being ideally suited to preliminary site characterisation, the approach also readily incorporates field data that may become available during subsequent site investigations, including ground reconnaissance, borehole programmes and other subsurface studies. A single approach can therefore serve the needs of the site characterisation from its inception through several years of data collection and more detailed site-specific investigations, accommodating new data as they become available and updating the FNMs accordingly. The FNMs from this method are probabilistic in the sense that

  1. A microstructurally based fracture model for nuclear graphite

    Burchell, T.D.

    1991-01-01

    This paper reports the physical basis of, and assumptions behind, a fracture model for nuclear graphites. Microstructurally related inputs, such as filler particle size, filler particle fracture toughness (K Ic ), density, pore size distribution, number of pores and specimen geometry (size and volume), are utilized in the model. The model has been applied to two graphites, Great Lakes Carbon Corporation grade H-451 and Toyo Tanso grade IG-110. For each graphite, the predicted tensile failure probabilities are compared with experimental data generated using ASTM Standard C-749 tensile test specimens. The predicted failure probabilities are in close agreement with the experimental data, particularly in the case of the H-451. The model is also shown to qualitatively predict the influence on the failure probabilities of changes in filler particle size, density, pore size, pore size distribution, number of pores and specimen geometry (stressed volume). The good performance is attributed to the sound physical basis of the model, which recognizes the dominant role of porosity in controlling crack initiation and propagation during graphite fracture. 8 refs., 12 figs., 1 tab

  2. Cohesive Laws and Progressive Damage Analysis of Composite Bonded Joints, a Combined Numerical/Experimental Approach

    Girolamo, Donato; Davila, Carlos G.; Leone, Frank A.; Lin, Shih-Yung

    2015-01-01

    The results of an experimental/numerical campaign aimed to develop progressive damage analysis (PDA) tools for predicting the strength of a composite bonded joint under tensile loads are presented. The PDA is based on continuum damage mechanics (CDM) to account for intralaminar damage, and cohesive laws to account for interlaminar and adhesive damage. The adhesive response is characterized using standard fracture specimens and digital image correlation (DIC). The displacement fields measured by DIC are used to calculate the J-integrals, from which the associated cohesive laws of the structural adhesive can be derived. A finite element model of a sandwich conventional splice joint (CSJ) under tensile loads was developed. The simulations, in agreement with experimental tests, indicate that the model is capable of predicting the interactions of damage modes that lead to the failure of the joint.

  3. A three-dimensional coupled thermo-hydro-mechanical model for deformable fractured geothermal systems

    Salimzadeh, Saeed; Paluszny, Adriana; Nick, Hamidreza M.

    2018-01-01

    A fully coupled thermal-hydraulic-mechanical (THM) finite element model is presented for fractured geothermal reservoirs. Fractures are modelled as surface discontinuities within a three-dimensional matrix. Non-isothermal flow through the rock matrix and fractures are defined and coupled to a mec......A fully coupled thermal-hydraulic-mechanical (THM) finite element model is presented for fractured geothermal reservoirs. Fractures are modelled as surface discontinuities within a three-dimensional matrix. Non-isothermal flow through the rock matrix and fractures are defined and coupled....... The model has been validated against several analytical solutions, and applied to study the effects of the deformable fractures on the injection of cold water in fractured geothermal systems. Results show that the creation of flow channelling due to the thermal volumetric contraction of the rock matrix...

  4. Brittle Fracture Mechanics of Snow : In Situ Testing and Distinct Element Modeling

    Faillettaz, J.; Daudon, D.; Louchet, F.

    A snow slab avalanche release usually results from the rupture of the snow cover at the interface between an upper layer (slab) and an underlying substrate. Amazingly, the models proposed so far to predict this kind of rupture were only based on continuum mechanics, as they did not take into account the existing cracks or cohesion defects at the interface between the two layers, and their possible unstable propagation that eventually triggers the avalanche. This is why the present work, essentially devoted to human triggered avalanches, is based instead on Griffith's fracture approach, widely used in modelling brittle fracture of materials. The possible rupture scenario involves a propagation in a shear mode of a "basal crack" nucleated and gradually grown at the interface by the skier's weight, followed by a mode I opening and propagation of a "crown crack" at the top of the sheared zone. Different avalanche sizes are predicted according whether the basal crack propagation reaches or not the Griffith's instabil- ity size before crown crack opening (Louchet 2000). Accurate predictions therefore require a precise knowledge of snow toughness values in both modes. A theoretical estimation of toughness considering snow as an ice foam was proposed by Kirchner and Michot (2000), but the question of whether these results may be extended to an assembly of sintered grains is still open. A mode I toughness measurement of snow was also published for the first time by Kirchner and Michot on samples gathered in the Vosges range. In the present work, we developed an experimental set similar to Michot's, in order to measure mode I toughness: a vertical crack of increasing size is gradually machined from the top surface in an horizontal snow beam until failure takes place under its own weight. The toughness value is computed from the snow weight and the crack length at the onset of rapid crack propagation. A similar device was designed for mode II testing, but is still under

  5. An Efficient Upscaling Procedure Based on Stokes-Brinkman Model and Discrete Fracture Network Method for Naturally Fractured Carbonate Karst Reservoirs

    Qin, Guan; Bi, Linfeng; Popov, Peter; Efendiev, Yalchin; Espedal, Magne

    2010-01-01

    , fractures and their interconnectivities in coarse-scale simulation models. In this paper, we present a procedure based on our previously proposed Stokes-Brinkman model (SPE 125593) and the discrete fracture network method for accurate and efficient upscaling

  6. Effect of hydro mechanical coupling on natural fracture network formation in sedimentary basins

    Ouraga, Zady; Guy, Nicolas; Pouya, Amade

    2018-05-01

    In sedimentary basin context, numerous phenomena, depending on the geological time span, can result in natural fracture network formation. In this paper, fracture network and dynamic fracture spacing triggered by significant sedimentation rate are studied considering mode I fracture propagation using a coupled hydro-mechanical numerical methods. The focus is put on synthetic geological structure under a constant sedimentation rate on its top. This model contains vertical fracture network initially closed and homogeneously distributed. The fractures are modelled with cohesive zone model undergoing damage and the flow is described by Poiseuille's law. The effect of the behaviour of the rock is studied and the analysis leads to a pattern of fracture network and fracture spacing in the geological layer.

  7. Intergranular brittle fracture of a low alloy steel. Global and local approaches

    Kantidis, E.

    1993-08-01

    The intergranular brittle fracture of a low alloy steel (A533B.Cl1) is studied: an embrittlement heat treatment is used to develop two brittle 'states' that fail through an intergranular way at low temperatures. This mode of fracture leads to an important shift of the transition temperature (∼ 165 deg C) and a decrease in the fracture toughness. The local approach to fracture, developed for cleavage, is applied to the case of intergranular fracture. Modifications are proposed. The physical supports of these models are verified by biaxial (tension-torsion) tests. From the local approaches developed for intergranular fracture, the static and dynamic fracture toughness of the embrittled steel is predicted. The local approach applied to a structural steel, which presents mixed modes of fracture (cleavage and intergranular), showed that this mode of fracture seems to be controlled by intergranular loss of cohesion

  8. Geological discrete fracture network model for the Laxemar site. Site Descriptive Modelling. SDM-Site Laxemar

    La Pointe, Paul; Fox, Aaron (Golder Associates Inc (United States)); Hermanson, Jan; Oehman, Johan (Golder Associates AB, Stockholm (Sweden))

    2008-12-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is performing site characterization at two different locations, Forsmark and Laxemar, in order to locate a site for a final geologic repository for spent nuclear fuel. The program is built upon the development of Site Descriptive Models (SDMs) at specific timed data freezes. Each SDM is formed from discipline-specific reports from across the scientific spectrum. This report describes the methods, analyses, and conclusions of the modelling team in the production of the SDM-Site Laxemar geological discrete-fracture network (DFN) model. The DFN builds upon the work of other geological models, including the deformation zone and rock domain models. The geological DFN is a statistical model for stochastically simulating rock fractures and minor deformation zones at a scale of less than 1,000 m (the lower cut-off of the DZ models). The geological DFN is valid within six distinct fracture domains inside the Laxemar local model subarea: FSM{sub C}, FSM{sub E}W007, FSM{sub N}, FSM{sub N}E005, FSM{sub S}, and FSM{sub W}. The models are built using data from detailed surface outcrop maps, geophysical lineament maps, and the cored borehole record at Laxemar. The conceptual model for the SDM-Site Laxemar geological DFN model revolves around the identification of fracture domains based on relative fracture set intensities, orientation clustering, and the regional tectonic framework (including deformation zones). A single coupled fracture size/fracture intensity concept (the Base Model) based on a Pareto (power-law) distribution for fracture sizes was chosen as the recommended parameterisation. A slew of alternative size-intensity models were also carried through the fracture analyses and into the uncertainty and model verification analyses. Uncertainty is modelled by analysing the effects on fracture intensity (P32) that alternative model cases can have. Uncertainty is parameterised as a ratio between the P32 of the

  9. Geological discrete fracture network model for the Laxemar site. Site Descriptive Modelling. SDM-Site Laxemar

    La Pointe, Paul; Fox, Aaron; Hermanson, Jan; Oehman, Johan

    2008-10-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is performing site characterization at two different locations, Forsmark and Laxemar, in order to locate a site for a final geologic repository for spent nuclear fuel. The program is built upon the development of Site Descriptive Models (SDMs) at specific timed data freezes. Each SDM is formed from discipline-specific reports from across the scientific spectrum. This report describes the methods, analyses, and conclusions of the modelling team in the production of the SDM-Site Laxemar geological discrete-fracture network (DFN) model. The DFN builds upon the work of other geological models, including the deformation zone and rock domain models. The geological DFN is a statistical model for stochastically simulating rock fractures and minor deformation zones at a scale of less than 1,000 m (the lower cut-off of the DZ models). The geological DFN is valid within six distinct fracture domains inside the Laxemar local model subarea: FSM C , FSM E W007, FSM N , FSM N E005, FSM S , and FSM W . The models are built using data from detailed surface outcrop maps, geophysical lineament maps, and the cored borehole record at Laxemar. The conceptual model for the SDM-Site Laxemar geological DFN model revolves around the identification of fracture domains based on relative fracture set intensities, orientation clustering, and the regional tectonic framework (including deformation zones). A single coupled fracture size/fracture intensity concept (the Base Model) based on a Pareto (power-law) distribution for fracture sizes was chosen as the recommended parameterisation. A slew of alternative size-intensity models were also carried through the fracture analyses and into the uncertainty and model verification analyses. Uncertainty is modelled by analysing the effects on fracture intensity (P32) that alternative model cases can have. Uncertainty is parameterised as a ratio between the P32 of the alternative model and the P

  10. A nonequilibrium model for reactive contaminant transport through fractured porous media: Model development and semianalytical solution

    Joshi, Nitin; Ojha, C. S. P.; Sharma, P. K.

    2012-10-01

    In this study a conceptual model that accounts for the effects of nonequilibrium contaminant transport in a fractured porous media is developed. Present model accounts for both physical and sorption nonequilibrium. Analytical solution was developed using the Laplace transform technique, which was then numerically inverted to obtain solute concentration in the fracture matrix system. The semianalytical solution developed here can incorporate both semi-infinite and finite fracture matrix extent. In addition, the model can account for flexible boundary conditions and nonzero initial condition in the fracture matrix system. The present semianalytical solution was validated against the existing analytical solutions for the fracture matrix system. In order to differentiate between various sorption/transport mechanism different cases of sorption and mass transfer were analyzed by comparing the breakthrough curves and temporal moments. It was found that significant differences in the signature of sorption and mass transfer exists. Applicability of the developed model was evaluated by simulating the published experimental data of Calcium and Strontium transport in a single fracture. The present model simulated the experimental data reasonably well in comparison to the model based on equilibrium sorption assumption in fracture matrix system, and multi rate mass transfer model.

  11. Fracture network modeling and GoldSim simulation support

    Sugita, Kenichiro; Dershowitz, William

    2003-01-01

    During Heisei-14, Golder Associates provided support for JNC Tokai through data analysis and simulation of the MIU Underground Rock Laboratory, participation in Task 6 of the Aespoe Task Force on Modelling of Groundwater Flow and Transport, and analysis of repository safety assessment technologies including cell networks for evaluation of the disturbed rock zone (DRZ) and total systems performance assessment (TSPA). MIU Underground Rock Laboratory support during H-14 involved discrete fracture network (DFN) modelling in support of the Multiple Modelling Project (MMP) and the Long Term Pumping Test (LPT). Golder developed updated DFN models for the MIU site, reflecting updated analyses of fracture data. Golder also developed scripts to support JNC simulations of flow and transport pathways within the MMP. Golder supported JNC participation in Task 6 of the Aespoe Task Force on Modelling of Groundwater Flow and Transport during H-14. Task 6A and 6B compared safety assessment (PA) and experimental time scale simulations along a pipe transport pathway. Task 6B2 extended Task 6B simulations from 1-D to 2-D. For Task 6B2, Golder carried out single fracture transport simulations on a wide variety of generic heterogeneous 2D fractures using both experimental and safety assessment boundary conditions. The heterogeneous 2D fractures were implemented according to a variety of in plane heterogeneity patterns. Multiple immobile zones were considered including stagnant zones, infillings, altered wall rock, and intact rock. During H-14, JNC carried out extensive studies of the distributed rock zone (DRZ) surrounding repository tunnels and drifts. Golder supported this activity be evaluating the calculation time necessary for simulating a reference heterogeneous DRZ cell network for a range of computational strategies. To support the development of JNC's total system performance assessment (TSPA) strategy, Golder carried out a review of the US DOE Yucca Mountain Project TSPA. This

  12. Internal fracture heterogeneity in discrete fracture network modelling: Effect of correlation length and textures with connected and disconnected permeability field

    Frampton, A.; Hyman, J.; Zou, L.

    2017-12-01

    Analysing flow and transport in sparsely fractured media is important for understanding how crystalline bedrock environments function as barriers to transport of contaminants, with important applications towards subsurface repositories for storage of spent nuclear fuel. Crystalline bedrocks are particularly favourable due to their geological stability, low advective flow and strong hydrogeochemical retention properties, which can delay transport of radionuclides, allowing decay to limit release to the biosphere. There are however many challenges involved in quantifying and modelling subsurface flow and transport in fractured media, largely due to geological complexity and heterogeneity, where the interplay between advective and dispersive flow strongly impacts both inert and reactive transport. A key to modelling transport in a Lagrangian framework involves quantifying pathway travel times and the hydrodynamic control of retention, and both these quantities strongly depend on heterogeneity of the fracture network at different scales. In this contribution, we present recent analysis of flow and transport considering fracture networks with single-fracture heterogeneity described by different multivariate normal distributions. A coherent triad of fields with identical correlation length and variance are created but which greatly differ in structure, corresponding to textures with well-connected low, medium and high permeability structures. Through numerical modelling of multiple scales in a stochastic setting we quantify the relative impact of texture type and correlation length against network topological measures, and identify key thresholds for cases where flow dispersion is controlled by single-fracture heterogeneity versus network-scale heterogeneity. This is achieved by using a recently developed novel numerical discrete fracture network model. Furthermore, we highlight enhanced flow channelling for cases where correlation structure continues across

  13. New model for surface fracture induced by dynamical stress

    Andersen, J. V.; Lewis, L. J.

    1997-01-01

    We introduce a model where an isotropic, dynamically-imposed stress induces fracture in a thin film. Using molecular dynamics simulations, we study how the integrated fragment distribution function depends on the rate of change and magnitude of the imposed stress, as well as on temperature. A mean-field argument shows that the system becomes unstable for a critical value of the stress. We find a striking invariance of the distribution of fragments for fixed ratio of temperature and rate of ch...

  14. Implicit fracture modelling in FLAC3D: Assessing the behaviour of fractured shales, carbonates and other fractured rock types

    Osinga, S.; Pizzocolo, F.; Veer, E.F. van der; Heege, J.H. ter

    2016-01-01

    Fractured rocks play an important role in many types of petroleum and geo-energy operations. From fractured limestone reservoirs to unconventionals, understanding the geomechanical behaviour and the dynamically coupled (dual) permeability system is paramount for optimal development of these systems.

  15. Modeling of flow in faulted and fractured media

    Oeian, Erlend

    2004-03-01

    The work on this thesis has been done as part of a collaborative and inter disciplinary effort to improve the understanding of oil recovery mechanisms in fractured reservoirs. This project has been organized as a Strategic University Program (SUP) at the University of Bergen, Norway. The complex geometries of fractured reservoirs combined with flow of several fluid phases lead to difficult mathematical and numerical problems. In an effort to try to decrease the gap between the geological description and numerical modeling capabilities, new techniques are required. Thus, the main objective has been to improve the ATHENA flow simulator and utilize it within a fault modeling context. Specifically, an implicit treatment of the advection dominated mass transport equations within a domain decomposition based local grid refinement framework has been implemented. Since large computational tasks may arise, the implicit formulation has also been included in a parallel version of the code. Within the current limits of the simulator, appropriate up scaling techniques has also been considered. Part I of this thesis includes background material covering the basic geology of fractured porous media, the mathematical model behind the in-house flow simulator ATHENA and the additions implemented to approach simulation of flow through fractured and faulted porous media. In Part II, a set of research papers stemming from Part I is presented. A brief outline of the thesis follows below. In Chapt. 1 important aspects of the geological description and physical parameters of fractured and faulted porous media is presented. Based on this the scope of this thesis is specified having numerical issues and consequences in mind. Then, in Chapt. 2, the mathematical model and discretizations in the flow simulator is given followed by the derivation of the implicit mass transport formulation. In order to be fairly self-contained, most of the papers in Part II also includes the mathematical model

  16. Modeling of flow in faulted and fractured media

    Oeian, Erlend

    2004-03-01

    The work on this thesis has been done as part of a collaborative and inter disciplinary effort to improve the understanding of oil recovery mechanisms in fractured reservoirs. This project has been organized as a Strategic University Program (SUP) at the University of Bergen, Norway. The complex geometries of fractured reservoirs combined with flow of several fluid phases lead to difficult mathematical and numerical problems. In an effort to try to decrease the gap between the geological description and numerical modeling capabilities, new techniques are required. Thus, the main objective has been to improve the ATHENA flow simulator and utilize it within a fault modeling context. Specifically, an implicit treatment of the advection dominated mass transport equations within a domain decomposition based local grid refinement framework has been implemented. Since large computational tasks may arise, the implicit formulation has also been included in a parallel version of the code. Within the current limits of the simulator, appropriate up scaling techniques has also been considered. Part I of this thesis includes background material covering the basic geology of fractured porous media, the mathematical model behind the in-house flow simulator ATHENA and the additions implemented to approach simulation of flow through fractured and faulted porous media. In Part II, a set of research papers stemming from Part I is presented. A brief outline of the thesis follows below. In Chapt. 1 important aspects of the geological description and physical parameters of fractured and faulted porous media is presented. Based on this the scope of this thesis is specified having numerical issues and consequences in mind. Then, in Chapt. 2, the mathematical model and discretizations in the flow simulator is given followed by the derivation of the implicit mass transport formulation. In order to be fairly self-contained, most of the papers in Part II also includes the mathematical model

  17. Groundwater modelling for fractured and porous media: HYDROCOIN Level 1

    Noy, D.J.

    1986-01-01

    The report describes work carried out as part of the 'Hydrocoin' project to verify some of the models used by the British Geological Survey on its radioactive waste disposal programme. The author's work on Hydrocoin Level 1 concerned groundwater modelling for fractured and porous media. The overall conclusions arising from the work were: a) pressure fields in saturated media can be reliably calculated by existing programmes, b) three techniques for deriving the flow fields are described, and c) severe practical limitations exist as to the ability of current programs to model variably saturated conditions over moderate distances. (U.K.)

  18. Fracture network modeling and GoldSim simulation support

    Sugita, Kenichiro; Dershowitz, William

    2004-01-01

    During Heisei-15, Golder Associates provided support for JNC Tokai through discrete fracture network data analysis and simulation of the MIU Underground Rock Laboratory, participation in Task 6 of the Aespoe Task Force on Modelling of Groundwater Flow and Transport, and development of methodologies for analysis of repository site characterization strategies and safety assessment. MIU Underground Rock Laboratory support during H-15 involved development of new discrete fracture network (DFN) models for the MIU Shoba-sama Site, in the region of shaft development. Golder developed three DFN models for the site using discrete fracture network, equivalent porous medium (EPM), and nested DFN/EPM approaches. Each of these models were compared based upon criteria established for the multiple modeling project (MMP). Golder supported JNC participation in Task 6AB, 6D and 6E of the Aespoe Task Force on Modelling of Groundwater Flow and Transport during H-15. For Task 6AB, Golder implemented an updated microstructural model in GoldSim, and used this updated model to simulate the propagation of uncertainty from experimental to safety assessment time scales, for 5 m scale transport path lengths. Task 6D and 6E compared safety assessment (PA) and experimental time scale simulations in a 200 m scale discrete fracture network. For Task 6D, Golder implemented a DFN model using FracMan/PA Works, and determined the sensitivity of solute transport to a range of material property and geometric assumptions. For Task 6E, Golder carried out demonstration FracMan/PA Works transport calculations at a 1 million year time scale, to ensure that task specifications are realistic. The majority of work for Task 6E will be carried out during H-16. During H-15, Golder supported JNC's Total System Performance Assessment (TSPO) strategy by developing technologies for the analysis of precipitant concentration. These approaches were based on the GoldSim precipitant data management features, and were

  19. Dislocation-free zone model of fracture comparison with experiments

    Ohr, S.M.; Chang, S.

    1982-01-01

    The dislocation-free zone (DFZ) model of fracture has been extended to study the relationship between the stress intensity factor, extent of plastic deformation, and crack tip geometry of an elastic-plastic crack as a function of applied stress. The results show that the stress intensity factor K decreases from the elastic value at first slowly, then goes rapidly to zero as the number of dislocations in the plastic zone increases. The crack with a zero stress intensity factor has its crack tip stress field completely relaxed by plastic deformation and hence is called a plastic crack. Between the elastic and plastic cracks, a wide range of elastic-plastic cracks having both a stress singularity and a plastic zone are possible. These elastic-plastic cracks with a DFZ are predicted if there is a critical stress intensity factor K/sub g/ required for the generation of dislocations at the crack tip. The expression for K/sub g/ is obtained from the crack tip dislocation nucleation model of Rice and Thomson. In most metals, the magnitude of K/sub g/ is less than the critical stress intensity factor for brittle fracture K/sub c/. The values of K are determined from electron microscope fracture experiments for various metals and they are found to be in good agreement with the K/sub g/ predicted from the model. It is concluded that for most ductile and semibrittle metals, the mechanism of dislocation generation is more important than the fracture surface energy in determining the stress intensity factor at the crack tip

  20. Statistical methodology for discrete fracture model - including fracture size, orientation uncertainty together with intensity uncertainty and variability

    Darcel, C.; Davy, P.; Le Goc, R.; Dreuzy, J.R. de; Bour, O.

    2009-11-01

    Investigations led for several years at Laxemar and Forsmark reveal the large heterogeneity of geological formations and associated fracturing. This project aims at reinforcing the statistical DFN modeling framework adapted to a site scale. This leads therefore to develop quantitative methods of characterization adapted to the nature of fracturing and data availability. We start with the hypothesis that the maximum likelihood DFN model is a power-law model with a density term depending on orientations. This is supported both by literature and specifically here by former analyses of the SKB data. This assumption is nevertheless thoroughly tested by analyzing the fracture trace and lineament maps. Fracture traces range roughly between 0.5 m and 10 m - i e the usual extension of the sample outcrops. Between the raw data and final data used to compute the fracture size distribution from which the size distribution model will arise, several steps are necessary, in order to correct data from finite-size, topographical and sampling effects. More precisely, a particular attention is paid to fracture segmentation status and fracture linkage consistent with the DFN model expected. The fracture scaling trend observed over both sites displays finally a shape parameter k t close to 1.2 with a density term (α 2d ) between 1.4 and 1.8. Only two outcrops clearly display a different trend with k t close to 3 and a density term (α 2d ) between 2 and 3.5. The fracture lineaments spread over the range between 100 meters and a few kilometers. When compared with fracture trace maps, these datasets are already interpreted and the linkage process developed previously has not to be done. Except for the subregional lineament map from Forsmark, lineaments display a clear power-law trend with a shape parameter k t equal to 3 and a density term between 2 and 4.5. The apparent variation in scaling exponent, from the outcrop scale (k t = 1.2) on one side, to the lineament scale (k t = 2) on

  1. Hybrid-dimensional modelling of two-phase flow through fractured porous media with enhanced matrix fracture transmission conditions

    Brenner, Konstantin; Hennicker, Julian; Masson, Roland; Samier, Pierre

    2018-03-01

    In this work, we extend, to two-phase flow, the single-phase Darcy flow model proposed in [26], [12] in which the (d - 1)-dimensional flow in the fractures is coupled with the d-dimensional flow in the matrix. Three types of so called hybrid-dimensional two-phase Darcy flow models are proposed. They all account for fractures acting either as drains or as barriers, since they allow pressure jumps at the matrix-fracture interfaces. The models also permit to treat gravity dominated flow as well as discontinuous capillary pressure at the material interfaces. The three models differ by their transmission conditions at matrix fracture interfaces: while the first model accounts for the nonlinear two-phase Darcy flux conservations, the second and third ones are based on the linear single phase Darcy flux conservations combined with different approximations of the mobilities. We adapt the Vertex Approximate Gradient (VAG) scheme to this problem, in order to account for anisotropy and heterogeneity aspects as well as for applicability on general meshes. Several test cases are presented to compare our hybrid-dimensional models to the generic equi-dimensional model, in which fractures have the same dimension as the matrix, leading to deep insight about the quality of the proposed reduced models.

  2. A boundary integral method for a dynamic, transient mode I crack problem with viscoelastic cohesive zone

    Leise, Tanya L.; Walton, Jay R.; Gorb, Yuliya

    2009-01-01

    interpenetration, in contrast to the usual mode I boundary conditions that assume all unloaded crack faces are stress-free. The nonlinear viscoelastic cohesive zone behavior is motivated by dynamic fracture in brittle polymers in which crack propagation

  3. Adsorption induced losses in interfacial cohesion

    Asaro, R.J.

    1977-07-01

    A model for interfacial cohesion is developed which describes the loss in the strength of an interface due to the segregation and adsorption of impurities on it. Distinctions are made between interface separations that occur too rapidly for any significant redistribution of adsorbing matter to take place and separations that are slow enough to allow full adsorption equilibrium. Expressions for the total work of complete decohesion are presented for both cases. The results are applied to well-known model adsorption isotherms and some experimental data for grain boundary adsorption of phosphorus in iron is analyzed with respect to the losses in intergranular cohesion

  4. Computational Modelling of Fracture Propagation in Rocks Using a Coupled Elastic-Plasticity-Damage Model

    Isa Kolo

    2016-01-01

    Full Text Available A coupled elastic-plasticity-damage constitutive model, AK Model, is applied to predict fracture propagation in rocks. The quasi-brittle material model captures anisotropic effects and the distinct behavior of rocks in tension and compression. Calibration of the constitutive model is realized using experimental data for Carrara marble. Through the Weibull distribution function, heterogeneity effect is captured by spatially varying the elastic properties of the rock. Favorable comparison between model predictions and experiments for single-flawed specimens reveal that the AK Model is reliable and accurate for modelling fracture propagation in rocks.

  5. Geological discrete-fracture network model (version 1) for the Olkiluoto site, Finland

    Fox, A.; Buoro, A.; Dahlbo, K.; Wiren, L.

    2009-10-01

    This report describes the methods, analyses, and conclusions of the modelling team in the production of a discrete-fracture network (DFN) model for the Olkiluoto Site in Finland. The geological DFN is a statistical model for stochastically simulating rock fractures and minor faults at a scale ranging from approximately 0.05 m to approximately 500 m; an upper scale limit is not expressly defined, but the DFN model explicitly excludes structures at deformation-zone scales (∼ 500 m) and larger. The DFN model is presented as a series of tables summarizing probability distributions for several parameters necessary for fracture modelling: fracture orientation, fracture size, fracture intensity, and associated spatial constraints. The geological DFN is built from data collected during site characterization (SC) activities at Olkiluoto, which is currently planned to function as a final deep geological repository for spent fuel and nuclear waste from the Finnish nuclear power program. Data used in the DFN analyses include fracture maps from surface outcrops and trenches (as of July 2007), geological and structural data from cored boreholes (as of July 2007), and fracture information collected during the construction of the main tunnels and shafts at the ONKALO laboratory (January 2008). The modelling results suggest that the rock volume at Olkiluoto surrounding the ONKALO tunnel can be separated into three distinct volumes (fracture domains): an upper block, an intermediate block, and a lower block. The three fracture domains are bounded horizontally and vertically by large deformation zones. Fracture properties, such as fracture orientation and relative orientation set intensity, vary between fracture domains. The rock volume at Olkiluoto is dominated by three distinct fracture sets: subhorizontally-dipping fractures striking north-northeast and dipping to the east, a subvertically-dipping fracture set striking roughly north-south, and a subverticallydipping fracture set

  6. A new equi-dimensional fracture model using polyhedral cells for microseismic data sets

    Al-Hinai, Omar

    2017-04-09

    We present a method for modeling flow in porous media in the presence of complex fracture networks. The approach utilizes the Mimetic Finite Difference (MFD) method. We employ a novel equi-dimensional approach for meshing fractures. By using polyhedral cells we avoid the common challenge in equi-dimensional fracture modeling of creating small cells at the intersection point. We also demonstrate how polyhedra can mesh complex fractures without introducing a large number of cells. We use polyhedra and the MFD method a second time for embedding fracture boundaries in the matrix domain using a “cut-cell” paradigm. The embedding approach has the advantage of being simple and localizes irregular cells to the area around the fractures. It also circumvents the need for conventional mesh generation, which can be challenging when applied to complex fracture geometries. We present numerical results confirming the validity of our approach for complex fracture networks and for different flow models. In our first example, we compare our method to the popular dual-porosity technique. Our second example compares our method with directly meshed fractures (single-porosity) for two-phase flow. The third example demonstrates two-phase flow for the case of intersecting ellipsoid fractures in three-dimensions, which are typical in microseismic analysis of fractures. Finally, we demonstrate our method on a two-dimensional fracture network produced from microseismic field data.

  7. A new equi-dimensional fracture model using polyhedral cells for microseismic data sets

    Al-Hinai, Omar; Dong, Rencheng; Srinivasan, Sanjay; Wheeler, Mary F.

    2017-01-01

    We present a method for modeling flow in porous media in the presence of complex fracture networks. The approach utilizes the Mimetic Finite Difference (MFD) method. We employ a novel equi-dimensional approach for meshing fractures. By using polyhedral cells we avoid the common challenge in equi-dimensional fracture modeling of creating small cells at the intersection point. We also demonstrate how polyhedra can mesh complex fractures without introducing a large number of cells. We use polyhedra and the MFD method a second time for embedding fracture boundaries in the matrix domain using a “cut-cell” paradigm. The embedding approach has the advantage of being simple and localizes irregular cells to the area around the fractures. It also circumvents the need for conventional mesh generation, which can be challenging when applied to complex fracture geometries. We present numerical results confirming the validity of our approach for complex fracture networks and for different flow models. In our first example, we compare our method to the popular dual-porosity technique. Our second example compares our method with directly meshed fractures (single-porosity) for two-phase flow. The third example demonstrates two-phase flow for the case of intersecting ellipsoid fractures in three-dimensions, which are typical in microseismic analysis of fractures. Finally, we demonstrate our method on a two-dimensional fracture network produced from microseismic field data.

  8. Research program to develop and validate conceptual models for flow and transport through unsaturated, fractured rock

    Glass, R.J.; Tidwell, V.C.

    1991-09-01

    As part of the Yucca Mountain Project, our research program to develop and validate conceptual models for flow and transport through unsaturated fractured rock integrates fundamental physical experimentation with conceptual model formulation and mathematical modeling. Our research is directed toward developing and validating macroscopic, continuum-based models and supporting effective property models because of their widespread utility within the context of this project. Success relative to the development and validation of effective property models is predicted on a firm understanding of the basic physics governing flow through fractured media, specifically in the areas of unsaturated flow and transport in a single fracture and fracture-matrix interaction

  9. Research program to develop and validate conceptual models for flow and transport through unsaturated, fractured rock

    Glass, R.J.; Tidwell, V.C.

    1991-01-01

    As part of the Yucca Mountain Project, our research program to develop and validate conceptual models for flow and transport through unsaturated fractured rock integrates fundamental physical experimentation with conceptual model formulation and mathematical modeling. Our research is directed toward developing and validating macroscopic, continuum-based models and supporting effective property models because of their widespread utility within the context of this project. Success relative to the development and validation of effective property models is predicated on a firm understanding of the basic physics governing flow through fractured media, specifically in the areas of unsaturated flow and transport in a single fracture and fracture-matrix interaction. 43 refs

  10. Research program to develop and validate conceptual models for flow and transport through unsaturated, fractured rock

    Glass, R.J.; Tidwell, V.C.

    1991-01-01

    As part of the Yucca Mountain Project, our research program to develop and validate conceptual models for flow and transport through unsaturated fractured rock integrates fundamental physical experimentation with conceptual model formulation and mathematical modeling. Our research is directed toward developing and validating macroscopic, continuum-based models and supporting effective property models because of their widespread utility within the context of this project. Success relative to the development and validation of effective property models is predicted on a firm understanding of the basic physics governing flow through fractured media, specifically in the areas of unsaturated flow and transport in a single fracture and fracture-matrix interaction

  11. Deformation Behavior between Hydraulic and Natural Fractures Using Fully Coupled Hydromechanical Model with XFEM

    Fei Liu

    2017-01-01

    Full Text Available There has been a growing consensus that preexisting natural fractures play an important role during stimulation. A novel fully coupled hydromechanical model using extended finite element method is proposed. This directly coupled scheme avoids the cumbersome process during calculating the fluid pressure in complicated fracture networks and translating into an equivalent nodal force. Numerical examples are presented to simulate the hydraulic fracture propagation paths for simultaneous multifracture treatments with properly using the stress shadow effects for horizontal wells and to reveal the deformation response and interaction mechanism between hydraulic induced fracture and nonintersected natural fractures at orthotropic and nonorthotropic angles. With the stress shadow effects, the induced hydraulic flexural fracture deflecting to wellbore rather than transverse fracture would be formed during the progress of simultaneous fracturing for a horizontal well. The coupled hydromechanical simulation reveals that the adjacent section to the intersection is opened and the others are closed for orthogonal natural fracture, while the nonorthogonal natural fracture is activated near the intersection firstly and along the whole section with increasing perturbed stresses. The results imply that the induced hydraulic fracture tends to cross orthotropic natural fracture, while it is prior to being arrested by the nonorthotropic natural fracture.

  12. Statistical methodology for discrete fracture model - including fracture size, orientation uncertainty together with intensity uncertainty and variability

    Darcel, C. (Itasca Consultants SAS (France)); Davy, P.; Le Goc, R.; Dreuzy, J.R. de; Bour, O. (Geosciences Rennes, UMR 6118 CNRS, Univ. def Rennes, Rennes (France))

    2009-11-15

    Investigations led for several years at Laxemar and Forsmark reveal the large heterogeneity of geological formations and associated fracturing. This project aims at reinforcing the statistical DFN modeling framework adapted to a site scale. This leads therefore to develop quantitative methods of characterization adapted to the nature of fracturing and data availability. We start with the hypothesis that the maximum likelihood DFN model is a power-law model with a density term depending on orientations. This is supported both by literature and specifically here by former analyses of the SKB data. This assumption is nevertheless thoroughly tested by analyzing the fracture trace and lineament maps. Fracture traces range roughly between 0.5 m and 10 m - i e the usual extension of the sample outcrops. Between the raw data and final data used to compute the fracture size distribution from which the size distribution model will arise, several steps are necessary, in order to correct data from finite-size, topographical and sampling effects. More precisely, a particular attention is paid to fracture segmentation status and fracture linkage consistent with the DFN model expected. The fracture scaling trend observed over both sites displays finally a shape parameter k{sub t} close to 1.2 with a density term (alpha{sub 2d}) between 1.4 and 1.8. Only two outcrops clearly display a different trend with k{sub t} close to 3 and a density term (alpha{sub 2d}) between 2 and 3.5. The fracture lineaments spread over the range between 100 meters and a few kilometers. When compared with fracture trace maps, these datasets are already interpreted and the linkage process developed previously has not to be done. Except for the subregional lineament map from Forsmark, lineaments display a clear power-law trend with a shape parameter k{sub t} equal to 3 and a density term between 2 and 4.5. The apparent variation in scaling exponent, from the outcrop scale (k{sub t} = 1.2) on one side, to

  13. Multi-pathway model of nuclide transport in fractured media and its application

    Li Xun; Yang Zeping; Li Jinxuan

    2010-01-01

    In order to know the law of nuclide transport in fracture system, the basic differential equations of nuclide transport in fracture and matrix were obtained based on the dual media theory, and the general analytic solutions of nuclide transport in single fractured media with exponential attenuation source in fracture were deduced by Laplace transform, and one-dimensional multi-pathway model of nuclide transport was proposed based on dual media theory and stochastic distribution of fracture parameters. The transport of Th-229, Cs-135 and Se-79 were simulated with this model, the relative concentration of these nuclides in fracture system were predicted. Further more, it was deduced that aperture and velocity can distinctly influence transport of nuclide by comparing with the results which were simulated by single fracture model. (authors)

  14. (Environmental and geophysical modeling, fracture mechanics, and boundary element methods)

    Gray, L.J.

    1990-11-09

    Technical discussions at the various sites visited centered on application of boundary integral methods for environmental modeling, seismic analysis, and computational fracture mechanics in composite and smart'' materials. The traveler also attended the International Association for Boundary Element Methods Conference at Rome, Italy. While many aspects of boundary element theory and applications were discussed in the papers, the dominant topic was the analysis and application of hypersingular equations. This has been the focus of recent work by the author, and thus the conference was highly relevant to research at ORNL.

  15. Experimental Fracture Model versus Osteotomy Model in Metacarpal Bone Plate Fixation

    S. Ochman

    2011-01-01

    Full Text Available Introduction. Osteotomy or fracture models can be used to evaluate mechanical properties of fixation techniques of the hand skeleton in vitro. Although many studies make use of osteotomy models, fracture models simulate the clinical situation more realistically. This study investigates monocortical and bicortical plate fixation on metacarpal bones considering both aforementioned models to decide which method is best suited to test fixation techniques. Methods. Porcine metacarpal bones (=40 were randomized into 4 groups. In groups I and II bones were fractured with a modified 3-point bending test. The intact bones represented a further control group to which the other groups after fixation were compared. In groups III and IV a standard osteotomy was carried out. Bones were fixated with plates monocortically (group I, III and bicortically (group II, IV and tested for failure. Results. Bones fractured at a mean maximum load of 482.8 N ± 104.8 N with a relative standard deviation (RSD of 21.7%, mean stiffness was 122.3 ± 35 N/mm. In the fracture model, there was a significant difference (=0.01 for maximum load of monocortically and bicortically fixed bones in contrast to the osteotomy model (=0.9. Discussion. In the fracture model, because one can use the same bone for both measurements in the intact state and the bone-plate construct states, the impact of inter-individual differences is reduced. In contrast to the osteotomy model there are differences between monocortical and bicortical fixations in the fracture model. Thus simulation of the in vivo situation is better and seems to be suitable for the evaluation of mechanical properties of fixation techniques on metacarpals.

  16. Modelisation of transport in fractured media with a smeared fractures modeling approach: special focus on matrix diffusion process.

    Fourno, A.; Grenier, C.; Benabderrahmane, H.

    2003-04-01

    Modeling flow and transport in natural fractured media is a difficult issue due among others to the complexity of the system, the particularities of the geometrical features, the strong parameter value contrasts between the fracture zones (flow zones) and the matrix zones (no flow zones). This lead to the development of dedicated tools like for instance discrete fracture network models (DFN). We follow here another line applicable for classical continuous modeling codes. The fracture network is not meshed here but presence of fractures is taken into account by means of continuous heterogeneous fields (permeability, porosity, head, velocity, concentration ...). This line, followed by different authors, is referred as smeared fracture approach and presents the following advantages: the approach is very versatile because no dedicated spatial discretization effort is required (we use a basic regular mesh, simulations can be done on a rough mesh saving computer time). This makes this kind of approach very promising for taking heterogeneity of properties as well as uncertainties into account within a Monte Carlo framework for instance. Furthermore, the geometry of the matrix blocks where transfers proceed by diffusion is fully taken into account contrary to classical simplified 1D approach for instance. Nevertheless continuous heterogeneous field representation of a fractured medium requires a homogenization process at the scale of the mesh considered. Literature proves that this step of homogenization for transport is still a challenging task. Consequently, the level precision of the results has to be estimated. We precedently proposed a new approach dedicated to Mixed and Hybrid Finite Element approach. This numerical scheme is very interesting for such highly heterogeneous media and in particular guaranties exact conservation of mass flow for each mesh leading to good transport results. We developed a smeared fractures approach to model flow and transport limited to

  17. Detection of Natural Fractures from Observed Surface Seismic Data Based on a Linear-Slip Model

    Chen, Huaizhen; Zhang, Guangzhi

    2018-03-01

    Natural fractures play an important role in migration of hydrocarbon fluids. Based on a rock physics effective model, the linear-slip model, which defines fracture parameters (fracture compliances) for quantitatively characterizing the effects of fractures on rock total compliance, we propose a method to detect natural fractures from observed seismic data via inversion for the fracture compliances. We first derive an approximate PP-wave reflection coefficient in terms of fracture compliances. Using the approximate reflection coefficient, we derive azimuthal elastic impedance as a function of fracture compliances. An inversion method to estimate fracture compliances from seismic data is presented based on a Bayesian framework and azimuthal elastic impedance, which is implemented in a two-step procedure: a least-squares inversion for azimuthal elastic impedance and an iterative inversion for fracture compliances. We apply the inversion method to synthetic and real data to verify its stability and reasonability. Synthetic tests confirm that the method can make a stable estimation of fracture compliances in the case of seismic data containing a moderate signal-to-noise ratio for Gaussian noise, and the test on real data reveals that reasonable fracture compliances are obtained using the proposed method.

  18. Anisotropy in cohesive, frictional granular media

    Luding, Stefan

    2005-01-01

    The modelling of cohesive, frictional granular materials with a discrete particle molecular dynamics is reviewed. From the structure of the quasi-static granular solid, the fabric, stress, and stiffness tensors are determined, including both normal and tangential forces. The influence of the material properties on the flow behaviour is also reported, including relations between the microscopic attractive force and the macroscopic cohesion as well as the dependence of the macroscopic friction on the microscopic contact friction coefficient. Related to the dynamics, the anisotropy of both structure and stress are exponentially approaching the maximum

  19. Statistical geological discrete fracture network model. Forsmark modelling stage 2.2

    Fox, Aaron; La Pointe, Paul; Simeonov, Assen; Hermanson, Jan; Oehman, Johan

    2007-11-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is performing site characterization at two different locations, Forsmark and Laxemar, in order to locate a site for a final geologic repository for spent nuclear fuel. The program is built upon the development of Site Descriptive Models (SDMs) at specific timed data freezes. Each SDM is formed from discipline-specific reports from across the scientific spectrum. This report describes the methods, analyses, and conclusions of the geological modeling team with respect to a geological and statistical model of fractures and minor deformation zones (henceforth referred to as the geological DFN), version 2.2, at the Forsmark site. The geological DFN builds upon the work of other geological modelers, including the deformation zone (DZ), rock domain (RD), and fracture domain (FD) models. The geological DFN is a statistical model for stochastically simulating rock fractures and minor deformation zones as a scale of less than 1,000 m (the lower cut-off of the DZ models). The geological DFN is valid within four specific fracture domains inside the local model region, and encompassing the candidate volume at Forsmark: FFM01, FFM02, FFM03, and FFM06. The models are build using data from detailed surface outcrop maps and the cored borehole record at Forsmark. The conceptual model for the Forsmark 2.2 geological revolves around the concept of orientation sets; for each fracture domain, other model parameters such as size and intensity are tied to the orientation sets. Two classes of orientation sets were described; Global sets, which are encountered everywhere in the model region, and Local sets, which represent highly localized stress environments. Orientation sets were described in terms of their general cardinal direction (NE, NW, etc). Two alternatives are presented for fracture size modeling: - the tectonic continuum approach (TCM, TCMF) described by coupled size-intensity scaling following power law distributions

  20. Statistical geological discrete fracture network model. Forsmark modelling stage 2.2

    Fox, Aaron; La Pointe, Paul [Golder Associates Inc (United States); Simeonov, Assen [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Hermanson, Jan; Oehman, Johan [Golder Associates AB, Stockholm (Sweden)

    2007-11-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is performing site characterization at two different locations, Forsmark and Laxemar, in order to locate a site for a final geologic repository for spent nuclear fuel. The program is built upon the development of Site Descriptive Models (SDMs) at specific timed data freezes. Each SDM is formed from discipline-specific reports from across the scientific spectrum. This report describes the methods, analyses, and conclusions of the geological modeling team with respect to a geological and statistical model of fractures and minor deformation zones (henceforth referred to as the geological DFN), version 2.2, at the Forsmark site. The geological DFN builds upon the work of other geological modelers, including the deformation zone (DZ), rock domain (RD), and fracture domain (FD) models. The geological DFN is a statistical model for stochastically simulating rock fractures and minor deformation zones as a scale of less than 1,000 m (the lower cut-off of the DZ models). The geological DFN is valid within four specific fracture domains inside the local model region, and encompassing the candidate volume at Forsmark: FFM01, FFM02, FFM03, and FFM06. The models are build using data from detailed surface outcrop maps and the cored borehole record at Forsmark. The conceptual model for the Forsmark 2.2 geological revolves around the concept of orientation sets; for each fracture domain, other model parameters such as size and intensity are tied to the orientation sets. Two classes of orientation sets were described; Global sets, which are encountered everywhere in the model region, and Local sets, which represent highly localized stress environments. Orientation sets were described in terms of their general cardinal direction (NE, NW, etc). Two alternatives are presented for fracture size modeling: - the tectonic continuum approach (TCM, TCMF) described by coupled size-intensity scaling following power law distributions

  1. A Two-Scale Reduced Model for Darcy Flow in Fractured Porous Media

    Chen, Huangxin

    2016-06-01

    In this paper, we develop a two-scale reduced model for simulating the Darcy flow in two-dimensional porous media with conductive fractures. We apply the approach motivated by the embedded fracture model (EFM) to simulate the flow on the coarse scale, and the effect of fractures on each coarse scale grid cell intersecting with fractures is represented by the discrete fracture model (DFM) on the fine scale. In the DFM used on the fine scale, the matrix-fracture system are resolved on unstructured grid which represents the fractures accurately, while in the EFM used on the coarse scale, the flux interaction between fractures and matrix are dealt with as a source term, and the matrix-fracture system can be resolved on structured grid. The Raviart-Thomas mixed finite element methods are used for the solution of the coupled flows in the matrix and the fractures on both fine and coarse scales. Numerical results are presented to demonstrate the efficiency of the proposed model for simulation of flow in fractured porous media.

  2. A fracture-controlled path-following technique for phase-field modeling of brittle fracture

    Singh, N.; Verhoosel, C.V.; De Borst, R.; Van Brummelen, E.H.

    2016-01-01

    In the phase-field description of brittle fracture, the fracture-surface area can be expressed as a functional of the phase field (or damage field). In this work we study the applicability of this explicit expression as a (non-linear) path-following constraint to robustly track the equilibrium path

  3. Effective media models for unsaturated fractured rock: A field experiment

    Nicholl, M.J.; Glass, R.J.

    1995-01-01

    A thick unsaturated rock mass at Yucca Mountain is currently under consideration as a potential repository site for disposal of high level radioactive waste. In accordance with standard industry and scientific practices, abstract numerical models will be used to evaluate the potential for radionuclide release through the groundwater system. At this time, currently available conceptual models used to develop effective media properties are based primarily on simplistic considerations. The work presented here is part of an integrated effort to develop effective media models at the intermediate block scale (approximately 8-125m) through a combination of physical observations, numerical simulations and theoretical considerations. A multi-purpose field experiment designed and conducted as part of this integrated effort is described. Specific goals of this experimental investigation were to: (1) obtain fracture network data from Topopah Spring Tuff for use in block scale simulations; (2) identity positions of the network conducting flow under three different boundary conditions; (3) visualize preferential flow paths and small-scale flow structures; (4) collect samples for subsequent hydraulic testing and use in block-scale simulations; and (5) demonstrate the ability of Electrical Resistance Tomography (ERT) to delineate fluid distribution within fractured rock

  4. Competition and social cohesion

    Mario Libertini

    2014-03-01

    Full Text Available "Competition" and "social cohesion" are both protected by E.U. and Italian laws. The author moves from the analysis of the meaning of these two concepts, in order to reflect on their compatibility and the way to conciliate them. The central problem - in the opinion of the Author - is to abandon the myth of spontaneous markets' order and to rebuild a political order able to maintain and support, as far as possible, the competitive market economy, but also to govern economic processes in critical moments and situations.

  5. Cohesion, Flexibility, and the Mediating Effects of Shared Visionand Compassionon Engagement Army Acquisition Teams

    2015-04-01

    issues such as social desirability, negative affect, and acquiescence (Spector, 2006) in the analysis of final model. To test for multicollinearity ...emotional cohesion, cognitive cohesion, and flexibility) are independent with no multicollinearity issues. Development and test of structural

  6. Correcting underestimation of optimal fracture length by modeling proppant conductivity variations in hydraulically fractured gas/condensate reservoirs

    Akram, A.H.; Samad, A. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Schlumberger, Houston, TX (United States)

    2006-07-01

    A study was conducted in which a newly developed numerical simulator was used to forecast the productivity of a hydraulically fractured well in a retrograde gas-condensate sandstone reservoir. The effect of condensate dropout was modeled in both the reservoir and the proppant pack. The type of proppant and the stress applied to it are among the factors that determine proppant conductivity in a single-phase flow. Other factors include the high velocity of gas and the presence of liquid in the proppant pack. It was concluded that apparent proppant permeability in a gas condensate reservoir varies along the length of the hydraulic fracture and depends on the distance from the wellbore. It will increase towards the tip of the fracture where liquid ratio and velocity are lower. Apparent proppant permeability also changes with time. Forecasting is most accurate when these conditions are considered in the simulation. There are 2 problems associated with the use of a constant proppant permeability in a gas condensate reservoir. The first relates to the fact that it is impossible to obtain a correct single number that will mimic the drawdown of the real fracture at a particular rate without going through the process of determining the proppant permeability profile in a numerical simulator. The second problem relates to the fact that constant proppant permeability yields an optimal fracture length that is too short. Analytical modeling does not account for these complexities. It was determined that the only way to accurately simulate the behaviour of a hydraulic fracture in a high rate well, is by advanced numerical modeling that considers varying apparent proppant permeability in terms of time and distance along the fracture length. 10 refs., 2 tabs., 16 figs., 1 appendix.

  7. Modeling fractures as interfaces for flow and transport in porous media

    Serres, Ch.; Alboin, C.; Jaffre, J.; Roberts, J.

    2002-05-01

    We are concerned with flow and transport in a fractured porous medium at a scale where the fractures can be modelled individually. The fractures themselves are porous media with large permeability in comparison with that in the surrounding rock. Contrarily to many studies in which the contrast in permeabilities is of such an order that the flow outside of the fracture is neglected, the purpose of this work is to consider the case where the exchange between the fractures and the surrounding rock is significant. Then it is necessary to take into account this interaction because it has a profound effect on the flow and the transport of a solute. The main idea for this work is to treat fractures as interfaces. Then it will not be necessary to use mesh refinements around the fractures, which is an important drawback of most models. Treating fractures as interfaces leads to non-overlapping domain decomposition methods, using the natural domain decomposition suggested by the fracture network. This paper is organized as follows. In Section 2, we present the model, and in Section 3, we show that the corresponding problem has a unique solution. In Section 4, we reduce the approximate problem to a problem with unknowns on the interface. Numerical results are given in Section 5 for the simple case of a domain divided into two sub-domains by one fracture. In Section 6 we extend the formulation to the case of intersecting fractures and in Section 7 to that of a solute transport. (authors)

  8. Fracture network model of the groundwater flow in the Romuvaara site

    Poteri, A.; Laitinen, M.

    1997-01-01

    In the study, computer codes are employed to analyse the groundwater flow patterns in the sparcely fractured intact rock at the Romuvaara site. The new fracture data gathered during the detailed site characterisation phase demonstrated that the characteristic properties of fractures can be estimated quite reliably from few boreholes and outcrops. Results obtained by employing new methods, like the use of borehole-TV, changed the fracture intensity of the potential water conducting fractures compared to the earlier model. In the preliminary site investigation phase only the orientated fractures were used to derive the parameters of the intact rock. In the present model all the fractures outside the known fracture zones are used. The hydraulic conductivity tensor of the intact rock was estimated with the fracture network model. The flow simulations were calculated for a 16 x 16 x 16 m 3 rock volume and about 2000 fractures. The flow rate distribution through the cross sectional area of the disposal canisters was calculated for a set of ten realisations and a large number of different canister positions. The total number of canister positions simulated was 2200. The flow distribution in larger volume was studied using a method that searched the flow routes of highest conductance. The flow routes were examined into north-south, east-west and vertical directions. Flow routes along homogeneous and heterogeneous fractures were compared. (21 refs.)

  9. Numerical modeling of the effects of roughness on flow and eddy formation in fractures

    Scott Briggs

    2017-02-01

    Full Text Available The effect of roughness on flow in fractures was investigated using lattice Boltzmann method (LBM. Simulations were conducted for both statistically generated hypothetical fractures and a natural dolomite fracture. The effect of increasing roughness on effective hydraulic aperture, Izbash and Forchheimer parameters with increasing Reynolds number (Re ranging from 0.01 to 500 was examined. The growth of complex flow features, such as eddies arising near the fracture surface, was directly associated with changes in surface roughness. Rapid eddy growth above Re values of 1, followed by less rapid growth at higher Re values, suggested a three-zone nonlinear model for flow in rough fractures. This three-zone model, relating effective hydraulic conductivity to Re, was also found to be appropriate for the simulation of water flow in the natural dolomite fracture. Increasing fracture roughness led to greater eddy volumes and lower effective hydraulic conductivities for the same Re values.

  10. Leadership, cohesion and groupthink

    Iurchevici Iulia

    2016-09-01

    Full Text Available The Groupthink Phenomenon refers to the tendency of the members of a group to reach solidarity and cohesion, the trend that makes to bypass any questions which would lead to disputes. In such cases, if the members expect counter-arguments regarding a certain issue, they avoid to raise the matter. If it is believed that a question cannot be answered – it isn’t asked. Originally, Janis the author of the term, explains this process through the environment that has been established within groups that are in the leading position, but later, puts a strong emphasis towards the tendency to maintain the unanimity of the decision of the group. As preceding conditions of this decision-making process are listed the following: the high cohesion of the group, its isolation from other external sources of information, the lack of an impartial leadership, lack of appropriate legal framework and procedures in the decision - making process, and also “homogeneity of members, background and their ideology”. The Groupthink is manifested by: Illusion of Invulnerability, Collective Rationalization, Illusion of morality, Out – Group Stereotypes, Strong pressures towards conformism, Self – Censorship, Illusions of unanimity, and the presence of “Mind Guards”. In order to understand the decisions of a group, it is important that some analysis of Groupthink to be done, because in this way, can be controlled or eliminated the communicational distortion that occurs at a time among members forming these groups.

  11. a Predictive Model of Permeability for Fractal-Based Rough Rock Fractures during Shear

    Huang, Na; Jiang, Yujing; Liu, Richeng; Li, Bo; Zhang, Zhenyu

    This study investigates the roles of fracture roughness, normal stress and shear displacement on the fluid flow characteristics through three-dimensional (3D) self-affine fractal rock fractures, whose surfaces are generated using the modified successive random additions (SRA) algorithm. A series of numerical shear-flow tests under different normal stresses were conducted on rough rock fractures to calculate the evolutions of fracture aperture and permeability. The results show that the rough surfaces of fractal-based fractures can be described using the scaling parameter Hurst exponent (H), in which H = 3 - Df, where Df is the fractal dimension of 3D single fractures. The joint roughness coefficient (JRC) distribution of fracture profiles follows a Gauss function with a negative linear relationship between H and average JRC. The frequency curves of aperture distributions change from sharp to flat with increasing shear displacement, indicating a more anisotropic and heterogeneous flow pattern. Both the mean aperture and permeability of fracture increase with the increment of surface roughness and decrement of normal stress. At the beginning of shear, the permeability increases remarkably and then gradually becomes steady. A predictive model of permeability using the mean mechanical aperture is proposed and the validity is verified by comparisons with the experimental results reported in literature. The proposed model provides a simple method to approximate permeability of fractal-based rough rock fractures during shear using fracture aperture distribution that can be easily obtained from digitized fracture surface information.

  12. The three-zone composite productivity model for a multi-fractured horizontal shale gas well

    Qi, Qian; Zhu, Weiyao

    2018-02-01

    Due to the nano-micro pore structures and the massive multi-stage multi-cluster hydraulic fracturing in shale gas reservoirs, the multi-scale seepage flows are much more complicated than in most other conventional reservoirs, and are crucial for the economic development of shale gas. In this study, a new multi-scale non-linear flow model was established and simplified, based on different diffusion and slip correction coefficients. Due to the fact that different flow laws existed between the fracture network and matrix zone, a three-zone composite model was proposed. Then, according to the conformal transformation combined with the law of equivalent percolation resistance, the productivity equation of a horizontal fractured well, with consideration given to diffusion, slip, desorption, and absorption, was built. Also, an analytic solution was derived, and the interference of the multi-cluster fractures was analyzed. The results indicated that the diffusion of the shale gas was mainly in the transition and Fick diffusion regions. The matrix permeability was found to be influenced by slippage and diffusion, which was determined by the pore pressure and diameter according to the Knudsen number. It was determined that, with the increased half-lengths of the fracture clusters, flow conductivity of the fractures, and permeability of the fracture network, the productivity of the fractured well also increased. Meanwhile, with the increased number of fractures, the distance between the fractures decreased, and the productivity slowly increased due to the mutual interfere of the fractures.

  13. [Establishment of Schatzker classification digital models of tibial plateau fractures and its application on virtual surgery].

    Liu, Yong-gang; Zuo, Li-xin; Pei, Guo-xian; Dai, Ke; Sang, Jing-wei

    2013-08-20

    To explore the establishment of Schatzker classification digital model of tibial plateau fractures and its application in virtual surgery. Proximal tibial of one healthy male volunteer was examined with 64-slice spiral computed tomography (CT). The data were processed by software Mimics 10.01 and a model of proximal tibia was reconstructed. According to the Schatzker classification criteria of tibial plateau fractures, each type of fracture model was simulated.Screen-captures of fracture model were saved from different directions.Each type of fracture model was exported as video mode.Fracture model was imported into FreeForm modeling system.With a force feedback device, a surgeon could conduct virtual fracture operation simulation.Utilizing the GHOST of FreeForm modeling system, the software of virtual cutting, fracture reduction and fixation was developed.With a force feedback device PHANTOM, a surgeon could manipulate virtual surgical instruments and fracture classification model and simulate surgical actions such as assembly of surgical instruments, drilling, implantation of screw, reduction of fracture, bone grafting and fracture fixation, etc. The digital fracture model was intuitive, three-dimensional and realistic and it had excellent visual effect.Fracture could be observed and charted from optional direction and angle.Fracture model could rotate 360 ° in the corresponding video mode. The virtual surgical environment had a strong sense of reality, immersion and telepresence as well as good interaction and force feedback function in the FreeForm modeling system. The user could make the corresponding decisions about surgical method and choice of internal fixation according to the specific type of tibial plateau fracture as well as repeated operational practice in virtual surgery system. The digital fracture model of Schatzker classification is intuitive, three-dimensional, realistic and dynamic. The virtual surgery systems of Schatzker classifications make

  14. Development of tools and models for computational fracture assessment

    Talja, H.; Santaoja, K.

    1998-01-01

    The aim of the work presented in this paper has been to develop and test new computational tools and theoretically more sound methods for fracture mechanical analysis. The applicability of the engineering integrity assessment system MASI for evaluation of piping components has been extended. The most important motivation for the theoretical development have been the well-known fundamental limitations in the validity of J-integral, which limits its applicability in many important practical safety assessment cases. Examples are extensive plastic deformation, multimaterial structures and ascending loading paths (especially warm prestress, WPS). Further, the micromechanical Gurson model has been applied to several reactor pressure vessel materials. Special attention is paid to the transferability of Gurson model parameters from tensile test results to prediction of ductile failure behaviour of cracked structures. (author)

  15. Validation of fracture flow models in the Stripa project

    Herbert, A.; Dershowitz, W.; Long, J.; Hodgkinson, D.

    1991-01-01

    One of the objectives of Phase III of the Stripa Project is to develop and evaluate approaches for the prediction of groundwater flow and nuclide transport in a specific unexplored volume of the Stripa granite and make a comparison with data from field measurements. During the first stage of the project, a prediction of inflow to the D-holes, an array of six parallel closely spaced 100m boreholes, was made based on data from six other boreholes. This data included fracture geometry, stress, single borehole geophysical logging, crosshole and reflection radar and seismic tomogram, head monitoring and single hole packer test measurements. Maps of fracture traces on the drift walls have also been made. The D-holes are located along a future Validation Drift which will be excavated. The water inflow to the D-holes has been measured in an experiment called the Simulated Drift Experiment. The paper reviews the Simulated Drift Experiment validation exercise. Following a discussion of the approach to validation, the characterization data and its preliminary interpretation are summarised and commented upon. That work has proved feasible to carry through all the complex and interconnected tasks associated with the gathering and interpretation of characterization data, the development and application of complex models, and the comparison with measured inflows. This exercise has provided detailed feed-back to the experimental and theoretical work required for measurements and predictions of flow into the Validation Drift. Computer codes used: CHANGE, FRACMAN, MAFIC, NAPSAC and TRINET. 2 figs., 2 tabs., 19 refs

  16. Determination of rock fracture parameters from crack models for failure in compression

    Kemeny, J.M.; Cook, N.G.W.

    1987-01-01

    Micromechanical models for axial splitting and for shear faulting are used to investigate parameters associated with rock fracture under compressive stresses. The fracture energies to create splitting fractures and shear faults are calculated using laboratory triaxial data. These energies are compared with the fracture energies for the propagation of microcracks that coalesce to form the larger scale fractures. It is found that for Westerly granite, the energies to create splitting fractures and shear faults are about three orders of magnitude greater than the energy needed to drive the tensile microcracks, due to the large amount of subsidiary crack surface area created in forming the larger scale fractures. A similar scale effect can be expected when extrapolating the laboratory results to field scale problems

  17. Effects of fracture surface roughness and shear displacement on geometrical and hydraulic properties of three-dimensional crossed rock fracture models

    Huang, Na; Liu, Richeng; Jiang, Yujing; Li, Bo; Yu, Liyuan

    2018-03-01

    While shear-flow behavior through fractured media has been so far studied at single fracture scale, a numerical analysis of the shear effect on the hydraulic response of 3D crossed fracture model is presented. The analysis was based on a series of crossed fracture models, in which the effects of fracture surface roughness and shear displacement were considered. The rough fracture surfaces were generated using the modified successive random additions (SRA) algorithm. The shear displacement was applied on one fracture, and at the same time another fracture shifted along with the upper and lower surfaces of the sheared fracture. The simulation results reveal the development and variation of preferential flow paths through the model during the shear, accompanied by the change of the flow rate ratios between two flow planes at the outlet boundary. The average contact area accounts for approximately 5-27% of the fracture planes during shear, but the actual calculated flow area is about 38-55% of the fracture planes, which is much smaller than the noncontact area. The equivalent permeability will either increase or decrease as shear displacement increases from 0 to 4 mm, depending on the aperture distribution of intersection part between two fractures. When the shear displacement continuously increases by up to 20 mm, the equivalent permeability increases sharply first, and then keeps increasing with a lower gradient. The equivalent permeability of rough fractured model is about 26-80% of that calculated from the parallel plate model, and the equivalent permeability in the direction perpendicular to shear direction is approximately 1.31-3.67 times larger than that in the direction parallel to shear direction. These results can provide a fundamental understanding of fluid flow through crossed fracture model under shear.

  18. Quantifying Fracture Heterogeneity in Different Domains of Folded Carbonate Rocks to Improve Fractured Reservoir Analog Fluid Flow Models

    Bisdom, K.; Bertotti, G.; Gauthier, B.D.M.; Hardebol, N.J.

    2013-01-01

    Fluid flow in carbonate reservoirs is largely controlled by multiscale fracture networks. Significant variations of fracture network porosity and permeability are caused by the 3D heterogeneity of the fracture network characteristics, such as intensity, orientation and size. Characterizing fracture

  19. Toughness-Dominated Regime of Hydraulic Fracturing in Cohesionless Materials

    Germanovich, L. N.; Hurt, R. S.; Ayoub, J.; Norman, W. D.

    2011-12-01

    This work examines the mechanisms of hydraulic fracturing in cohesionless particulate materials with geotechnical, geological, and petroleum applications. For this purpose, experimental techniques have been developed, and used to quantify the initiation and propagation of hydraulic fractures in saturated particulate materials. The fracturing liquid is injected into particulate materials, which are practically cohesionless. The liquid flow is localized in thin self-propagating crack-like conduits. By analogy we call them 'cracks' or 'hydraulic fractures.' When a fracture propagates in a solid, new surfaces are created by breaking material bonds. Consequently, the material is in tension at the fracture tip. Because the particulate material is already 'fractured,' no new surface is created and no fracturing process per se is involved. Therefore, the conventional fracture mechanics principles cannot be directly applied. Based on the laboratory observations, performed on three particulate materials (Georgia Red Clay, silica flour, and fine sand, and their mixtures), this work offers physical concepts to explain the observed phenomena. The goal is to determine the controlling parameters of fracture behavior and to quantify their effects. An important conclusion of our work is that all parts of the cohesionless particulate material (including the tip zone of hydraulic fracture) are likely to be in compression. The compressive stress state is an important characteristic of hydraulic fracturing in particulate materials with low, or no, cohesion (such as were used in our experiments). At present, two kinematic mechanisms of fracture propagation, consistent with the compressive stress regime, can be offered. The first mechanism is based on shear bands propagating ahead of the tip of an open fracture. The second is based on the tensile strain ahead of the fracture tip and reduction of the effective stresses to zero within the leak-off zone. Scaling indicates that in our

  20. Multi-scale modeling of inter-granular fracture in UO2

    Chakraborty, Pritam [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhang, Yongfeng [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tonks, Michael R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Biner, S. Bulent [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    A hierarchical multi-scale approach is pursued in this work to investigate the influence of porosity, pore and grain size on the intergranular brittle fracture in UO2. In this approach, molecular dynamics simulations are performed to obtain the fracture properties for different grain boundary types. A phase-field model is then utilized to perform intergranular fracture simulations of representative microstructures with different porosities, pore and grain sizes. In these simulations the grain boundary fracture properties obtained from molecular dynamics simulations are used. The responses from the phase-field fracture simulations are then fitted with a stress-based brittle fracture model usable at the engineering scale. This approach encapsulates three different length and time scales, and allows the development of microstructurally informed engineering scale model from properties evaluated at the atomistic scale.

  1. Evaluation of Different Modeling Approaches to Simulate Contaminant Transport in a Fractured Limestone Aquifer

    Mosthaf, K.; Rosenberg, L.; Balbarini, N.; Broholm, M. M.; Bjerg, P. L.; Binning, P. J.

    2014-12-01

    It is important to understand the fate and transport of contaminants in limestone aquifers because they are a major drinking water resource. This is challenging because they are highly heterogeneous; with micro-porous grains, flint inclusions, and being heavily fractured. Several modeling approaches have been developed to describe contaminant transport in fractured media, such as the discrete fracture (with various fracture geometries), equivalent porous media (with and without anisotropy), and dual porosity models. However, these modeling concepts are not well tested for limestone geologies. Given available field data and model purpose, this paper therefore aims to develop, examine and compare modeling approaches for transport of contaminants in fractured limestone aquifers. The model comparison was conducted for a contaminated site in Denmark, where a plume of a dissolved contaminant (PCE) has migrated through a fractured limestone aquifer. Multilevel monitoring wells have been installed at the site and available data includes information on spill history, extent of contamination, geology and hydrogeology. To describe the geology and fracture network, data from borehole logs was combined with an analysis of heterogeneities and fractures from a nearby excavation (analog site). Methods for translating the geological information and fracture mapping into each of the model concepts were examined. Each model was compared with available field data, considering both model fit and measures of model suitability. An analysis of model parameter identifiability and sensitivity is presented. Results show that there is considerable difference between modeling approaches, and that it is important to identify the right one for the actual scale and model purpose. A challenge in the use of field data is the determination of relevant hydraulic properties and interpretation of aqueous and solid phase contaminant concentration sampling data. Traditional water sampling has a bias

  2. Fracture of Carbon Nanotube - Amorphous Carbon Composites: Molecular Modeling

    Jensen, Benjamin D.; Wise, Kristopher E.; Odegard, Gregory M.

    2015-01-01

    Carbon nanotubes (CNTs) are promising candidates for use as reinforcements in next generation structural composite materials because of their extremely high specific stiffness and strength. They cannot, however, be viewed as simple replacements for carbon fibers because there are key differences between these materials in areas such as handling, processing, and matrix design. It is impossible to know for certain that CNT composites will represent a significant advance over carbon fiber composites before these various factors have been optimized, which is an extremely costly and time intensive process. This work attempts to place an upper bound on CNT composite mechanical properties by performing molecular dynamics simulations on idealized model systems with a reactive forcefield that permits modeling of both elastic deformations and fracture. Amorphous carbon (AC) was chosen for the matrix material in this work because of its structural simplicity and physical compatibility with the CNT fillers. It is also much stiffer and stronger than typical engineering polymer matrices. Three different arrangements of CNTs in the simulation cell have been investigated: a single-wall nanotube (SWNT) array, a multi-wall nanotube (MWNT) array, and a SWNT bundle system. The SWNT and MWNT array systems are clearly idealizations, but the SWNT bundle system is a step closer to real systems in which individual tubes aggregate into large assemblies. The effect of chemical crosslinking on composite properties is modeled by adding bonds between the CNTs and AC. The balance between weakening the CNTs and improving fiber-matrix load transfer is explored by systematically varying the extent of crosslinking. It is, of course, impossible to capture the full range of deformation and fracture processes that occur in real materials with even the largest atomistic molecular dynamics simulations. With this limitation in mind, the simulation results reported here provide a plausible upper limit on

  3. Distinct Element Method modelling of fold-related fractures in a multilayer sequence

    Kaserer, Klemens; Schöpfer, Martin P. J.; Grasemann, Bernhard

    2017-04-01

    Natural fractures have a significant impact on the performance of hydrocarbon systems/reservoirs. In a multilayer sequence, both the fracture density within the individual layers and the type of fracture intersection with bedding contacts are key parameters controlling fluid pathways. In the present study the influence of layer stacking and interlayer friction on fracture density and connectivity within a folded sequence is systematically investigated using 2D Distinct Element Method modelling. Our numerical approach permits forward modelling of both fracture nucleation/propagation/arrest and (contemporaneous) frictional slip along bedding planes in a robust and mechanically sound manner. Folding of the multilayer sequence is achieved by enforcing constant curvature folding by means of a velocity boundary condition at the model base, while a constant overburden pressure is maintained at the model top. The modelling reveals that with high bedding plane friction the multilayer stack behaves mechanically as a single layer so that the neutral surface develops in centre of the sequence and fracture spacing is controlled by the total thickness of the folded sequence. In contrast, low bedding plane friction leads to decoupling of the individual layers (flexural slip folding) so that a neutral surface develops in the centre of each layer and fracture spacing is controlled by the thickness of the individual layers. The low interfacial friction models illustrate that stepping of fractures across bedding planes is a common process, which can however have two contrasting origins: The mechanical properties of the interface cause fracture stepping during fracture propagation. Originally through-going fractures are later offset by interfacial slip during folding. A combination of these two different origins may lead to (apparently) inconsistent fracture offsets across bedding planes within a flexural slip fold.

  4. Discrete Dual Porosity Modeling of Electrical Current Flow in Fractured Media

    Roubinet, D.; Irving, J.

    2013-12-01

    The study of fractured rocks is highly important in a variety of research fields and applications such as hydrogeology, geothermal energy, hydrocarbon extraction, and the long-term storage of toxic waste. Fractured media are characterized by a large contrast in permeability between the fractures and the rock matrix. For hydrocarbon extraction, the presence of highly conductive fractures is an advantage as they allow for quick and easy access to the resource. For toxic waste storage, however, the fractures represent a significant drawback as there is an increased risk of leakage and migration of pollutants deep into the subsurface. In both cases, the identification of fracture network characteristics is a critical, challenging, and required step. A number of previous studies have indicated that the presence of fractures in geological materials can have a significant impact on geophysical electrical resistivity measurements. It thus appears that, in some cases, geoelectrical surveys might be used to obtain useful information regarding fracture network characteristics. However, existing geoelectrical modeling tools and inversion methods are not properly adapted to deal with the specific challenges of fractured media. This prevents us from fully exploring the potential of the method to characterize fracture network properties. We thus require, as a first step, the development of accurate and efficient numerical modeling tools specifically designed for fractured domains. Building on the discrete fracture network (DFN) approach that has been widely used for modeling groundwater flow in fractured rocks, we have developed a discrete dual-porosity model for electrical current flow in fractured media. Our novel approach combines an explicit representation of the fractures with fracture-matrix electrical flow exchange at the block-scale. Tests in two dimensions show the ability of our method to deal with highly heterogeneous fracture networks in a highly computationally

  5. A Discrete Fracture Network Model with Stress-Driven Nucleation and Growth

    Lavoine, E.; Darcel, C.; Munier, R.; Davy, P.

    2017-12-01

    The realism of Discrete Fracture Network (DFN) models, beyond the bulk statistical properties, relies on the spatial organization of fractures, which is not issued by purely stochastic DFN models. The realism can be improved by injecting prior information in DFN from a better knowledge of the geological fracturing processes. We first develop a model using simple kinematic rules for mimicking the growth of fractures from nucleation to arrest, in order to evaluate the consequences of the DFN structure on the network connectivity and flow properties. The model generates fracture networks with power-law scaling distributions and a percentage of T-intersections that are consistent with field observations. Nevertheless, a larger complexity relying on the spatial variability of natural fractures positions cannot be explained by the random nucleation process. We propose to introduce a stress-driven nucleation in the timewise process of this kinematic model to study the correlations between nucleation, growth and existing fracture patterns. The method uses the stress field generated by existing fractures and remote stress as an input for a Monte-Carlo sampling of nuclei centers at each time step. Networks so generated are found to have correlations over a large range of scales, with a correlation dimension that varies with time and with the function that relates the nucleation probability to stress. A sensibility analysis of input parameters has been performed in 3D to quantify the influence of fractures and remote stress field orientations.

  6. Prediction of fracture toughness based on experiments with sub-size specimens in the brittle and ductile regimes

    Mahler, Michael, E-mail: Michael.Mahler@kit.edu; Aktaa, Jarir

    2016-04-15

    For determination of fracture toughness in the brittle regime or ductile fracture in the upper shelf region, special standard specifications are in use e.g. ASTM E399 or ASTM E1820. Due to the rigorous size requirements for specimen testing, it is necessary to use big specimens. To circumvent this problem an approach based on finite element (FE) simulations using the cohesive zone model (CZM) is used. The parameters of the cohesive zone model have been determined using sub-size specimens. With the identified parameters, simulations of standard-size specimens have been performed to successfully predict fracture toughness of standard-size specimens in the brittle and ductile regimes. The objective is to establish small size testing technology for the determination of fracture toughness. - Highlights: • Prediction of fracture toughness on standard-size specimens. • Valid fracture toughness based on sub-size specimens. • Triaxiality dependent cohesive zone model. • Approach works independent on fracture appearance (brittle, ductile).

  7. Numerical Investigation of Fracture Propagation in Geomaterials

    Newell, P.; Borowski, E.; Major, J. R.; Eichhubl, P.

    2015-12-01

    Fracture in geomaterials is a critical behavior that affects the long-term structural response of geosystems. The processes involving fracture initiation and growth in rocks often span broad time scales and size scales, contributing to the complexity of these problems. To better understand fracture behavior, the authors propose an initial investigation comparing the fracture testing techniques of notched three-point bending (N3PB), short rod (SR), and double torsion (DT) on geomaterials using computational analysis. Linear softening cohesive fracture modeling (LCFM) was applied using ABAQUS to computationally simulate the three experimental set-ups. By applying material properties obtained experimentally, these simulations are intended to predict single-trace fracture growth. The advantages and limitations of the three testing techniques were considered for application to subcritical fracture propagation taking into account the accuracy of constraints, load applications, and modes of fracture. This work is supported as part of the Geomechanics of CO2 Reservoir Seals, a DOE-NETL funded under Award Number DE-FOA-0001037. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  8. Modeling of fracture of protective concrete structures under impact loads

    Radchenko, P. A., E-mail: radchenko@live.ru; Batuev, S. P.; Radchenko, A. V.; Plevkov, V. S. [Tomsk State University of Architecture and Building, Tomsk, 634003 (Russian Federation)

    2015-10-27

    This paper presents results of numerical simulation of interaction between a Boeing 747-400 aircraft and the protective shell of a nuclear power plant. The shell is presented as a complex multilayered cellular structure consisting of layers of concrete and fiber concrete bonded with steel trusses. Numerical simulation was performed three-dimensionally using the original algorithm and software taking into account algorithms for building grids of complex geometric objects and parallel computations. Dynamics of the stress-strain state and fracture of the structure were studied. Destruction is described using a two-stage model that allows taking into account anisotropy of elastic and strength properties of concrete and fiber concrete. It is shown that wave processes initiate destruction of the cellular shell structure; cells start to destruct in an unloading wave originating after the compression wave arrival at free cell surfaces.

  9. Modeling of fracture of protective concrete structures under impact loads

    Radchenko, P. A.; Batuev, S. P.; Radchenko, A. V.; Plevkov, V. S.

    2015-10-01

    This paper presents results of numerical simulation of interaction between a Boeing 747-400 aircraft and the protective shell of a nuclear power plant. The shell is presented as a complex multilayered cellular structure consisting of layers of concrete and fiber concrete bonded with steel trusses. Numerical simulation was performed three-dimensionally using the original algorithm and software taking into account algorithms for building grids of complex geometric objects and parallel computations. Dynamics of the stress-strain state and fracture of the structure were studied. Destruction is described using a two-stage model that allows taking into account anisotropy of elastic and strength properties of concrete and fiber concrete. It is shown that wave processes initiate destruction of the cellular shell structure; cells start to destruct in an unloading wave originating after the compression wave arrival at free cell surfaces.

  10. Photoelastic investigations on dynamic fracture propagation by models

    Kuske, A.; Schlonski, A.

    1977-01-01

    Given the existence of a linear elastic type of fracture behavior, stress conditions at tips of cracks occurring in disks or disk shaped components dynamically stressed by impact, vibration or explosion can be studied by model investigations using stress optics. The levels of the stress intensity factor Ksub(I) as determined in such experiments can be extrapolated to full size components under certain conditions, In crack problems in disks in which there are no major mass forces, Ksub(I) can be determined from the distribution of isochromats. Stress distributions in tips of cracks occurring in disks where stress conditions at the tips are influenced by mass forces (e.g., mass force of inertial) can be described by means of isochromat and isocline images. (orig.) [de

  11. Site descriptive modelling Forsmark, stage 2.2. A fracture domain concept as a basis for the statistical modelling of fractures and minor deformation zones, and interdisciplinary coordination

    Olofsson, Isabelle; Simeonov, Assen [Swedish Nuclear Fuel and Waste Manageme nt Co., Stockholm (Sweden); Stephens, Michael [Geological Survey of Sweden (SGU), U ppsala (Sweden); Follin, Sven [SF GeoLogic AB, Taeby (Sweden); Nilsson, Ann-Chatrin [G eosigma AB, Uppsala (Sweden); Roeshoff, Kennert; Lindberg, Ulrika; Lanaro, Flavio [Bergbygg konsult AB, Haesselby (Sweden); Fredriksson, Anders; Persson, Lars [Golder Associat es AB (Sweden)

    2007-04-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is undertaking site characterization at two different locations, Forsmark and Simpevarp/Laxemar, with the objective of siting a final waste repository at depth for spent nuclear fuel. The programme is built upon the development of site descriptive models after each data freeze. This report describes the first attempt to define fracture domains for the Forsmark site modelling in stage 2.2. Already during model version 1.2 at Forsmark, significant spatial variability in the fracture pattern was observed. The variability appeared to be so significant that it provoked the need for a subdivision of the model volume for the treatment of geological and hydrogeological data into sub-volumes. Subsequent analyses of data collected up to data freeze 2.1 led to a better understanding of the site and a concept for the definition of fracture domains based on geological characteristics matured. The main objectives of this report are to identify and describe fracture domains at the site on the basis of geological data and to compile hydrogeological, hydrogeochemical and rock mechanics data within each fracture domain and address the implications of this integration activity. On the basis of borehole data, six fracture domains (FFM01-FFM06) have been recognized inside and immediately around the candidate volume. Three of these domains (FFM01, FFM02 and FFM06) lie inside the target volume for a potential repository in the northwestern part of the candidate area, and need to be addressed in the geological DFN modelling work. The hydrogeological data support the subdivision of the bedrock into fracture domains FFM01, FFM02 and FFM03. Few or no data are available for the other three domains. The hydrogeochemical data also support the subdivision into fracture domains FFM01 and FFM02. Since few data are available from the bedrock between deformation zones inside FFM03, there is little information on the hydrogeochemical

  12. Determining mode I cohesive law of Pinus pinaster by coupling double cantilever beam test with digital image correlation

    J. Xavier

    2015-01-01

    Full Text Available The direct identification of the cohesive law in pure mode I of Pinus pinaster is addressed. The approach couples the double cantilever beam (DCB test with digital image correlation (DIC. Wooden beam specimens loaded in the radial-longitudinal (RL fracture propagation system are used. The strain energy release rate in mode I ( is uniquely determined from the load-displacement ( curve by means of the compliance-based beam method (CBBM. This method relies on the concept of equivalent elastic crack length ( and therefore does not require the monitoring of crack propagation during test. The crack tip opening displacement in mode I is determined from the displacement field at the initial crack tip. The cohesive law in mode I is then identified by numerical differentiation of the relationship. Moreover, the proposed procedure is validated by finite element analyses including cohesive zone modelling. It is concluded that the proposed data reduction scheme is adequate for assessing the cohesive law in pure mode I of P. pinaster

  13. A remediation performance model for enhanced metabolic reductive dechlorination of chloroethenes in fractured clay till

    Manoli, Gabriele; Chambon, Julie C.; Bjerg, Poul L.

    2012-01-01

    A numerical model of metabolic reductive dechlorination is used to describe the performance of enhanced bioremediation in fractured clay till. The model is developed to simulate field observations of a full scale bioremediation scheme in a fractured clay till and thereby to assess remediation...

  14. Developing two-phase flow modelling concepts for rock fractures

    Keto, V. (Fortum Nuclear Services Oy, Espoo (Finland))

    2010-01-15

    The Finnish nuclear waste disposal company, Posiva Oy, is planning an underground repository for spent nuclear fuel to be constructed on the island of Olkiluoto on the south-west coast of Finland. One element of the site investigations conducted at Olkiluoto is the excavation of the underground rock characterisation facility (ONKALO) that will be extended to the final disposal depth (approximately -400 m). The bedrock around the excavated tunnel volume is fully saturated with groundwater, which water commonly contains a mixture of dissolved gases. These gases remain dissolved due to the high hydrostatic pressure. During tunnel excavation work the natural hydrostatic pressure field is disturbed and the water pressure will decrease close to the atmospheric pressure in the immediate vicinity of the tunnel. During this pressure drop two-phase flow conditions (combined flow of both water and gas) may develop in the vicinity of the underground opening, as the dissolved gas is exsoluted under the low pressure (the term exsolution refers here to release of the dissolved gas molecules from the water phase into a separate gas phase). This report steers towards concept development for numerical two-phase flow modeling for fractured rock. The focus is on the description of gas phase formation process under disturbed hydraulic conditions by exsolution of dissolved gases from groundwater, and on understanding the effects of a possibly formed gas phase on groundwater flow conditions in rock fractures. A mathematical model of three mutually coupled nonlinear partial differential equations for two-phase flow is presented and corresponding constitutional relationships are introduced and discussed. Illustrative numerical simulations are performed in a simplified setting using COMSOL Multiphysics 3.5a - software package. Shortcomings and conceptual problems are discussed. (orig.)

  15. Developing two-phase flow modelling concepts for rock fractures

    Keto, V.

    2010-01-01

    The Finnish nuclear waste disposal company, Posiva Oy, is planning an underground repository for spent nuclear fuel to be constructed on the island of Olkiluoto on the south-west coast of Finland. One element of the site investigations conducted at Olkiluoto is the excavation of the underground rock characterisation facility (ONKALO) that will be extended to the final disposal depth (approximately -400 m). The bedrock around the excavated tunnel volume is fully saturated with groundwater, which water commonly contains a mixture of dissolved gases. These gases remain dissolved due to the high hydrostatic pressure. During tunnel excavation work the natural hydrostatic pressure field is disturbed and the water pressure will decrease close to the atmospheric pressure in the immediate vicinity of the tunnel. During this pressure drop two-phase flow conditions (combined flow of both water and gas) may develop in the vicinity of the underground opening, as the dissolved gas is exsoluted under the low pressure (the term exsolution refers here to release of the dissolved gas molecules from the water phase into a separate gas phase). This report steers towards concept development for numerical two-phase flow modeling for fractured rock. The focus is on the description of gas phase formation process under disturbed hydraulic conditions by exsolution of dissolved gases from groundwater, and on understanding the effects of a possibly formed gas phase on groundwater flow conditions in rock fractures. A mathematical model of three mutually coupled nonlinear partial differential equations for two-phase flow is presented and corresponding constitutional relationships are introduced and discussed. Illustrative numerical simulations are performed in a simplified setting using COMSOL Multiphysics 3.5a - software package. Shortcomings and conceptual problems are discussed. (orig.)

  16. Numerical modelling of single-phase flow in rough fractures with contacts

    Olkiewicz, Piotr; Dabrowski, Marcin

    2017-04-01

    Fracture flow may dominate in rocks with low porosity and it can accompany both industrial and natural processes. Typical examples of such processes are natural flows in crystalline rocks and industrial flows in oil and gas production systems or hydraulic fracturing. Fracture flow provides an important mechanism for transporting mass and energy. The distribution of the apertures of fracture and contact area are the key parameters with regard to the fracture transmissivity. We use the method of correlated random fields [Mourzenko, 1996] to generate synthetic fracture geometry in 3D. The flow of an incompressible Newtonian viscous fluid in geological formation can be approximated by the Stokes, the Stokes-Brinkman or the Reynolds models. We use our own implementation of the finite element method based on MILAMIN [Dabrowski, 2008] to solve governing partial differential equation over domain. We compare the Stokes, the Stokes-Brinkamn and the Reynolds models for fracture flow based on systematic numerical simulations for a wide range of geometric parameters. Mismatch between the Reynolds and the Stokes models becomes significant with increasing fracture roughness or contact area. The Stokes-Brinkman model is more accurate than Reynolds models due to additional Laplacian term, which allows to fulfil no-slip boundary condition. We present condition when the Reynolds and the Stokes-Brinkman models are valid. In the last three decades many authors used the Reynolds equation for studying fracture flow because of its simplicity. We recommend using the Stokes-Brinkman model for fracture flow, which allows to fulfil no-slip boundary condition on asperities boundary and is more accurate for rough fractures than the Reynolds model.

  17. Geological discrete fracture network model for the Olkiluoto site, Eurajoki, Finland. Version 2.0

    Fox, A.; Forchhammer, K.; Pettersson, A.; La Pointe, P.; Lim, D-H.

    2012-06-01

    This report describes the methods, analyses, and conclusions of the modeling team in the production of the 2010 revision to the geological discrete fracture network (DFN) model for the Olkiluoto Site in Finland. The geological DFN is a statistical model for stochastically simulating rock fractures and minor faults at a scale ranging from approximately 0.05 m to approximately 565m; deformation zones are expressly excluded from the DFN model. The DFN model is presented as a series of tables summarizing probability distributions for several parameters necessary for fracture modeling: fracture orientation, fracture size, fracture intensity, and associated spatial constraints. The geological DFN is built from data collected during site characterization (SC) activities at Olkiluoto, which is selected to function as a final deep geological repository for spent fuel and nuclear waste from the Finnish nuclear power program. Data used in the DFN analyses include fracture maps from surface outcrops and trenches, geological and structural data from cored drillholes, and fracture information collected during the construction of the main tunnels and shafts at the ONKALO laboratory. Unlike the initial geological DFN, which was focused on the vicinity of the ONKALO tunnel, the 2010 revisions present a model parameterization for the entire island. Fracture domains are based on the tectonic subdivisions at the site (northern, central, and southern tectonic units) presented in the Geological Site Model (GSM), and are further subdivided along the intersection of major brittle-ductile zones. The rock volume at Olkiluoto is dominated by three distinct fracture sets: subhorizontally-dipping fractures striking north-northeast and dipping to the east that is subparallel to the mean bedrock foliation direction, a subvertically-dipping fracture set striking roughly north-south, and a subvertically-dipping fracture set striking approximately east-west. The subhorizontally-dipping fractures

  18. Geological discrete fracture network model for the Olkiluoto site, Eurajoki, Finland. Version 2.0

    Fox, A.; Forchhammer, K.; Pettersson, A. [Golder Associates AB, Stockholm (Sweden); La Pointe, P.; Lim, D-H. [Golder Associates Inc. (Finland)

    2012-06-15

    This report describes the methods, analyses, and conclusions of the modeling team in the production of the 2010 revision to the geological discrete fracture network (DFN) model for the Olkiluoto Site in Finland. The geological DFN is a statistical model for stochastically simulating rock fractures and minor faults at a scale ranging from approximately 0.05 m to approximately 565m; deformation zones are expressly excluded from the DFN model. The DFN model is presented as a series of tables summarizing probability distributions for several parameters necessary for fracture modeling: fracture orientation, fracture size, fracture intensity, and associated spatial constraints. The geological DFN is built from data collected during site characterization (SC) activities at Olkiluoto, which is selected to function as a final deep geological repository for spent fuel and nuclear waste from the Finnish nuclear power program. Data used in the DFN analyses include fracture maps from surface outcrops and trenches, geological and structural data from cored drillholes, and fracture information collected during the construction of the main tunnels and shafts at the ONKALO laboratory. Unlike the initial geological DFN, which was focused on the vicinity of the ONKALO tunnel, the 2010 revisions present a model parameterization for the entire island. Fracture domains are based on the tectonic subdivisions at the site (northern, central, and southern tectonic units) presented in the Geological Site Model (GSM), and are further subdivided along the intersection of major brittle-ductile zones. The rock volume at Olkiluoto is dominated by three distinct fracture sets: subhorizontally-dipping fractures striking north-northeast and dipping to the east that is subparallel to the mean bedrock foliation direction, a subvertically-dipping fracture set striking roughly north-south, and a subvertically-dipping fracture set striking approximately east-west. The subhorizontally-dipping fractures

  19. Force Transmission Modes of Non-Cohesive and Cohesive Materials at the Critical State.

    Wang, Ji-Peng

    2017-08-31

    This paper investigates the force transmission modes, mainly described by probability density distributions, in non-cohesive dry and cohesive wet granular materials by discrete element modeling. The critical state force transmission patterns are focused on with the contact model effect being analyzed. By shearing relatively dense and loose dry specimens to the critical state in the conventional triaxial loading path, it is observed that there is a unique critical state force transmission mode. There is a universe critical state force distribution pattern for both the normal contact forces and tangential contact forces. Furthermore, it is found that using either the linear Hooke or the non-linear Hertz model does not affect the universe force transmission mode, and it is only related to the grain size distribution. Wet granular materials are also simulated by incorporating a water bridge model. Dense and loose wet granular materials are tested, and the critical state behavior for the wet material is also observed. The critical state strength and void ratio of wet granular materials are higher than those of a non-cohesive material. The critical state inter-particle distribution is altered from that of a non-cohesive material with higher probability in relatively weak forces. Grains in non-cohesive materials are under compressive stresses, and their principal directions are mainly in the axial loading direction. However, for cohesive wet granular materials, some particles are in tension, and the tensile stresses are in the horizontal direction on which the confinement is applied. The additional confinement by the tensile stress explains the macro strength and dilatancy increase in wet samples.

  20. Ice shelf fracture parameterization in an ice sheet model

    S. Sun

    2017-11-01

    Full Text Available Floating ice shelves exert a stabilizing force onto the inland ice sheet. However, this buttressing effect is diminished by the fracture process, which on large scales effectively softens the ice, accelerating its flow, increasing calving, and potentially leading to ice shelf breakup. We add a continuum damage model (CDM to the BISICLES ice sheet model, which is intended to model the localized opening of crevasses under stress, the transport of those crevasses through the ice sheet, and the coupling between crevasse depth and the ice flow field and to carry out idealized numerical experiments examining the broad impact on large-scale ice sheet and shelf dynamics. In each case we see a complex pattern of damage evolve over time, with an eventual loss of buttressing approximately equivalent to halving the thickness of the ice shelf. We find that it is possible to achieve a similar ice flow pattern using a simple rule of thumb: introducing an enhancement factor ∼ 10 everywhere in the model domain. However, spatially varying damage (or equivalently, enhancement factor fields set at the start of prognostic calculations to match velocity observations, as is widely done in ice sheet simulations, ought to evolve in time, or grounding line retreat can be slowed by an order of magnitude.

  1. Ice shelf fracture parameterization in an ice sheet model

    Sun, Sainan; Cornford, Stephen L.; Moore, John C.; Gladstone, Rupert; Zhao, Liyun

    2017-11-01

    Floating ice shelves exert a stabilizing force onto the inland ice sheet. However, this buttressing effect is diminished by the fracture process, which on large scales effectively softens the ice, accelerating its flow, increasing calving, and potentially leading to ice shelf breakup. We add a continuum damage model (CDM) to the BISICLES ice sheet model, which is intended to model the localized opening of crevasses under stress, the transport of those crevasses through the ice sheet, and the coupling between crevasse depth and the ice flow field and to carry out idealized numerical experiments examining the broad impact on large-scale ice sheet and shelf dynamics. In each case we see a complex pattern of damage evolve over time, with an eventual loss of buttressing approximately equivalent to halving the thickness of the ice shelf. We find that it is possible to achieve a similar ice flow pattern using a simple rule of thumb: introducing an enhancement factor ˜ 10 everywhere in the model domain. However, spatially varying damage (or equivalently, enhancement factor) fields set at the start of prognostic calculations to match velocity observations, as is widely done in ice sheet simulations, ought to evolve in time, or grounding line retreat can be slowed by an order of magnitude.

  2. Modelling Subduction Zone Magmatism Due to Hydraulic Fracture

    Lawton, R.; Davies, J. H.

    2014-12-01

    The aim of this project is to test the hypothesis that subduction zone magmatism involves hydraulic fractures propagating from the oceanic crust to the mantle wedge source region (Davies, 1999). We aim to test this hypothesis by developing a numerical model of the process, and then comparing model outputs with observations. The hypothesis proposes that the water interconnects in the slab following an earthquake. If sufficient pressure develops a hydrofracture occurs. The hydrofracture will expand in the direction of the least compressive stress and propagate in the direction of the most compressive stress, which is out into the wedge. Therefore we can calculate the hydrofracture path and end-point, given the start location on the slab and the propagation distance. We can therefore predict where water is added to the mantle wedge. To take this further we have developed a thermal model of a subduction zone. The model uses a finite difference, marker-in-cell method to solve the heat equation (Gerya, 2010). The velocity field was prescribed using the analytical expression of cornerflow (Batchelor, 1967). The markers contained within the fixed grid are used to track the different compositions and their properties. The subduction zone thermal model was benchmarked (Van Keken, 2008). We used the hydrous melting parameterization of Katz et.al., (2003) to calculate the degree of melting caused by the addition of water to the wedge. We investigate models where the hydrofractures, with properties constrained by estimated water fluxes, have random end points. The model predicts degree of melting, magma productivity, temperature of the melt and water content in the melt for different initial water fluxes. Future models will also include the buoyancy effect of the melt and residue. Batchelor, Cambridge UP, 1967. Davies, Nature, 398: 142-145, 1999. Gerya, Cambridge UP, 2010. Katz, Geochem. Geophys. Geosy, 4(9), 2003 Van Keken et.al. Phys. Earth. Planet. In., 171:187-197, 2008.

  3. Productivity Analysis of Volume Fractured Vertical Well Model in Tight Oil Reservoirs

    Jiahang Wang

    2017-01-01

    Full Text Available This paper presents a semianalytical model to simulate the productivity of a volume fractured vertical well in tight oil reservoirs. In the proposed model, the reservoir is a composite system which contains two regions. The inner region is described as formation with finite conductivity hydraulic fracture network and the flow in fracture is assumed to be linear, while the outer region is simulated by the classical Warren-Root model where radial flow is applied. The transient rate is calculated, and flow patterns and characteristic flowing periods caused by volume fractured vertical well are analyzed. Combining the calculated results with actual production data at the decline stage shows a good fitting performance. Finally, the effects of some sensitive parameters on the type curves are also analyzed extensively. The results demonstrate that the effect of fracture length is more obvious than that of fracture conductivity on improving production in tight oil reservoirs. When the length and conductivity of main fracture are constant, the contribution of stimulated reservoir volume (SRV to the cumulative oil production is not obvious. When the SRV is constant, the length of fracture should also be increased so as to improve the fracture penetration and well production.

  4. Introduction to numerical modeling of thermohydrologic flow in fractured rock masses

    Wang, J.S.Y.

    1980-01-01

    More attention is being given to the possibility of nuclear waste isolation in hard rock formations. The waste will generate heat which raises the temperature of the surrounding fractured rock masses and induces buoyancy flow and pressure change in the fluid. These effects introduce the potential hazard of radionuclides being carried to the biosphere, and affect the structure of a repository by stress changes in the rock formation. The thermohydrological and thermomechanical responses are determined by the fractures as well as the intact rock blocks. The capability of modeling fractured rock masses is essential to site characterization and repository evaluation. The fractures can be modeled either as a discrete system, taking into account the detailed fracture distributions, or as a continuum representing the spatial average of the fractures. A numerical model is characterized by the governing equations, the numerical methods, the computer codes, the validations, and the applications. These elements of the thermohydrological models are discussed. Along with the general review, some of the considerations in modeling fractures are also discussed. Some remarks on the research needs in modeling fractured rock mass conclude the paper

  5. Visualization and Hierarchical Analysis of Flow in Discrete Fracture Network Models

    Aldrich, G. A.; Gable, C. W.; Painter, S. L.; Makedonska, N.; Hamann, B.; Woodring, J.

    2013-12-01

    Flow and transport in low permeability fractured rock is primary in interconnected fracture networks. Prediction and characterization of flow and transport in fractured rock has important implications in underground repositories for hazardous materials (eg. nuclear and chemical waste), contaminant migration and remediation, groundwater resource management, and hydrocarbon extraction. We have developed methods to explicitly model flow in discrete fracture networks and track flow paths using passive particle tracking algorithms. Visualization and analysis of particle trajectory through the fracture network is important to understanding fracture connectivity, flow patterns, potential contaminant pathways and fast paths through the network. However, occlusion due to the large number of highly tessellated and intersecting fracture polygons preclude the effective use of traditional visualization methods. We would also like quantitative analysis methods to characterize the trajectory of a large number of particle paths. We have solved these problems by defining a hierarchal flow network representing the topology of particle flow through the fracture network. This approach allows us to analyses the flow and the dynamics of the system as a whole. We are able to easily query the flow network, and use paint-and-link style framework to filter the fracture geometry and particle traces based on the flow analytics. This allows us to greatly reduce occlusion while emphasizing salient features such as the principal transport pathways. Examples are shown that demonstrate the methodology and highlight how use of this new method allows quantitative analysis and characterization of flow and transport in a number of representative fracture networks.

  6. On the temperature independence of statistical model parameters for cleavage fracture in ferritic steels

    Qian, Guian; Lei, Wei-Sheng; Niffenegger, M.; González-Albuixech, V. F.

    2018-04-01

    The work relates to the effect of temperature on the model parameters in local approaches (LAs) to cleavage fracture. According to a recently developed LA model, the physical consensus of plastic deformation being a prerequisite to cleavage fracture enforces any LA model of cleavage fracture to observe initial yielding of a volume element as its threshold stress state to incur cleavage fracture in addition to the conventional practice of confining the fracture process zone within the plastic deformation zone. The physical consistency of the new LA model to the basic LA methodology and the differences between the new LA model and other existing models are interpreted. Then this new LA model is adopted to investigate the temperature dependence of LA model parameters using circumferentially notched round tensile specimens. With the published strength data as input, finite element (FE) calculation is conducted for elastic-perfectly plastic deformation and the realistic elastic-plastic hardening, respectively, to provide stress distributions for model calibration. The calibration results in temperature independent model parameters. This leads to the establishment of a 'master curve' characteristic to synchronise the correlation between the nominal strength and the corresponding cleavage fracture probability at different temperatures. This 'master curve' behaviour is verified by strength data from three different steels, providing a new path to calculate cleavage fracture probability with significantly reduced FE efforts.

  7. A constitutive model for representing coupled creep, fracture, and healing in rock salt

    Chan, K.S.; Bodner, S.R.; Munson, D.E.; Fossum, A.F.

    1996-01-01

    The development of a constitutive model for representing inelastic flow due to coupled creep, damage, and healing in rock salt is present in this paper. This model, referred to as Multimechanism Deformation Coupled Fracture model, has been formulated by considering individual mechanisms that include dislocation creep, shear damage, tensile damage, and damage healing. Applications of the model to representing the inelastic flow and fracture behavior of WIPP salt subjected to creep, quasi-static loading, and damage healing conditions are illustrated with comparisons of model calculations against experimental creep curves, stress-strain curves, strain recovery curves, time-to-rupture data, and fracture mechanism maps

  8. On the Theory and Numerical Simulation of Cohesive Crack Propagation with Application to Fiber-Reinforced Composites

    Rudraraju, Siva Shankar; Garikipati, Krishna; Waas, Anthony M.; Bednarcyk, Brett A.

    2013-01-01

    The phenomenon of crack propagation is among the predominant modes of failure in many natural and engineering structures, often leading to severe loss of structural integrity and catastrophic failure. Thus, the ability to understand and a priori simulate the evolution of this failure mode has been one of the cornerstones of applied mechanics and structural engineering and is broadly referred to as "fracture mechanics." The work reported herein focuses on extending this understanding, in the context of through-thickness crack propagation in cohesive materials, through the development of a continuum-level multiscale numerical framework, which represents cracks as displacement discontinuities across a surface of zero measure. This report presents the relevant theory, mathematical framework, numerical modeling, and experimental investigations of through-thickness crack propagation in fiber-reinforced composites using the Variational Multiscale Cohesive Method (VMCM) developed by the authors.

  9. An Efficient Two-Scale Hybrid Embedded Fracture Model for Shale Gas Simulation

    Amir, Sahar Z.

    2016-12-27

    Natural and hydraulic fractures existence and state differs on a reservoir-by-reservoir or even on a well-by-well basis leading to the necessity of exploring the flow regimes variations with respect to the diverse fracture-network shapes forged. Conventional Dual-Porosity Dual-Permeability (DPDP) schemes are not adequate to model such complex fracture-network systems. To overcome this difficulty, in this paper, an iterative Hybrid Embedded multiscale (two-scale) Fracture model (HEF) is applied on a derived fit-for-purpose shale gas model. The HEF model involves splitting the fracture computations into two scales: 1) fine-scale solves for the flux exchange parameter within each grid cell; 2) coarse-scale solves for the pressure applied to the domain grid cells using the flux exchange parameter computed at each grid cell from the fine-scale. After that, the D dimensions matrix pressure and the (D-1) lower dimensional fracture pressure are solved as a system to apply the matrix-fracture coupling. HEF model combines the DPDP overlapping continua concept, the DFN lower dimensional fractures concept, the HFN hierarchical fracture concept, and the CCFD model simplicity. As for the fit-for-purpose shale gas model, various fit-for-purpose shale gas models can be derived using any set of selected properties plugged in one of the most popularly used proposed literature models as shown in the appendix. Also, this paper shows that shale extreme low permeability cause flow behavior to be dominated by the structure and magnitude of high permeability fractures.

  10. Discrete fracture modelling of the Finnsjoen rock mass. Phase 1: Feasibility study

    Geier, J.E.; Axelsson, C.L.

    1991-03-01

    The geometry and properties of discrete fractures are expected to control local heterogeneity in flow and solute transport within crystalline rock in the Finnsjoen area. The present report describes the first phase of a discrete-fracture modelling study, the goal of which is to develop stochastic-continuum and hydrologic properties. In the first phase of this study, the FracMan discrete fracture modelling package was used to analyse discrete fracture geometrical and hyrological data. Constant-pressure packer tests were analysed using fractional dimensional methods to estimate effective transmissivities and flow dimension for the packer test intervals. Discrete fracture data on orientation, size, shape, and location were combined with hydrologic data to develop a preliminary conceptual model for the conductive fractures at the site. The variability of fracture properties was expressed in the model by probability distributions. The preliminary conceptual model was used to simulate three-dimensional populations of conductive fractures in 25 m and 50 m cubes of rock. Transient packer tests were simulated in these fracture populations, and the simulated results were used to validate the preliminary conceptual model. The calibrated model was used to estimate the components of effective conductivity tensors for the rock by simulating steady-state groundwater flow through the cubes in three orthogonal directions. Monte Carlo stochastic simulations were performed for alternative realizations of the conceptual model. The number of simulations was insufficient to give a quantitative prediction of the effective conductivity heterogeneity and anisotropy on the scales of the cubes. However, the results give preliminary, rough estimates of these properties, and provide a demonstration of how the discrete-fracture network concept can be applied to derive data that is necessary for stochastic continuum and channel network modelling. (authors)

  11. An Efficient Two-Scale Hybrid Embedded Fracture Model for Shale Gas Simulation

    Amir, Sahar Z.; Sun, Shuyu

    2016-01-01

    Natural and hydraulic fractures existence and state differs on a reservoir-by-reservoir or even on a well-by-well basis leading to the necessity of exploring the flow regimes variations with respect to the diverse fracture-network shapes forged. Conventional Dual-Porosity Dual-Permeability (DPDP) schemes are not adequate to model such complex fracture-network systems. To overcome this difficulty, in this paper, an iterative Hybrid Embedded multiscale (two-scale) Fracture model (HEF) is applied on a derived fit-for-purpose shale gas model. The HEF model involves splitting the fracture computations into two scales: 1) fine-scale solves for the flux exchange parameter within each grid cell; 2) coarse-scale solves for the pressure applied to the domain grid cells using the flux exchange parameter computed at each grid cell from the fine-scale. After that, the D dimensions matrix pressure and the (D-1) lower dimensional fracture pressure are solved as a system to apply the matrix-fracture coupling. HEF model combines the DPDP overlapping continua concept, the DFN lower dimensional fractures concept, the HFN hierarchical fracture concept, and the CCFD model simplicity. As for the fit-for-purpose shale gas model, various fit-for-purpose shale gas models can be derived using any set of selected properties plugged in one of the most popularly used proposed literature models as shown in the appendix. Also, this paper shows that shale extreme low permeability cause flow behavior to be dominated by the structure and magnitude of high permeability fractures.

  12. Structural and geochemical techniques for the hydrogeological characterisation and stochastic modelling of fractured media

    Vela, A.; Elorza, F.J.; Florez, F.; Paredes, C.; Mazadiego, L.; Llamas, J.F.; Perez, E.; Vives, L.; Carrera, J.; Munoz, A.; De Vicente, G.; Casquet, C.

    1999-01-01

    Safety analysis of radioactive waste storage systems require fractured rock studies. The performance assessment studies of this type of problems include the development of radionuclide flow and transport models to predict the evolution of possible contaminants released from the repository to the biosphere. The methodology developed in the HIDROBAP project and some results obtained with its application in El Berrocal granite batholith are presented. It integrates modern tools belonging to different disciplines. A Discrete Fracture Network model (DFT) was selected to simulate the fractured medium and a 3D finite element flow and transport model that includes the inverse problem techniques has been coupled to the DFT model to simulate the water movement trough the fracture network system. Preliminary results show that this integrated methodology can be very useful for the hydrogeological characterisation of rock fractured media. (author)

  13. Cohesion and device reliability in organic bulk heterojunction photovoltaic cells

    Brand, Vitali

    2012-04-01

    The fracture resistance of P3HT:PC 60BM-based photovoltaic devices are characterized using quantitative adhesion and cohesion metrologies that allow identification of the weakest layer or interface in the device structure. We demonstrate that the phase separated bulk heterojunction layer is the weakest layer and report quantitative cohesion values which ranged from ∼1 to 20 J m -2. The effects of layer thickness, composition, and annealing treatments on layer cohesion are investigated. Using depth profiling and X-ray photoelectron spectroscopy on the resulting fracture surfaces, we examine the gradient of molecular components through the thickness of the bulk heterojunction layer. Finally, using atomic force microscopy we show how the topography of the failure path is related to buckling of the metal electrode and how it develops with annealing. The research provides new insights on how the molecular design, structure and composition affect the cohesive properties of organic photovoltaics. © 2011 Elsevier B.V. All rights reserved.

  14. Application of Fracture Distribution Prediction Model in Xihu Depression of East China Sea

    Yan, Weifeng; Duan, Feifei; Zhang, Le; Li, Ming

    2018-02-01

    There are different responses on each of logging data with the changes of formation characteristics and outliers caused by the existence of fractures. For this reason, the development of fractures in formation can be characterized by the fine analysis of logging curves. The well logs such as resistivity, sonic transit time, density, neutron porosity and gamma ray, which are classified as conventional well logs, are more sensitive to formation fractures. In view of traditional fracture prediction model, using the simple weighted average of different logging data to calculate the comprehensive fracture index, are more susceptible to subjective factors and exist a large deviation, a statistical method is introduced accordingly. Combining with responses of conventional logging data on the development of formation fracture, a prediction model based on membership function is established, and its essence is to analyse logging data with fuzzy mathematics theory. The fracture prediction results in a well formation in NX block of Xihu depression through two models are compared with that of imaging logging, which shows that the accuracy of fracture prediction model based on membership function is better than that of traditional model. Furthermore, the prediction results are highly consistent with imaging logs and can reflect the development of cracks much better. It can provide a reference for engineering practice.

  15. Prediction on fracture risk of femur with Osteogenesis Imperfecta using finite element models: Preliminary study

    Wanna, S. B. C.; Basaruddin, K. S.; Mat Som, M. H.; Mohamad Hashim, M. S.; Daud, R.; Majid, M. S. Abdul; Sulaiman, A. R.

    2017-10-01

    Osteogenesis imperfecta (OI) is a genetic disease which affecting the bone geometry. In a severe case, this disease can cause death to patients. The main issue of this disease is the prediction on bone fracture by the orthopaedic surgeons. The resistance of the bone to withstand the force before the bones fracture often become the main concern. Therefore, the objective of the present preliminary study was to investigate the fracture risk associated with OI bone, particularly in femur, when subjected to the self-weight. Finite element (FEA) was employed to reconstruct the OI bone model and analyse the mechanical stress response of femur before it fractures. Ten deformed models with different severity of OI bones were developed and the force that represents patient self-weight was applied to the reconstructed models in static analysis. Stress and fracture risk were observed and analysed throughout the simulation. None of the deformed model were observed experienced fracture. The fracture risk increased with increased severity of the deformed bone. The results showed that all deformed femur models were able to bear the force without experienced fracture when subjected to only the self-weight.

  16. DEVELOPMENT OF RESERVOIR CHARACTERIZATION TECHNIQUES AND PRODUCTION MODELS FOR EXPLOITING NATURALLY FRACTURED RESERVOIRS

    Michael L. Wiggins; Raymon L. Brown; Faruk Civan; Richard G. Hughes

    2002-12-31

    For many years, geoscientists and engineers have undertaken research to characterize naturally fractured reservoirs. Geoscientists have focused on understanding the process of fracturing and the subsequent measurement and description of fracture characteristics. Engineers have concentrated on the fluid flow behavior in the fracture-porous media system and the development of models to predict the hydrocarbon production from these complex systems. This research attempts to integrate these two complementary views to develop a quantitative reservoir characterization methodology and flow performance model for naturally fractured reservoirs. The research has focused on estimating naturally fractured reservoir properties from seismic data, predicting fracture characteristics from well logs, and developing a naturally fractured reservoir simulator. It is important to develop techniques that can be applied to estimate the important parameters in predicting the performance of naturally fractured reservoirs. This project proposes a method to relate seismic properties to the elastic compliance and permeability of the reservoir based upon a sugar cube model. In addition, methods are presented to use conventional well logs to estimate localized fracture information for reservoir characterization purposes. The ability to estimate fracture information from conventional well logs is very important in older wells where data are often limited. Finally, a desktop naturally fractured reservoir simulator has been developed for the purpose of predicting the performance of these complex reservoirs. The simulator incorporates vertical and horizontal wellbore models, methods to handle matrix to fracture fluid transfer, and fracture permeability tensors. This research project has developed methods to characterize and study the performance of naturally fractured reservoirs that integrate geoscience and engineering data. This is an important step in developing exploitation strategies for

  17. Biomechanical Evaluations of Hip Fracture Using Finite Element Model that Models Individual Differences of Femur

    田中, 英一; TANAKA, Eiichi; 山本, 創太; YAMAMOTO, Sota; 坂本, 誠二; SAKAMOTO, Seiji; 中西, 孝文; NAKANISHI, Takafumi; 原田, 敦; HARADA, Atsushi; 水野, 雅士; MIZUNO, Masashi

    2004-01-01

    This paper is concerned with an individual finite element modeling system for femur and biomechanical evaluations of the influences of loading conditions, bone shape and bone density on risks of hip fracture. Firstly, a method to construct an individual finite element model by morphological parameters that represent femoral shapes was developed. Using the models with different shapes constructed by this method, the effects of fall direction, posture of upper body, femur shape and bone density...

  18. Proposed Model for a Streamlined, Cohesive, and Optimized K-12 STEM Curriculum with a Focus on Engineering

    Locke, Edward

    2009-01-01

    This article presents a proposed model for a clear description of K-12 age-possible engineering knowledge content, in terms of the selection of analytic principles and predictive skills for various grades, based on the mastery of mathematics and science pre-requisites, as mandated by national or state performance standards; and a streamlined,…

  19. Hierarchical multiscale modeling for flows in fractured media using generalized multiscale finite element method

    Efendiev, Yalchin R.

    2015-06-05

    In this paper, we develop a multiscale finite element method for solving flows in fractured media. Our approach is based on generalized multiscale finite element method (GMsFEM), where we represent the fracture effects on a coarse grid via multiscale basis functions. These multiscale basis functions are constructed in the offline stage via local spectral problems following GMsFEM. To represent the fractures on the fine grid, we consider two approaches (1) discrete fracture model (DFM) (2) embedded fracture model (EFM) and their combination. In DFM, the fractures are resolved via the fine grid, while in EFM the fracture and the fine grid block interaction is represented as a source term. In the proposed multiscale method, additional multiscale basis functions are used to represent the long fractures, while short-size fractures are collectively represented by a single basis functions. The procedure is automatically done via local spectral problems. In this regard, our approach shares common concepts with several approaches proposed in the literature as we discuss. We would like to emphasize that our goal is not to compare DFM with EFM, but rather to develop GMsFEM framework which uses these (DFM or EFM) fine-grid discretization techniques. Numerical results are presented, where we demonstrate how one can adaptively add basis functions in the regions of interest based on error indicators. We also discuss the use of randomized snapshots (Calo et al. Randomized oversampling for generalized multiscale finite element methods, 2014), which reduces the offline computational cost.

  20. Application of the boundary elements method for modeling of the fracture of cylindrical bodies by hydraulic fracturing

    Legan, M. A.; Blinov, V. A.; Larichkin, A. Yu; Novoselov, A. N.

    2017-10-01

    Experimental study of hydraulic fracturing of thick-walled cylinders with a central circular hole was carried out using the machine that creates a high oil pressure. Experiments on the compression fracture of the solid cylinders by diameter and rectangular parallelepipeds perpendicular to the ends were carried out with a multipurpose test machine Zwick / Roell Z100. Samples were made of GF-177 material based on cement. Ultimate stresses in the material under study were determined for three types of stress state: under compression, with a pure shear on the surface of the hole under frecking conditions and under a compound stress state under conditions of diametral compression of a solid cylinder. The value of the critical stress intensity factor of GF-177 material was obtained. The modeling of the fracturing process taking into account the inhomogeneity of the stress state near the hole was carried out using the boundary elements method (in the variant of the fictitious load method) and the gradient fracture criterion. Calculation results of the ultimate pressure were compared with values obtained analytically on the basis of the Lame solution and with experimental data.

  1. A novel computer algorithm for modeling and treating mandibular fractures: A pilot study.

    Rizzi, Christopher J; Ortlip, Timothy; Greywoode, Jewel D; Vakharia, Kavita T; Vakharia, Kalpesh T

    2017-02-01

    To describe a novel computer algorithm that can model mandibular fracture repair. To evaluate the algorithm as a tool to model mandibular fracture reduction and hardware selection. Retrospective pilot study combined with cross-sectional survey. A computer algorithm utilizing Aquarius Net (TeraRecon, Inc, Foster City, CA) and Adobe Photoshop CS6 (Adobe Systems, Inc, San Jose, CA) was developed to model mandibular fracture repair. Ten different fracture patterns were selected from nine patients who had already undergone mandibular fracture repair. The preoperative computed tomography (CT) images were processed with the computer algorithm to create virtual images that matched the actual postoperative three-dimensional CT images. A survey comparing the true postoperative image with the virtual postoperative images was created and administered to otolaryngology resident and attending physicians. They were asked to rate on a scale from 0 to 10 (0 = completely different; 10 = identical) the similarity between the two images in terms of the fracture reduction and fixation hardware. Ten mandible fracture cases were analyzed and processed. There were 15 survey respondents. The mean score for overall similarity between the images was 8.41 ± 0.91; the mean score for similarity of fracture reduction was 8.61 ± 0.98; and the mean score for hardware appearance was 8.27 ± 0.97. There were no significant differences between attending and resident responses. There were no significant differences based on fracture location. This computer algorithm can accurately model mandibular fracture repair. Images created by the algorithm are highly similar to true postoperative images. The algorithm can potentially assist a surgeon planning mandibular fracture repair. 4. Laryngoscope, 2016 127:331-336, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  2. Hydrogeological characterisation and modelling of deformation zones and fracture domains, Forsmark modelling stage 2.2

    Follin, Sven (SF GeoLogic AB, Taeby (SE)); Leven, Jakob (Swedish Nuclear Fuel and Waste Management Co., Stockholm (SE)); Hartley, Lee; Jackson, Peter; Joyce, Steve; Roberts, David; Swift, Ben (Serco Assurance, Harwell (GB))

    2007-09-15

    The work reported here collates the structural-hydraulic information gathered in 21 cored boreholes and 32 percussion-drilled boreholes belonging to Forsmark site description, modelling stage 2.2. The analyses carried out provide the hydrogeological input descriptions of the bedrock in Forsmark needed by the end users Repository Engineering, Safety Assessment and Environmental Impact Assessment; that is, hydraulic properties of deformation zones and fracture domains. The same information is also needed for constructing 3D groundwater flow models of the Forsmark site and surrounding area. The analyses carried out render the following conceptual model regarding the observed heterogeneity in deformation zone transmissivity: We find the geological division of the deterministically modelled deformation zones into eight categories (sets) useful from a hydrogeological point of view. Seven of the eight categories are steeply dipping, WNW, NW, NNW, NNE, NE, ENE and EW, and on is gently dipping, G. All deformation zones, regardless of orientation (strike and dip), are subjected to a substantial decrease in transmissivity with depth. The data gathered suggest a contrast of c. 20,000 times for the uppermost one kilometre of bedrock, i.e. more than four orders of magnitude. The hydraulic properties below this depth are not investigated. The lateral heterogeneity is also substantial but more irregular in its appearance. For instance, for a given elevation and deformation zone category (orientation), the spatial variability in transmissivity within a particular deformation zone appears to be as large as the variability between all deformation zones. This suggests that the lateral correlation length is shorter than the shortest distance between two adjacent observation points and shorter than the category spacing. The observation that the mean transmissivity of the gently-dipping deformation zones is c. one to two orders of magnitude greater than the mean transmissivities of all

  3. Immigration, social cohesion, and naturalization

    Lægaard, Sune

    2010-01-01

    social trust do not connect with issues of naturalization at all. Other conceptions of social cohesion are either politically controversial, problematic as part of the justification of stricter naturalization requirements, or in fact justify less demanding naturalization requirements....

  4. Preliminary modeling for solute transport in a fractured zone at the Korea underground research tunnel (KURT)

    Park, Chung Kyun; Lee, Jaek Wang; Baik, Min Hoon; Jeong, Jong Tae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-02-15

    Migration tests were performed with conservative tracers in a fractured zone that had a single fracture of about 2.5 m distance at the KURT. To interpret the migration of the tracers in the fractured rock, a solute transport model was developed. A two dimensional variable aperture channel model was adopted to describe the fractured path and hydrology, and a particle tracking method was used for solute transport. The simulation tried not only to develop a migration model of solutes for open flow environments but also to produce ideas for a better understanding of solute behaviours in indefinable fracture zones by comparing them to experimental results. The results of our simulations and experiments are described as elution and breakthrough curves, and are quantified by momentum analysis. The main retardation mechanism of nonsorbing tracers, including matrixdiffusion, was investigated.

  5. Modeling of strongly heat-driven flow in partially saturated fractured porous media

    Pruess, K.; Tsang, Y.W.; Wang, J.S.Y.

    1985-01-01

    The authors have performed modeling studies on the simultaneous transport of heat, liquid water, vapor, and air in partially saturated fractured porous media, with particular emphasis on strongly heat-driven flow. The presence of fractures makes the transport problem very complex, both in terms of flow geometry and physics. The numerical simulator used for their flow calculations takes into account most of the physical effects which are important in multi-phase fluid and heat flow. It has provisions to handle the extreme non-linearities which arise in phase transitions, component disappearances, and capillary discontinuities at fracture faces. They model a region around an infinite linear string of nuclear waste canisters, taking into account both the discrete fractures and the porous matrix. From an analysis of the results obtained with explicit fractures, they develop equivalent continuum models which can reproduce the temperature, saturation, and pressure variation, and gas and liquid flow rates of the discrete fracture-porous matrix calculations. The equivalent continuum approach makes use of a generalized relative permeability concept to take into account the fracture effects. This results in a substantial simplification of the flow problem which makes larger scale modeling of complicated unsaturated fractured porous systems feasible. Potential applications for regional scale simulations and limitations of the continuum approach are discussed. 27 references, 13 figures, 2 tables

  6. Modeling of strongly heat-driven flow in partially saturated fractured porous media

    Pruess, K.; Tsang, Y.W.; Wang, J.S.Y.

    1984-10-01

    We have performed modeling studies on the simultaneous transport of heat, liquid water, vapor, and air in partially saturated fractured porous media, with particular emphasis on strongly heat-driven flow. The presence of fractures makes the transport problem very complex, both in terms of flow geometry and physics. The numerical simulator used for our flow calculations takes into account most of the physical effects which are important in multi-phase fluid and heat flow. It has provisions to handle the extreme non-linearities which arise in phase transitions, component disappearances, and capillary discontinuities at fracture faces. We model a region around an infinite linear string of nuclear waste canisters, taking into account both the discrete fractures and the porous matrix. From an analysis of the results obtained with explicit fractures, we develop equivalent continuum models which can reproduce the temperature, saturation, and pressure variation, and gas and liquid flow rates of the discrete fracture-porous matrix calculations. The equivalent continuum approach makes use of a generalized relative permeability concept to take into account for fracture effects. This results in a substantial simplification of the flow problem which makes larger scale modeling of complicated unsaturated fractured porous systems feasible. Potential applications for regional scale simulations and limitations of the continuum approach are discussed. 27 references, 13 figures, 2 tables

  7. Coupling a fluid flow simulation with a geomechanical model of a fractured reservoir

    Segura Segarra, José María; Paz, C.M.; de Bayser, M.; Zhang, J.; Bryant, P.W.; Gonzalez, Nubia Aurora; Rodrigues, E.; Vargas, P.E.; Carol, Ignacio; Lakshmikantha, Ramasesha Mookanahallipatna; Das, K. C.; Sandha, S.S.; Cerqueira, R.; Mello,, U.

    2013-01-01

    Improving the reliability of integrated reservoir development planning and addressing subsidence, fault reactivation and other environmental impacts, requires increasingly sophisticated geomechanical models, especially in the case of fractured reservoirs where fracture deformation is strongly coupled with its permeability change. Reservoir simulation has historically treated any geomechanical effects by means of a rock compressibility term/table, which can be improved by simulating the actual...

  8. Dynamic fracture and hot-spot modeling in energetic composites

    Grilli, Nicolò; Duarte, Camilo A.; Koslowski, Marisol

    2018-02-01

    Defects such as cracks, pores, and particle-matrix interface debonding affect the sensitivity of energetic materials by reducing the time-to-ignition and the threshold pressure to initiate an explosion. Frictional sliding of preexisting cracks is considered to be one of the most important causes of localized heating. Therefore, understanding the dynamic fracture of crystalline energetic materials is of extreme importance to assess the reliability and safety of polymer-bonded explosives. Phase field damage model simulations, based on the regularization of the crack surface as a diffuse delta function, are used to describe crack propagation in cyclotetramethylene-tetranitramine crystals embedded in a Sylgard matrix. A thermal transport model that includes heat generation by friction at crack interfaces is coupled to the solution of crack propagation. 2D and 3D dynamic compression simulations are performed with different boundary velocities and initial distributions of cracks and interface defects to understand their effect on crack propagation and heat generation. It is found that, at an impact velocity of 400 m/s, localized damage at the particle-binder interface is of key importance and that the sample reaches temperatures high enough to create a hot-spot that will lead to ignition. At an impact velocity of 10 m/s, preexisting cracks advanced inside the particle, but the increase of temperature will not cause ignition.

  9. Adaptive Finite Element-Discrete Element Analysis for Microseismic Modelling of Hydraulic Fracture Propagation of Perforation in Horizontal Well considering Pre-Existing Fractures

    Yongliang Wang

    2018-01-01

    Full Text Available Hydrofracturing technology of perforated horizontal well has been widely used to stimulate the tight hydrocarbon reservoirs for gas production. To predict the hydraulic fracture propagation, the microseismicity can be used to infer hydraulic fractures state; by the effective numerical methods, microseismic events can be addressed from changes of the computed stresses. In numerical models, due to the challenges in accurately representing the complex structure of naturally fractured reservoir, the interaction between hydraulic and pre-existing fractures has not yet been considered and handled satisfactorily. To overcome these challenges, the adaptive finite element-discrete element method is used to refine mesh, effectively identify the fractures propagation, and investigate microseismic modelling. Numerical models are composed of hydraulic fractures, pre-existing fractures, and microscale pores, and the seepage analysis based on the Darcy’s law is used to determine fluid flow; then moment tensors in microseismicity are computed based on the computed stresses. Unfractured and naturally fractured models are compared to assess the influences of pre-existing fractures on hydrofracturing. The damaged and contact slip events were detected by the magnitudes, B-values, Hudson source type plots, and focal spheres.

  10. Modelling of flow and contaminant migration in single rock fractures

    Dahlblom, P.; Joensson, L.

    1990-03-01

    The report deals with flow and hydrodynamic dispersion of a nonreactive contaminant in a single, irregularly shaped fracture. The main purpose of the report is to describe the basis and development of a computational 'tool' for simulating the aperture geometry of a single fracture and the detailed flow in it. On the basis of this flow information further properties of the fracture can be studied. Some initial application to dispersion of a nonreactive contaminant are thus discussed. The spatial pattern of variation of the fracture aperture is considered as a two-dimensional stochastic process. A method for simulation of such a process is described. The stochastic properties can be chosen arbitrarily. It is assumed that the fracture aperture belongs to a log-normal distribution. For calculation of the flow pattern, the Navier-Stokes equations are simplified to describe low velocity and steady-state flow. These equations, and the continuity equation are integrated in the direction across the fracture plane. A stream function, which describes the integrated flow in the fracture, is defined. A second order partial differential equation, with respect to the stream function, is established and solved by the finite difference method. Isolines for the stream function define boundaries between channels with equal flow rates. The travel time for each channel can be calculated to achieve a measure of the dispersion. The impact of the aperture distribution on the ratio between the mass balance fracture aperture and the cubic law fracture aperture is shown by simple examples. (28 figs., 1 tab., 22 refs.)

  11. Integrated workflow for characterizing and modeling fracture network in unconventional reservoirs using microseismic data

    Ayatollahy Tafti, Tayeb

    We develop a new method for integrating information and data from different sources. We also construct a comprehensive workflow for characterizing and modeling a fracture network in unconventional reservoirs, using microseismic data. The methodology is based on combination of several mathematical and artificial intelligent techniques, including geostatistics, fractal analysis, fuzzy logic, and neural networks. The study contributes to scholarly knowledge base on the characterization and modeling fractured reservoirs in several ways; including a versatile workflow with a novel objective functions. Some the characteristics of the methods are listed below: 1. The new method is an effective fracture characterization procedure estimates different fracture properties. Unlike the existing methods, the new approach is not dependent on the location of events. It is able to integrate all multi-scaled and diverse fracture information from different methodologies. 2. It offers an improved procedure to create compressional and shear velocity models as a preamble for delineating anomalies and map structures of interest and to correlate velocity anomalies with fracture swarms and other reservoir properties of interest. 3. It offers an effective way to obtain the fractal dimension of microseismic events and identify the pattern complexity, connectivity, and mechanism of the created fracture network. 4. It offers an innovative method for monitoring the fracture movement in different stages of stimulation that can be used to optimize the process. 5. Our newly developed MDFN approach allows to create a discrete fracture network model using only microseismic data with potential cost reduction. It also imposes fractal dimension as a constraint on other fracture modeling approaches, which increases the visual similarity between the modeled networks and the real network over the simulated volume.

  12. Strong Local-Nonlocal Coupling for Integrated Fracture Modeling

    Littlewood, David John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Silling, Stewart A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mitchell, John A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Seleson, Pablo D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bond, Stephen D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Parks, Michael L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Turner, Daniel Z. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Burnett, Damon J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ostien, Jakob [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Gunzburger, Max [Florida State Univ., Tallahassee, FL (United States)

    2015-09-01

    Peridynamics, a nonlocal extension of continuum mechanics, is unique in its ability to capture pervasive material failure. Its use in the majority of system-level analyses carried out at Sandia, however, is severely limited, due in large part to computational expense and the challenge posed by the imposition of nonlocal boundary conditions. Combined analyses in which peridynamics is em- ployed only in regions susceptible to material failure are therefore highly desirable, yet available coupling strategies have remained severely limited. This report is a summary of the Laboratory Directed Research and Development (LDRD) project "Strong Local-Nonlocal Coupling for Inte- grated Fracture Modeling," completed within the Computing and Information Sciences (CIS) In- vestment Area at Sandia National Laboratories. A number of challenges inherent to coupling local and nonlocal models are addressed. A primary result is the extension of peridynamics to facilitate a variable nonlocal length scale. This approach, termed the peridynamic partial stress, can greatly reduce the mathematical incompatibility between local and nonlocal equations through reduction of the peridynamic horizon in the vicinity of a model interface. A second result is the formulation of a blending-based coupling approach that may be applied either as the primary coupling strategy, or in combination with the peridynamic partial stress. This blending-based approach is distinct from general blending methods, such as the Arlequin approach, in that it is specific to the coupling of peridynamics and classical continuum mechanics. Facilitating the coupling of peridynamics and classical continuum mechanics has also required innovations aimed directly at peridynamic models. Specifically, the properties of peridynamic constitutive models near domain boundaries and shortcomings in available discretization strategies have been addressed. The results are a class of position-aware peridynamic constitutive laws for

  13. Numerical investigations of rib fracture failure models in different dynamic loading conditions.

    Wang, Fang; Yang, Jikuang; Miller, Karol; Li, Guibing; Joldes, Grand R; Doyle, Barry; Wittek, Adam

    2016-01-01

    Rib fracture is one of the most common thoracic injuries in vehicle traffic accidents that can result in fatalities associated with seriously injured internal organs. A failure model is critical when modelling rib fracture to predict such injuries. Different rib failure models have been proposed in prediction of thorax injuries. However, the biofidelity of the fracture failure models when varying the loading conditions and the effects of a rib fracture failure model on prediction of thoracic injuries have been studied only to a limited extent. Therefore, this study aimed to investigate the effects of three rib failure models on prediction of thoracic injuries using a previously validated finite element model of the human thorax. The performance and biofidelity of each rib failure model were first evaluated by modelling rib responses to different loading conditions in two experimental configurations: (1) the three-point bending on the specimen taken from rib and (2) the anterior-posterior dynamic loading to an entire bony part of the rib. Furthermore, the simulation of the rib failure behaviour in the frontal impact to an entire thorax was conducted at varying velocities and the effects of the failure models were analysed with respect to the severity of rib cage damages. Simulation results demonstrated that the responses of the thorax model are similar to the general trends of the rib fracture responses reported in the experimental literature. However, they also indicated that the accuracy of the rib fracture prediction using a given failure model varies for different loading conditions.

  14. On the failure analysis of bondlines: Stress or energy based fracture criteria?

    Anyfantis, Konstantinos

    2014-01-01

    that characterizes a given bondline, both its cohesive strength and fracture toughness material parameters must be experimentally defined. Based on these properties, failure analysis of the bondline can be done either through stress- or energy-based criteria. The aim of this work is to investigate the effectiveness...... to classify the wide range of bondlines with respect to the failure theory that best describes the debonding process. Cohesive length scale effects are first demonstrated by modeling end notch flexure geometries and later by modeling double strap joint geometries within the framework of a wide numerical...

  15. Comparison of fracture properties of cellulose nanopaper, printing paper and buckypaper

    Mao, Rui; Goutianos, Stergios; Tu, Wei-Chen

    2017-01-01

    Cellulose nanopaper consists of a dense fibrous self-binding network composed of cellulose nanofibres connected by physical entanglements, hydrogen bonding, etc. Compared with conventional printing paper, cellulose nanopaper has higher strength and modulus because of stronger fibres and inter......-fibre bonding. The aim of this paper is to investigate the fracture properties of cellulose nanopaper using double edge notch tensile tests on samples with different notch lengths. It was found that strength is insensitive to notch length. A cohesive zone model was used to describe the fracture behaviour...... of notched cellulose nanopaper. Fracture energy was extracted from the cohesive zone model and divided into an energy component consumed by damage in the material and a component related to pull-out or bridging of nanofibres between crack surfaces which was not facilitated due to the limited fibre lengths...

  16. SR 97 - Alternative models project. Discrete fracture network modelling for performance assessment of Aberg

    Dershowitz, B.; Eiben, T.; Follin, S.; Andersson, Johan

    1999-08-01

    As part of studies into the siting of a deep repository for nuclear waste, Swedish Nuclear Fuel and Waste Management Company (SKB) has commissioned the Alternative Models Project (AMP). The AMP is a comparison of three alternative modeling approaches for geosphere performance assessment for a single hypothetical site. The hypothetical site, arbitrarily named Aberg is based on parameters from the Aespoe Hard Rock Laboratory in southern Sweden. The Aberg model domain, boundary conditions and canister locations are defined as a common reference case to facilitate comparisons between approaches. This report presents the results of a discrete fracture pathways analysis of the Aberg site, within the context of the SR 97 performance assessment exercise. The Aberg discrete fracture network (DFN) site model is based on consensus Aberg parameters related to the Aespoe HRL site. Discrete fracture pathways are identified from canister locations in a prototype repository design to the surface of the island or to the sea bottom. The discrete fracture pathways analysis presented in this report is used to provide the following parameters for SKB's performance assessment transport codes FARF31 and COMP23: * F-factor: Flow wetted surface normalized with regards to flow rate (yields an appreciation of the contact area available for diffusion and sorption processes) [TL -1 ]. * Travel Time: Advective transport time from a canister location to the environmental discharge [T]. * Canister Flux: Darcy flux (flow rate per unit area) past a representative canister location [LT -1 ]. In addition to the above, the discrete fracture pathways analysis in this report also provides information about: additional pathway parameters such as pathway length, pathway width, transport aperture, reactive surface area and transmissivity, percentage of canister locations with pathways to the surface discharge, spatial pattern of pathways and pathway discharges, visualization of pathways, and statistical

  17. SR 97 - Alternative models project. Discrete fracture network modelling for performance assessment of Aberg

    Dershowitz, B.; Eiben, T. [Golder Associates Inc., Seattle (United States); Follin, S.; Andersson, Johan [Golder Grundteknik KB, Stockholm (Sweden)

    1999-08-01

    As part of studies into the siting of a deep repository for nuclear waste, Swedish Nuclear Fuel and Waste Management Company (SKB) has commissioned the Alternative Models Project (AMP). The AMP is a comparison of three alternative modeling approaches for geosphere performance assessment for a single hypothetical site. The hypothetical site, arbitrarily named Aberg is based on parameters from the Aespoe Hard Rock Laboratory in southern Sweden. The Aberg model domain, boundary conditions and canister locations are defined as a common reference case to facilitate comparisons between approaches. This report presents the results of a discrete fracture pathways analysis of the Aberg site, within the context of the SR 97 performance assessment exercise. The Aberg discrete fracture network (DFN) site model is based on consensus Aberg parameters related to the Aespoe HRL site. Discrete fracture pathways are identified from canister locations in a prototype repository design to the surface of the island or to the sea bottom. The discrete fracture pathways analysis presented in this report is used to provide the following parameters for SKB's performance assessment transport codes FARF31 and COMP23: * F-factor: Flow wetted surface normalized with regards to flow rate (yields an appreciation of the contact area available for diffusion and sorption processes) [TL{sup -1}]. * Travel Time: Advective transport time from a canister location to the environmental discharge [T]. * Canister Flux: Darcy flux (flow rate per unit area) past a representative canister location [LT{sup -1}]. In addition to the above, the discrete fracture pathways analysis in this report also provides information about: additional pathway parameters such as pathway length, pathway width, transport aperture, reactive surface area and transmissivity, percentage of canister locations with pathways to the surface discharge, spatial pattern of pathways and pathway discharges, visualization of pathways, and

  18. Biomechanical investigation of impact induced rib fractures of a porcine infant surrogate model.

    Blackburne, William B; Waddell, J Neil; Swain, Michael V; Alves de Sousa, Ricardo J; Kieser, Jules A

    2016-09-01

    This study investigated the structural, biomechanical and fractographic features of rib fractures in a piglet model, to test the hypothesis that fist impact, apart from thoracic squeezing, may result in lateral costal fractures as observed in abused infants. A mechanical fist with an accelerometer was constructed and fixed to a custom jig. Twenty stillborn piglets in the supine position were impacted on the thoracic cage. The resultant force versus time curves from the accelerometer data showed a number of steps indicative of rib fracture. The correlation between impact force and number of fractures was statistically significant (Pearson׳s r=0.528). Of the fractures visualized, 15 completely pierced the parietal pleura of the thoracic wall, and 5 had butterfly fracture patterning. Scanning electron microscopy showed complete bone fractures, at the zone of impact, were normal to the axis of the ribs. Incomplete vertical fractures, with bifurcation, occurred on the periphery of the contact zone. This work suggests the mechanism of rib failure during a fist impact is typical of the transverse fracture pattern in the anterolateral region associated with cases of non-accidental rib injury. The impact events investigated have a velocity of ~2-3m/s, approximately 2×10(4) times faster than previous quasi-static axial and bending tests. While squeezing the infantile may induce buckle fractures in the anterior as well as posterior region of the highly flexible bones, a fist punch impact event may result in anterolateral transverse fractures. Hence, these findings suggest that the presence of anterolateral rib fractures may result from impact rather than manual compression. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Impacts of transient heat transfer modeling on prediction of advanced cladding fracture during LWR LBLOCA

    Lee, Youho, E-mail: euo@kaist.ac.kr; Lee, Jeong Ik, E-mail: jeongiklee@kaist.ac.kr; NO, Hee Cheon, E-mail: hcno@kaist.ac.kr

    2016-03-15

    Highlights: • Use of constant heat transfer coefficient for fracture analysis is not sound. • On-time heat transfer coefficient should be used for thermal fracture prediction. • ∼90% of the actual fracture stresses were predicted with the on-time transient h. • Thermal-hydraulic codes can be used to better predict brittle cladding fracture. • Effects of surface oxides on thermal shock fracture should be accounted by h. - Abstract: This study presents the importance of coherency in modeling thermal-hydraulics and mechanical behavior of a solid for an advanced prediction of cladding thermal shock fracture. In water quenching, a solid experiences dynamic heat transfer rate evolutions with phase changes of the fluid over a short quenching period. Yet, such a dynamic change of heat transfer rates has been overlooked in the analysis of thermal shock fracture. In this study, we are presenting quantitative evidence against the prevailing use of a constant heat transfer coefficient for thermal shock fracture analysis in water. We conclude that no single constant heat transfer could suffice to depict the actual stress evolution subject to dynamic fluid phase changes. Use of the surface temperature dependent heat transfer coefficient will remarkably increase predictability of thermal shock fracture of brittle materials. The presented results show a remarkable stress prediction improvement up to 80–90% of the actual stress with the use of the surface temperature dependent heat transfer coefficient. For thermal shock fracture analysis of brittle fuel cladding such as oxidized zirconium-based alloy or silicon carbide during LWR reflood, transient subchannel heat transfer coefficients obtained from a thermal-hydraulics code should be used as input for stress analysis. Such efforts will lead to a fundamental improvement in thermal shock fracture predictability over the current experimental empiricism for cladding fracture analysis during reflood.

  20. Linking Scales in Plastic Deformation and Fracture

    Martinez-Paneda, Emilio; Niordson, Christian Frithiof; S. Deshpande, Vikram

    2017-01-01

    We investigate crack growth initiation and subsequent resistance in metallic materials by means of an implicit multi-scale approach. Strain gradient plasticity is employed to model the mechanical response of the solid so as to incorporate the role of geometrically necessary dislocations (GNDs......) and accurately capture plasticity at the small scales involved in crack tip deformation. The response ahead of the crack is described by means of a traction-separation law, which is characterized by the cohesive strength and the fracture energy. Results reveal that large gradients of plastic strain accumulatein...... the vicinity of the crack, elevating the dislocation density and the local stress. This stress elevation enhances crack propagation and significantly lowers the steady state fracture toughness with respect to conventional plasticity. Important insight is gained into fracture phenomena that cannot be explained...

  1. Evaluation of modeling approaches to simulate contaminant transport in a fractured limestone aquifer

    Mosthaf, Klaus; Fjordbøge, Annika Sidelmann; Broholm, Mette Martina

    in fractured limestone aquifers. The model comparison is conducted for a contaminated site in Denmark, where a plume of dissolved PCE has migrated through a fractured limestone aquifer. Field data includes information on spill history, distribution of the contaminant (multilevel sampling), geology...... and hydrogeology. To describe the geology and fracture system, data from borehole logs and cores was combined with an analysis of heterogeneities and fractures from a nearby excavation and pump test data. We present how field data is integrated into the different model concepts. A challenge in the use of field...... and remediation strategies. Each model is compared with field data, considering both model fit and model suitability. Results show a considerable difference between the approaches, and that it is important to select the right one for the actual modeling purpose. The comparison with data showed how much...

  2. Comparison of different modeling approaches to simulate contaminant transport in a fractured limestone aquifer

    Mosthaf, Klaus; Rosenberg, L.; Balbarini, Nicola

    . Given available field data and model purpose, this paper therefore aims to develop, examine and compare modeling approaches for transport of contaminants in fractured limestone aquifers. The model comparison was conducted for a contaminated site in Denmark, where a plume of a dissolved contaminant (PCE...... was combined with an analysis of heterogeneities and fractures from a nearby excavation (analog site). Methods for translating the geological information and fracture mapping into each of the model concepts were examined. Each model was compared with available field data, considering both model fit...... of field data is the determination of relevant hydraulic properties and interpretation of aqueous and solid phase contaminant concentration sampling data. Traditional water sampling has a bias towards fracture sampling, however concentrations in the limestone matrix are needed for assessing contaminant...

  3. Radionuclide transport in fractured porous media -- Analytical solutions for a system of parallel fractures with a kinetic solubility-limited dissolution model

    Li, S.H.; Chen, C.T.

    1997-01-01

    Analytical solutions are developed for the problem of radionuclide transport in a system of parallel fractures situated in a porous rock matrix. A kinetic solubility-limited dissolution model is used as the inlet boundary condition. The solutions consider the following processes: (a) advective transport in the fractures, (b) mechanical dispersion and molecular diffusion along the fractures, (c) molecular diffusion from a fracture to the porous matrix, (d) molecular diffusion within the porous matrix in the direction perpendicular to the fracture axis, (e) adsorption onto the fracture wall, (f) adsorption within the porous matrix, and (g) radioactive decay. The solutions are based on the Laplace transform method. The general transient solution is in the form of a double integral that is evaluated using composite Gauss-Legendre quadrature. A simpler transient solution that is in the form of a single integral is also presented for the case that assumes negligible longitudinal dispersion along the fractures. The steady-state solutions are also provided. A number of examples are given to illustrate the effects of the following important parameters: (a) fracture spacings, (b) dissolution-rate constants, (c) fracture dispersion coefficient, (d) matrix retardation factor, and (e) fracture retardation factor

  4. Multiscale model reduction for shale gas transport in fractured media

    Akkutlu, I. Y.; Efendiev, Yalchin R.; Vasilyeva, Maria

    2016-01-01

    fracture distributions on an unstructured grid; (2) develop GMsFEM for nonlinear flows; and (3) develop online basis function strategies to adaptively improve the convergence. The number of multiscale basis functions in each coarse region represents

  5. Grain fracture model and its application to strength evaluation in engineering ceramics

    Hoshide, Toshihiko

    1993-02-01

    A new model of cracking process in ceramics is developed assuming the fracture of the grain just ahead of a flaw, such as a crack or a notch, during the loading process, prior to the final unstable fracture. Based on the grain fracture model, a simulation was carried out to explain the anomalous behavior of small flaws and the notch width effect, which were reported by Evans and Langdon (1976) and Hoshide et al. (1984) and by Bertolotti (1973) and Pabst et al. (1982), respectively. It is shown that the analytical relations of the new model can explain the experimental results for both situations.

  6. Empirically Based Composite Fracture Prediction Model From the Global Longitudinal Study of Osteoporosis in Postmenopausal Women (GLOW)

    Compston, Juliet E.; Chapurlat, Roland D.; Pfeilschifter, Johannes; Cooper, Cyrus; Hosmer, David W.; Adachi, Jonathan D.; Anderson, Frederick A.; Díez-Pérez, Adolfo; Greenspan, Susan L.; Netelenbos, J. Coen; Nieves, Jeri W.; Rossini, Maurizio; Watts, Nelson B.; Hooven, Frederick H.; LaCroix, Andrea Z.; March, Lyn; Roux, Christian; Saag, Kenneth G.; Siris, Ethel S.; Silverman, Stuart; Gehlbach, Stephen H.

    2014-01-01

    Context: Several fracture prediction models that combine fractures at different sites into a composite outcome are in current use. However, to the extent individual fracture sites have differing risk factor profiles, model discrimination is impaired. Objective: The objective of the study was to improve model discrimination by developing a 5-year composite fracture prediction model for fracture sites that display similar risk profiles. Design: This was a prospective, observational cohort study. Setting: The study was conducted at primary care practices in 10 countries. Patients: Women aged 55 years or older participated in the study. Intervention: Self-administered questionnaires collected data on patient characteristics, fracture risk factors, and previous fractures. Main Outcome Measure: The main outcome is time to first clinical fracture of hip, pelvis, upper leg, clavicle, or spine, each of which exhibits a strong association with advanced age. Results: Of four composite fracture models considered, model discrimination (c index) is highest for an age-related fracture model (c index of 0.75, 47 066 women), and lowest for Fracture Risk Assessment Tool (FRAX) major fracture and a 10-site model (c indices of 0.67 and 0.65). The unadjusted increase in fracture risk for an additional 10 years of age ranges from 80% to 180% for the individual bones in the age-associated model. Five other fracture sites not considered for the age-associated model (upper arm/shoulder, rib, wrist, lower leg, and ankle) have age associations for an additional 10 years of age from a 10% decrease to a 60% increase. Conclusions: After examining results for 10 different bone fracture sites, advanced age appeared the single best possibility for uniting several different sites, resulting in an empirically based composite fracture risk model. PMID:24423345

  7. Anisotropic modelling of the electrical conductivity of fractured bedrock

    Flykt, M.J.; Sihvola, A.H.; Eloranta, E.H.

    1995-01-01

    The electromagnetic characterization of fractured bedrock is of importance when studying the final disposal of nuclear waste. The different types of discontinuities at all scales in rocks can be viewed as an inhomogeneity. In some cases there are reasons to assume the influence of the discontinuities on electrical conductivity is anisotropic in character. The effort has been made to use electromagnetic mixing rules in the definition of an equivalent homogeneous anisotropic conductivity tensor for such fractured rock mass. (author) (16 refs., 6 figs.)

  8. Numerical modeling of shear stimulation in naturally fractured geothermal reservoirs

    Ucar, Eren

    2018-01-01

    Shear-dilation-based hydraulic stimulations are conducted to create enhanced geothermal systems (EGS) from low permeable geothermal reservoirs, which are initially not amenable to energy production. Reservoir stimulations are done by injecting low-pressurized fluid into the naturally fractured formations. The injection aims to activate critically stressed fractures by decreasing frictional strength and ultimately cause a shear failure. The shear failure leads to a permanent ...

  9. Simulating Hydraulic Fracturing: Failure in soft versus hard rocks

    Aleksans, J.; Koehn, D.; Toussaint, R.

    2017-12-01

    In this contribution we discuss the dynamic development of hydraulic fractures, their evolution and the resulting seismicity during fluid injection in a coupled numerical model. The model describes coupling between a solid that can fracture dynamically and a compressible fluid that can push back at the rock and open fractures. With a series of numerical simulations we show how the fracture pattern and seismicity change depending on changes in depth, injection rate, Young's Modulus and breaking strength. Our simulations indicate that the Young's Modulus has the largest influence on the fracture dynamics and also the related seismicity. Simulations of rocks with a Young's modulus smaller than 10 GPa show dominant mode I failure and a growth of fracture aperture with a decrease in Young's modulus. Simulations of rocks with a higher Young's modulus than 10 GPa show fractures with a constant aperture and fracture growth that is mainly governed by a growth in crack length and an increasing amount of mode II failure. We propose that two distinct failure regimes are observed in the simulations, above 10 GPa rocks break with a constant critical stress intensity factor whereas below 10 GPa they break reaching a critical cohesion, i.e. a critical tensile strength. These results are very important for the prediction of fracture dynamics and seismicity during fluid injection, especially since we see a transition from one failure regime to another at around 10 GPa, a Young's modulus that lies in the middle of possible values for natural shale rocks.

  10. An Efficient Upscaling Procedure Based on Stokes-Brinkman Model and Discrete Fracture Network Method for Naturally Fractured Carbonate Karst Reservoirs

    Qin, Guan

    2010-01-01

    Naturally-fractured carbonate karst reservoirs are characterized by various-sized solution caves that are connected via fracture networks at multiple scales. These complex geologic features can not be fully resolved in reservoir simulations due to the underlying uncertainty in geologic models and the large computational resource requirement. They also bring in multiple flow physics which adds to the modeling difficulties. It is thus necessary to develop a method to accurately represent the effect of caves, fractures and their interconnectivities in coarse-scale simulation models. In this paper, we present a procedure based on our previously proposed Stokes-Brinkman model (SPE 125593) and the discrete fracture network method for accurate and efficient upscaling of naturally fractured carbonate karst reservoirs.

  11. Proceedings of the workshop on numerical modeling of thermohydrological flow in fractured rock masses

    1980-09-01

    Nineteen papers were presented at the workshop on modeling thermohydrologic flow in fractured masses. This workshop was a result of the interest currently being given to the isolation of nuclear wastes in geologic formations. Included in these proceedings are eighteen of the presentations, one abstract and summaries of the panel discussions. The papers are listed under the following categories: introduction; overviews; fracture modelings; repository studies; geothermal models; and recent developments. Eighteen of the papers have been abstracted and indexed

  12. A Mathematical Pressure Transient Analysis Model for Multiple Fractured Horizontal Wells in Shale Gas Reservoirs

    Yan Zeng

    2018-01-01

    Full Text Available Multistage fractured horizontal wells (MFHWs have become the main technology for shale gas exploration. However, the existing models have neglected the percolation mechanism in nanopores of organic matter and failed to consider the differences among the reservoir properties in different areas. On that account, in this study, a modified apparent permeability model was proposed describing gas flow in shale gas reservoirs by integrating bulk gas flow in nanopores and gas desorption from nanopores. The apparent permeability was introduced into the macroseepage model to establish a dynamic pressure analysis model for MFHWs dual-porosity formations. The Laplace transformation and the regular perturbation method were used to obtain an analytical solution. The influences of fracture half-length, fracture permeability, Langmuir volume, matrix radius, matrix permeability, and induced fracture permeability on pressure and production were discussed. Results show that fracture half-length, fracture permeability, and induced fracture permeability exert a significant influence on production. A larger Langmuir volume results in a smaller pressure and pressure derivative. An increase in matrix permeability increases the production rate. Besides, this model fits the actual field data relatively well. It has a reliable theoretical foundation and can preferably describe the dynamic changes of pressure in the exploration process.

  13. Prediction of Fracture Behavior in Rock and Rock-like Materials Using Discrete Element Models

    Katsaga, T.; Young, P.

    2009-05-01

    The study of fracture initiation and propagation in heterogeneous materials such as rock and rock-like materials are of principal interest in the field of rock mechanics and rock engineering. It is crucial to study and investigate failure prediction and safety measures in civil and mining structures. Our work offers a practical approach to predict fracture behaviour using discrete element models. In this approach, the microstructures of materials are presented through the combination of clusters of bonded particles with different inter-cluster particle and bond properties, and intra-cluster bond properties. The geometry of clusters is transferred from information available from thin sections, computed tomography (CT) images and other visual presentation of the modeled material using customized AutoCAD built-in dialog- based Visual Basic Application. Exact microstructures of the tested sample, including fractures, faults, inclusions and void spaces can be duplicated in the discrete element models. Although the microstructural fabrics of rocks and rock-like structures may have different scale, fracture formation and propagation through these materials are alike and will follow similar mechanics. Synthetic material provides an excellent condition for validating the modelling approaches, as fracture behaviours are known with the well-defined composite's properties. Calibration of the macro-properties of matrix material and inclusions (aggregates), were followed with the overall mechanical material responses calibration by adjusting the interfacial properties. The discrete element model predicted similar fracture propagation features and path as that of the real sample material. The path of the fractures and matrix-inclusion interaction was compared using computed tomography images. Initiation and fracture formation in the model and real material were compared using Acoustic Emission data. Analysing the temporal and spatial evolution of AE events, collected during the

  14. A likely universal model of fracture scaling and its consequence for crustal hydromechanics

    Davy, P.; Le Goc, R.; Darcel, C.; Bour, O.; de Dreuzy, J. R.; Munier, R.

    2010-10-01

    We argue that most fracture systems are spatially organized according to two main regimes: a "dilute" regime for the smallest fractures, where they can grow independently of each other, and a "dense" regime for which the density distribution is controlled by the mechanical interactions between fractures. We derive a density distribution for the dense regime by acknowledging that, statistically, fractures do not cross a larger one. This very crude rule, which expresses the inhibiting role of large fractures against smaller ones but not the reverse, actually appears be a very strong control on the eventual fracture density distribution since it results in a self-similar distribution whose exponents and density term are fully determined by the fractal dimension D and a dimensionless parameter γ that encompasses the details of fracture correlations and orientations. The range of values for D and γ appears to be extremely limited, which makes this model quite universal. This theory is supported by quantitative data on either fault or joint networks. The transition between the dilute and dense regimes occurs at about a few tenths of a kilometer for faults systems and a few meters for joints. This remarkable difference between both processes is likely due to a large-scale control (localization) of the fracture growth for faulting that does not exist for jointing. Finally, we discuss the consequences of this model on the flow properties and show that these networks are in a critical state, with a large number of nodes carrying a large amount of flow.

  15. Differential fracture healing resulting from fixation stiffness variability. A mouse model

    Gardner, M.J.; Putnam, S.M.; Wong, A.; Streubel, P.N.; Kotiya, A.; Silva, M.J.

    2011-01-01

    The mechanisms underlying the interaction between the local mechanical environment and fracture healing are not known. We developed a mouse femoral fracture model with implants of different stiffness, and hypothesized that differential fracture healing would result. Femoral shaft fractures were created in 70 mice, and were treated with an intramedullary nail made of either tungsten (Young's modulus=410 GPa) or aluminium (Young's modulus=70 GPa). Mice were then sacrificed at 2 or 5 weeks. Fracture calluses were analyzed using standard microCT, histological, and biomechanical methods. At 2 weeks, callus volume was significantly greater in the aluminium group than in the tungsten group (61.2 vs. 40.5 mm 3 , p=0.016), yet bone volume within the calluses was no different between the groups (13.2 vs. 12.3 mm 3 ). Calluses from the tungsten group were stiffer on mechanical testing (18.7 vs. 9.7 N/mm, p=0.01). The percent cartilage in the callus was 31.6% in the aluminium group and 22.9% in the tungsten group (p=0.40). At 5 weeks, there were no differences between any of the healed femora. In this study, fracture implants of different stiffness led to different fracture healing in this mouse fracture model. Fractures treated with a stiffer implant had more advanced healing at 2 weeks, but still healed by callus formation. Although this concept has been well documented previously, this particular model could be a valuable research tool to study the healing consequences of altered fixation stiffness, which may provide insight into the pathogenesis and ideal treatment of fractures and non-unions. (author)

  16. An examination of the cohesion-performance relationship in university hockey teams.

    Slater, M R; Sewell, D F

    1994-10-01

    The objective of this study was to assess, using the Group Environment Questionnaire, whether team cohesion in university-level field hockey was a cause for, or an effect of, successful performance. A quasi-experimental longitudinal design with cross-lagged correlational analysis was adopted and measures of cohesion and performance were taken midway and later in the season. The results of the synchronous correlations showed a positive relationship (with good stationarity) between team cohesion and performance outcome. Although non-significant cross-lagged differentials indicated a circular relationship, the magnitudes of both the cross-lagged correlations and the partial correlations, together with multiple-regression analyses, revealed that the stronger flow was from cohesion to performance. The socially oriented aspects of cohesion, in particular, had significant associations with performance. The results imply that cohesion-performance relationships should be examined within a circular model, in which cohesion and performance are interdependent.

  17. FEFLOW finite element modeling of flow, mass and heat transport in porous and fractured media

    Diersch, Hans-Jörg G

    2013-01-01

    Placing advanced theoretical and numerical methods in the hands of modeling practitioners and scientists, this book explores the FEFLOW system for solving flow, mass and heat transport processes in porous and fractured media. Offers applications and exercises.

  18. Modeling of fault reactivation and induced seismicity during hydraulic fracturing of shale-gas reservoirs

    We have conducted numerical simulation studies to assess the potential for injection-induced fault reactivation and notable seismic events associated with shale-gas hydraulic fracturing operations. The modeling is generally tuned toward conditions usually encountered in the Marce...

  19. Use of DXA-Based Structural Engineering Models of the Proximal Femur to Discriminate Hip Fracture

    Yang, Lang; Peel, Nicola; Clowes, Jackie A; McCloskey, Eugene V; Eastell, Richard

    2011-01-01

    Several DXA-based structural engineering models (SEMs) of the proximal femur have been developed to estimate stress caused by sideway falls. Their usefulness in discriminating hip fracture has not yet been established and we therefore evaluated these models. The hip DXA scans of 51 postmenopausal women with hip fracture (30 femoral neck, 17 trochanteric, and 4 unspecified) and 153 age-, height-, and weight-matched controls were reanalyzed using a special version of Hologic’s software that produced a pixel-by-pixel BMD map. For each map, a curved-beam, a curved composite-beam, and a finite element model were generated to calculate stress within the bone when falling sideways. An index of fracture risk (IFR) was defined over the femoral neck, trochanter, and total hip as the stress divided by the yield stress at each pixel and averaged over the regions of interest. Hip structure analysis (HSA) was also performed using Hologic APEX analysis software. Hip BMD and almost all parameters derived from HSA and SEM were discriminators of hip fracture on their own because their ORs were significantly >1. Because of the high correlation of total hip BMD to HSA and SEM-derived parameters, only the bone width discriminated hip fracture independently from total hip BMD. Judged by the area under the receiver operating characteristics curve, the trochanteric IFR derived from the finite element model was significant better than total hip BMD alone and similar to the total hip BMD plus bone width in discriminating all hip fracture and femoral neck fracture. No index was better than total hip BMD for discriminating trochanteric fractures. In conclusion, the finite element model has the potential to replace hip BMD in discriminating hip fractures. PMID:18767924

  20. Investigation of gas-oil gravity drainage in naturally fractured reservoirs using discrete fracture and matrix numerical model

    Bazr-Afkan, S.

    2012-01-01

    To simulate fluid flow in Naturally Fractured Reservoirs (NFRs), a new Descrete Fracture and Matrix (DFM) simulation technique is developed as a physically more realistic alternative to the dual continuum approach. This Finite-Element Centered Finite-Volume method (FECFVM) has the advantage over earlier FECFVM approaches that it honors saturation dicontinuities that can arise at material interfaces from the interplay of viscous, capillary and gravitational forces. By contrast with an earlier embedded-discontinuity DFEFVM method, the FECFVM achieves this without introducing additional degrees of freedom. It also allows to simulate capillary- and other fracture-matrix exchange processes using a lower dimensional representation of fractures, simplifying model construction and unstructured meshing as well as speeding up computations. A further step-up is obtained by solving the two-phase fluid-flow and saturation transport equations only on 'active elements'. This also diminishes round-off and truncation errors, reducing numerical diffusion during the solution of the transport equation. The FECFVM is verified by comparing IMPES operator-splitting sequential solutions with analytical ones, as well as benchmarking it against commercial reservoir simulators on simple geometries that these can represent. This testing confirms that my 2D FECFVM implementation simulates gravitational segregation, capillary redistribution, capillary barriers, and combinations thereof physically realistically, achieving (at least) first-order solution accuracy. Following this verification, the FECFVM is applied to study Gas-Oil Gravity Drainage (GOGD) process in cross-sectional models of layered NFRs. Here comparisons with dual continua simulations show that these do not capture a range of block-to-block effects, yielding over-optimistic drainage rates. Observations made on individual matrix blocks in the DFM simulations further reveal that their saturation evolution is at odds with the

  1. Well test mathematical model for fractures network in tight oil reservoirs

    Diwu, Pengxiang; Liu, Tongjing; Jiang, Baoyi; Wang, Rui; Yang, Peidie; Yang, Jiping; Wang, Zhaoming

    2018-02-01

    Well test, especially build-up test, has been applied widely in the development of tight oil reservoirs, since it is the only available low cost way to directly quantify flow ability and formation heterogeneity parameters. However, because of the fractures network near wellbore, generated from artificial fracturing linking up natural factures, traditional infinite and finite conductivity fracture models usually result in significantly deviation in field application. In this work, considering the random distribution of natural fractures, physical model of fractures network is proposed, and it shows a composite model feature in the large scale. Consequently, a nonhomogeneous composite mathematical model is established with threshold pressure gradient. To solve this model semi-analytically, we proposed a solution approach including Laplace transform and virtual argument Bessel function, and this method is verified by comparing with existing analytical solution. The matching data of typical type curves generated from semi-analytical solution indicates that the proposed physical and mathematical model can describe the type curves characteristic in typical tight oil reservoirs, which have up warping in late-term rather than parallel lines with slope 1/2 or 1/4. It means the composite model could be used into pressure interpretation of artificial fracturing wells in tight oil reservoir.

  2. Statistics of modelled conductive fractures based on Laxemar and Forsmark. Site descriptive model data

    Stigsson, Martin

    2009-12-15

    The objectives of this report is to investigate the frequency of fractures assumed to be water conductive, i.e. open or partly open and directly or indirectly connected to a source. Also the distribution of total transmissivity in 100 m and 20 m horizontal sections and 8 m vertical sections is calculated. The report is only intended to serve as input to the SER, Site Engineering Report, at Laxemar and Forsmark. The input data for the analyses is taken, as is, from the Discrete Fracture Network sections in published reports. No evaluation that the model parameters are appropriate for the task or sensitivity analysis is performed. The tunnels and deposition holes are modelled as scanlines which is a very coarse approximation, but it may give some rough estimation of the frequency of the water bearing features, especially for the larger ones, and the total transmissivity in a section

  3. Statistics of modelled conductive fractures based on Laxemar and Forsmark. Site descriptive model data

    Stigsson, Martin

    2009-12-01

    The objectives of this report is to investigate the frequency of fractures assumed to be water conductive, i.e. open or partly open and directly or indirectly connected to a source. Also the distribution of total transmissivity in 100 m and 20 m horizontal sections and 8 m vertical sections is calculated. The report is only intended to serve as input to the SER, Site Engineering Report, at Laxemar and Forsmark. The input data for the analyses is taken, as is, from the Discrete Fracture Network sections in published reports. No evaluation that the model parameters are appropriate for the task or sensitivity analysis is performed. The tunnels and deposition holes are modelled as scanlines which is a very coarse approximation, but it may give some rough estimation of the frequency of the water bearing features, especially for the larger ones, and the total transmissivity in a section

  4. Recent Developments in Multiscale and Multiphase Modelling of the Hydraulic Fracturing Process

    Yong Sheng

    2015-01-01

    Full Text Available Recently hydraulic fracturing of rocks has received much attention not only for its economic importance but also for its potential environmental impact. The hydraulically fracturing technique has been widely used in the oil (EOR and gas (EGR industries, especially in the USA, to extract more oil/gas through the deep rock formations. Also there have been increasing interests in utilising the hydraulic fracturing technique in geological storage of CO2 in recent years. In all cases, the design and implementation of the hydraulic fracturing process play a central role, highlighting the significance of research and development of this technique. However, the uncertainty behind the fracking mechanism has triggered public debates regarding the possible effect of this technique on human health and the environment. This has presented new challenges in the study of the hydraulic fracturing process. This paper describes the hydraulic fracturing mechanism and provides an overview of past and recent developments of the research performed towards better understandings of the hydraulic fracturing and its potential impacts, with particular emphasis on the development of modelling techniques and their implementation on the hydraulic fracturing.

  5. Do bisphosphonates inhibit direct fracture healing?: A laboratory investigation using an animal model.

    Savaridas, T; Wallace, R J; Salter, D M; Simpson, A H R W

    2013-09-01

    Fracture repair occurs by two broad mechanisms: direct healing, and indirect healing with callus formation. The effects of bisphosphonates on fracture repair have been assessed only in models of indirect fracture healing. A rodent model of rigid compression plate fixation of a standardised tibial osteotomy was used. Ten skeletally mature Sprague-Dawley rats received daily subcutaneous injections of 1 µg/kg ibandronate (IBAN) and ten control rats received saline (control). Three weeks later a tibial osteotomy was rigidly fixed with compression plating. Six weeks later the animals were killed. Fracture repair was assessed with mechanical testing, radiographs and histology. The mean stress at failure in a four-point bending test was significantly lower in the IBAN group compared with controls (8.69 Nmm(-2) (sd 7.63) vs 24.65 Nmm(-2) (sd 6.15); p = 0.017). On contact radiographs of the extricated tibiae the mean bone density assessment at the osteotomy site was lower in the IBAN group than in controls (3.7 mmAl (sd 0.75) vs 4.6 mmAl (sd 0.57); p = 0.01). In addition, histological analysis revealed progression to fracture union in the controls but impaired fracture healing in the IBAN group, with predominantly cartilage-like and undifferentiated mesenchymal tissue (p = 0.007). Bisphosphonate treatment in a therapeutic dose, as used for risk reduction in fragility fractures, had an inhibitory effect on direct fracture healing. We propose that bisphosphonate therapy not be commenced until after the fracture has united if the fracture has been rigidly fixed and is undergoing direct osteonal healing.

  6. Applications of stochastic models to solute transport in fractured rocks

    Gelhar, L.W.

    1987-01-01

    A stochastic theory for flow and solute transport in a single variable aperture fracture bounded by sorbing porous matrix into which solutes may diffuse, is developed using a perturbation approximation and spectral solution techniques which assume local statistical homogeneity. The theory predicts that the effective aperture of the fracture for mean solute displacement will be larger than the aperture required to calculate the large-scale flow resistance of the fracture. This ratio of apertures is a function of the variance of the logarithm of the apertures. The theory also predicts the macrodispersion coefficient for large-scale transport in the fracture. The resulting macrodispersivity is proportional to the variance of the logaperture and to its correlation scale. When variable surface sorption is included, it is found that the macrodispersivity is increased significantly, in some cases more than an order of magnitude. It is also shown that the effective retardation coefficient for the sorptively heterogeneous fracture is found by simply taking the arithmetic mean of the local surface sorption coefficient. Matrix diffusion is also shown to increase the fracture macrodispesivity at very large times. A reexamination of the results of four different field tracer tests in crystalline rock in Sweden and Canada shows aperture ratios and dispersivities that are consistent with the stochastic theory. The variance of the natural logarithm of the aperture is found to be in the range of 3 to 6 and the correlation scales for logaperture ranges from .2 to 1.2 meters. Detailed recommendations for additional field investigations at scales ranging from a few meters up to a kilometer are presented. (orig.)

  7. Cohesion, Cracking, Dilation, and Flow -- Rheological Behavior of Cohesive Pharmaceutical Powders

    Muzzio, Fernando

    2007-03-01

    Cohesive powders can be loosely defined as systems where the attractive forced between particles exceed the average particle weight. Cohesive powder flow is interesting from a wide range of reasons. Their main characteristic, intermittence, is evidenced both in the interruption of flow out of hoppers (a mundane issue causing great annoyance to industrial practitioners) and in the sudden avalanching of snow and dirt that has terrified and terrified mankind since the dawn of time. At the present time, our ability to predict either of these phenomena (and many more involving cohesive powders) is very limited, primarily due to an incomplete understanding of their constitutive behavior. To wit, consider just a simple fact: a flowing powder never has constant density. Equations describing the relationship between velocity, shear, stress, and density are rudimentary at best. Computational and experimental approaches for characterizing flow behavior are in their infancy. In this talk, I will describe some recent progress achieved at Rutgers by our group. New instruments have been developed to determine simultaneously powder density and cohesive flow effects. Extensive measurements have been carried out focusing on pharmaceutical blends. These results have been used to fine-tune computational models that accurately predict dilation, flow in drums, and flow in hoppers. Impact of these observations for pharmaceutical manufacturing applications will be discussed in some detail.

  8. Vertically-Integrated Dual-Continuum Models for CO2 Injection in Fractured Aquifers

    Tao, Y.; Guo, B.; Bandilla, K.; Celia, M. A.

    2017-12-01

    Injection of CO2 into a saline aquifer leads to a two-phase flow system, with supercritical CO2 and brine being the two fluid phases. Various modeling approaches, including fully three-dimensional (3D) models and vertical-equilibrium (VE) models, have been used to study the system. Almost all of that work has focused on unfractured formations. 3D models solve the governing equations in three dimensions and are applicable to generic geological formations. VE models assume rapid and complete buoyant segregation of the two fluid phases, resulting in vertical pressure equilibrium and allowing integration of the governing equations in the vertical dimension. This reduction in dimensionality makes VE models computationally more efficient, but the associated assumptions restrict the applicability of VE model to formations with moderate to high permeability. In this presentation, we extend the VE and 3D models for CO2 injection in fractured aquifers. This is done in the context of dual-continuum modeling, where the fractured formation is modeled as an overlap of two continuous domains, one representing the fractures and the other representing the rock matrix. Both domains are treated as porous media continua and can be modeled by either a VE or a 3D formulation. The transfer of fluid mass between rock matrix and fractures is represented by a mass transfer function connecting the two domains. We have developed a computational model that combines the VE and 3D models, where we use the VE model in the fractures, which typically have high permeability, and the 3D model in the less permeable rock matrix. A new mass transfer function is derived, which couples the VE and 3D models. The coupled VE-3D model can simulate CO2 injection and migration in fractured aquifers. Results from this model compare well with a full-3D model in which both the fractures and rock matrix are modeled with 3D models, with the hybrid VE-3D model having significantly reduced computational cost. In

  9. Three-dimensional modeling of flow through fractured tuff at Fran Ridge

    Eaton, R.R.; Ho, C.K.; Glass, R.J.; Nicholl, M.J.; Arnold, B.W.

    1996-01-01

    Numerical studies have been made of an infiltration experiment at Fran Ridge using the TOUGH2 code to aid in the selection of computational models for performance assessment. The exercise investigates the capabilities of TOUGH2 to model transient flows through highly fractured tuff and provides a possible means of calibration. Two distinctly different conceptual models were used in the TOUGH2 code, the dual permeability model and the equivalent continuum model. The infiltration test modeled involved the infiltration of dyed ponded water for 36 minutes. The 205 gallon filtration of water observed in the experiment was subsequently modeled using measured Fran Ridge fracture frequencies, and a specified fracture aperture of 285 μm. The dual permeability formulation predicted considerable infiltration along the fracture network, which was in agreement with the experimental observations. As expected, minimal fracture penetration of the infiltrating water was calculated using the equivalent continuum model, thus demonstrating that this model is not appropriate for modeling the highly transient experiment. It is therefore recommended that the dual permeability model be given priority when computing high-flux infiltration for use in performance assessment studies

  10. Three-dimensional modeling of flow through fractured tuff at Fran Ridge

    Eaton, R.R.; Ho, C.K.; Glass, RJ.; Nicholl, M.J.; Arnold, B.W.

    1996-09-01

    Numerical studies have been made of an infiltration experiment at Fran Ridge using the TOUGH2 code to aid in the selection of computational models for performance assessment. The exercise investigates the capabilities of TOUGH2 to model transient flows through highly fractured tuff and provides a possible means of calibration. Two distinctly different conceptual models were used in the TOUGH2 code, the dual permeability model and the equivalent continuum model. The infiltration test modeled involved the infiltration of dyed ponded water for 36 minutes. The 205 gallon infiltration of water observed in the experiment was subsequently modeled using measured Fran Ridge fracture frequencies, and a specified fracture aperture of 285 microm. The dual permeability formulation predicted considerable infiltration along the fracture network, which was in agreement with the experimental observations. As expected, al fracture penetration of the infiltrating water was calculated using the equivalent continuum model, thus demonstrating that this model is not appropriate for modeling the highly transient experiment. It is therefore recommended that the dual permeability model be given priority when computing high-flux infiltration for use in performance assessment studies

  11. Transport of Particle Swarms Through Fractures

    Boomsma, E.; Pyrak-Nolte, L. J.

    2011-12-01

    The transport of engineered micro- and nano-scale particles through fractured rock is often assumed to occur as dispersions or emulsions. Another potential transport mechanism is the release of particle swarms from natural or industrial processes where small liquid drops, containing thousands to millions of colloidal-size particles, are released over time from seepage or leaks. Swarms have higher velocities than any individual colloid because the interactions among the particles maintain the cohesiveness of the swarm as it falls under gravity. Thus particle swarms give rise to the possibility that engineered particles may be transported farther and faster in fractures than predicted by traditional dispersion models. In this study, the effect of fractures on colloidal swarm cohesiveness and evolution was studied as a swarm falls under gravity and interacts with fracture walls. Transparent acrylic was used to fabricate synthetic fracture samples with either (1) a uniform aperture or (2) a converging aperture followed by a uniform aperture (funnel-shaped). The samples consisted of two blocks that measured 100 x 100 x 50 mm. The separation between these blocks determined the aperture (0.5 mm to 50 mm). During experiments, a fracture was fully submerged in water and swarms were released into it. The swarms consisted of dilute suspensions of either 25 micron soda-lime glass beads (2% by mass) or 3 micron polystyrene fluorescent beads (1% by mass) with an initial volume of 5μL. The swarms were illuminated with a green (525 nm) LED array and imaged optically with a CCD camera. In the uniform aperture fracture, the speed of the swarm prior to bifurcation increased with aperture up to a maximum at a fracture width of approximately 10 mm. For apertures greater than ~15 mm, the velocity was essentially constant with fracture width (but less than at 10 mm). This peak suggests that two competing mechanisms affect swarm velocity in fractures. The wall provides both drag, which

  12. Modeling caprock fracture, CO2 migration and time dependent fault healing: A numerical study.

    MacFarlane, J.; Mukerji, T.; Vanorio, T.

    2017-12-01

    The Campi Flegrei caldera, located near Naples, Italy, is one of the highest risk volcanoes on Earth due to its recent unrest and urban setting. A unique history of surface uplift within the caldera is characterized by long duration uplift and subsidence cycles which are periodically interrupted by rapid, short period uplift events. Several models have been proposed to explain this history; in this study we will present a hydro-mechanical model that takes into account the caprock that seismic studies show to exist at 1-2 km depth. Specifically, we develop a finite element model of the caldera and use a modified version of fault-valve theory to represent fracture within the caprock. The model accounts for fault healing using a simplified, time-dependent fault sealing model. Multiple fracture events are incorporated by using previous solutions to test prescribed conditions and determine changes in rock properties, such as porosity and permeability. Although fault-valve theory has been used to model single fractures and recharge, this model is unique in its ability to model multiple fracture events. By incorporating multiple fracture events we can assess changes in both long and short-term reservoir behavior at Campi Flegrei. By varying the model inputs, we model the poro-elastic response to CO2 injection at depth and the resulting surface deformation. The goal is to enable geophysicists to better interpret surface observations and predict outcomes from observed changes in reservoir conditions.

  13. Modeling of Two-Phase Flow in Rough-Walled Fracture Using Level Set Method

    Yunfeng Dai

    2017-01-01

    Full Text Available To describe accurately the flow characteristic of fracture scale displacements of immiscible fluids, an incompressible two-phase (crude oil and water flow model incorporating interfacial forces and nonzero contact angles is developed. The roughness of the two-dimensional synthetic rough-walled fractures is controlled with different fractal dimension parameters. Described by the Navier–Stokes equations, the moving interface between crude oil and water is tracked using level set method. The method accounts for differences in densities and viscosities of crude oil and water and includes the effect of interfacial force. The wettability of the rough fracture wall is taken into account by defining the contact angle and slip length. The curve of the invasion pressure-water volume fraction is generated by modeling two-phase flow during a sudden drainage. The volume fraction of water restricted in the rough-walled fracture is calculated by integrating the water volume and dividing by the total cavity volume of the fracture while the two-phase flow is quasistatic. The effect of invasion pressure of crude oil, roughness of fracture wall, and wettability of the wall on two-phase flow in rough-walled fracture is evaluated.

  14. Application of fracture toughness scaling models to the ductile-to- brittle transition

    Link, R.E.; Joyce, J.A.

    1996-01-01

    An experimental investigation of fracture toughness in the ductile-brittle transition range was conducted. A large number of ASTM A533, Grade B steel, bend and tension specimens with varying crack lengths were tested throughout the transition region. Cleavage fracture toughness scaling models were utilized to correct the data for the loss of constraint in short crack specimens and tension geometries. The toughness scaling models were effective in reducing the scatter in the data, but tended to over-correct the results for the short crack bend specimens. A proposed ASTM Test Practice for Fracture Toughness in the Transition Range, which employs a master curve concept, was applied to the results. The proposed master curve over predicted the fracture toughness in the mid-transition and a modified master curve was developed that more accurately modeled the transition behavior of the material. Finally, the modified master curve and the fracture toughness scaling models were combined to predict the as-measured fracture toughness of the short crack bend and the tension specimens. It was shown that when the scaling models over correct the data for loss of constraint, they can also lead to non-conservative estimates of the increase in toughness for low constraint geometries

  15. Modelling for the Stripa site characterization and validation drift inflow: prediction of flow through fractured rock

    Herbert, A.; Gale, J.; MacLeod, R.; Lanyon, G.

    1991-12-01

    We present our approach to predicting flow through a fractured rock site; the site characterization and validation region in the Stripa mine. Our approach is based on discrete fracture network modelling using the NAPSAC computer code. We describe the conceptual models and assumptions that we have used to interpret the geometry and flow properties of the fracture networks, from measurements at the site. These are used to investigate large scale properties of the network and we show that for flows on scales larger than about 10 m, porous medium approximation should be used. The porous medium groundwater flow code CFEST is used to predict the large scale flows through the mine and the SCV region. This, in turn, is used to provide boundary conditions for more detailed models, which predict the details of flow, using a discrete fracture network model, on scales of less than 10 m. We conclude that a fracture network approach is feasible and that it provides a better understanding of details of flow than conventional porous medium approaches and a quantification of the uncertainty associated with predictive flow modelling characterised from field measurement in fractured rock. (au)

  16. Multiscale Modeling of Fracture Processes in Cementitious Materials

    Qian, Z.

    2012-01-01

    Concrete is a composite construction material, which is composed primarily of coarse aggregates, sands and cement paste. The fracture processes in concrete are complicated, because of the multiscale and multiphase nature of the material. In the past decades, comprehensive effort has been put to

  17. Discrete Fracture Network Models for Risk Assessment of Carbon Sequestration in Coal

    Jack Pashin; Guohai Jin; Chunmiao Zheng; Song Chen; Marcella McIntyre

    2008-07-01

    A software package called DFNModeler has been developed to assess the potential risks associated with carbon sequestration in coal. Natural fractures provide the principal conduits for fluid flow in coal-bearing strata, and these fractures present the most tangible risks for the leakage of injected carbon dioxide. The objectives of this study were to develop discrete fracture network (DFN) modeling tools for risk assessment and to use these tools to assess risks in the Black Warrior Basin of Alabama, where coal-bearing strata have high potential for carbon sequestration and enhanced coalbed methane recovery. DFNModeler provides a user-friendly interface for the construction, visualization, and analysis of DFN models. DFNModeler employs an OpenGL graphics engine that enables real-time manipulation of DFN models. Analytical capabilities in DFNModeler include display of structural and hydrologic parameters, compartmentalization analysis, and fluid pathways analysis. DFN models can be exported to third-party software packages for flow modeling. DFN models were constructed to simulate fracturing in coal-bearing strata of the upper Pottsville Formation in the Black Warrior Basin. Outcrops and wireline cores were used to characterize fracture systems, which include joint systems, cleat systems, and fault-related shear fractures. DFN models were constructed to simulate jointing, cleating, faulting, and hydraulic fracturing. Analysis of DFN models indicates that strata-bound jointing compartmentalizes the Pottsville hydrologic system and helps protect shallow aquifers from injection operations at reservoir depth. Analysis of fault zones, however, suggests that faulting can facilitate cross-formational flow. For this reason, faults should be avoided when siting injection wells. DFN-based flow models constructed in TOUGH2 indicate that fracture aperture and connectivity are critical variables affecting the leakage of injected CO{sub 2} from coal. Highly transmissive joints

  18. Measurement of Function Post Hip Fracture: Testing a Comprehensive Measurement Model of Physical Function.

    Resnick, Barbara; Gruber-Baldini, Ann L; Hicks, Gregory; Ostir, Glen; Klinedinst, N Jennifer; Orwig, Denise; Magaziner, Jay

    2016-07-01

    Measurement of physical function post hip fracture has been conceptualized using multiple different measures. This study tested a comprehensive measurement model of physical function. This was a descriptive secondary data analysis including 168 men and 171 women post hip fracture. Using structural equation modeling, a measurement model of physical function which included grip strength, activities of daily living, instrumental activities of daily living, and performance was tested for fit at 2 and 12 months post hip fracture, and among male and female participants. Validity of the measurement model of physical function was evaluated based on how well the model explained physical activity, exercise, and social activities post hip fracture. The measurement model of physical function fit the data. The amount of variance the model or individual factors of the model explained varied depending on the activity. Decisions about the ideal way in which to measure physical function should be based on outcomes considered and participants. The measurement model of physical function is a reliable and valid method to comprehensively measure physical function across the hip fracture recovery trajectory. © 2015 Association of Rehabilitation Nurses.

  19. Groundwater flow through a natural fracture. Flow experiments and numerical modelling

    Larsson, Erik [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept of Geology

    1997-09-01

    Groundwater flow and transport play an important role not only for groundwater exploration but also in environmental engineering problems. This report considers how the hydraulic properties of fractures in crystalline rock depend on the fracture aperture geometry. Different numerical models are discussed and a FDM computer code for two- and three- dimensional flow-modelling has been developed. Different relations between the cells in the model are tested and compared with results in the literature. A laboratory experimental work has been done to carry out flow experiments and aperture measurements on the same specimen of a natural fracture. The drilled core sample had fractures parallel to the core axis and was placed inside a biaxial cell during the experiments. The water pressure gradient and the compression stress were varied during the experiments and also a tracer test was done. After the flow experiments, the aperture distribution for a certain compression was measured by injecting an epoxy resin into the fracture. The thickness of the resin layer was then studied in saw cut sections of the sample. The results from the experiments were used to validate numerical and analytical models, based on aperture distribution, for flow and transport simulations. In the disturbed zone around a drift both water and air are present in the fractures. The gas will go to the most wide part of the fracture because the capillarity and the conductivity decrease. The dependence of the effective conductivity on the variance of the conductivity and the effect of extinction of highly conductive cells has also been studied. A discussion of how gas in fractures around a drift can cause a skin effect is modelled and an example is given of what a saturation depending on the magnitude of the flow causes. 25 refs, 17 tabs, 43 figs.

  20. Groundwater flow through a natural fracture. Flow experiments and numerical modelling

    Larsson, Erik

    1997-09-01

    Groundwater flow and transport play an important role not only for groundwater exploration but also in environmental engineering problems. This report considers how the hydraulic properties of fractures in crystalline rock depend on the fracture aperture geometry. Different numerical models are discussed and a FDM computer code for two- and three- dimensional flow-modelling has been developed. Different relations between the cells in the model are tested and compared with results in the literature. A laboratory experimental work has been done to carry out flow experiments and aperture measurements on the same specimen of a natural fracture. The drilled core sample had fractures parallel to the core axis and was placed inside a biaxial cell during the experiments. The water pressure gradient and the compression stress were varied during the experiments and also a tracer test was done. After the flow experiments, the aperture distribution for a certain compression was measured by injecting an epoxy resin into the fracture. The thickness of the resin layer was then studied in saw cut sections of the sample. The results from the experiments were used to validate numerical and analytical models, based on aperture distribution, for flow and transport simulations. In the disturbed zone around a drift both water and air are present in the fractures. The gas will go to the most wide part of the fracture because the capillarity and the conductivity decrease. The dependence of the effective conductivity on the variance of the conductivity and the effect of extinction of highly conductive cells has also been studied. A discussion of how gas in fractures around a drift can cause a skin effect is modelled and an example is given of what a saturation depending on the magnitude of the flow causes

  1. Assessment of CO2 Storage Potential in Naturally Fractured Reservoirs With Dual-Porosity Models

    March, Rafael; Doster, Florian; Geiger, Sebastian

    2018-03-01

    Naturally Fractured Reservoirs (NFR's) have received little attention as potential CO2 storage sites. Two main facts deter from storage projects in fractured reservoirs: (1) CO2 tends to be nonwetting in target formations and capillary forces will keep CO2 in the fractures, which typically have low pore volume; and (2) the high conductivity of the fractures may lead to increased spatial spreading of the CO2 plume. Numerical simulations are a powerful tool to understand the physics behind brine-CO2 flow in NFR's. Dual-porosity models are typically used to simulate multiphase flow in fractured formations. However, existing dual-porosity models are based on crude approximations of the matrix-fracture fluid transfer processes and often fail to capture the dynamics of fluid exchange accurately. Therefore, more accurate transfer functions are needed in order to evaluate the CO2 transfer to the matrix. This work presents an assessment of CO2 storage potential in NFR's using dual-porosity models. We investigate the impact of a system of fractures on storage in a saline aquifer, by analyzing the time scales of brine drainage by CO2 in the matrix blocks and the maximum CO2 that can be stored in the rock matrix. A new model to estimate drainage time scales is developed and used in a transfer function for dual-porosity simulations. We then analyze how injection rates should be limited in order to avoid early spill of CO2 (lost control of the plume) on a conceptual anticline model. Numerical simulations on the anticline show that naturally fractured reservoirs may be used to store CO2.

  2. Modelling of fractured reservoirs. Case of multi-scale media; Modelisation des reservoirs fractures. Cas des milieux multi-echelles

    Henn, N.

    2000-12-13

    Some of the most productive oil and gas reservoirs are found in formations crossed by multi-scale fractures/faults. Among them, conductive faults may closely control reservoir performance. However, their modelling encounters numerical and physical difficulties linked with (a) the necessity to keep an explicit representation of faults through small-size grid blocks, (b) the modelling of multiphase flow exchanges between the fault and the neighbouring medium. In this thesis, we propose a physically-representative and numerically efficient modelling approach in order to incorporate sub-vertical conductive faults in single and dual-porosity simulators. To validate our approach and demonstrate its efficiency, simulation results of multiphase displacements in representative field sector models are presented. (author)

  3. Forms of cohesion in confinement institutions

    Ekaterina D. Slobodenyuk

    2015-12-01

    Full Text Available Objective to identify the diversity of cohesion forms in confinement institutions. Methods qualitative analyses based on indepth semistructured interviews. Results the study included adaptation of Western methodologies of the cohesion phenomenon analysis to the Russian reality and operationalization of the moral bases of group cohesion. This served as the bases for designing a guide for indepth semistructured interviews 10 interviews were conducted with people recently released from general and strict regime colonies. Content analysis of the interviews revealed a number of structural sections that demonstrate the diversity of cohesion forms alongside with one that is most meaningful to the prisoners and therefore the most well perceived and articulated by respondents. Analysis of the latter allowed to identify a set of groups showing different degree and nature of cohesion. By the degree of cohesion one can identify the poorly cohesive groups quotloutsquot moderately cohesive quotredsquot quotthievesquot and highly cohesive quotfightersquot. By the nature of cohesion in the prisonersrsquo community there are both groups united on the basis of social morality quotredsquot quotthievesquot and groups demonstrating a high degree of cohesion based on the social justice morality quotfightersquot. A detailed analysis of the latter group also showed that the cohesion can have both traits of morality social justice and features of social order moral. Scientific novelty using the sociopsychological theory of the moral motives in determining the bases of cohesion. Practical significance the research results can be applied for the development of sociopsychological techniques for the penal system reform.

  4. Coupled Modeling of Flow, Transport, and Deformation during Hydrodynamically Unstable Displacement in Fractured Rocks

    Jha, B.; Juanes, R.

    2015-12-01

    Coupled processes of flow, transport, and deformation are important during production of hydrocarbons from oil and gas reservoirs. Effective design and implementation of enhanced recovery techniques such as miscible gas flooding and hydraulic fracturing requires modeling and simulation of these coupled proceses in geologic porous media. We develop a computational framework to model the coupled processes of flow, transport, and deformation in heterogeneous fractured rock. We show that the hydrocarbon recovery efficiency during unstable displacement of a more viscous oil with a less viscous fluid in a fractured medium depends on the mechanical state of the medium, which evolves due to permeability alteration within and around fractures. We show that fully accounting for the coupling between the physical processes results in estimates of the recovery efficiency in agreement with observations in field and lab experiments.

  5. A discrete-element model for viscoelastic deformation and fracture of glacial ice

    Riikilä, T. I.; Tallinen, T.; Åström, J.; Timonen, J.

    2015-10-01

    A discrete-element model was developed to study the behavior of viscoelastic materials that are allowed to fracture. Applicable to many materials, the main objective of this analysis was to develop a model specifically for ice dynamics. A realistic model of glacial ice must include elasticity, brittle fracture and slow viscous deformations. Here the model is described in detail and tested with several benchmark simulations. The model was used to simulate various ice-specific applications with resulting flow rates that were compatible with Glen's law, and produced under fragmentation fragment-size distributions that agreed with the known analytical and experimental results.

  6. Methodology study for documentation and 3D modelling of blast induced fractures

    Olsson, Mats (Swebrec - Swedish Blasting Research Centre, Luleaa (Sweden)); Markstroem, Ingemar; Pettersson, Anders (Golder Associates (Sweden))

    2008-05-15

    The purpose of this activity as part of the Zuse project was to test whether it is possible to produce a 3D model of blast induced fractures around a tunnel and also to find a methodology suitable for large scale studies. The purpose of the studies is to increase the understanding of the excavation damage zone (EDZ) and the possibility of an existing continuous EDZ along the tunnel. For the investigation, an old test area in the Q tunnel at the Aespoe Hard Rock Laboratory was selected, where slabs were excavated in 2003 to investigate the fracture pattern around the contour holes of a blasted tunnel. The rock walls of the excavated niche were studied and documented in the tunnel, while the excavated rock slabs were documented above ground. The work flow included photo documentation of both sides. The photos taken in the tunnel had to be rectified and then the fractures were vectorized automatically in a vectorization program, generating AutoCad DWG-files as output. The vectorized fractures were then moved to MicroStation/RVS where they were interpreted and connected into continuous line strings. The digitized slab and rock sides were then moved to the correct position in 3D space. Finally, a 3D model was made in RVS where the fracture traces were connected into undulating fracture planes in 3D. The conclusion is that it is possible to build a 3D model; the model is presented in Chapter 3.5. However, the age and condition of the slabs may have influenced the quality of the model in this study. The quality of a model that can be built in a future investigation, should be much better if the surveys are adapted to the investigation at hand and the slabs and rock sides are fresh and in better condition. The validity of a model depends on the density of the investigation data. There is also always a risk of over interpretation; the wish to identify a fracture from one section to the next can lead to an interpretation of the fractures as more persistent than they actually

  7. Methodology study for documentation and 3D modelling of blast induced fractures

    Olsson, Mats; Markstroem, Ingemar; Pettersson, Anders

    2008-05-01

    The purpose of this activity as part of the Zuse project was to test whether it is possible to produce a 3D model of blast induced fractures around a tunnel and also to find a methodology suitable for large scale studies. The purpose of the studies is to increase the understanding of the excavation damage zone (EDZ) and the possibility of an existing continuous EDZ along the tunnel. For the investigation, an old test area in the Q tunnel at the Aespoe Hard Rock Laboratory was selected, where slabs were excavated in 2003 to investigate the fracture pattern around the contour holes of a blasted tunnel. The rock walls of the excavated niche were studied and documented in the tunnel, while the excavated rock slabs were documented above ground. The work flow included photo documentation of both sides. The photos taken in the tunnel had to be rectified and then the fractures were vectorized automatically in a vectorization program, generating AutoCad DWG-files as output. The vectorized fractures were then moved to MicroStation/RVS where they were interpreted and connected into continuous line strings. The digitized slab and rock sides were then moved to the correct position in 3D space. Finally, a 3D model was made in RVS where the fracture traces were connected into undulating fracture planes in 3D. The conclusion is that it is possible to build a 3D model; the model is presented in Chapter 3.5. However, the age and condition of the slabs may have influenced the quality of the model in this study. The quality of a model that can be built in a future investigation, should be much better if the surveys are adapted to the investigation at hand and the slabs and rock sides are fresh and in better condition. The validity of a model depends on the density of the investigation data. There is also always a risk of over interpretation; the wish to identify a fracture from one section to the next can lead to an interpretation of the fractures as more persistent than they actually

  8. Fracture-network analysis of the Latemar Platform (northern Italy): integrating outcrop studies to constrain the hydraulic properties of fractures in reservoir models

    Boro, H.; Rosero, E.; Bertotti, G.V.

    2014-01-01

    Fractures in subsurface reservoirs are known to have significant impacts on reservoir productivity. Quantifying their importance, however, is challenged by limited subsurface observations, and intense computations for modelling and upscaling. In this paper, we present a workflow to construct and

  9. New transient-flow modelling of a multiple-fractured horizontal well

    Jia, Yong-Lu; Wang, Ben-Cheng; Nie, Ren-Shi; Wang, Dan-Ling

    2014-01-01

    A new transient-flow modelling of a multiple-fractured horizontal well is presented. Compared to conventional modelling, the new modelling considered more practical physical conditions, such as various inclined angles for different fractures, different fracture intervals, different fracture lengths and partially penetrating fractures to formation. A kind of new mathematical method, including a three-dimensional eigenvalue and orthogonal transform, was created to deduce the exact analytical solutions of pressure transients for constant-rate production in real space. In order to consider a wellbore storage coefficient and skin factor, we used a Laplace-transform approach to convert the exact analytical solutions to the solutions in Laplace space. Then the numerical solutions of pressure transients in real space were gained using a Stehfest numerical inversion. Standard type curves were plotted to describe the transient-flow characteristics. Flow regimes were clearly identified from type curves. Furthermore, the differences between the new modelling and the conventional modelling in pressure transients were especially compared and discussed. Finally, an example application to show the accordance of the new modelling with real conditions was implemented. Our new modelling is different from, but more practical than, conventional modelling. (paper)

  10. Flocculation Dynamics of cohesive sediment

    Maggi, F.

    2005-01-01

    Cohesive sediment suspended in natural waters is subject not only to transport and deposition processes but also to reactions of flocculation, \\textit{i.e.} aggregation of fine particles, and breakup of aggregates. Although aggregation and breakup occur at small and very small length scales compared

  11. A model for fracture toughness evaluation of the carburized layer for SAE 5115 steel

    Sandor, Leonardo Taborda; Ferreira, Itamar

    2006-01-01

    The purpose of this work is to propose a model for evaluating the fracture toughness along the SAE 5115 steel carburized layer. Due to the small thickness of those layers, it is impossible to machine specimens from those layer in accordance with standards. For simulating the microstructures of the carburized layer in order to get samples for tensile and the fracture toughness testing, specimens of SAE 5115, 5140, 5160, and 52100 steels have been machined, assuming the local influence just the...

  12. Empirical Modeling of the Viscosity of Supercritical Carbon Dioxide Foam Fracturing Fluid under Different Downhole Conditions

    Shehzad Ahmed

    2018-03-01

    Full Text Available High-quality supercritical CO2 (sCO2 foam as a fracturing fluid is considered ideal for fracturing shale gas reservoirs. The apparent viscosity of the fracturing fluid holds an important role and governs the efficiency of the fracturing process. In this study, the viscosity of sCO2 foam and its empirical correlations are presented as a function of temperature, pressure, and shear rate. A series of experiments were performed to investigate the effect of temperature, pressure, and shear rate on the apparent viscosity of sCO2 foam generated by a widely used mixed surfactant system. An advanced high pressure, high temperature (HPHT foam rheometer was used to measure the apparent viscosity of the foam over a wide range of reservoir temperatures (40–120 °C, pressures (1000–2500 psi, and shear rates (10–500 s−1. A well-known power law model was modified to accommodate the individual and combined effect of temperature, pressure, and shear rate on the apparent viscosity of the foam. Flow indices of the power law were found to be a function of temperature, pressure, and shear rate. Nonlinear regression was also performed on the foam apparent viscosity data to develop these correlations. The newly developed correlations provide an accurate prediction of the foam’s apparent viscosity under different fracturing conditions. These correlations can be helpful for evaluating foam-fracturing efficiency by incorporating them into a fracturing simulator.

  13. Continuum model for water movement in an unsaturated fractured rock mass

    Peters, R.R.; Klavetter, E.A.

    1988-01-01

    The movement of fluids in a fractured, porous medium has been the subject of considerable study. This paper presents a continuum model that may be used to evaluate the isothermal movement of water in an unsaturated, fractured, porous medium under slowly changing conditions. This continuum model was developed for use in evaluating the unsaturated zone at the Yucca Mountain site as a potential repository for high-level nuclear waste. Thus its development has been influenced by the conditions thought to be present at Yucca Mountain. A macroscopic approach and a microscopic approach are used to develop a continuum model to evaluate water movement in a fractured rock mass. Both approaches assume that the pressure head in the fractures and the matrix are identical in a plane perpendicular to flow. Both approaches lead to a single-flow equation for a fractured rock mass. The two approaches are used to calculate unsaturated hydrologic properties, i.e., relative permeability and saturation as a function of pressure head, for several types of tuff underlying Yucca Mountain, using the best available hydrologic data for the matrix and the fractures. Rock mass properties calculated by both approaches are similar

  14. Experimental characterization and modelling of the alteration of fractured cement under CO2 storage conditions

    Abdoulghafour, Halidi

    2012-01-01

    The main purpose of this thesis was to characterize and to model the hydrodynamic and thermochemical processes leading to the alteration of the wellbore cement materials under borehole conditions. Percolation experiments were performed on fractured cement samples under CO 2 storage conditions (60 C and 10 MPa). Injection flow rate was dictated by the fracture aperture of each sample. CO 2 enriched brine was flowed along the fracture aperture, and permeability changes as well as chemical evolution of major cations were continuously acquired during the experiment time. Reaction paths developed by the alteration of the cement were characterized using microtomography and ESEM images. The experiments conducted using samples presenting large fracture apertures during 5 h showed that permeability was maintained constant during the experiment time. Three reacted layers were displaying by the alteration of portlandite and CSH. Long term experiment (26 h) conducted with large initial fracture aperture showed a decrease of the permeability after 15 hours of CO 2 exposure. Otherwise, experiments performed on samples presenting narrow apertures indicated the conversion of portlandite and CSH to calcite leading to the permeability reduction and the fracture clogging. Assemblages of phases and chemical changes were modelled using GEMS-PSI speciation code. We studied also using a coupled transport-reactive model the conditions leading to the cement alteration and the formation of associated layers. (author)

  15. Modelling of fluid flow in fractured porous media by the singular integral equations method

    Vu, M.N.

    2012-01-01

    This thesis aims to develop a method for numerical modelling of fluid flow through fractured porous media and for determination of their effective permeability by taking advantage of recent results based on formulation of the problem by Singular Integral Equations. In parallel, it was also an occasion to continue on the theoretical development and to obtain new results in this area. The governing equations for flow in such materials are reviewed first and mass conservation at the fracture intersections is expressed explicitly. Using the theory of potential, the general potential solutions are proposed in the form of a singular integral equation that describes the steady-state flow in and around several fractures embedded in an infinite porous matrix under a far-field pressure condition. These solutions represent the pressure field in the whole body as functions of the infiltration in the fractures, which fully take into account the fracture interaction and intersections. Closed-form solutions for the fundamental problem of fluid flow around a single fracture are derived, which are considered as the benchmark problems to validate the numerical solutions. In particular, the solution obtained for the case of an elliptical disc-shaped crack obeying to the Poiseuille law has been compared to that obtained for ellipsoidal inclusions with Darcy law.The numerical programs have been developed based on the singular integral equations method to resolve the general potential equations. These allow modeling the fluid flow through a porous medium containing a great number of fractures. Besides, this formulation of the problem also allows obtaining a semi-analytical infiltration solution over a single fracture depending on the matrice permeability, the fracture conductivity and the fracture geometry. This result is the important key to up-scaling the effective permeability of a fractured porous medium by using different homogenisation schemes. The results obtained by the self

  16. Type 2 Diabetes and Metformin Influence on Fracture Healing in an Experimental Rat Model.

    La Fontaine, Javier; Chen, Chris; Hunt, Nathan; Jude, Edward; Lavery, Lawrence

    2016-01-01

    Persons with diabetes have a greater incidence of fractures compared with persons without diabetes. However, very little published information is available concerning the deleterious effect of late-stage diabetes on osseous structure and bone healing. The purpose of the present study was to evaluate the role of diabetes on fracture healing in a rat femur repair model. Thirty-six lean and diabetic Zucker rats were subdivided into 3 groups: (1) 12 lean rats as the control group; (2) 12 diabetic rats without blood glucose control (DM group); and (3) 12 diabetic rats treated with 300 mg/kg metformin to reduce the blood glucose levels (DM + Met group). Radiographs were taken every week to determine the incidence of bone repair and delayed union. All the rats were killed at 6 weeks after surgery. In both the sham-operated and the fractured and repaired femurs, significant decreases in the fracture-load/weight and marginal decreases in the fracture-load between the lean and DM groups were found. Metformin treatment significantly reduced the blood glucose and body weight 12 days postoperatively. Furthermore, a decrease in the fracture-load and fracture-load/weight in the repaired femurs was found in the DM + Met group. Diabetes impairs bone fracture healing. Metformin treatment reduces the blood glucose and body weight but had an adverse effect on fracture repair in diabetic rats. Further investigations are needed to reveal the mechanisms responsible for the effects of type 2 diabetes mellitus on bone and bone quality and the effect of medications such as metformin might have in diabetic bone in the presence of neuropathy and vascular disease. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  17. Psychological characteristics of group cohesion athletes.

    Sheriff Sarhan

    2011-01-01

    The basic components of group cohesion in sport teams. An analysis of publications on cohesion within the groups where an interconnection of individual goals of each participant group with common goals and the end result of teamwork. The concept of harmony in the team sports, where the rate of group cohesion is dependent on such integrative index as psychological climate. It is established that a number of athletes to achieve high results require high cohesion, unity, value-normative orientat...

  18. CAPTURING UNCERTAINTY IN UNSATURATED-ZONE FLOW USING DIFFERENT CONCEPTUAL MODELS OF FRACTURE-MATRIX INTERACTION

    SUSAN J. ALTMAN, MICHAEL L. WILSON, GUMUNDUR S. BODVARSSON

    1998-01-01

    Preliminary calculations show that the two different conceptual models of fracture-matrix interaction presented here yield different results pertinent to the performance of the potential repository at Yucca Mountain. Namely, each model produces different ranges of flow in the fractures, where radionuclide transport is thought to be most important. This method of using different flow models to capture both conceptual model and parameter uncertainty ensures that flow fields used in TSPA calculations will be reasonably calibrated to the available data while still capturing this uncertainty. This method also allows for the use of three-dimensional flow fields for the TSPA-VA calculations

  19. Modeling flow in naturally fractured reservoirs : effect of fracture aperture distribution on dominant sub-network for flow

    Gong, J.; Rossen, W.R.

    2017-01-01

    Fracture network connectivity and aperture (or conductivity) distribution are two crucial features controlling flow behavior of naturally fractured reservoirs. The effect of connectivity on flow properties is well documented. In this paper, however, we focus here on the influence of fracture

  20. Investigation of discrete-fracture network conceptual model uncertainty at Forsmark

    Geier, Joel

    2011-04-01

    In the present work a discrete fracture model has been further developed and implemented using the latest SKB site investigation data. The model can be used for analysing the fracture network and to model flow through the rock in Forsmark. The aim has been to study uncertainties in the hydrological discrete fracture network (DFN) for the repository model. More specifically the objective has been to study to which extent available data limits uncertainties in the DFN model and how data that can be obtained in future underground work can further limit these uncertainties. Moreover, the effects on deposition hole utilisation and placement have been investigated as well as the effects on the flow to deposition holes

  1. Summary of discrete fracture network modelling as applied to hydrogeology of the Forsmark and Laxemar sites

    Hartley, Lee; Roberts, David

    2013-04-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is responsible for the development of a deep geological repository for spent nuclear fuel. The permitting of such a repository is informed by assessment studies to estimate the risks of the disposal method. One of the potential risks involves the transport of radionuclides in groundwater from defective canisters in the repository to the accessible environment. The Swedish programme for geological disposal of spent nuclear fuel has involved undertaking detailed surface-based site characterisation studies at two different sites, Forsmark and Laxemar-Simpevarp. A key component of the hydrogeological modelling of these two sites has been the development of Discrete Fracture Network (DFN) concepts of groundwater flow through the fractures in the crystalline rocks present. A discrete fracture network model represents some of the characteristics of fractures explicitly, such as their, orientation, intensity, size, spatial distribution, shape and transmissivity. This report summarises how the discrete fracture network methodology has been applied to model groundwater flow and transport at Forsmark and Laxemar. The account has involved summarising reports previously published by SKB between 2001 and 2011. The report describes the conceptual framework and assumptions used in interpreting site data, and in particular how data has been used to calibrate the various parameters that define the discrete fracture network representation of bedrock hydrogeology against borehole geologic and hydraulic data. Steps taken to confirm whether the developed discrete fracture network models provide a description of regional-scale groundwater flow and solute transport consistent with wider hydraulic tests hydrochemical data from Forsmark and Laxemar are discussed. It illustrates the use of derived hydrogeological DFN models in the simulations of the temperate period hydrogeology that provided input to radionuclide transport

  2. Summary of discrete fracture network modelling as applied to hydrogeology of the Forsmark and Laxemar sites

    Hartley, Lee; Roberts, David

    2013-04-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is responsible for the development of a deep geological repository for spent nuclear fuel. The permitting of such a repository is informed by assessment studies to estimate the risks of the disposal method. One of the potential risks involves the transport of radionuclides in groundwater from defective canisters in the repository to the accessible environment. The Swedish programme for geological disposal of spent nuclear fuel has involved undertaking detailed surface-based site characterisation studies at two different sites, Forsmark and Laxemar-Simpevarp. A key component of the hydrogeological modelling of these two sites has been the development of Discrete Fracture Network (DFN) concepts of groundwater flow through the fractures in the crystalline rocks present. A discrete fracture network model represents some of the characteristics of fractures explicitly, such as their, orientation, intensity, size, spatial distribution, shape and transmissivity. This report summarises how the discrete fracture network methodology has been applied to model groundwater flow and transport at Forsmark and Laxemar. The account has involved summarising reports previously published by SKB between 2001 and 2011. The report describes the conceptual framework and assumptions used in interpreting site data, and in particular how data has been used to calibrate the various parameters that define the discrete fracture network representation of bedrock hydrogeology against borehole geologic and hydraulic data. Steps taken to confirm whether the developed discrete fracture network models provide a description of regional-scale groundwater flow and solute transport consistent with wider hydraulic tests hydrochemical data from Forsmark and Laxemar are discussed. It illustrates the use of derived hydrogeological DFN models in the simulations of the temperate period hydrogeology that provided input to radionuclide transport

  3. Integration of Adaptive Neuro-Fuzzy Inference System, Neural Networks and Geostatistical Methods for Fracture Density Modeling

    Ja’fari A.

    2014-01-01

    Full Text Available Image logs provide useful information for fracture study in naturally fractured reservoir. Fracture dip, azimuth, aperture and fracture density can be obtained from image logs and have great importance in naturally fractured reservoir characterization. Imaging all fractured parts of hydrocarbon reservoirs and interpreting the results is expensive and time consuming. In this study, an improved method to make a quantitative correlation between fracture densities obtained from image logs and conventional well log data by integration of different artificial intelligence systems was proposed. The proposed method combines the results of Adaptive Neuro-Fuzzy Inference System (ANFIS and Neural Networks (NN algorithms for overall estimation of fracture density from conventional well log data. A simple averaging method was used to obtain a better result by combining results of ANFIS and NN. The algorithm applied on other wells of the field to obtain fracture density. In order to model the fracture density in the reservoir, we used variography and sequential simulation algorithms like Sequential Indicator Simulation (SIS and Truncated Gaussian Simulation (TGS. The overall algorithm applied to Asmari reservoir one of the SW Iranian oil fields. Histogram analysis applied to control the quality of the obtained models. Results of this study show that for higher number of fracture facies the TGS algorithm works better than SIS but in small number of fracture facies both algorithms provide approximately same results.

  4. Discrete-feature modelling of the Aespoe Site: 1. Discrete-fracture network models for the repository scale

    Geier, J.E.; Thomas, A.L.

    1996-08-01

    This report describes the statistical derivation and partial validation of discrete-fracture network (DFN) models for the rock beneath the island of Aespoe in southeastern Sweden. The purpose was to develop DFN representations of the rock mass within a hypothetical, spent-fuel repository, located under Aespoe. Analyses are presented for four major lithologic types, with separate analyses of the rock within fracture zones, the rock excluding fracture zones, and all rock. Complete DFN models are proposed as descriptions of the rock mass in the near field. The procedure for validation, by comparison between actual and simulated packer tests, was found to be useful for discriminating among candidate DFN models. In particular, the validation approach was shown to be sensitive to a change in the fracture location (clustering) model, and to a change in the variance of single-fracture transmissivity. The proposed models are defined in terms of stochastic processes and statistical distributions, and thus are descriptive of the variability of the fracture system. This report includes discussion of the numerous sources of uncertainty in the models, including uncertainty that results from the variability of the natural system. 62 refs

  5. Study on the REV Size of Fractured Rock in the Non-Darcy Flow Based on the Dual-Porosity Model

    Yuan Wang

    2018-01-01

    Full Text Available For the problem of whether the representative elementary volume (REV obtained in the Darcy flow is also applicable to the case of the non-Darcy flow, the study on the REV size within the non-Darcy flow is proposed tentatively. The concept of the REV in the non-Darcy flow is based on the definition of the REV. According to the determination of the REV in the Darcy flow, the intrinsic permeability k and non-Darcy coefficient β are used simultaneously for the determination of the REV in the non-Darcy flow. The pore pressure cohesive element (PPCE is developed with the subroutine in ABAQUS. Then the simulation method of the Darcy and non-Darcy flow in the fractured rock mass is built using the PPCE. The proposed plan is examined through the comparison with existing research results. It is validated that this technic is efficient and accurate in simulating the Darcy and non-Darcy flow in the fractured rock mass. Combined with fracture networks generated by Monte Carlo Simulation technique, the PPCE is applied to the study on the REV size. Both conditions of the Darcy and non-Darcy flow are simulated for comparison. The simulation results of this model show that the REV of the non-Darcy flow is inconsistent with the REV of the Darcy flow, and the REV of the non-Darcy flow is more significant than the REV of the Darcy flow. The intrinsic permeability k tensors obtained in the Darcy flow and the non-Darcy flow are basically the same.

  6. Immediate effects of modified landing pattern on a probabilistic tibial stress fracture model in runners.

    Chen, T L; An, W W; Chan, Z Y S; Au, I P H; Zhang, Z H; Cheung, R T H

    2016-03-01

    Tibial stress fracture is a common injury in runners. This condition has been associated with increased impact loading. Since vertical loading rates are related to the landing pattern, many heelstrike runners attempt to modify their footfalls for a lower risk of tibial stress fracture. Such effect of modified landing pattern remains unknown. This study examined the immediate effects of landing pattern modification on the probability of tibial stress fracture. Fourteen experienced heelstrike runners ran on an instrumented treadmill and they were given augmented feedback for landing pattern switch. We measured their running kinematics and kinetics during different landing patterns. Ankle joint contact force and peak tibial strains were estimated using computational models. We used an established mathematical model to determine the effect of landing pattern on stress fracture probability. Heelstrike runners experienced greater impact loading immediately after landing pattern switch (Ptibial strains and the risk of tibial stress fracture in runners with different landing patterns (P>0.986). Immediate transitioning of the landing pattern in heelstrike runners may not offer timely protection against tibial stress fracture, despite a reduction of impact loading. Long-term effects of landing pattern switch remains unknown. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Emergent Stratification in Solid Tumors Selects for Reduced Cohesion of Tumor Cells: A Multi-Cell, Virtual-Tissue Model of Tumor Evolution Using CompuCell3D.

    Maciej H Swat

    Full Text Available Tumor cells and structure both evolve due to heritable variation of cell behaviors and selection over periods of weeks to years (somatic evolution. Micro-environmental factors exert selection pressures on tumor-cell behaviors, which influence both the rate and direction of evolution of specific behaviors, especially the development of tumor-cell aggression and resistance to chemotherapies. In this paper, we present, step-by-step, the development of a multi-cell, virtual-tissue model of tumor somatic evolution, simulated using the open-source CompuCell3D modeling environment. Our model includes essential cell behaviors, microenvironmental components and their interactions. Our model provides a platform for exploring selection pressures leading to the evolution of tumor-cell aggression, showing that emergent stratification into regions with different cell survival rates drives the evolution of less cohesive cells with lower levels of cadherins and higher levels of integrins. Such reduced cohesivity is a key hallmark in the progression of many types of solid tumors.

  8. Mechanical and mathematical models of multi-stage horizontal fracturing strings and their application

    Zhanghua Lian

    2015-03-01

    Full Text Available Multi-stage SRV fracturing in horizontal wells is a new technology developed at home and abroad in recent years to effectively develop shale gas or low-permeability reservoirs, but on the other hand makes the mechanical environment of fracturing strings more complicated at the same time. In view of this, based on the loading features of tubing strings during the multi-stage fracturing of a horizontal well, mechanical models were established for three working cases of multiple packer setting, open differential-pressure sliding sleeve, and open ball-injection sliding sleeve under a hold-down packer. Moreover, mathematical models were respectively built for the above three cases. According to the Lame formula and Von Mises stress calculation formula for the thick-walled cylinder in the theory of elastic mechanics, a mathematical model was also established to calculate the equivalent stress for tubing string safety evaluation when the fracturing string was under the combined action of inner pressure, external squeezing force and axial stress, and another mathematical model was built for the mechanical strength and safety evaluation of multi-stage fracturing strings. In addition, a practical software was developed for the mechanical safety evaluation of horizontal well multi-stage fracturing strings according to the mathematical model developed for the mechanical calculation of the multi-packer string in horizontal wells. The research results were applied and verified in a gas well of Tahe Oilfield in the Tarim Basin with excellent effects, providing a theoretical basis and a simple and reliable technical means for optimal design and safety evaluation of safe operational parameters of multi-stage fracturing strings in horizontal wells.

  9. Anomalous transport in disordered fracture networks: Spatial Markov model for dispersion with variable injection modes

    Kang, Peter K.; Dentz, Marco; Le Borgne, Tanguy; Lee, Seunghak; Juanes, Ruben

    2017-08-01

    We investigate tracer transport on random discrete fracture networks that are characterized by the statistics of the fracture geometry and hydraulic conductivity. While it is well known that tracer transport through fractured media can be anomalous and particle injection modes can have major impact on dispersion, the incorporation of injection modes into effective transport modeling has remained an open issue. The fundamental reason behind this challenge is that-even if the Eulerian fluid velocity is steady-the Lagrangian velocity distribution experienced by tracer particles evolves with time from its initial distribution, which is dictated by the injection mode, to a stationary velocity distribution. We quantify this evolution by a Markov model for particle velocities that are equidistantly sampled along trajectories. This stochastic approach allows for the systematic incorporation of the initial velocity distribution and quantifies the interplay between velocity distribution and spatial and temporal correlation. The proposed spatial Markov model is characterized by the initial velocity distribution, which is determined by the particle injection mode, the stationary Lagrangian velocity distribution, which is derived from the Eulerian velocity distribution, and the spatial velocity correlation length, which is related to the characteristic fracture length. This effective model leads to a time-domain random walk for the evolution of particle positions and velocities, whose joint distribution follows a Boltzmann equation. Finally, we demonstrate that the proposed model can successfully predict anomalous transport through discrete fracture networks with different levels of heterogeneity and arbitrary tracer injection modes.

  10. Discrete Fracture Modeling of 3D Heterogeneous Enhanced Coalbed Methane Recovery with Prismatic Meshing

    Yongbin Zhang

    2015-06-01

    Full Text Available In this study, a 3D multicomponent multiphase simulator with a new fracture characterization technique is developed to simulate the enhanced recovery of coalbed methane. In this new model, the diffusion source from the matrix is calculated using the traditional dual-continuum approach, while in the Darcy flow scale, the Discrete Fracture Model (DFM is introduced to explicitly represent the flow interaction between cleats and large-scale fractures. For this purpose, a general formulation is proposed to model the multicomponent multiphase flow through the fractured coal media. The S&D model and a revised P&M model are incorporated to represent the geomechanical effects. Then a finite volume based discretization and solution strategies are constructed to solve the general ECBM equations. The prismatic meshing algorism is used to construct the grids for 3D reservoirs with complex fracture geometry. The simulator is validated with a benchmark case in which the results show close agreement with GEM. Finally, simulation of a synthetic heterogeneous 3D coal reservoir modified from a published literature is performed to evaluate the production performance and the effects of injected gas composition, well pattern and gas buoyancy.

  11. Unified fluid flow model for pressure transient analysis in naturally fractured media

    Babak, Petro; Azaiez, Jalel

    2015-01-01

    Naturally fractured reservoirs present special challenges for flow modeling with regards to their internal geometrical structure. The shape and distribution of matrix porous blocks and the geometry of fractures play key roles in the formulation of transient interporosity flow models. Although these models have been formulated for several typical geometries of the fracture networks, they appeared to be very dissimilar for different shapes of matrix blocks, and their analysis presents many technical challenges. The aim of this paper is to derive and analyze a unified approach to transient interporosity flow models for slightly compressible fluids that can be used for any matrix geometry and fracture network. A unified fractional differential transient interporosity flow model is derived using asymptotic analysis for singularly perturbed problems with small parameters arising from the assumption of a much smaller permeability of the matrix blocks compared to that of the fractures. This methodology allowed us to unify existing transient interporosity flow models formulated for different shapes of matrix blocks including bounded matrix blocks, unbounded matrix cylinders with any orthogonal crossection, and matrix slabs. The model is formulated using a fractional order diffusion equation for fluid pressure that involves Caputo derivative of order 1/2 with respect to time. Analysis of the unified fractional derivative model revealed that the surface area-to-volume ratio is the key parameter in the description of the flow through naturally fractured media. Expressions of this parameter are presented for matrix blocks of the same geometrical shape as well as combinations of different shapes with constant and random sizes. Numerical comparisons between the predictions of the unified model and those obtained from existing transient interporosity ones for matrix blocks in the form of slabs, spheres and cylinders are presented for linear, radial and spherical flow types for

  12. Fracture surfaces of granular pastes.

    Mohamed Abdelhaye, Y O; Chaouche, M; Van Damme, H

    2013-11-01

    Granular pastes are dense dispersions of non-colloidal grains in a simple or a complex fluid. Typical examples are the coating, gluing or sealing mortars used in building applications. We study the cohesive rupture of thick mortar layers in a simple pulling test where the paste is initially confined between two flat surfaces. After hardening, the morphology of the fracture surfaces was investigated, using either the box counting method to analyze fracture profiles perpendicular to the mean fracture plane, or the slit-island method to analyze the islands obtained by cutting the fracture surfaces at different heights, parallel to the mean fracture plane. The fracture surfaces were shown to exhibit scaling properties over several decades. However, contrary to what has been observed in the brittle or ductile fracture of solid materials, the islands were shown to be mass fractals. This was related to the extensive plastic flow involved in the fracture process.

  13. Phase field modelling of dynamic thermal fracture in the context of irradiation damage

    Schlüter, Alexander; Müller, Ralf; Tomut, Marilena; Trautmann , Christina; Weick, Helmut; Plate, Carolin

    2015-01-01

    This work presents a continuum mechanics approach to model fracturing processes in brittle materials that are subjected to rapidly applied high-temperature gradients. Such a type of loading typically occurs when a solid is exposed to an intense high-energy particle beam that deposits a large amount of energy into a small sample volume. Given the rapid energy deposition leading to a fast temperature increase, dynamic effects have to be considered. Our existing phase field model for dynamic fracture is thus extended in a way that allows modelling of thermally induced fracture. A finite element scheme is employed to solve the governing partial differential equations numerically. Finally, the functionality of our model is illustrated by two examples.

  14. Estimation of fracture energy of plain and reinforced concrete members

    Singh, Rajesh K.; Singh, R.K.; Kant, T.

    2012-01-01

    Modeling the complex behaviour of Reinforced concrete (RC), which is both non-homogenous and anisotropic, is a difficult task in finite element analysis of civil engineering structures. The application of fracture mechanics to plain and reinforced concrete has opened up a new field for modelling of phenomena that have often been treated empirically in the past. Cohesive crack model proposed by Hillerborg and crack band model Bazant et al with localization limiters are frequently used to study of tension failure of concrete. (author)

  15. Titanium and steel fracture fixation plates with different surface topographies: Influence on infection rate in a rabbit fracture model.

    Metsemakers, W J; Schmid, Tanja; Zeiter, Stephan; Ernst, Manuela; Keller, Iris; Cosmelli, Nicolo; Arens, Daniel; Moriarty, T Fintan; Richards, R Geoff

    2016-03-01

    Implant-related infection is a challenging complication in musculoskeletal trauma surgery. In the present study, we examined the role of implant material and surface topography as influencing factors on the development of infection in an experimental model of plating osteosynthesis in the rabbit. The implants included in this experimental study were composed of: standard Electropolished Stainless Steel (EPSS), standard titanium (Ti-S), roughened stainless steel (RSS) and surface polished titanium (Ti-P). Construct stability and load-to-failure of Ti-P implants was compared to that of Ti-S implants in a rabbit cadaveric model. In an in vivo study, a rabbit humeral fracture model was used. Each rabbit received one of three Staphylococcus aureus inocula, aimed at determining the infection rate at a low, medium and high dose of bacteria. Outcome measures were quantification of bacteria on the implant and in the surrounding tissues, and determination of the infectious dose 50 (ID50). No significant differences were observed between Ti-S and Ti-P regarding stiffness or failure load in the cadaver study. Of the 72 rabbits eventually included in the in vivo study, 50 developed an infection. The ID50 was found to be: EPSS 3.89×10(3) colony forming units (CFU); RSS 8.23×10(3) CFU; Ti-S 5.66×10(3) CFU; Ti-P 3.41×10(3) CFU. Significantly lower bacterial counts were found on the Ti-S implants samples compared with RSS implants (ptitanium and steel implants with conventional or modified topographies. Ti-P implants, which have previously been shown in preclinical studies to reduce complications associated with tissue adherence, do not affect infection rate in this preclinical fracture model. Therefore, Ti-P implants are not expected to affect the infection rate, or influence implant stability in the clinical situation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Optimization of micro and nanoimprint de-embossing by elastic fracture modelling

    Balla, Tobias; Spearing, Simon Mark

    2013-01-01

    A semi-analytical model is presented for the de-embossing phase of the nanoimprint patterning process. The model is based on established principles of elastic fracture mechanics as developed for fibre-bridged cracking in composites. De-embossing is idealized as a steady-state fracture process, which enables the energy change to be considered by reference to a unit cell of a cylindrical polymer post, de-embossing from an axisymmetric stamp. The model provides predictions of the achievable limi...

  17. Study on the methodology for hydrogeological site descriptive modelling by discrete fracture networks

    Tanaka, Tatsuya; Ando, Kenichi; Hashimoto, Shuuji; Saegusa, Hiromitsu; Takeuchi, Shinji; Amano, Kenji

    2007-01-01

    This study aims to establish comprehensive techniques for site descriptive modelling considering the hydraulic heterogeneity due to the Water Conducting Features in fractured rocks. The WCFs was defined by the interpretation and integration of geological and hydrogeological data obtained from the deep borehole investigation campaign in the Mizunami URL project and Regional Hydrogeological Study. As a result of surface based investigation phase, the block-scale hydrogeological descriptive model was generated using hydraulic discrete fracture networks. Uncertainties and remaining issues associated with the assumption in interpreting the data and its modelling were addressed in a systematic way. (author)

  18. Channel flow and trichloroethylene treatment in a partly iron-filled fracture: Experimental and model results

    Cai, Zuansi; Merly, Corrine; Thomson, Neil R.; Wilson, Ryan D.; Lerner, David N.

    2007-08-01

    Technical developments have now made it possible to emplace granular zero-valent iron (Fe 0) in fractured media to create a Fe 0 fracture reactive barrier (Fe 0 FRB) for the treatment of contaminated groundwater. To evaluate this concept, we conducted a laboratory experiment in which trichloroethylene (TCE) contaminated water was flushed through a single uniform fracture created between two sandstone blocks. This fracture was partly filled with what was intended to be a uniform thickness of iron. Partial treatment of TCE by iron demonstrated that the concept of a Fe 0 FRB is practical, but was less than anticipated for an iron layer of uniform thickness. When the experiment was disassembled, evidence of discrete channelised flow was noted and attributed to imperfect placement of the iron. To evaluate the effect of the channel flow, an explicit Channel Model was developed that simplifies this complex flow regime into a conceptualised set of uniform and parallel channels. The mathematical representation of this conceptualisation directly accounts for (i) flow channels and immobile fluid arising from the non-uniform iron placement, (ii) mass transfer from the open fracture to iron and immobile fluid regions, and (iii) degradation in the iron regions. A favourable comparison between laboratory data and the results from the developed mathematical model suggests that the model is capable of representing TCE degradation in fractures with non-uniform iron placement. In order to apply this Channel Model concept to a Fe 0 FRB system, a simplified, or implicit, Lumped Channel Model was developed where the physical and chemical processes in the iron layer and immobile fluid regions are captured by a first-order lumped rate parameter. The performance of this Lumped Channel Model was compared to laboratory data, and benchmarked against the Channel Model. The advantages of the Lumped Channel Model are that the degradation of TCE in the system is represented by a first

  19. Third metacarpal condylar fatigue fractures in equine athletes occur within previously modelled subchondral bone.

    Whitton, R Christopher; Trope, Gareth D; Ghasem-Zadeh, Ali; Anderson, Garry A; Parkin, Timothy D H; Mackie, Eleanor J; Seeman, Ego

    2010-10-01

    Bone modelling and remodelling reduce the risk of fatigue fractures; the former by adapting bone to its loading circumstances, the latter by replacing fatigued bone. Remodelling transiently increases porosity because of the normal delay in onset of the formation phase of the remodelling sequence. Protracted intense loading suppresses remodelling leaving modelling as the only means of maintaining bone strength. We therefore hypothesized that race horses with fatigue fractures of the distal third metacarpal bone (MC3) will have reduced porosity associated with suppressed remodelling while continued adaptive modelling will result in higher volume fraction (BV/TV) at this site. Using high resolution peripheral quantitative computed tomography (HR-pQCT), we measured the distal aspect of the MC3 obtained at postmortem from 13 thoroughbred race horses with condylar fractures of the MC3 (cases), 8 horses without fractures (training controls), 14 horses with a fracture at another site (fractured controls) and 9 horses resting from training (resting controls). Porosity of the subchondral bone of MC3 was lower in cases than resting controls (12±1.4% vs. 18±1.6%, P=0.017) although areas of focal porosity were observed adjacent to fractures in 6/13 horses. BV/TV of the distal metacarpal epiphysis tended to be higher in horses with condylar fractures (0.79±0.015) than training controls (0.74±0.019, P=0.070), but also higher in controls with a fracture elsewhere (0.79±0.014) than the training controls (0.74±0.019, P=0.040). BV/TV was higher in horses over three years of age than those aged two or three years (0.79±0.01 vs. 0.74±0.01, P=0.016). All metacarpal condylar fractures occurred within focal areas of high BV/TV. We infer that intense training in equine athletes suppresses remodelling of third metacarpal subchondral bone limiting damage repair while modelling increases regional bone volume in an attempt to minimise local stresses but may fail to offset bone

  20. Fracture of functionally graded materials: application to hydrided zircaloy

    Perales, F.

    2005-12-01

    This thesis is devoted to the dynamic fracture of functionally graded materials. More particularly, it deals with the toughness of nuclear cladding at high burnup submitted to transient loading. The fracture is studied at local scale using cohesive zone model in a multi body approach. Cohesive zone models include frictional contact to take into account mixed mode fracture. Non smooth dynamics problems are treated within the Non-Smooth Contact Dynamics framework. A multi scale study is necessary because of the dimension of the clad. At microscopic scale, the effective properties of surface law, between each body, are obtained by periodic numerical homogenization. A two fields Finite Element formulation is so written. An extended formulation of the NSCD framework is obtained. The associated software allows to simulate, in finite deformation, from the crack initiation to post-fracture behavior in heterogeneous materials. At microscopic scale, random RVE calculations are made to determine effective properties. At macroscopic scale, calculations of part of clad are made to determine the role of the mean hydrogen concentration and gradient of hydrogen parameters in the toughness of the clad under dynamic loading. (author)

  1. Some properties of a channeling model of fracture flow

    Tsang, Y.W.; Tsang, C.F.; Neretnieks, I.

    1986-12-01

    The Gamma distribution and the log-normal distribution were used to describe the density distribution of the apertures within a channel. For every set of parameter values (correlation length, and the parameters of the distributions) 95 different statistically equivalent channels were generated. The aperture distribution along the channels are then used to determine the total channel volume, the hydraulic conductivity and the flow rate and residence time for a given gradient. The volumes of the channels were found to vary little whereas the hydraulic conductivity, which is primarily determined by the smallest aperture along the channels, varies considerably. For a wide density distribution the hydraulic conductivity easily spans several orders of magnitude. The flow rate and the velocity variations are primarily influenced by the conductivity variations and are only to a small extent influenced by the volume variations in the channel. The average specific area of the whole channel exhibits small variations. The hydraulic and transport properties of hypothetical fractures containing several channels are investigated by randomly picking several of the generated channels, coupling them in parallel and subjecting them to the same hydraulic head difference. The flow rate and residence time distribution of the coupled channels is used to investigate the dispersion properties of the fracture. It was found that the dispersion expressed as Peclet numbers was on the order of 1 to 4 for most of the distributions used but could attain very large Peclet numbers for (unrealistically) narrow aperture distributions. Simulations of breakthrough curves for tracers in single fracture flow experiments indicate that when few channels participate and the dispersion in the individual channels is small, the breakthrough curve is expected not to be entirely smooth but to contain distinct plateaus. This property has been noted in several experiments. (orig./HP)

  2. Discrete Modeling of Early-Life Thermal Fracture in Ceramic Nuclear Fuel

    Spencer, Benjamin W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Huang, Hai [Idaho National Lab. (INL), Idaho Falls, ID (United States); Dolbow, John E. [Duke Univ., Durham, NC (United States); Hales, Jason D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    Fracturing of ceramic fuel pellets heavily influences performance of light water reactor (LWR) fuel. Early in the life of fuel, starting with the initial power ramp, large thermal gradients cause high tensile hoop and axial stresses in the outer region of the fuel pellets, resulting in the formation of radial and axial cracks. Circumferential cracks form due to thermal gradients that occur when the power is ramped down. These thermal cracks cause the fuel to expand radially, closing the pellet/cladding gap and enhancing the thermal conductance across that gap, while decreasing the effective conductivity of the fuel in directions normal to the cracking. At lower length scales, formation of microcracks is an important contributor to the decrease in bulk thermal conductivity that occurs over the life of the fuel as the burnup increases. Because of the important effects that fracture has on fuel performance, a realistic, physically based fracture modeling capability is essential to predict fuel behavior in a wide variety of normal and abnormal conditions. Modeling fracture within the context of the finite element method, which is based on continuous interpolations of solution variables, has always been challenging because fracture is an inherently discontinuous phenomenon. Work is underway at Idaho National Laboratory to apply two modeling techniques model fracture as a discrete displacement discontinuity to nuclear fuel: The extended finite element method (XFEM), and discrete element method (DEM). XFEM is based on the standard finite element method, but with enhancements to represent discontinuous behavior. DEM represents a solid as a network of particles connected by bonds, which can arbitrarily fail if a fracture criterion is reached. This paper presents initial results applying the aforementioned techniques to model fuel fracturing. This work has initially focused on early life behavior of ceramic LWR fuel. A coupled thermal-mechanical XFEM method that includes

  3. A new coal-permeability model: Internal swelling stress and fracture-matrix interaction

    Liu, H.H.; Rutqvist, J.

    2009-10-01

    We have developed a new coal-permeability model for uniaxial strain and constant confining stress conditions. The model is unique in that it explicitly considers fracture-matrix interaction during coal deformation processes and is based on a newly proposed internal-swelling stress concept. This concept is used to account for the impact of matrix swelling (or shrinkage) on fracture-aperture changes resulting from partial separation of matrix blocks by fractures that do not completely cut through the whole matrix. The proposed permeability model is evaluated with data from three Valencia Canyon coalbed wells in the San Juan Basin, where increased permeability has been observed during CH{sub 4} gas production, as well as with published data from laboratory tests. Model results are generally in good agreement with observed permeability changes. The importance of fracture-matrix interaction in determining coal permeability, demonstrated in this work using relatively simple stress conditions, underscores the need for a dual-continuum (fracture and matrix) mechanical approach to rigorously capture coal-deformation processes under complex stress conditions, as well as the coupled flow and transport processes in coal seams.

  4. Mechanism of distal radius fracture as analyzed by 3D finite element model

    Tomizawa, Kazuo

    2007-01-01

    The purpose of this study is to see the difference of distal radius fracture between normal and osteoporotic bones and in its patterns due to limb position at injury through simulation and analysis of the biomechanics using three-dimensional (3D) finite element model. CT images were taken with SIEMENS machine, of right wrist joints of 32 and 76 years old, normal healthy man and osteoporotic woman, respectively. The wrist joint angles at CT were 70 degrees both at dorsiflexion and at palmerflexion for simulating fracture at tumbling down. The 3D bone model reconstructed from CT images with Forge software (Studio PON) was trimmed to remain the distal radial-ulnar portion and proximal carpal bones to make simulation easer, and the simplified 3D model was divided to 56,622 elements and 13,274 nodal points (normal bone) or 51,760 and 12,940 (osteoporosis), respectively, in 3 areas of different bone densities calculated with Scion Image processor. This 3D finite element model was analyzed with the software ANSYS LS-DYNA 10.0 for simulating the fracture (the defined yield stress attained) by impacting the elements of carpal bones to the radial bone joint surface with a measure of Mises stress. In osteoporotic bone, fracture was found to occur at dorsal cortex closer to the joint surface. Fracture occurred at dorsal and palmer cortex at dorsiflexion and palmerflexion, respectively. (R.T.)

  5. The application of J integral to measure cohesive laws in materials undergoing large scale yielding

    Sørensen, Bent F.; Goutianos, Stergios

    2015-01-01

    We explore the possibility of determining cohesive laws by the J-integral approach for materials having non-linear stress-strain behaviour (e.g. polymers and composites) by the use of a DCB sandwich specimen, consisting of stiff elastic beams bonded to the non-linear test material, loaded with pure...... bending moments. For a wide range of parameters of the non-linear material, the plastic unloading during crack extension is small, resulting in J integral values (fracture resistance) that deviate maximum 15% from the work of the cohesive traction. Thus the method can be used to extract the cohesive laws...... directly from experiments without any presumption about their shape. Finally, the DCB sandwich specimen was also analysed using the I integral to quantify the overestimation of the steady-state fracture resistance obtained using the J integral based method....

  6. Low-energy extracorporeal shockwave therapy (ESWT improves metaphyseal fracture healing in an osteoporotic rat model.

    Gina A Mackert

    Full Text Available As result of the current demographic changes, osteoporosis and osteoporotic fractures are becoming an increasing social and economic burden. In this experimental study, extracorporeal shock wave therapy (ESWT, was evaluated as a treatment option for the improvement of osteoporotic fracture healing.A well-established fracture model in the metaphyseal tibia in the osteoporotic rat was used. 132 animals were divided into 11 groups, with 12 animals each, consisting of one sham-operated group and 10 ovariectomized (osteoporotic groups, of which 9 received ESWT treatment. Different energy flux intensities (0.15 mJ/mm2, 0.35 mJ/mm2, or 0.55 mJ/mm2 as well as different numbers of ESWT applications (once, three times, or five times throughout the 35-day healing period were applied to the osteoporotic fractures. Fracture healing was investigated quantitatively and qualitatively using micro-CT imaging, quantitative real-time polymerase chain reaction (qRT-PCR analysis, histomorphometric analysis and biomechanical analysis.The results of this study show a qualitative and quantitative improvement in the osteoporotic fracture healing under low-energy (energy flux intensity: 0,15 mJ/mm2 ESWT and with fewer treatment applications per healing period.In conclusion, low-energy ESWT seems to exhibit a beneficial effect on the healing of osteoporotic fractures, leading to improved biomechanical properties, enhanced callus-quantity and -quality, and an increase in the expression of bone specific transcription factors. The results suggest that low-energy ESWT, as main treatment or as adjunctive treatment in addition to a surgical intervention, may prove to be an effective, simple to use, and cost-efficient option for the qualitative and quantitative improvement of osteoporotic fracture healing.

  7. Statistical analysis of fracture data, adapted for modelling Discrete Fracture Networks-Version 2

    Munier, Raymond

    2004-04-01

    The report describes the parameters which are necessary for DFN modelling, the way in which they can be extracted from the data base acquired during site investigations, and their assignment to geometrical objects in the geological model. The purpose here is to present a methodology for use in SKB modelling projects. Though the methodology is deliberately tuned to facilitate subsequent DFN modelling with other tools, some of the recommendations presented here are applicable to other aspects of geo-modelling as well. For instance, we here recommend a nomenclature to be used within SKB modelling projects, which are truly multidisciplinary, to ease communications between scientific disciplines and avoid misunderstanding of common concepts. This report originally occurred as an appendix to a strategy report for geological modelling (SKB-R--03-07). Strategy reports were intended to be successively updated to include experience gained during site investigations and site modelling. Rather than updating the entire strategy report, we choose to present the update of the appendix as a stand-alone document. This document thus replaces Appendix A2 in SKB-R--03-07. In short, the update consists of the following: The target audience has been broadened and as a consequence thereof, the purpose of the document. Correction of errors found in various formulae. All expressions have been rewritten. Inclusion of more worked examples in each section. A new section describing area normalisation. A new section on spatial correlation. A new section describing anisotropy. A new chapter describing the expected output from DFN modelling, within SKB projects.

  8. Statistical analysis of fracture data, adapted for modelling Discrete Fracture Networks-Version 2

    Munier, Raymond

    2004-04-01

    The report describes the parameters which are necessary for DFN modelling, the way in which they can be extracted from the data base acquired during site investigations, and their assignment to geometrical objects in the geological model. The purpose here is to present a methodology for use in SKB modelling projects. Though the methodology is deliberately tuned to facilitate subsequent DFN modelling with other tools, some of the recommendations presented here are applicable to other aspects of geo-modelling as well. For instance, we here recommend a nomenclature to be used within SKB modelling projects, which are truly multidisciplinary, to ease communications between scientific disciplines and avoid misunderstanding of common concepts. This report originally occurred as an appendix to a strategy report for geological modelling (SKB-R--03-07). Strategy reports were intended to be successively updated to include experience gained during site investigations and site modelling. Rather than updating the entire strategy report, we choose to present the update of the appendix as a stand-alone document. This document thus replaces Appendix A2 in SKB-R--03-07. In short, the update consists of the following: The target audience has been broadened and as a consequence thereof, the purpose of the document. Correction of errors found in various formulae. All expressions have been rewritten. Inclusion of more worked examples in each section. A new section describing area normalisation. A new section on spatial correlation. A new section describing anisotropy. A new chapter describing the expected output from DFN modelling, within SKB projects

  9. Elucidating hydraulic fracturing impacts on groundwater quality using a regional geospatial statistical modeling approach

    Burton, Taylour G., E-mail: tgburton@uh.edu [Civil and Environmental Engineering, University of Houston, W455 Engineering Bldg. 2, Houston, TX 77204-4003 (United States); Rifai, Hanadi S., E-mail: rifai@uh.edu [Civil and Environmental Engineering, University of Houston, N138 Engineering Bldg. 1, Houston, TX 77204-4003 (United States); Hildenbrand, Zacariah L., E-mail: zac@informenv.com [Inform Environmental, LLC, Dallas, TX 75206 (United States); Collaborative Laboratories for Environmental Analysis and Remediation, University of Texas at Arlington, Arlington, TX 76019 (United States); Carlton, Doug D., E-mail: doug.carlton@mavs.uta.edu [Collaborative Laboratories for Environmental Analysis and Remediation, University of Texas at Arlington, Arlington, TX 76019 (United States); Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, TX (United States); Fontenot, Brian E., E-mail: brian.fonteno@mavs.uta.edu [Collaborative Laboratories for Environmental Analysis and Remediation, University of Texas at Arlington, Arlington, TX 76019 (United States); Schug, Kevin A., E-mail: kschug@uta.edu [Collaborative Laboratories for Environmental Analysis and Remediation, University of Texas at Arlington, Arlington, TX 76019 (United States); Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, TX (United States)

    2016-03-01

    Hydraulic fracturing operations have been viewed as the cause of certain environmental issues including groundwater contamination. The potential for hydraulic fracturing to induce contaminant pathways in groundwater is not well understood since gas wells are completed while isolating the water table and the gas-bearing reservoirs lay thousands of feet below the water table. Recent studies have attributed ground water contamination to poor well construction and leaks in the wellbore annulus due to ruptured wellbore casings. In this paper, a geospatial model of the Barnett Shale region was created using ArcGIS. The model was used for spatial analysis of groundwater quality data in order to determine if regional variations in groundwater quality, as indicated by various groundwater constituent concentrations, may be associated with the presence of hydraulically fractured gas wells in the region. The Barnett Shale reservoir pressure, completions data, and fracture treatment data were evaluated as predictors of groundwater quality change. Results indicated that elevated concentrations of certain groundwater constituents are likely related to natural gas production in the study area and that beryllium, in this formation, could be used as an indicator variable for evaluating fracturing impacts on regional groundwater quality. Results also indicated that gas well density and formation pressures correlate to change in regional water quality whereas proximity to gas wells, by itself, does not. The results also provided indirect evidence supporting the possibility that micro annular fissures serve as a pathway transporting fluids and chemicals from the fractured wellbore to the overlying groundwater aquifers. - Graphical abstract: A relative increase in beryllium concentrations in groundwater for the Barnett Shale region from 2001 to 2011 was visually correlated with the locations of gas wells in the region that have been hydraulically fractured over the same time period

  10. Elucidating hydraulic fracturing impacts on groundwater quality using a regional geospatial statistical modeling approach

    Burton, Taylour G.; Rifai, Hanadi S.; Hildenbrand, Zacariah L.; Carlton, Doug D.; Fontenot, Brian E.; Schug, Kevin A.

    2016-01-01

    Hydraulic fracturing operations have been viewed as the cause of certain environmental issues including groundwater contamination. The potential for hydraulic fracturing to induce contaminant pathways in groundwater is not well understood since gas wells are completed while isolating the water table and the gas-bearing reservoirs lay thousands of feet below the water table. Recent studies have attributed ground water contamination to poor well construction and leaks in the wellbore annulus due to ruptured wellbore casings. In this paper, a geospatial model of the Barnett Shale region was created using ArcGIS. The model was used for spatial analysis of groundwater quality data in order to determine if regional variations in groundwater quality, as indicated by various groundwater constituent concentrations, may be associated with the presence of hydraulically fractured gas wells in the region. The Barnett Shale reservoir pressure, completions data, and fracture treatment data were evaluated as predictors of groundwater quality change. Results indicated that elevated concentrations of certain groundwater constituents are likely related to natural gas production in the study area and that beryllium, in this formation, could be used as an indicator variable for evaluating fracturing impacts on regional groundwater quality. Results also indicated that gas well density and formation pressures correlate to change in regional water quality whereas proximity to gas wells, by itself, does not. The results also provided indirect evidence supporting the possibility that micro annular fissures serve as a pathway transporting fluids and chemicals from the fractured wellbore to the overlying groundwater aquifers. - Graphical abstract: A relative increase in beryllium concentrations in groundwater for the Barnett Shale region from 2001 to 2011 was visually correlated with the locations of gas wells in the region that have been hydraulically fractured over the same time period

  11. A simple model for enamel fracture from margin cracks.

    Chai, Herzl; Lee, James J-W; Kwon, Jae-Young; Lucas, Peter W; Lawn, Brian R

    2009-06-01

    We present results of in situ fracture tests on extracted human molar teeth showing failure by margin cracking. The teeth are mounted into an epoxy base and loaded with a rod indenter capped with a Teflon insert, as representative of food modulus. In situ observations of cracks extending longitudinally upward from the cervical margins are recorded in real time with a video camera. The cracks appear above some threshold and grow steadily within the enamel coat toward the occlusal surface in a configuration reminiscent of channel-like cracks in brittle films. Substantially higher loading is required to delaminate the enamel from the dentin, attesting to the resilience of the tooth structure. A simplistic fracture mechanics analysis is applied to determine the critical load relation for traversal of the margin crack along the full length of the side wall. The capacity of any given tooth to resist failure by margin cracking is predicted to increase with greater enamel thickness and cuspal radius. Implications in relation to dentistry and evolutionary biology are briefly considered.

  12. The role of the Stripa phase 3 project in the development of practical discrete fracture modelling technology

    Dershowitz, W.S.

    1994-01-01

    The Stripa project has played a major role in developing discrete fracture analysis from a theoretical research topic to a practical repository evaluation tool. The Site Characterization and Validation (SCV) program positively answered questions regarding: (1) the validation of discrete fracture models, (2) the feasibility of collecting data for discrete fracture models, (3) the ability of discrete fracture models to simulate flow in a rock volume of approximately 10 6 cubic meters using modest computing resources, and (4) the ability to model transport in discrete fractures. The SCV program also made progress on such continuing issues as the importance of in-plane fracture heterogeneity and coupled effects. (author). 16 refs., 2 tabs., 6 figs

  13. Transport and deposition of cohesive pharmaceutical powders in human airway

    Wang Yuan

    2017-01-01

    Full Text Available Pharmaceutical powders used in inhalation therapy are in the size range of 1-5 microns and are usually cohesive. Understanding the cohesive behaviour of pharmaceutical powders during their transportation in human airway is significant in optimising aerosol drug delivery and targeting. In this study, the transport and deposition of cohesive pharmaceutical powders in a human airway model is simulated by a well-established numerical model which combines computational fluid dynamics (CFD and discrete element method (DEM. The van der Waals force, as the dominant cohesive force, is simulated and its influence on particle transport and deposition behaviour is discussed. It is observed that even for dilute particle flow, the local particle concentration in the oral to trachea region can be high and particle aggregation happens due to the van der Waals force of attraction. It is concluded that the deposition mechanism for cohesive pharmaceutical powders, on one hand, is dominated by particle inertial impaction, as proven by previous studies; on the other hand, is significantly affected by particle aggregation induced by van der Waals force. To maximum respiratory drug delivery efficiency, efforts should be made to avoid pharmaceutical powder aggregation in human oral-to-trachea airway.

  14. Transport and deposition of cohesive pharmaceutical powders in human airway

    Wang, Yuan; Chu, Kaiwei; Yu, Aibing

    2017-06-01

    Pharmaceutical powders used in inhalation therapy are in the size range of 1-5 microns and are usually cohesive. Understanding the cohesive behaviour of pharmaceutical powders during their transportation in human airway is significant in optimising aerosol drug delivery and targeting. In this study, the transport and deposition of cohesive pharmaceutical powders in a human airway model is simulated by a well-established numerical model which combines computational fluid dynamics (CFD) and discrete element method (DEM). The van der Waals force, as the dominant cohesive force, is simulated and its influence on particle transport and deposition behaviour is discussed. It is observed that even for dilute particle flow, the local particle concentration in the oral to trachea region can be high and particle aggregation happens due to the van der Waals force of attraction. It is concluded that the deposition mechanism for cohesive pharmaceutical powders, on one hand, is dominated by particle inertial impaction, as proven by previous studies; on the other hand, is significantly affected by particle aggregation induced by van der Waals force. To maximum respiratory drug delivery efficiency, efforts should be made to avoid pharmaceutical powder aggregation in human oral-to-trachea airway.

  15. Sensitivity analysis of hydraulic fracturing Using an extended finite element method for the PKN model

    Garikapati, Hasini; Verhoosel, Clemens V.; van Brummelen, Harald; Diez, Pedro; Papadrakakis, M.; Papadopoulos, V.; Stefanou, G.; Plevris, V.

    2016-01-01

    Hydraulic fracturing is a process that is surrounded by uncertainty, as available data on e.g. rock formations is scant and available models are still rudimentary. In this contribution sensitivity analysis is carried out as first step in studying the uncertainties in the model. This is done to

  16. Probabilistic model for fatigue crack growth and fracture of welded joints in civil engineering structures

    Maljaars, J.; Steenbergen, H.M.G.M.; Vrouwenvelder, A.C.W.M.

    2012-01-01

    This paper presents a probabilistic assessment model for linear elastic fracture mechanics (LEFM). The model allows the determination of the failure probability of a structure subjected to fatigue loading. The distributions of the random variables for civil engineering structures are provided, and

  17. A mathematical model and an approximate method for calculating the fracture characteristics of nonmetallic materials during laser cutting

    Smorodin, F.K.; Druzhinin, G.V.

    1991-01-01

    A mathematical model is proposed which describes the fracture behavior of amorphous materials during laser cutting. The model, which is based on boundary layer equations, is reduced to ordinary differential equations with the corresponding boundary conditions. The reduced model is used to develop an approximate method for calculating the fracture characteristics of nonmetallic materials.

  18. Mathematical algorithm development and parametric studies with the GEOFRAC three-dimensional stochastic model of natural rock fracture systems

    Ivanova, Violeta M.; Sousa, Rita; Murrihy, Brian; Einstein, Herbert H.

    2014-06-01

    This paper presents results from research conducted at MIT during 2010-2012 on modeling of natural rock fracture systems with the GEOFRAC three-dimensional stochastic model. Following a background summary of discrete fracture network models and a brief introduction of GEOFRAC, the paper provides a thorough description of the newly developed mathematical and computer algorithms for fracture intensity, aperture, and intersection representation, which have been implemented in MATLAB. The new methods optimize, in particular, the representation of fracture intensity in terms of cumulative fracture area per unit volume, P32, via the Poisson-Voronoi Tessellation of planes into polygonal fracture shapes. In addition, fracture apertures now can be represented probabilistically or deterministically whereas the newly implemented intersection algorithms allow for computing discrete pathways of interconnected fractures. In conclusion, results from a statistical parametric study, which was conducted with the enhanced GEOFRAC model and the new MATLAB-based Monte Carlo simulation program FRACSIM, demonstrate how fracture intensity, size, and orientations influence fracture connectivity.

  19. Streaming Potential Modeling to Understand the Identification of Hydraulically Active Fractures and Fracture-Matrix Fluid Interactions Using the Self-Potential Method

    Jougnot, D.; Roubinet, D.; Linde, N.; Irving, J.

    2016-12-01

    Quantifying fluid flow in fractured media is a critical challenge in a wide variety of research fields and applications. To this end, geophysics offers a variety of tools that can provide important information on subsurface physical properties in a noninvasive manner. Most geophysical techniques infer fluid flow by data or model differencing in time or space (i.e., they are not directly sensitive to flow occurring at the time of the measurements). An exception is the self-potential (SP) method. When water flows in the subsurface, an excess of charge in the pore water that counterbalances electric charges at the mineral-pore water interface gives rise to a streaming current and an associated streaming potential. The latter can be measured with the SP technique, meaning that the method is directly sensitive to fluid flow. Whereas numerous field experiments suggest that the SP method may allow for the detection of hydraulically active fractures, suitable tools for numerically modeling streaming potentials in fractured media do not exist. Here, we present a highly efficient two-dimensional discrete-dual-porosity approach for solving the fluid-flow and associated self-potential problems in fractured domains. Our approach is specifically designed for complex fracture networks that cannot be investigated using standard numerical methods due to computational limitations. We then simulate SP signals associated with pumping conditions for a number of examples to show that (i) accounting for matrix fluid flow is essential for accurate SP modeling and (ii) the sensitivity of SP to hydraulically active fractures is intimately linked with fracture-matrix fluid interactions. This implies that fractures associated with strong SP amplitudes are likely to be hydraulically conductive, attracting fluid flow from the surrounding matrix.

  20. Group cohesion in sports teams of different professional level

    Vazha M. Devishvili; Marina O. Mdivani; Daria S. Elgina

    2017-01-01

    Background. Team sports are not only the most exciting sporting events. but also complex activities that make serious demands on players. The effectiveness of the team depends not only on the high level of gaming interaction. but also on the relationship between the players. The work is based on the material of sports teams and is devoted to the study of the phenomenon of group cohesion. As a basic model. the authors choose a 4-factor model that describes cohesion in sports teams. The pape...

  1. Thermo-hydro-mechanical modelling of fractured rock masses application to radioactive wastes storage

    Vuillod, E.

    1995-01-01

    This work belongs to the Decovalex project (international cooperative project for the development of coupled models and their validation against experiments in nuclear waste isolation) of thermo-hydro-mechanical (THM) modeling of fractured rock massifs inside which high level radioactive waste disposal sites are simulated. The mathematical laws controlling the behaviour of the environment are resolved analytically in the case of a continuous environment (definition of an equivalent environment) and numerically if the environment is discontinuous (modeling of joints behaviour). The coupled THM models strongly influence the behaviour of a model. Modeling performed with the UDEC code shows the importance of HM couplings depending on whether the calculations are made in permanent or transient regime, and the influence of the loading path in the case of TM modeling. The geometry of fractures also influences the behaviour of the model. Studying the connexity of a fractures network allows to determine its degree of homogeneity. The comparison between two methods, continuous environment and discontinuous environment, has been carried out by determining the permeability tensor and the stress-deformation relations on fractured test-samples. It shows the differences in behaviour between an homogenized environment and a discrete environment. Finally two exercises of THM modeling of radioactive waste disposal sites illustrate the researches carried out. A far field model has permitted to compare the results obtained with calculation codes using different logics. The second model, a near field one, focusses more on the importance played by fracturing on the behaviour of the massif. The high density of the reference network has required some mathematical developments, in order to determine the representative equivalent volume (continuous approaches), and some mathematical analyses, to correctly simplify the environment (discontinuous approaches). These methods and analyses are

  2. Predicting dissolution patterns in variable aperture fractures: 1. Development and evaluation of an enhanced depth-averaged computational model

    Detwiler, R L; Rajaram, H

    2006-04-21

    Water-rock interactions within variable-aperture fractures can lead to dissolution of fracture surfaces and local alteration of fracture apertures, potentially transforming the transport properties of the fracture over time. Because fractures often provide dominant pathways for subsurface flow and transport, developing models that effectively quantify the role of dissolution on changing transport properties over a range of scales is critical to understanding potential impacts of natural and anthropogenic processes. Dissolution of fracture surfaces is controlled by surface-reaction kinetics and transport of reactants and products to and from the fracture surfaces. We present development and evaluation of a depth-averaged model of fracture flow and reactive transport that explicitly calculates local dissolution-induced alterations in fracture apertures. The model incorporates an effective mass transfer relationship that implicitly represents the transition from reaction-limited dissolution to transport-limited dissolution. We evaluate the model through direct comparison to previously reported physical experiments in transparent analog fractures fabricated by mating an inert, transparent rough surface with a smooth single crystal of potassium dihydrogen phosphate (KDP), which allowed direct measurement of fracture aperture during dissolution experiments using well-established light transmission techniques [Detwiler, et al., 2003]. Comparison of experiments and simulations at different flow rates demonstrate the relative impact of the dimensionless Peclet and Damkohler numbers on fracture dissolution and the ability of the computational model to simulate dissolution. Despite some discrepancies in the small-scale details of dissolution patterns, the simulations predict the evolution of large-scale features quite well for the different experimental conditions. This suggests that our depth-averaged approach to simulating fracture dissolution provides a useful approach for

  3. A modeling and numerical algorithm for thermoporomechanics in multiple porosity media for naturally fractured reservoirs

    Kim, J.; Sonnenthal, E. L.; Rutqvist, J.

    2011-12-01

    Rigorous modeling of coupling between fluid, heat, and geomechanics (thermo-poro-mechanics), in fractured porous media is one of the important and difficult topics in geothermal reservoir simulation, because the physics are highly nonlinear and strongly coupled. Coupled fluid/heat flow and geomechanics are investigated using the multiple interacting continua (MINC) method as applied to naturally fractured media. In this study, we generalize constitutive relations for the isothermal elastic dual porosity model proposed by Berryman (2002) to those for the non-isothermal elastic/elastoplastic multiple porosity model, and derive the coupling coefficients of coupled fluid/heat flow and geomechanics and constraints of the coefficients. When the off-diagonal terms of the total compressibility matrix for the flow problem are zero, the upscaled drained bulk modulus for geomechanics becomes the harmonic average of drained bulk moduli of the multiple continua. In this case, the drained elastic/elastoplastic moduli for mechanics are determined by a combination of the drained moduli and volume fractions in multiple porosity materials. We also determine a relation between local strains of all multiple porosity materials in a gridblock and the global strain of the gridblock, from which we can track local and global elastic/plastic variables. For elastoplasticity, the return mapping is performed for all multiple porosity materials in the gridblock. For numerical implementation, we employ and extend the fixed-stress sequential method of the single porosity model to coupled fluid/heat flow and geomechanics in multiple porosity systems, because it provides numerical stability and high accuracy. This sequential scheme can be easily implemented by using a porosity function and its corresponding porosity correction, making use of the existing robust flow and geomechanics simulators. We implemented the proposed modeling and numerical algorithm to the reaction transport simulator

  4. A partitioned model order reduction approach to rationalise computational expenses in nonlinear fracture mechanics

    Kerfriden, P.; Goury, O.; Rabczuk, T.; Bordas, S.P.A.

    2013-01-01

    We propose in this paper a reduced order modelling technique based on domain partitioning for parametric problems of fracture. We show that coupling domain decomposition and projection-based model order reduction permits to focus the numerical effort where it is most needed: around the zones where damage propagates. No a priori knowledge of the damage pattern is required, the extraction of the corresponding spatial regions being based solely on algebra. The efficiency of the proposed approach is demonstrated numerically with an example relevant to engineering fracture. PMID:23750055

  5. Revision of the fracture models in steels for nuclear pressure vessels

    Darwish, F A.I. [Pontificia Univ. Catolica do Rio de Janeiro (Brazil). Dept. de Ciencia dos Materiais e Metalurgia

    1981-01-01

    The variation of toughness with the temperature of steels used in the fabrication of nuclear pressure vessels is presented and discuted by mathematical models aiming to reach a critical value of stress or deformation at the moment of the fracture. The mathematical model considered are compatible with the fracture micromechanisms in action and they are capable of foreseeing the variations in the toughness from the mechanical properties evaluated in the tension test. The neutron irradiation effects in the toughness as well as in the variation of this toughness with the operating temperature are still described.

  6. MIGFRAC - a code for modelling of radionuclide transport in fracture media

    Satyanarayana, S.V.M.; Mohankumar, N.; Sasidhar, P.

    2002-05-01

    Radionuclides migrate through diffusion process from radioactive waste disposal facilities into fractures present in the host rock. The transport phenomenon is aided by the circulating ground waters. To model the transport of radionuclides in the charnockite rock formations present at Kalpakkam, a numerical code - MIGFRAC has been developed at SHINE Group, IGCAR. The code has been subjected to rigorous tests and the results of the build up of radionuclide concentrations are validated with a test case up to a distance of 100 meter along the fracture. The report discusses the model, code features and the results obtained up to a distance of 400 meter are presented. (author)

  7. Characterizing fractured rock for fluid-flow, geomechanical, and paleostress modeling: Methods and preliminary results from Yucca Mountain, Nevada

    Barton, C.C.; Larsen, E.; Page, W.R.; Howard, T.M.

    1993-01-01

    Fractures have been characterized for fluid-flow, geomechanical, and paleostress modeling at three localities in the vicinity of drill hole USW G-4 at Yucca Mountain in southwestern Nevada. A method for fracture characterization is introduced that integrates mapping fracture-trace networks and quantifying eight fracture parameters: trace length, orientation, connectivity, aperture, roughness, shear offset, trace-length density, and mineralization. A complex network of fractures was exposed on three 214- to 260-m 2 pavements cleared of debris in the upper lithophysal unit of the Tiva Canyon Member of the Miocene Paint-brush Tuff. The pavements are two-dimensional sections through the three-dimensional network of strata-bound fractures. All fractures with trace lengths greater than 0.2 m were mapped and studied

  8. A Nonlocal Peridynamic Plasticity Model for the Dynamic Flow and Fracture of Concrete.

    Vogler, Tracy; Lammi, Christopher James

    2014-10-01

    A nonlocal, ordinary peridynamic constitutive model is formulated to numerically simulate the pressure-dependent flow and fracture of heterogeneous, quasi-brittle ma- terials, such as concrete. Classical mechanics and traditional computational modeling methods do not accurately model the distributed fracture observed within this family of materials. The peridynamic horizon, or range of influence, provides a characteristic length to the continuum and limits localization of fracture. Scaling laws are derived to relate the parameters of peridynamic constitutive model to the parameters of the classical Drucker-Prager plasticity model. Thermodynamic analysis of associated and non-associated plastic flow is performed. An implicit integration algorithm is formu- lated to calculate the accumulated plastic bond extension and force state. The gov- erning equations are linearized and the simulation of the quasi-static compression of a cylinder is compared to the classical theory. A dissipation-based peridynamic bond failure criteria is implemented to model fracture and the splitting of a concrete cylinder is numerically simulated. Finally, calculation of the impact and spallation of a con- crete structure is performed to assess the suitability of the material and failure models for simulating concrete during dynamic loadings. The peridynamic model is found to accurately simulate the inelastic deformation and fracture behavior of concrete during compression, splitting, and dynamically induced spall. The work expands the types of materials that can be modeled using peridynamics. A multi-scale methodology for simulating concrete to be used in conjunction with the plasticity model is presented. The work was funded by LDRD 158806.

  9. Technical report on micro-mechanical versus conventional modelling in non-linear fracture mechanics

    2001-07-01

    While conventional fracture mechanics is capable of predicting crack growth behaviour if sufficient experimental observations are available, micro-mechanical modelling can both increase the accuracy of these predictions and model phenomena that are inaccessible by the conventional theory such as the ductile-cleavage temperature transition. A common argument against micro-mechanical modelling is that it is too complicated for use in routine engineering applications. This is both a computational and an educational problem. That micro-mechanical modelling is unnecessarily complicated is certainly true in many situations. The on-going development of micro-mechanical models, computational algorithms and compu