WorldWideScience

Sample records for coevaporated metal alloy

  1. Ultraprecision microelectroforming of metals and metal alloys

    Science.gov (United States)

    Loewe, Holger; Ehrfeld, Wolfgang; Diebel, Joerg

    1997-09-01

    In recent years, microsystem technology and its growing importance for actuators, sensors, optics and microfluidics, only to name a few, have gained a lot of attention. Specific applications demand fabrication techniques allowing a fast and reliable replication of microstructure products in a variety of materials. An important technique for replication processes of microstructures in many applications of microsystem technology are microelectroforming processes, generating a variety of metals and metal alloys with tailored characteristics. Here, new results in the development of alloys for specific applications as well as their applications are reported: (1) Newly developed alloys: Nickel-iron alloys enable the production of soft magnetic microstructures e.g. for specific applications in microactuators. Nickel-cobalt and Nickel-tungsten alloys have been employed for the manufacture of microstructured tools with excellent mechanical properties regarding wear and mechanical durability. These tools have been applied to hot-embossing and injection molding processes successfully. (2) Microelectroforming within the frame of the LIGA technique allows the manufacturing of extremely precise electrodes with various cross-sections and heights for (mu) - electro discharge machining. The combination of these techniques enables the production of microstructures from non- electrodepositable materials, like stainless steel e.g. for large scale replication processes. (3) The precision of microelectroforming enables the replication of structured surfaces on a nanoscale for molecular microelectronics or special applications. The new types of alloys reported here significantly enlarge the applicability of microelectroforming processes for tool fabrication or direct use. Moreover combining this process with other microstructuring processes like injection molding or (mu) -EDM techniques generates a powerful tool for microsystem technology.

  2. An introduction to surface alloying of metals

    CERN Document Server

    Hosmani, Santosh S; Goyal, Rajendra Kumar

    2014-01-01

    An Introduction to Surface Alloying of Metals aims to serve as a primer to the basic aspects of surface alloying of metals. The book serves to elucidate fundamentals of surface modification and their engineering applications. The book starts with basics of surface alloying and goes on to cover key surface alloying methods, such as carburizing, nitriding, chromizing, duplex treatment, and the characterization of surface layers. The book will prove useful to students at both the undergraduate and graduate levels, as also to researchers and practitioners looking for a quick introduction to surface alloying.

  3. Internal gettering by metal alloy clusters

    Science.gov (United States)

    Buonassisi, Anthony; Heuer, Matthias; Istratov, Andrei A.; Pickett, Matthew D.; Marcus, Mathew A.; Weber, Eicke R.

    2010-07-27

    The present invention relates to the internal gettering of impurities in semiconductors by metal alloy clusters. In particular, intermetallic clusters are formed within silicon, such clusters containing two or more transition metal species. Such clusters have melting temperatures below that of the host material and are shown to be particularly effective in gettering impurities within the silicon and collecting them into isolated, less harmful locations. Novel compositions for some of the metal alloy clusters are also described.

  4. Mechanically alloyed aluminum metal matrix composites

    Science.gov (United States)

    Hashiguchi, Don; Tricker, David; Tarrant, Andrew

    2017-09-01

    Aluminum alloys reinforced with ceramic particles produce a low density metal matrix composite (MMC) with enhanced mechanical and physical properties including relatively high modulus and vibration loss. This paper will outline the capability through Powder Metallurgy processing techniques made by mechanical alloying (MA). MA enables production of MMC's with micron to submicron mean particulate reinforcement size which increases mechanical properties in comparison to larger reinforcement particle size. Smaller reinforcement particles also result in a material that fits well within established value streams enabling conventional post consolidation metalworking and machining methods. The microstructure and properties of MMC's mechanical alloyed with base aluminum alloys 6061B and 2124A will be presented.

  5. The interaction of hydrogen with metal alloys

    Science.gov (United States)

    Danford, M. D.; Montano, J. W.

    1991-01-01

    Hydrogen diffusion coefficients were measured for several alloys, and these were determined to be about the same at 25 C for all alloys investigated. The relation of structure, both metallurgical and crystallographic, to the observed hydrogen distribution on charging was investigated, as well as the role of hydride formation in the hydrogen resistance of metal alloys. An attempt was made to correlate the structures and compositions of metal alloys as well as other parameters with the ratios of their notched tensile strengths in hydrogen to that in helium, R(H2/He), which are believed to represent a measure of their hydrogen resistance. Evidence supports the belief that hydrogen permeability and hydrogen resistance are increased by smaller grain sizes for a given alloy composition.

  6. Noble metal alloys for metal-ceramic restorations.

    Science.gov (United States)

    Anusavice, K J

    1985-10-01

    A review of the comparative characteristics and properties of noble metal alloys used for metal-ceramic restorations has been presented. Selection of an alloy for one's practice should be based on long-term clinical data, physical properties, esthetic potential, and laboratory data on metal-ceramic bond strength and thermal compatibility with commercial dental porcelains. Although gold-based alloys, such as the Au-Pt-Pd, Au-Pd-Ag, and Au-Pd classes, may appear to be costly compared with the palladium-based alloys, they have clearly established their clinical integrity and acceptability over an extended period of time. Other than the relatively low sag resistance of the high gold-low silver content alloys and the potential thermal incompatibility with some commercial porcelain products, few clinical failures have been observed. The palladium-based alloys are less costly than the gold-based alloys. Palladium-silver alloys require extra precautions to minimize porcelain discoloration. Palladium-copper and palladium-cobalt alloys may also cause porcelain discoloration, as copper and cobalt are used as colorants in glasses. The palladium-cobalt alloys are least susceptible to high-temperature creep compared with all classes of noble metals. Nevertheless, insufficient clinical data exist to advocate the general use of the palladium-copper and palladium-cobalt alloys at the present time. One should base the selection and use of these alloys in part on their ability to meet the requirements of the ADA Acceptance Program. A list of acceptable or provisionally acceptable alloys is available from the American Dental Association and is published annually in the Journal of the American Dental Association. Dentists have the legal and ethical responsibility for selection of alloys used for cast restorations. This responsibility should not be delegated to the dental laboratory technician. It is advisable to discuss the criteria for selection of an alloy with the technician and the

  7. 21 CFR 872.3060 - Noble metal alloy.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Noble metal alloy. 872.3060 Section 872.3060 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3060 Noble metal alloy. (a) Identification. A noble metal alloy is a device composed primarily of noble metals, such as gold, palladium, platinum, or silver, that...

  8. 21 CFR 872.3710 - Base metal alloy.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Base metal alloy. 872.3710 Section 872.3710 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3710 Base metal alloy. (a) Identification. A base metal alloy is a device composed primarily of base metals, such as nickel, chromium, or cobalt, that is...

  9. Laser surface alloying of aluminium-transition metal alloys

    Directory of Open Access Journals (Sweden)

    Almeida, A.

    1998-04-01

    Full Text Available Laser surface alloying has been used as a tool to produce hard and corrosion resistant Al-transition metal (TM alloys. Cr and Mo are particularly interesting alloying elements to produce stable highstrength alloys because they present low diffusion coefficients and solid solubility in Al. To produce Al-TM surface alloys a two-step laser process was developed: firstly, the material is alloyed using low scanning speed and secondly, the microstructure is modified by a refinement step. This process was used in the production of Al-Cr, Al-Mo and Al-Nb surface alloys by alloying Cr, Mo or Nb powder into an Al and 7175 Al alloy substrate using a CO2 laser. This paper presents a review of the work that has been developed at Instituto Superior Tecnico on laser alloying of Al-TM alloys, over the last years.

    En el presente trabajo se estudia la aleación superficial mediante láser de aluminio con metales de transición. El cromo y el molibdeno son particularmente interesantes porque producen aleaciones de alta resistencia y por el bajo coeficiente de difusión y solución sólida en aluminio. Para producir estas aleaciones se ha seguido un procedimiento desarrollado en dos partes. En primer lugar, el material se alea usando una baja velocidad de procesado y en segundo lugar la estructura se modifica mediante un refinamiento posterior. Este procedimiento se ha empleado en la producción de aleaciones Al-Cr, Al-Mo y Al-Nb mediante aleación con láser de CO2 de polvos de Cr, Mo o Nb en aluminio y la aleación 7175. Este trabajo es una revisión del desarrollado en el Instituto Superior Técnico de Lisboa en los últimos años.

  10. Fatigue Characteristics of Selected Light Metal Alloys

    Directory of Open Access Journals (Sweden)

    Cieśla M.

    2016-03-01

    Full Text Available The paper addresses results of fatigue testing of light metal alloys used in the automotive as well as aerospace and aviation industries, among others. The material subject to testing comprised hot-worked rods made of the AZ31 alloy, the Ti-6Al-4V two-phase titanium alloy and the 2017A (T451 aluminium alloy. Both low- and high-cycle fatigue tests were conducted at room temperature on the cycle asymmetry ratio of R=-1. The low-cycle fatigue tests were performed using the MTS-810 machine on two levels of total strain, i.e.Δεc= 1.0% and 1.2%. The high-cycle fatigue tests, on the other hand, were performed using a machine from VEB Werkstoffprufmaschinen-Leipzig under conditions of rotary bending. Based on the results thus obtained, one could develop fatigue life characteristics of the materials examined (expressed as the number of cycles until failure of sample Nf as well as characteristics of cyclic material strain σa=f(N under the conditions of low-cycle fatigue testing. The Ti-6Al-4V titanium alloy was found to be characterised by the highest value of fatigue life Nf, both in lowand high-cycle tests. The lowest fatigue life, on the other hand, was established for the aluminium alloys examined. Under the high-cycle fatigue tests, the life of the 2017A aluminium and the AZ31 magnesium alloy studied was determined by the value of stress amplitude σa. With the stress exceeding 150 MPa, it was the aluminium alloy which displayed higher fatigue life, whereas the magnesium alloy proved better on lower stress.

  11. Thermal expansion: Metallic elements and alloys. [Handbook

    Science.gov (United States)

    Touloukian, Y. S.; Kirby, R. K.; Taylor, R. E.; Desai, P. D.

    1975-01-01

    The introductory sections of the work are devoted to the theory of thermal expansion of solids and to methods for the measurement of the linear thermal expansion of solids (X-ray methods, high speed methods, interferometry, push-rod dilatometry, etc.). The bulk of the work is devoted to numerical data on the thermal linear expansion of all the metallic elements, a large number of intermetallics, and a large number of binary alloy systems and multiple alloy systems. A comprehensive bibliography is provided along with an index to the materials examined.

  12. Layered Structures in Deformed Metals and Alloys

    DEFF Research Database (Denmark)

    Hansen, Niels; Zhang, Xiaodan; Huang, Xiaoxu

    2014-01-01

    by the way of examples of different processing routes: friction, wire drawing, shot peening, high pressure torsion and rolling. The interlamellar spacing reaches from 5-10 nanometers to about one micrometer and the analysis will cover structural evolution, strengthening parameters and strength......-structure relationships. Finally, the results will be discussed based on universal principles for the evolution of microstructure and properties during plastic deformation of metals and alloys from low to high strain....

  13. Aluminum alloy metallization for integrated circuits

    Energy Technology Data Exchange (ETDEWEB)

    Ghate, P.B.

    1981-09-11

    Aluminum metallization is most widely used for contacts and interconnections in both bipolar and MOS integrated circuits. Aluminum alloy films, such as Al-Si and Al-Cu films, were introduced to minimize the erosion of silicon from contact windows and to improve the electromigration resistance of interconnections. Recently, magnetron sputter-deposited aluminum, Al-2wt.%Cu and Al-2wt.%Cu-1wt.%Si films were employed to study the stability and contact resistance of Si-(Al alloy film) contacts on devices with shallow junction depths of the order of 0.35 ..mu..m. Test structures were used to determine the leakage currents of 100n/sup +//p/sup +/ diodes as a function of the storage time (up to 1000 h) at 150 C, and the physical nature of the Si-(Al alloy) contacts was examined using scanning electron microscopy. The compatibility of the Al-Cu-Si metallization with the very large scale integrated requirements of interconnection and Si-metal contacts for shallow junction devices is discussed.

  14. Alloy metal nanoparticles for multicolor cancer diagnostics

    Science.gov (United States)

    Baptista, Pedro V.; Doria, Gonçalo; Conde, João

    2011-03-01

    Cancer is a multigenic complex disease where multiple gene loci contribute to the phenotype. The ability to simultaneously monitor differential expression originating from each locus results in a more accurate indicator of degree of cancerous activity than either locus alone. Metal nanoparticles have been thoroughly used as labels for in vitro identification and quantification of target sequences. We have synthesized nanoparticles with assorted noble metal compositions in an alloy format and functionalized them with thiol-modified ssDNA (nanoprobes). These nanoprobes were then used for the simultaneous specific identification of several mRNA targets involved in cancer development - one pot multicolor detection of cancer expression. The different metal composition in the alloy yield different "colors" that can be used as tags for identification of a given target. Following a non-cross-linking hybridization procedure previously developed in our group for gold nanoprobes, these multicolor nanoprobes were used for the molecular recognition of several different targets including differently spliced variants of relevant genes (e.g. gene products involved in chronic myeloid leukemia BCR, ABL, BCR-ABL fusion product). Based on the spectral signature of mixtures, before and after induced aggregation of metal nanoparticles, the correct identification could be made. Further application to differentially quantify expression of each locus in relation to another will be presented. The differences in nanoparticle stability and labeling efficiency for each metal combination composing the colloids, as well as detection capability for each nanoprobe will be discussed. Additional studies will be conducted towards allele specific expression studies.

  15. Optical response of noble metal alloy nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Bansal, Amit, E-mail: amit.bansal133@yahoo.com; Verma, S.S.

    2015-01-23

    The optical response, stability, and cost-effectiveness of individual noble metals can be improved by combining them to form alloy nanostructures. The present work reveals the influence of shape, size, and metal type on the optical response of alloy nanoparticles using discrete dipole approximation (DDA) simulations. It is found that sharp corner nanostructures show enhanced plasmonic properties in comparison to rounded counterpart. For all the three shapes, viz., nanocubes, rectangular, and nanobar particles, the increase in length resulted in redshifts of the longitudinal plasmon resonance alongwith enhancement in the scattering yield as well as relative efficiency parameters except for nanocubes of edge length 120 nm. The effect of size on full width at half maxima (FWHM) has also been studied and found to be maximal for nanocubes in comparison to other nanostructures. - Highlights: • The optical response of alloy nanostructures has been studied by discrete dipole approximation. • Sharp corner nanostructures show enhanced plasmonic properties. • Nanobars may be preferred over other nanostructures for absorption-based plasmonic applications. • Nanocubes of edge length greater than 100 nm may be useful for plasmonic solar cells. • Rectangular and nanobar particles may be preferred over nanocubes in plasmon sensing.

  16. Radiation blistering in metals and alloys

    Energy Technology Data Exchange (ETDEWEB)

    Das, S.K.; Kaminsky, M.

    1975-08-25

    Radiation blistering in solids has been identified as a process leading to damage and erosion of irradiated surfaces. Some of the major parameters governing the blistering process in metals and some metallic alloys are the type of projectile and its energy, total dose, dose rate, target temperature, channeling condition of the projectile, orientation of the irradiated surface plane, and target material and its microstructure. Experimental results and models proposed for blister formation and rupture are reviewed. The blistering phenomenon is important as an erosion process in applications such as fusion reactor technology (plasma-wall interactions) and accelerator technology (erosion of components and targets). A description of methods for the reduction of surface erosion caused by blistering is included.

  17. In vitro cytotoxicity of metallic ions released from dental alloys

    NARCIS (Netherlands)

    Milheiro, A.; Nozaki, K.; Kleverlaan, C.J.; Muris, J.; Miura, H.; Feilzer, A.J.

    2016-01-01

    The cytotoxicity of a dental alloy depends on, but is not limited to, the extent of its corrosion behavior. Individual ions may have effects on cell viability that are different from metals interacting within the alloy structure. We aimed to investigate the cytotoxicity of individual metal ions in

  18. Design of multi materials combining crystalline and amorphous metallic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Volland, A.; Ragani, J.; Liu, Y.; Gravier, S.; Suery, M. [Grenoble University/CNRS, SIMAP Laboratory, Grenoble INP/UJF, 38402 Saint-Martin d' Heres (France); Blandin, J.J., E-mail: jean-jacques.blandin@simap.grenoble-inp.fr [Grenoble University/CNRS, SIMAP Laboratory, Grenoble INP/UJF, 38402 Saint-Martin d' Heres (France)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer Elaboration of multi materials associating metallic glasses and conventional crystalline alloys by co-deformation performed at temperatures close to the glass transition temperature of the metallic glasses. Black-Right-Pointing-Pointer Elaboration of filamentary metal matrix composites with a core in metallic glass by co extrusion. Black-Right-Pointing-Pointer Sandwich structures produced by co-pressing. Black-Right-Pointing-Pointer Detection of atomic diffusion from the glass to the crystalline alloys during the processes. Black-Right-Pointing-Pointer Good interfaces between the metallic glasses and the crystalline alloys, as confirmed by mechanical characterisation. - Abstract: Multi materials, associating zirconium based bulk metallic glasses and crystalline metallic alloys like magnesium alloys or copper are elaborated by co-deformation processing performed in the supercooled liquid regions (SLR) of the bulk metallic glasses. Two processes are investigated: co-extrusion and co-pressing. In the first case, filamentary composites with various designs can be produced whereas in the second case sandwich structures are obtained. The experimental window (temperature, time) in which processing can be carried out is directly related to the crystallisation resistance of the glass which requires getting information about the crystallisation conditions in the selected metallic glasses. Thermoforming windows are identified for the studied BMGs by thermal analysis and compression tests in their SLR. The mechanical properties of the produced multi materials are investigated thanks to specifically developed mechanical devices and the interfaces between the amorphous and the crystalline alloys are characterised.

  19. Ductile fracture surface morphology of amorphous metallic alloys

    NARCIS (Netherlands)

    Miskuf, J; Csach, Kornel; Ocelik, [No Value; Bengus, VZ; Tabachnikova, ED; Duhaj, P; Ocelik, Vaclav

    2002-01-01

    Ductile shear failure of hulk amorphous metallic alloys was studied using a fractographic is analysis. Although the mechanisms of shear deformation and fracture are appeared the same as in conventional amorphous ribbons, some new fractographic features are observed in bulk alloys. Geometric

  20. Metal dusting: relationship between alloy composition and degradation rate

    NARCIS (Netherlands)

    Hermse, C.G.M.; Wortel, J.C. van

    2009-01-01

    The authors have identified a compositional relationship between several commercially available wrought alloys, focussing only on the iron, nickel, chromium and aluminium content. The degradation rate due to metal dusting varies with the surface condition of each alloy: a ground surface condition

  1. Metal induced crystallization of silicon germanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gjukic, M.

    2007-05-15

    In the framework of this thesis the applicability of the aluminium-induced layer exchange on binary silicon germanium alloys was studied. It is here for the first time shown that polycrstalline silicon-germanium layers can be fabricated over the whole composition range by the aluminium-induced layer exchange. The experimental results prove thet the resulting material exhibits a polycrystalline character with typocal grain sizes of 10-100 {mu}m. Raman measurements confirm that the structural properties of the resulting layers are because of the large crystallites more comparable with monocrystalline than with nano- or microcrystalline silicon-germanium. The alloy ratio of the polycrystalline layer correspondes to the chemical composition of the amorphous starting layer. The polycrystalline silicon-germanium layers possess in the range of the interband transitions a reflection spectrum, as it is otherwise only known from monocrystalline reference layers. The improvement of the absorption in the photovoltaically relevant spectral range aimed by the application of silicon-germanium could be also proved by absorption measurments. Strongly correlated with the structural properties of the polycrystalline layers and the electronic band structure resulting from this are beside the optical properties also the electrical properties of the material, especially the charge-carrier mobility and the doping concentration. For binary silicon-germanium layers the hole concentration of about 2 x 10{sup 18} cm{sup -3} for pure silicon increrases to about 5 x 10{sup 20} cm{sub -3} for pure germanium. Temperature-resolved measurements were applied in order to detect doping levels respectively semiconductor-metal transitions. In the last part of the thesis the hydrogen passivation of polycrystalline thin silicon-germanium layers, which were fabricated by means of aluminium-induced layer exchange, is treated.

  2. The solubility of metals in Pb-17Li liquid alloy

    Energy Technology Data Exchange (ETDEWEB)

    Borgstedt, H.U.; Feuerstein, H. (Kernforschungszentrum Karlsruhe GmbH, Inst. fuer Materialforschung, Hauptabteilung Ingenieurtechnik (Germany))

    1992-09-01

    The solubility data of iron in the eutectic alloy Pb-17Li which were evaluated from corrosion tests in a turbulent flow of the molten alloy are discussed in the frame of solubilities of the transition metals in liquid lead. It is shown that the solubility of iron in the alloy is close to that in lead. This is also the fact for several other alloying elements of steels. A comparison of all known data shows that they are in agreement with generally shown trends for the solubility of the transition metals in low melting metals. These trends indicate comparably high solubilities of nickel and manganese in the liquid metals, lower saturation concentration of vanadium, chromium, iron, and cobalt, and extremely low solubility of molybdenum. (orig.).

  3. Preparation of uniform nanoparticles of ultra-high purity metal oxides, mixed metal oxides, metals, and metal alloys

    Science.gov (United States)

    Woodfield, Brian F.; Liu, Shengfeng; Boerio-Goates, Juliana; Liu, Qingyuan; Smith, Stacey Janel

    2012-07-03

    In preferred embodiments, metal nanoparticles, mixed-metal (alloy) nanoparticles, metal oxide nanoparticles and mixed-metal oxide nanoparticles are provided. According to embodiments, the nanoparticles may possess narrow size distributions and high purities. In certain preferred embodiments, methods of preparing metal nanoparticles, mixed-metal nanoparticles, metal oxide nanoparticles and mixed-metal nanoparticles are provided. These methods may provide tight control of particle size, size distribution, and oxidation state. Other preferred embodiments relate to a precursor material that may be used to form nanoparticles. In addition, products prepared from such nanoparticles are disclosed.

  4. Effect of metal coatings on mechanical properties of aluminium alloy

    Science.gov (United States)

    Ravi Kumar, V.; Dileep, B. P.; Mohan Kumar, S.; Phanibhushana, M. V.

    2017-07-01

    This investigation mainly targeted on study of hardness and tensile properties of Al 7075 with different metal coatings like Nickel, Zinc and cadmium. Coating of these metals on Al 7075 is successfully achieved by time dependent electroplating method for different thicknesses of 10, 15 and 20 Microns. These metal coated Al-7075 specimens were tested for hardness and tensile properties according to the ASTM standards. It's found that Nickel coated alloy shows excellent hardness and tensile properties compared to Zinc and Cadmium coated alloys. 20 µm Nickel coated alloy exhibits highest hardness number of 102 HRB and Maximum Tensile Strength of 603 MPa than Zinc and Cadmium coated alloy. The microstructural studies authenticated that the coating of Nickel, zinc and cadmium on Al 7075 is homogeneous.

  5. Effect of the combination of dithiooctanoate monomers and acidic adhesive monomers on adhesion to precious metals, precious metal alloys and non-precious metal alloys.

    Science.gov (United States)

    Ikemura, Kunio; Kojima, Katsunori; Endo, Takeshi; Kadoma, Yoshinori

    2011-01-01

    This study investigated the effect of the combination of a dithiooctanoate monomer and an acidic adhesive monomer on adhesion to precious metals, precious and non-precious metal alloys. From a selection of four dithiooctanoate monomers and six acidic adhesive monomers, 14 experimental primers containing a combination of 5.0 wt% of a dithiooctanoate monomer and 1.0 wt% of an acidic adhesive monomer in acetone were prepared. Tensile bond strengths (TBSs) of MMA-PMMA/TBBO resin to nine kinds of precious metals, precious metal alloys, and non-precious metal alloys after 2,000 thermal cycles were measured. Results showed that there were no significant differences in TBS among the primers to all the precious and non-precious metal adherends tested (p>0.05). Highest TBS values (46.5-55.8 MPa) for bonding to Au alloy, Au-Ag-Pd alloy, Co-Cr alloy, and Ni-Cr alloy were achieved with the primer which contained 5.0 wt% 10-methacryloyloxydecyl 6,8-dithiooctanoate (10-MDDT) and 1.0 wt% 6-methacryloyloxyhexyl phosphonoacetate (6-MHPA). Therefore, 5.0 wt% 10-MDDT and 1.0 wt% 6-MHPA was determined as the optimal combination for bonding to precious metals, precious and non-precious metal alloys.

  6. Levitation-melting technique for metals and alloys

    Science.gov (United States)

    Downey, J. W.

    1969-01-01

    Experimentation resulted in an improved levitation-melting technique for metals and alloys which quickly produces a completly homogeneous melt. Also developed were two levitation coils that permit a wide variety of metals to be levitated in the molten state and a helium quenching method which minimizes contamination and segregation.

  7. Analytic functions for calculating binary alloys of FCC metals ...

    African Journals Online (AJOL)

    The problem studied in this paper is that of obtaining appropriate electron density function and a pair potential function for an FCC metal within the EAM format. The approach adopted is to use the experimental dilute limit heats of solution of the binary alloys of FCC metals as input parameters into Johnson analytical model, ...

  8. Mechanisms of diffusional phase transformations in metals and alloys

    CERN Document Server

    Aaronson, Hubert I; Lee, Jong K

    2010-01-01

    Developed by the late metallurgy professor and master experimentalist Hubert I. Aaronson, this collection of lecture notes details the fundamental principles of phase transformations in metals and alloys upon which steel and other metals industries are based. Mechanisms of Diffusional Phase Transformations in Metals and Alloys is devoted to solid-solid phase transformations in which elementary atomic processes are diffusional jumps, and these processes occur in a series of so-called nucleation and growth through interface migration. Instead of relying strictly on a pedagogical approach, it doc

  9. The influence of the pure metal components of four different casting alloys on the electrochemical properties of the alloys.

    Science.gov (United States)

    Tuna, Süleyman H; Pekmez, Nuran Ozçiçek; Keyf, Filiz; Canli, Fulya

    2009-09-01

    The aim of this study was to investigate the influence of the pure metal components of the four different casting alloys on the corrosion behaviors of these alloys tested. Potentiodynamic polarization tests were carried out on four different types of casting alloys and their pure metals at 37 degrees C in an artificial saliva solution. The ions released from the alloys into the solutions during the polarization test were also determined quantitatively using inductively coupled plasma-mass spectrometry (ICP-MS). Ni-Cr (M1) and Co-Cr (M2) alloys had a more homogenous structure than palladium based (M3) and gold based (M4) alloys in terms of the pitting potentials of the casting alloys and those of the pure metals composing the alloys. The total ion concentration released from M3 and M4 was less than from M1 and M2. This may be because M3 and M4 alloys contained noble metals. It was also found that the noble metals in the M3 and M4 samples decreased the current density in the anodic branch of the potentiodynamic polarization curves. In other words, noble metals contributed positively to dental materials. Corrosion resistance of the casting alloys can be affected by the pure metals they are composed of. Au and Pd based noble alloys dissolved less than Ni-Cr and Co-Cr based alloys.

  10. Complex metallic alloys as new materials for additive manufacturing.

    Science.gov (United States)

    Kenzari, Samuel; Bonina, David; Marie Dubois, Jean; Fournée, Vincent

    2014-04-01

    Additive manufacturing processes allow freeform fabrication of the physical representation of a three-dimensional computer-aided design (CAD) data model. This area has been expanding rapidly over the last 20 years. It includes several techniques such as selective laser sintering and stereolithography. The range of materials used today is quite restricted while there is a real demand for manufacturing lighter functional parts or parts with improved functional properties. In this article, we summarize recent work performed in this field, introducing new composite materials containing complex metallic alloys. These are mainly Al-based quasicrystalline alloys whose properties differ from those of conventional alloys. The use of these materials allows us to produce light-weight parts consisting of either metal-matrix composites or of polymer-matrix composites with improved properties. Functional parts using these alloys are now commercialized.

  11. Features of exoelectron emission in amorphous metallic alloys

    CERN Document Server

    Veksler, A S; Morozov, I L; Semenov, A L

    2001-01-01

    The peculiarities of the photothermostimulated exoelectron emission in amorphous metallic alloys of the Fe sub 6 sub 4 Co sub 2 sub 1 B sub 1 sub 5 composition are studied. It is established that the temperature dependences of the exoelectron emission spectrum adequately reflect the two-stage character of the amorphous alloy transition into the crystalline state. The exoelectron emission spectrum is sensitive to the variations in the modes of the studied sample thermal treatment. The thermal treatment of the amorphous metallic alloy leads to growth in the intensity of the exoelectrons yield. The highest growth in the intensify of the exoelectron emission was observed in the alloys at the initial stage of their crystallization

  12. In vitro element release and biological aspects of base?metal alloys for metal-ceramic applications

    OpenAIRE

    Holm, Charlotta; Morisbak, Else; Kalfoss, Torill; Dahl, Jon E.

    2015-01-01

    Abstract Objective: The aims of this study were to investigate the release of element from, and the biological response in vitro to, cobalt?chromium alloys and other base?metal alloys used for the fabrication of metal-ceramic restorations. Material and methods: Eighteen different alloys were investigated. Nine cobalt?chromium alloys, three nickel?chromium alloys, two cobalt?chromium?iron alloys, one palladium?silver alloy, one high-noble gold alloy, titanium grade II and one type III copper?a...

  13. Graded coatings for metallic implant alloys

    Energy Technology Data Exchange (ETDEWEB)

    Saiz, Eduardo; Tomsia, Antoni P.; Fujino, Shigeru; Gomez-Vega, Jose M.

    2002-08-01

    Graded glass and glass-hydroxyapatite coatings on Ti-based and Co-Cr alloys have been prepared using a simple enameling technique. The composition of the glasses has been tailored to match the thermal expansion of the alloys. By controlling the firing time, and temperature, it has been possible to control the reactivity between the glass and the alloy and to fabricate coatings (25 to 150 mu m thick) with excellent adhesion to the substrate, resistant to corrosion and able to precipitate hydroxyapatite during in vitro tests in simulated body fluid.

  14. Tight-binding modelling of ferromagnetic metals and alloys

    Science.gov (United States)

    Sansa, M.; Dhouib, A.; Ribeiro, F.; Legrand, B.; Tréglia, G.; Goyhenex, C.

    2017-12-01

    Atomistic tight-binding based simulations are widely used to study transition metal alloys properties. However, they still require to be improved if one aims at modelling segregation and ordering phenomena in the case of magnetic materials, since they generally rely on local charge neutrality rules per site, valence orbital and element, but not per spin! We propose here a strategy to overcome this difficulty, that we illustrate in two magnetic systems of particular interest: CoPt and FeNi alloys.

  15. New Alloy for Glass-to-Metal Seals

    Science.gov (United States)

    Schmuck, A. J.

    1986-01-01

    Coefficient of thermal expansion approximates that of glass more closely. Alloy composed of about 60 percent iron, 40 percent nickel, and traces of six other elements. Developed as replacement for Kovar Fe/Ni/Co alloy in ferrule-and-tube assembly, new alloy has same strength, solderability, and compatibility with fuel as does Kovar. Used in glass-to-metal seals without excessive residual stresses. Potential for other applications in which low thermal expansion important; mechanical measuring devices and precise sliding parts that must function over wide temperature ranges.

  16. Room temperature creep in metals and alloys

    Energy Technology Data Exchange (ETDEWEB)

    Deibler, Lisa Anne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Materials Characterization and Performance

    2014-09-01

    Time dependent deformation in the form of creep and stress relaxation is not often considered a factor when designing structural alloy parts for use at room temperature. However, creep and stress relaxation do occur at room temperature (0.09-0.21 Tm for alloys in this report) in structural alloys. This report will summarize the available literature on room temperature creep, present creep data collected on various structural alloys, and finally compare the acquired data to equations used in the literature to model creep behavior. Based on evidence from the literature and fitting of various equations, the mechanism which causes room temperature creep is found to include dislocation generation as well as exhaustion.

  17. Surface Phases in Binary Liquid Metal Alloys

    OpenAIRE

    Tostmann, Holger; DiMasi, Elaine; Shpyrko, Oleg G.; Ocko, Ben M.; Pershan, Peter S.; Deutsch, Moshe

    2004-01-01

    Surface sensitive x-ray scattering techniques with atomic scale resolution are employed to investigate the microscopic structure of the surface of three classes of liquid binary alloys: (i) Surface segregation in partly miscible binary alloys as predicted by the Gibbs adsorption rule is investigated for Ga-In. The first layer consists of a supercooled In monolayer and the bulk composition is reached after about two atomic diameters. (ii) The Ga-Bi system displays a wetting transition at a cha...

  18. Alloy Design Criteria for Solid Metal Dealloying of Thin Films

    Science.gov (United States)

    McCue, Ian; Demkowicz, Michael J.

    2017-11-01

    Liquid metal dealloying is a promising route for making metal nanocomposites with a wide range of microstructure morphologies. However, it is not well suited for synthesizing nanocomposites in thin-film form. We propose a new route to fabricating fully dense nanocomposite thin films by dealloying a binary parent alloy in a unary solid metal solvent. We fabricated and tested three thin-film diffusion couples to understand the alloy design criteria for synthesizing dealloyed thin films free of cracks and voids. We find that the best-quality dealloyed thin films may be obtained from alloys that do not undergo large volume changes upon dealloying and that exhibit minimal net vacancy flux during interdiffusion.

  19. Fundamentals of radiation materials science metals and alloys

    CERN Document Server

    Was, Gary S

    2017-01-01

    The revised second edition of this established text offers readers a significantly expanded introduction to the effects of radiation on metals and alloys. It describes the various processes that occur when energetic particles strike a solid, inducing changes to the physical and mechanical properties of the material. Specifically it covers particle interaction with the metals and alloys used in nuclear reactor cores and hence subject to intense radiation fields. It describes the basics of particle-atom interaction for a range of particle types, the amount and spatial extent of the resulting radiation damage, the physical effects of irradiation and the changes in mechanical behavior of irradiated metals and alloys. Updated throughout, some major enhancements for the new edition include improved treatment of low- and intermediate-energy elastic collisions and stopping power, expanded sections on molecular dynamics and kinetic Monte Carlo methodologies describing collision cascade evolution, new treatment of t...

  20. Development of new metallic alloys for biomedical applications.

    Science.gov (United States)

    Niinomi, Mitsuo; Nakai, Masaaki; Hieda, Junko

    2012-11-01

    New low modulus β-type titanium alloys for biomedical applications are still currently being developed. Strong and enduring β-type titanium alloy with a low Young's modulus are being investigated. A low modulus has been proved to be effective in inhibiting bone atrophy, leading to good bone remodeling in a bone fracture model in the rabbit tibia. Very recently β-type titanium alloys with a self-tunable modulus have been proposed for the construction of removable implants. Nickel-free low modulus β-type titanium alloys showing shape memory and super elastic behavior are also currently being developed. Nickel-free stainless steel and cobalt-chromium alloys for biomedical applications are receiving attention as well. Newly developed zirconium-based alloys for biomedical applications are proving very interesting. Magnesium-based or iron-based biodegradable biomaterials are under development. Further, tantalum, and niobium and its alloys are being investigated for biomedical applications. The development of new metallic alloys for biomedical applications is described in this paper. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Metallic ion release from biocompatible cobalt-based alloy

    Directory of Open Access Journals (Sweden)

    Dimić Ivana D.

    2014-01-01

    Full Text Available Metallic biomaterials, which are mainly used for the damaged hard tissue replacements, are materials with high strength, excellent toughness and good wear resistance. The disadvantages of metals as implant materials are their susceptibility to corrosion, the elastic modulus mismatch between metals and human hard tissues, relatively high density and metallic ion release which can cause serious health problems. The aim of this study was to examine metallic ion release from Co-Cr-Mo alloy in artificial saliva. In that purpose, alloy samples were immersed into artificial saliva with different pH values (4.0, 5.5 and 7.5. After a certain immersion period (1, 3 and 6 weeks the concentrations of released ions were determined using Inductively Coupled Plasma - Mass Spectrophotometer (ICP-MS. The research findings were used in order to define the dependence between the concentration of released metallic ions, artificial saliva pH values and immersion time. The determined released metallic ions concentrations were compared with literature data in order to describe and better understand the phenomenon of metallic ion release from the biocompatible cobalt-based alloy. [Projekat Ministarstva nauke Republike Srbije, br. III 46010 i br. ON 174004

  2. Elementary characterization of Ti metal alloys used in implant dentistry

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Catarina A. M. P.; Paschuk, Sergei A.; Rocha, Anna S. S.; Corrêa, Janine Nicolosi [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Deniak, Valeriy [Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR (Brazil); Camargo, Liliane [Universidade Paranaense, Umuarama, PR (Brazil); Assis, J.T, E-mail: cata-montenegro@bol.com.br, E-mail: spaschuk@gmail.com, E-mail: denyak@gmail.com, E-mail: lili_camargo2@hotmail.com, E-mail: joaquim@iprj.uerj.br [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil)

    2017-07-01

    The main goal of present work is analytical characterization of standard dental implants broadly used by Brazilian dentists. An ideal biological alloy for dental implants must have very high biocompatibility, which means that such material should not provoke any serious adverse tissue response. Dental implants are generally marketed as commercially pure titanium (TiCP) due to their excellent mechanical and physical properties. However, sometimes other alloys are employed and consequently it is essential to study the chemical elements present in those alloys that could bring prejudice for the health. Present work investigated TiCP metal alloys used for dental implant manufacturing and evaluated the presence of elements. For alloy characterization and identification of elements it was used EDXRF technique. This method allows to perform the qualitative and quantitative analysis of the materials using the spectra of the characteristic X-rays emitted by the elements present in the metal samples. The experimental setup was based on two X- ray tubes, Mini X model with Ag and Au targets and X-123SDD detector (AMPTEK) and a 0.5 mm Cu collimator, developed due to specific sample geometrical and topography characteristics. Obtained results showed that implant alloys are not exactly TiCP but were manufactured using Ti-Al-V alloy, which contained Fe, Ni, Cu and Zn. The presence of such metals as Al and V in all studied samples shows very clear that studied implants were not manufactured from TiCP alloy. Moreover, according to the American Society for Testing and Materials (ASTM), these elements should not be present in TiCP. (author)

  3. Processing of Refractory Metal Alloys for JOYO Irradiations

    Energy Technology Data Exchange (ETDEWEB)

    RF Luther; ME Petrichek

    2006-02-21

    This is a summary of the refractory metal processing experienced by candidate Prometheus materiats as they were fabricated into specimens destined for testing within the JOYO test reactor, ex-reactor testing at Oak Ridge National Laboratory (ORNL), or testing within the NRPCT. The processing is described for each alloy from the point of inception to the point where processing was terminated due to the cancellation of Naval Reactor's involvement in the Prometheus Project. The alloys included three tantalum-base alloys (T-111, Ta-10W, and ASTAR-811C), a niobium-base alloy, (FS-85), and two molybdenum-rhenium alloys, one containing 44.5 w/o rhenium, and the other 47.5 w/o rhenium. Each of these alloys was either a primary candidate or back-up candidate for cladding and structural applications within the space reactor. Their production was intended to serve as a forerunner for large scale production ingots that were to be procured from commercial refractory metal vendors such as Wah Chang.

  4. Overlapping double etch technique for evaluation of metallic alloys to stress corrosion cracking

    Science.gov (United States)

    Not Available

    1980-05-28

    A double overlapping etch zone technique for evaluation of the resistance of metallic alloys to stress corrosion cracking is described. The technique involves evaluating the metallic alloy along the line of demarcation between an overlapping double etch zone and single etch zone formed on the metallic alloy surface.

  5. Overlapping double etch technique for evaluation of metallic alloys to stress corrosion cracking

    Science.gov (United States)

    Steeves, Arthur F.; Stewart, James C.

    1981-01-01

    A double overlapping etch zone technique for evaluation of the resistance of metallic alloys to stress corrosion cracking. The technique involves evaluating the metallic alloy along the line of demarcation between an overlapping double etch zone and single etch zone formed on the metallic alloy surface.

  6. High temperature strain of metals and alloys. Physical fundamentals

    Energy Technology Data Exchange (ETDEWEB)

    Levitin, V. [National Technical Univ., Zaporozhye (Ukraine)

    2006-07-01

    The author shows how new in-situ X-ray investigations and transmission electron microscope studies lead to novel explanations of high-temperature deformation and creep in pure metals, solid solutions and super alloys. This approach is the first to find unequivocal and quantitative expressions for the macroscopic deformation rate by means of three groups of parameters: substructural characteristics, physical material constants and external conditions. Creep strength of the studied uptodate single crystal super alloys is greatly increased over conventional polycrystalline super alloys. The contents of this book include: macroscopic characteristics of strain at high temperatures; experimental equipment and technique of in situ X-ray investigations; experimental data and structural parameters in deformed metals; sub-boundaries as dislocation sources and obstacles; the physical mechanism of creep and the quantitative structural model; simulation of the parameters evolution; system of differential equations; high-temperature deformation of industrial super alloys; single crystals of super alloys; effect of composition, orientation and temperature on properties; and creep of some refractory metals.

  7. Amorphous Metallic Alloys: Pathways for Enhanced Wear and Corrosion Resistance

    Science.gov (United States)

    Aditya, Ayyagari; Felix Wu, H.; Arora, Harpreet; Mukherjee, Sundeep

    2017-11-01

    Amorphous metallic alloys are widely used in bulk form and as coatings for their desirable corrosion and wear behavior. Nevertheless, the effects of heat treatment and thermal cycling on these surface properties are not well understood. In this study, the corrosion and wear behavior of two Zr-based bulk metallic glasses were evaluated in as-cast and thermally relaxed states. Significant improvement in wear rate, friction coefficient, and corrosion penetration rate was seen for both alloys after thermal relaxation. A fully amorphous structure was retained with thermal relaxation below the glass transition. There was an increase in surface hardness and elastic modulus for both alloys after relaxation. The improvement in surface properties was explained based on annihilation of free volume.

  8. Metal Alloy Compositions And Process Background Of The Invention

    Science.gov (United States)

    Flemings, Merton C.; Martinez-Ayers, Raul A.; de Figueredo, Anacleto M.; Yurko, James A.

    2003-11-11

    A skinless metal alloy composition free of entrapped gas and comprising primary solid discrete degenerate dendrites homogeneously dispersed within a secondary phase is formed by a process wherein the metal alloy is heated in a vessel to render it a liquid. The liquid is then rapidly cooled while vigorously agitating it under conditions to avoid entrapment of gas while forming solid nuclei homogeneously distributed in the liquid. Agitation then is ceased when the liquid contains a small fraction solid or the liquid-solid alloy is removed from the source of agitation while cooling is continued to form the primary solid discrete degenerate dendrites in liquid secondary phase. The solid-liquid mixture then can be formed such as by casting.

  9. Diffusion and surface alloying of gradient nanostructured metals

    Directory of Open Access Journals (Sweden)

    Zhenbo Wang

    2017-03-01

    Full Text Available Gradient nanostructures (GNSs have been optimized in recent years for desired performance. The diffusion behavior in GNS metals is crucial for understanding the diffusion mechanism and relative characteristics of different interfaces that provide fundamental understanding for advancing the traditional surface alloying processes. In this paper, atomic diffusion, reactive diffusion, and surface alloying processes are reviewed for various metals with a preformed GNS surface layer. We emphasize the promoted atomic diffusion and reactive diffusion in the GNS surface layer that are related to a higher interfacial energy state with respect to those in relaxed coarse-grained samples. Accordingly, different surface alloying processes, such as nitriding and chromizing, have been modified significantly, and some diffusion-related properties have been enhanced. Finally, the perspectives on current research in this field are discussed.

  10. Special about transition metals in alloy phase formation

    Energy Technology Data Exchange (ETDEWEB)

    Watson, R E; Bennett, L H

    1979-01-01

    The d-electrons are special, though their bonding properties remain to be completely understood. It is recognized that d band broadening is the dominant term contributing to transition metal cohesion. It is also generally recognized that in compound formation between transition-metals and polyvalent metals, hybridization between d-bands and polyvalent atom p bands provides a significant contribution to the energy (for example there is such a term in Miedema's scheme). Less generally realized is that d-band hybridization leads to changes in d-electron counts at a transition metal site which are opposite in sign to the net charge transfer on or off the site. The renormalized atom picture of cohesion of the pure transition metals and consider the experimental evidence and the theoretical understanding of d charge transfer going the wrong way are reviewed. A picture of the electronegativity of transition metals based on this trend is developed. Charge transfer associated with equalizing the local chemical potentials in alloys is estimated. Friedel type model alloy calculations are reviewed. The implications of the experimental charge transfer information from Moessbauer isomer shifts to such model alloy calculations and to the strength of the Coulomb enery associated with charge transfer is considered.

  11. Hydrogen absorption induced metal deposition on palladium and palladium-alloy particles

    Science.gov (United States)

    Wang, Jia X [East Setauket, NY; Adzic, Radoslav R [East Setauket, NY

    2009-03-24

    The present invention relates to methods for producing metal-coated palladium or palladium-alloy particles. The method includes contacting hydrogen-absorbed palladium or palladium-alloy particles with one or more metal salts to produce a sub-monoatomic or monoatomic metal- or metal-alloy coating on the surface of the hydrogen-absorbed palladium or palladium-alloy particles. The invention also relates to methods for producing catalysts and methods for producing electrical energy using the metal-coated palladium or palladium-alloy particles of the present invention.

  12. Hardfacing of aluminium alloys by means of metal matrix composites produced by laser surface alloying

    CSIR Research Space (South Africa)

    Pityana, SL

    2009-06-01

    Full Text Available Metal matrix composite layers were formed on an aluminium substrate by means of laser surface alloying method. Aluminium 1200 was used as a host material and TiC particles were used as the reinforcement. The microstructure of the modified layer...

  13. COST 507: Thermophysical properties of light metal alloys. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jaroma-Weiland, G.; Brandt, R.; Neuer, G.

    1994-02-15

    The thermophysical properties of Al-, Mg- and Ti-based light metal alloys have been studied by reviewing the literature published so far, evaluating the empirical results and by empirical investigations. The properties to the covered in the literature research are: thermal conductivity, thermal diffusivity, specific heat capacity, thermal expansion and electrical resistivity. The data have been stored in the factual data base THERSYST together with the results of experimental measurements supplied from participants of the COST 507-action (Group D). Altogether 1325 data-sets referring to 146 alloys have been stored. They have been uniformly represented and critically analyzed by means of the THERSYST program moduli. These numerical data cover a number of systems with variing chemical composition and thermal treatment. Partly large discrepancies especially of the thermal conductivity have been found for similar alloys. The problem of experimental uncertainities has been studied in detail by investigation of AA-8090 alloy (Al-2.5Li-1.1Cu). The thermophysical properties of monolithic alloy KS1275 (AlSi12CuNi) and metal matrix composite (KS1275 reinforced with Al2O3 short fibre) have been determined experimentally. (orig.)

  14. Mechanical properties of metal-ceramic systems from nickel-chromium and cobalt-chromium alloys

    OpenAIRE

    Mirković Nemanja

    2007-01-01

    Background/Aim. Metal-ceramic bond strength and alloys' elastic modulus clearly determine the potential of alloy application, because the ceramic integrity during mastication depends on these two characteristics. The aim of this study was to evaluate metal-ceramic bond strength and elastic modulus of cobalt-chromium alloys in making porcelainfused- to-metal restorations, regarding the application of the most frequent nickel-chromium alloy. Methods. The research was performed as an experimenta...

  15. Computational dynamics of laser alloyed metallic materials for improved corrosion performance: computational dynamics of laser alloyed metallic materials

    CSIR Research Space (South Africa)

    Fatoba, OS

    2016-04-01

    Full Text Available Laser alloying is a material processing method which utilizes the high power density available from defocused laser beam to melt both metal coatings and a part of the underlying substrate. Since melting occur solitary at the surface, large...

  16. Binary alloys for refractory-metal brazing

    Science.gov (United States)

    Morris, J. F.

    1974-01-01

    Data on binary-metal eutectics and melting-point minimums have been assembled for use in selecting brazing filler compositions for refractory metals. Data are presented in four tables for ready reference. Brief discussion of problems and potentials of metallides is included in appendix.

  17. Morphology Control in co-evaporated bulk heterojunction solar cells

    OpenAIRE

    Kovacik, Peter; Assender, Hazel E.; Watt, Andrew A. R.

    2013-01-01

    Bulk heterojunction solar cells made by vacuum co-evaporation of polythiophene (PTh) and fullerene (C60) are reported and the blend morphology control through donor-acceptor composition and post-situ annealing demonstrated. Co-deposited heterojunctions are shown to generate about 60% higher photocurrents than their thickness-optimized PTh/C60 planar heterojunction counterparts. Furthermore, by annealing the devices post-situ the power conversion efficiency is improved by as much as 80%. UV-vi...

  18. Surface segregation energies in transition-metal alloys

    DEFF Research Database (Denmark)

    Ruban, Andrei; Skriver, Hans Lomholt; Nørskov, Jens Kehlet

    1999-01-01

    We present a database of 24 x 24 surface segregation energies of single transition metal impurities in transition-metal hosts obtained by a Green's-function linear-muffin-tin-orbitals method in conjunction with the coherent potential and atomic sphere approximations including a multipole correction...... to the electrostatic potential and energy. We use the database to establish the major factors which govern surface segregation in transition metal alloys. We find that the calculated trends are well described by Friedel's rectangular state density model and that the few but significant deviations from the simple...

  19. Multiscale model of metal alloy oxidation at grain boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Sushko, Maria L., E-mail: maria.sushko@pnnl.gov; Alexandrov, Vitaly; Schreiber, Daniel K.; Rosso, Kevin M.; Bruemmer, Stephen M. [Pacific Northwest National Laboratory, Richland, Washington 99352 (United States)

    2015-06-07

    High temperature intergranular oxidation and corrosion of metal alloys is one of the primary causes of materials degradation in nuclear systems. In order to gain insights into grain boundary oxidation processes, a mesoscale metal alloy oxidation model is established by combining quantum Density Functional Theory (DFT) and mesoscopic Poisson-Nernst-Planck/classical DFT with predictions focused on Ni alloyed with either Cr or Al. Analysis of species and fluxes at steady-state conditions indicates that the oxidation process involves vacancy-mediated transport of Ni and the minor alloying element to the oxidation front and the formation of stable metal oxides. The simulations further demonstrate that the mechanism of oxidation for Ni-5Cr and Ni-4Al is qualitatively different. Intergranular oxidation of Ni-5Cr involves the selective oxidation of the minor element and not matrix Ni, due to slower diffusion of Ni relative to Cr in the alloy and due to the significantly smaller energy gain upon the formation of nickel oxide compared to that of Cr{sub 2}O{sub 3}. This essentially one-component oxidation process results in continuous oxide formation and a monotonic Cr vacancy distribution ahead of the oxidation front, peaking at alloy/oxide interface. In contrast, Ni and Al are both oxidized in Ni-4Al forming a mixed spinel NiAl{sub 2}O{sub 4}. Different diffusivities of Ni and Al give rise to a complex elemental distribution in the vicinity of the oxidation front. Slower diffusing Ni accumulates in the oxide and metal within 3 nm of the interface, while Al penetrates deeper into the oxide phase. Ni and Al are both depleted from the region 3–10 nm ahead of the oxidation front creating voids. The oxide microstructure is also different. Cr{sub 2}O{sub 3} has a plate-like structure with 1.2–1.7 nm wide pores running along the grain boundary, while NiAl{sub 2}O{sub 4} has 1.5 nm wide pores in the direction parallel to the grain boundary and 0.6 nm pores in the perpendicular

  20. Effect of alloying on elastic properties of ZrN based transition metal nitride alloys

    KAUST Repository

    Kanoun, Mohammed

    2014-09-01

    We report the effect of composition and metal sublattice substitutional element on the structural, elastic and electronic properties of ternary transition metal nitrides Zr1-xMxN with M=Al, Ti, Hf, V, Nb, W and Mo. The analysis of the elastic constants, bulk modulus, shear modulus, Young\\'s modulus, and Poisson\\'s ratio provides insights regarding the mechanical behavior of Zr1-xMxN. We predict that ternary alloys are more ductile compared to their parent binary compounds. The revealed trend in the mechanical behavior might help for experimentalists on the ability of tuning the mechanical properties during the alloying process by varying the concentration of the transition metal. © 2014 Elsevier B.V.

  1. Phase separation of metallic hydrogen-helium alloys

    Science.gov (United States)

    Straus, D. M.; Ashcroft, N. W.; Beck, H.

    1977-01-01

    Calculations are presented for the thermodynamic functions and phase-separation boundaries of solid metallic hydrogen-helium alloys at temperatures between zero and 19,000 K and at pressures between 15 and 90 Mbar. Expressions for the band-structure energy of a randomly disordered alloy (including third order in the electron-ion interaction) are derived and evaluated. Short- and long-range orders are included by the quasi-chemical method, and lattice dynamics in the virtual-crystal harmonic approximation. It is concluded that at temperatures below 4000 K, there is essentially complete phase separation of hydrogen-helium alloys and that a miscibility gap remains at the highest temperatures and pressures considered. The relevance of these results to models of the deep interior of Jupiter is briefly discussed.

  2. PASSIVATION LAYER STABILITY OF A METALLIC ALLOY WASTE FORM

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, M.; Mickalonis, J.; Fisher, D.; Sindelar, R.

    2010-08-16

    Alloy waste form development under the Waste Forms Campaign of the DOE-NE Fuel Cycle Research & Development program includes the process development and characterization of an alloy system to incorporate metal species from the waste streams generated during nuclear fuel recycling. This report describes the tests and results from the FY10 activities to further investigate an Fe-based waste form that uses 300-series stainless steel as the base alloy in an induction furnace melt process to incorporate the waste species from a closed nuclear fuel recycle separations scheme. This report is focused on the initial activities to investigate the formation of oxyhydroxide layer(s) that would be expected to develop on the Fe-based waste form as it corrodes under aqueous repository conditions. Corrosion tests were used to evaluate the stability of the layer(s) that can act as a passivation layer against further corrosion and would affect waste form durability in a disposal environment.

  3. Environmental and alloying effects on corrosion of metals and alloys

    Science.gov (United States)

    Liang, Dong

    2009-12-01

    In the first part of this project, corrosion studies were carried out on 304L stainless steel samples welded with Cr-free consumables, which were developed to minimize the concentration of chromate species in the weld fume. The corrosion properties of Ni-Cu and Ni-Cu-Pd Gas Tungsten Arc (GTA) welds and Shielded Metal Arc (SMA) welds are comparable to those of welds fabricated with SS308L consumable, which is the standard consumable for welding 304L. Although the breakdown potentials of the new welds from both welding processes are lower than that of the SS308L weld, the repassivation potential of these new welds is much higher. Generally, the repassivation potential is a more conservative measure of susceptibility to localized corrosion. Our studies showed that the Ni-Cu and Ni-Cu-Pd welds are more resistant to crevice corrosion than SS308L welds, which is related to the high repassivation potential. Also, addition of Pd improved the corrosion resistance of the new welds, which is consistent with previous studies from button samples and bead-on-plate samples. Other corrosion studies such as creviced and uncreviced long time immersion, atmospheric exposure, and slow strain rate testing suggest that Ni-Cu-Pd welds can be a qualified substitute for SS308 weld. In the second part of this project, efforts are put on the connection between lab and field exposure tests because sometimes the correspondence between lab atmospheric corrosion tests (ASTM B117) and field exposures is poor as a result of differences in the critical conditions controlling chemical and electrochemical reactions on surfaces. Recent studies in atmospheric chemistry revealed the formation of extremely reactive species from interactions between UV light, chloride aerosols above oceans and oxidizing agents such as ozone or peroxide. Atmospheric corrosion of metals can be affected by these species which might be transported long distances in the atmosphere to locations far from oceans. However, these

  4. AuAg alloy nanomolecules with 38 metal atoms

    Science.gov (United States)

    Kumara, Chanaka; Dass, Amala

    2012-06-01

    Au38-nAgn(SCH2CH2Ph)24 alloy nanomolecules were synthesized, purified and characterized by MALDI TOF mass spectrometry. Similar to 25 and unlike 144 metal atom count AuAg alloy nanomolecules, incorporation of Ag atoms here results in loss or smearing out of distinct UV-vis features. We propose that the short and long staples contain Au atoms, while the inner core consists of both Au and Ag atoms.Au38-nAgn(SCH2CH2Ph)24 alloy nanomolecules were synthesized, purified and characterized by MALDI TOF mass spectrometry. Similar to 25 and unlike 144 metal atom count AuAg alloy nanomolecules, incorporation of Ag atoms here results in loss or smearing out of distinct UV-vis features. We propose that the short and long staples contain Au atoms, while the inner core consists of both Au and Ag atoms. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr11781a

  5. Understanding Organic Film Behavior on Alloy and Metal Oxides

    Science.gov (United States)

    Raman, Aparna; Quiñones, Rosalynn; Barriger, Lisa; Eastman, Rachel; Parsi, Arash

    2010-01-01

    Native oxide surfaces of stainless steel 316L and Nitinol alloys and their constituent metal oxides namely, nickel, chromium, molybdenum, manganese, iron and titanium were modified with long chain organic acids to better understand organic film formation. The adhesion and stability of films of octadecylphosphonic acid, octadecylhydroxamic acid, octadecylcarboxylic acid and octadecylsulfonic acid on these substrates was examined in this study. The films formed on these surfaces were analyzed by diffuse reflectance infrared Fourier transform spectroscopy, contact angle goniometry, atomic force microscopy and matrix assisted laser desorption ionization mass spectrometry. The effect of the acidity of the organic moiety and substrate composition on the film characteristics and stability is discussed. Interestingly, on the alloy surfaces, the presence of less reactive metal sites does not inhibit film formation. PMID:20039608

  6. The temperature variation of hydrogen diffusion coefficients in metal alloys

    Science.gov (United States)

    Danford, M. D.

    1990-01-01

    Hydrogen diffusion coefficients were measured as a function of temperature for a few metal alloys using an electrochemical evolution technique. Results from these measurements are compared to those obtained by the time-lag method. In all cases, diffusion coefficients obtained by the electrochemical method are larger than those by the time-lag method by an order of magnitude or more. These differences are attributed mainly to hydrogen trapping.

  7. Refractory metal alloys and composites for space nuclear power systems

    Science.gov (United States)

    Titran, Robert H.; Stephens, Joseph R.; Petrasek, Donald W.

    1988-01-01

    Space power requirements for future NASA and other U.S. missions will range from a few kilowatts to megawatts of electricity. Maximum efficiency is a key goal of any power system in order to minimize weight and size so that the Space Shuttle may be used a minimum number of times to put the power supply into orbit. Nuclear power has been identified as the primary power source to meet these high levels of electrical demand. One method to achieve maximum efficiency is to operate the power supply, energy conservation system, and related components at relatively high temperatures. For systems now in the planning stages, design temperatures range from 1300 K for the immediate future to as high as 1700 K for the advanced systems. NASA Lewis Research Center has undertaken a research program on advanced technology of refractory metal alloys and composites that will provide baseline information for space power systems in the 1900's and the 21st century. Special emphasis is focused on the refractory metal alloys of niobium and on the refractory metal composites which utilize tungsten alloy wires for reinforcement. Basic research on the creep and creep-rupture properties of wires, matrices, and composites are discussed.

  8. Anisotropy in layered half-metallic Heusler alloy superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Azadani, Javad G.; Munira, Kamaram; Sivakumar, Chockalingam; Butler, William H. [Center for Materials for Information Technology, University of Alabama, Tuscaloosa, Alabama 35487 (United States); Department of Physics and Astronomy, University of Alabama, Tuscaloosa, Alabama 35487 (United States); Romero, Jonathon [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, Alabama 35487 (United States); Ma, Jianhua; Ghosh, Avik W. [Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States)

    2016-01-28

    We show that when two Heusler alloys are layered in the [001], [110], or [111] directions for various thicknesses to form a superlattice, the Slater-Pauling rule may still be satisfied and the resulting superlattice is often half-metallic with gaps comparable to or larger than those of its constituents. In addition, uniaxial magnetocrystalline anisotropy is induced because of the differences in the electronic structure of the two Heuslers in the superlattice. Various full-full, full-half, and half-half Heusler superlattices are studied, and potential half-metallic superlattices with perpendicular magnetocrystalline anisotropy are identified.

  9. Local Chemical Reactivity of a Metal Alloy Surface

    DEFF Research Database (Denmark)

    Hammer, Bjørk; Scheffler, Matthias

    1995-01-01

    The chemical reactivity of a metal alloy surface is studied by density functional theory investigating the interaction of H2 with NiAl(110). The energy barrier for H2 dissociation is largely different over the Al and Ni sites without, however, reflecting the barriers over the single component metal...... surfaces. This local chemical behavior is due to the covalent nature of the ( H2 σg)-(Ni 3dz2) and ( H2 σu*)-(Ni 3dxz) interactions. Thus, it cannot be described in terms of the Harris-Andersson model (i.e., Pauli repulsion and its weakening by empty d states)....

  10. In situ purification, alloying and casting methodology for metallic plutonium

    Science.gov (United States)

    Lashley, Jason C.; Blau, Michael S.; Staudhammer, Karl P.; Pereyra, Ramiro A.

    Plutonium metal that has been double ER (electrorefined/electrorefining) was further purified via zone refining, using a floating molten zone to minimize the introduction of impurities. The temperature of the molten zone was 750°C, and the atmosphere was 10 -5 Pa. A total of ten zone refining passes were made at a travel rate of 1.5 cm/h. There were 19 elements reduced to quantities below the minimum detectable limits (MDL) by zone refining, while P, K, and W were significantly reduced. The zone-refined metal was then used in an in situ distillation, alloying, and casting step to prepare tapered specimens for single-crystal growth experiments. Specifically, 241Am was distilled from Pu metal by levitating Pu metal with 1 wt% Ga in the melt in a Crystallox vertical electromagnetic levitation crucible at 10 -5 Pa. The Pu is alloyed with Ga to stabilize the δ phase (fcc symmetry) upon solidification. The Pu was chill-cast directly from the electromagnetic levitation field into 1- cm tapered specimens. A water-cooled ceramic mold was used, and the Pu metal was cooled at a rate of 100°C/min. A microstructure examination of the specimen showed 10 × 25 μm acicular grains with a density of 15.938 g/cm 3 (±0.002 g/cm 3).

  11. Method for inhibiting alkali metal corrosion of nickel-containing alloys

    Science.gov (United States)

    DeVan, Jackson H.; Selle, James E.

    1983-01-01

    Structural components of nickel-containing alloys within molten alkali metal systems are protected against corrosion during the course of service by dissolving therein sufficient aluminum, silicon, or manganese to cause the formation and maintenance of a corrosion-resistant intermetallic reaction layer created by the interaction of the molten metal, selected metal, and alloy.

  12. Effects of Alkaline Pre-Etching to Metal Hydride Alloys

    Directory of Open Access Journals (Sweden)

    Tiejun Meng

    2017-10-01

    Full Text Available The responses of one AB5, two AB2, four A2B7, and one C14-related body-centered-cubic (BCC metal hydrides to an alkaline-etch (45% KOH at 110 °C for 2 h were studied by internal resistance, X-ray diffraction, scanning electron microscope, inductively coupled plasma, and AC impedance measurements. Results show that while the etched rare earth–based AB5 and A2B7 alloys surfaces are covered with hydroxide/oxide (weight gain, the transition metal–based AB2 and BCC-C14 alloys surfaces are corroded and leach into electrolyte (weight loss. The C14-predominated AB2, La-only A2B7, and Sm-based A2B7 showed the most reduction in the internal resistance with the alkaline-etch process. Etched A2B7 alloys with high La-contents exhibited the lowest internal resistance and are suggested for use in the high-power application of nickel/metal hydride batteries.

  13. Metal Compression Forming of aluminum alloys and metal matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, S.; Ren, W.; Porter, W.D.; Brinkman, C.R.; Sabau, A.S.; Purgert, R.M.

    2000-02-01

    Metal Compression Forming (MCF) is a variant of the squeeze casting process, in which molten metal is allowed to solidify under pressure in order to close porosity and form a sound part. However, the MCF process applies pressure on the entire mold face, thereby directing pressure on all regions of the casting and producing a uniformly sound part. The process is capable of producing parts with properties close to those of forgings, while retaining the near net shape, complexity in geometry, and relatively low cost of the casting process.

  14. The corrosion behaviour of nanograined metals and alloys

    Directory of Open Access Journals (Sweden)

    Herrasti, P.

    2012-10-01

    Full Text Available There has been considerable interest in the properties of nanocrystalline materials over the last decade. Such materials include metals and alloys with a crystal size within the order of 1 to 100 nm. The interest arises due to the substantial differences in electrical, optical and magnetic properties and also due to their high adsorption capability and chemical reactivity compared to their larger grained counterparts. In this paper, the corrosion of nanocrystalline metals and alloys is investigated and compared to the corrosion of microcrystalline materials having a similar composition. The focus is on the corrosion of nickel, copper, cobalt and iron alloys. Key aspects of different corrosion behaviour such grain boundaries and size are identified.

    En la última década ha habido un gran interes en las propiedades de materiales nanocristalinos. Estos materiales incluyen metales y aleaciones con un tamaño de cristal del orden de 1 a 100 nm. El interes por estos materiales es debido a las grandes diferencias en cuanto a sus propiedades electricas, opticas y magneticas, asi como a su alta capacidad de adsorción y reactividad química en relación a los mismos materiales con tamaños de grano mayores. En este trabajo se ha investigado y comparado la corrosión de materiales nano y microcristalinos de similar composición química. Principalmente se ha centrado en la corrosión de metales tales como niquel, cobre, cobalto y aleaciones de hierro. Se ha comprobado que los diferentes comportamientos frente al proceso de corrosión están intimamente ligados con los bordes de grano y el tamaño de dichos granos.

  15. Direct Solid-State Conversion of Recyclable Metals and Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Z; Manchiraju, K [Southwire Co.

    2012-02-22

    This project is to develop and demonstrate the concept feasibility of a highly energy-efficient solid-state material synthesis process, friction stir extrusion (FSE) technology. Specifically, the project seeks to explore and demonstrate the feasibility to recycle metals, produce nano-particle dispersion strengthened bulk materials and/or nano-composite materials from powders, chips or other recyclable feedstock metals or scraps through mechanical alloying and thermo-mechanical processing in a single-step. In this study, we focused on metal recycling, producing nano-engineered wires and evaluating their potential use in future generation long-distance electric power delivery infrastructure. More comprehensive R&D on the technology fundamentals and system scale-up toward early-stage applications in two targeted “showcase” fields of use: nano engineered bulk materials and Al recycling will be considered and planned as part of Project Continuation Plan.

  16. [Mechanical properties of metal-ceramic systems from nickel-chromium and cobalt-chromium alloys].

    Science.gov (United States)

    Mirković, Nemanja

    2007-04-01

    Metal-ceramic bond strength and alloys' elastic modulus clearly determine the potential of alloy application, because the ceramic integrity during mastication depends on these two characteristics. The aim of this study was to evaluate metal-ceramic bond strenght and elastic modulus of cobalt-chromium alloys in making porcelain-fused-to-metal restorations, regarding the application of the most frequent nickel-chromium alloy. The research was performed as an experimental study. Six metal-ceramic samples were made from nickel-chromium alloy (Wiron 99) and cobalt-chromium alloy (Wirobond C), according to the manufactures manuals and instructions from ISO 9693: 1996. Three-point bending test was performed up to the ceramic fracture. The fracture load was measured on an universal testing machine (Zwick, type 1464), with cross-head speed of 0,05mm/min. The results of this study confirmed the significant differences between the metal-ceramic bond strength (p chromium and cobalt-chromium alloys, where cobalt-chromium alloys showed higher values for both tested parameters. Cobalt-chromium metal-ceramic alloys can successfully replace nickel-chromium alloys, especially for fabrication of long-span metal-ceramic bridges due to the great flexural strength.

  17. Atomically Thin Ordered Alloys of Transition Metal Dichalcogenides: Stability and Band Structures

    DEFF Research Database (Denmark)

    Pandey, Mohnish; Jacobsen, Karsten Wedel; Thygesen, Kristian Sommer

    2016-01-01

    We explore the possibility of modulating the electronic band edges of the transition metal dichalcogenides (TMD) via alloying of different semiconductors within the same group (intra-group alloying). The stability of the ordered alloys is assessed from the calculated mixing enthalpy which is found...

  18. Direct Solid-State Conversion of Recyclable Metals and Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kiran Manchiraju

    2012-03-27

    Friction Stir Extrusion (FSE) is a novel energy-efficient solid-state material synthesis and recycling technology capable of producing large quantity of bulk nano-engineered materials with tailored, mechanical, and physical properties. The novelty of FSE is that it utilizes the frictional heating and extensive plastic deformation inherent to the process to stir, consolidate, mechanically alloy, and convert the powders, chips, and other recyclable feedstock materials directly into useable product forms of highly engineered materials in a single step (see Figure 1). Fundamentally, FSE shares the same deformation and metallurgical bonding principles as in the revolutionary friction stir welding process. Being a solid-state process, FSE eliminates the energy intensive melting and solidification steps, which are necessary in the conventional metal synthesis processes. Therefore, FSE is highly energy-efficient, practically zero emissions, and economically competitive. It represents a potentially transformational and pervasive sustainable manufacturing technology for metal recycling and synthesis. The goal of this project was to develop the technological basis and demonstrate the commercial viability of FSE technology to produce the next generation highly functional electric cables for electricity delivery infrastructure (a multi-billion dollar market). Specific focus of this project was to (1) establish the process and material parameters to synthesize novel alloys such as nano-engineered materials with enhanced mechanical, physical, and/or functional properties through the unique mechanical alloying capability of FSE, (2) verifying the expected major energy, environmental, and economic benefits of FSE technology for both the early stage 'showcase' electric cable market and the anticipated pervasive future multi-market applications across several industry sectors and material systems for metal recycling and sustainable manufacturing.

  19. Versatile method for template-free synthesis of single crystalline metal and metal alloy nanowires.

    Science.gov (United States)

    Scott, John A; Totonjian, Daniel; Martin, Aiden A; Tran, Toan Trong; Fang, Jinghua; Toth, Milos; McDonagh, Andrew M; Aharonovich, Igor; Lobo, Charlene J

    2016-02-07

    Metal and metal alloy nanowires have applications ranging from spintronics to drug delivery, but high quality, high density single crystalline materials have been surprisingly difficult to fabricate. Here we report a versatile, template-free, self-assembly method for fabrication of single crystalline metal and metal alloy nanowires (Co, Ni, NiCo, CoFe, and NiFe) by reduction of metal nitride precursors formed in situ by reaction of metal salts with a nitrogen source. Thiol reduction of the metal nitrides to the metallic phase at 550-600 °C results in nanowire growth. In this process, sulfur acts as a uniaxial structure-directing agent, passivating the surface of the growing nanowires and preventing radial growth. The versatility of the method is demonstrated by achieving nanowire growth from gas-phase, solution-phase or a combination of gas- and solution-phase precursors. The fabrication method is suited to large-area CVD on a wide range of solid substrates.

  20. Mechanical properties of metal-ceramic systems from nickel-chromium and cobalt-chromium alloys

    Directory of Open Access Journals (Sweden)

    Mirković Nemanja

    2007-01-01

    Full Text Available Background/Aim. Metal-ceramic bond strength and alloys' elastic modulus clearly determine the potential of alloy application, because the ceramic integrity during mastication depends on these two characteristics. The aim of this study was to evaluate metal-ceramic bond strength and elastic modulus of cobalt-chromium alloys in making porcelainfused- to-metal restorations, regarding the application of the most frequent nickel-chromium alloy. Methods. The research was performed as an experimental study. Six metalceramic samples were made from nickel-chromium alloy (Wiron 99 and cobalt-chromium alloy (Wirobond C, according to the manufactures manuals and instructions from ISO 9693: 1996. Three-point bending test was performed up to the ceramic fracture. The fracture load was measured on an universal testing machine (Zwick, type 1464, with cross-head speed of 0,05mm/min. Results. The results of this study confirmed the significant differences between the metal-ceramic bond strength (p < 0.01 and elastic modulus (p < 0.001 of nickel-chromium and cobalt-chromium alloys, where cobalt-chromium alloys showed higher values for both tested parameters. Conclusion. Cobalt-chromium metal-ceramic alloys can successfully replace nickel-chromium alloys, especially for fabrication of long-span metal-ceramic bridges due to the great flexural strength.

  1. Partial structure factors reveal atomic dynamics in metallic alloy melts

    Science.gov (United States)

    Nowak, B.; Holland-Moritz, D.; Yang, F.; Voigtmann, Th.; Kordel, T.; Hansen, T. C.; Meyer, A.

    2017-07-01

    We investigate the dynamical decoupling of the diffusion coefficients of the different components in a metallic alloy melt, using a combination of neutron diffraction, isotopic substitution, and electrostatic levitation in Zr-Ni melts. We show that excess Ni atoms can diffuse more freely in a background of saturated chemical interaction, causing their dynamics to become much faster and thus decoupled than anticipated from the interparticle interactions. Based on the mode-coupling theory of the glass transition, the averaged structure as given by the partial static structure factors is able to explain the observed dynamical behavior.

  2. Scalable shape- and size-controlled synthesis of metal nano-alloys

    KAUST Repository

    Bakr, Osman M.

    2016-01-21

    Embodiments of the present disclosure provide for a continuous-flow reactor, methods of making metal nano-alloys, and metal nano-alloys. An embodiment of the continuous-flow reactor includes a first tubular component having a tubular inlet and a tubular outlet, and a heated tube-in-tube gas reactor fluidly connected to the first tubular component, wherein the heated tube-in-tube gas reactor comprises an inner tube having a gas permeable surface and an outer tube. An embodiment of the method of producing metal nano-alloys, includes contacting a reducible metal precursor and a reducing fluid in a continuous-flow reactor to form a mixed solution; and flowing the mixed solution through the continuous-flow reactor for a residence time to form the metal nano-alloys. An embodiment of the composition includes a plurality of metal nano-alloys having a monodisperse size distribution and a uniform shape distribution.

  3. Enhancement of surface integrity of titanium alloy with copper by means of laser metal deposition process

    CSIR Research Space (South Africa)

    Erinosho, MF

    2016-04-01

    Full Text Available The laser metal deposition process possesses the combination of metallic powder and laser beam respectively. However, these combinations create an adhesive bonding that permanently solidifies the laser-enhanced-deposited powders. Titanium alloys (Ti...

  4. Mechanical properties of metal-ceramic systems from nickel-chromium and cobalt-chromium alloys

    National Research Council Canada - National Science Library

    Mirković, Nemanja

    2007-01-01

    .... The aim of this study was to evaluate metal-ceramic bond strenght and elastic modulus of cobalt-chromium alloys in making porcelain-fused-to-metal restorations, regarding the application of the most...

  5. Mechanical properties of metal-ceramic systems from nickel-chromium and cobalt-chromium alloys

    National Research Council Canada - National Science Library

    Mirkovic, Nemanja

    2007-01-01

    .... The aim of this study was to evaluate metal-ceramic bond strength and elastic modulus of cobalt-chromium alloys in making porcelainfused- to-metal restorations, regarding the application of the most...

  6. Metal Injection Molding (MIM of Magnesium and Its Alloys

    Directory of Open Access Journals (Sweden)

    Martin Wolff

    2016-05-01

    Full Text Available Current research has highlighted that magnesium and its alloys as biodegradable material are highly suitable for biomedical applications. The new material fully degrades into nontoxic elements and offers material properties matching those of human bone tissue. As biomedical implants are rather small and complex in shape, the metal injection molding (MIM technique seems to be well suited for the near net shape mass production of such parts. Furthermore, MIM of Mg-alloys is of high interest in further technical fields. This study focusses on the performance of MIM-processing of magnesium alloy powders. It includes Mg-specific development of powder blending, feedstock preparation, injection molding, solvent and thermal debinding and final sintering. Even though Mg is a highly oxygen-affine material forming a stable oxide layer on each particle surface, the material can be sintered to nearly dense parts, providing mechanical properties matching those of as cast material. An ultimate tensile strength of 142 MPa, yield strength of 67 MPa, elastic modulus of 40 GPa and 8% elongation at fracture could be achieved using novel organic polymer binders for the feedstock preparation. Thus, first implant demonstrator parts could be successfully produced by the MIM technique.

  7. THE ELECTROCONDUCTIVITY OF THE LIQUID ALLOYS OF TRANSITION METALS

    Directory of Open Access Journals (Sweden)

    V.T.Shvets

    2004-01-01

    Full Text Available The concentration dependance of electroresistivity of the liquid binary alloys of transition metals Fe, Co and Ni is calculated. We considered the contribution to conductivity from the s-electrons, described within the model of nearly free electrons. The role of the partially occupied d-bands is reduced to resonance scattering of the s-electrons on d-states. The interaction of the s- and d-electrons is described by the hybridization potential of s- and d-states. The interaction with the ions, not including the partially occupied d-states, is described using the pseudopotential of the electron-ion interaction. The electroresistivity of the alloys is calculated in the second order of the perturbation theory in pseudopotential and hybridization potential. The concentration dependance of electroresistivity of the binary alloys approaches the linear regime as the resonance scattering of the s-electrons on d-states prevails over the scattering on the ions. The calculations exhibit good agreement with the experimental data.

  8. In vitro element release and biological aspects of base–metal alloys for metal-ceramic applications

    Science.gov (United States)

    Holm, Charlotta; Morisbak, Else; Kalfoss, Torill; Dahl, Jon E.

    2015-01-01

    Abstract Objective: The aims of this study were to investigate the release of element from, and the biological response in vitro to, cobalt–chromium alloys and other base–metal alloys used for the fabrication of metal-ceramic restorations. Material and methods: Eighteen different alloys were investigated. Nine cobalt–chromium alloys, three nickel–chromium alloys, two cobalt–chromium–iron alloys, one palladium–silver alloy, one high-noble gold alloy, titanium grade II and one type III copper–aluminium alloy. Pure copper served as positive control. The specimens were prepared according to the ISO standards for biological and corrosion testing. Passive leaching of elements was measured by using Inductively Coupled Plasma – Mass Spectrometry (ICP-MS) after incubation in cell culture media, MEM, for 3 days. Corrosion testing was carried out in 0.9% sodium chloride (NaCl) and 1% lactic acid for 7 days, and the element release was measured by Inductively Coupled Plasma – Optical Emission Spectroscopy (ICP-OES). The biological response from the extract solutions was measured though MTT cytotoxicity testing and the Hen's egg test-chorio-allantoic membrane (HET-CAM) technique for irritationt. Results: The corrosion test showed similar element release from base-metal alloys compared to noble alloys such as gold. Apart from the high-copper alloy, all alloys expressed low element release in the immersion test, no cytotoxic effect in the MTT test, and were rated non-irritant in the HET-CAM test. Conclusions: Minimal biological response was observed for all the alloys tested, with the exception of the high-copper alloy. PMID:28642904

  9. Metallic Thin-Film Bonding and Alloy Generation

    Science.gov (United States)

    Fryer, Jack Merrill (Inventor); Campbell, Geoff (Inventor); Peotter, Brian S. (Inventor); Droppers, Lloyd (Inventor)

    2016-01-01

    Diffusion bonding a stack of aluminum thin films is particularly challenging due to a stable aluminum oxide coating that rapidly forms on the aluminum thin films when they are exposed to atmosphere and the relatively low meting temperature of aluminum. By plating the individual aluminum thin films with a metal that does not rapidly form a stable oxide coating, the individual aluminum thin films may be readily diffusion bonded together using heat and pressure. The resulting diffusion bonded structure can be an alloy of choice through the use of a carefully selected base and plating metals. The aluminum thin films may also be etched with distinct patterns that form a microfluidic fluid flow path through the stack of aluminum thin films when diffusion bonded together.

  10. Evaluation of different finish line designs in base metal alloys

    Directory of Open Access Journals (Sweden)

    Aghandeh R

    1999-06-01

    Full Text Available This investigation was performed according to the widespread application of base metal alloys"nand few articles published about the marginal integrity of restorations fabricated by these metals."nThree standard dies of a maxillary first premolar were prepared with a flat shoulder finish line in buccal"naspect and chamfer in palatal. One of them left with no change. On the buccal aspect of the second and"nthird dies 135?and 1607 bevel were added respectively"nUsing dual wax technique, nine wax patterns were formed on each die and casting procedure of selected"nnon precious alloy was performed by centrifugal method. Marginal gaps of each copping seated on dies"nwere measured by scanning electron microscope (SEM with X500 magnification. Measurements were"ndone on three areas of marked dies on buccal aspect. Measurement son palatal aspect was done on"nmarked midpalatal point as control."nResults and statistical analysis showed no significant difference among marginal gaps in lingual aspect."nBut on the buccal aspect there were statistically significant differences among the groups (P<0.001. Flat"nshoulder had the best marginal integrity (mean 4 micron. Shoulder with 160' bevel had the most marginal"ngap (mean 26.5 micron and shoulder with 1357 bevel was between two other groups (mean 15.7 micron.

  11. Formation enthalpies for transition metal alloys using machine learning

    Science.gov (United States)

    Ubaru, Shashanka; Miedlar, Agnieszka; Saad, Yousef; Chelikowsky, James R.

    2017-06-01

    The enthalpy of formation is an important thermodynamic property. Developing fast and accurate methods for its prediction is of practical interest in a variety of applications. Material informatics techniques based on machine learning have recently been introduced in the literature as an inexpensive means of exploiting materials data, and can be used to examine a variety of thermodynamics properties. We investigate the use of such machine learning tools for predicting the formation enthalpies of binary intermetallic compounds that contain at least one transition metal. We consider certain easily available properties of the constituting elements complemented by some basic properties of the compounds, to predict the formation enthalpies. We show how choosing these properties (input features) based on a literature study (using prior physics knowledge) seems to outperform machine learning based feature selection methods such as sensitivity analysis and LASSO (least absolute shrinkage and selection operator) based methods. A nonlinear kernel based support vector regression method is employed to perform the predictions. The predictive ability of our model is illustrated via several experiments on a dataset containing 648 binary alloys. We train and validate the model using the formation enthalpies calculated using a model by Miedema, which is a popular semiempirical model used for the prediction of formation enthalpies of metal alloys.

  12. M551 metals melting experiment. [space manufacturing of aluminum alloys, tantalum alloys, stainless steels

    Science.gov (United States)

    Li, C. H.; Busch, G.; Creter, C.

    1976-01-01

    The Metals Melting Skylab Experiment consisted of selectively melting, in sequence, three rotating discs made of aluminum alloy, stainless steel, and tantalum alloy. For comparison, three other discs of the same three materials were similarly melted or welded on the ground. The power source of the melting was an electron beam unit. Results are presented which support the concept that the major difference between ground base and Skylab samples (i.e., large elongated grains in ground base samples versus nearly equiaxed and equal sized grains in Skylab samples) can be explained on the basis of constitutional supercooling, and not on the basis of surface phenomena. Microstructural observations on the weld samples and present explanations for some of these observations are examined. In particular, ripples and their implications to weld solidification were studied. Evidence of pronounced copper segregation in the Skylab A1 weld samples, and the tantalum samples studied, indicates a weld microhardness (and hence strength) that is uniformly higher than the ground base results, which is in agreement with previous predictions. Photographs are shown of the microstructure of the various alloys.

  13. Directed light fabrication of refractory metals and alloys

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, J.C.; Lewis, G.K.; Dickerson, P.G.; Nemec, R.B.

    1999-05-30

    This report covers deposition of refractory pure metals and alloys using the Directed Light Fabrication (DLF) process and represents progress in depositing these materials through September 1998. In extending the DLF process technology to refractory metals for producing fully dense, structurally sound deposits, several problems have become evident. (1) Control of porosity in DLF-deposited refractory metal is difficult because of gases, apparently present in commercially purchased refractory metal powder starting materials. (2) The radiant heat from the molten pool during deposition melts the DLF powder feed nozzle. (3) The high reflectivity of molten refractory metals, at the Nd-YAG laser wavelength (1.06{micro}m), produces damaging back reflections to the optical train and fiber optic delivery system that can terminate DLF processing. (4) The current limits on the maximum available laser power to prevent back reflection damage limit the parameter range available for densification of refractory metals. The work to date concentrated on niobium, W-25Re, and spherodized tungsten. Niobium samples, made from hydride-dehydride powder, had minimal gas porosity and the deposition parameters were optimized; however, test plates were not made at this time. W-25Re samples, containing sodium and potassium from a precipitation process, were made and porosity was a problem for all samples although minimized with some process parameters. Deposits made from potassium reduced tungsten that was plasma spherodized were made with minimized porosity. Results of this work indicate that further gas analysis of starting powders and de-gassing of starting powders and/or gas removal during deposition of refractory metals is required.

  14. Directed Light Fabrication of Refractory Metals and Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, J.C.; Lewis, G.K.; Dickerson, P.G.; Nemec, R.B.

    1999-05-14

    This report covers work performed under Order No. FA0000020 AN Contract DE-AC12-76SN00052 for deposition of refractory pure metals and alloys using the Directed Light Fabrication (DLF) process and represents the progress in depositing these materials through September 1998. In extending the DLF process technology to refractory metals for producing fully dense, structurally sound deposits, several problems have become evident. 1. Control of porosity in DLF-deposited refractory metal is difficult because of gases, apparently present in commercially purchased refractory metal powder starting materials. 2. The radiant heat from the molten pool during deposition melts the DLF powder feed nozzle. 3. The high reflectivity of molten refractory metals, at the Nd-YAG laser wavelength (1.06{micro}m), produces damaging back reflections to the optical train and fiber optic delivery system that can terminate DLF processing. 4. The current limits on the maximum available laser power to prevent back reflection damage limit the parameter range available for densification of refractory metals. The work to date concentrated on niobium, W-25Re, and spherodized tungsten. Niobium samples, made from hydride-dehydride powder, had minimal gas porosity and the deposition parameters were optimized; however, test plates were not made at this time. W-25Re samples, containing sodium and potassium from a precipitation process, were made and porosity was a problem for all samples although minimized with some process parameters. Deposits made from potassium reduced tungsten that was plasma spherodized were made with minimized porosity. Results of this work indicate that further gas analysis of starting powders and de-gassing of starting powders and/or gas removal during deposition of refractory metals is required.

  15. Influence of S. mutans on base-metal dental casting alloy toxicity.

    Science.gov (United States)

    McGinley, E L; Dowling, A H; Moran, G P; Fleming, G J P

    2013-01-01

    We have highlighted that exposure of base-metal dental casting alloys to the acidogenic bacterium Streptococcus mutans significantly increases cellular toxicity following exposure to immortalized human TR146 oral keratinocytes. With Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), S. mutans-treated nickel-based (Ni-based) and cobalt-chromium-based (Co-Cr-based) dental casting alloys were shown to leach elevated levels of metal ions compared with untreated dental casting alloys. We targeted several biological parameters: cell morphology, viable cell counts, cell metabolic activity, cell toxicity, and inflammatory cytokine expression. S. mutans-treated dental casting alloys disrupted cell morphology, elicited significantly decreased viable cell counts (p casting alloys induced elevated levels of cellular toxicity compared with S. mutans-treated Co-Cr-based dental casting alloys. While our findings indicated that the exacerbated release of metal ions from S. mutans-treated base-metal dental casting alloys was the likely result of the pH reduction during S. mutans growth, the exact nature of mechanisms leading to accelerated dissolution of alloy-discs is not yet fully understood. Given the predominance of S. mutans oral carriage and the exacerbated cytotoxicity observed in TR146 cells following exposure to S. mutans-treated base-metal dental casting alloys, the implications for the long-term stability of base-metal dental restorations in the oral cavity are a cause for concern.

  16. The evaluation of the use of metal alloy fuels in pressurized water reactors. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lancaster, D.

    1992-10-26

    The use of metal alloy fuels in a PWR was investigated. It was found that it would be feasible and competitive to design PWRs with metal alloy fuels but that there seemed to be no significant benefits. The new technology would carry with it added economic uncertainty and since no large benefits were found it was determined that metal alloy fuels are not recommended. Initially, a benefit was found for metal alloy fuels but when the oxide core was equally optimized the benefit faded. On review of the optimization of the current generation of ``advanced reactors,`` it became clear that reactor design optimization has been under emphasized. Current ``advanced reactors`` are severely constrained. The AP-600 required the use of a fuel design from the 1970`s. In order to find the best metal alloy fuel design, core optimization became a central effort. This work is ongoing.

  17. Effects of thermal aging on microstructures of low alloy steel-Ni base alloy dissimilar metal weld interfaces

    Science.gov (United States)

    Choi, Kyoung Joon; Kim, Jong Jin; Lee, Bong Ho; Bahn, Chi Bum; Kim, Ji Hyun

    2013-10-01

    In this study, the advanced instrumental analysis has been performed to investigate the effect of long-term thermal aging on the microstructural evolution in the fusion boundary region between weld metal and low alloy steel in dissimilar metal welds. A representative dissimilar weld mock-up made of Alloy 690-Alloy 152-A533 Gr. B was fabricated and aged at 450 °C for 2750 h. The micro- and nano-scale characterization were conducted mainly near in a weld root region by using optical microscopy, scanning electron microscopy, transmission electron microscopy, and three dimensional atom probe tomography. It was observed that the weld root was generally divided into several regions including dilution zone in the Ni-base alloy weld metal, fusion boundary, and heat-affected zone in the low alloy steel. A steep gradient was shown in the chemical composition profile across the interface between A533 Gr. B and Alloy 152. The precipitation of carbides was also observed along and near the fusion boundary of as-welded and aged dissimilar metal joints. It was also found that the precipitation of Cr carbides was enhanced by the thermal aging near the fusion boundary.

  18. Effects of thermal aging on microstructures of low alloy steel–Ni base alloy dissimilar metal weld interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoung Joon; Kim, Jong Jin [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST), 100 Banyeon-ri, Eonyang-eup, Ulju-gun, Ulsan 689-798 (Korea, Republic of); Lee, Bong Ho [National Center for Nanomaterials Technology (NCNT), Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Bahn, Chi Bum [Argonne National Laboratory, 9700 S. Cass Ave, Lemont, IL 60439 (United States); Kim, Ji Hyun, E-mail: kimjh@unist.ac.kr [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST), 100 Banyeon-ri, Eonyang-eup, Ulju-gun, Ulsan 689-798 (Korea, Republic of)

    2013-10-15

    In this study, the advanced instrumental analysis has been performed to investigate the effect of long-term thermal aging on the microstructural evolution in the fusion boundary region between weld metal and low alloy steel in dissimilar metal welds. A representative dissimilar weld mock-up made of Alloy 690-Alloy 152-A533 Gr. B was fabricated and aged at 450 °C for 2750 h. The micro- and nano-scale characterization were conducted mainly near in a weld root region by using optical microscopy, scanning electron microscopy, transmission electron microscopy, and three dimensional atom probe tomography. It was observed that the weld root was generally divided into several regions including dilution zone in the Ni-base alloy weld metal, fusion boundary, and heat-affected zone in the low alloy steel. A steep gradient was shown in the chemical composition profile across the interface between A533 Gr. B and Alloy 152. The precipitation of carbides was also observed along and near the fusion boundary of as-welded and aged dissimilar metal joints. It was also found that the precipitation of Cr carbides was enhanced by the thermal aging near the fusion boundary.

  19. Plasma-Assisted Co-evaporation of S and Se for Wide Band Gap Chalcopyrite Photovoltaics: Final Subcontract Report, December 2001 -- April 2005

    Energy Technology Data Exchange (ETDEWEB)

    Repins, I.; Wolden, C.

    2005-08-01

    In this work, ITN Energy Systems (ITN) and lower-tier subcontractor Colorado School of Mines (CSM) explore the replacement of the molecular chalcogen precursors during deposition (e.g., Se2 or H2Se) with more reactive chalcogen monomers or radicals (e.g., Se). Molecular species are converted to atomic species in a low-pressure inductively coupled plasma (ICP). This program explored the use of plasma-activated chalcogen sources in CIGS co-evaporation to lower CIGS deposition temperature, increase utilization, increase deposition rate, and improve S:Se stoichiometry control. Plasma activation sources were designed and built, then operated and characterized over a wide range of conditions. Optical emission and mass spectrometry data show that chalcogens are effectively dissociated in the plasma. The enhanced reactivity achieved by the plasma processing was demonstrated by conversion of pre-deposited metal films to respective chalcogen-containing phases at low temperature and low chalcogen flux. The plasma-assisted co-evaporation (PACE) sources were also implemented in CIGS co-evaporation. No benefit from PACE was observed in device results, and frequent deposition failures occurred.

  20. Nickel/metal hydride batteries using rate-earth hydrogen storage alloy

    Science.gov (United States)

    Chen, J.; Zhang, Y. S.

    1994-07-01

    Fine particles of a hydrogen storage alloy (LaNi3.8Co0.5Mn0.4Al0.3) were microencapsulated with a thin film of nickel of about 0.6 micron thickness. The microencapsulated alloy powders were used as an anode material in a sealed nickel/metal hydride battery. The battery characteristics were compared with those of a battery with a bare (uncoated) alloy anode. The battery using the bare alloy was less stable compared to the coated alloy due to the role of the coated nickel as an oxygen barrier for protecting the alloy surface from oxidation. In addition, charge- discharge characteristics were improved greatly by the nickel coating, especially at high rates and at low temperatures due to the role of nickel as a microcurrent collector. So the microencapsulation of the alloy powders improves the performances of the alloy electrode.

  1. Electrodeposition of metals and magnetic alloys onto conducting polymeric substrates

    Science.gov (United States)

    Leroy, D.; Martinot, L.; Licour, C.; Jérôme, C.; Zhan, H.; Strivay, D.

    1998-06-01

    A new composite material prepared by mixing polycarbonate with carbon black has been tested as new kind of cathode. This material has been compared with a conducting polymer precipitated onto polycarbonate, both in aqueous and organic solutions. We report some examples of electrodeposition of magnetic alloys (Lanthanides/Transition metals) in Formamide. In this medium, the use of thin polypyrrole films cathodes had remained impossible. The preparation of amorphous and magnetic alloys onto PC/carbon black is evidenced by RBS. En préparant un composite conducteur polycarbonate/noir de carbone, nous avons obtenu un nouveau matériau susceptible d'être utilisé comme cathode pour la préparation électrolytique de recouvrements métalliques. Ces cathodes sont comparées à des cathodes de Ppy déposé sur polycarbonate. Nous décrivons ici la réalisation d'alliages magnétiques en couches minces. Ces alliages Lanthanides/Métaux de transition sont préparés en milieu organique (Formamide : FA) où les cathodes constituées de films minces de polypyrrole conducteur ne sont plus utilisables. Le caractère métallique et amorphe de ces alliages est démontré par analyse RBS.

  2. Bulk amorphous metallic alloys: Synthesis by fluxing techniques and properties

    Energy Technology Data Exchange (ETDEWEB)

    He, Yi; Shen, Tongde; Schwarz, R.B.

    1997-05-01

    Bulk amorphous alloys having dimensions of at least 1 cm diameter have been prepared in the Pd-Ni-P, Pd-Cu-P, Pd-Cu-Ni-P, and Pd-Ni-Fe-P systems using a fluxing and water quenching technique. The compositions for bulk glass formation have been determined in these systems. For these bulk metallic glasses, the difference between the crystallization temperature T{sub x}, and the glass transition temperature T{sub g}, {Delta}T = T{sub x} - T{sub g}, ranges from 60 to 1 10 K. These large values of {Delta}T open the possibility for the fabrication of amorphous near net-shape components using techniques such as injection molding. The thermal, elastic, and magnetic properties of these alloys have been studied, and we have found that bulk amorphous Pd{sub 40}Ni{sub 22.5}Fe{sub 17.5}P{sub 20} has spin glass behavior for temperatures below 30 K. 65 refs., 14 figs., 3 tabs.

  3. Applications for Gradient Metal Alloys Fabricated Using Additive Manufacturing

    Science.gov (United States)

    Hofmann, Douglas C.; Borgonia, John Paul C.; Dillon, Robert P.; Suh, Eric J.; Mulder, jerry L.; Gardner, Paul B.

    2013-01-01

    assortment of "post-processing" methods to locally alter properties (such as coating, heat treating, work hardening, shot peening, etching, anodizing, among others). Building the final part in an additive process allows for the development of an entirely new class of metals, so-called "functionally graded metals" or "gradient alloys." By carefully blending feedstock materials with different properties in an AM process, hardware can be developed with properties that cannot be obtained using other techniques but with the added benefit of the net-shaped fabrication that AM allows.

  4. Full Electroresistance Modulation in a Mixed-Phase Metallic Alloy

    Science.gov (United States)

    Liu, Z. Q.; Li, L.; Gai, Z.; Clarkson, J. D.; Hsu, S. L.; Wong, A. T.; Fan, L. S.; Lin, M.-W.; Rouleau, C. M.; Ward, T. Z.; Lee, H. N.; Sefat, A. S.; Christen, H. M.; Ramesh, R.

    2016-03-01

    We report a giant, ˜22 %, electroresistance modulation for a metallic alloy above room temperature. It is achieved by a small electric field of 2 kV /cm via piezoelectric strain-mediated magnetoelectric coupling and the resulting magnetic phase transition in epitaxial FeRh /BaTiO3 heterostructures. This work presents detailed experimental evidence for an isothermal magnetic phase transition driven by tetragonality modulation in FeRh thin films, which is in contrast to the large volume expansion in the conventional temperature-driven magnetic phase transition in FeRh. Moreover, all the experimental results in this work illustrate FeRh as a mixed-phase model system well similar to phase-separated colossal magnetoresistance systems with phase instability therein.

  5. Effect of metal conditioner on bonding of porcelain to cobalt-chromium alloy

    Science.gov (United States)

    Kajihara, Yutaro; Takenouchi, Yoshihisa; Tanaka, Takuo; Suzuki, Shiro; Minami, Hiroyuki

    2016-01-01

    PURPOSE The purpose of this study was to evaluate the efficacy of two different metal conditioners for non-precious metal alloys for the bonding of porcelain to a cobalt-chromium (Co-Cr) alloy. MATERIALS AND METHODS Disk-shaped specimens (2.5×10.0 mm) were cast with Co-Cr alloy and used as adherend materials. The bonding surfaces were polished with a 600-grid silicon carbide paper and airborne-particle abraded using 110 µm alumina particles. Bonding specimens were fabricated by applying and firing either of the metal conditioners on the airborne-particle abraded surface, followed by firing porcelain into 5 mm in diameter and 3 mm in height. Specimens without metal conditioner were also fabricated. Shear bond strength for each group (n=8) were measured and compared (α=.05). Sectional view of bonding interface was observed by SEM. EDS analysis was performed to determine the chemical elements of metal conditioners and to determine the failure modes after shear test. RESULTS There were significant differences among three groups, and two metal conditioner-applied groups showed significantly higher values compared to the non-metal conditioner group. The SEM observation of the sectional view at bonding interface revealed loose contact at porcelain-alloy surface for non-metal conditioner group, however, close contact at both alloy-metal conditioner and metal conditioner-porcelain interfaces for both metal conditioner-applied groups. All the specimens showed mixed failures. EDS analysis showed that one metal conditioner was Si-based material, and another was Ti-based material. Si-based metal conditioner showed higher bond strengths compared to the Ti-based metal conditioner, but exhibited more porous failure surface failure. CONCLUSION Based on the results of this study, it can be stated that the application of metal conditioner is recommended for the bonding of porcelain to cobalt-chromium alloys. PMID:26949481

  6. Gas Metal Arc Welding Using Novel CaO-Added Mg Alloy Filler Wire

    OpenAIRE

    Minjung Kang; Youngnam Ahn; Cheolhee Kim

    2016-01-01

    Novel “ECO Mg” alloys, i.e., CaO-added Mg alloys, which exhibit oxidation resistance during melting and casting processes, even without the use of beryllium or toxic protection gases such as SF6, have recently been introduced. Research on ECO Mg alloys is still continuing, and their application as welding filler metals was investigated in this study. Mechanical and metallurgical aspects of the weldments were analysed after welding, and welding behaviours such as fume generation and droplet tr...

  7. The origins of strengthening in nanostructured metals and alloys

    Directory of Open Access Journals (Sweden)

    Morris, D. G.

    2010-04-01

    Full Text Available Nanostructured metals and alloys have a variety of chemical and physical properties that are greatly modified by the nano-scale of their microstructure. At the same time, these materials generally show very high strength, although ductility or toughness may not be good. Strength increases as the microstructure scale reduces from the macro-micro level and even finer, but sometimes the strength appears to fall as the structure scale approaches the nano level. These strength variations are examined here, and the mechanisms responsible for both strengthening and weakening are discussed. The fall in ductility and toughness as materials become nanostructured is a complex topic that requires extensive analysis, but this will not be treated in the present overview.

    Los metales y aleaciones nanoestructuradas muestran una serie de propiedades químicas y físicas fuertemente modificadas cuando su microestructura entra en la escala nano. A la vez, estos materiales muestran generalmente alta resistencia pero mediocre ductilidad o tenacidad. La resistencia aumenta cuando baja la escala de la microestructura desde el nivel micro hacia el nivel nano, pero a veces la resistencia parece reducir por las microestructuras mas finas. Se examinan aquí todas estas variaciones y se discuten los mecanismos responsables del endurecimiento y ablandamiento. Los cambios de ductilidad o tenacidad cuando la microestructura entra en la escala nano necesitan un análisis detallado que no se trata en este articulo.

  8. Local lattice relaxations in random metallic alloys: Effective tetrahedron model and supercell approach

    DEFF Research Database (Denmark)

    Ruban, Andrei; Simak, S.I.; Shallcross, S.

    2003-01-01

    We present a simple effective tetrahedron model for local lattice relaxation effects in random metallic alloys on simple primitive lattices. A comparison with direct ab initio calculations for supercells representing random Ni0.50Pt0.50 and Cu0.25Au0.75 alloys as well as the dilute limit of Au-ri...

  9. [Effect of recasting on the thickness of metal-ceramic interface of nickel-chromium and cobalt-chromium alloys].

    Science.gov (United States)

    2008-05-01

    This research was done to establish recasting effects of nickel-chromium and cobalt-chromium alloys on the thickness of their metal-ceramic interface in making fixed partial dentures. Metal-ceramic interface determines their functional integrity and prevents damages on ceramics during mastication. Investigation of metal-ceramic samples is supposed to show if base metal alloys for metal-ceramics are successfully recycled without any risk of reduction of metal-ceramic interface thickness. The research was performed as an experimental study. Per six metal-ceramic samples of nickel-chromium alloy (Wiron99) and cobalt-chromium alloy (Wirobond C) were made each. Alloy residues were recycled through twelve casting generations with the addition of 50% of new alloy on the occasion of every recasting. Analysis Energy Dispersive X-ray (EDX) (Oxford Instruments) and Scanning Electon Microscop (SEM) analysis (JEOL) were used to determine thickness of metal-ceramic interface together with PC Software for quantification of visual informations (KVI POPOVAC). Results of this research introduced significant differences between thickness of metal-ceramic interface in every examined recycle generation. Recasting had negative effect on thickness of metal-ceramic interface of the examined alloys. This research showed almost linear reduction of elastic modulus up to the 12th generation of recycling. Recasting of nickel-chromium and cobalt-chromium alloys is not recommended because of reduced thickness of metal-ceramic interface of these alloys. Instead of recycling, the alloy residues should be returned to the manufacturers.

  10. Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene

    DEFF Research Database (Denmark)

    Studt, Felix; Abild-Pedersen, Frank; Bligaard, Thomas

    2008-01-01

    The removal of trace acetylene from ethylene is performed industrially by palladium hydrogenation catalysts ( often modified with silver) that avoid the hydrogenation of ethylene to ethane. In an effort to identify catalysts based on less expensive and more available metals, density functional...... calculations were performed that identified relations in heats of adsorption of hydrocarbon molecules and fragments on metal surfaces. This analysis not only verified the facility of known catalysts but identified nickel- zinc alloys as alternatives. Experimental studies demonstrated that these alloys...

  11. CO_2 Methanation Catalysts Prepared from Amorphous Ni-Valve Metal Alloys Containing Platinum Group Elements

    OpenAIRE

    Ken-ichiro, Wakuda; Hiroki, Habazaki; Asahi, Kawashima; Katsuhiko, Asami; Koji, Hashimoto; Institute for Materials Research

    1993-01-01

    The amorphous Ni-valve metal (Ti, Zr, Nb and Ta) alloys containing a few at% of platinum group elements were activated by immersion into hydrofluoric acid and used for hydrogenation of carbon dioxide at 100-300℃. This surface activation led to formation of nanocrystalline surface alloys with high surface area, and to surface enrichment of platinum group elements on the titanium-, niobium- and tantalum-containing alloys, but not on the zirconium-containing alloys. The surface of the latter all...

  12. Role of Alloying Additions in Glass Formation and Properties of Bulk Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Na Chen

    2010-12-01

    Full Text Available Alloying addition, as a means of improving mechanical properties and saving on costs of materials, has been applied to a broad range of uses and products in the metallurgical fields. In the field of bulk metallic glasses (BMGs, alloying additions have also proven to play effective and important roles in promoting glass formation, enhancing thermal stability and improving plasticity of the materials. Here, we review the work on the role of alloying additions in glass formation and performance improvement of BMGs, with focus on our recent results of alloying additions in Pd-based BMGs.

  13. Morphological analysis of co-evaporated blend films based on initial growth for organic photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Yosei, E-mail: yosei.shibata@aist.go.jp [Research Center for Photovoltaic Technologies, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 (Japan); Taima, Tetsuya [Research Center for Photovoltaic Technologies, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 (Japan); Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Zhou, Ying; Ohashi, Noboru; Kono, Takahiro [Research Center for Photovoltaic Technologies, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 (Japan); Yoshida, Yuji, E-mail: yuji.yoshida@aist.go.jp [Research Center for Photovoltaic Technologies, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 (Japan)

    2015-11-15

    Graphical abstract: - Highlights: • Initial growth mode of co-evaporated films was observed. • Balanced crystal growth leads to improvement of photovoltaic performance. • Crystal growth of fullerene during co-evaporation process was restricted. • The power conversion efficiency of 3% was obtained without electron blocking layer. - Abstract: Bulk heterojunction structures composed of electron donor and acceptor molecules for application in high-performance organic photovoltaics studied. To fabricate these structures, the co-evaporation method in vacuum is commonly applied; however, the details of the crystal growth process during co-evaporation have not yet been established. Here, we focused on structural analysis of blend films composed of phthalocyanine and fullerene based on initial growth stage. Similar crystal growth behavior to that typically observed in single-component molecules is obtained for the films. These results suggest that the competitive crystal growth between donors and acceptors occurs during co-evaporation process. The balance of thin film growth among donor and acceptor molecules can be related to improved photovoltaic performance. The homogeneous blend structure leads to improvement of the power conversion efficiency from 1.2% to 3.0%.

  14. T6 heat treatment of semi-solid metal processed alloy A356

    CSIR Research Space (South Africa)

    Moller, H

    2008-01-01

    Full Text Available . Cast Met. Res. 2008. [12] Möller H, Govender G, Stumpf WE. The natural and artificial aging response of semi-solid metal processed alloy A356. Submitted to: 10th International Conference on Semi-Solid Processing of Alloys and Composites. Aachen...-solid Metal Processed Alloy A356 H. Möller1*, G. Govender1 and W.E. Stumpf2 1Materials Science and Manufacturing, CSIR, Pretoria, 0001, South Africa 2Materials Science and Metallurgical Engineering, University of Pretoria, South Africa Abstract: A...

  15. The use of cold sprayed alloys for metallic stents

    Science.gov (United States)

    AL-Mangour, Bandar

    With the invention of the coronary stent, which is a wire metal mesh tube designed to keep the arteries open in the treatment of heart diseases, promising clinical outcomes were generated. However, the long term successes of stents have been delayed by significant in-stent restenosis (blockages) and stent fracture. In this research work, it has been proposed to use Cold Gas Dynamic Spraying (CGDS) coating material as an alternative choice to manufacture metallic stent. In CGDS, fine particles are accelerated to a high velocity and undergo solid-state plastic deformation upon impact on the substrate, which leads to particle-particle bonding. The feature of CGDS distinct from other thermal spray techniques is that the processing gas temperature is below the melting point of the feedstock. Therefore, unwanted effects of high temperatures, such as oxidation, grain growth and thermal stresses, are absent. In response to the fact that the majority of stents are made from stainless steel (316L) or Co-Cr alloy (L605), this study specifically addresses the development and characterization of 316L and 316L mixed with L605 coatings produced by the CGDS process. Scanning electron microscopy and electron backscatter diffraction were used to investigate the microstructural changes of these coatings before and after annealing. The effect of gas type on the microstructure of 316L coatings and the role of post-heat treatment in the microstructure and properties are also studied. Of particular interest are grain refinement, heat treatment, mechanical properties and corrosion behavior of the cold sprayed material.

  16. Analysis of electro-permeation of hydrogen in metallic alloys.

    Science.gov (United States)

    Raina, A; Deshpande, V S; Fleck, N A

    2017-07-28

    A reaction-diffusion type modelling framework is presented to analyse both electro-permeation (EP) and thermal desorption spectrometry (TDS) measurements of hydrogen in metallic alloys. It is assumed that the kinetics of hydrogen motion is governed by diffusion through the lattice, along with trapping/detrapping at specific sites such as dislocations, grain boundaries, etc. It is shown that the trapping and detrapping rates are typically much faster than the diffusion rate, and consequently a simplification of the governing equations suffices such that local equilibrium exists between lattice and trapped hydrogen. Using this local equilibrium assumption, we then present an asymptotic analysis of the governing kinetic equation for the EP test. This asymptotic analysis reveals that four regimes of behaviour exist, ranging from negligible trapping to the complete filling of deep traps. The analysis suggests that EP tests should be so-arranged that three regimes of behaviour are spanned, in order to extract the relevant material properties associated with hydrogen transport. The numerical solutions presented in this study support the asymptotic analysis. The hydrogen kinetics framework is also deployed to analyse both EP and TDS tests on the same martensitic steel. The EP measurements all lie in regime I and are thus insufficient to uniquely determine both the trap density and binding energy. Reasonable agreement is obtained between measurements and numerical predictions of TDS tests using parameters estimated from the EP tests. Further improvements in measurements are required to confirm the fidelity of this modelling approach.This article is part of the themed issue 'The challenges of hydrogen and metals'. © 2017 The Author(s).

  17. Computing elastic anisotropy to discover gum-metal-like structural alloys

    Science.gov (United States)

    Winter, I. S.; de Jong, M.; Asta, M.; Chrzan, D. C.

    2017-08-01

    The computer aided discovery of structural alloys is a burgeoning but still challenging area of research. A primary challenge in the field is to identify computable screening parameters that embody key structural alloy properties. Here, an elastic anisotropy parameter that captures a material's susceptibility to solute solution strengthening is identified. The parameter has many applications in the discovery and optimization of structural materials. As a first example, the parameter is used to identify alloys that might display the super elasticity, super strength, and high ductility of the class of TiNb alloys known as gum metals. In addition, it is noted that the parameter can be used to screen candidate alloys for shape memory response, and potentially aid in the optimization of the mechanical properties of high-entropy alloys.

  18. Different failure modes for V-containing and V-free AB2 metal hydride alloys

    Science.gov (United States)

    Young, K.; Wong, D. F.; Yasuoka, S.; Ishida, J.; Nei, J.; Koch, J.

    2014-04-01

    Failure modes of a V-containing and a V-free AB2 Laves phase-based metal hydride alloy were studied by the combination of X-ray diffractometer, scanning electron microscope, X-ray energy dispersive spectroscopy, inductively coupled plasma, Soxhlet extraction, and magnetic susceptibility measurement. Cells with the V-containing alloy exhibited less capacity degradation up until venting occurred in the cells, after which the capacity rapidly degraded. Cells with the V-free alloy remained linear in capacity degradation throughout the cycle life test. The failure mechanism for the V-containing alloy is related to the formation of an oxide layer that penetrates deeper into the alloy particles due to high V leaching and impedes gas recombination, while the failure mechanism for the V-free alloy is related to the continuous pulverization of the main AB2 phase.

  19. Nonstoichiometric transfer during laser ablation of metal alloys

    Science.gov (United States)

    Canulescu, Stela; Döbeli, Max; Yao, Xiang; Lippert, Thomas; Amoruso, Salvatore; Schou, Jørgen

    2017-12-01

    Large angular variations in film composition have been found for ablation of a metallic AuCu alloy (Au/Cu ratio ˜1 ) in vacuum and background gases of Ne and Xe. The AuCu films grown in vacuum at a laser fluence of 5 Jc m-2 exhibit a large loss in the Cu content, with the Au/Cu ratio ˜2.4 at angles close to normal incidence. At this fluence, a distortion of the plume front is observed followed by the appearance of a secondary emission at the substrate, suggesting that resputtering of the film by energetic ions and reflection of ions/atoms at the substrate can lead to a nonstoichiometric transfer in pulsed laser deposition. Further, we have found that depending on the mass of the background gas employed during growth (Ne or Xe), the ratio of elements in the film can vary significantly over a wide range of angles of deposition. In the presence of the light gas Ne, the degree of nonstoichiometric transfer is gradually reduced with increasing background pressure, resulting in a nearly stoichiometric AuCu films at a Ne pressure of 2 mbar. The behavior in the heavy gas Xe is more complex, and both theoretical and experimental data indicate that the loss of Cu in the deposits is caused by the preferential scattering, as well as by backscattering of the light Cu atoms in the plume upon collisions with the background gas.

  20. A model for cross-referencing and calculating similarity of metal alloys

    Directory of Open Access Journals (Sweden)

    Svetlana Pocajt

    2013-12-01

    Full Text Available This paper presents an innovative model for the comparison and crossreferencing of metal alloys, in order to determine their interchangeability in engineering, manufacturing and material sourcing. The model uses a large alloy database and statistical approach to estimate missing composition and mechanical properties parameters and to calculate property intervals. A classification of metals and fuzzy logic are then applied to compare metal alloys. The model and its algorithm have been implemented and tested in real-life applications. In this paper, an application of the model in finding unknown equivalent metals by comparing their compositions and mechanical properties in a very large metals database is described, and possibilities for further research and new applications are presented.

  1. Marginal Adaptation of Metal Ceramic Crowns Cast from Four Different Base Metal Alloys before and after Porcelain Application

    Directory of Open Access Journals (Sweden)

    Ali Hafezeqoran

    2015-04-01

    Material and Method: In this experimental study, a sound maxillary first premolar was prepared with chamfer and shoulder-bevel finish lines in palatal and buccal surfaces, respectively. Then the metal die was fabricated. Six points were marked 1 mm apical to the margin in the buccal and palatal surfaces. Forty impressions were taken from metal die by polyether impression material. Then, 10 frameworks were fabricated with each alloy type on stone dies. The vertical margin discrepancy between the frameworks and the marked points on metal dies were measured before and after porcelain firing. Paired sample t-test and One-way ANOVA, followed by multiple comparison tests (Tukey test were used to evaluate data. In this study, statistical significance was defined at p<0.05. Results: Before porcelain firing, T3 alloy showed the lowest marginal discrepancy on chamfer finish line (13.13 ± (1.26; but, the highest values were for Supermcast V copings and shoulder-bevel finish after porcelain application (30.83 ± (2.01. The mean marginal discrepancies of buccal and palatal surfaces before porcelain application were significantly lower for all alloy types (p<0.001. Conclusion:  The marginal adaptation of all four metal alloys was clinically acceptable and the thermal cycles of porcelain firing affected marginal adaptation.   Keywords: Crown; Marginal adaptation; Metal ceramic alloys

  2. Color change during the surface preparation stages of metal ceramic alloys.

    Science.gov (United States)

    Ozçelik, Tuncer Burak; Yilmaz, Burak; Ozcan, Isil; Wee, Alvin G

    2011-07-01

    Even though metal ceramic restorations (MCRs) are widely used by clinicians, the influence of the metal on the color of overlaying porcelain is unknown. The purpose of this study was to analyze the color alterations of different types of metal ceramic alloys during several stages of metal surface preparation and to determine the effect of those changes on the resulting color of opaque porcelain (OP). Seven different types of alloys (3 base metal, 3 noble, and 1 high noble) were used to prepare disk-shaped specimens (1 mm × 10 mm, n=3), followed by OP application (0.1 mm). L*a*b* values of specimens were recorded after different stages of metal surface preparation (ingot, after casting, after oxidation, and after the OP application) in addition to the shade tab of OP B1 (target shade). L*a*b* values of alloys were measured from the ingot structure to the OP application stage and statistically analyzed (Repeated measures ANOVA, and Bonferroni corrected paired t test, α=.05). L*a*b* values of OP applied groups and the OP shade tab (target shade) were analyzed (1-way ANOVA with Dunnett's multiple comparison test, α=.05). The color differences of the target shade both before and after OP application were calculated and statistically analyzed (1-way ANOVA, Ryan-Einot-Gabriel-Welsch Multiple Range Test, α=.05). The L* values of all alloys changed significantly after each stage except for 2 alloys (V-Deltaloy SF (N-VDSF)) and (Gnathos Plus (HN-GP)) after casting and airborne-particle abrasion (PL*a*b* values of some OP applied alloys were significantly different from that of the OP shade tab (P<.05). Color difference values (ΔE (OP applied alloy-target shade)) of 2 OP-applied alloys (Cerapall 2 (N-CP2) and Ceradelta (N-CD)) were significantly different (P<.05) and higher than the other OP-applied alloys. The achromatic color behavior of different alloys was all in the same direction at all metal surface preparation stages. The chromatic behavior of the different

  3. Outstanding resistance and passivation behaviour of new Fe-Co metal-metal glassy alloys in alkaline media.

    Directory of Open Access Journals (Sweden)

    Khadijah M Emran

    Full Text Available The electrochemical behavior of the oxide layers on two metal-metal glassy alloys, Fe78Co9Cr10Mo2Al1 (VX9and Fe49Co49V2 (VX50 (at.%, were studied using electrochemical techniques including electrochemical frequency modulation (EFM, electrochemical impedance spectroscopy (EIS and cyclic polarization (CP measurements. The morphology and composition of the alloy surfaces were investigated using X-ray photoelectron spectroscopy (XPS, scanning electron microscopy (SEM and atomic force microscopy (AFM. The corrosion rate and surface roughness of both alloys increased as the concentration of NaOH in aqueous solution was raised. The presence of some protective elements in the composition of the alloys led to the formation of a spontaneous passive layer on the alloy surface. The higher resistance values of both alloys were associated with the magnitude of the dielectric properties of the passive films formed on their surfaces. Both alloys are classified as having outstanding resistance to corrosion, which results from the formation of a passive film that acts as an efficient barrier to corrosion in alkaline solution.

  4. An Investigation on Metallic Ion Release from Four Dental Casting Alloys

    Directory of Open Access Journals (Sweden)

    F. Nejatidanesh

    2005-12-01

    Full Text Available Statement of Problem: Element release from dental casting alloys into the oral environment is of clinical concern and is considered to be a potential health problem to all patients.Purpose: The aim of this study was to investigate the metallic ion release of four base metal alloys.Materials and Methods: Two Ni-Cr (Minalux and Supercast and two Co-Cr alloys (Minalia and Wironit were examined. Nine specimens of each type were prepared in 13×11×1.4 mm dimensions and each of the four alloys (3 specimens per group were conditioned in artificial saliva at 37 c for one, three and seven days.The conditioning media were analyzed for element-release using Inductive CoupledPlasma Atomic Emission Spectrophotometer (ICPAES. Collected data were statistically analyzed using ANOVA and Duncan multiple range test (P< 0.05.Results: The greatest amount of element release was seen after seven days (134.9 ppb Supercast, 159.2 ppb Minalux, 197.2 ppb Minalia, and 230.2 ppb Wironit. There was a significant difference between the released elements from the alloys after the three conditioning times (p<0.001.Conclusion: Element release from the studied alloys is proportional to the conditioning time. The Ni-Cr alloys tested in this investigation were more resistant to corrosion as compared to the Co-Cr alloys in artificial saliva. Supercast had the highest corrosion resistance.

  5. The Importance of Rare-Earth Additions in Zr-Based AB2 Metal Hydride Alloys

    Directory of Open Access Journals (Sweden)

    Kwo-Hsiung Young

    2016-07-01

    Full Text Available Effects of substitutions of rare earth (RE elements (Y, La, Ce, and Nd to the Zr-based AB2 multi-phase metal hydride (MH alloys on the structure, gaseous phase hydrogen storage (H-storage, and electrochemical properties were studied and compared. Solubilities of the RE atoms in the main Laves phases (C14 and C15 are very low, and therefore the main contributions of the RE additives are through the formation of the RENi phase and change in TiNi phase abundance. Both the RENi and TiNi phases are found to facilitate the bulk diffusion of hydrogen but impede the surface reaction. The former is very effective in improving the activation behaviors. −40 °C performances of the Ce-doped alloys are slightly better than the Nd-doped alloys but not as good as those of the La-doped alloys, which gained the improvement through a different mechanism. While the improvement in ultra-low-temperature performance of the Ce-containing alloys can be associated with a larger amount of metallic Ni-clusters embedded in the surface oxide, the improvement in the La-containing alloys originates from the clean alloy/oxide interface as shown in an earlier transmission electron microscopy study. Overall, the substitution of 1 at% Ce to partially replace Zr gives the best electrochemical performances (capacity, rate, and activation and is recommended for all the AB2 MH alloys for electrochemical applications.

  6. PROCESS FOR THE PREPARATION OF ALLOY NANOPARTICLES COMPRISING A NOBLE AND A NON-NOBLE METAL

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention concerns a chemical process for preparing nanoparticles of an alloy comprising both a noble metal, such as platinum, and a non-noble transition or lanthanide metal, such as yttrium, gadolinium or terbium. The process is carried out by reduction with hydrogen and removal...

  7. Crystal-Structure Contribution to the Solid Solubility in Transition Metal Alloys

    DEFF Research Database (Denmark)

    Ruban, Andrei; Skriver, Hans Lomholt; Nørskov, Jens Kehlet

    1998-01-01

    The solution energies of 4d metals in other 4d metals as well as the bcc-hcp structural energy differences in random 4d alloys are calculated by density functional theory. It is shown that the crystal structure of the host plays a crucial role in the solid solubility. A local virtual bond...

  8. Effect of recasting on the thickness of metal-ceramic interface of nickel-chromium and cobalt-chromium alloys

    OpenAIRE

    Mirković Nemanja; Draganjac Miroslav; Stamenković Dragoslav; Ristić Ljubiša

    2008-01-01

    Introduction/Aim. This research was done to establish recasting effects of nickel-chromium and cobalt-chromium alloys on the thickness of their metal-ceramic interface in making fixed partial dentures. Metal-ceramic interface determines their functional integrity and prevents damages on ceramics during mastication. Investigation of metal-ceramic samples is supposed to show if base metal alloys for metalceramics are successfully recycled without any risk of reduction of metal-ceramic interface...

  9. Micro- and nano-spheres of low melting point metals and alloys, formed by ultrasonic cavitation.

    Science.gov (United States)

    Friedman, H; Reich, S; Popovitz-Biro, R; von Huth, P; Halevy, I; Koltypin, Y; Gedanken, A; Porat, Z

    2013-01-01

    Metals and alloys of low melting points (metals into microspheres that solidify rapidly upon cooling. This method has been applied to seven pure metals (Ga, In, Sn, Bi, Pb, Zn, Hg) and two eutectic alloys of gold (Au-Ge and Au-Si). The morphology and composition of the resulting microspheres were examined by SEM and EDS. Eutectic Au-Si formed also crystalline Au nanoparticles, which were separated and studied by HRTEM. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Corrosion protection of aluminum alloys in contact with other metals

    Science.gov (United States)

    Kuster, C. A.

    1969-01-01

    Study establishes the quality of chemical and galvanized protection afforded by anodized and aldozided coatings applied to test panels of various aluminum alloys. The test panels, placed in firm contact with panels of titanium alloys, were subjected to salt spray tests and visually examined for corrosion effect.

  11. Comparison of laboratory and field experience of PWSCC in Alloy 182 weld metal

    Energy Technology Data Exchange (ETDEWEB)

    Scott, P.; Meunier, M.-C.; Steltzlen, F. [AREVA NP, Tour AREVA, Paris La Defense (France); Calonne, O.; Foucault, M. [AREVA NP, Centre Technique, Le Creusot Cedex (France); Combrade, P. [ACXCOR, Saint Etienne (France); Amzallag, C. [EDF, SEPTEN, Villeurbanne (France)

    2007-07-01

    Laboratory studies of stress corrosion cracking of the nickel base weld metal, Alloy 182, in simulated PWR primary water suggest similar resistance to crack initiation and somewhat enhanced propagation rates relative to wrought Alloy 600. By contrast, field experience of cracking in the primary circuits of PWRs shows in general much better performance for Alloy 182 relative to Alloy 600 than would be anticipated from laboratory studies. This paper endeavours to resolve this apparent conundrum. It draws on the conclusions of recent research that has focussed on the role of surface finish, particularly cold work and residual stresses resulting from different fabrication processes, on the risk of initiating IGSCC in nickel base alloys in PWR primary water. It also draws on field experience of stress corrosion cracking that highlights the important role of surface finish for crack initiation. (author)

  12. Evaluation of Surface Roughness and Tensile Strength of Base Metal Alloys Used for Crown and Bridge on Recasting (Recycling).

    Science.gov (United States)

    Agrawal, Amit; Hashmi, Syed W; Rao, Yogesh; Garg, Akanksha

    2015-07-01

    Dental casting alloys play a prominent role in the restoration of the partial dentition. Casting alloys have to survive long term in the mouth and also have the combination of structure, molecules, wear resistance and biologic compatibility. According to ADA system casting alloys were divided into three groups (wt%); high noble, Noble and predominantly base metal alloys. To evaluate the mechanical properties such as tensile strength and surface roughness of the new and recast base metal (nickel-chromium) alloys. Recasting of the base metal alloys derived from sprue and button, to make it reusable has been done. A total of 200 test specimens were fabricated using specially fabricated jig of metal and divided into two groups- 100 specimens of new alloy and 100 specimens of recast alloys, which were tested for tensile strength on universal testing machine and surface roughness on surface roughness tester. Tensile strength of new alloy showed no statistically significant difference (p-value>0.05) from recast alloy whereas new alloy had statistically significant surface roughness (Maximum and Average surface roughness) difference (p-valuealloy. Within the limitations of the study it is concluded that the tensile strength will not be affected by recasting of nickel-chromium alloy whereas surface roughness increases markedly.

  13. Bond strength of resin cements to noble and base metal alloys with different surface treatments.

    Directory of Open Access Journals (Sweden)

    Farkhondeh Raeisosadat

    2014-10-01

    Full Text Available The bond strength of resin cements to metal alloys depends on the type of the metal, conditioning methods and the adhesive resins used. The purpose of this study was to evaluate the bond strength of resin cements to base and noble metal alloys after sand blasting or application of silano-pen.Cylinders of light cured Z 250 composite were cemented to "Degubond 4" (Au Pd and "Verabond" (Ni Cr alloys by either RelyX Unicem or Panavia F2, after sandblasting or treating the alloys with Silano-Pen. The shear bond strengths were evaluated. Data were analyzed by three-way ANOVA and t tests at a significance level of P<0.05.When the alloys were treated by Silano-Pen, RelyX Unicem showed a higher bond strength for Degubond 4 (P=0.021 and Verabond (P< 0.001. No significant difference was observed in the bond strength of Panavia F2 to the alloys after either of surface treatments, Degubond 4 (P=0.291 and Verabond (P=0.899. Panavia F2 showed a higher bond strength to sandblasted Verabond compared to RelyX Unicem (P=0.003. The bond strength of RelyX Unicem was significantly higher to Silano-Pen treated Verabond (P=0.011. The bond strength of the cements to sandblasted Degubond 4 showed no significant difference (P=0.59. RelyX Unicem had a higher bond strength to Silano-Pen treated Degubond 4 (P=0.035.The bond strength of resin cements to Verabond alloy was significantly higher than Degubond 4. RelyX Unicem had a higher bond strength to Silano-Pen treated alloys. Surface treatments of the alloys did not affect the bond strength of Panavia F2.

  14. Ultrafast magnetization dynamics of lanthanide metals and alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sultan, Muhammad

    2012-05-14

    In this study, the laser-induced magnetization dynamics of the lanthanide ferromagnets Gadolinium (Gd), Terbium (Tb) and their alloys is investigated using femtosecond (fs) time-resolved x-ray magnetic circular dichroism (XMCD), the magneto-optical Kerr effect (MOKE) and magnetic second harmonic generation (MSHG). The magnetization dynamics is analyzed from the time scale of a few fs up to several hundred picoseconds (ps). The contributions of electrons, phonons, spin fluctuations, as well as the temporal regimes corresponding to the spin-orbit and exchange interactions are disentangled. In addition to possible applications in magnetic storage devices, understanding magnetization dynamics in lanthanides is also important because of their different magnetic structure compared to well-studied itinerant ferromagnets. Lanthanides are model Heisenberg-ferromagnets with localized 4f magnetic moments and long range magnetic ordering through indirect exchange interaction. By optical excitation of the conduction electrons, which mediate the exchange interaction, and studying the induced dynamics of the localized 4f and delocalized 5d6s magnetic moments, one can obtain insight into the angular momentum transfer at ultrafast time scales. Moreover, lanthanides offer the possibility to tune spin-lattice coupling via the 4f shell occupation and the concomitant changes in the 4f spin and orbital moments due to Hund's rules. Utilizing this fact, the importance of spin-lattice coupling in laser-induced demagnetization is also analyzed by comparing the magnetization dynamics in Gd and Tb. By investigating the magnetization dynamics of localized 4f moments of Gd and Tb using time-resolved XMCD, it is found that the demagnetization proceeds in both metals in two time scales, following fs laser excitation, which are classified as: (i) non-equilibrium (t > 1 ps), with respect to equilibration of electron and phonon temperatures. The

  15. Corrosion Behavior of Amorphous Nickel-Valve Metal Alloys in Boiling Concentrated Nitric and Hydrochloric Acids

    OpenAIRE

    Kazuo, SHIMAMURA; Asahi, Kawashima; Katsuhiko, Asami; Koji, Hashimoto; Mitsui Engineering & Shipbuilding Co., Ltd.; The Research Institute for Iron, Steel and Other Metals

    1986-01-01

    The corrosion behavior of amorphous nickel-base alloys containing titanium, zirconium, niobium, tantalum and/or phosphorus in boiling 9 N HNO_3 solutions with and without Cr^ ion and in a boiling 6 N HCl solution was investigated. In boiling 9 N HNO_3 solutions alloys containing 20 at% or more tantalum were immune to corrosion, maintaining the metallic luster, and Ni-40~60Nb alloys showed low corrosion rates of the order of μm/year. In the boiling 6 N HCl solution only tantalum-containing all...

  16. Corrosion Behavior of Amorphous Nickel-Valve Metal Alloys in Boiling Concentrated Nitric and Hydrochloric Acids

    OpenAIRE

    Shimamura, Kazuo; Kawashima, Asahi; ASAMI, Katsuhiko; Hashimoto, Koji

    1986-01-01

    The corrosion behavior of amorphous nickel-base alloys containing titanium, zirconium, niobium, tantalum and/or phosphorus in boiling 9 N HNO_3 solutions with and without Cr^ ion and in a boiling 6 N HCl solution was investigated. In boiling 9 N HNO_3 solutions alloys containing 20 at% or more tantalum were immune to corrosion, maintaining the metallic luster, and Ni-40?60Nb alloys showed low corrosion rates of the order of μm/year. In the boiling 6 N HCl solution only tantalum-containing all...

  17. Characteristics of epitaxial garnets grown by CVD using single metal alloy sources. [Chemical Vapor Deposition

    Science.gov (United States)

    Besser, P. J.; Hamilton, T. N.; Mee, J. E.; Stermer, R. L.

    1974-01-01

    Single metal alloys have been explored as the cation source in the chemical vapor deposition (CVD) of iron garnets. Growth of good quality single crystal garnet films containing as many as five different cations has been achieved over a wide range of deposition conditions. The relationship of film composition to alloy compositions and deposition conditions has been determined for several materials. By proper choice of the alloy composition and the deposition conditions, uncrazed deposits were grown on (111) gadolinium gallium garnet (GGG) substrates. Data on physical, magnetic and optical properties of representative films is presented and discussed.

  18. Investigations on Co-evaporated Co-Cr films for perpendicular recording applications

    NARCIS (Netherlands)

    van Kranenburg, H.; Lodder, J.C.

    1991-01-01

    The magnetic behaviour of co-evaporated Co-Cr is investigated. The existence of a process-induced compositional separation, generated by the special geometry of the opposing vapour beams, leads to enhanced perpendicular characteristics without the necessity of depositing the films at a raised

  19. Cell growth on metallic glasses: the interaction of amorphous metal alloys with cultured neuronal, osteoblast, endothelial, and fibroblast cells.

    Science.gov (United States)

    McAuslan, B R; Johnson, G; Delamore, G W; Gibson, M A; Steele, J G

    1988-10-01

    Ferrous based, corrosion resistant amorphous alloys supported the adhesion and growth of cultured chick neuronal cells, human marrow stromal cells (presumptive osteoblasts), bovine aortal endothelial cells, and hamster kidney fibroblasts. Alloys of compositions Fe60Ni10Cr10P13C7, Fe70Cr10P13C7, and Fe70Cr10P13B7 were found to be suitable. In contrast the crystalline form of these alloys was markedly less effective. Outgrowth of neurites from neuronal cells was promoted by precoating the metal surface with either laminin or neurite promotion factor. The adhesion of osteoblasts and fibroblasts suggests that corrosion resistant metal glasses should be considered as biomaterials useful for orthopedic applications. The adhesion of neuronal cells accompanied by neurite outgrowth indicates that the system might provide a functional interface between the neuromuscular system and an electromagnetic material that could be useful in bionic engineering.

  20. Shear bond strength of a ceromer to noble and base metal alloys

    Directory of Open Access Journals (Sweden)

    Dorriz H.

    2006-08-01

    Full Text Available Background and Aim: The improvement of the physical and chemical properties of resins as well as great advances achieved in the field of chemical bonding of resin to metal has changed the trend of restorative treatments. Today the second generation of laboratory resins have an important role in the restoration of teeth. The clinical bond strength should be reliable in order to gain successful results. In this study the shear bond strength (SBS between targis (a ceromer and two alloys (noble and base metal was studied and the effect of thermocycling on the bond investigated. Materials and Methods: In this experimental study, alloys samples were prepared according to the manufacturer. After sandblasting of bonding surfaces with 50µ AI2o3 Targis was bonded to the alloy using Targis I link. All of the samples were placed in 37°C water for a period of 24 hours. Then half of the samples were subjected to 1000 cycles of thermocycling at temperatures of 5°C and 55°C. Planear shear test was used to test the bond strength in the Instron machine with the speed rate of 0.5mm/min. Data were analyzed by SPSS software. Two-way analysis of variance was used to compare the bond strength among the groups. T test was used to compare the alloys. The influence of thermocycling and alloy type on bond strength was studied using Mann Whitney test. P<0.05 was considered as the limit of significance. Result: The studied alloys did not differ significantly, when the samples were not thermocycled (P=0.136 but after thermocycling a significant difference was observed in SBS of resin to different alloys (P=000.1. Thermal stress and alloy type had significant interaction, with regard to shear bond strength (P=0.003. There was a significant difference in SBS before and after thermocycling in noble alloys (P=0.009, but this was not true in base metals (P=0.29. Maximum SBS (19.09 Mpa belonged to Degubond 4, before thermocycling. Minimum SBS (8.21 Mpa was seen in Degubond 4

  1. Metal Forming of Lightweight Magnesium Alloys for Aviation Applications

    Directory of Open Access Journals (Sweden)

    Śliwa R.E.

    2017-09-01

    Full Text Available The work presents an analysis of selected magnesium alloys as structural materials to be used in production of aircraft parts as well as their technological parameters in some manufacturing processes. Upsetting test, backward extrusion and Kobo extrusion of complex cross-sectional profiles and forging process were realized using magnesium alloys AZ31, AZ61, AZ80, WE 43 and Mg alloy with Li for production of thin - walled aircraft profiles and forged aviation parts. The range of temperatures and extrusion rate for the manufacturing these profiles were determined. Tests also covered the analysis of microstructure of Mg alloys in the initial state as well as after the extrusion process. It has been proved that the proper choice of parameters in the case of a specific profile extruded from magnesium alloys allows the manufacturing of products of complex cross-sections and the quality required in aerospace industry. This has been demonstrated on the examples of complex cross-sectional profiles using elements of varied wall thickness and examples of forged aviation parts: aircraft wheel hub and helicopter lever for control system.

  2. Cobalt-chromium-molybdenum alloy causes metal accumulation and metallothionein up-regulation in rat liver and kidney

    DEFF Research Database (Denmark)

    Jakobsen, Stig Storgaard; Danscher, Gorm; Stoltenberg, Meredin

    2007-01-01

    Cobalt-chromium-molybdenum (CoCrMo) metal-on-metal hip prosthesis has had a revival due to their excellent wear properties. However, particulate wear debris and metal ions liberated from the CoCrMo alloys might cause carcinogenicity, hypersensitivity, local and general tissue toxicity, genotoxicity...... in liver and kidney. We found that metal ions are liberated from CoCrMo alloys and suggest that they are released by dissolucytosis, a process where macrophages causes the metallic surface to release metal ions. Animals with intramuscular implants accumulated metal in liver and kidney and metallohionein I...

  3. Effect of recasting on the thickness of metal-ceramic interface of nickel-chromium and cobalt-chromium alloys

    Directory of Open Access Journals (Sweden)

    Mirković Nemanja

    2008-01-01

    Full Text Available Introduction/Aim. This research was done to establish recasting effects of nickel-chromium and cobalt-chromium alloys on the thickness of their metal-ceramic interface in making fixed partial dentures. Metal-ceramic interface determines their functional integrity and prevents damages on ceramics during mastication. Investigation of metal-ceramic samples is supposed to show if base metal alloys for metalceramics are successfully recycled without any risk of reduction of metal-ceramic interface thickness. Methods. The research was performed as an experimental study. Per six metal-ceramic samples of nickel-chromium alloy (Wiron99 and cobalt-chromium alloy (Wirobond C were made each. Alloy residues were recycled through twelve casting generations with the addition of 50% of new alloy on the occasion of every recasting. Analysis Energy Dispersive X-ray (EDX (Oxford Instruments and Scanning Electon Microscop (SEM analysis (JEOL were used to determine thickness of metal-ceramic interface together with PC Software for quantification of visual information's (KVI POPOVAC. Results. Results of this research introduced significant differences between thickness of metal-ceramic interface in every examined recycle generation. Recasting had negative effect on thickness of metal-ceramic interface of the examined alloys. This research showed almost linear reduction of elastic modulus up to the 12th generation of recycling. Conclusion. Recasting of nickel-chromium and cobaltchromium alloys is not recommended because of reduced thickness of metal-ceramic interface of these alloys. Instead of recycling, the alloy residues should be returned to the manufacturers.

  4. Obliquely co-evaporated thin films for magnetic recording

    NARCIS (Netherlands)

    van Kranenburg, H.

    1992-01-01

    A systematic research is carried out on obliquely ( co- ) evaporated media for magnetic recording applications. The investigated materials concern Co-alloys, being Co-Cr, Co-Ag and Co- Ta. The re1ations between deposition parameters, morphology , texture and rnagnetic behaviour were swdied. The

  5. Engineering electronic properties of layered transition-metal dichalcogenide compounds through alloying

    Science.gov (United States)

    Kutana, Alex; Penev, Evgeni S.; Yakobson, Boris I.

    2014-05-01

    Binary alloys present a promising venue for band gap engineering and tuning of other mechanical and electronic properties of materials. Here we use the density-functional theory and cluster expansion to investigate the thermodynamic stability and electronic properties of 2D transition metal dichalcogenide (TMD) binary alloys. We find that mixing electron-accepting or electron-donating transition metals with 2D TMD semiconductors leads to degenerate p- or n-doping, respectively, effectively rendering them metallic. We then proceed to investigate the electronic properties of semiconductor-semiconductor alloys. The exploration of the configurational space of the 2D molybdenum-tungsten disulfide (Mo1-xWxS2) alloy beyond the mean field approximation yields insights into anisotropy of the electron and hole effective masses in this material. The effective hole mass in the 2D Mo1-xWxS2 is nearly isotropic and is predicted to change almost linearly with the tungsten concentration x. In contrast, the effective electron mass shows significant spatial anisotropy. The values of the band gap in 2D Mo1-xWxS2 and MoSe2(1-x)S2x are found to be configuration-dependent, exposing the limitations of the mean field approach to band gap analysis in alloys.

  6. New water-soluble metal working fluids additives from phosphonic acid derivatives for aluminum alloy materials.

    Science.gov (United States)

    Kohara, Ichitaro; Tomoda, Hideyuki; Watanabe, Shoji

    2007-01-01

    Water-soluble metal working fluids are used for processing of aluminum alloy materials. This short paper describes properties of new additives for water-soluble cutting fluids for aluminum alloy materials. Some alkyldiphosphonic acids were prepared with known method. Amine salts of these phosphonic acids showed anti-corrosion property for aluminum alloy materials. However, they have no hard water tolerance. Monoesters of octylphosphonic acid were prepared by the reaction of octylphosphonic acid dichloride with various alcohols in the presence of triethylamine. Amine salts of monoester of octylphosphonic acid with diethyleneglycol monomethyl ether, ethyleneglycol monomethyl ether and triethyleneglycol monomethyl ether showed both of a good anti-corrosion property for aluminum alloy materials and hard water tolerance.

  7. Large-Grain Tin-Rich Perovskite Films for Efficient Solar Cells via Metal Alloying Technique.

    Science.gov (United States)

    Tavakoli, Mohammad Mahdi; Zakeeruddin, Shaik Mohammed; Grätzel, Michael; Fan, Zhiyong

    2018-01-24

    Fast research progress on lead halide perovskite solar cells has been achieved in the past a few years. However, the presence of lead (Pb) in perovskite composition as a toxic element still remains a major issue for large-scale deployment. In this work, a novel and facile technique is presented to fabricate tin (Sn)-rich perovskite film using metal precursors and an alloying technique. Herein, the perovskite films are formed as a result of the reaction between Sn/Pb binary alloy metal precursors and methylammonium iodide (MAI) vapor in a chemical vapor deposition process carried out at 185 °C. It is found that in this approach the Pb/Sn precursors are first converted to (Pb/Sn)I2 and further reaction with MAI vapor leads to the formation of perovskite films. By using Pb-Sn eutectic alloy, perovskite films with large grain sizes up to 5 µm can be grown directly from liquid phase metal. Consequently, using an alloying technique and this unique growth mechanism, a less-toxic and efficient perovskite solar cell with a power conversion efficiency (PCE) of 14.04% is demonstrated, while pure Sn and Pb perovskite solar cells prepared in this manner yield PCEs of 4.62% and 14.21%, respectively. It is found that this alloying technique can open up a new direction to further explore different alloy systems (binary or ternary alloys) with even lower melting point. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Effect of Rare Earth Metals on the Microstructure of Al-Si Based Alloys

    Directory of Open Access Journals (Sweden)

    Saleh A. Alkahtani

    2016-01-01

    Full Text Available The present study was performed on A356 alloy [Al-7 wt %Si 0.0.35 wt %Mg]. To that La and Ce were added individually or combined up to 1.5 wt % each. The results show that these rare earth elements affect only the alloy melting temperature with no marked change in the temperature of Al-Si eutectic precipitation. Additionally, rare earth metals have no modification effect up to 1.5 wt %. In addition, La and Ce tend to react with Sr leading to modification degradation. In order to achieve noticeable modification of eutectic Si particles, the concentration of rare earth metals should exceed 1.5 wt %, which simultaneously results in the precipitation of a fairly large volume fraction of insoluble intermetallics. The precipitation of these complex intermetallics is expected to have a negative effect on the alloy performance.

  9. New vistas in the determination of hydrogen in aerospace engine metal alloys

    Science.gov (United States)

    Danford, M. D.

    1986-01-01

    The application of diffusion theory to the analysis of hydrogen desorption data has been studied. From these analyses, important information concerning hydrogen solubilities and the nature of the hydrogen distributions in the metal has been obtained. Two nickel base alloys, Rene' 41 and Waspaloy, and one ferrous alloy, 4340 steel, were studied in this work. For the nickel base alloys, it was found that the hydrogen distributions after electrolytic charging conformed closely to those which would be predicted by diffusion theory. The hydrogen distributions in electrolytically charged 4340 steel, on the other hand, were essentially uniform in nature, which would not be predicted by diffusion theory. Finally, it has been found that the hydrogen desorption is completely explained by the nature of the hydrogen distribution in the metal, and that the 'fast' hydrogen is not due to surface and subsurface hydride formation, as was originally proposed.

  10. The effect of hydrogen peroxide concentration on metal ion release from dental casting alloys.

    Science.gov (United States)

    Al-Salehi, S K; Hatton, P V; Johnson, A; Cox, A G; McLeod, C

    2008-04-01

    There are concerns that tooth bleaching agents may adversely affect dental materials. The aim of this study was to test the hypothesis that increasing concentrations of hydrogen peroxide (HP) are more effective than water at increasing metal ion release from two typical dental casting alloys during bleaching. Discs (n = 28 for each alloy) were prepared by casting and heat treated to simulate a typical porcelain-firing cycle. Discs (n = 7) of each alloy were immersed in either 0%, 3%, 10% or 30% (w/v) HP solutions for 24 h at 37 degrees C. Samples were taken for metal ion release determination using inductively coupled plasma-mass spectrometry and the data analysed using a two-way anova followed by a one-way anova. The surface roughness of each disc was measured using a Talysurf contact profilometer before and after bleaching and the data analysed using a paired t-test. With the exception of gold, the differences in metal ion concentration after treatment with 0% (control) and each of 3%, 10% and 30% HP (w/v) were statistically significant (P 0.05) Exposure of the two dental casting alloys to HP solutions increased metal ion release of all the elements except gold.

  11. Effect of alloy type and surface conditioning on roughness and bond strength of metal brackets

    NARCIS (Netherlands)

    Nergiz, I.; Schmage, P.; Herrmann, W.; Ozcan, M.; Nergiz, [No Value

    2004-01-01

    The effect of 5 different surface conditioning methods on bonding of metal brackets to cast dental alloys was examined. The surface conditioning methods were fine (30-µm) or rough (125-µm) diamond bur, sandblasting (50-µm or 110-µm aluminum oxide [Al2O3]), and silica coating (30-µm silica). Fifty

  12. Corrosion behavior of metals and alloys in marine-industrial environment

    Directory of Open Access Journals (Sweden)

    Mariappan Natesan, Subbiah Selvaraj, Tharmakkannu Manickam and Gopalachari Venkatachari

    2008-01-01

    Full Text Available This work deals with atmospheric corrosion to assess the degrading effects of air pollutants on ferrous and non-ferrous metals and alloys, which are mostly used as engineering materials. An exposure study was conducted in the Tuticorin port area located on the east coast of South India, in the Gulf of Mannar with Sri Lanka to the southeast. Common engineering materials, namely mild steel, galvanized iron, Zn, Al, Cu and Cu–Zn alloys (Cu–27Zn, Cu–30Zn and Cu–37Zn, were used in the investigation. The site was chosen where the metals are exposed to marine and industrial atmospheres. Seasonal 1 to 12 month corrosion losses of these metals and alloys were determined by a weight loss method. The weight losses showed strong corrosion of mild steel, galvanized iron, Cu and Zn and minor effect on Al and Cu–Zn alloys. Linear regression analysis was conducted to study the mechanism of corrosion. The composition of corrosion products formed on the metal surfaces was identified by x-ray diffraction and Fourier transform infrared spectroscopy.

  13. Low-melting elemental metal or fusible alloy encapsulated polymerization initiator for delayed initiation

    Energy Technology Data Exchange (ETDEWEB)

    Hermes, Robert E.

    2015-12-22

    An encapsulated composition for polymerization includes an initiator composition for initiating a polymerization reaction, and a capsule prepared from an elemental metal or fusible alloy having a melting temperature from about 20.degree. C. to about 200.degree. C. A fluid for polymerization includes the encapsulated composition and a monomer. When the capsule melts or breaks open, the initiator is released.

  14. Low-melting elemental metal or fusible alloy encapsulated polymerization initiator for delayed initiation

    Energy Technology Data Exchange (ETDEWEB)

    Hermes, Robert E.

    2017-08-15

    An encapsulated composition for polymerization includes an initiator composition for initiating a polymerization reaction, and a capsule prepared from an elemental metal or fusible alloy having a melting temperature from about 20.degree. C. to about 200.degree. C. A fluid for polymerization includes the encapsulated composition and a monomer. When the capsule melts or breaks open, the initiator is released.

  15. Carbon induced metal dusting of iron-nickel-chromium alloy surfaces : a scanning auger microscopy study

    NARCIS (Netherlands)

    Palasantzas, G; DeHosson, JTM

    2004-01-01

    In this work, we present an investigation on metal dusting of iron-nickel-chromium (Fe-Ni-Cr) alloy surfaces using scanning auger microscopy. It is shown that the formation of surface Cr-oxide and the surface finish condition can strongly influence and interrupt this catastrophic phenomenon. The

  16. Bonding strength of Al/Mg/Al alloy tri-metallic laminates fabricated by ...

    Indian Academy of Sciences (India)

    Administrator

    Mg/Al laminated composites fabri- cated by hot rolling. The objectives of this study are to fabricate an Al/Mg/. Al alloy tri-metallic laminated composite material by a hot rolling method, and investigate the bonding strength and the bond interface of ...

  17. Analytical EAM alloy models for FCC metals. | Azi | Journal of the ...

    African Journals Online (AJOL)

    An analytic electron density function (r) and pair potential function (r) have been developed for FCC metals from their experimental binary alloy data. Values of the electron densities, derived from exact dilute limit heat of solution, were used to determine the pair potentials via the equation of state of Rose et al [3].

  18. Bonding of autopolymerizing acrylic resins to magnetic stainless steel alloys using metal conditioner.

    Science.gov (United States)

    Shimizu, Hiroshi; Tsue, Fumitake; Chen, Zhao-Xun; Kawaguchi, Tomohiro; Takahashi, Yutaka

    2008-02-01

    The shear bond strengths of a barbituric acid derivative-activated autopolymerizing acrylic resin to two magnetic stainless steel alloys using a metal conditioner were investigated. The surfaces of the two magnetic stainless steel alloys were abraded with 600-grit silicon carbide paper. The surface preparations were: Group 1 (without preparation), Group 2 (airborne particle abrasion with 50 microm alumina), and Group 3 (airborne particle abrasion followed by priming with a metal conditioner). The alloys were bonded with a barbituric acid derivative-activated autopolymerizing acrylic resin. For comparison, airborne particle abrasion and bonding with a tri-n-butylborane-initiated autopolymerizing acrylic resin (Group 4), as well as airborne particle abrasion followed by priming with a metal conditioner and bonding with the same resin (Group 5) were added. Half of the specimens were thermocycled up to 10,000 cycles. The shear bond strengths were determined. Group 3 had significantly improved shear bond strengths with the barbituric acid derivative-activated autopolymerizing acrylic resin to both stainless steel alloys. Although there were no significant differences in the bond strength among Groups 3-5 before thermocycling, the decrease in the bond strength of Group 3 was considerably greater than that of Groups 4 or 5 after thermocycling for both stainless steel alloys. Significant improvements in the bond strength of the barbituric acid derivative-activated autopolymerizing acrylic resin to two magnetic stainless steel alloys were achieved by airborne particle abrasion followed by priming with the metal conditioner. The bond durability to this resin, however, was inferior to that to a tri-n-butylborane-initiated autopolymerizing acrylic resin.

  19. Bond strength of resin cements to Co-Cr and Ni-Cr metal alloys using adhesive primers.

    Science.gov (United States)

    Di Francescantonio, Marina; de Oliveira, Marcelo Tavares; Garcia, Rubens Nazareno; Romanini, José Carlos; da Silva, Nelson Renato França Alves; Giannini, Marcelo

    2010-02-01

    The aim of this study was to evaluate the effectiveness of adhesive primers (APs) applied to Co-Cr and Ni-Cr metal alloys on the bond strength of resin cements to alloys. Eight cementing systems were evaluated, consisting of four resin cements (Bistite II DC, LinkMax, Panavia F 2.0, RelyX Unicem) with or without their respective APs (Metaltite, Metal Primer II, Alloy Primer, Ceramic Primer). The two types of dental alloys (Co-Cr, Ni-Cr) were cast in plate specimens (10 x 5 x 1 mm(3)) from resin patterns. After casting, the plates were sandblasted with aluminum oxide (100 microm) and randomly divided into eight groups (n = 6). Each surface to be bonded was treated with one of eight cementing systems. Three resin cement cylinders (0.5 mm high, 0.75 mm diameter) were built on each bonded metal alloy surface, using a Tygon tubing mold. After water storage for 24 hours, specimens were subjected to micro-shear testing. Data were statistically analyzed by two-way ANOVA and Tukey's studentized range test. The application of Metal Primer II resulted in a significantly higher bond strength for LinkMax resin cement when applied in both metal alloys. In general, the cementing systems had higher bond strengths in Co-Cr alloy than in Ni-Cr. The use of AP between alloy metal surfaces and resin cements did not increase the bond strength for most cementing systems evaluated.

  20. dc breakdown conditioning and breakdown rate of metals and metallic alloys under ultrahigh vacuum

    CERN Document Server

    Descoeudres, A; Calatroni, S; Taborelli, M; Wuensch, W

    2009-01-01

    RF accelerating structures of the Compact Linear Collider (CLIC) require a material capable of sustaining high electric field with a low breakdown rate and low induced damage. Because of the similarity of many aspects of DC and RF breakdown, a DC breakdown study is underway at CERN in order to test candidate materials and surface preparations, and have a better understanding of the breakdown mechanism under ultra-high vacuum in a simple setup. Conditioning speeds and breakdown fields of several metals and alloys have been measured. The average breakdown field after conditioning ranges from 100 MV/m for Al to 850 MV/m for stainless steel, and is around 170 MV/m for Cu which is the present base-line material for CLIC structures. The results indicate clearly that the breakdown field is limited by the cathode. The presence of a thin cuprous oxide film at the surface of copper electrodes significantly increases the breakdown field. On the other hand, the conditioning speed of Mo is improved by removing oxides at t...

  1. Metal-Ceramic Interfaces in Laser Coated Aluminium Alloys

    NARCIS (Netherlands)

    Zhou, X.B.; Hosson, J.Th.M. De

    1994-01-01

    A novel process was developed to firmly coat an aluminium alloy, Al6061, with α-Al2O3 by means of laser processing. In this approach a mixture of SiO2 and Al powder was used to inject in the laser melted surface of aluminium. A reaction product α-Al2O3 layer of a thickness of 100 µm was created

  2. METAL-CERAMIC INTERFACES IN LASER COATED ALUMINUM-ALLOYS

    NARCIS (Netherlands)

    ZHOU, XB; DEHOSSON, JTM

    A novel process was developed to firmly coat an aluminium alloy, Al6061, with alpha-Al2O3 by means of laser processing. In this approach a mixture of SiO2 and Al powder was used to inject in the laser melted surface of aluminium. A reaction product alpha-Al2O3 layer of a thickness of 100 mum was

  3. Corrosion of Metal-Matrix Composites with Aluminium Alloy Substrate

    Directory of Open Access Journals (Sweden)

    B. Bobic

    2010-03-01

    Full Text Available The corrosion behaviour of MMCs with aluminium alloy matrix was presented. The corrosion characteristics of boron-, graphite-, silicon carbide-, alumina- and mica- reinforced aluminium MMCs were reviewed. The reinforcing phase influence on MMCs corrosion rate as well as on various corrosion forms (galvanic, pitting, stress corrosion cracking, corrosion fatique, tribocorrosion was discussed. Some corrosion protection methods of aluminium based MMCs were described

  4. Degradation of TATP, TNT, and RDX using mechanically alloyed metals

    Science.gov (United States)

    Clausen, Christian (Inventor); Geiger, Cherie (Inventor); Sigman, Michael (Inventor); Fidler, Rebecca (Inventor)

    2012-01-01

    Bimetallic alloys prepared in a ball milling process, such as iron nickel (FeNi), iron palladium (FePd), and magnesium palladium (MgPd) provide in situ catalyst system for remediating and degrading nitro explosive compounds. Specifically, munitions, such as, 2,4,6-trinitrotoluene (TNT), cyclo-1,3,5-trimethylene-2,4,6-trinitramine (RDX), nitrocellulose and nitroglycerine that have become contaminants in groundwater, soil, and other structures are treated on site to remediate explosive contamination.

  5. Migration protocol to estimate metal exposure from mouthing copper and tin alloy objects.

    Science.gov (United States)

    Urrestarazu, Paola; Villavicencio, Germán; Opazo, Margaret; Arbildua, José; Boreiko, Craig; Delbeke, Katrien; Rodriguez, Patricio H

    2014-08-11

    Low blood lead levels previously thought to pose no health risks may have an adverse impact on the cognitive development of children. This concern has given rise to new regulatory restrictions upon lead metal containing products intended for child use. However few reliable experimental testing methods to estimate exposure levels from these materials are available. The present work describes a migration test using a mimetic saliva fluid to estimate the chronic exposure of children to metals such as lead while mouthing metallic objects. The surrogate saliva medium was composed of: 150 mM NaCl, 0.16% porcine Mucin and 5 mM buffer MOPS, adjusted to pH 7.2. Alloys samples, in the form of polished metallic disc of known surface area, were subjected to an eight hours test. Two whitemetal alloys Sn/Pb/Sb/Cu and three brass alloys Cu/Zn/Pb were tested using the saliva migration protocol. In the case of the whitemetal alloys, first order release kinetics resulting in the release of 0.03 and 0.51 μg lead/cm2 after 8 hours of tests were observed, for lead contents of 0.05-0.07% and 5.5%, respectively. Brasses exhibited linear incremental release rates of 0.043, 0.175 and 0.243 μg lead/cm2h for lead contents of 0.1-0.2%, 1.7-2.2% and 3.1-3.5%, respectively. The linear regression analysis of lead release rates relative to Pb content in brasses yielded a slope of 0.08 μg lead/cm2h%Pb (r2 = 0.92). Lead release rates were used to estimate the mean daily mouthing exposure of a child to lead, according to age-specific estimates of mouthing time behavior. Calculated daily intakes were used as oral inputs for the IEUBK toxicokinetic model, predicting only marginal changes in blood lead levels (0.2 μg lead/dL or less) for children aged 0.5 to 1 years old exposed to either class of alloy. The results of this study as a whole support the use of migration data of metal ions, rather than total metal content, to estimate health risk from exposure to metals and metal alloys substances

  6. [Effect of preparation methods on the metal-porcelain bond strength of Co-Cr alloys].

    Science.gov (United States)

    Liu, Jie; Chi, Shuai; Xu, Jin; Wang, Yanyan; Zhan, Desong

    2014-04-01

    To compare the shear bond strength(SBS) of cast Co-Cr alloys and selective laser melting(SLM) Co-Cr alloys with those of dental porcelain. A dental porcelain (Vita) was applied on cast and SLM Co-Cr alloy specimens (n = 10). SBS test was conducted, and fracture mode analysis was determined. Student's t-test by SPSS 13.0 software was employed to analyze the data. The SLM Co-Cr alloy specimens had lower SBS values than the cast Co-Cr alloy specimens (P > 0.05). The metal-porcelain bond strength value of the cast group was (33.11 +/- 4.98) MPa, and that of the SLM group was (30.94 +/- 5.98) MPa. The specimens in both test groups exhibited mixed failure. The metal-porcelain system processed by SLM exhibit a bond strength that is similar to that of the cast group. This system also display a high precision.

  7. Nickel based alloys as electrocatalysts for oxygen evolution from alkaline solutions. [Metal--air batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lu, P.W.T.; Srinivasan, S.

    1977-01-01

    The slowness of the oxygen evolution reaction is one of the main reasons for significant energy losses in water electrolysis cells and secondary air--metal batteries. To date, data on the kinetics of this reaction on alloys and intermetallic compounds are sparse. In this work, mechanically polished alloys of nickel with Ir, Ru or W and Ni--Ti intermetallic compounds were studied as oxygen electrodes. Since the oxygen evolution reaction always takes place on oxide-film covered surfaces, the nature of oxide films formed on these alloys were investigated using cyclic voltametric techniques. Steady-state potentiostatic and slow potentiodynamic (at 0.1 mV/s) methods were employed to obtain the electrode kinetic parameters for the oxygen evolution reaction in 30 wt. percent KOH at 80/sup 0/C, the conditions normally used in water electrolysis cells. The peaks for the formation or reduction of oxygen-containing layers appearing on the pure metals are not always found on the alloys. The maximum decreases in oxygen overpotential at an apparent current density of 20 mA cm/sup -2/ (as compared with that on Ni) were found for the alloys of 50Ni--50Ir and 75Ni--25Ru and the intermetallic compound Ni/sub 3/Ti, these decreases being about 40, 30, and 20 mV, respectively. On the long-term polarization in the potential region of oxygen evolution, the oxygen-containing layers on Ni--Ir or Ni--Ru alloys are essentially composed of nickel oxides instead of true mixed oxide films of two components. The present work confirms that, possibly because of coverage by oxide films, there is no direct dependence of the electrocatalytic activities of the alloys on their electronic properties. 11 figures, 1 table.

  8. Does the casting mode influence microstructure, fracture and properties of different metal ceramic alloys?

    Science.gov (United States)

    Bauer, José Roberto de Oliveira; Grande, Rosa Helena Miranda; Rodrigues-Filho, Leonardo Eloy; Pinto, Marcelo Mendes; Loguercio, Alessandro Dourado

    2012-01-01

    The aim of the present study was to evaluate the tensile strength, elongation, microhardness, microstructure and fracture pattern of various metal ceramic alloys cast under different casting conditions. Two Ni-Cr alloys, Co-Cr and Pd-Ag were used. The casting conditions were as follows: electromagnetic induction under argon atmosphere, vacuum, using blowtorch without atmosphere control. For each condition, 16 specimens, each measuring 25 mm long and 2.5 mm in diameter, were obtained. Ultimate tensile strength (UTS) and elongation (EL) tests were performed using a Kratos machine. Vickers Microhardness (VM), fracture mode and microstructure were analyzed by SEM. UTS, EL and VM data were statistically analyzed using ANOVA. For UTS, alloy composition had a direct influence on casting condition of alloys (Wiron 99 and Remanium CD), with higher values shown when cast with Flame/Air (p casting condition" influenced the EL and VM results, generally presenting opposite results, i.e., alloy with high elongation value had lower hardness (Wiron 99), and casting condition with the lowest EL values had the highest VM values (blowtorch). Both factors had significant influence on the properties evaluated, and prosthetic laboratories should select the appropriate casting method for each alloy composition to obtain the desired property.

  9. Metal-insulator transition of alloyed radical cation salts, (MexEDO-TTF)2PF6

    Science.gov (United States)

    Murata, Tsuyoshi; Shao, Xiangfeng; Nakano, Yoshiaki; Yamochi, Hideki; Saito, Gunzi; Uruichi, Mikio; Yakushi, Kyuya; Tanaka, Koichiro

    2010-06-01

    Ternary radical cation salts containing ethylenedioxytetrathiafulvalene, its mono-methyl substituted derivative, and hexafluorophosphate, [(EDO-TTF)1-x(MeEDO-TTF)x]2PF6 (x=mole fraction of MeEDO-TTF, x=0.01-0.13) were prepared by electrooxidation. Mole fractions of EDO-TTF and MeEDO-TTF in EDO-TTF rich alloys were consistent with the donor mixing ratios in preparation. Crystal structures of these alloys at room temperature were isostructural to that of (EDO-TTF)2PF6, where the donor molecules formed a nearly uniform stacking column to give a quasi-one-dimensional Fermi surface. The alloys exhibited a metal-insulator transition with tetramerization within the donor stack and anion-ordering. Temperature-variable structural analysis and Raman spectra revealed that the charge-ordering took place in the low temperature phase of x=0.05 alloy, however, this feature vanished in the x=0.13 alloy. The phase transition temperature decreased with increasing x value from 279 K of pristine (EDO-TTF)2PF6 to 188 K of x=0.13 alloy.

  10. MRI compatibility of several early transition metal based alloys and its influencing factors.

    Science.gov (United States)

    Zhou, Da-Bo; Wang, Shao-Gang; Wang, Shao-Ping; Ai, Hong-Jun; Xu, Jian

    2017-02-03

    Magnetic resonance imaging (MRI) compatibility of three early transition metal (ETM) based alloys was assessed in vitro with agarose gel as a phantom, including Zr-20Nb, near-equiatomic (TiZrNbTa)90 Mo10 and Nb-60Ta-2Zr, together with pure tantalum and L605 Co-Cr alloy for comparison. The artifact extent in the MR image was quantitatively characterized according to the maximum area of 2D images and the total volume in reconstructed 3D images with a series of slices under acquisition by fast spin echo (FSE) sequence and gradient echo (GRE) sequence. It was indicated that the artifacts extent of L605 Co-Cr alloy with a higher magnetic susceptibility (χv ) was approximately 3-fold greater than that of the ETM-based alloys with χv in the range of 160-250 ppm. In the ETM group, the MRI compatibility of the materials can be ranked in a sequence of Zr-20Nb, pure tantalum, (TiZrNbTa)90 Mo10 and Nb-60Ta-2Zr. In addition, using a rabbit cadaver with the implanted tube specimens as a model for ex vivo assessment, it was confirmed that the artifact severity of Nb-60Ta-2Zr alloy is significantly reduced in comparison with the L605 alloy. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017. © 2017 Wiley Periodicals, Inc.

  11. Formation of amorphous alloys by mechanical alloying for platinum group metal-M(M=Zr or Al) system; Mechanical alloying ni yoru kikinzoku (Pd,Pt) to M(Zr aruiwa Al) tono kongo funmatsu no hishoshitsuka

    Energy Technology Data Exchange (ETDEWEB)

    Tsuzuki, T.; Arakawa, T. [Kinki Univ., Higashi-Osaka, Osaka (Japan)

    1998-08-15

    The intermetallic compounds containing precious metals such as platinum white gold are widely used in chemistry or industry as catalysts. These alloy catalysts are mainly used in grinding the materials prepared by solidifying liquids. The authors of the paper attempt to prepare alloy powders of precious metal with Zr or Al by mechanical alloying (MA). As an object of applying them on a catalyst, alloy powders of precious metals (Pd and Pt) and M (Zr or Al) are regulated by the mechanical alloying reaction, and the results show that the Pd and Pt show different MA reaction while using Al as the M, the former generates an intermetallic compound as PdAl during the halfway point of the MA reaction, but the later generates amorphous powders. But, each of them generates amorphous alloys only while using Zr and the M. As a result of differential thermal analysis and electrical resistivity measurement investigating the crystalline process of the obtained amorphous alloys, it is clarified that the Pt-Al base alloy shows higher crystalline temperature compared with the other alloys. 8 refs., 6 figs.

  12. Properties of open-cell porous metals and alloys for orthopaedic applications.

    Science.gov (United States)

    Lewis, Gladius

    2013-10-01

    One shortcoming of metals and alloys used to fabricate various components of orthopaedic systems, such as the femoral stem of a total hip joint replacement and the tibial plate of a total knee joint replacement, is well-recognized. This is that the material modulus of elasticity (E') is substantially larger than that of the contiguous cancellous bone, a consequence of which is stress shielding which, in turn, has been postulated to be implicated in a cascade of events that culminates in the principal life-limiting phenomenon of these systems, namely, aseptic loosening. Thus, over the years, a host of research programs have focused on the synthesis of metallic biomaterials whose E' can be tailored to match that of cancellous bone. The present work is a review of the extant large volume of literature on these materials, which are called open-cell porous metals/alloys (or, sometimes, metal foams or cellular materials). As such, its range is wide, covering myriad aspects such as production methods, characterization studies, in vitro evaluations, and in vivo performance. The review also includes discussion of seven areas for future research, such as parametric studies of the influence of an assortment of process variables (such as the space holder material and the laser power in the space holder method and the laser-engineered net-shaping process, respectively) on various properties (notably, permeability, fatigue strength, and corrosion resistance) of a given porous metal/alloy, innovative methods of determining fatigue strength, and modeling of corrosion behavior.

  13. Cobalt-chromium alloys in dentistry: An evaluation of metal ion release.

    Science.gov (United States)

    Lucchetti, Maria Claudia; Fratto, Giovanni; Valeriani, Federica; De Vittori, Elisabetta; Giampaoli, Saverio; Papetti, Patrizia; Romano Spica, Vincenzo; Manzon, Licia

    2015-10-01

    Metal ions released into the oral cavity from dental prosthesis alloys may damage the cellular metabolism or proliferation and cause hypersensitivity or allergies. The oral cavity environment is particularly prone to corrosion due to saliva, microorganisms, and pH variations. The purpose of this in vitro study was to evaluate the ion release of chromium, cobalt, and iron from the Co-Cr alloys used for traditionally cast and computer-aided design/computer-aided manufacturing dental devices after interaction with oral bacteria and different pH conditions. All specimens were prepared from currently available alloys, polished, and immersed in 3 different pH media (artificial saliva [pH 2.3] and 6.5% and 0.9% saline solution [pH 7.1]). Specimens were also incubated in the presence of the bacterium Eikenella corrodens. Solutions were analyzed with an atomic absorption spectrometer after 15 and 30 days in the chemical corrosion test and 30 days in the biocorrosion test to detect ions released in different solutions. An ANOVA test was used to evaluate statistically significant differences among the percentages of metal corrosion ion release values. The greatest amount of element release was seen after 30 days: 4.964 ppm of casting alloy, 2.642 ppm of milling alloy, and 2.351 ppm of laser metal sintering. With the exception of casting alloy under acidic conditions, no significant differences were found, even after exposure to bacteria. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  14. Factors affecting the strength of multipass low-alloy steel weld metal

    Science.gov (United States)

    Krantz, B. M.

    1972-01-01

    The mechanical properties of multipass high-strength steel weld metals depend upon several factors, among the most important being: (1) The interaction between the alloy composition and weld metal cooling rate which determines the as-deposited microstructure; and (2) the thermal effects of subsequent passes on each underlying pass which alter the original microstructure. The bulk properties of a multipass weld are therefore governed by both the initial microstructure of each weld pass and its subsequent thermal history. Data obtained for a high strength low alloy steel weld metal confirmed that a simple correlation exists between mechanical properties and welding conditions if the latter are in turn correlated as weld cooling rate.

  15. A study of high {Tc} superconducting ceramic/metal alloy composites

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, M.G.; Du, J.; Lee, R.M; Unsworth, J.; Hely, J.; Hodges, J. [Univ. of Technology, Sydney (Australia). Dept. of Materials Science

    1995-09-01

    High-{Tc} superconducting ceramic YBa{sub 2}Cu{sub 3}O{sub 7{minus}x}/metal alloy composites were fabricated. The metal matrix was a low melting point alloy of bismuth, lead, tin, cadmium and indium. The structure, DC electrical resistivity, AC magnetic susceptibility, levitation and mechanical strength of the composites were investigated. The influence of filler content on these properties was also studied. The composites behaved as a typical metal with the resistivity increasing with temperature increase and, further, did not undergo the characteristic superconducting transition to zero resistance that is obtained with the ceramic superconductor. On the other hand, the diamagnetic properties of the superconducting ceramic were preserved in the composites. The values of diamagnetic susceptibility and levitation force increase with the volume fraction of the superconducting material. The flexural strength of the composites is improved significantly in comparison with the ceramic superconductor.

  16. Solder for oxide layer-building metals and alloys

    Science.gov (United States)

    Kronberg, James W.

    1992-01-01

    A low temperature solder and method for soldering an oxide layer-building metal such as aluminum, titanium, tantalum or stainless steel. The comosition comprises tin and zinc; germanium as a wetting agent; preferably small amounts of copper and antimony; and a grit, such as silicon carbide. The grit abrades any oxide layer formed on the surface of the metal as the germanium penetrates beneath and loosens the oxide layer to provide good metal-to-metal contact. The germanium comprises less than aproximatley 10% by weight of the solder composition so that it provides sufficient wetting action but does not result in a melting temperature above approximately 300.degree. C. The method comprises the steps rubbing the solder against the metal surface so the grit in the solder abrades the surface while heating the surface until the solder begins to melt and the germanium penetrates the oxide layer, then brushing aside any oxide layer loosened by the solder.

  17. Frequency-Switchable Metamaterial Absorber Injecting Eutectic Gallium-Indium (EGaIn) Liquid Metal Alloy

    Science.gov (United States)

    Ling, Kenyu; Kim, Hyung Ki; Yoo, Minyeong; Lim, Sungjoon

    2015-01-01

    In this study, we demonstrated a new class of frequency-switchable metamaterial absorber in the X-band. Eutectic gallium-indium (EGaIn), a liquid metal alloy, was injected in a microfluidic channel engraved on polymethyl methacrylate (PMMA) to achieve frequency switching. Numerical simulation and experimental results are presented for two cases: when the microfluidic channels are empty, and when they are filled with liquid metal. To evaluate the performance of the fabricated absorber prototype, it is tested with a rectangular waveguide. The resonant frequency was successfully switched from 10.96 GHz to 10.61 GHz after injecting liquid metal while maintaining absorptivity higher than 98%. PMID:26561815

  18. Frequency-Switchable Metamaterial Absorber Injecting Eutectic Gallium-Indium (EGaIn) Liquid Metal Alloy.

    Science.gov (United States)

    Ling, Kenyu; Kim, Hyung Ki; Yoo, Minyeong; Lim, Sungjoon

    2015-11-06

    In this study, we demonstrated a new class of frequency-switchable metamaterial absorber in the X-band. Eutectic gallium-indium (EGaIn), a liquid metal alloy, was injected in a microfluidic channel engraved on polymethyl methacrylate (PMMA) to achieve frequency switching. Numerical simulation and experimental results are presented for two cases: when the microfluidic channels are empty, and when they are filled with liquid metal. To evaluate the performance of the fabricated absorber prototype, it is tested with a rectangular waveguide. The resonant frequency was successfully switched from 10.96 GHz to 10.61 GHz after injecting liquid metal while maintaining absorptivity higher than 98%.

  19. The solubility of hydrogen and deuterium in alloyed, unalloyed and impure plutonium metal

    Energy Technology Data Exchange (ETDEWEB)

    Richmond, Scott [Los Alamos National Laboratory; Bridgewater, Jon S [Los Alamos National Laboratory; Ward, John W [Los Alamos National Laboratory; Allen, Thomas H [Los Alamos National Laboratory

    2010-01-01

    Hydrogen is exothermically absorbed in many transition metals, all rare earths and the actinides. The hydrogen gas adsorbs, dissociates and diffuses into these metals as atomic hydrogen. Absorbed hydrogen is generally detrimental to Pu, altering its properties and greatly enhancing corrosion. Measuring the heat of solution of hydrogen in Pu and its alloys provides significant insight into the thermodynamics driving these changes. Hydrogen is present in all Pu metal unless great care is taken to avoid it. Heats of solution and formation are provided along with evidence for spinodal decomposition.

  20. The use of new PHACOMP in understanding the solidification microstructure of nickel base alloy weld metal

    Science.gov (United States)

    Cieslak, M. J.; Knorovsky, G. A.; Headley, T. J.; Romig, A. D.

    1986-12-01

    The weld metal microstructures of five commercial nickel base alloys (HASTELLOYS* C-4, C-22, and C-276, and INCONELS* 625 and 718) have been examined by electron probe microanalysis and analytical electron microscopy. It has been found that solidification terminates in many of these alloys with the formation of a constituent containing a topologically-close-packed (TCP) intermetallic phase (i.e., σ, P, Laves). Electron microprobe examination of gas-tungsten-arc welds revealed a solidification segregation pattern of Ni depletion and solute enrichment in interdendritic volumes. New PHACOMP calculations performed on these segregation profiles revealed a pattern of increasing M d (metal- d levels) in traversing from a dendrite core to an adjacent interdendritic volume. In alloys forming a terminal solidification TCP constituent, the calculated M d values in interdendritic regions were greater than the critical M d values for formation of σ as stated by Morinaga et al. Implications of the correlation between TCP phase formation and M d in the prediction of weld metal solidification microstructure, prediction of potential hot-cracking behavior, and applications in future alloy design endeavors are discussed.

  1. A chemical approach toward low temperature alloying of immiscible iron and molybdenum metals

    Energy Technology Data Exchange (ETDEWEB)

    Nazir, Rabia [Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Applied Chemistry Research Centre, Pakistan Council of Scientific and Industrial Research Laboratories Complex, Lahore 54600 (Pakistan); Ahmed, Sohail [Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Mazhar, Muhammad, E-mail: mazhar42pk@yahoo.com [Department of Chemistry, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia); Akhtar, Muhammad Javed; Siddique, Muhammad [Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan); Khan, Nawazish Ali [Material Science Laboratory, Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Shah, Muhammad Raza [HEJ Research Institute of Chemistry, University of Karachi, Karachi 75270 (Pakistan); Nadeem, Muhammad [Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan)

    2013-11-15

    Graphical abstract: - Highlights: • Low temperature pyrolysis of [Fe(bipy){sub 3}]Cl{sub 2} and [Mo(bipy)Cl{sub 4}] homogeneous powder. • Easy low temperature alloying of immiscible metals like Fe and Mo. • Uniform sized Fe–Mo nanoalloy with particle size of 48–68 nm. • Characterization by EDXRF, AFM, XRPD, magnetometery, {sup 57}Fe Mössbauer and impedance. • Alloy behaves as almost superparamagnetic obeying simple –R(CPE)– circuit. - Abstract: The present research is based on a low temperature operated feasible method for the synthesis of immiscible iron and molybdenum metals’ nanoalloy for technological applications. The nanoalloy has been synthesized by pyrolysis of homogeneous powder precipitated, from a common solvent, of the two complexes, trisbipyridineiron(II)chloride, [Fe(bipy){sub 3}]Cl{sub 2}, and bipyridinemolybedenum(IV) chloride, [Mo(bipy)Cl{sub 4}], followed by heating at 500 °C in an inert atmosphere of flowing argon gas. The resulting nanoalloy has been characterized by using EDXRF, AFM, XRD, magnetometery, {sup 57}Fe Mössbauer and impedance spectroscopies. These results showed that under provided experimental conditions iron and molybdenum metals, with known miscibility barrier, alloy together to give (1:1) single phase material having particle size in the range of 48–66 nm. The magnetism of iron is considerably reduced after alloy formation and shows its trend toward superparamagnetism. The designed chemical synthetic procedure is equally feasible for the fabrication of other immiscible metals.

  2. Gas Metal Arc Welding Using Novel CaO-Added Mg Alloy Filler Wire

    Directory of Open Access Journals (Sweden)

    Minjung Kang

    2016-07-01

    Full Text Available Novel “ECO Mg” alloys, i.e., CaO-added Mg alloys, which exhibit oxidation resistance during melting and casting processes, even without the use of beryllium or toxic protection gases such as SF6, have recently been introduced. Research on ECO Mg alloys is still continuing, and their application as welding filler metals was investigated in this study. Mechanical and metallurgical aspects of the weldments were analysed after welding, and welding behaviours such as fume generation and droplet transfer were observed during welding. The tensile strength of welds was slightly increased by adding CaO to the filler metal, which resulted from the decreased grain size in the weld metal. When welding Mg alloys, fumes have been unavoidable so far because of the low boiling temperature of Mg. Fume reduction was successfully demonstrated with a wire composed of the novel ECO Mg filler. In addition, stable droplet transfer was observed and spatter suppression could be expected by using CaO-added Mg filler wire.

  3. Stress corrosion crack initiation of alloy 182 weld metal in primary coolant - Influence of chemical composition

    Energy Technology Data Exchange (ETDEWEB)

    Calonne, O.; Foucault, M.; Steltzlen, F. [AREVA (France); Amzallag, C. [EDF SEPTEN (France)

    2011-07-01

    Nickel-base alloys 182 and 82 have been used extensively for dissimilar metal welds. Typical applications are the J-groove welds of alloy 600 vessel head penetrations, pressurizer penetrations, heater sleeves and bottom mounted instrumented nozzles as well as some safe end butt welds. While the overall performance of these weld metals has been good, during the last decade, an increasing number of cases of stress corrosion cracking of Alloy 182 weld metal have been reported in PWRs. In this context, the role of weld defects has to be examined. Their contribution in the crack initiation mechanism requires laboratory investigations with small scale characterizations. In this study, the influence of both alloy composition and weld defects on PWSCC (Stress Corrosion Cracking in Primary Water) initiation was investigated using U-bend specimens in simulated primary water at 320 C. The main results are the following: -) the chemical compositions of the weld deposits leading to a large propensity to hot cracking are not the most susceptible to PWSCC initiation, -) macroscopically, superficial defects did not evolve during successive exposures. They can be included in large corrosion cracks but their role as 'precursors' is not yet established. (authors)

  4. Effects of silanation time on shear bond strength between a gold alloy surface and metal bracket.

    Science.gov (United States)

    Jung, Min-Ho; Shon, Won-Jun; Park, Young-Seok; Chung, Shin-Hye

    2013-06-01

    We aimed to investigate the effects of silanation time on the shear bond strength (SBS) of metal brackets on gold alloy in a silicoating procedure and compare the SBS of metal brackets on gold alloy and enamel. Type III gold alloy plates were sandblasted with 30-µm silicon dioxide. Excess particles were removed with gentle air after silica coating, and silane was applied. Maxillary central-incisor metal brackets were bonded to each conditioned alloy surface with a light curing resin adhesive for 1 s, 30 s, 60 s, or 120 s after applying silane. The brackets were also bonded to 36 upper central incisors with the same adhesive. All samples were cured for 40 s with a light emitting diode curing light. The SBS was tested after 1 h and after 24 h. The adhesive remnant index (ARI) of the samples was also compared. The 60-s and 120-s silanation time groups showed a higher SBS than the other groups (p < 0.05). Samples tested after 24 h showed a significantly higher SBS than did the samples tested after 1 h (p < 0.05). The 1-s group showed higher ARI scores. The one-way analysis of variance and Student-Newman-Keuls test showed that the SBS values of the 60-s and 120-s silanation time groups were not significantly different from the SBS values of enamel. Adequate silanation time is required to produce sufficient bond strength during silicoating.

  5. Non-Gold Base Dental Casting Alloys. Volume 2. Porcelain-Fused-to-Metal Alloys.

    Science.gov (United States)

    1986-08-01

    aluminum - bronze (80-85% copper, 8-10% aluminum, 1-3% nickel, plus iron); beta -brass ." (60% copper and 40% zinc), and other lesser known entities. The...gypsum investment, plaster is the binder and silica is the refractory. Beauty-Cast and Cristobalite are examples of such investments. In general, gypsum... Cristobalite ) on heating. LIQUIDUS - The temperature above which an alloy is entirely molten. 4. LIQUIDUS RANGE - The temperature range from the

  6. Anomalous effect of small doses of ionizing radiation on metals and alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chernov, I.P.; Mamontov, A.P.; Botaki, A.A.; Cherdantsev, P.A.; Chakhlov, B.V.; Sharov, S.R.; Timoshnikov, Yu.A.; Filipenko, L.A.

    1986-09-01

    The effect of small doses of /sup 60/Co gamma rays on copper, tungsten, and WCo alloys has been investigated. A decrease in the concentration of material defects under the influence of small doses of ionizing radiation was found. Also the structural rearrangement of the crystal was found to be still in progress after irradiation ceased. The mechanism of the anomalous effect of small doses of ionizing radiation on metals and alloys is discussed in terms of the electron energy scheme. (U.K.).

  7. Creep rupture testing of alloy 617 and A508/533 base metals and weldments.

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Li, M.; Soppet, W.K.; Rink, D.L. (Nuclear Engineering Division)

    2012-01-17

    The NGNP, which is an advanced HTGR concept with emphasis on both electricity and hydrogen production, involves helium as the coolant and a closed-cycle gas turbine for power generation with a core outlet/gas turbine inlet temperature of 750-1000 C. Alloy 617 is a prime candidate for VHTR structural components such as reactor internals, piping, and heat exchangers in view of its resistance to oxidation and elevated temperature strength. However, lack of adequate data on the performance of the alloy in welded condition prompted to initiate a creep test program at Argonne National Laboratory. In addition, Testing has been initiated to evaluate the creep rupture properties of the pressure vessel steel A508/533 in air and in helium environments. The program, which began in December 2009, was certified for quality assurance NQA-1 requirements during January and February 2010. Specimens were designed and fabricated during March and the tests were initiated in April 2010. During the past year, several creep tests were conducted in air on Alloy 617 base metal and weldment specimens at temperatures of 750, 850, and 950 C. Idaho National Laboratory, using gas tungsten arc welding method with Alloy 617 weld wire, fabricated the weldment specimens. Eight tests were conducted on Alloy 617 base metal specimens and nine were on Alloy 617 weldments. The creep rupture times for the base alloy and weldment tests were up to {approx}3900 and {approx}4500 h, respectively. The results showed that the creep rupture lives of weld specimens are much longer than those for the base alloy, when tested under identical test conditions. The test results also showed that the creep strain at fracture is in the range of 7-18% for weldment samples and were much lower than those for the base alloy, under similar test conditions. In general, the weldment specimens showed more of a flat or constant creep rate region than the base metal specimens. The base alloy and the weldment exhibited tertiary creep

  8. A novel coping metal material CoCrCu alloy fabricated by selective laser melting with antimicrobial and antibiofilm properties

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Ling [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Memarzadeh, Kaveh [Institute of Dentistry, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, Newark Street, London E1 2AT (United Kingdom); Zhang, Shuyuan; Sun, Ziqing; Yang, Chunguang [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Ren, Guogang [University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Allaker, Robert P., E-mail: r.p.allaker@qmul.ac.uk [Institute of Dentistry, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, Newark Street, London E1 2AT (United Kingdom); Yang, Ke, E-mail: kyang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2016-10-01

    Objective: The aim of this study was to fabricate a novel coping metal CoCrCu alloy using a selective laser melting (SLM) technique with antimicrobial and antibiofilm activities and to investigate its microstructure, mechanical properties, corrosion resistance and biocompatibility. Methods: Novel CoCrCu alloy was fabricated using SLM from a mixture of commercial CoCr based alloy and elemental Cu powders. SLM CoCr without Cu served as control. Antibacterial activity was analyzed using standard antimicrobial tests, and antibiofilm properties were investigated using confocal laser scanning microscope. Cu distribution and microstructure were determined using scanning electron microscope, optical microscopy and X-ray diffraction. Corrosion resistance was evaluated by potential dynamic polarization and biocompatibility measured using an MTT assay. Results: SLM CoCrCu alloys were found to be bactericidal and able to inhibit biofilm formation. Other factors such as microstructure, mechanical properties, corrosion resistance and biocompatibility were similar to those of SLM CoCr alloys. Significance: The addition of appropriate amounts of Cu not only maintains normal beneficial properties of CoCr based alloys, but also provides SLM CoCrCu alloys with excellent antibacterial and antibiofilm capabilities. This material has the potential to be used as a coping metal for dental applications. - Highlights: • Novel CoCrCu alloys were fabricated by using selective laser melting (SLM). • SLM CoCrCu alloys showed satisfied antimicrobial and antibiofilm activities. • SLM CoCrCu alloys have no cytotoxic effect on normal cells. • Other properties of SLM CoCrCu alloys were similar to SLM CoCr alloys. • SLM CoCrCu alloys have the potential to be used as coping metals.

  9. Madelung energy for random metallic alloys in the coherent potential approximation

    DEFF Research Database (Denmark)

    Korzhavyi, P. A.; Ruban, Andrei; Abrikosov, I. A.

    1995-01-01

    Within the conventional single-site coherent potential approximation (CPA) used to calculate thermodynamic properties of random alloys, the effect of charge transfer is neglected. We discuss a number of recent models based on the same mathematical form but with a different prefactor β which allow...... one to include charge-transfer effects in the framework of the CPA. We show how the models work in actual calculations for selected metallic alloy systems, Al-Li, Li-Mg, and Ni-Pt, which exhibit charge transfer. We find that the so-called screened impurity model (β=1), which is derived completely...... within the mean-field single-site approximation, leads to the best agreement with experimental lattice parameter and mixing energy data for Al-Li and Li-Mg alloys. However, for the Ni-Pt system exhibiting strong ordering tendency this model seems to overestimate the Madelung energy of the completely...

  10. Joining of dissimilar metals by diffusion bonding. Titanium alloy with aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Akca, Enes [International Univ. of Sarajevo (Bosnia and Herzegovina). Research and Development Center; International Univ. of Sarajevo (Bosnia and Herzegovina). Dept. of Mechanical Engineering; Gursel, Ali [International Univ. of Sarajevo (Bosnia and Herzegovina). Dept. of Mechanical Engineering

    2017-05-01

    This paper presents a novel diffusion bonding process of commercially pure aluminum to Ti-6Al-4V alloy at 520, 560, 600 and 640 C for 30, 45 and 60 minutes under argon gas shielding without the use of interlayer. The approach is to overcome the difficulties in fusion welding of dissimilar alloys. Diffusion bonding is a dissimilar metal welding process which can be applied to the materials without causing any physical deformations. Processed samples were metallographically prepared, optically examined followed by Vickers microhardness test and subjected to tensile test in order to determine joint strength. Scanning electron microscopy and energy dispersive spectroscopy were used in this work to investigate the compositional changes across the joint region. Elemental composition of the region has been successfully defined between titanium alloy and aluminum. The maximum tensile strength was obtained from the samples bonded at the highest temperatures of 600 and 640 C.

  11. Modelling of non-metallic particles motion process in foundry alloys

    Directory of Open Access Journals (Sweden)

    P. L. Żak

    2015-04-01

    Full Text Available The behaviour of non-metallic particles in the selected composites was analysed, in the current study. The calculations of particles floating in liquids differing in viscosity were performed. Simulations based on the Stokes equation were made for spherical SiC particles and additionally the particle size influence on Reynolds number was analysed.The movement of the particles in the liquid metal matrix is strictly connected with the agglomerate formation problem.Some of collisions between non-metallic particles lead to a permanent connection between them. Creation of the two spherical particles and a metallic phase system generates the adhesion force. It was found that the adhesion force mainly depends on the surface tension of the liquid alloy and radius of non-metallic particles.

  12. Comparison of the bond strength of laser-sintered and cast base metal dental alloys to porcelain.

    Science.gov (United States)

    Akova, Tolga; Ucar, Yurdanur; Tukay, Alper; Balkaya, Mehmet Cudi; Brantley, William A

    2008-10-01

    The purpose of this study was to compare shear bond strengths of cast Ni-Cr and Co-Cr alloys and the laser-sintered Co-Cr alloy to dental porcelain. Dental porcelain was applied on two cast and one laser-sintered base metal alloy. Ten specimens were prepared for each group for bond strength comparison. ANOVA followed by Tukey HSD multiple comparison test (alpha=0.05) was used for statistical analysis. Fractured specimens were observed with a stereomicroscope to classify the type of failure after shear bond testing. While the mean shear bond strength was highest for the cast Ni-Cr metal-ceramic specimens (81.6+/-14.6 MPa), the bond strength was not significantly different (P>0.05) from that for the cast Co-Cr metal-ceramic specimens (72.9+/-14.3 MPa) and the laser-sintered Co-Cr metal-ceramic specimens (67.0+/-14.9 MPa). All metal-ceramic specimens prepared from cast Ni-Cr and Co-Cr alloys exhibit a mixed mode of cohesive and adhesive failure, whereas five of the metal-ceramic specimens prepared from the laser-sintered Co-Cr alloy exhibited the mixed failure mode and five specimens exhibited adhesive failure in the porcelain. The new laser-sintering technique for Co-Cr alloy appears promising for dental applications, but additional studies of properties of the laser-sintered alloy and fit of castings prepared by this new technique are needed before its acceptance into dental laboratory practice. Laser sintering of Co-Cr alloy seems to be an alternative technique to conventional casting of dental alloys for porcelain fused to metal restorations.

  13. REGULARITIES AND MECHANISM OF FORMATION OF STRUCTURE OF THE MECHANICALLY ALLOYED COMPOSITIONS GROUND ON THE BASIS OF METAL SYSTEMS

    Directory of Open Access Journals (Sweden)

    F. G. Lovshenko

    2014-01-01

    Full Text Available Experimentally determined regularities and mechanism of formation of structure of the mechanically alloyed compositions foundations on the basis of the widely applied in mechanical engineering metals – iron, nickel, aluminum, copper are given. 

  14. A half-metallic half-Heusler alloy having the largest atomic-like magnetic moment at optimized lattice constant

    Directory of Open Access Journals (Sweden)

    R. L. Zhang

    2016-11-01

    Full Text Available For half-Heusler alloys, the general formula is XYZ, where X can be a transition or alkali metal element, Y is another transition metal element, typically Mn or Cr, and Z is a group IV element or a pnicitide. The atomic arrangements within a unit-cell show three configurations. Before this study, most of the predictions of half-metallic properties of half-Heusler alloys at the lattice constants differing from their optimized lattice constant. Based on the electropositivity of X and electronegativity of Z for half-Heusler alloys, we found that one of the configurations of LiCrS exhibits half-metallic properties at its optimized lattice constant of 5.803Å, and has the maximum atomic-like magnetic moment of 5μB. The challenges of its growth and the effects of the spin-orbit effect in this alloy will be discussed.

  15. Thermal properties of metals alloy by electrical pyroelectric method (EPE)

    Energy Technology Data Exchange (ETDEWEB)

    Bennaji, N; Mellouki, I; Yacoubi, N, E-mail: bennajin@yahoo.f

    2010-03-01

    In present work, we propose a new technique based on uniform electrical heating of pyroelectric detector which investigated simultaneous thermal conductivity and diffusivity of samples. A new one-dimensional theoretical model was developed to determinate thermal proprieties of steel alloy. The obtained values of thermal conductivity are 13 Wm{sup -1}K{sup -1}, 18 Wm{sup -1}K{sup -1} and 24 Wm{sup -1}K{sup -1} and of thermal diffusivity are 7x10{sup -6} m{sup 2}s{sup -1}, 15x10{sup -6} m{sup 2}s{sup -1} and 8x10{sup -6} m{sup 2}s{sup -1} respectively for sheet steel, galvanized steel and stainless steel. These results are given with an uncertainty at the 1{sigma} level.

  16. Cobalt-chromium-molybdenum alloy causes metal accumulation and metallothionein up-regulation in rat liver and kidney.

    Science.gov (United States)

    Jakobsen, Stig S; Danscher, Gorm; Stoltenberg, Meredin; Larsen, Agnete; Bruun, Jens M; Mygind, Tina; Kemp, Kaare; Soballe, Kjeld

    2007-12-01

    Cobalt-chromium-molybdenum (CoCrMo) metal-on-metal hip prosthesis has had a revival due to their excellent wear properties. However, particulate wear debris and metal ions liberated from the CoCrMo alloys might cause carcinogenicity, hypersensitivity, local and general tissue toxicity, genotoxicity and inflammation-generating qualities. Nine months after implanting small pieces of CoCrMo alloy intramuscularly and intraperitoneally in rats, we analysed the accumulation of metals with a multi-element analysis, and the levels of metallothionein I/II with real-time reverse transcriptase-polymerase chain reaction in liver and kidney. We found that metal ions are liberated from CoCrMo alloys and suggest that they are released by dissolucytosis, a process where macrophages causes the metallic surface to release metal ions. Animals with intramuscular implants accumulated metal in liver and kidney and metallohionein I/II were elevated in liver tissue. The present data do not tell whether kidney and liver are the primary target organs or what possible toxicological effect the different metal ions might have, but they show that metal ions are liberated from CoCrMo alloys that are not subjected to mechanical wear and that they accumulate in liver and kidney tissue. That the liberated metal ions affect the tissues is supported by an up-regulation of the detoxifying/pacifying metalloprotein I/II in the liver.

  17. Cost Estimate for Molybdenum and Tantalum Refractory Metal Alloy Flow Circuit Concepts

    Science.gov (United States)

    Hickman, Robert R.; Martin, James J.; Schmidt, George R.; Godfroy, Thomas J.; Bryhan, A.J.

    2010-01-01

    The Early Flight Fission-Test Facilities (EFF-TF) team at NASA Marshall Space Flight Center (MSFC) has been tasked by the Naval Reactors Prime Contract Team (NRPCT) to provide a cost and delivery rough order of magnitude estimate for a refractory metal-based lithium (Li) flow circuit. The design is based on the stainless steel Li flow circuit that is currently being assembled for an NRPCT task underway at the EFF-TF. While geometrically the flow circuit is not representative of a final flight prototype, knowledge has been gained to quantify (time and cost) the materials, manufacturing, fabrication, assembly, and operations to produce a testable configuration. This Technical Memorandum (TM) also identifies the following key issues that need to be addressed by the fabrication process: Alloy selection and forming, cost and availability, welding, bending, machining, assembly, and instrumentation. Several candidate materials were identified by NRPCT including molybdenum (Mo) alloy (Mo-47.5 %Re), tantalum (Ta) alloys (T-111, ASTAR-811C), and niobium (Nb) alloy (Nb-1 %Zr). This TM is focused only on the Mo and Ta alloys, since they are of higher concern to the ongoing effort. The initial estimate to complete a Mo-47%Re system ready for testing is =$9,000k over a period of 30 mo. The initial estimate to complete a T-111 or ASTAR-811C system ready for testing is =$12,000k over a period of 36 mo.

  18. Experimental and Theoretical Investigation of Three Alloy 690 Mockup Components: Base Metal and Welding Induced Changes

    Directory of Open Access Journals (Sweden)

    Rickard R. Shen

    2014-01-01

    Full Text Available The stress corrosion cracking (SCC resistance of cold deformed thermally treated (TT Alloy 690 has been questioned in recent years. As a step towards understanding its relevancy for weld deformed Alloy 690 in operating plants, Alloy 690 base metal and heat affected zone (HAZ microstructures of three mockup components have been studied. All mockups were manufactured using commercial heats and welding procedures in order to attain results relevant to the materials in the field. Thermodynamic calculations were performed to add confidence in phase identification as well as understanding of the evolution of the microstructure with temperature. Ti(C,N banding was found in all materials. Bands with few large Ti(C,N precipitates had negligible effect on the microstructure, whereas bands consisting of numerous small precipitates were associated with locally finer grains and coarser M23C6 grain boundary carbides. The Ti(C,N remained unaffected in the HAZ while the M23C6 carbides were fully dissolved close to the fusion line. Cold deformed solution annealed Alloy 690 is believed to be a better representation of this region than cold deformed TT Alloy 690.

  19. Preparations and properties of anti-corrosion additives of water-soluble metal working fluids for aluminum alloy materials.

    Science.gov (United States)

    Watanabe, Shoji

    2008-01-01

    This short review describes various types of anti-corrosion additives of water-soluble metal working fluids for aluminum alloy materials. It is concerned with synthetic additives classified according to their functional groups; silicone compounds, carboxylic acids and dibasic acids, esters, Diels-Alder adducts, various polymers, nitrogen compounds, phosphoric esters, phosphonic acids, and others. Testing methods for water-soluble metal working fluids for aluminum alloy materials are described for a practical application in a laboratory.

  20. Review on Microstructure Analysis of Metals and Alloys Using Image Analysis Techniques

    Science.gov (United States)

    Rekha, Suganthini; Bupesh Raja, V. K.

    2017-05-01

    The metals and alloys find vast application in engineering and domestic sectors. The mechanical properties of the metals and alloys are influenced by their microstructure. Hence the microstructural investigation is very critical. Traditionally the microstructure is studied using optical microscope with suitable metallurgical preparation. The past few decades the computers are applied in the capture and analysis of the optical micrographs. The advent of computer softwares like digital image processing and computer vision technologies are a boon to the analysis of the microstructure. In this paper the literature study of the various developments in the microstructural analysis, is done. The conventional optical microscope is complemented by the use of Scanning Electron Microscope (SEM) and other high end equipments.

  1. Effect of Metal Primers on Bond Strength of a Composite Resin to Nickel-Chrome Metal Alloy.

    Science.gov (United States)

    Nima, Gabriel; Ferreira, Paulo Vitor Campos; Paula, Andreia Bolzan de; Consani, Simonides; Giannini, Marcelo

    2017-01-01

    This study evaluated the effects of three metal primers and one multi-mode adhesive system on the shear bond strength (SBS) of a flowable composite resin to nickel-chrome metal alloy (Ni-Cr). Ninety plates were cast from Ni-Cr and divided in nine groups (n=10). The surfaces were sandblasted with Al2O3 and primed with three adhesive primers: Alloy Primer (AP), Universal Primer (TP) and RelyX Ceramic Primer (CP), and a multi-mode adhesive (Scotchbond Universal, SU). The Adper Single Bond Plus (SB) and SU adhesives were also combined with adhesive primers. Control group did not have any surface treatment. The groups were: AP, AP+SB, AP+SU, TP+SB, TP+SU, CP+SB, CP+SU and SU. Composite cylinders were built on alloy surface. After 24 h, half the specimens were subjected to SBS and the other half to thermal cycling before testing. Data were analyzed by two-way ANOVA and Tukey's test (a=0.05). Failure modes were assessed by SEM observation. Higher SBS were obtained with AP and TP combined with adhesives at 24 h and the lowest one for control group. Thermocycling reduced SBS for AP, CP+SU and SU. Combination between TP and SU resulted in the highest SBS after the thermocycling. TP groups showed all types of failures and high incidence of mixed failures. The use of AP and UP metal primers before application of SU and SB adhesive systems increased the SBS of composite to Ni-Cr. These combinations between metal primers and adhesives had the highest SBS after thermocycling.

  2. Advanced constitutive relations for modeling thermo-viscoplastic behaviour of metallic alloys subjected to impact loading

    OpenAIRE

    Rodríguez Martínez, José Antonio

    2010-01-01

    In this doctoral Thesis the thermo-viscoplastic behaviour of metallic alloys used for structural protection purposes has been analyzed. The study includes the proposition of advanced constitutive relations and their integration into numerical models. These numerical models are validated for impact problems within the low-intermediate range of impact velocities (until 85 m/s). The advanced constitutive relations derived are based on the Rusinek-Klepaczko model whose validity is extended to met...

  3. Comparison of C14- and C15-Predomiated AB2 Metal Hydride Alloys for Electrochemical Applications

    Directory of Open Access Journals (Sweden)

    Kwo-Hsiung Young

    2017-07-01

    Full Text Available Herein, we present a comparison of the electrochemical hydrogen-storage characteristics of two state-of-art Laves phase-based metal hydride alloys (Zr21.5Ti12.0V10.0Cr7.5Mn8.1Co8.0Ni32.2Sn0.3Al0.4 vs. Zr25.0Ti6.5V3.9Mn22.2Fe3.8Ni38.0La0.3 prepared by induction melting and hydrogen decrepitation. The relatively high contents of lighter transition metals (V and Cr in the first composition results in an average electron density below the C14/C15 threshold ( e / a ~ 6.9 and produces a C14-predominated structure, while the average electron density of the second composition is above the C14/C15 threshold and results in a C15-predominated structure. From a combination of variations in composition, main phase structure, and degree of homogeneity, the C14-predominated alloy exhibits higher storage capacities (in both the gaseous phase and electrochemical environment, a slower activation, inferior high-rate discharge, and low-temperature performances, and a better cycle stability compared to the C15-predominated alloy. The superiority in high-rate dischargeability in the C15-predominated alloy is mainly due to its larger reactive surface area. Annealing of the C15-predominated alloy eliminates the ZrNi secondary phase completely and changes the composition of the La-containing secondary phase. While the former change sacrifices the synergetic effects, and degrades the hydrogen storage performance, the latter may contribute to the unchanged surface catalytic ability, even with a reduction in total volume of metallic nickel clusters embedded in the activated surface oxide layer. In general, the C14-predominated alloy is more suitable for high-capacity and long cycle life applications, and the C15-predominated alloy can be used in areas requiring easy activation, and better high-rate and low-temperature performances.

  4. Half-metallic ferrimagnetism in Full-Heusler alloy Mn{sub 2}CuMg

    Energy Technology Data Exchange (ETDEWEB)

    Wei Xiaoping; Deng Jianbo; Chu Shibing; Mao Geyong; Lei Tao [Department of Physics, LanZhou University, Lanzhou 730000 (China); Hu Xianru, E-mail: huxianru@lzu.edu.c [Department of Physics, LanZhou University, Lanzhou 730000 (China)

    2011-01-15

    In the paper Ab initio electronic structure calculations are applied to study the electronic structure and magnetism properties of a new Mn-based Heusler alloy Mn{sub 2}CuMg. We take into account both possible L 2{sub 1} structures (CuHg{sub 2}Ti and AlCu{sub 2}Mn types). The CuHg{sub 2}Ti-type structure is found to be energetically more favorable than the AlCu{sub 2}Mn-type structure and presents half-metallic ferrimagnetism. However, the case of exchanging X with Y atoms in generic formula loses its half-metallicity due to the symmetric surroundings. Calculations show that their total spin moment is -1{mu}{sub B} for a wide range of equilibrium lattice constants and the total spin magnetic moment is attributed mainly to the two Mn atoms, while the Cu atom is almost non-magnetic. A small total spin moment origins from the antiparallel configurations of the Mn partial moments. The CuHg{sub 2}Ti-type Mn{sub 2}CuMg alloy keeps a 100% of spin polarization of conduction electrons at the Fermi level, thus opening the way to engineer new half-metallic alloys with the desired magnetic properties.

  5. Chemical analysis of precipitates in metallic alloys using coincidence Doppler broadening of positron annihilation radiation

    CERN Document Server

    Nagai, Y; Hasegawa, M

    2000-01-01

    Two-detector coincidence Doppler broadening (CDB) method of positron annihilation radiation is applied to the study of precipitates in metals. As the first step, the CDB spectra for many kinds of elements are measured to obtain the 'fingerprint' of each element for the chemical analysis of the precipitates in metals. Utilizing the fingerprint of Cu, we made chemical analysis of nano-particles formed in the initial stage of thermal aging in a Fe-Cu alloy, and found that the particles are consisting of Cu only and free from vacancies, which demonstrates the usefulness of this method in the study of the precipitates.

  6. Physical and Mechanical Properties of W-Ni-Fe-Co Metal Foam Modified by Titanium Tungsten Carbide Alloying

    Science.gov (United States)

    Ishchenko, A. N.; Tabachenko, A. N.; Afanas'eva, S. A.; Belov, N. N.; Biryukov, Yu. A.; Burkin, V. V.; D'yachkovskii, A. S.; Rogaev, K. S.; Skosyrskii, A. B.; Yugov, N. T.

    2018-02-01

    The paper studies physical and mechanical properties of tungsten-nickel-iron-cobalt metal foam alloyed with titanium tungsten carbide. Test specimens are obtained by the liquid phase sintering of powder materials, including those containing tungsten nanopowders. High porosity metal foams are prepared through varying the porosity of powder specimens and the content of filling material. The penetration capability of cylinder projectiles made of new alloys is explored in this paper. It is shown that their penetration depth exceeds that of the prototype with relevant weight and size, made of tungsten-nickel-iron alloy, other factors being equal.

  7. Laser Nanostructurization of the Metal and Alloy Surfaces

    Science.gov (United States)

    Kanavin, Andrei; Kozlovskaya, Natalia; Krokhin, Oleg; Zavestovskaya, Irina

    2010-10-01

    The results from experimental and theoretical investigation of material pulsed laser treatment aimed at obtaining nano- and microstructured surface are presented. An experiment has been performed on the modification of indium surface using a solid-state diode-pumped laser. It has been shown that nano- and micro-size structures are formed under laser melting and fast crystallization of the metal surface. The kinetics of the crystallization of metals under superfast cooling. The distribution function for crystalline nuclei dimensions is analytically found within the framework of the classical kinetic equation in case of superfast temperature changing. The average number of particles in the crystalline nuclei and relative volume of the crystalline phase are determined as functions of thermodynamic and laser treatment regime parameters. Good agreement is observed with experimental results for ultrashort laser pulses induced micro- and nanostructures production.

  8. Aerospace Structural Metals Handbook. Volume 5. Supplement XI. Nonferrous Alloys

    Science.gov (United States)

    1978-12-01

    TD Nickel Dec 70 4116 68Ni-29Cu-3A1-0.5Ti... TD . J Cr Sep T1 1977. [,elfour Stulen, Inc. AEROSPACE STRUCTURAL METALS...SýImeraltc,yl;." Paperip.7sentd at ASMNall~c llt, Stii 1 4lv, ndSuea 0ly " S’: 7 2l5A(172 Steesgilt Nickel Base Al loy,’’ (19104) Clarek t’eptgaii’t

  9. Hydrogen-on-demand using metallic alloy nanoparticles in water.

    Science.gov (United States)

    Shimamura, Kohei; Shimojo, Fuyuki; Kalia, Rajiv K; Nakano, Aiichiro; Nomura, Ken-Ichi; Vashishta, Priya

    2014-07-09

    Hydrogen production from water using Al particles could provide a renewable energy cycle. However, its practical application is hampered by the low reaction rate and poor yield. Here, large quantum molecular dynamics simulations involving up to 16,611 atoms show that orders-of-magnitude faster reactions with higher yields can be achieved by alloying Al particles with Li. A key nanostructural design is identified as the abundance of neighboring Lewis acid-base pairs, where water-dissociation and hydrogen-production require very small activation energies. These reactions are facilitated by charge pathways across Al atoms that collectively act as a "superanion" and a surprising autocatalytic behavior of bridging Li-O-Al products. Furthermore, dissolution of Li atoms into water produces a corrosive basic solution that inhibits the formation of a reaction-stopping oxide layer on the particle surface, thereby increasing the yield. These atomistic mechanisms not only explain recent experimental findings but also predict the scalability of this hydrogen-on-demand technology at industrial scales.

  10. Spin-electronic devices with half-metallic Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Huetten, A. [Institute of Nanotechnology, Forschungszentrum Karlsruhe GmbH, P.O. Box 3640, D-76021 Karlsruhe (Germany)]. E-mail: Andreas.Huetten@fzk.de; Schmalhorst, J. [Fakultaet fuer Physik, Universitaet Bielefeld, D-33615 Bielefeld (Germany); Thomas, A. [Fakultaet fuer Physik, Universitaet Bielefeld, D-33615 Bielefeld (Germany); Kaemmerer, S. [Fakultaet fuer Physik, Universitaet Bielefeld, D-33615 Bielefeld (Germany); Sacher, M. [Fakultaet fuer Physik, Universitaet Bielefeld, D-33615 Bielefeld (Germany); Ebke, D. [Fakultaet fuer Physik, Universitaet Bielefeld, D-33615 Bielefeld (Germany); Liu, N.-N. [Fakultaet fuer Physik, Universitaet Bielefeld, D-33615 Bielefeld (Germany); Kou, X. [Fakultaet fuer Physik, Universitaet Bielefeld, D-33615 Bielefeld (Germany); Reiss, G. [Fakultaet fuer Physik, Universitaet Bielefeld, D-33615 Bielefeld (Germany)

    2006-10-26

    We have integrated Co{sub 2}MnSi as a representative of the full-Heusler compound family as one magnetic electrode into technological relevant magnetic tunnel junctions. The resulting tunnel magnetoresistance at 20 K currently achieved is 108% associated with a Co{sub 2}MnSi spin polarization of 70% clearly proving that Co{sub 2}MnSi is already superior to 3d-based magnetic elements or their alloys. The corresponding room temperature value of the tunnel magnetoresistance is 42%. The presence of a step like tunnel barrier which is already created during plasma oxidation, while preparing the AlO {sub x} tunnel barrier, has been identified as the current limitation to achieve larger tunnel magnetoresistance and hence larger spin polarization and is a direct consequence of the oxygen affinity of the Co{sub 2}MnSi-Heusler element Mn. In addition preliminarily results on Co{sub 2}FeSi as a new full-Heusler compound integrated as magnetic electrode into technological relevant magnetic tunnel junctions are shown and discussed.

  11. Microstructure and mechanical behavior of metal injection molded Ti-Nb binary alloys as biomedical material.

    Science.gov (United States)

    Zhao, Dapeng; Chang, Keke; Ebel, Thomas; Qian, Ma; Willumeit, Regine; Yan, Ming; Pyczak, Florian

    2013-12-01

    The application of titanium (Ti) based biomedical materials which are widely used at present, such as commercially pure titanium (CP-Ti) and Ti-6Al-4V, are limited by the mismatch of Young's modulus between the implant and the bones, the high costs of products, and the difficulty of producing complex shapes of materials by conventional methods. Niobium (Nb) is a non-toxic element with strong β stabilizing effect in Ti alloys, which makes Ti-Nb based alloys attractive for implant application. Metal injection molding (MIM) is a cost-efficient near-net shape process. Thus, it attracts growing interest for the processing of Ti and Ti alloys as biomaterial. In this investigation, metal injection molding was applied to the fabrication of a series of Ti-Nb binary alloys with niobium content ranging from 10wt% to 22wt%, and CP-Ti for comparison. Specimens were characterized by melt extraction, optical microscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and transmission electron microscopy (TEM). Titanium carbide formation was observed in all the as-sintered Ti-Nb binary alloys but not in the as-sintered CP-Ti. Selected area electron diffraction (SAED) patterns revealed that the carbides are Ti2C. It was found that with increasing niobium content from 0% to 22%, the porosity increased from about 1.6% to 5.8%, and the carbide area fraction increased from 0% to about 1.8% in the as-sintered samples. The effects of niobium content, porosity and titanium carbides on mechanical properties have been discussed. The as-sintered Ti-Nb specimens exhibited an excellent combination of high tensile strength and low Young's modulus, but relatively low ductility. © 2013 Elsevier Ltd. All rights reserved.

  12. Controllable Synthesis of Band Gap-Tunable and Monolayer Transition Metal Dichalcogenide Alloys

    Directory of Open Access Journals (Sweden)

    Sheng-Han eSu

    2014-07-01

    Full Text Available The electronic and optical properties of transition metal dichalcogenide (TMD materials are directly governed by their energy gap; thus, the band gap engineering has become an important topic recently. Theoretical and some experimental results have indicated that these monolayer TMD alloys exhibit direct-gap properties and remain stable at room temperature, making them attractive for optoelectronic applications. Here we systematically compared the two approaches of forming MoS2xSe2(1-x monolayer alloys: selenization of MoS2 and sulfurization of MoSe2. The optical energy gap of as-grown CVD MoS2 can be continuously modulated from 1.86 eV (667 nm to 1.57 eV (790 nm controllable by the reaction temperature. Spectroscopic and microscopic evidences show that the Mo-S bonds can be replaced by the Mo-Se bonds in a random and homogeneous manner. By contrast, the replacement of Mo-Se by Mo-S does not randomly occur in the MoSe2 lattice, where the reaction preferentially occurs along the crystalline orientation of MoSe2 and thus the MoSe2/MoS2 biphases are easily observed in the alloys, which makes the optical band gap of these alloys distinctly different. Therefore, the selenization of metal disulfide is preferred and the proposed synthetic strategy opens up a simple route to control the atomic structure as well as optical properties of monolayer TMD alloys.

  13. Slag Metal Reactions during Submerged Arc Welding of Alloy Steels

    Science.gov (United States)

    Mitra, U.; Eagar, T. W.

    1984-01-01

    The transfer of Cr, Si, Mn, P, S, C, Ni, and Mo between the slag and the weld pool has been studied for submerged arc welds made with calcium silicate and manganese silicate fluxes. The results show a strong interaction between Cr and Si transfer but no interaction with Mn. The manganese silicate flux produces lower residual sulfur while the calcium silicate fluxes are more effective for removal of phosphorus. The effective oxygen reaction temperature lies between 1700 and 2000 °C for all elements studied. Evidence of Cr and Mn loss by metal vaporization is also presented.

  14. Alloying in an Intercalation Host: Metal Titanium Niobates as Anodes for Rechargeable Alkali-Ion Batteries.

    Science.gov (United States)

    Bhattacharyya, Aninda Jiban; Das, Suman; Swain, Diptikanta; Guru Row, Tayur N; Ahuja, Rajeev; Araujo, Rafael B; Shi, Songxin

    2017-12-27

    We discuss here a unique flexible non-carbonaceous layered host viz. metal titanium niobates, M-Ti-niobate (Ti: Titanium; M: Al3+, Pb2+, Sb3+, Ba2+, Mg2+) which can synergistically store both lithium-ions and sodium-ions via simultaneous intercalation and alloying mechanisms. M-Ti-niobate is formed by ion-exchange of the K+-ions, which are specifically located inside galleries between the layers formed by edge and corner sharing TiO6 and NbO6 octahedral units in the sol-gel synthesized potassium titanium niobate (KTiNbO5). Drastic volume changes (approximately 300-400%) typically associated with alloying mechanism of storage are completely tackled chemically by the unique chemical composition and structure of the M-Ti-niobates. The free space between the adjustable Ti/Nb octahedral layers easily accommodates the volume changes. Due to the presence of an optimum amount of multivalent alloying metal ions (50-75% of total K+) in the M-Ti-niobate, efficient alloying reaction takes place directly with ions and completely eliminates any form of mechanical degradation of the electroactive particles. The M-Ti-niobate can be cycled over a wide voltage range (as low as 0.01 V) and displays remarkably stable Li+ and Na+ ion cyclability (> 2 Li+/Na+ per formula unit) for widely varying current densities over few hundreds to thousands of successive cycles. The simultaneous intercalation and alloying storage mechanisms is also studied within the density functional theory (DFT) framework. DFT expectedly shows a very small variation in the volume of Al-titanium niobate following lithium alloying. Moreover, the theoretical investigations also conclusively endorse the occurrence of the alloying process of Li-ions with the Al-ions along with the intercalation process during discharge. The M-Ti-niobates studied here demonstrates a paradigm shift in chemical design of electrodes and will pave the way for development of multitude of improved electrodes for different battery chemistries

  15. Influence of noble metal fission products and uranium on the microstructure and corrosion behaviour of D9 stainless steel–zirconium metal waste form alloy

    Energy Technology Data Exchange (ETDEWEB)

    Bairi, Lipika Rani, E-mail: lrbairi@gmail.com; Mallika, C., E-mail: mallika@igcar.gov.in; Kamachi Mudali, U., E-mail: kamachi@igcar.gov.in

    2014-05-01

    Highlights: • D9SS–Zr based Metal Waste Form (MWF) alloys were developed. • Microstructure of Noble Metal Fission Products (NMFPs) and U added MWF alloys was elucidated. • Zr-rich intermetallic phase hosts NMFP and U. • Leaching studies revealed the formation of stable hydrated passive film in NMFP–U–MWF alloys. - Abstract: Metal waste form (MWF) alloys of composition D9SS–8.5Zr, D9SS–10Zr–1NMFP and D9SS–10Zr–1NMFP–10U were prepared by casting of D9SS (Ti-modified austenitic 316 stainless steel), zirconium, NMFPs (noble metal fission products) and uranium for evaluating the influence of NMFPs and U on the microstructure and corrosion resistance of MWF alloys. Gradual increase in the hardness value was observed with the addition of NMFPs and uranium. Microstructural characterisation revealed the formation of Zr-rich intermetallic phases in these alloys which act as hosts for NMFPs and U. Fe–Zr and Ni–Zr based intermetallics were identified in D9SS–Zr and D9SS–Zr–NMFP alloys by XRD technique. In the U added alloy, UZrO{sub 2} and NiU{sub 2} were observed along with Fe–Zr and Ni–Zr intermetallics. Electrochemical corrosion monitoring confirmed active corrosion potential and higher passive current density with the addition of NMFPs and U. The MWF alloy with NMFPs showed higher break down potential with high polarization resistance revealing stable passive film.

  16. Electron Backscatter Diffraction Studies on the Formation of Superlattice Metal Hydride Alloys

    Directory of Open Access Journals (Sweden)

    Shuli Yan

    2017-12-01

    Full Text Available Microstructures of a series of La-Mg-Ni-based superlattice metal hydride alloys produced by a novel method of interaction of a LaNi5 alloy and Mg vapor were studied using a combination of X-ray energy dispersive spectroscopy and electron backscatter diffraction. The conversion rate of LaNi5 increased from 86.8% into 98.2%, and the A2B7 phase abundance increased from 42.5 to 45.8 wt % and reduced to 39.2 wt % with the increase in process time from four to 32 h. During the first stage of reaction, Mg formed discrete grains with the same orientation, which was closely related to the orientation of the host LaNi5 alloy. Mg then diffused through the ab-phase of LaNi5 and formed the AB2, AB3, and A2B7 phases. Diffusion of Mg stalled at the grain boundary of the host LaNi5 alloy. Good alignments in the c-axis between the newly formed superlattice phases and LaNi5 were observed. The density of high-angle grain boundary decreased with the increase in process time and was an indication of lattice cracking.

  17. Direct Metal Deposition of Refractory High Entropy Alloy MoNbTaW

    Science.gov (United States)

    Dobbelstein, Henrik; Thiele, Magnus; Gurevich, Evgeny L.; George, Easo P.; Ostendorf, Andreas

    Alloying of refractory high entropy alloys (HEAs) such as MoNbTaW is usually done by vacuum arc melting (VAM) or powder metallurgy (PM) due to the high melting points of the elements. Machining to produce the final shape of parts is often needed after the PM process. Casting processes, which are often used for aerospace components (turbine blades, vanes), are not possible. Direct metal deposition (DMD) is an additive manufacturing technique used for the refurbishment of superalloy components, but generating these components from the bottom up is also of current research interest. MoNbTaW possesses high yield strength at high temperatures and could be an alternative to state-of-the-art materials. In this study, DMD of an equimolar mixture of elemental powders was performed with a pulsed Nd:YAG laser. Single wall structures were built, deposition strategies developed and the microstructure of MoNbTaW was analyzed by back scattered electrons (BSE) and energy dispersive X-ray (EDX) spectroscopy in a scanning electron microscope. DMD enables the generation of composition gradients by using dynamic powder mixing instead of pre-alloyed powders. However, the simultaneous handling of several elemental or pre-alloyed powders brings new challenges to the deposition process. The influence of thermal properties, melting point and vapor pressure on the deposition process and chemical composition will be discussed.

  18. Fatigue Properties of Welded Butt Joint and Base Metal of MB8 Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    Ying-xia YU

    2016-09-01

    Full Text Available The fatigue properties of welded butt joint and base metal of MB8 magnesium alloy were investigated. The comparative fatigue tests were carried out using EHF-EM200K2-070-1A fatigue testing machine for both welded butt joint and base metal specimens with the same size and shape. The fatigue fractures were observed and analyzed by a scanning electron microscope of 6360 LA type. The experimental results show that the fatigue performance of the welded butt joint of MB8 magnesium alloy is sharply decreased. The conditional fatigue limit (1×107 of base metal and welded butt joint is about 69.41 and 32.76 MPa, respectively. The conditional fatigue limit (1×107 of the welded butt joint is 47.2 % of that of base metal. The main reasons are that the welding can lead to stress concentration in the weld toe area, tensile welding residual stress in the welded joint, as well as grain coarsening in the welding seam. The cleavage steps or quasi-cleavage patterns present on the fatigue fracture surface, indicating the fracture type of the welded butt joint belongs to a brittle fracture.DOI: http://dx.doi.org/10.5755/j01.ms.22.3.9132

  19. High-Temperature Oxidation of Plutonium Surrogate Metals and Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sparks, Joshua C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Krantz, Kelsie E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Christian, Jonathan H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Washington, II, Aaron L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-07-27

    The Plutonium Management and Disposition Agreement (PMDA) is a nuclear non-proliferation agreement designed to remove 34 tons of weapons-grade plutonium from Russia and the United States. While several removal options have been proposed since the agreement was first signed in 2000, processing the weapons-grade plutonium to mixed-oxide (MOX) fuel has remained the leading candidate for achieving the goals of the PMDA. However, the MOX program has received its share of criticisms, which causes its future to be uncertain. One alternative pathway for plutonium disposition would involve oxidizing the metal followed by impurity down blending and burial in the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. This pathway was investigated by use of a hybrid microwave and a muffle furnace with Fe and Al as surrogate materials. Oxidation occurred similarly in the microwave and muffle furnace; however, the microwave process time was significantly faster.

  20. Microstructural analysis of Co-Cr dental alloy at the metal-porcelain interface: a pilot study.

    Science.gov (United States)

    Li, K C; Ting, S; Prior, D J; Waddell, J N; Swain, M V

    2014-12-01

    The purpose of the study was to observe whether conventional porcelain firings had an effect on the underlying microstructure of cobalt-chromium alloys used in porcelain-fused-to-metal systems. One as cast (non-veneered) and two porcelain veneered Co-Cr specimens layered with and without tungsten(W)-metal conditioner were manufactured and analysed. Electron backscatter diffraction was used to determine the crystal structures and grain size across the porcelain-fused-to-metal interface. No difference was found in the microstructure of the alloy in both with and without W-metal conditioner. For the porcelain fired specimens, disparately sized granular structures were observed adjacent to the metal-porcelain interfaces compared to the bulk of the metal. Ellipsoid shaped grains at the alloy surface ranged between 1-11 μm in diameter and averaged 2.70 μm (SD: 2.17 μm) for the specimen layered with W-metal conditioner and 2.86 μm (SD: 1.85 μm) for the specimen layered without W-metal conditioner. Grains located in the bulk were > 200 μm with dendritic-like features. The depth of the fine grain structure adjacent to the surface had an average depth of 15 μm. The crystal structure of the surface layer was found to be predominantly hexagonal close-packed whereas the underlying bulk was a mixture of both face-centered cubic and hexagonal close-packed phases. For the as cast specimen, similar large grains of over 200 μm was observed but exhibited no dendritic like features. In addition, no fine grains were observed at the surface region of the as cast alloy. Conventional porcelain firings altered the interfacial and bulk microstructure of the alloy while the presence of the W-metal conditioner had no influence on the underlying alloy microstructure.

  1. Comparison of Crevice Corrosion of Fe-Based Amorphous Metal and Crystalline Ni-Cr-Mo Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Shan, X; Ha, H; Payer, J H

    2008-07-24

    The crevice corrosion behaviors of an Fe-based bulk metallic glass alloy (SAM1651) and a Ni-Cr-Mo crystalline alloy (C-22) were studied in 4M NaCl at 100 C with cyclic potentiodynamic polarization and constant potential tests. The corrosion damage morphologies, corrosion products and the compositions of corroded surfaces of these two alloys were studied with optical 3D reconstruction, Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and Auger Electron Spectroscopy (AES). It was found that the Fe-based bulk metallic glass (amorphous alloy) SAM1651 had a more positive breakdown potential and repassivation potential than crystalline alloy C-22 in cyclic potentiodynamic polarization tests and required a more positive oxidizing potential to initiate crevice corrosion in constant potential test. Once crevice corrosion initiated, the corrosion propagation of C-22 was more localized near the crevice border compared to SAM1651, and SAM1651 repassivated more readily than C-22. The EDS results indicated that the corrosion products of both alloys contained high amount of O and were enriched in Mo and Cr. The AES results indicated that a Cr-rich oxide passive film was formed on the surfaces of both alloys, and both alloys were corroded congruently.

  2. Corrosion of metals and alloys in the coastal and deep waters of the Arabian Sea and the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Sawant, S.S.; Venkat, K.; Wagh, A.B.

    Corrosion rate of mild steel (MS), stainless steel (SS), copper, brass and cupro-nickel has been determinEd. by exposing metallic coupons in coastal and oceanic waters of the Arabian Sea and Bay of Bengal. Amongst the metals and alloys under study...

  3. Evaluation of shear bond strength of composite resin to nonprecious metal alloys with different surface treatments

    Directory of Open Access Journals (Sweden)

    Yassini E.

    2007-07-01

    Full Text Available Background and Aim: Replacing fractured ceramometal restorations may be the best treatment option, but it is costly. Many different bonding systems are currently available to repair the fractured ceramometal restorations. This study compared the shear bond strength of composite to a base metal alloy using 4 bonding systems.Materials and Methods: In this experimental in vitro study, fifty discs, casted in a Ni-Cr-Be base metal alloy (Silvercast, Fulldent,were ground with 120, 400 and 600 grit sandpaper and divided equally into 5 groups receiving 5 treatments for veneering. Conventional feldspathic porcelain (Ceramco2, Dentsply Ceramco was applied on control group (PFM or group1 and the remaining metal discs were air- abraded for 15 seconds with 50 mm aluminum oxide at 45 psi and washed for 5 seconds under tap water.Then the specimens were dried by compressed air and the  groups were treated with one of the bonding systems as follows: All-Bond 2 (AB, Ceramic Primer (CP, Metal Primer II (MP and Panavia F2 (PF. An opaque composite (Foundation opaque followed by a hybrid composite (Gradia Direct was placed on the treated metal surface and light cured separately. Specimens were stored in distilled water at 370C and thermocycled prior to shear strength testing. Fractured specimens were evaluated under a stereomicroscope. Statistical analysis was performed with one way ANOVA and Tukey HSD tests. P<0.05 was considered as the level of significance.Results: Mean shear bond strengths of the groups in MPa were as follows: PFM group 38.6±2, All-Bond 2 17.06±2.85, Ceramic Primer 14.72±1.2, Metal Primer II 19.04±2.2 and Panavia F2 21.37±2.1. PFM group exhibited the highest mean shear bond strength and Ceramic Primer showed the lowest. Tukey's HSD test revealed the mean bond strength of the PFM group to be significantly higher than the other groups (P<0.001. The data for the PF group was significantly higher than AB and CP groups (P<0.05 and the shear

  4. Reactivity classification in saline solution of magnetron sputtered or EBPVD pure metallic, nitride and Al-based alloy coatings

    Energy Technology Data Exchange (ETDEWEB)

    Creus, J., E-mail: jcreus@univ-lr.fr [LEMMA, Universite de la Rochelle, Av. Michel Crepeau, F-17042 La Rochelle Cdx (France); Berziou, C.; Cohendoz, S.; Perez, A.; Rebere, C.; Reffass, M.; Touzain, S. [LEMMA, Universite de la Rochelle, Av. Michel Crepeau, F-17042 La Rochelle Cdx (France); Allely, C. [Arcelor Mittal, Voie Romaine, BP 30320, F-57283 Maizieres les Metz Cdx (France); Gachon, Y.; Heau, C. [HEF R and D, Rue Benoit Fourneyron, F-42166 Andrezieux Boutheon Cdx (France); Sanchette, F. [CEA Grenoble DRT/LITEN/DTMN/LTS, 17 rue des Martyrs, F-38054 Grenoble (France); LERMPS, UTBM, F-90010 Belfort (France); Billard, A. [LERMPS, UTBM, F-90010 Belfort (France)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Morphological and structural characterisation of metals and alloys deposited by PVD. Black-Right-Pointing-Pointer Electrochemical reactivity of Al-based alloys in saline solution. Black-Right-Pointing-Pointer Influence of incorporation of transition metals on the pitting corrosion of aluminium. Black-Right-Pointing-Pointer Reactivity classification of Al coatings deposited by vacuum deposition techniques. Black-Right-Pointing-Pointer Classification of mechanical properties in terms of micro-hardness measurements. - Abstract: In this study, various metallic or nitride coatings elaborated by Electron Beam Physical Vapour Deposition (EBPVD) or magnetron sputtering techniques are characterised in terms of mechanical properties and corrosion behaviour in saline solution. The incorporation of transition metals permits to modify the mechanical or physico-chemical characteristics of aluminium coatings, so several alloying elements are compared. These alloys are also compared with pure metallic coatings and/or coatings synthesized by reactive magnetron sputtering. Evolution of microstructure of the Al based coatings was discussed versus the alloying element content. Different compositions of alloys were examined. This paper presents the synthesis of the main tendency reported during the evaluation of the mechanical and corrosion properties of these alloys. The objective is to build a reactivity classification in saline solution of several Al based coatings synthesized by vacuum deposition techniques. Combined with the classification of mechanical properties, these standards would become relevant guides in the choice of PVD coatings and/or alloys for applications exposed to saline environments. In our study, this guide is helpful in the synthesis of nanometric multilayer architectures, which proves to be a promising way to combine improved mechanical properties with sacrificial character for the future coating configurations.

  5. The dissimilar brazing of Kovar alloy to SiCp/Al composites using silver-based filler metal foil

    Science.gov (United States)

    Wang, Peng; Xu, Dongxia; Zhai, Yahong; Niu, Jitai

    2017-09-01

    Aluminum metal matrix composites with high SiC content (60 vol.% SiCp/Al MMCs) were surface metallized with a Ni-P alloy coating, and vacuum brazing between the composites and Kovar alloy were performed using rapidly cooled Ag-22.0Cu-15.9In-10.86Sn-1.84Ti (wt%) foil. The effects of Ni-P alloy coating and brazing parameters on the joint microstructures and properties were researched by SEM, EDS, and single lap shear test, respectively. Results show that Ag-Al intermetallic strips were formed in the 6063Al matrix and filler metal layer because of diffusion, and they were arranged regularly and accumulated gradually as the brazing temperature was increased ( T/°C = 550-600) or the soaking time was prolonged ( t/min = 10-50). However, excessive strips would destroy the uniformity of seams and lead to a reduced bonding strength (at most 70 MPa). Using a Ni-P alloy coating, void free joints without those strips were obtained at 560 °C after 20 min soaking time, and a higher shear strength of 90 MPa was achieved. The appropriate interface reaction ( 2 μm transition layer) that occurred along the Ni-P alloy coating/filler metal/Kovar alloy interfaces resulted in better metallurgical bonding. In this research, the developed Ag-based filler metal was suitable for brazing the dissimilar materials of Ni-P alloy-coated SiCp/Al MMCs and Kovar alloy, and capable welding parameters were also broadened.

  6. Effects of metal additives on the performance characteristics of lithium--aluminum alloy electrodes. [Sn, Pb, Cu, In

    Energy Technology Data Exchange (ETDEWEB)

    Vissers, D. R.; Anderson, K. E.; Mrazek, F. C.

    1977-01-01

    Solid lithium--aluminum alloy electrodes have shown a great deal of promise for meeting the performance requirements of negative electrodes in lithium/metal sulfide batteries for stationary energy storage and for electric vehicle propulsion. In an effort to improve the performance of the lithium--aluminum alloy electrode, investigations were conducted to determine the effect of various metal additives (tin, lead, copper, and indium) on the performance and cycle life (capacity retention) of these lithium--metal alloys. The electrodes were characterized by measuring the achievable capacity densities as a function of current density and number of cycles. The addition of 5 wt percent copper, 5 wt percent tin, or 10 wt percent lead did not markedly improve the cycle life of the lithium--metal alloy electrode; however, the tin additive improved the performance of the electrode during its first 100 cycles. In contrast, the addition of indium at the 3.9 wt percent level markedly improved the cycle life. The capacity decline of the Li--Al--3.9 wt percent In alloy was less than 0.01 percent per deep cycle, which compares with about 0.06 percent per deep cycle for the binary Li--Al alloy electrode. Preliminary studies of the indium additive at the 1 wt percent level also look very promising. Postoperative photomicrographic examinations of the active material in the lithium--metal alloy electrodes suggest that the indium additive results in a more dendritic-like material than that in the binary Li--Al alloy electrodes. 1 figure, 6 tables.

  7. Novel Bioactive Titanate Layers Formed on Ti Metal and Its Alloys by Chemical Treatments

    Directory of Open Access Journals (Sweden)

    Tadashi Kokubo

    2009-12-01

    Full Text Available Sodium titanate formed on Ti metal by NaOH and heat treatments induces apatite formation on its surface in a body environment and bonds to living bone. These treatments have been applied to porous Ti metal in artificial hip joints, and have been used clinically in Japan since 2007. Calcium titanate formed on Ti-15Zr-4Nb-4Ta alloy by NaOH, CaCl2, heat, and water treatments induces apatite formation on its surface in a body environment. Titanium oxide formed on porous Ti metal by NaOH, HCl, and heat treatments exhibits osteoinductivity as well as osteoconductivity. This is now under clinical tests for application to a spinal fusion device.

  8. Frequency-Switchable Metamaterial Absorber Injecting Eutectic Gallium-Indium (EGaIn Liquid Metal Alloy

    Directory of Open Access Journals (Sweden)

    Kenyu Ling

    2015-11-01

    Full Text Available In this study, we demonstrated a new class of frequency-switchable metamaterial absorber in the X-band. Eutectic gallium-indium (EGaIn, a liquid metal alloy, was injected in a microfluidic channel engraved on polymethyl methacrylate (PMMA to achieve frequency switching. Numerical simulation and experimental results are presented for two cases: when the microfluidic channels are empty, and when they are filled with liquid metal. To evaluate the performance of the fabricated absorber prototype, it is tested with a rectangular waveguide. The resonant frequency was successfully switched from 10.96 GHz to 10.61 GHz after injecting liquid metal while maintaining absorptivity higher than 98%.

  9. Laser deposition rates of thin films of selected metals and alloys

    DEFF Research Database (Denmark)

    Cazzaniga, Andrea Carlo; Canulescu, Stela; Schou, Jørgen

    Thin films of Cu, Zn and Sn as well as mixtures of these elements have been produced by Pulsed Laser Deposition (PLD). The deposition rate of single and multicomponent metallic targets was determined. The strength of PLD is that the stoichiometry of complex compounds, even of complicated alloys....... The experiments have been carried out at a laser wavelength of 355 nm in vacuum with a PLD chamber at DTU Fotonik, Risø Campus. The deposition rates have been measured by a quartz crystal microbalance. At a laser fluence of 2 J/cm2 the total ablated yield of copper is about 1x1015 atoms per pulse. The film...... for alloys of the different elements as well as compounds with S will be presented....

  10. Liquid metal ion source and alloy for ion emission of multiple ionic species

    Science.gov (United States)

    Clark, Jr., William M.; Utlaut, Mark W.; Wysocki, Joseph A.; Storms, Edmund K.; Szklarz, Eugene G.; Behrens, Robert G.; Swanson, Lynwood W.; Bell, Anthony E.

    1987-06-02

    A liquid metal ion source and alloy for the simultaneous ion evaporation of arsenic and boron, arsenic and phosphorus, or arsenic, boron and phosphorus. The ionic species to be evaporated are contained in palladium-arsenic-boron and palladium-arsenic-boron-phosphorus alloys. The ion source, including an emitter means such as a needle emitter and a source means such as U-shaped heater element, is preferably constructed of rhenium and tungsten, both of which are readily fabricated. The ion sources emit continuous beams of ions having sufficiently high currents of the desired species to be useful in ion implantation of semiconductor wafers for preparing integrated circuit devices. The sources are stable in operation, experience little corrosion during operation, and have long operating lifetimes.

  11. Activation Energies for Diffusion in Pure Metals and Concentrated Binary Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Toth, L. E.; Searcy, A. W.

    1963-07-16

    A modification of Le Claire's microscopic model for self-diffusion is developed in a form suitable for prediction of activation energies for diffusion in disordered substitutional solutions as well as in pure metals. Bonding is considered as a localized interaction, and the energy of bonding between atoms of different types is taken as the arithmetic mean of the energies in the pure elements. The activation energies for vacancy formation and migration in substitutional alloys are shown to depend on the empirical constants developed for self-diffusion when the equations are adjusted for the mole fractions of the two elements. The calculated results for alloy diffusion usually agree with the experimental values to within the experimental errors.

  12. Formation, Characteristics and Electrocatalytic Properties of Nanoporous Metals Formed by Dealloying of Ternary-Noble Alloys

    Science.gov (United States)

    Vega Zuniga, Adrian A.

    Nanoporous metals formed by electrochemical dealloying of silver from Ag-Au-Pt alloys, with 77 at.% silver and platinum contents of 1, 2 and 3 at.%, have been studied. The presence of platinum, which is immobile relative to gold, refine the ligament size and stabilized the nanostructure against coarsening, even under experimental conditions that would be expected to promote coarsening (e.g., exposure to high temperature, longer dealloying times). By adding only 1 at.% Pt to the alloy precursor, the ligament/pore size was reduced by 50% with respect to that in nanoporous gold (NPG), which was formed on a Ag-Au alloy with the same silver content as ternary alloys. A further decrease in the ligament size was observed by increasing the platinum content of the precursor; however, most of the improvement occurred with 1 at.% Pt. The adsorbate-induced surface segregation of platinum was also investigated for these nanoporous metals. By exposing freshly-dealloyed nanostructures to moderate temperatures in the presence of air, platinum segregated to the ligament surface; in contrast, in an inert atmosphere (Ar-H 2), platinum mostly reverted to the bulk of the ligaments. This thermally activated process was thermodynamically driven by the interaction between platinum and oxygen; however, at the desorption temperature of oxygen, platinum de-segregated from the surface. Moreover, the co-segregation of platinum and oxygen hindered the thermal coarsening of the ligaments. Finally, the electrocatalytic abilities of these nanostructures were studied towards methanol and ethanol electro-oxidation, in alkaline and acidic media, showing significantly improved response in comparison to that observed in NPG. The synergistic effect between gold and platinum atoms and the smaller feature size of the nanostructures were directly associated with this behaviour. In alkaline electrolyte, the nanostructure formed on the alloy with 1 at.% Pt showed higher catalytic response than the other two

  13. Water durability of resin bond to precious metal alloys using adhesive resins containing adhesion promoting monomers.

    Science.gov (United States)

    Kadoma, Yoshinori; Kojima, Katsunori

    2005-12-01

    Adhesive resins for precious metals were prepared by adding an adhesion promoting monomer to MMA-PMMA/TBBO resin. Precious metal alloys bonded by the adhesive resin were thermocycled 0, 1,000, 2,000, or 4,000 times in water between 4 and 60 degrees C, and tensile bond strengths were measured. Debonded metal surfaces after the tensile test were analyzed based on an area of cohesive failure. Three-way ANOVA revealed that all the three parameters--adherend, adhesive monomer, and number of thermal cycles--exhibited a significant influence on bond strength. Bond strength significantly decreased with increasing number of thermal cycles except for resin with 9,10-epithiodecyl 4-vinylbenzoate (EP8VB) to Au alloy. Mean bond strength of adhesive resin with 9,10-epithiodecyl methacrylate (EP8MA), EP8VB, or 3,4-epithiobutyl 2,2-bis(methacryloyloxymethyl)propionate (EP2BMA) exceeded 22 MPa after 4,000 thermal cycles. Analysis of debonded surfaces revealed the applicability of EP8MA, EP8VB, and EP2BMA as an adhesive monomer component of adhesive resin formulations.

  14. Amorphous metallic alloys for oxygen reduction reaction in a polymer electrolyte membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Huerta, R.; Guerra-Martinez, I.; Lopez, J.S. [Inst. Politecnico Nacional, ESIQIE, Mexico City (Mexico). Lab. de Electroquimica; Pierna, A.R. [Basque Country Univ., San Sebastian (Spain). Dept. of Chemical Engineering and Environment; Solorza-Feria, O. [Inst. Politenico Nacional, Centro de Investigacion y de Estudios Avanzados, Mexico City (Mexico). Dept. de Quimica

    2010-07-15

    Direct methanol fuel cells (DMFC) and polymer electrolyte membrane fuel cells (PEMFC) represent an important, environmentally clean energy source. This has motivated extensive research on the synthesis, characterization and evaluation of novel and stable oxygen reduction electrocatalysts for the direct four-electron transfer process to water formation. Studies have shown that amorphous alloyed compounds can be used as electrode materials in electrochemical energy conversion devices. Their use in PEMFCs can optimize the electrocatalyst loading in the membrane electrode assembly (MEA). In this study, amorphous metallic PtSn, PtRu and PtRuSn alloys were synthesized by mechanical milling and used as cathodes for the oxygen reduction reaction (ORR) in sulphuric acid and in a single PEM fuel cell. Two different powder morphologies were observed before and after the chemical activation in a hydrofluoric acid (HF) solution at 25 degrees C. The kinetics of the ORR on the amorphous catalysts were investigated. The study showed that the amorphous metallic PtSn electrocatalyst was the most active of the 3 electrodes for the cathodic reaction. Fuel cell experiments were conducted at various temperatures at 30 psi for hydrogen (H{sub 2}) and at 34 psi for oxygen (O{sub 2}). MEAs made of Nafion 115 and amorphous metallic PtSn dispersed on carbon powder in a PEMFC had a power density of 156 mW per cm{sup 2} at 0.43V and 80 degrees C. 12 refs., 1 tab., 5 figs.

  15. Influence of Gd, Dy and Fe doping on electrochemical properties of Al87Y5Ni8 amorphous metallic alloy

    Science.gov (United States)

    Bednarska, L.; Kubisztal, J.; Budniok, A.; Kovbuz, M.; Hertsyk, O.; Mika, T.; Kotur, B.

    2011-04-01

    Corrosive properties of some Al-based amorphous metallic alloys (AMA) and the relationship between the AMA composition and nature of protective layers on the surface of alloys were studied. The complex of physico-chemical methods, namely the potentiometry, voltammetry, electrochemical impedance spectroscopy and electronic microscopy, has been used. It was shown that the influence of Dy doping on the same characteristics of alloys is opposite to that of Gd. It increases corrosion resistance of Dy-containing alloys in comparison to the reference Al87Y5Ni8 alloy. Partial substitution of 4 at. % Ni by Fe causes further increase of corrosion resistance of Al87Gd5Ni4Fe4.

  16. Clean Grain Boundary Found in C14/Body-Center-Cubic Multi-Phase Metal Hydride Alloys

    OpenAIRE

    Hao-Ting Shen; Kwo-Hsiung Young; Tiejun Meng; Bendersky, Leonid A

    2016-01-01

    The grain boundaries of three Laves phase-related body-center-cubic (bcc) solid-solution, metal hydride (MH) alloys with different phase abundances were closely examined by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and more importantly, electron backscatter diffraction (EBSD) techniques. By using EBSD, we were able to identify the alignment of the crystallographic orientations of the three major phases in the alloys (C14, bcc, and B2 structures). This finding...

  17. Metallic ions released from stainless steel, nickel-free, and titanium orthodontic alloys: toxicity and DNA damage.

    Science.gov (United States)

    Ortiz, Antonio José; Fernández, Esther; Vicente, Ascensión; Calvo, José L; Ortiz, Clara

    2011-09-01

    The aims of this study were to determine the amounts of metallic ions that stainless steel, nickel-free, and titanium alloys release to a culture medium, and to evaluate the cellular viability and DNA damage of cultivated human fibroblasts with those mediums. The metals were extracted from 10 samples (each consisting of 4 buccal tubes and 20 brackets) of the 3 orthodontic alloys that were submerged for 30 days in minimum essential medium. Next, the determination of metals was performed by using inductively coupled plasma mass spectrometry, cellular viability was assessed by using the tetrazolium reduction assay (MTT assay) (3-[4,5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide), and DNA damage was determined with the Comet assay. The metals measured in all the samples were Ti(47), Cr(52), Mn(55), Co(59), Ni(60), Mo(92), Fe(56), Cu(63), Zn(66), As(75), Se(78), Cd(111), and Pb(208). The cellular viability of the cultured fibroblasts incubated for 7 days with minimum essential medium, with the stainless steel alloy submerged, was close to 0%. Moreover, high concentrations of titanium, chromium, manganese, cobalt, nickel, molybdenum, iron, copper, and zinc were detected. The nickel-free alloy released lower amounts of ions to the medium. The greatest damage in the cellular DNA, measured as the olive moment, was also produced by the stainless steel alloy followed by the nickel-free alloy. Conversely, the titanium alloy had an increased cellular viability and did not damage the cellular DNA, as compared with the control values. The titanium brackets and tubes are the most biocompatible of the 3 alloys studied. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  18. Transverse-Weld Tensile Properties of a New Al-4Cu-2Si Alloy as Filler Metal

    Science.gov (United States)

    Sampath, K.

    2009-12-01

    AA2195, an Al-Cu-Li alloy in the T8P4 age-hardened condition, is a candidate aluminum armor for future combat vehicles, as this material offers higher static strength and ballistic protection than current aluminum armor alloys. However, certification of AA2195 alloy for armor applications requires initial qualification based on the ballistic performance of welded panels in the as-welded condition. Currently, combat vehicle manufacturers primarily use gas metal arc welding (GMAW) process to meet their fabrication needs. Unfortunately, a matching GMAW consumable electrode is currently not commercially available to allow effective joining of AA2195 alloy. This initial effort focused on an innovative, low-cost, low-risk approach to identify an alloy composition suitable for effective joining of AA2195 alloy, and evaluated transverse-weld tensile properties of groove butt joints produced using the identified alloy. Selected commercial off-the-shelf (COTS) aluminum alloy filler wires were twisted to form candidate twisted filler rods. Representative test weldments were produced using AA2195 alloy, candidate twisted filler rods and gas tungsten arc welding (GTAW) process. Selected GTA weldments produced using Al-4wt.%Cu-2wt.%Si alloy as filler metal consistently provided transverse-weld tensile properties in excess of 275 MPa (40 ksi) UTS and 8% El (over 25 mm gage length), thereby showing potential for acceptable ballistic performance of as-welded panels. Further developmental work is required to evaluate in detail GMAW consumable wire electrodes based on the Al-Cu-Si system containing 4.2-5.0 wt.% Cu and 1.6-2.0 wt.% Si.

  19. Disorder dependent half-metallicity in Mn{sub 2}CoSi inverse Heusler alloy

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mukhtiyar [Department of Physics, Kurukshetra University, Kurukshetra, 136119 Haryana (India); Saini, Hardev S. [Department of Physics, M.M. University, Mullana, Ambala, 133207 Haryana (India); Thakur, Jyoti [Department of Physics, Kurukshetra University, Kurukshetra, 136119 Haryana (India); Reshak, Ali H. [Institute of Complex systems, FFPW, CENAKVA, University of South Bohemia in CB, 37333 Nove Hrady (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, Kangar, 01007 Perlis (Malaysia); Kashyap, Manish K., E-mail: manishdft@gmail.com [Department of Physics, Kurukshetra University, Kurukshetra, 136119 Haryana (India)

    2013-12-15

    Heusler alloys based thin-films often exhibit a degree of atomic disorder which leads to the lowering of spin polarization in spintronic devices. We present ab-initio calculations of atomic disorder effects on spin polarization and half-metallicity of Mn{sub 2}CoSi inverse Heusler alloy. The five types of disorder in Mn{sub 2}CoSi have been proposed and investigated in detail. The A2{sub a}-type and B2-type disorders destroy the half-metallicity whereas it sustains for all disorders concentrations in DO{sub 3a}- and A2{sub b}-type disorder and for smallest disorder concentration studied in DO{sub 3b}-type disorder. Lower formation energy/atom for A2{sub b}-type disorder than other four disorders in Mn{sub 2}CoSi advocates the stability of this disorder. The total magnetic moment shows a strong dependence on the disorder and the change in chemical environment. The 100% spin polarization even in the presence of disorders explicitly supports that these disorders shall not hinder the use of Mn{sub 2}CoSi inverse Heusler alloy in device applications. - Graphical abstract: Minority-spin gap (E{sub g↓}) and HM gap (E{sub sf}) as a function of concentrations of various possible disorder in Mn{sub 2}CoSi inverse Heusler alloy. The squares with solid line (black color)/dotted line (blue color)/dashed line (red color) reperesents E{sub g↓} for DO{sub 3a}-/DO{sub 3b}-/A2{sub b}-type disorder in Mn{sub 2}CoSi and the spheres with solid line (black color)/dottedline (blue color)/dashed line (red color) represents E{sub sf} for DO{sub 3a}-/DO{sub 3b}-/A2{sub b}-type disorder in Mn{sub 2}CoSi. - Highlights: • The DO{sub 3}- and A2-type disorders do not affect the half-metallicity in Mn{sub 2}CoSi. • The B2-type disorder solely destroys half-metallicity in Mn{sub 2}CoSi. • The A2-type disorder most probable to occur out of all three types. • The total spin magnetic moment strongly depends on the disorder concentrations.

  20. Peculiarities of the electronic transport in half-metallic Co-based Heusler alloys

    OpenAIRE

    Marchenkov, V. V.; Perevozchikova, Yu. A.; Kourov, N. I.; Irkhin, V. Yu.; Eisterer, M.; Gao, T.

    2017-01-01

    Electrical, magnetic and galvanomagnetic properties of half-metallic Heusler alloys of Co$_2$YZ (Y = Ti, V, Cr, Mn, Fe, Ni, and Z = Al, Si, Ga, Ge, In, Sn, Sb) were studied in the temperature range 4.2--900 K and in magnetic fields of up to 100 kOe. It was found that varying Y in affects strongly the electric resistivity and its temperature dependence $\\rho(T)$, while this effect is not observed upon changing Z. When Y is varied, extrema (maximum or minimum) are observed in $\\rho(T)$ near the...

  1. High-cycle Fatigue Properties of Alloy718 Base Metal and Electron Beam Welded Joint

    Science.gov (United States)

    Ono, Yoshinori; Yuri, Tetsumi; Nagashima, Nobuo; Sumiyoshi, Hideshi; Ogata, Toshio; Nagao, Naoki

    High-cycle fatigue properties of Alloy 718 plate and its electron beam (EB) welded joint were investigated at 293 K and 77 K under uniaxial loading. At 293 K, the high-cycle fatigue strength of the EB welded joint with the post heat treatment exhibited somewhat lower values than that of the base metal. The fatigue strengths of both samples basically increased at 77 K. However, in longer life region, the EB welded joint fractured from a blow hole formed in the welded zone, resulting in almost the same fatigue strength at 107 cycles as that at 293 K.

  2. Demixion in simple liquid metals alloys comparative investigation of non local and local pseudopotentials: example of LiNa

    Energy Technology Data Exchange (ETDEWEB)

    Takhloukh, A; Grosdidier, B; Hellal, S [Laboratoire de Physique des Milieux Denses, Universite de Metz, Institut de Physique -electronique et de chimie 1 BdArago, 57078 Metz cedex 3 (France); Regnaut, C [Laboratoire de Physique des Liquides et des Milieux Complexes, Universite de Paris 12, Faculte des Sciences et Technologie, 61 Av. du General de Gaulle, 94 010 Creteil cedex (France)], E-mail: regnaut@univ-parisl2.fr

    2008-02-15

    Using perturbation theory and classical molecular dynamics simulations, we study the static structure and demixing behaviour of the liquid LiNa alloy from the pseudopotential approach and different classes of models. We find that the norm conserving pseudopotential does not lead to demixing while various local models, with few adjustable parameters correctly predict the structure and spinodal unstability in the alloy. Transferability of the pseudopotential to the alloy is improved if the parameters are fitted to some bulk or structural properties of the pure metal. We find that demixion can be predicted when the structure factors of the pure liquid Li and Na are reasonably reproduced from such pseudopotentials.

  3. A novel coping metal material CoCrCu alloy fabricated by selective laser melting with antimicrobial and antibiofilm properties.

    Science.gov (United States)

    Ren, Ling; Memarzadeh, Kaveh; Zhang, Shuyuan; Sun, Ziqing; Yang, Chunguang; Ren, Guogang; Allaker, Robert P; Yang, Ke

    2016-10-01

    The aim of this study was to fabricate a novel coping metal CoCrCu alloy using a selective laser melting (SLM) technique with antimicrobial and antibiofilm activities and to investigate its microstructure, mechanical properties, corrosion resistance and biocompatibility. Novel CoCrCu alloy was fabricated using SLM from a mixture of commercial CoCr based alloy and elemental Cu powders. SLM CoCr without Cu served as control. Antibacterial activity was analyzed using standard antimicrobial tests, and antibiofilm properties were investigated using confocal laser scanning microscope. Cu distribution and microstructure were determined using scanning electron microscope, optical microscopy and X-ray diffraction. Corrosion resistance was evaluated by potential dynamic polarization and biocompatibility measured using an MTT assay. SLM CoCrCu alloys were found to be bactericidal and able to inhibit biofilm formation. Other factors such as microstructure, mechanical properties, corrosion resistance and biocompatibility were similar to those of SLM CoCr alloys. The addition of appropriate amounts of Cu not only maintains normal beneficial properties of CoCr based alloys, but also provides SLM CoCrCu alloys with excellent antibacterial and antibiofilm capabilities. This material has the potential to be used as a coping metal for dental applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. [The effect of hydrogen peroxide on the electrochemical corrosion properties and metal ions release of nickel-chromium dental alloys].

    Science.gov (United States)

    Wang, Jue; Qiao, Guang-yan

    2013-04-01

    To investigate the effect of hydrogen peroxide on the electrochemical corrosion and metal ions release of nickel-chromium dental alloys. The corrosion resistance of nickel-chromium dental alloys was compared by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curve (PD) methods in artificial saliva after immersed in different concentrations of hydrogen peroxide for 112 h. The metal ions released from nickel-chromium dental alloys to the artificial saliva were detected after electrochemical measurements using inductively coupled plasma mass spectrometry (ICP-MS). The data was statistically analyzed by analysis of variance (ANOVA) using SPSS 13.0 software package. The electrochemical experiment showed that the sequence of polarization resistance in equivalent circuit (Rct), corrosion potential (Ecorr), pitting breakdown potential (Eb), and the difference between Ecorr and Eb representing the "pseudo-passivation" (δE) of nickel-chromium alloys in artificial saliva was 30% corrosion resistance of nickel-chromium dental alloys decrease after immersed in different concentrations of hydrogen peroxide for 112 h. Nickel-chromium dental alloys are more prone to corrosion in the artificial saliva with the concentration of hydrogen peroxide increased, and more metal ions are released in the artificial saliva.

  5. Robust half-metallic properties in inverse Heusler alloys composed of 4d transition metal elements: Zr{sub 2}RhZ (Z=Al, Ga, In)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.T.; Lin, T.T. [School of Material Sciences and Engineering, Hebei University of Technology, Tianjin 300130 (China); Rozale, H. [Condensed Matter and Sustainable Development Laboratory, Physics Department, University of Sidi-Bel-Abbès, 22000 Sidi-Bel-Abbès (Algeria); Dai, X.F., E-mail: xuefangdai1976@163.com [School of Material Sciences and Engineering, Hebei University of Technology, Tianjin 300130 (China); Liu, G.D., E-mail: gdliu1978@126.com [School of Material Sciences and Engineering, Hebei University of Technology, Tianjin 300130 (China)

    2016-03-15

    A first-principles approach is used to study the electronic and magnetic properties of Zr{sub 2}RhZ (Z=Al, Ga, In) alloys in the Hg{sub 2}CuTi-type structure. The Zr{sub 2}RhZ (Z=Al, Ga, In) alloys are found to be half-metallic ferrimagnets. The half-metallicity is quite robust against hydrostatic strain and tetragonal deformation in Zr{sub 2}RhZ (Z=Al, Ga, In) alloys. The magnetization of Zr{sub 2}RhZ (Z=Al, Ga, In) alloys mainly originates from the 4d electrons of Zr atoms and follows the rule: M{sub t}=Z{sub t}−18. Zr{sub 2}Rh-based alloys do not contain any 3d transition metal element, which implies a wider field to search for new half-metallic materials. - Highlights: • Some HM materials containing 4d transition metal elements, Zr{sub 2}RhZ, have been found. • Zr{sub 2}RhZ alloys are HM ferrimagnets at their equilibrium lattice constants. • Their half-metallicity is robust against hydrostatic and tetragonal strains. • Zr{sub 2}RhZ with the Hg{sub 2}CuTi-type structure follows the SP rule M{sub t}=Z{sub t}−18. • Our results may trigger Zr-based HM materials applying in future spintronics field.

  6. Localized corrosion of high performance metal alloys in an acid/salt environment

    Science.gov (United States)

    Macdowell, L. G.; Ontiveros, C.

    1991-01-01

    Various vacuum jacketed cryogenic supply lines at the Space Shuttle launch site at Kennedy Space Center use convoluted flexible expansion joints. The atmosphere at the launch site has a very high salt content, and during a launch, fuel combustion products include hydrochloric acid. This extremely corrosive environment has caused pitting corrosion failure in the thin walled 304L stainless steel flex hoses. A search was done to find a more corrosion resistant replacement material. The study focussed on 19 metal alloys. Tests which were performed include electrochemical corrosion testing, accelerated corrosion testing in a salt fog chamber, and long term exposure at a beach corrosion testing site. Based on the results of these tests, several nickel based alloys were found to have very high resistance to this corrosive environment. Also, there was excellent agreement between the electrochemical tests and the actual beach exposure tests. This suggests that electrochemical testing may be useful for narrowing the field of potential candidate alloys before subjecting samples to long term beach exposure.

  7. High Speed Cinematography of Cracks Spreading under Failure of Amorphous Metallic Alloys

    Science.gov (United States)

    Tabachnikova, Elena

    2000-03-01

    Amorphous metallic alloys are unique high strength materials that under low temperature straining (300 - 77 K) are absolutely thermomechanically unstable against the catastrophic plastic shear. Its velocity is close to the transverse sound velocity ct. That is why experimental studying of shear crack propagation in amorphous alloy ribbons at low temperatures needs high-speed methods of observations. Samples of the NI78Si8B14 and Fe70Ni10B20 amorphous alloys ribbons were tensile tested in a pulse testing mashine. The motion of the main crack front during ductile shear failure was studied by means of a high-speed film camera (SFR-2M) with a frame frequency of 2x106 s-1. Loading of the sample was synchronized with both the pulse light source and the high-speed camera. Results of observations: a) the velocity of of shear crack propagation is close to the maximum theoretical limit 0.9 ct; b) a pulsating motion of of the crack is observed with a retardation of crack motion at the moment of branching or changing the orientation of the crack surface that became faceted; the process of shear crack propagation is step-like.

  8. Structural evaluation of a nickel base super alloy metal foam via NDE and finite element

    Science.gov (United States)

    Abdul-Aziz, Ali; Abumeri, G.; Garg, Mohit; Young, P. G.

    2008-03-01

    Cellular materials are known to be useful in the application of designing light but stiff structures. This applies to various components used in various industries such as rotorcraft blades, car bodies or portable electronic devices. Structural application of the metal foam is typically confined to light weight sandwich panels, made up of thin solid face sheets and a metallic foam core. The resulting high-stiffness structure is lighter than that constructed only out of the solid metal material. The face sheets carry the applied in-plane and bending loads and the role of the foam core is separate the face sheets to carry some of the shear stresses, while remaining integral with the face sheet. Many challenges relating to the fabrication and testing of these metal foam panels continue to exist due to some mechanical properties falling short of their theoretical potential. Hence in this study, a detailed three dimensional foam structure is generated using series of 2D Computer Tomography (CT) scans, on Haynes 25 metal foam. Series of the 2D images are utilized to construct a high precision solid model including all the fine details within the metal foam as detected by the CT scanning technique. Subsequently, a finite element analysis is then performed on an as fabricated metal foam microstructures to evaluate the foam structural durability and behavior under tensile and compressive loading conditions. The analysis includes a progressive failure analysis (PFA) using GENOA code to further assess the damage initiation, propagation, and failure. The open cell metal foam material is a cobalt-nickel-chromium-tungsten alloy that combines excellent high-temperature strength with good resistance to oxidizing environments up to 1800 °F (980 °C) for prolonged exposures. The foam is formed by a powder metallurgy process with an approximate 100 pores per inch (PPI).

  9. Generalized Rate Theory for Void and Bubble Swelling and its Application to Plutonium Metal Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Allen, P. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wolfer, W. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-16

    In the classical rate theory for void swelling, vacancies and self-interstitials are produced by radiation in equal numbers, and in addition, thermal vacancies are also generated at the sinks, primarily at edge dislocations, at voids, and at grain boundaries. In contrast, due to the high formation energy of self-interstitials for normal metals and alloys, their thermal generation is negligible, as pointed out by Bullough and Perrin. However, recent DFT calculations of the formation energy of self-interstitial atoms in bcc metals have revealed that the sum of formation and migration energies for self-interstitials atoms (SIA) is of the same order of magnitude as for vacancies. The ratio of the activation energies for thermal generation of SIA and vacancies is presented. For fcc metals, this ratio is around three, but for bcc metals it is around 1.5. Reviewing theoretical predictions of point defect properties in δ-Pu, this ratio could possibly be less than one. As a result, thermal generation of SIA in bcc metals and in plutonium must be taken into considerations when modeling the growth of voids and of helium bubbles, and the classical rate theory (CRT) for void and bubble swelling must be extended to a generalized rate theory (GRT).

  10. [Metal-ceramic bond strength of Co-Cr alloy processed by selective laser melting].

    Science.gov (United States)

    Liu, Jie; Liu, Yang; Sun, Rong; Zhan, De-song; Wang, Yan-yan

    2013-03-01

    To evaluate the metal-ceramic bond strength of a selective laser melting Co-Cr alloy. Twelve Co-Cr metal bars were prepared according to the ISO 9693 standard with Vita porcelain fused onto the centre of each bar. Then the sample bars were divided into two groups of six each. The control group was made by traditional cast process (cast group), and the experimental group was processed by selective laser melting (SLM) technology (SLM group). Metal-ceramic bonding strength and fracture mode were assessed using three-point bending test. Fracture mode analysis was determined by scanning electronic microscope/energy dispersive spectroscopy. Student's t-test was used to analyze the data in SPSS 13.0. The metal-ceramic bond strength value of the cast group was (33.45 ± 2.34) MPa, and that of the SLM group was (31.62 ± 2.34) MPa (t = 0.79, P > 0.05). A mixed fracture mode on the debonding interface of all specimens was observed, while little porcelain was reserved. The metal-ceramic system processed by SLM exhibited a bonding strength that satisfies the requirement of clinical application.

  11. Zeolite coatings on metal alloys for corrosion resistance, hydrophilicity, and microbiocidal activity

    Science.gov (United States)

    Beving, Derek Eugene

    The recent advent of polycrystalline zeolite coatings on metal alloys has heralded a paradigm shift in zeolitic application and function as well as their requisite synthesis. The prevailing paradigm for zeolite utilization and employment was through the exploitation of their uniform microporosity. We have demonstrated the utility of the non-porous as-synthesized form of high-silica-zeolite (HSZ) MFI coatings on aluminum alloys for corrosion resistance. A single chemical formulation was able to generate excellent corrosion-resistant HSZ MFI coatings on all aluminum alloys studied. Functional zeolite coatings have traditionally been synthesized as coatings comprised of single zeolite species. We have successfully generated functional zeolite hybrid coatings comprised of disparate zeolite species with controlled composition. A three-layer zeolite coating was developed to apply a low-silica-zeolite (LSZ), zeolite Y (ZY), to aluminum substrates. The middle layer was a zeolite hybrid coating of ZY crystals embedded within a MFI matrix. The mixed zeolite middle layer allowed for the adhesion of the single species HSZ MFI bottom layer to the single species LSZ ZY, top layer. A two-layer hydrophilic and antimicrobial hybrid zeolite coating on aluminum alloys was also developed. The base layer was a HSZ MFI coating and the top layer consisted of zeolite A (ZA) crystals embedded within a matrix of HSZ MFI. The ZA crystals are still present at the surface of the hybrid layer, as such; their hydrophilicity is accessible and can be exploited for their hydrophilic and antimicrobial potential. The great utility of the zeolite hybrid layer is realized with the formation of single-layer hybrid coatings on metal alloys. The hybrid coating is made of mixed inorganic crystalline species imbedded in a matrix of HSZ MFI. The inorganic species used is not limited to zeolite types; other inorganic crystalline species can be used. We have generated hybrid coatings made from LSZ ZY and HSZ

  12. Transition metal alloying effect on the phosphoric acid adsorption strength of Pt nanoparticles: an experimental and density functional theory study.

    Science.gov (United States)

    Park, Hee-Young; Lim, Dong-Hee; Yoo, Sung Jong; Kim, Hyoung-Juhn; Henkensmeier, Dirk; Kim, Jin Young; Ham, Hyung Chul; Jang, Jong Hyun

    2017-08-03

    The effect of alloying with transition metals (Ni, Co, Fe) on the adsorption strength of phosphoric acid on Pt alloy surfaces was investigated using electrochemical analysis and first-principles calculations. Cyclic voltammograms of carbon-supported Pt3M/C (M = Ni, Co, and Fe) electrocatalysts in 0.1 M HClO4 with and without 0.01 M H3PO4 revealed that the phosphoric acid adsorption charge density near the onset potential on the nanoparticle surfaces was decreased by alloying with transition metals in the order Co, Fe, Ni. First-principles calculations based on density functional theory confirmed that the adsorption strength of phosphoric acid was weakened by alloying with transition metals, in the same order as that observed in the electrochemical analysis. The simulation suggested that the weaker phosphoric acid adsorption can be attributed to a lowered density of states near the Fermi level due to alloying with transition metals.

  13. Design of nanocoatings by in situ phosphatizing reagent catalyzed polysilsesquioxane for corrosion inhibition and adhesion promotion on metal alloys

    Science.gov (United States)

    Henderson, Kimberly B.

    When a metal reacts with oxygen and water, a redox reaction happens, which will cause corrosion. Current surface pretreatment for inhibiting corrosion on metal alloys is a phosphate conversion bath. The phosphate conversion bath will generate a phosphate-chromate layer to adhere strongly to a metal substrate. However, it is toxic and unfriendly to the environment. Our group proposed an innovative coating that contains a phosphate component (ISPR-In-situ Phosphatizing Reagent) within a protective coating. The ISPR coating will form a bound phosphate layer on the metal surface acting as the corrosion barrier and enhancing adhesion into the metal surface; moreover, it is low in cost and non-toxic. Within this dissertation, there are four projects that investigate design of ISPR nanocoatings for the use of corrosion inhibition and adhesion promotion. Surface modification and adjusting concentrations of materials with the different formulations are explored. The first project focuses on the adhesion enhancement of a coating created by modifying the surface of an aluminum panel. Secondly, the next project will discuss and present the use of three rare earth element formulations as a replacement for phosphate conversion coatings on magnesium alloy, AZ61. The third project is the design of a nanocoating by using heat dissipating materials to fill in small vacant spaces in the ISPR network coating on various metal alloys. The last project, studies the strategic selection of incorporating metal components into ISPR network by the reduction potential values on several different alloys. Many methods of analysis are used; SEM, TEM, ASTM B117, ASTM D1308, ASTM D3359, EIS, and thickness probe. It was found that the addition of ISPR in the nanocoatings dramatically improves the vitality of metal alloys and these results will be presented during this dissertation.

  14. Titanium Alloy Stem as a Cause for Adverse Reaction to Metal Debris after Bipolar Hemiarthroplasty

    Directory of Open Access Journals (Sweden)

    Masaaki Sakamoto

    2014-01-01

    Full Text Available A 68-year-old male with failure of bipolar hemiarthroplasty consistent with adverse reaction to metal debris (ARMD who presented with a painful cystic lesion and lower extremity swelling was encountered. However, revision surgical findings showed no apparent cause of ARMD previously described in the literature, such as corrosion at the head-neck junction and articular abrasion. Therefore, it was difficult to make a definite diagnosis of failure secondary to ARMD, which consequently led to the decision to perform two-stage revision procedure, though the stem was firmly fixed. Postoperative analysis in the retrieval tissues showed that the metal debris mainly originated from the titanium alloy stem itself. Although this is a very rare case, one should be aware that even the well-fixed femoral components themselves have the potential to be the cause of ARMD.

  15. Synthesis of Platinum Nanotubes and Nanorings via Simultaneous Metal Alloying and Etching

    KAUST Repository

    Huang, Zhiqi

    2016-04-19

    Metallic nanotubes represent a class of hollow nanostructures with unique catalytic properties. However, the wet-chemical synthesis of metallic nanotubes remains a substantial challenge, especially for those with dimensions below 50 nm. This communication describes a simultaneous alloying-etching strategy for the synthesis of Pt nanotubes with open ends by selective etching Au core from coaxial Au/Pt nanorods. This approach can be extended for the preparation of Pt nanorings when Saturn-like Au core/Pt shell nanoparticles are used. The diameter and wall thickness of both nanotubes and nanorings can be readily controlled in the range of 14-37 nm and 2-32 nm, respectively. We further demonstrated that the nanotubes with ultrathin side walls showed superior catalytic performance in oxygen reduction reaction. © 2016 American Chemical Society.

  16. Novel metallic alloys as phase change materials for heat storage in direct steam generation applications

    Science.gov (United States)

    Nieto-Maestre, J.; Iparraguirre-Torres, I.; Velasco, Z. Amondarain; Kaltzakorta, I.; Zubieta, M. Merchan

    2016-05-01

    Concentrating Solar Power (CSP) is one of the key electricity production renewable energy technologies with a clear distinguishing advantage: the possibility to store the heat generated during the sunny periods, turning it into a dispatchable technology. Current CSP Plants use an intermediate Heat Transfer Fluid (HTF), thermal oil or inorganic salt, to transfer heat from the Solar Field (SF) either to the heat exchanger (HX) unit to produce high pressure steam that can be leaded to a turbine for electricity production, or to the Thermal Energy Storage (TES) system. In recent years, a novel CSP technology is attracting great interest: Direct Steam Generation (DSG). The direct use of water/steam as HTF would lead to lower investment costs for CSP Plants by the suppression of the HX unit. Moreover, water is more environmentally friendly than thermal oils or salts, not flammable and compatible with container materials (pipes, tanks). However, this technology also has some important challenges, being one of the major the need for optimized TES systems. In DSG, from the exergy point of view, optimized TES systems based on two sensible heat TES systems (for preheating of water and superheating vapour) and a latent heat TES system for the evaporation of water (around the 70% of energy) is the preferred solution. This concept has been extensively tested [1, 2, 3] using mainly NaNO3 as latent heat storage medium. Its interesting melting temperature (Tm) of 306°C, considering a driving temperature difference of 10°C, means TES charging steam conditions of 107 bar at 316°C and discharging conditions of 81bar at 296°C. The average value for the heat of fusion (ΔHf) of NaNO3 from literature data is 178 J/g [4]. The main disadvantage of inorganic salts is their very low thermal conductivity (0.5 W/m.K) requiring sophisticated heat exchanging designs. The use of high thermal conductivity eutectic metal alloys has been recently proposed [5, 6, 7] as a feasible alternative. Tms

  17. Compatibility of 31 metals, alloys and coatings with static Pb-17Li eutectic mixture

    Energy Technology Data Exchange (ETDEWEB)

    Feuerstein, H.; Graebner, H.; Oschinski, J.; Beyer, J.; Horn, S.; Hoerner, L.; Santo, K.

    1995-09-01

    The compatibility of 31 metals, alloys and coatings with static eutectic mixture Pb-17Li was investigated in more than 300 tests. Most of the results have not been published before. Wetting has no influence on dissolution rates. This is discussed in detail. Metals can be divided into three groups. Most stable are the refractories Nb, Ta, Mo, Re and W. Ferritic steels, Be, Fe, and V belong to the next group. However, Be is destroyed along grain boundaries. Not stable at all are Al, Ti, Zr, Y, U and their alloys. Temperature functions for solubilities in Pb-17Li were obtained for 8 elements, single -one temperature- values for 3 others. The results are in good agreement with a theoretical work of Guminski. Remarkably high are solubilities of Al, Zr, Y and U while those of the refractories are low. Also, the solubility of Pb in solid Ti was determined, adding new data points to the phase diagram. Because of the effect of mass transfer between dissimilar metals, diffusion coefficients in Pb-17Li could be calculated from dissolution rates and solubilities. Most reliable are the temperature functions for Be, Al, Fe and V. Those for Ti, Zr and U are influenced by the formation of compounds. All values are in an expected range, but not all effects can be explained. Different kinds of reaction zones were found on surfaces. New is a very thin ``chemical reaction zone``, identified for several metals during sample cleaning. It is probably formed as a first step before grain boundary attack of the eutectic. (orig.)

  18. Influence of tool speeds on dissimilar friction stir spot welding characteristics of bulk metallic glass/Mg alloy

    Science.gov (United States)

    Shin, Hyung-Seop; Jung, Yoon-Chul; Lee, Jin-Kyu

    2012-08-01

    A small-scale joining technique of dissimilar friction stir spot welding (FSSW) between bulk metallic glass and Mg alloy sheet has been tried using an apparatus which was devised with a CNC milling machine to give a precise control of tool speeds. The influence of tool speeds on the joining characteristics during FSSW was investigated. As a result, it was found that the rotation speed and plunge speed of a tool during FSSW significantly influenced the welding performance of dissimilar FSSW between bulk metallic glasses and Mg alloy.

  19. Roles of Co element in Fe-based bulk metallic glasses utilizing industrial FeB alloy as raw material

    Directory of Open Access Journals (Sweden)

    Shouyuan Wang

    2017-08-01

    Full Text Available A series of Fe-based bulk metallic glasses were fabricated by a conventional copper mold casting method using a kind of Fe-B industrial raw alloy. It is found that Fe-B-Y-Nb bulk metallic glass with 3 at% of Co addition possesses the best glass forming ability, thermal stability, hardness, magnetic property and anti-corrosion property. The hardness test result indicates a synchronically trend with glass-forming ability parameters. The excellent glass-forming ability and a combination of good mechanical and functional properties suggest that the alloys in this work might be good candidates for commercial use.

  20. Assessing mechanical properties of the dissimilar metal welding between P92 steels and alloy 617 at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. H.; Hwang, J. H.; Park, Y. S.; Kim, T. M.; Bae, D. H. [Sungkyunkwan University, Suwon (Korea, Republic of); Seo, W. B. [Institute of Mechanical Engineering, Yeungnam University, Daegu (Korea, Republic of); Han, J. W. [School of Mechanical Engineering, Hoseo University, Cheonan (Korea, Republic of)

    2016-10-15

    In this study, a new welding technology of dissimilar materials, Cr-based P92 steels and Ni-based Alloy 617 is introduced and demonstrated to investigate its reliability. Firstly, multi-pass dissimilar metal welding between P92 steel and Alloy 617 was performed using DCEN TIG welding technology, buttering welding technique and a narrow gap groove. After welding, in order to understand characteristics of the dissimilar metal welds, metallurgical micro-structures analysis by optical observation and static tensile strength assessment of the dissimilar welded joints were conducted at 700°C.

  1. The solidification microstructure of Al-Cu-Si alloys metal matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Garbellini, O.; Palacio, H. [IFIMAT-CID, Tandil (Argentina); Biloni, H. [LEMIT-CIC, La Plata (Argentina)

    1998-12-31

    The relationship between solidification microstructure and fluidity in MMC was studied. The composites were fabricated by infiltration of liquid metal into a alumina SAFFIL fibers preform under a gas pressure, using alloys of the AlCuSi system as matrices. The fluidity was measured in terms of classic foundry practice (i.e., the distance of flow liquid metal into the preform, while solidifying). The characterization of solidification microstructure in the cast composite was analyzed and correlated with the results of fluidity. The attention was particularly focused on such effects as the presence or absence of selective nucleation, the refinement of certain solidifying phases in the presence of fibers and their influence on microstructure formation and segregation of certain elements present in the liquid at the fiber matrix interface. By comparing reinforced and non reinforced zones, it was shown that the presence of fibers resulted in a refinement of the dendritic arm spacing of the {alpha}Al phase, with nucleation of Si on the fibers and without nucleation of primary Al dendrites. The results were discussed and compared with the microstructures and fluidity test of the unreinforced Al-Cu-Si alloys.

  2. [Experimental investigation of quantitatively analysing trace Mo in complex metallic alloys by laser induced breakdown spectroscopy].

    Science.gov (United States)

    Wang, Zhen-Nan; Li, Ying; Zhang, Qing-Yu; Lu, Yuan; Zheng, Rong-Er

    2011-06-01

    The quantitative analysis using laser induced breakdown spectroscopy (LIBS), lack of appropriate interior label element, is described and applied to trace element molybdenum (Mo) detection in complex metallic alloys. A Q-switched Nd : YAG laser operating at 532 nm was utilized to generate plasma and the emission was recorded by a grating spectrometer equipped with CCD, boxcar and PMT. The three peak heights of Mo I , 550.649, 553.305 and 557.045 nm, changing with Mo mass fraction in metallic alloys were measured to produce calibration curves respectively, and double blind method was used to analyse a test sample. Based on Mo I 550.649 nm line, the Mo mass fraction in the test sample was determined to be 2.229% with relative error of 5.57% in comparison with the given value of 2.111%. On using Mo I 557.045 nm line, the relative error was found to be doubled due to the overlap with Fe emission lines. While taking the total height of three atomic lines into account in analysis, the resulted error dropped to 7.58%, even better than the average of predicted concentrations based on the above three lines. The obtained results demonstrate that satisfactory precision could be obtained under a consistent experiment condition with the above scheme, even without appropriate interior label element. The methods of maintaining stable laser ablation efficiency on sample are also discussed.

  3. In Situ Alloying of Thermally Conductive Polymer Composites by Combining Liquid and Solid Metal Microadditives.

    Science.gov (United States)

    Ralphs, Matthew I; Kemme, Nicholas; Vartak, Prathamesh B; Joseph, Emil; Tipnis, Sujal; Turnage, Scott; Solanki, Kiran N; Wang, Robert Y; Rykaczewski, Konrad

    2018-01-17

    Room-temperature liquid metals (LMs) are attractive candidates for thermal interface materials (TIMs) because of their moderately high thermal conductivity and liquid nature, which allow them to conform well to mating surfaces with little thermal resistance. However, gallium-based LMs may be of concern due to the gallium-driven degradation of many metal microelectronic components. We present a three-component composite with LM, copper (Cu) microparticles, and a polymer matrix, as a cheaper, noncorrosive solution. The solid copper particles alloy with the gallium in the LM, in situ and at room temperature, immobilizing the LM and eliminating any corrosion issues of nearby components. Investigation of the structure-property-process relationship of the three-component composites reveals that the method and degree of additive blending dramatically alter the resulting thermal transport properties. In particular, microdispersion of any combination of the LM and Cu additives results in a large number of interfaces and a thermal conductivity below 2 W m -1 K -1 . In contrast, a shorter blending procedure of premixed LM and Cu particle colloid into the polymer matrix yields a composite with polydispersed filler and effective intrinsic thermal conductivities of up to 17 W m -1 K -1 (effective thermal conductivity of up to 10 W m -1 K -1 ). The LM-Cu colloid alloying into CuGa 2 provides a limited, but practical, time frame to cast the uncured composite into the desired shape, space, or void before the composite stiffens and cures with permanent characteristics.

  4. Towards High-Frequency Shape Memory Alloy Actuators Incorporating Liquid Metal Energy Circuits

    Science.gov (United States)

    Hartl, Darren; Mingear, Jacob; Bielefeldt, Brent; Rohmer, John; Zamarripa, Jessica; Elwany, Alaa

    2017-12-01

    Large shape memory alloy (SMA) actuators are currently limited to applications with low cyclic actuation frequency requirements due to their generally poor heat transfer rates. This limitation can be overcome through the use of distributed body heating methods such as induction heating or by accelerated cooling methods such as forced convection in internal cooling channels. In this work, a monolithic SMA beam actuator containing liquid gallium-indium alloy-filled channels is fabricated through additive manufacturing. These liquid metal channels enable a novel multi-physical thermal control system, allowing for increased heating and cooling rates to facilitate an increased cyclic actuation frequency. Liquid metal flowing in the channels performs the dual tasks of inductively heating the surrounding SMA material and then actively cooling the SMA via forced internal fluid convection. A coupled thermoelectric model, implemented in COMSOL, predicts a possible fivefold increase in the cyclic actuation frequency due to these increased thermal transfer rates when compared to conventional SMA forms having external heating coils and being externally cooled via forced convection. The first ever experimental prototype SMA actuator of this type is described and, even at much lower flow rates, is shown to exhibit a decrease in cooling time of 40.9%.

  5. Comparison of Shear Bond Strengths of three resin systems for a Base Metal Alloy bonded to

    Directory of Open Access Journals (Sweden)

    Jlali H

    1999-12-01

    Full Text Available Resin-bonded fixed partial dentures (F.P.D can be used for conservative treatment of partially edentulous"npatients. There are numerous studies regarding the strength of resin composite bond to base meta! alloys. Shear bond"nstrength of three resin systems were invistigated. In this study these systems consisted of: Panavia Ex, Mirage FLC and"nMarathon V. Thirty base metal specimens were prepared from rexillium III alloy and divided into three groups. Then each"ngroup was bonded to enamel of human extracted molar teeth with these systems. All of specimens were stored in water at"n37ac for 48 hours. A shear force was applied to each specimen by the instron universal testing machine. A statistical"nevaluation of the data using one-way analysis of variance showed that there was highly significant difference (P<0.01"nbetween the bond strengths of these three groups."nThe base metal specimens bonded with panavia Ex luting agent, exhibited the highest mean bond strength. Shear bond"nstrength of the specimens bonded to enamel with Mirage F1C showed lower bond strenght than panavia EX. However, the"nlowest bond strength was obtained by the specimens bonded with Marathon V.

  6. Microstructure, mechanical property and metal release of As-SLM CoCrW alloy under different solution treatment conditions.

    Science.gov (United States)

    Lu, Yanjin; Wu, Songquan; Gan, Yiliang; Zhang, Shuyuan; Guo, Sai; Lin, Junjie; Lin, Jinxin

    2015-03-01

    In the study, the microstructure, mechanical property and metal release behavior of selective laser melted CoCrW alloys under different solution treatment conditions were systemically investigated to assess their potential use in orthopedic implants. The effects of the solution treatment on the microstructure, mechanical properties and metal release were systematically studied by OM, SEM, XRD, tensile test, and ICP-AES, respectively. The XRD indicated that during the solution treatment the alloy underwent the transformation of γ-fcc to ε-hcp phase; the ε-hcp phase nearly dominated in the alloy when treated at 1200°C following the water quenching; the results from OM, SEM showed that the microstructural change was occurred under different solution treatments; solution at 1150°C with furnace cooling contributed to the formation of larger precipitates at the grain boundary regions, while the size and number of the precipitates was decreased as heated above 1100°C with the water quenching; moreover, the diamond-like structure was invisible at higher solution temperature over 1150°C following water quenching; compared with the furnace cooling, the alloy quenched by water showed excellent mechanical properties and low amount of metal release; as the alloy heated at 1200°C, the mechanical properties of the alloy reached their optimum combination at UTS=1113.6MPa, 0.2%YS=639.5MPa, and E%=20.1%, whilst showed the lower total quantity of metal release. It is suggested that a proper solution treatment is an efficient strategy for improving the mechanical properties and corrosion resistance of As-SLM CoCrW alloy that show acceptable tensile ductility. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Influence of noble metal fission products and uranium on the microstructure and corrosion behaviour of D9 stainless steel-zirconium metal waste form alloy

    Science.gov (United States)

    Bairi, Lipika Rani; Mallika, C.; Kamachi Mudali, U.

    2014-05-01

    Metal waste form (MWF) alloys of composition D9SS-8.5Zr, D9SS-10Zr-1NMFP and D9SS-10Zr-1NMFP-10U were prepared by casting of D9SS (Ti-modified austenitic 316 stainless steel), zirconium, NMFPs (noble metal fission products) and uranium for evaluating the influence of NMFPs and U on the microstructure and corrosion resistance of MWF alloys. Gradual increase in the hardness value was observed with the addition of NMFPs and uranium. Microstructural characterisation revealed the formation of Zr-rich intermetallic phases in these alloys which act as hosts for NMFPs and U. Fe-Zr and Ni-Zr based intermetallics were identified in D9SS-Zr and D9SS-Zr-NMFP alloys by XRD technique. In the U added alloy, UZrO2 and NiU2 were observed along with Fe-Zr and Ni-Zr intermetallics. Electrochemical corrosion monitoring confirmed active corrosion potential and higher passive current density with the addition of NMFPs and U. The MWF alloy with NMFPs showed higher break down potential with high polarization resistance revealing stable passive film.

  8. Preparation and Characterization of Sb2Te3 Thin Films by Coevaporation

    Directory of Open Access Journals (Sweden)

    Bin Lv

    2010-01-01

    Full Text Available Deposition of Sb2Te3 thin films on soda-lime glass substrates by coevaporation of Sb and Te is described in this paper. Sb2Te3 thin films were characterized by x-ray diffraction (XRD, x-ray fluorescence (XRF, atomic force microscopy (AFM, x-ray photoelectron spectroscopy (XPS, electrical conductivity measurements, and Hall measurements. The abnormal electrical transport behavior occurred from in situ electrical conductivity measurements. The results indicate that as-grown Sb2Te3 thin films are amorphous and undergo an amorphous-crystalline transition after annealing, and the posttreatment can effectively promote the formation of Sb-Te bond and prevent oxidation of thin film surface.

  9. Wear Behavior of Mechanically Alloyed Ti-Based Bulk Metallic Glass Composites Containing Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Yung-Sheng Lin

    2016-11-01

    Full Text Available The present paper reports the preparation and wear behavior of mechanically alloyed Ti-based bulk metallic glass composites containing carbon nanotube (CNT particles. The differential scanning calorimeter results show that the thermal stability of the amorphous matrix is affected by the presence of CNT particles. Changes in glass transition temperature (Tg and crystallization temperature (Tx suggest that deviations in the chemical composition of the amorphous matrix occurred because of a partial dissolution of the CNT species into the amorphous phase. Although the hardness of CNT/Ti50Cu28Ni15Sn7 bulk metallic glass composites is increased with the addition of CNT particles, the wear resistance of such composites is not directly proportional to their hardness, and does not follow the standard wear law. A worn surface under a high applied load shows that the 12 vol. % CNT/Ti50Cu28Ni15Sn7 bulk metallic glass composite suffers severe wear compared with monolithic Ti50Cu28Ni15Sn7 bulk metallic glass.

  10. Metal-ceramic bond strength of Co-Cr alloy fabricated by selective laser melting.

    Science.gov (United States)

    Xiang, Nan; Xin, Xian-Zhen; Chen, Jie; Wei, Bin

    2012-06-01

    This study was to evaluated the metal-ceramic bond strength of a Co-Cr dental alloy prepared using a selective laser melting (SLM) technique. Two groups comprised of twenty Co-Cr metal bars each were prepared using either a SLM or traditional lost-wax casting method. Ten bars from each group were moulded into standard ISO 9693:1999 dimensions of 25 mm × 3 mm × 0.5 mm with 1.1 mm of porcelain fused onto an 8 mm × 3 mm rectangular area in the centre of each bar. Metal-ceramic bonding was assessed using a three-point bending test. Fracture mode analysis and area fraction of adherence porcelain (AFAP) were determined by measuring Si content of specimens by SEM/EDS. Student's t-test within the groups demonstrated no significant difference for the mean bond strength between the SLM and traditional cast sample groups. While SEM/EDS analysis indicated a mixed fracture mode on the debonding interface of both the SLM and the cast groups, the SLM group showed significantly more porcelain adherence than the control group (p<0.05). The SLM metal-ceramic system exhibited a bonding strength that exceeds the requirement of ISO 9691:1999(E) and it even showed a better behaviour in porcelain adherence test comparable to traditional cast methods. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Green Inhibitors for Corrosion Protection of Metals and Alloys: An Overview

    Directory of Open Access Journals (Sweden)

    B. E. Amitha Rani

    2012-01-01

    Full Text Available Corrosion control of metals is of technical, economical, environmental, and aesthetical importance. The use of inhibitors is one of the best options of protecting metals and alloys against corrosion. The environmental toxicity of organic corrosion inhibitors has prompted the search for green corrosion inhibitors as they are biodegradable, do not contain heavy metals or other toxic compounds. As in addition to being environmentally friendly and ecologically acceptable, plant products are inexpensive, readily available and renewable. Investigations of corrosion inhibiting abilities of tannins, alkaloids, organic,amino acids, and organic dyes of plant origin are of interest. In recent years, sol-gel coatings doped with inhibitors show real promise. Although substantial research has been devoted to corrosion inhibition by plant extracts, reports on the detailed mechanisms of the adsorption process and identification of the active ingredient are still scarce. Development of computational modeling backed by wet experimental results would help to fill this void and help understand the mechanism of inhibitor action, their adsorption patterns, the inhibitor-metal surface interface and aid the development of designer inhibitors with an understanding of the time required for the release of self-healing inhibitors. The present paper consciously restricts itself mainly to plant materials as green corrosion inhibitors.

  12. The effects of primer precuring on the shear bond strength between gold alloy surfaces and metal brackets.

    Science.gov (United States)

    Shon, Won-Jun; Kim, Tae-Woo; Chung, Shin-Hye; Jung, Min-Ho

    2012-02-01

    The objective of this study was to investigate the effects of precuring of primer coated on bracket bases on the strength of bonds between metal brackets and gold alloy. Square type III gold alloy plates were sandblasted with 30 μm silicon dioxide. After silica coating, excessive particles were removed gently with air. Silane was then applied, and maxillary central incisor metal brackets were bonded to each conditioned alloy surface with Transbond XT. Half of the specimens were precured at the bracket base after primer coating and the other half was not precured before bonding to the alloy surface. After bracket positioning, samples were cured using a light emitting diode (LED) for 40 seconds. Shear bond strengths were tested and adhesive remnant index (ARI) was evaluated after 1 hour and 24 hours. The primer precuring and 24 hours group exhibited highest bond strength (12.53 MPa) and the no precuring and 1 hour group showed lowest bond strength (5.58 MPa). Precured groups showed lower ARI scores. Due to the shallow curing depth of LED light and inhibition of transillumination at the metal surface, primer precuring at the bracket base is required for secure bracket bonding on gold alloy surfaces using LED curing units.

  13. Base-metal dental casting alloy biocompatibility assessment using a human-derived three-dimensional oral mucosal model.

    LENUS (Irish Health Repository)

    McGinley, E L

    2012-01-01

    Nickel-chromium (Ni-Cr) alloys used in fixed prosthodontics have been associated with type IV Ni-induced hypersensitivity. We hypothesised that the full-thickness human-derived oral mucosa model employed for biocompatibility testing of base-metal dental alloys would provide insights into the mechanisms of Ni-induced toxicity. Primary oral keratinocytes and gingival fibroblasts were seeded onto Alloderm™ and maintained until full thickness was achieved prior to Ni-Cr and cobalt-chromium (Co-Cr) alloy disc exposure (2-72 h). Biocompatibility assessment involved histological analyses with cell viability measurements, oxidative stress responses, inflammatory cytokine expression and cellular toxicity analyses. Inductively coupled plasma mass spectrometry analysis determined elemental ion release levels. We detected adverse morphology with significant reductions in cell viability, significant increases in oxidative stress, inflammatory cytokine expression and cellular toxicity for the Ni-Cr alloy-treated oral mucosal models compared with untreated oral mucosal models, and adverse effects were increased for the Ni-Cr alloy that leached the most Ni. Co-Cr demonstrated significantly enhanced biocompatibility compared with Ni-Cr alloy-treated oral mucosal models. The human-derived full-thickness oral mucosal model discriminated between dental alloys and provided insights into the mechanisms of Ni-induced toxicity, highlighting potential clinical relevance.

  14. Alloying effect on the room temperature creep characteristics of a Ti-Zr-Be bulk metallic glass

    Science.gov (United States)

    Gong, Pan; Wang, Sibo; Li, Fangwei; Wang, Xinyun

    2018-02-01

    The effect of alloying elements (e.g. Fe, Al, and Ni) on the room temperature creep behavior of a lightweight Ti41Zr25Be34 bulk metallic glass (BMG) was investigated via nanoindentation tests. The generalized Kelvin model was adopted to describe the creep curves. The strain rate sensitivity m has been derived as a measure of the creep resistance. The compliance spectrum and retardation spectrum were also derived. The results show that the creep resistance of Ti41Zr25Be34 alloy can be obviously improved with the addition of alloying elements, and the most effective element is found to be Al. The mechanism for enhancing the creep resistance was discussed in terms of the scale variation of the shear transformation zone induced by alloying.

  15. Development of casting investment preventing blackening of noble metal alloys part 1. Application of developed investment for Ag-Pd-Cu-Au alloy.

    Science.gov (United States)

    Kakuta, Kiyoshi; Nakai, Akira; Goto, Shin-ichi; Wakamatsu, Yasushi; Yara, Atushi; Miyagawa, Yukio; Ogura, Hideo

    2003-03-01

    The objective of this study is to develop a casting investment that prevents the blackening of the cast surface of noble metal alloys. The experimental investments were prepared using a gypsum-bonded investment in which the metallic powders such as boron (B), silicon (Si), aluminum (Al) and titanium (Ti) were added as oxidizing agents. An Ag-Pd-Cu-Au alloy was cast into the mold made of the prepared investment. The effect of the addition of each metal powder was evaluated from the color difference between the as-cast surface and the polished surface of the cast specimen. The color of the as-cast surface approached that of the polished surface with increasing B and Al content. A lower mean value in the color difference was obtained at 0.25-1.00 mass% B content. B and Al are useful as an additive in a gypsum-bonded investment to prevent the blackening of an Ag-Pd-Cu-Au alloy. The effects of Si and Ti powder addition could not be found.

  16. Hard magnetic properties and coercivity mechanism of melt-spun Misch Metal-Fe-B alloy

    Energy Technology Data Exchange (ETDEWEB)

    Quan, Ningtao; Luo, Yang, E-mail: eluoyang@foxmail.com; Yan, Wenlong; Yuan, Chao; Yu, Dunbo; Sun, Liang; Lu, Shuo; Li, Hongwei; Zhang, Hongbin

    2017-09-01

    Highlights: • Melt-spun MM{sub 13}Fe{sub 81}B{sub 6} alloy shows that the distributions of the La, Ce, Pr, Nd, Fe and B elements is uniformly distributed, and the grain size is in the range of 30–40 nm, it can be seen that Pr-rich and La-rich phases concentrated on grain boundaries, which resulted in the coercivity augment with the increase of MMFe{sub 2} content, and the grain size is around 40–50 nm in MM{sub 16}Fe{sub 78}B{sub 6}. • There is a significant formation of MMFe{sub 2} with abundant Pr and La, and a small amount of Ce and Nd enriched at the interfacial region in MM{sub 16}Fe{sub 78}B{sub 6}, thus an inhomogeneous region was formed. It is considered that the inhomogeneous region is effective in increasing the coercivity. • The optimum-quenched MM{sub 13}Fe{sub 81}B{sub 6} alloy have been shown to exhibit a coercive force of 6.9 kOe and an energy product of 8.5 MGOe, which is superior to anisotropic ferrite magnets of 4.5 MGOe. - Abstract: Magnetic and structural properties of Misch Metal (MM)-Fe-B alloys, were examined in the melt-spun ribbons. Melt-spun MM-Fe-B samples were prepared at the surface velocities of 18–30 m/s. Crystalline structure and their room-temperature magnetization characteristics were analyzed, and the optimum surface velocity of 20 m/s and nominal composition of MM{sub 13}Fe{sub 81}B{sub 6} were obtained. Microstructural analyses indicate that the grain size is approximately 30–50 nm in the alloys with the optimum characteristics. In the MM{sub 16}Fe{sub 78}B{sub 6} alloys, Pr-rich and La-rich phases concentrated on grain boundaries, which resulted in the coercivity augment with the increase of MMFe{sub 2} content. Dependence of coercivity on applied magnetic field suggested that the mechanism of coercivity in moderate MM-content samples was inhomogeneous domain wall pinning type. The melt-spun ribbons in the optimum condition exhibit a coercive force of 6.9 kOe and an energy product of 8.5 MGOe, which can be used as

  17. Preliminary assessment of metal-porcelain bonding strength of CoCrW alloy after 3wt.% Cu addition.

    Science.gov (United States)

    Lu, Yanjin; Zhao, Chaoqian; Ren, Ling; Guo, Sai; Gan, Yiliang; Yang, Chunguang; Wu, Songquan; Lin, Junjie; Huang, Tingting; Yang, Ke; Lin, Jinxin

    2016-06-01

    In this work, a novel Cu-bearing CoCrW alloy fabricated by selective laser melting for dental application has been studied. For its successful application, the bonding strength of metal-porcelain is essential to be systematically investigated. Therefore, the aim of this study was to evaluate the metal-porcelain bonding strength of CoCrWCu alloy by three-point bending test, meanwhile the Ni-free CoCrW alloy was used as control. The oxygen content was investigated by an elemental analyzer; X-ray photoelectron spectroscopy (XPS) was used to analyze the surface chemical composition of CoCrW based alloy after preoxidation treatment; the fracture mode was investigated by X-ray energy spectrum analysis (EDS) and scanning electron microscope (SEM). Result from the oxygen content analysis showed that the content of oxygen dramatically increased after the Cu addition. And the XPS suggested that Co-oxidation, Cr2O3, CrO2, WO3, Cu2O and CuO existed on the preoxidated surface of the CoCrWCu alloy; the three-point bending test showed that the bonding strength of the CoCrWCu alloy was 43.32 MPa, which was lower than that of the CoCrW group of 47.65 MPa. However, the average metal-porcelain bonding strength is significantly higher than the minimum value in the ISO 9693 standard. Results from the SEM images and EDS indicated that the fracture mode of CoCrWCu-porcelain was mixed between cohesive and adhesive. Based on the results obtained in this study, it can be indicated that the Cu-bearing CoCrW alloy fabricated by the selective laser melting is a promising candidate for use in dental application. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Effect of pressure on heat transfer coefficient at the metal/mold interface of A356 aluminum alloy

    DEFF Research Database (Denmark)

    Fardi Ilkhchy, A.; Jabbari, Masoud; Davami, P.

    2012-01-01

    The aim of this paper is to correlate interfacial heat transfer coefficient (IHTC) to applied external pressure, in which IHTC at the interface between A356 aluminum alloy and metallic mold during the solidification of casting under different pressures were obtained using the inverse heat...

  19. Brazing joints of gold alloy used in porcelain-fused-to-metal restorations and their resistance to deflection fatigue.

    Science.gov (United States)

    Vallittu, P K

    1997-06-01

    The aim of this study was to compare the resistance to deflection fatigue of a gold alloy used in porcelain-fused-to-metal restorations with and without a brazing joint. Pre-ceramic brazing filler metal was used to join the parent specimens of gold alloy together. The deflection fatigue test was carried out mainly with 0.4 m deflection of the test specimens (n = 5) but to obtain an S-N curve for the specimens, other magnitudes of deflection, i.e. the stress, were also used. When the fracture surface of the test specimens was examined by scanning electron microscopy (SEM), the results showed that the brazing joint in the gold alloy test specimen decreases the fatigue resistance considerably compared to that of specimens without a brazing joint (P = 0.002). SEM examination showed that the failure type of the brazing joint was cohesive and that the brazing filler metal had a more porous structure than the parent gold alloy. These results suggest that, due to the occlusal biting forces in situ, the brazing joints in fixed partial dentures can be fractured by metal fatigue.

  20. Rheo-processing of semi-solid metal alloys: a new technology for manufacturing automotive and aerospace components

    CSIR Research Space (South Africa)

    Ivanchev, L

    2008-01-01

    Full Text Available The latest trend in the automotive industry to produce fuel-efficient vehicles has resulted in the increased use of aluminium and magnesium alloys. Liquid metal high pressure die-casting (HPDC) currently satisfies the bulk of the automotive industry...

  1. Rheo-processing of semi-solid metal alloys: a new technology for manufacturing Automotive and aerospace components - Conference paper

    CSIR Research Space (South Africa)

    Ivanchev, L

    2006-02-01

    Full Text Available The new trend in the automotive industry to produce more fuel-efficient vehicles has resulted in the increased use of aluminium and magnesium alloys. Currently liquid metal high-pressure die-casting (HPDC) fulfills the bulk of the automotive...

  2. A Fundamental Approach to Developing Aluminium based Bulk Amorphous Alloys based on Stable Liquid Metal Structures and Electronic Equilibrium - 154041

    Science.gov (United States)

    2017-03-28

    whereby above the glass transition temperature they may be formed like plastics or regular ceramic glasses, hence these materials can be produced in...and its alloys are one of the most largely produced and recycled metals (second only to iron/steel). It is low cost, exceptionally light-weight and

  3. Glassy Metal Alloy Nanofiber Anodes Employing Graphene Wrapping Layer: Toward Ultralong-Cycle-Life Lithium-Ion Batteries.

    Science.gov (United States)

    Jung, Ji-Won; Ryu, Won-Hee; Shin, Jungwoo; Park, Kyusung; Kim, Il-Doo

    2015-07-28

    Amorphous silicon (a-Si) has been intensively explored as one of the most attractive candidates for high-capacity and long-cycle-life anode in Li-ion batteries (LIBs) primarily because of its reduced volume expansion characteristic (∼280%) compared to crystalline Si anodes (∼400%) after full Li(+) insertion. Here, we report one-dimensional (1-D) electrospun Si-based metallic glass alloy nanofibers (NFs) with an optimized composition of Si60Sn12Ce18Fe5Al3Ti2. On the basis of careful compositional tailoring of Si alloy NFs, we found that Ce plays the most important role as a glass former in the formation of the metallic glass alloy. Moreover, Si-based metallic glass alloy NFs were wrapped by reduced graphene oxide sheets (specifically Si60Sn12Ce18Fe5Al3Ti2 NFs@rGO), which can prevent the direct exposure of a-Si alloy NFs to the liquid electrolyte and stabilize the solid-electrolyte interphase (SEI) layers on the surfaces of rGO sheets while facilitating electron transport. The metallic glass nanofibers exhibited superior electrochemical cell performance as an anode: (i) Si60Sn12Ce18Fe5Al3Ti2 NFs show a high specific capacity of 1017 mAh g(-1) up to 400 cycles at 0.05C with negligible capacity loss as well as superior cycling performance (nearly 99.9% capacity retention even after 2000 cycles at 0.5C); (ii) Si60Sn12Ce18Fe5Al3Ti2 NFs@rGO reveals outstanding rate behavior (569.77 mAh g(-1) after 2000 cycles at 0.5C and a reversible capacity of around 370 mAh g(-1) at 4C). We demonstrate the potential suitability of multicomponent a-Si alloy NFs as a long-cycling anode material.

  4. Miniaturized Metal (Metal Alloy)/PdO(x)/SiC Hydrogen and Hydrocarbon Gas Sensors

    Science.gov (United States)

    Hunter, Gary W. (Inventor); Xu, Jennifer C. (Inventor); Lukco, Dorothy (Inventor)

    2008-01-01

    A miniaturized Schottky diode hydrogen and hydrocarbon sensor and the method of making same is disclosed and claimed. The sensor comprises a catalytic metal layer, such as palladium, a silicon carbide substrate layer and a thin barrier layer in between the catalytic and substrate layers made of palladium oxide (PdO(x)). This highly stable device provides sensitive gas detection at temperatures ranging from at least 450 to 600 C. The barrier layer prevents reactions between the catalytic metal layer and the substrate layer. Conventional semiconductor fabrication techniques are used to fabricate the small-sided sensors. The use of a thicker palladium oxide barrier layer for other semiconductor structures such as a capacitor and transistor structures is also disclosed.

  5. Miniaturized metal (metal alloy)/ PdO.sub.x/SiC hydrogen and hydrocarbon gas sensors

    Science.gov (United States)

    Hunter, Gary W. (Inventor); Xu, Jennifer C. (Inventor); Lukco, Dorothy (Inventor)

    2011-01-01

    A miniaturized Schottky diode hydrogen and hydrocarbon sensor and the method of making same is disclosed and claimed. The sensor comprises a catalytic metal layer, such as palladium, a silicon carbide substrate layer and a thin barrier layer in between the catalytic and substrate layers made of palladium oxide (PdO.sub.x ). This highly stable device provides sensitive gas detection at temperatures ranging from at least 450 to 600.degree. C. The barrier layer prevents reactions between the catalytic metal layer and the substrate layer. Conventional semiconductor fabrication techniques are used to fabricate the small-sized sensors. The use of a thicker palladium oxide barrier layer for other semiconductor structures such as a capacitor and transistor structures is also disclosed.

  6. Comparison of the metal-to-ceramic bond strengths of four noble alloys with press-on-metal and conventional porcelain layering techniques.

    Science.gov (United States)

    Khmaj, Mofida R; Khmaj, Abdulfatah B; Brantley, William A; Johnston, William M; Dasgupta, Tridib

    2014-11-01

    New noble alloys for metal ceramic restorations introduced by manufacturers are generally lower-cost alternatives to traditional higher-gold alloys. Information about the metal-to-ceramic bond strength for these alloys, which is needed for rational clinical selection, is often lacking. The purpose of this study was to evaluate the bond strength of 4 recently introduced noble alloys by using 2 techniques for porcelain application. Aquarius Hard (high-gold: 86.1 gold, 8.5 platinum, 2.6 palladium, 1.4 indium; values in wt. %), Evolution Lite (reduced-gold: 40.3 gold, 39.3 palladium, 9.3 indium, 9.2 silver, 1.8 gallium), Callisto 75 Pd (palladium-silver containing gold: 75.2 palladium, 7.1 silver, 2.5 gold, 9.3 tin, 1.0 indium), and Aries, (conventional palladium-silver: 63.7 palladium, 26.0 silver, 7.0 tin, 1.8 gallium, 1.5 indium) were selected for bonding to leucite-containing veneering porcelains. Ten metal ceramic specimens that met dimensional requirements for International Organization for Standardization (ISO) Standard 9693 were prepared for each alloy by using conventional porcelain layering and press-on-metal methods. The 3-point bending test in ISO Standard 9693 was used to determine bond strength. Values were compared with 2-way ANOVA (maximum likelihood analysis, SAS Mixed Procedure) and the Tukey test (α=.05). Means (standard deviations) for bond strength with conventional porcelain layering were as follows: Aquarius Hard (50.7 ±5.5 MPa), Evolution Lite (40.2 ±3.3 MPa), Callisto 75 Pd (37.2 ±3.9 MPa), and Aries (34.0 ±4.9 MPa). For the press-on-metal technique, bond strength results were as follows: Aquarius Hard (33.7 ±11.5 MPa), Evolution Lite (34.9 ±4.5 MPa), Callisto 75 Pd (37.2 ±11.9 MPa), and Aries (30.7 ±10.8 MPa). From statistical analyses, the following 3 significant differences were found for metal-to-ceramic bond strength: the bond strength for Aquarius Hard was significantly higher for conventional porcelain layers compared with

  7. Microstructure and composition of rare earth-transition metal-aluminium-magnesium alloys

    Directory of Open Access Journals (Sweden)

    Lia Maria Carlotti Zarpelon

    2008-03-01

    Full Text Available The determination of the microstructure and chemical composition of La0.7-xPr xMg0.3Al 0.3Mn0.4Co0.5 Ni3.8 (0 < x < 0.7 metal hydride alloys has been carried out using scanning electron microscopy (SEM, energy dispersive X ray analysis (EDX and X ray diffraction analysis (XRD. The substitution of La with Pr changed the grain structure from equiaxial to columnar. The relative atomic ratio of rare earth to (Al, Mn, Co, Ni in the matrix phase was 1:5 (LaNi5-type structure. Magnesium was detected only in two other phases present. A grey phase revealed 11 at.% Mg and the concentration ratios of other elements indicated the composition to be close to PrMgNi4. A dark phase was very heterogeneous in composition, attributed to the as-cast state of these alloys. The phases identified by XRD analysis in the La0.7Mg0.3Al0.3Mn0.4Co 0.5Ni3.8 alloy were: La(Ni,Co5, LaAl(Ni,Co4, La2(Ni,Co7 and AlMn(Ni,Co2. Praseodymium favors the formation of a phase with a PuNi3-type structure. Cobalt substituted Ni in the structures and yielded phases of the type: Pr(Ni,Co5 and Pr(Ni,Co3.

  8. Minimum Entropy Generation Theorem Investigation and Optimization of Metal Hydride Alloy Hydrogen Storage

    Directory of Open Access Journals (Sweden)

    Chi-Chang Wang

    2014-05-01

    Full Text Available The main purpose of this paper is to carry out numerical simulation of the hydrogen storage on exothermic reaction of metal hydride LaNi5 alloy container. In addition to accelerating the reaction speed of the internal metal hydride by internal control tube water-cooled mode, analyze via the application of second law of thermodynamics the principle of entropy generation. Use COMSOL Mutilphysics 4.3 a to engage in finite element method value simulation on two-dimensional axisymmetric model. Also on the premise that the internal control tube parameters the radius ri, the flow rate U meet the metal hydride saturation time, observe the reaction process of two parameters on the tank, entropy distribution and the results of the accumulated entropy. And try to find the internal tube parameter values of the minimum entropy, whose purpose is to be able to identify the reaction process and the reaction results of internal tank’s optimum energy conservation.

  9. Sintering Behavior and Microstructure Formation of Titanium Aluminide Alloys Processed by Metal Injection Molding

    Science.gov (United States)

    Soyama, Juliano; Oehring, Michael; Ebel, Thomas; Kainer, Karl Ulrich; Pyczak, Florian

    2017-04-01

    The sintering behavior of metal injection molded titanium aluminide alloys, their microstructure formation and resulting mechanical properties were investigated. As reference material, the alloy Ti-45Al-5Nb-0.2B-0.2C at.% (TNB-V5) was selected. Additionally, two other variations with Mo and Mo + Si additions were prepared: Ti-45Al-3Nb-1Mo-0.2B-0.2C at.% and Ti-45Al-3Nb-1Mo-1Si-0.2B-0.2C at.%. The results indicate that the optimum sintering temperature was slightly above the solidus line. With proper sintering parameters, very low porosities (<0.5%) and fine microstructures with a colony size <85 µm could be achieved. Considering the sintering temperatures applied, the phase transformations upon cooling could be described as L + β → β → α + β → α → α + γ → α2 + γ, which was in agreement with the microstructures observed. The effects of Mo and Si were opposite regarding the sintering behavior. Mo addition led to an increase in the optimum sintering temperature, whereas Si caused a significant decrease.

  10. Measuring Thermodynamic Properties of Metals and Alloys With Knudsen Effusion Mass Spectrometry

    Science.gov (United States)

    Copland, Evan H.; Jacobson, Nathan S.

    2010-01-01

    This report reviews Knudsen effusion mass spectrometry (KEMS) as it relates to thermodynamic measurements of metals and alloys. First, general aspects are reviewed, with emphasis on the Knudsen-cell vapor source and molecular beam formation, and mass spectrometry issues germane to this type of instrument are discussed briefly. The relationship between the vapor pressure inside the effusion cell and the measured ion intensity is the key to KEMS and is derived in detail. Then common methods used to determine thermodynamic quantities with KEMS are discussed. Enthalpies of vaporization, the fundamental measurement, are determined from the variation of relative partial pressure with temperature using the second-law method or by calculating a free energy of formation and subtracting the entropy contribution using the third-law method. For single-cell KEMS instruments, measurements can be used to determine the partial Gibbs free energy if the sensitivity factor remains constant over multiple experiments. The ion-current ratio method and dimer-monomer method are also viable in some systems. For a multiple-cell KEMS instrument, activities are obtained by direct comparison with a suitable component reference state or a secondary standard. Internal checks for correct instrument operation and general procedural guidelines also are discussed. Finally, general comments are made about future directions in measuring alloy thermodynamics with KEMS.

  11. Determination of critical cooling rates in metallic glass forming alloy libraries through laser spike annealing.

    Science.gov (United States)

    Bordeenithikasem, Punnathat; Liu, Jingbei; Kube, Sebastian A; Li, Yanglin; Ma, Tianxing; Scanley, B Ellen; Broadbridge, Christine C; Vlassak, Joost J; Singer, Jonathan P; Schroers, Jan

    2017-08-02

    The glass forming ability (GFA) of metallic glasses (MGs) is quantified by the critical cooling rate (R C ). Despite its key role in MG research, experimental challenges have limited measured R C to a minute fraction of known glass formers. We present a combinatorial approach to directly measure R C for large compositional ranges. This is realized through the use of compositionally-graded alloy libraries, which were photo-thermally heated by scanning laser spike annealing of an absorbing layer, then melted and cooled at various rates. Coupled with X-ray diffraction mapping, GFA is determined from direct R C measurements. We exemplify this technique for the Au-Cu-Si system, where we identify Au 56 Cu 27 Si 17 as the alloy with the highest GFA. In general, this method enables measurements of R C over large compositional areas, which is powerful for materials discovery and, when correlating with chemistry and other properties, for a deeper understanding of MG formation.

  12. Nuclear reactor fuel structure containing uranium alloy wires embedded in a metallic matrix plate

    Science.gov (United States)

    Travelli, A.

    1985-10-25

    A flat or curved plate structure, to be used as fuel in a nuclear reactor, comprises elongated fissionable wires or strips embedded in a metallic continuous non-fissionable matrix plate. The wires or strips are made predominantly of a malleable uranium alloy, such as uranium silicide, uranium gallide or uranium germanide. The matrix plate is made predominantly of aluminum or an aluminum alloy. The wires or strips are located in a single row at the midsurface of the plate, parallel with one another and with the length dimension of the plate. The wires or strips are separated from each other, and from the surface of the plate, by sufficient thicknesses of matrix material, to provide structural integrity and effective fission product retention, under neutron irradiation. This construction makes it safely feasible to provide a high uranium density, so that the uranium enrichment with uranium 235 may be reduced below about 20%, to deter the reprocessing of the uranium for use in nuclear weapons.

  13. Laser Transfer of Metals and Metal Alloys for Digital Microfabrication of 3D Objects.

    Science.gov (United States)

    Zenou, Michael; Sa'ar, Amir; Kotler, Zvi

    2015-09-02

    3D copper logos printed on epoxy glass laminates are demonstrated. The structures are printed using laser transfer of molten metal microdroplets. The example in the image shows letters of 50 µm width, with each letter being taller than the last, from a height of 40 µm ('s') to 190 µm ('l'). The scanning microscopy image is taken at a tilt, and the topographic image was taken using interferometric 3D microscopy, to show the effective control of this technique. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Direct trace analysis of metals and alloys in a quadrupole ion-trap mass spectrometer

    CERN Document Server

    Song, K S; Yang, M; Cha, H K; Lee, J M; Lee, G H

    1999-01-01

    An ion-trap mass spectrometer adopting a quadrupole ion-trap and laser ablation/ionization method was constructed. The developed system was tested for composition analysis of some metals (Cu, stainless), and alloys (hastalloy C, mumetal) by mass spectrometry. Samples were analyzed by using laser ablation from a sample probe tip followed by a mass analysis with the quadrupole ion-trap. The quadrupole ion-trap was modified to enable laser ablation by a XeCl excimer laser pulse that passed radially through the ring electrode. A mass scan of the produced ions was performed in the mass selective instability mode wherein trapped ions were successively detected by increasing the rf voltage through the ring electrode. Factors affecting the mass resolution, such as pressure of buffer gas and ablation laser power, are discussed.

  15. Thermodynamics analysis of the rare earth metals and their alloys with indium in solid state

    Energy Technology Data Exchange (ETDEWEB)

    Vassiliev, V.P., E-mail: valeryvassiliev@yahoo.fr [Chemical Department, Lomonossov University, Moscow 119992 (Russian Federation); Benaissa, Ablazeze [Département des Matériaux, Faculté des Sciences de l’Ingénieur, Université M’hamed Bougara, Boumerdes 35000 (Algeria); Taldrik, A.F. [Institute of Superconductivity and Solid State Physics, Academician Kurchatov 1, Moscow 123098 (Russian Federation)

    2013-09-25

    Graphical abstract: Gibbs energies of formation vs. RE atomic numbers in REIn{sub 3}. Highlights: •Set of experimental values was collected for REIn{sub 3} phases. •Thermodynamic functions of formation were calculated at 298 K and 775 K. •Experimental and calculated values were compared. -- Abstract: Nonlinear correlative analyses between thermodynamic and some physico-chemical properties of rare-earth metals (RE) and their alloys with indium are performed for the isostructural phases RE and REIn{sub 3}. The thermodynamics values (Gibbs energies of formation, enthalpies of formation, and entropies of formation at 298 K and 775 K and standard entropies) of LnIn{sub 3} phases are calculated on the basis of calorimetry and potentiometry results. The proposed correlation between physico-chemical and thermodynamic properties agrees for all the isostructural phases REX (X are others elements of the periodic table). The resulting thermodynamic data are recommended for metallurgical handbook.

  16. Tuning the vibration of a rotor with shape memory alloy metal rubber supports

    Science.gov (United States)

    Ma, Yanhong; Zhang, Qicheng; Zhang, Dayi; Scarpa, Fabrizio; Liu, Baolong; Hong, Jie

    2015-09-01

    The paper describes a novel smart rotor support damper with variable stiffness made with a new multifunctional material - the shape memory alloy metal rubber (SMA-MR). SMA-MR gives high load bearing capability (yield limit up to 100 MPa and stiffness exceeding 1e8 N/m), high damping (loss factor between 0.15 and 0.3) and variable stiffness (variation of 2.6 times between martensite and austenite phases). The SMA-MR has been used to replace a squeeze film damper and combined with an elastic support. The mechanical performance of the smart support damper has been investigated at room and high temperatures on a rotor test rig. The vibration tuning capabilities of the SMA-MR damper have been evaluated through FEM simulations and experimental tests. The study shows the feasibility of using the SMA-MR material for potential applications of active vibration control at different temperatures in rotordynamics systems.

  17. Metallic ions in organs of rats injected with metallic particles of stainless steel 316L and Ti6Al4V alloy

    Directory of Open Access Journals (Sweden)

    Silvia Helena Giertz

    2010-03-01

    Full Text Available Despite the interest in identifying systemic effects caused by the metallic particles released from long term metallic implants in the body, few works support reliable conclusions about the effects of those particles in organs. The aim of the present work is to look for damages in tissues of liver, kidney, lung and heart of rats submitted to injection of Hank's solution contained particles of Ti6Al4V alloy and Stainless Steel 316L, obtained by metal friction. The particles size ranges from 50 to 200 µm for the Ti alloy and from 100 to 500 µm for the 316L. Tissues isolated from the organs after the euthanasia were prepared and analyzed in an optical microscope and Energy Dispersive Spectrometer (EDS. Lesions caused by an inflammatory response such as strange body epithelioid granuloma and giant cells were found in some of the tissues containing yttrium and aluminum.

  18. Influence of metal alloy and the profile of coronary stents in patients with multivessel coronary disease

    Science.gov (United States)

    Maurício de Abreu Filho, Luciano; da Cruz Forte, Antonio Artur; Kiyoshi Sumita, Marcos; Favarato, Desidério; César Ximenes Meireles, George

    2011-01-01

    BACKGROUND: In Brazil, despite the recommendations of the Brazilian Society of Hemodynamics and Interventional Cardiology, the National Health System has not yet approved the use of drug-eluting stents. In percutaneous coronary interventions performed in the public and part of the private health care system, bare metal stents are used as the only option. Therefore, new information on bare metal stents is of great importance. The primary endpoint was to evaluate the influence of the alloy and the profile of coronary stents on late loss and restenosis rates 6 months after implantation in patients with multivessel coronary disease. METHODS: Single center, randomized and prospective study comparison of cobalt–chromium versus stainless steel stent implantation in 187 patients with multivessel coronary disease. At least one cobalt–chromium and one stainless steel stent were implanted per patient. RESULTS: Mean age of patients was 59.5±10.1 years with a prevalence of males (66.3%) and patients with acute coronary syndrome (56%). Baseline clinical characteristics were similar with hypertension in 146 (78%), dyslipidemia in 85 (45.5%) and diabetes in 68 (36.4%). Two hundred and twenty-nine cobalt–chromium and 284 stainless steel stents were implanted. Angiographic variables showed no statistically significant difference. Angiographic follow-up to 6 months after implantation showed similar late loss and restenosis rates. CONCLUSION: The use of two different alloys, stainless steel and cobalt–chrome stents, in the same patient and in the same vessel produced similar 6-month restenosis and late loss rates. PMID:21808863

  19. Influence of metal alloy and the profile of coronary stents in patients with multivessel coronary disease

    Directory of Open Access Journals (Sweden)

    Luciano Maurício de Abreu Filho

    2011-01-01

    Full Text Available BACKGROUND: In Brazil, despite the recommendations of the Brazilian Society of Hemodynamics and Interventional Cardiology, the National Health System has not yet approved the use of drug-eluting stents. In percutaneous coronary interventions performed in the public and part of the private health care system, bare metal stents are used as the only option. Therefore, new information on bare metal stents is of great importance. The primary endpoint was to evaluate the influence of the alloy and the profile of coronary stents on late loss and restenosis rates 6 months after implantation in patients with multivessel coronary disease. METHODS: Single center, randomized and prospective study comparison of cobalt-chromium versus stainless steel stent implantation in 187 patients with multivessel coronary disease. At least one cobalt-chromium and one stainless steel stent were implanted per patient. RESULTS: Mean age of patients was 59.5 + 10.1 years with a prevalence of males (66.3% and patients with acute coronary syndrome (56%. Baseline clinical characteristics were similar with hypertension in 146 (78%, dyslipidemia in 85 (45.5% and diabetes in 68 (36.4%. Two hundred and twenty-nine cobalt-chromium and 284 stainless steel stents were implanted. Angiographic variables showed no statistically significant difference. Angiographic follow-up to 6 months after implantation showed similar late loss and restenosis rates. CONCLUSION: The use of two different alloys, stainless steel and cobalt-chrome stents, in the same patient and in the same vessel produced similar 6-month restenosis and late loss rates.

  20. Liquid metal alloy ion sources—An alternative for focussed ion beam technology

    Energy Technology Data Exchange (ETDEWEB)

    Bischoff, Lothar, E-mail: l.bischoff@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden (Germany); Mazarov, Paul, E-mail: Paul.Mazarov@raith.de; Bruchhaus, Lars, E-mail: Lars.Bruchhaus@raith.de [Raith GmbH, Konrad-Adenauer-Allee 8, 44263 Dortmund (Germany); Gierak, Jacques, E-mail: jacques.gierak@lpn.cnrs.fr [LPN-CNRS, Route de Nozay, 91460 Marcoussis (France)

    2016-06-15

    Today, Focused Ion Beam (FIB) processing is nearly exclusively based on gallium Liquid Metal Ion Sources (LMIS). But, many applications in the μm- or nm range could benefit from ion species other than gallium: local ion implantation, ion beam mixing, ion beam synthesis, or Focused Ion Beam Lithography (IBL). Therefore, Liquid Metal Alloy Ion Sources (LMAIS) represent a promising alternative to expand the remarkable application fields for FIB. Especially, the IBL process shows potential advantages over, e.g., electron beam or other lithography techniques: direct, resistless, and three-dimensional patterning, enabling a simultaneous in-situ process control by cross-sectioning and inspection. Taking additionally into account that the used ion species influences significantly the physical and chemical nature of the resulting nanostructures—in particular, the electrical, optical, magnetic, and mechanic properties leading to a large potential application area which can be tuned by choosing a well suited LMAIS. Nearly half of the elements of the periodic table are recently available in the FIB technology as a result of continuous research in this area during the last forty years. Key features of a LMAIS are long life-time, high brightness, and stable ion current. Recent developments could make these sources feasible for nano patterning issues as an alternative technology more in research than in industry. The authors will review existing LMAIS, LMIS other than Ga, and binary and ternary alloys. These physical properties as well as the fabrication technology and prospective domains for modern FIB applications will similarly be reviewed. Other emerging ion sources will be also presented and their performances discussed.

  1. TOPICAL REVIEW: Spin-diffusion lengths in metals and alloys, and spin-flipping at metal/metal interfaces: an experimentalist's critical review

    Science.gov (United States)

    Bass, Jack; Pratt, William P., Jr.

    2007-05-01

    In magnetoresistance (MR) studies of magnetic multilayers composed of combinations of ferromagnetic (F) and non-magnetic (N) metals, the magnetic moment (or related 'spin') of each conduction electron plays a crucial role, supplementary to that of its charge. While initial analyses of MR in such multilayers assumed that the direction of the spin of each electron stayed fixed as the electron transited the multilayer, we now know that this is true only in a certain limit. Generally, the spins 'flip' in a distance characteristic of the metal, its purity, and the temperature. They can also flip at F/N or N1/N2 interfaces. In this review we describe how to measure the lengths over which electron moments flip in pure metals and alloys, and the probability of spin-flipping at metallic interfaces. Spin-flipping within metals is described by a spin-diffusion length, lsfM, where the metal M = F or N. Spin-diffusion lengths are the characteristic lengths in the current-perpendicular-to-plane (CPP) and lateral non-local (LNL) geometries that we focus upon in this review. In certain simple cases, lsfN sets the distance over which the CPP-MR and LNL-MR decrease as the N-layer thickness (CPP-MR) or N-film length (LNL) increases, and lsfF does the same for increase of the CPP-MR with increasing F-layer thickness. Spin-flipping at M1/M2 interfaces can be described by a parameter, δM1/M2, which determines the spin-flipping probability, P = 1-exp(-δ). Increasing δM1/M2 usually decreases the MR. We list measured values of these parameters and discuss the limitations on their determinations.

  2. Electrocatalytic oxidation of small organic molecules in acid medium: enhancement of activity of noble metal nanoparticles and their alloys by supporting or modifying them with metal oxides

    Science.gov (United States)

    Kulesza, Pawel J.; Pieta, Izabela S.; Rutkowska, Iwona A.; Wadas, Anna; Marks, Diana; Klak, Karolina; Stobinski, Leszek; Cox, James A.

    2013-01-01

    Different approaches to enhancement of electrocatalytic activity of noble metal nanoparticles during oxidation of small organic molecules (namely potential fuels for low-temperature fuel cells such as methanol, ethanol and formic acid) are described. A physical approach to the increase of activity of catalytic nanoparticles (e.g. platinum or palladium) involves nanostructuring to obtain highly dispersed systems of high surface area. Recently, the feasibility of enhancing activity of noble metal systems through the formation of bimetallic (e.g. PtRu, PtSn, and PdAu) or even more complex (e.g. PtRuW, PtRuSn) alloys has been demonstrated. In addition to possible changes in the electronic properties of alloys, specific interactions between metals as well as chemical reactivity of the added components have been postulated. We address and emphasize here the possibility of utilization of noble metal and alloyed nanoparticles supported on robust but reactive high surface area metal oxides (e.g. WO3, MoO3, TiO2, ZrO2, V2O5, and CeO2) in oxidative electrocatalysis. This paper concerns the way in which certain inorganic oxides and oxo species can act effectively as supports for noble metal nanoparticles or their alloys during electrocatalytic oxidation of hydrogen and representative organic fuels. Among important issues are possible changes in the morphology and dispersion, as well as specific interactions leading to the improved chemisorptive and catalytic properties in addition to the feasibility of long time operation of the discussed systems. PMID:24443590

  3. Shear bond strength of self-adhesive resin cements to base metal alloy.

    Science.gov (United States)

    Hattar, Susan; Hatamleh, Muhanad; Khraisat, Ameen; Al-Rabab'ah, Mohammad

    2014-05-01

    Many self-adhesive cements have been introduced in the past few years, with little or no data regarding their clinical performance. This study investigated the shear bond strength of some recently introduced self-adhesive resin cements. The purpose of this study was to evaluate the shear bond strength of self-adhesive and conventional resin-based cements to a base metal alloy. Four groups (10-12 each) that comprised 3 self-adhesive cements (SmartCem2; RelyX Unicem; seT SDI) and a conventional resin-based cement (RelyX ARC) were tested. Cylindrical cement specimens (diameter, 3 mm; height, 3 mm) were applied to nickel-free base metal alloy (Sheradent) disks with a diameter of 12 mm, and the surface was treated with airborne-particle abrasion of 50 μm aluminum oxide. The metal disks were fixed in brass molds specifically designed for the shear bond test device. Test specimens were incubated at 37°C for 24 hours and then the shear bond was tested with a Zwick Roll testing machine at a 0.8 mm/min cross-head speed. In addition, bond failures were investigated and categorized as adhesive, cohesive, or mixed. Shear bond strengths were calculated by dividing the maximum debonding force over the cross-sectional area of each specimen. One-way ANOVA and the Tukey (honestly significant difference) post hoc test were used to test statistical significant differences among the groups (α=.05). Statistical analysis showed significant differences among different resin cements (F=14.34, Padhesive in nature, which occurred at the resin-metal interface. The early bond strength of self-adhesive resin cements varied significantly among the tested materials. SmartCem2 showed the highest bond strength, which was 4 times the strength observed for seT SDI. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  4. Transmission electron microscope studies in the surface oxide on the La-containing AB{sub 2} metal hydride alloy

    Energy Technology Data Exchange (ETDEWEB)

    Young, K., E-mail: kwo.young@basf.com; Chao, B.; Pawlik, D.; Shen, H.T.

    2016-07-05

    La-addition to a Laves-phase based AB{sub 2} metal hydride alloy improves the high-rate discharge and −40 °C charge-transfer resistance significantly. Surface oxide formation and embedded Ni inclusions of the alloy were studied using magnetic susceptibility, BET surface area and pore size measurements, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). BET measurements correlate with the double-layer capacitance measured at −40 °C, indicating a factor 3 increase in surface area with 5 at.% La replacement of Zr. Surface catalytic ability of the same alloy improves by a factor of 13. TEM reveals the surface of the La-free sample as lightly oxidized Ni, Ti, and Zr, while the La-containing sample is randomly distributed and heavily-oxidized (Ni, Cr)O{sub x} coating the grain/oxide channel wall. These catalytic channels are believed to be the source of improvement in the low-temperature performance of these La-containing AB{sub 2} metal hydride alloys. - Highlights: • Surface area and catalytic ability improve with La-addition in an AB{sub 2} MH alloy. • TEM is used to study the surface oxide structure in the La-containing AB{sub 2} MH alloy. • Catalytic ability improvement was linked to the aligned channels in grain boundaries. • The open channel can transport both electrolyte and soluble ions. • Surface Ni-clusters have no direct impact on the La-containing AB{sub 2} MH alloys.

  5. Application of permeable metal die for non-ferrous alloy casting; Tsukisei kanagata no keigokin kanagata chuzo eno tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Kato, T. [Shinto Kogyo Ltd., Nagoya (Japan)

    1997-05-25

    This paper introduces a permeable metal die developed to apply to casting non-ferrous alloys. Gas is discharged through micropores distributed uniformly on a die material. The die is classified into a die having pores with a diameter of 7 {mu}m used for die-casting, and another having pores with a diameter of 30 {mu}m used for gravity casting and low-pressure casting. Cr/Mo-based high-alloy special steel powder is mixed with high-alloy special steel short fibers of the same system for reinforcement to make a die material through compressive formation and sintering. The material undergoes cutting and grinding to fabricate a metal die. Its structure is martensite. Basic tests were given on the die to test heat check resisting performance, molten metal running performance, and mechanical properties of casts. In addition, discussions were given on effects of coating of die release agent and refractories on air permeability. The following effects were verified: inadequate molten metal run is improved; gas defects are eliminated; transcribability of die shape is enhanced; surface grade of casts is improved; and casting cycle time is shortened. Aluminum automotive parts and aluminum containers are mass-produced by using this metal. 4 refs., 16 figs., 3 tabs.

  6. Magnetostructural martensitic transformations with large volume changes and magneto-strains in all-d-metal Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Z. Y.; Liu, E. K., E-mail: ekliu@iphy.ac.cn; Xi, X. K.; Zhang, H. W.; Wang, W. H.; Wu, G. H. [State Key Laboratory for Magnetism, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Li, Y. [State Key Laboratory for Magnetism, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Han, X. L.; Du, Z. W. [National Center of Analysis and Testing for Nonferrous Metals and Electronic Materials, General Research Institute for Nonferrous Metals, Beijing 100088 (China); Luo, H. Z.; Liu, G. D. [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China)

    2016-08-15

    The all-d-metal Mn{sub 2}-based Heusler ferromagnetic shape memory alloys Mn{sub 50}Ni{sub 40−x}Co{sub x}Ti{sub 10} (x = 8 and 9.5) are realized. With a generic comparison between d-metal Ti and main-group elements in lowering the transformation temperature, the magnetostructural martensitic transformations are established by further introducing Co to produce local ferromagnetic Mn-Co-Mn configurations. A 5-fold modulation and (3, −2) stacking of [00 10] of martensite are determined by X-ray diffraction and HRTEM analysis. Based on the transformation, a large magneto-strain of 6900 ppm and a large volume change of −2.54% are observed in polycrystalline samples, which makes the all-d-metal magnetic martensitic alloys of interest for magnetic/pressure multi-field driven applications.

  7. Structure of simple liquids and of liquid metal alloys; La structure des liquides simples et des alliages liquides metalliques

    Energy Technology Data Exchange (ETDEWEB)

    Simonet, V. [Laboratoire Louis Neel, UPR 5051 du CNRS, 38 (France); Bellissent, R. [CEA Grenoble, Dept. de Recherche Fondamentale sur la Matiere Condensee, 38 (France)

    2003-09-01

    Liquid metals and liquid metal alloys have long been considered as aleatory orderings of hard spheres. Today techniques such as neutron or X-ray diffraction allow us to get more accurate partial structure factors, so the hard sphere model is no longer sufficient and has to be upgraded in order to take into account the nature of local order and the degree of isotropy in interactions between atoms. A local icosahedral structure has been put in evidence for 2 types of metal liquids: under-cooled liquids in which a local icosahedral structure was expected in order to explain its under-cooling properties, and liquids that are in equilibrium with quasi-crystals (Al-Pd-Mn alloys)

  8. Study of austenitic stainless steel welded with low alloy steel filler metal. [tensile and impact strength tests

    Science.gov (United States)

    Burns, F. A.; Dyke, R. A., Jr.

    1979-01-01

    The tensile and impact strength properties of 316L stainless steel plate welded with low alloy steel filler metal were determined. Tests were conducted at room temperature and -100 F on standard test specimens machined from as-welded panels of various chemical compositions. No significant differences were found as the result of variations in percentage chemical composition on the impact and tensile test results. The weldments containing lower chromium and nickel as the result of dilution of parent metal from the use of the low alloy steel filler metal corroded more severely in a marine environment. The use of a protective finish, i.e., a nitrile-based paint containing aluminum powder, prevented the corrosive attack.

  9. An investigation into the effects of metal primer and surface topography on the tensile bond strength between cobalt chromium alloy and composite resin.

    Science.gov (United States)

    Newsum, David; Juszczyk, Andrzej; Clark, Robert K F; Radford, David R

    2011-03-01

    This study examined the influence of surface preparation and metal primer on the tensile bond strength between cobalt chromium alloy and composite resin. The bond strength between 168 cobalt chromium alloy dumb-bells with one of three test surfaces (beaded, machined or sandblasted) to composite resin were tested. Half of each group were treated with metal primer. The weakest bond strength was produced by the unprimed machined surface, many specimens failing before testing. The metal primer increased the bond strengths of all groups tested. The greatest bond strengths were achieved with the primed beaded and sandblasted surfaces. Within the limits of the study it has been shown that the surface preparation of the cobalt-chromium alloy did influence tensile bond strengths with composite resin and Metal Primer II increased the tensile bond strengths for all groups tested. The sandblasted surface treated with Metal Primer II is recommended for the bonding of composite resin to cobalt chromium alloy.

  10. Investigating half-metallicity in PtXSb alloys (X=V, Mn, Cr, Co) at ambient and high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Habbak, Enas L., E-mail: enas_habbak@yahoo.com [Department of Physics, Faculty of Science, Damietta University (Egypt); Shabara, Reham M., E-mail: rehamph@hotmail.com [Department of Physics, Faculty of Science, Damietta University (Egypt); Aly, Samy H., E-mail: samy.ha.aly@gmail.com [Department of Physics, Faculty of Science, Damietta University (Egypt); Yehia, Sherif, E-mail: sherif542002@yahoo.com [Department of Physics, Faculty of Science, Helwan University, Cairo (Egypt)

    2016-08-01

    The structural, electronic, magnetic and elastic properties of half-Heusler alloys PtMnSb, PtVSb, PtCrSb and PtCoSb are investigated using first-principles calculation based on Density Functional Theory DFT. The Full Potential local Orbital (FPLO) method, within the General Gradient Approximation (GGA) and Local Spin Density Approximation (LSDA), have been used. The calculated structural, electronic and magnetic properties are in good agreement with available experimental and theoretical data. Using GGA approximation, only PtVSb shows a half-metallic behavior with a spin-down band gap and total magnetic moment of 0.802 eV and 2 µ{sub B} respectively. Both of PtVSb and PtMnSb alloys are half-metallic with spin-down band gaps of 0.925 eV and 0.832 eV and magnetic moments of 2 µ{sub B} and 4 µ{sub B} respectively using LSDA approximation. The bulk modulus and its first pressure-derivative of these alloys are calculated using the modified Birch–Murnaghan equation of state (EOS). The effect of pressure on the lattice constant, energy gap and bulk modulus is investigated. Under pressure, PtMnSb and PtCrSb turn into half-metallic alloys at nearly 6 GPa and 27 GPa respectively using GGA approximation.

  11. Effects of soldering methods on tensile strength of a gold-palladium metal ceramic alloy.

    Science.gov (United States)

    Ghadhanfari, Husain A; Khajah, Hasan M; Monaco, Edward A; Kim, Hyeongil

    2014-10-01

    The tensile strength obtained by conventional postceramic application soldering and laser postceramic welding may require more energy than microwave postceramic soldering, which could provide similar tensile strength values. The purpose of the study was to compare the tensile strength obtained by microwave postceramic soldering, conventional postceramic soldering, and laser postceramic welding. A gold-palladium metal ceramic alloy and gold-based solder were used in this study. Twenty-seven wax specimens were cast in gold-palladium noble metal and divided into 4 groups: laser welding with a specific postfiller noble metal, microwave soldering with a postceramic solder, conventional soldering with the same postceramic solder used in the microwave soldering group, and a nonsectioned control group. All the specimens were heat treated to simulate a normal porcelain sintering sequence. An Instron Universal Testing Machine was used to measure the tensile strength for the 4 groups. The means were analyzed statistically with 1-way ANOVA. The surface and fracture sites of the specimens were subjectively evaluated for fracture type and porosities by using a scanning electron microscope. The mean (standard deviation) ultimate tensile strength values were as follows: nonsectioned control 818 ±30 MPa, microwave 516 ±34 MPa, conventional 454 ±37 MPa, and laser weld 191 ±39 MPa. A 1-way ANOVA showed a significant difference in ultimate tensile strength among the groups (F3,23=334.5; Pgold and palladium noble metals than either conventional soldering or laser welding. Conventional soldering resulted in a higher tensile strength than laser welding. Under the experimental conditions described, either microwave or conventional postceramic soldering would appear to satisfy clinical requirements related to tensile strength. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  12. Clean Grain Boundary Found in C14/Body-Center-Cubic Multi-Phase Metal Hydride Alloys

    Directory of Open Access Journals (Sweden)

    Hao-Ting Shen

    2016-06-01

    Full Text Available The grain boundaries of three Laves phase-related body-center-cubic (bcc solid-solution, metal hydride (MH alloys with different phase abundances were closely examined by scanning electron microscopy (SEM, transmission electron microscopy (TEM, and more importantly, electron backscatter diffraction (EBSD techniques. By using EBSD, we were able to identify the alignment of the crystallographic orientations of the three major phases in the alloys (C14, bcc, and B2 structures. This finding confirms the presence of crystallographically sharp interfaces between neighboring phases, which is a basic assumption for synergetic effects in a multi-phase MH system.

  13. Screened Coulomb interactions in metallic alloys. II. Screening beyond the single-site and atomic-sphere approximations

    DEFF Research Database (Denmark)

    Ruban, Andrei; Simak, S.I.; Korzhavyi, P.A.

    2002-01-01

    A quantitative description of the configurational part of the total energy of metallic alloys with substantial atomic size difference cannot be achieved in the atomic-sphere approximation: It needs to be corrected at least for the multipole-moment interactions in the Madelung part of the one......-electron potential and energy. In the case of a random alloy such interactions can be accounted for only by lifting the atomic-sphere and single-site approximations, in order to include the polarization due to local environment effects. Nevertheless, a simple parametrization of the screened Coulomb interactions...

  14. High performance SERS on nanoporous gold substrates synthesized by chemical de-alloying a Au-based metallic glass

    Science.gov (United States)

    Xue, Yanpeng; Scaglione, Federico; Rizzi, Paola; Battezzati, Livio

    2017-12-01

    A Au20Cu48Ag7Pd5Si20 metallic glass precursor has been used to synthesize nanoporous gold by chemical de-alloying in a mixture of HNO3 and HF. Gold ligaments of size ranging from 45 to 100 nm were obtained as a function of HNO3 concentration, electrolyte temperature and de-alloying time. The as-prepared nanoporous gold exhibited strong surface enhanced Raman scattering (SERS) effect using 4,4‧-bi-pyridine as probe molecule. For application in melamine sensing, the detection limit of 10-6 M was achieved, which indicated that this biocompatible material has great potential as SERS active substrate.

  15. Highly processable bulk metallic glass-forming alloys in the Pt–Co–Ni–Cu–P system

    OpenAIRE

    Schroers, Jan; Johnson, William L.

    2004-01-01

    Highly processable bulk metallic glass alloys in the Pt–Co–Ni–Cu–P system were discovered. The alloys show low liquidus temperature below 900 K, excellent processability with low critical cooling rate reflecting in maximum casting thicknesses in quartz tubes of up to 20 mm, and a large supercooled liquid region. The Pt57.5Cu14.7Ni5.3P22.5 composition has a liquidus temperature of 795 K, a glass transition temperature of 508 K with a supercooled liquid region of 98 K. For medical and jewelry a...

  16. Effects of Nd-addition on the structural, hydrogen storage, and electrochemical properties of C14 metal hydride alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wong, D.F. [BASF/Battery Materials-Ovonic, 2983 Waterview Drive, Rochester Hills, MI 48309 (United States); Department of Chemical Engineering, Wayne State University, Detroit, MI 48202 (United States); Young, K., E-mail: kwo.young@basf.com [BASF/Battery Materials-Ovonic, 2983 Waterview Drive, Rochester Hills, MI 48309 (United States); Department of Chemical Engineering, Wayne State University, Detroit, MI 48202 (United States); Nei, J.; Wang, L. [BASF/Battery Materials-Ovonic, 2983 Waterview Drive, Rochester Hills, MI 48309 (United States); Ng, K.Y.S. [Department of Chemical Engineering, Wayne State University, Detroit, MI 48202 (United States)

    2015-10-25

    Nd-addition to the AB{sub 2}-based alloy Ti{sub 12}Zr{sub 22.8−x}V{sub 10}Cr{sub 7.5}Mn{sub 8.1}Co{sub 7.0}Ni{sub 32.2}Al{sub 0.4}Nd{sub x} is studied for its effects on the structure, gaseous-phase hydrogen storage, and electrochemical properties. This study follows a series of Cu, Mo, Fe, Y, Si, and La doping studies in similar AB{sub 2}-based alloys. Limited solubility of Nd in the main Laves phase promotes the formation of secondary phases (AB and Zr{sub 7}Ni{sub 10}) to provide catalytic effects and synergies for improved capacity and high-rate dischargeability (HRD) performance. The main C14 storage phase has smaller lattice constants and cell volumes, and these effects reduce the storage capacity at higher Nd levels. Different hydrogen absorption mechanisms can occur in these multi-component, multi-phase alloys depending on the interfaces of the phases, and they have effects on the alloy properties. Higher Nd-levels improve the HRD performance despite having lower bulk diffusion and surface exchange current. Magnetic susceptibility measurements indicate large percentage of larger metallic nickel clusters are present in the surface oxide of alloys with higher Nd-content, and AC impedance studies show very low charge-transfer resistance with high catalytic capability in the alloys. The −40 °C charge-transfer resistance of 8.9 Ω g in this Nd-series of alloys is the lowest measured out of the studies investigating doped AB{sub 2}-based MH alloys for improved low-temperature characteristics. The improvement in HRD and low-temperature performance appears to be related to the proportion of the highly catalytic NdNi-phase at the surface, which must offset the increased bulk diffusion resistance in the alloy. - Graphical abstract: Schematics of hydrogen flow and corresponding PCT isotherms in funneling mode. - Highlights: • Structural and hydrogen storage properties of Nd-substituted AB{sub 2} metal hydride are reported. • Nd contributes to the lowest

  17. Analytical and electrochemical evaluation of the in vitro corrosion behavior of nickel-chrome and cobalt-chrome casting alloys for metal-ceramic restorations.

    Science.gov (United States)

    Yfantis, Constaninos; Yfantis, Dimitrios; Anastassopoulou, Jane; Theophanides, Theophilos

    2007-03-01

    In this study we examined the hypothesis based on relevant literature survey that the in vitro corrosion behavior of a Cobalt-chrome dental casting alloy for metal-ceramic restorations is better than that of a Nickel-chrome dental casting alloy. The corrosion released metal ions were analysed by Inductively Coupled Plasma-Atomic Emission Spectroscopy. Moreover, the specimens were electrochemically tested by linear polarization. The statistical analysis of the results showed statistically significant differences in corrosion rates of Nickel-chrome alloy and Cobalt-chrome alloy calculated by analytical and electrochemical measurements. The hypothesis was confirmed and the results showed that the corrosion rates of the Cobalt-chrome alloy were lower than that of the Nickel-chrome alloy.

  18. In situ Raman spectroscopic analysis of surface oxide films on Ni-base alloy/low alloy steel dissimilar metal weld interfaces in high-temperature water

    Science.gov (United States)

    Kim, Jongjin; Choi, Kyung Joon; Bahn, Chi Bum; Kim, Ji Hyun

    2014-06-01

    In situ Raman spectroscopy has been applied to analyze the surface oxide films formed on dissimilar metal weld (DMW) interfaces of nickel-base alloy/low alloy steel under hydrogenated high-temperature water condition. For the analysis of the oxide films under high temperature/pressure aqueous conditions, an in situ Raman spectroscopy system was developed by constructing a hydrothermal cell where the entire optics including the excitation laser and the Raman light collection system were located at the nearest position to the specimen by means of immersion optics. In situ Raman spectra of the DMW interfaces were collected in hydrogenated water condition at different temperatures up to 300 °C. The measured in situ Raman spectra showed peaks of Cr2O3, NiCr2O4 and Fe3O4 at the DMW interface. It is considered that differences in the oxide chemistry originated from the chemical element distribution inside of the DMW interface region.

  19. Evaluation of biocidal efficacy of copper alloy coatings in comparison with solid metal surfaces: generation of organic copper phosphate nanoflowers.

    Science.gov (United States)

    Gutierrez, H; Portman, T; Pershin, V; Ringuette, M

    2013-03-01

    To analyse the biocidal efficacy of thermal sprayed copper surfaces. Copper alloy sheet metals containing >60% copper have been shown to exhibit potent biocidal activity. Surface biocidal activity was assessed by epifluorescence microscopy. After 2-h exposure at 20 °C in phosphate-buffered saline (PBS), contact killing of Gram-negative Escherichia coli and Gram-positive Staphylococcus epidermidis by brass sheet metal and phosphor bronze was 3-4-times higher than that by stainless steel. SEM observations revealed that the surface membranes of both bacterial strains were slightly more irregular when exposed to brass sheet metal than stainless steel. However, when exposed to phosphor bronze coating, E. coli were 3-4 times larger with irregular membrane morphology. In addition, the majority of the cells were associated with spherical carbon-copper-phosphate crystalline nanostructures characteristic of nanoflowers. The membranes of many of the S. epidermidis exhibited blebbing, and a small subset was also associated with nanoflowers. Our data indicate that increasing the surface roughness of copper alloys had a pronounced impact on the membrane integrity of Gram-positive and, to a lesser degree, Gram-negative bacteria. In the presence of PBS, carbon-copper-phosphate-containing nanoflowers were formed, likely nucleated by components derived from killed bacteria. The intimate association of the bacteria with the nanoflowers and phosphor bronze coating likely contributed to their nonreversible adhesion. Thermal spraying of copper alloys provides a strategy for the rapid coating of three-dimensional organic and inorganic surfaces with biocidal copper alloys. Our study demonstrates that the macroscale surface roughness generated by the thermal spray process enhances the biocidal activity of copper alloys compared with the nanoscale surface roughness of copper sheet metals. Moreover, the coating surface topography provides conditions for the rapid formation of organic copper

  20. [Effect of recasting on the elastic modulus of metal-ceramic systems from nickel-chromium and cobalt-chromium alloys].

    Science.gov (United States)

    Mirković, Nemanja

    2007-07-01

    Elastic modulus of metal-ceramic systems determines their flexural strenght and prevents damages on ceramics during mastication. Recycling of basic alloys is often a clinical practice, despite the possible effects on the quality of the future metal-ceramic dentures. This research was done to establish recasting effects of nickel-chromium and cobalt-chromium alloys on the elastic modulus of metal-ceramic systems in making fixed partial dentures. The research was performed as an experimental study. Six metal-ceramic samples of nickel-chromium alloy (Wiron 99) and cobalt-chromium alloy (Wirobond C) were made. Alloy residues were recycled through twelve casting generations with the addition of 50% of new alloy on the occasion of every recasting. Three- point bending test was used to determine elastic modulus, recommended by the standard ISO 9693:1999. Fracture load for damaging ceramic layer was recorded on the universal testing machine (Zwick, type 1464), with the speed of 0,05 mm/min. The results of this research revealed significant differences between elasticity modules of metal-ceramic samples in every examined recycle generation. Recasting had negative effect on the elastic modulus of the examined alloys. This research showed the slight linear reduction of elastic modulus up to the 6th generation of recycling. After the 6th recycling there was a sudden fall of elastic modulus. Recasting of nickel-chromium and cobalt-chromium alloys is not recommended because of the reduced elastic modulus of these alloys. Instead of reusing previously recasted alloys, the alloy residues should be returned to the manufacturer.

  1. A Combinatorial Approach to the Investigation of Metal Systems that Form Both Bulk Metallic Glasses and High Entropy Alloys

    Science.gov (United States)

    Welk, Brian A.; Gibson, Mark A.; Fraser, Hamish L.

    2016-03-01

    In this work, compositionally graded specimens were deposited using the laser engineered net-shaping (LENS™) additive manufacturing technique to study the glass-forming ability of two bulk metallic glass (BMG) and high entropy alloy (HEA) composite systems. The first graded specimen varied from Zr57Ti5Al10Cu20Ni8 (BMG) to CoCrFeNiCu0.5 (HEA) and the second graded specimen varied from TiZrCuNb (BMG) to (TiZrCuNb)65Ni35 (HEA). After deposition, laser surface melting experiments were performed parallel to the gradient to remelt and rapidly solidify the specimen. Scanning electron microscopy and energy dispersive x-ray spectroscopy were used to determine the morphology and composition variations in the as-deposited and laser surface melted phases. Selected area diffraction of the melt pool regions confirmed an almost fully amorphous region in the first gradient and an amorphous matrix/crystalline dendrite composite structure in the second gradient.

  2. Improved prediction of heat of mixing and segregation in metallic alloys using tunable mixing rule for embedded atom method

    Science.gov (United States)

    Divi, Srikanth; Agrahari, Gargi; Ranjan Kadulkar, Sanket; Kumar, Sanjeet; Chatterjee, Abhijit

    2017-12-01

    Capturing segregation behavior in metal alloy nanoparticles accurately using computer simulations is contingent upon the availability of high-fidelity interatomic potentials. The embedded atom method (EAM) potential is a widely trusted interatomic potential form used with pure metals and their alloys. When limited experimental data is available, the A-B EAM cross-interaction potential for metal alloys AxB 1‑x are often constructed from pure metal A and B potentials by employing a pre-defined ‘mixing rule’ without any adjustable parameters. While this approach is convenient, we show that for AuPt, NiPt, AgAu, AgPd, AuNi, NiPd, PtPd and AuPd such mixing rules may not even yield the correct alloy properties, e.g., heats of mixing, that are closely related to the segregation behavior. A general theoretical formulation based on scaling invariance arguments is introduced that addresses this issue by tuning the mixing rule to better describe alloy properties. Starting with an existing pure metal EAM potential that is used extensively in literature, we find that the mixing rule fitted to heats of mixing for metal solutions usually provides good estimates of segregation energies, lattice parameters and cohesive energy, as well as equilibrium distribution of metals within a nanoparticle using Monte Carlo simulations. While the tunable mixing rule generally performs better than non-adjustable mixing rules, the use of the tunable mixing rule may still require some caution. For e.g., in Pt–Ni system we find that the segregation behavior can deviate from the experimentally observed one at Ni-rich compositions. Despite this the overall results suggest that the same approach may be useful for developing improved cross-potentials with other existing pure metal EAM potentials as well. As a further test of our approach, mixing rule estimated from binary data is used to calculate heat of mixing in AuPdPt, AuNiPd, AuPtNi, AgAuPd and NiPtPd. Excellent agreement with experiments

  3. Growth and characterizations of tin doped zinc-phthalocyanine prepared by thermal co-evaporation in high vacuum as a nanomaterial

    Science.gov (United States)

    Kayunkid, Navaphun; Rangkasikorn, Adirek; Saributr, Chaloempol; Nukeaw, Jiti

    2016-02-01

    This research is related to the growth and characterizations of the novel hybrid nanomaterial, tin doped zinc-phthalocyanine thin films (Sn-doped ZnPC), grown by thermal co-evaporation. The concentration of Sn in hybrid films was controlled by adjusting the deposition rate between Sn and ZnPc. The hybrid films were characterized by atomic force microscopy and UV-visible spectroscopy to reveal the physical and optical properties of hybrid films. Moreover, the electrical properties, e.g., carrier mobility and carrier concentration, of the indium tin oxide (ITO)/Sn-doped ZnPc/aluminium (Al) devices were extracted from the current-voltage and capacitance-voltage characteristics. Furthermore, X-ray photoelectron spectroscopy and Raman spectroscopy was employed to explore the chemical interaction taking place in doped films. Sn doping into ZnPc changes the film’s specific properties, e.g., morphology, crystalline packing, absorption spectra, and conductivity. Moreover, no chemical bond is formed between Sn and ZnPc, and Sn dopants are formed as metal clusters covered by derivative oxide (SnOx) embedded in the Sn-doped ZnPc film.

  4. Microstructures of the oxides on the activated AB{sub 2} and AB{sub 5} metal hydride alloys surface

    Energy Technology Data Exchange (ETDEWEB)

    Young, K., E-mail: kwo.young@BASF.com [BASF/Battery Materials-Ovonic, 2983 Waterview Drive, Rochester Hills, MI 48309 (United States); Chao, B. [BASF/Battery Materials-Ovonic, 2983 Waterview Drive, Rochester Hills, MI 48309 (United States); Liu, Y. [Electron Microscopy Facility, 145 Linus Pauling Science Center, 2900 SW Campus Way, Oregon State University, Corvallis, OR 97331 (United States); Nei, J. [BASF/Battery Materials-Ovonic, 2983 Waterview Drive, Rochester Hills, MI 48309 (United States)

    2014-09-01

    Highlights: • Morphologies of surface hydroxide of AB{sub 2}, AB{sub 5}, and A{sub 2}B{sub 7} alloys were compared. • Nd promotes the formation of thick rod instead of fine needles. • Both AB{sub 2} and AB{sub 5} show similar buffer oxide + surface oxide structure. • The surface oxide layers in AB{sub 2} are thicker than those from AB{sub 5}. • AB{sub 2} surface is covered by oxide with less solubility in KOH. - Abstract: The surface oxides of the activated metal hydride alloys used as the negative electrode for nickel–metal hydride battery were studied by both scanning and transmission electron microscope techniques. In transition metal based AB{sub 2} metal hydride alloys, the surface of the powder is covered with oxides as a product of oxidation from the electrolyte and protected by zirconium oxide and vanadium-rich BCC-structured secondary phase. In the rare-earth based AB{sub 5} and A{sub 2}B{sub 7} metal hydride alloys, the surface is decorated with nano-structured needles and larger-scaled rods of hydroxides from the precipitation of rare earth ions after the oxidation by the electrolyte. Further TEM studies show the existence of a buffer oxide layer sandwiched between the inclusion-embedded surface oxide and alloy bulk in both AB{sub 2} and AB{sub 5} alloys. In both cases, the inclusions are found to be metallic nanocrystals mainly composed of Ni and Co as determined by electron energy loss spectroscopy, selective area electron diffraction, transmission electron atomic image, and X-ray energy dispersive spectroscopy. The Co-to-Ni ratio in the inclusion is larger than that in the bulk due to the less corrosive nature of Co. The additions of Co and Al in the AB{sub 2} are found to reduce number of activation cycles needed to generate a surface oxide with proper catalytic capability.

  5. Metal release from stainless steel powders and massive sheets--comparison and implication for risk assessment of alloys.

    Science.gov (United States)

    Hedberg, Yolanda; Mazinanian, Neda; Odnevall Wallinder, Inger

    2013-02-01

    Industries that place metal and alloy products on the market are required to demonstrate that they are safe for all intended uses, and that any risks to humans, animals or the environment are adequately controlled. This requires reliable and robust in vitro test procedures. The aim of this study is to compare the release of alloy constituents from stainless steel powders of different grades (focus on AISI 316L) and production routes into synthetic body fluids with the release of the same metals from massive sheets in relation to material and surface characteristics. The comparison is justified by the fact that the difference between massive surfaces and powders from a metal release/dissolution and surface perspective is not clearly elucidated within current legislations. Powders and abraded and aged (24 h) massive sheets were exposed to synthetic solutions of relevance for biological settings and human exposure routes, for periods of up to one week. Concentrations of released iron, chromium, nickel, and manganese in solution were measured, and the effect of solution pH, acidity, complexation capacity, and proteins elucidated in relation to surface oxide composition and its properties. Implications for risk assessments based on in vitro metal release data from alloys are elucidated.

  6. Effect of Mo on properties of the industrial Fe-B-alloy-derived Fe-based bulk metallic glasses

    Science.gov (United States)

    Zhu, Kai-rui; Jiang, Wei; Wu, Ji-li; Zhang, Bo

    2017-08-01

    The experimental results concerning the effects of Mo on the glass-forming ability (GFA), thermal stability, and mechanical, anticorrosion, and magnetic properties of an (Fe71.2B24Y4.8)96Nb4 bulk metallic glass (BMG) were presented. An industrial Fe-B alloy was used as the raw material, and a series of Fe-based BMGs were synthesized. In BMGs with the Mo contents of approximately 1at%-2at%, the cast alloy reached a critical diameter of 6 mm. The hardness and fracture strength also reached their maximum values in this alloy system. However, the anticorrosion and magnetic properties of the BMGs were not substantially improved by the addition of Mo. The low cost, good GFA, high hardness, and high fracture strength of the Fe-based BMGs developed in this work suggest that they are potential candidates for commercial applications.

  7. Evaluation of mechanical properties of recasted dental base metal alloys for considering their reusability in dentistry and engineering field

    Directory of Open Access Journals (Sweden)

    Nandish Bantarahalli Thopegowda

    2014-01-01

    Full Text Available Background: Base metal casting alloys are extensively used in dentistry to fabricate many oral appliances and a huge amount is wasted in the form of sprues and buttons during the casting procedure. Recycling and reusing these alloys by clean technologies may save our natural resources from being depleted and as well reduce the cost of the treatment of the patients. Objectives: To study the mechanical properties of recasted dental base metal alloys, and explore possible ways to recycle and reuse in dentistry and other fields of science and technology. Materials and Methods: Two beryllium-free Cobalt-Chromium (Co-Cr dental casting alloys, Wironit and Wirobond-C, were used for this study. Six groups of specimen (melted once, twice, five, ten, fifteen and twenty times per each alloy were casted. The tensile strength and hardness of these samples were measured by using universal testing machine and Vickers hardness number (VHN tester. Results: Tensile strength decreased from 850 MPa to 777 MPa after 5 th recasting and to 674 MPa at the end of 20 th recasting procedure for the Wironit samples. For Wirobond-C samples, tensile strength decreased from 720 MPa to 678 MPa after 5 th recasting and further reduced to 534 MPa at the end of 20 th recasting procedure. Hardness decreased from 380VHN to 335VHN at the end of 20 th recasting for Wironit samples and 328VHN to 247VHN for Wirobond-C samples after 20 th recasting procedure. The slight decrease in their mechanical properties will not have any impact on the clinical performance for dental applications. Conclusion: There is no major degradation in the mechanical properties after recycling, and hence, the left over alloys after casting procedures can be reused in dentistry with a condition to satisfy cytotoxicity tests.

  8. Pulmonary toxicity after exposure to military-relevant heavy metal tungsten alloy particles

    Energy Technology Data Exchange (ETDEWEB)

    Roedel, Erik Q., E-mail: Erik.Roedel@amedd.army.mil [Department of General Surgery, Tripler Army Medical Center, Honolulu, HI 96859 (United States); Cafasso, Danielle E., E-mail: Danielle.Cafasso@amedd.army.mil [Department of General Surgery, Tripler Army Medical Center, Honolulu, HI 96859 (United States); Lee, Karen W.M., E-mail: Karen.W.Lee@amedd.army.mil [Department of Clinical Investigation, Tripler Army Medical Center, Honolulu, HI 96859 (United States); Pierce, Lisa M., E-mail: Lisa.Pierce@amedd.army.mil [Department of Clinical Investigation, Tripler Army Medical Center, Honolulu, HI 96859 (United States)

    2012-02-15

    Significant controversy over the environmental and public health impact of depleted uranium use in the Gulf War and the war in the Balkans has prompted the investigation and use of other materials including heavy metal tungsten alloys (HMTAs) as nontoxic alternatives. Interest in the health effects of HMTAs has peaked since the recent discovery that rats intramuscularly implanted with pellets containing 91.1% tungsten/6% nickel/2.9% cobalt rapidly developed aggressive metastatic tumors at the implantation site. Very little is known, however, regarding the cellular and molecular mechanisms associated with the effects of inhalation exposure to HMTAs despite the recognized risk of this route of exposure to military personnel. In the current study military-relevant metal powder mixtures consisting of 92% tungsten/5% nickel/3% cobalt (WNiCo) and 92% tungsten/5% nickel/3% iron (WNiFe), pure metals, or vehicle (saline) were instilled intratracheally in rats. Pulmonary toxicity was assessed by cytologic analysis, lactate dehydrogenase activity, albumin content, and inflammatory cytokine levels in bronchoalveolar lavage fluid 24 h after instillation. The expression of 84 stress and toxicity-related genes was profiled in lung tissue and bronchoalveolar lavage cells using real-time quantitative PCR arrays, and in vitro assays were performed to measure the oxidative burst response and phagocytosis by lung macrophages. Results from this study determined that exposure to WNiCo and WNiFe induces pulmonary inflammation and altered expression of genes associated with oxidative and metabolic stress and toxicity. Inhalation exposure to both HMTAs likely causes lung injury by inducing macrophage activation, neutrophilia, and the generation of toxic oxygen radicals. -- Highlights: ► Intratracheal instillation of W–Ni–Co and W–Ni–Fe induces lung inflammation in rats. ► W–Ni–Co and W–Ni–Fe alter expression of oxidative stress and toxicity genes. ► W

  9. Preliminary assessment of metal-porcelain bonding strength of CoCrW alloy after 3 wt.% Cu addition

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yanjin; Zhao, Chaoqian [Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155Yangqiao Road West, Fuzhou (China); Ren, Ling [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang (China); Guo, Sai; Gan, Yiliang [Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155Yangqiao Road West, Fuzhou (China); Yang, Chunguang [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang (China); Wu, Songquan; Lin, Junjie; Huang, Tingting [Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155Yangqiao Road West, Fuzhou (China); Yang, Ke, E-mail: kyang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang (China); Lin, Jinxin, E-mail: franklin@fjirsm.ac.cn [Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155Yangqiao Road West, Fuzhou (China)

    2016-06-01

    In this work, a novel Cu-bearing CoCrW alloy fabricated by selective laser melting for dental application has been studied. For its successful application, the bonding strength of metal-porcelain is essential to be systematically investigated. Therefore, the aim of this study was to evaluate the metal-porcelain bonding strength of CoCrWCu alloy by three-point bending test, meanwhile the Ni-free CoCrW alloy was used as control. The oxygen content was investigated by an elemental analyzer; X-ray photoelectron spectroscopy (XPS) was used to analyze the surface chemical composition of CoCrW based alloy after preoxidation treatment; the fracture mode was investigated by X-ray energy spectrum analysis (EDS) and scanning electron microscope (SEM). Result from the oxygen content analysis showed that the content of oxygen dramatically increased after the Cu addition. And the XPS suggested that Co-oxidation, Cr{sub 2}O{sub 3}, CrO{sub 2}, WO{sub 3}, Cu{sub 2}O and CuO existed on the preoxidated surface of the CoCrWCu alloy; the three-point bending test showed that the bonding strength of the CoCrWCu alloy was 43.32 MPa, which was lower than that of the CoCrW group of 47.65 MPa. However, the average metal-porcelain bonding strength is significantly higher than the minimum value in the ISO 9693 standard. Results from the SEM images and EDS indicated that the fracture mode of CoCrWCu-porcelain was mixed between cohesive and adhesive. Based on the results obtained in this study, it can be indicated that the Cu-bearing CoCrW alloy fabricated by the selective laser melting is a promising candidate for use in dental application. - Highlights: • The bonding strength of metal-porcelain was slightly decreased with Cu addition; • Cu not only led to promote the diffusion of O and W element but also inhibited the diffusivity of Co in the outward direction; • The changed oxidation behavior resulted in lowering the bonding strength;.

  10. Comparative Analysis of Properties and Microstructure of the Plastically Deformed Alloy Inconel®718, Manufactured by Plastic Working and Direct Metal Laser Sintering

    National Research Council Canada - National Science Library

    K. Żaba; S. Puchlerska; M. Kwiatkowski; M. Nowosielski; M. Głodzik; T. Tokarski; P. Seibt

    2016-01-01

    .... The paper presents a comparative analysis of the microstructure and mechanical properties of the alloy Inconel 718 manufactured by plastic working and Direct Metal Laser Sintering technology, in the initial state, after deformation and after heat treatment.

  11. Mechanical alloying: A method to obtain metallic powders and composite materials; Aleacion mecanica: Metodo de obtencion de polvos metalicos y materiales compuestos

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Navas, E. M.; Velasco Lopez, F.; Torralba Castello, J. M. [Universidad Carlos III. Madrid (Spain); Edil da Costa, C. [Universidad do Estado de Santa Catarina. Brasil (Brazil)

    2000-07-01

    This work deals with the mechanical alloying process as a method for powder production. The main aspects involved are as well as the fundaments and their particular application to the metal powder production. (Author) 75 refs.

  12. High critical current density in YBCO coated conductors prepared by thermal co-evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Bindi, M [Edison Termoelettrica SpA, Foro Buonaparte 31, I-20121 Milan (Italy); Botarelli, A [Europa Metalli SpA, Superconductor Division, via Repubblica 257, I-55052 Fornaci di Barga, Lucca (Italy); Gauzzi, A [IMEM-CNR, Area delle Scienze 37/A, I-43010 Parma (Italy); Gianni, L [Edison Termoelettrica SpA, Foro Buonaparte 31, I-20121 Milan (Italy); Ginocchio, S [Edison Termoelettrica SpA, Foro Buonaparte 31, I-20121 Milan (Italy); Holzapfel, B [Institut fuer Festkoerper-und Werkstoffsforschung, Helmholtzstrasse 20, Dresden (Germany); Baldini, A [Europa Metalli SpA, Superconductor Division, via Repubblica 257, I-55052 Fornaci di Barga, Lucca (Italy); Zannella, S [Edison Termoelettrica SpA, Foro Buonaparte 31, I-20121 Milan (Italy)

    2004-03-01

    We report on the in situ preparation of Y Ba{sub 2}Cu{sub 3}O{sub 7-{delta}} films uniformly deposited over large areas,>20 x 20 cm{sup 2}, at 690 C by thermal co-evaporation onto Ni-5 at.% W biaxially textured tapes buffered with e-beam evaporated CeO{sub 2}. Typically, the thickness of the YBCO and CeO{sub 2} layers was 0.9 and 0.1 {mu}m, respectively. Deposition rates were 0.2 and 2.5 nm s{sup -1}, respectively. X-ray diffraction {theta}-2{theta} Bragg-Brentano and pole figure measurements, and Nomarsky optical and SEM microscopy analysis show good biaxial texture of both layers, sharp interfaces and the absence of cracks. Midpoint critical temperatures, T{sub c}, fall reproducibly in the 87-88 K range with transition widths {delta}T{sub c} = 1 K. Remarkably high transport critical current densities, J{sub c}, in the 2.0-2.5 MA cm{sup -2} range are achieved at 77 K in 1 cm long samples. The above deposition route appears to be promising for the development of long-length YBCO coated conductors thanks to the relatively low deposition temperature, the high degree of uniformity over large areas and the simple single buffer layer architecture.

  13. Superior stability for perovskite solar cells with 20% efficiency using vacuum co-evaporation.

    Science.gov (United States)

    Zhu, Xuejie; Yang, Dong; Yang, Ruixia; Yang, Bin; Yang, Zhou; Ren, Xiaodong; Zhang, Jian; Niu, Jinzhi; Feng, Jiangshan; Liu, Shengzhong Frank

    2017-08-31

    Chemical composition and film quality are two key figures of merit for large-area high-efficiency perovskite solar cells. To date, all studies on mixed perovskites have used solution-processing, which results in imperfect surface coverage and pin-holes generated during solvent evaporation, execrably influencing the stability and efficiency of perovskite solar cells. Herein, we report our development using a vacuum co-evaporation deposition method to fabricate pin-hole-free cesium (Cs)-substituted perovskite films with complete surface coverage. Apart from the simplified procedure, the present method also promises tunable band gap, reduced trap-state density and longer carrier lifetime, leading to solar cell efficiency as high as 20.13%, which is among the highest reported for planar perovskite solar cells. The splendid performance is attributed to superior merits of the Cs-substituted perovskite film including tunable band gap, reduced trap-state density and longer carrier lifetime. Moreover, the Cs-substituted perovskite device without encapsulation exhibits significantly higher stability in ambient air compared with the single-component counterpart. When the Cs-substituted perovskite solar cells are stored in dark for one year, the PCE remains at 19.25%, degrading only 4.37% of the initial efficiency. The excellent stability originates from reduced lattice constant and relaxed strain in perovskite lattice by incorporating Cs cations into the crystal lattice, as demonstrated by the positive peak shifts and reduced peak width in X-ray diffraction analysis.

  14. A precious metal alloy for construction of MR imaging-compatible balloon-expandable vascular stents

    NARCIS (Netherlands)

    L.C. van Dijk (Lukas); J. van Holten; B.P. van Dijk (Bastiaan); N.A. Matheijssen; P.M.T. Pattynama (Peter)

    2001-01-01

    textabstractThe authors developed ABI alloy, which mechanically resembles stainless steel 316. The main elements of ABI alloy are palladium and silver. Magnetic resonance (MR) images and radiographs of ABI alloy and stainless steel 316 stent models and of nitinol, tantalum, and

  15. Microstructure and Properties of W-Cu Composite/Fe-Based Powder Alloy Vacuum Brazed Joint with Different Filler Metals

    Science.gov (United States)

    Xia, C. Z.; Yang, J.; Xu, X. P.; Zou, J. S.

    2017-05-01

    W-Cu composite and Fe-based powder alloy were brazed with filler metals of Ag-Cu and Cu-Mn-Co alloys in a vacuum furnace. Both of filler metals can join W-Cu composite with Fe-based powder alloy directly in the experiment process. Microstructure, distribution of elements and fracture morphology were observed and analyzed using scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) methods, and phase composition of bonding area was analyzed by X-ray diffraction (XRD). The obtained results indicated that the smooth faying surface and dense microstructure of brazed joint were formed and the primary microstructure of brazing seam were, respectively, Ag(Cu) solid solution and Cu(Mn) solid solution, which ensured forming the stable connection of brazed joint. The bending strength of Ag-based and Cu-based brazed joint can, respectively, reach to 317 and 704 MPa, where fracture showed a typical ductile fracture characteristic. The fracture of Cu-based brazed joint located at brazing seam area, and the fracture of Ag-based brazed joint occurred in Fe-based powder alloy side.

  16. Effect of Rare Earth Metals, Sr, and Ti Addition on the Microstructural Characterization of A413.1 Alloy

    Directory of Open Access Journals (Sweden)

    M. G. Mahmoud

    2017-01-01

    Full Text Available The present work was performed on A413.1 alloy containing 0.2–1.5 wt% rare earth metals (lanthanum or cerium, 0.05–0.15% Ti, and 0–0.02 wt% Sr. These elements were either added individually or combined. Thermal analysis, image analysis, and electron probe microanalysis were the main techniques employed in the present study. The results show that the use of the depression in the eutectic temperature as a function of alloy modification cannot be applied in the case when the alloy is treated with rare earth metals. Increasing the concentration of RE increases the solidification zone especially in Sr-modified alloys leading to poor feeding ability. This observation is more prominent in the case of Ce addition. Depending upon the amount of added Ti, two RE based intermetallics can be formed: (i a white phase, mainly platelet-like (approximately 2.5 μm thick, that is rich in RE, Si, Cu, and Al and (ii a second phase made up of mainly grey sludge particles (star-like branching in different directions. The grey phase is rich in Ti with some RE (almost 20% of that in the white phase with traces of Si and Cu. There is a strong interaction between RE and Sr leading to a reduction in the efficiency of Sr as a eutectic Si modifier causing particle demodification.

  17. Property Evaluation of Friction Stir Welded Dissimilar Metals : AA6101-T6 and AA1350 Aluminium Alloys

    Directory of Open Access Journals (Sweden)

    Rajendran ASHOK KUMAR

    2017-02-01

    Full Text Available Next to copper, aluminium alloys are widely used in electrical industries, because of their high electrical conductivity. AA6101-T6 and AA1350 aluminium alloys are widely used in electrical bus bars. As these alloys are joined by mechanical fasteners in electrical bus bars, the conductive area has been reduced. To avoid this problem, they should be joined without removal of metal as well as their properties. Friction stir welding technique is mainly invented for joining similar and dissimilar aluminium alloys. In this investigation, friction stir welding of AA6101-T6 and AA1350 aluminium alloys was done by varying tool traversing speed, rotational speed and tilt angle with hexagonal pin profiled tool. The analysis of variance was employed to study the effect of above parameters on mechanical properties of welded joints. From the experimental results, it is observed that welded joint with the combination of 1070 rpm rotating speed, 78 mm/min traversing speed and 2° tilt angle provides better mechanical properties. Analysis of variance shows that most significant impact on tensile strength is made by variation in tool rotating speed while tool tilt angle makes the most significant impact on elongation and bending strength.DOI: http://dx.doi.org/10.5755/j01.ms.23.1.14132

  18. Microstructure and properties of an Al-Ti-Cu-Si brazing alloy for SiC-metal joining

    Science.gov (United States)

    Dai, Chun-duo; Ma, Rui-na; Wang, Wei; Cao, Xiao-ming; Yu, Yan

    2017-05-01

    An Al-Ti-Cu-Si solid-liquid dual-phase alloy that exhibits good wettability and appropriate interfacial reaction with SiC at 500-600°C was designed for SiC-metal joining. The microstructure, phases, differential thermal curves, and high-temperature wetting behavior of the alloy were analyzed using scanning electron microscopy, X-ray diffraction analysis, differential scanning calorimetry, and the sessile drop method. The experimental results show that the 76.5Al-8.5Ti-5Cu-10Si alloy is mainly composed of Al-Al2Cu and Al-Si hypoeutectic low-melting-point microstructures (493-586°C) and the high-melting-point intermetallic compound AlTiSi (840°C). The contact angle, determined by high-temperature wetting experiments, is approximately 54°. Furthermore, the wetting interface is smooth and contains no obvious defects. Metallurgical bonding at the interface is attributable to the reaction between Al and Si in the alloy and ceramic, respectively. The formation of the brittle Al4C3 phase at the interface is suppressed by the addition of 10wt% Si to the alloy.

  19. Sintering behavior and mechanical properties of a metal injection molded Ti–Nb binary alloy as biomaterial

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Dapeng, E-mail: dpzhao@hotmail.com [College of Biology, Hunan University, 410082 Changsha (China); Helmholtz-Zentrum Geesthacht, Institute of Materials Research, D-21502 Geesthacht (Germany); Chang, Keke [RWTH Aachen University, Materials Chemistry, D-52056 Aachen (Germany); Ebel, Thomas [Helmholtz-Zentrum Geesthacht, Institute of Materials Research, D-21502 Geesthacht (Germany); Nie, Hemin [College of Biology, Hunan University, 410082 Changsha (China); Willumeit, Regine; Pyczak, Florian [Helmholtz-Zentrum Geesthacht, Institute of Materials Research, D-21502 Geesthacht (Germany)

    2015-08-15

    Highlights: • The sintering of the MIM Ti–Nb alloy consists of three steps. • The Nb particles act as diffusion barriers during sintering. • The TiC{sub x} only precipitate in the cooling step during sintering. • The TiC{sub x} hardly influence the sintering process of MIM Ti–Nb alloy. • The MIM Ti–Nb alloy exhibits high strength, low Young’s modulus but poor ductility. - Abstract: Sintering behavior, microstructure and mechanical properties of a Ti–16Nb alloy processed by metal injection molding (MIM) technology using elemental powders were investigated in this work by optical microscopy, X-ray diffraction (XRD), dilatometer, scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). It was found that from 700 °C to 1500 °C the homogenization and densification process of MIM Ti–16Nb alloy consisted of three steps, i.e., Ti-diffusion-controlled step, Ti–Nb-diffusion step and matrix-diffusion step. Titanium carbide formation was observed in the samples sintered at 1300 °C and 1500 °C, but not in the ones sintered at 900 °C and 1100 °C. The MIM Ti–16Nb specimens sintered at 1500 °C exhibited a good combination of high tensile strength and low Young’s modulus. However, the titanium carbide particles led to poor ductility.

  20. Effect of recasting on the elastic modulus of metal-ceramic systems from nickel-chromium and cobalt-chromium alloys

    Directory of Open Access Journals (Sweden)

    Mirković Nemanja

    2007-01-01

    Full Text Available Background/Aim. Elastic modulus of metal-ceramic systems determines their flexural strength and prevents damages on ceramics during mastication. Recycling of basic alloys is often a clinical practice, despite the possible effects on the quality of the future metal-ceramic dentures. This research was done to establish recasting effects of nickel-chromium and cobalt-chromium alloys on the elastic modulus of metalceramic systems in making fixed partial dentures. Methods. The research was performed as an experimental study. Six metal-ceramic samples of nickel-chromium alloy (Wiron 99 and cobalt-chromium alloy (Wirobond C were made. Alloy residues were recycled through twelve casting generations with the addition of 50% of new alloy on the occasion of every recasting. Three- point bending test was used to determine elastic modulus, recommended by the standard ISO 9693:1999. Fracture load for damaging ceramic layer was recorded on the universal testing machine (Zwick, type 1464, with the speed of 0,05 mm/min. Results. The results of this research revealed significant differences between elasticity modules of metal-ceramic samples in every examined recycle generation. Recasting had negative effect on the elastic modulus of the examined alloys. This research showed the slight linear reduction of elastic modulus up to the 6th generation of recycling. After the 6th recycling there was a sudden fall of elastic modulus. Conclusion. Recasting of nickelchromium and cobalt-chromium alloys is not recommended because of the reduced elastic modulus of these alloys. Instead of reusing previously recasted alloys, the alloy residues should be returned to the manufacturer. .

  1. Effect of recasting on the elastic modulus of metal-ceramic systems from nickel-chromium and cobalt-chromium alloys

    OpenAIRE

    Mirković Nemanja

    2007-01-01

    Background/Aim. Elastic modulus of metal-ceramic systems determines their flexural strength and prevents damages on ceramics during mastication. Recycling of basic alloys is often a clinical practice, despite the possible effects on the quality of the future metal-ceramic dentures. This research was done to establish recasting effects of nickel-chromium and cobalt-chromium alloys on the elastic modulus of metalceramic systems in making fixed partial dentures. Methods. The research was perform...

  2. A survey on the effects of three surface treatment methods on bond strength between base-metal alloys and Ceromer material (Targis)

    OpenAIRE

    Rokni. Sh.; Mehdizade. Sh

    2004-01-01

    Statement of Problem: Ceramics and resins belong to the earliest tooth restorative materials. Nowadays new generations of these materials have provided a revolution in cosmetic dentistry. Ceramic Optimized polymer (Ceromer) is a newly made product that the bond between this material and base metal alloys, which are used widely today, is paid too much attention. Purpose: The aim of this study was to evaluate the bond strength of targis (Ceromer) to three types of base metal alloys through thre...

  3. The Incorporation of Lithium Alloying Metals into Carbon Matrices for Lithium Ion Battery Anodes

    Science.gov (United States)

    Hays, Kevin A.

    An increased interest in renewable energies and alternative fuels has led to recognition of the necessity of wide scale adoption of the electric vehicle. Automotive manufacturers have striven to produce an electric vehicle that can match the range of their petroleum-fueled counterparts. However, the state-of-the-art lithium ion batteries used to power the current offerings still do not come close to the necessary energy density. The energy and power densities of the lithium ion batteries must be increased significantly if they are going to make electric vehicles a viable option. The chemistry of the lithium ion battery, based on lithium cobalt oxide cathodes and graphite anodes, is limited by the amount of lithium the cathode can provide and the anode will accept. While these materials have proven themselves in portable electronics over the past two decades, plausible higher energy alternatives do exist. The focus is of this study is on anode materials that could achieve a capacity of more than 3 times greater than that of graphite anodes. The lithium alloying anode materials investigated and reported herein include tin, arsenic, and gallium arsenide. These metals were synthesized with nanoscale dimensions, improving their electrochemical and mechanical properties. Each exhibits their own benefits and challenges, but all display opportunities for incorporation in lithium ion batteries. Tin is incorporated in multilayer graphene nanoshells by introducing small amounts of metal in the core and, separately, on the outside of these spheres. Electrolyte decomposition on the anode limits cycle life of the tin cores, however, tin vii oxides introduced outside of the multilayer graphene nanoshells have greatly improved long term battery performance. Arsenic is a lithium alloying metal that has largely been ignored by the research community to date. One of the first long term battery performance tests of arsenic is reported in this thesis. Anodes were made from nanoscale

  4. An Innovative Accident Tolerant LWR Fuel Rod Design Based on Uranium-Molybdenum Metal Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, Robert O.; Bennett, Wendy D.; Henager, Charles H.; Lavender, Curt A.; Smith, Mark T.; Omberg, Ronald P.

    2016-09-12

    The US Department of Energy is developing a uranium-molybdenum metal alloy Enhanced Accident Tolerant Fuel concept for Light Water Reactor applications that provides improved fuel performance during normal operation, anticipated operational occurrences, and postulated accidents. The high initial uranium atom density, the high thermal conductivity, and a low heat capacity permit a U-Mo-based fuel assembly to meet important design and safety requirements. These attributes also result in a fuel design that can satisfy increased fuel utilization demands and allow for improved accident tolerance in LWRs. This paper summarizes the results obtained from the on-going activities to; 1) evaluate the impact of the U-10wt%Mo thermal properties on operational and accident safety margins, 2) produce a triple extrusion of stainless steel cladding/niobium liner/U-10Mo fuel rod specimen and 3) test the high temperature water corrosion of rodlet samples containing a drilled hole in the cladding. Characterization of the cladding and liner thickness uniformity, microstructural features of the U-Mo gamma phase, and the metallurgical bond between the component materials will be presented. The results from corrosion testing will be discussed which yield insights into the resistance to attack by water ingress during high temperature water exposure for the triple extruded samples containing a drilled hole. These preliminary evaluations find that the U-10Mo fuel design concept has many beneficial features that can meet or improve conventional LWR fuel performance requirements under normal operation, AOOs, and postulated accidents. The viability of a deployable U-Mo fuel design hinges on demonstrating that fabrication processes and alloying additions can produce acceptable irradiation stability during normal operation and accident conditions and controlled metal-water reaction rates in the unlikely event of a cladding perforation. In the area of enhanced accident tolerance, a key objective

  5. Processing Parameters Optimization for Material Deposition Efficiency in Laser Metal Deposited Titanium Alloy

    Science.gov (United States)

    Mahamood, Rasheedat M.; Akinlabi, Esther T.

    2016-03-01

    Ti6Al4V is an important Titanium alloy that is mostly used in many applications such as: aerospace, petrochemical and medicine. The excellent corrosion resistance property, the high strength to weight ratio and the retention of properties at high temperature makes them to be favoured in most applications. The high cost of Titanium and its alloys makes their use to be prohibitive in some applications. Ti6Al4V can be cladded on a less expensive material such as steel, thereby reducing cost and providing excellent properties. Laser Metal Deposition (LMD) process, an additive manufacturing process is capable of producing complex part directly from the 3-D CAD model of the part and it also has the capability of handling multiple materials. Processing parameters play an important role in LMD process and in order to achieve desired results at a minimum cost, then the processing parameters need to be properly controlled. This paper investigates the role of processing parameters: laser power, scanning speed, powder flow rate and gas flow rate, on the material utilization efficiency in laser metal deposited Ti6Al4V. A two-level full factorial design of experiment was used in this investigation, to be able to understand the processing parameters that are most significant as well as the interactions among these processing parameters. Four process parameters were used, each with upper and lower settings which results in a combination of sixteen experiments. The laser power settings used was 1.8 and 3 kW, the scanning speed was 0.05 and 0.1 m/s, the powder flow rate was 2 and 4 g/min and the gas flow rate was 2 and 4 l/min. The experiments were designed and analyzed using Design Expert 8 software. The software was used to generate the optimized process parameters which were found to be laser power of 3.2 kW, scanning speed of 0.06 m/s, powder flow rate of 2 g/min and gas flow rate of 3 l/min.

  6. In vitro and in vivo studies on a Mg-Sr binary alloy system developed as a new kind of biodegradable metal.

    Science.gov (United States)

    Gu, X N; Xie, X H; Li, N; Zheng, Y F; Qin, L

    2012-07-01

    Magnesium alloys have shown potential as biodegradable metallic materials for orthopedic applications due to their degradability, resemblance to cortical bone and biocompatible degradation/corrosion products. However, the fast corrosion rate and the potential toxicity of their alloying element limit the clinical application of Mg alloys. From the viewpoint of both metallurgy and biocompatibility, strontium (Sr) was selected to prepare hot rolled Mg-Sr binary alloys (with a Sr content ranging from 1 to 4 wt.%) in the present study. The optimal Sr content was screened with respect to the mechanical and corrosion properties of Mg-Sr binary alloys and the feasibility of the use of Mg-Sr alloys as orthopedic biodegradable metals was investigated by in vitro cell experiments and intramedullary implantation tests. The mechanical properties and corrosion rates of Mg-Sr alloys were dose dependent with respect to the added Sr content. The as-rolled Mg-2Sr alloy exhibited the highest strength and slowest corrosion rate, suggesting that the optimal Sr content was 2 wt.%. The as-rolled Mg-2Sr alloy showed Grade I cytotoxicity and induced higher alkaline phosphatase activity than the other alloys. During the 4 weeks implantation period we saw gradual degradation of the as-rolled Mg-2Sr alloy within a bone tunnel. Micro-computer tomography and histological analysis showed an enhanced mineral density and thicker cortical bone around the experimental implants. Higher levels of Sr were observed in newly formed peri-implant bone compared with the control. In summary, this study shows that the optimal content of added Sr is 2 wt.% for binary Mg-Sr alloys in the rolled state and that the as-rolled Mg-2Sr alloy in vivo produces an acceptable host response. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Threshold voltage modeling and performance comparison of a novel linearly graded binary metal alloy gate junctionless double gate metal oxide semiconductor field effect transistor

    Science.gov (United States)

    Sarkhel, S.; Manna, B.; Sarkar, S. K.

    2015-06-01

    Keeping pace with the current research trend dominated by development of junctionless devices, in this work, we have incorporated the innovative concept of work function engineering by continuous horizontal variation of mole fraction in a binary metal alloy gate into a junctionless double gate metal oxide semiconductor field effect transistor. We have thereby presented a new structure, a junctionless work function engineered gate double gate metal oxide semiconductor field effect transistor. A detailed analytical modeling of this novel transistor structure has been done based on the solution of two dimensional Poisson's equation presenting a simplified expression for short channel threshold voltage. Based on analytical calculations, an overall performance comparison of junctionless work function engineered gate double gate and normal junctionless double gate metal oxide semiconductor field effect transistor has been investigated to establish the superiority of our proposed structure over its normal junctionless double gate counterpart in terms of reduced short channel effects, threshold voltage roll-off and drain induced barrier lowering.

  8. Evaluation of metal-ceramic bond characteristics of three dental Co-Cr alloys prepared with different fabrication techniques.

    Science.gov (United States)

    Wang, Hongmei; Feng, Qing; Li, Ning; Xu, Sheng

    2016-12-01

    Limited information is available regarding the metal-ceramic bond strength of dental Co-Cr alloys fabricated by casting (CAST), computer numerical control (CNC) milling, and selective laser melting (SLM). The purpose of this in vitro study was to evaluate the metal-ceramic bond characteristics of 3 dental Co-Cr alloys fabricated by casting, computer numerical control milling, and selective laser melting techniques using the 3-point bend test (International Organization for Standardization [ISO] standard 9693). Forty-five specimens (25×3×0.5 mm) made of dental Co-Cr alloys were prepared by CAST, CNC milling, and SLM techniques. The morphology of the oxidation surface of metal specimens was evaluated by scanning electron microscopy (SEM). After porcelain application, the interfacial characterization was evaluated by SEM equipped with energy-dispersive spectrometry (EDS) analysis, and the metal-ceramic bond strength was assessed with the 3-point bend test. Failure type and elemental composition on the debonding interface were assessed by SEM/EDS. The bond strength was statistically analyzed by 1-way ANOVA and Tukey honest significant difference test (α=.05). The oxidation surfaces of the CAST, CNC, and SLM groups were different. They were porous in the CAST group but compact and irregular in the CNC and SLM groups. The metal-ceramic interfaces of the SLM and CNC groups showed excellent combination compared with those of the CAST group. The bond strength was 37.7 ±6.5 MPa for CAST, 43.3 ±9.2 MPa for CNC, and 46.8 ±5.1 MPa for the SLM group. Statistically significant differences were found among the 3 groups tested (P=.028). The debonding surfaces of all specimens exhibited cohesive failure mode. The oxidation surface morphologies and thicknesses of dental Co-Cr alloys are dependent on the different fabrication techniques used. The bond strength of all 3 groups exceed the minimum acceptable value of 25 MPa recommended by ISO 9693; hence, dental Co-Cr alloy

  9. Electronic structure, magnetism and robust half-metallicity of new quaternary Heusler alloy FeCrMnSb

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mukhtiyar [Department of Physics, Kurukshetra University, Kurukshetra 136 119, Haryana (India); Saini, Hardev S. [Department of Physics, National Institute of Technology, Kurukshetra 136 119, Haryana (India); Thakur, Jyoti [Department of Physics, Kurukshetra University, Kurukshetra 136 119, Haryana (India); Reshak, Ali H. [Institute of Complex Systems, FFPW, CENAKVA, University of South Bohemia in CB, Nove Hrady 37333 (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia); Kashyap, Manish K., E-mail: manishdft@gmail.com [Department of Physics, Kurukshetra University, Kurukshetra 136 119, Haryana (India)

    2013-12-15

    Highlights: •A new quaternary Heusler alloy FeCrMnSb is identified with robust half metallicity. •The stability of FeCrMnSb has been examined using elastic constants. •Effect of uniform and tetragonal strains on half metallicity has been studied. -- Abstract: A new quaternary Heusler alloy FeCrMnSb is identified by employing ab initio electronic structure calculations. It is stable in Y-structure which is also verified by various conditions governed by elastic constants c{sub ij}. It is a true half-metallic (HM) ferromagnet with integer magnetic moment of 2.00 μ{sub B} per formula unit. The values of minority band gap and HM gap are found to be 0.65 eV and 0.1 eV, respectively. The HM character of FeCrMnSb sustains for −6% to 9% of uniform strain and −9% to 12% of tetragonal strain. This new quaternary Heusler alloy can be proved as an ideal candidate for spin valves and magnetic tunnel junction applications (MTJs)

  10. Water-soluble metal working fluids additives derived from the esters of acid anhydrides with higher alcohols for aluminum alloy materials.

    Science.gov (United States)

    Yamamoto, Syutaro; Tomoda, Hideyuki; Watanabe, Shoji

    2007-01-01

    Water-soluble metal working fluids are used for processing of aluminum alloy materials. This short article describes properties of new additives in water-soluble metal working fluids for aluminum alloy materials. Many half esters or diesters were prepared from the reactions of higher alcohols with acid anhydrides. Interestingly, diesters of PTMG (tetrahydrofuran oligomer, MW = 650 and 1000) and polybutylene oxide (MW = 650) with maleic anhydride and succinic anhydride showed both of an excellent anti-corrosion property for aluminum alloy and a good hard water tolerance. The industrial soluble type processing oils including these additives also showed anti-corrosion property and hard water tolerance.

  11. Electrochemical characterization of melt spun AB{sub 5} alloys for metal hydride batteries

    Energy Technology Data Exchange (ETDEWEB)

    Brateng, Randi

    2003-05-01

    This thesis is part of a larger research project where two metal hydride forming AB{sub 5} type alloys have been investigated. A slightly non-stoichiometric alloy with mischmetal on A-site and nickel, cobalt, manganese and aluminium on B-site has been characterized. The composition of this material, which will be referred to as Mm(NiCoMnA1){sub 5.15}, is close to the normal battery composition. The other alloy characterized is LaNi{sub 5} based, where nickel is partly substituted with tin. This material will later be referred to as La(NiSn){sub 5}. These materials were produced by melt spinning to vary the cooling rate during solidification. The main purpose of the study has been to characterize the electrochemical properties related to battery performance. The production as well as the metallurgical and structural characterization of the materials were performed in another part of the project. For Mm(NiCoMnA1){sub 5.15} the unit cell volume was dependent on the cooling rate before heat treatment, while the unit cell volume was almost independent of the cooling rate for La(NiSn){sub 5}. For both alloy compositions, the electrochemical properties seemed to change with varying cooling rate. The desorption equilibrium potential, the discharge capacity when discharging at a low current and the deterioration rate were found to be reduced with decreasing unit cell volume and increased with increasing unit cell volume, before heat treatment of Mm(NiCoMnA1){sub 5.15}. The self discharge rate was observed to be inversely proportional to the unit cell volume for this material. For not heat treated La(NiSn){sub 5}, produced at different cooling rates, the desorption equilibrium potential decreased when the self discharge rate and the discharge capacity increased after cycling for 300 cycles. The deterioration rate decreased when the desorption equilibrium potential was reduced for La(NiSn){sub 5}. The electrochemical parameters both before and after heat treatment of La

  12. Investigation of welding crack in micro laser welded NiTiNb shape memory alloy and Ti6Al4V alloy dissimilar metals joints

    Science.gov (United States)

    Yuhua, Chen; Yuqing, Mao; Weiwei, Lu; Peng, He

    2017-06-01

    Dissimilar metals of NiTiNb shape memory alloy and Ti6Al4V alloy with a same thickness of 0.2 mm were joined by micro laser welding. The effect of laser power on crack sensitivity of the weld was investigated. The results show that full penetrated welds are obtained when the laser power of 7.2 W is used, many cracks are observed in the weld. With increasing the laser power to 12 W, the number of all cracks and cracking width first increase and then decrease. By XRD analysis, three different kinds of Ti2Ni, NbNi3 and AlNbTi2 intermetallic compounds are found in the weld. According to the formation enthalpy and binary phase diagram, brittle Ti2Ni phase with more contents is existed in the weld due to final solidification, and which is the main reason of crack formation along with large stress concentration. Moreover, the welding cracks like the weld center longitudinal solidification cracks, weld metal toe transversal liquid cracks, heat-affected-zone hot cracks and crater cracks are classified in the laser welded joints. A brittle cleavage fracture with cleavage planes and river patterns in the joints is presented from the fracture surface.

  13. Corrosion resistance of Ni-50Cr HVOF coatings on 310S alloy substrates in a metal dusting atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Saaedi, J. [Centre for Advanced Coating Technologies, Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario M5S 3E4 (Canada); Department of Materials and Metallurgical Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Arabi, H.; Mirdamadi, S.; Ghorbani, H. [Department of Materials and Metallurgical Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Coyle, T.W. [Centre for Advanced Coating Technologies, Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario M5S 3E4 (Canada)

    2011-09-15

    Metal dusting attack has been examined after three 168 h cycles on two Ni-50Cr coatings with different microstructures deposited on 310S alloy substrates by the high velocity oxy-fuel (HVOF) thermal-spray process. Metal dusting in uncoated 310S alloy specimens was found to be still in the initiation stage after 504 h of exposure in the 50H{sub 2}:50CO gas environment at 620 C. Dense Ni-50Cr coatings offered suitable resistance to metal dusting. Metal dusting was observed in the 310S substrates adjacent to pores at the interface between the substrate and a porous Ni-50Cr coating. The porosity present in the as-deposited coatings was shown to introduce a large variability into coating performance. Carbon formed by decomposition of the gaseous species accumulated in the surface pores and resulted in the dislodgement of surface splats due to stresses generated by the volume changes. When the corrosive gas atmosphere was able to penetrate through the interconnected pores and reach the coating-substrate interface, the 310S substrate was carburized, metal dusting attack occurred, and the resulting formation of coke in the pores led to local failure of the coating. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Phase structuring in metal alloys: Ultrasound-assisted top-down approach to engineering of nanostructured catalytic materials.

    Science.gov (United States)

    Cherepanov, Pavel V; Andreeva, Daria V

    2017-03-01

    High intensity ultrasound (HIUS) is a novel and efficient tool for top-down nanostructuring of multi-phase metal systems. Ultrasound-assisted structuring of the phase in metal alloys relies on two main mechanisms including interfacial red/ox reactions and temperature driven solid state phase transformations which affect surface composition and morphology of metals. Physical and chemical properties of sonication medium strongly affects the structuring pathways as well as morphology and composition of catalysts. HIUS can serve as a simple, fast, and effective approach for the tuning of structure and surface properties of metal particles, opening the new perspectives in design of robust and efficient catalysts. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Energy-Saving Melting and Revert Reduction Technology (E-SMARRT): Development of Elevated Temperature Aluminum Metal Matrix Composite (MMC) Alloy and Its Processing Technology

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, David C. [Eck Industreis, Inc.; Gegal, Gerald A.

    2014-04-15

    The objective of this project was to provide a production capable cast aluminum metal matrix composite (MMC) alloy with an operating temperature capability of 250-300°C. Important industrial sectors as well as the military now seek lightweight aluminum alloy castings that can operate in temperature ranges of 250-300°C. Current needs in this temperature range are being satisfied by the use of titanium alloy castings. These have the desired strength properties but the end components are heavier and significantly more costly. Also, the energy requirements for production of titanium alloy castings are significantly higher than those required for production of aluminum alloys and aluminum alloy castings.

  16. Thermodynamic investigation of the effect of alkali metal impuries on the processing of aluminum and magnesium alloys

    Science.gov (United States)

    Zhang, Shengjun

    2006-12-01

    of aluminum and magnesium alloys. As the first step of the thermodynamic description of the high-order system, the constitutive-binary systems were modeled in the present work using the CALPHAD technique combined with first-principles calculations. Then, ternaries and higher order systems can be modeled. For ternary systems without experimental data, the thermodynamic description is extrapolated by combining three constitutive-binary systems. Alkali-metal induced high temperature embrittlement (HTE) and loss of ductility were investigated in Al-Li, Al-Mg and Mg-Li alloys. It was discovered that the alkali-metal-rich liquid-2 phase is the cause of HTE and the loss of ductility is proportional to the mole fraction of the liquid phase and the grain size. The calculated results are consistent with experimental observations in the literature and were used to determine HTE safe and sensitive zones, maximum and critical hot-rolling temperatures and the maximum allowable Na content in alloys, which can be used to industrial processing of Al and Mg alloys. The degree of HTE is proportional to the mole fraction of the liquid-2 phase and the grain size.

  17. High strength alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maziasz, Phillip James; Shingledecker, John Paul; Santella, Michael Leonard; Schneibel, Joachim Hugo; Sikka, Vinod Kumar; Vinegar, Harold J.; John, Randy Carl; Kim, Dong Sub

    2012-06-05

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tublar that is at least partially made from a material containing at least one of the metal alloys.

  18. High strength alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maziasz, Phillip James [Oak Ridge, TN; Shingledecker, John Paul [Knoxville, TN; Santella, Michael Leonard [Knoxville, TN; Schneibel, Joachim Hugo [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Vinegar, Harold J [Bellaire, TX; John, Randy Carl [Houston, TX; Kim, Dong Sub [Sugar Land, TX

    2010-08-31

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tubular that is at least partially made from a material containing at least one of the metal alloys.

  19. Cobalt-alloy implant debris induce HIF-1α hypoxia associated responses: a mechanism for metal-specific orthopedic implant failure.

    Directory of Open Access Journals (Sweden)

    Lauryn Samelko

    Full Text Available The historical success of orthopedic implants has been recently tempered by unexpected pathologies and early failures of some types of Cobalt-Chromium-Molybdenum alloy containing artificial hip implants. Hypoxia-associated responses to Cobalt-alloy metal debris were suspected as mediating this untoward reactivity at least in part. Hypoxia Inducible Factor-1α is a major transcription factor involved in hypoxia, and is a potent coping mechanism for cells to rapidly respond to changing metabolic demands. We measured signature hypoxia associated responses (i.e. HIF-1α, VEGF and TNF-α to Cobalt-alloy implant debris both in vitro (using a human THP-1 macrophage cell line and primary human monocytes/macrophages and in vivo. HIF-1α in peri-implant tissues of failed metal-on-metal implants were compared to similar tissues from people with metal-on-polymer hip arthroplasties, immunohistochemically. Increasing concentrations of cobalt ions significantly up-regulated HIF-1α with a maximal response at 0.3 mM. Cobalt-alloy particles (1 um-diameter, 10 particles/cell induced significantly elevated HIF-1α, VEGF, TNF-α and ROS expression in human primary macrophages whereas Titanium-alloy particles did not. Elevated expression of HIF-1α was found in peri-implant tissues and synovial fluid of people with failing Metal-on-Metal hips (n = 5 compared to failed Metal-on-Polymer articulating hip arthroplasties (n = 10. This evidence suggests that Cobalt-alloy, more than other metal implant debris (e.g. Titanium alloy, can elicit hypoxia-like responses that if unchecked can lead to unusual peri-implant pathologies, such as lymphocyte infiltration, necrosis and excessive fibrous tissue growths.

  20. Use of Froehlich-Raimes and other electronic models for physical properties of metals and alloys

    Science.gov (United States)

    Waber, J. T.

    1982-01-01

    The effectiveness of the Froelich-Raimes model in treating force constants and alloy behavior is discussed. Typical predictions of trends include the deviation of Vegard's Law and the variation of the bulk modulus with pressure and with alloying elements. The simple model of Koskimaki and Waber using the linear combination of the density of states led to several useful predictions for titanium based alloys.

  1. Corrosion resistance of nickel-based alloys in salt and metal melts containing REE

    Science.gov (United States)

    Abramov, A. V.; Karpov, V. V.; Zhilyakov, A. Yu.; Belikov, S. V.; Volkovich, V. A.; Polovov, I. B.; Rebrin, O. I.

    2017-09-01

    The corrosion resistance of Hastelloy G-35 and VDM® Alloy 625 nickel alloys was studied in a wide temperature range (750-1100 °C) in fused LiCl, CaCl2, NaCl-KCl, LiF mixtures containing REE. The rates and the mechanisms of the corrosion of the materials studied were determined. The processes taking place during the interaction between alloys and melts were investigated.

  2. Applications of high-temperature powder metal aluminum alloys to small gas turbines

    Science.gov (United States)

    Millan, P. P., Jr.

    1982-01-01

    A program aimed at the development of advanced powder-metallurgy (PM) aluminum alloys for high-temperature applications up to 650 F using the concepts of rapid solidification and mechanical alloying is discussed. In particular, application of rapidly solidified PM aluminum alloys to centrifugal compressor impellers, currently used in auxiliary power units for both military and commercial aircraft and potentially for advanced automotive gas turbine engines, is examined. It is shown that substitution of high-temperature aluminum for titanium alloy impellers operating in the 360-650 F range provides significant savings in material and machining costs and results in reduced component weight, and consequently, reduced rotating group inertia requirements.

  3. Modification and Control of Oxide Structure on Metals and Alloys: (Phase V)

    Science.gov (United States)

    1974-05-01

    form MNb04 where M = Al, Cr, Fe, and/or Co. In most of the oxidation resistant alloys, a spinel related structure such as CoALO^ (C0O-AI2O3) was... Spinel Structure Niobium Alloy Oxidation Powder Metallurgy Oxidation Products INSTRUCTIONS 1. ORIGINATING ACTIVITY: Enter the name and...Alloy System Nb-15Ti-10W-10Ta-2Hf-3AI (B-I Alloy) 38 4.2 Niobium-Aluminum System 41 4.3 Niobium- Chromium System 41 4.4 Nb-Ti-Cr-AI-(V) Systems 43

  4. Influence of thermal debinding on the final properties of Fe–Si soft magnetic alloys for metal injection molding (MIM)

    Energy Technology Data Exchange (ETDEWEB)

    Páez-Pavón, A.; Jiménez-Morales, A. [Dpto. Ciencia e Ing. de materiales e Ing. Química, Universidad Carlos III de Madrid, 28911 Leganés, Madrid (Spain); Santos, T.G. [UNIDEMI, Departamento de Engenharia Mecânica e Industrial, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Quintino, L. [Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal); Torralba, J.M. [Dpto. Ciencia e Ing. de materiales e Ing. Química, Universidad Carlos III de Madrid, 28911 Leganés, Madrid (Spain)

    2016-10-15

    Metal injection molding (MIM) may be used to produce soft magnetic materials with optimal mechanical and magnetic properties. Unlike other techniques, MIM enables the production of complex and small Fe–Si alloy parts with silicon contents greater than 3% by weight. In MIM process development, it is critical to design a proper debinding cycle not only to ensure complete removal of the binder system but also to obtain improved properties in the final part. This work is a preliminary study on the production of Fe-3.8Si soft magnetic parts by MIM using pre-alloyed powders and a non-industrialized binder. Two different heating rates during thermal debinding were used to study their effect on the final properties of the part. The final properties of the sintered parts are related to thermal debinding. It has been demonstrated that the heating rate during thermal debinding has a strong influence on the final properties of Fe–Si soft magnetic alloys. - Highlights: • The properties of MIM Fe-Si alloy are influenced by the debinding heating rate. • The slow debinding led to a lower porosity, lower oxygen content and grain growth. • The magnetization of the sintered samples improved after a slow thermal debinding.

  5. Effect of Solidification Rate and Rare Earth Metal Addition on the Microstructural Characteristics and Porosity Formation in A356 Alloy

    Directory of Open Access Journals (Sweden)

    M. G. Mahmoud

    2017-01-01

    Full Text Available The present study was performed on A356 alloy with the main aim of investigating the effects of La and Ce additions to 356 alloys (with and without 100 ppm Sr on the microstructure and porosity formation in these alloys. Measured amounts of La, Ce, and Sr were added to the molten alloy. The results showed that, in the absence of Sr, addition of La and Ce leads to an increase in the nucleation temperature of the α-Al dendritic network with a decrease in the temperature of the eutectic Si precipitation, resulting in increasing the freezing range. Addition of 100 ppm Sr results in neutralizing these effects. The presence of La or Ce in the casting has a minor effect on eutectic Si modification, in spite of the observed depression in the eutectic temperature. It should be noted that Ce is more effective than La as an alternate modifying agent. According to the atomic radius ratio, rLa/rSi is 1.604 and rCe/rSi is 1.559, theoretically, which shows that Ce is relatively more effective than La. The present findings confirm that Sr is the most dominating modification agent. Interaction between rare earth (RE metals and Sr would reduce the effectiveness of Sr. Although modification with Sr causes the formation of shrinkage porosity, it also reacts with RE-rich intermetallics, resulting in their fragmentation.

  6. Effects of surface treatments and bonding types on the interfacial behavior of fiber metal laminate based on magnesium alloy

    Science.gov (United States)

    Zhang, Xi; Ma, Quanyang; Dai, Yu; Hu, Faping; Liu, Gang; Xu, Zouyuan; Wei, Guobing; Xu, Tiancai; Zeng, Qingwen; Xie, Weidong

    2018-01-01

    Fiber metal laminates based on magnesium alloys (MgFML) with different surface treatments and different bonding types were tested and analyzed. By using dynamic contact angle measurement and scanning electron microscopy (SEM), it was found that phosphating treatment can significantly improve the surface energy and wettability of magnesium alloy, and the surface energy of phosphated magnesium alloy was approximately 50% higher than that of abraded-only magnesium alloy. The single cantilever beam (SCB) test showed that the interfacial fracture energies of directly bonded MgFMLs based on abraded-only magnesium and abraded + phosphated magnesium were 650 J/m2 and 1030 J/m2, respectively, whereas the interfacial fracture energies of indirectly bonded MgFMLs were 1650 J/m2 and 2260 J/m2, respectively. Phosphating treatment and modified polypropylene interleaf were observed to improve the tensile strength and interfacial fracture toughness of MgFML. In addition, the rougher surface was more conducive to enhance the bonding strength and interfacial fracture toughness of MgFML.

  7. Bulk metallic glass formation in the Pd-Ni-P and Pd-Cu-P alloy systems

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, R.B.; He, Y. [Los Alamos National Lab., NM (United States). Center for Materials Science

    1996-12-11

    Bulk metallic glasses were prepared in the Pd-Ni-P and Pd-Cu-P systems using a fluxing technique. The formation of bulk amorphous Pd-Cu-P alloys was reported here for the first time. For both alloy systems, bulk glass formation requires maintaining the phosphorus content near 20 at.%. In the Pd-Ni-P system, 10-mm diameter amorphous Pd{sub x}Ni{sub 80{minus}x}P{sub 20} rods can be formed for 25 {le} x {le} 60. In the Pd-Cu-P system, 7-mm diameter amorphous Pd{sub x}Cu{sub 80{minus}x}P{sub 20} rods can be produced for 40 {le} x {le} 60. From all the ternary alloys studied, Pd{sub 40}Ni{sub 40}P{sub 20} has the highest glass formability, and 25-mm diameter amorphous cylinders, 50 mm in length, can be easily fabricated. The glass stability of the Pd-Ni-P system is wider than that of the Pd-Cu-P system. For most bulk Pd-Ni-P glasses, {Delta}T > 90 K. The {Delta}T values of bulk amorphous Pd-Cu-P alloys are considerably smaller, ranging from 27 to 73 K. The elastic constants of bulk amorphous Pd-Ni-P and Pd-Cu-P alloys were determined using a resonant ultrasound spectroscopy technique. The Pd-Ni-P glasses are slightly stiffer than the Pd-Cu-P glasses. Within each alloy system, the Young`s modulus and the bulk modulus show little change with alloy composition. Of all the bulk glass forming systems so far investigated, the ternary Pd-Ni-P system has the best glass formability. This alloy was one of the first bulk glasses discovered, yet it still remains the best in terms of glass formability. Upon replacing part of Ni by Cu, the critical cooling rates are expected to be further reduced.

  8. Comparative evaluation of shear bond strengths of veneering porcelain to base metal alloy and zirconia substructures before and after aging – An in vitro study

    Science.gov (United States)

    Sreekala, Laju; Narayanan, Mahesh; Eerali, Sunil M.; Eerali, Susil M.; Varghese, Joju; Zainaba Fathima, A. l.

    2015-01-01

    Objective: The aim of this study was to evaluate and compare the shear bond strength of veneering porcelain to base metal alloy and zirconia substructures before and after aging. Scanning electron microscopy (SEM) was used to determine the failure pattern. Materials and Methods: Twenty rectangular blocks (9 mm length × 4 mm height × 4 mm width) of base metal alloy (Bellabond plus, Bego, Germany) and zirconia (Will ceramZ zirconia K block) were fabricated for shear bond strength test. Surface of the base metal alloy block (4 mm × 4 mm area) was veneered with corresponding veneering porcelain (Ivoclar, IPS classic, vivadent). Similarly, surface of the zirconia rectangular block (4 mm × 4 mm) was veneered with corresponding veneering ceramic (Cercon ceram kiss, Degudent). Out of forty rectangular porcelain veneered core specimen, ten porcelain veneered base metal alloy specimen and ten porcelain veneered zirconia specimen were immersed in water at 37°C for one month to simulate the oral environment. Results: On comparison, the highest shear bond strength value was obtained in porcelain veneered base metal alloy before aging group followed by porcelain veneered base metal alloy after aging group, Porcelain veneered zirconia before aging group, porcelain veneered zirconia after aging group. SEM analysis revealed predominantly cohesive failure of veneering ceramic in all groups. Conclusion: Porcelain veneered base metal alloy samples showed highest shear bond strength than porcelain veneered zirconia samples. Study concluded that aging had an influence on shear bond strength. Shear bond strength was found to be decreasing after aging. SEM analysis revealed cohesive failure of veneering ceramic in all groups suggestive of higher bond strength of the interface than cohesive strength of ceramic. Hence, it was concluded that veneering ceramic was the weakest link. PMID:26942121

  9. Comparative evaluation of shear bond strengths of veneering porcelain to base metal alloy and zirconia substructures before and after aging - An in vitro study.

    Science.gov (United States)

    Sreekala, Laju; Narayanan, Mahesh; Eerali, Sunil M; Eerali, Susil M; Varghese, Joju; Zainaba Fathima, A L

    2015-12-01

    The aim of this study was to evaluate and compare the shear bond strength of veneering porcelain to base metal alloy and zirconia substructures before and after aging. Scanning electron microscopy (SEM) was used to determine the failure pattern. Twenty rectangular blocks (9 mm length × 4 mm height × 4 mm width) of base metal alloy (Bellabond plus, Bego, Germany) and zirconia (Will ceramZ zirconia K block) were fabricated for shear bond strength test. Surface of the base metal alloy block (4 mm × 4 mm area) was veneered with corresponding veneering porcelain (Ivoclar, IPS classic, vivadent). Similarly, surface of the zirconia rectangular block (4 mm × 4 mm) was veneered with corresponding veneering ceramic (Cercon ceram kiss, Degudent). Out of forty rectangular porcelain veneered core specimen, ten porcelain veneered base metal alloy specimen and ten porcelain veneered zirconia specimen were immersed in water at 37°C for one month to simulate the oral environment. On comparison, the highest shear bond strength value was obtained in porcelain veneered base metal alloy before aging group followed by porcelain veneered base metal alloy after aging group, Porcelain veneered zirconia before aging group, porcelain veneered zirconia after aging group. SEM analysis revealed predominantly cohesive failure of veneering ceramic in all groups. Porcelain veneered base metal alloy samples showed highest shear bond strength than porcelain veneered zirconia samples. Study concluded that aging had an influence on shear bond strength. Shear bond strength was found to be decreasing after aging. SEM analysis revealed cohesive failure of veneering ceramic in all groups suggestive of higher bond strength of the interface than cohesive strength of ceramic. Hence, it was concluded that veneering ceramic was the weakest link.

  10. First-principles study of the structural and elastic properties of rhenium-based transition-metal alloys

    Science.gov (United States)

    de Jong, Maarten; Olmsted, David L.; van de Walle, Axel; Asta, Mark

    2012-12-01

    Structural, energetic, and elastic properties of hexagonal-close-packed rhenium-based transition-metal alloys are computed by density-functional theory. The practical interest in these materials stems from the attractive combination of mechanical properties displayed by rhenium for structural applications requiring the combination of high melting temperature and low-temperature ductility. Single-crystal elastic constants, atomic volumes, axial c/a ratios, and dilute heats of solution for Re-X alloys are computed, considering all possible transition-metal solute species X. Calculated elastic constants are used to compute values of a commonly considered intrinsic-ductility parameter K/G, where K is the bulk modulus and G denotes the Voigt average of the shear modulus, as well as the anisotropies in the Young's modulus and shear modulus. The calculated properties show clear trends as a function of d-band filling, which can be rationalized through tight-binding theory. The results indicate that solutes to the left of rhenium in the periodic table show a tendency to increase the intrinsic ductility parameter, a trend that correlates with an increase of the c/a ratio towards the ideal value associated optimal close packing. The Young's modulus shows a trend towards increasing isotropy with alloying of solutes X to the left of Re, while the shear modulus shows the opposite trend but with an overall weaker dependence on solute additions.

  11. Wetting Behavior of Molten AZ61 Magnesium Alloy on Two Different Steel Plates Under the Cold Metal Transfer Condition

    Directory of Open Access Journals (Sweden)

    ZENG Cheng-zong

    2017-04-01

    Full Text Available The wetting behavior and interfacial microstructures of molten magnesium AZ61 alloy on the surface of two different Q235 and galvanized steel plates under the condition of cold metal transfer were investigated by using dynamic sessile drop method. The results show that the wetting behavior is closely related to the wire feed speed. Al-Fe intermetallic layer was observed whether the substrate is Q235 steel or galvanized steel, and the formation of Al-Fe intermetallic layer should satisfy the thermodynamic condition of such Mg-Al/Fe system. The wettability of molten AZ61 magnesium alloy is improved with the increase of wire feed speed whether on Q235 steel surface or on galvanized steel surface, good wettability on Q235 steel surface is due to severe interface reaction when wire feed speed increases, good wettability on galvanized steel surface is attributed to the aggravating zinc volatilization. When the wire feed speed is ≤10.5m·min-1, the wettability of Mg alloy on Q235 steel plate is better than on galvanized steel plate. However, Zn vapor will result in instability for metal transfer process.

  12. Abrupt symmetry decrease in the ThT{sub 2}Al{sub 20} alloys (T = 3d transition metal)

    Energy Technology Data Exchange (ETDEWEB)

    Uziel, A.; Bram, A.I. [Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501 (Israel); Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501 (Israel); Venkert, A. [Nuclear Research Center-Negev, POB 9001, Beer-Sheva (Israel); Kiv, A.E.; Fuks, D. [Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501 (Israel); Meshi, L., E-mail: louisa@bgu.ac.il [Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501 (Israel); Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501 (Israel)

    2015-11-05

    Th-T-Al system, where T-3d transition metals, was studied at ThT{sub 2}Al{sub 20} stoichiometry to establish the influence of T on the structural stability of ternary aluminide formed. Different alloys were prepared, varying T in the row from Ti to Fe. Using electron microscopy and X-ray diffraction methods it was found that ThT{sub 2}Al{sub 20} phase adopts CeCr{sub 2}Al{sub 20} structure type when T = Ti, V, and Cr. Starting from Mn, the symmetry of the stable Al-rich phase, which forms in the alloys with the same composition, decreases from cubic to orthorhombic. The results of Density Functional Theory (DFT) calculations coincide with experiments. Concepts of the Theory of Coordination Compounds and Jahn–Teller effect were used to explain the observed abrupt change of the symmetry. These considerations were supported by DFT calculations. - Highlights: • Type of transition metal influences symmetry change in the ThT{sub 2}Al{sub 20} alloys. • It was found that cubic ThT{sub 2}Al{sub 20} phase is stable for T = Ti, V and Cr. • When T = Mn, Fe–Al + orthorhombic ThT{sub 2}Al{sub 10} are formed, lowering the symmetry. • Experimental results and DFT calculations were in full agreement. • TCC and of Jahn–Teller effect were used for explanation of the results.

  13. Influence of liquid surface segregation on the pitting corrosion behavior of semi-solid metal high pressure die cast alloy F357

    CSIR Research Space (South Africa)

    Moller, H

    2009-01-01

    Full Text Available Semi-solid metal processing results in liquid segregation at the surface of the components. The pitting behaviour of this surface layer of semi-solid metal processed alloy F357 was compared with the centre (or bulk) of cast plates in 3.5% Na...

  14. Patch test reactivity to a cobalt-chromium-molybdenum alloy and stainless steel in metal-allergic patients in correlation to the metal ion release.

    Science.gov (United States)

    Summer, Burkhard; Fink, Ulrich; Zeller, Richard; Rueff, Franziska; Maier, Sonja; Roider, Gabriele; Thomas, Peter

    2007-07-01

    Nickel, chromium, and cobalt released from stainless steel and CoCrMo alloys have been postulated to trigger hypersensitivity reactions. The objective of this study was to assess the ion release from a CoCrMo alloy and stainless steel in vitro and the cutaneous reactivity to it by patch test. 52 metal-allergic patients and 48 non-allergic controls were patch tested to stainless steel and CoCrMo discs. In addition, using atomic absorption spectrometry, the release of nickel, cobalt, and chromium from both materials was assessed upon 2-day exposure to distilled water, artificial sweat (AS), and cell culture medium. There was low nickel ion release from stainless steel (0.3-0.46 microg/cm(2)/2 days) and CoCrMo discs (up to 0.33 microg/cm(2)/2 days) into the different elution media. Chromium release from the 2 materials was also very low (0.06-0.38 microg/cm(2)/2 days from stainless steel and 0.52-1.36 microg/cm(2)/2 days from CoCrMo alloy). In contrast, AS led to abundant cobalt release (maximally 18.94 microg/cm(2)/2 days) from the CoCrMo discs, with concomitant eczematous reaction upon patch testing: 0 of the 52 metal-allergic patients reacted to stainless steel discs and 5 of the 52 patients to CoCrMo discs (all 5 patients were cobalt allergic and 3 also nickel and chromium allergic). None of the controls reacted to the discs. Apart from nickel being a focus of allergological research, our results point to the possibly underestimated association of cobalt release and potential hyperreactivity to CoCrMo alloy.

  15. Natural and artificial aging response of semisolid metal processed Al–Si–Mg alloy A356

    CSIR Research Space (South Africa)

    Moller, H

    2007-12-01

    Full Text Available processed Al–Si–Mg alloy A356 has a significant influence on the natural and artificial aging behaviour of the alloy. Furthermore, natural aging before artificial aging causes the time to peak hardness (T6) to be longer compared to the time when only...

  16. In vitro corrosion properties and cytocompatibility of Fe-Ga alloys as potential biodegradable metallic materials.

    Science.gov (United States)

    Wang, Henan; Zheng, Yang; Liu, Jinghua; Jiang, Chengbao; Li, Yan

    2017-02-01

    The in vitro biodegradable properties and cytocompatibility of Fe-Ga alloys including Fe81Ga19, (Fe81Ga19)98B2 and (Fe81Ga19)99.5(TaC)0.5, and pure Fe were investigated for biomedical applications. The microstructure of the alloys was characterized using X-ray diffraction spectroscopy and optical microscopy. The results showed that A2 and D03 phases were detected for the three types of Fe-Ga alloys, and additional Fe2B and TaC phases were found in the (Fe81Ga19)98B2 and (Fe81Ga19)99.5(TaC)0.5 alloys, respectively. The corrosion rates of the Fe-Ga alloys were higher than that of pure Fe, as demonstrated by both potentiodynamic polarization measurements and immersion tests in simulated body fluid. The alloying element Ga lowered the corrosion potential of the Fe matrix and made it more susceptible to corrosion. Severe pitting corrosion developed on the surface of the Fe81Ga19 alloy after the addition of ternary B or TaC due to the multi-phase microstructures. The MC3T3-E1 cells exhibited good adhesion and proliferation behavior on the surfaces of the Fe-Ga alloys after culture for 4h and 24h. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Mechanical properties and the electronic structure of transition metal alloys. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Arsenault, R.J.; Drew, H.D.

    1977-01-01

    This interdiscipline research program was undertaken in an effort to investigate the relationship between the mechanical strength of Mo-based alloys with their electronic structure. Electronic properties of these alloys were examined through optical studies, and the classical solid solution strengthening mechanisms were considered, based on size and molecular differences to determine if these mechanisms could explain the hardness data.

  18. Mechanical properties and the electronic structure of transition of metal alloys

    Science.gov (United States)

    Arsenault, R. J.; Drew, H. D.

    1977-01-01

    This interdiscipline research program was undertaken in an effort to investigate the relationship between the mechanical strength of Mo based alloys with their electronic structure. Electronic properties of these alloys were examined through optical studies, and the classical solid solution strengthening mechanisms were considered, based on size and molecular differences to determine if these mechanisms could explain the hardness data.

  19. CRITERIA FOR SELECTION OF ALLOYING COMPONENTS AND BASE COMPOSITIONS FOR MANUFACTURING OF MECHANICALLY ALLOYED DISPERSION-STRENGTHENED MATERIALS ON THE BASIS OF METALS

    Directory of Open Access Journals (Sweden)

    F. G. Lovshenko

    2016-01-01

    Full Text Available The paper presents results of the investigations pertaining to creation of scientifically substantiated criteria for selection of alloying components and base compositions for manufacturing of mechanically alloyed dispersion-strengthened metallic materials. An analysis of dispersion strengthening mechanisms and regularities in mechanically activated phase and structural transformations serve as a reliable basis for solution of the assigned mission. Foer efficient strengthening at low and high temperatures as well materials must have fragmented and polygonized structure with maximum developed surface of grain and sub-grain boundaries which are stabilized by nano-sized inclusions of strengthening phases. Experimental investigations have shown that an optimum complex of mechanical properties is obtained in the case when nano-sized strengthening phase is equal to 3–5 % (volume. The phases applied for dispersion strengthening must have high value of shear modulus that determines their hardness and strength. Critical compressive stress should not cause deformation and destruction of disperse particles. Furthermore, they must have high stability in contact with a matrix. The substances applied as alloying components for realization of the developed technology on obtaining dispersion-strengthening materials must firstly meet the following requirements: they must be cheap, accessible and ecologically safety; they must interact with the basis or inter se at temperatures which are lower of material melting temperature; one of the phases which is formed in the process of the technology realization must have rather high thermodynamic stability and high value of the shear modulus; other formed phases must improve or, at the least, not reduce physical and mechanical properties of the materials. 

  20. Synchronized metal-ion irradiation as a way to control growth of transition-metal nitride alloy films during hybrid HIPIMS/DCMS co-sputtering

    Science.gov (United States)

    Greczynski, Grzegorz

    2016-09-01

    High-power pulsed magnetron sputtering (HIPIMS) is particularly attractive for growth of transition metal (TM) nitride alloys for two reasons: (i) the high ionization degree of the sputtered metal flux, and (ii) the time separation of metal- and gas-ion fluxes incident at the substrate. The former implies that ion fluxes originating from elemental targets operated in HIPIMS are distinctly different from those that are obtained during dc magnetron sputtering (DCMS), which helps to separate the effects of HIPIMS and DCMS metal-ion fluxes on film properties. The latter feature allows one to minimize compressive stress due to gas-ion irradiation, by synchronizing the pulsed substrate bias with the metal-rich-plasma portion of the HIPIMS pulse. Here, we use pseudobinary TM nitride model systems TiAlN, TiSiN, TiTaN, and TiAlTaN to carry out experiments in a hybrid configuration with one target powered by HIPIMS, the other operated in DCMS mode. This allows us to probe the roles of intense and metal-ion fluxes (n = 1 , 2) from HIPIMS-powered targets on film growth kinetics, microstructure, and physical properties over a wide range of M1M2N alloy compositions. TiAlN and TiSiN mechanical properties are shown to be determined by the average metal-ion momentum transfer per deposited atom. Irradiation with lighter metal-ions (M1 =Al+ or Si+ during M1-HIPIMS/Ti-DCMS) yields fully-dense single-phase cubic Ti1-x (M1)x N films. In contrast, with higher-mass film constituent ions such as Ti+, easily exceeds the threshold for precipitation of second phase w-AlN or Si3N4. Based on the above results, a new PVD approach is proposed which relies on the hybrid concept to grow dense, hard, and stress-free thin films with no external heating. The primary targets, Ti and/or Al, operate in DCMS mode providing a continuous flux of sputter-ejected metal atoms to sustain a high deposition rate, while a high-mass target metal, Ta, is driven by HIPIMS to serve as a pulsed source of energetic

  1. Pengaruh Milling Time Terhadap Pembentukan Intermetalik ɣ-TiAl Sebagai Reinforced Dalam Metal Matrix Composite (MMCs Hasil Mechanical Alloying

    Directory of Open Access Journals (Sweden)

    Mohammad Badrus Soleh

    2013-03-01

    Full Text Available Paduan TiAl mempunyai berbagai keunggulan dalam sifat mekanik serta sifat termal. Senyawa intermetalik γ-TiAl mempunyai sifat mekanik dan sifat termal yang sangat baik sehingga sesuai apabila diaplikasikan sebagai penguat pada metal matrix composite (MMCs. Penelitian ini bertujuan untuk mensintesis paduan TiAl sehingga terbentuk  fasa intermetalik γ-TiAl yang homogen. Sintesa dilakukan dengan metode mechanical alloying menggunakan modification horizontal ball mill dengan komposisi paduan Ti-36%wt Al dan variasi milling time 0,10,20 jam dengan kecepatan tetap 350rpm. Hasil milling dikompaksi dan di-annealing pada temperatur 9000C selama 30menit.  Fasa intermetalik γ-TiAl terbentuk setelah proses mechanical alloying 20 jam. Hasil pengujian difraksi sinar X menunjukkan ukuran kristal sebesar 198.92Å pada fasa γ-TiAl, memiliki kekerasan 678,1HV.

  2. Determination of the metal/die interfacial heat transfer coefficient of high pressure die cast B390 alloy

    Science.gov (United States)

    Cao, Yongyou; Guo, Zhipeng; Xiong, Shoumei

    2012-07-01

    High-pressure die cast B390 alloy was prepared on a 350 ton cold chamber die casting machine. The metal/die interfacial heat transfer coefficient of the alloy was investigated. Considering the filling process, a "finger"-shaped casting was designed for the experiments. This casting consisted of five plates with different thicknesses (0.05 inch or 1.27 mm to 0.25 inch or 6.35 mm) as well as individual ingates and overflows. Experiments under various operation conditions were conducted, and temperatures were measured at various specific locations inside the die. Based on the results, the interfacial heat transfer coefficient and heat flux were determined by solving the inverse heat transfer problem. The influence of the mold-filling sequence, sensor locations, as well as processing parameters including the casting pressure, die temperature, and fast/slow shot speeds on the heat transfer coefficient were discussed.

  3. Biocompatibility of metal injection molded versus wrought ASTM F562 (MP35N) and ASTM F1537 (CCM) cobalt alloys.

    Science.gov (United States)

    Chen, Hao; Sago, Alan; West, Shari; Farina, Jeff; Eckert, John; Broadley, Mark

    2011-01-01

    We present a comparative analysis between biocompatibility test results of wrought and Metal Injection Molded (MIM) ASTM F562-02 UNS R30035 (MP35N) and F1537 UNS R31538 (CCM) alloy samples that have undergone the same generic orthopedic implant's mechanical, chemical surface pre-treatment, and a designed pre-testing sample preparation method. Because the biocompatibility properties resulting from this new MIM cobalt alloy process are not well understood, we conducted tests to evaluate cytotoxicity (in vitro), hemolysis (in vitro), toxicity effects (in vivo), tissue irritation level (in vivo), and pyrogenicity count (in vitro) on such samples. We show that our developed MIM MP35N and CCM materials and treatment processes are biocompatible, and that both the MIM and wrought samples, although somewhat different in microstructure and surface, do not show significant differences in biocompatibility.

  4. Alloys for hydrogen storage in nickel/hydrogen and nickel/metal hydride batteries

    Science.gov (United States)

    Anani, Anaba; Visintin, Arnaldo; Petrov, Konstantin; Srinivasan, Supramaniam; Reilly, James J.; Johnson, John R.; Schwarz, Ricardo B.; Desch, Paul B.

    1993-01-01

    Since 1990, there has been an ongoing collaboration among the authors in the three laboratories to (1) prepare alloys of the AB(sub 5) and AB(sub 2) types, using arc-melting/annealing and mechanical alloying/annealing techniques; (2) examine their physico-chemical characteristics (morphology, composition); (3) determine the hydrogen absorption/desorption behavior (pressure-composition isotherms as a function of temperature); and (4) evaluate their performance characteristics as hydride electrodes (charge/discharge, capacity retention, cycle life, high rate capability). The work carried out on representative AB(sub 5) and AB(sub 2) type modified alloys (by partial substitution or with small additives of other elements) is presented. The purpose of the modification was to optimize the thermodynamics and kinetics of the hydriding/dehydriding reactions and enhance the stabilities of the alloys for the desired battery applications. The results of our collaboration, to date, demonstrate that (1) alloys prepared by arc melting/annealing and mechanical alloying/annealing techniques exhibit similar morphology, composition and hydriding/dehydriding characteristics; (2) alloys with the appropriate small amounts of substituent or additive elements: (1) retain the single phase structure, (2) improve the hydriding/dehydriding reactions for the battery applications, and (3) enhance the stability in the battery environment; and (3) the AB(sub 2) type alloys exhibit higher energy densities than the AB(sub 5) type alloys but the state-of-the-art, commercialized batteries are predominantly manufactured using Ab(sub 5) type alloys.

  5. Surface changes of metal alloys and high-strength ceramics after ultrasonic scaling and intraoral polishing.

    Science.gov (United States)

    Yoon, Hyung-In; Noh, Hyo-Mi; Park, Eun-Jin

    2017-06-01

    This study was to evaluate the effect of repeated ultrasonic scaling and surface polishing with intraoral polishing kits on the surface roughness of three different restorative materials. A total of 15 identical discs were fabricated with three different materials. The ultrasonic scaling was conducted for 20 seconds on the test surfaces. Subsequently, a multi-step polishing with recommended intraoral polishing kit was performed for 30 seconds. The 3D profiler and scanning electron microscopy were used to investigate surface integrity before scaling (pristine), after scaling, and after surface polishing for each material. Non-parametric Friedman and Wilcoxon signed rank sum tests were employed to statistically evaluate surface roughness changes of the pristine, scaled, and polished specimens. The level of significance was set at 0.05. Surface roughness values before scaling (pristine), after scaling, and polishing of the metal alloys were 3.02±0.34 µm, 2.44±0.72 µm, and 3.49±0.72 µm, respectively. Surface roughness of lithium disilicate increased from 2.35±1.05 µm (pristine) to 28.54±9.64 µm (scaling), and further increased after polishing (56.66±9.12 µm, Pscaling (from 1.65±0.42 µm to 101.37±18.75 µm), while its surface roughness decreased after polishing (29.57±18.86 µm, Pscaling significantly changed the surface integrities of lithium disilicate and zirconia. Surface polishing with multi-step intraoral kit after repeated scaling was only effective for the zirconia, while it was not for lithium disilicate.

  6. Surface changes of metal alloys and high-strength ceramics after ultrasonic scaling and intraoral polishing

    Science.gov (United States)

    Noh, Hyo-Mi

    2017-01-01

    PURPOSE This study was to evaluate the effect of repeated ultrasonic scaling and surface polishing with intraoral polishing kits on the surface roughness of three different restorative materials. MATERIALS AND METHODS A total of 15 identical discs were fabricated with three different materials. The ultrasonic scaling was conducted for 20 seconds on the test surfaces. Subsequently, a multi-step polishing with recommended intraoral polishing kit was performed for 30 seconds. The 3D profiler and scanning electron microscopy were used to investigate surface integrity before scaling (pristine), after scaling, and after surface polishing for each material. Non-parametric Friedman and Wilcoxon signed rank sum tests were employed to statistically evaluate surface roughness changes of the pristine, scaled, and polished specimens. The level of significance was set at 0.05. RESULTS Surface roughness values before scaling (pristine), after scaling, and polishing of the metal alloys were 3.02±0.34 µm, 2.44±0.72 µm, and 3.49±0.72 µm, respectively. Surface roughness of lithium disilicate increased from 2.35±1.05 µm (pristine) to 28.54±9.64 µm (scaling), and further increased after polishing (56.66±9.12 µm, Pscaling (from 1.65±0.42 µm to 101.37±18.75 µm), while its surface roughness decreased after polishing (29.57±18.86 µm, Pscaling significantly changed the surface integrities of lithium disilicate and zirconia. Surface polishing with multi-step intraoral kit after repeated scaling was only effective for the zirconia, while it was not for lithium disilicate. PMID:28680550

  7. Fabrication of low-cost beta-type Ti-Mn alloys for biomedical applications by metal injection molding process and their mechanical properties.

    Science.gov (United States)

    Santos, Pedro Fernandes; Niinomi, Mitsuo; Liu, Huihong; Cho, Ken; Nakai, Masaaki; Itoh, Yoshinori; Narushima, Takayuki; Ikeda, Masahiko

    2016-06-01

    Titanium and its alloys are suitable for biomedical applications owing to their good mechanical properties and biocompatibility. Beta-type Ti-Mn alloys (8-17 mass% Mn) were fabricated by metal injection molding (MIM) as a potential low cost material for use in biomedical applications. The microstructures and mechanical properties of the alloys were evaluated. For up to 13 mass% Mn, the tensile strength (1162-938MPa) and hardness (308-294HV) of the MIM fabricated alloys are comparable to those of Ti-Mn alloys fabricated by cold crucible levitation melting. Ti-9Mn exhibits the best balance of ultimate tensile strength (1046MPa) and elongation (4.7%) among the tested alloys, and has a Young's modulus of 89GPa. The observed low elongation of the alloys is attributed to the combined effects of high oxygen content, with the presence of interconnected pores and titanium carbides, the formation of which is due to carbon pickup during the debinding process. The elongation and tensile strength of the alloys decrease with increasing Mn content. The Ti-Mn alloys show good compressive properties, with Ti-17Mn showing a compressive 0.2% proof stress of 1034MPa, and a compressive strain of 50%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. In situ Raman spectroscopic analysis of surface oxide films on Ni-base alloy/low alloy steel dissimilar metal weld interfaces in high-temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongjin; Choi, Kyung Joon [School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), 100 Banyeon-ri, Eonyang-eup, Ulju-gun, Ulsan 689-798 (Korea, Republic of); Bahn, Chi Bum [School of Mechanical Engineering, Pusan National University 2, 63-gil, Geumjeong-Gu, Pusan 609-735 (Korea, Republic of); Kim, Ji Hyun, E-mail: kimjh@unist.ac.kr [School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), 100 Banyeon-ri, Eonyang-eup, Ulju-gun, Ulsan 689-798 (Korea, Republic of)

    2014-06-01

    In situ Raman spectroscopy has been applied to analyze the surface oxide films formed on dissimilar metal weld (DMW) interfaces of nickel-base alloy/low alloy steel under hydrogenated high-temperature water condition. For the analysis of the oxide films under high temperature/pressure aqueous conditions, an in situ Raman spectroscopy system was developed by constructing a hydrothermal cell where the entire optics including the excitation laser and the Raman light collection system were located at the nearest position to the specimen by means of immersion optics. In situ Raman spectra of the DMW interfaces were collected in hydrogenated water condition at different temperatures up to 300 °C. The measured in situ Raman spectra showed peaks of Cr{sub 2}O{sub 3}, NiCr{sub 2}O{sub 4} and Fe{sub 3}O{sub 4} at the DMW interface. It is considered that differences in the oxide chemistry originated from the chemical element distribution inside of the DMW interface region.

  9. Metal and alloy nanoparticles by amine-borane reduction of metal salts by solid-phase synthesis: atom economy and green process.

    Science.gov (United States)

    Sanyal, Udishnu; Jagirdar, Balaji R

    2012-12-03

    A new solid state synthetic route has been developed toward metal and bimetallic alloy nanoparticles from metal salts employing amine-boranes as the reducing agent. During the reduction, amine-borane plays a dual role: acts as a reducing agent and reduces the metal salts to their elemental form and simultaneously generates a stabilizing agent in situ which controls the growth of the particles and stabilizes them in the nanosize regime. Employing different amine-boranes with differing reducing ability (ammonia borane (AB), dimethylamine borane (DMAB), and triethylamine borane (TMAB)) was found to have a profound effect on the particle size and the size distribution. Usage of AB as the reducing agent provided the smallest possible size with best size distribution. Employment of TMAB also afforded similar results; however, when DMAB was used as the reducing agent it resulted in larger sized nanoparticles that are polydisperse too. In the AB mediated reduction, BNH(x) polymer generated in situ acts as a capping agent whereas, the complexing amine of the other amine-boranes (DMAB and TMAB) play the same role. Employing the solid state route described herein, monometallic Au, Ag, Cu, Pd, and Ir and bimetallic CuAg and CuAu alloy nanoparticles of <10 nm were successfully prepared. Nucleation and growth processes that control the size and the size distribution of the resulting nanoparticles have been elucidated in these systems.

  10. Electronic structure and half-metallicity of the heusler alloy Co{sub 2}ZrGe

    Energy Technology Data Exchange (ETDEWEB)

    Li, Songtao; Liu, Yang; Ren, Zhi; Zhang, Xiaohong [North China Electric Power University, Baoding (China); Liu, Guodong [Hebei University of Technology, Tianjin (China)

    2014-10-15

    The site preference, the electronic structure and the magnetic properties of Co{sub 2}ZrGe have been studied by using first-principles calculations, and the stabilities of the Cu{sub 2}MnAl-type and the Hg{sub 2}CuTi-type structures have been tested in this respect. The Cu{sub 2}MnAltype structure is more favorable than the Hg{sub 2}CuTitype structure for the Co{sub 2}ZrGe compound, and the equilibrium lattice parameter of the Cu{sub 2}MnAl type Co{sub 2}ZrGe alloy is 6.06 A. The Co{sub 2}ZrGe alloy is found to have an energy gap in the minority spin direction at the Fermi level (E{sub F} ) and the majority spin band shows strongly metallic characteristic. As a result, the Co{sub 2}ZrGe alloy is predicted to be a half-metal with 100% spin polarization of the conduction electrons at the E{sub F}. The calculated total magnetic moment is 2.00 μ{sub B} per unit cell, which is in line with the Slater-Pauling curve of M{sub t} = Z{sub t} - 24. The Co atom-projected spin moment is 1.02μ{sub B}, which mainly determines the total moment. Simultaneously, the Zr and the Ge atom moments are - 0.08μ{sub B} and 0.04μ{sub B}, respectively. The Co{sub 2}ZrGe alloy may be a promising material for application in future spintronics devices.

  11. The metal alloys from the XIX century and weathering action in the Mercado do Ver-o-Peso building, northern Brazil: Identification with the usage of laboratory analysis

    Energy Technology Data Exchange (ETDEWEB)

    Palácios, Flávia Olegário, E-mail: flavia.op@gmail.com [Universidade Federal do Pará, LCM (Laboratório de Caracterização Mineral), Programa de Pós-Graduação em Geologia e Geoquímica (PPGG) (Brazil); Angélica, Rômulo Simões [Universidade Federal do Pará, LCM (Laboratório de Caracterização Mineral), Programa de Pós-Graduação em Geologia e Geoquímica (PPGG) (Brazil); Sanjad, Thais Alessandra Bastos Caminha [Universidade Federal do Pará (UFPA), LACORE (Laboratório de Restauração, Conservação e Reabilitação), Programa de Pós-Graduação em Arquitetura e Urbanismo - PPGAU (Brazil)

    2014-10-15

    The fabrication of metallic buildings started in Europe after the Industrial Revolution in the 18th century. Metallic constructions became very popular, and started being imported by several countries, due to the facility of constructing or assembling. Belém, a northern Brazilian city, holds a great number of buildings entirely made of iron, including the Ver-o-Peso, a fish market which structures were imported from England by the end of the 19th century. This building represents a unique type of architecture and it's an important part of the city's heritage. However, research so far did not focus on its construction materials. Ver-o-Peso building's metal alloys haven't been thoroughly studied concerning physical, chemical and mineralogical characterizations. This paper aims to identify the types of metal alloys used in the building, and also corrosion products' result from weathering actions. The methods used to characterize the materials were scanning electron microscopy and X-ray diffraction. Through this research it was possible to identify four types of iron alloys used in the different parts of the building, characterize the paint coats, and determine types of corrosion. The characterization of the materials in the building allows enrolling basis for restoration processes, documenting the types of metal alloy used in architectural heritage from the 19th century, as well as understanding the advances of corrosion. - Highlights: • Ver-o-peso is a heritage building from the 19th century with unidentified alloys. • Alloy and weathering product characterization was done using SEM/EDS and XRD. • Four metal alloy types were described, indicating different types of foundries. • Weathering products showed distinct mineral phases and physical characteristics. • Original paint coats were found among corrosion products.

  12. Comparative Evaluation of Metal-ceramic Bond Strengths of Nickel Chromium and Cobalt Chromium Alloys on Repeated Castings: An In vitro Study.

    Science.gov (United States)

    Atluri, Kaleswara Rao; Vallabhaneni, Tapan Teja; Tadi, Durga Prasad; Vadapalli, Sriharsha Babu; Tripuraneni, Sunil Chandra; Averneni, Premalatha

    2014-09-01

    Recasting the base metal alloys is done as a routine procedure in the dental laboratories whenever there is casting failure or to decrease the unit cost of a fixed partial denture. However, this procedure may affect the metal ceramic bond. Furthermore, it is unclear, as to which test closely predicts the bond strength of metal-ceramic interface. The aim was to compare the bond strength of nickel chromium (Ni-Cr) and cobalt chromium (Co-Cr) alloys with dental ceramic on repeated castings using shear bond test with a custom made apparatus. Sixty metal ceramic samples were prepared using Wiron 99 and Wirobond C, respectively. Three subgroups were prepared for each of the groups. The first subgroup was prepared by casting 100% fresh alloy. The second and third subgroups were prepared by adding 50% of fresh alloy and the remnants of the previous cast alloy. The bond load (N) between alloy and dental porcelain was evaluated using universal testing machine using a crosshead speed of 1 mm/min, which had a 2500-kgf load cell. Mean values were compared using oneway analysis of variance with post-hoc Tukey's test and Student's t-test. The mean shear bond load of A0 (842.10N) was significantly higher than the load of A1 (645.50N) and A2 (506.28N). The mean shear bond load of B0 (645.57N) was significantly higher than the load of B1 (457.35N) and B2 (389.30N). Significant reduction in the bond strength was observed with the addition of the first recast alloy (A1 and B1) compared with the addition of second recast alloy (A2 and B2). Ni-Cr alloys (664.63N) showed higher bond strengths compared to that of Co-Cr alloys (497.41N). The addition of previously used base metal dental alloy for fabricating metal ceramic restorations is not recommended.

  13. Experimental partitioning of Zr, Ti, and Nb between silicate liquid and a complex noble metal alloy and the partitioning of Ti between perovskite and platinum metal

    Science.gov (United States)

    Jurewicz, Stephen R.; Jones, John H.

    1993-01-01

    El Goresy et al.'s observation of Nb, Zr, and Ta in refractory platinum metal nuggets (RPMN's) from Ca-Al-rich inclusions (CAI's) in the Allende meteorite led them to propose that these lithophile elements alloyed in the metallic state with noble metals in the early solar nebula. However, Grossman pointed out that the thermodynamic stability of Zr in the oxide phase is vastly greater than metallic Zr at estimated solar nebula conditions. Jones and Burnett suggested this discrepancy may be explained by the very non-ideal behavior of some lithophile transition elements in noble metal solutions and/or intermetallic compounds. Subsequently, Fegley and Kornacki used thermodynamic data taken from the literature to predict the stability of several of these intermetallic compounds at estimated solar nebula conditions. Palme and Schmitt and Treiman et al. conducted experiments to quantify the partitioning behavior of certain lithophile elements between silicate liquid and Pt-metal. Although their results were somewhat variable, they did suggest that Zr partition coefficients were too small to explain the observed 'percent' levels in some RPMN's. Palme and Schmitt also observed large partition coefficients for Nb and Ta. No intermetallic phases were identified. Following the work of Treiman et al., Jurewicz and Jones performed experiments to examine Zr, Nb, and Ti partitioning near solar nebula conditions. Their results showed that Zr, Nb, and Ti all have an affinity for the platinum metal, with Nb and Ti having a very strong preference for the metal. The intermetallic phases (Zr,Fe)Pt3, (Nb,Fe)Pt3, and (Ti,Fe)Pt3 were identified. Curiously, although both experiments and calculations indicate that Ti should partition strongly into Pt-metal (possibly as TiPt3), no Ti has ever been observed in any RPMN's. Fegley and Kornacki also noticed this discrepancy and hypothesized that the Ti was stabilized in perovskite which is a common phase in Allende CAI's.

  14. DIFFUSIVELY ALLOYED COMPOUNDS MADE OF METAL DISCARD WITH A REDUCED MELTING TEMPERATURE FOR OBTAINING WEAR RESISTANT COATINGS USING INDUCTION HARD-FACING TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    V. G. Shcherbakou

    2016-01-01

    Full Text Available The technology of obtaining diffusion doped alloys made from metal scrap is reviewed in the article. The influence of short term preprocessing at high temperature on structure formation by concentrated energy sources within the further induction deposit is reviewed. A mechanism of a contact eutectic melting in diffusion doped alloys at short term high temperature treatment is described and suggested in this work. It was shown that such kind of processing of diffusion doped alloys is a perspective way of treatment when using induction hard-facing technologies for obtaining wear resistant coatings. A resource and energy saving technology was developed for obtaining wear resistant coatings based on diffusion doped alloys from metal scrap treated using induction hard-facing process.

  15. Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes

    Science.gov (United States)

    Zhao, Jie; Zhou, Guangmin; Yan, Kai; Xie, Jin; Li, Yuzhang; Liao, Lei; Jin, Yang; Liu, Kai; Hsu, Po-Chun; Wang, Jiangyan; Cheng, Hui-Ming; Cui, Yi

    2017-10-01

    Developing high-capacity anodes is a must to improve the energy density of lithium batteries for electric vehicle applications. Alloy anodes are one promising option, but without pre-stored lithium, the overall energy density is limited by the low-capacity lithium metal oxide cathodes. Recently, lithium metal has been revived as a high-capacity anode, but faces several challenges owing to its high reactivity and uncontrolled dendrite growth. Here, we show a series of Li-containing foils inheriting the desirable properties of alloy anodes and pure metal anodes. They consist of densely packed LixM (M = Si, Sn, or Al) nanoparticles encapsulated by large graphene sheets. With the protection of graphene sheets, the large and freestanding LixM/graphene foils are stable in different air conditions. With fully expanded LixSi confined in the highly conductive and chemically stable graphene matrix, this LixSi/graphene foil maintains a stable structure and cyclability in half cells (400 cycles with 98% capacity retention). This foil is also paired with high-capacity Li-free V2O5 and sulfur cathodes to achieve stable full-cell cycling.

  16. Comparison of heat treatment response of semisolid metal processed alloys A356 and F357

    CSIR Research Space (South Africa)

    Moller, H

    2010-01-01

    Full Text Available hardening which results from natural aging alone produces the T4 temper. Peak hardening with artificial aging results from the pre- cipitation of the metastable and coherent b0.6 The difference in Mg content between alloy A356 and the 357 alloys should... (0?6– 0?7% or F357). The transformation of Mg containing p to b-FeSiAl5 is accompanied by a release of Mg into the aluminium matrix, which should have an influence on the subsequent aging response of the alloy (equa- tion (1)). Note that the two...

  17. Design, construction, and performance of a device for directional recrystallization of metallic alloys

    Science.gov (United States)

    Vallejos, J. M.; Leonard, M. E.; Sobrero, C. E.; La Roca, P. M.; Druker, A. V.; Malarria, J. A.

    2017-02-01

    A device was designed to apply the directional recrystallization method to Fe-based alloys in order to obtain bamboo-like microstructures. This microstructure is suitable for improving creep properties and resistance to fatigue in some alloys and for enhancing pseudoelastic properties in shape memory alloys. The design and construction of a flat coil are described in detail. In addition, we developed an electromechanical system to control the movement of a wire within the flat coil. The construction details and system performance are presented. Furthermore, metallographic studies taken from the directionally recrystallized low-carbon steel samples are shown. Nearly monocrystalline and bamboo-like microstructures were achieved in the steel wires.

  18. Analysis and Comparison of Aluminum Alloy Welded Joints Between Metal Inert Gas Welding and Tungsten Inert Gas Welding

    Science.gov (United States)

    Zhao, Lei; Guan, Yingchun; Wang, Qiang; Cong, Baoqiang; Qi, Bojin

    2015-09-01

    Surface contamination usually occurs during welding processing and it affects the welds quality largely. However, the formation of such contaminants has seldom been studied. Effort was made to study the contaminants caused by metal inert gas (MIG) welding and tungsten inert gas (TIG) welding processes of aluminum alloy, respectively. SEM, FTIR and XPS analysis was carried out to investigate the microstructure as well as surface chemistry. These contaminants were found to be mainly consisting of Al2O3, MgO, carbide and chromium complexes. The difference of contaminants between MIG and TIG welds was further examined. In addition, method to minimize these contaminants was proposed.

  19. Effect of novel dithiooctanoate monomers, in comparison with various sulfur-containing adhesive monomers, on adhesion to precious metals and alloys.

    Science.gov (United States)

    Ikemura, Kunio; Kojima, Katsunori; Endo, Takeshi; Kadoma, Yoshinori

    2011-01-01

    This study investigated the effect of novel dithiooctanoate monomers, in comparison with conventional sulfur-containing monomers, on adhesion to precious metals and alloys. Nine experimental primers containing 5.0 wt% 2-methacryloyloxyethyl 6,8-dithiooctanoate (2-MEDT), 6-methacryloyloxyhexyl 6,8-dithiooctanoate (6-MHDT), 10-methacryloyloxydecyl 6,8-dithiooctanoate (10-MDDT), bis(2-methacryloyloxyethyl) disulfide (BMEDS), bis(5-methacryloyloxypentyl) disulfide (BMPDS), bis(10-methacryloyloxydecyl) disulfide (BMDDS), 6-(4-vinylbenzyl-n-propyl) amino-1,3,5-triazine-2,4-dithione (VBATDT), N-(4-mercaptophenyl)methacrylamide (MPMA), or 4-methacryloyloxyethoxycarbonylphthalic anhydride (4-META; control) were prepared. After primer pretreatment and bonding using modified MMA-PMMA/BPO-DEPT resin, tensile bond strengths to precious metals and alloys after 2,000 thermal cycles were measured. For bonding to Au or Ag, novel 2-MEDT, 6-MHDT, and 10-MDDT exhibited significantly higher tensile bond strengths than conventional BMEDS, BMPDS, BMDDS, VBATDT, MPMA, and 4-META (p<0.05). For bonding to Au alloy, Ag alloy, and Au-Ag-Pd alloy, all the novel dithiooctanoate monomers showed significantly higher tensile bond strengths than conventional BMEDS, BMPDS, VBATDT, MPMA, and 4-META (p<0.05). It was found that novel dithiooctanoate monomers exhibited excellent bonding to precious metals and alloys when compared with conventional sulfur-containing monomers.

  20. Derivative thermo analysis of the Al-Si cast alloy with addition of rare earths metals

    Directory of Open Access Journals (Sweden)

    M. Krupiński

    2010-01-01

    Full Text Available In this paper the dependence between chemical composition, structure and cooling rate of Al–Si aluminium cast alloy was investigated. For studying of the structure changes the thermo-analysis was carried out, using the UMSA (Universal Metallurgical Simulator and Analyzer device. For structure investigation optical and electron scanning microscopy was used, phase and chemical composition of the Al cast alloy also using qualitative point-wise EDS microanalysis.

  1. New Platinum Alloy Catalysts for Oxygen Electroreduction Based on Alkaline Earth Metals

    DEFF Research Database (Denmark)

    Vej-Hansen, Ulrik Grønbjerg; Escudero-Escribano, M.; Velazquez-Palenzuela, Amado Andres

    2017-01-01

    The energy efficiency of polymer electrolyte membrane fuel cells is mainly limited by overpotentials related to the oxygen reduction reaction (ORR). In this paper, we present new platinum alloys which are active for the ORR and based on alloying Pt with very abundant elements, such as Ca. Theoret......The energy efficiency of polymer electrolyte membrane fuel cells is mainly limited by overpotentials related to the oxygen reduction reaction (ORR). In this paper, we present new platinum alloys which are active for the ORR and based on alloying Pt with very abundant elements, such as Ca....... Theoretical calculations suggested that Pt5Ca and Pt5Sr should be active for the ORR. Electrochemical measurements show that the activity of sputter-cleaned polycrystalline Pt5Ca and Pt5Sr electrodes is enhanced by a factor of 5–7 relative to polycrystalline Pt. Accelerated stability testing shows that after...... 10,000 electrochemical cycles, the alloys still retain over half their activity. The stability is thus not quite on par with the similar Pt-lanthanide alloys, possibly due to the somewhat lower heat of formation....

  2. Density functional study of the half-metallic ferromagnetism in Co-based Heusler alloys Co{sub 2}MSn (M = Ti, Zr, Hf) using LSDA and GGA

    Energy Technology Data Exchange (ETDEWEB)

    Aguayo, Aaron, E-mail: aguayo@uady.mx [Facultad de Matematicas, Universidad Autonoma de Yucatan, Apartado Postal 172, Cordemex, 97110 Merida, Yucatan (Mexico); Murrieta, Gabriel, E-mail: murrieta@uady.mx [Facultad de Matematicas, Universidad Autonoma de Yucatan, Apartado Postal 172, Cordemex, 97110 Merida, Yucatan (Mexico)

    2011-12-15

    The half-metallic state in the Heusler alloys Co{sub 2}MSn (M = Ti, Zr, Hf) was studied by means of first principles calculation, using both, the Local Spin Density Approximation (LSDA) and the Generalized Gradient Approximation (GGA) to the exchange-correlation energy. While the GGA calculation shows that the three alloys are half-metallic ferromagnets, the LSDA results show that they are ferromagnetic but not half-metallic systems. The difference between the exchange-correlation functionals is analyzed through the electronic structure of the alloys. The origin of the gap in the minority spin channel for GGA calculations is discussed. - Highlights: > In Co{sub 2}MSn (M = Ti, Zr, and Hf) LSDA and GGA act differently on the orbitals. > LSDA and GGA results about their half-metallic estate differ. GGA are half-metallic. > LSDA miscalculated the occupied and unoccupied Co d orbitals. > The calculated magnetic moment also shows differences between the two functionals. > The Co-Co hybridization is central to explain the half-metallic state in these alloys.

  3. Effects of Boron-Incorporation in a V-Containing Zr-Based AB2 Metal Hydride Alloy

    Directory of Open Access Journals (Sweden)

    Shiuan Chang

    2017-11-01

    Full Text Available In this study, boron, a metalloid element commonly used in semiconductor applications, was added in a V-containing Zr-based AB2 metal hydride alloy. In general, as the boron content in the alloy increased, the high-rate dischargeability, surface exchange current, and double-layer capacitance first decreased and then increased whereas charge-transfer resistance and dot product of charge-transfer resistance and double-layer capacitance changed in the opposite direction. Electrochemical and gaseous phase characteristics of two boron-containing alloys, with the same boron content detected by the inductively coupled plasma optical emission spectrometer, showed significant variations in performances due to the difference in phase abundance of a newly formed tetragonal V3B2 phase. This new phase contributes to the increases in electrochemical high-rate dischargeability, surface exchange current, charge-transfer resistances at room, and low temperatures. However, the V3B2 phase does not contribute to the hydrogen storage capacities in either gaseous phase and electrochemical environment.

  4. Airborne concentrations of toxic metals resulting from the use of low melting point lead alloys to construct radiotherapy shielding.

    Science.gov (United States)

    McCullough, E C; Senjem, D H

    1981-01-01

    Determinations of airborne concentrations of lead, cadmium, bismuth, and tin were made above vessels containing a "fusible" lead alloy (158 degrees F melting point) commonly used for construction of radiotherapy blocks. Fume concentrations were determined by collection on a membrane filter and analysis by atomic absorption spectrophotometry. Samples were obtained for alloy temperatures of 200 degrees, 400 degrees, and 600 degrees F. In all instances, concentrations were much lower than the applicable occupational limits for continuous exposure. The results of this study indicate that the use of a vented hood as a means of reducing air concentrations of toxic metals above and near vessels containing low temperature melting point lead allows commonly used in construction of radiotherapy shields appears unjustifiable. However, proper handling procedures should be observed to avoid entry into the body via alternate pathways (e.g., ingestion or skin absorption). Transmission data of a non-cadmium containing lead alloy with a melting point of 203 degrees F was ascertained and is reported on.

  5. Effect of strain rate on shear properties and fracture characteristics of DP600 and AA5182-O sheet metal alloys

    Directory of Open Access Journals (Sweden)

    Rahmaan Taamjeed

    2015-01-01

    Full Text Available Shear tests were performed at strain rates ranging from quasi-static (.01 s−1 to 600 s−1 for DP600 steel and AA5182-O sheet metal alloys at room temperature. A miniature sized shear specimen was modified and validated in this work to perform high strain rate shear testing. Digital image correlation (DIC techniques were employed to measure the strains in the experiments, and a criterion to detect the onset of fracture based on the hardening rate of the materials is proposed. At equivalent strains greater than 20%, the DP600 and AA5182 alloys demonstrated a reduced work hardening rate at elevated strain rates. At lower strains, the DP600 shows positive rate sensitivity while the AA5182 was not sensitive to strain rate. For both alloys, the equivalent fracture strain and elongation to failure decreased with strain rate. A conversion of the shear stress to an equivalent stress using the von Mises yield criterion provided excellent agreement with the results from tensile tests at elevated strain rates. Unlike the tensile test, the shear test is not limited by the onset of necking so the equivalent stress can be determined over a larger range of strain.

  6. Structural and magnetic properties of Fe{sub x}Ni{sub 100−x} alloys synthesized using Al as a reducing metal

    Energy Technology Data Exchange (ETDEWEB)

    Srakaew, N. [Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand); Jantaratana, P., E-mail: fscipsj@ku.ac.th [Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand); Nipakul, P. [Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand); Sirisathitkul, C. [Molecular Technology Research Unit, School of Science, Walailak University, Nakhon Si Thammarat 80161 (Thailand)

    2017-08-01

    Highlights: • Reduction by aluminum is a simple and safe route to synthesize iron-nickel alloys. • Alloy compositions with up to 90 at.% Fe can be obtained with minimal oxidation. • Morphology and magnetic properties are varied with the alloy composition. - Abstract: Iron-nickel (Fe-Ni) alloys comprising nine different compositions were rapidly synthesized from the redox reaction using aluminum foils as the reducing metal. Compared with conventional chemical syntheses, this simple approach is relatively safe and allows control over the alloy morphology and magnetic behavior as a function of the alloy composition with minimal oxidation. For alloys having low (10%–30%) Fe content the single face-centered cubic (FCC) FeNi{sub 3} phase was formed with nanorods aligned in the (1 1 1) crystalline direction on the cluster surface. This highly anisotropic morphology gradually disappeared as the Fe content was raised to 40%–70% with the alloy structure possessing a mixture of FCC FeNi{sub 3} and body-centered cubic (BCC) Fe{sub 7}Ni{sub 3}. The FCC phase was entirely replaced by the BCC structure upon further increase the Fe content to 80%–90%. The substitution of Ni by Fe in the crystals and the dominance of the BCC phase over the FCC structure gave rise to enhanced magnetization. By contrast, the coercive field decreased as a function of increasing Fe because of the reduction in shape anisotropy and the rise of saturation magnetization.

  7. Study on interfacial heat transfer coefficient at metal/die interface during high pressure die casting process of AZ91D alloy

    Directory of Open Access Journals (Sweden)

    GUO Zhi-peng

    2007-02-01

    Full Text Available The high pressure die casting (HPDC process is one of the fastest growing and most efficient methods for the production of complex shape castings of magnesium and aluminum alloys in today’s manufacturing industry.In this study, a high pressure die casting experiment using AZ91D magnesium alloy was conducted, and the temperature profiles inside the die were Measured. By using a computer program based on solving the inverse heat problem, the metal/die interfacial heat transfer coefficient (IHTC was calculated and studied. The results show that the IHTC between the metal and die increases right after the liquid metal is brought into the cavity by the plunger,and decreases as the solidification process of the liquid metal proceeds until the liquid metal is completely solidified,when the IHTC tends to be stable. The interfacial heat transfer coefficient shows different characteristics under different casting wall thicknesses and varies with the change of solidification behavior.

  8. A survey on the effects of three surface treatment methods on bond strength between base-metal alloys and Ceromer material (Targis

    Directory of Open Access Journals (Sweden)

    Rokni. Sh.

    2004-08-01

    Full Text Available Statement of Problem: Ceramics and resins belong to the earliest tooth restorative materials. Nowadays new generations of these materials have provided a revolution in cosmetic dentistry. Ceramic Optimized polymer (Ceromer is a newly made product that the bond between this material and base metal alloys, which are used widely today, is paid too much attention. Purpose: The aim of this study was to evaluate the bond strength of targis (Ceromer to three types of base metal alloys through three different surface treatment methods. Materials and Methods: In this experimental study, ninety plates of Rexillium III, Silver cast and super cast alloys (3050.4 were prepared and surface treated through three different methods (air oxidation, vaccum oxidation and sandblast. All samples were then veneered with 1.mm thickness of Targis. After thermocycling, three-point bending test was performed by universal testing machine (Instron to evaluate the amount of forces at crack or fracture times in Targis. The type of failure (cohesive or adhesive was also evaluated microscopically. Statistical analyses were made using 2-factor ANOVA and Duncan tests. Results: The type of surface treatment method caused a statistically significant difference in force rate required for crack and fracture in Targis. Sandblasting was found as the best method. The type of alloys, in all three methods, had a significant effect just on crack creation attributing the largest amount of force to Rexillium III. Adhesive type of failure occurred mostly in super-cast alloys through air-oxidation method, and cohesive type was more among silver cast alloys and sandblast method. Conclusion: According to the results of this study, bond strength between Ceromer materials and base metal alloys is significantly great and Rexillium III alloy associated with sandblast technique the best combination.

  9. A comparison on the marginal gap of two base metal alloys (Minalux, VeraBond2 during firing cycles of porcelain

    Directory of Open Access Journals (Sweden)

    Monzavi A.

    2004-06-01

    Full Text Available Statement of Problem: Nowadays economical issues on high gold alloys have changed the practice of metal-ceramic restorations toward base-metal alloys. Minalux is one of the base-metal alloys produced in Iran. Marginal fitness is of high importance to be evaluated in dental alloys."nPurpose: The aim of the present study was to compare the marginal adaptation of two base-metal alloys, Minalux (Mavadkaran Co. Iran and VeraBond2 (Aibadent Co. USA during firing cycles of porcelain. Materials and Methods: In an experimental study 24 standard brass dies, with 135° chamfer finishing line were fabricated by Computer Numeric Controlled (CNC milling machine. The samples were randomly divided in two groups, A and B, 12 in each. Following wax-up, the samples were equally cast with two mentioned alloys. In each group, there were 4 controlled samples, which proceeded to firing cycle without veneering porcelain. Scanning electron microscope (SEM measurements of marginal gap from buccal and lingual aspects were performed after 4 stages of casting, degassing, porcelain application and glazing. The data were analyzed using Four-way ANOVA and multiple comparative test based on Tukey criteria. Results: The findings of this study revealed that there was no significant difference in the marginal gap of Minalux (31.10±7.8u.m and VeraBond2 (30.27±6.96u.m with confidence level at 0.95 (P=0.43. For both alloys the greatest gap was observed after degassing stage (P<0.05. Porcelain and porcelain veneering proximity caused significant changes in the marginal gap of Minalux castings (P<0.05, however, such changes did not occur in VeraBond2 (PO.05."nConclusion: Based on the findings of this study, the marginal gaps of two base metal alloys, Minalux and VeraBond2, were proved to be identical and that of the Minalux alloy existed in the range of acceptable clinical application. It was also concluded that Minalux dental alloys could provide proper marginal adaptation.

  10. Standard practice for exposure of metals and alloys by alternate immersion in neutral 3.5% Sodium Chloride solution

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1999-01-01

    1.1 This practice covers procedures for making alternate immersion stress corrosion tests in 3.5 % sodium chloride (NaCl) (). It is primarily for tests of aluminum alloys (Test Method G 47) and ferrous alloys, but may be used for other metals exhibiting susceptibility to chloride ions. It sets forth the environmental conditions of the test and the means for controlling them. Note 1 Alternate immersion stress corrosion exposures are sometimes made in substitute ocean water (without heavy metals) prepared in accordance with Specification D 1141. The general requirements of this present practice are also applicable to such exposures except that the reagents used, the solution concentration, and the solution pH should be as specified in Specification D 1141. 1.2 This practice can be used for both stressed and unstressed corrosion specimens. Historically, it has been used for stress-corrosion cracking testing, but is often used for other forms of corrosion, such as uniform, pitting, intergranular, and galvanic. ...

  11. Effect of sintering temperature on physical properties & hardness of CoCrMo alloys fabricated by metal injection moulding process

    Science.gov (United States)

    Ridhwan Abdullah, Ahmad; Aidah Nabihah Dandang, Nur; Zalikha Khalil, Nur; Harun, Wan Sharuzi Wan

    2017-10-01

    Metal Injection Moulding (MIM) process is one of the Powder Metallurgy manufacturing techniques utilised to produce Cobalt Chromium Molybdenum (CoCrMo) compacts. The objective of this study is to determine physical properties and hardness of CoCrMo alloy compact sintered at three different sintering temperature at the similar soaking time. At the beginning, sample were fabricated by using Injection Moulding machine. Cobalt Chrome Molybdenum (CoCrMo) metal powder was selected for this study. A morphological study was conducted using optical microscope (OM) and micro-Vickers hardness testing. From the result obtained, it shows upward trend either on the hardness or physical properties of the samples. CoCrMo sintered compact become harder and volume of pores on surface become less due to the increase on sintering temperature. However, effect of increasing sintering temperature shows significant shrinkage of the sample, beginning losses in dimensional accuracy. It is discovered that a little change in sintering temperature gives significant impact on the microstructure, physical, mechanical of the alloy.

  12. Near-Net-Shape Production of Hollow Titanium Alloy Components via Electrochemical Reduction of Metal Oxide Precursors in Molten Salts

    Science.gov (United States)

    Hu, Di; Xiao, Wei; Chen, George Z.

    2013-04-01

    Metal oxide precursors (ca. 90 wt pct Ti, 6 wt pct Al, and 4 wt pct V) were prepared with a hollow structure in various shapes such as a sphere, miniature golf club head, and cup using a one-step solid slip-casting process. The precursors were then electro-deoxidized in molten calcium chloride [3.2 V, 1173 K (900 °C)] against a graphite anode. After 24 hours of electrolysis, the near-net-shape Ti-6Al-4V product maintained its original shape with controlled shrinkage. Oxygen contents in the Ti-6Al-4V components were typically below 2000 ppm. The maximum compressive stress and modulus of electrolytic products obtained in this work were approximately 243 MPa and 14 GPa, respectively, matching with the requirement for medical implants. Further research directions are discussed for mechanical improvement of the products via densification during or after electrolysis. This simple, fast, and energy-efficient near-net-shape manufacturing method could allow titanium alloy components with desired geometries to be prepared directly from a mixture of metal oxides, promising an innovative technology for the low-cost production of titanium alloy components.

  13. Formation and Thermal Stability of Amorphous Phase in Transition Metal-Phosphorus Binary Alloys

    OpenAIRE

    NAKA, Masaaki; Inoue, Akihisa; MASUMOTO, Tsuyoshi

    1980-01-01

    This paper deals with the amorphous-forming ability of Mn-P, Fe-P, Co-P, Ni-P, Cu-P, Pd-P and Pt-P binary alloys quenched rapidly from the melt and the stability and structural change of the amorphous phases on heating. A melt-quenching technique yields the formation of an amorphous phase only for Fe_P_, Ni_P_, Pd_P_ and Pt_P_ alloys. The critical cooling rate for the formation of an amorphous phase is calculated to be of the order 10^5-10^6 K/s for these amorphous-forming alloys from the tra...

  14. Metals Technology for Aerospace Applications in 2020: Development of High Temperature Aluminum Alloys For Aerospace Applications

    Science.gov (United States)

    Dicus, Dennis (Technical Monitor); Starke, Edgar A., Jr.

    2003-01-01

    The role of trace additions on the nucleation and stability of the primary strengthening phase, omega, is of paramount importance for the enhancement of mechanical properties for moderate temperature application of Al-Cu-Mg-(Ag) alloys. In order to better understand the competition for solute, which governs the microstructural evolution of these alloys, a series of Al-Cu-Mg-Si quaternary alloys were prepared to investigate the role of trace Si additions on the nucleation of the omega phase. Si additions were found to quell omega nucleation in conjunction with the enhanced matrix precipitation of competing phases. These initial results indicate that it is necessary to overcome a critical Mg/Si ratio for omega precipitation, rather than a particular Si content.

  15. Bottom-Up Nanofabrication of Supported Noble Metal Alloy Nanoparticle Arrays for Plasmonics

    DEFF Research Database (Denmark)

    Nugroho, Ferry A. A.; Iandolo, Beniamino; Wagner, Jakob Birkedal

    2016-01-01

    Mixing different elements at the nanoscale to obtain alloy nanostructures with fine-tuned physical and chemical properties offers appealing opportunities for nanotechnology and nanoscience. However, despite widespread successful application of alloy nanoparticles made by colloidal synthesis...... in heterogeneous catalysis, nanoalloy systems have been used very rarely in solid-state devices and nanoplasmonics-related applications. One reason is that such applications require integration in arrays on a surface with compelling demands on nanoparticle arrangement, uniformity in surface coverage......, and optimization of the surface density. These cannot be fulfilled even using state-of-the-art self -assembly strategies of colloids. As a solution, we present here a generic bottom-up nanolithography-compatible fabrication approach for large-area arrays of alloy nanoparticles on surfaces. To illustrate...

  16. Recent developments in corrosion-resistant metallic alloys for construction of seawater pumps

    Energy Technology Data Exchange (ETDEWEB)

    Glover, T.J. (INCO Engineered Products Limited, Wiggin Street, Birmingham (GB))

    1988-07-01

    The location of power stations, refineries, and chemical plants on the coasts, the massive growth in desalination plants in the Middle East, and the growth of the North Sea offshore industry in the past 10 years have substantially increased the quantity of seawater being handled. Conveying this seawater from the sea to locations within the plant for cooling or desalting purposes requires many pumps, which traditionally have been constructed from cast iron, Ni-Resist, gunmetal, bronze, and stainless steel. The majority of these materials have given an adequate cost-to-life performance. The choice of materials for seawater pumps is continually growing; this article discusses the most likely choices commercially available: high-strength cupronickels; duplex stainless steels; high-alloy austenitic stainless steels; high-nickel alloys; and titanium and its alloys.

  17. Biocompatibility of rapidly solidified magnesium alloy RS66 as a temporary biodegradable metal.

    Science.gov (United States)

    Willbold, Elmar; Kalla, Katharina; Bartsch, Ivonne; Bobe, Katharina; Brauneis, Maria; Remennik, Sergei; Shechtman, Dan; Nellesen, Jens; Tillmann, Wolfgang; Vogt, Carla; Witte, Frank

    2013-11-01

    Biodegradable magnesium-based alloys are very promising materials for temporary implants. However, the clinical use of magnesium-based alloys is often limited by rapid corrosion and by insufficient mechanical stability. Here we investigated RS66, a magnesium-based alloy with extraordinary physicochemical properties of high tensile strength combined with a high ductility and a homogeneous grain size of ~1 μm which was obtained by rapid solidification processing and reciprocal extrusion. Using a series of in vitro and in vivo experiments, we analyzed the biodegradation behavior and the biocompatibility of this alloy. In vitro, RS66 had no cytotoxic effects in physiological concentrations on the viability and the proliferation of primary human osteoblasts. In vivo, RS66 cylinders were implanted into femur condyles, under the skin and in the muscle of adult rabbits and were monitored for 1, 2, 3, 4 and 8 weeks. After explantation, the RS66 cylinders were first analyzed by microtomography to determine the remaining RS66 alloy and calculate the corrosion rates. Then, the implantation sites were examined histologically for healing processes and foreign body reactions. We found that RS66 was corroded fastest subcutaneously followed by intramuscular and bony implantation of the samples. No clinical harm with transient gas cavities during the first 6 weeks in subcutaneous and intramuscular implantation sites was observed. No gas cavities were formed around the implantation site in bone. The corrosion rates in the different anatomical locations correlated well with the local blood flow prior to implantation. A normal foreign body reaction occurred in all tissues. Interestingly, no enhanced bone formation could be observed around the corroding samples in the condyles. These data show that RS66 is biocompatible, and due to its interesting physicochemical properties, this magnesium alloy is a promising material for biodegradable implants. Copyright © 2013 Acta Materialia Inc

  18. 1H NMR spectroscopic analysis detects metabolic disturbances in rat urine on acute exposure to heavy metal tungsten alloy based metals salt.

    Science.gov (United States)

    Tyagi, Ritu; Rana, Poonam; Gupta, Mamta; Bhatnagar, Deepak; Srivastava, Shatakshi; Roy, Raja; Khushu, Subash

    2014-03-25

    Heavy metal tungsten alloys (HMTAs) have been found to be safer alternatives for making military munitions. Recently, some studies demonstrating the toxic potential of HMTAs have raised concern over the safety issues, and further propose that HMTAs exposure may lead to physiological disturbances as well. To look for the systemic effect of acute toxicity of HMTA based metals salt, (1)H nuclear magnetic resonance ((1)H NMR) spectroscopic profiling of rat urine was carried out. Male Sprague Dawley rats were administered (intraperitoneal) low and high dose of mixture of HMTA based metals salt and NMR spectroscopy was carried out in urine samples collected at 8, 24, 72 and 120 h post dosing (p.d.). Serum biochemical parameters and liver histopathology were also conducted. The (1)H NMR spectra were analysed using multivariate analysis techniques to show the time- and dose-dependent biochemical variations in post HMTA based metals salt exposure. Urine metabolomic analysis showed changes associated with energy metabolism, amino acids, N-methyl nicotinamide, membrane and gut flora metabolites. Multivariate analysis showed maximum variation with best classification of control and treated groups at 24h p.d. At the end of the study, for the low dose group most of the changes at metabolite level reverted to control except for the energy metabolites; whereas, in the high dose group some of the changes still persisted. The observations were well correlated with histopathological and serum biochemical parameters. Further, metabolic pathway analysis clarified that amongst all the metabolic pathways analysed, tricarboxylic acid cycle was most affected at all the time points indicating a switchover in energy metabolism from aerobic to anaerobic. These results suggest that exposure of rats to acute doses of HMTA based metals salt disrupts physiological metabolism with moderate injury to the liver, which might indirectly result from heavy metals induced oxidative stress. Copyright

  19. Half-metallicity and magnetism at Heusler alloy surfaces: Co{sub 2}MSi(001)(M=Ti,Cr)

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Ying Jiu [Department of Physics, Inha University, Incheon (Korea); Department of Physics, College of Science, Yanbian University, Yanji, Jilin (China); Lee, Jae Il [Department of Physics, Inha University, Incheon (Korea)

    2008-08-15

    We investigated the electronic structures, magnetism, and half-metallicity at the (001) surfaces of full-Heusler alloys, Co{sub 2}MSi (M=Ti,Cr), by using the all-electron full-potential linearized augmented plane wave method within the generalized gradient approximation. Both the Co-terminated (Co-term) and the MSi-terminated (MSi-term) surfaces were considered. From the calculated atom-resolved density of states, we found that the half-metallicity was destroyed at the Co-term surfaces for both alloys. The electronic structures at the MSi-term surfaces of the two alloys showed much different behavior. The half-metallicity was retained at the TiSi-term for Co{sub 2}TiSi(001) but the minority spin gap was much reduced due to surface states located just below the Fermi level. On the other hand the half-metallicity was destroyed at the CrSi-term of Co{sub 2}CrSi(001) due to the surface states located at the Fermi level. The calculated magnetic moment of the surface Co atom of the Co-term for Co{sub 2}CrSi(001) was increased slightly to 1.05 {mu}{sub B} with respect to that of the deep inner layers ({proportional_to}1.00{mu}{sub B}), while that for Co{sub 2}TiSi(001) was decreased to 0.88 {mu}{sub B}. Large enhancement of the magnetic moment was found for the surface Ti atoms at TiSi-term of Co{sub 2}TiSi(001) and Cr atoms at CrSi-term of Co{sub 2}CrSi(001) with values of 0.07 {mu}{sub B} and 2.91({mu}{sub B}), respectively. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Screened Coulomb interactions in metallic alloys. I. Universal screening in the atomic-sphere approximation

    DEFF Research Database (Denmark)

    Ruban, Andrei; Skriver, Hans Lomholt

    2002-01-01

    the Madelung potential energy of a random alloy in the single-site, mean-field approximation. The Madelung potential makes density-functional calculations by the conventional single-site, coherent potential approximation practically identical to the more rigorous LSGF supercell results obtained with a single...... of the alloy composition, lattice spacing, and crystal structure. A formalism which allows a consistent treatment of the screened Coulomb interactions within the single-site mean-field approximation is outlined. We also derive the contribution of the screened Coulomb interactions to the S-(2) formalism...

  1. Refractory metal superalloys: Design of yttrium aluminum garnet passivating niobium alloys

    Science.gov (United States)

    Bryan, David

    A systems-based approach, integrating computational modeling with experimental techniques to approach engineering problems in a time and cost efficient manner, was employed to design a Nb-based refractory superalloy for use at 1300°C. Ashby-type selection criteria for both thermodynamic and kinetic parameters were employed to identify a suitable protective oxide for Nb alloys. Yttrium aluminum garnet (YAG) was selected as the most promising candidate for its excellent combination of desirable properties. The alloy microstructural concept was based upon the gamma - gamma' nickel-based superalloys in which the multifunctional gamma' phase serves as both a creep strengthening dispersion and a source of reactive elements for oxide passivation. Candidate ternary Pd-Y-Al and Pt-Y-Al compounds were fabricated and characterized by XRD and DTA. Of the intermetallics studied, only PtYAl had a high enough melting point (1580°C) for use in an alloy operating at 1300°C. The alloy matrix design was based upon Wahl's extension of Wagner's criterion for protective oxidation, requiring a reduction of the product N ODO/DAl by 5 orders of magnitude relative to binary Nb-Al. A thermodynamic and kinetic analysis identified elements with large oxygen affinities as the most beneficial for reducing the magnitude of the quantity NOD O. Construction of a combined thermodynamic and mobility database identified increased Al solubility as the best approach for increasing D Al. Utilizing the thermodynamic and mobility databases, obtained from a combination of model alloys, oxidation experiments, and first principles calculations, theoretical designs predicted the large changes in solubility and transport parameters were achievable. Several prototype alloys were then fabricated and evaluated via oxidation tests at both 1300°C and 1100°C. YAG formation was demonstrated as part of multicomponent oxide scales in the alloys that exhibited the greatest reduction in oxidation rates. The oxidation

  2. Role of laser radiation in activating anodic dissolution under electrochemical machining of metals and alloys

    Directory of Open Access Journals (Sweden)

    Rakhimyanov Kharis

    2017-01-01

    Full Text Available The specific features of electrochemical dissolution of the 12X18H9T stainless steel, the OT-4 titanium alloy and the BK8 hard alloy in the sodium nitrate water solution exposed to 1.06 micrometer wavelength laser radiation were considered. It is found that depassivation of the anode surface is the main mechanism of laser activation in electrochemical dissolving of materials. It is established that the maximum efficiency of laser electrochemical machining is achieved at a pulse repetition frequency of 10 kHz laser radiation. It is connected with the photoactivation mechanism of electrolyte solution molecules, which increases their reaction capacity.

  3. Strong pinning in very fast grown reactive co-evaporated GdBa2Cu3O7 coated conductors

    Directory of Open Access Journals (Sweden)

    J. L. MacManus-Driscoll

    2014-08-01

    Full Text Available We report on compositional tuning to create excellent field-performance of Jc in “self-doped,” GdBa2Cu3O7−y (GdBCO coated conductors grown by ultrafast reactive co-evaporation. In order to give excess liquid and Gd2O3, the overall compositions were all Ba-poor and Cu-rich compared to GdBCO. The precise composition was found to be critical to the current carrying performance. The most copper-rich composition had an optimum self-field Jc of 3.2 MA cm−2. A more Gd-rich composition had the best in-field performance because of the formation of low coherence, splayed Gd2O3 nanoparticles, giving Jc (77 K, 1 T of over 1 MA cm−2 and Jc (77 K, 5 T of over 0.1 MA cm−2.

  4. Fabrication of novel metal-free "graphene alloy" for the highly efficient electrocatalytic reduction of H2O2.

    Science.gov (United States)

    Zhang, Tingting; Li, Cong; Gu, Yue; Yan, Xiaoyi; Zheng, Bo; Li, Yaru; Liu, He; Lu, Nannan; Zhang, Zhiquan; Feng, Guodong

    2017-04-01

    Hydrogen peroxide (H 2 O 2 ) is becoming significant due to its extensive applications, so determination of H 2 O 2 is very important topic in analytical chemistry. Metal-free "graphene alloy" - nitrogen (N) and sulfur (S) heteroatoms co-doped reduced graphene oxide (NS-rGO) was produced via a simple one-step thermal annealing procedure using a mixture of 5-amino-2-mercapto-1,3,4-thiadiazole (AMT) and graphene oxide (GO). The obtained metal-free NS-rGO composite showed better electrocatalytic activity toward the reduction of H 2 O 2 compared with the reduced graphene oxide (rGO). The enhanced performance was caused by the synergistic effect of N and S co-doping. Under optimum conditions, the constructed sensor demonstrated a linear response to H 2 O 2 in the range of 7-18000μM, with a lower detection limit of 0.45μM (S/N=3), even better than some reported sensors based on noble metal nanoparticles. Moreover, the proposed sensor exhibited excellent analytical performance in terms of acceptable selectivity, excellent reproducibility and long-time stability. These results indicated that the NS-rGO composite was a promising metal-free electrocatalytic material for constructing H 2 O 2 sensors. Additionally, NS-rGO composite was expected to be applied as catalysts for fuel cell applications, even for applications beyond fuel cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Half-metallicity and anisotropy magnetoresistance properties of Heusler alloys Fe2Co1-xCrxSi

    Science.gov (United States)

    Du, Y.; Xu, G. Z.; Liu, E. K.; Li, G. J.; Zhang, H. G.; Yu, S. Y.; Wang, W. H.; Wu, G. H.

    2013-06-01

    In this paper, we investigate the half-metallicity of Heusler alloys Fe2Co1-xCrxSi by first principles calculations and anisotropy magnetoresistance measurements. It is found that, with the increase of Cr content x, the Fermi level of Fe2Co1-xCrxSi moves from the top of valence band to the bottom of conduction band, and a large half-metallic band gap of 0.75 eV is obtained for x=0.75. We then successfully synthesized a series of Heusler Fe2Co1-xCrxSi polycrystalline ribbon samples. The results of X-ray diffraction indicate that the Fe2Co1-xCrxSi series of samples are pure phase with a high degree of order and the saturation magnetic moment follows half-metallic Slater-Pauling rule. Except for the two end members, Fe2CoSi and Fe2CrSi, the anisotropic magnetoresistance of Fe2Co1-xCrxSi (x=0.25, 0.5, and 0.75) shows a negative value suggesting they are stable half-metallic ferromagnets.

  6. (abstract) The Design of a Benign Fail-safe Mechanism Using a Low-melting-point Metal Alloy Coupler

    Science.gov (United States)

    Blomquist, Richard S.

    1995-01-01

    Because the alpha proton X ray spectrometer (APXS) sensor head on the Mars Pathfinder rover, Sojourner, is placed on Martian soil by the deployment mechanism (ADM), the rover would be crippled if the actuator fails when the mechanism is in its deployed position, as rover ground clearance is then reduced to zero. This paper describes the unique fail-safe mounted on the ADM, especially the use of a low-temperature-melting alloy as a coupler device. The final form of the design is a low-melting-point metal pellet coupler, made from Cerrobend, in parallel with a Negator spring pack. In its solid state, the metal rigidly connects the driver (the actuator) and the driven part (the mechanism). When commanded, a strip heater wrapped around the coupler melts the metal pellet (at 60(deg)C), allowing the driven part to turn independent of the driver. The Negator spring retracts the mechanism to its fully stowed position. This concept meets all the design criteria, and provides an added benefit. When the metal hardens the coupler once again rigidly connects the actuator and the mechanism. The concept presented here can easily be applied to other applications. Anywhere release devices are needed, low-melting-point couplers can be considered. The issues to be concerned with are thermal isolation, proper setting of the parts before actuation, and possible outgassing concerns. However, when these issues are overcome, the resulting release mechanism can promise to be the most light, simple, power conserving alternative available.

  7. BRAZING ALLOYS

    Science.gov (United States)

    Donnelly, R.G.; Gilliland, R.G.; Slaughter, G.M.

    1962-02-20

    A brazing alloy is described which, in the molten state, is characterized by excellent wettability and flowability and is capable of forming a corrosion-resistant brazed joint. At least one component of said joint is graphite and the other component is a corrosion-resistant refractory metal. The brazing alloy consists essentially of 40 to 90 wt % of gold, 5 to 35 wt% of nickel, and 1 to 45 wt% of tantalum. (AEC)

  8. SnS absorber thin films by co-evaporation: Optimization of the growth rate and influence of the annealing

    Energy Technology Data Exchange (ETDEWEB)

    Robles, Víctor, E-mail: victor.robles@ciemat.es; Trigo, Juan Francisco; Guillén, Cecilia; Herrero, José

    2015-05-01

    Tin sulfide thin films were prepared by co-evaporation on soda-lime glass substrates, for use as absorber layers. The synthesis was carried out at 350 °C substrate temperature and varying the growth rate in the 2-6 Å/s range, adjusting the deposition time in order to obtain thicknesses in the 700-1500 nm range. After evaporation, the samples were heated at 400 °C and 500 °C under various atmospheres. The evolution of the morphological, structural and optical properties has been analyzed as a function of the thickness and deposition rate, before and after annealing. For the samples grown at the lowest rate, SnS and Sn{sub 2}S{sub 3} phase mixing has been observed by X-ray diffraction. Samples with reduced thickness preferably crystallize in the SnS phase, whereas thicker layers become richer in the Sn{sub 2}S{sub 3} phase. The sulfur treatment of samples prepared at the lowest rate results in the formation of SnS{sub 2} phase. Otherwise, the samples obtained at the highest rates show single-phase SnS after heating at 400 °C in sulfur atmosphere, with gap energy values around 1.24 eV. - Highlights: • Tin sulfide thin films were deposited by co-evaporation at different growth rates. • The influence of the growth rate and post-annealing at different conditions was studied. • The SnS phase was obtained by optimizing the growth rate and the annealing process. • The SnS phase presented properties for use as absorber layer.

  9. Bonding fixed prosthodontic composite resin and precious metal alloys with the use of a vinyl-thiol primer and an adhesive opaque resin.

    Science.gov (United States)

    Atsuta, M; Matsumura, H; Tanaka, T

    1992-03-01

    Adhesive bonding of a light-cured fixed prosthodontic composite resin joined to silver- and gold-based alloys was investigated with the use of a metal primer and an adhesive opaque resin. The primer contained an adhesive bonding promoter for precious alloys, 6- (4-vinylbenzyl-n-propyl) amino-1, 3, 5-triazine-2, 4-dithiol (VBATDT). The cast metal specimens were alumina-blasted and primed with VBATDT acetone solution. A self-curable 4-META/MMA-TBB opaque resin was used to bond the primed metals and a light-cured composite resin. Prepared specimens were thermocycled in water and bond strengths were determined. The shear bond strengths after 100,000 thermocycles (4 degrees C to 60 degrees C for 1 minute) were 28.4 MPa for Ag-Pd-Cu-Au alloy and 20.8 MPa for type III gold alloy. This simple method may be used to bond silver or gold alloy and light-activated fixed prosthodontic composite resin.

  10. Tunable magnetization relaxation of Fe2Cr1 -xCoxSi half-metallic Heusler alloys by band structure engineering

    Science.gov (United States)

    He, Shikun; Liu, Yifan; Zheng, Yuhong; Qin, Qing; Wen, Zhenchao; Wu, Qingyun; Yang, Yi; Wang, Yupu; Feng, YuanPing; Teo, Kie Leong; Panagopoulos, Christos

    2017-11-01

    We report a systematic investigation on the magnetization relaxation properties of iron-based half-metallic Heusler alloy Fe2Cr1 -xCo xSi (FCCS) thin films using broadband angular-resolved ferromagnetic resonance. Band structure engineering through Co doping (x ) demonstrated by first-principles calculations is shown to tune the intrinsic magnetic damping over an order of magnitude, namely 1 ×10-2-8 ×10-4 . Notably, the intrinsic damping constants for samples with high Co concentration are among the lowest reported for Heusler alloys and even comparable to magnetic insulator yttrium iron garnet. Furthermore, a significant reduction of both isotropic and anisotropic contributions of extrinsic damping of the FCCS alloys was found in the FCCS films with x =0.5 -0.75 , which is of particular importance for applications. These results demonstrate a practical recipe to tailor functional magnetization for Heusler alloy-based spintronics at room temperature.

  11. Additive manufacturing of metals: a brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys

    Science.gov (United States)

    Gorsse, Stéphane; Hutchinson, Christopher; Gouné, Mohamed; Banerjee, Rajarshi

    2017-01-01

    Abstract We present a brief review of the microstructures and mechanical properties of selected metallic alloys processed by additive manufacturing (AM). Three different alloys, covering a large range of technology readiness levels, are selected to illustrate particular microstructural features developed by AM and clarify the engineering paradigm relating process–microstructure–property. With Ti-6Al-4V the emphasis is placed on the formation of metallurgical defects and microstructures induced by AM and their role on mechanical properties. The effects of the large in-built dislocation density, surface roughness and build atmosphere on mechanical and damage properties are discussed using steels. The impact of rapid solidification inherent to AM on phase selection is highlighted for high-entropy alloys. Using property maps, published mechanical properties of additive manufactured alloys are graphically summarized and compared to conventionally processed counterparts. PMID:28970868

  12. A comparative evaluation between new ternary zirconium alloys as alternative metals for orthopedic and dental prosthetic devices.

    Science.gov (United States)

    Shyti, Genti; Rosalbino, Francesco; Macciò, Daniele; Scarabelli, Linda; Quarto, Rodolfo; Giannoni, Paolo

    2014-02-01

    We assessed in vitro the corrosion behavior and biocompatibility of four Zr-based alloys (Zr97.5 Nb1.5VM1.0  ; VM, valve metal: Ti, Mo, W, Ta; at%) to be used as implant materials, comparing the results with grade-2 titanium, a biocompatible metal standard. Corrosion resistance was investigated by open circuit potential and electrochemical impedance spectroscopy measurements as a function of exposure time to an artificial physiological environment (Ringer's solution). Human bone marrow stromal cells were used to evaluate biocompatibility of the alloys and their influence on growth kinetics and cell osteogenic differentiation through histochemical and gene expression analyses. Open circuit potential values indicated that Zr-based alloys and grade-2 Ti undergo spontaneous passivation in the simulated aggressive environment. High impedance values for all samples demonstrated improved corrosion resistance of the oxide film, with the best protection characteristics displayed by Zr97.5  Nb1.5Ta1.0. Cells seeded on all surfaces showed the same growth kinetics, although matrix mineralization and alkaline phosphatase activity were maximal on Zr97.5  Nb1.5Mo1.0 and Zr97.5   Nb1.5Ta1.0. Markers of ongoing proliferation, however, such as podocalyxin and CD49f, were still overexpressed on Zr97.5   Nb1.5   Mo1.0 even upon osteoinduction. No relevant effects were noted for the CD146-expressing population of bone progenitors. Nonetheless, the presence of a more differentiated cell population on Zr97.5Nb1.5Ta1.0 samples was inferable by comparing mineralization data and transcript levels of osteogenic markers (osteocalcin, osteopontin, bone sialoprotein, and RUNX2). The combination of passivation, corrosion resistance and satisfactory biotolerance to bone progenitors make the Zr-based alloys promising implant materials. Among those we tested, Zr97.5Nb1.5Ta1.0 seems to be the most appealing.

  13. Microstructure, mechanical properties, in vitro degradation and cytotoxicity evaluations of Mg–1.5Y–1.2Zn–0.44Zr alloys for biodegradable metallic implants

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Jun [State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Qiu, Xin; Niu, Xiaodong; Tian, Zheng; Sun, Wei; Liu, Xiaojuan [State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Li, Yangde; Li, Weirong [Dongguan E-ande Sci. and Tech. Co. Ltd., Dongguan 523640 (China); Meng, Jian, E-mail: jmeng@ciac.jl.cn [State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2013-05-01

    Mg–1.5Y–1.2Zn–0.44Zr alloys were newly developed as degradable metallic biomaterials. A comprehensive investigation of the microstructure, mechanical properties, in vitro degradation assessments and in vitro cytotoxicity evaluations of the as-cast state, as-heat treated state and as-extruded state alloys was done. The microstructure observations show that the Mg–1.5Y–1.2Zn–0.44Zr alloys are mainly composed of the matrix α-Mg phases and the Mg{sub 12}ZnY secondary phases (LPS structure). The hot extrusion method significantly refined the grains and eliminated the defects of both as-cast and heat treated alloys and thereby contributed to the better mechanical properties and biodegradation resistance. The values of tensile strength and tensile yield strength of the alloy in the as-extruded condition are about 236 and 178 MPa respectively, with an excellent elongation of 28%. Meanwhile, the value of compressive strength is about 471 MPa and the value of bending strength is about 501 MPa. The superior bending strength further demonstrates the excellent ductility of the hot extruded alloys. The results of immersion tests and electrochemical measurements in the SBF indicate that a protective film precipitated on the alloy's surface with the extension of degradation. The protective film contains Mg(OH){sub 2} and hydroxyapatite (HA) which can reinforce osteoblast activity and promote good biocompatibility. No significant cytotoxicity towards L-929 cells was detected and the immersion extracts of alloy samples could enhance the cell proliferation with time in the cytotoxicity evaluations, implying that the Mg–1.5Y–1.2Zn–0.44Zr alloys have the potential to be used for biomedical applications. - Highlights: ► Mg-1.5Y-1.2Zn-0.44Zr alloys were newly developed as degradable metallic implants. ► The alloys are mainly composed of the matrix α-Mg and Mg{sub 12}ZnY secondary phases. ► The mechanical properties and biodegradation resistance were

  14. Natural and artificial aging response of semi-solid metal processed alloy A356

    CSIR Research Space (South Africa)

    Möller, H

    2008-09-01

    Full Text Available . For rheocast alloy A356, it is shown that natural aging prior to artificial aging causes the time-to-peak-hardness to be longer compared to the time when only artificial aging is used. Furthermore, a hardness plateau is maintained during artificial aging at 180...

  15. Neutron diffraction investigation of liquid alkali metal-gallium alloys. Giant cluster formation?

    NARCIS (Netherlands)

    Alvarez, M; Lomba, E; Verkerk, P; van der Aart, SA; Bionducci, M; Mirebeau, [No Value; van der Lugt, W

    Neutron diffraction experiments were performed on the liquid alloys NaGa, NaGa3, KGa3 and CsGa3. The structure factors of KGa3 and CsGa3 display prepeaks at small wavenumbers (0.64 and 0.61 (A) over circle -1, respectively). This may indicate the existence of extremely large aggregates of atoms in

  16. Excavation of Precious-Metal-Based Alloy Nanoparticles for Efficient Catalysis.

    Science.gov (United States)

    Tao, Franklin Feng

    2016-12-05

    Methods have recently been developed for the synthesis of excavated alloy nanoparticles. However, various challenges still need to be overcome for a broad range of excavated nanoparticles with different sizes, surface structures, compositions, and constituent elements to be available for chemical and energy transformations through thermal catalysis and electrocatalysis. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Manufacturing Techniques for Titanium Aluminide Based Alloys and Metal Matrix Composites

    Science.gov (United States)

    2010-01-01

    45-47)Al-10Nb High temperature strength, creep, and oxidation resistance Martin Marietta Laboratories, USA: XDTM TiAl [66; 67...number of γ-TiAl alloys. This process has been developed by NASA Glenn research center in Cleveland, Ohio [18]. Limited microstructural and mechanical

  18. Effects of Surface Alloying and Laser Beam Treatment on the Microstructure and Wear Behaviour of Surfaces Modified Using Submerged Metal Arc Welding

    Directory of Open Access Journals (Sweden)

    Regita BENDIKIENE

    2016-05-01

    Full Text Available In this study, the effects of surface alloying of cheap plain carbon steel using submerged metal arc technique and subsequent laser beam treatment on the microstructure and wear behaviour of surfaced layers were studied. This method is the cheapest one to obtain high alloyed coatings, because there is no need to apply complex technologies of powder making (metal powder is spread on the surface of base metal or inserted into the flux, it is enough to grind, granulate and blend additional materials. On the other hand, strengthening of superficial layers of alloys by thermal laser radiation is one of the applications of laser. Surface is strengthened by concentrated laser beam focused into teeny area (from section of mm till some mm. Teeny area of metal heat up rapidly and when heat is drain to the inner metal layers giving strengthening effect. Steel surface during this treatment exceeds critical temperatures, if there is a need to strengthen deeper portions of the base metal it is possible even to fuse superficial layer. The results presented in this paper are based on micro-structural and micro-chemical analyses of the surfaced and laser beam treated surfaces and are supported by analyses of the hardness, the wear resistance and resultant microstructures. Due to the usage of waste raw materials a significant improvement (~ 30 % in wear resistance was achieved. The maximum achieved hardness of surfaced layer was 62 HRC, it can be compared with high alloyed conventional steel grade. Wear properties of overlays with additional laser beam treatment showed that weight loss of these layers was ~10 % lower compared with overlays after welding; consequently it is possible to replace high alloyed conventional steel grades forming new surfaces or restoring worn machine elements and tools.DOI: http://dx.doi.org/10.5755/j01.ms.22.1.7621

  19. Metallic Reinforcement of Direct Squeeze Die Casting Aluminum Alloys for Improved Strength and Fracture Resistance

    Energy Technology Data Exchange (ETDEWEB)

    D. Schwam: J.F. Wallace: Y. Zhu: J.W. Ki

    2004-10-01

    The utilization of aluminum die casting as enclosures where internal equipment is rotating inside of the casting and could fracture requires a strong housing to restrain the fractured parts. A typical example would be a supercharger. In case of a failure, unless adequately contained, fractured parts could injure people operating the equipment. A number of potential reinforcement materials were investigated. The initial work was conducted in sand molds to create experimental conditions that promote prolonged contact of the reinforcing material with molten aluminum. Bonding of Aluminum bronze, Cast iron, and Ni-resist inserts with various electroplated coatings and surface treatments were analyzed. Also toughening of A354 aluminum cast alloy by steel and stainless steel wire mesh with various conditions was analyzed. A practical approach to reinforcement of die cast aluminum components is to use a reinforcing steel preform. Such performs can be fabricated from steel wire mesh or perforated metal sheet by stamping or deep drawing. A hemispherical, dome shaped casting was selected in this investigation. A deep drawing die was used to fabricate the reinforcing performs. The tendency of aluminum cast enclosures to fracture could be significantly reduced by installing a wire mesh of austenitic stainless steel or a punched austenitic stainless steel sheet within the casting. The use of reinforcements made of austenitic stainless steel wire mesh or punched austenitic stainless steel sheet provided marked improvement in reducing the fragmentation of the casting. The best strengthening was obtained with austenitic stainless steel wire and with a punched stainless steel sheet without annealing this material. Somewhat lower results were obtained with the annealed punched stainless steel sheet. When the annealed 1020 steel wire mesh was used, the results were only slightly improved because of the lower mechanical properties of this unalloyed steel. The lowest results were

  20. Size dependent reactivity of metal nanoparticles and alloys supported on HOPG, probed by the H-D exchange and the NH3 decomposition reactions

    DEFF Research Database (Denmark)

    Fiordaliso, Elisabetta Maria

    the exchange reaction on the nanoparticles and on alloys have been summarized in two scientific articles which have been recently published [1, 2]. The exchange reaction is carried out on supported catalysts. The effect of the interaction between metals and support on the catalytic activity has been......, Rh and Pt thin films, on Ru nanoparticles and on Ir/Ru alloys. Preliminary results indicated that Ru is the most active among the selected metals, but no definitive conclusions can be drawn on the effect of the particle diameter on the decomposition rate. In the case of the Ru/Ir alloys, it is found......This thesis presents the results obtained from experiments performed in an Ultra High Vacuum (UHV) apparatus, named Parallel Screening, consisting of a preparation chamber combined to a High Pressure Cell (HPC) for testing catalytic activity at 1 bar. Two catalytic reactions have been carried out...

  1. A comparison and assessment on various color dimensions from two base metal alloys in ceramometal disks

    Directory of Open Access Journals (Sweden)

    Nokar S

    2004-02-01

    Full Text Available Color matching and accurate shade selection are the challenging problems common"nto restorative dentistry. In ceramometal restorations, the type of substructure alloy affects the final color of"nbonded porcelain. Nickel- chromium alloy is the most commonly used one that its Iranian product, namely"nMinalux, is similar to Verabond2."nPurpose: The aim of this study was to assess and compare various color dimensions resulting from Minalux"nand Verabond2 alloys."nMaterials and Methods: Nine disks, approximately 16 mm in diameter and 0.5 mm thickness, were cast"nfrom each alloy. Then, porcelain Vita VMK68 A2 was baked onto the entire test disks, following the"nmanufacturer's instruction. Color samples, at the same time and under the same conditions, was measured by"nData color spectrophotometer in CIE Lab System and Munsel system under four light sources (A, C, D65 and"nTL81. Then MATLAB TOOL BOX Statistic 5.2 was used to determine mean and bilateral variance analysis."nResults: It was indicated that the F value on hue, value and chroma was less than of the table value stated"nwith 99% coefficient confidence, confirming Ho theory. In other words, there were not any significant"ndifferences between ceramometal disks made of Minalux and Verabond2 in the three dimensions of color."nConclusion: Having desirable physical, mechanical and biological properties, Verabond2 can be replaced by"nMinalux alloy.

  2. Toxicology of wear particles of cobalt-chromium alloy metal-on-metal hip implants Part I: physicochemical properties in patient and simulator studies.

    Science.gov (United States)

    Madl, Amy K; Liong, Monty; Kovochich, Michael; Finley, Brent L; Paustenbach, Dennis J; Oberdörster, Günter

    2015-07-01

    The objective of Part I of this analysis was to identify the relevant physicochemical characteristics of wear particles from cobalt-chromium alloy (CoCr) metal-on-metal (MoM) hip implant patients and simulator systems. For well-functioning MoM hip implants, the volumetric wear rate is low (<1mm(3) per million cycles or per year) and the majority of the wear debris is composed of oxidized Cr nanoparticles (<100nm) with minimal or no Co content. For implants with surgical malpositioning, the volumetric wear rate is as high as 100mm(3) per million cycles or per year and the size distribution of wear debris can be skewed to larger sizes (up to 1000nm) and contain higher concentrations of Co. In order to obtain data suitable for a risk assessment of wear debris in MoM hip implant patients, future studies need to focus on particle characteristics relevant to those generated in patients or in properly conducted simulator studies. Metallic implants are very common in the field of orthopedics. Nonetheless, concerns have been raised about the implications of nano-sized particles generated from the wear of these implants. In this two-part review, the authors first attempted to identify and critically evaluate the relevant physicochemical characteristics of CoCr wear particles from hip implant patients and simulator systems. Then they evaluated in vitro and animal toxicology studies with respect to the physicochemistry and dose-relevance to metal-on-metal implant patients. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Brazing diamond grits onto a steel substrate using copper alloys as the filler metals

    Science.gov (United States)

    Chen, S.-M.; Lin, S.-T.

    1996-12-01

    Surface-set diamond tools were fabricated by an active metal brazing process, using bronze (Cu-8.9Sn) powder and 316L stainless steel powder mixed to various ratios as the braze filler metals. The diamond grits were brazed onto a steel substrate at 1050 °C for 30 min in a dry hydrogen atmosphere. After brazing practice, an intermediate layer rich in chromium formed between the braze filler metal and diamond. A braze filler metal composed of 70 wt % bronze powder and 30 wt % stainless steel powder was found to be optimum in that the diamond grits were strongly impregnated in the filler metal by both mechanical and chemical types of holding. The diamond tools thus fabricated performed better than conventional nickel-plated diamond tools. In service, the braze filler metal wore at almost the same rate as the diamond grits, and no pullout of diamond grits or peeling of the filler metal layer took place.

  4. Pressure effect on crystallization of metallic glass Fe72P11C6Al5B4Ga2 alloy with wide supercooled liquid region

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Olsen, J. S.; Gerward, Leif

    2000-01-01

    The effect of pressure on the crystallization behavior of metallic glass Fe72P11C6Al5B4Ga2 alloy with a wide supercooled liquid region has been investigated by in situ high-pressure and high-temperature x-ray diffraction measurements using synchrotron radiation. In the pressure range from 0 to 2....

  5. Using Rose's metal alloy as a pinhole collimator material in preclinical small-animal imaging: a Monte Carlo evaluation.

    Science.gov (United States)

    Peterson, Mikael; Strand, Sven-Erik; Ljungberg, Michael

    2015-04-01

    Pinhole collimation is the most common method of high-resolution preclinical single photon emission computed tomography imaging. The collimators are usually constructed from dense materials with high atomic numbers, such as gold and platinum, which are expensive and not always flexible in the fabrication step. In this work, the authors have investigated the properties of a fusible alloy called Rose's metal and its potential in pinhole preclinical imaging. When compared to current standard pinhole materials such as gold and platinum, Rose's metal has a lower density and a relatively low effective atomic number. However, it is inexpensive, has a low melting point, and does not contract when solidifying. Once cast, the piece can be machined with high precision. The aim of this study was to evaluate the imaging properties for Rose's metal and compare them with those of standard materials. After validating their Monte Carlo code by comparing its results with published data and the results from analytical calculations, they investigated different pinhole geometries by varying the collimator material, acceptance angle, aperture diameter, and photon incident angle. The penetration-to-scatter and penetration-to-total component ratios, sensitivity, and the spatial resolution were determined for gold, tungsten, and Rose's metal for two radionuclides, (99)Tc(m) and (125)I. The Rose's metal pinhole-imaging simulations show higher penetration/total and scatter/total ratios. For example, the penetration/total is 50% for gold and 75% for Rose's metal when simulating (99)Tc(m) with a 0.3 mm aperture diameter and a 60° acceptance angle. However, the degradation in spatial resolution remained below 10% relative to the spatial resolution for gold for acceptance angles below 40° and aperture diameters larger than 0.5 mm. Extra penetration and scatter associated with Rose's metal contribute to degradation in the spatial resolution, but this degradation is not always substantial. The

  6. Studies on Similar and Dissimilar Metal EBW Joints of Fe-31Ni-5Co and Co-20Cr-15W-10Ni Alloys

    Science.gov (United States)

    Gupta, R. K.; Anil Kumar, V.

    2017-05-01

    Superinvar Fe-31Ni-5Co alloy (SI) and Co-20Cr-15W-10Ni superalloy (SA) are used in space applications. Similar metal (SI-SI and SA-SA) joints as well as dissimilar metal (SA-SI) joints of these alloys have been made using electron beam welding (EBW) technique. Extensive characterization of these weldments has been carried out using optical and electron microscopy, microhardness measurements and tensile testing at ambient and cryogenic temperatures. It has been observed that weld efficiency is 100% for similar metal joints, whereas it is governed by base metal properties of the alloy having lower strength for dissimilar metal joint. Weld efficiency of SA-SI/EBW joint is comparable with base metal of lower strength indicating no detrimental formation of intermetallic/brittle phase. Microhardness of the SA-SI/EBW joint is found to be representative of the respective base metal properties with no sudden variation across the SA/SI interface in the weldment indicating good dilution in the weld. This has been confirmed through energy-dispersive spectrum using x-rays (EDX) showing the presence of Fe near the superalloy weldment interface and the presence of Cr and W near the superinvar weldment interface. Increase in strength and decrease in ductility of base metals are observed for all types of joints when tested at cryogenic temperature (77 K) vis-à-vis at ambient temperature. Fracture features of the failed surface of SA-SI/EBW joint are found to be similar to that of the SI-SI/EBW joint. Microhardness, mechanical properties and fracture analysis confirm that failure of dissimilar metal joint takes place toward lower strength base metal, i.e., superinvar.

  7. Distribution of metal released from cobalt-chromium alloy orthopaedic wear particles implanted into air pouches in mice.

    Science.gov (United States)

    Afolaranmi, Grace A; Akbar, Moeed; Brewer, James; Grant, M Helen

    2012-06-01

    Metal-on-metal hip replacement implants generate wear debris and release ions both locally and systemically in patients. To investigate dissemination of metal, we determined blood and organ levels of cobalt (Co), chromium (Cr), and molybdenum (Mo) following the implantation of Co-Cr alloy wear debris in mice using skin pouches as a model system. We observed increased metal levels in blood for up to 72 h; the levels of Co were highest and remained elevated for 7 days. Co levels were elevated in all organs studied (liver, kidney, spleen, lung, heart, brain, and testes), with the peak at 48 h; highest levels were measured in liver and kidney (838.9 ± 223.7 ng/g in liver, and 938.8 ± 131.6 ng/g in kidney). Organ Cr levels were considerably lower than Co levels, for example, Cr in kidney was 117.2 ± 12.6 ng/g tissue at 48 h. Co is more mobile than Cr, reaching higher levels at earlier time points. This could be due to local tissue binding of Cr. Exposure to Co-Cr particles in vivo altered antioxidant enzyme expression and activities. We observed induction of catalase protein in the liver and glutathione reductase (GR) and peroxidase (GPx) proteins in the spleen. Activities of catalase and GPx in the liver were significantly increased while that of GR was decreased in the kidney. Organs of mice with Co-Cr particle implantation were exposed to increased metal levels capable of inducing reactive oxygen species scavenging enzymes, suggesting the tissue may be subjected to oxidative stress; however, the overall antioxidant defence system was not markedly disturbed. Copyright © 2012 Wiley Periodicals, Inc.

  8. Compatibility between Co-Metallized PbTe Thermoelectric Legs and an Ag-Cu-In Brazing Alloy.

    Science.gov (United States)

    Ben-Ayoun, Dana; Sadia, Yatir; Gelbstein, Yaniv

    2018-01-10

    In thermoelectric (TE) generators, maximizing the efficiency of conversion of direct heat to electricity requires the reduction of any thermal and electrical contact resistances between the TE legs and the metallic contacts. This requirement is especially challenging in the development of intermediate to high-temperature TE generators. PbTe-based TE materials are known to be highly efficient up to temperatures of around 500 °C; however, only a few practical TE generators based on these materials are currently commercially available. One reason for that is the insufficient bonding techniques between the TE legs and the hot-side metallic contacts. The current research is focused on the interaction between cobalt-metallized n-type 9.104 × 10-3 mol % PbI₂-doped PbTe TE legs and the Ag0.32Cu0.43In0.25 brazing alloy, which is free of volatile species. Clear and fine interfaces without any noticeable formation of adverse brittle intermetallic compounds were observed following prolonged thermal treatment testing. Moreover, a reasonable electrical contact resistance of ~2.25 mΩmm² was observed upon brazing at 600 °C, highlighting the potential of such contacts while developing practical PbTe-based TE generators.

  9. In vitro corrosion behavior of magnesium alloy AZ31B-hydroxyapatite metallic matrix composites processed via friction stir processing

    Science.gov (United States)

    Ho, Yee-Hsien

    Magnesium and its alloys have been considered for load-bearing implant materials due to their similar mechanical properties to the natural bone, excellent biocompatibility, good bioactivity, and biodegradation. Nevertheless, the uncontrollable corrosion rate in biological environment restrains their application. Hydroxyapatite (HA, Ca10(PO4)6(OH 2) is a widely used bio-ceramic which has bone-like mineral structure for bone fixation. Poor fracture toughness of HA makes it not suitable for load-bearing application as a bulk. Thus, HA is introduced into metallic surface in various forms for improving biocompatibility. Recently friction stir processing (FSP) has emerged as a surface modification tool for surface/substrate grain refinement and homogenization of microstructure in biomaterial. In the present efforts, Mg-nHA composite surface on with 5-20 wt% HA on Mg substrate were fabricated by FSP for biodegradation and bioactivity study. The results of electrochemical measurement indicated that lower amount ( 5% wt%) of Ca in Mg matrix can enhance surface localized corrosion resistance. The effects of microstructure, the presence of HA particle and Mg-Ca intermetallic phase precipitates on in vitro behavior of Mg alloy were investigated by TEM, SEM, EDX, XRD, and XPS. The detailed observations will be discussed during presentation.

  10. Determination of Ni(II) in metal alloys by spectrophotometry UV-Vis using dopasemiquinone

    OpenAIRE

    Wagner José Barreto; Sonia Regina Giancoli Barreto; Ieda Spacino Scarminio; Dílson Norio Ishikawa; Miriam de Fátima Soares; Marcus Vinícius Brás de Proença

    2010-01-01

    A spectrophotometric method was proposed for Ni(II) determination in alloys using a dopa-semiquinone (L-1) to form [Ni(II)(L1-)3]1-, ε = 9.3 x 10³ L mol-1 cm-1. The optimal conditions for the determination were: wavelength 590 nm, temperature 25 °C, reaction time 45 min and pH 7.5. The Beer's law was obeyed for nickel from 3.33 x 10-5 to 1.78 x 10-4 mol L-1. The method was applied to complex samples, such as inox, nickel-titanium and cobalt-chromium alloys. A study of the potential inter...

  11. Determination of Ni(II in metal alloys by spectrophotometry UV-Vis using dopasemiquinone

    Directory of Open Access Journals (Sweden)

    Wagner José Barreto

    2010-01-01

    Full Text Available A spectrophotometric method was proposed for Ni(II determination in alloys using a dopa-semiquinone (L-1 to form [Ni(II(L1-3]1-, ε = 9.3 x 10³ L mol-1 cm-1. The optimal conditions for the determination were: wavelength 590 nm, temperature 25 °C, reaction time 45 min and pH 7.5. The Beer's law was obeyed for nickel from 3.33 x 10-5 to 1.78 x 10-4 mol L-1. The method was applied to complex samples, such as inox, nickel-titanium and cobalt-chromium alloys. A study of the potential interferents revealed that Mn was the major interferent. The limit of detection and quantification were 2.88 x 10-5 mol L-1 and 3.06 x 10-5 mol L-1, respectively.

  12. Improved TIG weld joint strength in aluminum alloy 2219-T87 by filler metal substitution

    Science.gov (United States)

    Poorman, R. M.; Lovoy, C. V.

    1972-01-01

    The results of an investigation on weld joint characteristics of aluminum alloy 2219-T87 are given. Five different alloys were utilized as filler material. The mechanical properties of the joints were determined at ambient and cryogenic temperatures for weldments in the as-welded condition and also, for weldments after elevated temperature exposures. Other evaluations included hardness surveys, stress corrosion susceptibility, and to a limited extent, the internal metallurgical weld structures. The overall results indicate that M-943 filler weldments are superior in strength to weldments containing either the standard 2319 filler or fillers 2014, 2020, and a dual wire feed consisting of three parts 2319 and one part 5652. In addition, no deficiencies were evident in M-934 filler weldments with regard to ductility, joint strength after elevated temperature exposure, weld hardness, metallographic structures, or stress corrosion susceptibility.

  13. Characterization of flame-sprayed and plasma-sprayed pure metallic and alloyed coatings

    Energy Technology Data Exchange (ETDEWEB)

    Iordanova, I. [Sofia Univ. (Bulgaria). Dept. of Solid State Phys.; Forcey, K.S. [CEC, Joint Research Centre, Ispra Site, 21020 Ispra (Vatican City State, Holy See) (Italy); Gergov, B. [Sofia Univ. (Bulgaria). Dept. of Solid State Phys.; Bojinov, V. [Department of Inorganic Chemical Technology, The University of Sofia, Blvd. J. Bouchier 1, 1126 Sofia (Bulgaria)

    1995-05-01

    The composition, structure and properties of thermally sprayed coatings were investigated by a number of methods, including X-ray diffraction, X-ray spectroscopy and scanning electron microscopy. The Vickers hardness and porosity were also investigated. The coatings were plasma-sprayed pure molybdenum, and flame-sprayed copper and nickel alloys. It was found that the alloyed coatings had a different chemical composition than the powders they had been produced from. In addition, all the coatings exhibited a fibre texture which complicated the X-ray method for estimation of residual stresses. However, for the pure molybdenum coating, it was possible to evaluate this parameter, taking into account the effects of the measured porosity and crystallographical anisotropy on the Young`s modulus and Poisson`s ratio. ((orig.))

  14. Some possible filler alloys with low vapor pressures for refractory-metal brazing

    Science.gov (United States)

    Morris, J. F.

    1973-01-01

    A compilation of eutectics and melting-point minima for binary combinations of metals having vapor pressures below 10 to the minus 10th power torr at 1500 degrees K and .00005 torr at 2000 degree K is presented. These compositions and others near them on their phase diagrams are potential special brazing fillers for refractory metals. Some possible problems and advantages for fusion bonds of such mixtures are indicated. Evaluations of brazing fillers containing refractory metals are reported.

  15. Novel bioactive materials developed by simulated body fluid evaluation: Surface-modified Ti metal and its alloys.

    Science.gov (United States)

    Kokubo, Tadashi; Yamaguchi, Seiji

    2016-10-15

    Until the discovery of the bone-bonding activity of Bioglass by Hench et al. in the early 1970s, it had not been demonstrated that a synthetic material could bond to living bone without eliciting a foreign body reaction. Since then, various kinds of materials based on calcium phosphate, such as sintered hydroxyapatite and β-tricalcium phosphate have also been shown to bond to living bone. Until the discovery of the bone-bonding activity of Ti metal formed with a sodium titanate surface layer by the present authors in 1996, it had not been shown that a metallic material could bond to living bone. Since then, various kinds of surface-modified Ti metal and its alloys have been found to bond to living bone. Until the discovery of the osteoinduction of porous hydroxyapatite by Yamasaki in 1990, it was unknown whether a synthetic material could induce bone formation even in muscle tissue. Since then, various kinds of porous calcium phosphate ceramics have been shown to induce osteoinduction. Until the discovery of osteoinduction induced by a porous Ti metal formed with a titanium oxide surface layer by Fujibayashi et al. in 2004, it had been unclear whether porous metals would be able to induce osteoinduction. These novel bioactive materials have been developed by systematic research into the apatite formation that occurs on surface-modified Ti metal and its related materials in an acellular simulated body fluid (SBF) having ion concentrations almost equal to those of human blood plasma. Some of the novel bioactive materials based on Ti metal are already in clinical use or clinical trials, such as artificial hip joints and spinal fusion devices. In the present paper, we review how these novel bioactive materials based on Ti metal have been developed based on an evaluation of apatite formation in SBF. Without the SBF evaluation, these novel bioactive materials would most likely never have been developed. On the basis of systematic study of apatite formation on a material

  16. 3D Microstructural Architectures for Metal and Alloy Components Fabricated by 3D Printing/Additive Manufacturing Technologies

    Science.gov (United States)

    Martinez, E.; Murr, L. E.; Amato, K. N.; Hernandez, J.; Shindo, P. W.; Gaytan, S. M.; Ramirez, D. A.; Medina, F.; Wicker, R. B.

    The layer-by-layer building of monolithic, 3D metal components from selectively melted powder layers using laser or electron beams is a novel form of 3D printing or additive manufacturing. Microstructures created in these 3D products can involve novel, directional solidification structures which can include crystallographically oriented grains containing columnar arrays of precipitates characteristic of a microstructural architecture. These microstructural architectures are advantageously rendered in 3D image constructions involving light optical microscopy and scanning and transmission electron microscopy observations. Microstructural evolution can also be effectively examined through 3D image sequences which, along with x-ray diffraction (XRD) analysis in the x-y and x-z planes, can effectively characterize related crystallographic/texture variances. This paper compares 3D microstructural architectures in Co-base and Ni-base superalloys, columnar martensitic grain structures in 17-4 PH alloy, and columnar copper oxides and dislocation arrays in copper.

  17. Changes in the diffusion properties of nonequilibrium grain boundaries upon recrystallization and superplastic deformation of submicrocrystalline metals and alloys

    Science.gov (United States)

    Chuvil'deev, V. N.; Nokhrin, A. V.; Pirozhnikova, O. E.; Gryaznov, M. Yu.; Lopatin, Yu. G.; Myshlyaev, M. M.; Kopylov, V. I.

    2017-08-01

    The effect of an increase in the coefficient of the grain-boundary diffusion upon recrystallization and superplastic deformation of submicrocrystalline (SMC) materials prepared by severe plastic deformation has been studied. It is shown that the coefficient of the grain-boundary diffusion of the SMC materials is dependent on the intensity of the lattice dislocation flow whose value is proportional to the rate of the grain boundary migration upon annealing of SMC metals or the rate of the intragrain deformation under conditions of superplastic deformation of SMC alloys. It is found that, at a high rate of grain boundary migrations and high rates of superplastic deformation, the intensity of the lattice dislocation flow bombarding grain boundaries of SMC materials is higher than the intensity of their diffusion accommodation, which leads to an increase in the coefficient of the grain-boundary diffusion and a decrease in the activation energy. The results of the numerical calculations agree well with the experimental data.

  18. Self-Repairing Fatigue Damage in Metallic Structures for Aerospace Vehicles Using Shape Memory Alloy Self-healing (SMASH) Technology

    Science.gov (United States)

    Wright, M. Clara; Manuel, Michele; Wallace, Terryl; Newman, Andy; Brinson, Kate

    2015-01-01

    This DAA is for the Phase II webinar presentation of the ARMD-funded SMASH technology. A self-repairing aluminum-based composite system has been developed using liquid-assisted healing theory in conjunction with the shape memory effect of wire reinforcements. The metal matrix composite was thermodynamically designed to have a matrix with a relatively even dispersion of low-melting phase, allowing for repair of cracks at a pre-determined temperature. Shape memory alloy wire reinforcements were used within the composite to provide crack closure. Investigators focused the research on fatigue cracks propagating through the matrix in order to optimize and computer model the SMASH technology for aeronautical applications.

  19. A semi-empirical effective medium theory for metals and alloys

    DEFF Research Database (Denmark)

    Jacobsen, Karsten wedel; Stoltze, Per; Nørskov, Jens kehlet

    1996-01-01

    A detailed derivation of the simplest form of the effective medium theory for bonding in metallic systems is presented, and parameters for the fee metals Ni, Pd, Pt, Cu, Ag and Au are given. The derivation of parameters is discussed in detail to show how new parameterizations can be made....... The method and the parameterization is tested for a number of surface and bulk problems. In particular we present calculations of the energetics of metal atoms deposited on metal surfaces. The calculated energies include heats of adsorption, energies of overlayers, both pseudomorphic and relaxed, as well...

  20. Studies on hydriding kinetics of some La-based metal hydride alloys

    Energy Technology Data Exchange (ETDEWEB)

    Muthukumar, P.; Satheesh, A.; Groll, M. [Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039 (India); Linder, M.; Mertz, R. [Institute of Nuclear Technology and Energy Systems (IKE), University of Stuttgart (Germany)

    2009-09-15

    In this paper, the hydriding kinetics of LaNi{sub 5}, LaNi{sub 4.7}Al{sub 0.3} and LmNi{sub 4.91}Sn{sub 0.15} is presented. Experiments were carried out by maintaining the pressure ratio (supply pressure to equilibrium pressure at the mid-point of the pressure-concentration-isotherm) equal to 2 and by maintaining nearly isothermal reaction conditions. Two widely used reaction kinetics models, namely Johnson-Mehl-Avrami (JMA) model and Jander diffusion model (JDM) are considered for the analysis. Two JMA models are considered; in the first model, the order of the reaction is assumed as unit and in the second model, the rate constant is calculated by estimating the order by fitting the reaction kinetics data with a reaction kinetics equation. The activation energy and pre-exponential constants of the above-mentioned alloys are estimated by constructing the Arrhenius plot. Activation energies estimated from the different models are compared and the accurate values of activation energy for the different alloys are determined by comparing the reaction kinetics data obtained from the models with the experimental data. The rate-controlling step of the hydriding reaction is obtained for all the alloys investigated. (author)

  1. Development of graded Ni-YSZ composite coating on Alloy 690 by Pulsed Laser Deposition technique to reduce hazardous metallic nuclear waste inventory.

    Science.gov (United States)

    Sengupta, Pranesh; Rogalla, Detlef; Becker, Hans Werner; Dey, Gautam Kumar; Chakraborty, Sumit

    2011-08-15

    Alloy 690 based 'nuclear waste vitrification furnace' components degrade prematurely due to molten glass-alloy interactions at high temperatures and thereby increase the volume of metallic nuclear waste. In order to reduce the waste inventory, compositionally graded Ni-YSZ (Y(2)O(3) stabilized ZrO(2)) composite coating has been developed on Alloy 690 using Pulsed Laser Deposition technique. Five different thin-films starting with Ni80YSZ20 (Ni 80 wt%+YSZ 20 wt%), through Ni60YSZ40 (Ni 60 wt%+YSZ 40 wt%), Ni40YSZ60 (Ni 40 wt%+YSZ 60 wt%), Ni20YSZ80 (Ni 20 wt%+YSZ 80 wt%) and Ni0YSZ100 (Ni 0 wt%+YSZ 100 wt%), were deposited successively on Alloy 690 coupons. Detailed analyses of the thin-films identify them as homogeneous, uniform, pore free and crystalline in nature. A comparative study of coated and uncoated Alloy 690 coupons, exposed to sodium borosilicate melt at 1000°C for 1-6h suggests that the graded composite coating could substantially reduced the chemical interactions between Alloy 690 and borosilicate melt. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Electronic structure and half-metallicity in new Heusler alloys CoYO2 (Y = Sc, Ti, V, Cr, Mn, Fe, Ni, Cu, and Zn)

    Science.gov (United States)

    Esteki, S.; Ahmadian, F.

    2017-09-01

    First-principles calculations based on density functional theory (DFT) using the self-consistent full-potential linearized augmented plane wave (FPLAPW) method were applied to study the electronic structures and magnetic properties of new Heusler alloys CoYO2 (Y = Sc, Ti, V, Cr, Mn, Fe, Ni, Cu, and Zn). The calculated formation energies of these compounds were negative, therefore, they can be synthesized experimentally. All compounds were stable in ferromagnetic AlCu2Mn-type structure. In AlCu2Mn-type structure, CoScO2, CoFeO2, and CoNiO2 compounds were HM ferromagnets, CoCuO2 was a nearly half-metal, CoZnO2 was a spin gapless semiconductor, and other compounds were conventional ferromagnets. In CuHg2Ti-type structure, CoTiO2 compound had a nearly HM characteristic, CoVO2 was a spin gapless semiconductor, and other compounds were conventional ferromagnets. The origin of the half-metallic band gap for CoScO2 alloy Heusler alloy was well understood. The total magnetic moments of the three HM compounds obeyed Slater-Pauling rules (Mtot = 22-Ztot and Mtot = 32-Ztot). CoScO2 had the widest region of half-metallicity between the three half-metals indicating its high robustness of half-metallicity with respect to the variation of lattice constants.

  3. CONFIGURATION-INTERACTION IN NI METAL AND NI-ALLOYS AND HIGH-ENERGY SPECTROSCOPY

    NARCIS (Netherlands)

    TANAKA, A; JO, T; SAWATZKY, GA

    We discuss the electronic state of Ni atoms in Ni metal and of Ni impurity in Cu and Au metals from the viewpoint of 3d configuration interaction (CI) using the Anderson impurity model including atomic multiplets. On the basis of the discussion, we give an interpretation for the Ni 2p-core X-ray

  4. Novel technique for the synthesis of ultra-fine porosity metal foam via the inclusion of condensed argon through cryogenic mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Van Leeuwen, Brian K., E-mail: bkv5016@psu.edu [Department of Materials Science and Engineering, NC State University, 911 Partners Way, Room 3000, Raleigh, NC 27695-7907 (United States); Darling, Kristopher A. [U.S. Army Research Laboratory, Weapons and Materials Research Directorate, RDRL-WMM-B, Aberdeen Proving Ground, MD 21005-5069 (United States); Koch, Carl C.; Scattergood, Ron O. [Department of Materials Science and Engineering, NC State University, 911 Partners Way, Room 3000, Raleigh, NC 27695-7907 (United States)

    2011-02-25

    It was discovered that mechanical milling of metal powders in an ultra high purity argon atmosphere at cryogenic temperatures can result in argon being incorporated into the metal. This incorporated argon causes expansion by increasing the porosity when the material is annealed. The resulting annealed material can be classified as metal foam due to its highly porous nature. The most porous samples were measured to have nearly 50% porosity. This effect was observed in nominally pure copper and an alloy of 81 at% palladium and 19 at% zirconium.

  5. First-principles study on half-metallic ferromagnetic properties of Zn{sub 1-x}V{sub x}Se ternary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Khatta, Swati; Tripathi, S.K.; Prakash, Satya [Panjab University, Central of Advanced Study in Physics, Department of Physics, Chandigarh (India)

    2017-09-15

    The spin-polarised density functional theory along with self-consistent plane-wave pseudopotential is used to investigate the half-metallic ferromagnetic properties of ternary alloys Zn{sub 1-x}V{sub x}Se. The generalized gradient approximation is used for exchange-correlation potential. The equilibrium lattice constants, bulk modulus, and its derivatives are calculated. The calculated spin-polarised energy-band structures reveal that these alloys are half-metallic for x = 0.375 and 0.50 and nearly half-metallic for other values of x. The estimated direct and indirect bandgaps may be useful for the magneto-optical absorption experiments. It is found that there is strong Zn 4s, Se 4p, and V 3d orbital hybridization in the conduction bands of both the spins, while Se 4p and V 3d orbital hybridization predominates in the valence bands of both the spins. The s, p-d, and p-d orbital hybridization reduces the local magnetic moment of V atoms and small local magnetic moments are produced on Zn and Se atoms which get coupled with V atoms in ferromagnetic and antiferromagnetic phases, respectively. The conduction and valence-band-edge splittings and exchange constants predict the ferromagnetism in these alloys. The conduction band-impurity (s and p-d) exchange interaction is more significant for ferromagnetism in these alloys than the valence band-impurity (p-d) exchange interaction. (orig.)

  6. Nature of low dimensional structural modulations and relative phase stability in RexMo(W)1-xS2 transition metal dichalcogenide alloys

    KAUST Repository

    Sahu, R.

    2017-03-08

    We report on the various types of Peierls like two dimensional structural modulations and relative phase stability of 2H and 1T poly-types in the RexMo1-xS2 and RexW1-xS2 alloy system. Theoretical calculation predicts a polytype phase transition cross over at ∼50 at. % of Mo and W in ReS2 in both monolayer and bulk form, respectively. Experimentally, two different types of structural modulations at 50% and a modulation corresponding to trimerization at 75% alloy composition are observed for RexMo1-xS2 and only one type of modulation is observed at the 50% RexW1-xS2 alloy system. The 50% alloy system is found to be a suitable monolithic candidate for metal semiconductor transition with minute external perturbation. ReS2 is known to be in the 2D Peierls distorted 1Td structure and forms a chain like superstructure. Incorporation of Mo and W atoms into the ReS2 lattice modifies the metal-metal hybridization between the cations and influences the structural modulation and electronic properties of the system. The results offer yet another effective way to tune the electronic structure and poly-type phases of this class of materials other than intercalation, strain, and vertical stacking arrangement.

  7. A thermodynamic model for noble metal alloy inclusions in nuclear fuel rods and application to the study of loss-of-coolant accidents

    Science.gov (United States)

    Kaye, Matthew Haigh

    Metal alloy inclusions comprised of Mo, Pd, Rh, Ru, and Tc (the so-called "noble" metals) develop in CANDU fuel pellets as a result of fission. The thermochemical behaviour of this alloy system during severe accident conditions is of interest in connection with computations of loss of volatile compounds of these elements by reaction with steam-hydrogen gas mixtures that develop in the system as a result of water reacting with the Zircalloy cladding. This treatment focuses on the development of thermodynamic models for the Mo-Pd-Rh-Ru-Tc quinary system. A reasonable prediction was made by modelling the ten binary phase diagrams, five of these evaluations being original to this work. This process provides a complete treatment for the five solution phases (vapour, liquid, bcc-solid, fcc-solid, and cph-solid) in this alloy system, as well as self-consistent Gibbs energies of formation for the Mo 5Ru3 intermetallic phase, and two intermediate phases in the Mo-Tc system. The resulting collection of properties, when treated by Gibbs energy minimization, permits phase equilibria to be computed for specified temperatures and compositions. Experimental work in support of this treatment has been performed. Measurements of the solidus and liquidus temperatures for Pd-Rh alloys were made using differential thermal analysis. These measurements confirm that the liquid solution exhibits positive deviation from Raoult's law. Experimental work as a visiting research engineer at AECL (Chalk River) was performed using a custom developed Knudsen cell/mass spectrometer. The Pd partial pressure was measured above multi-component alloys of known composition over a range of temperatures. These are correlated to predicted activities of Pd from the developed thermodynamic model in the multi-component alloy. The thermodynamic treatment developed for the noble metal alloy inclusions has been combined with considerable other data and applied to selected loss-of-coolant-accident scenarios to

  8. The Origin of the Name "Onion's Fusible Alloy"

    Science.gov (United States)

    Jensen, William B.

    2010-01-01

    In response to a reader query, this article traces the history of fusible alloys, including Newton's metal, D'Arcet's metal, Rose's metal, Onion's fusible alloy, and Wood's metal. (Contains 1 table and 1 figure.)

  9. Comparative evaluation of effect of laser on shear bond strength of ceramic bonded with two base metal alloys: An in-vitro study

    Directory of Open Access Journals (Sweden)

    K Deepak

    2013-01-01

    Full Text Available The most common clinical failure in metal ceramic restoration is at the ceramo-metal interface. For the clinical longevity, metal-ceramic prostheses must have satisfactory bond strength between metal and ceramic. Aim and Objective: The aim of this study is to evaluate the effect of Laser etching on shear bond strength between base metal alloys and ceramic. Materials and Methods: A total of 60 specimens were made (Base 5 mm diameter and 1 mm thickness, step with 4 mm diameter and 4 mm in length. They were divided into three groups. Group A-control, Group B-sand blasting, and Group C-laser etching. The Surface morphology, surface roughness, and wettability of the specimens were observed under scanning electron microscope (SEM Ceramic application was carried out layer by layer for an optimal height of 4 mm. The shear bond strength test was performed using a universal testing machine and the nature of the fracture was examined under SEM. Results: The mean shear bond strength values for laser etched (Group C Nickel-chromium (Ni-Cr alloy bonded with ceramic was (49.12 ± 7.12 MPa and ceramic bonded with Cobalt-chromium (Co-Cr was (50.04 ± 4.27 MPa, sand blasted (Group B Ni-Cr alloy bonded with ceramic was (26.00 ± 5.22 MPa, and ceramic bonded with Co-Cr was 24.54 ± 4.78 MPa. The SEM image after debonding showed 10% of adhesive failure and 70% cohesive failure and 20% of both adhesive and cohesive failure for Laser etching. However, there was no significant difference in the values of shear bond strength between the two base metal alloys in Group C. Conclusion: The s hear bond strength between ceramic bonded with Ni-Cr alloys using the Laser etching as surface treatment was 49.12 ± 7.12 MPa and for Co-Cr alloys 50.04 ± 4.27 MPa. Laser surface treatment produces an excellent surface roughness and achieved good shear bond strength values and aid in achieving a better bond strength between metals and ceramic.

  10. Effect of the militarily-relevant heavy metals, depleted uranium and heavy metal tungsten-alloy on gene expression in human liver carcinoma cells (HepG2).

    Science.gov (United States)

    Miller, Alexandra C; Brooks, Kia; Smith, Jan; Page, Natalie

    2004-01-01

    Depleted uranium (DU) and heavy-metal tungsten alloys (HMTAs) are dense heavy-metals used primarily in military applications. Chemically similar to natural uranium, but depleted of the higher activity 235U and 234U isotopes, DU is a low specific activity, high-density heavy metal. In contrast, the non-radioactive HMTAs are composed of a mixture of tungsten (91-93%), nickel (3-5%), and cobalt (2-4%) particles. The use of DU and HMTAs in military munitions could result in their internalization in humans. Limited data exist however, regarding the long-term health effects of internalized DU and HMTAs in humans. Both DU and HMTAs possess a tumorigenic transforming potential and are genotoxic and mutagenic in vitro. Using insoluble DU-UO2 and a reconstituted mixture of tungsten, nickel, cobalt (rWNiCo), we tested their ability to induce stress genes in thirteen different recombinant cell lines generated from human liver carcinoma cells (HepG2). The commercially available CAT-Tox (L) cellular assay consists of a panel of cell lines stably transfected with reporter genes consisting of a coding sequence for chloramphenicol acetyl transferase (CAT) under transcriptional control by mammalian stress gene regulatory sequences. DU, (5-50 microg/ml) produced a complex profile of activity demonstrating significant dose-dependent induction of the hMTIIA FOS, p53RE, Gadd153, Gadd45, NFkappaBRE, CRE, HSP70, RARE, and GRP78 promoters. The rWNiCo mixture (5-50 microg/ml) showed dose-related induction of the GSTYA, hMTIIA, p53RE, FOS, NFkappaBRE, HSP70, and CRE promoters. An examination of the pure metals, tungsten (W), nickel (Ni), and cobalt (Co), comprising the rWNiCo mixture, demonstrated that each metal exhibited a similar pattern of gene induction, but at a significantly decreased magnitude than that of the rWNiCo mixture. These data showed a synergistic activation of gene expression by the metals in the rWNiCo mixture. Our data show for the first time that DU and rWNiCo can

  11. Zn-Al alloy as a new anode-metal of a zinc-air battery

    Energy Technology Data Exchange (ETDEWEB)

    Lan, C.J.; Chin, T.S.; Lin, P.H.; Perng, T.P. [National Tsing Hua Univ., Taiwan (China). Dept. of Materials Science and Engineering

    2006-01-15

    Low operating power and short cycle life are 2 of the main draw-backs of zinc-air batteries, despite the fact that various attempts have been made to develop improved zinc (Zn) anodes. This study investigated the performance of a Zn anode with a substantial addition of aluminium (Al). Rolled sheets of Zn-Al alloys of varying amounts of Zn and Al were used to prepare the anodes. Results of the study showed that the cells had higher open circuit voltages (OCV) values as well as a higher specific anode capacity. It was observed that specific anode capacity increased with higher current loading. The Zn{sub 59}Al{sub 41} and Zn{sub 67}Al{sub 33} sheets showed the highest performance with high OCV values of between 1540 and 1560 mV, as well as the largest specific anode capacity of 750-800 mAh per g at a discharge current of 200 mA. The 2-phase structure of the Zn-Al sheets was considered to be useful in reducing anode-passivation, and increasing anode-utilization due to its self-generated porosity when the Al-rich phase was preferentially reacted during discharge tests. It was noted that the density of the Zn-Al alloys was much smaller than that of pure Zn. It was concluded that the proposed alloys may be used as anodes in primary or mechanical-recharge type zinc-air batteries, as well as in electric vehicles. 22 refs., 2 tabs., 7 figs.

  12. BEP-relations for N2 dissociation over stepped transition metal and alloy surfaces

    DEFF Research Database (Denmark)

    Fronczek-Munter, Ture Rønved; Bligaard, Thomas; Christensen, Claus H.

    2008-01-01

    , a perfectly linear Bronsted-Evans-Polanyi (BEP) relation between the transition-state potential energy and the dissociative chemisorption energy is obtained. The perfect BEP relation, which extends over 12 eV in chemisorption energy, suggests that the manifestation of BEP relations for surface reactions...... is a general electronic structure effect, and that geometric effects are responsible for the scatter which is normally observed around the BEP line. The BEP relation is also shown to be valid for both surface and bulk alloys. The scatter is, however, larger than for the pure elements. This can be understood...

  13. Copper tin sulfide (CTS) absorber thin films obtained by co-evaporation: Influence of the ratio Cu/Sn

    Energy Technology Data Exchange (ETDEWEB)

    Robles, V., E-mail: victor.robles@ciemat.es; Trigo, J.F.; Guillén, C.; Herrero, J.

    2015-09-05

    Highlights: • Copper tin sulfide (CTS) thin films were grown by co-evaporation at different Cu/Sn atomic ratios. • Smooth Cu{sub 2}SnS{sub 3} layers with large grains are obtained at Cu/Sn ⩾ 1.5 and T ⩾ 350 °C. • At 450 °C, the cubic Cu{sub 2}SnS{sub 3} phase changes to tetragonal phase. • Cu{sub 2}SnS{sub 3} presents suitable optical and electrical properties for use as photovoltaic absorbers. - Abstract: Copper tin sulfide thin films have been grown on soda-lime glass substrates from the elemental constituents by co-evaporation. The synthesis was performed at substrate temperatures of 350 °C and 450 °C and different Cu/Sn ratios, adjusting the deposition time in order to obtain thicknesses above 1000 nm. The evolution of the morphological, structural, chemical, optical and electrical properties has been analyzed as a function of the substrate temperature and the Cu/Sn ratio. For the samples with Cu/Sn ⩽ 1, Cu{sub 2}Sn{sub 3}S{sub 7} and Cu{sub 2}SnS{sub 3} have been observed by XRD. Increasing the Cu/Sn to 1.5, the Cu{sub 2}SnS{sub 3} phase was the majority, being the formation completed at Cu/Sn ratio around 2. The increment of the substrate temperature leads to a change of cubic structure to tetragonal of the Cu{sub 2}SnS{sub 3} phase. The chemical treatment with KCN was effective to eliminate CuS excess detected in the samples with Cu/Sn > 2.2. The samples with Cu{sub 2}SnS{sub 3} structure show a band gap energy increasing from 0.9 to 1.25 eV and an electrical resistivity decreasing from 7 ∗ 10{sup −2} Ω cm to 3 ∗ 10{sup −3} Ω cm when the Cu/Sn atomic ratio increases from 1.5 to 2.2.

  14. The Elastic Constants Measurement of Metal Alloy by Using Ultrasonic Nondestructive Method at Different Temperature

    Directory of Open Access Journals (Sweden)

    Eryi Hu

    2016-01-01

    Full Text Available The ultrasonic nondestructive method is introduced into the elastic constants measurement of metal material. The extraction principle of Poisson’s ratio, elastic modulus, and shear modulus is deduced from the ultrasonic propagating equations with two kinds of vibration model of the elastic medium named ultrasonic longitudinal wave and transverse wave, respectively. The ultrasonic propagating velocity is measured by using the digital correlation technique between the ultrasonic original signal and the echo signal from the bottom surface, and then the elastic constants of the metal material are calculated. The feasibility of the correlation algorithm is verified by a simulation procedure. Finally, in order to obtain the stability of the elastic properties of different metal materials in a variable engineering application environment, the elastic constants of two kinds of metal materials in different temperature environment are measured by the proposed ultrasonic method.

  15. The constitutive response of brazing alloys and the residual stresses in ceramic-metal joints

    OpenAIRE

    Galli, Matteo

    2007-01-01

    Nowadays the joining of dissimilar materials is often the only solution to fulfill the complex requirements of high technology applications. One of the fields in which the research activity is more intense and promising is that of the brazing of ceramics with metals. The performance of brazed ceramic-metal joints is limited by residual stresses which develop in the bonded assembly as it cools down after brazing. The magnitude and influence of these stresses can be particularly high because of...

  16. Characterization and modeling of three-dimensional self-healing shape memory alloy-reinforced metal-matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Manuel, Michele Viola [University of Florida, Gainesville; Zhu, Pingping [Northwestern University, Evanston; Newman, John A. [NASA Langely Research Center (LaRC), Virginia; Wright, M Clara [NASA Kennedy Space Center, FL; Brinson, L Catherine [Northwestern University, Evanston; Kesler, Michael S. [ORNL

    2016-09-10

    In this paper, three-dimensional metal-matrix composites (MMCs) reinforced by shape memory alloy (SMA) wires are modeled and simulated, by adopting an SMA constitutive model accounting for elastic deformation, phase transformation and plastic behavior. A modeling method to create composites with pre-strained SMA wires is also proposed to improve the self-healing ability. Experimental validation is provided with a composite under three-point bending. This modeling method is applied in a series of finite element simulations to investigate the self-healing effects in pre-cracked composites, especially the role of the SMA reinforcement, the softening property of the matrix, and the effect of pre-strain in the SMA. The results demonstrate that SMA reinforcements provide stronger shape recovery ability than other, non-transforming materials. The softening property of the metallic matrix and the pre-strain in SMA are also beneficial to help crack closure and healing. This modeling approach can serve as an efficient tool to design SMA-reinforced MMCs with optimal self-healing properties that have potential applications in components needing a high level of reliability.

  17. Laser power and Scanning Speed Influence on the Mechanical Property of Laser Metal Deposited Titanium-Alloy

    Science.gov (United States)

    Mahamood, Rasheedat M.; Akinlabi, Esther T.; Akinlabi, Stephen

    2015-03-01

    The influence of the laser power and the scanning speed on the microhardness of the Laser Metal Deposited Ti6Al4V, an aerospace Titanium-alloy, was studied. Ti6Al4V powder was deposited on the Ti6Al4V substrate using the Laser Metal Deposition (LMD) process, an Additive Manufacturing (AM) manufacturing technology. The laser power was varied between 1.8 kW 3 kW and the scanning speed was varied between 0.05 m/s and 0.1 m/s. The powder flow rate and the gas flow rate were kept at constant values of 2 g/min and 2 l/min respectively. The full factorial design of experiment was used to design the experiment and to also analyze the results in the Design Expert 9 software environment. The microhardness profiling was studied using Microhardness indenter performed at a load of 500 g and at a dwelling time of 15 s. The distance between indentations was maintained at a distance of 15 μm. The study revealed that as the laser power was increased, the microhardness was found to decrease and as the scanning speed was increased, the microhardness was found to also increase. The results are presented and fully discussed.

  18. Microstructure and Mechanical Property of 3003 Aluminum Alloy Joint Brazed with Al-Si-Cu-Zn Filler Metal

    Directory of Open Access Journals (Sweden)

    LI Xiao-qiang

    2016-09-01

    Full Text Available Al-Si-Cu-Zn filler metal was developed to braze 3003 aluminum alloy. The microstructure and fracture surface of the joint were analyzed by XRD, SEM and EDS, and the effects of brazing temperature on microstructure and property of the joint were investigated. The results show that good joints are obtained at brazing temperature of 540-580℃ for 10min. The brazed joint consists of α(Al solid solution, θ(Al2Cu intermetallic compound, fine silicon phase and AlCuFeMn+Si phase in the central zone of brazed seam, and α(Al solid solution and element diffusion layers at both the sides of brazed seam, and the base metal. The room temperature (RT shear fracture of the joint occurs at the interface between the teeth shape α(Al in the diffusion layer and the center zone of brazed seam, which is mainly characterized as brittle cleavage. As the brazing temperature increases, α(Al solid solution crystals in the diffusion zone grow up, and the interfacial bonding of the joint is in the form of interdigitation. Brazing at 560℃ for 10min, the RT shear strength of the joint reaches the maximum value of 92.3MPa, which is about 62.7% of the base material.

  19. Temperature dependence of W metallic coatings synthesized by double glow plasma surface alloying technology on CVD diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Jie; Hei, Hongjun; Shen, Yanyan; Liu, Xiaoping; Tang, Bin; He, Zhiyong, E-mail: hezhiyong@tyut.edu.cn; Yu, Shengwang, E-mail: yushengwang@tyut.edu.cn

    2015-11-30

    Highlights: • DGPSA was firstly adopted to deposit W coatings on free-standing diamond films. • Temperature dependence of W coatings on free-standing diamond films was discussed. • W{sub 2}C and WC were formed at W/diamond interface during the DGPSA treatment. • The coatings possess continuous and compact surface structure except that made at 900 °C. • The coating obtained at 800 °C has the best adhesion and the maximum shear strength. - Abstract: W metallic coatings were synthesized on free-standing chemical vapor deposition (CVD) diamond films using double glow plasma surface alloying (DGPSA) technology. The influence of varying metalizing temperatures on the microstructures, phase composition and adhesion of the W metallic coatings were investigated. Likewise, the effectiveness of the W metallic coatings was preliminary evaluated via examining the shear strength of the brazing joints between W-metalized diamond films and commercial cemented carbide (WC–Co) inserts. The results showed that continuous and compact W metallic coatings were formed on the diamond films in the temperature range of 750–800 °C, while cracks or cavities presented at the W/diamond interface at 700 °C, 850 °C and 900 °C. Inter-diffusion of W and C atoms preformed, and WC and W{sub 2}C were formed at the W/diamond interfaces at all temperatures except 700 °C, at which only W{sub 2}C was formed. Moreover, etched cavities appeared at the W/diamond interface when the temperature exceeded 850 °C. The critical loads for coating delamination, as measured with the scratch test, increased as the temperature rose from 700 °C to 800 °C, while decreased with further increasing temperature. The maximum load was obtained at 800 °C with a value of 17.1 N. Besides, the shear strength of the brazing joints depicted the similar trend with the critical load. The highest shear strength (249 MPa) was also obtained at 800 °C.

  20. Effects of multiple firings on metal-ceramic bond strength of Co-Cr alloy fabricated by selective laser melting.

    Science.gov (United States)

    Ren, Xiao-Wei; Zeng, Li; Wei, Zi-Ming; Xin, Xian-Zhen; Wei, Bin

    2016-01-01

    Selective laser melting (SLM) is a new technique for fabricating dental restorations, but the metal-ceramic bond strength of the restorations after multiple firings must be considered because adequate bond strength is a clinical requirement for long-term performance. The purpose of this study was to investigate the effects of repeated firing on the metal-ceramic bond strength of an SLM Co-Cr alloy. Thirty-six SLM-fabricated (Group SLM) and conventional lost wax cast (Group Cast) Co-Cr metal bars were prepared. Eighteen bars from each group were molded into dimensions of 25×3×0.5 mm, following International Organization for Standardization (ISO) standard 9693:2012. In the center of each bar, a 1.1-mm thickness of porcelain was fused onto an 8×3-mm rectangular area. In each group, specimens were divided into 3 subgroups based on the number of firing cycles (3, 5, 7) for the veneering process. Metal-ceramic bond strength, fracture mode analysis, and area fraction of adherence porcelain (AFAP) of each subgroup was evaluated with a 3-point bend test and by measuring the Si content of specimens with scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDS). The results were statistically analyzed first with the Shapiro-Wilk test, where a P value of .364 was considered normally distributed, and then with the Student t test to determine significant differences (α=.05). Student t test results showed no statistical differences between the metal-ceramic bond strength of SLM and that of conventionally cast groups after firing 3, 5, and 7 times (P>.05). However, after SEM/EDS analyses, the SLM group showed significantly more porcelain adherence than that of the control group (P<.05) after 5 or 7 firings. The SLM group showed superior metal-ceramic bond strength that exceeded ISO 9691:1999 (E) requirements at all firing periods. Also, the bond showed better behavior in terms of AFAP than the conventional cast group, especially after 5 or 7 firings

  1. Effect of Annealing Processes on Cu-Zr Alloy Film for Copper Metallization

    Science.gov (United States)

    Wang, Ying; Li, Fu-yin; Tang, Bin-han

    2017-10-01

    The effect of two different annealing processes on the microstructure and barrier-forming ability of Cu-Zr alloy films has been investigated. Cu-Zr alloy films were deposited directly onto SiO2/Si substrates via direct current magnetron sputtering and subsequently annealed by the vacuum annealing process (VAP) or rapid annealing process under argon atmosphere at temperatures 350°C, 450°C, and 550°C. Then, the microstructure, interface characteristics, and electrical properties of the samples were measured. After annealing, the samples showed a preferential (111) crystal orientation, independent of the annealing process. After two annealing methods, Zr aggregated at the Cu-Zr/SiO2 interface and no serious interdiffusion occurred between Cu and Si. The leakage current measurements revealed that the samples annealed by VAP show a higher reliability. According to the results, the vacuum annealing has better barrier performance than the rapid annealing when used for the fabrication of Cu-based interconnects.

  2. Enthalpies of mixing in binary liquid alloys of lutetium with 3d metals

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Michael; Berezutski, Vadim [National Academy of Sciences, Kyiv (Ukraine). I. Frantsevich Institute for Problems of Materials Science; Usenko, Natalia; Kotova, Natalia [Taras Shevchenko National Univ., Kyiv (Ukraine). Dept. of Chemistry

    2017-01-15

    The enthalpies of mixing in binary liquid alloys of lutetium with chromium, cobalt, nickel and copper were determined at 1 773 - 1 947 K by isoperibolic calorimetry. The enthalpies of mixing in the Lu-Cr melts (measured up to 40 at.% Cr) demonstrate endothermic effects (ΔH = 6.88 ± 0.66 kJ . mol{sup -1} at x{sub Lu} = 0.60), whereas significant exothermic enthalpies of mixing have been established within a wide composition region for the Co-Lu, Ni-Lu and Cu-Lu liquid alloys. Minimum values of the integral enthalpy of mixing are as follows: ΔH{sub min} = -23.57 ± 1.41 kJ . mol{sup -1} at x{sub Lu} = 0.38 for the Co-Lu system; ΔH{sub min} = -48.65 ± 2.83 kJ . mol{sup -1} at x{sub Lu} = 0.40 for the Ni-Lu system; ΔH{sub min} = -24.63 ± 1.52 kJ . mol{sup -1} at x{sub Lu} = 0.37 for the Cu-Lu system.

  3. INVESTIGATING OF ECO- AND ENERGY-EFFICIENT LUBRICATION STRATEGIES FOR THE DRILLING OF LIGHT METAL ALLOYS

    Directory of Open Access Journals (Sweden)

    N.F. Treurnicht

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: Energy use will be one of the main drivers for the achievement of more eco-efficient drilling processes in the automotive industry. Industry awareness of the environmental impact of used cutting emulsions, and the negative effect on worker health, has increased sharply. This has led to innovative lubrication methods such as through-spindle minimal quantity lubrication (MQL for drilling aluminium-silicon alloys. In this work the performance of MQL at different cutting speeds and feed rates has been investigated using infrared temperature measurements. The results indicate that MQL is a feasible eco-efficient alternative to conventional flood cooling when drilling aluminium-silicon alloys.

    AFRIKAANSE OPSOMMING: Energiebenutting maak een van die hoofdryfvere uit om eko-doeltreffendheid te behaal in boorprosesse in die motornywerheid. Nywerheidsbewustheid van die omgewingsimpak van gebruikte sny-vloeistowwe, en die negatiewe effek daarvan op werkergesondheid, het skerp toegeneem. Hierdie bewustheid het aanleiding gegee tot die ontwikkeling van smeringsmetodes soos deur-spil minimale hoeveelheid smering (Engels: Minimal Quantity Lubrication, MQL vir die boor van aluminium-silikon legerings. In hierdie werk word die prestasie van MQL ondersoek teen verskillende snyspoed- en voertempo-kondisies deur middel van infra-rooi temperatuurmeting. Die resultate dui daarop dat MQL ’n lewensvatbare eko-vriendelike alternatief tot konvensionele vloedverkoeling is, wanneer aluminium-silikon legerings geboor word.

  4. Characterizing the Effect of Laser Power on Laser Metal Deposited Titanium Alloy and Boron Carbide

    Science.gov (United States)

    Akinlabi, E. T.; Erinosho, M. F.

    2017-11-01

    Titanium alloy has gained acceptance in the aerospace, marine, chemical, and other related industries due to its excellent combination of mechanical and corrosion properties. In order to augment its properties, a hard ceramic, boron carbide has been laser cladded with it at varying laser powers between 0.8 and 2.4 kW. This paper presents the effect of laser power on the laser deposited Ti6Al4V-B4C composites through the evolving microstructures and microhardness. The microstructures of the composites exhibit the formation of α-Ti phase and β-Ti phase and were elongated towards the heat affected zone. These phases were terminated at the fusion zone and globular microstructures were found growing epitaxially just immediately after the fusion zone. Good bondings were formed in all the deposited composites. Sample A1 deposited at a laser power of 0.8 kW and scanning speed of 1 m/min exhibits the highest hardness of HV 432 ± 27, while sample A4 deposited at a laser power of 2.0 kW and scanning speed of 1 m/min displays the lowest hardness of HV 360 ± 18. From the hardness results obtained, ceramic B4C has improved the mechanical properties of the primary alloy.

  5. Effect of atomic disorder on half-metallic ferromagnetism in Fe3-xCrxSi (x= 0, 0.25, 0.75, 1) heusler alloys

    Science.gov (United States)

    Singh, Mukhtiyar; Singh, Hardev; Kashyap, Manish K.

    2012-06-01

    Full potential linearized augmented plane wave (FPLAPW) method has been employed to investigate the electronic and magnetic properties of Fe3-xCrxSi (x = 0, 0.25, 0.75, 1) Heusler alloys using supercell approach. We obtained a regular increase in the spin polarization (P) with increase of Cr concentration. The signature of half-metallicity significantly starts from x = 0.75 with an indirect pseudogap at Fermi level (EF) in minority spin channel along ΓX direction, which converted into a real gap for the next alloy, Fe2CrSi (x= 1). The magnitude of band gap totally depends upon the concentration of Cr atom present in the alloy. The magnetic moment in all cases is mainly comes from FeII or/and Cr site. The disordered system showing maximum spin polarization can also be used for tunnel magnetoresistance (TMR) device.

  6. Application of Ammoniacal Solutions for Leaching and Electrochemical Dissolution of Metals from Alloys Produced from Low-Grade E-Scrap

    Directory of Open Access Journals (Sweden)

    Rudnik E.

    2017-09-01

    Full Text Available Paper reports results of the research on the application of ammoniacal solutions (sulfate, chloride, carbonate for hydrometallurgical treatment of smelted low-grade e-waste. Two Cu-Zn-Sn-Ag-Pb alloys were analyzed in details and discussed. Leaching of copper from the alloys was slow in sulfate solution, but the dissolution rate decreased in chloride and carbonate baths. Anodic alloys dissolution was uniform in sulfate and carbonate electrolytes, but high degradation of the material was observed in chloride bath. Chemical and phase composition of slimes and cathodic deposits produced during electrolysis were characterized. In all cases, separation of copper from other metals was found, but efficiencies of the processes were low.

  7. Thermal Aging Effects on Residual Stress and Residual Strain Distribution on Heat Affected Zone of Alloy 600 in Dissimilar Metal Weld

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Junhyuk; Choi, Kyoung Joon; Kim, Ji Hyun [UNIST, Ulsan (Korea, Republic of)

    2016-10-15

    Dissimilar metal weld (DMW), consisting of Alloy 600, Alloy 182, and A508 Gr.3, has been widely used as a joining material of the reactor pressure vessel penetration nozzle and the steam generator tubing for pressurized water reactors (PWR) because of its good mechanical strength, thermal conductivity, and corrosion resistance. Residual tensile stress is mainly nominated as a cause of SCC in light water reactors by IAEA report. So, to relax the residual stress, post-weld heat treatment is required after manufacturing process such as welding. However, thermal treatment has a great effect on the microstructure and the chromium depletion profile on Alloy 600, so called sensitization. By this reason, HAZ on Alloy 600 is critical to crack. According to G.A. Young et al., Crack growth rates (CGR) in the Alloy 600 HAZ were about 30 times faster than those in the Alloy 600 base metal tested under the same conditions. And according to Z.P. Lu et al., CGR in the Alloy 600 HAZ can be more than 20 times higher than that in its base metal. There are some methods to measure the exact value of residual stress on the material surface. The most common way is X-ray diffraction method (XRD). The principle of XRD is based on lattice strains and depends on the changes in the spacing of the atomic planes in material. And there is a computer simulation method to estimate residual stress distribution which is called ANSYS. This study was conducted to investigate how thermal aging affects residual stress and residual strain distribution of Alloy 600 HAZ. Following conclusions can be drawn from this study. According to preceding researches and this study, both the relaxation of residual stress and the change of residual strain follow as similar way, spreading out from concentrated region. The result of Vickers micro-hardness tester shows that tensile residual stresses are distributed broadly on the material aged by 15 years. Therefore, HT400{sub Y}15 material is weakest state for PWSCC. The

  8. Combined effects of ultrasonic vibration and manganese on Fe-containing inter-metallic compounds and mechanical properties of Al-17Si alloy with 3wt.%Fe

    Directory of Open Access Journals (Sweden)

    Lin Chong

    2013-05-01

    Full Text Available The research studied the combined effects of ultrasonic vibration (USV and manganese on the Fe-containing inter-metallic compounds and mechanical properties of Al-17Si-3Fe-2Cu-1Ni (wt.% alloys. The results showed that, without USV, the alloys with 0.4wt.% Mn or 0.8wt.% Mn both contain a large amount of coarse plate-like δ-Al4(Fe,MnSi2 phase and long needle-like β-Al5(Fe,MnSi phase. When the Mn content changes from 0.4wt.% to 0.8wt.% in the alloys, the amount and the length of needle-like β-Al5(Fe,MnSi phase decrease and the plate-like δ-Al4(Fe,MnSi2 phase becomes much coarser. After USV treatment, the Fe-containing compounds in the alloys are refined and exist mainly as δ-Al4(Fe,MnSi2 particles with an average grain size of about 20 μm, and only a small amount of β-Al5(Fe,MnSi phase remains. With USV treatment, the ultimate tensile strengths (UTS of the alloys containing 0.4wt.%Mn and 0.8wt.%Mn at room temperature are 253 MPa and 262 MPa, respectively, and the ultimate tensile strengths at 350 °C are 129 MPa and 135 MPa, respectively. It is considered that the modified morphology and uniform distribution of the Fe-containing inter-metallic compounds, which are caused by the USV process, are the main reasons for the increase in the tensile strength of these two alloys.

  9. Influence of water on the interfacial behavior of gallium liquid metal alloys.

    Science.gov (United States)

    Khan, Mohammad R; Trlica, Chris; So, Ju-Hee; Valeri, Michael; Dickey, Michael D

    2014-12-24

    Eutectic gallium indium (EGaIn) is a promising liquid metal for a variety of electrical and optical applications that take advantage of its soft and fluid properties. The presence of a rapidly forming oxide skin on the surface of the metal causes it to stick to many surfaces, which limits the ability to easily reconfigure its shape on demand. This paper shows that water can provide an interfacial slip layer between EGaIn and other surfaces, which allows the metal to flow smoothly through capillaries and across surfaces without sticking. Rheological and surface characterization shows that the presence of water also changes the chemical composition of the oxide skin and weakens its mechanical strength, although not enough to allow the metal to flow freely in microchannels without the slip layer. The slip layer provides new opportunities to control and actuate liquid metal plugs in microchannels-including the use of continuous electrowetting-enabling new possibilities for shape reconfigurable electronics, sensors, actuators, and antennas.

  10. The Role of the Component Metals in the Toxicity of Military-Grade Tungsten Alloy

    Directory of Open Access Journals (Sweden)

    Christy A. Emond

    2015-12-01

    Full Text Available Tungsten-based composites have been recommended as a suitable replacement for depleted uranium. Unfortunately, one of these mixtures composed of tungsten (W, nickel (Ni and cobalt (Co induced rhabdomyosarcomas when implanted into the leg muscle of laboratory rats and mice to simulate a shrapnel wound. The question arose as to whether the neoplastic effect of the mixture could be solely attributed to one or more of the metal components. To investigate this possibility, pellets with one or two of the component metals replaced with an identical amount of the biologically-inert metal tantalum (Ta were manufactured and implanted into the quadriceps of B6C3F1 mice. The mice were followed for two years to assess potential adverse health effects. Implantation with WTa, CoTa or WNiTa resulted in decreased survival, but not to the level reported for WNiCo. Sarcomas in the implanted muscle were found in 20% of the CoTa-implanted mice and 5% of the WTa- and WCoTa-implanted rats and mice, far below the 80% reported for WNiCo-implanted mice. The data obtained from this study suggested that no single metal is solely responsible for the neoplastic effects of WNiCo and that a synergistic effect of the three metals in tumor development was likely.

  11. Specification and qualification of welding procedures for metallic materials : welding procedure test : part 1 : arc and gas welding of steels and arc welding of nickel and nickel alloys : technical corrigendum 1

    CERN Document Server

    International Organization for Standardization. Geneva

    2005-01-01

    Specification and qualification of welding procedures for metallic materials : welding procedure test : part 1 : arc and gas welding of steels and arc welding of nickel and nickel alloys : technical corrigendum 1

  12. Thickness dependence of the electrical and thermoelectric properties of co-evaporated Sb2Te3 films

    Science.gov (United States)

    Shen, Haishan; Lee, Suhyeon; Kang, Jun-gu; Eom, Tae-Yil; Lee, Hoojeong; Han, Seungwoo

    2018-01-01

    P-type antimony telluride (Sb2Te3) films of various thicknesses (1-, 6-, 10-, and 16-μm) were deposited on an oxidized Si (100) substrate at 250 °C by effusion cell co-evaporation. Microstructural analysis using X-ray diffraction, scanning electron microscopy, and transmission electron microscopy revealed that the grains of the films grew in a mode in which recrystallization was prevalent and grain growth subdued, in contrast to typical film growth, which is often characterized by grain growth. The resultant microstructure exhibited narrow columnar grains, the preferred orientation of which changed with film growth thickness from (1010) with the 1-μm films to (015) for the 6- and 10-μm films, and finally (110) for the 16-μm films. Carrier mobility and the overall thermoelectric properties of the Sb2Te3 films were affected significantly by changes in the film microstructure; this was attributed to the strong anisotropy of Sb2Te3 regarding electrical conductivity. The highest power factor of 3.3 mW/mK2 was observed for the 1-μm-thick Sb2Te3 film.

  13. Formation and properties of composite nanostructured PEO-coatings on metals and alloys

    Directory of Open Access Journals (Sweden)

    Mashtalyar Dmitry V.

    2017-01-01

    Full Text Available Results of investigation of the incorporation of zirconia and titanium nitride nanoparticles into the coatings formed on magnesium alloy by plasma electrolytic oxidation are presented. Comprehensive research of electrochemical and mechanical properties of obtained coatings was carried out. It was established that the polarization resistance of the samples with a coating containing zirconia nanoparticles is in two fold higher than for the sample with base PEO-coating. One of the important reasons for improving the protective properties of coatings formed in electrolytes containing nanoparticles consists in enhanced morphological characteristics, in particular, the porosity decrease and increase of thickness and resistivity of porousless sublayer in comparison with base PEO-layer. Incorporation of zirconia and titanium nitride particles into the coating increases the mechanical performances. The coating containing nanoparticles have greater hardness and are more wear resistant in comparison with the coatings formed in the electrolyte without nanoparticle.

  14. Investigation of laser metal deposited Alloy 718 onto an EN 1.4401 stainless steel substrate

    Science.gov (United States)

    Segerstark, Andreas; Andersson, Joel; Svensson, Lars-Erik

    2017-12-01

    This paper focuses on how process parameters affect the deposition of Alloy 718 onto an EN 1.4401 stainless steel substrate in terms of secondary phase formation, dilution and hardness. A columnar solidification structure with elongated grains growing in the direction normal to the substrate was observed for all parameters. In the interdendritic regions, phases with a high content of Niobium were identified. Scanning Electron Microscopy imaging and Energy Dispersive Spectroscopy measurements revealed these phases to most likely be Laves phase and Nb-carbides. Temperature measurements indicated no significant aging in the deposits. Considerable enrichment of iron was found in the initially deposited layers due to dilution from the substrate. The increased content of iron seemed to aid in forming constituents rich in niobium which, in turn, influenced the hardness. The highest mean hardness was noted in the sample with the lowest area fraction of Nb-rich constituents.

  15. Statistical analysis and optimization of direct metal laser deposition of 227-F Colmonoy nickel alloy

    Science.gov (United States)

    Angelastro, A.; Campanelli, S. L.; Casalino, G.

    2017-09-01

    This paper presents a study on process parameters and building strategy for the deposition of Colmonoy 227-F powder by CO2 laser with a focal spot diameter of 0.3 mm. Colmonoy 227-F is a nickel alloy especially designed for mold manufacturing. The substrate material is a 10 mm thick plate of AISI 304 steel. A commercial CO2 laser welding machine was equipped with a low-cost powder feeding system. In this work, following another one in which laser power, scanning speed and powder flow rate had been studied, the effects of two important process parameters, i.e. hatch spacing and step height, on the properties of the built parts were analysed. The explored ranges of hatch spacing and step height were respectively 150-300 μm and 100-200 μm, whose dimensions were comparable with that of the laser spot. The roughness, adhesion, microstructure, microhardness and density of the manufactured specimens were studied for multi-layer samples, which were made of 30 layers. The statistical significance of the studied process parameters was assessed by the analysis of the variance. The process parameters used allowed to obtain both first layer-to-substrate and layer-to-layer good adhesions. The microstructure was fine and almost defect-free. The microhardness of the deposited material was about 100 HV higher than that of the starting powder. The density as high as 98% of that of the same bulk alloy was more than satisfactory. Finally, simultaneous optimization of density and roughness was performed using the contour plots.

  16. Tribological Behavior of Aluminum Alloy AlSi10Mg-TiB2 Composites Produced by Direct Metal Laser Sintering (DMLS)

    Science.gov (United States)

    Lorusso, Massimo; Aversa, Alberta; Manfredi, Diego; Calignano, Flaviana; Ambrosio, Elisa Paola; Ugues, Daniele; Pavese, Matteo

    2016-08-01

    Direct metal laser sintering (DMLS) is an additive manufacturing technique for the production of parts with complex geometry and it is especially appropriate for structural applications in aircraft and automotive industries. Aluminum-based metal matrix composites (MMCs) are promising materials for these applications because they are lightweight, ductile, and have a good strength-to-weight ratio This paper presents an investigation of microstructure, hardness, and tribological properties of AlSi10Mg alloy and AlSi10Mg alloy/TiB2 composites prepared by DMLS. MMCs were realized with two different compositions: 10% wt. of microsize TiB2, 1% wt. of nanosize TiB2. Wear tests were performed using a pin-on-disk apparatus on the prepared samples. Performances of AlSi10Mg samples manufactured by DMLS were also compared with the results obtained on AlSi10Mg alloy samples made by casting. It was found that the composites displayed a lower coefficient of friction (COF), but in the case of microsize TiB2 reinforcement the wear rate was higher than with nanosize reinforcements and aluminum alloy without reinforcement. AlSi10Mg obtained by DMLS showed a higher COF than AlSi10Mg obtained by casting, but the wear rate was higher in the latter case.

  17. Biocompatibility effects of indirect exposure of base-metal dental casting alloys to a human-derived three-dimensional oral mucosal model.

    Science.gov (United States)

    McGinley, Emma Louise; Moran, Gary P; Fleming, Garry J P

    2013-11-01

    The study employed a three-dimensional (3D) human-derived oral mucosal model to assess the biocompatibility of base-metal dental casting alloys ubiquitous in fixed prosthodontic and orthodontic dentistry. Oral mucosal models were generated using primary human oral keratinocyte and gingival fibroblast cells seeded onto human de-epidermidised dermal scaffolds. Nickel-chromium (Ni-Cr) and cobalt-chromium (Co-Cr) base-metal alloy immersion solutions were exposed to oral mucosal models for increasing time periods (2-72h). Analysis methodologies (histology, viable cell counts, oxidative stress, cytokine expression and toxicity) were performed following exposure. Ni-based alloy immersion solutions elicited significantly decreased cell viability (P0.4755) or cellular toxicity (Pcasting alloys through discriminatory experimental parameters. Increasing incidences of Ni hypersensitivity in the general population warrants serious consideration from dental practitioners and patients alike where fixed prosthodontic/orthodontic dental treatments are the treatment modality involved. The novel and analytical oral mucosal model has the potential to significantly contribute to the advancement of reproducible dental medical device and dental material appraisals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Effects of surface friction treatment on the in vitro release of constituent metals from the biomedical Co–29Cr–6Mo–0.16N alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoyu [Graduate School of Engineering, Tohoku University, Sendai 980-8577 (Japan); Li, Yunping, E-mail: lyping@csu.edu.cn [State Key Lab for Powder Metallurgy, Central South University, Changsha 410083 (China); School of Materials Science and Engineering, Central South University, Changsha (China); Hou, Yuhang [Graduate School of Engineering, Tohoku University, Sendai 980-8577 (Japan); Bian, Huakang; Koizumi, Yuichiro; Chiba, Akihiko [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2016-07-01

    Due to the ignorance by many researchers on the influence of starting microstructure on the metal release of biomedical materials in human body after implant, in this study, the effect of surface friction treatment on the in vitro release of the constituent elements of the biomedical Co–29Cr–6Mo–0.16N (CCM) alloy is investigated for the first time by immersion test in lactic acid solution combined with electron backscatter diffraction, transmission electron microscope, X-ray diffraction, X-ray photoelectron spectroscopy, and inductively coupled plasma atomic emission spectroscopy (ICP-EOS). The results indicate that friction treatment on the as-annealed CCM alloy sample surface leads to a planar strain-induced martensitic transformation (SIMT) on sample surface; this greatly accelerates the release of all the constituent elements and, in particular, that of Co as indicated by the ICP-EOS analysis. This increase can be ascribed to a localized deformation that occurred over the entire sample surface, with the dislocation density being high within the SIMTed phase and low in the alloy matrix. - Highlights: • Immersion test of biomedical CCM alloy in lactic acid solution was conducted. • Surface friction on CCM alloy leads to martensitic transformation. • The friction treatment accelerated the release of all the elements especially Co. • Localized deformation accounts for the accelerated release of elements.

  19. Influence of Filler Alloy Composition and Process Parameters on the Intermetallic Layer Thickness in Single-Sided Cold Metal Transfer Welding of Aluminum-Steel Blanks

    Science.gov (United States)

    Silvayeh, Zahra; Vallant, Rudolf; Sommitsch, Christof; Götzinger, Bruno; Karner, Werner; Hartmann, Matthias

    2017-11-01

    Hybrid components made of aluminum alloys and high-strength steels are typically used in automotive lightweight applications. Dissimilar joining of these materials is quite challenging; however, it is mandatory in order to produce multimaterial car body structures. Since especially welding of tailored blanks is of utmost interest, single-sided Cold Metal Transfer butt welding of thin sheets of aluminum alloy EN AW 6014 T4 and galvanized dual-phase steel HCT 450 X + ZE 75/75 was experimentally investigated in this study. The influence of different filler alloy compositions and welding process parameters on the thickness of the intermetallic layer, which forms between the weld seam and the steel sheet, was studied. The microstructures of the weld seam and of the intermetallic layer were characterized using conventional optical light microscopy and scanning electron microscopy. The results reveal that increasing the heat input and decreasing the cooling intensity tend to increase the layer thickness. The silicon content of the filler alloy has the strongest influence on the thickness of the intermetallic layer, whereas the magnesium and scandium contents of the filler alloy influence the cracking tendency. The layer thickness is not uniform and shows spatial variations along the bonding interface. The thinnest intermetallic layer (mean thickness < 4 µm) is obtained using the silicon-rich filler Al-3Si-1Mn, but the layer is more than twice as thick when different low-silicon fillers are used.

  20. Friction and wear of selected metals and alloys in sliding contact with AISI 440 C stainless steel in liquid methane and in liquid natural gas

    Science.gov (United States)

    Wisander, D. W.

    1978-01-01

    Aluminum, titanium, beryllium, nickel, iron, copper, and several copper alloys were run in sliding contact with AISI 440C in liquid methane and natural gas. All of the metals run except copper and the copper alloys of tin and tin-lead showed severely galled wear scars. Friction coefficients varied from 0.2 to 1.0, the lowest being for copper, copper-17 wt. % tin, and copper-8 wt. % tin-22 wt. % lead. The wear rate for copper was two orders of magnitude lower than that of the other metals run. An additional order of magnitude of wear reduction was achieved by the addition of tin and/or lead to copper.