WorldWideScience

Sample records for coenzyme ii

  1. Impact of Chemical Analogs of 4-Hydroxybenzoic Acid on Coenzyme Q Biosynthesis: From Inhibition to Bypass of Coenzyme Q Deficiency

    Directory of Open Access Journals (Sweden)

    Fabien Pierrel

    2017-06-01

    Full Text Available Coenzyme Q is a lipid that participates to important physiological functions. Coenzyme Q is synthesized in multiple steps from the precursor 4-hydroxybenzoic acid. Mutations in enzymes that participate to coenzyme Q biosynthesis result in primary coenzyme Q deficiency, a type of mitochondrial disease. Coenzyme Q10 supplementation of patients is the classical treatment but it shows limited efficacy in some cases. The molecular understanding of the coenzyme Q biosynthetic pathway allowed the design of experiments to bypass deficient biosynthetic steps with analogs of 4-hydroxybenzoic acid. These molecules provide the defective chemical group and can reactivate endogenous coenzyme Q biosynthesis as demonstrated recently in yeast, mammalian cell cultures, and mouse models of primary coenzyme Q deficiency. This mini review presents how the chemical properties of various analogs of 4-hydroxybenzoic acid dictate the effect of the molecules on CoQ biosynthesis and how the reactivation of endogenous coenzyme Q biosynthesis may achieve better results than exogenous CoQ10 supplementation.

  2. Radioprotection of DNA molecule by oxido-reduction's coenzymes

    International Nuclear Information System (INIS)

    Araos, M.S.; Fernandez, M.; Tomicic, I.; Toha, J.C.

    1978-01-01

    The radio protective action of respiratory coenzymes on DNA-water solutions is studied after irradiation with a 60 Co source. Coenzymes were used separately or in mixtures of their oxidized and reduced forms. The dose relative factor (DRF) values evaluated by uv absorbancy measurements of DNA damage were high: 18.03 for the (NAD-FAD-quinone) mixture (a respiratory chain model); 14.91 for (quinone-hydroquinone) mixtures; 14.46 for quinone; 14.27 for hydroquinone; 12.49 for FAD; 7.21 for the (NAD-NADH) mixture; 6.48 for NADH and 3.79 for NAD. No parallelism was found between the DNA coenzymes strong interactions and their protective action, performed by overcoming the indirect radiation damage. Besides, uv irradiation studies give no support to protection through direct energy transfer processes from excited DNA to coenzymes. The high efficiency of the mixtures of oxidized-reduced respiratory coenzymes is discussed in terms of simultaneous and equivalent trapping of recombinable radicals. The high tolerance of these protectors in living cells is emphasized. (author)

  3. Coenzyme Q10 treatment ameliorates acute cisplatin nephrotoxicity in mice

    International Nuclear Information System (INIS)

    Fouad, Amr A.; Al-Sultan, Ali Ibrahim; Refaie, Shereen M.; Yacoubi, Mohamed T.

    2010-01-01

    The nephroprotective effect of coenzyme Q10 was investigated in mice with acute renal injury induced by a single i.p. injection of cisplatin (5 mg/kg). Coenzyme Q10 treatment (10 mg/kg/day, i.p.) was applied for 6 consecutive days, starting 1 day before cisplatin administration. Coenzyme Q10 significantly reduced blood urea nitrogen and serum creatinine levels which were increased by cisplatin. Coenzyme Q10 significantly compensated deficits in the antioxidant defense mechanisms (reduced glutathione level and superoxide dismutase activity), suppressed lipid peroxidation, decreased the elevations of tumor necrosis factor-α, nitric oxide and platinum ion concentration, and attenuated the reductions of selenium and zinc ions in renal tissue resulted from cisplatin administration. Also, histopathological renal tissue damage mediated by cisplatin was ameliorated by coenzyme Q10 treatment. Immunohistochemical analysis revealed that coenzyme Q10 significantly decreased the cisplatin-induced overexpression of inducible nitric oxide synthase, nuclear factor-κB, caspase-3 and p53 in renal tissue. It was concluded that coenzyme Q10 represents a potential therapeutic option to protect against acute cisplatin nephrotoxicity commonly encountered in clinical practice.

  4. Effect of Simvastatin, Coenzyme Q10, Resveratrol, Acetylcysteine and Acetylcarnitine on Mitochondrial Respiration.

    Science.gov (United States)

    Fišar, Z; Hroudová, J; Singh, N; Kopřivová, A; Macečková, D

    2016-01-01

    Some therapeutic and/or adverse effects of drugs may be related to their effects on mitochondrial function. The effects of simvastatin, resveratrol, coenzyme Q10, acetylcysteine, and acetylcarnitine on Complex I-, Complex II-, or Complex IV-linked respiratory rate were determined in isolated brain mitochondria. The protective effects of these biologically active compounds on the calcium-induced decrease of the respiratory rate were also studied. We observed a significant inhibitory effect of simvastatin on mitochondrial respiration (IC50 = 24.0 μM for Complex I-linked respiration, IC50 = 31.3 μM for Complex II-linked respiration, and IC50 = 42.9 μM for Complex IV-linked respiration); the inhibitory effect of resveratrol was found at very high concentrations (IC50 = 162 μM for Complex I-linked respiration, IC50 = 564 μM for Complex II-linked respiration, and IC50 = 1454 μM for Complex IV-linked respiration). Concentrations required for effective simvastatin- or resveratrol-induced inhibition of mitochondrial respiration were found much higher than concentrations achieved under standard dosing of these drugs. Acetylcysteine and acetylcarnitine did not affect the oxygen consumption rate of mitochondria. Coenzyme Q10 induced an increase of Complex I-linked respiration. The increase of free calcium ions induced partial inhibition of the Complex I+II-linked mitochondrial respiration, and all tested drugs counteracted this inhibition. None of the tested drugs showed mitochondrial toxicity (characterized by respiratory rate inhibition) at drug concentrations achieved at therapeutic drug intake. Resveratrol, simvastatin, and acetylcarnitine had the greatest neuroprotective potential (characterized by protective effects against calcium-induced reduction of the respiratory rate).

  5. Protein Engineering for Nicotinamide Coenzyme Specificity in Oxidoreductases: Attempts and Challenges.

    Science.gov (United States)

    Chánique, Andrea M; Parra, Loreto P

    2018-01-01

    Oxidoreductases are ubiquitous enzymes that catalyze an extensive range of chemical reactions with great specificity, efficiency, and selectivity. Most oxidoreductases are nicotinamide cofactor-dependent enzymes with a strong preference for NADP or NAD. Because these coenzymes differ in stability, bioavailability and costs, the enzyme preference for a specific coenzyme is an important issue for practical applications. Different approaches for the manipulation of coenzyme specificity have been reported, with different degrees of success. Here we present various attempts for the switching of nicotinamide coenzyme preference in oxidoreductases by protein engineering. This review covers 103 enzyme engineering studies from 82 articles and evaluates the accomplishments in terms of coenzyme specificity and catalytic efficiency compared to wild type enzymes of different classes. We analyzed different protein engineering strategies and related them with the degree of success in inverting the cofactor specificity. In general, catalytic activity is compromised when coenzyme specificity is reversed, however when switching from NAD to NADP, better results are obtained. In most of the cases, rational strategies were used, predominantly with loop exchange generating the best results. In general, the tendency of removing acidic residues and incorporating basic residues is the strategy of choice when trying to change specificity from NAD to NADP, and vice versa . Computational strategies and algorithms are also covered as helpful tools to guide protein engineering strategies. This mini review aims to give a general introduction to the topic, giving an overview of tools and information to work in protein engineering for the reversal of coenzyme specificity.

  6. Coenzyme protection of lactic dehydrogenase against inactivation by gamma-rays

    International Nuclear Information System (INIS)

    Saito, M.

    1978-01-01

    A comparison has been made of the radiation sensitivities of the ternary complexes, oxamate-LDH-NADH and pyruvate-LDH-NAD with those of free LDH molecules and the intermediate binary complexes LDH-NAD and LDH-NADH. The enzyme solutions were 60 Co γirradiated and the rate of pyruvate reduction then measured. At doses of more than 10 krad the coenzymes afforded considerable protection to LDH against inactivation, and the dose-effect curves deviated from the curve for the unprotected enzyme, implying very specific protection. Coenzyme protection for a 30 krad dose at various concentrations of NAD and NADH reached a saturation level at about 4.0 x 10 -4 M for both NAD and NADH; protection by pyruvate alone was slight in comparison. Pyruvate and NAD (or oxamate and NADH) together at 1.0 x 10 -3 M protected the enzyme in a cooperative way. The results suggest that the major events of protection occur on the substrate and coenzyme binding sites, and support the view that coenzyme binding protects the enzyme by altering its conformation. (U.K.)

  7. Potential role of coenzyme Q10 in facilitating recovery from statin-induced rhabdomyolysis.

    Science.gov (United States)

    Wang, L W; Jabbour, A; Hayward, C S; Furlong, T J; Girgis, L; Macdonald, P S; Keogh, A M

    2015-04-01

    Rhabdomyolysis is a rare, but serious complication of statin therapy, and represents the most severe end of the spectrum of statin-induced myotoxicity. We report a case where coenzyme Q10 facilitated recovery from statin-induced rhabdomyolysis and acute renal failure, which had initially persisted despite statin cessation and haemodialysis. This observation is biologically plausible due to the recognised importance of coenzyme Q10 in mitochondrial bioenergetics within myocytes, and the fact that statins inhibit farnesyl pyrophosphate production, a biochemical step crucial for coenzyme Q10 synthesis. Coenzyme Q10 is generally well tolerated, and may potentially benefit patients with statin-induced rhabdomyolysis. © 2015 Royal Australasian College of Physicians.

  8. Effect of coenzyme q10 on myopathic symptoms in patients treated with statins.

    Science.gov (United States)

    Caso, Giuseppe; Kelly, Patricia; McNurlan, Margaret A; Lawson, William E

    2007-05-15

    Treatment of hypercholesterolemia with statins (3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors) is effective in the primary and secondary prevention of cardiovascular disease. However, statin use is often associated with a variety of muscle-related symptoms or myopathies. Myopathy may be related in part to statin inhibition of the endogenous synthesis of coenzyme Q10, an essential cofactor for mitochondrial energy production. The aim of this study is to determine whether coenzyme Q10 supplementation would reduce the degree of muscle pain associated with statin treatment. Patients with myopathic symptoms were randomly assigned in a double-blinded protocol to treatment with coenzyme Q10 (100 mg/day, n = 18) or vitamin E (400 IU/day, n = 14) for 30 days. Muscle pain and pain interference with daily activities were assessed before and after treatment. After a 30-day intervention, pain severity decreased by 40% (p pain interference with daily activities decreased by 38% (p pain severity (+9%, p = NS) or pain interference with daily activities (-11%, p = NS) was observed in the group treated with vitamin E. In conclusion, results suggest that coenzyme Q10 supplementation may decrease muscle pain associated with statin treatment. Thus, coenzyme Q10 supplementation may offer an alternative to stopping treatment with these vital drugs.

  9. Synthesis of carbon-14-labeled sodium palmoxirate and its coenzyme A ester

    Energy Technology Data Exchange (ETDEWEB)

    Weaner, L.E.; Hoerr, D.C.

    1986-04-01

    Synthetic procedures for the preparation of carbon-14-labeled sodium palmoxirate (TDGA), labeled either in the carboxyl position or in the tetradecyl hydrocarbon chain, are described. In addition, the synthesis of the coenzyme A ester of TDGA-14C with a specific activity of 51 mCi/mmol is reported. The coenzyme A ester was prepared by formation of the acyl chloride with oxalyl chloride followed by reaction with coenzyme A (CoA) in a borate-buffered tetrahydrofuran solution. Purification methods and analytical and stability data are reported for the compounds.

  10. Breeding of Coenzyme Q10 Produced Strain by Low-Energy Ion Implantation and Optimization of Coenzyme Q10 Fermentation

    International Nuclear Information System (INIS)

    Xu Dejun; Zheng Zhiming; Wang Peng; Wang Li; Yuan Hang; Yu Zengliang

    2008-01-01

    In order to increase the production efficiency of coenzyme Q 10 , the original strain Agrobacterium tumefaciens ATCC 4452 was mutated by means of Nitrogen ions implantation. A mutant strain, ATX 12, with high contents of coenzyme Q 10 was selected. Subsequently, the conditions such as carbohydrate concentration, nitrogen source concentration, inoculum's size, seed age, aeration and temperature which might affect the production of CoQ 10 were investigated in detail. Under optimal conditions, the maximum concentration of the intracellular CoQ 10 reached 200.3 mg/L after 80 h fed-batch fermentation, about 245% increasing in CoQ 10 production after ion implantation, compared to the original strain. (ion beam bioengineering)

  11. Supplementation of Coenzyme Q10 among Patients with Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Qiuhua Shen

    2015-05-01

    Full Text Available Type 2 diabetes mellitus (T2DM is a major cause of morbidity and mortality with ever increasing prevalence in the United States and worldwide. There is growing body of evidence suggesting that mitochondrial dysfunction secondary to oxidative stress plays a critical role in the pathogenesis of T2DM. Coenzyme Q10 is an important micronutrient acting on the electron transport chain of the mitochondria with two major functions: (1 synthesis of adenosine triphosphate (ATP; and (2 a potent antioxidant. Deficiency in coenzyme Q10 is often seen in patients with T2DM. Whether restoration of coenzyme Q10 will help alleviate oxidative stress, preserve mitochondrial function, and thus improve glycemic control in T2DM is unclear. This article reviews the relationships among oxidative stress, mitochondrial dysfunction, and T2DM and examines the evidence for potential use of coenzyme Q10 as a supplement for the treatment of T2DM.

  12. A coenzyme-independent decarboxylase/oxygenase cascade for the efficient synthesis of vanillin.

    Science.gov (United States)

    Furuya, Toshiki; Miura, Misa; Kino, Kuniki

    2014-10-13

    Vanillin is one of the most widely used flavor compounds in the world as well as a promising versatile building block. The biotechnological production of vanillin from plant-derived ferulic acid has attracted much attention as a new alternative to chemical synthesis. One limitation of the known metabolic pathway to vanillin is its requirement for expensive coenzymes. Here, we developed a novel route to vanillin from ferulic acid that does not require any coenzymes. This artificial pathway consists of a coenzyme-independent decarboxylase and a coenzyme-independent oxygenase. When Escherichia coli cells harboring the decarboxylase/oxygenase cascade were incubated with ferulic acid, the cells efficiently synthesized vanillin (8.0 mM, 1.2 g L(-1) ) via 4-vinylguaiacol in one pot, without the generation of any detectable aromatic by-products. The efficient method described here might be applicable to the synthesis of other high-value chemicals from plant-derived aromatics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Therapeutic implication of coenzyme Q10 during statin therapy: pros and cons

    Directory of Open Access Journals (Sweden)

    Mir-Jamal Hosseini

    2015-09-01

    Full Text Available Coenzyme Q10 (CoQ10 is a vitamin-like substance, and a natural intermediate of electron transport chain (ETC of mitochondria which can accepts and donates electrons from complex I and complex II. CoQ10 shares a biosynthetic pathway with cholesterol and dolichol thus it can be a potential target of the widely available lipid-lowering drugs. The lipid lowering drugs such as statins, are widely administered to individuals who have high cholesterol levels. This article reviews the a clinical benefits of CoQ10 b association between administration of statin and CoQ10 deficiency and c involvement of CoQ10 in statin-associated myopathy.

  14. A possible prebiotic synthesis of pantetheine, a precursor to coenzyme A

    Science.gov (United States)

    Keefe, A. D.; Newton, G. L.; Miller, S. L.

    1995-01-01

    The involvement of coenzyme A in many enzyme reactions suggests that it acted in this capacity very early in the development of life on Earth. Particularly relevant in this regard is its role in the activation of amino acids and hydroxy acids in the biosynthesis of some peptide antibiotics--a mechanism of peptide synthesis that forms the basis for the proposal that a thioester world could have preceded the RNA world. The components of coenzyme A have been shown to be probable prebiotic compounds: beta-alanine, pantoyl lactone and cysteamine and possibly adenosine. We show here that the pantetheine moiety of coenzyme A (which also occurs in a number of enzymes) can be synthesized in yields of several per cent by heating pantoyl lactone, beta-alanine and cysteamine at temperatures as low as 40 degrees C. These components are extremely soluble and so would have been preferentially concentrated in evaporating bodies of water, for example on beaches and at lagoon margins. Our results show that amide bonds can be formed at temperatures as low as 40 degrees C, and provide circumstantial support for the suggestion that pantetheine and coenzyme A were important in the earliest metabolic systems.

  15. The complete coenzyme B12 biosynthesis gene cluster of Lactobacillus reuteri CRL 1098

    NARCIS (Netherlands)

    Santos, dos F.; Vera, J.L.; Heijden, van der R.; Valdez, G.F.; Vos, de W.M.; Sesma, F.; Hugenholtz, J.

    2008-01-01

    The coenzyme B12 production pathway in Lactobacillus reuteri has been deduced using a combination of genetic, biochemical and bioinformatics approaches. The coenzyme B12 gene cluster of Lb. reuteri CRL1098 has the unique feature of clustering together the cbi, cob and hem genes. It consists of 29

  16. Coenzyme O*U1*UO, Alpha-Tocopherol and Free Cholesterol in HDL and LDL Fractions

    DEFF Research Database (Denmark)

    Johansen, Kurt; Theorell, Henning; Karlsson, Jan

    1991-01-01

    Farmakologi, Alpha-tocopherol, Coenzyme Q*U1*U0, free cholesterol, LDL, Antioxidants, Lipoproteins, HDL......Farmakologi, Alpha-tocopherol, Coenzyme Q*U1*U0, free cholesterol, LDL, Antioxidants, Lipoproteins, HDL...

  17. Thermophilic archaea activate butane via alkyl-coenzyme M formation.

    Science.gov (United States)

    Laso-Pérez, Rafael; Wegener, Gunter; Knittel, Katrin; Widdel, Friedrich; Harding, Katie J; Krukenberg, Viola; Meier, Dimitri V; Richter, Michael; Tegetmeyer, Halina E; Riedel, Dietmar; Richnow, Hans-Hermann; Adrian, Lorenz; Reemtsma, Thorsten; Lechtenfeld, Oliver J; Musat, Florin

    2016-11-17

    The anaerobic formation and oxidation of methane involve unique enzymatic mechanisms and cofactors, all of which are believed to be specific for C 1 -compounds. Here we show that an anaerobic thermophilic enrichment culture composed of dense consortia of archaea and bacteria apparently uses partly similar pathways to oxidize the C 4 hydrocarbon butane. The archaea, proposed genus 'Candidatus Syntrophoarchaeum', show the characteristic autofluorescence of methanogens, and contain highly expressed genes encoding enzymes similar to methyl-coenzyme M reductase. We detect butyl-coenzyme M, indicating archaeal butane activation analogous to the first step in anaerobic methane oxidation. In addition, Ca. Syntrophoarchaeum expresses the genes encoding β-oxidation enzymes, carbon monoxide dehydrogenase and reversible C 1 methanogenesis enzymes. This allows for the complete oxidation of butane. Reducing equivalents are seemingly channelled to HotSeep-1, a thermophilic sulfate-reducing partner bacterium known from the anaerobic oxidation of methane. Genes encoding 16S rRNA and methyl-coenzyme M reductase similar to those identifying Ca. Syntrophoarchaeum were repeatedly retrieved from marine subsurface sediments, suggesting that the presented activation mechanism is naturally widespread in the anaerobic oxidation of short-chain hydrocarbons.

  18. Purification, crystallization and preliminary X-ray analysis of 3-hydroxy-3-methylglutaryl-coenzyme A reductase of Streptococcus pneumoniae

    International Nuclear Information System (INIS)

    Zhang, Liping; Feng, Lingling; Zhou, Li; Gui, Jie; Wan, Jian; Hu, Xiaopeng

    2010-01-01

    3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase of Streptococcus pneumoniae has been cloned, overexpressed and purified to homogeneity using Ni–NTA affinity chromatography. Crystals were obtained using the hanging-drop vapour-diffusion method. Class II 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductases are potential targets for novel antibiotic development. In order to obtain a precise structural model for use in virtual screening and inhibitor design, HMG-CoA reductase of Streptococcus pneumoniae was cloned, overexpressed and purified to homogeneity using Ni–NTA affinity chromatography. Crystals were obtained using the hanging-drop vapour-diffusion method. A complete data set was collected from a single frozen crystal on a home X-ray source. The crystal diffracted to 2.3 Å resolution and belonged to the orthorhombic space group C222 1 , with unit-cell parameters a = 773.4836, b = 90.3055, c = 160.5592 Å, α = β = γ = 90°. Assuming the presence of two molecules in the asymmetric unit, the solvent content was estimated to be 54.1% (V M = 2.68 Å 3 Da −1 )

  19. Synthesis of coenzyme A and nicotineamide-adenine dinucleotide labelled with tritium

    International Nuclear Information System (INIS)

    Sidorov, G.V.; Zverkov, Yu.B.; Myasoedov, N.F.

    1999-01-01

    Isotopic exchange in solution with tritium water and with gaseous tritium and solid-phase reaction of isotopic exchange of NAD with tritium were investigated. For synthesis of labelled with tritium coenzyme A solid-phase reaction of isotopic exchange with gaseous tritium was used. It was determined that 98% of tritium was contained in nicotineamide part of molecule of NAD. In the case of coenzyme A studying of intramolecular distribution of tritium demonstrated that 90% of tritium were localized in adenine fragment [ru

  20. Coenzyme Q10 Supplementation Decreases Statin-Related Mild-to-Moderate Muscle Symptoms: A Randomized Clinical Study

    OpenAIRE

    Skarlovnik, Ajda; Janić, Miodrag; Lunder, Mojca; Turk, Martina; Šabovič, Mišo

    2014-01-01

    Background Statin use is frequently associated with muscle-related symptoms. Coenzyme Q10 supplementation has yielded conflicting results in decreasing statin myopathy. Herein, we tested whether coenzyme Q10 supplementation could decrease statin-associated muscular pain in a specific group of patients with mild-to-moderate muscle symptoms. Material/Methods Fifty patients treated with statins and reporting muscle pain were recruited. The Q10 group (n=25) received coenzyme Q10 supplementation o...

  1. The Antioxidant Status and Concentrations of Coenzyme Q10 and Vitamin E in Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Chi-Hua Yen

    2013-01-01

    Full Text Available The purpose of this study was to investigate the levels of coenzyme Q10 and vitamin E and the antioxidant status in subjects with metabolic syndrome (MS. Subjects with MS (n=72 were included according to the criteria for MS. The non-MS group (n=105 was comprised of healthy individuals with normal blood biochemical values. The plasma coenzyme Q10, vitamin E concentrations, lipid profiles, and antioxidant enzymes levels (catalase, superoxide dismutase, and glutathione peroxidase were measured. The subjects with MS had significantly higher concentrations of plasma coenzyme Q10 and vitamin E than those in the non-MS group, but these differences were not significant after being normalized for triglyceride level. The levels of antioxidant enzymes were significantly lower in the MS group than in the non-MS group. The subjects with the higher antioxidant enzymes activities had significant reductions in the risk of MS (P<0.01 after being adjusted for coenzyme Q10 and vitamin E. In conclusion, the subjects with MS might be under higher oxidative stress resulting in low levels of antioxidant enzyme activities. A higher level of antioxidant enzymes activities was significantly associated with a reduction in the risk of MS independent of the levels of coenzyme Q10 and vitamin E.

  2. Biochemistry of methyl-coenzyme M reductase: the nickel metalloenzyme that catalyzes the final step in synthesis and the first step in anaerobic oxidation of the greenhouse gas methane.

    Science.gov (United States)

    Ragsdale, Stephen W

    2014-01-01

    Methane, the major component of natural gas, has been in use in human civilization since ancient times as a source of fuel and light. Methanogens are responsible for synthesis of most of the methane found on Earth. The enzyme responsible for catalyzing the chemical step of methanogenesis is methyl-coenzyme M reductase (MCR), a nickel enzyme that contains a tetrapyrrole cofactor called coenzyme F430, which can traverse the Ni(I), (II), and (III) oxidation states. MCR and methanogens are also involved in anaerobic methane oxidation. This review describes structural, kinetic, and computational studies aimed at elucidating the mechanism of MCR. Such studies are expected to impact the many ramifications of methane in our society and environment, including energy production and greenhouse gas warming.

  3. The antioxidant status of coenzyme Q10 and vitamin E in children with type 1 diabetes.

    Science.gov (United States)

    Alkholy, Usama M; Abdalmonem, Nermin; Zaki, Ahmed; Elkoumi, Mohamed A; Hashim, Mustafa I Abu; Basset, Maha A A; Salah, Hossam E

    2018-02-07

    The purpose of this study was to evaluate the antioxidant status of plasma vitamin E and plasma and intracellular coenzyme Q10 in children with type 1 diabetes. This case-control study was conducted on 72 children with type 1 diabetes and compared to 48 healthy children, who were age, sex, and ethnicity-matched. The diabetic children were divided according to their glycosylated hemoglobin (A1c %) into two groups: poor and good glycemic control groups. All children underwent full history taking, clinical examination, and laboratory measurement of complete blood count, A1c %, plasma cholesterol, triglycerides, and vitamin E levels and coenzyme Q10 levels in plasma, erythrocytes, and platelets. Children with poor glycemic control showed significantly higher plasma vitamin E, coenzyme Q10, triglycerides, low-density lipoproteins, waist circumference/height ratio, cholesterol levels, and lower high-density lipoproteins and platelet coenzyme Q10 redox status in comparison to those with good glycemic control and the control group (p<0.05). Plasma coenzyme Q10 showed a positive correlation with the duration of type 1 diabetes, triglycerides, cholesterol, vitamin E, and A1c %, and negative correlation with the age of the diabetic group (p<0.05). The platelet redox status showed a negative correlation with the A1c % levels (r=-0.31; p=0.022) and the duration of type 1 diabetes (r=-0.35, p=0.012). Patients with type 1 diabetes, especially poorly controlled, had elevation of plasma vitamin E and coenzyme Q10 levels and decreased platelet redox status of coenzyme Q10, which may be an indicator of increased oxidative stress. Copyright © 2018 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  4. Autotrophic acetyl coenzyme A biosynthesis in Methanococcus maripaludis

    International Nuclear Information System (INIS)

    Shieh, J.; Whitman, W.B.

    1988-01-01

    To detect autotrophic CO 2 assimilation in cell extracts of Methanococcus maripaludis, lactate dehydrogenase and NADH were added to convert pyruvate formed from autotropically synthesized acetyl coenzyme A to lactate. The lactate produced was determined spectrophotometrically. When CO 2 fixation was pulled in the direction of lactate synthesis, CO 2 reduction to methane was inhibited. Bromoethanesulfonate (BES), a potent inhibitor of methanogenesis, enhanced lactate synthesis, and methyl coenzyme M inhibited it in the absence of BES. Lactate synthesis was dependent on CO 2 and H 2 , but H 2 + CO 2 -independent synthesis was also observed. In cell extracts, the rate of lactate synthesis was about 1.2 nmol min -1 mg of protein -1 . When BES was added, the rate of lactate synthesis increased to 2.1 nmol min -1 mg of protein -1 . Because acetyl coenzyme A did not stimulate lactate synthesis, pyruvate synthase may have been the limiting activity in these assays. Radiolabel from 14 CO 2 was incorporated into lactate. The percentages of radiolabel in the C-1, C-2, and C-3 positions of lactate were 73, 33, and 11%, respectively. Both carbon monoxide and formaldehyde stimulated lactate synthesis. 14 CH 2 O was specifically incorporated into the C-3 of lactate, and 14 CO was incorporated into the C-1 and C-2 positions. Low concentrations of cyanide also inhibited autotrophic growth, CO dehydrogenase activity, and autotrophic lactate synthesis. These observations are in agreement with the acetogenic pathway of autotrophic CO 2 assimilation

  5. Concentrations in beef and lamb of taurine, carnosine, coenzyme Q(10), and creatine.

    Science.gov (United States)

    Purchas, R W; Rutherfurd, S M; Pearce, P D; Vather, R; Wilkinson, B H P

    2004-03-01

    Levels of taurine, carnosine, coenzyme Q(10), and creatine were measured in beef liver and several muscles of beef and lamb and in cooked and uncooked meat. The amino acid taurine has numerous biological functions, the dipeptide carnosine is a buffer as well as an antioxidant, coenzyme Q(10) is also an antioxidant present within mitochondria, and creatine along with creatine phosphate is involved with energy metabolism in muscle. Large differences were shown for all compounds between beef cheek muscle (predominantly red fibres) and beef semitendinosus muscle (mainly white fibres), with cheek muscle containing 9.9 times as much taurine, and 3.2 times as much coenzyme Q(10), but only 65% as much creatine and 9% as much carnosine. Levels in lamb relative to beef semitendinosus muscles were higher for taurine but slightly lower for carnosine, coenzyme Q(10) and creatine. Values for all the compounds varied significantly between eight lamb muscles, possibly due in part to differences in the proportion of muscle fibre types. Slow cooking (90 min at 70 °C) of lamb longissimus and semimembranosus muscles led to significant reductions in the content of taurine, carnosine, and creatine (Plamb, but that these levels vary between muscles, between animals, and with cooking.

  6. Coenzyme Q10 and alpha-tocopherol protect against amitriptyline toxicity

    International Nuclear Information System (INIS)

    Cordero, Mario D.; Moreno-Fernandez, Ana Maria; Gomez-Skarmeta, Jose Luis; Miguel, Manuel de; Garrido-Maraver, Juan; Oropesa-Avila, Manuel; Rodriguez-Hernandez, Angeles; Navas, Placido; Sanchez-Alcazar, Jose Antonio

    2009-01-01

    Since amitriptyline is a very frequently prescribed antidepressant drug, it is not surprising that amitriptyline toxicity is relatively common. Amitriptyline toxic systemic effects include cardiovascular, autonomous nervous, and central nervous systems. To understand the mechanisms of amitriptyline toxicity we studied the cytotoxic effects of amitriptyline treatment on cultured primary human fibroblasts and zebrafish embryos, and the protective role of coenzyme Q 10 and alpha-tocopherol, two membrane antioxidants. We found that amitriptyline treatment induced oxidative stress and mitochondrial dysfunction in primary human fibroblasts. Mitochondrial dysfunction in amitriptyline treatment was characterized by reduced expression levels of mitochondrial proteins and coenzyme Q 10 , decreased NADH:cytochrome c reductase activity, and a drop in mitochondrial membrane potential. Moreover, and as a consequence of these toxic effects, amitriptyline treatment induced a significant increase in apoptotic cell death activating mitochondrial permeability transition. Coenzyme Q 10 and alpha-tocopherol supplementation attenuated ROS production, lipid peroxidation, mitochondrial dysfunction, and cell death, suggesting that oxidative stress affecting cell membrane components is involved in amitriptyline cytotoxicity. Furthermore, amitriptyline-dependent toxicity and antioxidant protection were also evaluated in zebrafish embryos, a well established vertebrate model to study developmental toxicity. Amitriptyline significantly increased embryonic cell death and apoptosis rate, and both antioxidants provided a significant protection against amitriptyline embryotoxicity

  7. Continuous recording of long-chain acyl-coenzyme A synthetase activity using fluorescently labeled bovine serum albumin

    DEFF Research Database (Denmark)

    Demant, Erland J.F.; Nystrøm, Birthe T.

    2001-01-01

    acyl-Coenzyme A, synthetase, activity assay, fluorescence recording, fatty acid probe, serum albumin, hydroxycoumarin, detergent, micelles, Pseudomonas fragi, rat liver microsomes......acyl-Coenzyme A, synthetase, activity assay, fluorescence recording, fatty acid probe, serum albumin, hydroxycoumarin, detergent, micelles, Pseudomonas fragi, rat liver microsomes...

  8. Exogenous coenzyme Q10 modulates MMP-2 activity in MCF-7 cell line as a breast cancer cellular model

    Directory of Open Access Journals (Sweden)

    Mirmiranpour Hossein

    2010-11-01

    Full Text Available Abstract Background/Aims Matrix Metalloproteinases 2 is a key molecule in cellular invasion and metastasis. Mitochondrial ROS has been established as a mediator of MMP activity. Coenzyme Q10 contributes to intracellular ROS regulation. Coenzyme Q10 beneficial effects on cancer are still in controversy but there are indications of Coenzyme Q10 complementing effect on tamoxifen receiving breast cancer patients. Methods In this study we aimed to investigate the correlation of the effects of co-incubation of coenzyme Q10 and N-acetyl-L-cysteine (NAC on intracellular H2O2 content and Matrix Metalloproteinase 2 (MMP-2 activity in MCF-7 cell line. Results and Discussion Our experiment was designed to assess the effect in a time and dose related manner. Gelatin zymography and Flowcytometric measurement of H2O2 by 2'7',-dichlorofluorescin-diacetate probe were employed. The results showed that both coenzyme Q10 and N-acetyl-L-cysteine reduce MMP-2 activity along with the pro-oxidant capacity of the MCF-7 cell in a dose proportionate manner. Conclusions Collectively, the present study highlights the significance of Coenzyme Q10 effect on the cell invasion/metastasis effecter molecules.

  9. Regulation of autophagy by cytosolic acetyl-coenzyme A

    DEFF Research Database (Denmark)

    Mariño, Guillermo; Pietrocola, Federico; Eisenberg, Tobias

    2014-01-01

    Acetyl-coenzyme A (AcCoA) is a major integrator of the nutritional status at the crossroads of fat, sugar, and protein catabolism. Here we show that nutrient starvation causes rapid depletion of AcCoA. AcCoA depletion entailed the commensurate reduction in the overall acetylation of cytoplasmic p...

  10. Coenzyme Q10 prevented full blown splenomegaly and decreased melarsoprol-induced reactive encephalopathy in mice infected with Trypanosoma brucei rhodesiense

    Directory of Open Access Journals (Sweden)

    James Nyabuga Nyariki

    2015-03-01

    Full Text Available Objective: To establish the modulatory effects of coenzyme Q10 on experimental trypanosome infections in mice and evaluate the risk of occurrence and severity of melarsoprol-induced post treatment reactive encephalopathy (PTRE. Methods: Female Swiss white mice were orally administered with 200 mg/kg of coenzyme Q10 after which they were intraperitoneally inoculated with Trypanasoma brucei rhodesiense (T. b. rhodesiense. The resultant infection was allowed to develop and simulate all phases of human African trypanosomiasis and PTRE. Parasitaemia development, packed cell volume, haematological and pathological changes were determined. Results: A histological study in the brain tissue of T. b. rhodesiense infected mice demonstrated neuroinflammatory pathology which was highly amplified in the PTRE-induced groups. A prominent reduction in the severity of the neuroinflammatory response was detected when coenzyme-Q10 was administered. Furthermore, the mean tissue weight of spleen to body ratio in coenzyme Q10 supplemented group was significantly (P<0.05 different compared to un-supplemented groups, and clearly indicated that coenzyme Q10 prevented full blown splenomegaly pathogenesis by T. b. rhodesiense. A significant (P<0.05 increase in hemoglobin levels and red blood cells was observed in coenzyme Q10 mice compared to those infected and un-supplemented with coenzyme Q10. Conclusions: The capacity of coenzyme Q10 to alter the pathogenesis of T. b. rhodesiense infection in mice and following treatment with melarsoprol, may find application by rendering humans and animals less susceptible to deleterious effects of trypanosome infection such as splenomegaly and melarsoprol-induced PTRE and neurotoxicity.

  11. Antiatherogenic, hepatoprotective, and hypolipidemic effects of coenzyme Q10 in alloxan-induced type 1 diabetic rats

    Directory of Open Access Journals (Sweden)

    Hassan Ahmadvand

    2014-07-01

    Full Text Available BACKGROUND: Diabetes mellitus, one of the leading metabolic syndromes, accounts for highest morbidity and mortality worldwide. In this study, we examined possible protective effect of coenzyme Q10 on lipid profile, atherogenic index, and liver enzyme markers in alloxan-induced type 1 diabetic rats. METHODS: A total of 30 male rats were randomly divided into three groups; group 1 as control, group 2 diabetic untreatment, and group 3 treatments with coenzyme Q10 by 15 mg/kg i.p. daily, respectively .Diabetes was induced in the second and third groups by alloxan injection subcutaneously. After 8 weeks, the levels of fasting blood glucose (FBG, triglyceride (TG, total cholesterol (TC, low density lipoprotein (LDL, very low-density lipoprotein (VLDL, high density lipoprotein (HDL, atherogenic index, atherogenic coefficient, cardiac risk ratio, and the activities of alanine aminotransferase (ALT, aspartate aminotransferase (AST, and alkaline phosphatase (ALP of all groups were analyzed. Data were analyzed using non-parametric Mann-Whitney test (using SPSS and P < 0.05 was considered as significant. RESULTS: Coenzyme Q10 inhibited significantly the activities of ALT (11.17%, AST (19.35% and ALP (36.67% and decreased FBG (21.19%, TG (37.24%, TC (17.15%, LDL (30.44%, VLDL (37.24%, atherogenic index (44.24%, atherogenic coefficient (49.69%, and cardiac risk ratio (37.97%, HDL level was significantly (33.38% increased when treated with coenzyme Q10. CONCLUSION: The findings of this study suggest that coenzyme Q10 exert beneficial effects on the lipid profile, atherogenic index, and liver enzymes activity in alloxan-induced type 1 diabetic rats.   Keywords: Diabetes, Lipid Profile, Atherogenic Index, Rats, Liver Enzymes, Coenzyme Q10 

  12. A STD-NMR Study of the Interaction of the Anabaena Ferredoxin-NADP+ Reductase with the Coenzyme

    Directory of Open Access Journals (Sweden)

    Lara V. Antonini

    2014-01-01

    Full Text Available Ferredoxin-NADP+ reductase (FNR catalyzes the electron transfer from ferredoxin to NADP+ via its flavin FAD cofactor. To get further insights in the architecture of the transient complexes produced during the hydride transfer event between the enzyme and the NADP+ coenzyme we have applied NMR spectroscopy using Saturation Transfer Difference (STD techniques to analyze the interaction between FNRox and the oxidized state of its NADP+ coenzyme. We have found that STD NMR, together with the use of selected mutations on FNR and of the non-FNR reacting coenzyme analogue NAD+, are appropriate tools to provide further information about the the interaction epitope.

  13. Metal plasmon-coupled fluorescence imaging and label free coenzyme detection in cells

    International Nuclear Information System (INIS)

    Zhang, Jian; Fu, Yi; Li, Ge; Zhao, Richard Y.

    2012-01-01

    Highlights: ► Metal nanoparticle for fluorescence cell imaging. ► Non-invasive emission detection of coenzyme in cell on time-resolved confocal microscope. ► Near-field interaction of flavin adenine dinucleotide with silver substrate. ► Isolation of emissions by coenzymes from cellular autofluorescence on fluorescence cell imaging. -- Abstract: Flavin adenine dinucleotide (FAD) is a key metabolite in cellular energy conversion. Flavin can also bind with some enzymes in the metabolic pathway and the binding sites may be changed due to the disease progression. Thus, there is interest on studying its expression level, distribution, and redox state within the cells. FAD is naturally fluorescent, but it has a modest extinction coefficient and quantum yield. Hence the intrinsic emission from FAD is generally too weak to be isolated distinctly from the cellular backgrounds in fluorescence cell imaging. In this article, the metal nanostructures on the glass coverslips were used as substrates to measure FAD in cells. Particulate silver films were fabricated with an optical resonance near the absorption and the emission wavelengths of FAD which can lead to efficient coupling interactions. As a result, the emission intensity and quantum yield by FAD were greatly increased and the lifetime was dramatically shortened resulting in less interference from the longer lived cellular background. This feature may overcome the technical limits that hinder the direct observation of intrinsically fluorescent coenzymes in the cells by fluorescence microscopy. Fluorescence cell imaging on the metallic particle substrates may provide a non-invasive strategy for collecting the information of coenzymes in cells.

  14. A randomized controlled trial of coenzyme Q10 for fatigue in the late-onset sequelae of poliomyelitis.

    Science.gov (United States)

    Peel, Margaret M; Cooke, Marie; Lewis-Peel, Helen J; Lea, Rodney A; Moyle, Wendy

    2015-12-01

    To determine if coenzyme Q(10) alleviates fatigue in the late-onset sequelae of poliomyelitis. Parallel-group, randomized, placebo-controlled trial. Coenzyme Q(10) has been shown to boost muscle energy metabolism in post-polio subjects but it does not promote muscle strength, endurance or function in polio survivors with post-poliomyelitis syndrome. However, the collective increased energy metabolism might contribute to a reduction in post-polio fatigue. Polio survivors from the Australian post-polio networks in Queensland and New South Wales who attribute a moderate to high level of fatigue to their diagnosed late-onset sequelae of poliomyelitis. Those with fatigue-associated comorbidities of diabetes, anaemia, hypothyroidism and fibromyalgia were excluded. Participants were assigned (1:1), with stratification of those who use energy-saving mobility aids, to receive 100 mg coenzyme Q(10) or matching placebo daily for 60 days. Participants and investigators were blinded to group allocation. Fatigue was assessed by the Multidimensional Assessment of Fatigue as the primary outcome and the Fatigue Severity Scale as secondary outcome. Of 103 participants, 54 were assigned to receive coenzyme Q(10) and 49 to receive the placebo. The difference in the mean score reductions between the two groups was not statistically significant for either fatigue measure. Oral supplementation with coenzyme Q(10) was safe and well-tolerated. A daily dose of 100 mg coenzyme Q(10) for 60 days does not alleviate the fatigue of the late-onset sequelae of poliomyelitis. The registration number for the clinical trial is ACTRN 12612000552886. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Hepatoprotective effect of taurine and coenzyme Q10 and their ...

    African Journals Online (AJOL)

    stress in rats. Afaf Abbass Sayed ... Keywords: Taurine, Coenzyme Q10, Acrylamide, Oxidative stress, Biochemical profile, ... uses, AA formation in foods has its major routes through .... release of serum inflammatory markers and neutrophil ...

  16. Genetics Home Reference: primary coenzyme Q10 deficiency

    Science.gov (United States)

    ... mutations have occurred in the COQ2 , COQ4 , COQ6 , COQ8A , and COQ8B genes. Smaller numbers of mutations in other COQ genes have also been found ... primary coenzyme Q10 deficiency ... Related Information What is a gene? What is a gene mutation and how do mutations occur? How can gene ...

  17. Potential administration of lipoic acid and coenzyme Q against ...

    African Journals Online (AJOL)

    Potential administration of lipoic acid and coenzyme Q against adipogensis: target for weight reduction. ... prevents its accumulation in visceral tissues. Further studies should be carried out to examine the mechanistic signals of these nutrients that helps in weight = management. Keywords: lipolysis, obesity, lipoic acid, Co-Q ...

  18. Metal plasmon-coupled fluorescence imaging and label free coenzyme detection in cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jian, E-mail: jian@cfs.bioment.umaryland.edu [Center for Fluorescence Spectroscopy, University of Maryland School of Medicine, Department of Biochemistry and Molecular Biology, 725 West Lombard Street, Baltimore, MD 21201 (United States); Fu, Yi [Center for Fluorescence Spectroscopy, University of Maryland School of Medicine, Department of Biochemistry and Molecular Biology, 725 West Lombard Street, Baltimore, MD 21201 (United States); Li, Ge [Division of Molecular Pathology, Department of Pathology, University of Maryland School of Medicine, 10 South Pine Street, Baltimore, MD 21201 (United States); Zhao, Richard Y. [Division of Molecular Pathology, Department of Pathology, University of Maryland School of Medicine, 10 South Pine Street, Baltimore, MD 21201 (United States); Department of Microbiology-Immunology, University of Maryland School of Medicine, 10 South Pine Street, Baltimore, MD 21201 (United States); Institute of Human Virology, University of Maryland School of Medicine, 10 South Pine Street, Baltimore, MD 21201 (United States)

    2012-08-31

    Highlights: Black-Right-Pointing-Pointer Metal nanoparticle for fluorescence cell imaging. Black-Right-Pointing-Pointer Non-invasive emission detection of coenzyme in cell on time-resolved confocal microscope. Black-Right-Pointing-Pointer Near-field interaction of flavin adenine dinucleotide with silver substrate. Black-Right-Pointing-Pointer Isolation of emissions by coenzymes from cellular autofluorescence on fluorescence cell imaging. -- Abstract: Flavin adenine dinucleotide (FAD) is a key metabolite in cellular energy conversion. Flavin can also bind with some enzymes in the metabolic pathway and the binding sites may be changed due to the disease progression. Thus, there is interest on studying its expression level, distribution, and redox state within the cells. FAD is naturally fluorescent, but it has a modest extinction coefficient and quantum yield. Hence the intrinsic emission from FAD is generally too weak to be isolated distinctly from the cellular backgrounds in fluorescence cell imaging. In this article, the metal nanostructures on the glass coverslips were used as substrates to measure FAD in cells. Particulate silver films were fabricated with an optical resonance near the absorption and the emission wavelengths of FAD which can lead to efficient coupling interactions. As a result, the emission intensity and quantum yield by FAD were greatly increased and the lifetime was dramatically shortened resulting in less interference from the longer lived cellular background. This feature may overcome the technical limits that hinder the direct observation of intrinsically fluorescent coenzymes in the cells by fluorescence microscopy. Fluorescence cell imaging on the metallic particle substrates may provide a non-invasive strategy for collecting the information of coenzymes in cells.

  19. Determination of hydrophobic coenzyme a esters and other lipids using a biosensor comprising a modified coenzyme a- and acyl-coa binding protein (acbp)

    DEFF Research Database (Denmark)

    2002-01-01

    , food and feed preparations, tissue extracts, acyl-CoA synthetase reaction media and various laboratory conditions using a modified Coenzyme A- and acyl-CoA binding protein (ACBP) is provided. Furthermore the invention relates to a construct comprising a peptide and a signal moiety for performing...

  20. Probing the cob(II)alamin Cond UctorHhypothesis with Glutamate ...

    African Journals Online (AJOL)

    It had been proposed that during reversible coenzyme B12 dependent rearrangements, cob(II)alamin is not merely present as a spectator but also acts as a conductor by stabilizing the methylene radical intermediates. Density functional theory (DFT) calculations suggested a hydrogen bond between C19-H of the corrin ring ...

  1. LC/MS/MS analysis of α-tocopherol and coenzyme Q10 content in lyophilized royal jelly, beebread and drone homogenate.

    Science.gov (United States)

    Hryniewicka, Marta; Karpinska, Agnieszka; Kijewska, Marta; Turkowicz, Monika Joanna; Karpinska, Joanna

    2016-11-01

    This study shows the results of application liquid chromatography-tandem mass spectrometry (LC/MS/MS) for assay of the content of α-tocopherol and coenzyme Q 10 in bee products of animal origin, i.e. royal jelly, beebread and drone homogenate. The biological matrix was removed using extraction with n-hexane. It was found that drone homogenate is a rich source of coenzyme Q 10 . It contains only 8 ± 1 µg/g of α-tocopherol and 20 ± 2 µg/g of coenzyme Q 10 . The contents of assayed compounds in royal jelly were 16 ± 3 and 8 ± 0.2 µg/g of α-tocopherol and coenzyme Q 10 , respectively. Beebread appeared to be the richest of α-tocopherol. Its level was 80 ± 30 µg/g, while the level of coenzyme Q 10 was only 11.5 ± 0.3 µg/g. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  2. The Protective Effects of Alpha-Lipoic Acid and Coenzyme Q10 Combination on Ovarian Ischemia-Reperfusion Injury: An Experimental Study

    Directory of Open Access Journals (Sweden)

    Ahmet Ali Tuncer

    2016-01-01

    Full Text Available Objective. This study aims to evaluate whether alpha-lipoic acid and/or coenzyme Q10 can protect the prepubertal ovarian tissue from ischemia-reperfusion injury in an experimental rat model of ovarian torsion. Materials and Methods. Forty-two female preadolescent Wistar-Albino rats were divided into 6 equal groups randomly. The sham group had laparotomy without torsion; the other groups had torsion/detorsion procedure. After undergoing torsion, group 2 received saline, group 3 received olive oil, group 4 received alpha-lipoic acid, group 5 received coenzyme Q10, and group 6 received both alpha-lipoic acid and coenzyme Q10 orally. The oxidant-antioxidant statuses of these groups were compared using biochemical measurement of oxidized/reduced glutathione, glutathione peroxidase and malondialdehyde, pathological evaluation of damage and apoptosis within the ovarian tissue, and immunohistochemical assessment of nitric oxide synthase. Results. The left ovaries of the alpha-lipoic acid + coenzyme Q10 group had significantly lower apoptosis scores and significantly higher nitric oxide synthase content than the left ovaries of the control groups. The alpha-lipoic acid + coenzyme Q10 group had significantly higher glutathione peroxidase levels and serum malondialdehyde concentrations than the sham group. Conclusions. The combination of alpha-lipoic acid and coenzyme Q10 has beneficial effects on oxidative stress induced by ischemia-reperfusion injury related to ovarian torsion.

  3. Fatty Acid Synthase Inhibitor Cytotoxicity: Depletion of the Coenzyme-A Pool

    National Research Council Canada - National Science Library

    Kuhajda, Francis

    2003-01-01

    .... In light of recent data that showed a marked increase in malonyl-CoA following FAS inhibition, this grant was focused on coenzyme-A depletion as a key mechanism of action leading to cytotoxicity...

  4. Coenzyme Q10 effects in neurodegenerative disease

    Directory of Open Access Journals (Sweden)

    Meredith Spindler

    2009-11-01

    Full Text Available Meredith Spindler1, M Flint Beal1,2, Claire Henchcliffe1,21Department of Neurology, 2Department of Neuroscience, Weill Medical College of Cornell University, New York, NY, USAAbstract: Coenzyme Q10 (CoQ10 is an essential cofactor in the mitochondrial respiratory chain, and as a dietary supplement it has recently gained attention for its potential role in the treatment of neurodegenerative disease. Evidence for mitochondrial dysfunction in neurodegenerative disorders derives from animal models, studies of mitochondria from patients, identification of genetic defects in patients with neurodegenerative disease, and measurements of markers of oxidative stress. Studies of in vitro models of neuronal toxicity and animal models of neurodegenerative disorders have demonstrated potential neuroprotective effects of CoQ10. With this data in mind, several clinical trials of CoQ10 have been performed in Parkinson’s disease and atypical Parkinson’s syndromes, Huntington’s disease, Alzheimer disease, Friedreich’s ataxia, and amyotrophic lateral sclerosis, with equivocal findings. CoQ10 is widely available in multiple formulations and is very well tolerated with minimal adverse effects, making it an attractive potential therapy. Phase III trials of high-dose CoQ10 in large sample sizes are needed to further ascertain the effects of CoQ10 in neurodegenerative diseases.Keywords: coenzyme Q10, neurodegenerative disease, Parkinson’s disease, Huntington’s disease, mitochondrial dysfunction

  5. Coenzyme Q10 and pro-inflammatory markers in children with Down syndrome: clinical and biochemical aspects.

    Science.gov (United States)

    Zaki, Moushira E; El-Bassyouni, Hala T; Tosson, Angie M S; Youness, Eman; Hussein, Jihan

    Evidence of oxidative stress was reported in individuals with Down syndrome. There is a growing interest in the contribution of the immune system in Down syndrome. The aim of this study is to evaluate the coenzyme Q10 and selected pro-inflammatory markers such as interleukin 6 and tumor necrosis factor α in children with Down syndrome. Eighty-six children (5-8 years of age) were enrolled in this case-control study from two public institutions. At the time of sampling, the patients and controls suffered from no acute or chronic illnesses and received no therapies or supplements. The levels of interleukin 6, tumor necrosis factor α, coenzyme Q10, fasting blood glucose, and intelligence quotient were measured. Forty-three young Down syndrome children and forty-three controls were included over a period of eight months (January-August 2014). Compared with the control group, the Down syndrome patients showed significant increase in interleukin 6 and tumor necrosis factor α (p=0.002), while coenzyme Q10 was significantly decreased (p=0.002). Also, body mass index and fasting blood glucose were significantly increased in patients. There was a significantly positive correlation between coenzyme Q10 and intelligence quotient levels, as well as between interleukin 6 and tumor necrosis factor α. Interleukin 6 and tumor necrosis factor α levels in young children with Down syndrome may be used as biomarkers reflecting the neurodegenerative process in them. Coenzyme Q10 might have a role as a good supplement in young children with Down syndrome to ameliorate the neurological symptoms. Copyright © 2016 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  6. Coenzyme Q10 and pro-inflammatory markers in children with Down syndrome: clinical and biochemical aspects

    Directory of Open Access Journals (Sweden)

    Moushira E. Zaki

    Full Text Available Abstract: Objective: Evidence of oxidative stress was reported in individuals with Down syndrome. There is a growing interest in the contribution of the immune system in Down syndrome. The aim of this study is to evaluate the coenzyme Q10 and selected pro-inflammatory markers such as interleukin 6 and tumor necrosis factor α in children with Down syndrome. Methods: Eighty-six children (5-8 years of age were enrolled in this case-control study from two public institutions. At the time of sampling, the patients and controls suffered from no acute or chronic illnesses and received no therapies or supplements. The levels of interleukin 6, tumor necrosis factor α, coenzyme Q10, fasting blood glucose, and intelligence quotient were measured. Results: Forty-three young Down syndrome children and forty-three controls were included over a period of eight months (January-August 2014. Compared with the control group, the Down syndrome patients showed significant increase in interleukin 6 and tumor necrosis factor α (p = 0.002, while coenzyme Q10 was significantly decreased (p = 0.002. Also, body mass index and fasting blood glucose were significantly increased in patients. There was a significantly positive correlation between coenzyme Q10 and intelligence quotient levels, as well as between interleukin 6 and tumor necrosis factor α. Conclusion: Interleukin 6 and tumor necrosis factor α levels in young children with Down syndrome may be used as biomarkers reflecting the neurodegenerative process in them. Coenzyme Q10 might have a role as a good supplement in young children with Down syndrome to ameliorate the neurological symptoms.

  7. Balneotherapy and coenzyme Q10 in clinical and experimental medicine.

    Science.gov (United States)

    Gvozdjakova, Anna; Kucharska, Jarmila; Sykora, L'ubomir; Singh, Ram B

    2014-01-01

    Balneotherapy or Spa therapy is used in neurological, cardiovascular, musculoskeletal, dermatological and gynecological diseases, in infertility as well as in metabolic disturbances. Beneficial effects of balneotherapy at the metabolic level is not fully understood. Authors have documented enhancement of antioxidants concentrations (coenzyme Q10- CoQ(10-OX) and alpha-tocopherol) of women with gynecological diseases by treatment with natural mineral water (Spa Lucky balneotherapy, Slovakia). In an experiment with rats, drinking of Spa Lucky mineral water decreased oxidative stress and enhanced concentrations of antioxidants CoQ(9-OX), CoQ(10-OX) in the myocardium, and alpha-tocopherol in uterus, ovaries and myocardium. Drinking of Spa Lucky water by rats stimulated myocardial mitochondrial respiration and energy production, and diminished skeletal muscle mitochondrial function. Simultaneous ingestion of coenzyme Q10 with drinking spa water returned mitochondrial parameters to the values of the control group. This pilot study helps explain the role of antioxidants, oxidative stress and mitochondrial energy production in beneficial effects of Spa Lucky balneotherapy.

  8. Thermodynamics of various F420 coenzyme models as sources of electrons, hydride ions, hydrogen atoms and protons in acetonitrile.

    Science.gov (United States)

    Xia, Ke; Shen, Guang-Bin; Zhu, Xiao-Qing

    2015-06-14

    32 F420 coenzyme models with alkylation of the three different N atoms (N1, N3 and N10) in the core structure (XFH(-)) were designed and synthesized and the thermodynamic driving forces (defined in terms of the molar enthalpy changes or the standard redox potentials in this work) of the 32 XFH(-) releasing hydride ions, hydrogen atoms and electrons, the thermodynamic driving forces of the 32 XFH˙ releasing protons and hydrogen atoms and the thermodynamic driving forces of XF(-)˙ releasing electrons in acetonitrile were determined using titration calorimetry and electrochemical methods. The effects of the methyl group at N1, N3 and N10 and a negative charge on N1 and N10 atoms on the six thermodynamic driving forces of the F420 coenzyme models and their related reaction intermediates were examined; the results show that seating arrangements of the methyl group and the negative charge have remarkably different effects on the thermodynamic properties of the F420 coenzyme models and their related reaction intermediates. The effects of the substituents at C7 and C8 on the six thermodynamic driving forces of the F420 coenzyme models and their related reaction intermediates were also examined; the results show that the substituents at C7 and C8 have good Hammett linear free energy relationships with the six thermodynamic parameters. Meanwhile, a reasonable determination of possible reactions between members of the F420 family and NADH family in vivo was given according to a thermodynamic analysis platform constructed using the elementary step thermodynamic parameter of F420 coenzyme model 2FH(-) and NADH model MNAH releasing hydride ions in acetonitrile. The information disclosed in this work can not only fill a gap in the chemical thermodynamics of F420 coenzyme models as a class of very important organic sources of electrons, hydride ions, hydrogen atoms and protons, but also strongly promote the fast development of the chemistry and applications of F420 coenzyme.

  9. Compound Heterozygous Inheritance of Mutations in Coenzyme Q8A Results in Autosomal Recessive Cerebellar Ataxia and Coenzyme Q10 Deficiency in a Female Sib-Pair.

    Science.gov (United States)

    Jacobsen, Jessie C; Whitford, Whitney; Swan, Brendan; Taylor, Juliet; Love, Donald R; Hill, Rosamund; Molyneux, Sarah; George, Peter M; Mackay, Richard; Robertson, Stephen P; Snell, Russell G; Lehnert, Klaus

    2017-11-21

    Autosomal recessive ataxias are characterised by a fundamental loss in coordination of gait with associated atrophy of the cerebellum. There is significant clinical and genetic heterogeneity amongst inherited ataxias; however, an early molecular diagnosis is essential with low-risk treatments available for some of these conditions. We describe two female siblings who presented early in life with unsteady gait and cerebellar atrophy. Whole exome sequencing revealed compound heterozygous inheritance of two pathogenic mutations (p.Leu277Pro, c.1506+1G>A) in the coenzyme Q8A gene (COQ8A), a gene central to biosynthesis of coenzyme Q (CoQ). The paternally derived p.Leu277Pro mutation is predicted to disrupt a conserved motif in the substrate-binding pocket of the protein, resulting in inhibition of CoQ 10 production. The maternal c.1506+1G>A mutation destroys a canonical splice donor site in exon 12 affecting transcript processing and subsequent protein translation. Mutations in this gene can result in primary coenzyme Q 10 deficiency type 4, which is characterized by childhood onset of cerebellar ataxia and exercise intolerance, both of which were observed in this sib-pair. Muscle biopsies revealed unequivocally low levels of CoQ 10, and the siblings were subsequently established on a therapeutic dose of CoQ 10 with distinct clinical evidence of improvement after 1 year of treatment. This case emphasises the importance of an early and accurate molecular diagnosis for suspected inherited ataxias, particularly given the availability of approved treatments for some subtypes.

  10. Synthesis, solution and crystal structure of the coenzyme B(12) analogue Co(β)-2'-fluoro-2',5'-dideoxyadenosylcobalamin.

    Science.gov (United States)

    Hunger, Miriam; Wurst, Klaus; Kräutler, Bernhard

    2015-07-01

    Crystal structure analyses have helped to decipher the mode of binding of coenzyme B12 (AdoCbl) in the active site of AdoCbl-dependent enzymes. However, the question of how such enzymes perform their radical reactions is still incompletely answered. A pioneering study by Gruber and Kratky of AdoCbl-dependent glutamate mutase (GLM) laid out a path for the movement of the catalytically active 5'-deoxyadenosyl radical, in which H-bonds between the protein and the 2'- and 3'-OH groups of the protein bound AdoCbl would play a decisive role. Studies with correspondingly modified coenzyme B12-analogues are of interest to gain insights into cofactor binding and enzyme mechanism. Here we report the preparation of Coβ-2'-fluoro-2',5'-dideoxyadenosylcobalamin (2'FAdoCbl), which lacks the 2'-OH group critical for the interaction in enzymes. 2'FAdoCbl was prepared by alkylation of cob(I)alamin, obtained from the electrochemical reduction of aquocobalamin. Spectroscopic data and a single crystal X-ray analysis of 2'FAdoCbl established its structure, which was very similar to that one of coenzyme B12. 2'FAdoCbl is a (19)F NMR active mimic of coenzyme B12 that may help to gain insights into binding interactions of coenzyme B12 with AdoCbl-dependent enzymes, proteins of B12 transport and of AdoCbl-biosynthesis, as well as with B12-riboswitches. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Coenzyme Q10: A New Treatment for Hemorrhagic Shock

    Science.gov (United States)

    2014-10-29

    SUBJECT TERMS hemorrhagic shock, ubiquinol, Coenzyme Q10, patient outcome 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18...o leo& to tboOigllll failure. The < Iota fur AlM •1 ha"’ boon ._...runym.,..,; •• ted in p=en~atlons and publiobed tn Expu""’""" P/u<llology. Tho

  12. Effects of ubiquinone (coenzyme Q10) on myopathy in statin users.

    NARCIS (Netherlands)

    Schaars, C.F.; Stalenhoef, A.F.H.

    2008-01-01

    PURPOSE OF REVIEW: Statins are associated with muscle complaints, including myositis. The mechanism through which statin use causes muscle toxicity is unknown. One of the theories is that statin therapy reduces coenzyme Q10 levels in muscle mitochondria, which leads to muscle injury and myopathy.

  13. Coenzyme Q10 supplementation decreases statin-related mild-to-moderate muscle symptoms: a randomized clinical study.

    Science.gov (United States)

    Skarlovnik, Ajda; Janić, Miodrag; Lunder, Mojca; Turk, Martina; Šabovič, Mišo

    2014-11-06

    Statin use is frequently associated with muscle-related symptoms. Coenzyme Q10 supplementation has yielded conflicting results in decreasing statin myopathy. Herein, we tested whether coenzyme Q10 supplementation could decrease statin-associated muscular pain in a specific group of patients with mild-to-moderate muscle symptoms. Fifty patients treated with statins and reporting muscle pain were recruited. The Q10 group (n=25) received coenzyme Q10 supplementation over a period of 30 days (50 mg twice daily), and the control group (n=25) received placebo. The Brief Pain Inventory (BPI) questionnaire was used and blood testing was performed at inclusion in the study and after 30 days of supplementation. The intensity of muscle pain, measured as the Pain Severity Score (PSS), in the Q10 group was reduced from 3.9±0.4 to 2.9±0.4 (PPain Interference Score (PIS) after Q10 supplementation was reduced from 4.0±0.4 to 2.6±0.4 (Pstatin-related muscle symptoms in 75% of patients. The relative values of PSS and PIS significantly decreased (-33.1% and -40.3%, respectively) in the Q10 group compared to placebo group (both Pmuscle enzymes or cholesterol values were found. The present results show that coenzyme Q10 supplementation (50 mg twice daily) effectively reduced statin-related mild-to-moderate muscular symptoms, causing lower interference of statin-related muscular symptoms with daily activities.

  14. Coenzyme B12 model studies: Equilibrium constants for the pH ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 114; Issue 1. Coenzyme B12 model studies: Equilibrium constants for the H-dependent axial ligation of benzyl(aquo)cobaloxime by various N- and S-donor ligands. D Sudarshan Reddy N Ravi Kumar Reddy V Sridhar S Satyanarayana. Inorganic and Analytical ...

  15. Thermophilic Coenzyme B12-Dependent Acyl Coenzyme A (CoA) Mutase from Kyrpidia tusciae DSM 2912 Preferentially Catalyzes Isomerization of (R)-3-Hydroxybutyryl-CoA and 2-Hydroxyisobutyryl-CoA.

    Science.gov (United States)

    Weichler, Maria-Teresa; Kurteva-Yaneva, Nadya; Przybylski, Denise; Schuster, Judith; Müller, Roland H; Harms, Hauke; Rohwerder, Thore

    2015-07-01

    The recent discovery of a coenzyme B12-dependent acyl-coenzyme A (acyl-CoA) mutase isomerizing 3-hydroxybutyryl- and 2-hydroxyisobutyryl-CoA in the mesophilic bacterium Aquincola tertiaricarbonis L108 (N. Yaneva, J. Schuster, F. Schäfer, V. Lede, D. Przybylski, T. Paproth, H. Harms, R. H. Müller, and T. Rohwerder, J Biol Chem 287:15502-15511, 2012, http://dx.doi.org/10.1074/jbc.M111.314690) could pave the way for a complete biosynthesis route to the building block chemical 2-hydroxyisobutyric acid from renewable carbon. However, the enzyme catalyzes only the conversion of the stereoisomer (S)-3-hydroxybutyryl-CoA at reasonable rates, which seriously hampers an efficient combination of mutase and well-established bacterial poly-(R)-3-hydroxybutyrate (PHB) overflow metabolism. Here, we characterize a new 2-hydroxyisobutyryl-CoA mutase found in the thermophilic knallgas bacterium Kyrpidia tusciae DSM 2912. Reconstituted mutase subunits revealed highest activity at 55°C. Surprisingly, already at 30°C, isomerization of (R)-3-hydroxybutyryl-CoA was about 7,000 times more efficient than with the mutase from strain L108. The most striking structural difference between the two mutases, likely determining stereospecificity, is a replacement of active-site residue Asp found in strain L108 at position 117 with Val in the enzyme from strain DSM 2912, resulting in a reversed polarity at this binding site. Overall sequence comparison indicates that both enzymes descended from different prokaryotic thermophilic methylmalonyl-CoA mutases. Concomitant expression of PHB enzymes delivering (R)-3-hydroxybutyryl-CoA (beta-ketothiolase PhaA and acetoacetyl-CoA reductase PhaB from Cupriavidus necator) with the new mutase in Escherichia coli JM109 and BL21 strains incubated on gluconic acid at 37°C led to the production of 2-hydroxyisobutyric acid at maximal titers of 0.7 mM. Measures to improve production in E. coli, such as coexpression of the chaperone MeaH and repression of

  16. Decreased coenzyme Q10 concentration in plasma of children with cystic fibrosis

    NARCIS (Netherlands)

    Oudshoorn, J.H.; Lecluse, A.L.Y.; Berg, R. van den; Vaes, W.H.J.; Laag, J. van der; Houwen, R.H.J.

    2006-01-01

    OBJECTIVES: Coenzyme Q10 (CoQ10) is an effective lipophilic antioxidant and protects against lipid peroxidation by scavenging radicals. Patients with cystic fibrosis generally have fat malabsorption; thus, we hypothesized that overall plasma CoQ10 concentration in pediatric patients with cystic

  17. Effects of Oral, Vaginal, and Transdermal Hormonal Contraception on Serum Levels of Coenzyme Q10, Vitamin E, and Total Antioxidant Activity

    Directory of Open Access Journals (Sweden)

    Prabhudas R. Palan

    2010-01-01

    coenzyme Q10 levels compared with normal subjects. Serum TAOC levels were significantly lower (P<.05 among the contraceptive user groups. Alterations in coenzyme Q10 and α-tocopherol induced by hormonal contraception and the potential effect(s of exogenous ovarian hormones should be taken into consideration in future antioxidant research.

  18. Comparision of Inhibitory effects of Satureja Khozistanica,vitamin E and coenzyme Q10 on LDL peroxidation induced-CuSO4 in vitro

    Directory of Open Access Journals (Sweden)

    hasan Ahmadvand

    2010-02-01

    Full Text Available Oxidation of low-density lipoprotein (LDL has been strongly suggested as a key factor in the pathogenesis of atherosclerosis. Thus the inclusion of some anti-oxidant compounds such as Satureja Khozistanica,vitamin E and coenzyme Q10 in daily dietary food stuff may inhibit the production of oxidized LDL and may decrease both the development and the progression of atherosclerosis. The present study investigated the inhibitory effects of Satureja Khozistanica, vitamin E and coenzyme Q10 on LDL peroxidation induced by CuSO4 quantitatively in vitro. Materials and Methods: LDL was incubated with CuSO4 and the formation of conjugated dienes and thiobarbituric acid reactive substances (TBARS of LDL were monitored as markers of LDL oxidation. Inhibition of this Cu-induced oxidation was studied in the presence of extracts of Satureja Khozistanica,vitamin E and coenzyme Q10. Results: It was demonstrated that Satureja Khozistanica like vitamin E and coenzyme Q10 is able to inhibit LDL oxidation and decrease the resistance of LDL against oxidation in vitro. Conclusion: This study showed that Satureja Khozistanica similar to vitamin E and coenzyme Q10 prevented the oxidation of LDL in vitro and it may suggest that they have the similar effect in vivo

  19. Lithium carbonate and coenzyme Q10 reduce cell death in a cell model of Machado-Joseph disease

    Directory of Open Access Journals (Sweden)

    C.M. Lopes-Ramos

    Full Text Available Machado-Joseph disease (MJD or spinocerebellar ataxia type 3 (SCA3 is an autosomal dominant neurodegenerative disorder caused by expansion of the polyglutamine domain of the ataxin-3 (ATX3 protein. MJD/SCA3 is the most frequent autosomal dominant ataxia in many countries. The mechanism underlying MJD/SCA3 is thought to be mainly related to protein misfolding and aggregation leading to neuronal dysfunction followed by cell death. Currently, there are no effective treatments for patients with MJD/SCA3. Here, we report on the potential use of lithium carbonate and coenzyme Q10 to reduce cell death caused by the expanded ATX3 in cell culture. Cell viability and apoptosis were evaluated by MTT assay and by flow cytometry after staining with annexin V-FITC/propidium iodide. Treatment with lithium carbonate and coenzyme Q10 led to a significant increase in viability of cells expressing expanded ATX3 (Q84. In addition, we found that the increase in cell viability resulted from a significant reduction in the proportion of apoptotic cells. Furthermore, there was a significant change in the expanded ATX3 monomer/aggregate ratio after lithium carbonate and coenzyme Q10 treatment, with an increase in the monomer fraction and decrease in aggregates. The safety and tolerance of both drugs are well established; thus, our results indicate that lithium carbonate and coenzyme Q10 are good candidates for further in vivo therapeutic trials.

  20. Very long chain acyl-coenzyme A dehydrogenase deficiency with adult onset

    DEFF Research Database (Denmark)

    Smelt, A H; Poorthuis, B J; Onkenhout, W

    1998-01-01

    Very long chain acyl-coenzyme A (acyl-CoA) dehydrogenase (VLCAD) deficiency is a severe disorder of mitochondrial beta-oxidation in infants. We report adult onset of attacks of painful rhabdomyolysis. Gas chromatography identified strongly elevated levels of tetradecenoic acid, 14:1(n-9), tetrade......Very long chain acyl-coenzyme A (acyl-CoA) dehydrogenase (VLCAD) deficiency is a severe disorder of mitochondrial beta-oxidation in infants. We report adult onset of attacks of painful rhabdomyolysis. Gas chromatography identified strongly elevated levels of tetradecenoic acid, 14:1(n-9......), tetradecadienoic acid, 14:2(n-6), and hexadecadienoic acid, 16:2(n-6). Palmitoyl-CoA and behenoyl-CoA dehydrogenase in fibroblasts were deficient. Muscle VLCAD activity was very low. DNA analysis revealed compound heterozygosity for two missense mutations in the VLCAD gene. The relatively mild clinical course may...... be due to residual enzyme activity as a consequence of the two missense mutations. Treatment with L-carnitine and medium chain triglycerides in the diet did not reduce the attacks of rhabdomyolysis....

  1. Electron addition to alkyl cobalamins, coenzyme B12 and vitamin B12

    International Nuclear Information System (INIS)

    Rao, D.N.R.; Symons, M.C.R.

    1983-01-01

    Exposure of dilute solutions of methyl and ethyl cobalamins and coenzyme B 12 in dilute solutions (D 2 O+CD 3 OD) to 60 Co #betta#-rays at 77 K gave a single broad feature in the free-spin region assigned to electron-capture species with the excess electron largely confined to a π* corrin orbital. On warming above 77 K the methyl derivative gave a novel species with spectral features characteristic of an unpaired electron in the Co(dsub(x 2 -y 2 )) orbital. The other two substrates gave spectra due to Cosup(II)Bsub(12r) both on warming and after photolyses with visible light. The acetyl derivative gave an electron-capture species whose e.s.r. spectrum was characteristic of an electron in the Co(dsub(z 2 )) orbital, which on warming above 77 K changed to the normal Cosup(II)Bsub(12r) spectrum. The cyano derivative (vitamin B 12 ) gave electron addition into the Co(dsub(z 2 )) orbital, as evidenced by the large hyperfine coupling to 13 C from 13 CN ligands. On annealing, cyanide ions were lost irreversibly, Bsub(12r) being detected by e.s.r. spectroscopy. In contrast, the dicyano derivative on electron addition at 77 K gave a species containing only one 13 CN ligand. Hence in this case one CN - ligand was lost at 77 K, with no return of the dimethylbenzimidazole ligand. These results are discussed in terms of a new mechanism for electron-addition to alkyl cobalamins. (author)

  2. Beneficial Effects of Coenzyme Q10 in Reduction of Testicular Tissue Alteration Following Induction of Diabetes in Adult Rats

    Directory of Open Access Journals (Sweden)

    Kianifard Davoud

    2015-03-01

    Full Text Available Background and Aims: Various types of infertility are associated with uncontrolled hyperglycemia and diabetes. Development of oxidative stress is one the most important factors in the alteration of spermatogenesis in diabetic conditions. Consequently, the reduction of oxidative stress with antioxidant compounds can be effective in the reduction of tissue alterations. The aim of this study was to evaluate the efficacy of coenzyme Q10 in improvement of spermatogenesis in adult diabetic rats. Material and Methods: 32 adult rats were divided into four groups of control and treatment. Coenzyme Q10 (10 mg/kg body weight - b.w. was administrated to one control and one diabetic (intraperitoneal injection of 45 mg/kg b.w. of Streptozotocin groups. Blood concentrations of FSH, LH and Testosterone were measured. Histology of testicular tissue and sperm analysis were considered for evaluation of spermatogenesis. Results: Administration of Coenzyme Q10 led to increase of pituitary gonadotropins levels in diabetic rats. Testosterone levels were not changed significantly. Testicular morphology, spermatogenic indices and sperm analysis were improved in treated diabetic rats. Conclusions: The results of this study suggest that the use of Coenzyme Q10 has positive effects in reduction of spermatogenic alterations following induction of experimental diabetes in rats.

  3. Reversal of statin-induced memory dysfunction by co-enzyme Q10: a case report

    Directory of Open Access Journals (Sweden)

    Okeahialam BN

    2015-11-01

    Full Text Available Basil N Okeahialam Cardiology Sub-Unit 1, Department of Medicine, Jos University Teaching Hospital, Jos, Nigeria Abstract: Statins are useful in the armamentarium of the clinician dealing with dyslipidemia, which increases cardiovascular morbi-mortality in hypertensive and diabetic patients among others. Dyslipidemia commonly exists as a comorbidity factor in the development of atherosclerotic cardiovascular disease. Use of statins is however associated with side effects which at times are so disabling as to interfere with activities of daily living. There are various ways of dealing with this, including use of more water-soluble varieties, intermittent dosing, or use of statin alternatives. Of late, use of co-enzyme Q10 has become acceptable for the muscle side effects. Only one report of any benefit on the rarely reported memory side effect was encountered by the author in the search of English medical literature. This is a report of a documented case of a Nigerian woman with history of statin intolerance in this case, memory dysfunction despite persisting dyslipidemia comorbidity. Her memory dysfunction side effect which interfered with activities of daily living and background muscle pain cleared when coenzyme Q10 was administered alongside low dose statin. Her lipid profile normalized and has remained normal. It is being recommended for use when statin side effects (muscle- and memory-related impair quality of life and leave patient at dyslipidemia-induced cardiovascular morbi-mortality. Keywords: statin, memory dysfunction, co-enzyme Q10, improvement

  4. Plasma coenzyme Q10 levels in type 2 diabetic patients with retinopathy

    Science.gov (United States)

    Ates, Orhan; Bilen, Habip; Keles, Sadullah; Alp, H. Hakan; Keleş, Mevlüt Sait; Yıldırım, Kenan; Öndaş, Osman; Pınar, L. Can; Civelekler, Mustafa; Baykal, Orhan

    2013-01-01

    AIM To determine the relationship between proliferative diabetic retinopathy (PDRP) and plasma coenzyme Q10(CoQ10) concentration. METHODS Patients with type 2 diabetes and PDRP were determined to be the case group (n=50). The control group was consist of healthy individuals (n=50). Plasma CoQ10 and malondialdehyde (MDA) levels were measured in both groups. RESULTS Ubiquinone-10 (Coenzyme Q10) levels in PDRP and control subjects are 3.81±1.19µmol/L and 1.91±0.62µmol/L, respectively. Plasma MDA levels in PDRP and control subjects were 8.16±2µmol/L and 3.44±2.08µmol/L, respectively. Ratio of Ubiquinol-10/ubiquinone-10 in PDRP and control subjects were 0.26±0.16 and 1.41±0.68, respectively. CONCLUSION The ratio of ubiquinol-10/ubiquinone-10 is found lower in patients with PDRP. High levels of plasma ubiquinol-10/ubiquinone-10 ratio indicate the protective effect on diabetic retinopathy. PMID:24195048

  5. Plasma coenzyme Q10 levels in type 2 diabetic patients with retinopathy

    Directory of Open Access Journals (Sweden)

    Orhan Ates

    2013-10-01

    Full Text Available AIM: To determine the relationship between proliferative diabetic retinopathy (PDRP and plasma coenzyme Q10(CoQ10 concentration.METHODS: Patients with type 2 diabetes and PDRP were determined to be the case group (n=50. The control group was consist of healthy individuals (n=50. Plasma CoQ10 and malondialdehyde (MDA levels were measured in both groups.RESULTS: Ubiquinone-10 (Coenzyme Q10 levels in PDRP and control subjects are 3.81±1.19µmol/L and 1.91±0.62µmol/L, respectively. Plasma MDA levels in PDRP and control subjects were 8.16±2µmol/L and 3.44±2.08µmol/L, respectively. Ratio of Ubiquinol-10/ubiquinone-10 in PDRP and control subjects were 0.26±0.16 and 1.41±0.68, respectively.CONCLUSION:The ratio of ubiquinol-10/ubiquinone-10 is found lower in patients with PDRP. High levels of plasma ubiquinol-10/ubiquinone-10 ratio indicate the protective effect on diabetic retinopathy.

  6. In vitro effects of zinc, D-aspartic acid, and coenzyme-Q10 on sperm function.

    Science.gov (United States)

    Giacone, Filippo; Condorelli, Rosita A; Mongioì, Laura M; Bullara, Valentina; La Vignera, Sandro; Calogero, Aldo E

    2017-05-01

    Reactive oxygen species favor reproductive processes at low concentrations, but damage spermatozoa and decrease their fertilizing capacity at high concentrations. During infection and/or inflammation of the accessory sex glands reactive oxygen species overproduction may occur which, in turn, may negatively impact on sperm motility, sperm DNA fragmentation, and lipid peroxidation. A number of nutraceutical formulations containing antioxidant molecules have been developed to counteract the deleterious effects of the oxidative stress. A recent formulation containing zinc, D-aspartic acid, and coenzyme-Q10 is present in the pharmaceutical market. Based on these premises, the aim of the present study was to evaluate the effects of this combination on spermatozoa in vitro. The study was conducted on 24 men (32.2 ± 5.5 years): 12 normozoospermic men and 12 asthenozoospermic patients. Spermatozoa from each sample were divided into two control aliquots (aliquot A and B) and an aliquot incubated with zinc, D-aspartic acid, and coenzyme-Q10 (aliquot C). After 3 h of incubation, the following parameters were evaluated: progressive motility, number of spermatozoa with progressive motility recovered after swim-up, lipid peroxidation, and DNA fragmentation. Incubation with zinc, D-aspartic acid, and coenzyme-Q10 maintained sperm motility in normozoospermic men (37.7 ± 1.2 % vs. 35.8 ± 2.3 % at time zero) and improved it significantly in asthenozoospermic patients (26.5 ± 1.9 % vs. 18.8 ± 2.0 % at time zero) (p aspartic acid, and coenzyme-Q10 (p < 0.05) in both normozospermic men (1.0 ± 0.4 % vs. 2.4 ± 0.9 %) and asthenozooseprmic patients (0.2 ± 0.1 % vs. 0.6 ± 0.2 %). No statistically significant effect was observed on sperm DNA fragmentation. This nutraceutical formulation may be indicated in vitro during the separation of the spermatozoa in the assisted reproduction techniques, during which the spermatozoa

  7. Coenzyme Q 10: multiple benefits in one ingredient

    Directory of Open Access Journals (Sweden)

    Littarru Gian Paolo

    2011-03-01

    Full Text Available Coenzyme Q is a lipid molecule widely diffused in nature; in humans and other mammals it is present as coenzyme Q10. (CoQ10. The first recognized role of CoQ10 was in mitochondrial bioenergetics, where it plays a central role in the production of ATP. It is also present in other subcellular organelles, both in its oxidized and in its reduced state (ubiquinol-10. The reduced form of CoQ10 is endowed with powerful antioxidant activity: it acts as a chain-breaking antioxidant and is also capable of egenerating alpha-tocopherol, the active form of vitamin E. By these mechanisms CoQ10, together with vitamin E, protects lipoproteins from oxidation a process which bears considerable interest in preventing atherosclerosis. CoQ10 has also been found to support cardiovascular function and the latest findings indicate an active role in counteracting endothelial dysfunction, which is closely implicated in cardiovascular disease. CoQ10 also improves sperm motility, an effect which might be related both to its antioxidant and to its bioenergetic properties. Oxidative stress might be involved in neurodegenerative disease, and in migraine, two fields where the positive effects of CoQ10 have been documented. CoQ10 is synthesized by our body but is also present in food and can be taken as a nutritional supplement. The main source of industrially produced CoQ10 is yeast fermentation. The process results in CoQ10 which is identical to the naturally occurring molecule. Ubiquinol, the reduced form of CoQ10, has recently become available.

  8. Interdependence of coenzyme-induced conformational work and binding potential in yeast alcohol and porcine heart lactate dehydrogenases: a hydrogen-deuterium exchange study

    International Nuclear Information System (INIS)

    De Weck, Z.; Pande, J.; Kaegi, J.H.R.

    1987-01-01

    Binding of NAD coenzymes to yeast alcohol dehydrogenase (YADH) and porcine heart lactate dehydrogenase (PHLDH) was studied by hydrogen-deuterium exchange with the infrared technique. Conformational changes in the enzymes specific to the coenzymes and their fragments were observed, and the pH dependence of the exchange reaction shows that it conforms to the EX-2 scheme. In both YADH and PHLDH the magnitude of the conformational change as measured by exchange retardation is considerably larger for the NAD + than for NADH. Studies with coenzyme fragments like ADP-ribose, ADP, and AMP also highlight the lack of rigorous correlation between structural features such as charge and size and their influence on exchange behavior. Ternary complexes such as YADH-NAD + -pyrazole, PHLDH-NAD + -oxalate, and PHLDH-NADH-oxamate, which mimic the transition state, have a significantly more pronounced effect on exchange rates than the corresponding binary complexes. The outstanding feature of this study is the demonstration that in the binary enzyme-coenzyme complexes the more loosely bound NAD + is more effective in retarding exchange than the more firmly bound NADH. These differences are attributed to the unequal structural constraints exerted by the two coenzymes upon the enzymes, which translate to unequal expenditure of transconformational work in the formation of the two complexes. The opposing variation in the free energy of binding and the transconformational work expended can be viewed as an unequal partitioning of the net free energy gain resulting from the protein-ligand interaction into a binding term and that required for conformational change

  9. Coenzyme metabolism in rat liver transketolase

    International Nuclear Information System (INIS)

    Gorbach, Z.V.; Kubyshin, V.L.; Maglysh, S.S.; Zabrodskaya, S.V.

    1987-01-01

    On the basis of the results of kinetic investigations, two binding sites for hydroxythiamine diphosphate were determined in apotransketolase, with sharply differing values of K/sub i/: (7-22) x 10 -9 and (13.0-19.7) x 10 -8 M. A study was made of the turnover rate of thiamine diphosphate in holotransketolase in rat liver tissue by a radioisotope method, using [ 14 C] thiamine as the labeled precursor. The half-substitution time and rate constant of degradation of the coenzyme in transketolase are close in absolute values to the analogous indices for the protein portion of the enzyme and constitute 153 h and 0.108 day -1 , respectively. Rat liver transketolase exists in vivo in the form of a substituted α-carbanion. Replacement of thiamine diphosphate by hydroxythiamine diphosphate in the holoenzyme has no effect on the formation of the intermediate α-carbanion form of the enzyme

  10. High-Throughput Screening of Coenzyme Preference Change of Thermophilic 6-Phosphogluconate Dehydrogenase from NADP(+) to NAD(.).

    Science.gov (United States)

    Huang, Rui; Chen, Hui; Zhong, Chao; Kim, Jae Eung; Zhang, Yi-Heng Percival

    2016-09-02

    Coenzyme engineering that changes NAD(P) selectivity of redox enzymes is an important tool in metabolic engineering, synthetic biology, and biocatalysis. Here we developed a high throughput screening method to identify mutants of 6-phosphogluconate dehydrogenase (6PGDH) from a thermophilic bacterium Moorella thermoacetica with reversed coenzyme selectivity from NADP(+) to NAD(+). Colonies of a 6PGDH mutant library growing on the agar plates were treated by heat to minimize the background noise, that is, the deactivation of intracellular dehydrogenases, degradation of inherent NAD(P)H, and disruption of cell membrane. The melted agarose solution containing a redox dye tetranitroblue tetrazolium (TNBT), phenazine methosulfate (PMS), NAD(+), and 6-phosphogluconate was carefully poured on colonies, forming a second semi-solid layer. More active 6PGDH mutants were examined via an enzyme-linked TNBT-PMS colorimetric assay. Positive mutants were recovered by direct extraction of plasmid from dead cell colonies followed by plasmid transformation into E. coli TOP10. By utilizing this double-layer screening method, six positive mutants were obtained from two-round saturation mutagenesis. The best mutant 6PGDH A30D/R31I/T32I exhibited a 4,278-fold reversal of coenzyme selectivity from NADP(+) to NAD(+). This screening method could be widely used to detect numerous redox enzymes, particularly for thermophilic ones, which can generate NAD(P)H reacted with the redox dye TNBT.

  11. Coenzyme Q blocks biochemical but not receptor-mediated apoptosis by increasing mitochondrial antioxidant protection

    Czech Academy of Sciences Publication Activity Database

    Alleva, R.; Tomasetti, M.; Anděra, Ladislav; Gellert, N.; Borghi, B.; Weber, C.; Murphy, M. P.; Neužil, J.

    2001-01-01

    Roč. 503, č. 1 (2001), s. 46-50 ISSN 0014-5793 R&D Projects: GA ČR GA301/99/0350 Institutional research plan: CEZ:AV0Z5052915 Keywords : coenzyme Q * apoptosis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.644, year: 2001

  12. Free radical scavenging activity of coenzyme Q measured by a chemiluminescent assay

    International Nuclear Information System (INIS)

    Battino, Maurizio; Ferri, Elida; Girotti, Stefano; Lenaz, Giorgio

    1991-01-01

    Involvement of coenzyme Q (CoQ) in anti-oxydant activities, in addition to its major redox role, has frequently been suggested in recent years. In order to elucidate if CoQ could really be engaged in scavenging free radicals produced endogenously in a biological system, an experimental system was developed in which beef heart mitochondria in the presence of a saturating NADH concentration and of rotenone produce free radicals. The presence of oxygen-reactive forms was easily detected by a luminol-dependent chemiluminescence process. The chemi-luminescence assay showed that short-chain CoQ homologues can act as pro-oxidants, enhancing free radical effects, while exogenous coenzyme Q 10 could scavenge free radicals, especially at very low concentration. In this system, exogenous CoQ 10 was more effective than α-tocopherol at the same concentration in scavenging free radicals. The molecular mechanism that leads to this activity is still unclear, but these results are of biochemical importance because they indicate that CoQ may act as an anti=oxidant in situations mimicking physiopathological conditions. This direct chemiluminescent method is promising for studies of biochemical processes which involve active oxygen species. (author). 24 refs.; 4 figs

  13. Bioavailability of four oral Coenzyme Q formulations in healthy volunteers

    DEFF Research Database (Denmark)

    Weis, M.; Mortensen, S.A.; Rassing, M.R.

    1994-01-01

    The bioavailability of four different Coenzyme Q (CoQ) formulations was compared in ten healthy volunteers in a four-way randomised cross-over trial. The included formulations were: A hard gelatine capsule containing 100 mg of CoQ and 400 mg of Emcompress. Three soft gelatine capsules containing......Q (Bioquinon has the highest bioavailability. A difference in basic AUC and AUC after p.o.administration of CoQ was observed with respect to sex. A characteristic two peak-pattern was observed at the concentration-time profile....

  14. The effect of long-term treatment with coenzyme Q10 on nucleic acid modifications by oxidation in children with Down syndrome

    DEFF Research Database (Denmark)

    Larsen, Emil List; Padella, Lucia; Bergholdt, Helle Kirstine Mørup

    2018-01-01

    Elevated levels of oxidative nucleic acid modifications have been proposed to be associated with some of the clinical characteristics of Down syndrome. Oral intake of coenzyme Q10 improves oxidative status and shows a tendency toward protective effect on DNA oxidation in certain age groups...... of children with Down syndrome. Here, we demonstrate that long-term (i.e., 4 years) treatment with coenzyme Q10 (ubiquinone) at the dosage of 4 mg/kg/d does not affect whole body DNA and RNA oxidation....

  15. Plasma coenzyme Q10 concentrations are not decreased in male patients with coronary atherosclerosis

    NARCIS (Netherlands)

    Vijver, L.P.L. van de; Weber, C.; Kardinaal, A.F.M.; Grobbee, D.E.; Princen, H.M.G.; Poppel, G. van

    1999-01-01

    Coenzyme Q10 (CoQ10) is an important mitochondrial electron transfer component and has been postulated to function as a powerful antioxidant protecting LDL from oxidative damage. It could thus reduce the risk of cardiovascular disease. Thus far, beneficial effects of supplementation with CoQ10 have

  16. [The isozymes of stearil-coenzymeA-desaturase and insulin activity in the light of phylogenetic theory of pathology. Oleic fatty acid and realization of biologic functions of trophology and locomotion].

    Science.gov (United States)

    2013-11-01

    The formation of function of isozymes of stearil-coenzymeA-desaturases occured at the different stages of phylogeny under realization of biologic function of trophology (stearil-coenzymeA-desaturase 1) and biologic function of locomotion, insulin system (stearil-coenzymeA-desaturase 2) billions years later. The stearil-coenzymeA-desaturase 1 transforms in C 18:1 oleic fatty acid only exogenous C 16:0 palmitinic saturated fatty acid. The stearil-coenzymeA-desaturase 2 transforms only endogenic palmitinic saturated fatty acid, synthesized form glucose. The biologic role of insulin is in energy support of biologic function of locomotion. Insulin through expressing stearil-coenzymeA-desaturase 2 transforms energetically non-optimal palmitinic variation of metabolism of substrates into highly effective oleic variation for cells' groundwork of energy (saturated fatty acid and mono fatty acid). The surplus of palmitinic saturated fatty acid in food is enabled in pathogenesis of resistance to insulin and derangement of synthesis of hormone by beta-cells of islets. The resistance to insulin and diabetes mellitus are primarily the derangement of metabolism of saturated fatty acids with mono fatty acids, energy problems of organism and only afterwards the derangement of metabolism of carbohydrates. It is desirable to restrict food intake of exogenous palmitinic saturated fatty acid. The reasons are low expression of independent of insulin stearil-coenzymeA-desaturase 2, marked lipotoxicity of polar form of palmitinic saturated fatty acid and synthesis of non-optimal palmitinic triglycerides instead of physiologic and more energetically more effective oleic triglycerides.

  17. Coenzyme Q10 and Neurological Diseases

    Directory of Open Access Journals (Sweden)

    Gabriele Siciliano

    2009-12-01

    Full Text Available Coenzyme Q10 (CoQ10, or ubiquinone is a small electron carrier of the mitochondrial respiratory chain with antioxidant properties. CoQ10 supplementation has been widely used for mitochondrial disorders. The rationale for using CoQ10 is very powerful when this compound is primary decreased because of defective synthesis. Primary CoQ10 deficiency is a treatable condition, so heightened “clinical awareness” about this diagnosis is essential. CoQ10 and its analogue, idebenone, have also been widely used in the treatment of other neurodegenerative disorders. These compounds could potentially play a therapeutic role in Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, Friedreich’s ataxia, and other conditions which have been linked to mitochondrial dysfunction. This article reviews the physiological roles of CoQ10, as well as the rationale and the role in clinical practice of CoQ10 supplementation in different neurological diseases, from primary CoQ10 deficiency to neurodegenerative disorders.

  18. Synthetic biology for engineering acetyl coenzyme a metabolism in yeast

    DEFF Research Database (Denmark)

    Nielsen, Jens

    2014-01-01

    The yeast Saccharomyces cerevisiae is a widely used cell factory for the production of fuels, chemicals, and pharmaceuticals. The use of this cell factory for cost-efficient production of novel fuels and chemicals requires high yields and low by-product production. Many industrially interesting...... chemicals are biosynthesized from acetyl coenzyme A (acetyl-CoA), which serves as a central precursor metabolite in yeast. To ensure high yields in production of these chemicals, it is necessary to engineer the central carbon metabolism so that ethanol production is minimized (or eliminated) and acetyl...

  19. Effect of particle size on solubility, dissolution rate, and oral bioavailability: evaluation using coenzyme Q10 as naked nanocrystals

    Directory of Open Access Journals (Sweden)

    Sun J

    2012-11-01

    Full Text Available Jiao Sun,1 Fan Wang,1,2 Yue Sui,1 Zhennan She,1 Wenjun Zhai,1 Chunling Wang,1 Yihui Deng11College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China; 2Beijing Zhijianjinrui Applied Pharmaceutical Science Inc, Beijing, ChinaAbstract: In this paper work, four naked nanocrystals (size range 80–700 nm were prepared without any surfactant or polymer using the solvent/nonsolvent method. The effects of particle size on their solubility, dissolution, and oral bioavailability were investigated. Solubility and dissolution testing were performed in three types of dissolution medium, and the studies demonstrated that the equilibrium solubilities of coenzyme Q10 nanocrystals and bulk drugs were not affected by the dissolution media but the kinetic solubilities were. Kinetic solubility curves and changes in particle size distribution were determined and well explained by the proposed solubilization model for the nanocrystals and bulk drugs. The particle size effect on dissolution was clearly influenced by the diffusion coefficients of the various dissolution media, and the dissolution velocity of coenzyme Q10 increased as particle size decreased. The bioavailability of coenzyme Q10 after oral administration in beagle dogs was improved by reducing the particle size. For 700 nm nanocrystals, the AUC0–48 was 4.4-fold greater than that for the coarse suspensions, but a further decrease in particle size from 700 nm to 120 nm did not contribute to improvement in bioavailability until the particle size was reduced to 80 nm, when bioavailability was increased by 7.3-fold.Keywords: particle size, solubility, dissolution, nanocrystal, bioavailability, coenzyme Q10

  20. Induction of Cytosolic Acetyl-Coenzyme A Carboxylase in Pea Leaves by Ultraviolet-B Irradiation

    OpenAIRE

    Tomokazu, Konishi; Takahiro, Kamoi; Ryuichi, Matsuno; Yukiko, Sasaki; Department of Food Science and Technology, Faculty of Agriculture, Kyoto University:(Present)Laboratory of Molecular Genetics, Biotechnology Institute, Akita Prefectural College of Agriculture; Department of Food Science and Technology, Faculty of Agriculture, Kyoto University; Department of Food Science and Technology, Faculty of Agriculture, Kyoto University; Department of Food Science and Technology, Faculty of Agriculture, Kyoto University:(Present)Laboratory of Plant Molecular Biology, School of Agricultural Sciences, Nagoya University

    1996-01-01

    Levels of subunits of two acetyl-coenzyme A carboxylases were high in small leaves of Pisum sativum, decreased with growth, and remained constant in fully expanded leaves. Irradiation of fully expanded leaves induced the cytosolic isozyme only. This result suggests a key role for the cytosolic enzyme in protection against UV-B.

  1. Nanoencapsulation of coenzyme Q10 and vitamin E acetate protects against UVB radiation-induced skin injury in mice.

    Science.gov (United States)

    Pegoraro, Natháli S; Barbieri, Allanna V; Camponogara, Camila; Mattiazzi, Juliane; Brum, Evelyne S; Marchiori, Marila C L; Oliveira, Sara M; Cruz, Letícia

    2017-02-01

    This study aimed to investigate the feasibility of producing semisolid formulations based on nanocapsule suspensions containing the association of the coenzyme Q10 and vitamin E acetate by adding gellan gum (2%) to the suspensions. Furthermore, we studied their application as an alternative for the treatment of inflammation induced by ultraviolet B (UVB) radiation. For this, an animal model of injury induced by UVB-radiation was employed. All semisolids presented pH close to 5.5, drug content above 95% and mean diameter on the nanometric range, after redispersion in water. Besides, the semisolids presented non-Newtonian flow with pseudoplastic behavior and suitable spreadability factor values. The results also showed that the semisolid containing coenzyme Q10-loaded nanocapsules with higher vitamin E acetate concentration reduced in 73±8% the UVB radiation-induced ear edema. Moreover, all formulations tested were able to reduce inflammation parameters evaluated through MPO activity and histological procedure on injured tissue and the semisolids containing the nanoencapsulated coenzyme Q10 reduced oxidative parameters assessment through the non-protein thiols levels and lipid peroxidation. This way, the semisolids based on nanocapsules may be considered a promising approach for the treatment and prevention of skin inflammation diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Methyl-coenzyme M reductase from methanogenic archaea: isotope effects on label exchange and ethane formation with the homologous substrate ethyl-coenzyme M.

    Science.gov (United States)

    Scheller, Silvan; Goenrich, Meike; Thauer, Rudolf K; Jaun, Bernhard

    2013-10-09

    Ethyl-coenzyme M (CH3CH2-S-CH2CH2-SO3(-), Et-S-CoM) serves as a homologous substrate for the enzyme methyl-coenzyme M reductase (MCR) resulting in the product ethane instead of methane. The catalytic reaction proceeds via an intermediate that already contains all six C-H bonds of the product. Because product release occurs after a second, rate-limiting step, many cycles of intermediate formation and reconversion to substrate occur before a substantial amount of ethane is released. In deuterated buffer, the intermediate becomes labeled, and C-H activation in the back reaction rapidly leads to labeled Et-S-CoM, which enables intermediate formation to be detected. Here, we present a comprehensive analysis of this pre-equilibrium. (2)H- and (13)C-labeled isotopologues of Et-S-CoM were used as the substrates, and the time course of each isotopologue was followed by NMR spectroscopy. A kinetic simulation including kinetic isotope effects allowed determination of the primary and α- and β-secondary isotope effects for intermediate formation and for the C-H/C-D bond activation in the ethane-containing intermediate. The values obtained are in accordance with those found for the native substrate Me-S-CoM (see preceding publication, Scheller, S.; Goenrich, M.; Thauer, R. K.; Jaun, B. J. Am. Chem. Soc. 2013, 135, DOI: 10.1021/ja406485z) and thus imply the same catalytic mechanism for both substrates. The experiment by Floss and co-workers, demonstrating a net inversion of configuration to chiral ethane with CH3CDT-S-CoM as the substrate, is compatible with the observed rapid isotope exchange if the isotope effects measured here are taken into account.

  3. Probing Reversible Chemistry in Coenzyme B12-Dependent Ethanolamine Ammonia Lyase with Kinetic Isotope Effects

    Science.gov (United States)

    Jones, Alex R; Rentergent, Julius; Scrutton, Nigel S; Hay, Sam

    2015-01-01

    Coenzyme B12-dependent enzymes such as ethanolamine ammonia lyase have remarkable catalytic power and some unique properties that enable detailed analysis of the reaction chemistry and associated dynamics. By selectively deuterating the substrate (ethanolamine) and/or the β-carbon of the 5′-deoxyadenosyl moiety of the intrinsic coenzyme B12, it was possible to experimentally probe both the forward and reverse hydrogen atom transfers between the 5′-deoxyadenosyl radical and substrate during single-turnover stopped-flow measurements. These data are interpreted within the context of a kinetic model where the 5′-deoxyadenosyl radical intermediate may be quasi-stable and rearrangement of the substrate radical is essentially irreversible. Global fitting of these data allows estimation of the intrinsic rate constants associated with CoC homolysis and initial H-abstraction steps. In contrast to previous stopped-flow studies, the apparent kinetic isotope effects are found to be relatively small. PMID:25950663

  4. Design, optimization and characterization of coenzyme Q10- and D-panthenyl triacetate-loaded liposomes

    Directory of Open Access Journals (Sweden)

    Çelik B

    2017-07-01

    Full Text Available Burak Çelik,1 Ali Asram Sağıroğlu,1 Samet Özdemir2 1Department of Pharmaceutical Technology, Faculty of Pharmacy, Bezmialem Vakif University, 2Department of Pharmaceutical Technology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey Abstract: Coenzyme Q10 (CoQ10 is a lipid-soluble molecule found naturally in many eukaryotic cells and is essential for electron transport chain and energy generation in mitochondria. D-Panthenyl triacetate (PTA is an oil-soluble derivative of D-panthenol, which is essential for coenzyme A synthesis in the epithelium. Liposomal formulations that encapsulate both ingredients were prepared and optimized by applying response surface methodology for increased stability and skin penetration. The optimum formulation comprised 4.17 mg CoQ10, 4.22 mg PTA and 13.95 mg cholesterol per 100 mg of soy phosphatidylcholine. The encapsulation efficiency of the optimized formulation for CoQ10 and PTA was found to be 90.89%±3.61% and 87.84%±4.61%, respectively. Narrow size distribution was achieved with an average size of 161.6±3.6 nm, while a spherical and uniform shape was confirmed via scanning electron microscopy and transmission electron microscopy images. Cumulative release of 90.93% for PTA and 24.41% for CoQ10 was achieved after 24 hours of in vitro release study in sink conditions. Physical stability tests indicated that the optimized liposomes were suitable for storage at 4°C for at least 60 days. The results suggest that the optimized liposomal formulation would be a promising delivery system for both ingredients in various topical applications. Keywords: coenzyme Q10, D-panthenyl triacetate, liposomes, response surface methodology, stability

  5. Rotational barriers of 1,3-substitute pyridines and benzenes as models for the NAD+/NADH coenzyme

    NARCIS (Netherlands)

    Vanhommerig, S.A.M.; Meier, R.J.; Sluyterman, L.A.A.E.; Meijer, E.M.

    1994-01-01

    The NAD+/NADH coenzyme is involved in many enzyme-catalysed oxidation-reduction reactions. In order to obtain better insight in the catalytic mechanism of NAD+/NADH dependent dehydrogenases, conformational studies of 1,3-substituted pyridines and benzenes were carried out, using ab initio,

  6. [Effect of phlebodium decumanum and coenzyme Q10 on sports performance in professional volleyball players].

    Science.gov (United States)

    García Verazaluce, Juan José; Vargas Corzo, María Del Carmen; Aguilar Cordero, María José; Ocaña Peinado, Francisco; Sarmiento Ramírez, Álvaro; Guisado Barrilao, Rafael

    2014-10-03

    Physical training programmes are based on provoking transitory states of fatigue in order to induce super compensation by the biological systems involved in the activity, in order to improve the athlete's medium-long term performance. The administration of nutritional supplements with antioxidant and immunomodulatory properties, such as Phlebodium decumanum and coenzyme Q10, can be a very advantageous means of achieving recovery from the inflammation and tissue damage caused by the stress of prolonged, intense exercise. An experimental, longitudinal, double- blind experiment was conducted, with three randomised groups obtained from a sample of 30 male volleyball players (aged 22-32 years) at the University of Granada, with a high level of training (17 hours a week during the 6 months preceding the study). The effects were then evaluated of a month-long physical training programme, common to all the study groups, associated with the simultaneous administration of the following nutritional supplements: Phlebodium decumanum (4 capsules of 400 mg/capsule, daily), Experimental Group 1; Phlebodium decumanum (same dose and schedule as Group 1) plus coenzyme Q10 (4 capsules of 30 mg/ capsule, daily), Experimental Group 2; a placebo substance, Control Group. The following dependent blood variables were examined to assess the effects of the intervention on the basal immune and endocrine-metabolic profile: cortisol and interleukin-6, both related to the axis of exercise-induced stress; and lactic acid and ammonium, related essentially to the anaerobic metabolism of energy. All the study groups presented favourable adaptive changes with respect to the endocrine-metabolic and immune profile, as reflected by a significant decrease in the post-test concentrations of cortisol, interleukin 6, lactic acid and ammonium, compared to the values recorded before the physical activity with/without nutritional supplement, per protocol. The groups that achieved the most favourable profile

  7. Protection of dichlorvos induced oxidative stress and nigrostriatal neuronal death by chronic Coenzyme Q10 pretreatment

    International Nuclear Information System (INIS)

    Binukumar, BK; Gupta, Nidhi; Bal, Amanjit; Gill, Kiran Dip

    2011-01-01

    Numerous epidemiological studies have shown an association between pesticide exposure and increased risk of developing Parkinson's diseases. Oxidative stress generated as a result of mitochondrial dysfunction has been implicated as an important factor in the etiology of Parkinson's disease. Previously, we reported that chronic dichlorvos exposure causes mitochondrial impairments and nigrostriatal neuronal death in rats. The present study was designed to test whether Coenzyme Q 10 (CoQ 10 ) administration has any neuroprotective effect against dichlorvos mediated nigrostriatal neuronal death, α-synuclein aggregation, and motor dysfunction. Male albino rats were administered dichlorvos by subcutaneous injection at a dose of 2.5 mg/kg body weight over a period of 12 weeks. Results obtained there after showed that dichlorvos exposure leads to enhanced mitochondrial ROS production, α-synuclein aggregation, decreased dopamine and its metabolite levels resulting in nigrostriatal neurodegeneration. Pretreatment by Coenzyme Q 10 (4.5 mg/kg ip for 12 weeks) to dichlorvos treated animals significantly attenuated the extent of nigrostriatal neuronal damage, in terms of decreased ROS production, increased dopamine and its metabolite levels, and restoration of motor dysfunction when compared to dichlorvos treated animals. Thus, the present study shows that Coenzyme Q 10 administration may attenuate dichlorvos induced nigrostriatal neurodegeneration, α-synuclein aggregation and motor dysfunction by virtue of its antioxidant action. - Highlights: → CoQ 10 administration attenuates dichlorvos induced nigrostriatal neurodegenaration. → CoQ 10 pre treatment leads to preservation of TH-IR neurons. → CoQ 10 may decrease oxidative damage and α-synuclin aggregation. → CoQ 10 treatment enhances motor function and protects rats from catalepsy.

  8. Coenzyme Q10 supplementation and exercise-induced oxidative stress in humans

    DEFF Research Database (Denmark)

    Östman, Bengt; Sjödin, Anders Mikael; Michaëlsson, Karl

    2012-01-01

    Objective: The theoretically beneficial effects of coenzyme Q10 (Q10) on exercise-related oxidative stress and physical capacity have not been confirmed to our knowledge by interventional supplementation studies. Our aim was to investigate further whether Q10 supplementation at a dose recommended...... the groups were detected for hypoxanthine or uric acid (serum markers of oxidative stress) or creatine kinase (a marker of skeletal muscle damage). Conclusion: Although in theory Q10 could be beneficial for exercise capacity and in decreasing oxidative stress, the present study could not demonstrate...

  9. Antioxidant vitamins C, E and coenzyme Q10 vs Dexamethasone: comparisons of their effects in pulmonary contusion model

    Directory of Open Access Journals (Sweden)

    Gokce Mertol

    2012-09-01

    Full Text Available Abstract Background The goal of our study is to evaluate the effects of antioxidant vitamins (vitamin C and E, Coenzyme Q10 (CoQ10 and dexamethasone (Dxm in experimental rat models with pulmonary contusion (PC. Methods Rats were randomly divided into six groups. Except for the control, all subgroups had a moderate pulmonary contusion. Animals in the group I and group II received intraperitoneal saline, group III received 10mg.kg-1 CoQ10 group IV received 100mg.kg-1 vitamin C, group V received 150mg.kg-1 vitamin E, and group VI received 10mg.kg-1 Dxm. Blood gas analysis, serum nitric oxide (NO and malondialdehyde (MDA levels as well as superoxide dismutase (SOD activity assays, bronchoalveolar lavage (BAL fluid and histopathological examination were performed. Results Administration of CoQ10 resulted in a significant increase in PaO2 values compared with the group I (p = 0.004. Levels of plasma MDA in group II were significantly higher than those in the group I (p = 0.01. Early administration of vitamin C, CoQ10, and Dxm significantly decreased the levels of MDA (p = 0.01. Lung contusion due to blunt trauma significantly decreased SOD activities in rat lung tissue compared with group I (p = 0.01. SOD levels were significantly elevated in animals treated with CoQ10, Vitamin E, or Dxm compared with group II (p = 0.01. Conclusions In our study, CoQ10, vitamin C, vitamin E and Dxm had a protective effect on the biochemical and histopathological outcome of PC after experimental blunt thorax trauma.

  10. Electron addition to alkyl cobalamins, coenzyme B/sub 12/ and vitamin B/sub 12/. [Gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Rao, D N.R.; Symons, M C.R. [Leicester Univ. (UK). Dept. of Chemistry

    1983-01-01

    Exposure of dilute solutions of methyl and ethyl cobalamins and coenzyme B/sub 12/ in dilute solutions (D/sub 2/O+CD/sub 3/OD) to /sup 60/Co ..gamma..-rays at 77 K gave a single broad feature in the free-spin region assigned to electron-capture species with the excess electron largely confined to a ..pi..* corrin orbital. On warming above 77 K the methyl derivative gave a novel species with spectral features characteristic of an unpaired electron in the Co(dsub(x/sup 2/-y/sup 2/)) orbital. The other two substrates gave spectra due to Cosup(II)Bsub(12r) both on warming and after photolyses with visible light. The acetyl derivative gave an electron-capture species whose e.s.r. spectrum was characteristic of an electron in the Co(dsub(z/sup 2/)) orbital, which on warming above 77 K changed to the normal Cosup(II)Bsub(12r) spectrum. The cyano derivative (vitamin B/sub 12/) gave electron addition into the Co(dsub(z/sup 2/)) orbital, as evidenced by the large hyperfine coupling to /sup 13/C from /sup 13/CN ligands. On annealing, cyanide ions were lost irreversibly, Bsub(12r) being detected by e.s.r. spectroscopy. In contrast, the dicyano derivative on electron addition at 77 K gave a species containing only one /sup 13/CN ligand. Hence in this case one CN/sup -/ ligand was lost at 77 K, with no return of the dimethylbenzimidazole ligand. These results are discussed in terms of a new mechanism for electron-addition to alkyl cobalamins.

  11. Patients with medium-chain acyl-coenzyme a dehydrogenase deficiency have impaired oxidation of fat during exercise but no effect of L-carnitine supplementation

    DEFF Research Database (Denmark)

    Madsen, K L; Preisler, N; Orngreen, M C

    2013-01-01

    It is not clear to what extent skeletal muscle is affected in patients with medium-chain acyl-coenzyme A dehydrogenase deficiency (MCADD). l-Carnitine is commonly used as a supplement in patients with MCADD, although its beneficial effect has not been verified.......It is not clear to what extent skeletal muscle is affected in patients with medium-chain acyl-coenzyme A dehydrogenase deficiency (MCADD). l-Carnitine is commonly used as a supplement in patients with MCADD, although its beneficial effect has not been verified....

  12. Biochemical Assessment of Coenzyme Q10 Deficiency

    Directory of Open Access Journals (Sweden)

    Juan Carlos Rodríguez-Aguilera

    2017-03-01

    Full Text Available Coenzyme Q10 (CoQ10 deficiency syndrome includes clinically heterogeneous mitochondrial diseases that show a variety of severe and debilitating symptoms. A multiprotein complex encoded by nuclear genes carries out CoQ10 biosynthesis. Mutations in any of these genes are responsible for the primary CoQ10 deficiency, but there are also different conditions that induce secondary CoQ10 deficiency including mitochondrial DNA (mtDNA depletion and mutations in genes involved in the fatty acid β-oxidation pathway. The diagnosis of CoQ10 deficiencies is determined by the decrease of its content in skeletal muscle and/or dermal skin fibroblasts. Dietary CoQ10 supplementation is the only available treatment for these deficiencies that require a rapid and distinct diagnosis. Here we review methods for determining CoQ10 content by HPLC separation and identification using alternative approaches including electrochemical detection and mass spectrometry. Also, we review procedures to determine the CoQ10 biosynthesis rate using labeled precursors.

  13. Characterization of acyl-coenzyme A:diacylglycerol acyltransferase (DGAT) enzyme of human small intestine.

    Science.gov (United States)

    Hiramine, Yasushi; Tanabe, Toshizumi

    2011-06-01

    Acyl-coenzyme A:diacylglycerol acyltransferase (DGAT) enzyme plays a significant role in dietary triacylglycerol (TAG) absorption in the small intestine. However, the characteristics of human intestinal DGAT enzyme have not been examined in detail. The aim of our study was to characterize the human intestinal DGAT enzyme by examining acyl-CoA specificity, temperature dependency, and selectivity for 1,2-diacylglycerol (DAG) or 1,3-DAG. We detected DGAT activity of human intestinal microsome and found that the acyl-CoA specificity and temperature dependency of intestinal DGAT coincided with those of recombinant human DGAT1. To elucidate the selectivity of human intestinal DGAT to 1,2-DAG or 1,3-DAG, we conducted acyl-coenzyme A:monoacylglycerol acyltransferase assays using 1- or 2-monoacylglycerol (MAG) as substrates. When 2-MAG was used as acyl acceptor, both 1,2-DAG and TAG were generated; however, when 1-MAG was used, 1,3-DAG was predominantly observed and little TAG was detected. These findings suggest that human small intestinal DGAT, which is mainly encoded by DGAT1, utilizes 1,2-DAG as the substrate to form TAG. This study will contribute to understand the lipid absorption profile in the small intestine.

  14. Coenzyme Q10 and pro-inflammatory markers in children with Down syndrome: clinical and biochemical aspects

    Directory of Open Access Journals (Sweden)

    Moushira E. Zaki

    2017-01-01

    Conclusion: Interleukin 6 and tumor necrosis factor α levels in young children with Down syndrome may be used as biomarkers reflecting the neurodegenerative process in them. Coenzyme Q10 might have a role as a good supplement in young children with Down syndrome to ameliorate the neurological symptoms.

  15. Coenzyme Q10 does not prevent oral dyskinesias induced by long-term haloperidol treatment of rats

    DEFF Research Database (Denmark)

    OA, Andreassen; Weber, Christine; HA, Jorgensen

    1999-01-01

    dyskinesias in rats, a putative analogue to human TD, could be prevented by the antioxidant coenzyme Q10 (CoQ10). Rats received 16 weeks of treatment with haloperidol decanoate (HAL) IM alone or together with orally administered CoQ10, and the behavior was recorded during and after treatment. HAL...

  16. Coenzyme Q10 plus Multivitamin Treatment Prevents Cisplatin Ototoxicity in Rats.

    Directory of Open Access Journals (Sweden)

    Laura Astolfi

    Full Text Available Cisplatin (Cpt is known to induce a high level of oxidative stress, resulting in an increase of reactive oxygen species damaging the inner ear and causing hearing loss at high frequencies. Studies on animal models show that antioxidants may lower Cpt-induced ototoxicity. The aim of this study is to evaluate the ototoxic effects of two different protocols of Cpt administration in a Sprague-Dawley rat model, and to test in the same model the synergic protective effects of a solution of coenzyme Q10 terclatrate and Acuval 400®, a multivitamin supplement containing antioxidant agents and minerals (Acu-Qter. The Cpt was administered intraperitoneally in a single dose (14 mg/kg or in three daily doses (4.6 mg/kg/day to rats orally treated or untreated with Acu-Qter for 5 days. The auditory function was assessed by measuring auditory brainstem responses from 2 to 32 kHz at day 0 and 5 days after treatment. Similar hearing threshold and body weight alterations were observed in both Cpt administration protocols, but mortality reduced to zero when Cpt was administered in three daily doses. The Acu-Qter treatment was able to prevent and completely neutralize ototoxicity in rats treated with three daily Cpt doses, supporting the synergic protective effects of coenzyme Q terclatrate and Acuval 400® against Cpt-induced oxidative stress. The administration protocol involving three Cpt doses is more similar to common human chemotherapy protocols, therefore it appears more useful for long-term preclinical studies on ototoxicity prevention.

  17. Rosuvastatin lowers coenzyme Q10 levels, but not mitochondrial adenosine triphosphate synthesis, in children with familial hypercholesterolemia

    NARCIS (Netherlands)

    Avis, Hans J.; Hargreaves, Ian P.; Ruiter, Jos P. N.; Land, John M.; Wanders, Ronald J.; Wijburg, Frits A.

    2011-01-01

    To investigate whether statin therapy affects coenzyme Q10 (CoQ10) status in children with heterozygous familial hypercholesterolemia (FH). Samples were obtained at baseline (treatment naïve) and after dose titration with rosuvastatin, aiming for a low-density lipoprotein cholesterol level of 110

  18. [Coenzyme Q10 (Q-ter) in treatment of functional voice disorders].

    Science.gov (United States)

    Sensini, M; Corvino, A; Passeri, L; Gallone, G O; Landolfo, V; Raimondo, L; Giordano, C

    2011-01-01

    Aim of this study was to evaluate the effectivness of Coenzyme Q-Ter and Vitamin A in functional voice disorders. Twenty two patients were treated with CoQ10-ter and vitamin A twice a day for ten days. A general otolaryngological/foniatric and logopedic examination were performed. Videolaringostroboscopy, GIRBAS, Voice Handicap Index questionnaire and Multi-Dimensional Voice analysis were carried out before and after treatment. In all patients an improvement was observed in almost all parameters considered after treatment. CoQ10-ter and Vitamin A risulted effective in treatment of patients with functional voice disorders (caused by vocal "malmenage" or "surmenage").

  19. A de novo NADPH generation pathway for improving lysine production of Corynebacterium glutamicum by rational design of the coenzyme specificity of glyceraldehyde 3-phosphate dehydrogenase.

    Science.gov (United States)

    Bommareddy, Rajesh Reddy; Chen, Zhen; Rappert, Sugima; Zeng, An-Ping

    2014-09-01

    Engineering the cofactor availability is a common strategy of metabolic engineering to improve the production of many industrially important compounds. In this work, a de novo NADPH generation pathway is proposed by altering the coenzyme specificity of a native NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) to NADP, which consequently has the potential to produce additional NADPH in the glycolytic pathway. Specifically, the coenzyme specificity of GAPDH of Corynebacterium glutamicum is systematically manipulated by rational protein design and the effect of the manipulation for cellular metabolism and lysine production is evaluated. By a combinatorial modification of four key residues within the coenzyme binding sites, different GAPDH mutants with varied coenzyme specificity were constructed. While increasing the catalytic efficiency of GAPDH towards NADP enhanced lysine production in all of the tested mutants, the most significant improvement of lysine production (~60%) was achieved with the mutant showing similar preference towards both NAD and NADP. Metabolic flux analysis with (13)C isotope studies confirmed that there was no significant change of flux towards the pentose phosphate pathway and the increased lysine yield was mainly attributed to the NADPH generated by the mutated GAPDH. The present study highlights the importance of protein engineering as a key strategy in de novo pathway design and overproduction of desired products. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  20. Conserved residues and their role in the structure, function, and stability of acyl-coenzyme A binding protein

    DEFF Research Database (Denmark)

    Kragelund, B B; Poulsen, K; Andersen, K V

    1999-01-01

    In the family of acyl-coenzyme A binding proteins, a subset of 26 sequence sites are identical in all eukaryotes and conserved throughout evolution of the eukaryotic kingdoms. In the context of the bovine protein, the importance of these 26 sequence positions for structure, function, stability...

  1. The use of coenzyme Q0 as a template in the development of a molecularly imprinted polymer for the selective recognition of coenzyme Q10.

    Science.gov (United States)

    Contin, Mario; Flor, Sabrina; Martinefski, Manuela; Lucangioli, Silvia; Tripodi, Valeria

    2014-01-07

    In this work, a novel molecularly imprinted polymer (MIP) for use as a solid phase extraction sorbent was developed for the determination of coenzyme Q10 (CoQ10) in liver extract. CoQ10 is an essential cofactor in mitochondrial oxidative phosphorylation and a powerful antioxidant agent found in low concentrations in biological samples. This fact and its high hydrophobicity make the analysis of CoQ10 technically challenging. Accordingly, a MIP was synthesised using coenzyme Q0 as the template, methacrylic acid as the functional monomer, acetonitrile as the porogen, ethylene glycol dimethacrylate as the crosslinker and benzoyl peroxide as the initiator. Various parameters affecting the polymer preparation and extraction efficiency were evaluated. Morphological characterisation of the MIP and its proper comparison with C18 as a sorbent in solid phase extraction were performed. The optimal conditions for the molecularly imprinted solid phase extraction (MISPE) consisted of 400 μL of sample mixed with 30 mg of MIP and 600 μL of water to reach the optimum solution loading. The loading was followed by a washing step consisting of 1 mL of a 1-propanol solution (1-propanol:water, 30:70,v/v) and elution with 1 mL of 1-propanol. After clean-up, the CoQ10 in the samples was analysed by high performance liquid chromatography. The extraction recoveries were higher than 73.7% with good precision (3.6-8.3%). The limits of detection and quantification were 2.4 and 7.5 μg g(-1), respectively, and a linear range between 7.5 and 150 μg g(-1) of tissue was achieved. The new MISPE procedure provided a successful clean-up for the determination of CoQ10 in a complex matrix. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Arg279 is the key regulator of coenzyme selectivity in the flavin-dependent ornithine monooxygenase SidA.

    Science.gov (United States)

    Robinson, Reeder; Franceschini, Stefano; Fedkenheuer, Michael; Rodriguez, Pedro J; Ellerbrock, Jacob; Romero, Elvira; Echandi, Maria Paulina; Martin Del Campo, Julia S; Sobrado, Pablo

    2014-04-01

    Siderophore A (SidA) is a flavin-dependent monooxygenase that catalyzes the NAD(P)H- and oxygen-dependent hydroxylation of ornithine in the biosynthesis of siderophores in Aspergillus fumigatus and is essential for virulence. SidA can utilize both NADPH or NADH for activity; however, the enzyme is selective for NADPH. Structural analysis shows that R279 interacts with the 2'-phosphate of NADPH. To probe the role of electrostatic interactions in coenzyme selectivity, R279 was mutated to both an alanine and a glutamate. The mutant proteins were active but highly uncoupled, oxidizing NADPH and producing hydrogen peroxide instead of hydroxylated ornithine. For wtSidA, the catalytic efficiency was 6-fold higher with NADPH as compared to NADH. For the R279A mutant the catalytic efficiency was the same with both coenyzmes, while for the R279E mutant the catalytic efficiency was 5-fold higher with NADH. The effects are mainly due to an increase in the KD values, as no major changes on the kcat or flavin reduction values were observed. Thus, the absence of a positive charge leads to no coenzyme selectivity while introduction of a negative charge leads to preference for NADH. Flavin fluorescence studies suggest altered interaction between the flavin and NADP⁺ in the mutant enzymes. The effects are caused by different binding modes of the coenzyme upon removal of the positive charge at position 279, as no major conformational changes were observed in the structure for R279A. The results indicate that the positive charge at position 279 is critical for tight binding of NADPH and efficient hydroxylation. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. ORF Alignment: NC_002945 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available ] ... pdb|1M4I|B Chain B, Aminoglycoside ... 2'-N-Acetyltransferase From Mycobacterium ... Tuberculosis...ain A, Aminoglycoside ... 2'-N-Acetyltransferase From Mycobacterium ... Tuberculosis-Complex W...se From Mycobacterium ... Tuberculosis-Complex With Coenzyme A And Ribostamycin ... pdb|1M4G|A... Chain A, Aminoglycoside ... 2'-N-Acetyltransferase From Mycobacterium ... Tuberculosis... ... 2'-N-Acetyltransferase From Mycobacterium ... Tuberculosis-Complex With Coenzyme A And Tob

  4. ORF Alignment: NC_000962 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available ] ... pdb|1M4I|B Chain B, Aminoglycoside ... 2'-N-Acetyltransferase From Mycobacterium ... Tuberculosis...ain A, Aminoglycoside ... 2'-N-Acetyltransferase From Mycobacterium ... Tuberculosis-Complex W...se From Mycobacterium ... Tuberculosis-Complex With Coenzyme A And Ribostamycin ... pdb|1M4G|A... Chain A, Aminoglycoside ... 2'-N-Acetyltransferase From Mycobacterium ... Tuberculosis... ... 2'-N-Acetyltransferase From Mycobacterium ... Tuberculosis-Complex With Coenzyme A And Tob

  5. ORF Alignment: NC_002755 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available ] ... pdb|1M4I|B Chain B, Aminoglycoside ... 2'-N-Acetyltransferase From Mycobacterium ... Tuberculosis...ain A, Aminoglycoside ... 2'-N-Acetyltransferase From Mycobacterium ... Tuberculosis-Complex W...se From Mycobacterium ... Tuberculosis-Complex With Coenzyme A And Ribostamycin ... pdb|1M4G|A... Chain A, Aminoglycoside ... 2'-N-Acetyltransferase From Mycobacterium ... Tuberculosis... ... 2'-N-Acetyltransferase From Mycobacterium ... Tuberculosis-Complex With Coenzyme A And Tob

  6. Enzymic Dehalogenation of 4-Chlorobenzoyl Coenzyme A in Acinetobacter sp. Strain 4-CB1

    OpenAIRE

    Copley, Shelley D.; Crooks, Gwen P.

    1992-01-01

    4-Chlorobenzoate degradation in cell extracts of Acinetobacter sp. strain 4-CB1 occurs by initial synthesis of 4-chlorobenzoyl coenzyme A (4-chlorobenzoyl CoA) from 4-chlorobenzoate, CoA, and ATP. 4-Chlorobenzoyl CoA is dehalogenated to 4-hydroxybenzoyl CoA. Following the dehalogenation reaction, 4-hydroxybenzoyl CoA is hydrolyzed to 4-hydroxybenzoate and CoA. Possible roles for the CoA moiety in the dehalogenation reaction are discussed.

  7. Enzymic Dehalogenation of 4-Chlorobenzoyl Coenzyme A in Acinetobacter sp. Strain 4-CB1

    Science.gov (United States)

    Copley, Shelley D.; Crooks, Gwen P.

    1992-01-01

    4-Chlorobenzoate degradation in cell extracts of Acinetobacter sp. strain 4-CB1 occurs by initial synthesis of 4-chlorobenzoyl coenzyme A (4-chlorobenzoyl CoA) from 4-chlorobenzoate, CoA, and ATP. 4-Chlorobenzoyl CoA is dehalogenated to 4-hydroxybenzoyl CoA. Following the dehalogenation reaction, 4-hydroxybenzoyl CoA is hydrolyzed to 4-hydroxybenzoate and CoA. Possible roles for the CoA moiety in the dehalogenation reaction are discussed. PMID:16348702

  8. Glossary

    Science.gov (United States)

    ... I : NADH-Coenzyme Q oxidoreductase (part of the Electron Transport Chain). COMPLEX II : Succinate dehydrogenase (part of the Electron Transport Chain). COMPLEX III : Coenzyme Q-cytochrome c oxidoreductase (part ...

  9. Clinical presentation and outcome in a series of 32 patients with 2-methylacetoacetyl-coenzyme A thiolase (MAT) deficiency

    NARCIS (Netherlands)

    Grünert, Sarah Catharina; Schmitt, Robert Niklas; Schlatter, Sonja Marina; Gemperle-Britschgi, Corinne; Balci, Mehmet Cihan; Berg, Volker; Çoker, Mahmut; Das, Anibh M; Demirkol, Mübeccel; Derks, Terry G J; Gökçay, Gülden; Uçar, Sema Kalkan; Konstantopoulou, Vassiliki; Christoph Korenke, G.; Lotz-Havla, Amelie Sophia; Schlune, Andrea; Staufner, Christian; Tran, Christel; Visser, Gepke; Schwab, Karl Otfried; Fukao, Toshiyuki; Sass, Jörn Oliver

    2-methylacetoacetyl-coenzyme A thiolase (MAT) deficiency, also known as beta-ketothiolase deficiency, is an inborn error of ketone body utilization and isoleucine catabolism. It is caused by mutations in the ACAT1 gene and may present with metabolic ketoacidosis. In order to obtain a more

  10. Protective Effect of Coenzyme Q10 on Methamphetamine-Induced Apoptosis in Adult Male Rats

    Directory of Open Access Journals (Sweden)

    Fatemeh Gholipour

    2017-06-01

    Full Text Available Background: The negative consequence of methamphetamine abuse is due to neuropathologic changes in the brain, which reduces dopaminergic neurons and result in damage to different brain areas. Neurotoxicity induced by methamphetamine increases the oxidative stress and associated with neuronal apoptosis. The role of the antioxidant coenzyme Q10 probably produces its neuroprotective effects. Therefore, the purpose of the present study was to examine the protective effect of coenzyme Q10 on methamphetamine-induced apoptosis in adult male rats.Materials and Methods: Fifty Wistar eight-week adult rats randomly divided into 5 groups: Healthy control, methamphetamine injection (Meth, methamphetamine injection and CoQ10 5mg/kg treatment (Meth+Post CoQ10 5mg/kg, methamphetamine injection and CoQ10 10mg/kg treatment (Meth+Post CoQ10 10mg/kg, methamphetamine injection and CoQ10 20mg/kg treatment (Meth+Post CoQ10 20mg/kg. Methamphetamine with a purity of 96% with a dosage of 20 mg/kg was injected Intraperitoneal. Coenzyme Q10 for three treatment groups was injected intraperitoneally for 14 days in a dosage of 5, 10 and 20 mg/kg/day. The protein expressions of Baxand Bcl2 were evaluated by western blotting technique.Results: Bax protein expression was significantly lower in Meth+Post CoQ10 5mg/kg (p=0.010 and so Meth+Post CoQ10 10mg/kg (p=0.004 comparing to Meth group. In addition, Bcl2 protein expression was significantly higher in Meth+Post CoQ10 5mg/kg comparing to Meth group (p=0.018. However, there were no significant differences between control and CoQ10 treatment groups. Bax/Bcl2 ratio was significantly lower in Meth+Post CoQ10 5mg/kg (p=0.005, Meth+Post CoQ10 10mg/kg (p=0.008 and Meth+Post CoQ10 20mg/kg (p=0.044 comparing to Meth group.Conclusion: We suggest that CoQ10 reduces the methamphetamine-induced apoptosis in the striatum of the rats through the reduction of apoptotic factors and increase of anti-apoptotic pathways.

  11. Potential role of coenzyme Q10 in health and disease conditions

    Directory of Open Access Journals (Sweden)

    Rodick TC

    2018-02-01

    Full Text Available Taylor C Rodick,1 Donna R Seibels,2 Jeganathan Ramesh Babu,1 Kevin W Huggins,1 Guang Ren,3 Suresh T Mathews2 1Department of Nutrition, Dietetics, & Hospitality Management, Auburn University, Auburn, 2Department of Nutrition and Dietetics, Samford University, 3Medicine-Endocrinology, Diabetes & Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA Abstract: Coenzyme Q10 (CoQ10, an endogenously produced compound, is found in all human cells. Within the mitochondria, it plays a substantial role in energy production by acting as a mobile electron carrier in the electron transport chain. Outside the mitochondria, it acts as an excellent antioxidant by sequestering free radicals and working synergistically with other antioxidants, including vitamin E. Dietary contribution is limited, making endogenous production the primary source for optimal function. Now widely available as an over-the-counter supplement, CoQ10 has gained attention for its possible therapeutic use in minimizing the outcomes of certain metabolic diseases, notably cardiovascular disease, diabetes, neurodegenerative disease, and cancer. Research has shown positive results in subjects supplemented with CoQ10, especially in relation to upregulating antioxidant capability. Emerging research suggests beneficial effects of CoQ10 supplementation in individuals on statin medications. CoQ10 supplementation in individuals participating in strenuous exercise seems to exert some beneficial effects, although the data are conflicting with other types of physical activity. This broad review of current CoQ10 literature, while outlining its physiological/functional significance in health and disease conditions, also offers a dietitian’s perspective on its potential use as a supplement in the promotion of health and management of disease conditions. Keywords: coenzyme Q, antioxidant, oxidative stress, dietary supplement, statin

  12. Coenzyme Q Biosynthesis: Evidence for a Substrate Access Channel in the FAD-Dependent Monooxygenase Coq6.

    Directory of Open Access Journals (Sweden)

    Alexandre Ismail

    2016-01-01

    Full Text Available Coq6 is an enzyme involved in the biosynthesis of coenzyme Q, a polyisoprenylated benzoquinone lipid essential to the function of the mitochondrial respiratory chain. In the yeast Saccharomyces cerevisiae, this putative flavin-dependent monooxygenase is proposed to hydroxylate the benzene ring of coenzyme Q (ubiquinone precursor at position C5. We show here through biochemical studies that Coq6 is a flavoprotein using FAD as a cofactor. Homology models of the Coq6-FAD complex are constructed and studied through molecular dynamics and substrate docking calculations of 3-hexaprenyl-4-hydroxyphenol (4-HP6, a bulky hydrophobic model substrate. We identify a putative access channel for Coq6 in a wild type model and propose in silico mutations positioned at its entrance capable of partially (G248R and L382E single mutations or completely (a G248R-L382E double-mutation blocking access to the channel for the substrate. Further in vivo assays support the computational predictions, thus explaining the decreased activities or inactivation of the mutated enzymes. This work provides the first detailed structural information of an important and highly conserved enzyme of ubiquinone biosynthesis.

  13. FORMATION OF BINARY COMPLEXES OF Co(II), Ni(II) AND Cu(II ...

    African Journals Online (AJOL)

    Preferred Customer

    adverse effects and decreasing the availability of dopamine to the CNS; so it is the ... Cobalt is essential for the production of red blood cells and cobalamin and it acts as the substrate for the final enzymatic reaction that yields the active coenzyme ..... competition between hydrogen and metal ion for this second donor site.

  14. Sodium 2-mercaptoethanesulfonate monohydrate (coenzyme M sodium salt monohydrate

    Directory of Open Access Journals (Sweden)

    Stefan Mayr

    2008-11-01

    Full Text Available The 2-thioethanesulfonate anion is the smallest known coenzyme in nature (HS–CoM and plays a key role in methanogenesis by anaerobic archaea, as well as in the oxidation of alkenes by Gram-negative and Gram-positive eubacteria. The title compound, Na+·C2H5O3S2−·H2O, is the Na+ salt of HS–CoM crystallized as the monohydrate. Six O atoms form a distorted octahedral coordination geometry around the Na atom, at distances in the range 2.312 (4–2.517 (3 Å. Two O atoms of the sulfonate group, one O atom of each of three other symmetry-related sulfonate groups plus the water O atom form the coordination environment of the Na+ ion. This arrangement forms Na–O–Na layers in the crystal structure, parallel to (100.

  15. The effect of coenzyme Q10 in statin myopathy.

    Science.gov (United States)

    Zlatohlavek, Lukas; Vrablik, Michal; Grauova, Barbora; Motykova, Eva; Ceska, Richard

    2012-01-01

    Statins significantly reduce CV morbidity and mortality. Unfortunately, one of the side effects of statins is myopathy, for which statins cannot be administered in sufficient doses or administered at all. The aim of this study was to demonstrate the effect of coenzyme Q10 in patients with statin myopathy. Twenty eight patients aged 60.6±10.7 years were monitored (18 women and 10 men) and treated with different types and doses of statin. Muscle weakness and pain was monitored using a scale of one to ten, on which patients expressed the degree of their inconvenience. Examination of muscle problems was performed prior to administration of CQ10 and after 3 and 6 months of dosing. Statistical analysis was performed using Friedman test, Annova and Students t-test. Pain decreased on average by 53.8% (pmuscle weakness by 44.4% (pmuscle pain and sensitivity statistically significantly decreased.

  16. Coenzyme Q10 defects may be associated with a deficiency of Q10-independent mitochondrial respiratory chain complexes

    Directory of Open Access Journals (Sweden)

    Konstantina Fragaki

    Full Text Available BACKGROUND: Coenzyme Q10 (CoQ10 or ubiquinone deficiency can be due either to mutations in genes involved in CoQ10 biosynthesis pathway, or to mutations in genes unrelated to CoQ10 biosynthesis. CoQ10 defect is the only oxidative phosphorylation disorder that can be clinically improved after oral CoQ10 supplementation. Thus, early diagnosis, first evoked by mitochondrial respiratory chain (MRC spectrophotometric analysis, then confirmed by direct measurement of CoQ10 levels, is of critical importance to prevent irreversible damage in organs such as the kidney and the central nervous system. It is widely reported that CoQ10 deficient patients present decreased quinone-dependent activities (segments I + III or G3P + III and II + III while MRC activities of complexes I, II, III, IV and V are normal. We previously suggested that CoQ10 defect may be associated with a deficiency of CoQ10-independent MRC complexes. The aim of this study was to verify this hypothesis in order to improve the diagnosis of this disease. RESULTS: To determine whether CoQ10 defect could be associated with MRC deficiency, we quantified CoQ10 by LC-MSMS in a cohort of 18 patients presenting CoQ10-dependent deficiency associated with MRC defect. We found decreased levels of CoQ10 in eight patients out of 18 (45 %, thus confirming CoQ10 disease. CONCLUSIONS: Our study shows that CoQ10 defect can be associated with MRC deficiency. This could be of major importance in clinical practice for the diagnosis of a disease that can be improved by CoQ10 supplementation.

  17. Active-site-directed inhibition of 3-hydroxy-3-methylglutaryl coenzyme A synthase by 3-chloropropionyl coenzyme A

    International Nuclear Information System (INIS)

    Miziorko, H.M.; Behnke, C.E.

    1985-01-01

    3-Chloropropionyl coenzyme A (3-chloropropionyl-CoA) irreversibly inhibits avian liver 3-hydroxy-3-methylglutaryl-CoA synthase (HMG-CoA synthase). Enzyme inactivation follows pseudo-first-order kinetics and is retarded in the presence of substrates, suggesting that covalent labeling occurs at the active site. A typical rate saturation effect is observed when inactivation kinetics are measured as a function of 3-chloropropionyl-CoA concentration. These data indicate a Ki = 15 microM for the inhibitor and a limiting kinact = 0.31 min-1. [1- 14 C]-3-Chloropropionyl-CoA binds covalently to the enzyme with a stoichiometry (0.7 per site) similar to that measured for acetylation of the enzyme by acetyl-CoA. While the acetylated enzyme formed upon incubation of HMG-CoA synthase with acetyl-CoA is labile to performic acid oxidation, the adduct formed upon 3-chloropropionyl-CoA inactivation is stable to such treatment. Therefore, such an adduct cannot solely involve a thio ester linkage. Exhaustive Pronase digestion of [ 14 C]-3-chloropropionyl-CoA-labeled enzyme produces a radioactive compound which cochromatographs with authentic carboxyethylcysteine using reverse-phase/ion-pairing high-pressure liquid chromatography and both silica and cellulose thin-layer chromatography systems. This suggests that enzyme inactivation is due to alkylation of an active-site cysteine residue

  18. Reduced mitochondrial coenzyme Q10 levels in HepG2 cells treated with high-dose simvastatin: A possible role in statin-induced hepatotoxicity?

    International Nuclear Information System (INIS)

    Tavintharan, S.; Ong, C.N.; Jeyaseelan, K.; Sivakumar, M.; Lim, S.C.; Sum, C.F.

    2007-01-01

    Lowering of low-density lipoprotein cholesterol is well achieved by 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors (statins). Statins inhibit the conversion of HMG-CoA to mevalonate, a precursor for cholesterol and coenzyme Q10 (CoQ 10 ). In HepG2 cells, simvastatin decreased mitochondrial CoQ 10 levels, and at higher concentrations was associated with a moderately higher degree of cell death, increased DNA oxidative damage and a reduction in ATP synthesis. Supplementation of CoQ 10 , reduced cell death and DNA oxidative stress, and increased ATP synthesis. It is suggested that CoQ 10 deficiency plays an important role in statin-induced hepatopathy, and that CoQ 10 supplementation protects HepG2 cells from this complication

  19. Crystallization and preliminary X-ray analysis of PaaAC, the main component of the hydroxylase of the Escherichia coli phenylacetyl-coenzyme A oxygenase complex

    International Nuclear Information System (INIS)

    Grishin, Andrey M.; Ajamian, Eunice; Zhang, Linhua; Cygler, Miroslaw

    2010-01-01

    The expression, purification, crystallization and preliminary crystallographic analysis of the PaaAC complex is reported. This is the main component of the E. coliphenylacetyl-coenzyme A oxygenase complex. The Escherichia coli paa operon encodes enzymes of the phenylacetic acid-utilization pathway that metabolizes phenylacetate in the form of a coenzyme A (CoA) derivative. The phenylacetyl-coenzyme A oxygenase complex, which has been postulated to contain five components designated PaaABCDE, catalyzes ring hydroxylation of phenylacetyl-CoA. The PaaAC subcomplex shows low sequence similarity to other bacterial multicomponent monooxygenases (BMMs) and forms a separate branch on the phylogenetic tree. PaaAC, which catalyzes the hydroxylation reaction, was purified and crystallized in the absence of a bound ligand as well as in complexes with CoA, 3-hydroxybutyryl-CoA, benzoyl-CoA and the true substrate phenylacetyl-CoA. Crystals of the ligand-free enzyme belonged to space group P2 1 2 1 2 1 and diffracted to 2.65 Å resolution, whereas complexes with CoA and its derivatives crystallized in space group P4 1 2 1 2 and diffracted to ∼2.0 Å resolution. PaaAC represents the first crystallized BMM hydroxylase that utilizes a CoA-linked substrate

  20. SLC1 and SLC4 encode partially redundant acyl-coenzyme A 1-acylglycerol-3-phosphate O-acyltransferases of budding yeast

    DEFF Research Database (Denmark)

    Benghezal, Mohammed; Roubaty, Carole; Veepuri, Vijayanath

    2007-01-01

    Phosphatidic acid is the intermediate, from which all glycerophospholipids are synthesized. In yeast, it is generated from lysophosphatidic acid, which is acylated by Slc1p, an sn-2-specific, acyl-coenzyme A-dependent 1-acylglycerol-3-phosphate O-acyltransferase. Deletion of SLC1 is not lethal...

  1. Inhibition of Coenzyme Qs Accumulation in Engineered Escherichia coli by High Concentration of Farnesyl Diphosphate

    OpenAIRE

    Samoudi, Mojtaba; Omid Yeganeh, Negar; Shahbani Zahiri, Hossein; Shariati, Parvin; Hajhosseini, Reza

    2015-01-01

    Background: Coenzyme Q 10 (CoQ 10 ) is an isoprenoid component used widely in nutraceutical industries. Farnesyl diphosphate synthase (FPPS) is a responsible enzyme for biosynthesis of farnesyl diphosphate (FPP), a key precursor for CoQs production. This research involved investigating the effect of FPPS over-expression on CoQs production in engineered CoQ 10 -producing Escherichia coli (E. coli). Methods: Two CoQ 10 -producing strains, as referred to E. coli Ba and E. coli Br, were transform...

  2. Altered fatty acid metabolism and reduced stearoyl-coenzyme a desaturase activity in asthma.

    Science.gov (United States)

    Rodriguez-Perez, N; Schiavi, E; Frei, R; Ferstl, R; Wawrzyniak, P; Smolinska, S; Sokolowska, M; Sievi, N A; Kohler, M; Schmid-Grendelmeier, P; Michalovich, D; Simpson, K D; Hessel, E M; Jutel, M; Martin-Fontecha, M; Palomares, O; Akdis, C A; O'Mahony, L

    2017-11-01

    Fatty acids and lipid mediator signaling play an important role in the pathogenesis of asthma, yet this area remains largely underexplored. The aims of this study were (i) to examine fatty acid levels and their metabolism in obese and nonobese asthma patients and (ii) to determine the functional effects of altered fatty acid metabolism in experimental models. Medium- and long-chain fatty acid levels were quantified in serum from 161 human volunteers by LC/MS. Changes in stearoyl-coenzyme A desaturase (SCD) expression and activity were evaluated in the ovalbumin (OVA) and house dust mite (HDM) murine models. Primary human bronchial epithelial cells from asthma patients and controls were evaluated for SCD expression and activity. The serum desaturation index (an indirect measure of SCD) was significantly reduced in nonobese asthma patients and in the OVA murine model. SCD1 gene expression was significantly reduced within the lungs following OVA or HDM challenge. Inhibition of SCD in mice promoted airway hyper-responsiveness. SCD1 expression was suppressed in bronchial epithelial cells from asthma patients. IL-4 and IL-13 reduced epithelial cell SCD1 expression. Inhibition of SCD reduced surfactant protein C expression and suppressed rhinovirus-induced IP-10 secretion, which was associated with increased viral titers. This is the first study to demonstrate decreased fatty acid desaturase activity in humans with asthma. Experimental models in mice and human epithelial cells suggest that inhibition of desaturase activity leads to airway hyper-responsiveness and reduced antiviral defense. SCD may represent a new target for therapeutic intervention in asthma patients. © 2017 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd.

  3. ORF Sequence: NC_003103 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available etoacid-coenzyme A transferase [Rickettsia conorii str. Malish 7] MGIPAFYTKTGIGTIVEEGKATKEFNGKKYIMETALQADLAIIKGFKADKSSNVIYNKTARNFNAVM...AGAAKVTVCEVEEIVKVGELDPNNIHTPNIFIQRLIVGEKYEKRIEQLTVREK

  4. HYPOLIPIDEMIC EFFECT OF CURCUMIN OR CO-ENZYME Q1-0 AND THEIR MIXTURE ON OBESE RATS FED A HIGH CHOLESTEROL DIET

    International Nuclear Information System (INIS)

    SHAHIN, M.I.M.

    2008-01-01

    In the current study, hyperlipidemia was induced in the rats by feeding diet enriched with cholesterol for two weeks. After 2 weeks of induction of hypercholesterolemia in rats and in comparison to normal rats, the results showed that incorporation of extra cholesterol in diet led to significant increases in serum cholesterol, triglycerides, LDL-cholesterol, HDL-cholesterol, leptin and MDA levels. On the other hand, total serum triiodothyronine (T3), liver glutathione (GSH) and glutathione peroxidase (GPx) activities were decreased significantly in cholesterol fed rats. The concentration of TBARS in the liver was elevated.All previous parameters were corrected after the hypercholesterolemic rats were treated with curcumin or co-enzyme Q 1 -0 or a mixture of them dependent on the time of treatment. These findings are consistent with the concept that curcumin and co-enzyme Q 10 are antioxidant agents. The underlying mechanisms of these effects were discussed

  5. Posttranslational modification of Klebsiella pneumoniae flavodoxin by covalent attachment of coenzyme A, shown by sup 31 P NMR and electrospray mass spectrometry, prevents electron transfer from the nifJ protein to nitrogenase. A possible new regulatory mechanism for biological nitrogen fixation

    Energy Technology Data Exchange (ETDEWEB)

    Thorneley, R.N.F.; Ashby, G.A.; Drummond, M.H.; Eady, R.R.; Huff, S.; Macdonald, C.J. (Univ. of Sussex, Brighton (United Kingdom)); Abell, C.; Schneier, A. (Univ. Chemical Lab., Cambridge (United Kingdom))

    1992-02-04

    A strain of Escherichia coli (71-18) that produces ca. 15% of its soluble cytoplasmic protein as a flavodoxin, the Klebsiella pneumoniae nifF gene product, has been constructed. The flavodoxin was purified using FPLC and resolved into two forms, designated KpFldI and KpFldII, which were shown to have identical N-terminal amino acid sequences (30 residues) in agreement with that predicted by the K. pneumoniae nifF DNA sequence. {sup 31}P NMR, electrospray mass spectrometry, UV-visible spectra, and thiol group estimations showed that the single cysteine residue (position 68) of KpFldI is posttranslationally modified in KpFldII by the covalent, mixed disulfide, attachment of coenzyme A. KpFldII was inactive as an electron carrier between the K. pneumoniae nifJ product (a pyruvate-flavodoxin oxidoreductase) and K. pneumoniae nifH product (the Fe-protein of nitrogenase). This novel posttranslational modification of a flavodoxin is discussed in terms of the regulation of nitrogenase activity in vivo in response to the level of dissolved O{sub 2} and the carbon status of diazotrophic cultures.

  6. TD-DFT Insight into Photodissociation of Co-C Bond in Coenzyme B12

    Directory of Open Access Journals (Sweden)

    Pawel Michal Kozlowski

    2014-02-01

    Full Text Available Coenzyme B12 (AdoCbl is one of the most biologically active forms of vitamin B12, and continues to be a topic of active research interest. The mechanism of Co-C bond cleavage in AdoCbl, and the corresponding enzymatic reactions are however, not well understood at the molecular level. In this work, time-dependent density functional theory (TD-DFT has been applied to investigate the photodissociation of coenzyme B12. To reduce computational cost, while retaining the major spectroscopic features of AdoCbl, a truncated model based on ribosylcobalamin (RibCbl was used to simulate Co-C photodissociation. Equilibrium geometries of RibCbl were obtained by optimization at the DFT/BP86/TZVP level of theory, and low-lying excited states were calculated by TD-DFT using the same functional and basis set. The calculated singlet states, and absorption spectra were simulated in both the gas phase, and water, using the polarizable continuum model (PCM. Both spectra were in reasonable agreement with experimental data, and potential energy curves based on vertical excitations were plotted to explore the nature of Co-C bond dissociation. It was found that a repulsive 3(σCo-C → σ*Co-C triplet state became dissociative at large Co-C bond distance, similar to a previous observation for methylcobalamin (MeCbl. Furthermore, potential energy surfaces (PESs obtained as a function of both Co-CRib and Co-NIm distances, identify the S1 state as a key intermediate generated during photoexcitation of RibCbl, attributed to a mixture of a MLCT (metal-to-ligand charge transfer and a σ bonding-ligand charge transfer (SBLCT states.

  7. Reduced Cardiovascular Mortality 10 Years after Supplementation with Selenium and Coenzyme Q10 for Four Years: Follow-Up Results of a Prospective Randomized Double-Blind Placebo-Controlled Trial in Elderly Citizens.

    Directory of Open Access Journals (Sweden)

    Urban Alehagen

    Full Text Available Selenium and coenzyme Q10 are important antioxidants in the body. As the intake of selenium is low in Europe, and the endogenous production of coenzyme Q10 decreases as age increases, an intervention trial using selenium and coenzyme Q10 for four years was performed. As previously reported, the intervention was accompanied by reduced cardiovascular mortality. The objective of the present study was to analyze cardiovascular mortality for up to 10 years after intervention, to evaluate if mortality differed in subgroups differentiated by gender, diabetes, ischemic heart disease (IHD, and functional class.Four-hundred forty-three healthy elderly individuals were included from a rural municipality in Sweden. All cardiovascular mortality was registered, and no participant was lost to the follow-up. Based on death certificates and autopsy results mortality was registered.Significantly reduced cardiovascular mortality could be seen in those on selenium and coenzyme Q10 intervention. A multivariate Cox regression analysis demonstrated a reduced cardiovascular mortality risk in the active treatment group (HR: 0.51; 95%CI 0.36-0.74; P = 0.0003. The reduced mortality could be seen to persist during the 10-year period. Subgroup analysis showed positive effects in both genders. An equally positive risk reduction could be seen in those with ischemic heart disease (HR: 0.51; 95%CI 0.27-0.97; P = 0.04, but also in the different functional classes.In a 10-year follow-up of a group of healthy elderly participants given four years of intervention with selenium and coenzyme Q10, significantly reduced cardiovascular mortality was observed. The protective action was not confined to the intervention period, but persisted during the follow-up period. The mechanism explaining the persistency remains to be elucidated. Since this was a small study, the observations should be regarded as hypothesis-generating.

  8. The glossyhead1 allele of acc1 reveals a principal role for multidomain acetyl-coenzyme a carboxylase in the biosynthesis of cuticular waxes by Arabidopsis

    KAUST Repository

    Lu, Shiyou

    2011-09-23

    A novel mutant of Arabidopsis (Arabidopsis thaliana), having highly glossy inflorescence stems, postgenital fusion in floral organs, and reduced fertility, was isolated from an ethyl methanesulfonate-mutagenized population and designated glossyhead1 (gsd1). The gsd1 locus was mapped to chromosome 1, and the causal gene was identified as a new allele of Acetyl-Coenzyme A Carboxylase1 (ACC1), a gene encoding the main enzyme in cytosolic malonyl-coenzyme A synthesis. This, to our knowledge, is the first mutant allele of ACC1 that does not cause lethality at the seed or early germination stage, allowing for the first time a detailed analysis of ACC1 function in mature tissues. Broad lipid profiling of mature gsd1 organs revealed a primary role for ACC1 in the biosynthesis of the very-long-chain fatty acids (C 20:0 or longer) associated with cuticular waxes and triacylglycerols. Unexpectedly, transcriptome analysis revealed that gsd1 has limited impact on any lipid metabolic networks but instead has a large effect on environmental stress-responsive pathways, especially senescence and ethylene synthesis determinants, indicating a possible role for the cytosolic malonyl-coenzyme A-derived lipids in stress response signaling. © 2011 American Society of Plant Biologists. All Rights Reserved.

  9. Analysis of hydroxycinnamic acid degradation in Agrobacterium fabrum reveals a coenzyme A-dependent, beta-oxidative deacetylation pathway.

    Science.gov (United States)

    Campillo, Tony; Renoud, Sébastien; Kerzaon, Isabelle; Vial, Ludovic; Baude, Jessica; Gaillard, Vincent; Bellvert, Floriant; Chamignon, Cécile; Comte, Gilles; Nesme, Xavier; Lavire, Céline; Hommais, Florence

    2014-06-01

    The soil- and rhizosphere-inhabiting bacterium Agrobacterium fabrum (genomospecies G8 of the Agrobacterium tumefaciens species complex) is known to have species-specific genes involved in ferulic acid degradation. Here, we characterized, by genetic and analytical means, intermediates of degradation as feruloyl coenzyme A (feruloyl-CoA), 4-hydroxy-3-methoxyphenyl-β-hydroxypropionyl-CoA, 4-hydroxy-3-methoxyphenyl-β-ketopropionyl-CoA, vanillic acid, and protocatechuic acid. The genes atu1416, atu1417, and atu1420 have been experimentally shown to be necessary for the degradation of ferulic acid. Moreover, the genes atu1415 and atu1421 have been experimentally demonstrated to be essential for this degradation and are proposed to encode a phenylhydroxypropionyl-CoA dehydrogenase and a 4-hydroxy-3-methoxyphenyl-β-ketopropionic acid (HMPKP)-CoA β-keto-thiolase, respectively. We thus demonstrated that the A. fabrum hydroxycinnamic degradation pathway is an original coenzyme A-dependent β-oxidative deacetylation that could also transform p-coumaric and caffeic acids. Finally, we showed that this pathway enables the metabolism of toxic compounds from plants and their use for growth, likely providing the species an ecological advantage in hydroxycinnamic-rich environments, such as plant roots or decaying plant materials.

  10. Bioinspired Design of Alcohol Dehydrogenase@nano TiO2 Microreactors for Sustainable Cycling of NAD+/NADH Coenzyme

    Directory of Open Access Journals (Sweden)

    Sen Lin

    2018-02-01

    Full Text Available The bioinspired design and construction of enzyme@capsule microreactors with specific cell-like functionality has generated tremendous interest in recent years. Inspired by their fascinating complexity, scientists have endeavored to understand the essential aspects of a natural cell and create biomimicking microreactors so as to immobilize enzymes within the hierarchical structure of a microcapsule. In this study, simultaneous encapsulation of alcohol dehydrogenase (ADH was achieved during the preparation of microcapsules by the Pickering emulsion method using amphiphilic modified TiO2 nanoparticles (NPs as building blocks for assembling the photocatalytic microcapsule membrane. The ADH@TiO2 NP microreactors exhibited dual catalytic functions, i.e., spatially confined enzymatic catalysis and the membrane-associated photocatalytic oxidation under visible light. The sustainable cycling of nicotinamide adenine dinucleotide (NAD coenzyme between NADH and NAD+ was realized by enzymatic regeneration of NADH from NAD+ reduction, and was provided in a form that enabled further photocatalytic oxidation to NAD+ under visible light. This bioinspired ADH@TiO2 NP microreactor allowed the linking of a semiconductor mineral-based inorganic photosystem to enzymatic reactions. This is a first step toward the realization of sustainable biological cycling of NAD+/NADH coenzyme in synthetic functional microsystems operating under visible light irradiation.

  11. Role of coenzyme Q10 (CoQ10) in cardiac disease, hypertension and Meniere-like syndrome.

    Science.gov (United States)

    Kumar, Adarsh; Kaur, Harharpreet; Devi, Pushpa; Mohan, Varun

    2009-12-01

    Coenzyme Q10 (ubiquinone) is a mitochondrial coenzyme which is essential for the production of ATP. Being at the core of cellular energy processes it assumes importance in cells with high energy requirements like the cardiac cells which are extremely sensitive to CoQ10 deficiency produced by cardiac diseases. CoQ10 has thus a potential role for prevention and treatment of heart ailments by improving cellular bioenergetics. In addition it has an antioxidant, a free radical scavenging and a vasodilator effect which may be helpful in these conditions. It inhibits LDL oxidation and thus the progression of atherosclerosis. It decreases proinflammatory cytokines and decreases blood viscosity which is helpful in patients of heart failure and coronary artery disease. It also improves ischemia and reperfusion injury of coronary revascularisation. Significant improvement has been observed in clinical and hemodynamic parameters and in exercise tolerance in patients given adjunctive CoQ10 in doses from 60 to 200 mg daily in the various trials conducted in patients of heart failure, hypertension, ischemic heart disease and other cardiac illnesses. Recently it has been found to be an independent predictor of mortality in congestive heart failure. It has also been found to be helpful in vertigo and Meniere-like syndrome by improving the immune system. Further research is going on to establish firmly its role in the therapy of cardiovascular diseases.

  12. Promotion of growth by Coenzyme Q10 is linked to gene expression in C. elegans.

    Science.gov (United States)

    Fischer, Alexandra; Niklowitz, Petra; Menke, Thomas; Döring, Frank

    2014-10-03

    Coenzyme Q (CoQ, ubiquinone) is an essential component of the respiratory chain, a cofactor of pyrimidine biosynthesis and acts as an antioxidant in extra mitochondrial membranes. More recently CoQ has been identified as a modulator of apoptosis, inflammation and gene expression. CoQ deficient Caenorhabditis elegans clk-1 mutants show several phenotypes including a delayed postembryonic growth. Using wild type and two clk-1 mutants, here we established an experimental set-up to study the consequences of endogenous CoQ deficiency or exogenous CoQ supply on gene expression and growth. We found that a deficiency of endogenous CoQ synthesis down-regulates a cluster of genes that are important for growth (i.e., RNA polymerase II, eukaryotic initiation factor) and up-regulates oxidation reactions (i.e., cytochrome P450, superoxide dismutase) and protein interactions (i.e., F-Box proteins). Exogenous CoQ supply partially restores the expression of these genes as well as the growth retardation of CoQ deficient clk-1 mutants. On the other hand exogenous CoQ supply does not alter the expression of a further sub-set of genes. These genes are involved in metabolism (i.e., succinate dehydrogenase complex), cell signalling or synthesis of lectins. Thus, our work provides a comprehensive overview of genes which can be modulated in their expression by endogenous or exogenous CoQ. As growth retardation in CoQ deficiency is linked to the gene expression profile we suggest that CoQ promotes growth via gene expression. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Level of coenzyme A and the activity of certain dehydrogenases under chronic low dose X-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Cherkasova, L A; Novik, V A; Tsychun, G F [AN Belorusskoj SSR, Minsk. Inst. Fiziologii

    1975-01-01

    A study was made of the effect of long-term x ray irradiation (cumulative dose 50 R) on: the content of co-enzyme A (KoA) in the brain and liver, the activity of a number of oxydizing reducing enzymes in the brain mitochondria and heart muscle, and the blood glucocorticoid content. It was established that the metabolism of brain and liver KoA is quite stable, the enzymes of the brain tricarbonic acids and pyruvate-dehydrogenase cycle are labile.

  14. A single nucleotide polymorphism within the acetyl-coenzyme A carboxylase beta gene is associated with proteinuria in patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Maeda, Shiro; Kobayashi, Masa-aki; Araki, Shin-ichi

    2010-01-01

    It has been suggested that genetic susceptibility plays an important role in the pathogenesis of diabetic nephropathy. A large-scale genotyping analysis of gene-based single nucleotide polymorphisms (SNPs) in Japanese patients with type 2 diabetes identified the gene encoding acetyl-coenzyme A ca...

  15. Improved Xylitol Production from D-Arabitol by Enhancing the Coenzyme Regeneration Efficiency of the Pentose Phosphate Pathway in Gluconobacter oxydans.

    Science.gov (United States)

    Li, Sha; Zhang, Jinliang; Xu, Hong; Feng, Xiaohai

    2016-02-10

    Gluconobacter oxydans is used to produce xylitol from D-arabitol. This study aims to improve xylitol production by increasing the coenzyme regeneration efficiency of the pentose phosphate pathway in G. oxydans. Glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) were overexpressed in G. oxydans. Real-time PCR and enzyme activity assays revealed that G6PDH/6PGDH activity and coenzyme regeneration efficiency increased in the recombinant G. oxydans strains. Approximately 29.3 g/L xylitol was obtained, with a yield of 73.2%, from 40 g/L d-arabitol in the batch biotransformation with the G. oxydans PZ strain. Moreover, the xylitol productivity (0.62 g/L/h) was 3.26-fold of the wild type strain (0.19 g/L/h). In repetitive batch biotransformation, the G. oxydans PZ cells were used for five cycles without incurring a significant loss in productivity. These results indicate that the recombinant G. oxydans PZ strain is economically feasible for xylitol production in industrial bioconversion.

  16. Factors affecting the palmitoyl-coenzyme A desaturase of Saccharomyces cerevisiae

    Science.gov (United States)

    Klein, H. P.; Volkmann, C. M.

    1975-01-01

    The activity and stability of the palmitoyl-coenzyme A (CoA) desaturase complex of Saccharomyces cerevisiae was influenced by several factors. Cells, grown nonaerobically and then incubated with glucose, either in air or under N2, showed a marked increase in desaturase activity. Cycloheximide, added during such incubations, prevented the increase in activity, suggesting de novo synthesis. The stability of the desaturase from cells grown nonaerobically was affected by subsequent treatment of the cells; enzyme from freshly harvested cells, or from cells that were then shaken under nitrogen, readily lost activity upon washing or during density gradient analysis, whereas aerated cells, in the presence or absence of glucose, yielded stable enzyme preparations. The loss of activity in nonaerobic preparations could be reversed by adding soluble supernatant from these homogenates and could be prevented by growing the cells in the presence of palmitoleic acid and ergosterol, but not with several other lipids tested.

  17. Sensitive non-radioactive determination of aminotransferase stereospecificity for C-4' hydrogen transfer on the coenzyme.

    Science.gov (United States)

    Jomrit, Juntratip; Summpunn, Pijug; Meevootisom, Vithaya; Wiyakrutta, Suthep

    2011-02-25

    A sensitive non-radioactive method for determination of the stereospecificity of the C-4' hydrogen transfer on the coenzymes (pyridoxal phosphate, PLP; and pyridoxamine phosphate, PMP) of aminotransferases has been developed. Aminotransferase of unknown stereospecificity in its PLP form was incubated in (2)H(2)O with a substrate amino acid resulted in PMP labeled with deuterium at C-4' in the pro-S or pro-R configuration according to the stereospecificity of the aminotransferase tested. The [4'-(2)H]PMP was isolated from the enzyme protein and divided into two portions. The first portion was incubated in aqueous buffer with apo-aspartate aminotransferase (a reference si-face specific enzyme), and the other was incubated with apo-branched-chain amino acid aminotransferase (a reference re-face specific enzyme) in the presence of a substrate 2-oxo acid. The (2)H at C-4' is retained with the PLP if the aminotransferase in question transfers C-4' hydrogen on the opposite face of the coenzyme compared with the reference aminotransferase, but the (2)H is removed if the test and reference aminotransferases catalyze hydrogen transfer on the same face. PLP formed in the final reactions was analyzed by LC-MS/MS for the presence or absence of (2)H. The method was highly sensitive that for the aminotransferase with ca. 50 kDa subunit molecular weight, only 2mg of the enzyme was sufficient for the whole test. With this method, the use of radioactive substances could be avoided without compromising the sensitivity of the assay. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Substitution of arginine for histidine-47 in the coenzyme binding site of yeast alcohol dehydrogenase I

    International Nuclear Information System (INIS)

    Gould, R.M.; Plapp, B.V.

    1990-01-01

    Molecular modeling of alcohol dehydrogenases suggests that His-47 in the yeast enzyme (His-44 in the protein sequence, corresponding to Arg-47 in the horse liver enzyme) binds the pyrophosphate of the NAD coenzyme. His-47 in the Saccharomyces cerevisiae isoenzyme I was substituted with an arginine by a directed mutation. Steady-state kinetic results at pH 7.3 and 30 degree C of the mutant and wild-type enzymes were consistent with an ordered Bi-Bi mechanism. The substitution decreased dissociation constants by 4-fold for NAD + and 2-fold for NADH while turnover numbers were decreased by 4-fold for ethanol oxidation and 6-fold for acetaldehyde reduction. The magnitudes of these effects are smaller than those found for the same mutation in the human liver β enzyme, suggesting that other amino acid residues in the active site modulate the effects of the substitution. The pH dependencies of dissociation constants and other kinetic constants were similar in the two yeast enzymes. Thus, it appears that His-47 is not solely responsible for a pK value near 7 that controls activity and coenzyme binding rates in the wild-type enzyme. The small substrate deuterium isotope effect above pH 7 and the single exponential phase of NADH production during the transient oxidation of ethanol by the Arg-47 enzyme suggest that the mutation makes an isomerization of the enzyme-NAD + complex limiting for turnover with ethanol

  19. Genetic Basis for Correction of Very‐Long‐Chain Acyl-Coenzyme A Dehydrogenase Deficiency by Bezafibrate in Patient Fibroblasts: Toward a Genotype‐Based Therapy

    DEFF Research Database (Denmark)

    Gobin‐Limballe, S.; Djouadi, F.; Aubey, F.

    2007-01-01

    Very‐long‐chain acyl-coenzyme A dehydrogenase (VLCAD) deficiency is an inborn mitochondrial fatty‐acid β‐oxidation (FAO) defect associated with a broad mutational spectrum, with phenotypes ranging from fatal cardiopathy in infancy to adolescent‐onset myopathy, and for which there is no established...

  20. 3-Methylcrotonyl-coenzyme A carboxylase deficiency in Amish/Mennonite adults identified by detection of increased acylcarnitines in blood spots of their children.

    Science.gov (United States)

    Gibson, K M; Bennett, M J; Naylor, E W; Morton, D H

    1998-03-01

    Isolated 3-methylcrotonyl coenzyme A carboxylase (MCC) deficiency was documented in four adult women from the Amish/Mennonite population of Lancaster County, Pennsylvania. Metabolic and enzymatic investigations in these individuals were instituted after the detection of abnormal acylcarnitine profiles in blood spots obtained from their newborn children, in whom MCC activity was normal.

  1. Coenzyme Q10 Supplementation Modulates NFκB and Nrf2 Pathways in Exercise Training

    Directory of Open Access Journals (Sweden)

    Ragip Pala, Cemal Orhan, Mehmet Tuzcu, Nurhan Sahin, Shakir Ali, Vedat Cinar, Mustafa Atalay, Kazim Sahin

    2016-03-01

    Full Text Available This study reports the effects of Q10, coenzyme Q10 or ubiquinone, a component of the electron transport chain in mitochondria, on nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB, inhibitors of kappa B (IκB, nuclear factor (erythroid-derived 2-like 2 (Nrf2 and hemeoxygenase 1 (HO-1 in rats after chronic exercise training for 6 weeks. 8-week old male Wistar rats were assigned randomly to one of four treatments planned in a 2 x 2 factorial arrangement of two condition (sedentary vs. exercise training, and two coenzyme Q10 levels (0 and 300 mg/kg per day for 6 weeks. The expression levels of the target proteins were determined in the heart, liver and muscle, and biochemical parameters including creatinine, urea, glucose and lipid profile were investigated in plasma. When compared with sedentary group, significant decreases in heart, liver and muscle NFκB levels by 45%, 26% and 44% were observed in Q10 supplemented rats after exercise training, respectively, while the inhibitory protein IκB increased by 179%, 111% and 127% in heart, liver and muscle tissues. Q10 supplementation caused an increase in Nrf2 (167%, 165% and 90% and HO-1 (107%, 156% and 114% after exercise training in heart, liver and muscle tissues (p < 0.05. No significant change was observed in any of the parameters associated with protein, carbohydrate and lipid metabolism, except that exercise caused a decrease in plasma triglyceride, which was further decreased by Q10. In conclusion, these results suggest that Q10 modulates the expression of NFκB, IκB, Nrf2 and HO-1 in exercise training, indicating an anti-inflammatory effect of Q10 and emphasizes its role in antioxidant defense.

  2. THE COMBINED EFFECT OF SCUTELLARIA BAICALENSIS EXTRACT AND COENZYME Q10 IN OXIDATIVE STRESS INDUCED BY CHROMIUM COMPOUNDS

    Directory of Open Access Journals (Sweden)

    Ewa Sawicka

    2010-03-01

    Full Text Available Background: The common use of antioxidants and its joint application brings the question whether they are useful in oxidative stress induced by the chemicals or whether they cause harmful interaction. Both Scutellaria baicalensis and CoQ10 are known as antioxidants, however one exogenous, the second endogenous. Chromium belongs equal to essential microelements and toxic factors. Therefore the aim of work was the evaluation joint effect of two examined antioxidants in exposure to chromium compounds.Materials and methods: The material was fresh blood obtained from healthy volunteers. The concentration of malondialdehyde (MDA in erythrocytes was evaluated using Stock’s method. The activity of mixture of Antoxyd and coenzyme Q10 was tested after exposure to chromium III and VI at concentrations: 0,05; 0,5 and 1,0 µg/ml. Antioxidants were used in concentrations : 8,0; 20; 60 and 100 µg/ml. Results: The influence of coenzyme Q10 in exposure to chromium III and chromium VI was statistically insignificant, but CoQ10 given together with Antoxyd in all used concentration statistically significant decreased the level of MDA in erythrocytes exposed to chromium compounds (p*0,001. Conclusions: Application of both antioxidants has exerted synergistic action lowering MDA level, which was elevated after chromium. No harmful interactions in the examined sample between antioxidants and chromium ions were noted.

  3. Activity of coenzyme Q 10 (Q-Ter multicomposite) on recovery time in noise-induced hearing loss.

    Science.gov (United States)

    Staffa, Paola; Cambi, Jacopo; Mezzedimi, Chiara; Passali, Desiderio; Bellussi, Luisa

    2014-01-01

    A potential consequence of exposure to noise is a temporary reduction in auditory sensitivity known as temporary threshold shift (TTS), which mainly depends on the intensity and duration of exposure to the noise. Recovery time is related to the amount of initial hearing loss, and the most recovery takes place during the first 15 min following exposure. This study evaluated the efficacy in otoprotection against noise-induced hearing loss of an orally administrated food supplement containing coenzyme Q 10 -Ter. This water-soluble formulation of coenzyme Q 10 shows better bioavailability than the native form and has been found to have a protective effect on outer hair cells after exposure to noise in animal models. Thirty volunteers were enrolled, and the right ear of each subject was exposed to a narrow-band noise centered at 3 kHz for 10 min at the intensity of 90 dB HL. In the 30 subjects enrolled, TTS was evaluated after 2, 15, and 30 min and the recovery time was recorded in each subject. The longest recovery time was 45 min. Among the 18 subjects who underwent a second test after treatment with Q-Ter, the mean recovery time was 31.43 min. The results of the present study show that 30 days' treatment with Q-Ter can aid faster recovery after exposure to noise (P < 0.0001). The reduction in the recovery time following treatment can be explained by Q-Ter-mediated improvement of the outer hair cells' response to oxidative stress.

  4. Coenzyme Q10 protects hair cells against aminoglycoside.

    Directory of Open Access Journals (Sweden)

    Kazuma Sugahara

    Full Text Available It is well known that the production of free radicals is associated with sensory cell death induced by an aminoglycoside. Many researchers have reported that antioxidant reagents protect sensory cells in the inner ear, and coenzyme Q10 (CoQ10 is an antioxidant that is consumed as a health food in many countries. The purpose of this study was to investigate the role of CoQ10 in mammalian vestibular hair cell death induced by aminoglycoside. Cultured utricles of CBA/CaN mice were divided into three groups (control group, neomycin group, and neomycin + CoQ10 group. In the neomycin group, utricles were cultured with neomycin (1 mM to induce hair cell death. In the neomycin + CoQ10 group, utricles were cultured with neomycin and water-soluble CoQ10 (30-0.3 µM. Twenty-four hours after exposure to neomycin, the cultured tissues were fixed, and vestibular hair cells were labeled using an anti-calmodulin antibody. Significantly more hair cells survived in the neomycin + CoQ10 group than in the neomycin group. These data indicate that CoQ10 protects sensory hair cells against neomycin-induced death in the mammalian vestibular epithelium; therefore, CoQ10 may be useful as a protective drug in the inner ear.

  5. Coenzyme Q supplementation in pulmonary arterial hypertension

    Directory of Open Access Journals (Sweden)

    Jacqueline Sharp

    2014-01-01

    Full Text Available Mitochondrial dysfunction is a fundamental abnormality in the vascular endothelium and smooth muscle of patients with pulmonary arterial hypertension (PAH. Because coenzyme Q (CoQ is essential for mitochondrial function and efficient oxygen utilization as the electron carrier in the inner mitochondrial membrane, we hypothesized that CoQ would improve mitochondrial function and benefit PAH patients. To test this, oxidized and reduced levels of CoQ, cardiac function by echocardiogram, mitochondrial functions of heme synthesis and cellular metabolism were evaluated in PAH patients (N=8 in comparison to healthy controls (N=7, at baseline and after 12 weeks oral CoQ supplementation. CoQ levels were similar among PAH and control individuals, and increased in all subjects with CoQ supplementation. PAH patients had higher CoQ levels than controls with supplementation, and a tendency to a higher reduced-to-oxidized CoQ ratio. Cardiac parameters improved with CoQ supplementation, although 6-minute walk distances and BNP levels did not significantly change. Consistent with improved mitochondrial synthetic function, hemoglobin increased and red cell distribution width (RDW decreased in PAH patients with CoQ, while hemoglobin declined slightly and RDW did not change in healthy controls. In contrast, metabolic and redox parameters, including lactate, pyruvate and reduced or oxidized gluthathione, did not change in PAH patients with CoQ. In summary, CoQ improved hemoglobin and red cell maturation in PAH, but longer studies and/or higher doses with a randomized placebo-controlled controlled design are necessary to evaluate the clinical benefit of this simple nutritional supplement.

  6. Calcium binding and transport by coenzyme Q.

    Science.gov (United States)

    Bogeski, Ivan; Gulaboski, Rubin; Kappl, Reinhard; Mirceski, Valentin; Stefova, Marina; Petreska, Jasmina; Hoth, Markus

    2011-06-22

    Coenzyme Q10 (CoQ10) is one of the essential components of the mitochondrial electron-transport chain (ETC) with the primary function to transfer electrons along and protons across the inner mitochondrial membrane (IMM). The concomitant proton gradient across the IMM is essential for the process of oxidative phosphorylation and consequently ATP production. Cytochrome P450 (CYP450) monoxygenase enzymes are known to induce structural changes in a variety of compounds and are expressed in the IMM. However, it is unknown if CYP450 interacts with CoQ10 and how such an interaction would affect mitochondrial function. Using voltammetry, UV-vis spectrometry, electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), fluorescence microscopy and high performance liquid chromatography-mass spectrometry (HPLC-MS), we show that both CoQ10 and its analogue CoQ1, when exposed to CYP450 or alkaline media, undergo structural changes through a complex reaction pathway and form quinone structures with distinct properties. Hereby, one or both methoxy groups at positions 2 and 3 on the quinone ring are replaced by hydroxyl groups in a time-dependent manner. In comparison with the native forms, the electrochemically reduced forms of the new hydroxylated CoQs have higher antioxidative potential and are also now able to bind and transport Ca(2+) across artificial biomimetic membranes. Our results open new perspectives on the physiological importance of CoQ10 and its analogues, not only as electron and proton transporters, but also as potential regulators of mitochondrial Ca(2+) and redox homeostasis.

  7. Alcohol depletes coenzyme-Q10 associated with increased TNF-alpha secretion to induce cytotoxicity in HepG2 cells

    International Nuclear Information System (INIS)

    Vidyashankar, Satyakumar; Nandakumar, Krishna S.; Patki, Pralhad S.

    2012-01-01

    Highlights: ► Ethanol induced cytotoxicity in HepG2 cells in absence of lipogenesis. ► Ethanol inhibited HMG-CoA reductase activity. ► Ethanol induced HMG-CoA reductase inhibition is due to decreased cell viability. ► Incubation with mevalonate could not increase the cholesterol. ► Cytotoxicity brought about by CoQ10 depletion and increased TNF-alpha. -- Abstract: Alcohol consumption has been implicated to cause severe hepatic steatosis which is mediated by alcohol dehydrogenase (ADH) activity and CYP 450 2E1 expression. In this context, the effect of ethanol was studied for its influence on lipogenesis in HepG2 cell which is deficient of ADH and does not express CYP 450 2E1. The results showed that ethanol at 100 mM concentration caused 40% cytotoxicity at 72 h as determined by MTT assay. The incorporation of labeled [2- 14 C] acetate into triacylglycerol and phospholipid was increased by 40% and 26% respectively upon 24 h incubation, whereas incorporation of labeled [2- 14 C] acetate into cholesterol was not significantly increased. Further, ethanol inhibited HMG-CoA reductase which is a rate-limiting enzyme in the cholesterol biosynthesis. It was observed that, HMG-CoA reductase inhibition was brought about by ethanol as a consequence of decreased cell viability, since incubation of HepG2 cells with mevalonate could not increase the cholesterol content and increase the cell viability. Addition of ethanol significantly increased TNF-alpha secretion and depleted mitochondrial coenzyme-Q 10 which is detrimental for cell viability. But vitamin E (10 mM) could partially restore coenzyme-Q 10 and glutathione content with decreased TNF-alpha secretion in ethanol treated cells. Further, lipid peroxidation, glutathione peroxidase and superoxide dismutase enzyme activities remained unaffected. Ethanol decreased glutathione content while, GSH/GSSG ratio was significantly higher compared to other groups showing cellular pro-oxidant and antioxidant balance remained

  8. Fulminant lipid storage myopathy due to multiple acyl-coenzyme a dehydrogenase deficiency.

    Science.gov (United States)

    Whitaker, Charles H; Felice, Kevin J; Silvers, David; Wu, Qian

    2015-08-01

    The lipid storage myopathies, primary carnitine deficiency, neutral lipid storage disease, and multiple acyl coenzyme A dehydrogenase deficiency (MADD), are progressive disorders that cause permanent weakness. These disorders of fatty acid metabolism and intracellular triglyceride degradation cause marked fat deposition and damage to muscle cells. We describe a rapidly progressive myopathy in a previously healthy 33-year-old woman. Over 4 months, she developed a proximal and axial myopathy associated with diffuse myalgia and dysphagia, ultimately leading to respiratory failure and death. Muscle biopsy showed massive accumulation of lipid. Plasma acylcarnitine and urine organic acid analysis was consistent with MADD. This was confirmed by molecular genetic testing, which revealed 2 pathogenic mutations in the ETFDH gene. This report illustrates a late-onset case of MADD and reviews the differential diagnosis and evaluation of patients with proximal myopathy and excessive accumulation of lipid on muscle biopsy. © 2014 Wiley Periodicals, Inc.

  9. Expressions of the low density lipoprotein receptor and 3-hydroxy-3-methylglutaryl coenzyme A reductase genes are stimulated by recombinant platelet-derived growth factor isomers

    International Nuclear Information System (INIS)

    Roth, M.; Emmons, L.R.; Perruchoud, A.; Block, L.H.

    1991-01-01

    The plausible role that platelet-derived growth factor (PDGF) has in the localized pathophysiological changes that occur in the arterial wall during development of atherosclerotic lesions led the authors to investigate the influence of recombinant (r)PDGF isomers -AA, -AB, and -BB on the expression of low density lipoprotein receptor (LDL-R) and 3-hydroxy-3-methylglutaryl coenzyme A (HMG0CoA) reductase [(S)-mevalonate:NAD + oxidoreductase (CoA-acylating), EC 1.1.1.88] genes. In addition, they clarified the role of protein kinase C (PKC) in expression of the two genes in human skin fibroblasts and vascular smooth muscle cells. The various rPDGF isoforms are distinct in their ability to activate transcription of both genes: (i) both rPDGF-AA and -BB stimulate transcription of the LDL-R gene; in contrast, rPDGF-BB but not -AA, activates transcription of the HMG-CoA reductase gene; (ii) all recombinant isoforms of PDGF activate transcription of the c-fos gene; (iii) while rPDGF-dependent transcription of the lDL-R gene occurs independently of PKC, transcription of the HMG-CoA reductase gene appears to involve the action of that enzyme

  10. Hormonal Influence on Coenzyme Q10 Levels in Blood Plasma

    Directory of Open Access Journals (Sweden)

    Alfredo Pontecorvi

    2011-12-01

    Full Text Available Coenzyme Q10 (CoQ10, also known as ubiquinone for its presence in all body cells, is an essential part of the cell energy-producing system. However, it is also a powerful lipophilic antioxidant protecting lipoproteins and cell membranes. Due to these two actions, CoQ10 is commonly used in clinical practice in chronic heart failure, male infertility, and neurodegenerative disease. However, it is also taken as an anti-aging substance by healthy people aiming for long-term neuroprotection and by sportsmen to improve endurance. Many hormones are known to be involved in body energy regulation, in terms of production, consumption and dissipation, and their influence on CoQ10 body content or blood values may represent an important pathophysiological mechanism. We summarize the main findings of the literature about the link between hormonal systems and circulating CoQ10 levels. In particular the role of thyroid hormones, directly involved in the regulation of energy homeostasis, is discussed. There is also a link with gonadal and adrenal hormones, partially due to the common biosynthetic pathway with CoQ10, but also to the increased oxidative stress found in hypogonadism and hypoadrenalism.

  11. Effect of the additives on clouding behavior and thermodynamics of coenzyme Q10-Kolliphor HS15 micelle aqueous solutions

    Science.gov (United States)

    Hu, Li; Zhang, Jing; Zhu, Chao; Pan, Hong-chun; Liu, Hong

    2017-11-01

    Herein we investigate the effect of different additives (electrolytes, amino acids, PEG, and sugars) on the cloud points (CP) of coenzyme Q10 (CoQ10) - Kolliphor HS15 (HS15) micelle aqueous solutions. The CP values were decreased with the increase of electrolytes and sugars, following: CPAl3+ reduced the CP. A depression of CP for CoQ10-HS15 micelle solution with PEG was molecular weight of PEG dependent. The significant thermodynamic parameters were also evaluated and discussed.

  12. Coenzyme Q10 Supplementation in Aging and Disease

    Directory of Open Access Journals (Sweden)

    Juan D. Hernández-Camacho

    2018-02-01

    Full Text Available Coenzyme Q (CoQ is an essential component of the mitochondrial electron transport chain and an antioxidant in plasma membranes and lipoproteins. It is endogenously produced in all cells by a highly regulated pathway that involves a mitochondrial multiprotein complex. Defects in either the structural and/or regulatory components of CoQ complex or in non-CoQ biosynthetic mitochondrial proteins can result in a decrease in CoQ concentration and/or an increase in oxidative stress. Besides CoQ10 deficiency syndrome and aging, there are chronic diseases in which lower levels of CoQ10 are detected in tissues and organs providing the hypothesis that CoQ10 supplementation could alleviate aging symptoms and/or retard the onset of these diseases. Here, we review the current knowledge of CoQ10 biosynthesis and primary CoQ10 deficiency syndrome, and have collected published results from clinical trials based on CoQ10 supplementation. There is evidence that supplementation positively affects mitochondrial deficiency syndrome and the symptoms of aging based mainly on improvements in bioenergetics. Cardiovascular disease and inflammation are alleviated by the antioxidant effect of CoQ10. There is a need for further studies and clinical trials involving a greater number of participants undergoing longer treatments in order to assess the benefits of CoQ10 treatment in metabolic syndrome and diabetes, neurodegenerative disorders, kidney diseases, and human fertility.

  13. An Examination by Site-Directed Mutagenesis of Putative Key Residues in the Determination of Coenzyme Specificity in Clostridial NAD+-Dependent Glutamate Dehydrogenase

    Directory of Open Access Journals (Sweden)

    Joanna Griffin

    2011-01-01

    Full Text Available Sequence and structure comparisons of various glutamate dehydrogenases (GDH and other nicotinamide nucleotide-dependent dehydrogenases have potentially implicated certain residues in coenzyme binding and discrimination. We have mutated key residues in Clostridium symbiosum NAD+-specific GDH to investigate their contribution to specificity and to enhance acceptance of NADPH. Comparisons with E. coli NADPH-dependent GDH prompted design of mutants F238S, P262S, and F238S/P262S, which were purified and assessed at pH 6.0, 7.0, and 8.0. They showed markedly increased catalytic efficiency with NADPH, especially at pH 8.0 (∼170-fold for P262S and F238S/P262S with relatively small changes for NADH. A positive charge introduced through the D263K mutation also greatly increased catalytic efficiency with NADPH (over 100-fold at pH 8 and slightly decreased activity with NADH. At position 242, “P6” of the “core fingerprint,” where NAD+- and NADP+-dependent enzymes normally have Gly or Ala, respectively, clostridial GDH already has Ala. Replacement with Gly produced negligible shift in coenzyme specificity.

  14. Cofilin/Twinstar phosphorylation levels increase in response to impaired coenzyme a metabolism.

    Directory of Open Access Journals (Sweden)

    Katarzyna Siudeja

    Full Text Available Coenzyme A (CoA is a pantothenic acid-derived metabolite essential for many fundamental cellular processes including energy, lipid and amino acid metabolism. Pantothenate kinase (PANK, which catalyses the first step in the conversion of pantothenic acid to CoA, has been associated with a rare neurodegenerative disorder PKAN. However, the consequences of impaired PANK activity are poorly understood. Here we use Drosophila and human neuronal cell cultures to show how PANK deficiency leads to abnormalities in F-actin organization. Cells with reduced PANK activity are characterized by abnormally high levels of phosphorylated cofilin, a conserved actin filament severing protein. The increased levels of phospho-cofilin coincide with morphological changes of PANK-deficient Drosophila S2 cells and human neuronal SHSY-5Y cells. The latter exhibit also markedly reduced ability to form neurites in culture--a process that is strongly dependent on actin remodeling. Our results reveal a novel and conserved link between a metabolic biosynthesis pathway, and regulation of cellular actin dynamics.

  15. Engineered Production of Short-Chain Acyl-Coenzyme A Esters in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Krink-Koutsoubelis, Nicolas; Loechner, Anne C.; Lechner, Anna

    2018-01-01

    Short-chain acyl-coenzyme A esters serve as intermediate compounds in fatty acid biosynthesis, and the production of polyketides, biopolymers and other value-added chemicals. S. cerevisiae is a model organism that has been utilized for the biosynthesis of such biologically and economically valuable...... compounds. However, its limited repertoire of short-chain acyl-CoAs effectively prevents its application as a production host for a plethora of natural products. Therefore, we introduced biosynthetic metabolic pathways to five different acyl-CoA esters into S. cerevisiae. Our engineered strains provide......-CoA at 0.5 μM; and isovaleryl-CoA, n-butyryl-CoA, and n-hexanoyl-CoA at 6 μM each. The acyl-CoAs produced in this study are common building blocks of secondary metabolites and will enable the engineered production of a variety of natural products in S. cerevisiae. By providing this toolbox of acyl...

  16. Bioavailability enhancement of coenzyme Q10: an extensive review of patents.

    Science.gov (United States)

    Beg, Sarwar; Javed, Shamama; Kohli, Kanchan

    2010-11-01

    Coenzyme Q10 (CoQ10) is a major antioxidant principle found in human body which plays a vital role in maintaining several biochemical pathways of body. It acts as a potential mediator in transferring electrons in oxidoreductive reactions of electron transport chain. Chemically, it is a basic quinone containing moiety having a large and high molecular weight structure. Deficiency of this in body leads to several potential disorders like dysfunctions in cellular energetics, neurological degeneration, higher oxidative stress induced damage, breast cancer etc. The high molecular weight and lipophilicity of CoQ10 makes it poorly water soluble and consequently leads to low systemic availability. Several advancements have been made to enhance the bioavailability of CoQ10 using various approaches like size reduction, solubility enhancement (by solid dispersion, prodrug, complexation, ionization) and use of novel drug carriers such as liposomes, microspheres, nanoparticles, nanoemulsions and self-emulsifying system. The primary objective of the present review is to assemble patents representing the various approaches used for enhancement of CoQ10 bioavailability.

  17. Paraquat induces oxidative stress, neuronal loss in substantia nigra region and Parkinsonism in adult rats: Neuroprotection and amelioration of symptoms by water-soluble formulation of Coenzyme Q10

    Directory of Open Access Journals (Sweden)

    Sridhar TS

    2009-07-01

    Full Text Available Abstract Background Parkinson's disease, for which currently there is no cure, develops as a result of progressive loss of dopamine neurons in the brain; thus, identification of any potential therapeutic intervention for disease management is of a great importance. Results Here we report that prophylactic application of water-soluble formulation of coenzyme Q10 could effectively offset the effects of environmental neurotoxin paraquat, believed to be a contributing factor in the development of familial PD. In this study we utilized a model of paraquat-induced dopaminergic neurodegeneration in adult rats that received three weekly intra-peritoneal injections of the herbicide paraquat. Histological and biochemical analyses of rat brains revealed increased levels of oxidative stress markers and a loss of approximately 65% of dopamine neurons in the substantia nigra region. The paraquat-exposed rats also displayed impaired balancing skills on a slowly rotating drum (rotorod evidenced by their reduced spontaneity in gait performance. In contrast, paraquat exposed rats receiving a water-soluble formulation of coenzyme Q10 in their drinking water prior to and during the paraquat treatment neither developed neurodegeneration nor reduced rotorod performance and were indistinguishable from the control paraquat-untreated rats. Conclusion Our data confirmed that paraquat-induced neurotoxicity represents a convenient rat model of Parkinsonian neurodegeneration suitable for mechanistic and neuroprotective studies. This is the first preclinical evaluation of a water-soluble coenzyme Q10 formulation showing the evidence of prophylactic neuroprotection at clinically relevant doses.

  18. Purification of a jojoba embryo fatty acyl-coenzyme A reductase and expression of its cDNA in high erucic acid rapeseed.

    Science.gov (United States)

    Metz, J G; Pollard, M R; Anderson, L; Hayes, T R; Lassner, M W

    2000-03-01

    The jojoba (Simmondsia chinensis) plant produces esters of long-chain alcohols and fatty acids (waxes) as a seed lipid energy reserve. This is in contrast to the triglycerides found in seeds of other plants. We purified an alcohol-forming fatty acyl-coenzyme A reductase (FAR) from developing embryos and cloned the cDNA encoding the enzyme. Expression of a cDNA in Escherichia coli confers FAR activity upon those cells and results in the accumulation of fatty alcohols. The FAR sequence shows significant homology to an Arabidopsis protein of unknown function that is essential for pollen development. When the jojoba FAR cDNA is expressed in embryos of Brassica napus, long-chain alcohols can be detected in transmethylated seed oils. Resynthesis of the gene to reduce its A plus T content resulted in increased levels of alcohol production. In addition to free alcohols, novel wax esters were detected in the transgenic seed oils. In vitro assays revealed that B. napus embryos have an endogenous fatty acyl-coenzyme A: fatty alcohol acyl-transferase activity that could account for this wax synthesis. Thus, introduction of a single cDNA into B. napus results in a redirection of a portion of seed oil synthesis from triglycerides to waxes.

  19. A randomized trial of coenzyme Q10 in patients with confirmed statin myopathy.

    Science.gov (United States)

    Taylor, Beth A; Lorson, Lindsay; White, C Michael; Thompson, Paul D

    2015-02-01

    Coenzyme Q10 (CoQ10) supplementation is the most popular therapy for statin myalgia among both physicians and patients despite limited and conflicting evidence of its efficacy. This study examined the effect of coenzyme Q10 (CoQ10) supplementation on simvastatin-associated muscle pain, muscle strength and aerobic performance in patients with confirmed statin myalgia. Statin myalgia was confirmed in 120 patients with prior symptoms of statin myalgia using an 8-week randomized, double-blind crossover trial of simvastatin 20 mg/d and placebo. Forty-one subjects developed muscle pain with simvastatin but not with placebo and were randomized to simvastatin 20 mg/d combined with CoQ10 (600 mg/d ubiquinol) or placebo for 8 weeks. Muscle pain (Brief Pain Inventory [BPI]), time to pain onset, arm and leg muscle strength, and maximal oxygen uptake (VO2max) were measured before and after each treatment. Serum CoQ10 increased from 1.3 ± 0.4 to 5.2 ± 2.3 mcg/mL with simvastatin and CoQ10, but did not increase with simvastatin and placebo (1.3 ± 0.3 to 0.8 ± 0.2) (p pain severity and interference scores increased with simvastatin therapy (both p muscle strength or VO2max with simvastatin with or without CoQ10 (all p > 0.10). Marginally more subjects reported pain with CoQ10 (14 of 20 vs 7 of 18; p = 0.05). There was no difference in time to pain onset in the CoQ10 (3.0 ± 2.0 weeks) vs. placebo (2.4 ± 2.1 wks) groups (p = 0.55). A similar lack of CoQ10 effect was observed in 24 subjects who were then crossed over to the alternative treatment. Only 36% of patients complaining of statin myalgia develop symptoms during a randomized, double-blind crossover of statin vs placebo. CoQ10 supplementation does not reduce muscle pain in patients with statin myalgia. Trial RegistrationNCT01140308; www.clinicaltrials.gov. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Increase in insulin-like growth factor 1 (IGF-1) and insulin-like growth factor binding protein 1 after supplementation with selenium and coenzyme Q10. A prospective randomized double-blind placebo-controlled trial among elderly Swedish citizens

    Science.gov (United States)

    Johansson, Peter; Aaseth, Jan; Alexander, Jan; Brismar, Kerstin

    2017-01-01

    Background Insulin-like growth factor-1(IGF-1) has a multitude of effects besides cell growth and metabolism. Reports also indicate anti-inflammatory and antioxidative effects. The concentrations of IGF-1 decrease with age and during inflammation. As selenium and coenzyme Q10 are involved in both the antioxidative defense and the inflammatory response, the present study aimed to examine the effects of supplementation with selenium and coenzyme Q10 on concentrations of IGF-1 and its binding protein IGFBP-1 in a population showing reduced cardiovascular mortality following such supplementation. Methods 215 elderly individuals were included and given the intervention for four years. A clinical examination was performed and blood samples were taken at the start and after 48 months. Evaluations of IGF-1, the age adjusted IGF-1 SD score and IGFBP-1 were performed using group mean values, and repeated measures of variance. Findings After supplementation with selenium and coenzyme Q10, applying group mean evaluations, significantly higher IGF-1 and IGF-1 SD scores could be seen in the active treatment group, whereas a decrease in concentration could be seen of the same biomarkers in the placebo group. Applying the repeated measures of variance evaluations, the same significant increase in concentrations of IGF-1 (F = 68; P>0.0001), IGF-1 SD score (F = 29; PIGF-1 as one of the mechanistic effects of the intervention. Conclusion Supplementation with selenium and coenzyme Q10 over four years resulted in increased levels of IGF-1 and the postprandial IGFBP-1, and an increase in the age-corrected IGF-1 SD score, compared with placebo. The effects could be part of the mechanistic explanation behind the surprisingly positive clinical effects on cardiovascular morbidity and mortality reported earlier. However, as the effects of IGF-1 are complex, more research on the result of intervention with selenium and coenzyme Q10 is needed. PMID:28609475

  1. Fatal hepatic short-chain L-3-hydroxyacyl-coenzyme A dehydrogenase deficiency: clinical, biochemical, and pathological studies on three subjects with this recently identified disorder of mitochondrial beta-oxidation

    NARCIS (Netherlands)

    Bennett, M. J.; Spotswood, S. D.; Ross, K. F.; Comfort, S.; Koonce, R.; Boriack, R. L.; IJlst, L.; Wanders, R. J.

    1999-01-01

    This report describes the clinical, biochemical, and pathological findings in three infants with hepatic short-chain L-3-hydroxyacyl-coenzyme A dehydrogenase (SCHAD) deficiency, a recently recognized disorder of the mitochondrial oxidation of straight-chain fatty acids. Candidate subjects were

  2. Acyl-coenzyme A oxidases 1 and 3 in brown trout (Salmo trutta f. fario): Can peroxisomal fatty acid β-oxidation be regulated by estrogen signaling?

    Science.gov (United States)

    Madureira, Tânia Vieira; Castro, L Filipe C; Rocha, Eduardo

    2016-02-01

    Acyl-coenzyme A oxidases 1 (Acox1) and 3 (Acox3) are key enzymes in the regulation of lipid homeostasis. Endogenous and exogenous factors can disrupt their normal expression/activity. This study presents for the first time the isolation and characterization of Acox1 and Acox3 in brown trout (Salmo trutta f. fario). Additionally, as previous data point to the existence of a cross-talk between two nuclear receptors, namely peroxisome proliferator-activated receptors and estrogen receptors, it was here evaluated after in vitro exposures of trout hepatocytes the interference caused by ethynylestradiol in the mRNA levels of an inducible (by peroxisome proliferators) and a non-inducible oxidase. The isolated Acox1 and Acox3 show high levels of sequence conservation compared to those of other teleosts. Additionally, it was found that Acox1 has two alternative splicing isoforms, corresponding to 3I and 3II isoforms of exon 3 splicing variants. Both isoforms display tissue specificity, with Acox1-3II presenting a more ubiquitous expression in comparison with Acox1-3I. Acox3 was expressed in almost all brown trout tissues. According to real-time PCR data, the highest estrogenic stimulus was able to cause a down-regulation of Acox1 and an up-regulation of Acox3. So, for Acox1 we found a negative association between an estrogenic input and a directly activated PPARα target gene. In conclusion, changes in hormonal estrogenic stimulus may impact the mobilization of hepatic lipids to the gonads, with ultimate consequences in reproduction. Further studies using in vivo assays will be fundamental to clarify these issues.

  3. Selected biomarkers as predictive tools in testing efficacy of melatonin and coenzyme Q on propionic acid - induced neurotoxicity in rodent model of autism.

    Science.gov (United States)

    Al-Ghamdi, Mashael; Al-Ayadhi, Laila; El-Ansary, Afaf

    2014-02-25

    Exposures to environmental toxins are now thought to contribute to the development of autism spectrum disorder. Propionic acid (PA) found as a metabolic product of gut bacteria has been reported to mimic/mediate the neurotoxic effects of autism. Results from animal studies may guide investigations on human populations toward identifying environmental contaminants that produce or drugs that protect from neurotoxicity. Forty-eight young male Western Albino rats were used in the present study. They were grouped into six equal groups 8 rats each. The first group received a neurotoxic dose of buffered PA (250 mg/Kg body weight/day for 3 consecutive days). The second group received only phosphate buffered saline (control group). The third and fourth groups were intoxicated with PA as described above followed by treatment with either coenzyme Q (4.5 mg/kg body weight) or melatonin (10 mg/kg body weight) for one week (therapeutically treated groups). The fifth and sixth groups were administered both compounds for one week prior to PA (protected groups). Heat shock protein70 (Hsp70), Gamma amino-butyric acid (GABA), serotonin, dopamine, oxytocin and interferon γ-inducible protein 16 together with Comet DNA assay were measured in brain tissues of the six studied groups. The obtained data showed that PA caused multiple signs of brain toxicity revealed in depletion of GABA, serotonin, and dopamine, are which important neurotransmitters that reflect brain function, interferon γ-inducible protein 16 and oxytocin. A high significant increase in tail length, tail DNA% damage and tail moment was reported indicating the genotoxic effect of PA. Administration of melatonin or coenzyme Q showed both protective and therapeutic effects on PA-treated rats demonstrated in a remarkable amelioration of most of the measured parameters. In conclusion, melatonin and coenzyme Q have potential protective and restorative effects against PA-induced brain injury, confirmed by improvement in

  4. Effect of dietary coenzyme Q10 supplementation on serum and bone minerals and leg weakness mortality in broilers

    Directory of Open Access Journals (Sweden)

    M. Gopi

    2014-05-01

    Full Text Available Aim: This work was carried out to study the effect of coenzyme Q10 supplementation on serum calcium and phosphorus levels, tibial bone weight, bone ash, bone calcium and phosphorus levels and mortality of birds due to leg weakness when the broilers were maintained under high environmental temperature. Materials and Methods: The trial was carried out on 216 Cobb400 broiler chicks and divided into four groups with nine replicates and each replicate consisting of six birds. The treatments include normal energy diet (NE (as per breeder's specifications (G1, high energy (HE (NE plus 100 kcal/kg diet without CoQ10 supplementation (G2, high energy diet supplemented with CoQ10 at 20 mg/kg (G3 and high energy diet supplemented with CoQ10 at 40 mg/kg (G4. The experiment was carried out when the temperature humidity index (THI ranged from 33.05 to 38.65oC for a period of 42 days. Results: The serum calcium and phosphorus levels in the G1, G2, G3 and G4 were 9.07 ± 0.22, 8.48 ± 0.10, 8.30 ± 0.10, 8.32 ± 0.12 and 4.90 ± 0.20, 4.06 ± 0.32, 3.96 ± 0.17, 4.02 ± 0.24, respectively. The tibial bone weight (g was 21.58 ± 1.32, 17.92 ± 1.90, 18.67 ± 1.30 and 17.42 ± 1.18; tibial bone Ash (% 46.67 ± 2.71, 44.48 ± 2.40, 44.66 ± 3.09 and 44.62 ± 1.74; Bone calcium (% 33.57 ± 0.2, 31.27 ± 0.55, 31.50 ± 0.45 and 31.47 ± 0.83, bone phosphorus (% was 11.86 ± 0.16, 10.38 ± 0.11, 10.68 ± 0.08 and 10.39 ± 0.17, respectively in G1, G2, G3 and G4 groups. The serum calcium and phosphorus levels were significantly higher (P<0.05 in G1 over the other three groups. The tibial bone weight was not altered by the energy level or the coenzyme Q10 supplementation. The tibial bone calcium and phosphorus levels were significantly higher in G1 than the other three groups. Conclusion: The supplementation of coenzyme Q10 did not alter the serum and tibial bone calcium and phosphorus levels. The leg abnormality associated mortality was significantly decreased in G3

  5. Micronutrient special issue: Coenzyme Q10 requirements for DNA damage prevention

    International Nuclear Information System (INIS)

    Schmelzer, Constance; Döring, Frank

    2012-01-01

    Coenzyme Q 10 (CoQ 10 ) is an essential component for electron transport in the mitochondrial respiratory chain and serves as cofactor in several biological processes. The reduced form of CoQ 10 (ubiquinol, Q 10 H 2 ) is an effective antioxidant in biological membranes. During the last years, particular interest has been grown on molecular effects of CoQ 10 supplementation on mechanisms related to DNA damage prevention. This review describes recent advances in our understanding about the impact of CoQ 10 on genomic stability in cells, animals and humans. With regard to several in vitro and in vivo studies, CoQ 10 provides protective effects on several markers of oxidative DNA damage and genomic stability. In comparison to the number of studies reporting preventive effects of CoQ 10 on oxidative stress biomarkers, CoQ 10 intervention studies in humans with a direct focus on markers of DNA damage are limited. Thus, more well-designed studies in healthy and disease populations with long-term follow up results are needed to substantiate the reported beneficial effects of CoQ 10 on prevention of DNA damage.

  6. Acyl coenzyme A thioesterase 7 regulates neuronal fatty acid metabolism to prevent neurotoxicity.

    Science.gov (United States)

    Ellis, Jessica M; Wong, G William; Wolfgang, Michael J

    2013-05-01

    Numerous neurological diseases are associated with dysregulated lipid metabolism; however, the basic metabolic control of fatty acid metabolism in neurons remains enigmatic. Here we have shown that neurons have abundant expression and activity of the long-chain cytoplasmic acyl coenzyme A (acyl-CoA) thioesterase 7 (ACOT7) to regulate lipid retention and metabolism. Unbiased and targeted metabolomic analysis of fasted mice with a conditional knockout of ACOT7 in the nervous system, Acot7(N-/-), revealed increased fatty acid flux into multiple long-chain acyl-CoA-dependent pathways. The alterations in brain fatty acid metabolism were concomitant with a loss of lean mass, hypermetabolism, hepatic steatosis, dyslipidemia, and behavioral hyperexcitability in Acot7(N-/-) mice. These failures in adaptive energy metabolism are common in neurodegenerative diseases. In agreement, Acot7(N-/-) mice exhibit neurological dysfunction and neurodegeneration. These data show that ACOT7 counterregulates fatty acid metabolism in neurons and protects against neurotoxicity.

  7. Dependence of Brown Adipose Tissue Function on CD36-Mediated Coenzyme Q Uptake

    Directory of Open Access Journals (Sweden)

    Courtney M. Anderson

    2015-02-01

    Full Text Available Brown adipose tissue (BAT possesses the inherent ability to dissipate metabolic energy as heat through uncoupled mitochondrial respiration. An essential component of the mitochondrial electron transport chain is coenzyme Q (CoQ. While cells synthesize CoQ mostly endogenously, exogenous supplementation with CoQ has been successful as a therapy for patients with CoQ deficiency. However, which tissues depend on exogenous CoQ uptake as well as the mechanism by which CoQ is taken up by cells and the role of this process in BAT function are not well understood. Here, we report that the scavenger receptor CD36 drives the uptake of CoQ by BAT and is required for normal BAT function. BAT from mice lacking CD36 displays CoQ deficiency, impaired CoQ uptake, hypertrophy, altered lipid metabolism, mitochondrial dysfunction, and defective nonshivering thermogenesis. Together, these data reveal an important new role for the systemic transport of CoQ to BAT and its function in thermogenesis.

  8. Preformed β-amyloid fibrils are destabilized by coenzyme Q10 in vitro

    International Nuclear Information System (INIS)

    Ono, Kenjiro; Hasegawa, Kazuhiro; Naiki, Hironobu; Yamada, Masahito

    2005-01-01

    Inhibition of the formation of β-amyloid fibrils (fAβ), as well as the destabilization of preformed fAβ in the CNS, would be attractive therapeutic targets for the treatment of Alzheimer's disease (AD). We reported previously that nordihydroguaiaretic acid (NDGA) and wine-related polyphenol, myricetin (Myr), inhibit fAβ formation from Aβ and destabilize preformed fAβ in vitro. Using fluorescence spectroscopic analysis with thioflavin T and electron microscopic studies, we examined the effects of coenzyme Q 10 (CoQ 10 ) on the formation, extension, and destabilization of fAβ at pH 7.5 at 37 deg C in vitro. We next compared the anti-amyloidogenic activities of CoQ 10 with NDGA and Myr. CoQ 10 dose-dependently inhibited fAβ formation from amyloid β-peptide (Aβ), as well as their extension. Moreover, it destabilized preformed fAβs. The anti-amyloidogenic effects of CoQ 10 were slightly weaker than those of NDGA and Myr. CoQ 10 could be a key molecule for the development of therapeutics for AD

  9. Interaction of coenzyme Q10 with the intestinal drug transporter P-glycoprotein.

    Science.gov (United States)

    Itagaki, Shirou; Ochiai, Akiko; Kobayashi, Masaki; Sugawara, Mitsuru; Hirano, Takeshi; Iseki, Ken

    2008-08-27

    In clinical trials, patients usually take many kinds of drugs at the same time. Thus, drug-drug interactions can often directly affect the therapeutic safety and efficacy of many drugs. Oral delivery is the most desirable means of drug administration. Changes in the activity of drug transporters may substantially influence the absorption of administered drugs from the intestine. However, there have been a few studies on food-drug interactions involving transporters. It is important to be aware of the potential of food-drug interactions and to act in order to prevent undesirable and harmful clinical consequences. Coenzyme Q10 (CoQ10) is very widely consumed by humans as a food supplement because of its recognition by the public as an important nutrient in supporting human health. Since intestinal efflux transporter P-glycoprotein (P-gp) is one of the major factors in drug-drug interactions, we focused on this transporter. We report here for the first time that CoQ10, which is widely used as a food supplement, affects the transport activity of P-gp.

  10. How Chain Length and Charge Affect Surfactant Denaturation of Acyl Coenzyme A Binding Protein (ACBP)

    DEFF Research Database (Denmark)

    Andersen, Kell Kleiner; Otzen, Daniel

    2009-01-01

    maltoside (DDM). The aim has been to determine how surfactant chain length and micellar charge affect the denaturation mechanism. ACBP denatures in two steps irrespective of surfactant chain length, but with increasing chain length, the potency of the denaturant rises more rapidly than the critical micelle......Using intrinsic tryptophan fluorescence, equilibria and kinetics of unfolding of acyl coenzyme A binding protein (ACBP) have been investigated in sodium alkyl sulfate surfactants of different chain length (8-16 carbon atoms) and with different proportions of the nonionic surfactant dodecyl...... constants increases linearly with denaturant concentration below the cmc but declines at higher concentrations. Both shortening chain length and decreasing micellar charge reduce the overall kinetics of unfolding and makes the dependence of unfolding rate constants on surfactant concentration more complex...

  11. A randomized clinical trial of high-dosage coenzyme Q10 in early Parkinson disease: no evidence of benefit.

    Science.gov (United States)

    Beal, M Flint; Oakes, David; Shoulson, Ira; Henchcliffe, Claire; Galpern, Wendy R; Haas, Richard; Juncos, Jorge L; Nutt, John G; Voss, Tiffini Smith; Ravina, Bernard; Shults, Clifford M; Helles, Karen; Snively, Victoria; Lew, Mark F; Griebner, Brian; Watts, Arthur; Gao, Shan; Pourcher, Emmanuelle; Bond, Louisette; Kompoliti, Katie; Agarwal, Pinky; Sia, Cherissa; Jog, Mandar; Cole, Linda; Sultana, Munira; Kurlan, Roger; Richard, Irene; Deeley, Cheryl; Waters, Cheryl H; Figueroa, Angel; Arkun, Ani; Brodsky, Matthew; Ondo, William G; Hunter, Christine B; Jimenez-Shahed, Joohi; Palao, Alicia; Miyasaki, Janis M; So, Julie; Tetrud, James; Reys, Liza; Smith, Katharine; Singer, Carlos; Blenke, Anita; Russell, David S; Cotto, Candace; Friedman, Joseph H; Lannon, Margaret; Zhang, Lin; Drasby, Edward; Kumar, Rajeev; Subramanian, Thyagarajan; Ford, Donna Stuppy; Grimes, David A; Cote, Diane; Conway, Jennifer; Siderowf, Andrew D; Evatt, Marian Leslie; Sommerfeld, Barbara; Lieberman, Abraham N; Okun, Michael S; Rodriguez, Ramon L; Merritt, Stacy; Swartz, Camille Louise; Martin, W R Wayne; King, Pamela; Stover, Natividad; Guthrie, Stephanie; Watts, Ray L; Ahmed, Anwar; Fernandez, Hubert H; Winters, Adrienna; Mari, Zoltan; Dawson, Ted M; Dunlop, Becky; Feigin, Andrew S; Shannon, Barbara; Nirenberg, Melissa Jill; Ogg, Mattson; Ellias, Samuel A; Thomas, Cathi-Ann; Frei, Karen; Bodis-Wollner, Ivan; Glazman, Sofya; Mayer, Thomas; Hauser, Robert A; Pahwa, Rajesh; Langhammer, April; Ranawaya, Ranjit; Derwent, Lorelei; Sethi, Kapil D; Farrow, Buff; Prakash, Rajan; Litvan, Irene; Robinson, Annette; Sahay, Alok; Gartner, Maureen; Hinson, Vanessa K; Markind, Samuel; Pelikan, Melisa; Perlmutter, Joel S; Hartlein, Johanna; Molho, Eric; Evans, Sharon; Adler, Charles H; Duffy, Amy; Lind, Marlene; Elmer, Lawrence; Davis, Kathy; Spears, Julia; Wilson, Stephanie; Leehey, Maureen A; Hermanowicz, Neal; Niswonger, Shari; Shill, Holly A; Obradov, Sanja; Rajput, Alex; Cowper, Marilyn; Lessig, Stephanie; Song, David; Fontaine, Deborah; Zadikoff, Cindy; Williams, Karen; Blindauer, Karen A; Bergholte, Jo; Propsom, Clara Schindler; Stacy, Mark A; Field, Joanne; Mihaila, Dragos; Chilton, Mark; Uc, Ergun Y; Sieren, Jeri; Simon, David K; Kraics, Lauren; Silver, Althea; Boyd, James T; Hamill, Robert W; Ingvoldstad, Christopher; Young, Jennifer; Thomas, Karen; Kostyk, Sandra K; Wojcieszek, Joanne; Pfeiffer, Ronald F; Panisset, Michel; Beland, Monica; Reich, Stephen G; Cines, Michelle; Zappala, Nancy; Rivest, Jean; Zweig, Richard; Lumina, L Pepper; Hilliard, Colette Lynn; Grill, Stephen; Kellermann, Marye; Tuite, Paul; Rolandelli, Susan; Kang, Un Jung; Young, Joan; Rao, Jayaraman; Cook, Maureen M; Severt, Lawrence; Boyar, Karyn

    2014-05-01

    Coenzyme Q10 (CoQ10), an antioxidant that supports mitochondrial function, has been shown in preclinical Parkinson disease (PD) models to reduce the loss of dopamine neurons, and was safe and well tolerated in early-phase human studies. A previous phase II study suggested possible clinical benefit. To examine whether CoQ10 could slow disease progression in early PD. A phase III randomized, placebo-controlled, double-blind clinical trial at 67 North American sites consisting of participants 30 years of age or older who received a diagnosis of PD within 5 years and who had the following inclusion criteria: the presence of a rest tremor, bradykinesia, and rigidity; a modified Hoehn and Yahr stage of 2.5 or less; and no anticipated need for dopaminergic therapy within 3 months. Exclusion criteria included the use of any PD medication within 60 days, the use of any symptomatic PD medication for more than 90 days, atypical or drug-induced parkinsonism, a Unified Parkinson's Disease Rating Scale (UPDRS) rest tremor score of 3 or greater for any limb, a Mini-Mental State Examination score of 25 or less, a history of stroke, the use of certain supplements, and substantial recent exposure to CoQ10. Of 696 participants screened, 78 were found to be ineligible, and 18 declined participation. The remaining 600 participants were randomly assigned to receive placebo, 1200 mg/d of CoQ10, or 2400 mg/d of CoQ10; all participants received 1200 IU/d of vitamin E. Participants were observed for 16 months or until a disability requiring dopaminergic treatment. The prospectively defined primary outcome measure was the change in total UPDRS score (Parts I-III) from baseline to final visit. The study was powered to detect a 3-point difference between an active treatment and placebo. The baseline characteristics of the participants were well balanced, the mean age was 62.5 years, 66% of participants were male, and the mean baseline total UPDRS score was 22.7. A total of 267 participants

  12. Addition of omega-3 fatty acid and coenzyme Q10 to statin therapy in patients with combined dyslipidemia.

    Science.gov (United States)

    Tóth, Štefan; Šajty, Matej; Pekárová, Tímea; Mughees, Adil; Štefanič, Peter; Katz, Matan; Spišáková, Katarína; Pella, Jozef; Pella, Daniel

    2017-07-26

    Statins represent a group of drugs that are currently indicated in the primary and secondary prevention of cardiovascular events. Their administration can be associated with side effects and the insufficient reduction of triacylglyceride (TAG) levels. This study aimed to assess the effect of the triple combination of statins with omega-3 fatty acids and coenzyme Q10 (CoQ10) on parameters associated with atherogenesis and statin side effects. In this pilot randomized double-blind trial, 105 subjects who met the criteria of combined dislipidemia and elevated TAG levels were randomly divided into three groups. In the control group, unaltered statin therapy was indicated. In the second and third groups, omega-3 PUFA 2.52 g/day (Zennix fa Pleuran) and omega-3 PUFA 2.52 g+CoQ10 200 mg/day (Pharma Nord ApS) were added, res//. At the end of the 3-month period (±1 week), all patients were evaluated. Significant reduction of hepatic enzymes activity, systolic blood preasure, inflammatory markers and TAG levels were detected in both groups in comparison to the control group. Activity of SOD and GPx increased significantly after additive therapy. Coenzyme Q10 addition significantly reduced most of the abovementioned parameters (systolic blood preasure, total cholesterol, LDL, hsCRP, IL-6, SOD) in comparison with the statin+omega-3 PUFA group. The intensity of statin adverse effects were significantly reduced in the group with the addition of CoQ10. The results of this pilot study suggest the possible beneficial effects of triple combination on the lipid and non-lipid parameters related to atherogenesis and side effects of statin treatment.

  13. Very long-chain acyl-coenzyme A dehydrogenase deficiency

    Directory of Open Access Journals (Sweden)

    A. V. Degtyareva

    2014-01-01

    Full Text Available The paper describes a case of a baby with a severe infant form of very long-chain acyl-coenzyme A dehydrogenase deficiency, a very rare genetic disorder. The basis for the disease is a disorder of mitochondrial β-oxidation of long-chain fatty acids. Accumulation of acyl-CoA-derived fatty acids causes a toxic effect on the myocardium and cardiac conduction system, liver, skeletal muscles, and other organs. The development of hypoglycemia is typical. Treatment in the acute period involves the immediately ceased delivery of long-chain triglycerides, the provision of the body with medium-chain triglycerides, and the correction of glycemia. In our observation the baby was born at term with a satisfactory condition in a family with a poor history (the first baby had suddenly died at the age of 3,5 months. The disease manifested itself as bradyarrhythmia and cardiac arrest on day 2 of life. The clinical symptom complex also included hepatomegalia, hypoglycemic episodes, lactate acidosis, and elevated blood levels of cytolytic enzymes and creatine phosphokinase. The diagnosis was suspected on the basis of the high blood values of acylcarnitines (primarily C14:1 and verified by a molecular genetic examination. Syndrome therapy and dietotherapy resulted in the abolishment of the abnormality. At the age of 2 years of life, the infant’s physical, motor, mental, and speech development corresponded to his age although he had mild right-sided hemiparesis. Thus, timely therapy determines the favorable prognosis of the disease even in its severe infant forms. 

  14. The effect of coenzyme Q10 included by γ-cyclodextrin on the growth of fission yeast studied by microscope Raman spectroscopy

    Science.gov (United States)

    Nishida, Tatsuro; Kaino, Tomohiro; Ikarashi, Ryo; Nakata, Daisuke; Terao, Keiji; Ando, Masahiro; Hamaguchi, Hiro-o.; Kawamukai, Makoto; Yamamoto, Tatsuyuki

    2013-09-01

    The inclusion complex of coenzyme Q10 (CoQ10) by γ-cyclodextrin (γ-CD), CoQ10-CD complex, was recently developed. The addition of the CoQ10-CD complex recovered the growth of a fission yeast mutant strain, Δdps1, which otherwise cannot grow well due to the lack of coenzyme Q producing ability. However, the oxygen consumption rate of this strain was not restored by the addition of the CoQ10-CD complex. The addition of two other anti-oxidative reagents, glutathione and ascorbic acid, also recovered the growth of the Δdps1 strain as well. These results indicated that the recovery of the growth of Δdps1 was brought about by the anti-oxidative property of CoQ10. The intensity of Raman spectra of Δdps1 at 1602 cm-1, which is prominently observed for the wild type of the fission yeast, was compared between before and after addition of the CoQ10-CD complex. The signal was very weakly observed for Δdps1 and did not increase in intensity by the addition of the CoQ10-CD complex. These results suggested the recovery of the growth of Δdps1 was brought about not by the restoration of respiration function of Δdps1 but by the anti-oxidative property of CoQ10 to result in the decrease in the oxidative stress.

  15. Water-soluble coenzyme Q10 formulation in presbycusis: long-term effects.

    Science.gov (United States)

    Guastini, Luca; Mora, Renzo; Dellepiane, Massimo; Santomauro, Valentina; Giorgio, Manini; Salami, Angelo

    2011-05-01

    These findings provide the basis for understanding the duration of the effect after the last use of the drug and encourage a larger clinical trial to collect additional evidence on the effect of coenzyme Q10 (CoQ10) in preventing the development of hearing loss in subjects with presbycusis. The aim of this study was to evaluate the long-term effects of a water-soluble formulation of CoQ10 (Q-TER) in subjects with presbycusis. Sixty patients with presbycusis were included and divided at random into three numerically equal groups. For 30 days, group A underwent therapy with Q-TER, group B underwent therapy with vitamin E, and group C received placebo. Before, at the end, and 6 months after the end of the treatment, all patients underwent evaluation of pure tone audiometry, transient evoked otoacoustic emissions and otoacoustic products of distortion, auditory brainstem response, and speech audiometry. Compared with group B, at the end of the treatment in group A the pure tone audiometry showed a significant (p < 0.05) improvement of the audiometric thresholds at 1000, 2000, 4000, and 8000 Hz. This improvement was confirmed by the speech audiometry and last check. We found no significant differences in the other parameters and in group C.

  16. Reduction and Methyl Transfer Kinetics of the Alpha Subunit from Acetyl-Coenzyme A Synthase

    Energy Technology Data Exchange (ETDEWEB)

    Xiangshi Tan; Christopher Sewell; Qingwu Yang; Paul A. Lindahl

    2003-01-15

    OAK-B135 Stopped-flow was used to evaluate the methylation and reduction kinetics of the isolated alpha subunit of acetyl-Coenzyme A synthase from Moorella thermoacetica. This catalytically active subunit contains a novel Ni-X-Fe4S4 cluster and a putative unidentified n =2 redox site called D. The D-site must be reduced for a methyl group to transfer from a corrinoid-iron-sulfur protein, a key step in the catalytic synthesis of acetyl-CoA. The Fe4S4 component of this cluster is also redox active, raising the possibility that it is the D-site or a portion thereof. Results presented demonstrate that the D-site reduces far faster than the Fe4S4 component, effectively eliminating this possibility. Rather, this component may alter catalytically important properties of the Ni center. The D-site is reduced through a pathway that probably does not involve the Fe4S4 component of this active-site cluster.

  17. Modeling of process parameters for enhanced production of coenzyme Q10 from Rhodotorula glutinis.

    Science.gov (United States)

    Balakumaran, Palanisamy Athiyaman; Meenakshisundaram, Sankaranarayanan

    2015-01-01

    Coenzyme Q10 (CoQ10) plays an indispensable role in ATP generation through oxidative phosphorylation and helps in scavenging superoxides generated during electron transfer reactions. It finds extensive applications specifically related to oxidative damage and metabolic dysfunctions. This article reports the use of a statistical approach to optimize the concentration of key variables for the enhanced production of CoQ10 by Rhodotorula glutinis in a lab-scale fermenter. The culture conditions that promote optimum growth and CoQ10 production were optimized and the interaction of significant variables para-hydroxybenzoic acid (PHB, 819.34 mg/L) and soybean oil (7.78% [v/v]) was studied using response surface methodology (RSM). CoQ10 production increased considerably from 10 mg/L (in control) to 39.2 mg/L in batch mode with RSM-optimized precursor concentration. In the fed-batch mode, PHB and soybean oil feeding strategy enhanced CoQ10 production to 78.2 mg/L.

  18. Interaction of Coenzyme Q10 with Liposomes and its Impact on Suppression of Selenite – Induced Experimental Cataract

    Directory of Open Access Journals (Sweden)

    Medhat Wahba Shafaa

    2018-03-01

    Full Text Available Purpose: To stress the influence of Coenzyme Q10 (CoQ10 on the structural properties of liposomes as model membranes and to investigate the possible role of CoQ10 or CoQ10 doped in liposomes when topically instilled as eye drops, in preventing cataract. Methods: The molecular interaction between liposomes and Coenzyme Q10 was examined using differential scanning calorimetry (DSC and Fourier transform infrared spectroscopy (FTIR. Rat pups were randomly divided into six groups comprising 15 pups. Group (1, control group. Group (2, untreated model of cataract, received a single subcutaneous injection of sodium selenite. Instillation of pure CoQ10 (Group 3, CoQ10 encapsulated into neutral (Group 4, positive (Group 5 and negative (Group 6 Dipalmitoyl phosphatidylcholine (DPPC liposomes on the opacification of lenses in rat pups after sodium selenite injection was topically received. Results: The incorporated CoQ10 is probably associated with lipid bilayers where it interacts to a large extent and perturbs them. This results in strong broadening and shift to lower temperature (94°C of the major characteristic endothermic peak of pure DPPC at 105°C. FTIR showed that the incorporation of CoQ10 into DPPC induces a conformational change in the polar region of DPPC. Ophthalmological and Biochemical studies revealed that CoQ10 alone followed by negatively charged liposomes doped with CoQ10 are more effective in reducing the progress of cataract as well as improving the lens soluble proteins levels and total antioxidant capacity. Conclusion: The interactions of CoQ10 with membrane systems may contribute to a better understanding of CoQ10 physiological properties and the development of therapeutically advanced systems.

  19. Micronutrient special issue: Coenzyme Q{sub 10} requirements for DNA damage prevention

    Energy Technology Data Exchange (ETDEWEB)

    Schmelzer, Constance, E-mail: schmelzer@fbn-dummerstorf.de [Leibniz Institute for Farm Animal Biology (FBN), Nutritional Physiology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf (Germany); Doering, Frank [University of Kiel, Institute of Human Nutrition and Food Science, Molecular Prevention, Heinrich-Hecht-Platz 10, 24118 Kiel (Germany)

    2012-05-01

    Coenzyme Q{sub 10} (CoQ{sub 10}) is an essential component for electron transport in the mitochondrial respiratory chain and serves as cofactor in several biological processes. The reduced form of CoQ{sub 10} (ubiquinol, Q{sub 10}H{sub 2}) is an effective antioxidant in biological membranes. During the last years, particular interest has been grown on molecular effects of CoQ{sub 10} supplementation on mechanisms related to DNA damage prevention. This review describes recent advances in our understanding about the impact of CoQ{sub 10} on genomic stability in cells, animals and humans. With regard to several in vitro and in vivo studies, CoQ{sub 10} provides protective effects on several markers of oxidative DNA damage and genomic stability. In comparison to the number of studies reporting preventive effects of CoQ{sub 10} on oxidative stress biomarkers, CoQ{sub 10} intervention studies in humans with a direct focus on markers of DNA damage are limited. Thus, more well-designed studies in healthy and disease populations with long-term follow up results are needed to substantiate the reported beneficial effects of CoQ{sub 10} on prevention of DNA damage.

  20. Serum Levels of Coenzyme Q10 in Patients with Multiple System Atrophy.

    Directory of Open Access Journals (Sweden)

    Takashi Kasai

    Full Text Available The COQ2 gene encodes an essential enzyme for biogenesis, coenzyme Q10 (CoQ10. Recessive mutations in this gene have recently been identified in families with multiple system atrophy (MSA. Moreover, specific heterozygous variants in the COQ2 gene have also been reported to confer susceptibility to sporadic MSA in Japanese cohorts. These findings have suggested the potential usefulness of CoQ10 as a blood-based biomarker for diagnosing MSA. This study measured serum levels of CoQ10 in 18 patients with MSA, 20 patients with Parkinson's disease and 18 control participants. Although differences in total CoQ10 (i.e., total levels of serum CoQ10 and its reduced form among the three groups were not significant, total CoQ10 level corrected by serum cholesterol was significantly lower in the MSA group than in the Control group. Our findings suggest that serum CoQ10 can be used as a biomarker in the diagnosis of MSA and to provide supportive evidence for the hypothesis that decreased levels of CoQ10 in brain tissue lead to an increased risk of MSA.

  1. Synthesis of ethyl [14CH3]methylmalonyl thioglycolate as a possible substrate analogue of [14CH3]methylmalonyl coenzyme-A

    International Nuclear Information System (INIS)

    Kovacs, I.; Kovacs, Z.

    1991-01-01

    Ethyl methylmalonyl thioglycolate is a potential substrate analogue of methylmalonyl-coenzyme-A (methylmalonyl-CoA) in the investigation of propionic acid metabolism. To prove this hypothesis, the tracer ethyl [ 14 CH 3 ] methylmalonyl thioglycolate was synthesized via methyl-Meldrum's acid to carry out the biochemical examinations. The method described can also be used to synthesize [ 14 CH 3 ] methylmalonyl-CoA by transesterification of active labelled methylmalonyl thiophenyl ester. This latter intermediate is chemically stable when stored at room temperature, and the unstable [ 14 CH 3 ]methylmalonyl-CoA can be prepared in one step just preceeding the biochemical experiments. (author)

  2. Systematic Analysis of the 4-Coumarate:Coenzyme A Ligase (4CL Related Genes and Expression Profiling during Fruit Development in the Chinese Pear

    Directory of Open Access Journals (Sweden)

    Yunpeng Cao

    2016-10-01

    Full Text Available In plants, 4-coumarate:coenzyme A ligases (4CLs, comprising some of the adenylate-forming enzymes, are key enzymes involved in regulating lignin metabolism and the biosynthesis of flavonoids and other secondary metabolites. Although several 4CL-related proteins were shown to play roles in secondary metabolism, no comprehensive study on 4CL-related genes in the pear and other Rosaceae species has been reported. In this study, we identified 4CL-related genes in the apple, peach, yangmei, and pear genomes using DNATOOLS software and inferred their evolutionary relationships using phylogenetic analysis, collinearity analysis, conserved motif analysis, and structure analysis. A total of 149 4CL-related genes in four Rosaceous species (pear, apple, peach, and yangmei were identified, with 30 members in the pear. We explored the functions of several 4CL and acyl-coenzyme A synthetase (ACS genes during the development of pear fruit by quantitative real-time PCR (qRT-PCR. We found that duplication events had occurred in the 30 4CL-related genes in the pear. These duplicated 4CL-related genes are distributed unevenly across all pear chromosomes except chromosomes 4, 8, 11, and 12. The results of this study provide a basis for further investigation of both the functions and evolutionary history of 4CL-related genes.

  3. Microbial products II

    Energy Technology Data Exchange (ETDEWEB)

    Pape, H; Rehm, H J [eds.

    1986-01-01

    The present volume deals mainly with compounds which have been detected as natural microbial products. Part 1 of this volume introduces the general aspects of the overproduction of metabolites and the concepts and genetics of secondary metabolism. Compounds such as nucleosides, nucleotides, coenzymes, vitamins and lipids are dealt with in part 2. Part 3 then is devoted to products and antibiotics with uses im medicine, veterinary medicine, plant protection and metabolites with antitumor activity. Several secondary metabolites have found uses in human and animal health care. With 244 figs., 109 tabs.

  4. Amelioration of Behavioural, Biochemical, and Neurophysiological Deficits by Combination of Monosodium Glutamate with Resveratrol/Alpha-Lipoic Acid/Coenzyme Q10 in Rat Model of Cisplatin-Induced Peripheral Neuropathy

    Directory of Open Access Journals (Sweden)

    Naini Bhadri

    2013-01-01

    Full Text Available Cisplatin or cis-diamminedichloroplatinum (II (CDDP is a cytotoxic chemotherapeutic agent with dose-dependent peripheral neuropathy as a foremost side effect characterised by ataxia, pain, and sensory impairment. Cumulative drug therapy of CDDP is known to produce severe oxidative damage. It mainly targets and accumulates in dorsal root ganglia that in turn cause damage resulting in secondary nerve fibre axonopathy. In the present study, we investigated the neuroprotective effect of the combination of monosodium glutamate (MSG with three individual antioxidants, that is, resveratrol, alpha-lipoic acid (ALA, and coenzyme Q10 (CoQ10, in cisplatin (2 mg/kg i.p. twice weekly induced peripheral neuropathy in rats. After 8 weeks of treatment the degree of neuroprotection was determined by measuring behavioral and electrophysiological properties and sciatic nerve lipid peroxidation, as well as glutathione and catalase levels. The results suggested that pretreatment with the combination of MSG (500 mg/kg/day po with resveratrol (10 mg/kg/day i.p. or ALA (20 mg/kg/day i.p. or CoQ10 (10 mg/kg weekly thrice i.p. exhibited neuroprotective effect. The maximum neuroprotection of MSG was observed in the combination with resveratrol.

  5. Sunflower Oil but Not Fish Oil Resembles Positive Effects of Virgin Olive Oil on Aged Pancreas after Life-Long Coenzyme Q Addition

    Science.gov (United States)

    González-Alonso, Adrián; Ramírez-Tortosa, César L.; Varela-López, Alfonso; Roche, Enrique; Arribas, María I.; Ramírez-Tortosa, M. Carmen; Giampieri, Francesca; Ochoa, Julio J.; Quiles, José L.

    2015-01-01

    An adequate pancreatic structure is necessary for optimal organ function. Structural changes are critical in the development of age-related pancreatic disorders. In this context, it has been reported that different pancreatic compartments from rats were affected according to the fat composition consumed. Since there is a close relationship between mitochondria, oxidative stress and aging, an experimental approach has been developed to gain more insight into this process in the pancreas. A low dosage of coenzyme Q was administered life-long in rats in order to try to prevent pancreatic aging-related alterations associated to some dietary fat sources. According to that, three groups of rats were fed normocaloric diets containing Coenzyme Q (CoQ) for two years, where virgin olive, sunflower, or fish oil was included as unique fat source. Pancreatic samples for microscopy and blood samples were collected at the moment of euthanasia. The main finding is that CoQ supplementation gives different results according to fat used in diet. When sunflower oil was the main fat in the diet, CoQ supplementation seems to improve endocrine pancreas structure and in particular β-cell mass resembling positive effects of virgin olive oil. Conversely, CoQ intake does not seem to improve the structural alterations of exocrine compartment previously observed in fish oil fed rats. Therefore CoQ may improve pancreatic alterations associated to the chronic intake of some dietary fat sources. PMID:26426013

  6. Sunflower Oil but Not Fish Oil Resembles Positive Effects of Virgin Olive Oil on Aged Pancreas after Life-Long Coenzyme Q Addition

    Directory of Open Access Journals (Sweden)

    Adrián González-Alonso

    2015-09-01

    Full Text Available An adequate pancreatic structure is necessary for optimal organ function. Structural changes are critical in the development of age-related pancreatic disorders. In this context, it has been reported that different pancreatic compartments from rats were affected according to the fat composition consumed. Since there is a close relationship between mitochondria, oxidative stress and aging, an experimental approach has been developed to gain more insight into this process in the pancreas. A low dosage of coenzyme Q was administered life-long in rats in order to try to prevent pancreatic aging-related alterations associated to some dietary fat sources. According to that, three groups of rats were fed normocaloric diets containing Coenzyme Q (CoQ for two years, where virgin olive, sunflower, or fish oil was included as unique fat source. Pancreatic samples for microscopy and blood samples were collected at the moment of euthanasia. The main finding is that CoQ supplementation gives different results according to fat used in diet. When sunflower oil was the main fat in the diet, CoQ supplementation seems to improve endocrine pancreas structure and in particular β-cell mass resembling positive effects of virgin olive oil. Conversely, CoQ intake does not seem to improve the structural alterations of exocrine compartment previously observed in fish oil fed rats. Therefore CoQ may improve pancreatic alterations associated to the chronic intake of some dietary fat sources.

  7. Angiotensin II reduces cardiac AdipoR1 expression through AT1 receptor/ROS/ERK1/2/c-Myc pathway.

    Directory of Open Access Journals (Sweden)

    Li Li

    Full Text Available Adiponectin, an abundant adipose tissue-derived protein, exerts protective effect against cardiovascular disease. Adiponectin receptors (AdipoR1 and AdipoR2 mediate the beneficial effects of adiponectin on the cardiovascular system. However, the alteration of AdipoRs in cardiac remodeling is not fully elucidated. Here, we investigated the effect of angiotensin II (AngII on cardiac AdipoRs expression and explored the possible molecular mechanism. AngII infusion into rats induced cardiac hypertrophy, reduced AdipoR1 but not AdipoR2 expression, and attenuated the phosphorylations of adenosine monophosphate-activated protein kinase and acetyl coenzyme A carboxylase, and those effects were all reversed by losartan, an AngII type 1 (AT1 receptor blocker. AngII reduced expression of AdipoR1 mRNA and protein in cultured neonatal rat cardiomyocytes, which was abolished by losartan, but not by PD123319, an AT2 receptor antagonist. The antioxidants including reactive oxygen species (ROS scavenger NAC, NADPH oxidase inhibitor apocynin, Nox2 inhibitor peptide gp91 ds-tat, and mitochondrial electron transport chain complex I inhibitor rotenone attenuated AngII-induced production of ROS and phosphorylation of extracellular signal-regulated kinase (ERK 1/2. AngII-reduced AdipoR1 expression was reversed by pretreatment with NAC, apocynin, gp91 ds-tat, rotenone, and an ERK1/2 inhibitor PD98059. Chromatin immunoprecipitation assay demonstrated that AngII provoked the recruitment of c-Myc onto the promoter region of AdipoR1, which was attenuated by PD98059. Moreover, AngII-induced DNA binding activity of c-Myc was inhibited by losartan, NAC, apocynin, gp91 ds-tat, rotenone, and PD98059. c-Myc small interfering RNA abolished the inhibitory effect of AngII on AdipoR1 expression. Our results suggest that AngII inhibits cardiac AdipoR1 expression in vivo and in vitro and AT1 receptor/ROS/ERK1/2/c-Myc pathway is required for the downregulation of AdipoR1 induced by AngII.

  8. Molecular Cloning and Characterization of Two Genes for the Biotin Carboxylase and Carboxyltransferase Subunits of Acetyl Coenzyme A Carboxylase in Myxococcus xanthus

    OpenAIRE

    Kimura, Yoshio; Miyake, Rina; Tokumasu, Yushi; Sato, Masayuki

    2000-01-01

    We have cloned a DNA fragment from a genomic library of Myxococcus xanthus using an oligonucleotide probe representing conserved regions of biotin carboxylase subunits of acetyl coenzyme A (acetyl-CoA) carboxylases. The fragment contained two open reading frames (ORF1 and ORF2), designated the accB and accA genes, capable of encoding a 538-amino-acid protein of 58.1 kDa and a 573-amino-acid protein of 61.5 kDa, respectively. The protein (AccA) encoded by the accA gene was strikingly similar t...

  9. Potential Cardiovascular and Renal Protective Effects of Vitamin D and Coenzyme Q10 in l-NAME-Induced Hypertensive Rats.

    Science.gov (United States)

    Shamardl, Hanan A; El-Ashmony, Sahar M; Kamel, Hala F; Fatani, Sameer H

    2017-08-01

    Hypertension is one of the primary modifiable risk factors for cardiovascular disease. Adequate vitamin D (vit D) levels have been shown to reduce vascular smooth muscle contraction and to increase arterial compliance, which may be beneficial in hypertension. Further, coenzyme Q10 (COQ10) through its action to lower oxidative stress has been reported to have beneficial effects on hypertension and heart failure. This study examined the possible cardiac and renal protective effects of vit D and COQ10 both separately and in combination with an angiotensin II receptor blocker, valsartan (vals) in l-NAME hypertensive rats. Hypertension was induced in rats by l-NAME administration. Following induction of hypertension, the rats were assigned into the following 6 subgroups: an l-NAME alone group and treated groups receiving the following drugs intraperitoneally for 6 weeks; vals, vit D, COQ10 and combination of vals with either vit D or COQ10. A group of normotensive rats were used as negative controls. At the end of the treatment period, blood pressure, serum creatinine, blood urea nitrogen, lipids and serum, cardiac and renal parameters of oxidative stress were measured. Compared to the l-NAME only group, all treatments lowered systolic, diastolic, mean arterial pressure, total cholesterol, low-density lipoprotein cholesterol, and creatinine levels as well as TNF-α and malondialdehyde. Further, the agents increased serum, cardiac and renal total antioxidant capacity. Interestingly, the combination of agents had further effects on all the parameters compared to treatment with each single agent. The study suggests that the additive protective effects of vit D and COQ10 when used alone or concurrent with vals treatment in hypertensive rats may be due to their effects as antioxidants, anticytokines and blood pressure conservers. Copyright © 2017 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.

  10. Altered bacterial metabolism, not coenzyme Q content, is responsible for the lifespan extension in Caenorhabditis elegans fed an Escherichia coli diet lacking coenzyme Q.

    Science.gov (United States)

    Saiki, Ryoichi; Lunceford, Adam L; Bixler, Tarra; Dang, Peter; Lee, Wendy; Furukawa, Satoru; Larsen, Pamela L; Clarke, Catherine F

    2008-06-01

    Coenzyme Q(n) is a fully substituted benzoquinone containing a polyisoprene tail of distinct numbers (n) of isoprene groups. Caenorhabditis elegans fed Escherichia coli devoid of Q(8) have a significant lifespan extension when compared to C. elegans fed a standard 'Q-replete'E. coli diet. Here we examine possible mechanisms for the lifespan extension caused by the Q-less E. coli diet. A bioassay for Q uptake shows that a water-soluble formulation of Q(10) is effectively taken up by both clk-1 mutant and wild-type nematodes, but does not reverse lifespan extension mediated by the Q-less E. coli diet, indicating that lifespan extension is not due to the absence of dietary Q per se. The enhanced longevity mediated by the Q-less E. coli diet cannot be attributed to dietary restriction, different Qn isoforms, reduced pathogenesis or slowed growth of the Q-less E. coli, and in fact requires E. coli viability. Q-less E. coli have defects in respiratory metabolism. C. elegans fed Q-replete E. coli mutants with similarly impaired respiratory metabolism due to defects in complex V also show a pronounced lifespan extension, although not as dramatic as those fed the respiratory deficient Q-less E. coli diet. The data suggest that feeding respiratory incompetent E. coli, whether Q-less or Q-replete, produces a robust life extension in wild-type C. elegans. We believe that the fermentation-based metabolism of the E. coli diet is an important parameter of C. elegans longevity.

  11. Effect of Coenzyme-Q10 on Doxorubicin-Induced Nephrotoxicity in Rats

    Directory of Open Access Journals (Sweden)

    Azza A. K. El-Sheikh

    2012-01-01

    Full Text Available Nephrotoxicity is one of the limiting factors for using doxorubicin (Dox as an anticancer chemotherapeutic. Here, we investigated possible protective effect of coenzyme-Q10 (CoQ10 on Dox-induced nephrotoxicity and the mechanisms involved. Two doses (10 and 100 mg/kg of CoQ10 were administered orally to rats for 8 days, in the presence or absence of nephrotoxicity induced by a single intraperitoneal injection of Dox (15 mg/kg at day 4 of the experiment. Our results showed that the low dose of CoQ10 succeeded in reversing Dox-induced nephrotoxicity to control levels (e.g., levels of blood urea nitrogen and serum creatinine, concentrations of renal reduced glutathione (GSH and malondialdehyde, catalase activity and caspase 3 expression, and renal histopathology. Alternatively, the high dose of CoQ10 showed no superior nephroprotection over the low dose, as there were no significant improvements in renal histopathology, catalase activity, or caspase 3 expression compared to the Dox-treated group. Interestingly, the high dose of CoQ10 alone significantly decreased renal GSH level as well as catalase activity and caused a mild induction of caspase 3 expression compared to control, probably due to a prooxidant effect at this dose of CoQ10. We conclude that CoQ10 protects from Dox-induced nephrotoxicity with a precaution to dosage adjustment.

  12. Crystal structure of tabtoxin resistance protein complexed with acetyl coenzyme A reveals the mechanism for beta-lactam acetylation.

    Science.gov (United States)

    He, Hongzhen; Ding, Yi; Bartlam, Mark; Sun, Fei; Le, Yi; Qin, Xincheng; Tang, Hong; Zhang, Rongguang; Joachimiak, Andrzej; Liu, Jinyuan; Zhao, Nanming; Rao, Zihe

    2003-01-31

    Tabtoxin resistance protein (TTR) is an enzyme that renders tabtoxin-producing pathogens, such as Pseudomonas syringae, tolerant to their own phytotoxins. Here, we report the crystal structure of TTR complexed with its natural cofactor, acetyl coenzyme A (AcCoA), to 1.55A resolution. The binary complex forms a characteristic "V" shape for substrate binding and contains the four motifs conserved in the GCN5-related N-acetyltransferase (GNAT) superfamily, which also includes the histone acetyltransferases (HATs). A single-step mechanism is proposed to explain the function of three conserved residues, Glu92, Asp130 and Tyr141, in catalyzing the acetyl group transfer to its substrate. We also report that TTR possesses HAT activity and suggest an evolutionary relationship between TTR and other GNAT members.

  13. Activation of acetyl-coenzyme A carboxylase is involved in Taxol-induced ovarian cancer cell death.

    Science.gov (United States)

    Wu, Jiang; Ji, Fang; DI, Wen; Chen, Hongduo; Wan, Yinsheng

    2011-05-01

    Acetyl-coenzyme A carboxylase (ACC) is an attractive target for research into the treatment of a variety of human diseases, including diabetes, obesity and cancer. Mounting evidence suggests that the inhibition of ACC induced of cancer cell apoptosis. However, whether the inhibition of ACC regulates apoptosis in CaOV3 cancer cells has yet to be addressed. This study investigated the cytotoxic mechanism of action of ACC inhibition. Results showed that 5-(tetradecyloxy)-2-furoic acid (TOFA), an ACC inhibitor, enhanced Taxol-induced CaOV3 human ovarian cancer cell apoptosis. Notably, when TOFA was administered as a monotherapy, it induced CaOV3 cell apoptosis. Pre-treatment with the EGFR inhibitor PD153035 was found to markedly enhance ACC phosphorylation, whereas AMP-activated protein kinase (AMPK) activator AICAR was found to marginally enhance ACC phosphorylation. Taken together, the data showed ACC is a potential novel molecular target of Taxol. Additionally, ACC inhibition partially contributed to the cytotoxic effect of Taxol in ovarian cancer cells.

  14. Acute Hypoglycemia Induces Painful Neuropathy and the Treatment of Coenzyme Q10

    Directory of Open Access Journals (Sweden)

    Yan Ping Zhang

    2016-01-01

    Full Text Available Diabetic neuropathic pain is reduced with tight glycemic control. However, strict control increases the risk of hypoglycemic episodes, which are themselves linked to painful neuropathy. This study explored the effects of hypoglycemia-related painful neuropathy. Pretreatment with coenzyme Q10 (CoQ10 was performed to explore the preventive effect of CoQ10 on hypoglycemia-related acute neuropathic pain. Two strains of mice were used and 1 unit/kg of insulin was given to induce hypoglycemia. Mechanical sensitivity of hindpaw withdrawal thresholds was measured using von Frey filaments. Blood glucose levels were clamped at normal levels by joint insulin and glucose injection to test whether insulin itself induced hypersensitivity. Results suggest that the increased mechanical sensitivity after insulin injection is related to decreased blood glucose levels. When blood glucose levels remained at a normal level by the linked administration of insulin and glucose, mice demonstrated no significant change in mechanical sensitivity. Pretreatment with CoQ10 prevented neuropathic pain and the expression of the stress factor c-Fos. These results support the concept that pain in the diabetic scenario can be the result of hypoglycemia and not insulin itself. Additionally, pretreatment with CoQ10 may be a potent preventive method for the development of neuropathic pain.

  15. Roles of the redox-active disulfide and histidine residues forming a catalytic dyad in reactions catalyzed by 2-ketopropyl coenzyme M oxidoreductase/carboxylase.

    Science.gov (United States)

    Kofoed, Melissa A; Wampler, David A; Pandey, Arti S; Peters, John W; Ensign, Scott A

    2011-09-01

    NADPH:2-ketopropyl-coenzyme M oxidoreductase/carboxylase (2-KPCC), an atypical member of the disulfide oxidoreductase (DSOR) family of enzymes, catalyzes the reductive cleavage and carboxylation of 2-ketopropyl-coenzyme M [2-(2-ketopropylthio)ethanesulfonate; 2-KPC] to form acetoacetate and coenzyme M (CoM) in the bacterial pathway of propylene metabolism. Structural studies of 2-KPCC from Xanthobacter autotrophicus strain Py2 have revealed a distinctive active-site architecture that includes a putative catalytic triad consisting of two histidine residues that are hydrogen bonded to an ordered water molecule proposed to stabilize enolacetone formed from dithiol-mediated 2-KPC thioether bond cleavage. Site-directed mutants of 2-KPCC were constructed to test the tenets of the mechanism proposed from studies of the native enzyme. Mutagenesis of the interchange thiol of 2-KPCC (C82A) abolished all redox-dependent reactions of 2-KPCC (2-KPC carboxylation or protonation). The air-oxidized C82A mutant, as well as wild-type 2-KPCC, exhibited the characteristic charge transfer absorbance seen in site-directed variants of other DSOR enzymes but with a pK(a) value for C87 (8.8) four units higher (i.e., four orders of magnitude less acidic) than that for the flavin thiol of canonical DSOR enzymes. The same higher pK(a) value was observed in native 2-KPCC when the interchange thiol was alkylated by the CoM analog 2-bromoethanesulfonate. Mutagenesis of the flavin thiol (C87A) also resulted in an inactive enzyme for steady-state redox-dependent reactions, but this variant catalyzed a single-turnover reaction producing a 0.8:1 ratio of product to enzyme. Mutagenesis of the histidine proximal to the ordered water (H137A) led to nearly complete loss of redox-dependent 2-KPCC reactions, while mutagenesis of the distal histidine (H84A) reduced these activities by 58 to 76%. A redox-independent reaction of 2-KPCC (acetoacetate decarboxylation) was not decreased for any of the

  16. Crystal structure of tabtoxin resistance protein complexed with acetyl coenzyme A reveals the mechanism for {beta}-lactam acetylation.

    Energy Technology Data Exchange (ETDEWEB)

    He, H.; Ding, Y.; Bartlam, M.; Sun, F.; Le, Y.; Qin, X.; Tang, H.; Zhang, R.; Joachimiak, A.; Liu, J.; Zhao, N.; Rao, Z.; Biosciences Division; Tsinghua Univ.; Chinese Academy of Science

    2003-01-31

    Tabtoxin resistance protein (TTR) is an enzyme that renders tabtoxin-producing pathogens, such as Pseudomonas syringae, tolerant to their own phytotoxins. Here, we report the crystal structure of TTR complexed with its natural cofactor, acetyl coenzyme A (AcCoA), to 1.55 {angstrom} resolution. The binary complex forms a characteristic 'V' shape for substrate binding and contains the four motifs conserved in the GCN5-related N-acetyltransferase (GNAT) superfamily, which also includes the histone acetyltransferases (HATs). A single-step mechanism is proposed to explain the function of three conserved residues, Glu92, Asp130 and Tyr141, in catalyzing the acetyl group transfer to its substrate. We also report that TTR possesses HAT activity and suggest an evolutionary relationship between TTR and other GNAT members.

  17. Skeletal muscle mitochondrial bioenergetics and associations with myostatin genotypes in the Thoroughbred horse.

    Science.gov (United States)

    Rooney, Mary F; Porter, Richard K; Katz, Lisa M; Hill, Emmeline W

    2017-01-01

    Variation in the myostatin (MSTN) gene has been reported to be associated with race distance, body composition and skeletal muscle fibre composition in the horse. The aim of the present study was to test the hypothesis that MSTN variation influences mitochondrial phenotypes in equine skeletal muscle. Mitochondrial abundance and skeletal muscle fibre types were measured in whole muscle biopsies from the gluteus medius of n = 82 untrained (21 ± 3 months) Thoroughbred horses. Skeletal muscle fibre type proportions were significantly (p T (C) and the SINE insertion 227 bp polymorphism (I). Evaluation of mitochondrial complex activities indicated higher combined mitochondrial complex I+III and II+III activities in the presence of the C-allele / I allele (p ≤ 0.05). The restoration of complex I+III and complex II+III activities following addition of exogenous coenzyme Q1 (ubiquinone1) (CoQ1) in vitro in the TT/NN (homozygous T allele/homozygous no insertion) cohort indicated decreased coenzyme Q in these animals. In addition, decreased gene expression in two coenzyme Q (CoQ) biosynthesis pathway genes (COQ4, p ≤ 0.05; ADCK3, p ≤ 0.01) in the TT/NN horses was observed. This study has identified several mitochondrial phenotypes associated with MSTN genotype in untrained Thoroughbred horses and in addition, our findings suggest that nutritional supplementation with CoQ may aid to restore coenzyme Q activity in TT/NN horses.

  18. Application of coenzyme Q10 for accelerating soft tissue wound healing after tooth extraction in rats.

    Science.gov (United States)

    Yoneda, Toshiki; Tomofuji, Takaaki; Kawabata, Yuya; Ekuni, Daisuke; Azuma, Tetsuji; Kataoka, Kota; Kunitomo, Muneyoshi; Morita, Manabu

    2014-12-10

    Accelerating wound healing after tooth extraction is beneficial in dental treatment. Application of antioxidants, such as reduced coenzyme Q10 (rCoQ10), may promote wound healing after tooth extraction. In this study, we examined the effects of topical application of rCoQ10 on wound healing after tooth extraction in rats. After maxillary first molars were extracted, male Fischer 344 rats (8 weeks old) (n = 27) received topical application of ointment containing 5% rCoQ10 (experimental group) or control ointment (control group) to the sockets for 3 or 8 days (n = 6-7/group). At 3 days after extraction, the experimental group showed higher collagen density and lower numbers of polymorphonuclear leukocytes in the upper part of socket, as compared to the control group (p healing in the soft tissue of the alveolar socket, but that rCoQ10 has a limited effect on bone remodeling in rats.

  19. Effects of aeration on formation and localization of the acetyl coenzyme A synthetases of Saccharomyces cerevisiae

    Science.gov (United States)

    Klein, H. P.; Jahnke, L.

    1979-01-01

    Previous studies on the yeast Saccharomyces cerevisiae have shown that two different forms of the enzyme acetyl coenzyme A synthetase (ACS) are present, depending on the conditions under which the cells are grown. The paper evaluates the usefulness of a method designed to assay both synthetases simultaneously in yeast homogenates. The data presented confirm the possibility of simultaneous detection and estimation of the amount of both ACSs of S. cerevisiae in crude homogenates of this strain, making possible the study of physiological factors involved in the formation of these isoenzymes. One important factor for specifying which of the two enzymes is found in these yeast cells is the presence or absence of oxygen in their environment. Aeration not only affects the ratio of the two ACSs but also appears to affect the cellular distribution of these enzymes. Most of the data presented suggest the possibility that the nonaerobic ACS may serve as a precursor to the aerobic form.

  20. Eflucimibe. Pierre Fabre/Eli Lilly.

    Science.gov (United States)

    Burnett, John R

    2003-03-01

    Eflucimibe is an acyl coenzyme A:cholesterol acyltransferase inhibitor under development by Pierre Fabre SA and Eli Lilly & Co for the potential treatment of hypercholesterolemia and atherosclerosis. Phase II clinical trials commenced during 2002.

  1. Enhanced antitumor efficacy and counterfeited cardiotoxicity of combinatorial oral therapy using Doxorubicin- and Coenzyme Q10-liquid crystalline nanoparticles in comparison with intravenous Adriamycin

    DEFF Research Database (Denmark)

    Swarnakar, Nitin K; Thanki, Kaushik; Jain, Sanyog

    2014-01-01

    and strong synergism for combination at 1:10 dose ratio owing to higher cellular uptake, nuclear colocalization, higher apoptotic index and 8-OHdG levels. The prophylactic antitumor efficacy of the CoQ10-LCNPs was also established using tumor induction and progression studies. Finally, therapeutic antitumor......, with Dox-induced-cardiotoxicity was completely counterfeited in combination. In nutshell, LCNPs pose great potential in improving the therapeutic efficacy of drugs by oral route of administration. FROM THE CLINICAL EDITOR: This study describes the use of liquid crystalline nanoparticles containing coenzyme...

  2. Thermodynamic and Structure Guided Design of Statin Based Inhibitors of 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase

    Energy Technology Data Exchange (ETDEWEB)

    Sarver, Ronald W.; Bills, Elizabeth; Bolton, Gary; Bratton, Larry D.; Caspers, Nicole L.; Dunbar, James B.; Harris, Melissa S.; Hutchings, Richard H.; Kennedy, Robert M.; Larsen, Scott D.; Pavlovsky, Alexander; Pfefferkorn, Jeffrey A.; Bainbridge, Graeme (Pfizer)

    2008-10-02

    Clinical studies have demonstrated that statins, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) inhibitors, are effective at lowering mortality levels associated with cardiovascular disease; however, 2--7% of patients may experience statin-induced myalgia that limits compliance with a treatment regimen. High resolution crystal structures, thermodynamic binding parameters, and biochemical data were used to design statin inhibitors with improved HMGR affinity and therapeutic index relative to statin-induced myalgia. These studies facilitated the identification of imidazole 1 as a potent (IC{sub 50} = 7.9 nM) inhibitor with excellent hepatoselectivity (>1000-fold) and good in vivo efficacy. The binding of 1 to HMGR was found to be enthalpically driven with a {Delta}H of -17.7 kcal/M. Additionally, a second novel series of bicyclic pyrrole-based inhibitors was identified that induced order in a protein flap of HMGR. Similar ordering was detected in a substrate complex, but has not been reported in previous statin inhibitor complexes with HMGR.

  3. Modeling human Coenzyme A synthase mutation in yeast reveals altered mitochondrial function, lipid content and iron metabolism

    Directory of Open Access Journals (Sweden)

    Camilla Ceccatelli Berti

    2015-04-01

    Full Text Available Mutations in nuclear genes associated with defective coenzyme A biosynthesis have been identified as responsible for some forms of neurodegeneration with brain iron accumulation (NBIA, namely PKAN and CoPAN. PKAN are defined by mutations in PANK2, encoding the pantothenate kinase 2 enzyme, that account for about 50% of cases of NBIA, whereas mutations in CoA synthase COASY have been recently reported as the second inborn error of CoA synthesis leading to CoPAN. As reported previously, yeast cells expressing the pathogenic mutation exhibited a temperature-sensitive growth defect in the absence of pantothenate and a reduced CoA content. Additional characterization revealed decreased oxygen consumption, reduced activities of mitochondrial respiratory complexes, higher iron content, increased sensitivity to oxidative stress and reduced amount of lipid droplets, thus partially recapitulating the phenotypes found in patients and establishing yeast as a potential model to clarify the pathogenesis underlying PKAN and CoPAN diseases.

  4. Topical treatment with coenzyme Q10-containing formulas improves skin's Q10 level and provides antioxidative effects.

    Science.gov (United States)

    Knott, Anja; Achterberg, Volker; Smuda, Christoph; Mielke, Heiko; Sperling, Gabi; Dunckelmann, Katja; Vogelsang, Alexandra; Krüger, Andrea; Schwengler, Helge; Behtash, Mojgan; Kristof, Sonja; Diekmann, Heike; Eisenberg, Tanya; Berroth, Andreas; Hildebrand, Janosch; Siegner, Ralf; Winnefeld, Marc; Teuber, Frank; Fey, Sven; Möbius, Janne; Retzer, Dana; Burkhardt, Thorsten; Lüttke, Juliane; Blatt, Thomas

    2015-01-01

    Ubiquinone (coenzyme Q10, Q10) represents an endogenously synthesized lipid-soluble antioxidant which is crucial for cellular energy production but is diminished with age and under the influence of external stress factors in human skin. Here, it is shown that topical Q10 treatment is beneficial with regard to effective Q10 replenishment, augmentation of cellular energy metabolism, and antioxidant effects. Application of Q10-containing formulas significantly increased the levels of this quinone on the skin surface. In the deeper layers of the epidermis the ubiquinone level was significantly augmented indicating effective supplementation. Concurrent elevation of ubiquinol levels suggested metabolic transformation of ubiquinone resulting from increased energy metabolism. Incubation of cultured human keratinocytes with Q10 concentrations equivalent to treated skin showed a significant augmentation of energy metabolism. Moreover, the results demonstrated that stressed skin benefits from the topical Q10 treatment by reduction of free radicals and an increase in antioxidant capacity. © 2015 International Union of Biochemistry and Molecular Biology.

  5. Isolated Poly(3-Hydroxybutyrate) (PHB) Granules Are Complex Bacterial Organelles Catalyzing Formation of PHB from Acetyl Coenzyme A (CoA) and Degradation of PHB to Acetyl-CoA▿

    OpenAIRE

    Uchino, Keiichi; Saito, Terumi; Gebauer, Birgit; Jendrossek, Dieter

    2007-01-01

    Poly(3-hydroxybutyrate) (PHB) granules isolated in native form (nPHB granules) from Ralstonia eutropha catalyzed formation of PHB from 14C-labeled acetyl coenzyme A (CoA) in the presence of NADPH and concomitantly released CoA, revealing that PHB biosynthetic proteins (acetoacetyl-CoA thiolase, acetoacetyl-CoA reductase, and PHB synthase) are present and active in isolated nPHB granules in vitro. nPHB granules also catalyzed thiolytic cleavage of PHB in the presence of added CoA, resulting in...

  6. Water-soluble Coenzyme Q10 formulation (Q-ter) promotes outer hair cell survival in a guinea pig model of noise induced hearing loss (NIHL).

    Science.gov (United States)

    Fetoni, Anna Rita; Piacentini, Roberto; Fiorita, Antonella; Paludetti, Gaetano; Troiani, Diana

    2009-02-27

    The mitochondrial respiratory chain is a powerful source of reactive oxygen species (ROS) also in noise induced hearing loss (NIHL) and anti-oxidants and free-radicals scavengers have been shown to attenuate the damage. Coenzyme Q(10) (CoQ(10)) or ubiquinone has a bioenergetic role as a component of the mithocondrial respiratory chain, it inhibits mitochondrial lipid peroxidation, inducing ATP production and it is involved in ROS removal and prevention of oxidative stress-induced apoptosis. However the therapeutic application of CoQ(10) is limited by the lack of solubility and poor bio- availability, therefore it is a challenge to improve its water solubility in order to ameliorate the efficacy in tissues and fluids. This study was conducted in a model of acoustic trauma in the guinea pig where the effectiveness of CoQ(10) was compared with a soluble formulation of CoQ(10) (multicomposite CoQ(10) Terclatrate, Q-ter) given intraperitoneally 1 h before and once daily for 3 days after pure tone noise exposure (6 kHz for 1 h at 120 dB SPL). Functional and morphological studies were carried out by measuring auditory brainstem responses, scanning electron microscopy for hair cell loss count, active caspase 3 staining and terminal deoxynucleotidyl transferase-mediated dUTP labelling assay in order to identify initial signs of apoptosis. Treatments decreased active caspase 3 expression and the number of apoptotic cells, but animals injected with Q-ter showed a greater degree of activity in preventing apoptosis and thus in improving hearing. These data confirm that solubility of Coenzyme Q(10) improves the ability of CoQ(10) in preventing oxidative injuries that result from mitochondrial dysfunction.

  7. Concerted elevation of acyl-coenzyme A:diacylglycerol acyltransferase (DGAT) activity through independent stimulation of mRNA expression of DGAT1 and DGAT2 by carbohydrate and insulin.

    Science.gov (United States)

    Meegalla, Rupalie L; Billheimer, Jeffrey T; Cheng, Dong

    2002-11-01

    Glucose and insulin are anabolic signals which upregulate the transcriptions of a series of lipogenic enzymes to convert excess carbohydrate into triglycerides for efficient energy storage. These enzymes include ATP-citrate lyase (ACL), acetyl-coenzyme A carboxylase (ACC), fatty acid synthase (FAS), and glycerol-3-phosphate acyltransferase (G3PA). Acyl-coenzyme A:diacylglycerol acyltransferase (DGAT) is important to synthesize fatty acids into triglycerides. Two DGATs from different gene families have recently been identified. In the current study, we report that glucose preferentially enhances DGAT1 mRNA expression, whereas insulin specifically increases the level of DGAT2 mRNA. Treatment of adipocytes with glucose and insulin together results in higher DGAT activity in the membrane than cells treated with either of the agents alone, indicating that glucose and insulin have additive effect on DGAT activation. In mice treated with fast/refeeding protocol, DGAT2 mRNA decreased upon fasting and was replenished upon refeeding in adipose tissue and liver. This pattern of change was not observed for DGAT1. Inasmuch as DGAT1 mRNA is less abundant in liver, we suggest that DGAT1 is more involved in fat absorption in the intestine and in basal level triglyceride synthesis in adipose tissue where it is more highly expressed. In contrast, DGAT2 is more likely to play important roles in assembly of de novo synthesized fatty acids into VLDL particles in the liver.

  8. Synthesis of ethyl ( sup 14 CH sub 3 )methylmalonyl thioglycolate as a possible substrate analogue of ( sup 14 CH sub 3 )methylmalonyl coenzyme-A

    Energy Technology Data Exchange (ETDEWEB)

    Kovacs, I. (BIOGAL Pharmaceutical Works, Debrecen (Hungary)); Kovacs, Z. (Inst. of Nuclear Research, Debrecen (Hungary))

    1991-11-01

    Ethyl methylmalonyl thioglycolate is a potential substrate analogue of methylmalonyl-coenzyme-A (methylmalonyl-CoA) in the investigation of propionic acid metabolism. To prove this hypothesis, the tracer ethyl ({sup 14}CH{sub 3}) methylmalonyl thioglycolate was synthesized via methyl-Meldrum's acid to carry out the biochemical examinations. The method described can also be used to synthesize ({sup 14}CH{sub 3}) methylmalonyl-CoA by transesterification of active labelled methylmalonyl thiophenyl ester. This latter intermediate is chemically stable when stored at room temperature, and the unstable ({sup 14}CH{sub 3})methylmalonyl-CoA can be prepared in one step just preceeding the biochemical experiments. (author).

  9. Metabolism: Part II. The Tricarboxylic Acid (TCA), Citric Acid, or Krebs Cycle.

    Science.gov (United States)

    Bodner, George M.

    1986-01-01

    Differentiates the tricarboxylic acid (TCA) cycle (or Krebs cycle) from glycolysis, and describes the bridge between the two as being the conversion of pyruvate into acetyl coenzyme A. Discusses the eight steps in the TCA cycle, the results of isotopic labeling experiments, and the net effects of the TCA cycle. (TW)

  10. Novel Lipid-Free Nanoformulation for Improving Oral Bioavailability of Coenzyme Q10

    Directory of Open Access Journals (Sweden)

    Huafeng Zhou

    2014-01-01

    Full Text Available To improve the bioavailability of orally administered lipophilic coenzyme Q10 (CoQ10, we formulated a novel lipid-free nano-CoQ10 system stabilized by various surfactants. Nano-CoQ10s, composed of 2.5% (w/w CoQ10, 1.67% (w/w surfactant, and 41.67% (w/w glycerol, were prepared by hot high-pressure homogenization. The resulting formulations were characterized by particle size, zeta potential, differential scanning calorimetry, and cryogenic transmission electron microscopy. We found that the mean particle size of all nano-CoQ10s ranged from 66.3±1.5 nm to 92.7±1.5 nm and the zeta potential ranged from -12.8±1.4 mV to -41.6±1.4 mV. The CoQ10 in nano-CoQ10s likely existed in a supercooled state, and nano-CoQ10s stored in a brown sealed bottle were stable for 180 days at 25°C. The bioavailability of CoQ10 was evaluated following oral administration of CoQ10 formulations in Sprague-Dawley rats. Compared to the values observed following administration of CoQ10-Suspension, nano-CoQ10 modified with various surfactants significantly increased the maximum plasma concentration and the area under the plasma concentration-time curve. Thus, the lipid-free system of a nano-CoQ10 stabilized with a surfactant may be an effective vehicle for improving oral bioavailability of CoQ10.

  11. Functional conservation of coenzyme Q biosynthetic genes among yeasts, plants, and humans.

    Directory of Open Access Journals (Sweden)

    Kazuhiro Hayashi

    Full Text Available Coenzyme Q (CoQ is an essential factor for aerobic growth and oxidative phosphorylation in the electron transport system. The biosynthetic pathway for CoQ has been proposed mainly from biochemical and genetic analyses of Escherichia coli and Saccharomyces cerevisiae; however, the biosynthetic pathway in higher eukaryotes has been explored in only a limited number of studies. We previously reported the roles of several genes involved in CoQ synthesis in the fission yeast Schizosaccharomyces pombe. Here, we expand these findings by identifying ten genes (dps1, dlp1, ppt1, and coq3-9 that are required for CoQ synthesis. CoQ10-deficient S. pombe coq deletion strains were generated and characterized. All mutant fission yeast strains were sensitive to oxidative stress, produced a large amount of sulfide, required an antioxidant to grow on minimal medium, and did not survive at the stationary phase. To compare the biosynthetic pathway of CoQ in fission yeast with that in higher eukaryotes, the ability of CoQ biosynthetic genes from humans and plants (Arabidopsis thaliana to functionally complement the S. pombe coq deletion strains was determined. With the exception of COQ9, expression of all other human and plant COQ genes recovered CoQ10 production by the fission yeast coq deletion strains, although the addition of a mitochondrial targeting sequence was required for human COQ3 and COQ7, as well as A. thaliana COQ6. In summary, this study describes the functional conservation of CoQ biosynthetic genes between yeasts, humans, and plants.

  12. Coenzyme Q-responsive Leigh's encephalopathy in two sisters.

    NARCIS (Netherlands)

    Maldergem, L. van; Trijbels, J.M.F.; Mauro, S. Di; Sindelar, P.J.; Musumeci, O.; Janssen, A.J.M.; Delberghe, X.; Martin, J.J.; Gillerot, Y.

    2002-01-01

    A 31-year-old woman had encephalopathy, growth retardation, infantilism, ataxia, deafness, lactic acidosis, and increased signals of caudate and putamen on brain magnetic resonance imaging. Muscle biochemistry showed succinate:cytochrome c oxidoreductase (complex II-III) deficiency. Both clinical

  13. Characterisation and Skin Distribution of Lecithin-Based Coenzyme Q10-Loaded Lipid Nanocapsules

    Science.gov (United States)

    Zhou, Huafeng; Yue, Yang; Liu, Guanlan; Li, Yan; Zhang, Jing; Yan, Zemin; Duan, Mingxing

    2010-10-01

    The purpose of this study was to investigate the influence of the inner lipid ratio on the physicochemical properties and skin targeting of surfactant-free lecithin-based coenzyme Q10-loaded lipid nanocapsules (CoQ10-LNCs). The smaller particle size of CoQ10-LNCs was achieved by high pressure and a lower ratio of CoQ10/GTCC (Caprylic/capric triglyceride); however, the zeta potential of CoQ10-LNCs was above /- 60 mV/ with no distinct difference among them at different ratios of CoQ10/GTCC. Both the crystallisation point and the index decreased with the decreasing ratio of CoQ10/GTCC and smaller particle size; interestingly, the supercooled state of CoQ10-LNCs was observed at particle size below about 200 nm, as verified by differential scanning calorimetry (DSC) in one heating-cooling cycle. The lecithin monolayer sphere structure of CoQ10-LNCs was investigated by cryogenic transmission electron microscopy (Cryo-TEM). The skin penetration results revealed that the distribution of Nile red-loaded CoQ10-LNCs depended on the ratio of inner CoQ10/GTCC; moreover, epidermal targeting and superficial dermal targeting were achieved by the CoQ10-LNCs application. The highest fluorescence response was observed at a ratio of inner CoQ10/GTCC of 1:1. These observations suggest that lecithin-based LNCs could be used as a promising topical delivery vehicle for lipophilic compounds.

  14. Characterisation and Skin Distribution of Lecithin-Based Coenzyme Q10-Loaded Lipid Nanocapsules

    Directory of Open Access Journals (Sweden)

    Yan Zemin

    2010-01-01

    Full Text Available Abstract The purpose of this study was to investigate the influence of the inner lipid ratio on the physicochemical properties and skin targeting of surfactant-free lecithin-based coenzyme Q10-loaded lipid nanocapsules (CoQ10-LNCs. The smaller particle size of CoQ10-LNCs was achieved by high pressure and a lower ratio of CoQ10/GTCC (Caprylic/capric triglyceride; however, the zeta potential of CoQ10-LNCs was above /− 60 mV/ with no distinct difference among them at different ratios of CoQ10/GTCC. Both the crystallisation point and the index decreased with the decreasing ratio of CoQ10/GTCC and smaller particle size; interestingly, the supercooled state of CoQ10-LNCs was observed at particle size below about 200 nm, as verified by differential scanning calorimetry (DSC in one heating–cooling cycle. The lecithin monolayer sphere structure of CoQ10-LNCs was investigated by cryogenic transmission electron microscopy (Cryo-TEM. The skin penetration results revealed that the distribution of Nile red-loaded CoQ10-LNCs depended on the ratio of inner CoQ10/GTCC; moreover, epidermal targeting and superficial dermal targeting were achieved by the CoQ10-LNCs application. The highest fluorescence response was observed at a ratio of inner CoQ10/GTCC of 1:1. These observations suggest that lecithin-based LNCs could be used as a promising topical delivery vehicle for lipophilic compounds.

  15. Primary coenzyme Q deficiency in Pdss2 mutant mice causes isolated renal disease.

    Directory of Open Access Journals (Sweden)

    Min Peng

    2008-04-01

    Full Text Available Coenzyme Q (CoQ is an essential electron carrier in the respiratory chain whose deficiency has been implicated in a wide variety of human mitochondrial disease manifestations. Its multi-step biosynthesis involves production of polyisoprenoid diphosphate in a reaction that requires the enzymes be encoded by PDSS1 and PDSS2. Homozygous mutations in either of these genes, in humans, lead to severe neuromuscular disease, with nephrotic syndrome seen in PDSS2 deficiency. We now show that a presumed autoimmune kidney disease in mice with the missense Pdss2(kd/kd genotype can be attributed to a mitochondrial CoQ biosynthetic defect. Levels of CoQ9 and CoQ10 in kidney homogenates from B6.Pdss2(kd/kd mutants were significantly lower than those in B6 control mice. Disease manifestations originate specifically in glomerular podocytes, as renal disease is seen in Podocin/cre,Pdss2(loxP/loxP knockout mice but not in conditional knockouts targeted to renal tubular epithelium, monocytes, or hepatocytes. Liver-conditional B6.Alb/cre,Pdss2(loxP/loxP knockout mice have no overt disease despite demonstration that their livers have undetectable CoQ9 levels, impaired respiratory capacity, and significantly altered intermediary metabolism as evidenced by transcriptional profiling and amino acid quantitation. These data suggest that disease manifestations of CoQ deficiency relate to tissue-specific respiratory capacity thresholds, with glomerular podocytes displaying the greatest sensitivity to Pdss2 impairment.

  16. Dependence of mitochondrial coenzyme A uptake on the membrane electrical gradient

    International Nuclear Information System (INIS)

    Tahiliani, A.G.

    1989-01-01

    Coenzyme A (CoA) transport was studied in isolated rat heart mitochondria. Uptake of CoA was assayed by determining [3H]CoA associated with mitochondria under various conditions. Various oxidizable substrates including alpha-ketoglutarate, succinate, or malate stimulated CoA uptake. The membrane proton (delta pH) and electrical (delta psi) gradients, which dissipated with time in the absence of substrate, were maintained at their initial levels throughout the incubation in the presence of substrate. Addition of phosphate caused a concentration-dependent decrease of both delta pH and CoA uptake. Nigericin also dissipated the proton gradient and prevented CoA uptake. Valinomycin also prevented CoA uptake into mitochondria. Although the proton gradient was unaffected, the electrical gradient was completely abolished in the presence of valinomycin. Addition of 5 mM phosphate 10 min after the start of incubation prevented further uptake of CoA into mitochondria. A rapid dissipation of the proton gradient upon addition of phosphate was observed. Addition of nigericin or valinomycin 10 min after the start of incubation also resulted in no further uptake of CoA into with mitochondria; valinomycin caused an apparent efflux of CoA from mitochondria. Uptake was found to be sensitive to external pH displaying a pH optimum at pHext 8.0. Although nigericin significantly inhibited CoA uptake over the pHext range of 6.75-8, maximal transport was observed around pHext 8.0-8.25. Valinomycin, on the other hand, abolished transport over the entire pH range. The results suggest that mitochondrial CoA transport is determined by the membrane electrical gradient. The apparent dependence of CoA uptake on an intact membrane pH gradient is probably the result of modulation of CoA transport by matrix pH

  17. Coenzyme Q10 and soyphosphatidylcholine in EK extender on preservation of Rhode Island Red poultry semen

    Directory of Open Access Journals (Sweden)

    Amit Kumar Nath

    2015-06-01

    Full Text Available The objective of this study was to evaluate the efficacy of EK extender alone or incorporation with CoenzymeQ10 (CoQ10 and/or soyphosphatidylcholine (SPC in poultry semen and their effects on seminal traits during temporal storage at 4⁰C for different time intervals (12 h, 24 h, and 36 h. Heterospermic pooled semen samples diluted (1:4 with EK, EK + SPC, EK+ CoQ10 and EK + SPC + CoQ10 extenders separately, preserved and different spermiogram were assessed. Various seminal traits within the same extender differ significantly (p<0.05 among different groups and with different time intervals of storage. CoQ10 and SPC in the EK extender exhibited favorable synergistic effect on sperm quality and were able to protect the male gametes against cold-stress up to 36h at 4⁰C. In this study, we concluded that incorporation of SPC and CoQ10 together in EK extender possess novel potentiality to maintain seminal quality during liquid storage of poultry semen at 4⁰C and for their safe transportation and further use for Artificial Reproductive technologies (ARTs.

  18. Modeling the reactions catalyzed by coenzyme B12-dependent enzymes.

    Science.gov (United States)

    Sandala, Gregory M; Smith, David M; Radom, Leo

    2010-05-18

    Enzymes accelerate chemical reactions with an exceptional selectivity that makes life itself possible. Understanding the factors responsible for this efficient catalysis is of utmost importance in our quest to harness the tremendous power of enzymes. Computational chemistry has emerged as an important adjunct to experimental chemistry and biochemistry in this regard, because it provides detailed insights into the relationship between structure and function in a systematic and straightforward manner. In this Account, we highlight our recent high-level theoretical investigations toward this end in studying the radical-based reactions catalyzed by enzymes dependent on coenzyme B(12) (or adenosylcobalamin, AdoCbl). In addition to their fundamental position in biology, the AdoCbl-dependent enzymes represent a valuable framework within which to understand Nature's method of efficiently handling high-energy species to execute very specific reactions. The AdoCbl-mediated reactions are characterized by the interchange of a hydrogen atom and a functional group on adjacent carbon atoms. Our calculations are consistent with the conclusion that the main role of AdoCbl is to provide a source of radicals, thus moving the 1,2-rearrangements onto the radical potential energy surface. Our studies also show that the radical rearrangement step is facilitated by partial proton transfer involving the substrate. Specifically, we observe that the energy requirements for radical rearrangement are reduced dramatically with appropriate partial protonation or partial deprotonation or sometimes (synergistically) both. Such interactions are particularly relevant to enzyme catalysis, because it is likely that the local amino acid environment in the active site of an enzyme can function in this capacity through hydrogen bonding. Finally, our calculations indicate that the intervention of a very stable radical along the reaction pathway may inactivate the enzyme, demonstrating that sustained

  19. Coenzyme Q10 Levels Are Decreased in the Cerebellum of Multiple-System Atrophy Patients.

    Directory of Open Access Journals (Sweden)

    Lucia V Schottlaender

    Full Text Available The objective of this study was to evaluate whether the levels of coenzyme Q10 (CoQ10 in brain tissue of multiple system atrophy (MSA patients differ from those in elderly controls and in patients with other neurodegenerative diseases.Flash frozen brain tissue of a series of 20 pathologically confirmed MSA patients [9 olivopontocerebellar atrophy (OPCA type, 6 striatonigral degeneration (SND type, and 5 mixed type] was used for this study. Elderly controls (n = 37 as well as idiopathic Parkinson's disease (n = 7, dementia with Lewy bodies (n = 20, corticobasal degeneration (n = 15 and cerebellar ataxia (n = 18 patients were used as comparison groups. CoQ10 was measured in cerebellar and frontal cortex tissue by high performance liquid chromatography.We detected a statistically significant decrease (by 3-5% in the level of CoQ10 in the cerebellum of MSA cases (P = 0.001, specifically in OPCA (P = 0.001 and mixed cases (P = 0.005, when compared to controls as well as to other neurodegenerative diseases [dementia with Lewy bodies (P<0.001, idiopathic Parkinson's disease (P<0.001, corticobasal degeneration (P<0.001, and cerebellar ataxia (P = 0.001].Our results suggest that a perturbation in the CoQ10 biosynthetic pathway is associated with the pathogenesis of MSA but the mechanism behind this finding remains to be elucidated.

  20. Coenzyme Q10 partially restores pathological alterations in a macrophage model of Gaucher disease.

    Science.gov (United States)

    de la Mata, Mario; Cotán, David; Oropesa-Ávila, Manuel; Villanueva-Paz, Marina; de Lavera, Isabel; Álvarez-Córdoba, Mónica; Luzón-Hidalgo, Raquel; Suárez-Rivero, Juan M; Tiscornia, Gustavo; Sánchez-Alcázar, José A

    2017-02-06

    Gaucher disease (GD) is caused by mutations in the GBA1 gene which encodes lysosomal β-glucocerebrosidase (GCase). In GD, partial or complete loss of GCase activity causes the accumulation of the glycolipids glucosylceramide (GlcCer) and glucosylsphingosine in the lysosomes of macrophages. In this manuscript, we investigated the effects of glycolipids accumulation on lysosomal and mitochondrial function, inflammasome activation and efferocytosis capacity in a THP-1 macrophage model of Gaucher disease. In addition, the beneficial effects of coenzyme Q 10 (CoQ) supplementation on cellular alterations were evaluated. Chemically-induced Gaucher macrophages were developed by differentiateing THP-1 monocytes to macrophages by treatment with phorbol 12-myristate 13-acetate (PMA) and then inhibiting intracellular GCase with conduritol B-epoxide (CBE), a specific irreversible inhibitor of GCase activity, and supplementing the medium with exogenous GlcCer. This cell model accumulated up to 16-fold more GlcCer compared with control THP-1 cells. Chemically-induced Gaucher macrophages showed impaired autophagy flux associated with mitochondrial dysfunction and increased oxidative stress, inflammasome activation and impaired efferocytosis. All abnormalities were partially restored by supplementation with CoQ. These data suggest that targeting mitochondria function and oxidative stress by CoQ can ameliorate the pathological phenotype of Gaucher cells. Chemically-induced Gaucher macrophages provide cellular models that can be used to investigate disease pathogenesis and explore new therapeutics for GD.

  1. Coenzyme B12 synthesis as a baseline to study metabolite contribution of animal microbiota.

    Science.gov (United States)

    Danchin, Antoine; Braham, Sherazade

    2017-07-01

    Microbial communities thrive in a number of environments. Exploration of their microbiomes - their global genome - may reveal metabolic features that contribute to the development and welfare of their hosts, or chemical cleansing of environments. Yet we often lack final demonstration of their causal role in features of interest. The reason is that we do not have proper baselines that we could use to monitor how microbiota cope with key metabolites in the hosting environment. Here, focusing on animal gut microbiota, we describe the fate of cobalamins - metabolites of the B12 coenzyme family - that are essential for animals but synthesized only by prokaryotes. Microbiota produce the vitamin used in a variety of animals (and in algae). Coprophagy plays a role in its management. For coprophobic man, preliminary observations suggest that the gut microbial production of vitamin B12 plays only a limited role. By contrast, the vitamin is key for structuring microbiota. This implies that it is freely available in the environment. This can only result from lysis of the microbes that make it. A consequence for biotechnology applications is that, if valuable for their host, B12-producing microbes should be sensitive to bacteriophages and colicins, or make spores. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  2. Oxidative stress correlates with headache symptoms in fibromyalgia: coenzyme Q₁₀ effect on clinical improvement.

    Science.gov (United States)

    Cordero, Mario D; Cano-García, Francisco Javier; Alcocer-Gómez, Elísabet; De Miguel, Manuel; Sánchez-Alcázar, José Antonio

    2012-01-01

    Fibromyalgia (FM) is a chronic pain syndrome with unknown etiology and a wide spectrum of symptoms such as allodynia, debilitating fatigue, joint stiffness and migraine. Recent studies have shown some evidences demonstrating that oxidative stress is associated to clinical symptoms in FM of fibromyalgia. We examined oxidative stress and bioenergetic status in blood mononuclear cells (BMCs) and its association to headache symptoms in FM patients. The effects of oral coenzyme Q(10) (CoQ(10)) supplementation on biochemical markers and clinical improvement were also evaluated. We studied 20 FM patients and 15 healthy controls. Clinical parameters were evaluated using the Fibromyalgia Impact Questionnaire (FIQ), visual analogues scales (VAS), and the Headache Impact Test (HIT-6). Oxidative stress was determined by measuring CoQ(10), catalase and lipid peroxidation (LPO) levels in BMCs. Bioenergetic status was assessed by measuring ATP levels in BMCs. We found decreased CoQ(10), catalase and ATP levels in BMCs from FM patients as compared to normal control (P headache parameters were observed (r  = -0.59, P headache symptoms (P stress in the headache symptoms associated with FM. CoQ10 supplementation should be examined in a larger placebo controlled trial as a possible treatment in FM.

  3. Microglial inhibitory mechanism of Coenzyme Q10 against Aβ (1-42 induced cognitive dysfunctions: possible behavioral, biochemical, cellular and histopathological alterations

    Directory of Open Access Journals (Sweden)

    Arti eSingh

    2015-11-01

    Full Text Available Rationale: Alzheimer’s disease (AD is a debilitating disease with complex pathophysiology. Amyloid beta (Aβ (1-42 is a reliable model of AD that recapitulates many aspects of human AD. Objective: The present study has been designed to investigate the neuroprotective potential of Coenzyme Q10 (CoQ10 and its modulation with minocycline (microglial inhibitor against Aβ (1-42 induced cognitive dysfunction in rats. Method: Intrahippocampal (i.h. Aβ (1-42 (1µg/µl; 4µl/site were administered followed by drug treatment with galantamine (2 mg/kg, CoQ10 (20 and 40 mg/kg, minocycline (50 and 100 mg/kg and their combinations for a period of 21 days. Various neurobehavioral parameters followed by biochemical, acetylcholinesterase (AChE level, proinflammatory markers (TNF-α, mitochondrial respiratory enzyme complexes (I-IV and histopathological examinations were assessed.Results: Aβ (1-42 administration significantly impaired cognitive performance in Morris water maze (MWM performance test, causes oxidative stress, raised AChE level, caused neuroinflammation, mitochondrial dysfunction and histopathological alterations as compared to sham treatment. Treatment with CoQ10 (20 and 40 mg/kg and minocycline (50 and 100 mg/kg alone for 21days significantly improved cognitive performance as evidenced by reduced transfer latency and increased time spent in target quadrant (TSTQ, reduced AChE activity, oxidative damage (reduced LPO, nitrite level and restored SOD, catalase and GHS levels, TNF-α level, restored mitochondrial respiratory enzyme complex (I, II, III, IV activities and histopathological alterations as compared to control (Aβ (1-42 treated animals group. Further, combination of minocycline (50 and 100 mg/kg with CoQ10 (20 and 40 mg/kg significantly modulate the protective effect of CoQ10 as compared to their effect alone. Conclusion: The present study suggests that the neuroprotective effect of CoQ10 could be due to its microglia inhibitory

  4. The influence of the known radioprotective compounds on the metabolism of red blood cells. Pt. 1. Effect of crysteamine on the cellular level of the intermediates and coenzymes

    International Nuclear Information System (INIS)

    Chmiel, J.; Kopczynski, Z.; Rybczynska, M.

    1976-01-01

    Cysteamine added to the human blood smples in the final concentration of 6.5 x 10 -3 M, 1,9 x 10 -2 M and 3,8 x 10 -2 M exerts a significant effect on the metabolism of erythrocytes. The chromatographic determination of carbohydrate intermediates and coenzymes in red blood cells indicates that in lower concentration of the drug the rate of anaerobic metabolism of glucose is increased. Higher concentration of cysteamine (3.8 x 10 -3 M) enhances aerobic catabolism of glucose in pentose shunt. (author)

  5. Gene structure and mutations of glutaryl-coenzyme A dehydrogenase: impaired association of enzyme subunits that is due to an A421V substitution causes glutaric acidemia type I in the Amish.

    OpenAIRE

    Biery, B. J.; Stein, D. E.; Morton, D. H.; Goodman, S. I.

    1996-01-01

    The structure of the human glutaryl coenzyme A dehydrogenase (GCD) gene was determined to contain 11 exons and to span approximately 7 kb. Fibroblast DNA from 64 unrelated glutaric acidemia type I (GA1) patients was screened for mutations by PCR amplification and analysis of SSCP. Fragments with altered electrophoretic mobility were subcloned and sequenced to detect mutations that caused GA1. This report describes the structure of the GCD gene, as well as point mutations and polymorphisms fou...

  6. Efficient Lewis Acid Ionic Liquid-Catalyzed Synthesis of the Key Intermediate of Coenzyme Q10 under Microwave Irradiation

    Directory of Open Access Journals (Sweden)

    Thomas Efferth

    2010-12-01

    Full Text Available An efficient synthesis of a valuable intermediate of coenzyme Q10 by microwave-assisted Lewis acidic ionic liquid (IL-catalyzed Friedel-Crafts alkylation is reported. The acidity of six [Etpy]BF4-based ionic liquids was characterized by means of the FT-IR technique using acetonitrile as a molecular probe. The catalytic activities of these ionic liquids were correlated with their Lewis acidity. With increasing Lewis acid strength of the ionic liquids, their catalytic activity in the Friedel-Crafts reaction increased, except for [Etpy]BF4-AlCl3. The effects of the reaction system, the molar fraction of Lewis acid in the Lewis acid ILs and heating techniques were also investigated. Among the six Lewis acid ionic liquids tested [Etpy]BF4-ZnCl2 showed the best catalytic activity, with a yield of 89% after a very short reaction time (150 seconds. This procedure has the advantages of higher efficiency, better reusability of ILs, energy conservation and eco-friendliness. The method has practical value for preparation of CoQ10 on an industrial scale.

  7. Synthesis and characterisation of Cu(II), Ni(II), Mn(II), Zn(II) and VO(II ...

    Indian Academy of Sciences (India)

    Unknown

    Synthesis and characterisation of Cu(II), Ni(II), Mn(II), Zn(II) and VO(II) Schiff base complexes derived from o-phenylenediamine and acetoacetanilide. N RAMAN*, Y PITCHAIKANI RAJA and A KULANDAISAMY. Department of Chemistry, VHNSN College, Virudhunagar 626 001, India e-mail: ra_man@123india.com.

  8. Cold-Induced Ascites in Broilers: Effects of Vitamin C and Coenzyme Q10

    Directory of Open Access Journals (Sweden)

    MH Nemati

    Full Text Available ABSTRACT We hypothesized that the supplementation of vitamin C (Vit. C and coenzyme Q10 (CoQ10 alone or in combination could reduce the negative effects of cold stress in broilers. Four hundred male chicks were exposed for 24 h to cold stress (15 ºC starting from 15d of age, while a positive control group (PC, 100 birds was kept under normal temperature condition. The experimental groups under cold stress (four treatments in 5 replicates of 20 birds were: negative control (NC, basal diet, Vit. C (basal diet + 300 mg/kg Vit. C, CoQ10 (basal diet + 40 mg/kg CoQ10 and Vit. C plus CoQ10 (basal diet + Vit. C+ CoQ10at above mentioned doses. Vit. C or CoQ10 supplementation were restored (p<0.01 performance and lowered (p<0.01 ascites mortality. Blood hematocrit and hemoglobin concentration were decreased (p<0.01 to the level comparable to PC by Vit. C supplementation. Lower plasma concentrations of thyroxin (T4 and higher triiodothyronine (T3 were observed in NC birds (p<0.01 and were not affected by Vit. C or CoQ10. In conclusion, supplementation of Vit. C or CoQ10 in diet of broilers under cold stress conditions resulted improved performance parameters (body weight and feed conversion ratio and ascites related traits (low red blood cell count, hematocrit, T3, and heart weights and high T4. No additional benefit was observed by combination of Vit. C and CoQ10.

  9. Biologically active new Fe(II, Co(II, Ni(II, Cu(II, Zn(II and Cd(II complexes of N-(2-thienylmethylenemethanamine

    Directory of Open Access Journals (Sweden)

    C. SPÎNU

    2008-04-01

    Full Text Available Iron(II, cobalt(II, nickel (II, copper (II, zinc(II and cadmium(II complexes of the type ML2Cl2, where M is a metal and L is the Schiff base N-(2-thienylmethylenemethanamine (TNAM formed by the condensation of 2-thiophenecarboxaldehyde and methylamine, were prepared and characterized by elemental analysis as well as magnetic and spectroscopic measurements. The elemental analyses suggest the stoichiometry to be 1:2 (metal:ligand. Magnetic susceptibility data coupled with electronic, ESR and Mössbauer spectra suggest a distorted octahedral structure for the Fe(II, Co(II and Ni(II complexes, a square-planar geometry for the Cu(II compound and a tetrahedral geometry for the Zn(II and Cd(II complexes. The infrared and NMR spectra of the complexes agree with co-ordination to the central metal atom through nitrogen and sulphur atoms. Conductance measurements suggest the non-electrolytic nature of the complexes, except for the Cu(II, Zn(II and Cd(II complexes, which are 1:2 electrolytes. The Schiff base and its metal chelates were screened for their biological activity against Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa and the metal chelates were found to possess better antibacterial activity than that of the uncomplexed Schiff base.

  10. Complexes of cobalt(II), nickel(II), copper(II), zinc(II), cadmium(II) and dioxouranium(II) with thiophene-2-aldehydethiosemicarbazone

    International Nuclear Information System (INIS)

    Singh, Balwan; Misra, Harihar

    1986-01-01

    Metal complexes of thiosemicarbazides have been known for their pharmacological applications. Significant antitubercular, fungicidal and antiviral activities have been reported for thiosemicarbazides and their derivatives. The present study describes the systhesis and characterisation of complexes of Co II , Cu II , Zn II ,Cd II and UO II with thiosemicarbazone obtained by condensing thiophene-2-aldehyde with thiosemicarbazide. 17 refs., 2 tables. (author)

  11. Bioavailability assessment of hydroxymethylglutaryl coenzyme A reductase inhibitor utilizing pulsatile drug delivery system: a pilot study.

    Science.gov (United States)

    Taha, Ehab I

    2016-09-01

    Chronotherapy or pulsatile drug delivery system could be achieved by increasing drug plasma concentration exactly at the time of disease incidence. Cholesterol synthesis shows a circadian rhythm being high at late night and early in the morning. Simvastatin (SIM) inhibits hydroxymethylglutaryl coenzyme A reductase, which is responsible for cholesterol synthesis. In this study, SIM lipid-based formulation filled in gelatin capsules and coated with aqueous Eudragit® S100 dispersion was prepared for chronotherapeutic treatment of hypercholesterolemia. The pharmacokinetic parameters of SIM capsules were studied in human volunteers after a single oral dose and compared with that of Zocor® tablets as a reference in a randomized cross-over study. Pharmacokinetic parameters such as AUC 0-∞ , C max , T max , t 1/2 and elimination rate constant were determined from plasma concentration-time profile for both formulations. The tested formulation had the ability to delay drug absorption and provide higher drug concentrations from 3 up to 10 h after oral administration compared to that of commercial tablets. The data in this study revealed that the prepared formulation could be effective in chronotherapeutic treatment of hypercholesterolemia. Moreover, the tested formulation was found to enhance SIM bioavailability by 29% over the reference tablets.

  12. The TIP30 protein complex, arachidonic acid and coenzyme A are required for vesicle membrane fusion.

    Directory of Open Access Journals (Sweden)

    Chengliang Zhang

    Full Text Available Efficient membrane fusion has been successfully mimicked in vitro using artificial membranes and a number of cellular proteins that are currently known to participate in membrane fusion. However, these proteins are not sufficient to promote efficient fusion between biological membranes, indicating that critical fusogenic factors remain unidentified. We have recently identified a TIP30 protein complex containing TIP30, acyl-CoA synthetase long-chain family member 4 (ACSL4 and Endophilin B1 (Endo B1 that promotes the fusion of endocytic vesicles with Rab5a vesicles, which transport endosomal acidification enzymes vacuolar (H⁺-ATPases (V-ATPases to the early endosomes in vivo. Here, we demonstrate that the TIP30 protein complex facilitates the fusion of endocytic vesicles with Rab5a vesicles in vitro. Fusion of the two vesicles also depends on arachidonic acid, coenzyme A and the synthesis of arachidonyl-CoA by ACSL4. Moreover, the TIP30 complex is able to transfer arachidonyl groups onto phosphatidic acid (PA, producing a new lipid species that is capable of inducing close contact between membranes. Together, our data suggest that the TIP30 complex facilitates biological membrane fusion through modification of PA on membranes.

  13. Anesthetic agents in patients with very long-chain acyl-coenzyme A dehydrogenase deficiency: a literature review.

    Science.gov (United States)

    Redshaw, Charlotte; Stewart, Catherine

    2014-11-01

    Very long-chain acyl-coenzyme A dehydrongenase deficiency (VLCADD) is a rare disorder of fatty acid metabolism that renders sufferers susceptible to hypoglycemia, liver failure, cardiomyopathy, and rhabdomyolysis. The literature about the management of these patients is hugely conflicting, suggesting that both propofol and volatile anesthesia should be avoided. We have reviewed the literature and have concluded that the source papers do not support the statements that volatile anesthetic agents are unsafe. The reports on rhabdomyolysis secondary to anesthesia appear to be due to inadequate supply of carbohydrate not volatile agents. Catabolism must be avoided with minimal fasting, glucose infusions based on age and weight, and attenuation of emotional and physical stress. General anesthesia appears to be protective of stress-induced catabolism and may offer benefits in children and anxious patients over regional anesthesia. Propofol has not been demonstrated to be harmful in VLCADD but is presented in an emulsion containing very long-chain fatty acids which can cause organ lipidosis and itself can inhibit mitochondrial fatty acid metabolism. It is therefore not recommended. Suxamethonium-induced myalgia may mimic symptoms of rhabdomyolysis and cause raised CK therefore should be avoided. Opioids, NSAIDS, regional anesthesia, and local anesthetic techniques have all been used without complication. © 2014 John Wiley & Sons Ltd.

  14. Effects of benfotiamine and coenzyme Q10 on kidney damage induced gentamicin.

    Science.gov (United States)

    Ustuner, Mehmet Alperen; Kaman, Dilara; Colakoglu, Neriman

    2017-12-01

    Gentamicin (GM) is an effective antibiotic against severe infection but has limitations related to nephrotoxicity. In this study, we investigated whether benfotiamine (BFT) and coenzyme Q10 (CoQ10), could ameliorate the nephrotoxic effect of GM in rats. Rats were divided into five groups. Group 1 and 2 served as control and sham respectively, Group 3 as GM group, Group 4 as GM+CoQ10 and Group 5 as GM+BFT for 8days. At the end of the study, all rats were euthanized by cervical decapitation and then blood samples and kidneys were collected for further analysis. Serum urea, creatinine, cytokine TNF-a, oxidant and antioxidant parameters, as well as histopathological examination of kidney tissues were assessed. Gentamicin administration caused a severe nephrotoxicity which was evidenced by an elevated serum creatinine, urea and KIM-1 level as compared with the controls. Moreover, a significant increase in serum malondialdehyde, reduced glutathione. Histopathological examination of renal tissue in gentamisin administered group, there were extremly pronounced necrotic tubules in the renal cortex and hyalen cast accumulation in the medullar tubuli. BFT given to GM rats reduced these nephrotoxicity parameters. Serum creatinine, urea, and KIM-1 were almost normalized in the GM+BFT group. Benfotiamin treatment was significantly decreased necrotic tubuli and hyalen deposition in gentamisin plus benfotiamin group. CoQ10 given to GM rats did not cause any statistically significant alterations in these nephrotoxicity parameters when compared with GM group but histopathological examination of renal tissue in GM+CoQ10 administered group, CoQ10 treatment was decreased necrotic tubuli rate and hyalen accumulation in tubuli. The results from our study indicate that BFT supplement attenuates gentamicin-induced renal injury via the amelioration of oxidative stress and inflammation of renal tubular cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Coenzyme Q10 production in plants: current status and future prospects.

    Science.gov (United States)

    Parmar, Sanjay Singh; Jaiwal, Anjali; Dhankher, Om Parkash; Jaiwal, Pawan K

    2015-06-01

    Coenzyme Q10 (CoQ10) or Ubiquinone10 (UQ10), an isoprenylated benzoquinone, is well-known for its role as an electron carrier in aerobic respiration. It is a sole representative of lipid soluble antioxidant that is synthesized in our body. In recent years, it has been found to be associated with a range of patho-physiological conditions and its oral administration has also reported to be of therapeutic value in a wide spectrum of chronic diseases. Additionally, as an antioxidant, it has been widely used as an ingredient in dietary supplements, neutraceuticals, and functional foods as well as in anti-aging creams. Since its limited dietary uptake and decrease in its endogenous synthesis in the body with age and under various diseases states warrants its adequate supply from an external source. To meet its growing demand for pharmaceutical, cosmetic and food industries, there is a great interest in the commercial production of CoQ10. Various synthetic and fermentation of microbial natural producers and their mutated strains have been developed for its commercial production. Although, microbial production is the major industrial source of CoQ10 but due to low yield and high production cost, other cost-effective and alternative sources need to be explored. Plants, being photosynthetic, producing high biomass and the engineering of pathways for producing CoQ10 directly in food crops will eliminate the additional step for purification and thus could be used as an ideal and cost-effective alternative to chemical synthesis and microbial production of CoQ10. A better understanding of CoQ10 biosynthetic enzymes and their regulation in model systems like E. coli and yeast has led to the use of metabolic engineering to enhance CoQ10 production not only in microbes but also in plants. The plant-based CoQ10 production has emerged as a cost-effective and environment-friendly approach capable of supplying CoQ10 in ample amounts. The current strategies, progress and constraints of

  16. Mn(II), Zn(II) and VO(II) Schiff

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 113; Issue 3. Synthesis and characterisation of Cu(II), Ni(II), Mn(II), Zn(II) and VO(II) Schiff base complexes derived from o-phenylenediamine and acetoacetanilide. N Raman Y Pitchaikani Raja A Kulandaisamy. Inorganic Volume 113 Issue 3 June 2001 pp 183-189 ...

  17. Binding site for the adenosyl group of coenzyme B12 in diol dehydrase

    International Nuclear Information System (INIS)

    Toraya, T.

    1985-01-01

    The binding of cob(II)alamin (CblII) and 5'-deoxyadenosine to diol dehydrase was studied spectroscopically and with [U- 14 C]5'-deoxyadenosine. CblII was bound to this enzyme forming a tight 1:1 complex which was resistant to oxidation by O 2 even in the presence of CN-. An irreversible 1:1:1 ternary complex was formed between enzyme, CblII, and 5'-deoxyadenosine, when the enzyme was incubated first with the nucleoside and then with CblII. When this order of addition of the constituents was reversed, no 5'-deoxyadenosine was bound to the enzyme-CblII complex. Hydroxocobalamin could also bind to the enzyme together with the nucleoside, while other cob(III)alamins bearing a bulkier Co beta ligand displaced the nucleoside upon binding to the enzyme. The binding of [U- 14 C]5'-deoxyadenosine was strongly inhibited by unlabeled 5'-deoxy-ara-adenosine, 4',5'-anhydroadenosine, adenosine, adenine, and 5',8-cyclic adenosine, in this order, but not by 5'-deoxyuridine. These results constitute direct evidence for the presence of the binding site for the adenosyl group of adenosylcobalamin, which is spatially limited to and highly specific for adenine nucleosides. The binding of 5'-deoxyadenosine to the apoenzyme was reversible

  18. Inhibitors of hydroxymethylglutaryl-coenzyme A reductase and risk of fracture among older women.

    Science.gov (United States)

    Chan, K A; Andrade, S E; Boles, M; Buist, D S; Chase, G A; Donahue, J G; Goodman, M J; Gurwitz, J H; LaCroix, A Z; Platt, R

    2000-06-24

    Inhibitors of hydroxymethylglutaryl-coenzyme A reductase (statins) increase new bone formation in rodents and in human cells in vitro. Statin use is associated with increased bone mineral density of the femoral neck. We undertook a population-based case-control study at six health-maintenance organisations in the USA to investigate further the relation between statin use and fracture risk among older women. We investigated women aged 60 years or older. Exposure, outcome, and confounder information was obtained from automated claims and pharmacy data from October, 1994, to September, 1997. Cases had an incident diagnosis of non-pathological fracture of the hip, humerus, distal tibia, wrist, or vertebrae between October, 1996, and September, 1997. Controls had no fracture during this period. We excluded women with records of dispensing of drugs to treat osteoporosis. There were 928 cases and 2747 controls. Compared with women who had no record of statin dispensing during the previous 2 years, women with 13 or more statin dispensings during this period had a decreased risk of non-pathological fracture (odds ratio 0.48 [95% CI 0.27-0.83]) after adjustment for age, number of hospital admissions during the previous year, chronic disease score, and use of non-statin lipid-lowering drugs. No association was found between fracture risk and fewer than 13 dispensings of statins or between fracture risk and use of non-statin lipid-lowering drugs. Statins seem to be protective against non-pathological fracture among older women. These findings are compatible with the hypothesis that statins increase bone mineral density in human beings and thereby decrease the risk of osteoporotic fractures.

  19. Adsorption of Pb(II), Cu(II), Cd(II), Zn(II), Ni(II), Fe(II), and As(V) on bacterially produced metal sulfides.

    Science.gov (United States)

    Jong, Tony; Parry, David L

    2004-07-01

    The adsorption of Pb(II), Cu(II), Cd(II), Zn(II), Ni(II), Fe(II) and As(V) onto bacterially produced metal sulfide (BPMS) material was investigated using a batch equilibrium method. It was found that the sulfide material had adsorptive properties comparable with those of other adsorbents with respect to the specific uptake of a range of metals and, the levels to which dissolved metal concentrations in solution can be reduced. The percentage of adsorption increased with increasing pH and adsorbent dose, but decreased with increasing initial dissolved metal concentration. The pH of the solution was the most important parameter controlling adsorption of Cd(II), Cu(II), Fe(II), Ni(II), Pb(II), Zn(II), and As(V) by BPMS. The adsorption data were successfully modeled using the Langmuir adsorption isotherm. Desorption experiments showed that the reversibility of adsorption was low, suggesting high-affinity adsorption governed by chemisorption. The mechanism of adsorption for the divalent metals was thought to be the formation of strong, inner-sphere complexes involving surface hydroxyl groups. However, the mechanism for the adsorption of As(V) by BPMS appears to be distinct from that of surface hydroxyl exchange. These results have important implications to the management of metal sulfide sludge produced by bacterial sulfate reduction.

  20. Functional characterization of human COQ4, a gene required for Coenzyme Q10 biosynthesis

    International Nuclear Information System (INIS)

    Casarin, Alberto; Jimenez-Ortega, Jose Carlos; Trevisson, Eva; Pertegato, Vanessa; Doimo, Mara; Ferrero-Gomez, Maria Lara; Abbadi, Sara; Artuch, Rafael; Quinzii, Catarina; Hirano, Michio; Basso, Giuseppe; Ocana, Carlos Santos; Navas, Placido; Salviati, Leonardo

    2008-01-01

    Defects in genes involved in coenzyme Q (CoQ) biosynthesis cause primary CoQ deficiency, a severe multisystem disorders presenting as progressive encephalomyopathy and nephropathy. The COQ4 gene encodes an essential factor for biosynthesis in Saccharomyces cerevisiae. We have identified and cloned its human ortholog, COQ4, which is located on chromosome 9q34.13, and is transcribed into a 795 base-pair open reading frame, encoding a 265 amino acid (aa) protein (Isoform 1) with a predicted N-terminal mitochondrial targeting sequence. It shares 39% identity and 55% similarity with the yeast protein. Coq4 protein has no known enzymatic function, but may be a core component of multisubunit complex required for CoQ biosynthesis. The human transcript is detected in Northern blots as a ∼1.4 kb single band and is expressed ubiquitously, but at high levels in liver, lung, and pancreas. Transcription initiates at multiple sites, located 333-23 nucleotides upstream of the ATG. A second group of transcripts originating inside intron 1 of the gene encodes a 241 aa protein, which lacks the mitochondrial targeting sequence (isoform 2). Expression of GFP-fusion proteins in HeLa cells confirmed that only isoform 1 is targeted to mitochondria. The functional significance of the second isoform is unknown. Human COQ4 isoform 1, expressed from a multicopy plasmid, efficiently restores both growth in glycerol, and CoQ content in COQ4 null yeast strains. Human COQ4 is an interesting candidate gene for patients with isolated CoQ 10 deficiency

  1. Specific DNA Binding of a Potential Transcriptional Regulator, Inosine 5′-Monophosphate Dehydrogenase-Related Protein VII, to the Promoter Region of a Methyl Coenzyme M Reductase I-Encoding Operon Retrieved from Methanothermobacter thermautotrophicus Strain ΔH▿

    OpenAIRE

    Shinzato, Naoya; Enoki, Miho; Sato, Hiroaki; Nakamura, Kohei; Matsui, Toru; Kamagata, Yoichi

    2008-01-01

    Two methyl coenzyme M reductases (MCRs) encoded by the mcr and mrt operons of the hydrogenotrophic methanogen Methanothermobacter thermautotrophicus ΔH are expressed in response to H2 availability. In the present study, cis elements and trans-acting factors responsible for the gene expression of MCRs were investigated by using electrophoretic mobility shift assay (EMSA) and affinity particle purification. A survey of their operator regions by EMSA with protein extracts from mrt-expressing cul...

  2. Synthesis and spectroscopic studies of biologically active tetraazamacrocyclic complexes of Mn(II, Co(II, Ni(II, Pd(II and Pt(II

    Directory of Open Access Journals (Sweden)

    Monika Tyagi

    2014-01-01

    Full Text Available Complexes of Mn(II, Co(II, Ni(II, Pd(II and Pt(II were synthesized with the macrocyclic ligand, i.e., 2,3,9,10-tetraketo-1,4,8,11-tetraazacycoletradecane. The ligand was prepared by the [2 + 2] condensation of diethyloxalate and 1,3-diamino propane and characterized by elemental analysis, mass, IR and 1H NMR spectral studies. All the complexes were characterized by elemental analysis, molar conductance, magnetic susceptibility measurements, IR, electronic and electron paramagnetic resonance spectral studies. The molar conductance measurements of Mn(II, Co(II and Ni(II complexes in DMF correspond to non electrolyte nature, whereas Pd(II and Pt(II complexes are 1:2 electrolyte. On the basis of spectral studies an octahedral geometry has been assigned for Mn(II, Co(II and Ni(II complexes, whereas square planar geometry assigned for Pd(II and Pt(II. In vitro the ligand and its metal complexes were evaluated against plant pathogenic fungi (Fusarium odum, Aspergillus niger and Rhizoctonia bataticola and some compounds found to be more active as commercially available fungicide like Chlorothalonil.

  3. Ratiometric colorimetric determination of coenzyme A using gold nanoparticles and a binuclear uranyl complex as optical probes

    International Nuclear Information System (INIS)

    Wu, Rurong; Liao, Lifu; Li, Shijun; Yang, Yanyan; Xiao, Xilin; Nie, Changming

    2016-01-01

    We describe a ratiometric colorimetric method for the determination of coenzyme A (CoA) by using gold nanoparticles (AuNPs) and bis-uranyl-bis-sulfosalophen (BUBSS) as optical probes. BUBSS is a binuclear uranyl complex and formed through the chelating reaction of two uranyl ions with bis-sulfosalophen. CoA is captured by the AuNPs via the thiol group and this leads to the formation of CoA-AuNPs. In a second step, BUBSS binds two CoA-AuNPs through a coordination reaction between the uranyl ions in BUBSS and the phosphate groups in CoA-AuNPs. This causes the CoA-AuNPs to aggregate and results in a color change from wine red to blue. A ratiometric colorimetric assay was established for CoA based on the ratiometric measurement of absorbance changes at 650 and 525 nm. Their ratio is linearly related to the concentration of CoA in the 0 to 1.2 μmol⋅L -1 range, with a 6 nmol⋅ L- 1 detection limit under optimal conditions. The method was successfully applied to the determination of CoA in spiked liver samples with recoveries between 99.4 and 102.6 %. (author)

  4. Characterization of Benzoyl Coenzyme A Biosynthesis Genes in the Enterocin-Producing Bacterium “Streptomyces maritimus”

    Science.gov (United States)

    Xiang, Longkuan; Moore, Bradley S.

    2003-01-01

    The novel benzoyl coenzyme A (benzoyl-CoA) biosynthesis pathway in “Streptomyces maritimus” was investigated through a series of target-directed mutations. Genes involved in benzoyl-CoA formation were disrupted through single-crossover homologous recombination, and the resulting mutants were analyzed for their ability to biosynthesize the benzoyl-CoA-primed polyketide antibiotic enterocin. Inactivation of the unique phenylalanine ammonia-lyase-encoding gene encP was previously shown to be absolutely required for benzoyl-CoA formation in “S. maritimus”. The fatty acid β-oxidation-related genes encH, -I, and -J, on the other hand, are necessary but not required. In each case, the yield of benzoyl-CoA-primed enterocin dropped below wild-type levels. We attribute the reduced benzoyl-CoA formation in these specific mutants to functional substitution and cross-talk between the products of genes encH, -I, and -J and the enzyme homologues of primary metabolism. Disruption of the benzoate-CoA ligase encN gene did not perturb enterocin production, however, demonstrating that encN is extraneous and that benzoic acid is not a pathway intermediate. EncN rather serves as a substitute pathway for utilizing exogenous benzoic acid. These experiments provide further support that benzoyl-CoA is formed in a novel bacterial pathway that resembles the eukaryotic assembly of benzoyl-CoA from phenylalanine via a β-oxidative path. PMID:12511484

  5. Photoionization of oxidized coenzyme Q in microemulsion: laser flash photolysis study in biomembrane-like system.

    Science.gov (United States)

    Li, Kun; Wang, Mei; Wang, Jin; Zhu, Rongrong; Sun, Dongmei; Sun, Xiaoyu; Wang, Shi-Long

    2013-01-01

    Photoexcitation to generate triplet state has been proved to be the main photoreaction in homogeneous system for many benzoquinone derivatives, including oxidized coenzyme Q (CoQ) and its analogs. In the present study, microemulsion of CoQ, a heterogeneous system, is employed to mimic the distribution of CoQ in biomembrane. The photochemistry of CoQ(10) in microemulsion and cyclohexane is investigated and compared using laser flash photolysis and results show that CoQ(10) undergoes photoionization via a monophotonic process to generate radical cation of CoQ(10) in microemulsion and photoexcitation to generate excited triplet state in cyclohexane. Meanwhile, photoreactions of duroquinone (DQ) and CoQ(0) in microemulsion are also investigated to analyze the influence of molecular structure on the photochemistry of benzoquinone derivatives in microemulsion. Results suggest that photoexcitation, which is followed by excited state-involved hydrogen-abstraction reaction, is the main photoreaction for DQ and CoQ(0) in microemulsion. However, photoexcited CoQ(0) also leads to the formation of hydrated electrons. The isoprenoid side chain-involved high resonance stabilization is proposed to explain the difference in photoreactions of CoQ(0) and CoQ(10) in microemulsion. Considering that microemulsion is close to biomembrane system, its photoionization in microemulsion may be helpful to understand the real photochemistry of biological quinones in biomembrane system. © 2012 Tongji University. Photochemistry and Photobiology © 2012 The American Society of Photobiology.

  6. Application of Coenzyme Q10 for Accelerating Soft Tissue Wound Healing after Tooth Extraction in Rats

    Directory of Open Access Journals (Sweden)

    Toshiki Yoneda

    2014-12-01

    Full Text Available Accelerating wound healing after tooth extraction is beneficial in dental treatment. Application of antioxidants, such as reduced coenzyme Q10 (rCoQ10, may promote wound healing after tooth extraction. In this study, we examined the effects of topical application of rCoQ10 on wound healing after tooth extraction in rats. After maxillary first molars were extracted, male Fischer 344 rats (8 weeks old (n = 27 received topical application of ointment containing 5% rCoQ10 (experimental group or control ointment (control group to the sockets for 3 or 8 days (n = 6–7/group. At 3 days after extraction, the experimental group showed higher collagen density and lower numbers of polymorphonuclear leukocytes in the upper part of socket, as compared to the control group (p < 0.05. Gene expression of interleukin-1β, tumor necrosis factor-α and nuclear factor-κB were also lower in the experimental group than in the control group (p < 0.05. At 8 days after tooth extraction, there were no significant differences in collagen density, number of polymorphonuclear leukocytes and bone fill between the groups. Our results suggest that topical application of rCoQ10 promotes wound healing in the soft tissue of the alveolar socket, but that rCoQ10 has a limited effect on bone remodeling in rats.

  7. Coenzyme Q10, α-Tocopherol, and Oxidative Stress Could Be Important Metabolic Biomarkers of Male Infertility

    Directory of Open Access Journals (Sweden)

    Anna Gvozdjáková

    2015-01-01

    Full Text Available Oxidative stress, decreased antioxidant capacity, and impaired sperm mitochondrial function are the main factors contributing to male infertility. The goal of the present study was to assess the effect of the per os treatment with Carni-Q-Nol (440 mg L-carnitine fumarate + 30 mg ubiquinol + 75 IU vitamin E + 12 mg vitamin C in each softsule in infertile men on sperm parameters, concentration of antioxidants (coenzyme Q10,  CoQ10-TOTAL, γ, and α-tocopherols, and oxidative stress in blood plasma and seminal fluid. Forty infertile men were supplemented daily with two or three Carni-Q-Nol softsules. After 3 and 6 months of treatment, improved sperm density was observed (by 48.9% and 80.9%, resp. and after 3-month treatment the sperm pathology decreased by 25.8%. Concentrations of CoQ10-TOTAL (ubiquinone + ubiquinol and α-tocopherol were significantly increased and the oxidative stress was decreased. In conclusion, the effect of supplementary therapy with Carni-Q-Nol showed benefits on sperm function in men, resulting in 45% pregnancies of their women. We assume that assessment of oxidative stress, CoQ10-TOTAL, and α-tocopherol in blood plasma and seminal fluid could be important metabolic biomarkers in both diagnosis and treatment of male infertility.

  8. Non-enzymatic N-acetylation of Lysine Residues by AcetylCoA Often Occurs via a Proximal S-acetylated Thiol Intermediate Sensitive to Glyoxalase II

    Directory of Open Access Journals (Sweden)

    Andrew M. James

    2017-02-01

    Full Text Available Summary: Acetyl coenzyme A (AcCoA, a key intermediate in mitochondrial metabolism, N-acetylates lysine residues, disrupting and, in some cases, regulating protein function. The mitochondrial lysine deacetylase Sirtuin 3 (Sirt3 reverses this modification with benefits reported in diabetes, obesity, and aging. We show that non-enzymatic lysine N-acetylation by AcCoA is greatly enhanced by initial acetylation of a cysteine residue, followed by SN-transfer of the acetyl moiety to a nearby lysine on mitochondrial proteins and synthetic peptides. The frequent occurrence of an S-acetyl intermediate before lysine N-acetylation suggests that proximity to a thioester is a key determinant of lysine susceptibility to acetylation. The thioesterase glyoxalase II (Glo2 can limit protein S-acetylation, thereby preventing subsequent lysine N-acetylation. This suggests that the hitherto obscure role of Glo2 in mitochondria is to act upstream of Sirt3 in minimizing protein N-acetylation, thus limiting protein dysfunction when AcCoA accumulates. : James et al. show that the non-enzymatic N-acetylation of lysine residues in mitochondrial proteins frequently occurs via a proximal S-acetylated thiol intermediate. Glutathione equilibrates with this intermediate, allowing the thioesterase glyoxalase II to limit protein lysine N-acetylation. These findings expand our understanding of how protein acetylation arises. Keywords: AcetylCoA, lysine acetylation, glyoxalase

  9. From nicotinate-containing layered double hydroxides (LDHs) to NAD coenzyme-LDH nanocomposites - Syntheses and structural characterization by various spectroscopic methods

    Science.gov (United States)

    Muráth, Szabolcs; Dudás, Csilla; Kukovecz, Ákos; Kónya, Zoltán; Sipos, Pál; Pálinkó, István

    2017-07-01

    The syntheses of nicotinate anion- and NAD coenzyme-layered double hydroxide (LDH) composites were performed with the aim of having the organic component among the layers. In-house prepared CaAl-LDHs were the host materials. Intercalation was attempted by direct ion exchange or by the dehydration-rehydration method applying aqueous solvent mixtures (containing ethanol, propanol, acetone, N,N-dimethylformamide). For structural characterization, beside X-ray diffractometry, X-ray photoelectron and IR spectroscopies, transmission and scanning electron microscopies as well as energy-dispersive X-ray analysis were used. Molecular modelling served for the visualization of the arrangements of the intercalated ions among the layers of the LDH samples. Although not all the intercalation methods and solvent mixtures led to intercalated composite materials, successful ones could be identified. The combination of spectroscopic methods helped in proposing sensible spatial arrangements for the intercalated anions. The NAD-CaAl-LDH composite proved to be an active catalyst in the oxidation of hydroquinone to 1,4-bezoquinoe in the presence of H2O2.

  10. Coenzyme Q10 as a treatment for fatigue and depression in multiple sclerosis patients: A double blind randomized clinical trial.

    Science.gov (United States)

    Sanoobar, Meisam; Dehghan, Parvin; Khalili, Mohammad; Azimi, Amirreza; Seifar, Fatemeh

    2016-01-01

    Multiple sclerosis (MS) is the chronic inflammatory and demyelinating disorder of central nervous system which is accompanied with disability and negative life style changes such as fatigue and depression. The aim of this study is to investigate the effect of coenzyme Q10 (CoQ10) supplementation on fatigue and depression in patients with MS. We performed a randomized, double-blinded, placebo-controlled trial to determine the effect of CoQ10 supplement (500 mg/day) vs. placebo for 12 weeks. Fatigue symptoms were quantified by means of fatigue severity scale (FSS) and the Beck depression inventory (BDI) was used to assess depressive symptoms. A significant decrease of FSS was observed in CoQ10 group during the intervention (P = 0.001) and significant increase of FSS change was observed within placebo group (P = 0.001). Repeated measure analysis of variance showed a significant time-by-treatment interaction for FSS (baseline 41.5 ± 15.6 vs. endpoint 45 ± 13.6; F1,45 = 55.23, P multiple sclerosis.

  11. A Direct Comparison of Anti-ulcer Effects of Coenzyme Q10 and Vitamin C on Indomethacin-induced Gastric Ulcer in Rat: A Controlled Experimental Study

    Directory of Open Access Journals (Sweden)

    2013-08-01

    Full Text Available Introduction: Indomethacin increases generation of mitochondrial reactive oxygen species (ROS which have a crucial role in the indomethacin-induced gastric ulcer. Coenzyme Q10 has an antioxidant activity on mitochondria and cell membranes and protects lipids from oxidation and is essential for stabilizing biological membranes. Superoxide dismutase (SOD acts as one of the defense mechanisms against free radicals. When the generation of ROS overwhelms, the antioxidant defense, lipid peroxiation of cell membrane occurs and cause cell damage. Materials and Methods: Male adult Wistar rats were divided into A and B groups. The rats in group A were then further divided into three subgroups of 6 animals each and received one of the following treatments: Animals in the first subgroup received saline. Animals in the second subgroup received saline and indomethacin. Animals in the third subgroup received vitamin C and indomethacin. The rats in group B were also further divided into 3 subgroups of 6 rats each and treated with one of the following treatments: Animals in first subgroup received 1% Tween 80 as vehicle. Animals In second subgroup received 1% Tween 80 and indomethacin. Animals in third subgroup received CoQ10 and indomethacin. Four hours after the last treatment, animals were killed and the stomachs removed were cut and gastric mucosal lesions were examined. Ulcer indexes were determined and SOD activity measured in plasma                                                             Results: Pretreatment with both vitamin C and coenzyme Q10 was associated with attenuation of ulcer index and increased SOD activity compared with animals treated with indomethacin alone (P

  12. Effect of Cu(II), Cd(II) and Zn(II) on Pb(II) biosorption by algae Gelidium-derived materials.

    Science.gov (United States)

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2008-06-15

    Biosorption of Pb(II), Cu(II), Cd(II) and Zn(II) from binary metal solutions onto the algae Gelidium sesquipedale, an algal industrial waste and a waste-based composite material was investigated at pH 5.3, in a batch system. Binary Pb(II)/Cu(II), Pb(II)/Cd(II) and Pb(II)/Zn(II) solutions have been tested. For the same equilibrium concentrations of both metal ions (1 mmol l(-1)), approximately 66, 85 and 86% of the total uptake capacity of the biosorbents is taken by lead ions in the systems Pb(II)/Cu(II), Pb(II)/Cd(II) and Pb(II)/Zn(II), respectively. Two-metal results were fitted to a discrete and a continuous model, showing the inhibition of the primary metal biosorption by the co-cation. The model parameters suggest that Cd(II) and Zn(II) have the same decreasing effect on the Pb(II) uptake capacity. The uptake of Pb(II) was highly sensitive to the presence of Cu(II). From the discrete model it was possible to obtain the Langmuir affinity constant for Pb(II) biosorption. The presence of the co-cations decreases the apparent affinity of Pb(II). The experimental results were successfully fitted by the continuous model, at different pH values, for each biosorbent. The following sequence for the equilibrium affinity constants was found: Pb>Cu>Cd approximately Zn.

  13. Three endoplasmic reticulum-associated fatty acyl-coenzyme a reductases were involved in the production of primary alcohols in hexaploid wheat (Triticum aestivum L.).

    Science.gov (United States)

    Chai, Guaiqiang; Li, Chunlian; Xu, Feng; Li, Yang; Shi, Xue; Wang, Yong; Wang, Zhonghua

    2018-03-05

    The cuticle covers the surface of the polysaccharide cell wall of leaf epidermal cells and forms an essential diffusion barrier between the plant and the environment. The cuticle is composed of cutin and wax. Cuticular wax plays an important role in the survival of plants by serving as the interface between plants and their biotic and abiotic environments, especially restricting nonstomatal water loss. Leaf cuticular waxes of hexaploid wheat at the seedling stage mainly consist of primary alcohols, aldehydes, fatty acids, alkane and esters. Primary alcohols account for more than 80% of the total wax load. Therefore, we cloned several genes encoding fatty acyl-coenzyme A reductases from wheat and analyzed their function in yeast and plants. We propose the potential use of these genes in wheat genetic breeding. We reported the cloning and characterization of three TaFARs, namely TaFAR6, TaFAR7 and TaFAR8, encoding fatty acyl-coenzyme A reductases (FAR) in wheat leaf cuticle. Expression analysis revealed that TaFAR6, TaFAR7 and TaFAR8 were expressed at the higher levels in the seedling leaf blades, and were expressed moderately or weakly in stamen, glumes, peduncle, flag leaf blade, sheath, spike, and pistil. The heterologous expression of three TaFARs in yeast (Saccharomyces cerevisiae) led to the production of C24:0 and C26:0 primary alcohols. Transgenic expression of the three TaFARs in tomato (Solanum lycopersicum) and rice (Oryza sativa) led to increased accumulation of C24:0-C30:0 primary alcohols. Transient expression of GFP protein-tagged TaFARs revealed that the three TaFAR proteins were localized to the endoplasmic reticulum (ER), the site of wax biosynthesis. The three TaFAR genes were transcriptionally induced by drought, cold, heat, powdery mildew (Blumeria graminis) infection, abscisic acid (ABA) and methyl jasmonate (MeJa) treatments. These results indicated that wheat TaFAR6, TaFAR7 and TaFAR8 are involved in biosynthesis of very-long-chain primary

  14. Three-dimensional structure of phosphopantetheine adenylyltransferase from Mycobacterium tuberculosis in the apo form and in complexes with coenzyme A and dephosphocoenzyme A

    International Nuclear Information System (INIS)

    Timofeev, V. I.; Smirnova, E. A.; Chupova, L. A.; Esipov, R. S.; Kuranova, I. P.

    2012-01-01

    Crystals of phosphopantetheine adenylyltransferase (PPAT) from Mycobacterium tuberculosis in the apo form and in complexes with coenzyme A (PPAT/CoA) and dephosphocoenzyme A (PPAT/dPCoA) were grown in microgravity by the capillary counter-diffusion method. The structures of PPAT Mt in the apo form and in complexes with ligands were solved based on the X-ray diffraction data collected from the grown crystals. The crystal structures were refined at 1.76, 1.59, and 1.59 Å resolution to Rf factors of 0.175, 0.159, and 0.157 and Rfree of 0.224, 0.208, and 0.206 for PPAT, PPAT/CoA, and PPAT/dPCoA, respectively. The atomic coordinates of the structures were deposited in the Protein Data Bank (PDB ID: 3RFF, 3RHS, and 3RBA). In these structures, the ligand-binding sites were determined, the environment of these sites was characterized, and the conformational changes accompanying the ligand binding were analyzed.

  15. Preparation and in vitro-in vivo evaluation of Witepsol H35 based self-nanoemulsifying drug delivery systems (SNEDDS) of coenzyme Q(10).

    Science.gov (United States)

    Nepal, Pushp R; Han, Hyo-Kyung; Choi, Hoo-Kyun

    2010-02-19

    Coenzyme Q(10) (CoQ(10)) was formulated into self-nanoemulsifying drug delivery systems (SNEDDS) to overcome low bioavailability attributed to hydrophobic nature of the drug. Screening of oil phase, surfactants and co-surfactants were performed to select Witepsol H35, Solutol HS15 and Lauroglycol FCC, respectively. Ternary phase diagrams were drawn to identify nanoemulsifying region followed by optimization of SNEDDS formulation. The optimized formulation, CoQ(10), Witepsol H35, Solutol HS15 and Lauroglycol FCC in the weight ratio of 1:0.7:4:2, respectively, emulsified readily at 37 degrees C with mean emulsion droplet size of 32.4 nm. The stability test of the optimized formulation in pH 1.2 and 6.8 buffers confirmed no pH effect on emulsion droplet size. In vitro dissolution (emulsification) test and in vivo animal study of the formulation elucidated the complete emulsification of drug and improved oral bioavailability of poorly soluble CoQ(10). 2009 Elsevier B.V. All rights reserved.

  16. Coenzyme Q10 Inhibits the Aging of Mesenchymal Stem Cells Induced by D-Galactose through Akt/mTOR Signaling

    Directory of Open Access Journals (Sweden)

    Dayong Zhang

    2015-01-01

    Full Text Available Increasing evidences indicate that reactive oxygen species are the main factor promoting stem cell aging. Recent studies have demonstrated that coenzyme Q10 (CoQ10 plays a positive role in organ and cellular aging. However, the potential for CoQ10 to protect stem cell aging has not been fully evaluated, and the mechanisms of cell senescence inhibited by CoQ10 are still poorly understood. Our previous study had indicated that D-galactose (D-gal can remarkably induce mesenchymal stem cell (MSC aging through promoting intracellular ROS generation. In this study, we showed that CoQ10 could significantly inhibit MSC aging induced by D-gal. Moreover, in the CoQ10 group, the expression of p-Akt and p-mTOR was clearly reduced compared with that in the D-gal group. However, after Akt activating by CA-Akt plasmid, the senescence-cell number in the CoQ10 group was significantly higher than that in the control group. These results indicated that CoQ10 could inhibit D-gal-induced MSC aging through the Akt/mTOR signaling.

  17. Physicochemical properties of 3,4,5-trimethoxybenzoates of Mn(II, Co(II, Ni(II and Zn(II

    Directory of Open Access Journals (Sweden)

    W. FERENC

    2005-09-01

    Full Text Available The complexes of Mn(II, Co(II, Ni(II, Cu(II and Zn(II with 3,4,5-trimethoxybenzoic acid anion of the formula: M(C10H11O52·nH2O, where n = 6 for Ni(II, n = 1 for Mn(II, Co(II, Cu(II, and n = 0 for Zn, have been synthesized and characterized by elemental analysis, IR spectroscopy, X–ray diffraction measurements, thermogravimetry and magnetic studies. They are crystalline compounds characterized by various symmetry. They decompose in various ways when heated in air to 1273 K. At first, they dehydrate in one step and form anhydrous salts. The final products of decomposition are oxides of the respective metals (Mn2O3, Co3O4, NiO, CuO, ZnO. The solubilities of the analysed complexes in water at 293 K are in the orders of 10-2 – 10-4 mol dm-3. The magnetic susceptibilities of the Mn(II, Co(II, Ni(II and Cu(II complexes were measured over the range of 76–303 K and the magnetic moments were calculated. The results show that the 3,4,5-trimethoxybenzoates of Mn(II, Co(II and Ni(II are high-spin complexes but that of Cu(II forms a dimer [Cu2(C10H11O54(H2O2]. The carboxylate groups bind as monodentate or bidentate chelating or bridging ligands.

  18. Synthesis and spectral studies of manganese(II), cobalt(II), nickel(II), copper(II), zinc(II), cadmium(II) and mercury(II) complexes of 4-oxo-4H-1-benzopyran-3-carboxaldehyde hydrazone derivatives

    International Nuclear Information System (INIS)

    Nawar, N.; Khattab, M.A.; Bekheit, M.M.; El-Kaddah, A.H.

    1996-01-01

    A few complexes of Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II) with 4-oxo-4H-1-benzopyran-3-(carboxaldehyde-4-chlorobenzylhydrazone) (BCBH) and 4-oxo-4H-1-benzopyran-3-(carboxaldehyde-4-methylbenzylhydrazone) (BMBH) have been synthesised and characterized by elemental analysis, molar conductivities, magnetic measurements and infrared (IR) and visible spectral studies. The IR spectra show that BCBH and BMBH behave as bidentate ligands either in the keto or enol form. (author). 24 refs., 2 tabs

  19. Synthesis, Characterization, and Biological Activity of Mn(II, Fe(II, Co(II, Ni(II, Cu(II, Zn(II, and Cd(II Complexes of N-Thiophenoyl-N′-Phenylthiocarbohydrazide

    Directory of Open Access Journals (Sweden)

    M. Yadav

    2013-01-01

    Full Text Available Mn(II, Fe(II, Co(II, Ni(II, Cu(II, Zn(II, and Cd(II complex of N-thiophenoyl -N′-phenylthiocarbohydrazide (H2 TPTH have been synthesized and characterized by elemental analysis, magnetic susceptibility measurements, infrared, NMR, electronic, and ESR spectral studies. The complexes were found to have compositions [Mn(H TPTH2], [Co(TPTH (H2O2], [Ni(TPTH (H2O2], [Cu(TPTH], [Zn(H TPTH], [Cd(H TPTH2], and [Fe(H TPTH2(EtOH]. The magnetic and electronic spectral studies suggest square planar geometry for [Cu(TPTH], tetrahedral geometry for [Zn(TPTH] and [Cd(H TPTH2], and octahedral geometry for rest of the complexes. The infrared spectral studies of the 1 : 1 deprotonated complexes suggest bonding through enolic oxygen, thiolato sulfur, and both the hydrazinic nitrogens. Thus, H2TPTH acts as a binegative tetradentate ligand. H2 TPTH and its metal complexes have been screened against several bacteria and fungi.

  20. Affinity labeling and resonance energy transfer studies of the reduced coenzyme regulatory site of bovine liver glutamate dehydrogenase

    International Nuclear Information System (INIS)

    Lark, R.H.

    1988-01-01

    Bovine liver glutamate dehydrogenase was studied by affinity labeling and resonance energy transfer. The enzyme uses the 2', 3'-dialdehyde derivative of NADPH (oNADPH) in the reductive amination of α-ketoglutarate. A 300 min enzyme incubation with 250 μM oNADPH at pH 8.0 leads to a covalent incorporation of 1 mol oNADPH/mol enzyme subunit. Similar rate constants are measured when assaying the change in inhibition by 600 μM NADH or by 1 μM GTP, suggesting that inhibition loss at the two regulatory sites results from oNADPH reaction at one location. oNADPH-modified enzyme is still 93% inhibited by saturating GTP concentrations. The presence of 5 mM NADS(P)H plus 200 μM GTP prevents the kinetic changes and reduces the incorporation of oNADPH. oNADPH is concluded to modify the reduced coenzyme regulatory site, and GTP affects the binding of ligands to this site. The linkage between glutamate dehydrogenase and [ 14 C]oNADPH proved too labile to allow isolation of a radioactive modified peptide. Three corrections in the amino acid sequence were made after sequencing peptides. Resonance energy transfer was used to measure the distance between sites on the enzyme

  1. Effect of DHA and CoenzymeQ10 Against Aβ- and Zinc-Induced Mitochondrial Dysfunction in Human Neuronal Cells

    Directory of Open Access Journals (Sweden)

    Nadia Sadli

    2013-07-01

    Full Text Available Background: Beta-amyloid (Aβ protein is a key factor in the pathogenesis of Alzheimer's disease (AD and it has been reported that mitochondria is involved in the biochemical pathway by which Aβ can lead to neuronal dysfunction. Coenzyme Q10 (CoQ10 is an essential cofactor involved in the mitochondrial electron transport chain and has been suggested as a potential therapeutic agent in AD. Zinc toxicity also affects cellular energy production by decreasing oxygen consumption rate (OCR and ATP turnover in human neuronal cells, which can be restored by the neuroprotective effect of docosahexaenoic acid (DHA. Method: In the present study, using Seahorse XF-24 Metabolic Flux Analysis we investigated the effect of DHA and CoQ10 alone and in combination against Aβ- and zinc-mediated changes in the mitochondrial function of M17 neuroblastoma cell line. Results: Here, we observed that DHA is specifically neuroprotective against zinc-triggered mitochondrial dysfunction, but does not directly affect Aβ neurotoxicity. CoQ10 has shown to be protective against both Aβ- and zinc-induced alterations in mitochondrial function. Conclusion: Our results indicate that DHA and CoQ10 may be useful for the prevention, treatment and management of neurodegenerative diseases such as AD.

  2. Chromatin-remodeling SWI/SNF complex regulates coenzyme Q6 synthesis and a metabolic shift to respiration in yeast.

    Science.gov (United States)

    Awad, Agape M; Venkataramanan, Srivats; Nag, Anish; Galivanche, Anoop Raj; Bradley, Michelle C; Neves, Lauren T; Douglass, Stephen; Clarke, Catherine F; Johnson, Tracy L

    2017-09-08

    Despite its relatively streamlined genome, there are many important examples of regulated RNA splicing in Saccharomyces cerevisiae Here, we report a role for the chromatin remodeler SWI/SNF in respiration, partially via the regulation of splicing. We find that a nutrient-dependent decrease in Snf2 leads to an increase in splicing of the PTC7 transcript. The spliced PTC7 transcript encodes a mitochondrial phosphatase regulator of biosynthesis of coenzyme Q 6 (ubiquinone or CoQ 6 ) and a mitochondrial redox-active lipid essential for electron and proton transport in respiration. Increased splicing of PTC7 increases CoQ 6 levels. The increase in PTC7 splicing occurs at least in part due to down-regulation of ribosomal protein gene expression, leading to the redistribution of spliceosomes from this abundant class of intron-containing RNAs to otherwise poorly spliced transcripts. In contrast, a protein encoded by the nonspliced isoform of PTC7 represses CoQ 6 biosynthesis. Taken together, these findings uncover a link between Snf2 expression and the splicing of PTC7 and establish a previously unknown role for the SWI/SNF complex in the transition of yeast cells from fermentative to respiratory modes of metabolism. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Evidence against translational repression by the carboxyltransferase component of Escherichia coli acetyl coenzyme A carboxylase.

    Science.gov (United States)

    Smith, Alexander C; Cronan, John E

    2014-11-01

    In Escherichia coli, synthesis of the malonyl coenzyme A (malonyl-CoA) required for membrane lipid synthesis is catalyzed by acetyl-CoA carboxylase, a large complex composed of four subunits. The subunit proteins are needed in a defined stoichiometry, and it remains unclear how such production is achieved since the proteins are encoded at three different loci. Meades and coworkers (G. Meades, Jr., B. K. Benson, A. Grove, and G. L. Waldrop, Nucleic Acids Res. 38:1217-1227, 2010, doi:http://dx.doi.org/10.1093/nar/gkp1079) reported that coordinated production of the AccA and AccD subunits is due to a translational repression mechanism exerted by the proteins themselves. The AccA and AccD subunits form the carboxyltransferase (CT) heterotetramer that catalyzes the second partial reaction of acetyl-CoA carboxylase. Meades et al. reported that CT tetramers bind the central portions of the accA and accD mRNAs and block their translation in vitro. However, long mRNA molecules (500 to 600 bases) were required for CT binding, but such long mRNA molecules devoid of ribosomes seemed unlikely to exist in vivo. This, plus problematical aspects of the data reported by Meades and coworkers, led us to perform in vivo experiments to test CT tetramer-mediated translational repression of the accA and accD mRNAs. We report that increased levels of CT tetramer have no detectable effect on translation of the CT subunit mRNAs. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  4. Non-enzymatic N-acetylation of Lysine Residues by AcetylCoA Often Occurs via a Proximal S-acetylated Thiol Intermediate Sensitive to Glyoxalase II.

    Science.gov (United States)

    James, Andrew M; Hoogewijs, Kurt; Logan, Angela; Hall, Andrew R; Ding, Shujing; Fearnley, Ian M; Murphy, Michael P

    2017-02-28

    Acetyl coenzyme A (AcCoA), a key intermediate in mitochondrial metabolism, N-acetylates lysine residues, disrupting and, in some cases, regulating protein function. The mitochondrial lysine deacetylase Sirtuin 3 (Sirt3) reverses this modification with benefits reported in diabetes, obesity, and aging. We show that non-enzymatic lysine N-acetylation by AcCoA is greatly enhanced by initial acetylation of a cysteine residue, followed by SN-transfer of the acetyl moiety to a nearby lysine on mitochondrial proteins and synthetic peptides. The frequent occurrence of an S-acetyl intermediate before lysine N-acetylation suggests that proximity to a thioester is a key determinant of lysine susceptibility to acetylation. The thioesterase glyoxalase II (Glo2) can limit protein S-acetylation, thereby preventing subsequent lysine N-acetylation. This suggests that the hitherto obscure role of Glo2 in mitochondria is to act upstream of Sirt3 in minimizing protein N-acetylation, thus limiting protein dysfunction when AcCoA accumulates. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Identification and characterization of an archaeal ketopantoate reductase and its involvement in regulation of coenzyme A biosynthesis.

    Science.gov (United States)

    Tomita, Hiroya; Imanaka, Tadayuki; Atomi, Haruyuki

    2013-10-01

    Coenzyme A (CoA) biosynthesis in bacteria and eukaryotes is regulated primarily by feedback inhibition towards pantothenate kinase (PanK). As most archaea utilize a modified route for CoA biosynthesis and do not harbour PanK, the mechanisms governing regulation of CoA biosynthesis are unknown. Here we performed genetic and biochemical studies on the ketopantoate reductase (KPR) from the hyperthermophilic archaeon Thermococcus kodakarensis. KPR catalyses the second step in CoA biosynthesis, the reduction of 2-oxopantoate to pantoate. Gene disruption of TK1968, whose product was 20-29% identical to previously characterized KPRs from bacteria/eukaryotes, resulted in a strain with growth defects that were complemented by addition of pantoate. The TK1968 protein (Tk-KPR) displayed reductase activity specific for 2-oxopantoate and preferred NADH as the electron donor, distinct to the bacterial/eukaryotic NADPH-dependent enzymes. Tk-KPR activity decreased dramatically in the presence of CoA and KPR activity in cell-free extracts was also inhibited by CoA. Kinetic studies indicated that CoA inhibits KPR by competing with NADH. Inhibition of ketopantoate hydroxymethyltransferase, the first enzyme of the pathway, by CoA was not observed. Our results suggest that CoA biosynthesis in T. kodakarensis is regulated by feedback inhibition of KPR, providing a feasible regulation mechanism of CoA biosynthesis in archaea. © 2013 John Wiley & Sons Ltd.

  6. Coenzyme Q Metabolism Is Disturbed in High Fat Diet-Induced Non Alcoholic Fatty Liver Disease in Rats

    Directory of Open Access Journals (Sweden)

    Kathleen M Botham

    2012-02-01

    Full Text Available Oxidative stress is believed to be a major contributory factor in the development of non alcoholic fatty liver disease (NAFLD, the most common liver disorder worldwide. In this study, the effects of high fat diet-induced NAFLD on Coenzyme Q (CoQ metabolism and plasma oxidative stress markers in rats were investigated. Rats were fed a standard low fat diet (control or a high fat diet (57% metabolizable energy as fat for 18 weeks. The concentrations of total (reduced + oxidized CoQ9 were increased by > 2 fold in the plasma of animals fed the high fat diet, while those of total CoQ10 were unchanged. Reduced CoQ levels were raised, but oxidized CoQ levels were not, thus the proportion in the reduced form was increased by about 75%. A higher percentage of plasma CoQ9 as compared to CoQ10 was in the reduced form in both control and high fat fed rats. Plasma protein thiol (SH levels were decreased in the high fat-fed rats as compared to the control group, but concentrations of lipid hydroperoxides and low density lipoprotein (LDL conjugated dienes were unchanged. These results indicate that high fat diet-induced NAFLD in rats is associated with altered CoQ metabolism and increased protein, but not lipid, oxidative stress.

  7. Kaempferol increases levels of coenzyme Q in kidney cells and serves as a biosynthetic ring precursor.

    Science.gov (United States)

    Fernández-Del-Río, Lucía; Nag, Anish; Gutiérrez Casado, Elena; Ariza, Julia; Awad, Agape M; Joseph, Akil I; Kwon, Ohyun; Verdin, Eric; de Cabo, Rafael; Schneider, Claus; Torres, Jorge Z; Burón, María I; Clarke, Catherine F; Villalba, José M

    2017-09-01

    Coenzyme Q (Q) is a lipid-soluble antioxidant essential in cellular physiology. Patients with Q deficiencies, with few exceptions, seldom respond to treatment. Current therapies rely on dietary supplementation with Q 10 , but due to its highly lipophilic nature, Q 10 is difficult to absorb by tissues and cells. Plant polyphenols, present in the human diet, are redox active and modulate numerous cellular pathways. In the present study, we tested whether treatment with polyphenols affected the content or biosynthesis of Q. Mouse kidney proximal tubule epithelial (Tkpts) cells and human embryonic kidney cells 293 (HEK 293) were treated with several types of polyphenols, and kaempferol produced the largest increase in Q levels. Experiments with stable isotope 13 C-labeled kaempferol demonstrated a previously unrecognized role of kaempferol as an aromatic ring precursor in Q biosynthesis. Investigations of the structure-function relationship of related flavonols showed the importance of two hydroxyl groups, located at C3 of the C ring and C4' of the B ring, both present in kaempferol, as important determinants of kaempferol as a Q biosynthetic precursor. Concurrently, through a mechanism not related to the enhancement of Q biosynthesis, kaempferol also augmented mitochondrial localization of Sirt3. The role of kaempferol as a precursor that increases Q levels, combined with its ability to upregulate Sirt3, identify kaempferol as a potential candidate in the design of interventions aimed on increasing endogenous Q biosynthesis, particularly in kidney. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Preparation, characterization and in silico modeling of biodegradable nanoparticles containing cyclosporine A and coenzyme Q10

    Energy Technology Data Exchange (ETDEWEB)

    Ankola, D D; Ravi Kumar, M N V [Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow, G4 0NR (United Kingdom); Durbin, E W [Department of Physics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 (United States); Buxton, G A [Department of Sciences, Robert Morris University, 6001 University Boulevard, Moon Township, PA 15108 (United States); Schaefer, J; Bakowsky, U, E-mail: mnvrkumar@strath.ac.uk [Department of Pharmaceutics and Biopharmacy, Philipps Universitt, 35037 Marburg (Germany)

    2010-02-10

    Combination therapy will soon become a reality, particularly for those patients requiring poly-therapy to treat co-existing disease states. This becomes all the more important with the increasing cost, time and complexity of the drug discovery process prompting one to look at new delivery systems to increase the efficacy, safety and patient compliance of existing drugs. Along this line, we attempted to design nano-scale systems for simultaneous encapsulation of cyclosporine A (CsA) and coenzyme Q10 (CoQ10) and model their encapsulation and release kinetics. The in vitro characterization of the co-encapsulated nanoparticles revealed that the surfactant nature, concentration, external phase volume, droplet size reduction method and drug loading concentration can all influence the overall performance of the nanoparticles. The semi-quantitative solubility study indicates the strong influence of CoQ10 on CsA entrapment which was thought to be due to an increase in the lipophilicity of the overall system. The in vitro dissolution profile indicates the influence of CoQ10 on CsA release (64%) to that of individual particles of CsA, where the release is faster and higher (86%) on 18th day. The attempts to model the encapsulation and release kinetics were successful, offering a possibility to use such models leading to high throughput screening of drugs and their nature, alone or in combination for a particular polymer, if chi-parameters are understood.

  9. Pharmacological Chaperones and Coenzyme Q10 Treatment Improves Mutant β-Glucocerebrosidase Activity and Mitochondrial Function in Neuronopathic Forms of Gaucher Disease

    Science.gov (United States)

    de la Mata, Mario; Cotán, David; Oropesa-Ávila, Manuel; Garrido-Maraver, Juan; Cordero, Mario D.; Villanueva Paz, Marina; Delgado Pavón, Ana; Alcocer-Gómez, Elizabet; de Lavera, Isabel; Ybot-González, Patricia; Paula Zaderenko, Ana; Ortiz Mellet, Carmen; Fernández, José M. García; Sánchez-Alcázar, José A.

    2015-01-01

    Gaucher disease (GD) is caused by mutations in the GBA1 gene, which encodes lysosomal β-glucocerebrosidase. Homozygosity for the L444P mutation in GBA1 is associated with high risk of neurological manifestations which are not improved by enzyme replacement therapy. Alternatively, pharmacological chaperones (PCs) capable of restoring the correct folding and trafficking of the mutant enzyme represent promising alternative therapies.Here, we report on how the L444P mutation affects mitochondrial function in primary fibroblast derived from GD patients. Mitochondrial dysfunction was associated with reduced mitochondrial membrane potential, increased reactive oxygen species (ROS), mitophagy activation and impaired autophagic flux.Both abnormalities, mitochondrial dysfunction and deficient β-glucocerebrosidase activity, were partially restored by supplementation with coenzyme Q10 (CoQ) or a L-idonojirimycin derivative, N-[N’-(4-adamantan-1-ylcarboxamidobutyl)thiocarbamoyl]-1,6-anhydro-L-idonojirimycin (NAdBT-AIJ), and more markedly by the combination of both treatments. These data suggest that targeting both mitochondria function by CoQ and protein misfolding by PCs can be promising therapies in neurological forms of GD. PMID:26045184

  10. Chemical speciation of Pb(II, Cd(II, Hg(II, Co(II, Ni(II, Cu(II and Zn(II binary complexes of l-methionine in 1,2-propanediol-water mixtures

    Directory of Open Access Journals (Sweden)

    M. Padma Latha

    2007-04-01

    Full Text Available Chemical speciation of Pb(II, Cd(II, Hg(II, Co(II, Ni(II, Cu(II and Zn(II complexes of L-methionine in 0.0-60 % v/v 1,2-propanediol-water mixtures maintaining an ionic strength of 0.16 M at 303 K has been studied pH metrically. The active forms of ligand are LH2+, LH and L-. The predominant species detected are ML, MLH, ML2, ML2H, ML2H2 and MLOH. Models containing different numbers of species were refined by using the computer program MINIQUAD 75. The best-fit chemical models were arrived at based on statistical parameters. The trend in variation of complex stability constants with change in the dielectric constant of the medium is explained on the basis of electrostatic and non-electrostatic forces.

  11. Generation, genome edition and characterization of iPSC lines from a patient with coenzyme Q10 deficiency harboring a heterozygous mutation in COQ4 gene

    Directory of Open Access Journals (Sweden)

    Damià Romero-Moya

    2017-10-01

    Full Text Available We report the generation, CRISPR/Cas9-edition and characterization of induced pluripotent stem cell (iPSC lines from a patient with coenzyme Q10 deficiency harboring the heterozygous mutation c.483G > C in the COQ4 gene. iPSCs were generated using non-integrative Sendai Viruses containing the reprogramming factors OCT4, SOX2, KLF4 and C-MYC. The iPSC lines carried the c.483G > C COQ4 mutation, silenced the OKSM expression and were mycoplasma-free. They were bona fide pluripotent cells as characterized by morphology, immunophenotype/gene expression for pluripotent-associated markers/genes, NANOG and OCT4 promoter demethylation, karyotype and teratoma formation. The COQ4 mutation was CRISPR/Cas9 edited resulting in isogenic, diploid and off-target free COQ4-corrected iPSCs.

  12. cobalt (ii), nickel (ii)

    African Journals Online (AJOL)

    DR. AMINU

    Department of Chemistry Bayero University, P. M. B. 3011, Kano, Nigeria. E-mail: hnuhu2000@yahoo.com. ABSTRACT. The manganese (II), cobalt (II), nickel (II) and .... water and common organic solvents, but are readily soluble in acetone. The molar conductance measurement [Table 3] of the complex compounds in.

  13. New evidences of neurotoxicity of aroclor 1254 in mice brain: potential of coenzyme q10 in abating the detrimental outcomes

    Directory of Open Access Journals (Sweden)

    Anuradha Majumdar

    2014-03-01

    Full Text Available Objectives The present subacute study was designed to evaluate the effect of coenzyme Q 10 (CoQ10 in the 28 days aroclor 1254 exposure induced oxidative stress in mice brain. Methods Biochemical estimations of brain lipid peroxidation (LPO, reduced glutathione (GSH, and activities of superoxide dismutase (SOD, catalase (CAT, glutathione peroxidase (GPx and acetyl cholinesterase (AChE, and histopathological investigations of brain tissue were carried out. Results Oral exposure of aroclor 1254 (5 mg/kg led to significant decrease in levels of GSH, and activities of SOD, CAT, GPx, and AChE, and increase in LPO. These aberrations were restored by CoQ10 (10 mg/kg, intraperitoneal injection [IP]. This protection offered was comparable to that of L-deprenyl (1 mg/kg, IP which served as a reference standard. Conclusions Aroclor 1254 exposure hampers the activities of various antioxidant enzymes and induces oxidative stress in the brains of Swiss albino mice. Supplementation of CoQ10 abrogates these deleterious effects of aroclor 1254. CoQ10 also apparently enhanced acetyl cholinesterase activity which reflects its influence on the cholinergic system.

  14. Coenzyme Q10 Status as a Determinant of Muscular Strength in Two Independent Cohorts.

    Directory of Open Access Journals (Sweden)

    Alexandra Fischer

    Full Text Available Aging is associated with sarcopenia, which is a loss of skeletal muscle mass and function. Coenzyme Q10 (CoQ10 is involved in several important functions that are related to bioenergetics and protection against oxidative damage; however, the role of CoQ10 as a determinant of muscular strength is not well documented. The aim of the present study was to evaluate the determinants of muscular strength by examining hand grip force in relation to CoQ10 status, gender, age and body mass index (BMI in two independent cohorts (n = 334, n = 967. Furthermore, peak flow as a function of respiratory muscle force was assessed. Spearman's correlation revealed a significant positive association between CoQ10/cholesterol level and hand grip in the basic study population (p<0.01 as well as in the validation population (p<0.001. In the latter, we also found a negative correlation with the CoQ10 redox state (p<0.01, which represents a lower percentage of the reduced form of CoQ10 (ubiquinol in subjects who exhibit a lower muscular strength. Furthermore, the age of the subjects showed a negative correlation with hand grip (p<0.001, whereas BMI was positively correlated with hand grip (p<0.01, although only in the normal weight subgroup (BMI <25 kg/m2. Analysis of the covariance (ANCOVA with hand grip as the dependent variable revealed CoQ10/cholesterol as a determinant of muscular strength and gender as the strongest effector of hand grip. In conclusion, our data suggest that both a low CoQ10/cholesterol level and a low percentage of the reduced form of CoQ10 could be an indicator of an increased risk of sarcopenia in humans due to their negative associations to upper body muscle strength, peak flow and muscle mass.

  15. Sites of inhibition of mitochondrial electron transport in macrophage-injured neoplastic cells.

    Science.gov (United States)

    Granger, D L; Lehninger, A L

    1982-11-01

    Previous work has shown that injury of neoplastic cells by cytotoxic macrophages (CM) in cell culture is accompanied by inhibition of mitochondrial respiration. We have investigated the nature of this inhibition by studying mitochondrial respiration in CM-injured leukemia L1210 cells permeabilized with digitonin. CM-induced injury affects the mitochondrial respiratory chain proper. Complex I (NADH-coenzyme Q reductase) and complex II (succinate-coenzyme Q reductase) are markedly inhibited. In addition a minor inhibition of cytochrome oxidase was found. Electron transport from alpha-glycerophosphate through the respiratory chain to oxygen is unaffected and permeabilized CM-injured L1210 cells oxidizing this substrate exhibit acceptor control. However, glycerophosphate shuttle activity was found not to occur within CM-injured or uninjured L1210 cells in culture hence, alpha-glycerophosphate is apparently unavailable for mitochondrial oxidation in the intact cell. It is concluded that the failure of respiration of intact neoplastic cells injured by CM is caused by the nearly complete inhibition of complexes I and II of the mitochondrial electron transport chain. The time courses of CM-induced electron transport inhibition and arrest of L1210 cell division are examined and the possible relationship between these phenomena is discussed.

  16. Cr(III,Mn(II,Fe(III,Co(II,Ni(II,Cu(II and Zn(II Complexes with Diisobutyldithiocarbamato Ligand

    Directory of Open Access Journals (Sweden)

    Mohammad Tarique

    2011-01-01

    Full Text Available The synthesis of sulphur and nitrogen containing dithiocarbamato ligand derived from diisobutylamine as well as its coordination compounds with 3d series transition metals is presented. These synthesized compounds were characterized on the basis of elemental analysis, conductometric measurements and IR spectral studies. The analytical data showed the stoichiometry 1:2 and 1:3 for the compounds of the types ML2 {M=Mn(II, Co(II, Ni(II, Cu(II and Zn(II} and M'L3{M'=Cr(III and Fe(III} respectively. The conductometric measurements proved the non-electrolytic behaviour of all the compounds. The bidentate nature of dithiocarbamato moiety was confirmed on the basis of IR spectral data.

  17. Paraquat induces oxidative stress and neuronal cell death; neuroprotection by water-soluble Coenzyme Q10

    International Nuclear Information System (INIS)

    McCarthy, S.; Somayajulu, M.; Sikorska, M.; Borowy-Borowski, H.; Pandey, S.

    2004-01-01

    Neuronal cell death induced by oxidative stress is correlated with numerous neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and stroke. The causes of sporadic forms of age-related neurodegenerative diseases are still unknown. Recently, a correlation between paraquat exposure and neurodegenerative diseases has been observed. Paraquat, a nonselective herbicide, was once widely used in North America and is still routinely used in Taiwan. We have used differentiated Human Neuroblastoma (SHSY-5Y) cells as an in vitro model to study the mechanism of cell death induced by paraquat. We observed that paraquat-induced oxidative stress in differentiated SHSY-5Y cells as indicated by an increase in the production of cellular reactive oxygen species (ROS). Furthermore, apoptosis was evident as indicated by cellular and nuclear morphology and DNA fragmentation. Interestingly, pretreatment of SHSY-5Y cells with water-soluble Coenzyme Q 10 (CoQ 10 ) before paraquat exposure inhibited ROS generation. Pretreatment with CoQ 10 also significantly reduced the number of apoptotic cells and DNA fragmentation. We also analyzed the effect of paraquat and CoQ 10 on isolated mitochondria. Our results indicated that treatment with paraquat induced the generation of ROS from isolated mitochondria and depolarization of the inner mitochondrial membrane. Pretreatment with CoQ 10 was able to inhibit ROS generation from isolated mitochondria as well as the collapse of mitochondrial membrane potential. Our results indicate that water-soluble CoQ 10 can prevent oxidative stress and neuronal damage induced by paraquat and therefore, can be used for the prevention and therapy of neurodegenerative diseases caused by environmental toxins

  18. Treatment of cyclic vomiting syndrome with co-enzyme Q10 and amitriptyline, a retrospective study

    Directory of Open Access Journals (Sweden)

    Preston Amy

    2010-01-01

    Full Text Available Abstract Background Cyclic vomiting syndrome (CVS, which is defined by recurrent stereotypical episodes of nausea and vomiting, is a relatively-common disabling condition that is associated with migraine headache and mitochondrial dysfunction. Co-enzyme Q10 (Co-Q is a nutritional supplement that has demonstrated efficacy in pediatric and adult migraine. It is increasingly used in CVS despite the complete lack of studies to demonstrate its value in treatment Methods Using an Internet-based survey filled out by subjects with CVS or their parents, the efficacy, tolerability and subject satisfaction in CVS prophylaxis were queried. Subjects taking Co-Q (22 subjects were compared against those taking amitriptyline (162 subjects, which is the general standard-of-care. Results Subjects/parents reported similar levels of efficacy for a variety of episode parameters (frequency, duration, number of emesis, nausea severity. There was a 50% reduction in at least one of those four parameters in 72% of subjects treated with amitriptyline and 68% of subjects treated Co-Q. However, while no side effects were reported on Co-Q, 50% of subjects on amitriptyline reported side effects (P = 5 × 10-7, resulting in 21% discontinuing treatment (P = 0.007. Subjects/parents considered the benefits to outweigh the risks of treatment in 47% of cases on amitriptyline and 77% of cases on Co-Q (P = 0.008. Conclusion Our data suggest that the natural food supplement Co-Q is potentially efficacious and tolerable in the treatment of CVS, and should be considered as an option in CVS prophylaxis. Our data would likely be helpful in the design of a double-blind clinical trial.

  19. Coenzyme Q10 Supplementation and Oocyte Aneuploidy in Women Undergoing IVF-ICSI Treatment

    Directory of Open Access Journals (Sweden)

    Yaakov Bentov

    2014-01-01

    Full Text Available Background The age-related reduction in live-birth rate is attributed to a high rate of aneuploidy and follicle depletion. We showed in an animal model that treatment with Coenzyme Q10 (CoQ10 markedly improved reproductive outcome. The aim of this study was to compare the post-meiotic oocyte aneuploidy rate in in vitro fertilization (IVF and intra cytoplasmic sperm injection (ICSI patients treated with CoQ10 or placebo. Methods We conducted a double blind placebo controlled randomized trial that included IVF-ICSI patients 35-43 years of age. The patients were treated with either 600 mg of CoQ10 or an equivalent number of placebo caps. We compared the post-meiotic aneuploidy rate using polar body biopsy (PBBX and comparative genomic hybridization (CGH. According to the power calculation, 27 patients were needed for each arm. Results Owing to safety concerns regarding the effects of polar body biopsy on embryo quality and implantation, the study was terminated before reaching the target number of participants. A total of 39 patients were evaluated and randomized (17 CoQ10, 22 placebo, 27 were given the study medication (12 CoQ10, 15 placebo, and 24 completed an IVF-ICSI cycle including PBBX and embryo transfer (10 CoQ10, 14 placebo. Average age, base line follicle stimulating hormone (FSH, peak estradiol and progesterone serum level, as well as the total number of human menopausal gonadotropin (hMG units–-did not differ between the groups. The rate of aneuploidy was 46.5% in the CoQ10 group compared to 62.8% in the control. Clinical pregnancy rate was 33% for the CoQ10 group and 26.7% for the control group. Conclusion No significant differences in outcome were detected between the CoQ10 and placebo groups. However, the final study was underpowered to detect a difference in the rate of aneuploidy.

  20. Characterization of oat beta-glucan and coenzyme Q10-loaded beta-glucan powders generated by the pressurized gas-expanded liquid (PGX) technology.

    Science.gov (United States)

    Liu, Nian; Couto, Ricardo; Seifried, Bernhard; Moquin, Paul; Delgado, Luis; Temelli, Feral

    2018-04-01

    The physicochemical properties of the oat beta-glucan powder (BG) and coenzyme Q10 (CoQ10)-loaded BG powder (L-BG) produced by the pressurized gas-expanded liquid (PGX) technology were studied. Helium ion microscope, differential scanning calorimeter, X-ray diffractometer, AutoSorb iQ and rheometer were used to determine the particle morphology, thermal properties, crystallinity, surface area and viscosity, respectively. Both BG (7.7μm) and L-BG (6.1μm) were produced as micrometer-scale particles, while CoQ10 nanoparticles (92nm) were adsorbed on the porous structure of L-BG. CoQ10 was successfully loaded onto BG using the PGX process via adsorptive precipitation mainly in its amorphous form. Viscosity of BG and L-BG solutions (0.15%, 0.2%, 0.3% w/v) displayed Newtonian behavior with increasing shear rate but decreased with temperature. Detailed characterization of the physicochemical properties of combination ingredients like L-BG will lead to the development of novel functional food and natural health product applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Computer augumented modelling studies of Pb(II, Cd(II, Hg(II, Co(II, Ni(II, Cu(II and Zn(II complexes of L-glutamic acid in 1,2-propanediol–water mixtures

    Directory of Open Access Journals (Sweden)

    MAHESWARA RAO VEGI

    2008-12-01

    Full Text Available Chemical speciation of Pb(II, Cd(II, Hg(II, Co(II, Ni(II, Cu(II and Zn(II complexes of L-glutamic acid was studied at 303 K in 0–60 vol. % 1,2-propanediol–water mixtures, whereby the ionic strength was maintained at 0.16 mol dm-3. The active forms of the ligand are LH3+, LH2 and LH–. The predominant detected species were ML, ML2, MLH, ML2H and ML2H2. The trend of the variation in the stability constants with changing dielectric constant of the medium is explained based on the cation stabilizing nature of the co-solvents, specific solvent–water interactions, charge dispersion and specific interactions of the co-solvent with the solute. The effect of systematic errors in the concentrations of the substances on the stability constants is in the order alkali > > acid > ligand > metal. The bioavailability and transportation of metals are explained based on distribution diagrams and stability constants.

  2. Sterol-induced Dislocation of 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase from Endoplasmic Reticulum Membranes into the Cytosol through a Subcellular Compartment Resembling Lipid Droplets*

    Science.gov (United States)

    Hartman, Isamu Z.; Liu, Pingsheng; Zehmer, John K.; Luby-Phelps, Katherine; Jo, Youngah; Anderson, Richard G. W.; DeBose-Boyd, Russell A.

    2010-01-01

    Sterol-induced binding to Insigs in the endoplasmic reticulum (ER) allows for ubiquitination of 3-hydroxy-3-methylglutaryl coenzyme A reductase, the rate-limiting enzyme in cholesterol synthesis. This ubiquitination marks reductase for recognition by the ATPase VCP/p97, which mediates extraction and delivery of reductase from ER membranes to cytosolic 26 S proteasomes for degradation. Here, we report that reductase becomes dislocated from ER membranes into the cytosol of sterol-treated cells. This dislocation exhibits an absolute requirement for the actions of Insigs and VCP/p97. Reductase also appears in a buoyant fraction of sterol-treated cells that co-purifies with lipid droplets, cytosolic organelles traditionally regarded as storage depots for neutral lipids such as triglycerides and cholesteryl esters. Genetic, biochemical, and localization studies suggest a model in which reductase is dislodged into the cytosol from an ER subdomain closely associated with lipid droplets. PMID:20406816

  3. Downregulation of monocytic differentiation via modulation of CD147 by 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors.

    Directory of Open Access Journals (Sweden)

    Manda V Sasidhar

    Full Text Available CD147 is an activation induced glycoprotein that promotes the secretion and activation of matrix metalloproteinases (MMPs and is upregulated during the differentiation of macrophages. Interestingly, some of the molecular functions of CD147 rely on its glycosylation status: the highly glycosylated forms of CD147 induce MMPs whereas the lowly glycosylated forms inhibit MMP activation. Statins are hydroxy-methylglutaryl coenzyme A reductase inhibitors that block the synthesis of mevalonate, thereby inhibiting all mevalonate-dependent pathways, including isoprenylation, N-glycosylation and cholesterol synthesis. In this study, we investigated the role of statins in the inhibition of macrophage differentiation and the associated process of MMP secretion through modulation of CD147. We observed that differentiation of the human monocytic cell line THP-1 to a macrophage phenotype led to upregulation of CD147 and CD14 and that this effect was inhibited by statins. At the molecular level, statins altered CD147 expression, structure and function by inhibiting isoprenylation and N-glycosylation. In addition, statins induced a shift of CD147 from its highly glycosylated form to its lowly glycosylated form. This shift in N-glycosylation status was accompanied by a decrease in the production and functional activity of MMP-2 and MMP-9. In conclusion, these findings describe a novel molecular mechanism of immune regulation by statins, making them interesting candidates for autoimmune disease therapy.

  4. Downregulation of monocytic differentiation via modulation of CD147 by 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors.

    Science.gov (United States)

    Sasidhar, Manda V; Chevooru, Sai Krishnaveni; Eickelberg, Oliver; Hartung, Hans-Peter; Neuhaus, Oliver

    2017-01-01

    CD147 is an activation induced glycoprotein that promotes the secretion and activation of matrix metalloproteinases (MMPs) and is upregulated during the differentiation of macrophages. Interestingly, some of the molecular functions of CD147 rely on its glycosylation status: the highly glycosylated forms of CD147 induce MMPs whereas the lowly glycosylated forms inhibit MMP activation. Statins are hydroxy-methylglutaryl coenzyme A reductase inhibitors that block the synthesis of mevalonate, thereby inhibiting all mevalonate-dependent pathways, including isoprenylation, N-glycosylation and cholesterol synthesis. In this study, we investigated the role of statins in the inhibition of macrophage differentiation and the associated process of MMP secretion through modulation of CD147. We observed that differentiation of the human monocytic cell line THP-1 to a macrophage phenotype led to upregulation of CD147 and CD14 and that this effect was inhibited by statins. At the molecular level, statins altered CD147 expression, structure and function by inhibiting isoprenylation and N-glycosylation. In addition, statins induced a shift of CD147 from its highly glycosylated form to its lowly glycosylated form. This shift in N-glycosylation status was accompanied by a decrease in the production and functional activity of MMP-2 and MMP-9. In conclusion, these findings describe a novel molecular mechanism of immune regulation by statins, making them interesting candidates for autoimmune disease therapy.

  5. Synthesis and characterization of heterobimetallic complexes of the type [Cu(pn2][MCl4] where M = Co(II, Ni(II, Cu(II, Zn(II, Cd(II, and Hg(II

    Directory of Open Access Journals (Sweden)

    Seema Yadav

    2016-11-01

    Full Text Available A series of new bimetallic transition metal complexes of the type [Cu(pn2] [MCl4] have been synthesized (where M = Co(II, Ni(II, Cu(II, Zn(II, Cd(II and Hg(II, pn = 1,3-diaminopropane and characterized by elemental analysis, molar conductance, TGA, IR and electronic spectra. All the compounds are 1:1 electrolyte in DMF. The Cu(II ion is square-planar while metal ions in the anionic moiety acquire their usual tetrahedral arrangement. On the basis of these studies it is concluded that anionic moiety is electrically stabilized by its cationic counterpart.

  6. Coenzyme Q10 Attenuates High Glucose-Induced Endothelial Progenitor Cell Dysfunction through AMP-Activated Protein Kinase Pathways

    Directory of Open Access Journals (Sweden)

    Hsiao-Ya Tsai

    2016-01-01

    Full Text Available Coenzyme Q10 (CoQ10, an antiapoptosis enzyme, is stored in the mitochondria of cells. We investigated whether CoQ10 can attenuate high glucose-induced endothelial progenitor cell (EPC apoptosis and clarified its mechanism. EPCs were incubated with normal glucose (5 mM or high glucose (25 mM enviroment for 3 days, followed by treatment with CoQ10 (10 μM for 24 hr. Cell proliferation, nitric oxide (NO production, and JC-1 assay were examined. The specific signal pathways of AMP-activated protein kinase (AMPK, eNOS/Akt, and heme oxygenase-1 (HO-1 were also assessed. High glucose reduced EPC functional activities, including proliferation and migration. Additionally, Akt/eNOS activity and NO production were downregulated in high glucose-stimulated EPCs. Administration of CoQ10 ameliorated high glucose-induced EPC apoptosis, including downregulation of caspase 3, upregulation of Bcl-2, and increase in mitochondrial membrane potential. Furthermore, treatment with CoQ10 reduced reactive oxygen species, enhanced eNOS/Akt activity, and increased HO-1 expression in high glucose-treated EPCs. These effects were negated by administration of AMPK inhibitor. Transplantation of CoQ10-treated EPCs under high glucose conditions into ischemic hindlimbs improved blood flow recovery. CoQ10 reduced high glucose-induced EPC apoptosis and dysfunction through upregulation of eNOS, HO-1 through the AMPK pathway. Our findings provide a potential treatment strategy targeting dysfunctional EPC in diabetic patients.

  7. Coenzyme Q10 Attenuates High Glucose-Induced Endothelial Progenitor Cell Dysfunction through AMP-Activated Protein Kinase Pathways

    Science.gov (United States)

    Tsai, Hsiao-Ya; Lin, Chih-Pei; Huang, Po-Hsun; Li, Szu-Yuan; Chen, Jia-Shiong; Lin, Feng-Yen; Chen, Jaw-Wen; Lin, Shing-Jong

    2016-01-01

    Coenzyme Q10 (CoQ10), an antiapoptosis enzyme, is stored in the mitochondria of cells. We investigated whether CoQ10 can attenuate high glucose-induced endothelial progenitor cell (EPC) apoptosis and clarified its mechanism. EPCs were incubated with normal glucose (5 mM) or high glucose (25 mM) enviroment for 3 days, followed by treatment with CoQ10 (10 μM) for 24 hr. Cell proliferation, nitric oxide (NO) production, and JC-1 assay were examined. The specific signal pathways of AMP-activated protein kinase (AMPK), eNOS/Akt, and heme oxygenase-1 (HO-1) were also assessed. High glucose reduced EPC functional activities, including proliferation and migration. Additionally, Akt/eNOS activity and NO production were downregulated in high glucose-stimulated EPCs. Administration of CoQ10 ameliorated high glucose-induced EPC apoptosis, including downregulation of caspase 3, upregulation of Bcl-2, and increase in mitochondrial membrane potential. Furthermore, treatment with CoQ10 reduced reactive oxygen species, enhanced eNOS/Akt activity, and increased HO-1 expression in high glucose-treated EPCs. These effects were negated by administration of AMPK inhibitor. Transplantation of CoQ10-treated EPCs under high glucose conditions into ischemic hindlimbs improved blood flow recovery. CoQ10 reduced high glucose-induced EPC apoptosis and dysfunction through upregulation of eNOS, HO-1 through the AMPK pathway. Our findings provide a potential treatment strategy targeting dysfunctional EPC in diabetic patients. PMID:26682233

  8. Small Diameter Bomb Increment II (SDB II)

    Science.gov (United States)

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-439 Small Diameter Bomb Increment II (SDB II) As of FY 2017 President’s Budget Defense... Bomb Increment II (SDB II) DoD Component Air Force Joint Participants Department of the Navy Responsible Office References SAR Baseline (Production...Mission and Description Small Diameter Bomb Increment II (SDB II) is a joint interest United States Air Force (USAF) and Department of the Navy

  9. Synthesis and structural characterization of nickel(II), cobalt(II), Zinc(II), manganese(II), cadmium(II) and uranium(VI) complexes of α-oximinoacetoacet-o/p-anisidide thiosemicarbazone

    International Nuclear Information System (INIS)

    Patel, P.S.; Patel, M.M.; Ray, R.M.

    1993-01-01

    A few metal complexes of α-oximinoacetoacet-o/p-anisidide thiosemicarbazones (OAOATS)/(OAPATS) with Ni(II), Co(II), Zn(II), Mn(II), Hg(II), Cd(II) and UO 2 (II) have been prepared and characterized by elemental analyses, conductivity, differential scanning calorimetry study, thermogravimetric analyses and infrared and electronic spectral measurements in conjunction with magnetic susceptibility measurements at room temperature. They have also been tested for their antimicrobial activities. (author). 24 refs., 2 tabs

  10. Competitive adsorption of copper(II), cadmium(II), lead(II) and zinc(II) onto basic oxygen furnace slag

    International Nuclear Information System (INIS)

    Xue Yongjie; Hou Haobo; Zhu Shujing

    2009-01-01

    Polluted and contaminated water can often contain more than one heavy metal species. It is possible that the behavior of a particular metal species in a solution system will be affected by the presence of other metals. In this study, we have investigated the adsorption of Cd(II), Cu(II), Pb(II), and Zn(II) onto basic oxygen furnace slag (BOF slag) in single- and multi-element solution systems as a function of pH and concentration, in a background solution of 0.01 M NaNO 3 . In adsorption edge experiments, the pH was varied from 2.0 to 13.0 with total metal concentration 0.84 mM in the single element system and 0.21 mM each of Cd(II), Cu(II), Pb(II), and Zn(II) in the multi-element system. The value of pH 50 (the pH at which 50% adsorption occurs) was found to follow the sequence Zn > Cu > Pb > Cd in single-element systems, but Pb > Cu > Zn > Cd in the multi-element system. Adsorption isotherms at pH 6.0 in the multi-element systems showed that there is competition among various metals for adsorption sites on BOF slag. The adsorption and potentiometric titrations data for various slag-metal systems were modeled using an extended constant-capacitance surface complexation model that assumed an ion-exchange process below pH 6.5 and the formation of inner-sphere surface complexes at higher pH. Inner-sphere complexation was more dominant for the Cu(II), Pb(II) and Zn(II) systems

  11. Competitive adsorption of copper(II), cadmium(II), lead(II) and zinc(II) onto basic oxygen furnace slag

    Energy Technology Data Exchange (ETDEWEB)

    Xue Yongjie [School of Resource and Environment Science, Wuhan University, Hubei, Wuhan (China); Wuhan Kaidi Electric Power Environmental Protection Co. Ltd., Hubei, Wuhan (China)], E-mail: xueyj@mail.whut.edu.cn; Hou Haobo; Zhu Shujing [School of Resource and Environment Science, Wuhan University, Hubei, Wuhan (China)

    2009-02-15

    Polluted and contaminated water can often contain more than one heavy metal species. It is possible that the behavior of a particular metal species in a solution system will be affected by the presence of other metals. In this study, we have investigated the adsorption of Cd(II), Cu(II), Pb(II), and Zn(II) onto basic oxygen furnace slag (BOF slag) in single- and multi-element solution systems as a function of pH and concentration, in a background solution of 0.01 M NaNO{sub 3}. In adsorption edge experiments, the pH was varied from 2.0 to 13.0 with total metal concentration 0.84 mM in the single element system and 0.21 mM each of Cd(II), Cu(II), Pb(II), and Zn(II) in the multi-element system. The value of pH{sub 50} (the pH at which 50% adsorption occurs) was found to follow the sequence Zn > Cu > Pb > Cd in single-element systems, but Pb > Cu > Zn > Cd in the multi-element system. Adsorption isotherms at pH 6.0 in the multi-element systems showed that there is competition among various metals for adsorption sites on BOF slag. The adsorption and potentiometric titrations data for various slag-metal systems were modeled using an extended constant-capacitance surface complexation model that assumed an ion-exchange process below pH 6.5 and the formation of inner-sphere surface complexes at higher pH. Inner-sphere complexation was more dominant for the Cu(II), Pb(II) and Zn(II) systems.

  12. Competitive adsorption of copper(II), cadmium(II), lead(II) and zinc(II) onto basic oxygen furnace slag.

    Science.gov (United States)

    Xue, Yongjie; Hou, Haobo; Zhu, Shujing

    2009-02-15

    Polluted and contaminated water can often contain more than one heavy metal species. It is possible that the behavior of a particular metal species in a solution system will be affected by the presence of other metals. In this study, we have investigated the adsorption of Cd(II), Cu(II), Pb(II), and Zn(II) onto basic oxygen furnace slag (BOF slag) in single- and multi-element solution systems as a function of pH and concentration, in a background solution of 0.01M NaNO(3). In adsorption edge experiments, the pH was varied from 2.0 to 13.0 with total metal concentration 0.84mM in the single element system and 0.21mM each of Cd(II), Cu(II), Pb(II), and Zn(II) in the multi-element system. The value of pH(50) (the pH at which 50% adsorption occurs) was found to follow the sequence Zn>Cu>Pb>Cd in single-element systems, but Pb>Cu>Zn>Cd in the multi-element system. Adsorption isotherms at pH 6.0 in the multi-element systems showed that there is competition among various metals for adsorption sites on BOF slag. The adsorption and potentiometric titrations data for various slag-metal systems were modeled using an extended constant-capacitance surface complexation model that assumed an ion-exchange process below pH 6.5 and the formation of inner-sphere surface complexes at higher pH. Inner-sphere complexation was more dominant for the Cu(II), Pb(II) and Zn(II) systems.

  13. Preparation of Schiff s base complexes of Mn(II), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II) and their spectroscopic, magnetic, thermal, and antifungal studies

    International Nuclear Information System (INIS)

    Parekh, H.M.; Patel, M.N.

    2006-01-01

    The potassium salt of salicylidene-DL-alanine (KHL), bis(benzylidene)ethylenediamine (A 1 ), thiophene-o-carboxaldene-p-toluidine (A 2 ), and its metal complexes of the formula [(M II (L)(A)(H 2 O)] (M=Mn(II), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II); A = A 1 or A 2 ) are prepared. They are characterized by elemental analysis, magnetic susceptibility measurements, thermogravimetric analysis, and infrared and electronic spectral studies. The electronic spectral and magnetic moment data suggest an octahedral geometry for the complexes. All of these complexes, metal nitrates, fungicides (bavistin and emcarb), and ligands are screened for their antifungal activity against Aspergillus niger, Fusarium oxysporum, and Aspergillus flavus using a plate poison technique. The complexes show higher activity than those of the free ligands, metal nitrate, and the control (DMSO) and moderate activity against bavistin and emcarb [ru

  14. Cu(II) AND Zn(II)

    African Journals Online (AJOL)

    Preferred Customer

    SYNTHESIS OF 2,2-DIMETHYL-4-PHENYL-[1,3]-DIOXOLANE USING ZEOLITE. ENCAPSULATED Co(II), Cu(II) AND Zn(II) COMPLEXES. B.P. Nethravathi1, K. Rama Krishna Reddy2 and K.N. Mahendra1*. 1Department of Chemistry, Bangalore University, Bangalore-560001, India. 2Department of Chemistry, Government ...

  15. Arachidonic acid alters tomato HMG expression and fruit growth and induces 3-hydroxy-3-methylglutaryl coenzyme A reductase-independent lycopene accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Concepcion, M.; Gruissem, W. [Univ. of California, Berkeley, CA (United States). Dept. of Plant and Microbial Biology

    1999-01-01

    Regulation of isoprenoid end-product synthesis required for normal growth and development in plants is not well understood. To investigate the extent to which specific genes for the enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) are involved in end-product regulation, the authors manipulated expression of the HMG1 and HMG2 genes in tomato (Lycopersicon esculentum) fruit using arachidonic acid (AA). In developing young fruit AA blocked fruit growth, inhibited HMG1, and activated HMG2 expression. These results are consistent with other reports indicating that HMG1 expression is closely correlated with growth processes requiring phytosterol production. In mature-green fruit AA strongly induced the expression of HMG2, PSY1 (the gene for phytoene synthase), and lycopene accumulation before the normal onset of carotenoid synthesis and ripening. The induction of lycopene synthesis was not blocked by inhibition of HMGR activity using mevinolin, suggesting that cytoplasmic HMGR is not required for carotenoid synthesis. Their results are consistent with the function of an alternative plastid isoprenoid pathway (the Rohmer pathway) that appears to direct the production of carotenoids during tomato fruit ripening.

  16. Spectroscopic and thermal degradation behavior of Mg(II, Ca(II, Ba(II and Sr(II complexes with paracetamol drug

    Directory of Open Access Journals (Sweden)

    Moamen S. Refat

    2017-05-01

    Full Text Available Complexes of Mg(II, Ca(II, Ba(II and Sr(II with paracetamol drug were synthesized and characterized by elemental analysis, conductivity, UV–Vis, IR, and 1H NMR spectroscopy and thermal analysis, as well as screened for antimicrobial activity. The IR spectral data suggested that the ligand behaves as paracetamol behaves as a neutral bidentate ligand coordinated to the metal ions via the lone pair of electrons of nitrogen and carbonyl-O atoms of the amide group. From the microanalytical data, the stoichiometry of the complexes reacts with Mg(II, Ca(II, Ba(II and Sr(II by molar ratios (2:1 (paracetamol:metal ion. The thermal behavior (TG/DTG of the complexes was studied. The ligand and their metal complexes were screened against both of antibacterial and fungicidal activities.

  17. Solar photocatalytic removal of Cu(II), Ni(II), Zn(II) and Pb(II): Speciation modeling of metal-citric acid complexes

    International Nuclear Information System (INIS)

    Kabra, Kavita; Chaudhary, Rubina; Sawhney, R.L.

    2008-01-01

    The present study is targeted on solar photocatalytic removal of metal ions from wastewater. Photoreductive deposition and dark adsorption of metal ions Cu(II), Ni(II), Pb(II) and Zn(II), using solar energy irradiated TiO 2 , has been investigated. Citric acid has been used as a hole scavenger. Modeling of metal species has been performed and speciation is used as a tool for discussing the photodeposition trends. Ninety-seven percent reductive deposition was obtained for copper. The deposition values of other metals were significantly low [nickel (36.4%), zinc (22.2%) and lead (41.4%)], indicating that the photocatalytic treatment process, using solar energy, was more suitable for wastewater containing Cu(II) ions. In absence of citric acid, the decreasing order deposition was Cu(II) > Ni(II) > Pb(II) > Zn(II), which proves the theoretical thermodynamic predictions about the metals

  18. Effects of coenzyme Q10 supplementation on the anthropometric variables, lipid profiles and liver enzymes in patients with non-alcoholic fatty liver disease

    Directory of Open Access Journals (Sweden)

    Elnaz Jafarvand

    2016-03-01

    Full Text Available This randomized double-blind placebo-controlled trial was conducted on 41 patients with non-alcoholic fatty liver disease. Patients in intervention group received 100 mg/day coenzyme Q10 (CoQ10 for four weeks. There was a significant reduction in waist circumference and aspartate aminotransferase concentrations after CoQ10 supplementation (p<0.05. Dietary fiber was in negative correlation with change in serum alanine aminotransferase (ALT concentrations (r = -410, p = 0.04, and dietary fat intake was in positive relation with serum triglyceride (r = 463, p = 0.04 and in negative relation with serum high-density lipoprotein cholesterol (HDL-C (r = -533, p = 0.02 in CoQ10-treated group. CoQ10 supplement is able to reduce central obesity and improve liver function in non-alcoholic fatty liver disease. Dietary factors were also significant determinants of change in liver-specific enzyme ALT and lipid profile in these patients. Further trials with higher dose of CoQ10 and longer treatment periods are warranted to better clarify these findings.

  19. Cd(II), Cu(II)

    African Journals Online (AJOL)

    user

    Depending on the way goethite was pretreated with oxalic acid, affinity for Cd(II) varied ...... Effects and mechanisms of oxalate on Cd(II) adsorption on goethite at different ... precipitation, surfactant mediation, hydrothermal and micro-emulsion.

  20. Regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity and cholesterol biosynthesis by oxylanosterols

    Energy Technology Data Exchange (ETDEWEB)

    Panini, S.R.; Sexton, R.C.; Gupta, A.K.; Parish, E.J.; Chitrakorn, S.; Rudney, H.

    1986-11-01

    Treatment of rat intestinal epithelial cell cultures with the oxidosqualene cyclase inhibitor, 3 beta-(2-(diethylamino)-ethoxy)androst-5-en-17-one (U18666A), resulted in an accumulation of squalene 2,3:22,23-dioxide (SDO). When U18666A was withdrawn and the cells were treated with the sterol 14 alpha-demethylase inhibitor, ketoconazole, SDO was metabolized to a product identified as 24(S),25-epoxylanosterol. To test the biological effects and cellular metabolism of this compound, we prepared 24(RS),25-epoxylanosterol by chemical synthesis. The epimeric mixture of 24,25-epoxylanosterols could be resolved by high performance liquid chromatography on a wide-pore, non-endcapped, reverse phase column. Both epimers were effective suppressors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity of IEC-6 cells. The suppressive action of the natural epimer, 24(S),25-epoxylanosterol, but not that of 24(R),25-epoxylanosterol could be completely prevented by ketoconazole. IEC-6 cells could efficiently metabolize biosynthetic 24(S),25-epoxy(/sup 3/H)anosterol mainly to the known reductase-suppressor 24(S),25-epoxycholesterol. This metabolism was substantially reduced by ketoconazole. These data support the conclusion that 24(S),25-epoxylanosterol per se is not a suppressor of HMG-CoA reductase activity but is a precursor to a regulatory oxysterol(s). It has recently been reported that 25-hydroxycholesterol can occur naturally in cultured cells in amounts sufficient to effect regulation of HMG-CoA reductase. In order to investigate the biological effects of possible precursors of 25-hydroxycholesterol, we chemically synthesized 25-hydroxylanosterol and 25-hydroxylanostene-3-one. Both oxylanosterol derivatives suppressed cellular sterol synthesis at the level of HMG-CoA reductase. (Abstract Truncated)

  1. Oxidative Stress Correlates with Headache Symptoms in Fibromyalgia: Coenzyme Q10 Effect on Clinical Improvement

    Science.gov (United States)

    Cordero, Mario D.; Cano-García, Francisco Javier; Alcocer-Gómez, Elísabet; De Miguel, Manuel; Sánchez-Alcázar, José Antonio

    2012-01-01

    Background Fibromyalgia (FM) is a chronic pain syndrome with unknown etiology and a wide spectrum of symptoms such as allodynia, debilitating fatigue, joint stiffness and migraine. Recent studies have shown some evidences demonstrating that oxidative stress is associated to clinical symptoms in FM of fibromyalgia. We examined oxidative stress and bioenergetic status in blood mononuclear cells (BMCs) and its association to headache symptoms in FM patients. The effects of oral coenzyme Q10 (CoQ10) supplementation on biochemical markers and clinical improvement were also evaluated. Methods We studied 20 FM patients and 15 healthy controls. Clinical parameters were evaluated using the Fibromyalgia Impact Questionnaire (FIQ), visual analogues scales (VAS), and the Headache Impact Test (HIT-6). Oxidative stress was determined by measuring CoQ10, catalase and lipid peroxidation (LPO) levels in BMCs. Bioenergetic status was assessed by measuring ATP levels in BMCs. Results We found decreased CoQ10, catalase and ATP levels in BMCs from FM patients as compared to normal control (P<0.05 and P<0.001, respectively) We also found increased level of LPO in BMCs from FM patients as compared to normal control (P<0.001). Significant negative correlations between CoQ10 or catalase levels in BMCs and headache parameters were observed (r = −0.59, P<0.05; r = −0.68, P<0.05, respectively). Furthermore, LPO levels showed a significant positive correlation with HIT-6 (r = 0.33, P<0.05). Oral CoQ10 supplementation restored biochemical parameters and induced a significant improvement in clinical and headache symptoms (P<0.001). Discussion The results of this study suggest a role for mitochondrial dysfunction and oxidative stress in the headache symptoms associated with FM. CoQ10 supplementation should be examined in a larger placebo controlled trial as a possible treatment in FM. PMID:22532869

  2. Regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity and cholesterol biosynthesis by oxylanosterols

    International Nuclear Information System (INIS)

    Panini, S.R.; Sexton, R.C.; Gupta, A.K.; Parish, E.J.; Chitrakorn, S.; Rudney, H.

    1986-01-01

    Treatment of rat intestinal epithelial cell cultures with the oxidosqualene cyclase inhibitor, 3 beta-[2-(diethylamino)-ethoxy]androst-5-en-17-one (U18666A), resulted in an accumulation of squalene 2,3:22,23-dioxide (SDO). When U18666A was withdrawn and the cells were treated with the sterol 14 alpha-demethylase inhibitor, ketoconazole, SDO was metabolized to a product identified as 24(S),25-epoxylanosterol. To test the biological effects and cellular metabolism of this compound, we prepared 24(RS),25-epoxylanosterol by chemical synthesis. The epimeric mixture of 24,25-epoxylanosterols could be resolved by high performance liquid chromatography on a wide-pore, non-endcapped, reverse phase column. Both epimers were effective suppressors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity of IEC-6 cells. The suppressive action of the natural epimer, 24(S),25-epoxylanosterol, but not that of 24(R),25-epoxylanosterol could be completely prevented by ketoconazole. IEC-6 cells could efficiently metabolize biosynthetic 24(S),25-epoxy[ 3 H]anosterol mainly to the known reductase-suppressor 24(S),25-epoxycholesterol. This metabolism was substantially reduced by ketoconazole. These data support the conclusion that 24(S),25-epoxylanosterol per se is not a suppressor of HMG-CoA reductase activity but is a precursor to a regulatory oxysterol(s). It has recently been reported that 25-hydroxycholesterol can occur naturally in cultured cells in amounts sufficient to effect regulation of HMG-CoA reductase. In order to investigate the biological effects of possible precursors of 25-hydroxycholesterol, we chemically synthesized 25-hydroxylanosterol and 25-hydroxylanostene-3-one. Both oxylanosterol derivatives suppressed cellular sterol synthesis at the level of HMG-CoA reductase. (Abstract Truncated)

  3. Inhibition of Coenzyme Qs Accumulation in Engineered Escherichia coli by High Concentration of Farnesyl Diphosphate

    Science.gov (United States)

    Samoudi, Mojtaba; Omid Yeganeh, Negar; Shahbani Zahiri, Hossein; Shariati, Parvin; Hajhosseini, Reza

    2015-01-01

    Background: Coenzyme Q 10 (CoQ 10 ) is an isoprenoid component used widely in nutraceutical industries. Farnesyl diphosphate synthase (FPPS) is a responsible enzyme for biosynthesis of farnesyl diphosphate (FPP), a key precursor for CoQs production. This research involved investigating the effect of FPPS over-expression on CoQs production in engineered CoQ 10 -producing Escherichia coli (E. coli). Methods: Two CoQ 10 -producing strains, as referred to E. coli Ba and E. coli Br, were transformed by the encoding gene for FPPS (ispA) under the control of either the trc or P BAD promoters. Results: Over-expression of ispA under the control of P BAD promoter led to a relative increase in CoQ 10 production only in recombinant E. coli Br although induction by arabinose resulted in partial reduction of CoQ 10 production in both recombinant E. coli Ba and E. coli Br strains. Over-expression of ispA under the control of stronger trc promoter, however, led to a severe decrease in CoQ 10 production in both recombinant E. coli Ba and E. coli Br strains, as reflected by reductions from 629±40 to 30±13 and 564±28 to 80±14 μg/g Dried Cell Weight (DCW), respectively. The results showed high level of FPP reduces endogenous CoQ 8 production as well and that CoQs are produced in a complimentary manner, as the increase in production of one decreases the production of the other. Conclusion: The reduction in CoQ 10 production can be a result of Dds inhibition by high FPP concentration. Therefore, more effort is needed to verify the role of intermediate metabolite concentration and to optimize production of CoQ 10 . PMID:26306151

  4. Effects of Coenzyme Q10 on Markers of Inflammation: A Systematic Review and Meta-Analysis.

    Directory of Open Access Journals (Sweden)

    Junya Zhai

    Full Text Available Chronic inflammation contributes to the onset and development of metabolic diseases. Clinical evidence has suggested that coenzyme Q10 (CoQ10 has some effects on inflammatory markers. However, these results are equivocal. The aim of this systematic review was to assess the effects of CoQ10 on serum levels of inflammatory markers in people with metabolic diseases.Electronic databases were searched up to February 2016 for randomized controlled trials (RCTs. The outcome parameters were related to inflammatory factors, including interleukin-6 (IL-6, tumor necrosis factor-alpha (TNF-α and C reactive protein (CRP. RevMan software was used for meta-analysis. Meta-regression analysis, Egger line regression test and Begg rank correlation test were performed by STATA software.Nine trials involving 428 subjects were included in this meta-analysis. The results showed that compared with control group, CoQ10 supplementation has significantly improved the serum level of CoQ10 by 1.17μg/ml [MD = 1.17, 95% CI (0.47 to 1.87 μg/ml, I2 = 94%]. Meanwhile, it has significantly decreased TNF-α by 0.45 pg/ml [MD = -0.45, 95% CI (-0.67 to -0.24 pg/ml, I2 = 0%]. No significant difference was observed between CoQ10 and placebo with regard to CRP [MD = -0.21, 95% CI (-0.60 to 0.17 mg/L, I2 = 21%] and IL-6 [MD = -0.89, 95% CI (-1.95 to 0.16 pg/ml, I2 = 84%].CoQ10 supplementation may partly improve the process of inflammatory state. The effects of CoQ10 on inflammation should be further investigated by conducting larger sample size and well-defined trials of long enough duration.

  5. Oxidative stress correlates with headache symptoms in fibromyalgia: coenzyme Q₁₀ effect on clinical improvement.

    Directory of Open Access Journals (Sweden)

    Mario D Cordero

    Full Text Available BACKGROUND: Fibromyalgia (FM is a chronic pain syndrome with unknown etiology and a wide spectrum of symptoms such as allodynia, debilitating fatigue, joint stiffness and migraine. Recent studies have shown some evidences demonstrating that oxidative stress is associated to clinical symptoms in FM of fibromyalgia. We examined oxidative stress and bioenergetic status in blood mononuclear cells (BMCs and its association to headache symptoms in FM patients. The effects of oral coenzyme Q(10 (CoQ(10 supplementation on biochemical markers and clinical improvement were also evaluated. METHODS: We studied 20 FM patients and 15 healthy controls. Clinical parameters were evaluated using the Fibromyalgia Impact Questionnaire (FIQ, visual analogues scales (VAS, and the Headache Impact Test (HIT-6. Oxidative stress was determined by measuring CoQ(10, catalase and lipid peroxidation (LPO levels in BMCs. Bioenergetic status was assessed by measuring ATP levels in BMCs. RESULTS: We found decreased CoQ(10, catalase and ATP levels in BMCs from FM patients as compared to normal control (P < 0.05 and P < 0.001, respectively We also found increased level of LPO in BMCs from FM patients as compared to normal control (P < 0.001. Significant negative correlations between CoQ(10 or catalase levels in BMCs and headache parameters were observed (r  = -0.59, P < 0.05; r  =  -0.68, P < 0.05, respectively. Furthermore, LPO levels showed a significant positive correlation with HIT-6 (r = 0.33, P<0.05. Oral CoQ(10 supplementation restored biochemical parameters and induced a significant improvement in clinical and headache symptoms (P < 0.001. DISCUSSION: The results of this study suggest a role for mitochondrial dysfunction and oxidative stress in the headache symptoms associated with FM. CoQ10 supplementation should be examined in a larger placebo controlled trial as a possible treatment in FM.

  6. Sequestration of Cu(II), Ni(II), and Co(II) by ethyleneimine immobilized on silica

    International Nuclear Information System (INIS)

    Arakaki, Luiza N.H.; Alves, Ana Paula M.; Silva Filho, Edson C. da; Fonseca, Maria G.; Oliveira, Severino F.; Espinola, Jose Geraldo P.; Airoldi, Claudio

    2007-01-01

    Thermodynamic data on interaction of Cu(II), Ni(II), and Co(II) with silica modified with ethyleneimine are obtained by calorimetric titration. The amount of ethyleneimine anchored on silica surface was estimated to be 0.70 mmol g -1 . The enthalpies of binding Ni(II), Cu(II) and Co(II), are -3.59 ± 0.001, -4.88 ± 0.001, and -7.75 ± 0.003 kJ mol -1 , respectively

  7. Metil coenzima M redutase (MCR e o fator 430 (F430

    Directory of Open Access Journals (Sweden)

    Nakagaki Shirley

    2006-01-01

    Full Text Available This review presents studies on methyl coenzyme M reductase, the biological system Factor 430 (F430 and the use of nickel(II complexes as structural and functional models. The ability of F430 and nickel(II macrocycle complexes to mediate the reductive dehalogenation of cyclohexyl halogens and the CH3-S bond cleavage of methyl CoM (by sodium borohydride and some intermediate species proposed for the catalytic cycle of the biological system F430 was reviewed. The importance of the structure of the nickel complexes and the condition of the catalytic reduction reaction are also discussed.

  8. Metil coenzima M redutase (MCR e o fator 430 (F430

    Directory of Open Access Journals (Sweden)

    Shirley Nakagaki

    2006-10-01

    Full Text Available This review presents studies on methyl coenzyme M reductase, the biological system Factor 430 (F430 and the use of nickel(II complexes as structural and functional models. The ability of F430 and nickel(II macrocycle complexes to mediate the reductive dehalogenation of cyclohexyl halogens and the CH3-S bond cleavage of methyl CoM (by sodium borohydride and some intermediate species proposed for the catalytic cycle of the biological system F430 was reviewed. The importance of the structure of the nickel complexes and the condition of the catalytic reduction reaction are also discussed.

  9. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization

    Directory of Open Access Journals (Sweden)

    Klimacek Mario

    2010-03-01

    Full Text Available Abstract Background In spite of the substantial metabolic engineering effort previously devoted to the development of Saccharomyces cerevisiae strains capable of fermenting both the hexose and pentose sugars present in lignocellulose hydrolysates, the productivity of reported strains for conversion of the naturally most abundant pentose, xylose, is still a major issue of process efficiency. Protein engineering for targeted alteration of the nicotinamide cofactor specificity of enzymes catalyzing the first steps in the metabolic pathway for xylose was a successful approach of reducing xylitol by-product formation and improving ethanol yield from xylose. The previously reported yeast strain BP10001, which expresses heterologous xylose reductase from Candida tenuis in mutated (NADH-preferring form, stands for a series of other yeast strains designed with similar rational. Using 20 g/L xylose as sole source of carbon, BP10001 displayed a low specific uptake rate qxylose (g xylose/g dry cell weight/h of 0.08. The study presented herein was performed with the aim of analysing (external factors that limit qxylose of BP10001 under xylose-only and mixed glucose-xylose substrate conditions. We also carried out a comprehensive investigation on the currently unclear role of coenzyme utilization, NADPH compared to NADH, for xylose reduction during co-fermentation of glucose and xylose. Results BP10001 and BP000, expressing C. tenuis xylose reductase in NADPH-preferring wild-type form, were used. Glucose and xylose (each at 10 g/L were converted sequentially, the corresponding qsubstrate values being similar for each strain (glucose: 3.0; xylose: 0.05. The distribution of fermentation products from glucose was identical for both strains whereas when using xylose, BP10001 showed enhanced ethanol yield (BP10001 0.30 g/g; BP000 0.23 g/g and decreased yields of xylitol (BP10001 0.26 g/g; BP000 0.36 g/g and glycerol (BP10001 0.023 g/g; BP000 0.072 g/g as compared

  10. Border between natural product and drug: Comparison of the related benzoquinones idebenone and coenzyme Q10

    Directory of Open Access Journals (Sweden)

    Nuri Gueven

    2015-04-01

    Full Text Available Coenzyme Q10 is a ubiquitous component of cellular membranes and belongs to the class of benzoquinones that mainly differ with regards to the length and composition of their hydrophobic tail. The characteristic quinone group can accept electrons from various biological sources and is converted by a one electron transfer to the unstable semiquinone or by a two electron transfer to the more stable hydroquinone. This feature makes CoQ10 the bona fide cellular electron transfer molecule within the mitochondrial respiratory chain and also makes it a potent cellular antioxidant. These activities serve as justification for its popular use as food supplement. Another quinone with similarities to the naturally occurring CoQ10 is idebenone, which shares its quinone moiety with CoQ10, but at the same time differs from CoQ10 by the presence of a much shorter, less lipophilic tail. However, despite its similarity to CoQ10, idebenone cannot be isolated from any natural sources but instead was synthesized and selected as a pharmacologically active compound in the 1980s by Takeda Pharmaceuticals purely based on its pharmacological properties. Several recent clinical trials demonstrated some therapeutic efficacy of idebenone in different indications and as a consequence, many practitioners question if the freely available CoQ10 could not be used instead. Here, we describe the molecular and pharmacological features of both molecules that arise from their structural differences to answer the question if idebenone is merely a CoQ10 analogue as frequently perpetuated in the literature or a pharmaceutical drug with entirely different features.

  11. Solid-phase extraction of Mn(II), Co(II), Ni(II), Cu(II), Cd(II) and Pb(II) ions from environmental samples by flame atomic absorption spectrometry (FAAS)

    Energy Technology Data Exchange (ETDEWEB)

    Duran, Celal [Department of Chemistry, Faculty of Art and Science, Karadeniz Technical University, 61080 Trabzon (Turkey); Gundogdu, Ali [Department of Chemistry, Faculty of Art and Science, Karadeniz Technical University, 61080 Trabzon (Turkey); Bulut, Volkan Numan [Department of Chemistry, Giresun Faculty of Art and Science, Karadeniz Technical University, 28049 Giresun (Turkey); Soylak, Mustafa [Department of Chemistry, Faculty of Art and Science, Erciyes University, 38039 Kayseri (Turkey)]. E-mail: soylak@erciyes.edu.tr; Elci, Latif [Department of Chemistry, Faculty of Art and Science, Pamukkale University, 20020 Denizli (Turkey); Sentuerk, Hasan Basri [Department of Chemistry, Faculty of Art and Science, Karadeniz Technical University, 61080 Trabzon (Turkey); Tuefekci, Mehmet [Department of Chemistry, Faculty of Art and Science, Karadeniz Technical University, 61080 Trabzon (Turkey)

    2007-07-19

    A new method using a column packed with Amberlite XAD-2010 resin as a solid-phase extractant has been developed for the multi-element preconcentration of Mn(II), Co(II), Ni(II), Cu(II), Cd(II), and Pb(II) ions based on their complex formation with the sodium diethyldithiocarbamate (Na-DDTC) prior to flame atomic absorption spectrometric (FAAS) determinations. Metal complexes sorbed on the resin were eluted by 1 mol L{sup -1} HNO{sub 3} in acetone. Effects of the analytical conditions over the preconcentration yields of the metal ions, such as pH, quantity of Na-DDTC, eluent type, sample volume and flow rate, foreign ions etc. have been investigated. The limits of detection (LOD) of the analytes were found in the range 0.08-0.26 {mu}g L{sup -1}. The method was validated by analyzing three certified reference materials. The method has been applied for the determination of trace elements in some environmental samples.

  12. Comparative evaluation of coenzyme Q10-based gel and 0.8% hyaluronic acid gel in treatment of chronic periodontitis

    Directory of Open Access Journals (Sweden)

    Varun Sharma

    2016-01-01

    Full Text Available Background: The anti-inflammatory and immune enhancing effects of coenzyme Q10 (CoQ10 and hyaluronic acid are well established in medical literature. The present study was undertaken to evaluate their role in chronic periodontitis. Materials and Methods: One hundred twenty sites in 24 patients with clinically confirmed periodontitis were included in the study. A split-mouth design was used for intrasulcular application of CoQ10as adjunct to scaling and root planing (SRP, 0.8% hyaluronic acid as adjunct to SRP and SRP alone. Clinical parameters such as plaque index (PI, gingival color change index (GCCI, Eastman interdental bleeding index (EIBI, pocket depth (PD, and clinical attachment level (CAL were recorded. All the clinical parameters PI, EIBI, GCCI, PD, and CAL were recorded at baseline before SRP. Only PI, EIBI, and GCCI were recorded at 1st and 2nd week. Twenty-one days post 2nd week, i.e., 6th week all the clinical parameters were recorded again. Results: Intragroup analysis of all the clinical parameters showed clinical significant results between baseline and 6th week. However, on intergroup analysis, the results were not significant. Conclusion: The local application of CoQ10and hyaluronic acid gel in conjunction with SRP may have a beneficial effect on periodontal health in patients with chronic periodontitis.

  13. Overexpressing 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR in the lactococcal mevalonate pathway for heterologous plant sesquiterpene production.

    Directory of Open Access Journals (Sweden)

    Adelene Ai-Lian Song

    Full Text Available Isoprenoids are a large and diverse group of metabolites with interesting properties such as flavour, fragrance and therapeutic properties. They are produced via two pathways, the mevalonate pathway or the 2-C-methyl-D-erythritol-4-phosphate (MEP pathway. While plants are the richest source of isoprenoids, they are not the most efficient producers. Escherichia coli and yeasts have been extensively studied as heterologous hosts for plant isoprenoids production. In the current study, we describe the usage of the food grade Lactococcus lactis as a potential heterologous host for the production of sesquiterpenes from a local herbaceous Malaysian plant, Persicaria minor (synonym Polygonum minus. A sesquiterpene synthase gene from P. minor was successfully cloned and expressed in L. lactis. The expressed protein was identified to be a β-sesquiphellandrene synthase as it was demonstrated to be functional in producing β-sesquiphellandrene at 85.4% of the total sesquiterpenes produced based on in vitro enzymatic assays. The recombinant L. lactis strain developed in this study was also capable of producing β-sesquiphellandrene in vivo without exogenous substrates supplementation. In addition, overexpression of the strain's endogenous 3-hydroxy-3-methylglutaryl coenzyme-A reductase (HMGR, an established rate-limiting enzyme in the eukaryotic mevalonate pathway, increased the production level of β-sesquiphellandrene by 1.25-1.60 fold. The highest amount achieved was 33 nM at 2 h post-induction.

  14. Regulation of the oxidative balance with coenzyme Q10 sensitizes human glioblastoma cells to radiation and temozolomide.

    Science.gov (United States)

    Frontiñán-Rubio, Javier; Santiago-Mora, Raquel María; Nieva-Velasco, Consuelo María; Ferrín, Gustavo; Martínez-González, Alicia; Gómez, María Victoria; Moreno, María; Ariza, Julia; Lozano, Eva; Arjona-Gutiérrez, Jacinto; Gil-Agudo, Antonio; De la Mata, Manuel; Pesic, Milica; Peinado, Juan Ramón; Villalba, José M; Pérez-Romasanta, Luis; Pérez-García, Víctor M; Alcaín, Francisco J; Durán-Prado, Mario

    2018-05-18

    To investigate how the modulation of the oxidative balance affects cytotoxic therapies in glioblastoma, in vitro. Human glioblastoma U251 and T98 cells and normal astrocytes C8D1A were loaded with coenzyme Q10 (CoQ). Mitochondrial superoxide ion (O 2 - ) and H 2 O 2 were measured by fluorescence microscopy. OXPHOS performance was assessed in U251 cells with an oxytherm Clark-type electrode. Radio- and chemotherapy cytotoxicity was assessed by immunostaining of γH2AX (24 h), annexin V and nuclei morphology, at short (72 h) and long (15 d) time. Hif-1α, SOD1, SOD2 and NQO1 were determined by immunolabeling. Catalase activity was measured by classic enzymatic assay. Glutathione levels and total antioxidant capacity were quantified using commercial kits. CoQ did not affect oxygen consumption but reduced the level of O 2 - and H 2 O 2 while shifted to a pro-oxidant cell status mainly due to a decrease in catalase activity and SOD2 level. Hif-1α was dampened, echoed by a decrease lactate and several key metabolites involved in glutathione synthesis. CoQ-treated cells were twofold more sensitive than control to radiation-induced DNA damage and apoptosis in short and long-term clonogenic assays, potentiating TMZ-induced cytotoxicity, without affecting non-transformed astrocytes. CoQ acts as sensitizer for cytotoxic therapies, disarming GBM cells, but not normal astrocytes, against further pro-oxidant injuries, being potentially useful in clinical practice for this fatal pathology. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Role of Feedback Regulation of Pantothenate Kinase (CoaA) in Control of Coenzyme A Levels in Escherichia coli

    Science.gov (United States)

    Rock, Charles O.; Park, Hee-Won; Jackowski, Suzanne

    2003-01-01

    Pantothenate kinase (CoaA) is a key regulator of coenzyme A (CoA) biosynthesis in Escherichia coli, and its activity is controlled by feedback inhibition by CoA and its thioesters. The importance of feedback inhibition in the control of the intracellular CoA levels was tested by constructing three site-directed mutants of CoaA that were predicted to be feedback resistant based on the crystal structure of the CoaA-CoA binary complex. CoaA[R106A], CoaA[H177Q], and CoaA[F247V] were purified and shown to retain significant catalytic activity and be refractory to inhibition by CoA. CoaA[R106A] retained 50% of the catalytic activity of CoaA, whereas the CoaA[H177Q] and CoaA[F247V] mutants were less active. The importance of feedback control of CoaA to the intracellular CoA levels was assessed by expressing either CoaA or CoaA[R106A] in strain ANS3 [coaA15(Ts) panD2]. Cells expressing CoaA[R106A] had significantly higher levels of phosphorylated pantothenate-derived metabolites and CoA in vivo and excreted significantly more 4′-phosphopantetheine into the medium compared to cells expressing the wild-type protein. These data illustrate the key role of feedback regulation of pantothenate kinase in the control of intracellular CoA levels. PMID:12754240

  16. Improvement of Coenzyme Q10 Production: Mutagenesis Induced by High Hydrostatic Pressure Treatment and Optimization of Fermentation Conditions

    Directory of Open Access Journals (Sweden)

    Yahong Yuan

    2012-01-01

    Full Text Available Coenzyme Q10 (CoQ10, ubiquinone, a potent antioxidative dietary supplement, was produced by submerged fermentation using Agrobacterium tumefaciens instead of chemical synthesis or solvent extraction. Agrobacterium tumefaciens 1.2554 was subjected to mutagenesis using a series of treatments including high hydrostatic pressure (HHP treatment, UV irradiation, and diethyl sulfate (DES treatment to obtain mutant strains showing higher CoQ10 production than wild-type strains. A mutant strain PK38 with four genetic markers was isolated: the specific CoQ10 content of the mutant strain increased by 52.83% compared with the original strain. Effects of carbon and nitrogen sources on CoQ10 production with PK38 were studied. Sucrose at concentration of 30 g/l was tested as the best carbon source, and yeast extract at concentration of 30 g/l supplemented with 10 g/l of ammonium sulfate was identified to be the most favorable for CoQ10 production using PK38. Fed-batch culture strategy was then used for increasing production of CoQ10 in 5-l fermentor. Using the exponential feeding fed-batch culture of sucrose, cell growth and CoQ10 formation were significantly improved. With this strategy, the final cell biomass, CoQ10 production, and specific CoQ10 production increased by 126.11, 173.12, and 22.76%, respectively, compared to those of batch culture.

  17. Levels of sP-selectin and hs-CRP Decrease with Dietary Intervention with Selenium and Coenzyme Q10 Combined: A Secondary Analysis of a Randomized Clinical Trial

    Science.gov (United States)

    Lindahl, Tomas L.; Svensson, Erland

    2015-01-01

    Background/Objectives Inflammation and oxidative stress are central in many disease states. The major anti-oxidative enzymes contain selenium. The selenium intake in Europe is low, and supplementation with selenium and coenzyme Q10, important anti-oxidants, was evaluated in a previous study. The aim of this study was to evaluate response on the inflammatory biomarkers C-reactive protein, and sP-selectin, and their possible impact on cardiovascular mortality. Subjects/Methods 437 elderly individuals were included in the study. Clinical examination, echocardiography, electrocardiography and blood samples were drawn. The intervention time was 48 months, and median follow-up was 5.2 years. The effects on inflammation/atherosclerosis were evaluated through analyses of CRP and sP-selectin. Evaluations of the effect of the intervention was performed using repeated measures of variance. All mortality was registered, and endpoints of mortality were assessed by Kaplan-Meier plots. Results The placebo group showed a CRP level of 4.8 ng/mL at the start, and 5.1 ng/mL at the study end. The active supplementation group showed a CRP level of 4.1 ng/mL at the start, and 2.1 ng/mL at the study end. SP-selectin exhibited a level of 56.6 mg/mL at the start in the placebo group and 72.3 mg/mL at the study end, and in the active group the corresponding figures were 55.9 mg/mL and 58.0 mg/mL. A significantly smaller increase was demonstrated through repeated measurements of the two biomarkers in those on active supplementation. Active supplementation showed an effect on the CRP and sP-selectin levels, irrespective of the biomarker levels. Reduced cardiovascular mortality was demonstrated in both those with high and low levels of CRP and sP-selectin in the active supplementation group. Conclusion CRP and sP-selectin showed significant changes reflecting effects on inflammation and atherosclerosis in those given selenium and coenzyme Q10 combined. A reduced cardiovascular mortality could

  18. Levels of sP-selectin and hs-CRP Decrease with Dietary Intervention with Selenium and Coenzyme Q10 Combined: A Secondary Analysis of a Randomized Clinical Trial.

    Directory of Open Access Journals (Sweden)

    Urban Alehagen

    Full Text Available Inflammation and oxidative stress are central in many disease states. The major anti-oxidative enzymes contain selenium. The selenium intake in Europe is low, and supplementation with selenium and coenzyme Q10, important anti-oxidants, was evaluated in a previous study. The aim of this study was to evaluate response on the inflammatory biomarkers C-reactive protein, and sP-selectin, and their possible impact on cardiovascular mortality.437 elderly individuals were included in the study. Clinical examination, echocardiography, electrocardiography and blood samples were drawn. The intervention time was 48 months, and median follow-up was 5.2 years. The effects on inflammation/atherosclerosis were evaluated through analyses of CRP and sP-selectin. Evaluations of the effect of the intervention was performed using repeated measures of variance. All mortality was registered, and endpoints of mortality were assessed by Kaplan-Meier plots.The placebo group showed a CRP level of 4.8 ng/mL at the start, and 5.1 ng/mL at the study end. The active supplementation group showed a CRP level of 4.1 ng/mL at the start, and 2.1 ng/mL at the study end. SP-selectin exhibited a level of 56.6 mg/mL at the start in the placebo group and 72.3 mg/mL at the study end, and in the active group the corresponding figures were 55.9 mg/mL and 58.0 mg/mL. A significantly smaller increase was demonstrated through repeated measurements of the two biomarkers in those on active supplementation. Active supplementation showed an effect on the CRP and sP-selectin levels, irrespective of the biomarker levels. Reduced cardiovascular mortality was demonstrated in both those with high and low levels of CRP and sP-selectin in the active supplementation group.CRP and sP-selectin showed significant changes reflecting effects on inflammation and atherosclerosis in those given selenium and coenzyme Q10 combined. A reduced cardiovascular mortality could be demonstrated in the active group

  19. Average [O II] nebular emission associated with Mg II absorbers: dependence on Fe II absorption

    Science.gov (United States)

    Joshi, Ravi; Srianand, Raghunathan; Petitjean, Patrick; Noterdaeme, Pasquier

    2018-05-01

    We investigate the effect of Fe II equivalent width (W2600) and fibre size on the average luminosity of [O II] λλ3727, 3729 nebular emission associated with Mg II absorbers (at 0.55 ≤ z ≤ 1.3) in the composite spectra of quasars obtained with 3 and 2 arcsec fibres in the Sloan Digital Sky Survey. We confirm the presence of strong correlations between [O II] luminosity (L_{[O II]}) and equivalent width (W2796) and redshift of Mg II absorbers. However, we show L_{[O II]} and average luminosity surface density suffer from fibre size effects. More importantly, for a given fibre size, the average L_{[O II]} strongly depends on the equivalent width of Fe II absorption lines and found to be higher for Mg II absorbers with R ≡W2600/W2796 ≥ 0.5. In fact, we show the observed strong correlations of L_{[O II]} with W2796 and z of Mg II absorbers are mainly driven by such systems. Direct [O II] detections also confirm the link between L_{[O II]} and R. Therefore, one has to pay attention to the fibre losses and dependence of redshift evolution of Mg II absorbers on W2600 before using them as a luminosity unbiased probe of global star formation rate density. We show that the [O II] nebular emission detected in the stacked spectrum is not dominated by few direct detections (i.e. detections ≥3σ significant level). On an average, the systems with R ≥ 0.5 and W2796 ≥ 2 Å are more reddened, showing colour excess E(B - V) ˜ 0.02, with respect to the systems with R < 0.5 and most likely trace the high H I column density systems.

  20. Structural information on the coordination compounds formed by manganese(II), cobalt(II), nickel(II), zinc(II), cadmium(II) and mercury(II) thiocyanates with 4-cyanopyridine N-oxide from their magnetic moments, electronic and infrared spectra

    Science.gov (United States)

    Ahuja, I. S.; Yadava, C. L.; Singh, Raghuvir

    1982-05-01

    Coordination compounds formed by the interaction of 4-cyanopyridine. N-oxide (4-CPO), a potentially bidentate ligand, with manganese(II), cobalt(II), nickel(II), zinc(II), cadmium(II) and rnercury(II) thiocyanates have been prepared and characterized from their elemental analyses, magnetic susceptibilities, electronic and infrared spectral studies down to 200 cm -1 in the solid state. The compounds isolated are: Mn(4-CPO) 2(NCS) 2, Co(4-CPO) 2(NCS) 2,Ni(4-CPO) 2(NCS) 2,Zn(4-CPO) 2(NCS) 2, Cd(4-CPO)(NCS) 2 and Hg(4-CPO) 2(SCN) 2. It is shown that 4-CPO acts as a terminal N-oxide oxygen bonded monodentate ligand in all the metal(II) thiocyanate complexes studied. Tentative stereochemistries of the complexes in the solid state are discussed. The ligand field parameters 10 Dq, B, β and λ calculated for the manganese(II), cobalt(II) and nickel(II) complexes are consistent with their proposed stereochemistries.

  1. Macrocyclic receptor showing extremely high Sr(II)/Ca(II) and Pb(II)/Ca(II) selectivities with potential application in chelation treatment of metal intoxication.

    Science.gov (United States)

    Ferreirós-Martínez, Raquel; Esteban-Gómez, David; Tóth, Éva; de Blas, Andrés; Platas-Iglesias, Carlos; Rodríguez-Blas, Teresa

    2011-04-18

    Herein we report a detailed investigation of the complexation properties of the macrocyclic decadentate receptor N,N'-Bis[(6-carboxy-2-pyridil)methyl]-4,13-diaza-18-crown-6 (H(2)bp18c6) toward different divalent metal ions [Zn(II), Cd(II), Pb(II), Sr(II), and Ca(II)] in aqueous solution. We have found that this ligand is especially suited for the complexation of large metal ions such as Sr(II) and Pb(II), which results in very high Pb(II)/Ca(II) and Pb(II)/Zn(II) selectivities (in fact, higher than those found for ligands widely used for the treatment of lead poisoning such as ethylenediaminetetraacetic acid (edta)), as well as in the highest Sr(II)/Ca(II) selectivity reported so far. These results have been rationalized on the basis of the structure of the complexes. X-ray crystal diffraction, (1)H and (13)C NMR spectroscopy, as well as theoretical calculations at the density functional theory (B3LYP) level have been performed. Our results indicate that for large metal ions such as Pb(II) and Sr(II) the most stable conformation is Δ(δλδ)(δλδ), while for Ca(II) our calculations predict the Δ(λδλ)(λδλ) form being the most stable one. The selectivity that bp18c6(2-) shows for Sr(II) over Ca(II) can be attributed to a better fit between the large Sr(II) ions and the relatively large crown fragment of the ligand. The X-ray crystal structure of the Pb(II) complex shows that the Δ(δλδ)(δλδ) conformation observed in solution is also maintained in the solid state. The Pb(II) ion is endocyclically coordinated, being directly bound to the 10 donor atoms of the ligand. The bond distances to the donor atoms of the pendant arms (2.55-2.60 Å) are substantially shorter than those between the metal ion and the donor atoms of the crown moiety (2.92-3.04 Å). This is a typical situation observed for the so-called hemidirected compounds, in which the Pb(II) lone pair is stereochemically active. The X-ray structures of the Zn(II) and Cd(II) complexes show that

  2. Analysis of five rice 4-coumarate:coenzyme A ligase enzyme activity and stress response for potential roles in lignin and flavonoid biosynthesis in rice

    International Nuclear Information System (INIS)

    Sun, Haiyan; Li, Ying; Feng, Shengqiu; Zou, Weihua; Guo, Kai; Fan, Chunfen; Si, Shengli

    2013-01-01

    Highlights: ► 4CLs play important roles in both lignin and flavonoids biosynthesis. ► PA and FA are the two main substrates of 4CL (Os4CL1/3/4/5) for lignin biosynthesis. ► Os4CL2 is suggested for flavonoid formation in defense against UV radiation. -- Abstract: 4-Coumarate:coenzyme A ligase (4CL) catalyzes the conversion of hydroxycinnamates into corresponding CoA esters for biosynthesis of flavonoids and lignin. In this study, five members of the 4CL gene family from rice were cloned and analyzed. Recombinant 4CL data revealed that 4-coumaric acid and ferulic acid were the two main substrates of 4CL (Os4CL1/3/4/5) for monolignol biosynthesis in rice. Os4CL2 was specifically expressed in the anther and was strongly activated by UV irradiation, suggesting its potential involvement in flavonoid formation. Moreover, bioinformatics analysis showed that the existence of valine residue at the substrate-binding pocket may mainly affect rice 4CL activities toward sinapic acid

  3. Analysis of five rice 4-coumarate:coenzyme A ligase enzyme activity and stress response for potential roles in lignin and flavonoid biosynthesis in rice

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Haiyan [National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070 (China); Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070 (China); College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China); School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500 (China); Li, Ying; Feng, Shengqiu; Zou, Weihua [National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070 (China); Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070 (China); College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China); Guo, Kai [National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070 (China); Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070 (China); College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China); Fan, Chunfen [National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070 (China); Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070 (China); College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China); Si, Shengli [National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070 (China); Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070 (China); College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China); and others

    2013-01-18

    Highlights: ► 4CLs play important roles in both lignin and flavonoids biosynthesis. ► PA and FA are the two main substrates of 4CL (Os4CL1/3/4/5) for lignin biosynthesis. ► Os4CL2 is suggested for flavonoid formation in defense against UV radiation. -- Abstract: 4-Coumarate:coenzyme A ligase (4CL) catalyzes the conversion of hydroxycinnamates into corresponding CoA esters for biosynthesis of flavonoids and lignin. In this study, five members of the 4CL gene family from rice were cloned and analyzed. Recombinant 4CL data revealed that 4-coumaric acid and ferulic acid were the two main substrates of 4CL (Os4CL1/3/4/5) for monolignol biosynthesis in rice. Os4CL2 was specifically expressed in the anther and was strongly activated by UV irradiation, suggesting its potential involvement in flavonoid formation. Moreover, bioinformatics analysis showed that the existence of valine residue at the substrate-binding pocket may mainly affect rice 4CL activities toward sinapic acid.

  4. Solid Phase Extraction of Trace Al(III), Fe(II), Co(II), Cu(II), Cd(II) and Pb(II) Ions in Beverages on Functionalized Polymer Microspheres Prior to Flame Atomic Absorption Spectrometric Determinations.

    Science.gov (United States)

    Berber, Hale; Alpdogan, Güzin

    2017-01-01

    In this study, poly(glycidyl methacrylate-methyl methacrylate-divinylbenzene) was synthesized in the form of microspheres, and then functionalized by 2-aminobenzothiazole ligand. The sorption properties of these functionalized microspheres were investigated for separation, preconcentration and determination of Al(III), Fe(II), Co(II), Cu(II), Cd(II) and Pb(II) ions using flame atomic absorption spectrometry. The optimum pH values for quantitative sorption were 2 - 4, 5 - 8, 6 - 8, 4 - 6, 2 - 6 and 2 - 3 for Al(III), Fe(II), Co(II), Cu(II), Cd(II) and Pb(II), respectively, and also the highest sorption capacity of the functionalized microspheres was found to be for Cu(II) with the value of 1.87 mmol g -1 . The detection limits (3σ; N = 6) obtained for the studied metals in the optimal conditions were observed in the range of 0.26 - 2.20 μg L -1 . The proposed method was successfully applied to different beverage samples for the determination of Al(III), Fe(II), Co(II), Cu(II), Cd(II) and Pb(II) ions, with the relative standard deviation of <3.7%.

  5. Water-Soluble Coenzyme Q10 Inhibits Nuclear Translocation of Apoptosis Inducing Factor and Cell Death Caused by Mitochondrial Complex I Inhibition

    Directory of Open Access Journals (Sweden)

    Haining Li

    2014-07-01

    Full Text Available The objectives of the study were to explore the mechanism of rotenone-induced cell damage and to examine the protective effects of water-soluble Coenzyme Q10 (CoQ10 on the toxic effects of rotenone. Murine hippocampal HT22 cells were cultured with mitochondrial complex I inhibitor rotenone. Water-soluble CoQ10 was added to the culture media 3 h prior to the rotenone incubation. Cell viability was determined by alamar blue, reactive oxygen species (ROS production by dihydroethidine (DHE and mitochondrial membrane potential by tetramethyl rhodamine methyl ester (TMRM. Cytochrome c, caspase-9 and apoptosis-inducing factor (AIF were measured using Western blotting after 24 h rotenone incubation. Rotenone caused more than 50% of cell death, increased ROS production, AIF nuclear translocation and reduction in mitochondrial membrane potential, but failed to cause mitochondrial cytochrome c release and caspase-9 activation. Pretreatment with water-soluble CoQ10 enhanced cell viability, decreased ROS production, maintained mitochondrial membrane potential and prevented AIF nuclear translocation. The results suggest that rotenone activates a mitochondria-initiated, caspase-independent cell death pathway. Water-soluble CoQ10 reduces ROS accumulation, prevents the fall of mitochondrial membrane potential, and inhibits AIF translocation and subsequent cell death.

  6. Beneficial effects of co-enzyme Q10 and rosiglitazone in fructose-induced metabolic syndrome in rats

    Directory of Open Access Journals (Sweden)

    Suzan M. Mansour

    2013-06-01

    Full Text Available Increased fructose consumption is strongly associated with metabolic syndrome (MS. This study was performed to elucidate the role of co-enzyme Q10 (CoQ and/or rosiglitazone (Rosi in fructose induced MS. Four groups of rats (n = 8–10 were fed on fructose-enriched diet (FED for 16 weeks. One served as FED-control while the remaining groups were treated with CoQ (10 mg/kg/day, Rosi (4 mg/kg/day or their combination during the last 6 weeks. Another group was fed on normal laboratory chow (normal control. At the end of the experiment, blood samples were collected for estimation of markers related to MS. In addition, histological examination of liver, kidney and pancreas samples was done. Induction of the MS was associated with increased body weight gain (34% coupled with elevated levels of blood glucose (48%, insulin (86%, insulin resistance (270%, uric acid (69%, urea (155%, creatinine (129% and blood lipids with different degrees. Fructose-induced MS also reduced plasma catalase (62% and glutathione peroxidase (89% activities parallel to increased serum leptin and tumor necrosis factor-alpha (TNF-α levels. These changes were coupled by marked histological changes in the examined tissues. Treatment with CoQ or Rosi attenuated most of MS-induced changes. Besides, the combination of both agents further reduced blood glucose, total cholesterol, triglycerides and urea levels, as well as, normalized serum levels of leptin and TNF-α. In addition, combined therapy of both agents elevated HDL-cholesterol level and glutathione peroxidase activity. In conclusion, the present study proves the benefits of co-supplementation of CoQ and Rosi in a fructose-induced model of insulin resistance.

  7. Decreased hepatic contents of coenzyme A molecular species in mice after subchronic mild social defeat stress.

    Science.gov (United States)

    Kubota, Yoshifumi; Goto, Tatsuhiko; Hagiya, Yuki; Chohnan, Shigeru; Toyoda, Atsushi

    2016-01-01

    Social stress may precipitate psychiatric disorders such as depression, which is related to the occurrence of the metabolic syndrome, including obesity and type 2 diabetes. We have evaluated the effects of social stress on central and peripheral metabolism using a model of depression in mice. In the present study, we focused on coenzyme A (CoA) molecular species [i.e. non-esterified CoA (CoASH), acetyl-CoA and malonyl-CoA] which play important roles in numerous metabolic pathways, and we analyzed changes in expression of these molecules in the hypothalamus and liver of adult male mice (C57BL/6J) subjected to 10 days of subchronic mild social defeat stress (sCSDS) with ICR mice as aggressors. Mice (n = 12) exposed to showed hyperphagia- and polydipsia-like symptoms and increased body weight gain compared with control mice which were not affected by exposure to ICR mice (n = 12). To elucidate the underlying metabolic features in the sCSDS model, acetyl-CoA, malonyl-CoA and CoASH tissue levels were analyzed using the acyl-CoA cycling method. The levels of hypothalamic malonyl-CoA, which decreases feeding behavior, were not influenced by sCSDS. However, sCSDS reduced levels of acetyl-CoA, malonyl-CoA and total CoA (sum of the three CoA molecular species) in the liver. Hence, hyperphagia-like symptoms in sCSDS mice evidently occurred independently of hypothalamic malonyl-CoA, but might consequently lead to down-regulation of hepatic CoA via altered expression of nudix hydrolase 7. Future studies should investigate the molecular mechanism(s) underlying the down-regulation of liver CoA pools in sCSDS mice.

  8. Coenzyme Q10 protects retinal cells from apoptosis induced by radiation in vitro and in vivo

    International Nuclear Information System (INIS)

    Lulli, M.; Witort, E.; Papucci, L.; Torre, E.; Schiavone, N.; Capaccioli, S.; Dal Monte, M.

    2012-01-01

    The key pathogenetic event of many retinopathies is apoptosis of retinal cells. Our previous studies have demonstrated that Coenzyme Q10 (CoQ10) prevents apoptosis of corneal keratocytes both in vitro and in vivo, by virtue of its ability to inhibit mitochondrial depolarization, independently of its free radical scavenger role. The aim of this study was to evaluate whether CoQ10 can protect cultured retinal cells and the retinas of rats from radiation-induced apoptosis, if instilled as eye drops in the cornea. In vitro experiments were carried out on cultured ARPE-19 or retinal ganglion cells (RGC)-5 cells pretreated with CoQ10 before eliciting apoptosis by ultraviolet (UV)- and γ-radiation, chemical hypoxia (Antimycin A) and serum starvation. Cell viability was evaluated by light microscopy and fluorescence activated cell sorting analysis. Apoptotic events were scored by time-lapse videomicroscopy. Mitochondrial permeability transition was evaluated by JC-1. The anti-apoptotic effectiveness of CoQ10 in retina was also evaluated by an in situ end-labeling assay in Wistar albino rats treated with CoQ10 eye drops prior to UV irradiation of the eye. CoQ10 substantially increased cell viability and lowered retinal cell apoptosis in response both to UV- and γ-radiation and to chemical hypoxia or serum starvation by inhibiting mitochondrion depolarization. In the rat, CoQ10, even when applied as eye drops on the cornea, protected all retina layers from ultraviolet radiation (UVR)-induced apoptosis. The ability of CoQ10 to protect retinal cells from radiation-induced apoptosis following its instillation on the cornea suggests the possibility for CoQ10 eye drops to become a future therapeutic countermeasure for radiation-induced retinal lesions. (author)

  9. Synthesis, characterization and thermal studies of nickel (II), copper (II), zinc (II) and cadmium (II) complexes with some mixed ligands

    International Nuclear Information System (INIS)

    Mitra, Samiran; Kundu, Parimal; Singh, Rajkumar Bhubon

    1998-01-01

    Dichloro-(DCA) and trichloroacetate(TCA) -cyclic ligand morpholine (Morph)/thiomorpholine (Tmorph)/methylmorpholine (Mmorph)/dimethyl-piperazine (DMP) complexes of nickel (II), copper (II), zinc (II) and cadmium (II) with the compositions [Ni(tmorph) 2 (DCA) 2 ], [Ni(tmorph) 2 (TCA) 2 ].2H 2 O, [Cu(DMP) 2 (TCA) 2 ],[ML 2 X 2 ].nH 2 O where M=Zn II or Cd II , L=Morph, DMP or tmorph and X=DCA or TCA and n=O except in case of [Cd (Morph) 2 (TCA) 2 ] where n=1 have been synthesised. Some intermediate complexes have been isolated by temperature arrest technique (pyrolysis) and characterised. Configurational and conformational changes have been studied by elemental analyses, IR and electronic spectra, magnetic moment data (in the case of Ni(II) and Cu(II) complexes) and thermal analysis. E a * , ΔH, and ΔS for the decomposition reaction of these complexes are evaluated and the stability of the complexes with respect to activation energy has also been compared. The linear correlation has been found between E a * and ΔS for the decomposition of the complexes. (author)

  10. Competition from Cu(II), Zn(II) and Cd(II) in Pb(II) binding to Suwannee River Fulvic Acid

    NARCIS (Netherlands)

    Chakraborty, P.; Chakrabarti, C.L.

    2008-01-01

    This is a study of trace metal competition in the complexation of Pb(II) by well-characterized humic substances, namely Suwannee River Fulvic Acid (SRFA) in model solutions. It was found that Cu(II) seems to compete with Pb(II) for strong binding sites of SRFA when present at the same concentration

  11. Synthesis, investigation and spectroscopic characterization of piroxicam ternary complexes of Fe(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) with glycine and DL-phenylalanine

    Science.gov (United States)

    Mohamed, Gehad G.; El-Gamel, Nadia E. A.

    2004-11-01

    The ternary piroxicam (Pir; 4-hydroxy-2-methyl- N-(2-pyridyl)-2H-1,2-benzothiazine-3-carboxamide 1,1-dioxide) complexes of Fe(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) with various amino acids (AA) such as glycine (Gly) or DL-phenylalanine (PhA) were prepared and characterized by elemental analyses, molar conductance, IR, UV-Vis, magnetic moment, diffuse reflectance and X-ray powder diffraction. The UV-Vis spectra of Pir and the effect of metal chelation on the different interligand transitions are discussed in detailed manner. IR and UV-Vis spectra confirm that Pir behaves as a neutral bidentate ligand coordinated to the metal ions via the pyridine- N and carbonyl group of the amide moiety. Gly molecule acted as a uninegatively monodentate ligand and coordinate to the metal ions through its carboxylic group, in addition PhA acted as a uninegatively bidentate ligand and coordinate to the metal ions through its carboxylic and amino groups. All the chelates have octahedral geometrical structures while Cu(II)- and Zn(II)-ternary chelates with PhA have square planar geometrical structures. The molar conductance data reveal that most of these chelates are non electrolytes, while Fe(III)-Pir-Gly, Co(II)-, Ni(II)-, Cu(II)- and Zn(II)-Pir-PhA cheletes were 1:1 electrolytes. X-ray powder diffraction is used as a new tool to estimate the crystallinity of chelates as well as to elucidate their geometrical structures.

  12. Coordination compounds of cobalt(II), nickel(II), copper(II), and zinc(II) with pantothenic acid

    Energy Technology Data Exchange (ETDEWEB)

    Shabilalov, A.A.; Yunuskhodzhaev, A.N.; Khodzhaev, O.F.; Azizov, M.A.

    1986-11-01

    The compounds Ni(PANA - H)/sub 2/ x 4H/sub 2/O (PANA stands for pantothenic acid, and - H indicates a deprotonated ligand), Cu(PANA - H)/sub 2/ x 2H/sub 2/O, Zn(PANA - H)/sub 2/ x H/sub 2/O, Co(PANA - H)Cl x H/sub 2/O, and Ni(PANA - H)Cl x 3H/sub 2/O have been synthesized on the basis of pantothenic acid and Co(II), Ni(II), Cu(II), and Zn(II) salts in aqueous media. The compounds have been identified by elemental and x-ray diffraction analysis. Some physicochemical properties (solubility, melting point, molar conductivity) of the compounds obtained have been studied. The structure of the compounds isolated has been established on the basis of an analysis of their IR, ESR, and electronic spectra, as well as derivatograms.

  13. Novel solid self-emulsifying drug delivery system of coenzyme Q₁₀ with improved photochemical and pharmacokinetic behaviors.

    Science.gov (United States)

    Onoue, Satomi; Uchida, Atushi; Kuriyama, Kazuki; Nakamura, Tatsuya; Seto, Yoshiki; Kato, Masashi; Hatanaka, Junya; Tanaka, Toshiyuki; Miyoshi, Hiroyuki; Yamada, Shizuo

    2012-08-15

    The present study was undertaken to develop a solid self-emulsifying drug delivery system of coenzyme Q(10) (CoQ(10)/s-SEDDS) with high photostability and oral bioavailability. The CoQ(10)/s-SEDDS was prepared by spray-drying an emulsion preconcentrate containing CoQ(10), medium-chain triglyceride, sucrose ester of fatty acid, and hydroxypropyl cellulose, and its physicochemical, photochemical, and pharmacokinetic properties were evaluated. The CoQ(10)/s-SEDDS powder with a diameter of ca. 15 μm was obtained by spray-drying, in which the CoQ(10) was mostly amorphized. The CoQ(10)/s-SEDDS exhibited immediate self-emulsification when introduced to aqueous media under gentle agitation, forming uniform fine droplets with a mean diameter of ca. 280 nm. There was marked generation of reactive oxygen species, in particular superoxide, from CoQ(10) exposed to simulated sunlight (250W/m(2)), suggesting potent photoreactivity. Nano-emulsified solution of CoQ(10) under light exposure underwent photodegradation with 22-fold higher degradation kinetics than crystalline CoQ(10), although the CoQ(10)/s-SEDDS was less photoreactive. After the oral administration of CoQ(10)/s-SEDDS (100 mg-CoQ(10)/kg) in rats, enhanced exposure of CoQ(10) was observed with increases in both C(max) and AUC of ca. 5-fold in comparison with those of orally administered crystalline CoQ(10). From the improved physicochemical and pharmacokinetic data, the s-SEDDS approach upon spray-drying might be a suitable dosage option for enhancing nutraceutical and pharmaceutical values of CoQ(10). Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Spectroscopic and thermal degradation behavior of Mg(II), Ca(II), Ba(II) and Sr(II) complexes with paracetamol drug

    OpenAIRE

    Moamen S. Refat; Gehad G. Mohamed; Mohamed Y. El-Sayed; Hamada M.A. Killa; Hammad Fetooh

    2017-01-01

    Complexes of Mg(II), Ca(II), Ba(II) and Sr(II) with paracetamol drug were synthesized and characterized by elemental analysis, conductivity, UV–Vis, IR, and 1H NMR spectroscopy and thermal analysis, as well as screened for antimicrobial activity. The IR spectral data suggested that the ligand behaves as paracetamol behaves as a neutral bidentate ligand coordinated to the metal ions via the lone pair of electrons of nitrogen and carbonyl-O atoms of the amide group. From the microanalytical dat...

  15. Prophylactic role of combined treatment with coenzyme Q10 and vitamin E against radiation injury in male rats

    International Nuclear Information System (INIS)

    Hussien, E.M.; Darwish, M.M.; Ali, S.E.

    2007-01-01

    The present work aims at investigating effects of whole body gamma irradiation of male albino rats at successive fractionated dose levels up to 8 Gy and the possible protection or curative control of these effects through the oral administration of Coenzyme Q10 (Co Q10) (200 mg/ kg body wt) and vitamin E (100 mg/ kg body wt) injected i.p 24 h before exposure of animals to each increment of gamma irradiation. The parameters of the study have been combined haematological values, including evaluation of different blood cells, erythrocyte counts (RBC), haemoglobin concentration (Hb), haematocrit percentage (Ht) and leucocyte counts (WBC), as well as certain serum biochemical parameters including transaminases AST and ALT) and alkaline phosphatase (ALP) activities known to be related to liver functional status. Besides body and particular organs, wt as well as serum Na + and K + levels have been also evaluated. The results obtained confirmed in general, significant decrease in whole body and organs wt, haematological disorders in form of lowering of RBC, WBC, Hb and Ht, as well as elevated AST, ALT and ALP activities in irradiated rats in both studied time intervals. A significant increase in the level of K + associated with a decrease in the level of Na + was also recorded in the serum of irradiated rats. As simultaneous administration of Co Q10 and vitamin E prior to irradiation prevented pathological changes of analyzed parameters, the results of this study confirmed efficient protection with use of these antioxidants against the health hazards induced by gamma radiation exposure

  16. Therapeutic effects of coenzyme Q10 on dilated cardiomyopathy. Assessment by {sup 123}I-BMIPP myocardial single photon emission computed tomography (SPECT). A multicenter trial in Osaka University Medical School Group

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Tsunehiko; Hori, Masatsugu [Osaka Univ. (Japan). Faculty of Medicine

    1996-01-01

    To evaluate therapeutic effects of Coenzyme Q10 (CoQ10), 15 patients with dilated cardiomyopathy were investigated by {sup 123}I-BMIPP myocardial single photon emission computed tomography (SPECT). The BMIPP defect score was determined semiquantitatively by using representative short and long axial SPECT images. Mean BMIPP defect score with CoQ10 treatment was significantly low, 7.7{+-}6.1 compared to 12.7{+-}7.4 without CoQ10 treatment. On the other hand, in 8 patients of dilated cardiomyopathy, % fractional shortening using echocardiography was not different before and after CoQ10 treatment. In conclusion, {sup 123}I-BMIPP myocardial SPECT was proved to be sensitive to evaluate the therapeutic effects of CoQ10, which improve myocardial mitochondrial function, in the cases of dilated cardiomyopathy. (author).

  17. Optimization of simultaneous electrochemical determination of Cd(II), Pb(II), Cu(II) and Hg(II) at carbon nanotube-modified graphite electrodes.

    Science.gov (United States)

    Pikna, L'ubomír; Heželová, Mária; Kováčová, Zuzana

    2015-01-01

    The health of the environment is worsening every day. Monitoring of potentially toxic elements and remediation of environmental pollution are necessary. Therefore, the research and development of simple, inexpensive, portable and effective sensors is important. Electrochemistry is a useful component of the field of environment monitoring. The present study focuses on evaluating and comparing three types of electrodes (PIGE, PIGE/MWCNT/HNO3 and PIGE/MWCNT/EDTA/HNO3) employed for the simultaneous electrochemical determination of four potentially toxic elements: Cd(II), Pb(II), Cu(II) and Hg(II). Cyclic voltammograms were measured in an acetate buffer. The LOD, LOQ, the standard and relative precisions of the method and a prediction intervals were calculated (according to the technical procedure DIN 32 645) for the three electrodes and for each measured element. The LOD for PIGE/CNT/HNO3 (the electrode with narrowest calculated prediction intervals) was 2.98 × 10(-7) mol L(-1) for Cd(II), 4.83 × 10(-7) mol L(-1) for Pb(II), 3.81 × 10(-7) mol L(-1) for Cu(II), 6.79 × 10(-7) mol L(-1) for Hg(II). One of the benefits of this study was the determination of the amount of Hg(II) in the mixture of other elements.

  18. Synthesis, spectral characterization thermal stability, antimicrobial studies and biodegradation of starch–thiourea based biodegradable polymeric ligand and its coordination complexes with [Mn(II), Co(II), Ni(II), Cu(II), and Zn(II)] metals

    OpenAIRE

    Nahid Nishat; Ashraf Malik

    2016-01-01

    A biodegradable polymer was synthesized by the modification reaction of polymeric starch with thiourea which is further modified by transition metals, Mn(II), Co(II), Ni(II), Cu(II) and Zn(II). All the polymeric compounds were characterized by (FT-IR) spectroscopy, 1H NMR spectroscopy, 13C NMR spectroscopy, UV–visible spectra, magnetic moment measurements, thermogravimetric analysis (TGA) and antibacterial activities. Polymer complexes of Mn(II), Co(II) and Ni(II) show octahedral geometry, wh...

  19. Extraction studies of Cd(II), Cu(II), Mn(II), Ni(II) and Zn(II) using N, N', N, N' -Bis((2-hydroxy-3,5-di-tert-butylbenzyl) (2-pyridylmethyl)) -ethylenediamine as a novel ligand

    International Nuclear Information System (INIS)

    Laus, R.; Anjos, A.D.; Naves, A.

    2008-01-01

    In the present study, the use of N,N',N,N'-bis((2-hydroxy-3,5-di-tert-butylbenzyl) (2- pyridylmethyl))-ethylenediamine (H2L) as ligand was evaluated in the liquid-liquid (water- chloroform) extraction of Cd(II), Cu(II), Mn(II), Ni(II) and Zn(II). Experiments were carried out to determine the pH for maximum extraction for each metal ion by ligand, maximum extraction capacity, extraction kinetics and extraction selectivity. The results revealed that the extraction of metal ions is dependent on the pH: maximum extraction maximum was obtained in the pH range of 4.5 - 6.0 for Cu(II) and 8.0 - 9.0 for Zn(II). Cd(II) and Mn(II) were best extracted at pH 9.0 and Ni(II) at 10.0. The ligand H2L was effective for the extraction of Cd(II), Cu(II) and Zn(II) (extraction efficient, %E equal 100%), whereas %E of 76% and 23.5% were observed for Mn(II) and Ni(II), respectively. The ligand presented high selectivity for the extraction of Cu(II) at pH 4.0. (author)

  20. NADH:ubiquinone reductase and succinate dehydrogenase activity in the liver of rats with acetaminophen-induced toxic hepatitis on the background of alimentary protein deficiency

    Directory of Open Access Journals (Sweden)

    G. P. Kopylchuk

    2015-02-01

    Full Text Available The ratio between the redox forms of the nicotinamide coenzymes and key enzymatic activity of the I and II respiratory chain complexes in the liver cells mitochondria of rats with acetaminophen-induced hepatitis under the conditions of alimentary deprivation of protein was studied. It was estimated, that under the conditions of acute acetaminophen-induced hepatitis of rats kept on a low-protein diet during 4 weeks a significant decrease of the NADH:ubiquinone reductase and succinate dehydrogenase activity with simultaneous increase of the ratio between redox forms of the nicotinamide coenzymes (NAD+/NADН is observed compared to the same indices in the liver cells of animals with experimental hepatitis kept on the ration balanced by all nutrients. Results of research may become basic ones for the biochemical rationale for the approaches directed to the correction and elimination of the consequences­ of energy exchange in the toxic hepatitis, induced on the background of protein deficiency.

  1. Preparation and Spectral Properties of Mixed-Ligand Complexes of VO(IV, Ni(II, Zn(II, Pd(II, Cd(II and Pb(II with Dimethylglyoxime and N-acetylglycine

    Directory of Open Access Journals (Sweden)

    Shayma A. Shaker

    2010-01-01

    Full Text Available A number of mixed-ligand complexes of the general formula [M(D(G] where D=dimethylglyoximato monoanion, G=N-acetylglycinato and M=VO(IV, Ni(II, Zn(II, Pd(II, Cd(II and Pb(II were prepared. Each complex was characterized by elemental analysis, determination of metal, infrared spectra, electronic spectra, (1H and 13C NMR spectra, conductivity and magnetic moments. All these complexes were not soluble in some of the organic solvent but highly soluble in dimethylformamide. The conductivity data showed the non-electrolytic nature of the complexes. The electronic spectra exhibited absorption bands in the visible region caused by the d-d electronic transition such as VO(IV, Ni(II and Pd(II. The IR and (1H, 13C NMR spectra which have indicate that the dimethylglyoxime was coordinated with the metal ions through the N and O atoms of the oxime group and N-acetylglycine was coordinated with metal ions through the N atom and terminal carboxyl oxygen atom.

  2. Synthesis and characterization of polychelates of Cu(II), Ni(II), Co(II), Mn(II), Zn(II), oxovanadium(IV) and dioxouranium(VI) with 2,4-dihydroxybenzaldehyde-urea-formaldehyde polymer

    International Nuclear Information System (INIS)

    Patel, G.C.; Pancholi, H.B.; Patel, M.M.

    1991-01-01

    Polychelates of Cu(II), Ni(II), Co(II), Mn(II), Zn(II), oxovandium(IV) and dioxouranium(VI) with 2,4-dihydroxybenzaldehyde (2,4-DB)-urea(U)-formaldehyde(F) polymer (2,4-DBUF) have been prepared. Elemental analyses of the polychelates indicate a metal:ligand ratio of 1:2. The structures of the polychelates have been assigned on the basis of their elemental analyses, IR, reflectance spectra, magnetic moment, thermal data and their electrical conductivity behaviour. (author). 1 tab., 18 refs

  3. Ni (II) and Cu(II) complexes of

    African Journals Online (AJOL)

    ADOWIE PERE

    ABSTRACT: The objective of this study is to investigate the antimicrobial activity of novel. Schiff base metal complexes. The resistance of micro-organisms to classical antimicrobial compounds poses a challenge to effective management and treatment of some diseases. In line with this, copper (II), nickel (II) and cobalt (II) ...

  4. Synthesis and characterization of chromium(III), manganese(II), iron(III), cobalt(II), nickel(II), copper(II), cadmium(II) and dioxouranium(VI) complexes of 4(2-pyridyl)-1-(2,4-dihydroxybenzaldehyde)-3-thiosemicarbazone

    International Nuclear Information System (INIS)

    Abu El-Reash, G.M.; Ibrahim, M.M.; Kenawy; El-Ayaan, Usama; Khattab, M.A.

    1994-01-01

    A few complexes of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and dioxouranium(VI) with 4(2-pyridyl)-1-(2,4-dihydroxybenzaldehyde)-3-thiosemicarbazone have been synthesised and characterized on the basis of elemental analysis, IR, electronic NMR, and magnetic moment data. An octahedral structure is proposed for the Cr(III), Fe(III), Co(II) and Ni(H 3 PBT) 2 Cl 2 .2H 2 O complexes; a tetrahedral structure for the Mn(II) and Ni 2 (PBT)OAc.H 2 0 complexes and a square planar structure for the Cu(II) complexes. The antimicrobial and antifungal activities of H 3 PBT and of its metal(II) complexes are investigated. The results reveal that H 3 PBT exhibits greater antimicrobial activities than its complexes. (author). 34 refs., 4 figs., 2 tabs

  5. Copper (II)

    African Journals Online (AJOL)

    CLEMENT O BEWAJI

    Valine (2 - amino - 3 – methylbutanoic acid), is a chemical compound containing .... Stability constant (Kf). Gibb's free energy. ) (. 1. −. ∆. Mol. JG. [CuL2(H2O)2] ... synthesis and characterization of Co(ii), Ni(ii), Cu (II), and Zn(ii) complexes with ...

  6. Synthesis and Spectral Investigations of Manganese(II, Cobalt(II, Nickel(II, Copper(II and Zinc(II Complexes of New Polydentate Ligands Containing a 1,8-Naphthyridine Moiety

    Directory of Open Access Journals (Sweden)

    Sunkari Jyothi

    2006-12-01

    Full Text Available 2-(o-Hydroxyphenyl-1,8-naphthyridine (HN, 2-(4-hydroxy-6-methylpyran-2-one-3-yl-1,8-naphthyridine (HMPN and 2-(benzimidazol-2-yl-1,8-naphthyridine(BN react with acetates of Mn(II, Co(II, Ni(II, Cu(II and Zn(II to yield metal ioncomplexes of definite composition. These compounds were characterized by elementalanalyses, molar conductivity, magnetic susceptibility measurements, thermal studies, IR,UV-visible, NMR and mass spectral investigations. The complexes are found to have theformulae [M(HN2(H2O2], [M(HMPN2(H2O2] and [M(BN2(OAc2], respectively.

  7. Coordination behavior of tetraaza [N4] ligand towards Co(II), Ni(II), Cu(II), Cu(I) and Pd(II) complexes: Synthesis, spectroscopic characterization and anticancer activity

    Science.gov (United States)

    El-Boraey, Hanaa A.

    2012-11-01

    Novel eight Co(II), Ni(II), Cu(II), Cu(I) and Pd(II) complexes with [N4] ligand (L) i.e. 2-amino-N-{2-[(2-aminobenzoyl)amino]ethyl}benzamide have been synthesized and structurally characterized by elemental analysis, spectral, thermal (TG/DTG), magnetic, and molar conductivity measurements. On the basis of IR, mass, electronic and EPR spectral studies an octahedral geometry has been proposed for Co(II), Ni(II) complexes and Cu(II) chloride complex, square-pyramidal for Cu(I) bromide complex. For Cu(II) nitrate complex (6), Pd(II) complex (8) square planar geometry was proposed. The EPR data of Cu(II) complexes in powdered form indicate dx2-y2 ground state of Cu(II) ion. The antitumor activity of the synthesized ligand and some selected metal complexes has been studied. The palladium(II) complex (8) was found to display cytotoxicity (IC50 = 25.6 and 41 μM) against human breast cancer cell line MCF-7 and human hepatocarcinoma HEPG2 cell line.

  8. The Combination of Physical Exercise with Muscle-Directed Antioxidants to Counteract Sarcopenia: A Biomedical Rationale for Pleiotropic Treatment with Creatine and Coenzyme Q10

    Directory of Open Access Journals (Sweden)

    Michele Guescini

    2017-01-01

    Full Text Available Sarcopenia represents an increasing public health risk due to the rapid aging of the world’s population. It is characterized by both low muscle mass and function and is associated with mobility disorders, increased risk of falls and fractures, loss of independence, disabilities, and increased risk of death. Despite the urgency of the problem, the development of treatments for sarcopenia has lagged. Increased reactive oxygen species (ROS production and decreased antioxidant (AO defences seem to be important factors contributing to muscle impairment. Studies have been conducted to verify whether physical exercise and/or AOs could prevent and/or delay sarcopenia through a normalization of the etiologically relevant ROS imbalance. Despite the strong rationale, the results obtained were contradictory, particularly with regard to the effects of the tested AOs. A possible explanation might be that not all the agents included in the general heading of “AOs” could fulfill the requisites to counteract the complex series of events causing/accelerating sarcopenia: the combination of the muscle-directed antioxidants creatine and coenzyme Q10 with physical exercise as a biomedical rationale for pleiotropic prevention and/or treatment of sarcopenia is discussed.

  9. Removal of nickel(II and palladium(II from surface waters

    Directory of Open Access Journals (Sweden)

    V. Sharifzade

    2013-04-01

    Full Text Available A new sorbent was prepared using alumina and 5-Br-PADAP, and its adsorption ability for the removal of Ni(II and Pd(II from different waters was investigated. The procedure is based on retention of the analytes on the alumina load with 5-Br-PADAP at pH ~ 6. The separation/preconcentration conditions for the quantitative recoveries were investigated. The limit of detections (LOD based on three times the standard deviations of the blank, were 0.187 and 0.253 ng mL-1 for Ni(II and Pd(II, respectively. Obtained sorption capacities for 1 g sorbent were 6.0 mg Ni(II and 11.0 mg Pd(II. The linearity was maintained in the concentration range of 0.625 to 6.0 ng mL-1 for Ni(II and 0.416 to 7.0 ng mL-1 for Pd(II in the original solution. Eight replicate determinations of a mixture containing 2.0 µg mL-1 each of the elements in the final solution gave relative standard deviation of ±0.82 and ±1.12% for Ni(II and Pd(II, respectively. The proposed method was successfully applied to the determination trace amounts of Ni(II and Pd(II in the surface water samples.DOI: http://dx.doi.org/10.4314/bcse.v27i1.2

  10. Evaluation of the computerized procedures Manual II (COPMA II)

    International Nuclear Information System (INIS)

    Converse, S.A.

    1995-11-01

    The purpose of this study was to evaluate the effects of a computerized procedure system, the Computerized Procedure Manual II (COPMA-II), on the performance and mental workload of licensed reactor operators. To evaluate COPMA-II, eight teams of two operators were trained to operate a scaled pressurized water reactor facility (SPWRF) with traditional paper procedures and with COPMA-II. Following training, each team operated the SPWRF under normal operating conditions with both paper procedures and COPMA-II. The teams then performed one of two accident scenarios with paper procedures, but performed the remaining accident scenario with COPMA-II. Performance measures and subjective estimates of mental workload were recorded for each performance trial. The most important finding of the study was that the operators committed only half as many errors during the accident scenarios with COPMA-II as they committed with paper procedures. However, time to initiate a procedure was fastest for paper procedures for accident scenario trials. For performance under normal operating conditions, there was no difference in time to initiate or to complete a procedure, or in the number of errors committed with paper procedures and with COPMA-II. There were no consistent differences in the mental workload ratings operators recorded for trials with paper procedures and COPMA-II

  11. Overexpression of the Squalene Epoxidase Gene Alone and in Combination with the 3-Hydroxy-3-methylglutaryl Coenzyme A Gene Increases Ganoderic Acid Production in Ganoderma lingzhi.

    Science.gov (United States)

    Zhang, De-Huai; Jiang, Lu-Xi; Li, Na; Yu, Xuya; Zhao, Peng; Li, Tao; Xu, Jun-Wei

    2017-06-14

    The squalene epoxidase (SE) gene from the biosynthetic pathway of ganoderic acid (GA) was cloned and overexpressed in Ganoderma lingzhi. The strain that overexpressed the SE produced approximately 2 times more GA molecules than the wild-type (WT) strain. Moreover, SE overexpression upregulated lanosterol synthase gene expression in the biosynthetic pathway. These results indicated that SE stimulates GA accumulation. Then, the SE and 3-hydroxy-3-methylglutaryl coenzyme A (HMGR) genes were simultaneously overexpressed in G. lingzhi. Compared with the individual overexpression of SE or HMGR, the combined overexpression of the two genes further enhanced individual GA production. The overexpressing strain produced maximum GA-T, GA-S, GA-Mk, and GA-Me contents of 90.4 ± 7.5, 35.9 ± 5.4, 6.2 ± 0.5, and 61.8 ± 5.8 μg/100 mg dry weight, respectively. These values were 5.9, 4.5, 2.4, and 5.8 times higher than those produced by the WT strain. This is the first example of the successful manipulation of multiple biosynthetic genes to improve GA content in G. lingzhi.

  12. Efficiency of Chitosan for the Removal of Pb (II, Fe (II and Cu (II Ions from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Soheil Sobhanardakani

    2014-09-01

    Full Text Available Background: Heavy metals have been recognized as harmful environmental pollutant known to produce highly toxic effects on different organs and systems of both humans and animals. The aim of this paper is to evaluate the adsorption potential of chitosan for the removal of Pb(II, Fe(II and Cu(II ions from aqueous solutions. Methods: This study was conducted in laboratory scale. In this paper chitosan has been used as an adsorbent for the removal of Pb(II, Fe(II and Cu(II from aqueous solution. In batch tests, the effects of parameters like pH solution (1.0-8.0, initial metal concentrations (100-1000 mgL-1, contact time (5.0-150 min and adsorbent dose (1.0-7.0 g on the adsorption process were studied. Results: The results showed that the adsorption of Pb(II, Fe(II and Cu(II ions on chitosan strongly depends on pH. The experimental isothermal data were analyzed using the Langmuir and Freundlich equations and it was found that the removal process followed the Langmuir isotherm and maximum adsorption capacity for the adsorption of Pb(II, Fe(II and Cu(II ions by the chitosan were 55.5mg g−1, 71.4 mg g−1 and 59 mg g−1, respectively, under equilibrium conditions at 25±1 ºC. The adsorption process was found to be well described by the pseudo-second-order rate model. Conclusion: The obtained results showed that chitosan is a readily, available, economic adsorbent and was found suitable for removing Pb(II, Fe(II and Cu(II ions from aqueous solution.

  13. Spectrophotometric determination of cobalt(II), nickel(II) and copper (II) with 1-(2 pyridylazo)-2-naphthol in micellar medium

    International Nuclear Information System (INIS)

    Shar, G.A.; Soomro, G.A.

    2004-01-01

    Spectrophotometric determination of cobalt(II), nickel(II) and copper(II) is carried out with 1-(2 pyridylazo)-2-naphthol as a complexing reagent in aqueous phase using non-ionic surfactant Tween 80. Beer's law is obeyed for Co(II), Ni(II) and Cu(II) over the range 0.5 - 4.0, 0.5 - 4.0 and 0.5 - 3.0 ngmL/sup -1/ with detection limit (2 σ) of 6.7, 3.2 and 3.9 ngmL/sup -1/. The max molar absorption, molar absorptivity, Sandell's sensitivity of Co(II), Ni(II) and Cu(II) are 580 nm, 570 nm and 555 nm; max (104 mol/sup -1/ cm /sup -1/) is 0.87, 1.8 and 1.6 and 6.8, 3.3 and 3.9 ng cm-2 respectively. The pH at which complex is formed for Co(II), Ni(II) and Cu(II) is 5, 5.5 and 6.5 respectively. The critical micelle concentration (CMC) of Tween 80 is 5%. The present method is compared with that of atomic absorption spectroscopy and no significant difference is noted between the two methods at 95% confidence level. The method has been applied to the determination of Co(II), Ni(II) and Cu(II) in industrial waste water and pharmaceutical samples. (author)

  14. Synthesis, spectral characterization thermal stability, antimicrobial studies and biodegradation of starch–thiourea based biodegradable polymeric ligand and its coordination complexes with [Mn(II, Co(II, Ni(II, Cu(II, and Zn(II] metals

    Directory of Open Access Journals (Sweden)

    Nahid Nishat

    2016-09-01

    Full Text Available A biodegradable polymer was synthesized by the modification reaction of polymeric starch with thiourea which is further modified by transition metals, Mn(II, Co(II, Ni(II, Cu(II and Zn(II. All the polymeric compounds were characterized by (FT-IR spectroscopy, 1H NMR spectroscopy, 13C NMR spectroscopy, UV–visible spectra, magnetic moment measurements, thermogravimetric analysis (TGA and antibacterial activities. Polymer complexes of Mn(II, Co(II and Ni(II show octahedral geometry, while polymer complexes of Cu(II and Zn(II show square planar and tetrahedral geometry, respectively. The TGA revealed that all the polymer metal complexes are more thermally stable than their parental ligand. In addition, biodegradable studies of all the polymeric compounds were also carried out through ASTM-D-5338-93 standards of biodegradable polymers by CO2 evolution method which says that coordination decreases biodegradability. The antibacterial activity was screened with the agar well diffusion method against some selected microorganisms. Among all the complexes, the antibacterial activity of the Cu(II polymer–metal complex showed the highest zone of inhibition because of its higher stability constant.

  15. High-yield production of vanillin from ferulic acid by a coenzyme-independent decarboxylase/oxygenase two-stage process.

    Science.gov (United States)

    Furuya, Toshiki; Miura, Misa; Kuroiwa, Mari; Kino, Kuniki

    2015-05-25

    Vanillin is one of the world's most important flavor and fragrance compounds in foods and cosmetics. Recently, we demonstrated that vanillin could be produced from ferulic acid via 4-vinylguaiacol in a coenzyme-independent manner using the decarboxylase Fdc and the oxygenase Cso2. In this study, we investigated a new two-pot bioprocess for vanillin production using the whole-cell catalyst of Escherichia coli expressing Fdc in the first stage and that of E. coli expressing Cso2 in the second stage. We first optimized the second-step Cso2 reaction from 4-vinylguaiacol to vanillin, a rate-determining step for the production of vanillin. Addition of FeCl2 to the cultivation medium enhanced the activity of the resulting E. coli cells expressing Cso2, an iron protein belonging to the carotenoid cleavage oxygenase family. Furthermore, a butyl acetate-water biphasic system was effective in improving the production of vanillin. Under the optimized conditions, we attempted to produce vanillin from ferulic acid by a two-pot bioprocess on a flask scale. In the first stage, E. coli cells expressing Fdc rapidly decarboxylated ferulic acid and completely converted 75 mM of this substrate to 4-vinylguaiacol within 2 h at pH 9.0. After the first-stage reaction, cells were removed from the reaction mixture by centrifugation, and the pH of the resulting supernatant was adjusted to 10.5, the optimal pH for Cso2. This solution was subjected to the second-stage reaction. In the second stage, E. coli cells expressing Cso2 efficiently oxidized 4-vinylguaiacol to vanillin. The concentration of vanillin reached 52 mM (7.8 g L(-1)) in 24 h, which is the highest level attained to date for the biotechnological production of vanillin using recombinant cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Removal of Ni (II), Co (II) and Pb (II) ions from aqueous media using ...

    African Journals Online (AJOL)

    Removal of Ni (II), Co (II) and Pb (II) ions from aqueous media using Starch ... The results showed that 0.025 % loaded SSMNPs gave the optimal sorption ... constants (Lagergren and Pseudo-2nd-order) for Ni2+ and Co2+ adsorption were ... Langmuir correlation coefficients showed a better fit for the adsorption isotherms.

  17. Selective Hg(II) adsorption from aqueous solutions of Hg(II) and Pb(II) by hydrolyzed acrylamide-grafted PET films.

    Science.gov (United States)

    Rahman, Nazia; Sato, Nobuhiro; Sugiyama, Masaaki; Hidaka, Yoshiki; Okabe, Hirotaka; Hara, Kazuhiro

    2014-01-01

    Selective Hg(II) adsorption from aqueous solutions of Hg(II) and Pb(II) using hydrolyzed acrylamide (AAm)-grafted polyethylene terephthalate (PET) films was examined to explore the potential reuse of waste PET materials. Selective recovery of Hg(II) from a mixture of soft acids with similar structure, such as Hg(II) and Pb(II), is important to allow the reuse of recovered Hg(II). An adsorbent for selective Hg(II) adsorption was prepared by γ-ray-induced grafting of AAm onto PET films followed by partial hydrolysis through KOH treatment. The adsorption capacity of the AAm-grafted PET films for Hg(II) ions increased from 15 to 70 mg/g after partial hydrolysis because of the reduction of hydrogen bonding between -CONH2 groups and the corresponding improved access of metal ions to the amide groups. The prepared adsorbent was characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The absorbent film showed high selectivity for the adsorption of Hg(II) over Pb(II) throughout the entire initial metal concentration range (100-500 mg/L) and pH range (2.2-5.6) studied. The high selectivity is attributed to the ability of Hg(II) ions to form covalent bonds with the amide groups. The calculated selectivity coefficient for the adsorbent binding Hg(II) over Pb(II) was 19.2 at pH 4.5 with an initial metal concentration of 100 mg/L. Selective Hg(II) adsorption equilibrium data followed the Langmuir model and kinetic data were well fitted by a pseudo-second-order equation. The adsorbed Hg(II) and Pb(II) ions were effectively desorbed from the adsorbent film by acid treatment, and the regenerated film showed no marked loss of adsorption capacity upon reuse for selective Hg(II) adsorption.

  18. New Mn(II, Ni(II, Cd(II, Pb(II complexes with 2-methylbenzimidazole and other ligands. Synthesis, spectroscopic characterization, crystal structure, magnetic susceptibility and biological activity studies

    Directory of Open Access Journals (Sweden)

    Shayma A. Shaker

    2016-11-01

    Full Text Available Synthesis and characterization of Mn(II, Ni(II, Cd(II and Pb(II mixed ligand complexes of 2-methylbenzimidazole with other ligands have been reported. The structure of the ligands and their complexes was investigated using elemental analysis, IR, UV–Vis, (1H, 13C NMR spectroscopy, molar conductivity and magnetic susceptibility measurements. In all the studies of complexes, the 2-methylbenzimidazole behaves as a neutral monodentate ligand which is coordinated with the metal ions through the N atom. While benzotriazole behaves as a neutral bidentate ligand which is coordinated with the Ni(II ion through the two N atoms. Moreover, the N-acetylglycine behaves as a bidentate ligand which is coordinated with the Mn(II, Ni(II and Pb(II ions through the N atom and the terminal carboxyl oxygen atom. The magnetic and spectral data indicate the tetrahedral geometry for Mn(II complex, irregular tetrahedral geometry for Pb(II complex and octahedral geometry for Ni(II complex. The X-ray single crystal diffraction method was used to confirm a centrosymmetric dinuclear Cd(II complex as each two metal ions are linked by a pair of thiocyanate N = S bridge. Two 2-methylbenzimidazole N-atom donors and one terminal thiocyanate N atom complete a highly distorted square pyramid geometry around the Cd atom. Besides, different cell types were used to determine the inhibitory effect of Mn(II, Ni(II, Cd(II and Pb(II complexes on cell growth using MTT assay. Cd(II complex showed cytotoxic effect on various types of cancer cell lines with different EC50 values.

  19. Chelation of Cu(II, Zn(II, and Fe(II by Tannin Constituents of Selected Edible Nuts

    Directory of Open Access Journals (Sweden)

    Magdalena Karamać

    2009-12-01

    Full Text Available The tannin fractions isolated from hazelnuts, walnuts and almonds were characterised by colorimetric assays and by an SE-HPLC technique. The complexation of Cu(II and Zn(II was determined by the reaction with tetramethylmurexide, whereas for Fe(II, ferrozine was employed. The walnut tannins exhibited a significantly weaker reaction with the vanillin/HCl reagent than hazelnut and almond tannins, but the protein precipitation capacity of the walnut fraction was high. The SE-HPLC chromatogram of the tannin fraction from hazelnuts revealed the presence of oligomers with higher molecular weights compared to that of almonds. Copper ions were most effectively chelated by the constituents of the tannin fractions of hazelnuts, walnuts and almonds. At a 0.2 mg/assay addition level, the walnut tannins complexed almost 100% Cu(II. The Fe(II complexation capacities of the tannin fractions of walnuts and hazelnuts were weaker in comparison to that of the almond tannin fraction, which at a 2.5 mg/assay addition level, bound Fe(II by ~90%. The capacity to chelate Zn(II was quite varied for the different nut tannin fractions: almond tannins bound as much as 84% Zn(II, whereas the value for walnut tannins was only 8.7%; and for hazelnut tannins, no Zn(II chelation took place at the levels tested.

  20. Stability constants of glutarate complexes of copper(II), zinc(II), cobalt(II) and uranyl(II) by paper electrophoresis

    International Nuclear Information System (INIS)

    Singh, R.K.P.; Yadava, J.R.; Yadava, K.L.

    1981-01-01

    Stability constants of Copper(II), Zinc(II), Cobalt(II) and Uranyl(II) glutarates have been determined by paper electrophoresis. Glutaric acid (0.005 mol dmsup(-3)) was added to the background electrolyte : 0.1 mol dmsup(-3) HClO 4 . The proportions of (CH 2 ) 3 COOH COO - and (CH 2 ) 3 C 2 O 4 2- were varied by changing the pH of the electrolyte. These anions yielded the complexes Cu(CH 2 ) 3 C 2 O 4 , [Zn(CH 2 ) 3 COOH COO] + [Co(CH 2 ) 3 COOH COO] + and UO 2 (CH 2 ) 3 C 2 O 4 whose stability constants are found to be 10sup(3.9), 10sup(2.9), 10sup(2.7) and 10sup(13.5) respectively. (author)

  1. Pb(II), Cd(II) and Zn(II) adsorption on low grade manganese ore ...

    African Journals Online (AJOL)

    Low grade manganese ore (LMO) of Orissa containing 58.37% SiO2, 25.05% MnO2, 8.8% Al2O3, and 5.03% Fe2O3 as the main constituents was taken to study its adsorption behaviour for Pb(II), Cd(II) and Zn(II) from aqueous solutions. The XRD studies showed the crystalline phases to be quartz, ß-MnO2, d-MnO2 and ...

  2. Coupled ferredoxin and crotonyl coenzyme A (CoA) reduction with NADH catalyzed by the butyryl-CoA dehydrogenase/Etf complex from Clostridium kluyveri.

    Science.gov (United States)

    Li, Fuli; Hinderberger, Julia; Seedorf, Henning; Zhang, Jin; Buckel, Wolfgang; Thauer, Rudolf K

    2008-02-01

    Cell extracts of butyrate-forming clostridia have been shown to catalyze acetyl-coenzyme A (acetyl-CoA)- and ferredoxin-dependent formation of H2 from NADH. It has been proposed that these bacteria contain an NADH:ferredoxin oxidoreductase which is allosterically regulated by acetyl-CoA. We report here that ferredoxin reduction with NADH in cell extracts from Clostridium kluyveri is catalyzed by the butyryl-CoA dehydrogenase/Etf complex and that the acetyl-CoA dependence previously observed is due to the fact that the cell extracts catalyze the reduction of acetyl-CoA with NADH via crotonyl-CoA to butyryl-CoA. The cytoplasmic butyryl-CoA dehydrogenase complex was purified and is shown to couple the endergonic reduction of ferredoxin (E0' = -410 mV) with NADH (E0' = -320 mV) to the exergonic reduction of crotonyl-CoA to butyryl-CoA (E0' = -10 mV) with NADH. The stoichiometry of the fully coupled reaction is extrapolated to be as follows: 2 NADH + 1 oxidized ferredoxin + 1 crotonyl-CoA = 2 NAD+ + 1 ferredoxin reduced by two electrons + 1 butyryl-CoA. The implications of this finding for the energy metabolism of butyrate-forming anaerobes are discussed in the accompanying paper.

  3. Crystal Structure of Rat Carnitine Palmitoyltransferase II (CPT-II)

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao,Y.; Jogl, G.; Esser, V.; Tong, L.

    2006-01-01

    Carnitine palmitoyltransferase II (CPT-II) has a crucial role in the {beta}-oxidation of long-chain fatty acids in mitochondria. We report here the crystal structure of rat CPT-II at 1.9 Angstroms resolution. The overall structure shares strong similarity to those of short- and medium-chain carnitine acyltransferases, although detailed structural differences in the active site region have a significant impact on the substrate selectivity of CPT-II. Three aliphatic chains, possibly from a detergent that is used for the crystallization, were found in the structure. Two of them are located in the carnitine and CoA binding sites, respectively. The third aliphatic chain may mimic the long-chain acyl group in the substrate of CPT-II. The binding site for this aliphatic chain does not exist in the short- and medium-chain carnitine acyltransferases, due to conformational differences among the enzymes. A unique insert in CPT-II is positioned on the surface of the enzyme, with a highly hydrophobic surface. It is likely that this surface patch mediates the association of CPT-II with the inner membrane of the mitochondria.

  4. Multi-metals column adsorption of lead(II), cadmium(II) and manganese(II) onto natural bentonite clay.

    Science.gov (United States)

    Alexander, Jock Asanja; Surajudeen, Abdulsalam; Aliyu, El-Nafaty Usman; Omeiza, Aroke Umar; Zaini, Muhammad Abbas Ahmad

    2017-10-01

    The present work was aimed at evaluating the multi-metals column adsorption of lead(II), cadmium(II) and manganese(II) ions onto natural bentonite. The bentonite clay adsorbent was characterized for physical and chemical properties using X-ray diffraction, X-ray fluorescence, Brunauer-Emmett-Teller surface area and cation exchange capacity. The column performance was evaluated using adsorbent bed height of 5.0 cm, with varying influent concentrations (10 mg/L and 50 mg/L) and flow rates (1.4 mL/min and 2.4 mL/min). The result shows that the breakthrough time for all metal ions ranged from 50 to 480 minutes. The maximum adsorption capacity was obtained at initial concentration of 10 mg/L and flow rate of 1.4 mL/min, with 2.22 mg/g of lead(II), 1.71 mg/g of cadmium(II) and 0.37 mg/g of manganese(II). The order of metal ions removal by natural bentonite is lead(II) > cadmium(II) > manganese(II). The sorption performance and the dynamic behaviour of the column were predicted using Adams-Bohart, Thomas, and Yoon-Nelson models. The linear regression analysis demonstrated that the Thomas and Yoon-Nelson models fitted well with the column adsorption data for all metal ions. The natural bentonite was effective for the treatment of wastewater laden with multi-metals, and the process parameters obtained from this work can be used at the industrial scale.

  5. Antibacterial Co(II, Ni(II, Cu(II and Zn(II complexes with biacetyl-derived Schiff bases

    Directory of Open Access Journals (Sweden)

    MUHAMMAD IMRAN

    2010-08-01

    Full Text Available The condensation reactions of biacetyl with ortho-hydroxyaniline and 2-aminobenzoic acid to form bidendate NO donor Schiff bases were studied. The prepared Schiff base ligands were further utilized for the formation of metal chelates having the general formula [ML2(H2O2] where M = Co(II, Ni(II, Cu(II and Zn(II and L = HL1 and HL2. These new compounds were characterized by conductance measurements, magnetic susceptibility measurements, elemental analysis, and IR, 1H-NMR, 13C-NMR and electronic spectroscopy. Both Schiff base ligands were found to have a mono-anionic bidentate nature and octahedral geometry was assigned to all metal complexes. All the complexes contained coordinated water which was lost at 141–160 °C. These compounds were also screened for their in vitro antibacterial activity against four bacterial species, namely: Escherichia coli, Staphylococcus aureus, Salmonella typhi and Bacillus subtilis. The metal complexes were found to have greater antibacterial activity than the uncomplexed Schiff base ligands.

  6. SEPARATION OF Fe (III, Cr(III, Cu(II, Ni(II, Co(II, AND Pb(II METAL IONS USING POLY(EUGENYL OXYACETIC ACID AS AN ION CARRIER BY A LIQUID MEMBRANE TRANSPORT METHOD

    Directory of Open Access Journals (Sweden)

    La Harimu

    2010-06-01

    Full Text Available Fe (III, Cr(III, Cu(II, Ni(II, Co(II, and Pb(II  metal ions had been separated using poly(eugenyl oxyacetic acid as an ion carrier by bulk liquid membrane transport method. The effect of pH, polyeugenyl oxyacetic acid ion carrier concentration, nitric acid concentration in the stripping solution, transport time, and metal concentration were optimized. The result showed that the optimum condition for transport of metal ions was at pH 4 for ion Fe(III and at pH 5 for Cr(III, Cu(II, Ni(II, Co(II, and Pb(II ions. The carrier volumes were optimum with concentration of 1 x 10-3 M at 7.5 mL for Cr(III, Cu (II,  Ni(II, Co(II ions and at 8.5 mL for Fe(III and Pb(II ions. The concentration of HNO3 in stripping phase was optimum at 2 M for Fe(III and Cu(II ions, 1 M for Cr(III, Ni(II and Co(II ions, and 0.5 M for Pb(II ion. The optimum transport times were 36 h for Fe(III and Co(II ions, and 48 h for Cr(III, Cu (II, Ni(II, and Pb(II ions. The concentration of metal ions accurately transported were 2.5 x 10-4 M for Fe(III and Cr(III ions, and 1 M for Cu (II, Ni(II, Co(II, and Pb(II ions. Compared to other metal ions the transport of Fe(III was the highest with selectivity order of Fe(III > Cr(III > Pb(II > Cu(II > Ni(II > Co(II. At optimum condition, Fe(III ion was transported through the membrane at 46.46%.   Keywords: poly(eugenyl oxyacetic acid, transport, liquid membrane, Fe (III, Cr(III, Cu(II, Ni(II, Co(II, and Pb(II ions

  7. Synthesis and Characterization of Multimetallic Fe(II) and Mn(II ...

    African Journals Online (AJOL)

    Iron(II) and Manganese(II) complexes of the resulting ligand were obtained from its reactions with Fe(II) and Mn(II) salts in absolute methanol for the metal to ligand ratio 2:3. These complexes were characterized by Solubility, Conductivity, IR and UV-VIS spectrometry, elemental analysis and mass spectrometry. Keywords: ...

  8. Supplementing in the diet of lactating Holstein cows may naturally produce coenzyme Q10-enriched milk

    Directory of Open Access Journals (Sweden)

    Gui-Seck Bae

    2018-01-01

    Full Text Available Objective To examine the effects of Rhodobacter sphaeroides (R. sphaeroides supplementation as a direct-fed microbial (DFM on rumen fermentation in dairy cows and on coenzyme Q10 (CoQ10 transition into milk, an in vitro rumen simulation batch culture and an in vivo dairy cow experiment were conducted. Methods The characteristics of in vitro ruminal fermentation were investigated using rumen fluids from six cannulated Holstein dairy cows at 2 h post-afternoon feeding. A control treatment was included in the experiments based on a typified total mixed ration (TMR for lactating dairy cows, which was identical to the one used in the in vivo study, plus R. sphaeroides at 0.1%, 0.3%, and 0.5% TMR dry matter. The in vivo study employed six ruminally cannulated lactating Holstein cows randomly allotted to either the control TMR (C-TMR treatment or to a diet supplemented with a 0.5% R. sphaeroides culture (S-TMR, dry matter basis ad libitum. The presence of R. sphaeroides was verified using denaturing gradient gel electrophoresis (DGGE applied to the bacterial samples obtained from the in vivo study. The concentration of CoQ10 in milk and in the supernatant from the in vitro study was determined using high performance liquid chromatography. Results The results of the in vitro batch culture and DGGE showed that the concentration of CoQ10 significantly increased after 2 h of R. sphaeroides supplementation above 0.1%. When supplemented to the diet of lactating cows at the level of 0.5%, R. sphaeroides did not present any adverse effect on dry matter intake and milk yield. However, the concentration of CoQ10 in milk dramatically increased, with treated cows producing 70.9% more CoQ10 than control cows. Conclusion The CoQ10 concentration in milk increased via the use of a novel DFM, and R. sphaeroides might be used for producing value-added milk and dairy products in the future.

  9. Epoxyalkane:Coenzyme M Transferase Gene Diversity and Distribution in Groundwater Samples from Chlorinated-Ethene-Contaminated Sites

    Science.gov (United States)

    Liu, Xikun

    2016-01-01

    ABSTRACT Epoxyalkane:coenzyme M transferase (EaCoMT) plays a critical role in the aerobic biodegradation and assimilation of alkenes, including ethene, propene, and the toxic chloroethene vinyl chloride (VC). To improve our understanding of the diversity and distribution of EaCoMT genes in the environment, novel EaCoMT-specific terminal-restriction fragment length polymorphism (T-RFLP) and nested-PCR methods were developed and applied to groundwater samples from six different contaminated sites. T-RFLP analysis revealed 192 different EaCoMT T-RFs. Using clone libraries, we retrieved 139 EaCoMT gene sequences from these samples. Phylogenetic analysis revealed that a majority of the sequences (78.4%) grouped with EaCoMT genes found in VC- and ethene-assimilating Mycobacterium strains and Nocardioides sp. strain JS614. The four most-abundant T-RFs were also matched with EaCoMT clone sequences related to Mycobacterium and Nocardioides strains. The remaining EaCoMT sequences clustered within two emergent EaCoMT gene subgroups represented by sequences found in propene-assimilating Gordonia rubripertincta strain B-276 and Xanthobacter autotrophicus strain Py2. EaCoMT gene abundance was positively correlated with VC and ethene concentrations at the sites studied. IMPORTANCE The EaCoMT gene plays a critical role in assimilation of short-chain alkenes, such as ethene, VC, and propene. An improved understanding of EaCoMT gene diversity and distribution is significant to the field of bioremediation in several ways. The expansion of the EaCoMT gene database and identification of incorrectly annotated EaCoMT genes currently in the database will facilitate improved design of environmental molecular diagnostic tools and high-throughput sequencing approaches for future bioremediation studies. Our results further suggest that potentially significant aerobic VC degraders in the environment are not well represented in pure culture. Future research should aim to isolate and

  10. Effects of coenzyme Q10 on statin-induced myopathy: a meta-analysis of randomized controlled trials.

    Science.gov (United States)

    Banach, Maciej; Serban, Corina; Sahebkar, Amirhossein; Ursoniu, Sorin; Rysz, Jacek; Muntner, Paul; Toth, Peter P; Jones, Steven R; Rizzo, Manfredi; Glasser, Stephen P; Lip, Gregory Y H; Dragan, Simona; Mikhailidis, Dimitri P

    2015-01-01

    To evaluate the efficacy of coenzyme Q10 (CoQ10) supplementation on statin-induced myopathy. We searched the MEDLINE, Cochrane Library, Scopus, and EMBASE databases (November 1, 1987, to May 1, 2014) to identify randomized controlled trials investigating the impact of CoQ10 on muscle pain and plasma creatine kinase (CK) activity as 2 measures of statin-induced myalgia. Two independent reviewers extracted data on study characteristics, methods, and outcomes. We included 6 studies with 302 patients receiving statin therapy: 5 studies with 226 participants evaluated the effect of CoQ10 supplementation on plasma CK activity, and 5 studies (4 used in the CK analysis and 1 other study) with 253 participants were included to assess the effect of CoQ10 supplementation on muscle pain. Compared with the control group, plasma CK activity was increased after CoQ10 supplementation, but this change was not significant (mean difference, 11.69 U/L [to convert to μkat/L, multiply by 0.0167]; 95% CI, -14.25 to 37.63 U/L; P=.38). Likewise, CoQ10 supplementation had no significant effect on muscle pain despite a trend toward a decrease (standardized mean difference, -0.53; 95% CI, -1.33 to 0.28; P=.20). No dose-effect association between changes in plasma CK activity (slope, -0.001; 95% CI, -0.004 to 0.001; P=.33) or in the indices of muscle pain (slope, 0.002; 95% CI, -0.005 to 0.010; P=.67) and administered doses of CoQ10 were observed. The results of this meta-analysis of available randomized controlled trials do not suggest any significant benefit of CoQ10 supplementation in improving statin-induced myopathy. Larger, well-designed trials are necessary to confirm the findings from this meta-analysis. Copyright © 2015 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  11. (II) complexes

    African Journals Online (AJOL)

    activities of Schiff base tin (II) complexes. Neelofar1 ... Conclusion: All synthesized Schiff bases and their Tin (II) complexes showed high antimicrobial and ...... Singh HL. Synthesis and characterization of tin (II) complexes of fluorinated Schiff bases derived from amino acids. Spectrochim Acta Part A: Molec Biomolec.

  12. Fe (III), Co(II), Ni(II), Cu(II) and Zn(II) complexes of schiff bases based-on glycine and phenylalanine: Synthesis, magnetic/thermal properties and antimicrobial activity

    Science.gov (United States)

    Sevgi, Fatih; Bagkesici, Ugur; Kursunlu, Ahmed Nuri; Guler, Ersin

    2018-02-01

    Zinc (II), copper (II), nickel (II), cobalt (II) and iron (III) complexes of Schiff bases (LG, LP) derived from 2-hydroxynaphthaldehyde with glycine and phenylalanine were reported and characterized by 1H NMR, 13C NMR, elemental analyses, melting point, FT-IR, magnetic susceptibility and thermal analyses (TGA). TGA data show that iron and cobalt include to the coordinated water and metal:ligand ratio is 1:2 while the complex stoichiometry for Ni (II), Cu (II) and Zn (II) complexes is 1:1. As expected, Ni (II) and Zn (II) complexes are diamagnetic; Cu (II), Co (II) and Fe (III) complexes are paramagnetic character due to a strong ligand of LG and LP. The LG, LP and their metal complexes were screened for their antimicrobial activities against five Gram-positive (Staphylococcus aureus, Methicillin resistant Staphylococcus aureus (MRSA), Bacillus cereus, Streptococcus mutans and Enterococcus faecalis) and three Gram-negative (Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa) and one fungi (Candida albicans) by using broth microdilution techniques. The activity data show that ligands and their metal complexes exhibited moderate to good activity against Gram-positive bacteria and fungi.

  13. DNA damage by the cobalt (II) and zinc (II) complexes of ...

    African Journals Online (AJOL)

    Using the single cell gel electrophoresis method, the tetraazamacrocycle Zn(II) complex (Zn(II)-L) and the tetraazamacrocycle Co(II) complex (Co(II)-L) were investigated focusing on their DNA damage to Tetrahymena thermophila. When the cells were treated with the 0.05, 0.25 and 0.50 mg/ml Zn(II)-L, the tail length ...

  14. Syntheses and spectroscopic properties of mercury(II) and nickel(II ...

    African Journals Online (AJOL)

    Mercury(II) complex, [Hg2(BPTU-2H)Cl2] and nickel(II) complex, [Ni(BPTU-H)2] were prepared by reacting Bis(N-phenylthiourea), BPTU, with mercury(II) chloride and nickel(II) acetate respectively. The complexes were characterized by IR, diffuse reflectance, 1H NMR spectra and elemental analysis. BPTU acts as ...

  15. Coenzyme Q10 and its effects in the treatment of neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Graciela Cristina dos Santos

    2009-12-01

    Full Text Available According to clinical and pre-clinical studies, oxidative stress and its consequences may be the cause or, at least, a contributing factor, to a large number of neurodegenerative diseases. These diseases include common and debilitating disorders, characterized by progressive and irreversible loss of neurons in specific regions of the brain. The most common neurodegenerative diseases are Parkinson's disease, Huntington's disease, Alzheimer's disease and amyotrophic lateral sclerosis. Coenzyme Q10 (CoQ10 has been extensively studied since its discovery in 1957. It is a component of the electron transportation chain and participates in aerobic cellular respiration, generating energy in the form of adenosine triphosphate (ATP. The property of CoQ10 to act as an antioxidant or a pro-oxidant, suggests that it also plays an important role in the modulation of redox cellular status under physiological and pathological conditions, also performing a role in the ageing process. In several animal models of neurodegenerative diseases, CoQ10 has shown beneficial effects in reducing disease progression. However, further studies are needed to assess the outcome and effectiveness of CoQ10 before exposing patients to unnecessary health risks at significant costs.De acordo com estudos clínicos e pré-clínicos, o estresse oxidativo e suas conseqüências podem ser a causa, ou, no mínimo, o fator que contribui para grande número de doenças degenerativas. Estas doenças incluem problemas comuns e debilitantes, caracterizados por perda progressiva e irreversível de neurônios em regiões específicas do cérebro. As doenças degenerativas mais comuns são doença de Parkinson, de Hutington, de Alzheimer e esclerose amiotrófica lateral. A Coenzima Q10 (CoQ10 tem sido intensamente estudada desde sua descoberta, em 1957. É um componente da cadeia de transporte eletrônico e participa da respiração aeróbica celular, gerando energia na forma de trifosfato de

  16. Solar Type II Radio Bursts and IP Type II Events

    Science.gov (United States)

    Cane, H. V.; Erickson, W. C.

    2005-01-01

    We have examined radio data from the WAVES experiment on the Wind spacecraft in conjunction with ground-based data in order to investigate the relationship between the shocks responsible for metric type II radio bursts and the shocks in front of coronal mass ejections (CMEs). The bow shocks of fast, large CMEs are strong interplanetary (IP) shocks, and the associated radio emissions often consist of single broad bands starting below approx. 4 MHz; such emissions were previously called IP type II events. In contrast, metric type II bursts are usually narrowbanded and display two harmonically related bands. In addition to displaying complete dynamic spectra for a number of events, we also analyze the 135 WAVES 1 - 14 MHz slow-drift time periods in 2001-2003. We find that most of the periods contain multiple phenomena, which we divide into three groups: metric type II extensions, IP type II events, and blobs and bands. About half of the WAVES listings include probable extensions of metric type II radio bursts, but in more than half of these events, there were also other slow-drift features. In the 3 yr study period, there were 31 IP type II events; these were associated with the very fastest CMEs. The most common form of activity in the WAVES events, blobs and bands in the frequency range between 1 and 8 MHz, fall below an envelope consistent with the early signatures of an IP type II event. However, most of this activity lasts only a few tens of minutes, whereas IP type II events last for many hours. In this study we find many examples in the radio data of two shock-like phenomena with different characteristics that occur simultaneously in the metric and decametric/hectometric bands, and no clear example of a metric type II burst that extends continuously down in frequency to become an IP type II event. The simplest interpretation is that metric type II bursts, unlike IP type II events, are not caused by shocks driven in front of CMEs.

  17. Methamphetamine-induced neuronal protein NAT8L is the NAA biosynthetic enzyme: implications for specialized acetyl coenzyme A metabolism in the CNS.

    Science.gov (United States)

    Ariyannur, Prasanth S; Moffett, John R; Manickam, Pachiappan; Pattabiraman, Nagarajan; Arun, Peethambaran; Nitta, Atsumi; Nabeshima, Toshitaka; Madhavarao, Chikkathur N; Namboodiri, Aryan M A

    2010-06-04

    N-acetylaspartate (NAA) is a concentrated, neuron-specific brain metabolite routinely used as a magnetic resonance spectroscopy marker for brain injury and disease. Despite decades of research, the functional roles of NAA remain unclear. Biochemical investigations over several decades have associated NAA with myelin lipid synthesis and energy metabolism. However, studies have been hampered by an inability to identify the gene for the NAA biosynthetic enzyme aspartate N-acetyltransferase (Asp-NAT). A very recent report has identified Nat8l as the gene encoding Asp-NAT and confirmed that the only child diagnosed with a lack of NAA on brain magnetic resonance spectrograms has a 19-bp deletion in this gene. Based on in vitro Nat8l expression studies the researchers concluded that many previous biochemical investigations have been technically flawed and that NAA may not be associated with brain energy or lipid metabolism. In studies done concurrently in our laboratory we have demonstrated via cloning, expression, specificity for acetylation of aspartate, responsiveness to methamphetamine treatment, molecular modeling and comparative immunolocalization that NAT8L is the NAA biosynthetic enzyme Asp-NAT. We conclude that NAA is a major storage and transport form of acetyl coenzyme A specific to the nervous system, thus linking it to both lipid synthesis and energy metabolism. Published by Elsevier B.V.

  18. Synthesis and characterization of iron(III), manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II) complexes of salicylidene-N-anilinoacetohydrazone (H2L1) and 2-hydroxy-1-naphthylidene-N-anilinoacetohydrazone (H2L2).

    Science.gov (United States)

    AbouEl-Enein, S A; El-Saied, F A; Kasher, T I; El-Wardany, A H

    2007-07-01

    Salicylidene-N-anilinoacetohydrazone (H(2)L(1)) and 2-hydroxy-1-naphthylidene-N-anilinoacetohydrazone (H(2)L(2)) and their iron(III), manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II) complexes have been synthesized and characterized by IR, electronic spectra, molar conductivities, magnetic susceptibilities and ESR. Mononuclear complexes are formed with molar ratios of 1:1, 1:2 and 1:3 (M:L). The IR studies reveal various modes of chelation. The electronic absorption spectra and magnetic susceptibility measurements show that the iron(III), nickel(II) and cobalt(II) complexes of H(2)L(1) have octahedral geometry. While the cobalt(II) complexes of H(2)L(2) were separated as tetrahedral structure. The copper(II) complexes have square planar stereochemistry. The ESR parameters of the copper(II) complexes at room temperature were calculated. The g values for copper(II) complexes proved that the Cu-O and Cu-N bonds are of high covalency.

  19. Pecan nutshell as biosorbent to remove Cu(II), Mn(II) and Pb(II) from aqueous solutions.

    Science.gov (United States)

    Vaghetti, Julio C P; Lima, Eder C; Royer, Betina; da Cunha, Bruna M; Cardoso, Natali F; Brasil, Jorge L; Dias, Silvio L P

    2009-02-15

    In the present study we reported for the first time the feasibility of pecan nutshell (PNS, Carya illinoensis) as an alternative biosorbent to remove Cu(II), Mn(II) and Pb(II) metallic ions from aqueous solutions. The ability of PNS to remove the metallic ions was investigated by using batch biosorption procedure. The effects such as, pH, biosorbent dosage on the adsorption capacities of PNS were studied. Four kinetic models were tested, being the adsorption kinetics better fitted to fractionary-order kinetic model. Besides that, the kinetic data were also fitted to intra-particle diffusion model, presenting three linear regions, indicating that the kinetics of adsorption should follow multiple sorption rates. The equilibrium data were fitted to Langmuir, Freundlich, Sips and Redlich-Peterson isotherm models. Taking into account a statistical error function, the data were best fitted to Sips isotherm model. The maximum biosorption capacities of PNS were 1.35, 1.78 and 0.946mmolg(-1) for Cu(II), Mn(II) and Pb(II), respectively.

  20. Physico - chemical investigation on Co(II), Ni(II), Cu(II), Zn(II), Cd(II), UO2+2 and VO+2 ions-O-(-N-3,5-dichloro-α-pyridone imino)

    International Nuclear Information System (INIS)

    Mathur, Praveen; Trivedi, Pradeep; Mehta, R.K.

    1983-01-01

    Studies on the interaction of newly synthesised ligand, O-(N-3, 5-dichloro-α-pyridone imino) benzene sulphonic acid (H 2 PB) with Co(II), Ni(II), Cu(II), Zn(II), Cd(II), UO 2 +2 and VO +2 have been carried out potentiometrically. Many physico-chemical studies on thermodynamics, elemental analysis, molecular weight, magnetic moment, conductance, electronic and IR spectra have also been made on the solid chelates and their adducts. The dissociation constants of H 2 PB and stabilities of its bivalent chelates have been evaluated potentiometrically at 25deg, 35deg and 45degC in aqueous medium (0.01M, 0.05M and 0.1M NaClO 4 ) by Bjerrum's method. The stability sequence is in agreement with the Irving-William's rule. (author)

  1. Unsaturated b-ketoesters and their Ni(II, Cu(II and Zn(II complexes

    Directory of Open Access Journals (Sweden)

    MUHAMMED BASHEER UMMATHUR

    2009-03-01

    Full Text Available A new series of b-ketoesters in which the keto group is attached to the olefinic linkage were synthesized by the reaction of methyl acetoacetate and aromatic aldehydes under specified conditions. The existence of these compounds predominantly in the intramolecularly hydrogen bonded enol form was well demonstrated from their IR, 1H-NMR and mass spectral data. Details on the formation of their [ML2] complexes with Ni(II, Cu(II and Zn(II and the nature of the bonding are discussed on the basis of analytical and spectral data.

  2. Development of a photoelectrochemical lactic dehydrogenase biosensor using multi-wall carbon nanotube-TiO2 nanoparticle composite as coenzyme regeneration tool

    International Nuclear Information System (INIS)

    Liu, Xiaoqiang; Yan, Rui; Zhu, Jie; Huo, Xiaohe; Wang, Xinhai

    2015-01-01

    Highlights: •Multi-wall Carbon Nanotube-TiO 2 nanoparticle composite was synthesized by hydrothermal method •The composite was characterized by TEM, XRD, FT-IR •A photoelectrochemical (PEC) lactic dehydrogenase (LDH) biosensor was developed based on the composite •The composite acts as both coenzyme regeneration tool and immobilization material •The PEC biosensor shows superiority over the electrochemical LDH biosensors in analytical performance -- Abstract: A novel photoelectrochemical (PEC) lactic dehydrogenase (LDH) biosensor was developed based on a multi-wall carbon nanotube (MWCNT)-TiO 2 nanoparticle (TNP) composite platform. This composite platform can not only aid in regeneration of nicotinamide adenine dinucleotide (NAD + ) in the enzymatic cycle, but also immobilize enzymes on electrode surface. TNPs were grown on MWCNT surface through a hydrothermal method and the composite was characterized by various spectroscopic techniques. The electrochemical performance of the LDH biosensors has demonstrated that the composite is a feasible immobilization matrix for LDH. The PEC experiments have confirmed that NAD + can be regenerated by the holes produced by irradiating MWCNT-TNP composite to fulfill the enzyme catalytic cycle. The analytical performance of the PEC LDH biosensor was studied by measuring its photocurrents. The dynamic range, sensitivity and limit of detection of the biosensor were estimated to be 0.5 to 120 μM, 0.0242 μA μM −1 and 0.1 μM respectively, which are superior to those of electrochemical LDH biosensors

  3. Synthesis, spectral, thermal and antimicrobial studies on cobalt(II), nickel(II), copper(II), zinc(II) and palladium(II) complexes containing thiosemicarbazone ligand

    Science.gov (United States)

    El-Sawaf, Ayman K.; El-Essawy, Farag; Nassar, Amal A.; El-Samanody, El-Sayed A.

    2018-04-01

    The coordination characteristic of new N4-morpholinyl isatin-3-thiosemicarbazone (HL) towards Co(II), Ni(II), Cu(II), Zn(II) and Pd(II) has been studies. The structures of the complexes were described by elemental analyses, molar conductivity, magnetic, thermal and spectral (IR, UV-Vis, 1H and 13C NMR and ESR) studies. On the basis of analytical and spectral studies the ligand behaves as monobasic tridentate ONS donor forming two five membered rings towards cobalt, copper and palladium and afforded complexes of the kind [M(L)X], (Mdbnd Co, Cu or Pd; Xdbnd Cl, Br or OAc). Whereas the ligand bound to NiCl2 as neutral tridentate ONS donor and with ZnCl2 as neutral bidentate NS donor. The newly synthesized thiosemicarbazone ligand and some of its complexes were examined for antimicrobial activity against 2 gram negative bacterial strains (Escherichia coli Pseudomonas and aeruginosa), 2 gram positive bacterial strains (Streptococcus pneumoniae and Staphylococcus aureus)} and two Pathogenic fungi (Aspergillus fumigatus and Candida albicans). All metal complexes possess higher antimicrobial activity comparing with the free thiosemicarbazone ligand. The high potent activities of the complexes may arise from the coordination and chelation, which tends to make metal complexes act as more controlling and potent antimicrobial agents, thus hindering the growing of the microorganisms. The antimicrobial results also show that copper bromide complex is better antimicrobial agent as compared to the Schiff base and its metal complexes.

  4. Equilibrium and kinetic studies of Pb(II, Cd(II and Zn(II sorption by Lagenaria vulgaris shell

    Directory of Open Access Journals (Sweden)

    Mitić-Stojanović Dragana-Linda

    2012-01-01

    Full Text Available The sorption of lead, cadmium and zinc ions from aqueous solution by Lagenaria vulgaris shell biosorbent (LVB in batch system was investigated. The effect of relevant parameters such as contact time, biosorbent dosage and initial metal ions concentration was evaluated. The Pb(II, Cd(II and Zn(II sorption equilibrium (when 98% of initial metal ions were sorbed was attained within 15, 20 and 25 min, respectively. The pseudo first, pseudo-second order, Chrastil’s and intra-particle diffusion models were used to describe the kinetic data. The experimental data fitted the pseudo-second order kinetic model and intra-particle diffusion model. Removal efficiency of lead(II, cadmium(II and zinc(II ions rapidly increased with increasing biosorbent dose from 0.5 to 8.0 g dm-3. Optimal biosorbent dose was set to 4.0 g dm-3. An increase in the initial metal concentration increases the sorption capacity. The sorption data of investigated metal ions are fitted to Langmuir, Freundlich and Temkin isotherm models. Langmuir model best fitted the equilibrium data (r2 > 0.99. Maximal sorption capacities of LVB for Pb(II, Cd(II and Zn(II at 25.0±0.5°C were 0.130, 0.103 and 0.098 mM g-1, respectively. The desorption experiments showed that the LVB could be reused for six cycles with a minimum loss of the initial sorption capacity.

  5. Recovery of Cd(II), Co(II) and Ni(II) from Chloride Medium by Solvent Extraction Using CYANEX 923 and CYANEX 272 I

    International Nuclear Information System (INIS)

    Ahmed, M.; El Dessouky, S.I.; El-Nadi, Y.A.; Daoud, J.A.; Saad, E.A.

    2008-01-01

    The paper aims to study the extraction and separation of Cd(II), Co(II) and Ni(II) from their mixtures in hydrochloric acid medium with CYANEX 923 in kerosene. Preliminary investigations showed that only Cd(II) is extracted with CYANEX 923 while Co(II) and Ni(II) are not extracted. Different parameters affecting the extraction of Cd(II) with CYANEX 923 such as hydrochloric acid, hydrogen ion, extractant and metal concentrations, temperature investigations were also investigated. The stoichiometry of the extracted metal species investigated was found to be HCdCl 3 . 2 CYANEX 923. The stripping of the extracted Cd(II) species is obtained with 0.1 M HCl solution. Co(II) was found to be extracted with CYANEX 272 at ph 5.8 leaving Ni(II) in the solution. A developed process for the sequential of Cd(II), Co(II) and Ni(II) from their mixture in hydrochloric acid medium is proposed

  6. Genome-Wide Identification and Comparative Analysis of the 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase (HMGR Gene Family in Gossypium

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2018-01-01

    Full Text Available Terpenes are the largest and most diverse class of secondary metabolites in plants and play a very important role in plant adaptation to environment. 3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMGR is a rate-limiting enzyme in the process of terpene biosynthesis in the cytosol. Previous study found the HMGR genes underwent gene expansion in Gossypium raimondii, but the characteristics and evolution of the HMGR gene family in Gossypium genus are unclear. In this study, genome-wide identification and comparative study of HMGR gene family were carried out in three Gossypium species with genome sequences, i.e., G. raimondii, Gossypium arboreum, and Gossypium hirsutum. In total, nine, nine and 18 HMGR genes were identified in G. raimondii, G. arboreum, and G. hirsutum, respectively. The results indicated that the HMGR genes underwent gene expansion and a unique gene cluster containing four HMGR genes was found in all the three Gossypium species. The phylogenetic analysis suggested that the expansion of HMGR genes had occurred in their common ancestor. There was a pseudogene that had a 10-bp deletion resulting in a frameshift mutation and could not be translated into functional proteins in G. arboreum and the A-subgenome of G. hirsutum. The expression profiles of the two pseudogenes showed that they had tissue-specific expression. Additionally, the expression pattern of the pseudogene in the A-subgenome of G. hirsutum was similar to its paralogous gene in the D-subgenome of G. hirsutum. Our results provide useful information for understanding cytosolic terpene biosynthesis in Gossypium species.

  7. Age-Related Loss in Bone Mineral Density of Rats Fed Lifelong on a Fish Oil-Based Diet Is Avoided by Coenzyme Q10 Addition

    Directory of Open Access Journals (Sweden)

    Alfonso Varela-López

    2017-02-01

    Full Text Available During aging, bone mass declines increasing osteoporosis and fracture risks. Oxidative stress has been related to this bone loss, making dietary compounds with antioxidant properties a promising weapon. Male Wistar rats were maintained for 6 or 24 months on diets with fish oil as unique fat source, supplemented or not with coenzyme Q10 (CoQ10, to evaluate the potential of adding this molecule to the n-3 polyunsaturated fatty acid (n-3 PUFA-based diet for bone mineral density (BMD preservation. BMD was evaluated in the femur. Serum osteocalcin, osteopontin, receptor activator of nuclear factor-κB ligand, ostroprotegerin, parathyroid hormone, urinary F2-isoprostanes, and lymphocytes DNA strand breaks were also measured. BMD was lower in aged rats fed a diet without CoQ10 respect than their younger counterparts, whereas older animals receiving CoQ10 showed the highest BMD. F2-isoprostanes and DNA strand breaks showed that oxidative stress was higher during aging. Supplementation with CoQ10 prevented oxidative damage to lipid and DNA, in young and old animals, respectively. Reduced oxidative stress associated to CoQ10 supplementation of this n-3 PUFA-rich diet might explain the higher BMD found in aged rats in this group of animals.

  8. ADCK3, an ancestral kinase, is mutated in a form of recessive ataxia associated with coenzyme Q10 deficiency.

    Science.gov (United States)

    Lagier-Tourenne, Clotilde; Tazir, Meriem; López, Luis Carlos; Quinzii, Catarina M; Assoum, Mirna; Drouot, Nathalie; Busso, Cleverson; Makri, Samira; Ali-Pacha, Lamia; Benhassine, Traki; Anheim, Mathieu; Lynch, David R; Thibault, Christelle; Plewniak, Frédéric; Bianchetti, Laurent; Tranchant, Christine; Poch, Olivier; DiMauro, Salvatore; Mandel, Jean-Louis; Barros, Mario H; Hirano, Michio; Koenig, Michel

    2008-03-01

    Muscle coenzyme Q(10) (CoQ(10) or ubiquinone) deficiency has been identified in more than 20 patients with presumed autosomal-recessive ataxia. However, mutations in genes required for CoQ(10) biosynthetic pathway have been identified only in patients with infantile-onset multisystemic diseases or isolated nephropathy. Our SNP-based genome-wide scan in a large consanguineous family revealed a locus for autosomal-recessive ataxia at chromosome 1q41. The causative mutation is a homozygous splice-site mutation in the aarF-domain-containing kinase 3 gene (ADCK3). Five additional mutations in ADCK3 were found in three patients with sporadic ataxia, including one known to have CoQ(10) deficiency in muscle. All of the patients have childhood-onset cerebellar ataxia with slow progression, and three of six have mildly elevated lactate levels. ADCK3 is a mitochondrial protein homologous to the yeast COQ8 and the bacterial UbiB proteins, which are required for CoQ biosynthesis. Three out of four patients tested showed a low endogenous pool of CoQ(10) in their fibroblasts or lymphoblasts, and two out of three patients showed impaired ubiquinone synthesis, strongly suggesting that ADCK3 is also involved in CoQ(10) biosynthesis. The deleterious nature of the three identified missense changes was confirmed by the introduction of them at the corresponding positions of the yeast COQ8 gene. Finally, a phylogenetic analysis shows that ADCK3 belongs to the family of atypical kinases, which includes phosphoinositide and choline kinases, suggesting that ADCK3 plays an indirect regulatory role in ubiquinone biosynthesis possibly as part of a feedback loop that regulates ATP production.

  9. The type II collagen fragments Helix-II and CTX-II reveal different enzymatic pathways of human cartilage collagen degradation

    DEFF Research Database (Denmark)

    Charni-Ben Tabassi, N; Desmarais, S; Jensen, Anne-Christine Bay

    2008-01-01

    human recombinant cathepsins (Cats) and matrix-metalloproteases (MMPs). Next, we analyzed the spontaneous release of Helix-II and CTX-II from cartilage sections of patients with knee OA who were immediately deep frozen after joint replacement to preserve endogenous enzyme activity until assay. Cartilage....... Cat D was unable to digest intact cartilage. MMPs-1, -3, -7, -9, and -13 efficiently released CTX-II, but only small amount of Helix-II. Neither CTX-II nor Helix-II alone was able to reflect accurately the collagenolytic activity of Cats and MMPs as reflected by the release of hydroxyproline. In OA...

  10. Thermal, spectral, magnetic and biological studies of thiosemicarbazones complexes with metal ions: Cu(II), Co(II), Ni(II), Fe(III), Zn(II), Mn(II) and UO2(VI)

    International Nuclear Information System (INIS)

    Mashaly, M.M.; Seleem, H.S.; El-Behairy, M.A.; Habib, H.A.

    2004-01-01

    Thiosemicarbazones ligands, isatin-3-thiosemicarbazone(HIT) and N-acetylisatin-3-thiosemicarbazone (HAIT), which have tridentate ONN coordinating sites were prepared. The complexes of both ligands with Cu(II), Co(II), Ni(II), Fe(III), Zn(II), Mn(II) and UO 2 (VI) ions were isolated. The ligands and their metal complexes were characterized by elemental analysis, IR, UV-Vis and mass spectra, also by conductance, magnetic moment and TG-DSC measurements. All the transition metal complexes have octahedral configurations, except Cu-complexes which have planar geometry and the UO 2 (VI) complexes which have coordination number 8 and may acquire the distorted dodecahedral geometry. Thermal studies explored the possibility of obtaining new complexes. Inversion from octahedral to square-planar configuration occurred upon heating the parent Ni-HIAT complex to form the corresponding pyrolytic product. The antifungal activity against the tested organisms showed that some metal complexes enhanced the activity with respect to the parent ligands. (author)

  11. Competitive adsorption of Pb(II), Cu(II), and Zn(II) ions onto hydroxyapatite-biochar nanocomposite in aqueous solutions

    Science.gov (United States)

    Wang, Yu-Ying; Liu, Yu-Xue; Lu, Hao-Hao; Yang, Rui-Qin; Yang, Sheng-Mao

    2018-05-01

    A hydroxyapatite-biochar nanocomposite (HAP-BC) was successfully fabricated and its physicochemical properties characterized. The analyses showed that HAP nanoparticles were successfully loaded on the biochar surface. The adsorption of Pb(II), Cu(II), and Zn(II) by HAP-BC was systematically studied in single and ternary metal systems. The results demonstrated that pH affects the adsorption of heavy metals onto HAP-BC. Regarding the adsorption kinetics, the pseudo-second-order model showed the best fit for all three heavy metal ions on HAP-BC. In both single and ternary metal ion systems, the adsorption isotherm of Pb(II) by HAP-BC followed Langmuir model, while those of Cu(II) and Zn(II) fitted well with Freundlich model. The maximum adsorption capacity for each tested metal by HAP-BC was higher than that of pristine rice straw biochar (especially for Pb(II)) or those of other reported adsorbents. Therefore, HAP-BC could explore as a new material for future application in heavy metal removal.

  12. Biosorption characteristics of copper (II), chromium (III), nickel (II), and lead (II) from aqueous solutions by Chara sp. and Cladophora sp.

    Science.gov (United States)

    Elmaci, Ayşe; Yonar, Taner; Ozengin, Nihan

    2007-09-01

    The aim of this research was to expose individual removals of copper, chromium, nickel, and lead from aqueous solutions via biosorption using nonliving algae species, Chara sp. and Cladophora sp. Optimum pH values for biosorption of copper (II), chromium (III), nickel (II), and lead (II) from aqueous solutions were determined to be 6, 7, 7, and 3 for Cladophora sp. and 5, 3, 5, and 4 for Chara sp. respectively. Maximum adsorption capacities of Chara sp. [10.54 for chromium (III) and 61.72 for lead (II)] and Cladophora sp. [6.59 for chromium (III) and 16.75 and 23.25 for lead (II)] for chromium (III) and lead (II) are similar. On the other hand, copper (II) and nickel (II) biosorption capacity of Cladophora sp. [14.28 for copper (II) and 16.75 for nickel (II)] is greater than Chara sp. [6.506 for copper (II) and 11.76 for nickel (II)]. Significantly high correlation coefficients indicated for the Langmuir adsorption isotherm models can be used to describe the equilibrium behavior of copper, chromium, nickel, and lead adsorption onto Cladophora sp. and Chara sp.

  13. DNA damage by the cobalt (II) and zinc (II) complexes of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-09-03

    Sep 3, 2008 ... distributed in grade 3. The results indicated that Co(II)-L induced a relatively high level of DNA damage in comparison with the level of damage induced by Zn(II)-L. Key words: Tetraazamacrocycle Zn(II) complex, tetraazamacrocycle Co(II) complex, Tetrahymena thermophila, DNA damage, the comet assay.

  14. Synthesis and characterization of nickel(II), cobalt(II), copper(II), manganese(II), zinc(II), zirconium(IV), dioxouranium(VI) and dioxomolybdenum(VI) complexes of a new Schiff base derived from salicylaldehyde and 5-methylpyrazole-3-carbohydrazide

    International Nuclear Information System (INIS)

    Syamal, A.; Maurya, M.R.

    1986-01-01

    Synthesis of a new Schiff base derived from salicylaldehyde and 5-methylpyrazole-3-carbohydrazide, and its coordination compounds with nickel(II), cobalt(II), copper(II), manganese(II), zinc(II), zirconium(IV), dioxouranium(VI) and dioxomolybdenum(VI) are described. The ligand and the complexes have been characterized on the basis of analytical, conductance, molecular weight, i.r., electronic and n.m.r. spectra and magnetic susceptibility measurements. The stoichiometries of the complexes are represented as NiL . 3H 2 O, CoL . 2H 2 O, CuL, MnL . 2H 2 O, ZnL . H 2 O, Zr(OH) 2 (LH) 2 , Zr(OH) 2 L . 2MeOH, UO 2 L . MeOH and MoO 2 L . MeOH (where LH 2 =Schiff base). The copper(II) complex shows a subnormal magnetic moment due to antiferromagnetic exchange interaction while the nickel(II), cobalt(II) and manganese(II) complexes show normal magnetic moments at room temperature. The i.r. and n.m.r. spectral studies show that the Schiff base behaves as a dibasic and tridentate ligand coordinating through the deprotonated phenolic oxygen, enolic oxygen and azomethine nitrogen. (orig.)

  15. Levels of Cd (II, Mn (II, Pb (II, Cu (II, and Zn (II in Common Buzzard (Buteo buteo from Sicily (Italy by Derivative Stripping Potentiometry

    Directory of Open Access Journals (Sweden)

    P. Licata

    2010-01-01

    Full Text Available The purpose of this study was to determine the concentrations of heavy metals (Cd, Pb, Cu, Mn, and Zn in different organs (liver, kidney, muscle, lung, skin, and feathers of buzzards (Buteo buteo, utilized as a “biological indicator” for environmental contamination, from different areas of Sicily and to investigate the relationships between birds sex, age, and weight and metal levels in these samples. All samples of common buzzards were collected at the “Recovery Center of Wild Fauna” of Palermo, through the Zooprophilactic Institute. Potentiometric stripping analysis (PSA was used to determine the content of Cd(II, Cu(II, Mn(II, Pb(II, and Zn(II in bird tissues. For toxic metals, the highest levels of Pb were in liver and those of Cd in lung; Zn levels were higher than Cu and Mn in all tissues analyzed. The concentrations in liver, lung, kidney, and muscle could be considered as an indicative of chronic exposure to metals while the presence of metals in skin could be consequential to storing and elimination processes. The found concentrations of metals in the studied matrices required a highly sensitive method for their determination and a simple sample preparation procedure, and the proposed method was well suited for this purpose.

  16. Complexes cobalt(II, zinc(II and copper(II with some newly synthesized benzimidazole derivatives and their antibacterial activity

    Directory of Open Access Journals (Sweden)

    S. O. PODUNAVAC-KUZMANOVIC

    1999-05-01

    Full Text Available The preparation and properties of some complexes of cobalt(II, zinc(II and copper(II with several newly synthesized benzimidazole derivatives (L are reported. The complexes, of the general formula [MCl2L2] (M=Co(II, Zn(II and [CuCl2L(H2O], have a tetrahedral structure. The complexes were characterized by elemental analysis, molar conductivity, magnetic susceptibility measurements, IR and absorption electronic spectra. The antibacterial activitiy of the benzimidazoles and their complexes was evaluated against Erwinia carotovora subsp. carotovora and Erwinia amylovora. The complexes were found to be more toxic than the ligands.

  17. Novel recessive mutations in COQ4 cause severe infantile cardiomyopathy and encephalopathy associated with CoQ10 deficiency

    OpenAIRE

    Sondheimer, Neal; Hewson, Stacy; Cameron, Jessie M.; Somers, Gino R.; Broadbent, Jane Dunning; Ziosi, Marcello; Quinzii, Catarina Maria; Naini, Ali B.

    2017-01-01

    Coenzyme Q10 (CoQ10) or ubiquinone is one of the two electron carriers in the mitochondrial respiratory chain which has an essential role in the process of oxidative phosphorylation. Defects in CoQ10 synthesis are usually associated with the impaired function of CoQ10–dependent complexes I, II and III. The recessively transmitted CoQ10 deficiency has been associated with a number of phenotypically and genetically heterogeneous groups of disorders manifesting at variable age of onset. The infa...

  18. Micellar effect on metal-ligand complexes of Co(II, Ni(II, Cu(II and Zn(II with citric acid

    Directory of Open Access Journals (Sweden)

    Nageswara Rao Gollapalli

    2009-12-01

    Full Text Available Chemical speciation of citric acid complexes of Co(II, Ni(II, Cu(II and Zn(II was investigated pH-metrically in 0.0-2.5% anionic, cationic and neutral micellar media. The primary alkalimetric data were pruned with SCPHD program. The existence of different binary species was established from modeling studies using the computer program MINIQUAD75. Alkalimetric titrations were carried out in different relative concentrations (M:L:X = 1:2:5, 1:3:5, 1:5:3 of metal (M to citric acid. The selection of best chemical models was based on statistical parameters and residual analysis. The species detected were MLH, ML2, ML2H and ML2H2. The trend in variation of stability constants with change in mole fraction of the medium is explained on the basis of electrostatic and non-electrostatic forces. Distributions of the species with pH at different compositions of micellar media are also presented.

  19. Complexes of Cu(II), Ni(II), Co(II), oxovanadium(IV) and dioxouranium(VI) with N,N'-ethylenebis (2-hydroxy-4-methylpropiophenoneimine)

    International Nuclear Information System (INIS)

    Patel, M.M.; Patel, M.R.; Patel, M.N.; Patel, R.P.

    1982-01-01

    Complexes of Cu(II), Ni(II), Co(II), oxovanadium(IV) and dioxouranium(VI) with the schiff base, N,N'-ethylenebis(2-hydroxy-4-methylpropiophenoneimine)(4-MeOHPEN), have been synthesised and characterised on the basis of elemental analyses, conductivity, magnetic moment, electronic and infrared spectral data. Square-planar structures are suggested for Cu(II), Ni(II) and Co(II) complexes while a distorted square-pyramidal structure is suggested for the oxovanadium(IV) complex. (author)

  20. Elaboration of a Highly Porous RuII,II Analogue of HKUST-1.

    Science.gov (United States)

    Zhang, Wenhua; Freitag, Kerstin; Wannapaiboon, Suttipong; Schneider, Christian; Epp, Konstantin; Kieslich, Gregor; Fischer, Roland A

    2016-12-19

    When the dinuclear Ru II,II precursor [Ru 2 (OOCCH 3 ) 4 ] is employed under redox-inert conditions, a Ru II,II analogue of HKUST-1 was successfully prepared and characterized as a phase-pure microcrystalline powder. X-ray absorption near-edge spectroscopy confirms the oxidation state of the Ru centers of the paddle-wheel nodes in the framework. The porosity of 1371 m 2 /mmol of Ru II,II -HKUST-1 exceeds that of the parent compound HKUST1 (1049 m 2 / mmol).

  1. Dynamic adsorption of mixtures of Rhodamine B, Pb (II), Cu (II) and Zn(II) ions on composites chitosan-silica-polyethylene glycol membrane

    Science.gov (United States)

    Mahatmanti, F. W.; Rengga, W. D. P.; Kusumastuti, E.; Nuryono

    2018-04-01

    The adsorption of a solution mixture of Rhodamine B, Pb (II), Cu (II) and Zn(II) was studied using dynamic methods employing chitosan-silica-polyethylene glycol (Ch/Si/P) composite membrane as an adsorptive membrane. The composite Ch/Si/P membrane was prepared by mixing a chitosan-based membrane with silica isolated from rice husk ash (ASP) and polyethylene glycol (PEG) as a plasticizer. The resultant composite membrane was a stronger and more flexible membrane than the original chitosan-based membrane as indicated by the maximum percentage of elongation (20.5 %) and minimum Young’s Modulus (80.5 MPa). The composite membrane also showed increased mechanical and hydrophilic properties compared to the chitosan membranes. The membrane was used as adsorption membrane for Pb (II), Cu (II), Cd (II) ions and Rhodamine B dyes in a dynamic system where the permeation and selectivity were determined. The permeation of the components was observed to be in the following order: Rhodamine B > Cd (II) > Pb (II) > Cu (II) whereas the selectivity was shown to decrease the order of Cu (II) > Pb (II) > Cd (II) > Rhodamine B.

  2. Serum insulin-like growth factor II (IGF-II) in chronic heart failure

    International Nuclear Information System (INIS)

    Tong Lijun; Chen Donghai; Ji Naijun; Fan Bifu; Wang Chengyao; Mei Yibin; Li Fuyuan; Kao Yan

    2004-01-01

    Objective: To investigate the clinical significance of changes of serum insulin-like growth factor II (IGF-II) levels in patients with chronic heart failure. Methods: Serum IGF-II levels were measured with RIA in 132 cases of chronic heart failure and 45 controls. Results: Serum IGF-II levels were significantly higher in patients with chronic heart failure than those in the controls (t=0.033, P<0.001). IGF-II levels were highest in grade IV CHF patients (vs grade II t=3.963, P<0.01; vs grade III, t=3.578, P<0.01). In the twelve patients died in hospital, the serum IGF-II levels were significantly higher than those patients recovered (t=7.141, P<0.01). Conclusion: Serum IGF-II levels were increased in CHF patients and were highest in the most severe cases. (authors)

  3. Gene structure and mutations of glutaryl-coenzyme A dehydrogenase: impaired association of enzyme subunits that is due to an A421V substitution causes glutaric acidemia type I in the Amish.

    Science.gov (United States)

    Biery, B J; Stein, D E; Morton, D H; Goodman, S I

    1996-11-01

    The structure of the human glutaryl coenzyme A dehydrogenase (GCD) gene was determined to contain 11 exons and to span approximately 7 kb. Fibroblast DNA from 64 unrelated glutaric acidemia type I (GA1) patients was screened for mutations by PCR amplification and analysis of SSCP. Fragments with altered electrophoretic mobility were subcloned and sequenced to detect mutations that caused GA1. This report describes the structure of the GCD gene, as well as point mutations and polymorphisms found in 7 of its 11 exons. Several mutations were found in more than one patient, but no one prevalent mutation was detected in the general population. As expected from pedigree analysis, a single mutant allele causes GA1 in the Old Order Amish of Lancaster County, Pennsylvania. Several mutations have been expressed in Escherichia coli, and all produce diminished enzyme activity. Reduced activity in GCD encoded by the A421V mutation in the Amish may be due to impaired association of enzyme subunits.

  4. Ni(II, Pd(II and Pt(II complexes with ligand containing thiosemicarbazone and semicarbazone moiety: synthesis, characterization and biological investigation

    Directory of Open Access Journals (Sweden)

    SULEKH CHANDRA

    2008-07-01

    Full Text Available The synthesis of nickel(II, palladium(II and platinum(II complexes with thiosemicarbazone and semicarbazone of p-tolualdehyde are reported. All the new compounds were characterized by elemental analysis, molar conductance measurements, magnetic susceptibility measurements, mass, 1H-NMR, IR and electronic spectral studies. Based on the molar conductance measurements in DMSO, the complexes may be formulated as [Ni(L2Cl2] and [M(L2]Cl2 (where M = Pd(II and Pt(II due to their non-electrolytic and 1:2 electrolytic nature, respectively. The spectral data are consistent with an octahedral geometry around Ni(II and a square planar geometry for Pd(II and Pt(II, in which the ligands act as bidentate chelating agents, coordinated through the nitrogen and sulphur/oxygen atoms. The ligands and their metal complexes were screened in vitro against fungal species Alternaria alternata, Aspergillus niger and Fusarium odum, using the food poison technique.

  5. Anti-inflammatory drugs interacting with Zn(II), Cd(II) and Pt(II) metal ions.

    Science.gov (United States)

    Dendrinou-Samara, C; Tsotsou, G; Ekateriniadou, L V; Kortsaris, A H; Raptopoulou, C P; Terzis, A; Kyriakidis, D A; Kessissoglou, D P

    1998-09-01

    Complexes of Zn(II), Cd(II) and Pt(II) metal ions with the anti-inflammatory drugs, 1-methyl-5-(p-toluoyl)-1H-pyrrole-2-acetic acid (Tolmetin), alpha-methyl-4-(2-methylpropyl)benzeneacetic acid (Ibuprofen), 6-methoxy-alpha-methylnaphthalene-2-acetic acid (Naproxen) and 1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indole-3-acetic acid (indomethacin) have been synthesized and characterized. In the structurally characterized Cd(naproxen)2 complex the anti-inflammatory drugs acts as bidentate chelate ligand coordinatively bound to metal ions through the deprotonated carboxylate group. Crystal data for 1: [C32H26O8Cd], orthorhombic, space group P22(1)2(1), a = 5.693(2) (A), b = 8.760(3) (A), c = 30.74(1) (A), V = 1533(1) A3, Z = 2. Antibacterial and growth inhibitory activity is higher than that of the parent ligands or the platinum(II) diamine compounds.

  6. Synthesis, spectroscopic and antimicrobial properties of Co(II), Ni (II ...

    African Journals Online (AJOL)

    The objective of this study is to investigate the antimicrobial activity of novel Schiff base metal complexes. The resistance of micro-organisms to classical antimicrobial compounds poses a challenge to effective management and treatment of some diseases. In line with this, copper (II), nickel (II) and cobalt (II) complexes of ...

  7. Cloning, Expression Profiling and Functional Analysis of CnHMGS, a Gene Encoding 3-hydroxy-3-Methylglutaryl Coenzyme A Synthase from Chamaemelum nobile

    Directory of Open Access Journals (Sweden)

    Shuiyuan Cheng

    2016-03-01

    Full Text Available Roman chamomile (Chamaemelum nobile L. is renowned for its production of essential oils, which major components are sesquiterpenoids. As the important enzyme in the sesquiterpenoid biosynthesis pathway, 3-hydroxy-3-methylglutaryl coenzyme A synthase (HMGS catalyze the crucial step in the mevalonate pathway in plants. To isolate and identify the functional genes involved in the sesquiterpene biosynthesis of C. nobile L., a HMGS gene designated as CnHMGS (GenBank Accession No. KU529969 was cloned from C. nobile. The cDNA sequence of CnHMGS contained a 1377 bp open reading frame encoding a 458-amino-acid protein. The sequence of the CnHMGS protein was highly homologous to those of HMGS proteins from other plant species. Phylogenetic tree analysis revealed that CnHMGS clustered with the HMGS of Asteraceae in the dicotyledon clade. Further functional complementation of CnHMGS in the mutant yeast strain YSC6274 lacking HMGS activity demonstrated that the cloned CnHMGS cDNA encodes a functional HMGS. Transcript profile analysis indicated that CnHMGS was preferentially expressed in flowers and roots of C. nobile. The expression of CnHMGS could be upregulated by exogenous elicitors, including methyl jasmonate and salicylic acid, suggesting that CnHMGS was elicitor-responsive. The characterization and expression analysis of CnHMGS is helpful to understand the biosynthesis of sesquiterpenoid in C. nobile at the molecular level and also provides molecular wealth for the biotechnological improvement of this important medicinal plant.

  8. Cloning, Expression Profiling and Functional Analysis of CnHMGS, a Gene Encoding 3-hydroxy-3-Methylglutaryl Coenzyme A Synthase from Chamaemelum nobile.

    Science.gov (United States)

    Cheng, Shuiyuan; Wang, Xiaohui; Xu, Feng; Chen, Qiangwen; Tao, Tingting; Lei, Jing; Zhang, Weiwei; Liao, Yongling; Chang, Jie; Li, Xingxiang

    2016-03-08

    Roman chamomile (Chamaemelum nobile L.) is renowned for its production of essential oils, which major components are sesquiterpenoids. As the important enzyme in the sesquiterpenoid biosynthesis pathway, 3-hydroxy-3-methylglutaryl coenzyme A synthase (HMGS) catalyze the crucial step in the mevalonate pathway in plants. To isolate and identify the functional genes involved in the sesquiterpene biosynthesis of C. nobile L., a HMGS gene designated as CnHMGS (GenBank Accession No. KU529969) was cloned from C. nobile. The cDNA sequence of CnHMGS contained a 1377 bp open reading frame encoding a 458-amino-acid protein. The sequence of the CnHMGS protein was highly homologous to those of HMGS proteins from other plant species. Phylogenetic tree analysis revealed that CnHMGS clustered with the HMGS of Asteraceae in the dicotyledon clade. Further functional complementation of CnHMGS in the mutant yeast strain YSC6274 lacking HMGS activity demonstrated that the cloned CnHMGS cDNA encodes a functional HMGS. Transcript profile analysis indicated that CnHMGS was preferentially expressed in flowers and roots of C. nobile. The expression of CnHMGS could be upregulated by exogenous elicitors, including methyl jasmonate and salicylic acid, suggesting that CnHMGS was elicitor-responsive. The characterization and expression analysis of CnHMGS is helpful to understand the biosynthesis of sesquiterpenoid in C. nobile at the molecular level and also provides molecular wealth for the biotechnological improvement of this important medicinal plant.

  9. RTNS-II [Rotating Target Neutron Source II] operational summary

    International Nuclear Information System (INIS)

    Heikkinen, D.W.

    1988-09-01

    The Rotating Target Neutron Source II facility (RTNS-II) operated for over nine years. Its purpose was to provide high intensities of 14 MeV neutrons for materials studies in the fusion energy program. For the period from 1982-1987, the facility was supported by both the US (Department of Energy) and Japan (Ministry of Education, Culture, and Science). RTNS-II contains two accelerator-based neutron sources which use the T(d,n) 4 He reaction. In this paper, we will summarize the operational history of RTNS-II. Typical operating parameters are given. In addition, a brief description of the experimental program is presented. The current status and future options for the facility are discussed. 7 refs., 5 tabs

  10. Chronic alcoholism in rats induces a compensatory response, preserving brain thiamine diphosphate, but the brain 2-oxo acid dehydrogenases are inactivated despite unchanged coenzyme levels.

    Science.gov (United States)

    Parkhomenko, Yulia M; Kudryavtsev, Pavel A; Pylypchuk, Svetlana Yu; Chekhivska, Lilia I; Stepanenko, Svetlana P; Sergiichuk, Andrej A; Bunik, Victoria I

    2011-06-01

    Thiamine-dependent changes in alcoholic brain were studied using a rat model. Brain thiamine and its mono- and diphosphates were not reduced after 20 weeks of alcohol exposure. However, alcoholism increased both synaptosomal thiamine uptake and thiamine diphosphate synthesis in brain, pointing to mechanisms preserving thiamine diphosphate in the alcoholic brain. In spite of the unchanged level of the coenzyme thiamine diphosphate, activities of the mitochondrial 2-oxoglutarate and pyruvate dehydrogenase complexes decreased in alcoholic brain. The inactivation of pyruvate dehydrogenase complex was caused by its increased phosphorylation. The inactivation of 2-oxoglutarate dehydrogenase complex (OGDHC) correlated with a decrease in free thiols resulting from an elevation of reactive oxygen species. Abstinence from alcohol following exposure to alcohol reactivated OGDHC along with restoration of the free thiol content. However, restoration of enzyme activity occurred before normalization of reactive oxygen species levels. Hence, the redox status of cellular thiols mediates the action of oxidative stress on OGDHC in alcoholic brain. As a result, upon chronic alcohol consumption, physiological mechanisms to counteract the thiamine deficiency and silence pyruvate dehydrogenase are activated in rat brain, whereas OGDHC is inactivated due to impaired antioxidant ability. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  11. [Evaluation of serum PIVKA-II by Lumipulse PrestoII assay].

    Science.gov (United States)

    Hiramatsu, Kumiko; Tanaka, Yasuhito; Takagi, Kazumi; Kani, Satomi; Goto, Takaaki; Takasaka, Yoshimitsu; Matsuura, Kentaro; Sugauchi, Fuminaka; Moriyama, Kazushige; Murakami, Hiroshi; Kitajima, Sachiko; Mizokami, Masashi

    2009-03-01

    Measurements of serum concentrations of Des-gamma-carboxy Prothrombin (PIVKA-II) are widely used for diagnosing hepatocellular carcinoma (HCC). Recently, in Lumipulsef assay, it was reported that antibodies against alkaline phosphatase (ALP) derived from anti bleeding sheets led false high values of PIVKA-II in the patients with HCC resection. To improve the previous issue, newly developed Lumipulse PrestoII assay was examined. (1) The assay was reliable and positively correlated with the previous assays (Lumipulse f and Picolumi, R = 0.997 and 0.994 (n=115), respectively). (2) Eleven cases, which had false high values of PIVKA-II by the Lumipulsef assay, were examined by the PrestoII assay with excess of inactive ALP. The false high values of 10 cases were improved, but only one was still high. False reactivity of this case was stronger than other cases, more effective adsorption was required. (3) Comparing the absorbent activity of inactive ALP among 6 different kinds, we found inactive ALP with much higher adsorbent activity. When this inactive ALP was applied to assay, false high values of PIVKA-II were improved in all 11 cases. In conclusion, the PrestoII assay, which applies the inactive ALP with high activity, is reliable and useful for clinical screening.

  12. (II) COMPLEX COMPOUND

    African Journals Online (AJOL)

    user

    electrochemical sensors, as well as in various chromatographic ... were carried out using Jenway pH meter Model 3320 and a conductivity ... Figure 1: the proposed molecular structure of the copper (II) Schiff base complex. M = Cu (II) or Mn (II).

  13. IGF-II receptors and IGF-II-stimulated glucose transport in human fat cells

    International Nuclear Information System (INIS)

    Sinha, M.K.; Buchanan, C.; Raineri-Maldonado, C.; Khazanie, P.; Atkinson, S.; DiMarchi, R.; Caro, J.F.

    1990-01-01

    Insulin-like growth factor II (IGF-II) receptors have been described in rat but not in human adipocytes. In both species, IGF-II has been reported to stimulate glucose transport by interacting with the insulin receptor. In this study, we have unequivocally demonstrated the presence of IGF-II receptors in human adipocytes. 125I-labeled IGF-II specifically binds to intact adipocytes, membranes, and lectin-purified detergent solubilized extracts. Through the use of 0.5 mM disuccinimidyl suberate, 125I-IGF-II is cross-linked to a 260-kDa protein that is identified as the IGF-II receptor by displacement experiments with unlabeled IGF-II, IGF-I, and insulin and either by immunoprecipitation or by Western blot analysis with mannose 6-phosphate receptor antibodies. The concentrations of IGF-II required for half-maximal and maximal stimulation of glucose transport in human adipocytes are 35 and 100 times more than that of insulin. The possibility of IGF-II stimulating glucose transport by interacting predominantly with the insulin receptor is suggested by the following: (1) the concentration of IGF-II that inhibits half of insulin binding is only 20 times more than that of insulin; (2) the lack of an additive effect of IGF-II and insulin for maximal stimulation of glucose transport; (3) the ability of monoclonal insulin receptor antibodies to decrease glucose transport stimulated by submaximal concentrations of both IGF-II and insulin; and (4) the ability of IGF-II to stimulate insulin receptor autophosphorylation albeit at a reduced potency when compared with insulin

  14. Emodin (1,3,8-trihydroxy-6-methylanthraquinone): a spectrophotometric reagent for the determination of beryllium(II), magnesium(II) and calcium(II)

    International Nuclear Information System (INIS)

    Pal, T.; Jana, N.R.

    1993-01-01

    The individual determination of Be II , Mg II or Ca II by conventional spectrophotometry and simultaneous determination of Mg II and Ca II in mixtures by first-derivative spectrophotometry are possible at trace levels, using emodin (1,3,8-trihydroxy-6-methylanthraquinone) as spectrophotometric reagent. Interference from other metal species, application of these methods to rock samples and statistical analysis of the results are discussed. (author)

  15. Synthesis and studies on Cu(II), Co(II), Ni(II) complexes of Knoevenagel β-diketone ligands

    Science.gov (United States)

    Sumathi, S.; Tharmaraj, P.; Sheela, C. D.; Anitha, C.

    2012-11-01

    Transition metal complexes of various acetylacetone based ligands of the type ML [where M = Cu(II), Ni(II), Co(II); L = 3-(aryl)-pentane-2,4-dione] have been synthesized. The structural features have been derived from their elemental analysis, magnetic susceptibility, molar conductance, IR, UV-Vis, 1H NMR, Mass and ESR spectral studies. Conductivity measurements reveal that all the complexes are non-electrolytic in nature. Spectroscopic and other analytical data of the complexes suggest octahedral geometry for other metal(II) complexes. The redox behavior of the copper(II) complexes have been studied by cyclic voltammetry. The free ligands and their metal complexes have been screened for their in vitro biological activities against the bacteria Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus as well as the fungus Candida albicans by well diffusion method. The zone of inhibition value indicates that the most of the metal(II) complexes are found to possess increased activities compared to those of the free ligands. All synthesized compounds may serve as potential photoactive materials as indicated from their characteristic fluorescence properties. The second harmonic generation (SHG) efficiency of the ligands (L1-L3) was found to be considerable effect than that of urea and KDP (potassium dihydrogen phosphate).

  16. Bis(tripyrazol-1-ylmethanenickel(II tetracyanidonickelate(II dihydrate

    Directory of Open Access Journals (Sweden)

    Sean Parkin

    2009-12-01

    Full Text Available The title complex, [Ni(C10H10N62][Ni(CN4]·2H2O, contains an octahedral nickel(II cation and a square-planar nickel(II anion. Both the cation and the anion reside on a crystallographic center of inversion. The NiII center in the cation is coordinated by six pyrazol-1-yl rings of two chelating tripyrazol-1-ylmethane [HC(pz3] ligands, with Ni—N distances that range between 2.0647 (19 and 2.0828 (19 Å. The NiII center in the anion is coordinated by four cyanide ligands, with Ni—C distances in the range 1.869 (2–1.869 (3 Å. The [Ni(CN4]2− anions are linked by inversion-related water molecules into extended chains that run parallel to the a axis.

  17. Cardiac dysfunction and peri-weaning mortality in malonyl-coenzyme A decarboxylase (MCD) knockout mice as a consequence of restricting substrate plasticity.

    Science.gov (United States)

    Aksentijević, Dunja; McAndrew, Debra J; Karlstädt, Anja; Zervou, Sevasti; Sebag-Montefiore, Liam; Cross, Rebecca; Douglas, Gillian; Regitz-Zagrosek, Vera; Lopaschuk, Gary D; Neubauer, Stefan; Lygate, Craig A

    2014-10-01

    Inhibition of malonyl-coenzyme A decarboxylase (MCD) shifts metabolism from fatty acid towards glucose oxidation, which has therapeutic potential for obesity and myocardial ischemic injury. However, ~40% of patients with MCD deficiency are diagnosed with cardiomyopathy during infancy. To clarify the link between MCD deficiency and cardiac dysfunction in early life and to determine the contributing systemic and cardiac metabolic perturbations. MCD knockout mice ((-/-)) exhibited non-Mendelian genotype ratios (31% fewer MCD(-/-)) with deaths clustered around weaning. Immediately prior to weaning (18days) MCD(-/-) mice had lower body weights, elevated body fat, hepatic steatosis and glycogen depletion compared to wild-type littermates. MCD(-/-) plasma was hyperketonemic, hyperlipidemic, had 60% lower lactate levels and markers of cellular damage were elevated. MCD(-/-) hearts exhibited hypertrophy, impaired ejection fraction and were energetically compromised (32% lower total adenine nucleotide pool). However differences between WT and MCD(-/-) converged with age, suggesting that, in surviving MCD(-/-) mice, early cardiac dysfunction resolves over time. These observations were corroborated by in silico modelling of cardiomyocyte metabolism, which indicated improvement of the MCD(-/-) metabolic phenotype and improved cardiac efficiency when switched from a high-fat diet (representative of suckling) to a standard post-weaning diet, independent of any developmental changes. MCD(-/-) mice consistently exhibited cardiac dysfunction and severe metabolic perturbations while on a high-fat, low carbohydrate diet of maternal milk and these gradually resolved post-weaning. This suggests that dysfunction is a common feature of MCD deficiency during early development, but that severity is dependent on composition of dietary substrates. Copyright © 2014. Published by Elsevier Ltd.

  18. Synthesis and properties of complexes of copper(II), nickel(II), cobalt(II) and uranyl ions with 3-(p-tolylsulphonamido)rhodamine

    International Nuclear Information System (INIS)

    El-Bindary, A.A.; El-Sonbati, A.Z.

    2000-01-01

    Metal complexes of copper(II), nickel(II), cobalt(II) and uranyl ions with 3-(p-tolylsulphonamido)rhodamine (HL) have been prepared and characterized by chemical and thermal analyses, molar conductivity , magnetic susceptibility measurements, and infrared, electronic and EPR spectra. The visible and EPR spectra indicated that the Cu(II) complex has a tetragonal geometry. From EPR spectrum of the Cu(II) complex,various parameters were calculated. The crystal field parameters of Ni(II) complex were calculated and were found to agree fairly well with the values reported for known square pyramidal complexes. The infrared spectral studies showed a monobasic bidentate behaviour with the oxygen and nitrogen donor system. Thermal stabilities of the complexes are also reported. (author)

  19. Adsorption study of cadmium (II) and lead (II) on radish peels

    International Nuclear Information System (INIS)

    Anwar, J.; Shafique, U.; Salman, M.; Zaman, W.; Memoona, M.

    2009-01-01

    The removal efficiency of heavy metals like Cd(II) and Pb(II) from aqueous solutions by adsorption on Raphanus sativus (Radish peels) has been studied. The effects of time, pH, concentration of adsorbent and agitation speed on adsorption have been evaluated. It is found that radish peels powder has high removal efficiency for both the metals. Batch adsorption study has shown that Cd(II) and Pb(II) has been removed up to 88% and 86% respectively. Adsorption equilibriums for both metals have been described by the Langmuir isotherm. The maximum amount of heavy metals (Q ) adsorbed at max equilibrium were 7.5 and 1.23 mg/g for Cd(II) and Pb(II) respectively as evaluated by Langmuir isotherm. It is concluded that waste materials like radish peels can be used for removal of heavy metals from aqueous streams. (author)

  20. Induction of Neuron-Specific Degradation of Coenzyme A Models Pantothenate Kinase-Associated Neurodegeneration by Reducing Motor Coordination in Mice.

    Directory of Open Access Journals (Sweden)

    Stephanie A Shumar

    Full Text Available Pantothenate kinase-associated neurodegeneration, PKAN, is an inherited disorder characterized by progressive impairment in motor coordination and caused by mutations in PANK2, a human gene that encodes one of four pantothenate kinase (PanK isoforms. PanK initiates the synthesis of coenzyme A (CoA, an essential cofactor that plays a key role in energy metabolism and lipid synthesis. Most of the mutations in PANK2 reduce or abolish the activity of the enzyme. This evidence has led to the hypothesis that lower CoA might be the underlying cause of the neurodegeneration in PKAN patients; however, no mouse model of the disease is currently available to investigate the connection between neuronal CoA levels and neurodegeneration. Indeed, genetic and/or dietary manipulations aimed at reducing whole-body CoA synthesis have not produced a desirable PKAN model, and this has greatly hindered the discovery of a treatment for the disease.Cellular CoA levels are tightly regulated by a balance between synthesis and degradation. CoA degradation is catalyzed by two peroxisomal nudix hydrolases, Nudt7 and Nudt19. In this study we sought to reduce neuronal CoA in mice through the alternative approach of increasing Nudt7-mediated CoA degradation. This was achieved by combining the use of an adeno-associated virus-based expression system with the synapsin (Syn promoter. We show that mice with neuronal overexpression of a cytosolic version of Nudt7 (scAAV9-Syn-Nudt7cyt exhibit a significant decrease in brain CoA levels in conjunction with a reduction in motor coordination. These results strongly support the existence of a link between CoA levels and neuronal function and show that scAAV9-Syn-Nudt7cyt mice can be used to model PKAN.

  1. OleA Glu117 is key to condensation of two fatty-acyl coenzyme A substrates in long-chain olefin biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Matthew R.; Goblirsch, Brandon R.; Christenson, James K.; Esler, Morgan A.; Mohamed, Fatuma A.; Wackett, Lawrence P.; Wilmot, Carrie M. (UMM)

    2017-10-12

    In the interest of decreasing dependence on fossil fuels, microbial hydrocarbon biosynthesis pathways are being studied for renewable, tailored production of specialty chemicals and biofuels. One candidate is long-chain olefin biosynthesis, a widespread bacterial pathway that produces waxy hydrocarbons. Found in three- and four-gene clusters, oleABCD encodes the enzymes necessary to produce cis-olefins that differ by alkyl chain length, degree of unsaturation, and alkyl chain branching. The first enzyme in the pathway, OleA, catalyzes the Claisen condensation of two fatty acyl-coenzyme A (CoA) molecules to form a β-keto acid. In this report, the mechanistic role of Xanthomonas campestris OleA Glu117 is investigated through mutant enzymes. Crystal structures were determined for each mutant as well as their complex with the inhibitor cerulenin. Complemented by substrate modeling, these structures suggest that Glu117 aids in substrate positioning for productive carbon–carbon bond formation. Analysis of acyl-CoA substrate hydrolysis shows diminished activity in all mutants. When the active site lacks an acidic residue in the 117 position, OleA cannot form condensed product, demonstrating that Glu117 has a critical role upstream of the essential condensation reaction. Profiling of pH dependence shows that the apparent pKa for Glu117 is affected by mutagenesis. Taken together, we propose that Glu117 is the general base needed to prime condensation via deprotonation of the second, non-covalently bound substrate during turnover. This is the first example of a member of the thiolase superfamily of condensing enzymes to contain an active site base originating from the second monomer of the dimer.

  2. Genetic Rescue of Mitochondrial and Skeletal Muscle Impairment in an Induced Pluripotent Stem Cells Model of Coenzyme Q10 Deficiency.

    Science.gov (United States)

    Romero-Moya, Damià; Santos-Ocaña, Carlos; Castaño, Julio; Garrabou, Gloria; Rodríguez-Gómez, José A; Ruiz-Bonilla, Vanesa; Bueno, Clara; González-Rodríguez, Patricia; Giorgetti, Alessandra; Perdiguero, Eusebio; Prieto, Cristina; Moren-Nuñez, Constanza; Fernández-Ayala, Daniel J; Victoria Cascajo, Maria; Velasco, Iván; Canals, Josep Maria; Montero, Raquel; Yubero, Delia; Jou, Cristina; López-Barneo, José; Cardellach, Francesc; Muñoz-Cánoves, Pura; Artuch, Rafael; Navas, Plácido; Menendez, Pablo

    2017-07-01

    Coenzyme Q 10 (CoQ 10 ) plays a crucial role in mitochondria as an electron carrier within the mitochondrial respiratory chain (MRC) and is an essential antioxidant. Mutations in genes responsible for CoQ 10 biosynthesis (COQ genes) cause primary CoQ 10 deficiency, a rare and heterogeneous mitochondrial disorder with no clear genotype-phenotype association, mainly affecting tissues with high-energy demand including brain and skeletal muscle (SkM). Here, we report a four-year-old girl diagnosed with minor mental retardation and lethal rhabdomyolysis harboring a heterozygous mutation (c.483G > C (E161D)) in COQ4. The patient's fibroblasts showed a decrease in [CoQ 10 ], CoQ 10 biosynthesis, MRC activity affecting complexes I/II + III, and respiration defects. Bona fide induced pluripotent stem cell (iPSCs) lines carrying the COQ4 mutation (CQ4-iPSCs) were generated, characterized and genetically edited using the CRISPR-Cas9 system (CQ4 ed -iPSCs). Extensive differentiation and metabolic assays of control-iPSCs, CQ4-iPSCs and CQ4 ed -iPSCs demonstrated a genotype association, reproducing the disease phenotype. The COQ4 mutation in iPSC was associated with CoQ 10 deficiency, metabolic dysfunction, and respiration defects. iPSC differentiation into SkM was compromised, and the resulting SkM also displayed respiration defects. Remarkably, iPSC differentiation in dopaminergic or motor neurons was unaffected. This study offers an unprecedented iPSC model recapitulating CoQ 10 deficiency-associated functional and metabolic phenotypes caused by COQ4 mutation. Stem Cells 2017;35:1687-1703. © 2017 AlphaMed Press.

  3. The effect of short-term coenzyme Q10 supplementation and pre-cooling strategy on cardiac damage markers in elite swimmers.

    Science.gov (United States)

    Emami, Ali; Tofighi, Asghar; Asri-Rezaei, Siamak; Bazargani-Gilani, Behnaz

    2018-02-01

    Strenuous physical exercise and hyperthermia may paradoxically induce oxidative stress and adverse effects on myocardial function. The purpose of this study was to investigate the effect of 14-d coenzyme Q10 (CoQ10) supplementation and pre-cooling on serum creatine kinase-MB (CK-MB), cardiac Troponin I (cTnI), myoglobin (Mb), lactate dehydrogenase (LD), total antioxidant capacity (TAC), lipid peroxidation (LPO) and CoQ10 concentration in elite swimmers. In total, thirty-six healthy males (mean age 17 (sd 1) years) were randomly selected and divided into four groups of supplementation, supplementation with pre-cooling, pre-cooling and control. During an eighteen-session protocol in the morning and evening, subjects attended speed and endurance swimming training sessions for 5 km in each session. Blood sampling was done before (two stages) and after (two stages) administration of CoQ10 and pre-cooling. ANCOVA and repeated measurement tests with Bonferroni post hoc test were used for the statistical analysis of the data. There was no significant statistical difference among groups for the levels of CK-MB, cTnI, Mb, LD, TAC, LPO and CoQ10 at the presampling (stages 1 and 2) (P>0·05). However, pre-cooling and control groups show a significant increase in the levels of CK-MB, cTnI, Mb, LD and LPO compared with the supplementation and supplementation with pre-cooling groups in the post-sampling (stages 1 and 2) (Pcompetition phase. Meanwhile, the pre-cooling strategy individually has no desired effect on the levels of CK-MB, cTnI, Mb, LD, LPO, TAC and CoQ10.

  4. Effect of Polyhydroxybutyrate (PHB) storage on L-arginine production in recombinant Corynebacterium crenatum using coenzyme regulation.

    Science.gov (United States)

    Xu, Meijuan; Qin, Jingru; Rao, Zhiming; You, Hengyi; Zhang, Xian; Yang, Taowei; Wang, Xiaoyuan; Xu, Zhenghong

    2016-01-19

    Corynebacterium crenatum SYPA 5 is the industrial strain for L-arginine production. Poly-β-hydroxybutyrate (PHB) is a kind of biopolymer stored as bacterial reserve materials for carbon and energy. The introduction of the PHB synthesis pathway into several strains can regulate the global metabolic pathway. In addition, both the pathways of PHB and L-arginine biosynthesis in the cells are NADPH-dependent. NAD kinase could upregulate the NADPH concentration in the bacteria. Thus, it is interesting to investigate how both PHB and NAD kinase affect the L-arginine biosynthesis in C. crenatum SYPA 5. C. crenatum P1 containing PHB synthesis pathway was constructed and cultivated in batch fermentation for 96 h. The enzyme activities of the key enzymes were enhanced comparing to the control strain C. crenatum SYPA 5. More PHB was found in C. crenatum P1, up to 12.7 % of the dry cell weight. Higher growth level and enhanced glucose consumptions were also observed in C. crenatum P1. With respect to the yield of L-arginine, it was 38.54 ± 0.81 g/L, increasing by 20.6 %, comparing to the control under the influence of PHB accumulation. For more NADPH supply, C. crenatum P2 was constructed with overexpression of NAD kinase based on C. crenatum P1. The NADPH concentration was increased in C. crenatum P2 comparing to the control. PHB content reached 15.7 % and 41.11 ± 1.21 g/L L-arginine was obtained in C. crenatum P2, increased by 28.6 %. The transcription levels of key L-arginine synthesis genes, argB, argC, argD and argJ in recombinant C. crenatum increased 1.9-3.0 times compared with the parent strain. Accumulation of PHB by introducing PHB synthesis pathway, together with up-regulation of coenzyme level by overexpressing NAD kinase, enables the recombinant C. crenatum to serve as high-efficiency cell factories in the long-time L-arginine fermentation. Furthermore, batch cultivation of the engineered C. crenatum revealed that it could accumulate both extracellular L

  5. TetR Family Transcriptional Regulator PccD Negatively Controls Propionyl Coenzyme A Assimilation in Saccharopolyspora erythraea.

    Science.gov (United States)

    Xu, Zhen; Wang, Miaomiao; Ye, Bang-Ce

    2017-10-15

    Propanol stimulates erythromycin biosynthesis by increasing the supply of propionyl coenzyme A (propionyl-CoA), a starter unit of erythromycin production in Saccharopolyspora erythraea Propionyl-CoA is assimilated via propionyl-CoA carboxylase to methylmalonyl-CoA, an extender unit of erythromycin. We found that the addition of n -propanol or propionate caused a 4- to 16-fold increase in the transcriptional levels of the SACE_3398-3400 locus encoding propionyl-CoA carboxylase, a key enzyme in propionate metabolism. The regulator PccD was proved to be directly involved in the transcription regulation of the SACE_3398-3400 locus by EMSA and DNase I footprint analysis. The transcriptional levels of SACE_3398-3400 were upregulated 15- to 37-fold in the pccD gene deletion strain (Δ pccD ) and downregulated 3-fold in the pccD overexpression strain (WT/pIB- pccD ), indicating that PccD was a negative transcriptional regulator of SACE_3398-3400. The Δ pccD strain has a higher growth rate than that of the wild-type strain (WT) on Evans medium with propionate as the sole carbon source, whereas the growth of the WT/pIB- pccD strain was repressed. As a possible metabolite of propionate metabolism, methylmalonic acid was identified as an effector molecule of PccD and repressed its regulatory activity. A higher level of erythromycin in the Δ pccD strain was observed compared with that in the wild-type strain. Our study reveals a regulatory mechanism in propionate metabolism and suggests new possibilities for designing metabolic engineering to increase erythromycin yield. IMPORTANCE Our work has identified the novel regulator PccD that controls the expression of the gene for propionyl-CoA carboxylase, a key enzyme in propionyl-CoA assimilation in S. erythraea PccD represses the generation of methylmalonyl-CoA through carboxylation of propionyl-CoA and reveals an effect on biosynthesis of erythromycin. This finding provides novel insight into propionyl-CoA assimilation, and

  6. New complexes of Co(II, Ni(II, Cu(II with Schiff base N,N’-bis-(3-methoxy-saliciliden-3,3’-dimethylbenzidine

    Directory of Open Access Journals (Sweden)

    Alan Ionela

    2013-01-01

    Full Text Available The new N,N’-bis-(3-methoxy-saliciliden-3,3’-dimetilbenzidine (H2L Schiff base and complexes with Co(II, Ni(II and Cu(II of type [M(HLCl(H2O] (M=Co(II, Cu(II [M2L(H2O4]X2 (M=Co(II, X=ClO4 and M=Cu(II, X=NO3 and [M2L(CH3COO2] (M=Co(II, Ni(II, Cu(II were synthesised. The ligand and complexes were characterized by elemental analysis, conductibility measurements, magnetic moments at room temperature, IR, NMR, UV-VIS-NIR, EPR spectra and thermogravimetric analysis. A molar ratio of 1:1 or 1:2 between ligand and metal was determined from the elemental analysis. Except for perchlorate complex that behave as electrolyte, the rest of complexes are non-electrolytes. The spectral data suggest a tetrahedral, pseudo-tetrahedral or square-planar stereochemistry respectively, data confirmed by magnetic behaviour of complexes. The antimicrobial tests indicate a fungicide effect both for ligand and complexes.

  7. and copper(II)

    Indian Academy of Sciences (India)

    Unknown

    (II) and copper(II)–zinc(II) complexes. SUBODH KUMAR1, R N PATEL1*, P V KHADIKAR1 and. K B PANDEYA2. 1 Department of Chemistry, APS University, Rewa 486 003, India. 2 CSJM University, Kanpur 208 016, India e-mail: (R N Patel) ...

  8. Determination of Lead(II), Cadmium(II) and Copper(II) in Waste-Water and Soil Extracts on Mercury Film Screen-Printed Carbon Electrodes Sensor

    International Nuclear Information System (INIS)

    Mohd Fairulnizal Md Noh; Tothill, I.E.

    2011-01-01

    A sensor incorporating a three electrodes configuration have been fabricated using low cost screen-printing technology. These electrodes couples with Square Wave Stripping Voltammetry (SWSV) has provided a convenient screening tool for on-site detection of trace levels of Pb(II), Cd(II) and Cu(II). Modification of the graphite carbon surface based on in situ deposition of mercury film has been carried out. By appropriate choice of supporting medium and optimized parameters setting such as amount of mercury used the deposition potential, deposition time, frequency and scan rate, well resolved and reproducible response for Pb(II), Cd(II) and Cu(II) were obtained. The performance characteristics of the developed mercury film screen printed carbon electrode (MFSPCE) for 120 s deposition time showed that the linear range for Cd(II), Pb(II) and Cu(II) were 10 to 200 μg L -1 . The detection limit recorded for Cd(II), Pb(II) and Cu(II) were 2, 1 and 5 μg L -1 with relative standard deviation (RSD) of 6.5 %, 6.9 % and 7.5 %, respectively. Successful applications of the sensing device to waste-water and extracted soil samples were demonstrated. (author)

  9. Kinetic and spectroscopic investigation of CoII, NiII, and N-oxalylglycine inhibition of the FeII/α-ketoglutarate dioxygenase, TauD

    International Nuclear Information System (INIS)

    Kalliri, Efthalia; Grzyska, Piotr K.; Hausinger, Robert P.

    2005-01-01

    Co II , Ni II , and N-oxalylglycine (NOG) are well-known inhibitors of Fe II /α-ketoglutarate (αKG)-dependent hydroxylases, but few studies describe their kinetics and no spectroscopic investigations have been reported. Using taurine/αKG dioxygenase (TauD) as a paradigm for this enzyme family, time-dependent inhibition assays showed that Co II and Ni II follow slow-binding inhibition kinetics. Whereas Ni II -substituted TauD was non-chromophoric, spectroscopic studies of the Co II -substituted enzyme revealed a six-coordinate site (protein alone or with αKG) that became five-coordinate upon taurine addition. The Co II spectrum was not perturbed by a series of anions or oxidants, suggesting the Co II is inaccessible and could be used to stabilize the protein. NOG competed weakly (K i ∼ 290 μM) with αKG for binding to TauD, with the increased electron density of NOG yielding electronic transitions for NOG-Fe II -TauD and taurine-NOG-Fe II -TauD at 380 nm (ε 38 90-105 M -1 cm -1 ). The spectra of the NOG-bound TauD species did not change significantly upon oxygen exposure, arguing against the formation of an oxygen-bound state mimicking an early intermediate in catalysis

  10. II-VI semiconductor compounds

    CERN Document Server

    1993-01-01

    For condensed matter physicists and electronic engineers, this volume deals with aspects of II-VI semiconductor compounds. Areas covered include devices and applications of II-VI compounds; Co-based II-IV semi-magnetic semiconductors; and electronic structure of strained II-VI superlattices.

  11. Syntheses, structures, and properties of imidazolate-bridged Cu(II)-Cu(II) and Cu(II)-Zn(II) dinuclear complexes of a single macrocyclic ligand with two hydroxyethyl pendants.

    Science.gov (United States)

    Li, Dongfeng; Li, Shuan; Yang, Dexi; Yu, Jiuhong; Huang, Jin; Li, Yizhi; Tang, Wenxia

    2003-09-22

    The imidazolate-bridged homodinuclear Cu(II)-Cu(II) complex, [(CuimCu)L]ClO(4).0.5H(2)O (1), and heterodinuclear Cu(II)-Zn(II) complex, [(CuimZnL(-)(2H))(CuimZnL(-)(H))](ClO(4))(3) (2), of a single macrocyclic ligand with two hydroxyethyl pendants, L (L = 3,6,9,16,19,22-hexaaza-6,19-bis(2-hydroxyethyl)tricyclo[22,2,2,2(11,14)]triaconta-1,11,13,24,27,29-hexaene), have been synthesized as possible models for copper-zinc superoxide dismutase (Cu(2),Zn(2)-SOD). Their crystal structures analyzed by X-ray diffraction methods have shown that the structures of the two complexes are markedly different. Complex 1 crystallizes in the orthorhombic system, containing an imidazolate-bridged dicopper(II) [Cu-im-Cu](3+) core, in which the two copper(II) ions are pentacoordinated by virtue of an N4O environment with a Cu.Cu distance of 5.999(2) A, adopting the geometry of distorted trigonal bipyramid and tetragonal pyramid, respectively. Complex 2 crystallizes in the triclinic system, containing two similar Cu-im-Zn cores in the asymmetric unit, in which both the Cu(II) and Zn(II) ions are pentacoordinated in a distorted trigonal bipyramid geometry, with the Cu.Zn distance of 5.950(1)/5.939(1) A, respectively. Interestingly, the macrocyclic ligand with two arms possesses a chairlike (anti) conformation in complex 1, but a boatlike (syn) conformation in complex 2. Magnetic measurements and ESR spectroscopy of complex 1 have revealed the presence of an antiferromagnetic exchange interaction between the two Cu(II) ions. The ESR spectrum of the Cu(II)-Zn(II) heterodinuclear complex 2 displayed a typical signal for mononuclear trigonal bipyramidal Cu(II) complexes. From pH-dependent ESR and electronic spectroscopic studies, the imidazolate bridges in the two complexes have been found to be stable over broad pH ranges. The cyclic voltammograms of the two complexes have been investigated. Both of the two complexes can catalyze the dismutation of superoxide and show rather high activity.

  12. Coupled Ferredoxin and Crotonyl Coenzyme A (CoA) Reduction with NADH Catalyzed by the Butyryl-CoA Dehydrogenase/Etf Complex from Clostridium kluyveri▿ †

    Science.gov (United States)

    Li, Fuli; Hinderberger, Julia; Seedorf, Henning; Zhang, Jin; Buckel, Wolfgang; Thauer, Rudolf K.

    2008-01-01

    Cell extracts of butyrate-forming clostridia have been shown to catalyze acetyl-coenzyme A (acetyl-CoA)- and ferredoxin-dependent formation of H2 from NADH. It has been proposed that these bacteria contain an NADH:ferredoxin oxidoreductase which is allosterically regulated by acetyl-CoA. We report here that ferredoxin reduction with NADH in cell extracts from Clostridium kluyveri is catalyzed by the butyryl-CoA dehydrogenase/Etf complex and that the acetyl-CoA dependence previously observed is due to the fact that the cell extracts catalyze the reduction of acetyl-CoA with NADH via crotonyl-CoA to butyryl-CoA. The cytoplasmic butyryl-CoA dehydrogenase complex was purified and is shown to couple the endergonic reduction of ferredoxin (E0′ = −410 mV) with NADH (E0′ = −320 mV) to the exergonic reduction of crotonyl-CoA to butyryl-CoA (E0′ = −10 mV) with NADH. The stoichiometry of the fully coupled reaction is extrapolated to be as follows: 2 NADH + 1 oxidized ferredoxin + 1 crotonyl-CoA = 2 NAD+ + 1 ferredoxin reduced by two electrons + 1 butyryl-CoA. The implications of this finding for the energy metabolism of butyrate-forming anaerobes are discussed in the accompanying paper. PMID:17993531

  13. Syntheses of polystyrene supported chelating resin containing the Schiff base derived from salicylaldehyde and triethylene tetramine and its copper(II), nickel(II), cobalt(II), iron(III), zinc(II), cadmium(II), molybdenum(VI), zirconium(IV) and uranium(VI) complexes

    International Nuclear Information System (INIS)

    Syamal, A.; Singh, M.M.

    1998-01-01

    A new polymer-anchored chelating ligand has been synthesized by the reaction of chloromethylated polystyrene (containing 0.94 mmol of Cl per gram of resin and 1% cross-linked with divinylbenzene) and the Schiff base derived from salicylaldehyde and triethylenetetramine. A new series of polystyrene supported, Cu(II), Ni(II), Co(II), Fe(III), Zn(II), Cd(II), Zr(IV), dioxomolybdenum (VI) and dioxouranium (VI) complexes of the formulae PS-LCu, PS-LNi, PS-LCo, PS-LFeCl.DMF, PS-LZn, PS-LCd, PS-LZr(OH) 2 . DMF, PS L MoO 2 and PS-LUO 2 (where PS-LH 2 = polymer-anchored Schiff base and DMF dimethyl-formamide) have been synthesized and characterised by elemental analysis, infrared, electronic spectra and magnetic susceptibility measurements. The complexes PS-LCu, PS-LNi and PS-LCo have square planar structure, PS-LFeCl.DMF, PS-LMoO 2 and PS-LUO 2 have octahedral structure, PS L Zn and PS-LCd are tetrahedral and PS-LZr(OH) 2 .DMF is pentagonal bipyramidal. The polymer-anchored Cu(II), Co(II) and Fe(III) complexes are paramagnetic while Ni(II), Zn(II), Cd(II), Zr(IV), dioxomolybdenum(VI) and dioxouranium(VI) complexes are diamagnetic. The negative shift of the v (C=N) (azomethine) and the positive shift of v (C--O)(phenolic) are indicative of ONNO donor behaviour of the polymer-anchored Schiff base. (author)

  14. DNA binding and biological activity of mixed ligand complexes of Cu(II, Ni(II and Co(II with quinolones and N donor ligand

    Directory of Open Access Journals (Sweden)

    S.M M Akram

    2015-10-01

    Full Text Available  AbstractMixed ligand complexes of  Cu(II, Ni(II and Co(II have been synthesized by using levofloxacin and bipyridyl and characterized using spectral and analytical techniques. The binding behavior of the Ni(II and Cu(II complexes with herring sperm DNA(Hs-DNA were determined using electronic absorption titration, viscometric measurements and cyclic voltammetry measurements. The binding constant calculated  for Cu(II and Ni(II complexes are 2.0 x 104 and 4.0 x 104 M-1 respectively. Detailed analysis reveals that these metal complexes interact with DNA through intercalative binding mode. The nuclease activity of  Cu(II and Ni(II complexes with ct-DNA was carried out using agarose gel electrophoresis technique. The antioxidant activities for the synthesized complexes have been tested and the antibacterial activity for Ni(II complex was also checked.Key words: Intercalation, hypochromism, red shift and  peak potential.

  15. Mixed ligand complexes of alkaline earth metals: Part XII. Mg(II, Ca(II, Sr(II and Ba(II complexes with 5-chlorosalicylaldehyde and salicylaldehyde or hydroxyaromatic ketones

    Directory of Open Access Journals (Sweden)

    MITHLESH AGRAWAL

    2002-04-01

    Full Text Available The reactions of alkaline earth metal chlorides with 5-chlorosalicylaldehyde and salicylaldehyde, 2-hydroxyacetophenone or 2-hydroxypropiophenone have been carried out in 1 : 1 : 1 mole ratio and the mixed ligand complexes of the type MLL’(H2O2 (where M = Mg(II, Ca(II, Sr(II and Ba(II, HL = 5-chlorosalicylaldehyde and HL’ = salicylaldehyde, 2-hydroxyacetophenone or 2-hydroxypropiophenone have been isolated. These complexes were characterized by TLC, conductance measurements, IR and 1H-NMR spectra.

  16. Intrafibrillar Mineral May be Absent in Dentinogenesis Imperfecta Type II (DI-II)

    Energy Technology Data Exchange (ETDEWEB)

    Pople, John A

    2001-03-29

    High-resolution synchrotron radiation computed tomography (SRCT) and small angle x-ray scattering (SAXS) were performed on normal and dentinogenesis imperfecta type II (DI-II) teeth. Three normal and three DI-II human third molars were used in this study. The normal molars were unerupted and had intact enamel; donors were female and ranged in age from 18-21y. The DI-II specimens, which were also unerupted with intact enamel, came from a single female donor age 20y. SRCT showed that the mineral concentration was 33% lower on average in the DI-II dentin with respect to normal dentin. The SAXS spectra from normal dentin exhibited low-angle diffraction peaks at harmonics of 67.6 nm, consistent with nucleation and growth of the apatite phase within gaps in the collagen fibrils (intrafibrillar mineralization). In contrast, the low-angle peaks were almost nonexistent in the DI-II dentin. Crystallite thickness was independent of location in both DI-II and normal dentin, although the crystallites were significantly thicker in DI-II dentin (6.8 nm (s.d. = 0.5) vs 5.1 nm (s.d. = 0.6)). The shape factor of the crystallites, as determined by SAXS, showed a continuous progression in normal dentin from roughly one-dimensional (needle-like) near the pulp to two-dimensional (plate-like) near the dentin-enamel junction. The crystallites in DI-II dentin, on the other hand, remained needle-like throughout. The above observations are consistent with an absence of intrafibrillar mineral in DI-II dentin.

  17. Adsorption of Cu(II), Hg(II), and Ni(II) ions by modified natural wool chelating fibers

    International Nuclear Information System (INIS)

    Monier, M.; Ayad, D.M.; Sarhan, A.A.

    2010-01-01

    The graft copolymerization of ethyl acrylate (EA) onto natural wool fibers initiated by potassium persulphate and Mohr's salt redox initiator system in limited aqueous medium was carried out in heterogeneous media. Ester groups of the grafted copolymers were partially converted into hydrazide function groups followed by hydrazone formation through reaction with isatin. Also the application of the modified fibers for metal ion uptake was studied using Cu(II), Hg(II) and Ni(II). The modified chelating fibers were characterized using FTIR spectroscopy, SEM and X-ray diffraction.

  18. Cd(II and Pb(II complexes of the polyether ionophorous antibiotic salinomycin

    Directory of Open Access Journals (Sweden)

    Tanabe Makoto

    2011-09-01

    Full Text Available Abstract Background The natural polyether ionophorous antibiotics are used for the treatment of coccidiosis in poultry and ruminants. They are effective agents against infections caused by Gram-positive microorganisms. On the other hand, it was found that some of these compounds selectively bind lead(II ions in in vivo experiments, despite so far no Pb(II-containing compounds of defined composition have been isolated and characterized. To assess the potential of polyether ionophores as possible antidotes in the agriculture, a detailed study on their in vitro complexation with toxic metal ions is required. In the present paper we report for the first time the preparation and the structure elucidation of salinomycin complexes with ions of cadmium(II and lead(II. Results New metal(II complexes of the polyether ionophorous antibiotic salinomycin with Cd(II and Pb(II ions were prepared and structurally characterized by IR, FAB-MS and NMR techniques. The spectroscopic information and elemental analysis data reveal that sodium salinomycin (SalNa undergoes a reaction with heavy metal(II ions to form [Cd(Sal2(H2O2] (1 and [Pb(Sal(NO3] (2, respectively. Abstraction of sodium ions from the cavity of the antibiotic is occurring during the complexation reaction. Salinomycin coordinates with cadmium(II ions as a bidentate monoanionic ligand through the deprotonated carboxylic moiety and one of the hydroxyl groups to yield 1. Two salinomycin anions occupy the equatorial plane of the Cd(II center, while two water molecules take the axial positions of the inner coordination sphere of the metal(II cation. Complex 2 consists of monoanionic salinomycin acting in polydentate coordination mode in a molar ratio of 1: 1 to the metal ion with one nitrate ion for charge compensation. Conclusion The formation of the salinomycin heavy metal(II complexes indicates a possible antidote activity of the ligand in case of chronic/acute intoxications likely to occur in the stock

  19. Cd(II) and Pb(II) complexes of the polyether ionophorous antibiotic salinomycin

    Science.gov (United States)

    2011-01-01

    Background The natural polyether ionophorous antibiotics are used for the treatment of coccidiosis in poultry and ruminants. They are effective agents against infections caused by Gram-positive microorganisms. On the other hand, it was found that some of these compounds selectively bind lead(II) ions in in vivo experiments, despite so far no Pb(II)-containing compounds of defined composition have been isolated and characterized. To assess the potential of polyether ionophores as possible antidotes in the agriculture, a detailed study on their in vitro complexation with toxic metal ions is required. In the present paper we report for the first time the preparation and the structure elucidation of salinomycin complexes with ions of cadmium(II) and lead(II). Results New metal(II) complexes of the polyether ionophorous antibiotic salinomycin with Cd(II) and Pb(II) ions were prepared and structurally characterized by IR, FAB-MS and NMR techniques. The spectroscopic information and elemental analysis data reveal that sodium salinomycin (SalNa) undergoes a reaction with heavy metal(II) ions to form [Cd(Sal)2(H2O)2] (1) and [Pb(Sal)(NO3)] (2), respectively. Abstraction of sodium ions from the cavity of the antibiotic is occurring during the complexation reaction. Salinomycin coordinates with cadmium(II) ions as a bidentate monoanionic ligand through the deprotonated carboxylic moiety and one of the hydroxyl groups to yield 1. Two salinomycin anions occupy the equatorial plane of the Cd(II) center, while two water molecules take the axial positions of the inner coordination sphere of the metal(II) cation. Complex 2 consists of monoanionic salinomycin acting in polydentate coordination mode in a molar ratio of 1: 1 to the metal ion with one nitrate ion for charge compensation. Conclusion The formation of the salinomycin heavy metal(II) complexes indicates a possible antidote activity of the ligand in case of chronic/acute intoxications likely to occur in the stock farming

  20. Synthesis and characterization of zinc(II), cadmium(II) and mercury(II) complexes with bis(bidentate) Schiff bases

    International Nuclear Information System (INIS)

    Das, Mrinal Kanti; Ghosh, Shyamali

    1998-01-01

    A few Zn(II), Cd(II) and Hg(II) complexes of the bis(bidentate) Schiff bases derived from p-phenylenediamine and salicylaldehyde (H 2 Salpphen), and o-phenylenediamine and o-vanillin (H 2 Vanophen), of the type MCl 2 .H 2 L(H 2 L = H 2 Salpphen or H 2 Vanophen) have been synthesised. The complexes have been characterized by elemental analysis, infrared, 1 H and 13 C NMR and mass spectra. (author)

  1. Synthesis, characterization and biological studies of 2-(4-nitro phenylaminocarbonyl)benzoic acid and its complexes with Cr(III), Co(II), Ni(II), Cu(II) and Zn(II)

    International Nuclear Information System (INIS)

    Aqeel Ashraf, M.; Jamil Maah, M.; Yusuf, I.

    2012-01-01

    Cr(III), Co(II), Ni(II), Cu(II) and Zn(II) salts of 2-(4-nitro phenylaminocarbonyl)benzoic acid were characterized by physical, analytical and spectroscopic studies and checked for their in-vitro antimicrobial activity against three bacterial strains, Mycobacterium smegmatis (Gram +ve), Escherichia coli (Gram -ve), Pseudomonas aeuroginosa (Gram -ve) and three fungal strains, Nigrospora oryzae, Aspergillus niger and Candida albicans. The antimicrobial activities of the metal complexes - were found to be greater than those of 2-(4-nitro phenylaminocarbonyl)benzoic acid alone.

  2. Anaerobic p-coumarate degradation by Rhodopseudomonas palustris and identification of CouR, a MarR repressor protein that binds p-coumaroyl coenzyme A.

    Science.gov (United States)

    Hirakawa, Hidetada; Schaefer, Amy L; Greenberg, E Peter; Harwood, Caroline S

    2012-04-01

    The phenylpropanoid p-coumarate and structurally related aromatic compounds are produced in large amounts by green plants and are excellent carbon sources for many soil bacteria. Aerobic bacteria remove the acyl side chain from phenylpropanoids to leave an aromatic aldehyde, which then enters one of several possible central pathways of benzene ring degradation. We investigated the pathway for the anaerobic degradation of p-coumarate by the phototrophic bacterium Rhodopseudomonas palustris and found that it also follows this metabolic logic. We characterized enzymes for the conversion of p-coumarate to p-hydroxybenzaldehyde and acetyl coenzyme A (acetyl-CoA) encoded by the couAB operon. We also identified a MarR family transcriptional regulator that we named CouR. A couR mutant had elevated couAB expression. In addition, His-tagged CouR bound with high affinity to a DNA fragment encompassing the couAB promoter region, and binding was abrogated by the addition of nanomolar quantities of p-coumaroyl-CoA but not by p-coumarate. Footprinting demonstrated binding of CouR to an inverted repeat sequence that overlaps the -10 region of the couAB promoter. Our results provide evidence for binding of a CoA-modified aromatic compound by a MarR family member. Although the MarR family is widely distributed in bacteria and archaea and includes over 12,000 members, ligands have been identified for relatively few family members. Here we provide biochemical evidence for a new category of MarR ligand.

  3. Adsorption of Cu(II), Hg(II), and Ni(II) ions by modified natural wool chelating fibers

    Energy Technology Data Exchange (ETDEWEB)

    Monier, M., E-mail: monierchem@yahoo.com [Chemistry Department, Drexel University, Philadelphia, PA (United States); Chemistry Department, Faculty of Science, Mansoura University, Mansoura (Egypt); Ayad, D.M.; Sarhan, A.A. [Chemistry Department, Faculty of Science, Mansoura University, Mansoura (Egypt)

    2010-04-15

    The graft copolymerization of ethyl acrylate (EA) onto natural wool fibers initiated by potassium persulphate and Mohr's salt redox initiator system in limited aqueous medium was carried out in heterogeneous media. Ester groups of the grafted copolymers were partially converted into hydrazide function groups followed by hydrazone formation through reaction with isatin. Also the application of the modified fibers for metal ion uptake was studied using Cu(II), Hg(II) and Ni(II). The modified chelating fibers were characterized using FTIR spectroscopy, SEM and X-ray diffraction.

  4. Adsorption of Cu(II), Hg(II), and Ni(II) ions by modified natural wool chelating fibers.

    Science.gov (United States)

    Monier, M; Ayad, D M; Sarhan, A A

    2010-04-15

    The graft copolymerization of ethyl acrylate (EA) onto natural wool fibers initiated by potassium persulphate and Mohr's salt redox initiator system in limited aqueous medium was carried out in heterogeneous media. Ester groups of the grafted copolymers were partially converted into hydrazide function groups followed by hydrazone formation through reaction with isatin. Also the application of the modified fibers for metal ion uptake was studied using Cu(II), Hg(II) and Ni(II). The modified chelating fibers were characterized using FTIR spectroscopy, SEM and X-ray diffraction. 2009 Elsevier B.V. All rights reserved.

  5. Kinetic study on adsorption of Cr(VI), Ni(II), Cd(II) and Pb(II) ions from aqueous solutions using activated carbon prepared from Cucumis melo peel

    Science.gov (United States)

    Manjuladevi, M.; Anitha, R.; Manonmani, S.

    2018-03-01

    The adsorption of Cr(VI), Ni(II), Cd(II) and Pb(II), ions from aqueous solutions by Cucumis melo peel-activated carbon was investigated under laboratory conditions to assess its potential in removing metal ions. The adsorption behavior of metal ions onto CMAC was analyzed with Elovich, intra-particle diffusion rate equations and pseudo-first-order model. The rate constant of Elovich and intra-particle diffusion on CMAC increased in the sequence of Cr(VI) > Ni(II) > Cd(II) > Pb(II). According to the regression coefficients, it was observed that the kinetic adsorption data can fit better by the pseudo-first-order model compared to the second-order Lagergren's model with R 2 > 0.957. The maximum adsorption of metal ions onto the CMAC was found to be 97.95% for Chromium(VI), 98.78% for Ni(II), 98.55% for Pb(II) and 97.96% for Cd(II) at CMAC dose of 250 mg. The adsorption capacities followed the sequence Ni(II) ≈ Pb(II) > Cr(VI) ≈ Cd(II) and Ni(II) > Pb(II) > Cd(II) > Cr(VI). The optimum adsorption conditions selected were adsorbent dosage of 250 mg, pH of 3.0 for Cr(VI) and 6.0 for Ni(II), Cd(II) and Pb(II), adsorption concentration of 250 mg/L and contact time of 180.

  6. Sequence Classification: 390326 [

    Lifescience Database Archive (English)

    Full Text Available Non-TMB Non-TMH Non-TMB Non-TMB Non-TMB Non-TMB >gi|31794837|ref|NP_857330.1| ACETYL-COENZYME... A SYNTHETASE ACS (ACETATE--CoA LIGASE) (ACETYL-CoA SYNTHETASE) (ACETYL-CoA SYNTHASE) (ACYL-ACTIVATING ENZYME...) (ACETATE THIOKINASE) (ACETYL-ACTIVATING ENZYME) (ACETATE--COENZYME A LIGASE) (ACETYL-COENZYME A SYNTHASE) || http://www.ncbi.nlm.nih.gov/protein/31794837 ...

  7. Sequence Classification: 400109 [

    Lifescience Database Archive (English)

    Full Text Available Non-TMB Non-TMH Non-TMB Non-TMB Non-TMB Non-TMB >gi|15610803|ref|NP_218184.1| ACETYL-COENZYME... A SYNTHETASE ACS (ACETATE--CoA LIGASE) (ACETYL-CoA SYNTHETASE) (ACETYL-CoA SYNTHASE) (ACYL-ACTIVATING ENZYME...) (ACETATE THIOKINASE) (ACETYL-ACTIVATING ENZYME) (ACETATE--COENZYME A LIGASE) (ACETYL-COENZYME A SYNTHASE) || http://www.ncbi.nlm.nih.gov/protein/15610803 ...

  8. Five Fatty Acyl-Coenzyme A Reductases Are Involved in the Biosynthesis of Primary Alcohols in Aegilops tauschii Leaves

    Directory of Open Access Journals (Sweden)

    Meiling Wang

    2017-06-01

    Full Text Available The diploid Aegilops tauschii is the D-genome donor to hexaploid wheat (Triticum aestivum and represents a potential source for genetic study in common wheat. The ubiquitous wax covering the aerial parts of plants plays an important role in protecting plants against non-stomatal water loss. Cuticular waxes are complex mixtures of very-long-chain fatty acids, alkanes, primary and/or secondary alcohols, aldehydes, ketones, esters, triterpenes, sterols, and flavonoids. In the present work, primary alcohols were identified as the major components of leaf cuticular wax in Ae. tauschii, with C26:0-OH being the dominant primary alcohol. Analysis by scanning electron microscope revealed that dense platelet-shaped wax crystals were deposited on leaf surfaces of Ae. tauschii. Ten putative wax biosynthetic genes encoding fatty acyl-coenzyme A reductase (FAR were identified in the genome of Ae. tauschii. Five of these genes, Ae.tFAR1, Ae.tFAR2, Ae.tFAR3, Ae.tFAR4, and Ae.tFAR6, were found expressed in the leaf blades. Heterologous expression of the five Ae.tFARs in yeast (Saccharomyces cerevisiae showed that Ae.tFAR1, Ae.tFAR2, Ae.tFAR3, Ae.tFAR4, and Ae.tFAR6 were predominantly responsible for the accumulation of C16:0, C18:0, C26:0, C24:0, and C28:0 primary alcohols, respectively. In addition, nine Ae.tFAR paralogous genes were located on D chromosome of wheat and the wheat nullisomic–tetrasomic lines with the loss of Ae.tFAR3 and Ae.tFAR4 paralogous genes had significantly reduced levels of primary alcohols in the leaf blades. Collectively, these data suggest that Ae.tFAR1, Ae.tFAR2, Ae.tFAR3, Ae.tFAR4, and Ae.tFAR6 encode alcohol-forming FARs involved in the biosynthesis of primary alcohols in the leaf blades of Ae. tauschii. The information obtained in Ae. tauschii enables us to better understand wax biosynthesis in common wheat.

  9. Standardization of radioimmunoassay for dosage of angiotensin II (ang-II) and its methodological evaluation; Padronizacao do radioimunoensaio para dosagem de angiotensina II (ang-II) e sua validacao metodologica

    Energy Technology Data Exchange (ETDEWEB)

    Mantovani, Milene; Mecawi, Andre S.; Elias, Lucila L.K.; Antunes-Rodrigues, Jose, E-mail: llelias@fmrp.usp.b, E-mail: antunes@fmrp.usp.b [Universidade de Sao Paulo (FMRP/USP), Ribeirao Preto, SP (Brazil). Faculdade de Medicina

    2011-10-26

    This paper standardizes the radioimmunoassay (RIA) for dosage of ANG-II of rats, after experimental conditions of saline hypertonic (2%), treating with losartan (antagonist of ANG-II), hydric privation, and acute hemorrhage (25%). After that, the plasmatic ANG-II was extracted for dosage of RIA, whose sensitiveness was of 1.95 pg/m L, with detection of 1.95 to 1000 pg/m L. The treatment with saline reduced the concentration of ANG-II, while the administration pf losartan, the hydric administration and the hemorrhage increase the values, related to the control group. Those results indicate variations in the plasmatic concentration of ANG-II according to the experimental protocols, validating the method for evaluation of activity renin-angiotensin

  10. Pius II. a utrakvismus

    OpenAIRE

    Šimek, Milan

    2009-01-01

    Milan Šimek Pius II. a utrakvismus Pius II. and utraquism Based on sources work - out, the thesis aims the description and analysis of the attitude alternation of Enea Sylvio Piccolomini - Pius II to the utraquism. The conclusions stress the postulate that Pius II. did not change that attitude, but just did not succed in quelling the utraquist movement. In the sense of political background that finally led to fatal dissention among both leaders, king Jiří of Poděbrady and pope Pius II.

  11. Supplementation with Selenium and Coenzyme Q10 Reduces Cardiovascular Mortality in Elderly with Low Selenium Status. A Secondary Analysis of a Randomised Clinical Trial

    Science.gov (United States)

    Alexander, Jan; Aaseth, Jan

    2016-01-01

    Background Selenium is needed by all living cells in order to ensure the optimal function of several enzyme systems. However, the selenium content in the soil in Europe is generally low. Previous reports indicate that a dietary supplement of selenium could reduce cardiovascular disease but mainly in populations in low selenium areas. The objective of this secondary analysis of a previous randomised double-blind placebo-controlled trial from our group was to determine whether the effects on cardiovascular mortality of supplementation with a fixed dose of selenium and coenzyme Q10 combined during a four-year intervention were dependent on the basal level of selenium. Methods In 668 healthy elderly individuals from a municipality in Sweden, serum selenium concentration was measured. Of these, 219 individuals received daily supplementation with selenium (200 μg Se as selenized yeast) and coenzyme Q10 (200 mg) combined for four years. The remaining participants (n = 449) received either placebo (n = 222) or no treatment (n = 227). All cardiovascular mortality was registered. No participant was lost during a median follow-up of 5.2 years. Based on death certificates and autopsy results, all mortality was registered. Findings The mean serum selenium concentration among participants at baseline was low, 67.1 μg/L. Based on the distribution of selenium concentration at baseline, the supplemented group was divided into three groups; 85 μg/L (45 and 90 percentiles) and the remaining participants were distributed accordingly. Among the non-treated participants, lower cardiovascular mortality was found in the high selenium group as compared with the low selenium group (13.0% vs. 24.1%; P = 0.04). In the group with the lowest selenium basal concentration, those receiving placebo or no supplementation had a mortality of 24.1%, while mortality was 12.1% in the group receiving the active substance, which was an absolute risk reduction of 12%. In the middle selenium concentration

  12. Biosorption of Cd(II) and Zn(II) by nostoc commune: isotherm and kinetics studies

    Energy Technology Data Exchange (ETDEWEB)

    Morsy, Fatthy M. [Faculty of Science, Botany Department, Assiut University, Assiut (Egypt); Hassan, Sedky H.A. [Department of Biological Environment, Kangwon National University, Kangwon-do (Korea, Republic of); Koutb, Mostafa [Faculty of Science, Botany Department, Assiut University, Assiut (Egypt); Umm Al-Qura University, Faculty of Applied Science, Biology Department, Mecca (Saudi Arabia)

    2011-07-15

    In this study, Nostoc commune (cyanobacterium) was used as an inexpensive and efficient biosorbent for Cd(II) and Zn(II) removal from aqueous solutions. The effect of various physicochemical factors on Cd(II) and Zn(II) biosorption such as pH 2.0-7.0, initial metal concentration 0.0-300 mg/L and contact time 0-120 min were studied. Optimum pH for removal of Cd(II) and Zn(II) was 6.0, while the contact time was 30 min at room temperature. The nature of biosorbent and metal ion interaction was evaluated by infrared (IR) technique. IR analysis of bacterial biomass revealed the presence of amino, carboxyl, hydroxyl, and carbonyl groups, which are responsible for biosorption of Cd(II) and Zn (II). The maximum biosorption capacities for Cd(II) and Zn(II) biosorption by N. commune calculated from Langmuir biosorption isotherm were 126.32 and 115.41 mg/g, respectively. The biosorption isotherm for two biosorbents fitted well with Freundlich isotherm than Langmuir model with correlation coefficient (r{sup 2} < 0.99). The biosorption kinetic data were fitted well with the pseudo-second-order kinetic model. Thus, this study indicated that the N. commune is an efficient biosorbent for the removal of Cd(II) and Zn(II) from aqueous solutions. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Cadmium(II) and lead(II) adsorption onto hetero-atom functional mesoporous silica and activated carbon

    Science.gov (United States)

    Machida, Motoi; Fotoohi, Babak; Amamo, Yoshimasa; Mercier, Louis

    2012-07-01

    Adsorption of cadmium(II) and lead(II) on amino-, mercapto-functionalized mesoporous silica (HMS) and carboxylic-functionalized activated carbon (AC) were examined. The resultant isotherms fitted the Langmuir model and amino-functionalized HMS exhibited the highest adsorption capacity for both cadmium(II) and lead(II). Adsorption affinities for cadmium(II) were always greater than those for lead(II) in all three adsorbent types, while the difference between the two values was the largest for mercapto-functionalized HMS indicating a selective adsorption of cadmium(II). Influence of equilibrium solution pH on adsorption of cadmium(II), lead(II) and their binary mixtures was also studied. Carboxylic-functionalized AC adsorbed cadmium(II) and lead(II) in a wide pH range than conditions for the mercapto-functionalized HMS. It was concluded that each functional group had its own characteristics and advantages for adsorption of heavy metal ions; amino-groups showed high adsorption capacity, while mercapto-groups had good selectivity toward cadmium(II) adsorption and a wide solution pH in adsorption by carboxylic-groups were established in this study.

  14. Cadmium(II) and lead(II) adsorption onto hetero-atom functional mesoporous silica and activated carbon

    International Nuclear Information System (INIS)

    Machida, Motoi; Fotoohi, Babak; Amamo, Yoshimasa; Mercier, Louis

    2012-01-01

    Adsorption of cadmium(II) and lead(II) on amino-, mercapto-functionalized mesoporous silica (HMS) and carboxylic-functionalized activated carbon (AC) were examined. The resultant isotherms fitted the Langmuir model and amino-functionalized HMS exhibited the highest adsorption capacity for both cadmium(II) and lead(II). Adsorption affinities for cadmium(II) were always greater than those for lead(II) in all three adsorbent types, while the difference between the two values was the largest for mercapto-functionalized HMS indicating a selective adsorption of cadmium(II). Influence of equilibrium solution pH on adsorption of cadmium(II), lead(II) and their binary mixtures was also studied. Carboxylic-functionalized AC adsorbed cadmium(II) and lead(II) in a wide pH range than conditions for the mercapto-functionalized HMS. It was concluded that each functional group had its own characteristics and advantages for adsorption of heavy metal ions; amino-groups showed high adsorption capacity, while mercapto-groups had good selectivity toward cadmium(II) adsorption and a wide solution pH in adsorption by carboxylic-groups were established in this study.

  15. Synthesis, characterization and biological studies of metal complexes of Co (II), Ni (II), Cu (II), Zn (II) with sulphadimidine-benzylidene

    International Nuclear Information System (INIS)

    Tahira, F.; Imran, M.; Iqbal, J.

    2009-01-01

    Some novel complexes of Co (II), Ni (II), Cu (II), and Zn (II) have been synthesized with a Schiff base ligand derived from sulphadimidine and benzaldehyde. The structural features of the complexes have been determined by elemental analysis, magnetic susceptibility, conductance measurement, UV/ Vis. and infrared spectroscopy. IR studies revealed that the Schiff base ligand Sulphadimidine-benzylidene has monoanionic bidendate nature and coordinate with metal ions through nitrogen atom of azomethine (>C = N) and deprotonated -NH group. All the complexes were assigned octahedral geometry on the basis of magnetic moment and electronic spectroscopic data. Low value of conductance supports their non-electrolytic nature. The ligand, as well as its complexes were checked for their in vitro antimicrobial activities against two gram positive bacterial strains, Bacillus subtillus. Staphylococcus aureus and one gram negative Salmonella typhae and five fungal strains, Nigrospora oryzae, Curvularia lunata, Drechslera rostrata, Aspergillus niger and Candida olbicans by disc diffusion method and agar plate technique, respectively. Both the antibacterial and antitungal activities of the synthesized metal complexes were found to be more as compared to parent drug and uncomplexed ligand. All the complexes contain coordinated water, which is lost at 141-160 degree C. (author)

  16. Mutation and biochemical analysis in carnitine palmitoyltransferase type II (CPT II) deficiency

    DEFF Research Database (Denmark)

    Olpin, S E; Afifi, A; Clark, S

    2003-01-01

    Carnitine palmitoyltransferase type II (CPT II) deficiency has three basic phenotypes, late-onset muscular (mild), infantile/juvenile hepatic (intermediate) and severe neonatal. We have measured fatty acid oxidation and CPT II activity and performed mutation studies in 24 symptomatic patients...

  17. Modification of the Host Cell Lipid Metabolism Induced by Hypolipidemic Drugs Targeting the Acetyl Coenzyme A Carboxylase Impairs West Nile Virus Replication.

    Science.gov (United States)

    Merino-Ramos, Teresa; Vázquez-Calvo, Ángela; Casas, Josefina; Sobrino, Francisco; Saiz, Juan-Carlos; Martín-Acebes, Miguel A

    2016-01-01

    West Nile virus (WNV) is a neurotropic flavivirus transmitted by the bite of mosquitoes that causes meningitis and encephalitis in humans, horses, and birds. Several studies have highlighted that flavivirus infection is highly dependent on cellular lipids for virus replication and infectious particle biogenesis. The first steps of lipid synthesis involve the carboxylation of acetyl coenzyme A (acetyl-CoA) to malonyl-CoA that is catalyzed by the acetyl-CoA carboxylase (ACC). This makes ACC a key enzyme of lipid synthesis that is currently being evaluated as a therapeutic target for different disorders, including cancers, obesity, diabetes, and viral infections. We have analyzed the effect of the ACC inhibitor 5-(tetradecyloxy)-2-furoic acid (TOFA) on infection by WNV. Lipidomic analysis of TOFA-treated cells confirmed that this drug reduced the cellular content of multiple lipids, including those directly implicated in the flavivirus life cycle (glycerophospholipids, sphingolipids, and cholesterol). Treatment with TOFA significantly inhibited the multiplication of WNV in a dose-dependent manner. Further analysis of the antiviral effect of this drug showed that the inhibitory effect was related to a reduction of viral replication. Furthermore, treatment with another ACC inhibitor, 3,3,14,14-tetramethylhexadecanedioic acid (MEDICA 16), also inhibited WNV infection. Interestingly, TOFA and MEDICA 16 also reduced the multiplication of Usutu virus (USUV), a WNV-related flavivirus. These results point to the ACC as a druggable cellular target suitable for antiviral development against WNV and other flaviviruses. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. Elizabeth II uus kunstigalerii

    Index Scriptorium Estoniae

    1999-01-01

    Tähistamaks oma troonile asumise 50. aastapäeva, avab Elizabeth II 6. II 2002 Buckinghami palees uue kunstigalerii, mis ehitatakse palee tiibhoonena. Arhitekt John Simpson. Elizabeth II kunstikogust

  19. Electrochemical, spectroscopic, and photophysical properties of structurally diverse polyazine-bridged Ru(II),Pt(II) and Os(II),Ru(II),Pt(II) supramolecular motifs.

    Science.gov (United States)

    Knoll, Jessica D; Arachchige, Shamindri M; Wang, Guangbin; Rangan, Krishnan; Miao, Ran; Higgins, Samantha L H; Okyere, Benjamin; Zhao, Meihua; Croasdale, Paul; Magruder, Katherine; Sinclair, Brian; Wall, Candace; Brewer, Karen J

    2011-09-19

    Five new tetrametallic supramolecules of the motif [{(TL)(2)M(dpp)}(2)Ru(BL)PtCl(2)](6+) and three new trimetallic light absorbers [{(TL)(2)M(dpp)}(2)Ru(BL)](6+) (TL = bpy = 2,2'-bipyridine or phen = 1,10-phenanthroline; M = Ru(II) or Os(II); BL = dpp = 2,3-bis(2-pyridyl)pyrazine, dpq = 2,3-bis(2-pyridyl)quinoxaline, or bpm = 2,2'-bipyrimidine) were synthesized and their redox, spectroscopic, and photophysical properties investigated. The tetrametallic complexes couple a Pt(II)-based reactive metal center to Ru and/or Os light absorbers through two different polyazine BL to provide structural diversity and interesting resultant properties. The redox potential of the M(II/III) couple is modulated by M variation, with the terminal Ru(II/III) occurring at 1.58-1.61 V and terminal Os(II/III) couples at 1.07-1.18 V versus Ag/AgCl. [{(TL)(2)M(dpp)}(2)Ru(BL)](PF(6))(6) display terminal M(dπ)-based highest occupied molecular orbitals (HOMOs) with the dpp(π*)-based lowest unoccupied molecular orbital (LUMO) energy relatively unaffected by the nature of BL. The coupling of Pt to the BL results in orbital inversion with localization of the LUMO on the remote BL in the tetrametallic complexes, providing a lowest energy charge separated (CS) state with an oxidized terminal Ru or Os and spatially separated reduced BL. The complexes [{(TL)(2)M(dpp)}(2)Ru(BL)](6+) and [{(TL)(2)M(dpp)}(2)Ru(BL)PtCl(2)](6+) efficiently absorb light throughout the UV and visible regions with intense metal-to-ligand charge transfer (MLCT) transitions in the visible at about 540 nm (M = Ru) and 560 nm (M = Os) (ε ≈ 33,000-42,000 M(-1) cm(-1)) and direct excitation to the spin-forbidden (3)MLCT excited state in the Os complexes about 720 nm. All the trimetallic and tetrametallic Ru-based supramolecular systems emit from the terminal Ru(dπ)→dpp(π*) (3)MLCT state, λ(max)(em) ≈ 750 nm. The tetrametallic systems display complex excited state dynamics with quenching of the (3)MLCT emission at

  20. Synthesis, characterization and polymerization of methacrylates of copper (II), cobalt (II) and molybdenum (II). Generation of new materials

    International Nuclear Information System (INIS)

    Rojas Bolanos, Omar

    2006-01-01

    Coordination compounds of the species copper (II), cobalt (II) and molybdenum (II) with methacrylic acid were synthesized and characterized. Besides, it realized reactions of bromine addition to the doubles links of the species obtained previously, also too like reactions with dry HCl. Finally, it got hybrids materials by polymerization of the first compounds in an acrylic matrix. Research concluded with the characterization of all the products. (author) [es

  1. Synthesis of amino functionalized magnetic graphenes composite material and its application to remove Cr(VI), Pb(II), Hg(II), Cd(II) and Ni(II) from contaminated water

    International Nuclear Information System (INIS)

    Guo, Xiaoyao; Du, Bin; Wei, Qin; Yang, Jian; Hu, Lihua; Yan, Liangguo; Xu, Weiying

    2014-01-01

    Highlights: • Graphenes magnetic composite nanoparticles (Fe 3 O 4 -GS) were used to adsorb metal ions. • The adsorption of metal ions onto Fe 3 O 4 -GS could be well interpreted by the Freundlich equation. • The adsorption of metal ions onto Fe 3 O 4 -GS fit pseudo-second order kinetic model. • Thermodynamic studies illustrated that the adsorption process was endothermic and spontaneous in nature. - Abstract: In the present study, a kind of graphenes magnetic material (Fe 3 O 4 -GS) was prepared by compositing graphene sheet with ferroferric oxide, and shown to be effictive for removing Cr(VI), Pb(II), Hg(II), Cd(II) and Ni(II) ions from aqueous solution. The synthesized sorbent was characterized by SEM, TEM, FTIR, XRD, XPS and BET, respectively. The pH ZPC value of the sorbent was estimated to be 3.5 by alkaline-titration methods. Fe 3 O 4 -GS can be simply recovered from water with magnetic separation at low magnetic field within one minute. The sorption capacities of the metals were 17.29, 27.95, 23.03, 27.83 and 22.07 mg g −1 for Cr(VI), Pb(II), Hg(II), Cd(II) and Ni(II), respectively. Kinetic data showed good correlation with pseudo-second-order equation and the Freundlich model was found to fit for the isotherm data of all the heavy metal ions. It was found that the metals sorption was accomplished mainly via chelation or ion exchange. The results of thermodynamic studies illustrate that the adsorption process was endothermic and spontaneous in nature

  2. Efficacy of eyedrops containing cross-linked hyaluronic acid and coenzyme Q10 in treating patients with mild to moderate dry eye.

    Science.gov (United States)

    Postorino, Elisa I; Rania, Laura; Aragona, Emanuela; Mannucci, Carmen; Alibrandi, Angela; Calapai, Gioacchino; Puzzolo, Domenico; Aragona, Pasquale

    2018-01-01

    Dry eye disease (DED) is a common condition causing substantial burden. A randomized, controlled, single-masked study was performed in 40 patients with mild to moderate DED to evaluate the efficacy and safety of a collyrium based on crosslinked hyaluronic acid (XLHA) with coenzyme Q10 (CoQ10). Enrolled subjects were divided into 2 groups: group A, treated with XLHA + CoQ10; and group B, treated with hyaluronic acid (HA). Eyedrops were administered 4 times daily for 3 months. The Ocular Surface Disease Index (OSDI) questionnaire, tear break-up time (TBUT), corneal and conjunctival staining, and meibomian gland assessment (MGD) were evaluated; furthermore, corneal aesthesiometry, in vivo corneal confocal microscopy, visual acuity, intraocular pressure (IOP), and fundus examination were performed. At the end of treatment, OSDI score significantly decreased in groups A and B (p<0.01 and p<0.05, respectively); the decrease was significantly higher in group A. Corneal staining decreased in both groups, with lower scores in group A. The MGD was significantly ameliorated in group A patients. No differences were found for corneal aesthesiometry or TBUT. Epithelial cell reflectivity was significantly reduced only in group A. For keratocytes and stromal matrix parameters, there was a significant improvement in group A. No changes were found for visual acuity, IOP, or fundus examination. The XLHA + CoQ10 treatment showed greater effectiveness in DED compared to HA alone, probably due to the longer permanency on ocular surface and the antioxidant activity of CoQ10. Therefore, XLHA + CoQ10 eyedrops could represent a new possibility in dry eye treatment.

  3. Modulatory role of Co-enzyme Q10 on methionine and choline deficient diet-induced non-alcoholic steatohepatitis (NASH) in albino rats.

    Science.gov (United States)

    Saleh, Dalia O; Ahmed, Rania F; Amin, Mohamed M

    2017-03-01

    The present study aimed to evaluate the hepato-protective and neuro-protective activity of Co-enzyme Q10 (CoQ10) on non-alcoholic steatohepatitis (NASH) in albino rats induced by methionine and choline-deficient (MCD) diet. Rats were fed an MCD diet for 8 weeks to induce non-alcoholic steatohepatitis. CoQ10 (10 mg/(kg·day) -1 ) was orally administered for 2 consecutive weeks. Twenty-four hours after the last dose of the drug, the behavioral test, namely the activity cage test, was performed and the activity counts were recorded. Serum alanine transaminase, aspartate aminotransferase, alkaline phosphatase, gamma-glutamyl transferase, total/direct bilirubin, and albumin were valued to assess liver function. Moreover, hepatic cytokines interleukin-6 as well as its modulator nuclear factor kappa-light-chain-enhancer of activated B cells were determined. In addition, brain biomarkers, viz ammonia, nitric oxide, and brain-derived neurotrophic factor (BDNF), were measured as they are reliable indices to assess brain damage. Histopathological and immunohistochemical examination of brain proliferating cell nuclear antigen in brain and liver tissues were also evaluated. Results revealed that MCD-induced NASH showed impairment in the liver functions with an increase in the liver inflammatory markers. Moreover, NASH resulted in pronounced brain dysfunction as evidenced by hyper-locomotor activity, a decrease in the BDNF level, as well as an increase in the brain nitric oxide and ammonia contents. Oral treatment of MCD-diet-fed rats with CoQ10 for 14 days showed a marked improvement in all the assigned parameters. Finally, it can be concluded that CoQ10 has a hepatoprotective and neuroprotective role in MCD-diet-induced NASH in rats.

  4. Non-enzymatic N -acetylation of Lysine Residues by AcetylCoA Often Occurs via a Proximal S -acetylated Thiol Intermediate Sensitive to Glyoxalase II

    OpenAIRE

    James, Andrew M.; Hoogewijs, Kurt; Logan, Angela; Hall, Andrew R.; Ding, Shujing; Fearnley, Ian M.; Murphy, Michael P.

    2017-01-01

    Summary: Acetyl coenzyme A (AcCoA), a key intermediate in mitochondrial metabolism, N-acetylates lysine residues, disrupting and, in some cases, regulating protein function. The mitochondrial lysine deacetylase Sirtuin 3 (Sirt3) reverses this modification with benefits reported in diabetes, obesity, and aging. We show that non-enzymatic lysine N-acetylation by AcCoA is greatly enhanced by initial acetylation of a cysteine residue, followed by SN-transfer of the acetyl moiety to a nearby lysin...

  5. Removal of Pb(II), Cu(II) and Cd(II) from aqueous solution by some fungi and natural adsorbents in single and multiple metal systems

    International Nuclear Information System (INIS)

    Shoaib, A.; Badar, T.; Aslam, N.

    2011-01-01

    Six fungal and 10 natural biosorbents were analyzed for their Cu(II), Cd(II) and Pb(II) uptake capacity from single, binary and ternary metal ion system. Preliminary screening biosorption of assays revealed 2 fungi (Aspergillus niger and Cunninghamella echinulata) and three natural [Cicer arietinum husk, Moringa oleifera flower and soil (clay)] adsorbents hold considerable high adsorption efficiency and capacity for 3 meta l ions amongst the adsorbents. Further biosorption trials with five elected adsorbents showed a considerable reduction in metal uptake capability of adsorbents in binary- and ternary systems as compared to singly metal system. Cd(II) manifested the highest inhibitory effect on the biosorption of other metal ions, followed by Pb(II) and Cu(II). On account of metal preference, the selectivity order for metal ion towards the studied biomass matrices was Pb(II) (40-90%) > Cd(II) (2-53%) > Cu(II) (2-30%). (author)

  6. Syntheses and spectroscopic properties of mercury(II) and nickel(II ...

    African Journals Online (AJOL)

    Syntheses and spectroscopic properties of mercury(II) and nickel(II) ... The complexes were characterized by IR, diffuse reflectance, 1H NMR spectra and elemental ... coordinating through thiolato sulphur and hydrazinic nitrogen atoms.

  7. Pilot study of safety and efficacy of polyprenols in combination with coenzyme Q10 in patients with statin-induced myopathy.

    Science.gov (United States)

    Latkovskis, Gustavs; Saripo, Vita; Sokolova, Emma; Upite, Dana; Vanaga, Ilona; Kletnieks, Ugis; Erglis, Andrejs

    2016-01-01

    Statin-induced myopathy (SIM) has been partially attributed to deficiency of dolichol and coenzyme Q10 (CoQ10). We aimed to test the safety and efficacy of plant polyprenols in combination with CoQ10 for alleviation of SIM. In an open-label, one-center prospective pilot study patients with SIM received conifer-tree needle polyprenols (4mg/day) and CoQ10 (100mg/day) for 8 weeks. Symptoms and safety were evaluated according to symptom severity score (0-10), creatine kinase (CK) levels, exercise test, dynamometry, complete blood count, clinical biochemistry and electrocardiography. Of the 14 patients, 11 completed the study per protocol. Two patients withdrew consent due to travels abroad, and it was discontinued for one patient with stage 3 chronic kidney disease due to asymptomatic elevations of liver enzymes at week 4. No safety parameters changed significantly in per protocol group. Non-significant increase of CK levels was observed (P=0.231). Muscle pain (n=10) and weakness (n=7) scores improved significantly (PMuscle pain completely disappeared in 2 patients, weakness resolved in 3 patients and cramps disappeared in two patients. Four patients assessed improvement strong enough to consider increase of statin dose. No changes were observed in exercise test or dynamometry. Conifer-tree polyprenols in combination with CoQ10 may be generally safe in patients with SIM, but caution should be exercised in patients with glomerular filtration rate <60mL/min and routine monitoring of the liver enzymes and CK is advocated in all patients. The observed efficacy provides the rationale for a larger, double-blind controlled study with polyprenols. Copyright © 2016 The Lithuanian University of Health Sciences. Production and hosting by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  8. Properties of latent and thiol-activated rat hepatic 3-hydroxy-3-methylglutaryl-coenzyme A reductase and regulation of enzyme activity.

    Science.gov (United States)

    Dotan, I; Shechter, I

    1983-10-15

    The effect of the thiols glutathione (GSH), dithiothreitol (DTT), and dithioerythritol (DTE) on the conversion of an inactive, latent form (El) of rat liver 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase, EC 1.1.1.34) to a catalyticaly active form (Ea) is examined. Latent hepatic microsomal HMG-CoA reductase is activated to a similar degree of activation by DTT and DTE and to a lower extent by GSH. All three thiols affect both Km and Vmax values of the enzyme toward HMG-CoA and NADPH. Studies of the effect of DTT on the affinity binding of HMG-CoA reductase to agarose-hexane-HMG-CoA (AG-HMG-CoA) resin shows that thiols are necessary for the binding of the enzyme to the resin. Removal of DTT from AG-HMG-CoA-bound soluble Ea (active enzyme) does not cause dissociation of the enzyme from the resin at low salt concentrations. Substitution of DTT by NADPH does not promote binding of soluble El (latent enzyme) to AG-HMG-CoA. The enzymatic activity of Ea in the presence of DTT and GSH indicates that these thiols compete for the same binding site on the enzyme. Diethylene glycol disulfide (ESSE) and glutathione disulfide (GSSG) inhibit the activity of Ea. ESSE is more effective for the inhibition of Ea than GSSG, causing a higher degree of maximal inhibition and affecting the enzymatic activity at lower concentrations. A method is described for the rapid conversion of soluble purified Ea to El using gel-filtration chromatography on Bio-Gel P-4 columns. These combined results point to the importance of the thiol/disulfide ratio for the modulation of hepatic HMG-CoA reductase activity.

  9. Low-temperature Synthesis of Tin(II) Oxide From Tin(II) ketoacidoximate Precursor

    KAUST Repository

    Alshankiti, Buthainah

    2015-01-01

    Sn (II) oxide finds numerous applications in different fields such as thin film transistors1, solar cells2 and sensors.3 In this study we present the fabrication of tin monoxide SnO by using Sn (II) ketoacid oximate complexes as precursors. Tin (II

  10. Biosorption optimization of lead(II), cadmium(II) and copper(II) using response surface methodology and applicability in isotherms and thermodynamics modeling

    International Nuclear Information System (INIS)

    Singh, Rajesh; Chadetrik, Rout; Kumar, Rajender; Bishnoi, Kiran; Bhatia, Divya; Kumar, Anil; Bishnoi, Narsi R.; Singh, Namita

    2010-01-01

    The present study was carried out to optimize the various environmental conditions for biosorption of Pb(II), Cd(II) and Cu(II) by investigating as a function of the initial metal ion concentration, temperature, biosorbent loading and pH using Trichoderma viride as adsorbent. Biosorption of ions from aqueous solution was optimized in a batch system using response surface methodology. The values of R 2 0.9716, 0.9699 and 0.9982 for Pb(II), Cd(II) and Cu(II) ions, respectively, indicated the validity of the model. The thermodynamic properties ΔG o , ΔH o , ΔE o and ΔS o by the metal ions for biosorption were analyzed using the equilibrium constant value obtained from experimental data at different temperatures. The results showed that biosorption of Pb(II) ions by T. viride adsorbent is more endothermic and spontaneous. The study was attempted to offer a better understating of representative biosorption isotherms and thermodynamics with special focuses on binding mechanism for biosorption using the FTIR spectroscopy.

  11. Biosorption optimization of lead(II), cadmium(II) and copper(II) using response surface methodology and applicability in isotherms and thermodynamics modeling

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Rajesh; Chadetrik, Rout; Kumar, Rajender; Bishnoi, Kiran; Bhatia, Divya; Kumar, Anil [Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana (India); Bishnoi, Narsi R., E-mail: nrbishnoi@gmail.com [Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana (India); Singh, Namita [Department of Bio and Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana (India)

    2010-02-15

    The present study was carried out to optimize the various environmental conditions for biosorption of Pb(II), Cd(II) and Cu(II) by investigating as a function of the initial metal ion concentration, temperature, biosorbent loading and pH using Trichoderma viride as adsorbent. Biosorption of ions from aqueous solution was optimized in a batch system using response surface methodology. The values of R{sup 2} 0.9716, 0.9699 and 0.9982 for Pb(II), Cd(II) and Cu(II) ions, respectively, indicated the validity of the model. The thermodynamic properties {Delta}G{sup o}, {Delta}H{sup o}, {Delta}E{sup o} and {Delta}S{sup o} by the metal ions for biosorption were analyzed using the equilibrium constant value obtained from experimental data at different temperatures. The results showed that biosorption of Pb(II) ions by T. viride adsorbent is more endothermic and spontaneous. The study was attempted to offer a better understating of representative biosorption isotherms and thermodynamics with special focuses on binding mechanism for biosorption using the FTIR spectroscopy.

  12. Iodine capture by Hofmann-type clathrate Ni(II)(pz)[Ni(II)(CN)_4

    International Nuclear Information System (INIS)

    Massasso, Giovanni; Long, Jerome; Haines, Julien; Devautour-Vinot, Sabine; Maurin, Guillaume; Larionova, Joulia; Guerin, Christian; Guari, Yannick; Grandjean, Agnes; Onida, Barbara; Donnadieu, Bruno

    2014-01-01

    The thermally stable Hofmann-type clathrate framework Ni(II)(pz)[Ni(II)(CN)_4] (pz = pyrazine) was investigated for the efficient and reversible sorption of iodine (I_2) in the gaseous phase and in solution with a maximum adsorption capacity of 1 mol of I_2 per 1 mol of Ni(II)pz)[Ni(II)(CN)_4] in solution. (authors)

  13. Adsorption characteristics of Pb(II) and Cu(II) ions by domestic clays

    International Nuclear Information System (INIS)

    Kwon, Ee Yol; Noh, Hea Ran

    1990-01-01

    This investigation was carried out to study the adsorption characteristics of Pb(II) and Cu(II) ions in aqueous solution by using clays of Gampo 35, Bentonite (chulwon) and Mangwoon 95 which were dug in the country. As the results, the adsorption of metal ions clays were reached equilibrium by shaking for about 40-60 minutes. In acidic solution, the adsorptivity of clays was increased as pH increased, however, Gampo 35 showed the high adsorptivity over 90% even at pH2-3. Pb(II) ion showed better removal efficiency than Cu(II) ion. The adsorptivities of adsorbents showed following order: Gampo 35>Bentonite> Mangwoon 95. The adsorption isotherms of Pb(II) ion on clays were well fitted in Freundlich's equation. Freundlich constantstion isotherms of Pb(II) ion on clays were well fitted in Freundlich's equation. Freundlich constants (1/n) of Gampo 35, Bentonite and Mangwoon 95 were 0.195, 0.271 and 0.314, respectively.(Author)

  14. Role of Wax Ester Synthase/Acyl Coenzyme A:Diacylglycerol Acyltransferase in Oleaginous Streptomyces sp. Strain G25

    Science.gov (United States)

    Röttig, Annika; Strittmatter, Carl Simon; Schauer, Jennifer; Hiessl, Sebastian; Daniel, Rolf

    2016-01-01

    ABSTRACT Recently, we isolated a novel Streptomyces strain which can accumulate extraordinarily large amounts of triacylglycerol (TAG) and consists of 64% fatty acids (dry weight) when cultivated with glucose and 50% fatty acids (dry weight) when cultivated with cellobiose. To identify putative gene products responsible for lipid storage and cellobiose utilization, we analyzed its draft genome sequence. A single gene encoding a wax ester synthase/acyl coenzyme A (CoA):diacylglycerol acyltransferase (WS/DGAT) was identified and heterologously expressed in Escherichia coli. The purified enzyme AtfG25 showed acyltransferase activity with C12- or C16-acyl-CoA, C12 to C18 alcohols, or dipalmitoyl glycerol. This acyltransferase exhibits 24% amino acid identity to the model enzyme AtfA from Acinetobacter baylyi but has high sequence similarities to WS/DGATs from other Streptomyces species. To investigate the impact of AtfG25 on lipid accumulation, the respective gene, atfG25, was inactivated in Streptomyces sp. strain G25. However, cells of the insertion mutant still exhibited DGAT activity and were able to store TAG, albeit in lower quantities and at lower rates than the wild-type strain. These findings clearly indicate that AtfG25 has an important, but not exclusive, role in TAG biosynthesis in the novel Streptomyces isolate and suggest the presence of alternative metabolic pathways for lipid accumulation which are discussed in the present study. IMPORTANCE A novel Streptomyces strain was isolated from desert soil, which represents an extreme environment with high temperatures, frequent drought, and nutrient scarcity. We believe that these harsh conditions promoted the development of the capacity for this strain to accumulate extraordinarily large amounts of lipids. In this study, we present the analysis of its draft genome sequence with a special focus on enzymes potentially involved in its lipid storage. Furthermore, the activity and importance of the detected

  15. The Formation of Metal (M=Co(II), Ni(II), and Cu(II)) Complexes by Aminosilanes Immobilized within Mesoporous Molecular Sieves

    International Nuclear Information System (INIS)

    Park, Dong Ho; Park, Sung Soo; Choe, Sang Joon

    1999-01-01

    The immobilization of APTMS(3-(2-aminoethylamino)propyltrimethoxysilane) and AAPTMS(3-(2-(2-aminoethyl) aminoethylamino)propyltrimethoxysilane) on the surface of high quality mesoporous molecular sieves MCM-41 and MCM-48 have been confirmed by F.T.-IR spectroscopy, Raman spectroscopy, 29 Si solid state NMR, and a surface polarity measurement using Reichardt's dye. The formation of metal (Co(II), Ni(II), and Cu(II)) complexes by immobilized aminosilanes have been investigated by photoacoustic spectroscopy(PAS). The assignment of UV-Vis. PAS bands makes it possible to identify the structure of metal complexes within mesoporous molecular sieves. Co(II) ion may be coordinated mainly in a tetrahedral symmetry by two APTMS onto MCM-41, and in an octahedral one by two AAPTMS. Both Ni(II) and Cu(II) coordinated by aminosilanes within MCM-41 form possibly the octahedral complexes such as [Ni(APTMS) 2 (H 2 O) 2 ] 2+ , [Ni(AAPTMS) 2 ] 2+ , [Cu(APTMS) 2 (H 2 O) 2 ] 2+ , and [Cu(AAPTMS)(H 2 O) 3 ] 2+ , respectively. The PAS band shapes of complexes onto MCM-48 are similar to those of corresponding MCM-41 with the variation of PAS intensity. Most of metal ion(II) within MCM-41 and MCM-48 are coordinated by aminosilanes without the impregnation on the surface

  16. No Effects of Antioxidant Supplementation in Triathletes on Maximal Oxygen Uptake, 31P-NMRS Detected Muscle Energy Metabolism and Muscle Fatigue

    DEFF Research Database (Denmark)

    Nielsen, A.N.; Mizuno, M.; Ratkevicius, Aivaras

    1999-01-01

    Antioxidative vitamins, coenzyme Q 10 electrical stimulation, isometric exercise, low frequency fatigue......Antioxidative vitamins, coenzyme Q 10 electrical stimulation, isometric exercise, low frequency fatigue...

  17. Intrafibrillar Mineral May be Absent in Dentinogenesis Imperfecta Type II (DI-II); TOPICAL

    International Nuclear Information System (INIS)

    Pople, John A.

    2001-01-01

    High-resolution synchrotron radiation computed tomography (SRCT) and small angle x-ray scattering (SAXS) were performed on normal and dentinogenesis imperfecta type II (DI-II) teeth. Three normal and three DI-II human third molars were used in this study. The normal molars were unerupted and had intact enamel; donors were female and ranged in age from 18-21y. The DI-II specimens, which were also unerupted with intact enamel, came from a single female donor age 20y. SRCT showed that the mineral concentration was 33% lower on average in the DI-II dentin with respect to normal dentin. The SAXS spectra from normal dentin exhibited low-angle diffraction peaks at harmonics of 67.6 nm, consistent with nucleation and growth of the apatite phase within gaps in the collagen fibrils (intrafibrillar mineralization). In contrast, the low-angle peaks were almost nonexistent in the DI-II dentin. Crystallite thickness was independent of location in both DI-II and normal dentin, although the crystallites were significantly thicker in DI-II dentin (6.8 nm (s.d.= 0.5) vs 5.1 nm (s.d.= 0.6)). The shape factor of the crystallites, as determined by SAXS, showed a continuous progression in normal dentin from roughly one-dimensional (needle-like) near the pulp to two-dimensional (plate-like) near the dentin-enamel junction. The crystallites in DI-II dentin, on the other hand, remained needle-like throughout. The above observations are consistent with an absence of intrafibrillar mineral in DI-II dentin

  18. Adsorption of Cs(I), Sr(II), Eu(III), Co(II) and Cd(II) by Al2O3

    International Nuclear Information System (INIS)

    Shiao, S.Y.; Egozy, Y.; Meyer, R.E.

    1981-01-01

    Adsorption of Cs(I), Sr(II), Eu(III), Co(II) and Cd(II) by Al 2 O 3 was carried out over a wide range of NaCl concentration and solution pH. In the medium pH region (pH 5 to 9), adsorption depends strongly on pH and less on salt concentration. However, in the high pH region (pH above 9), the salt dependence of the distribution coefficient becomes important. (author)

  19. Synthesis, Characterization and Antimicrobial Activity of Cu(II, Co(II and Ni(II Complexes with O, N, and S Donor Ligands

    Directory of Open Access Journals (Sweden)

    Vidyavati Reddy

    2008-01-01

    Full Text Available The complexes of the type ML2 [where M = Cu(II, Co(II, and Ni(II] L = 1-phenyl-1-ene-3-(2-hydroxyphenyl-prop-2-ene with 3- substituted-5-mercapto-4-amino-1,2,4-triazoles. Schiff base ligands have been prepared by reacting 3-(2-hydroxyphenyl-1-phenylprop-2-en-1-one and 3-phenyl/pyridyl-4-amino-5-mercapto-1,2,4-triazoles in an alcoholic medium. The complexes are non-electrolytes in DMF. The resulting complexes were characterized by elemental analysis, magnetic measurements, conductivity measurements and spectral studies. The Schiff base acts as a tridentate dibasic and coordinating through the deprotonated oxygen, thioenolic sulphur and azomethine nitrogen atoms. It is found that Cu(II, Co(II, and Ni(II complexes exhibited octahedral geometry. The antimicrobial activities of ligands and its complexes were screened by cup plate method.

  20. Shark class II invariant chain reveals ancient conserved relationships with cathepsins and MHC class II.

    Science.gov (United States)

    Criscitiello, Michael F; Ohta, Yuko; Graham, Matthew D; Eubanks, Jeannine O; Chen, Patricia L; Flajnik, Martin F

    2012-03-01

    The invariant chain (Ii) is the critical third chain required for the MHC class II heterodimer to be properly guided through the cell, loaded with peptide, and expressed on the surface of antigen presenting cells. Here, we report the isolation of the nurse shark Ii gene, and the comparative analysis of Ii splice variants, expression, genomic organization, predicted structure, and function throughout vertebrate evolution. Alternative splicing to yield Ii with and without the putative protease-protective, thyroglobulin-like domain is as ancient as the MHC-based adaptive immune system, as our analyses in shark and lizard further show conservation of this mechanism in all vertebrate classes except bony fish. Remarkable coordinate expression of Ii and class II was found in shark tissues. Conserved Ii residues and cathepsin L orthologs suggest their long co-evolution in the antigen presentation pathway, and genomic analyses suggest 450 million years of conserved Ii exon/intron structure. Other than an extended linker preceding the thyroglobulin-like domain in cartilaginous fish, the Ii gene and protein are predicted to have largely similar physiology from shark to man. Duplicated Ii genes found only in teleosts appear to have become sub-functionalized, as one form is predicted to play the same role as that mediated by Ii mRNA alternative splicing in all other vertebrate classes. No Ii homologs or potential ancestors of any of the functional Ii domains were found in the jawless fish or lower chordates. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. COMPOSITIONS BASED ON PALLADIUM(II AND COPPER(II COMPOUNDS, HALIDE IONS, AND BENTONITE FOR OZONE DECOMPOSITION

    Directory of Open Access Journals (Sweden)

    T. L. Rakitskaya

    2017-05-01

    bromide ion. For Cu(II-KBr/N-Bent composition, kinetic and calculation data show that, in the presence of bromide ions, copper(II inhibits the ozone decomposition. For Pd(II-KBr/NBent composition, it has been found that the maximum activity is attained at СPd(II = 1.02·10-5 mol/g. For bimetallic Pd(II- Cu(II-KBr/N-Bent composition, changes in τ0, τ1/2, k1/2, and Q1/2 parameters depending on a Pd(II content are similar to those for monometallic Pd(II-KBr/NBent composition; however, values of the parameters are higher for the monometallic system. Thus, the inhibiting effect of Cu(II is observed even in the presence of palladium(II.

  2. Evolved H II regions

    International Nuclear Information System (INIS)

    Churchwell, E.

    1975-01-01

    A probable evolutionary sequence of H II regions based on six distinct types of observed objects is suggested. Two examples which may deviate from this idealized sequence, are discussed. Even though a size-mean density relation of H II regions can be used as a rough indication of whether a nebula is very young or evolved, it is argued that such a relation is not likely to be useful for the quantitative assignment of ages to H II regions. Evolved H II regions appear to fit into one of four structural types: rings, core-halos, smooth structures, and irregular or filamentary structures. Examples of each type are given with their derived physical parameters. The energy balance in these nebulae is considered. The mass of ionized gas in evolved H II regions is in general too large to trace the nebula back to single compact H II regions. Finally, the morphological type of the Galaxy is considered from its H II region content. 2 tables, 2 figs., 29 refs

  3. Biosorption of copper(II) and lead(II) onto potassium hydroxide treated pine cone powder.

    Science.gov (United States)

    Ofomaja, A E; Naidoo, E B; Modise, S J

    2010-08-01

    Pine cone powder surface was treated with potassium hydroxide and applied for copper(II) and lead(II) removal from solution. Isotherm experiments and desorption tests were conducted and kinetic analysis was performed with increasing temperatures. As solution pH increased, the biosorption capacity and the change in hydrogen ion concentration in solution increased. The change in hydrogen ion concentration for lead(II) biosorption was slightly higher than for copper(II) biosorption. The results revealed that ion-exchange is the main mechanism for biosorption for both metal ions. The pseudo-first order kinetic model was unable to describe the biosorption process throughout the effective biosorption period while the modified pseudo-first order kinetics gave a better fit but could not predict the experimentally observed equilibrium capacities. The pseudo-second order kinetics gave a better fit to the experimental data over the temperature range from 291 to 347 K and the equilibrium capacity increased from 15.73 to 19.22 mg g(-1) for copper(II) and from 23.74 to 26.27 for lead(II). Activation energy was higher for lead(II) (22.40 kJ mol(-1)) than for copper(II) (20.36 kJ mol(-1)). The free energy of activation was higher for lead(II) than for copper(II) and the values of DeltaH* and DeltaS* indicate that the contribution of reorientation to the activation stage is higher for lead(II) than copper(II). This implies that lead(II) biosorption is more spontaneous than copper(II) biosorption. Equilibrium studies showed that the Langmuir isotherm gave a better fit for the equilibrium data indicating monolayer coverage of the biosorbent surface. There was only a small interaction between metal ions when simultaneously biosorbed and cation competition was higher for the Cu-Pb system than for the Pb-Cu system. Desorption studies and the Dubinin-Radushkevich isotherm and energy parameter, E, also support the ion-exchange mechanism. Copyright 2010 Elsevier Ltd. All rights reserved.

  4. Spectroscopic evaluation of Co(II), Ni(II) and Cu(II) complexes derived from thiosemicarbazone and semicarbazone

    Science.gov (United States)

    Chandra, Sulekh; Kumar, Anil

    2007-12-01

    Co(II), Ni(II) and Cu(II) complexes were synthesized with thiosemicarbazone (L 1) and semicarbazone (L 2) derived from 2-acetyl furan. These complexes were characterized by elemental analysis, molar conductance, magnetic moment, mass, IR, electronic and EPR spectral studies. The molar conductance measurement of the complexes in DMSO corresponds to non-electrolytic nature. All the complexes are of high-spin type. On the basis of different spectral studies six coordinated geometry may be assigned for all the complexes except Co(L) 2(SO 4) and Cu(L) 2(SO 4) [where L = L 1 and L 2] which are of five coordinated square pyramidal geometry.

  5. Iodometric determination of peroxydiphosphate in the presence of copper(II) or iron(II) as catalyst.

    Science.gov (United States)

    Kapoor, S; Sharma, P D; Gupta, Y K

    1975-09-01

    Peroxydiphosphate can be determined iodometrically in the presence of a large excess of potassium iodide with copper(II) or iron(II) as catalyst through the operation of the Cu(II)/Cu(I) or Fe(II)/Fe(III) cycle. The method is applicable in HClO(4), H(2)SO(4), HCl and CH(3)COOH acid media in the range 0.1-1.0M studied. Nickel, manganese(II), cobalt(II), silver, chloride and phosphate are without effect.

  6. ROLE OF METABOLIC THERAPY IN TREATMENT OF MYOCARDIUM DYSTROPHY IN CHILDREN

    Directory of Open Access Journals (Sweden)

    A.L. Frolenko

    2010-01-01

    Full Text Available The objective of present research was studying of influence of co-enzyme Q10 (Kudesan on cardiovascular system in children with myocardial dystrophy (MCD. Patients were divided on two comparable groups (n = 20 and n = 28 according to clinical symptoms of MCD, changes on electrocardiogram (ECG and results of echocardiography. Patients received non-drug means (massage, physical training in treatment regimen, psycho- and reflexotherapy and vasoactive, nootropic and sedative medications; patients from 2nd group were additionally treated with co-enzyme Q10 during 4 weeks. It was shown that inclusion of co-enzyme Q10 in complex treatment of MCD resulted in beneficial effect on self-feeling of child, favored to disappearance of repolarization disorders on ECG and increase of ejectional fraction. Thus, using of co-enzyme Q10 in complex treatment of children with MCD is reasonable. Key words: children, myocardial dystrophy, co-enzyme Q10, treatment.(Voprosy sovremennoi pediatrii — Current Pediatrics. 2010;9(5:18-23

  7. Quininium tetrachloridozinc(II

    Directory of Open Access Journals (Sweden)

    Li-Zhuang Chen

    2009-10-01

    Full Text Available The asymmetric unit of the title compound {systematic name: 2-[hydroxy(6-methoxyquinolin-1-ium-4-ylmethyl]-8-vinylquinuclidin-1-ium tetrachloridozinc(II}, (C20H26N2O2[ZnCl4], consists of a double protonated quininium cation and a tetrachloridozinc(II anion. The ZnII ion is in a slightly distorted tetrahedral coordination environment. The crystal structure is stabilized by intermolecular N—H...Cl and O—H...Cl hydrogen bonds.

  8. Synthesis, characterization and biological studies of 2-(4-nitrophenylamino-carbonyl)benzoic acid and its complexes with Cr(III), Co(II), Ni(II), Cu(II) and Zn(II)

    International Nuclear Information System (INIS)

    Imran, M; Nazir, S.; Latif, S.; Mahmood, Z.

    2010-01-01

    Cr(III), Co(II), Ni(II), Cu(II) and Zn(II) complexes of 2-(4-Nitrophenyl aminocarbonyl)benzoic acid were synthesized and characterized on the basis of physical, analytical and spectroscopic data. The ligands, as well as its metal complexes were checked for their in-vitro antimicrobial activity against three bacterial strains, Mycobacterium smegmatis, Escherichia coli, Pseudomonas aeuroginosa, and three fungal strains, Nigrospora oryzae, Aspergillus niger and Candida albicans. Disc diffusion method and Tube diffusion test were used for antibacterial and antifungal activities, respectively. The synthesized complexes only show significant antifungal activity but inactive for antibacterial, however, in general, the metal complexes were found to be more active against antimicrobial activities as compared to their un complexed ligand. (author)

  9. Enhanced removal of Cd(II) and Pb(II) by composites of mesoporous carbon stabilized alumina

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Weichun [Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Lushan South Road 932, Changsha 410017 (China); Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Lushan South Road 932, Changsha 410017 (China); Tang, Qiongzhi; Wei, Jingmiao; Ran, Yajun [Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Lushan South Road 932, Changsha 410017 (China); Chai, Liyuan [Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Lushan South Road 932, Changsha 410017 (China); Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Lushan South Road 932, Changsha 410017 (China); Wang, Haiying, E-mail: haiyw25@163.com [Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Lushan South Road 932, Changsha 410017 (China); Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Lushan South Road 932, Changsha 410017 (China)

    2016-04-30

    Graphical abstract: - Highlights: • Mesoporous carbon stabilized alumina was prepared by one-pot hard-templating method. • MC/Al{sub 2}O{sub 3} showed excellent performance for Cd(II) and Pb(II) adsorption. • Enhanced adsorption was due to the high surface area and special functional groups. - Abstract: A novel adsorbent of mesoporous carbon stabilized alumina (MC/Al{sub 2}O{sub 3}) was synthesized through one-pot hard-templating method. The adsorption potential of MC/Al{sub 2}O{sub 3} for Cd(II) and Pb(II) from aqueous solution was investigated compared with the mesoporous carbon. The results indicated the MC/Al{sub 2}O{sub 3} showed excellent performance for Cd(II) and Pb(II) removal, the adsorption capacity reached 49.98 mg g{sup −1} for Cd(II) with initial concentration of 50 mg L{sup −1} and reached 235.57 mg g{sup −1} for Pb(II) with initial concentration of 250 mg L{sup −1}, respectively. The kinetics data of Cd(II) adsorption demonstrated that the Cd(II) adsorption rate was fast, and the removal efficiencies with initial concentration of 10 and 50 mg L{sup −1} can reach up 99% within 5 and 20 min, respectively. The pseudo-second-order kinetic model could describe the kinetics of Cd(II) adsorption well, indicating the chemical reaction was the rate-controlling step. The mechanism for Cd(II) and Pb(II) adsorption by MC/Al{sub 2}O{sub 3} was investigated by X-ray photoelectron spectroscopy (XPS) and Fourier transformed infrared spectroscopy (FTIR), and the results indicated that the excellent performance for Cd(II) and Pb(II) adsorption of MC/Al{sub 2}O{sub 3} was mainly attributed to its high surface area and the special functional groups of hydroxy-aluminum, hydroxyl, carboxylic through the formation of strong surface complexation or ion-exchange. It was concluded that MC/Al{sub 2}O{sub 3} can be recognized as an effective adsorbent for removal of Cd(II) and Pb(II) in aqueous solution.

  10. Simultaneous Determination of Cobalt (II and Nickel (II By First Order Derivative Spectrophotometry in Micellar Media

    Directory of Open Access Journals (Sweden)

    Rajni Rohilla

    2012-01-01

    Full Text Available A first-derivative spectrophotometry method for the simultaneous determination of Co (II and Ni (II with Alizarin Red S in presence of Triton X-100 is described. Measurements were made at the zero-crossing wavelengths at 549.0 nm for Co (II and 546.0 nm for Ni (II. The linearity is obtained in the range of 0.291- 4.676 μg/ml of Ni (II and 0.293- 4.124 μg/ml of Co (II in the presence of each other by using first derivative spectrophotometric method. The possible interfering effects of various ions were studied. The validity of the method was examined by using synthetic mixtures of Co (II and Ni (II. The developed derivative procedure, using the zero crossing technique, has been successfully applied for the simultaneous analysis of Co (II and Ni (II in spiked water samples.

  11. Synthesis and Characterization of Cu(II), Co(II) and Ni(II) Complexes of Trithiocyanuric Acid: The Structure of {N,N'-Bis(3-Aminopropyl)-1,3-Propanediamine}-(Trithiocyanurato)Nickel(II)

    Czech Academy of Sciences Publication Activity Database

    Kopel, P.; Trávníček, Zdeněk; Kvítek, L.; Černošek, Z.; Wrzeszcz, G.; Marek, J.

    2003-01-01

    Roč. 56, č. 1 (2003), s. 1-11 ISSN 0095-8972 R&D Projects: GA ČR GA203/00/0152; GA AV ČR IBS5038351 Institutional research plan: CEZ:AV0Z5038910 Keywords : Copper(II) * cobalt(II) and nickel(II) complexes * Trithiocyanuric acid Subject RIV: CE - Biochemistry Impact factor: 0.841, year: 2003

  12. Antimicrobial and mutagenic activity of some carbono- and thiocarbonohydrazone ligands and their copper(II), iron(II) and zinc(II) complexes.

    Science.gov (United States)

    Bacchi, A; Carcelli, M; Pelagatti, P; Pelizzi, C; Pelizzi, G; Zani, F

    1999-06-15

    Several mono- and bis- carbono- and thiocarbonohydrazone ligands have been synthesised and characterised; the X-ray diffraction analysis of bis(phenyl 2-pyridyl ketone) thiocarbonohydrazone is reported. The coordinating properties of the ligands have been studied towards Cu(II), Fe(II), and Zn(II) salts. The ligands and the metal complexes were tested in vitro against Gram positive and Gram negative bacteria, yeasts and moulds. In general, the bisthiocarbonohydrazones possess the best antimicrobial properties and Gram positive bacteria are the most sensitive microorganisms. Bis(ethyl 2-pyridyl ketone) thiocarbonohydrazone, bis(butyl 2-pyridyl ketone)thiocarbonohydrazone and Cu(H2nft)Cl2 (H2nft, bis(5-nitrofuraldehyde)thiocarbonohydrazone) reveal a strong activity with minimum inhibitory concentrations of 0.7 microgram ml-1 against Bacillus subtilis and of 3 micrograms ml-1 against Staphylococcus aureus. Cu(II) complexes are more effective than Fe(II) and Zn(II) ones. All bisthiocarbono- and carbonohydrazones are devoid of mutagenic properties, with the exception of the compounds derived from 5-nitrofuraldehyde. On the contrary a weak mutagenicity, that disappears in the copper complexes, is exhibited by monosubstituted thiocarbonohydrazones.

  13. Chemically modified activated carbon with 1-acylthiosemicarbazide for selective solid-phase extraction and preconcentration of trace Cu(II), Hg(II) and Pb(II) from water samples.

    Science.gov (United States)

    Gao, Ru; Hu, Zheng; Chang, Xijun; He, Qun; Zhang, Lijun; Tu, Zhifeng; Shi, Jianping

    2009-12-15

    A new sorbent 1-acylthiosemicarbazide-modified activated carbon (AC-ATSC) was prepared as a solid-phase extractant and applied for removing of trace Cu(II), Hg(II) and Pb(II) prior to their determination by inductively coupled plasma optical emission spectrometry (ICP-OES). The separation/preconcentration conditions of analytes were investigated, including effects of pH, the shaking time, the sample flow rate and volume, the elution condition and the interfering ions. At pH 3, the maximum static adsorption capacity of Cu(II), Hg(II) and Pb(II) onto the AC-ATSC were 78.20, 67.80 and 48.56 mg g(-1), respectively. The adsorbed metal ions were quantitatively eluted by 3.0 mL of 2% CS(NH2)2 and 2.0 mol L(-1) HCl solution. Common coexisting ions did not interfere with the separation. According to the definition of IUPAC, the detection limits (3sigma) of this method for Cu(II), Hg(II) and Pb(II) were 0.20, 0.12 and 0.45 ng mL(-1), respectively. The relative standard deviation under optimum conditions is less than 4.0% (n=8). The prepared sorbent was applied for the preconcentration of trace Cu(II), Hg(II) and Pb(II) in certified and water samples with satisfactory results.

  14. Identification and Characterization of Novel Immunomodulatory Bursal-derived Pentapeptide-II (BPP-II)*

    Science.gov (United States)

    Feng, Xiu-Li; Liu, Qing-Tao; Cao, Rui-Bing; Zhou, Bin; Ma, Zhi-Yong; Deng, Wen-Lei; Wei, Jian-Chao; Qiu, Ya-Feng; Wang, Fang-Quan; Gu, Jin-Yan; Wang, Feng-Juan; Zheng, Qi-Sheng; Ishag, Hassan; Chen, Pu-Yan

    2012-01-01

    The bursa of Fabricius, the acknowledged central humoral immune organ, plays a vital role in B lymphocyte differentiation. However, there are few reports of the molecular basis of the mechanism on immune induction and potential antitumor activity of bursal-derived peptides. In this paper, a novel bursal-derived pentapeptide-II (BPP-II, MTLTG) was isolated and exerted immunomodulatory functions on antibody responses in vitro. Gene microarray analyses demonstrated that BPP-II regulated expression of 2478 genes in a mouse-derived hybridoma cell line. Immune-related gene ontology functional procedures were employed for further functional analysis. Furthermore, the majority of BPP-II-regulated pathways were associated with immune responses and tumor processes. Moreover, BPP-II exhibited immunomodulatory effects on antigen-specific immune responses in vivo, including enhancement of avian influenza virus (H9N2 subtype)-specific antibody and cytokine production and modification of T cell immunophenotypes and lymphocyte proliferation. Finally, BPP-II triggered p53 expression and stabilization and selectively inhibited tumor cell proliferation. These data identified the multifunctional factor, BPP-II, as a novel biomaterial representing an important linking between the humoral central immune system and immune induction, including antitumor. Information generated in this study elucidates further the mechanisms involved in humoral immune system and represents the potential basis of effective immunotherapeutic strategies for treating human tumors and immune improvement. PMID:22184121

  15. Identification and characterization of novel immunomodulatory bursal-derived pentapeptide-II (BPP-II).

    Science.gov (United States)

    Feng, Xiu-Li; Liu, Qing-Tao; Cao, Rui-Bing; Zhou, Bin; Ma, Zhi-Yong; Deng, Wen-Lei; Wei, Jian-Chao; Qiu, Ya-Feng; Wang, Fang-Quan; Gu, Jin-Yan; Wang, Feng-Juan; Zheng, Qi-Sheng; Ishag, Hassan; Chen, Pu-Yan

    2012-02-03

    The bursa of Fabricius, the acknowledged central humoral immune organ, plays a vital role in B lymphocyte differentiation. However, there are few reports of the molecular basis of the mechanism on immune induction and potential antitumor activity of bursal-derived peptides. In this paper, a novel bursal-derived pentapeptide-II (BPP-II, MTLTG) was isolated and exerted immunomodulatory functions on antibody responses in vitro. Gene microarray analyses demonstrated that BPP-II regulated expression of 2478 genes in a mouse-derived hybridoma cell line. Immune-related gene ontology functional procedures were employed for further functional analysis. Furthermore, the majority of BPP-II-regulated pathways were associated with immune responses and tumor processes. Moreover, BPP-II exhibited immunomodulatory effects on antigen-specific immune responses in vivo, including enhancement of avian influenza virus (H9N2 subtype)-specific antibody and cytokine production and modification of T cell immunophenotypes and lymphocyte proliferation. Finally, BPP-II triggered p53 expression and stabilization and selectively inhibited tumor cell proliferation. These data identified the multifunctional factor, BPP-II, as a novel biomaterial representing an important linking between the humoral central immune system and immune induction, including antitumor. Information generated in this study elucidates further the mechanisms involved in humoral immune system and represents the potential basis of effective immunotherapeutic strategies for treating human tumors and immune improvement.

  16. Removal of Ni(II), Zn(II) and Pb(II) ions from single metal aqueous solution using rice husk-based activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Taha, Mohd F., E-mail: faisalt@petronas.com.my; Shaharun, Maizatul S. [Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750, Perak Darul Ridzuan (Malaysia); Shuib, Anis Suhaila, E-mail: anisuha@petronas.com.my; Borhan, Azry [Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750, Perak Darul Ridzuan (Malaysia)

    2014-10-24

    An attempt was made to investigate the potential of rice husk-based activated carbon as an alternative low-cost adsorbent for the removal of Ni(II), Zn(II) and Pb(II) ions from single aqueous solution. Rice husk-based activated carbon was prepared via treatment of rice husk with NaOH followed by the carbonization process at 400°C for 2 hours. Three samples, i.e. raw rice husk, rice husk treated with NaOH and rice husk-based activated carbon, were analyzed for their morphological characteristics using field-emission scanning electron microscope/energy dispersive X-ray (FESEM/EDX). These samples were also analyzed for their carbon, hydrogen, nitrogen, oxygen and silica contents using CHN elemental analyzer and FESEM/EDX. The porous properties of rice husk-based activated carbon were determined by Brunauer-Emmett-Teller (BET) surface area analyzer, and its surface area and pore volume were 255 m{sup 2}/g and 0.17 cm{sup 2}/g, respectively. The adsorption studies for the removal of Ni(II), Zn(II) and Pb(II) ions from single metal aqueous solution were carried out at a fixed initial concentration of metal ion (150 ppm) with variation amount of adsorbent (rice husk-based activated carbon) as a function of varied contact time at room temperature. The concentration of each metal ion was analyzed using atomic absorption spectrophotometer (AAS). The results obtained from adsorption studies indicate the potential of rice husk as an economically promising precursor for the preparation of activated carbon for removal of Ni(II), Zn(II) and Pb(II) ions from single aqueous solution. Isotherm and kinetic model analyses suggested that the experimental data of adsorption studies fitted well with Langmuir, Freundlich and second-order kinetic models.

  17. αII-spectrin and βII-spectrin do not affect TGFβ1-induced myofibroblast differentiation.

    Science.gov (United States)

    Piersma, Bram; Wouters, Olaf Y; Bank, Ruud A

    2018-05-03

    Mechanosensing of fibroblasts plays a key role in the development of fibrosis. So far, no effective treatments are available to treat this devastating disorder. Spectrins regulate cell morphology and are potential mechanosensors in a variety of non-erythroid cells, but little is known about the role of spectrins in fibroblasts. We investigate whether αII- and βII-spectrin are required for the phenotypic properties of adult human dermal (myo)fibroblasts. Knockdown of αII- or βII-spectrin in fibroblasts did not affect cell adhesion, cell size and YAP nuclear/cytosolic localization. We further investigated whether αII- and βII-spectrin play a role in the phenotypical switch from fibroblasts to myofibroblasts under the influence of the pro-fibrotic cytokine TGFβ1. Knockdown of spectrins did not affect myofibroblast formation, nor did we observe changes in the organization of αSMA stress fibers. Focal adhesion assembly was unaffected by spectrin deficiency, as was collagen type I mRNA expression and protein deposition. Wound closure was unaffected as well, showing that important functional properties of myofibroblasts are unchanged without αII- or βII-spectrin. In fact, fibroblasts stimulated with TGFβ1 demonstrated significantly lower endogenous mRNA levels of αII- and βII-spectrin. Taken together, despite the diverse roles of spectrins in a variety of other cells, αII- and βII-spectrin do not regulate cell adhesion, cell size and YAP localization in human dermal fibroblasts and are not required for the dermal myofibroblast phenotypical switch.

  18. The effects of coenzyme Q10 treatment on maternally inherited diabetes mellitus and deafness, and mitochondrial DNA 3243 (A to G) mutation.

    Science.gov (United States)

    Suzuki, S; Hinokio, Y; Ohtomo, M; Hirai, M; Hirai, A; Chiba, M; Kasuga, S; Satoh, Y; Akai, H; Toyota, T

    1998-05-01

    The characteristic clinical features of diabetes mellitus with mitochondrial DNA (mtDNA) 3243(A-G) mutation are progressive insulin secretory defect, neurosensory deafness and maternal inheritance, referred to as maternally inherited diabetes mellitus and deafness (MIDD). A treatment for MIDD to improve insulin secretory defects and reduce deafness has not been established. The effects of coenzyme Q10 (CoQ10) treatment on insulin secretory response, hearing capacity and clinical symptoms of MIDD were investigated. 28 MIDD patients (CoQ10-DM), 7 mutant subjects with impaired glucose tolerance (IGT), and 15 mutant subjects with normal glucose tolerance (NGT) were treated daily with oral administration of 150 mg of CoQ10 for 3 years. Insulin secretory response, blood lactate after exercise, hearing capacity and other laboratory examinations were investigated every year. In the same way we evaluated 16 MIDD patients (control-DM), 5 mutant IGT and 5 mutant NGT subjects in yearly examinations. The insulin secretory response assessed by glucagon-induced C-peptide secretion and 24 h urinary C-peptide excretion after 3 years in the CoQ10-DM group was significantly higher than that in the control-DM group. CoQ10 therapy prevented progressive hearing loss and improved blood lactate after exercise in the MIDD patients. CoQ10 treatment did not affect the diabetic complications or other clinical symptoms of MIDD patients. CoQ10 treatment did not affect the insulin secretory capacity of the mutant IGT and NGT subjects. There were no side effects during therapy. This is the first report demonstrating the therapeutic usefulness of CoQ10 on MIDD.

  19. Inhibition of liver fibrosis by solubilized coenzyme Q10: Role of Nrf2 activation in inhibiting transforming growth factor-β1 expression

    International Nuclear Information System (INIS)

    Choi, Hoo-Kyun; Pokharel, Yuba Raj; Lim, Sung Chul; Han, Hyo-Kyung; Ryu, Chang Seon; Kim, Sang Kyum; Kwak, Mi Kyong; Kang, Keon Wook

    2009-01-01

    Coenzyme Q10 (CoQ10), an endogenous antioxidant, is important in oxidative phosphorylation in mitochondria. It has anti-diabetic and anti-cardiovascular disease effects, but its ability to protect against liver fibrosis has not been studied. Here, we assessed the ability of solubilized CoQ10 to improve dimethylnitrosamine (DMN)-induced liver fibrogenesis in mice. DMN treatments for 3 weeks produced a marked liver fibrosis as assessed by histopathological examination and tissue 4-hydroxyproline content. Solubilized CoQ10 (10 and 30 mg/kg) significantly inhibited both the increases in fibrosis score and 4-hydroxyproline content induced by DMN. Reverse transcription-polymerase chain reaction and Western blot analyses revealed that solubilized CoQ10 inhibited increases in the transforming growth factor-β1 (TGF-β1) mRNA and α-smooth muscle actin (α-SMA) protein by DMN. Interestingly, hepatic glutamate-cysteine ligase (GCL) and glutathione S-transferase A2 (GSTA2) were up-regulated in mice treated with CoQ10. Solubilized CoQ10 also up-regulated antioxidant enzymes such as catalytic subunits of GCL and GSTA2 via activating NF-E2 related factor2 (Nrf2)/antioxidant response element (ARE) in H4IIE hepatoma cells. Moreover, CoQ10's inhibition of α-SMA and TGF-β1 expressions disappeared in Nrf2-null MEF cells. In contrast, Nrf2 overexpression significantly decreased the basal expression levels of α-SMA and TGF-β1 in Nrf2-null MEF cells. These results demonstrated that solubilized CoQ10 inhibited DMN-induced liver fibrosis through suppression of TGF-β1 expression via Nrf2/ARE activation.

  20. Receptors for insulin-like growth factor II (IGF-II) in the rat kidney glomerulus

    International Nuclear Information System (INIS)

    Haskell, J.F.; Pillion, D.J.; Meezan, E.

    1986-01-01

    Renal glomeruli were isolated by a technique involving renal perfusion with a solution containing magnetic iron oxide particles, followed by homogenization, sieving and isolation over a strong magnet. Isolated glomeruli were treated with 1% Triton X-100 to solubilize plasma membrane components while insoluble basement membrane components were removed by centrifugation. [ 125 I]Insulin-like growth factor-II (IGF-II) binding to this preparation was competitively inhibited by increasing amounts of unlabelled IGF-II, with 50% inhibition of binding observed at an IGF-II concentration of 1 ng/ml. [ 125 I]IGF-II was covalently cross-linked to its receptor with disuccinimidyl suberate in two tissues known to contain IGF-II receptors, the rat chondrosarcoma chondrocyte and the rat kidney tubule, as well as in rat renal glomeruli. In all three cases, a specific high-molecular weight (Mr = 255,000) band could be identified on autoradiograms of dodecyl sulfate polyacrylamide gels. These results indicate that the rat glomerulus contains a high-affinity receptor for IGF-II. This finding is consistent with the hypothesis that IGF-II plays a role in glomerular growth and differentiation