Elder, D
1984-06-07
The logic of genetic control of development may be based on a binary epigenetic code. This paper revises the author's previous scheme dealing with the numerology of annelid metamerism in these terms. Certain features of the code had been deduced to be combinatorial, others not. This paradoxical contrast is resolved here by the interpretation that these features relate to different operations of the code; the combinatiorial to coding identity of units, the non-combinatorial to coding production of units. Consideration of a second paradox in the theory of epigenetic coding leads to a new solution which further provides a basis for epimorphic regeneration, and may in particular throw light on the "regeneration-duplication" phenomenon. A possible test of the model is also put forward.
Algebraic and stochastic coding theory
Kythe, Dave K
2012-01-01
Using a simple yet rigorous approach, Algebraic and Stochastic Coding Theory makes the subject of coding theory easy to understand for readers with a thorough knowledge of digital arithmetic, Boolean and modern algebra, and probability theory. It explains the underlying principles of coding theory and offers a clear, detailed description of each code. More advanced readers will appreciate its coverage of recent developments in coding theory and stochastic processes. After a brief review of coding history and Boolean algebra, the book introduces linear codes, including Hamming and Golay codes.
Optical coding theory with Prime
Kwong, Wing C
2013-01-01
Although several books cover the coding theory of wireless communications and the hardware technologies and coding techniques of optical CDMA, no book has been specifically dedicated to optical coding theory-until now. Written by renowned authorities in the field, Optical Coding Theory with Prime gathers together in one volume the fundamentals and developments of optical coding theory, with a focus on families of prime codes, supplemented with several families of non-prime codes. The book also explores potential applications to coding-based optical systems and networks. Learn How to Construct
International Nuclear Information System (INIS)
Clancy, B.E.
1986-01-01
This chapter begins with a neutron transport equation which includes the one dimensional plane geometry problems, the one dimensional spherical geometry problems, and numerical solutions. The section on the ANISN code and its look-alikes covers problems which can be solved; eigenvalue problems; outer iteration loop; inner iteration loop; and finite difference solution procedures. The input and output data for ANISN is also discussed. Two dimensional problems such as the DOT code are given. Finally, an overview of the Monte-Carlo methods and codes are elaborated on
Introduction to coding and information theory
Roman, Steven
1997-01-01
This book is intended to introduce coding theory and information theory to undergraduate students of mathematics and computer science. It begins with a review of probablity theory as applied to finite sample spaces and a general introduction to the nature and types of codes. The two subsequent chapters discuss information theory: efficiency of codes, the entropy of information sources, and Shannon's Noiseless Coding Theorem. The remaining three chapters deal with coding theory: communication channels, decoding in the presence of errors, the general theory of linear codes, and such specific codes as Hamming codes, the simplex codes, and many others.
Coding Theory, Cryptography and Related Areas
DEFF Research Database (Denmark)
Buchmann, Johannes; Stichtenoth, Henning; Tapia-Recillas, Horacio
Proceedings of anInternational Conference on Coding Theory, Cryptography and Related Areas, held in Guanajuato, Mexico. in april 1998......Proceedings of anInternational Conference on Coding Theory, Cryptography and Related Areas, held in Guanajuato, Mexico. in april 1998...
Combinatorial neural codes from a mathematical coding theory perspective.
Curto, Carina; Itskov, Vladimir; Morrison, Katherine; Roth, Zachary; Walker, Judy L
2013-07-01
Shannon's seminal 1948 work gave rise to two distinct areas of research: information theory and mathematical coding theory. While information theory has had a strong influence on theoretical neuroscience, ideas from mathematical coding theory have received considerably less attention. Here we take a new look at combinatorial neural codes from a mathematical coding theory perspective, examining the error correction capabilities of familiar receptive field codes (RF codes). We find, perhaps surprisingly, that the high levels of redundancy present in these codes do not support accurate error correction, although the error-correcting performance of receptive field codes catches up to that of random comparison codes when a small tolerance to error is introduced. However, receptive field codes are good at reflecting distances between represented stimuli, while the random comparison codes are not. We suggest that a compromise in error-correcting capability may be a necessary price to pay for a neural code whose structure serves not only error correction, but must also reflect relationships between stimuli.
Lattice polytopes in coding theory
Directory of Open Access Journals (Sweden)
Ivan Soprunov
2015-05-01
Full Text Available In this paper we discuss combinatorial questions about lattice polytopes motivated by recent results on minimum distance estimation for toric codes. We also include a new inductive bound for the minimum distance of generalized toric codes. As an application, we give new formulas for the minimum distance of generalized toric codes for special lattice point configurations.
Fundamentals of information theory and coding design
Togneri, Roberto
2003-01-01
In a clear, concise, and modular format, this book introduces the fundamental concepts and mathematics of information and coding theory. The authors emphasize how a code is designed and discuss the main properties and characteristics of different coding algorithms along with strategies for selecting the appropriate codes to meet specific requirements. They provide comprehensive coverage of source and channel coding, address arithmetic, BCH, and Reed-Solomon codes and explore some more advanced topics such as PPM compression and turbo codes. Worked examples and sets of basic and advanced exercises in each chapter reinforce the text's clear explanations of all concepts and methodologies.
The general theory of convolutional codes
Mceliece, R. J.; Stanley, R. P.
1993-01-01
This article presents a self-contained introduction to the algebraic theory of convolutional codes. This introduction is partly a tutorial, but at the same time contains a number of new results which will prove useful for designers of advanced telecommunication systems. Among the new concepts introduced here are the Hilbert series for a convolutional code and the class of compact codes.
Algebraic coding theory over finite commutative rings
Dougherty, Steven T
2017-01-01
This book provides a self-contained introduction to algebraic coding theory over finite Frobenius rings. It is the first to offer a comprehensive account on the subject. Coding theory has its origins in the engineering problem of effective electronic communication where the alphabet is generally the binary field. Since its inception, it has grown as a branch of mathematics, and has since been expanded to consider any finite field, and later also Frobenius rings, as its alphabet. This book presents a broad view of the subject as a branch of pure mathematics and relates major results to other fields, including combinatorics, number theory and ring theory. Suitable for graduate students, the book will be of interest to anyone working in the field of coding theory, as well as algebraists and number theorists looking to apply coding theory to their own work.
Coding theory and cryptography the essentials
Hankerson, DC; Leonard, DA; Phelps, KT; Rodger, CA; Wall, JR; Wall, J R
2000-01-01
Containing data on number theory, encryption schemes, and cyclic codes, this highly successful textbook, proven by the authors in a popular two-quarter course, presents coding theory, construction, encoding, and decoding of specific code families in an ""easy-to-use"" manner appropriate for students with only a basic background in mathematics offering revised and updated material on the Berlekamp-Massey decoding algorithm and convolutional codes. Introducing the mathematics as it is needed and providing exercises with solutions, this edition includes an extensive section on cryptography, desig
Self-complementary circular codes in coding theory.
Fimmel, Elena; Michel, Christian J; Starman, Martin; Strüngmann, Lutz
2018-04-01
Self-complementary circular codes are involved in pairing genetic processes. A maximal [Formula: see text] self-complementary circular code X of trinucleotides was identified in genes of bacteria, archaea, eukaryotes, plasmids and viruses (Michel in Life 7(20):1-16 2017, J Theor Biol 380:156-177, 2015; Arquès and Michel in J Theor Biol 182:45-58 1996). In this paper, self-complementary circular codes are investigated using the graph theory approach recently formulated in Fimmel et al. (Philos Trans R Soc A 374:20150058, 2016). A directed graph [Formula: see text] associated with any code X mirrors the properties of the code. In the present paper, we demonstrate a necessary condition for the self-complementarity of an arbitrary code X in terms of the graph theory. The same condition has been proven to be sufficient for codes which are circular and of large size [Formula: see text] trinucleotides, in particular for maximal circular codes ([Formula: see text] trinucleotides). For codes of small-size [Formula: see text] trinucleotides, some very rare counterexamples have been constructed. Furthermore, the length and the structure of the longest paths in the graphs associated with the self-complementary circular codes are investigated. It has been proven that the longest paths in such graphs determine the reading frame for the self-complementary circular codes. By applying this result, the reading frame in any arbitrary sequence of trinucleotides is retrieved after at most 15 nucleotides, i.e., 5 consecutive trinucleotides, from the circular code X identified in genes. Thus, an X motif of a length of at least 15 nucleotides in an arbitrary sequence of trinucleotides (not necessarily all of them belonging to X) uniquely defines the reading (correct) frame, an important criterion for analyzing the X motifs in genes in the future.
Polynomial theory of error correcting codes
Cancellieri, Giovanni
2015-01-01
The book offers an original view on channel coding, based on a unitary approach to block and convolutional codes for error correction. It presents both new concepts and new families of codes. For example, lengthened and modified lengthened cyclic codes are introduced as a bridge towards time-invariant convolutional codes and their extension to time-varying versions. The novel families of codes include turbo codes and low-density parity check (LDPC) codes, the features of which are justified from the structural properties of the component codes. Design procedures for regular LDPC codes are proposed, supported by the presented theory. Quasi-cyclic LDPC codes, in block or convolutional form, represent one of the most original contributions of the book. The use of more than 100 examples allows the reader gradually to gain an understanding of the theory, and the provision of a list of more than 150 definitions, indexed at the end of the book, permits rapid location of sought information.
Kneser-Hecke-operators in coding theory
Nebe, Gabriele
2005-01-01
The Kneser-Hecke-operator is a linear operator defined on the complex vector space spanned by the equivalence classes of a family of self-dual codes of fixed length. It maps a linear self-dual code $C$ over a finite field to the formal sum of the equivalence classes of those self-dual codes that intersect $C$ in a codimension 1 subspace. The eigenspaces of this self-adjoint linear operator may be described in terms of a coding-theory analogue of the Siegel $\\Phi $-operator.
Classical diffusion: theory and simulation codes
International Nuclear Information System (INIS)
Grad, H.; Hu, P.N.
1978-03-01
A survey is given of the development of classical diffusion theory which arose from the observation of Grad and Hogan that the Pfirsch-Schluter and Neoclassical theories are very special and frequently inapplicable because they require that plasma mass flow be treated as transport rather than as a state variable of the plasma. The subsequent theory, efficient numerical algorithms, and results of various operating codes are described
Evaluation Codes from Order Domain Theory
DEFF Research Database (Denmark)
Andersen, Henning Ejnar; Geil, Hans Olav
2008-01-01
bound is easily extended to deal with any generalized Hamming weights. We interpret our methods into the setting of order domain theory. In this way we fill in an obvious gap in the theory of order domains. [28] T. Shibuya and K. Sakaniwa, A Dual of Well-Behaving Type Designed Minimum Distance, IEICE......The celebrated Feng-Rao bound estimates the minimum distance of codes defined by means of their parity check matrices. From the Feng-Rao bound it is clear how to improve a large family of codes by leaving out certain rows in their parity check matrices. In this paper we derive a simple lower bound...... on the minimum distance of codes defined by means of their generator matrices. From our bound it is clear how to improve a large family of codes by adding certain rows to their generator matrices. The new bound is very much related to the Feng-Rao bound as well as to Shibuya and Sakaniwa's bound in [28]. Our...
Applications of Derandomization Theory in Coding
Cheraghchi, Mahdi
2011-07-01
Randomized techniques play a fundamental role in theoretical computer science and discrete mathematics, in particular for the design of efficient algorithms and construction of combinatorial objects. The basic goal in derandomization theory is to eliminate or reduce the need for randomness in such randomized constructions. In this thesis, we explore some applications of the fundamental notions in derandomization theory to problems outside the core of theoretical computer science, and in particular, certain problems related to coding theory. First, we consider the wiretap channel problem which involves a communication system in which an intruder can eavesdrop a limited portion of the transmissions, and construct efficient and information-theoretically optimal communication protocols for this model. Then we consider the combinatorial group testing problem. In this classical problem, one aims to determine a set of defective items within a large population by asking a number of queries, where each query reveals whether a defective item is present within a specified group of items. We use randomness condensers to explicitly construct optimal, or nearly optimal, group testing schemes for a setting where the query outcomes can be highly unreliable, as well as the threshold model where a query returns positive if the number of defectives pass a certain threshold. Finally, we design ensembles of error-correcting codes that achieve the information-theoretic capacity of a large class of communication channels, and then use the obtained ensembles for construction of explicit capacity achieving codes. [This is a shortened version of the actual abstract in the thesis.
Statistical theory applications and associated computer codes
International Nuclear Information System (INIS)
Prince, A.
1980-01-01
The general format is along the same lines as that used in the O.M. Session, i.e. an introduction to the nature of the physical problems and methods of solution based on the statistical model of the nucleus. Both binary and higher multiple reactions are considered. The computer codes used in this session are a combination of optical model and statistical theory. As with the O.M. sessions, the preparation of input and analysis of output are thoroughly examined. Again, comparison with experimental data serves to demonstrate the validity of the results and possible areas for improvement. (author)
Recent trends in coding theory and its applications
Li, Wen-Ching Winnie
2007-01-01
Coding theory draws on a remarkable selection of mathematical topics, both pure and applied. The various contributions in this volume introduce coding theory and its most recent developments and applications, emphasizing both mathematical and engineering perspectives on the subject. This volume covers four important areas in coding theory: algebraic geometry codes, graph-based codes, space-time codes, and quantum codes. Both students and seasoned researchers will benefit from the extensive and self-contained discussions of the development and recent progress in these areas.
Coding Theory and Applications : 4th International Castle Meeting
Malonek, Paula; Vettori, Paolo
2015-01-01
The topics covered in this book, written by researchers at the forefront of their field, represent some of the most relevant research areas in modern coding theory: codes and combinatorial structures, algebraic geometric codes, group codes, quantum codes, convolutional codes, network coding and cryptography. The book includes a survey paper on the interconnections of coding theory with constrained systems, written by an invited speaker, as well as 37 cutting-edge research communications presented at the 4th International Castle Meeting on Coding Theory and Applications (4ICMCTA), held at the Castle of Palmela in September 2014. The event’s scientific program consisted of four invited talks and 39 regular talks by authors from 24 different countries. This conference provided an ideal opportunity for communicating new results, exchanging ideas, strengthening international cooperation, and introducing young researchers into the coding theory community.
Information theory and coding solved problems
Ivaniš, Predrag
2017-01-01
This book is offers a comprehensive overview of information theory and error control coding, using a different approach then in existed literature. The chapters are organized according to the Shannon system model, where one block affects the others. A relatively brief theoretical introduction is provided at the beginning of every chapter, including a few additional examples and explanations, but without any proofs. And a short overview of some aspects of abstract algebra is given at the end of the corresponding chapters. The characteristic complex examples with a lot of illustrations and tables are chosen to provide detailed insights into the nature of the problem. Some limiting cases are presented to illustrate the connections with the theoretical bounds. The numerical values are carefully selected to provide in-depth explanations of the described algorithms. Although the examples in the different chapters can be considered separately, they are mutually connected and the conclusions for one considered proble...
A mean field theory of coded CDMA systems
International Nuclear Information System (INIS)
Yano, Toru; Tanaka, Toshiyuki; Saad, David
2008-01-01
We present a mean field theory of code-division multiple-access (CDMA) systems with error-control coding. On the basis of the relation between the free energy and mutual information, we obtain an analytical expression of the maximum spectral efficiency of the coded CDMA system, from which a mean-field description of the coded CDMA system is provided in terms of a bank of scalar Gaussian channels whose variances in general vary at different code symbol positions. Regular low-density parity-check (LDPC)-coded CDMA systems are also discussed as an example of the coded CDMA systems
A mean field theory of coded CDMA systems
Energy Technology Data Exchange (ETDEWEB)
Yano, Toru [Graduate School of Science and Technology, Keio University, Hiyoshi, Kohoku-ku, Yokohama-shi, Kanagawa 223-8522 (Japan); Tanaka, Toshiyuki [Graduate School of Informatics, Kyoto University, Yoshida Hon-machi, Sakyo-ku, Kyoto-shi, Kyoto 606-8501 (Japan); Saad, David [Neural Computing Research Group, Aston University, Birmingham B4 7ET (United Kingdom)], E-mail: yano@thx.appi.keio.ac.jp
2008-08-15
We present a mean field theory of code-division multiple-access (CDMA) systems with error-control coding. On the basis of the relation between the free energy and mutual information, we obtain an analytical expression of the maximum spectral efficiency of the coded CDMA system, from which a mean-field description of the coded CDMA system is provided in terms of a bank of scalar Gaussian channels whose variances in general vary at different code symbol positions. Regular low-density parity-check (LDPC)-coded CDMA systems are also discussed as an example of the coded CDMA systems.
Sexing code subversion, theory and representation
Herbst, Claudia
2008-01-01
Critically investigating the gender of programming in popular culture, Sexing Code proposes that the de facto representation of technical ability serves to perpetuate the age-old association of the male with intellect and reason, while identifying the fem
The missing evaluation codes from order domain theory
DEFF Research Database (Denmark)
Andersen, Henning Ejnar; Geil, Olav
The Feng-Rao bound gives a lower bound on the minimum distance of codes defined by means of their parity check matrices. From the Feng-Rao bound it is clear how to improve a large family of codes by leaving out certain rows in their parity check matrices. In this paper we derive a simple lower...... generalized Hamming weight. We interpret our methods into the setting of order domain theory. In this way we fill in an obvious gap in the theory of order domains. The improved codes from the present paper are not in general equal to the Feng-Rao improved codes but the constructions are very much related....
Enhancing Undergraduate Mathematics Curriculum via Coding Theory and Cryptography
Aydin, Nuh
2009-01-01
The theory of error-correcting codes and cryptography are two relatively recent applications of mathematics to information and communication systems. The mathematical tools used in these fields generally come from algebra, elementary number theory, and combinatorics, including concepts from computational complexity. It is possible to introduce the…
Conference on Algebraic Geometry for Coding Theory and Cryptography
Lauter, Kristin; Walker, Judy
2017-01-01
Covering topics in algebraic geometry, coding theory, and cryptography, this volume presents interdisciplinary group research completed for the February 2016 conference at the Institute for Pure and Applied Mathematics (IPAM) in cooperation with the Association for Women in Mathematics (AWM). The conference gathered research communities across disciplines to share ideas and problems in their fields and formed small research groups made up of graduate students, postdoctoral researchers, junior faculty, and group leaders who designed and led the projects. Peer reviewed and revised, each of this volume's five papers achieves the conference’s goal of using algebraic geometry to address a problem in either coding theory or cryptography. Proposed variants of the McEliece cryptosystem based on different constructions of codes, constructions of locally recoverable codes from algebraic curves and surfaces, and algebraic approaches to the multicast network coding problem are only some of the topics covered in this vo...
Dual-Coding Theory and Connectionist Lexical Selection
Wang, Ye-Yi
1994-01-01
We introduce the bilingual dual-coding theory as a model for bilingual mental representation. Based on this model, lexical selection neural networks are implemented for a connectionist transfer project in machine translation. This lexical selection approach has two advantages. First, it is learnable. Little human effort on knowledge engineering is required. Secondly, it is psycholinguistically well-founded.
Plato: A localised orbital based density functional theory code
Kenny, S. D.; Horsfield, A. P.
2009-12-01
The Plato package allows both orthogonal and non-orthogonal tight-binding as well as density functional theory (DFT) calculations to be performed within a single framework. The package also provides extensive tools for analysing the results of simulations as well as a number of tools for creating input files. The code is based upon the ideas first discussed in Sankey and Niklewski (1989) [1] with extensions to allow high-quality DFT calculations to be performed. DFT calculations can utilise either the local density approximation or the generalised gradient approximation. Basis sets from minimal basis through to ones containing multiple radial functions per angular momenta and polarisation functions can be used. Illustrations of how the package has been employed are given along with instructions for its utilisation. Program summaryProgram title: Plato Catalogue identifier: AEFC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFC_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 219 974 No. of bytes in distributed program, including test data, etc.: 1 821 493 Distribution format: tar.gz Programming language: C/MPI and PERL Computer: Apple Macintosh, PC, Unix machines Operating system: Unix, Linux and Mac OS X Has the code been vectorised or parallelised?: Yes, up to 256 processors tested RAM: Up to 2 Gbytes per processor Classification: 7.3 External routines: LAPACK, BLAS and optionally ScaLAPACK, BLACS, PBLAS, FFTW Nature of problem: Density functional theory study of electronic structure and total energies of molecules, crystals and surfaces. Solution method: Localised orbital based density functional theory. Restrictions: Tight-binding and density functional theory only, no exact exchange. Unusual features: Both atom centred and uniform meshes available
Schultz, Wolfram
2004-04-01
Neurons in a small number of brain structures detect rewards and reward-predicting stimuli and are active during the expectation of predictable food and liquid rewards. These neurons code the reward information according to basic terms of various behavioural theories that seek to explain reward-directed learning, approach behaviour and decision-making. The involved brain structures include groups of dopamine neurons, the striatum including the nucleus accumbens, the orbitofrontal cortex and the amygdala. The reward information is fed to brain structures involved in decision-making and organisation of behaviour, such as the dorsolateral prefrontal cortex and possibly the parietal cortex. The neural coding of basic reward terms derived from formal theories puts the neurophysiological investigation of reward mechanisms on firm conceptual grounds and provides neural correlates for the function of rewards in learning, approach behaviour and decision-making.
Recent advances in coding theory for near error-free communications
Cheung, K.-M.; Deutsch, L. J.; Dolinar, S. J.; Mceliece, R. J.; Pollara, F.; Shahshahani, M.; Swanson, L.
1991-01-01
Channel and source coding theories are discussed. The following subject areas are covered: large constraint length convolutional codes (the Galileo code); decoder design (the big Viterbi decoder); Voyager's and Galileo's data compression scheme; current research in data compression for images; neural networks for soft decoding; neural networks for source decoding; finite-state codes; and fractals for data compression.
Use of the algebraic coding theory in nuclear electronics
International Nuclear Information System (INIS)
Nikityuk, N.M.
1990-01-01
New results of studies of the development and use of the syndrome coding method in nuclear electronics are described. Two aspects of using the syndrome coding method are considered for sequential coding devices and for the creation of fast parallel data compression devices. Specific examples of the creation of time-to-digital converters based on circular counters are described. Several time intervals can be coded very fast and with a high resolution by means of these converters. The effective coding matrix which can be used for light signal coding. The rule of constructing such coding matrices for arbitrary number of channels and multiplicity n is given. The methods for solving ambiguities in silicon detectors and for creating the special-purpose processors for high-energy spectrometers are given. 21 refs.; 9 figs.; 3 tabs
International Nuclear Information System (INIS)
Ahnert, C.; Aragones, J.M.
1982-01-01
The Carmen code (theory and user's manual) is described. This code for assembly and core calculations uses diffusion theory (Citation), with feedback in the cross sections by zone due to the effects of burnup, water density, fuel temperature, Xenon and Samarium. The burnup calculation of a full cycle is solved in only an execution of Carmen, and in a reduced computer time. (auth.)
A Survey of Progress in Coding Theory in the Soviet Union. Final Report.
Kautz, William H.; Levitt, Karl N.
The results of a comprehensive technical survey of all published Soviet literature in coding theory and its applications--over 400 papers and books appearing before March 1967--are described in this report. Noteworthy Soviet contributions are discussed, including codes for the noiseless channel, codes that correct asymetric errors, decoding for…
Control rod computer code IAMCOS: general theory and numerical methods
International Nuclear Information System (INIS)
West, G.
1982-11-01
IAMCOS is a computer code for the description of mechanical and thermal behavior of cylindrical control rods for fast breeders. This code version was applied, tested and modified from 1979 to 1981. In this report are described the basic model (02 version), theoretical definitions and computation methods [fr
A Critique of Schema Theory in Reading and a Dual Coding Alternative (Commentary).
Sadoski, Mark; And Others
1991-01-01
Evaluates schema theory and presents dual coding theory as a theoretical alternative. Argues that schema theory is encumbered by lack of a consistent definition, its roots in idealist epistemology, and mixed empirical support. Argues that results of many empirical studies used to demonstrate the existence of schemata are more consistently…
Performance Theories for Sentence Coding: Some Quantitative Models
Aaronson, Doris; And Others
1977-01-01
This study deals with the patterns of word-by-word reading times over a sentence when the subject must code the linguistic information sufficiently for immediate verbatim recall. A class of quantitative models is considered that would account for reading times at phrase breaks. (Author/RM)
An Application of Discrete Mathematics to Coding Theory.
Donohoe, L. Joyce
1992-01-01
Presents a public-key cryptosystem application to introduce students to several topics in discrete mathematics. A computer algorithms using recursive methods is presented to solve a problem in which one person wants to send a coded message to a second person while keeping the message secret from a third person. (MDH)
Coding theory on the m-extension of the Fibonacci p-numbers
International Nuclear Information System (INIS)
Basu, Manjusri; Prasad, Bandhu
2009-01-01
In this paper, we introduce a new Fibonacci G p,m matrix for the m-extension of the Fibonacci p-numbers where p (≥0) is integer and m (>0). Thereby, we discuss various properties of G p,m matrix and the coding theory followed from the G p,m matrix. In this paper, we establish the relations among the code elements for all values of p (nonnegative integer) and m(>0). We also show that the relation, among the code matrix elements for all values of p and m=1, coincides with the relation among the code matrix elements for all values of p [Basu M, Prasad B. The generalized relations among the code elements for Fibonacci coding theory. Chaos, Solitons and Fractals (2008). doi: 10.1016/j.chaos.2008.09.030]. In general, correct ability of the method increases as p increases but it is independent of m.
Paivio, Allan; Sadoski, Mark
2011-01-01
Elman (2009) proposed that the traditional role of the mental lexicon in language processing can largely be replaced by a theoretical model of schematic event knowledge founded on dynamic context-dependent variables. We evaluate Elman's approach and propose an alternative view, based on dual coding theory and evidence that modality-specific cognitive representations contribute strongly to word meaning and language performance across diverse contexts which also have effects predictable from dual coding theory. Copyright © 2010 Cognitive Science Society, Inc.
From tracking code to analysis generalised Courant-Snyder theory for any accelerator model
Forest, Etienne
2016-01-01
This book illustrates a theory well suited to tracking codes, which the author has developed over the years. Tracking codes now play a central role in the design and operation of particle accelerators. The theory is fully explained step by step with equations and actual codes that the reader can compile and run with freely available compilers. In this book, the author pursues a detailed approach based on finite “s”-maps, since this is more natural as long as tracking codes remain at the center of accelerator design. The hierarchical nature of software imposes a hierarchy that puts map-based perturbation theory above any other methods. This is not a personal choice: it follows logically from tracking codes overloaded with a truncated power series algebra package. After defining abstractly and briefly what a tracking code is, the author illustrates most of the accelerator perturbation theory using an actual code: PTC. This book may seem like a manual for PTC; however, the reader is encouraged to explore...
SYN3D: a single-channel, spatial flux synthesis code for diffusion theory calculations
Energy Technology Data Exchange (ETDEWEB)
Adams, C. H.
1976-07-01
This report is a user's manual for SYN3D, a computer code which uses single-channel, spatial flux synthesis to calculate approximate solutions to two- and three-dimensional, finite-difference, multigroup neutron diffusion theory equations. SYN3D is designed to run in conjunction with any one of several one- and two-dimensional, finite-difference codes (required to generate the synthesis expansion functions) currently being used in the fast reactor community. The report describes the theory and equations, the use of the code, and the implementation on the IBM 370/195 and CDC 7600 of the version of SYN3D available through the Argonne Code Center.
SYN3D: a single-channel, spatial flux synthesis code for diffusion theory calculations
International Nuclear Information System (INIS)
Adams, C.H.
1976-07-01
This report is a user's manual for SYN3D, a computer code which uses single-channel, spatial flux synthesis to calculate approximate solutions to two- and three-dimensional, finite-difference, multigroup neutron diffusion theory equations. SYN3D is designed to run in conjunction with any one of several one- and two-dimensional, finite-difference codes (required to generate the synthesis expansion functions) currently being used in the fast reactor community. The report describes the theory and equations, the use of the code, and the implementation on the IBM 370/195 and CDC 7600 of the version of SYN3D available through the Argonne Code Center
A theory manual for multi-physics code coupling in LIME.
Energy Technology Data Exchange (ETDEWEB)
Belcourt, Noel; Bartlett, Roscoe Ainsworth; Pawlowski, Roger Patrick; Schmidt, Rodney Cannon; Hooper, Russell Warren
2011-03-01
The Lightweight Integrating Multi-physics Environment (LIME) is a software package for creating multi-physics simulation codes. Its primary application space is when computer codes are currently available to solve different parts of a multi-physics problem and now need to be coupled with other such codes. In this report we define a common domain language for discussing multi-physics coupling and describe the basic theory associated with multiphysics coupling algorithms that are to be supported in LIME. We provide an assessment of coupling techniques for both steady-state and time dependent coupled systems. Example couplings are also demonstrated.
The study of watermark bar code recognition with light transmission theory
Zhang, Fan; Liu, Tiegen; Zhang, Lianxiang; Zhang, Xiaojun
2004-10-01
Watermark bar code is one of the latest anti-counterfeiting technologies, which is applicable to a series of security documents, especially banknotes. With watermark bar codes embedded euro banknotes as an example, a system is designed for watermark bar code detection and recognition based on light transmission theory. We obtain light transmission curves of different denominations along different sampling lines which are paralleled to the latitudinal axis of the banknote. By calculating the correlation coefficient between different light transmission curves, the system can not only distinguish the reference banknote from either the counterfeit ones or other denominations, but also demonstrates high consistency and repeatability.
Directory of Open Access Journals (Sweden)
Shelby D. Hunt
2012-06-01
Full Text Available Scholars agree that societal-level moral codes that promote social trust also promote wealth creation. However, what specific kinds of societal-level moral codes promote social trust? Also, by what specific kind of competitive process does social trust promote wealth creation? Because societal-level moral codes are composed of or formed from peoples’ personal moral codes, this article explores a theory of ethics, known as the “Hunt-Vitell” theory of ethics, that illuminates the concept of personal moral codes and uses the theory to discuss which types of personal moral codes foster trust and distrust in society. This article then uses resource-advantage (R-A theory, one of the most completely articulated dynamic theories of competition, to show the process by which trust-promoting, societal-level moral codes promote productivity and economic growth. That is, they promote wealth creation.
Concreteness effects in semantic processing: ERP evidence supporting dual-coding theory.
Kounios, J; Holcomb, P J
1994-07-01
Dual-coding theory argues that processing advantages for concrete over abstract (verbal) stimuli result from the operation of 2 systems (i.e., imaginal and verbal) for concrete stimuli, rather than just 1 (for abstract stimuli). These verbal and imaginal systems have been linked with the left and right hemispheres of the brain, respectively. Context-availability theory argues that concreteness effects result from processing differences in a single system. The merits of these theories were investigated by examining the topographic distribution of event-related brain potentials in 2 experiments (lexical decision and concrete-abstract classification). The results were most consistent with dual-coding theory. In particular, different scalp distributions of an N400-like negativity were elicited by concrete and abstract words.
Some questions of using coding theory and analytical calculation methods on computers
International Nuclear Information System (INIS)
Nikityuk, N.M.
1987-01-01
Main results of investigations devoted to the application of theory and practice of correcting codes are presented. These results are used to create very fast units for the selection of events registered in multichannel detectors of nuclear particles. Using this theory and analytical computing calculations, practically new combination devices, for example, parallel encoders, have been developed. Questions concerning the creation of a new algorithm for the calculation of digital functions by computers and problems of devising universal, dynamically reprogrammable logic modules are discussed
Explorations in Policy Enactment: Feminist Thought Experiments with Basil Bernstein's Code Theory
Singh, Parlo; Pini, Barbara; Glasswell, Kathryn
2018-01-01
This paper builds on feminist elaborations of Bernstein's code theory to engage in a series of thought experiments with interview data produced during a co-inquiry design-based research intervention project. It presents three accounts of thinking/writing with data. Our purpose in presenting three different accounts of interview data is to…
Dual Coding Theory, Word Abstractness, and Emotion: A Critical Review of Kousta et al. (2011)
Paivio, Allan
2013-01-01
Kousta, Vigliocco, Del Campo, Vinson, and Andrews (2011) questioned the adequacy of dual coding theory and the context availability model as explanations of representational and processing differences between concrete and abstract words. They proposed an alternative approach that focuses on the role of emotional content in the processing of…
Validation of the 3D finite element transport theory code EVENT for shielding applications
International Nuclear Information System (INIS)
Warner, Paul; Oliveira, R.E. de
2000-01-01
This paper is concerned with the validation of the 3D deterministic neutral-particle transport theory code EVENT for shielding applications. The code is based on the finite element-spherical harmonics (FE-P N ) method which has been extensively developed over the last decade. A general multi-group, anisotropic scattering formalism enables the code to address realistic steady state and time dependent, multi-dimensional coupled neutron/gamma radiation transport problems involving high scattering and deep penetration alike. The powerful geometrical flexibility and competitive computational effort makes the code an attractive tool for shielding applications. In recognition of this, EVENT is currently in the process of being adopted by the UK nuclear industry. The theory behind EVENT is described and its numerical implementation is outlined. Numerical results obtained by the code are compared with predictions of the Monte Carlo code MCBEND and also with the results from benchmark shielding experiments. In particular, results are presented for the ASPIS experimental configuration for both neutron and gamma ray calculations using the BUGLE 96 nuclear data library. (author)
International Nuclear Information System (INIS)
El-Osery, I.A.
1981-01-01
The purpose of this paper is to discuss the theories, techniques and computer codes that are frequently used in numerical reactor criticality and burnup calculations. It is a part of an integrated nuclear reactor calculation scheme conducted by the Reactors Department, Inshas Nuclear Research Centre. The crude part in numerical reactor criticality and burnup calculations includes the determination of neutron flux distribution which can be obtained in principle as a solution of Boltzmann transport equation. Numerical methods used for solving transport equations are discussed. Emphasis are made on numerical techniques based on multigroup diffusion theory. These numerical techniques include nodal, modal, and finite difference ones. The most commonly known computer codes utilizing these techniques are reviewed. Some of the main computer codes that have been already developed at the Reactors Department and related to numerical reactor criticality and burnup calculations have been presented
Theory of the space-dependent fuel management computer code ''UAFCC''
International Nuclear Information System (INIS)
El-Meshad, Y.; Morsy, S.; El-Osery, I.A.
1981-01-01
This report displays the theory of the spatial burnup computer code ''UAFCC'' which has been constructed as a part of an integrated reactor calculation scheme proposed at the Reactors Department of the ARE Atomic Energy Authority. The ''UAFCC'' is a single energy-one-dimensional diffusion burnup FORTRAN computer code for well moderated, multiregion, cylindrical thermal reactors. The effect of reactivity variation with burnup is introduced in the steady state diffusion equation by a fictitious neutron source. The infinite multiplication factor, the total migration area, and the power density per unit thermal flux are calculated from the point model burnup code ''UABUC'' fitted to polynomials of suitable degree in the flux-time, and then used as an input data to the ''UAFCC'' code. The proposed burnup spatial model has been used to study the different stratogemes of the incore fuel management schemes. The conclusions of this study will be presented in a future publication. (author)
Comprehensive nuclear model calculations: theory and use of the GNASH code
International Nuclear Information System (INIS)
Young, P.G.; Arthur, E.D.; Chadwick, M.B.
1998-01-01
The theory and operation of the nuclear reaction theory computer code GNASH is described, and detailed instructions are presented for code users. The code utilizes statistical Hauser-Feshbach theory with full angular momentum conservation and includes corrections for preequilibrium effects. This version is expected to be applicable for incident particle energies between 1 keV and 150 MeV and for incident photon energies to 140 MeV. General features of the code, the nuclear models that are utilized, input parameters needed to perform calculations, and the output quantities from typical problems are described in detail. A number of new features compared to previous versions are described in this manual, including the following: (1) inclusion of multiple preequilibrium processes, which allows the model calculations to be performed above 50 MeV; (2) a capability to calculate photonuclear reactions; (3) a method for determining the spin distribution of residual nuclei following preequilibrium reactions; and (4) a description of how preequilibrium spectra calculated with the FKK theory can be utilized (the 'FKK-GNASH' approach). The computational structure of the code and the subroutines and functions that are called are summarized as well. Two detailed examples are considered: 14-MeV neutrons incident on 93 Nb and 12-MeV neutrons incident on 238 U. The former example illustrates a typical calculation aimed at determining neutron, proton, and alpha emission spectra from 14-MeV reactions, and the latter example demonstrates use of the fission model in GNASH. Results from a variety of other cases are illustrated. (author)
Syntactic Parameters and a Coding Theory Perspective on Entropy and Complexity of Language Families
Directory of Open Access Journals (Sweden)
Matilde Marcolli
2016-04-01
Full Text Available We present a simple computational approach to assigning a measure of complexity and information/entropy to families of natural languages, based on syntactic parameters and the theory of error correcting codes. We associate to each language a binary string of syntactic parameters and to a language family a binary code, with code words the binary string associated to each language. We then evaluate the code parameters (rate and relative minimum distance and the position of the parameters with respect to the asymptotic bound of error correcting codes and the Gilbert–Varshamov bound. These bounds are, respectively, related to the Kolmogorov complexity and the Shannon entropy of the code and this gives us a computationally simple way to obtain estimates on the complexity and information, not of individual languages but of language families. This notion of complexity is related, from the linguistic point of view to the degree of variability of syntactic parameter across languages belonging to the same (historical family.
A Review on Block Matching Motion Estimation and Automata Theory based Approaches for Fractal Coding
Directory of Open Access Journals (Sweden)
Shailesh Kamble
2016-12-01
Full Text Available Fractal compression is the lossy compression technique in the field of gray/color image and video compression. It gives high compression ratio, better image quality with fast decoding time but improvement in encoding time is a challenge. This review paper/article presents the analysis of most significant existing approaches in the field of fractal based gray/color images and video compression, different block matching motion estimation approaches for finding out the motion vectors in a frame based on inter-frame coding and intra-frame coding i.e. individual frame coding and automata theory based coding approaches to represent an image/sequence of images. Though different review papers exist related to fractal coding, this paper is different in many sense. One can develop the new shape pattern for motion estimation and modify the existing block matching motion estimation with automata coding to explore the fractal compression technique with specific focus on reducing the encoding time and achieving better image/video reconstruction quality. This paper is useful for the beginners in the domain of video compression.
McLelland, Douglas; VanRullen, Rufin
2016-10-01
Several theories have been advanced to explain how cross-frequency coupling, the interaction of neuronal oscillations at different frequencies, could enable item multiplexing in neural systems. The communication-through-coherence theory proposes that phase-matching of gamma oscillations between areas enables selective processing of a single item at a time, and a later refinement of the theory includes a theta-frequency oscillation that provides a periodic reset of the system. Alternatively, the theta-gamma neural code theory proposes that a sequence of items is processed, one per gamma cycle, and that this sequence is repeated or updated across theta cycles. In short, both theories serve to segregate representations via the temporal domain, but differ on the number of objects concurrently represented. In this study, we set out to test whether each of these theories is actually physiologically plausible, by implementing them within a single model inspired by physiological data. Using a spiking network model of visual processing, we show that each of these theories is physiologically plausible and computationally useful. Both theories were implemented within a single network architecture, with two areas connected in a feedforward manner, and gamma oscillations generated by feedback inhibition within areas. Simply increasing the amplitude of global inhibition in the lower area, equivalent to an increase in the spatial scope of the gamma oscillation, yielded a switch from one mode to the other. Thus, these different processing modes may co-exist in the brain, enabling dynamic switching between exploratory and selective modes of attention.
An object oriented code for simulating supersymmetric Yang-Mills theories
Catterall, Simon; Joseph, Anosh
2012-06-01
We present SUSY_LATTICE - a C++ program that can be used to simulate certain classes of supersymmetric Yang-Mills (SYM) theories, including the well known N=4 SYM in four dimensions, on a flat Euclidean space-time lattice. Discretization of SYM theories is an old problem in lattice field theory. It has resisted solution until recently when new ideas drawn from orbifold constructions and topological field theories have been brought to bear on the question. The result has been the creation of a new class of lattice gauge theories in which the lattice action is invariant under one or more supersymmetries. The resultant theories are local, free of doublers and also possess exact gauge-invariance. In principle they form the basis for a truly non-perturbative definition of the continuum SYM theories. In the continuum limit they reproduce versions of the SYM theories formulated in terms of twisted fields, which on a flat space-time is just a change of the field variables. In this paper, we briefly review these ideas and then go on to provide the details of the C++ code. We sketch the design of the code, with particular emphasis being placed on SYM theories with N=(2,2) in two dimensions and N=4 in three and four dimensions, making one-to-one comparisons between the essential components of the SYM theories and their corresponding counterparts appearing in the simulation code. The code may be used to compute several quantities associated with the SYM theories such as the Polyakov loop, mean energy, and the width of the scalar eigenvalue distributions. Program summaryProgram title: SUSY_LATTICE Catalogue identifier: AELS_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AELS_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 9315 No. of bytes in distributed program
Theory and application of the RAZOR two-dimensional continuous energy lattice physics code
International Nuclear Information System (INIS)
Zerkle, M.L.; Abu-Shumays, I.K.; Ott, M.W.; Winwood, J.P.
1997-01-01
The theory and application of the RAZOR two-dimensional, continuous energy lattice physics code are discussed. RAZOR solves the continuous energy neutron transport equation in one- and two-dimensional geometries, and calculates equivalent few-group diffusion theory constants that rigorously account for spatial and spectral self-shielding effects. A dual energy resolution slowing down algorithm is used to reduce computer memory and disk storage requirements for the slowing down calculation. Results are presented for a 2D BWR pin cell depletion benchmark problem
SIRIUS - A one-dimensional multigroup analytic nodal diffusion theory code
Energy Technology Data Exchange (ETDEWEB)
Forslund, P. [Westinghouse Atom AB, Vaesteraas (Sweden)
2000-09-01
In order to evaluate relative merits of some proposed intranodal cross sections models, a computer code called Sirius has been developed. Sirius is a one-dimensional, multigroup analytic nodal diffusion theory code with microscopic depletion capability. Sirius provides the possibility of performing a spatial homogenization and energy collapsing of cross sections. In addition a so called pin power reconstruction method is available for the purpose of reconstructing 'heterogeneous' pin qualities. consequently, Sirius has the capability of performing all the calculations (incl. depletion calculations) which are an integral part of the nodal calculation procedure. In this way, an unambiguous numerical analysis of intranodal cross section models is made possible. In this report, the theory of the nodal models implemented in sirius as well as the verification of the most important features of these models are addressed.
Theory and code development for evaluation of tritium retention and exhaust in fusion reactor
Energy Technology Data Exchange (ETDEWEB)
Ohya, Kaoru; Inai, Kensuke [Univ. of Tokushima, Institute of Technology and Science, Tokushima, Tokushima (Japan); Shimizu, Katsuhiro; Takizuka, Tomonori; Kawashima, Hisato; Hoshino, Kazuo [Japan Atomic Energy Agency, Fusion Research and Development Directorate, Naka, Ibaraki (Japan); Hatayama, Akiyoshi; Toma, Mitsunori [Keio Univ., Faculty of Science and Technology, Yokohama, Kanagawa (Japan); Tomita, Yukihiro; Kawamura, Gakushi; Ashikawa, Naoko; Nakamura, Hiroaki; Ito, Atsushi; Kato, Daiji [National Inst. for Fusion Science, Toki, Gifu (Japan); Tanaka, Yasunori [Kanazawa Univ., College of Science and Engineering, Kanazawa, Ishikawa (Japan); Ono, Tadayoshi; Muramoto, Tetsuya [Okayama Univ. of Science, Faculty of Informatics, Okayama, Okayama (Japan); Kenmotsu, Takahiro [Doshisha Univ., Faculty of Life and Medical Science, Kiyotanabe, Kyoto (Japan)
2009-10-15
As a part of the grant-in-aid for scientific research on priority areas entitled 'frontiers of tritium researches toward fusion reactors', coordinated three research programs on the theory and code development for evaluation of tritium retention and exhaust in fusion reactor have been conducted by the A02 team. They include: (1) Tritium transport in fusion plasmas and the adsorption and desorption property of tritium in plasma-facing components. (2) Behavior of dusts in fusion plasmas and their adsorption property of tritium. (3) Development of computer codes to simulate tritium retention in and release from plasma-facing materials. In order to study these issues, considerable effort has been paid to the development of computer codes and the database system. (J.P.N.)
Theory and code development for evaluation of tritium retention and exhaust in fusion reactor
International Nuclear Information System (INIS)
Ohya, Kaoru; Inai, Kensuke; Shimizu, Katsuhiro; Takizuka, Tomonori; Kawashima, Hisato; Hoshino, Kazuo; Hatayama, Akiyoshi; Toma, Mitsunori; Tomita, Yukihiro; Kawamura, Gakushi; Ashikawa, Naoko; Nakamura, Hiroaki; Ito, Atsushi; Kato, Daiji; Tanaka, Yasunori; Ono, Tadayoshi; Muramoto, Tetsuya; Kenmotsu, Takahiro
2009-01-01
As a part of the grant-in-aid for scientific research on priority areas entitled 'frontiers of tritium researches toward fusion reactors', coordinated three research programs on the theory and code development for evaluation of tritium retention and exhaust in fusion reactor have been conducted by the A02 team. They include: (1) Tritium transport in fusion plasmas and the adsorption and desorption property of tritium in plasma-facing components. (2) Behavior of dusts in fusion plasmas and their adsorption property of tritium. (3) Development of computer codes to simulate tritium retention in and release from plasma-facing materials. In order to study these issues, considerable effort has been paid to the development of computer codes and the database system. (J.P.N.)
Algorithms and computer codes for atomic and molecular quantum scattering theory. Volume I
Energy Technology Data Exchange (ETDEWEB)
Thomas, L. (ed.)
1979-01-01
The goals of this workshop are to identify which of the existing computer codes for solving the coupled equations of quantum molecular scattering theory perform most efficiently on a variety of test problems, and to make tested versions of those codes available to the chemistry community through the NRCC software library. To this end, many of the most active developers and users of these codes have been invited to discuss the methods and to solve a set of test problems using the LBL computers. The first volume of this workshop report is a collection of the manuscripts of the talks that were presented at the first meeting held at the Argonne National Laboratory, Argonne, Illinois June 25-27, 1979. It is hoped that this will serve as an up-to-date reference to the most popular methods with their latest refinements and implementations.
Algorithms and computer codes for atomic and molecular quantum scattering theory. Volume I
International Nuclear Information System (INIS)
Thomas, L.
1979-01-01
The goals of this workshop are to identify which of the existing computer codes for solving the coupled equations of quantum molecular scattering theory perform most efficiently on a variety of test problems, and to make tested versions of those codes available to the chemistry community through the NRCC software library. To this end, many of the most active developers and users of these codes have been invited to discuss the methods and to solve a set of test problems using the LBL computers. The first volume of this workshop report is a collection of the manuscripts of the talks that were presented at the first meeting held at the Argonne National Laboratory, Argonne, Illinois June 25-27, 1979. It is hoped that this will serve as an up-to-date reference to the most popular methods with their latest refinements and implementations
Lombardi, Alessia; Carfora, Valentina; Cicia, Giovanni; del Giudice, Teresa; Lombardi, Pasquale; Panico, Teresa
2017-01-01
Quick Response Code (QR code) is the representative device of a particular branch of marketing called mobile marketing. The code is found throughout various productive sectors, including the agro-food sector. This work investigates whether consumers are willing to pay a premium price for extra information on a bottle of extra-virgin olive oil (EVOO) by means of the QR-code. Based on data collected from 1006 interviews conducted in Italy, we implemented the Theory of Planned Behavior (TPB) mod...
DEFF Research Database (Denmark)
Johansen, Peter Meincke
1996-01-01
New uniform closed-form expressions for physical theory of diffraction equivalent edge currents are derived for truncated incremental wedge strips. In contrast to previously reported expressions, the new expressions are well-behaved for all directions of incidence and observation and take a finite...... value for zero strip length. Consequently, the new equivalent edge currents are, to the knowledge of the author, the first that are well-suited for implementation in general computer codes...
Joint Machine Learning and Game Theory for Rate Control in High Efficiency Video Coding.
Gao, Wei; Kwong, Sam; Jia, Yuheng
2017-08-25
In this paper, a joint machine learning and game theory modeling (MLGT) framework is proposed for inter frame coding tree unit (CTU) level bit allocation and rate control (RC) optimization in High Efficiency Video Coding (HEVC). First, a support vector machine (SVM) based multi-classification scheme is proposed to improve the prediction accuracy of CTU-level Rate-Distortion (R-D) model. The legacy "chicken-and-egg" dilemma in video coding is proposed to be overcome by the learning-based R-D model. Second, a mixed R-D model based cooperative bargaining game theory is proposed for bit allocation optimization, where the convexity of the mixed R-D model based utility function is proved, and Nash bargaining solution (NBS) is achieved by the proposed iterative solution search method. The minimum utility is adjusted by the reference coding distortion and frame-level Quantization parameter (QP) change. Lastly, intra frame QP and inter frame adaptive bit ratios are adjusted to make inter frames have more bit resources to maintain smooth quality and bit consumption in the bargaining game optimization. Experimental results demonstrate that the proposed MLGT based RC method can achieve much better R-D performances, quality smoothness, bit rate accuracy, buffer control results and subjective visual quality than the other state-of-the-art one-pass RC methods, and the achieved R-D performances are very close to the performance limits from the FixedQP method.
International Nuclear Information System (INIS)
Mendonca, A.G.
1980-01-01
Two computer codes that are available at IPEN for analyses of static neutron diffusion problems are studied and applied. The CITATION code is animed at analyses of criticality, fuel burnup, flux and power distributions etc, in one, two, and three spatial dimensions in multigroup. The EXTERMINATOR code can be used for the same purposes as for CITATION with a limitation to one or two spatial dimensions. Basic theories and numerical techniques used in the codes are studied and summarized. Benchmark problems have been solved using the codes. Comparisons of the results show that both codes can be used with confidence in the analyses of nuclear reactor problems. (author) [pt
International Nuclear Information System (INIS)
Hussein, M.S; Lewis, B.J.; Bonin, H.W.
2013-01-01
The theory of multipoint coupled reactors developed by multi-group transport is verified by using the probabilistic transport code MCNP5 and the continuous-energy Monte Carlo reactor physics burnup calculation Serpent code. The verification was performed by calculating the multiplication factors (or criticality factors) and coupling coefficients for a two-region test reactor known as the Deuterium Critical Assembly, DCA. The multiplication factors k eff calculated numerically and independently from simulations of the DCA by MCNP5 and Serpent codes are compared with the multiplication factors k eff calculated based on the coupled reactor theory. Excellent agreement was obtained between the multiplication factors k eff calculated with the Serpent code, with MCNP5, and from the coupled reactor theory. This analysis demonstrates that the Serpent code is valid for the multipoint coupled reactor calculations. (author)
Energy Technology Data Exchange (ETDEWEB)
Hussein, M.S, E-mail: mohamed.hussein@rmc.ca [Royal Military College of Canada, Dept. of Chemistry and Chemical Engineering, Kingston, Ontario (Canada); Lewis, B.J., E-mail: Brent.Lewis@uoit.ca [Univ. of Ontario Inst. of Technology, Faculty of Energy Systems and Nuclear Science, Oshawa, Ontario (Canada); Bonin, H.W., E-mail: bonin-h@rmc.ca [Royal Military College of Canada, Dept. of Chemistry and Chemical Engineering, Kingston, Ontario (Canada)
2013-07-01
The theory of multipoint coupled reactors developed by multi-group transport is verified by using the probabilistic transport code MCNP5 and the continuous-energy Monte Carlo reactor physics burnup calculation Serpent code. The verification was performed by calculating the multiplication factors (or criticality factors) and coupling coefficients for a two-region test reactor known as the Deuterium Critical Assembly, DCA. The multiplication factors k{sub eff} calculated numerically and independently from simulations of the DCA by MCNP5 and Serpent codes are compared with the multiplication factors k{sub eff} calculated based on the coupled reactor theory. Excellent agreement was obtained between the multiplication factors k{sub eff} calculated with the Serpent code, with MCNP5, and from the coupled reactor theory. This analysis demonstrates that the Serpent code is valid for the multipoint coupled reactor calculations. (author)
Links between N-modular redundancy and the theory of error-correcting codes
Bobin, V.; Whitaker, S.; Maki, G.
1992-01-01
N-Modular Redundancy (NMR) is one of the best known fault tolerance techniques. Replication of a module to achieve fault tolerance is in some ways analogous to the use of a repetition code where an information symbol is replicated as parity symbols in a codeword. Linear Error-Correcting Codes (ECC) use linear combinations of information symbols as parity symbols which are used to generate syndromes for error patterns. These observations indicate links between the theory of ECC and the use of hardware redundancy for fault tolerance. In this paper, we explore some of these links and show examples of NMR systems where identification of good and failed elements is accomplished in a manner similar to error correction using linear ECC's.
Theory and application of a three-dimensional code SHAPS to complex piping systems
International Nuclear Information System (INIS)
Wang, C.Y.
1983-01-01
This paper describes the theory and application of a three-dimensional computer code SHAPS to the complex piping systems. The code utilizes a two-dimensional implicit Eulerian method for the hydrodynamic analysis together with a three-dimensional elastic-plastic finite-element program for the structural calculation. A three-dimensional pipe element with eight degrees of freedom is employed to account for the hoop, flexural, axial, and the torsional mode of the piping system. In the SHAPS analysis the hydrodynamic equations are modified to include the global piping motion. Coupling between fluid and structure is achieved by enforcing the free-slip boundary conditions. Also, the response of the piping network generated by the seismic excitation can be included. A thermal transient capability is also provided in SHAPS. To illustrate the methodology, many sample problems dealing with the hydrodynamic, structural, and thermal analyses of reactor-piping systems are given. Validation of the SHAPS code with experimental data is also presented
Sadoski, Mark; And Others
1993-01-01
The comprehensibility, interestingness, familiarity, and memorability of concrete and abstract instructional texts were studied in 4 experiments involving 221 college students. Results indicate that concreteness (ease of imagery) is the variable overwhelmingly most related to comprehensibility and recall. Dual coding theory and schema theory are…
CLUB - a multigroup integral transport theory code for lattice calculations of PHWR cells
International Nuclear Information System (INIS)
Krishnani, P.D.
1992-01-01
The computer code CLUB has been developed to calculate lattice parameters as a function of burnup for a pressurised heavy water reactor (PHWR) lattice cell containing fuel in the form of cluster. It solves the multigroup integral transport equation by the method based on combination of small scale collision probability (CP) method and large scale interface current technique. The calculations are performed by using WIMS 69 group cross section library or its condensed versions of 27 or 28 group libraries. It can also compute Keff from the given geometrical buckling in the input using multigroup diffusion theory in fundamental mode. The first order differential burnup equations can be solved by either Trapezoidal rule or Runge-Kutta method. (author). 17 refs., 2 figs
Reading your own lips: common-coding theory and visual speech perception.
Tye-Murray, Nancy; Spehar, Brent P; Myerson, Joel; Hale, Sandra; Sommers, Mitchell S
2013-02-01
Common-coding theory posits that (1) perceiving an action activates the same representations of motor plans that are activated by actually performing that action, and (2) because of individual differences in the ways that actions are performed, observing recordings of one's own previous behavior activates motor plans to an even greater degree than does observing someone else's behavior. We hypothesized that if observing oneself activates motor plans to a greater degree than does observing others, and if these activated plans contribute to perception, then people should be able to lipread silent video clips of their own previous utterances more accurately than they can lipread video clips of other talkers. As predicted, two groups of participants were able to lipread video clips of themselves, recorded more than two weeks earlier, significantly more accurately than video clips of others. These results suggest that visual input activates speech motor activity that links to word representations in the mental lexicon.
International Nuclear Information System (INIS)
Butland, A.T.D.; Putney, J.; Sweet, D.W.
1980-04-01
This report describes work performed to compare two UK neutron diffusion theory codes, TIGAR and SNAP, with published results for eight other codes available abroad. Both mesh edge and mesh centred finite difference diffusion theory codes as well as one axial synthesis code are included in the comparison and a range of iteration procedures are used by them. Comparison is made of calculations for a model of the sodium cooled fast reactor SNR-300 in both triangular and rectangular geometry and for a range of spatial meshes, enabling extrapolations to infinite mesh to be made. Calculated values of the effective multiplication constant, keff, for all the codes, agree very well when extrapolated to infinite mesh, indicating that no significant errors arising from the finite difference approximation but independent of mesh spacing are present in the calculations. The variation of keff with mesh area is found to be linear for the small meshes considered here, with the gradients for the mesh centred and mesh edged codes being of opposite sign. The results obtained using the mesh centred codes TIGAR, SNAP and CITATION agree closely with one another for all the meshes considered; the mesh edge codes agree less closely. (author)
International Nuclear Information System (INIS)
Nikityuk, N.M.
1989-01-01
The results of investigations of using the algebraic coding theory for the creation of parallel encoders, majority coincidence schemes and coordinate processors for the first and second trigger levels are described. Concrete examples of calculation and structure of special-purpose processor using the table arithmetic method are given for multiplicity t ≤ 5. The question of using parallel and sequential syndrome coding methods for the registration of events with clusters is discussed. 30 refs.; 10 figs
Fortran code for SU(3) lattice gauge theory with and without MPI checkerboard parallelization
Berg, Bernd A.; Wu, Hao
2012-10-01
We document plain Fortran and Fortran MPI checkerboard code for Markov chain Monte Carlo simulations of pure SU(3) lattice gauge theory with the Wilson action in D dimensions. The Fortran code uses periodic boundary conditions and is suitable for pedagogical purposes and small scale simulations. For the Fortran MPI code two geometries are covered: the usual torus with periodic boundary conditions and the double-layered torus as defined in the paper. Parallel computing is performed on checkerboards of sublattices, which partition the full lattice in one, two, and so on, up to D directions (depending on the parameters set). For updating, the Cabibbo-Marinari heatbath algorithm is used. We present validations and test runs of the code. Performance is reported for a number of currently used Fortran compilers and, when applicable, MPI versions. For the parallelized code, performance is studied as a function of the number of processors. Program summary Program title: STMC2LSU3MPI Catalogue identifier: AEMJ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEMJ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 26666 No. of bytes in distributed program, including test data, etc.: 233126 Distribution format: tar.gz Programming language: Fortran 77 compatible with the use of Fortran 90/95 compilers, in part with MPI extensions. Computer: Any capable of compiling and executing Fortran 77 or Fortran 90/95, when needed with MPI extensions. Operating system: Red Hat Enterprise Linux Server 6.1 with OpenMPI + pgf77 11.8-0, Centos 5.3 with OpenMPI + gfortran 4.1.2, Cray XT4 with MPICH2 + pgf90 11.2-0. Has the code been vectorised or parallelized?: Yes, parallelized using MPI extensions. Number of processors used: 2 to 11664 RAM: 200 Mega bytes per process. Classification: 11
Mayer, Richard E.; Sims, Valerie K.
1994-01-01
In 2 experiments, 162 high- and low-spatial ability students viewed a computer-generated animation and heard a concurrent or successive explanation. The concurrent group generated more creative solutions to transfer problems and demonstrated a contiguity effect consistent with dual-coding theory. (SLD)
L1 and L2 Picture Naming in Mandarin-English Bilinguals: A Test of Bilingual Dual Coding Theory
Jared, Debra; Poh, Rebecca Pei Yun; Paivio, Allan
2013-01-01
This study examined the nature of bilinguals' conceptual representations and the links from these representations to words in L1 and L2. Specifically, we tested an assumption of the Bilingual Dual Coding Theory that conceptual representations include image representations, and that learning two languages in separate contexts can result in…
Alty, James L.
Dual Coding Theory has quite specific predictions about how information in different media is stored, manipulated and recalled. Different combinations of media are expected to have significant effects upon the recall and retention of information. This obviously may have important consequences in the design of computer-based programs. The paper…
International Nuclear Information System (INIS)
Cahalan, J.E.; Ama, T.; Palmiotti, G.; Taiwo, T.A.; Yang, W.S.
2000-01-01
The VARIANT-K and DIF3D-K nodal spatial kinetics computer codes have been coupled to the SAS4A and SASSYS-1 liquid metal reactor accident and systems analysis codes. SAS4A and SASSYS-1 have been extended with the addition of heavy liquid metal (Pb and Pb-Bi) thermophysical properties, heat transfer correlations, and fluid dynamics correlations. The coupling methodology and heavy liquid metal modeling additions are described. The new computer code suite has been applied to analysis of neutron source and thermal-hydraulics transients in a model of an accelerator-driven minor actinide burner design proposed in an OECD/NEA/NSC benchmark specification. Modeling assumptions and input data generation procedures are described. Results of transient analyses are reported, with emphasis on comparison of P1 and P3 variational nodal transport theory results with nodal diffusion theory results, and on significance of spatial kinetics effects
Welcome, Suzanne E; Paivio, Allan; McRae, Ken; Joanisse, Marc F
2011-07-01
We examined ERP responses during the generation of word associates or mental images in response to concrete and abstract concepts. Of interest were the predictions of dual coding theory (DCT), which proposes that processing lexical concepts depends on functionally independent but interconnected verbal and nonverbal systems. ERP responses were time-locked to either stimulus onset or response to compensate for potential latency differences across conditions. During word associate generation, but not mental imagery, concrete items elicited a greater N400 than abstract items. A concreteness effect emerged at a later time point during the mental imagery task. Data were also analyzed using time-frequency analysis that investigated synchronization of neuronal populations over time during processing. Concrete words elicited an enhanced late going desynchronization of theta-band power (723-938 ms post stimulus onset) during associate generation. During mental imagery, abstract items elicited greater delta-band power from 800 to 1,000 ms following stimulus onset, theta-band power from 350 to 205 ms before response, and alpha-band power from 900 to 800 ms before response. Overall, the findings support DCT in suggesting that lexical concepts are not amodal and that concreteness effects are modulated by tasks that focus participants on verbal versus nonverbal, imagery-based knowledge.
Of black sheep and white crows: Extending the bilingual dual coding theory to memory for idioms
Directory of Open Access Journals (Sweden)
Lena K. Pritchett
2016-12-01
Full Text Available Are idioms stored in memory in ways that preserve their surface form or language or are they represented amodally? We examined this question using an incidental cued recall paradigm in which two word idiomatic expressions were presented to adult bilinguals proficient in Russian and English. Stimuli included phrases with idiomatic equivalents in both languages (e.g. “empty words/пycтыe cлoвa” or in one language only (English—e.g. “empty suit/пycтoй кocтюм” or Russian—e.g. “empty sound/пycтoй звyк”, or in neither language (e.g. “empty rain/пycтoй дoждь”. If idioms are stored in a language-specific format, then phrases with idiomatic equivalents in both languages would have dual representation, and should therefore be more easily recalled than phrases with idiomatic meaning in only one language. This result was obtained. As such, the findings support the dual-coding theory of memory and are also compatible with models of the bilingual lexicon that include language tags or nodes.
International Nuclear Information System (INIS)
Jagannathan, V.
1985-01-01
A modular computer code system called FEMSYN has been developed to solve the multigroup diffusion theory equations. The various methods that are incorporated in FEMSYN are (i) finite difference method (FDM) (ii) finite element method (FEM) and (iii) single channel flux synthesis method (SCFS). These methods are described in detail in parts II, III and IV of the present report. In this report, a comparison of the accuracy and the speed of different methods of solution for some benchmark problems are reported. The input preparation and listing of sample input and output are included in the Appendices. The code FEMSYN has been used to solve a wide variety of reactor core problems. It can be used for both LWR and PHWR applications. (author)
Sums of residues on algebraic surfaces and application to coding theory
Couvreur , Alain
2009-01-01
International audience; In this paper, we study residues of differential 2-forms on a smooth algebraic surface over an arbitrary field and give several statements about sums of residues. Afterwards, using these results we give a new construction of algebraic-geometric codes which can be regarded as an extension to surfaces of the well-known construction of differential codes on curves. We also study some properties of these codes and extend to them some known properties for codes on curves.; ...
Using Program Theory-Driven Evaluation Science to Crack the Da Vinci Code
Donaldson, Stewart I.
2005-01-01
Program theory-driven evaluation science uses substantive knowledge, as opposed to method proclivities, to guide program evaluations. It aspires to update, clarify, simplify, and make more accessible the evolving theory of evaluation practice commonly referred to as theory-driven or theory-based evaluation. The evaluator in this chapter provides a…
Rupley, William H.; Paige, David D.; Rasinski, Timothy V.; Slough, Scott W.
2015-01-01
Pavio's Dual-Coding Theory (1991) and Mayer's Multimedia Principal (2000) form the foundation for proposing a multi-coding theory centered around Multi-Touch Tablets and the newest generation of e-textbooks to scaffold struggling readers in reading and learning from science textbooks. Using E. O. Wilson's "Life on Earth: An Introduction"…
International Nuclear Information System (INIS)
Viyogi, Y.P.; Ganguly, N.K.
1975-01-01
The FORTRAN code described in the report has been developed for the BESM-6 computer with a view to calculate the cross-section of reactions proceeding via the formation of compound nucleus for all open two-body reaction channels using Hauser-Feshbach theory with Moldauer's correction for the fluctuation of level widths. The code can also be used to analyse data from 'crystal blocking' experiments to obtain nuclear level densities. The report describes the input-output specifications along with a short account of the algorithm of the program. (author)
LASER-R a computer code for reactor cell and burnup calculations in neutron transport theory
International Nuclear Information System (INIS)
Cristian, I.; Cirstoiu, B.; Dumitrache, I.; Cepraga, D.
1976-04-01
The LASER-R code is an IBM 370/135 version of the Westinghouse code, LASER, based on the THERMOS and MUFT codes developped by Poncelet. It can be used to perform thermal reactor cell calculations and burnup calculations. The cell exhibits 3-4 concentric areas: fuel, cladding, moderator and scattering ring. Besides directions for use, a short description of the physical model, numerical methods and output is presented
International Nuclear Information System (INIS)
Nakamura, Yukiharu; Ozeki, Takahisa
1986-07-01
The finite element circuit theory is extended to the general eddy current problem in a multi-torus system, which consists of various torus conductors and axisymmetric coil systems. The numerical procedures are devised to avoid practical restrictions of computer storage and computing time, that is, the reduction technique of eddy current eigen modes to save storage and the introduction of shape function into the double area integral of mode coupling to save time. The numerical code EDDYMULT based on the theory is developed to use in designing tokamak device from the viewpoints of the evaluation of electromagnetic loading on the device components and the control analysis of tokamak equilibrium. (author)
Energy Technology Data Exchange (ETDEWEB)
Kasselmann, S., E-mail: s.kasselmann@fz-juelich.de [Forschungszentrum Jülich, 52425 Jülich (Germany); Schitthelm, O. [Forschungszentrum Jülich, 52425 Jülich (Germany); Tantillo, F. [Forschungszentrum Jülich, 52425 Jülich (Germany); Institute for Reactor Safety and Reactor Technology, RWTH-Aachen, 52064 Aachen (Germany); Scholthaus, S.; Rössel, C. [Forschungszentrum Jülich, 52425 Jülich (Germany); Allelein, H.-J. [Forschungszentrum Jülich, 52425 Jülich (Germany); Institute for Reactor Safety and Reactor Technology, RWTH-Aachen, 52064 Aachen (Germany)
2016-09-15
The problem of calculating the amounts of a coupled nuclide system varying with time especially when exposed to a neutron flux is a well-known problem and has been addressed by a number of computer codes. These codes cover a broad spectrum of applications, are based on comprehensive validation work and are therefore justifiably renowned among their users. However, due to their long development history, they are lacking a modern interface, which impedes a fast and robust internal coupling to other codes applied in the field of nuclear reactor physics. Therefore a project has been initiated to develop a new object-oriented nuclide transmutation code. It comprises an innovative solver based on graph theory, which exploits the topology of nuclide chains and therefore speeds up the calculation scheme. Highest priority has been given to the existence of a generic software interface well as an easy handling by making use of XML files for the user input. In this paper we report on the status of the code development and present first benchmark results, which prove the applicability of the selected approach.
International Nuclear Information System (INIS)
Kasselmann, S.; Scholthaus, S.; Rössel, C.; Allelein, H.-J.
2014-01-01
The problem of calculating the amounts of a coupled nuclide system varying with time especially when exposed to a neutron flux is a well-known problem and has been addressed by a number of computer codes. These codes cover a broad spectrum of applications, are based on comprehensive validation work and are therefore justifiably renowned among their users. However, due to their long development history, they are lacking a modern interface, which impedes a fast and robust internal coupling to other codes applied in the field of nuclear reactor physics. Therefore a project has been initiated to develop a new object-oriented nuclide transmutation code. It comprises an innovative solver based on graph theory, which exploits the topology of nuclide chains. This allows to always deal with the smallest nuclide system for the problem of interest. Highest priority has been given to the existence of a generic software interfaces well as an easy handling by making use of XML files for input and output. In this paper we report on the status of the code development and present first benchmark results, which prove the applicability of the selected approach. (author)
Directory of Open Access Journals (Sweden)
Joseph P. Yurko
2015-01-01
Full Text Available System codes for simulation of safety performance of nuclear plants may contain parameters whose values are not known very accurately. New information from tests or operating experience is incorporated into safety codes by a process known as calibration, which reduces uncertainty in the output of the code and thereby improves its support for decision-making. The work reported here implements several improvements on classic calibration techniques afforded by modern analysis techniques. The key innovation has come from development of code surrogate model (or code emulator construction and prediction algorithms. Use of a fast emulator makes the calibration processes used here with Markov Chain Monte Carlo (MCMC sampling feasible. This work uses Gaussian Process (GP based emulators, which have been used previously to emulate computer codes in the nuclear field. The present work describes the formulation of an emulator that incorporates GPs into a factor analysis-type or pattern recognition-type model. This “function factorization” Gaussian Process (FFGP model allows overcoming limitations present in standard GP emulators, thereby improving both accuracy and speed of the emulator-based calibration process. Calibration of a friction-factor example using a Method of Manufactured Solution is performed to illustrate key properties of the FFGP based process.
SCDAP/RELAP5/MOD 3.1 code manual: Interface theory. Volume 1
International Nuclear Information System (INIS)
Coryell, E.W.
1995-06-01
The SCDAP/RELAP5 code has been developed for best estimate transient simulation of light water reactor coolant systems during a severe accident. The code models the coupled behavior of the reactor coolant system, core, fission product released during a severe accident transient as well as large and small break loss of coolant accidents, operational transients such as anticipated transient without SCRAM, loss of off-site power, loss of feedwater, and loss of flow. A generic modeling approach is used that permits as much of a particular system to be modeled as necessary. Control system and secondary system components are included to permit modeling of plant controls, turbines, condensers, and secondary feedwater conditioning systems. This volume describes the organization and manner of the interface between severe accident models which are resident in the SCDAP portion of the code and hydrodynamic models which are resident in the RELAP5 portion of the code. A description of the organization and structure of SCDAP/RELAP5 is presented. Additional information is provided regarding the manner in which models in one portion of the code impact other parts of the code, and models which are dependent on and derive information from other subcodes
Algorithms and computer codes for atomic and molecular quantum scattering theory
International Nuclear Information System (INIS)
Thomas, L.
1979-01-01
This workshop has succeeded in bringing up 11 different coupled equation codes on the NRCC computer, testing them against a set of 24 different test problems and making them available to the user community. These codes span a wide variety of methodologies, and factors of up to 300 were observed in the spread of computer times on specific problems. A very effective method was devised for examining the performance of the individual codes in the different regions of the integration range. Many of the strengths and weaknesses of the codes have been identified. Based on these observations, a hybrid code has been developed which is significantly superior to any single code tested. Thus, not only have the original goals been fully met, the workshop has resulted directly in an advancement of the field. All of the computer programs except VIVS are available upon request from the NRCC. Since an improved version of VIVS is contained in the hybrid program, VIVAS, it was not made available for distribution. The individual program LOGD is, however, available. In addition, programs which compute the potential energy matrices of the test problems are also available. The software library names for Tests 1, 2 and 4 are HEH2, LICO, and EN2, respectively
Directory of Open Access Journals (Sweden)
MOHAMMAD HOSSEIN KAVEH
2015-07-01
Full Text Available Introduction: Recognizing the determinants of behavior plays a major role in identification and application of effective strategies for encouraging individuals to follow the intended pattern of behavior. The present study aimed to analyze the university students’ behaviors regarding the amenability to dress code, using the theory of reasoned action (TRA. Methods: In this cross sectional study, 472 students were selected through multi-stage random sampling. The data were collected using a researcher-made questionnaire whose validity was confirmed by specialists. Besides, its reliability was confirmed by conducting a pilot study revealing Cronbach’s alpha coefficients of 0.93 for attitude, 0.83 for subjective norms, 0.94 for behavioral intention and 0.77 for behavior. The data were entered into the SPSS statistical software and analyzed using descriptive and inferential statistics (Mann-Whitney, correlation and regression analysis. Results: Based on the students’ self-reports, conformity of clothes to the university’s dress code was below the expected level in 28.87% of the female students and 28.55% of the male ones. The mean scores of attitude, subjective norms, and behavioral intention to comply with dress code policy were 28.78±10.08, 28.51±8.25 and 11.12±3.84, respectively. The students of different colleges were different from each other concerning TRA constructs. Yet, subjective norms played a more critical role in explaining the variance of dress code behavior among the students. Conclusion: Theory of reasoned action explained the students’ dress code behaviors relatively well. The study results suggest paying attention to appropriate approaches in educational, cultural activities, including promotion of student-teacher communication.
Kaveh, Mohammad Hossein; Moradi, Leila; Hesampour, Maryam; Hasan Zadeh, Jafar
2015-07-01
Recognizing the determinants of behavior plays a major role in identification and application of effective strategies for encouraging individuals to follow the intended pattern of behavior. The present study aimed to analyze the university students' behaviors regarding the amenability to dress code, using the theory of reasoned action (TRA). In this cross sectional study, 472 students were selected through multi-stage random sampling. The data were collected using a researcher-made questionnaire whose validity was confirmed by specialists. Besides, its reliability was confirmed by conducting a pilot study revealing Cronbach's alpha coefficients of 0.93 for attitude, 0.83 for subjective norms, 0.94 for behavioral intention and 0.77 for behavior. The data were entered into the SPSS statistical software and analyzed using descriptive and inferential statistics (Mann-Whitney, correlation and regression analysis). Based on the students' self-reports, conformity of clothes to the university's dress code was below the expected level in 28.87% of the female students and 28.55% of the male ones. The mean scores of attitude, subjective norms, and behavioral intention to comply with dress code policy were 28.78±10.08, 28.51±8.25 and 11.12±3.84, respectively. The students of different colleges were different from each other concerning TRA constructs. Yet, subjective norms played a more critical role in explaining the variance of dress code behavior among the students. Theory of reasoned action explained the students' dress code behaviors relatively well. The study results suggest paying attention to appropriate approaches in educational, cultural activities, including promotion of student-teacher communication.
Foundations for Ethical Standards and Codes: The Role of Moral Philosophy and Theory in Ethics
Freeman, Stephen J.; Engels, Dennis W.; Altekruse, Michael K.
2004-01-01
Ethical practice is a concern for all who practice in the psychological, social, and behavioral sciences. A central problem is discerning what action is ethically correct in a particular situation. It has been said that there is nothing so practical as good theory, because theory can help counselors organize and integrate knowledge. It seems,…
SUNF, Simplified UNF Code, Fast Neutron Calculation by Unified Hauser-Feshbach Theory
International Nuclear Information System (INIS)
Zhang Jingshang
2001-01-01
1 - Description of program or function: The SUNF code is the simplified version of UNF code and is based on the unified Hauser-Feshbach and exciton model. SUNF code has been developed for calculations of fast neutron data for structural materials with neutron energies below 20 MeV. Besides elastic scattering channel, the code may handle decay sequence up to (n,3n) reaction, including 14 reaction channels. The energy spectra can be obtained and the output form is in the ENDF/B-6 format, but in file 5 form. For the ENDF-B-6 output, the incident energies are divided into two types: only cross section calculation; and those including neutron energy spectra. 2 - Methods: Gaussian integration is used for all numerical integration. 3 - Restrictions on the complexity of the problem: The incident energies of neutrons are from 1 KeV to 20 MeV. There are two parameters in this code: incident neutron energies number 'NEL'; and the number of discrete levels of residual nuclei for the first particle emissions 'NLV'. The users can set the values of NEL and NLV according to the storage size of the computer used. The number of discrete levels of residual nuclei for the multi-particle emissions is not greater than 20
International Nuclear Information System (INIS)
1986-03-01
A study on radiation dose control in packages of radioactive waste from nuclear facilities, hospitals and industries, such as sources of Ra-226, Co-60, Ir-192 and Cs-137, is presented. The MAPA and MAPAM computer codes, based on point Kernel theory for calculating doses of several source-shielding type configurations, aiming to assure the safe transport conditions for these sources, was developed. The validation of the code for point sources, using the values provided by NCRP, for the thickness of lead and concrete shieldings, limiting the dose at 100 Mrem/hr for several distances from the source to the detector, was carried out. The validation for non point sources was carried out, measuring experimentally radiation dose from packages developed by Brazilian CNEN/S.P. for removing the sources. (M.C.K.) [pt
Owusu-Agyeman, Yaw; Larbi-Siaw, Otu
2017-01-01
This study argues that in developing a robust framework for students in a blended learning environment, Structural Alignment (SA) becomes the third principle of specialisation in addition to Epistemic Relation (ER) and Social Relation (SR). We provide an extended code: (ER+/-, SR+/-, SA+/-) that present strong classification and framing to the…
Development of flow network analysis code for block type VHTR core by linear theory method
International Nuclear Information System (INIS)
Lee, J. H.; Yoon, S. J.; Park, J. W.; Park, G. C.
2012-01-01
VHTR (Very High Temperature Reactor) is high-efficiency nuclear reactor which is capable of generating hydrogen with high temperature of coolant. PMR (Prismatic Modular Reactor) type reactor consists of hexagonal prismatic fuel blocks and reflector blocks. The flow paths in the prismatic VHTR core consist of coolant holes, bypass gaps and cross gaps. Complicated flow paths are formed in the core since the coolant holes and bypass gap are connected by the cross gap. Distributed coolant was mixed in the core through the cross gap so that the flow characteristics could not be modeled as a simple parallel pipe system. It requires lot of effort and takes very long time to analyze the core flow with CFD analysis. Hence, it is important to develop the code for VHTR core flow which can predict the core flow distribution fast and accurate. In this study, steady state flow network analysis code is developed using flow network algorithm. Developed flow network analysis code was named as FLASH code and it was validated with the experimental data and CFD simulation results. (authors)
Di Giulio, Massimo
2017-11-07
The coevolution theory of the origin of the genetic code suggests that the organization of the genetic code coevolved with the biosynthetic relationships between amino acids. The mechanism that allowed this coevolution was based on tRNA-like molecules on which-this theory-would postulate the biosynthetic transformations between amino acids to have occurred. This mechanism makes a prediction on how the role conducted by the aminoacyl-tRNA synthetases (ARSs), in the origin of the genetic code, should have been. Indeed, if the biosynthetic transformations between amino acids occurred on tRNA-like molecules, then there was no need to link amino acids to these molecules because amino acids were already charged on tRNA-like molecules, as the coevolution theory suggests. In spite of the fact that ARSs make the genetic code responsible for the first interaction between a component of nucleic acids and that of proteins, for the coevolution theory the role of ARSs should have been entirely marginal in the genetic code origin. Therefore, I have conducted a further analysis of the distribution of the two classes of ARSs and of their subclasses-in the genetic code table-in order to perform a falsification test of the coevolution theory. Indeed, in the case in which the distribution of ARSs within the genetic code would have been highly significant, then the coevolution theory would be falsified since the mechanism on which it is based would not predict a fundamental role of ARSs in the origin of the genetic code. I found that the statistical significance of the distribution of the two classes of ARSs in the table of the genetic code is low or marginal, whereas that of the subclasses of ARSs statistically significant. However, this is in perfect agreement with the postulates of the coevolution theory. Indeed, the only case of statistical significance-regarding the classes of ARSs-is appreciable for the CAG code, whereas for its complement-the UNN/NUN code-only a marginal
Hartland, William; Biddle, Chuck; Fallacaro, Michael
2008-06-01
This article explores the application of Paivio's Dual Coding Theory (DCT) as a scientifically sound rationale for the effects of multimedia learning in programs of nurse anesthesia. We explore and highlight this theory as a practical infrastructure for programs that work with dispersed students (ie, distance education models). Exploring the work of Paivio and others, we are engaged in an ongoing outcome study using audiovisual teaching interventions (SBVTIs) that we have applied to a range of healthcare providers in a quasiexperimental model. The early results of that study are reported in this article. In addition, we have observed powerful and sustained learning in a wide range of healthcare providers with our SBVTIs and suggest that this is likely explained by DCT.
International Nuclear Information System (INIS)
Fletcher, J.K.
1987-12-01
The computer code MARC/PN provides a solution of the multigroup transport equation by expanding the flux in spherical harmonics. The coefficients of the series so obtained satisfy linked first order differential equations, and on eliminating terms associated with odd parity harmonics a second order system results which can be solved by established finite difference or finite element techniques. This report describes modifications incorporated in MARC/PN to allow for anisotropic scattering, and the modelling of irregular exterior boundaries in the finite element option. The latter development leads to substantial reductions in problem size, particularly for three dimensions. Also, links to an interactive graphics mesh generator (SUPERTAB) have been added. The final section of the report contains results from problems showing the effects of anisotropic scatter and the ability of the code to model irregular geometries. (author)
SCDAP/RELAP5/MOD 3.1 code manual: Damage progression model theory. Volume 2
International Nuclear Information System (INIS)
Davis, K.L.
1995-06-01
The SCDAP/RELAP5 code has been developed for best estimate transient simulation of light water reactor coolant systems during a severe accident. The code models the coupled behavior of the reactor coolant system, the core, fission products released during a severe accident transient as well as large and small break loss of coolant accidents, operational transients such as anticipated transient without SCRAM, loss of offsite power, loss of feedwater, and loss of flow. A generic modeling approach is used that permits as much of a particular system to be modeled as necessary. Control system and secondary system components are included to permit modeling of plant controls, turbines, condensers, and secondary feedwater conditioning systems. This volume contains detailed descriptions of the severe accident models and correlations. It provides the user with the underlying assumptions and simplifications used to generate and implement the basic equations into the code, so an intelligent assessment of the applicability and accuracy of the resulting calculation can be made
SCDAP/RELAP5/MOD 3.1 code manual: Damage progression model theory. Volume 2
Energy Technology Data Exchange (ETDEWEB)
Davis, K.L. [ed.; Allison, C.M.; Berna, G.A. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)] [and others
1995-06-01
The SCDAP/RELAP5 code has been developed for best estimate transient simulation of light water reactor coolant systems during a severe accident. The code models the coupled behavior of the reactor coolant system, the core, fission products released during a severe accident transient as well as large and small break loss of coolant accidents, operational transients such as anticipated transient without SCRAM, loss of offsite power, loss of feedwater, and loss of flow. A generic modeling approach is used that permits as much of a particular system to be modeled as necessary. Control system and secondary system components are included to permit modeling of plant controls, turbines, condensers, and secondary feedwater conditioning systems. This volume contains detailed descriptions of the severe accident models and correlations. It provides the user with the underlying assumptions and simplifications used to generate and implement the basic equations into the code, so an intelligent assessment of the applicability and accuracy of the resulting calculation can be made.
Directory of Open Access Journals (Sweden)
Alessia Lombardi
2017-01-01
Full Text Available Quick Response Code (QR code is the representative device of a particular branch of marketing called mobile marketing. The code is found throughout various productive sectors, including the agro-food sector. This work investigates whether consumers are willing to pay a premium price for extra information on a bottle of extra-virgin olive oil (EVOO by means of the QR-code. Based on data collected from 1006 interviews conducted in Italy, we implemented the Theory of Planned Behavior (TPB model to ascertain the factors that could influence consumer’s willingness to pay (WTP for extra QR code information. Empirical results show the influence of attitudes, subjective norms and consumer personal characteristics such as mavenism and motivation for shopping (utilitarian vs. hedonic motivation in explaining willingness to pay for a bottle of QR code labeled olive oil.
Koenig, Stephan; Uengoer, Metin; Lachnit, Harald
2018-04-01
The attentional learning theory of Pearce and Hall () predicts more attention to uncertain cues that have caused a high prediction error in the past. We examined how the cue-elicited pupil dilation during associative learning was linked to such error-driven attentional processes. In three experiments, participants were trained to acquire associations between different cues and their appetitive (Experiment 1), motor (Experiment 2), or aversive (Experiment 3) outcomes. All experiments were designed to examine differences in the processing of continuously reinforced cues (consistently followed by the outcome) versus partially reinforced, uncertain cues (randomly followed by the outcome). We measured the pupil dilation elicited by the cues in anticipation of the outcome and analyzed how this conditioned pupil response changed over the course of learning. In all experiments, changes in pupil size complied with the same basic pattern: During early learning, consistently reinforced cues elicited greater pupil dilation than uncertain, randomly reinforced cues, but this effect gradually reversed to yield a greater pupil dilation for uncertain cues toward the end of learning. The pattern of data accords with the changes in prediction error and error-driven attention formalized by the Pearce-Hall theory. © 2017 The Authors. Psychophysiology published by Wiley Periodicals, Inc. on behalf of Society for Psychophysiological Research.
Green, Crystal D.
2010-01-01
This action research study investigated the perceptions that student participants had on the development of a career exploration model and a career exploration project. The Holland code theory was the primary assessment used for this research study, in addition to the Multiple Intelligences theory and the identification of a role model for the…
Directory of Open Access Journals (Sweden)
Atamewoue Surdive
2017-12-01
Full Text Available In this paper, we define linear codes and cyclic codes over a finite Krasner hyperfield and we characterize these codes by their generator matrices and parity check matrices. We also demonstrate that codes over finite Krasner hyperfields are more interesting for code theory than codes over classical finite fields.
Dual Coding Theory Explains Biphasic Collective Computation in Neural Decision-Making
Directory of Open Access Journals (Sweden)
Bryan C. Daniels
2017-06-01
Full Text Available A central question in cognitive neuroscience is how unitary, coherent decisions at the whole organism level can arise from the distributed behavior of a large population of neurons with only partially overlapping information. We address this issue by studying neural spiking behavior recorded from a multielectrode array with 169 channels during a visual motion direction discrimination task. It is well known that in this task there are two distinct phases in neural spiking behavior. Here we show Phase I is a distributed or incompressible phase in which uncertainty about the decision is substantially reduced by pooling information from many cells. Phase II is a redundant or compressible phase in which numerous single cells contain all the information present at the population level in Phase I, such that the firing behavior of a single cell is enough to predict the subject's decision. Using an empirically grounded dynamical modeling framework, we show that in Phase I large cell populations with low redundancy produce a slow timescale of information aggregation through critical slowing down near a symmetry-breaking transition. Our model indicates that increasing collective amplification in Phase II leads naturally to a faster timescale of information pooling and consensus formation. Based on our results and others in the literature, we propose that a general feature of collective computation is a “coding duality” in which there are accumulation and consensus formation processes distinguished by different timescales.
Dual Coding Theory Explains Biphasic Collective Computation in Neural Decision-Making.
Daniels, Bryan C; Flack, Jessica C; Krakauer, David C
2017-01-01
A central question in cognitive neuroscience is how unitary, coherent decisions at the whole organism level can arise from the distributed behavior of a large population of neurons with only partially overlapping information. We address this issue by studying neural spiking behavior recorded from a multielectrode array with 169 channels during a visual motion direction discrimination task. It is well known that in this task there are two distinct phases in neural spiking behavior. Here we show Phase I is a distributed or incompressible phase in which uncertainty about the decision is substantially reduced by pooling information from many cells. Phase II is a redundant or compressible phase in which numerous single cells contain all the information present at the population level in Phase I, such that the firing behavior of a single cell is enough to predict the subject's decision. Using an empirically grounded dynamical modeling framework, we show that in Phase I large cell populations with low redundancy produce a slow timescale of information aggregation through critical slowing down near a symmetry-breaking transition. Our model indicates that increasing collective amplification in Phase II leads naturally to a faster timescale of information pooling and consensus formation. Based on our results and others in the literature, we propose that a general feature of collective computation is a "coding duality" in which there are accumulation and consensus formation processes distinguished by different timescales.
Using game theory for perceptual tuned rate control algorithm in video coding
Luo, Jiancong; Ahmad, Ishfaq
2005-03-01
This paper proposes a game theoretical rate control technique for video compression. Using a cooperative gaming approach, which has been utilized in several branches of natural and social sciences because of its enormous potential for solving constrained optimization problems, we propose a dual-level scheme to optimize the perceptual quality while guaranteeing "fairness" in bit allocation among macroblocks. At the frame level, the algorithm allocates target bits to frames based on their coding complexity. At the macroblock level, the algorithm distributes bits to macroblocks by defining a bargaining game. Macroblocks play cooperatively to compete for shares of resources (bits) to optimize their quantization scales while considering the Human Visual System"s perceptual property. Since the whole frame is an entity perceived by viewers, macroblocks compete cooperatively under a global objective of achieving the best quality with the given bit constraint. The major advantage of the proposed approach is that the cooperative game leads to an optimal and fair bit allocation strategy based on the Nash Bargaining Solution. Another advantage is that it allows multi-objective optimization with multiple decision makers (macroblocks). The simulation results testify the algorithm"s ability to achieve accurate bit rate with good perceptual quality, and to maintain a stable buffer level.
Stroop-like effects in a new-code learning task: A cognitive load theory perspective.
Hazan-Liran, Batel; Miller, Paul
2017-09-01
To determine whether and how learning is biased by competing task-irrelevant information that creates extraneous cognitive load, we assessed the efficiency of university students with a learning paradigm in two experiments. The paradigm asked participants to learn associations between eight words and eight digits. We manipulated congruity of the digits' ink colour with the words' semantics. In Experiment 1 word stimuli were colour words (e.g., blue, yellow) and in Experiment 2 colour-related word concepts (e.g., sky, banana). Marked benefits and costs on learning due to variation in extraneous cognitive load originating from processing task-irrelevant information were evident. Implications for cognitive load theory and schooling are discussed.
Huhn, William Paul; Lange, Björn; Yu, Victor; Blum, Volker; Lee, Seyong; Yoon, Mina
Density-functional theory has been well established as the dominant quantum-mechanical computational method in the materials community. Large accurate simulations become very challenging on small to mid-scale computers and require high-performance compute platforms to succeed. GPU acceleration is one promising approach. In this talk, we present a first implementation of all-electron density-functional theory in the FHI-aims code for massively parallel GPU-based platforms. Special attention is paid to the update of the density and to the integration of the Hamiltonian and overlap matrices, realized in a domain decomposition scheme on non-uniform grids. The initial implementation scales well across nodes on ORNL's Titan Cray XK7 supercomputer (8 to 64 nodes, 16 MPI ranks/node) and shows an overall speed up in runtime due to utilization of the K20X Tesla GPUs on each Titan node of 1.4x, with the charge density update showing a speed up of 2x. Further acceleration opportunities will be discussed. Work supported by the LDRD Program of ORNL managed by UT-Battle, LLC, for the U.S. DOE and by the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725.
International Nuclear Information System (INIS)
Goto, Minoru; Takamatsu, Kuniyoshi
2007-03-01
The HTTR temperature coefficients required for the core dynamics calculations had been calculated from the HTTR core calculation results by the diffusion code with which the corrections had been performed using the core calculation results by the Monte-Carlo code MVP. This calculation method for the temperature coefficients was considered to have some issues to be improved. Then, the calculation method was improved to obtain the temperature coefficients in which the corrections by the Monte-Carlo code were not required. Specifically, from the point of view of neutron spectrum calculated by lattice calculations, the lattice model was revised which had been used for the calculations of the temperature coefficients. The HTTR core calculations were performed by the diffusion code with the group constants which were generated by the lattice calculations with the improved lattice model. The core calculations and the lattice calculations were performed by the SRAC code system. The HTTR core dynamics calculation was performed with the temperature coefficient obtained from the core calculation results. In consequence, the core dynamics calculation result showed good agreement with the experimental data and the valid temperature coefficient could be calculated only by the diffusion code without the corrections by Monte-Carlo code. (author)
Bacon, Donald R.
2016-01-01
In this rejoinder to "Identifying Research Topic Development in Business and Management Education Research Using Legitimation Code Theory," published in the "Journal of Management Education," Dec 2016 (see EJ1118407), Donald R. Bacon discusses the similarities between Arbaugh et al.'s (2016) findings and the scholarship…
Antonacopoulou, Elena P.
2016-01-01
In "Identifying Research Topic Development in Business and Management Education Research Using Legitimation Code Theory," authors J.B. Arbaugh, Charles J. Fornaciari, and Alvin Hwang ("Journal of Management Education," December 2016 vol. 40 no. 6 p654-691, see EJ1118407) used citation analysis to track the development of…
Asarta, Carlos J.
2016-01-01
Carlos Asarta comments here that Arbaugh, Fornaciari, and Hwang (2016) are to be commended for their work ("Identifying Research Topic Development in Business and Management Education Research Using Legitimation Code Theory" "Journal of Management Education," Dec 2016, see EJ1118407). Asarta says that they make several…
Skirbekk, Helge
2004-08-01
This paper introduces parts of Jürgen Habermas' theory of communication in an attempt to understand how meaning is coded in patient-physician communication. By having a closer look at how patients and physicians make assertions with their utterances, light will be shed on difficult aspects of reaching understanding in the clinical encounter. Habermas' theory will be used to differentiate assertions into validity claims referring to truth, truthfulness and rightness. An analysis of hypothetical physician-replies to a patient suffering from back pains will substantiate the necessity for such a theory.
Walker, Judy L
2000-01-01
When information is transmitted, errors are likely to occur. Coding theory examines efficient ways of packaging data so that these errors can be detected, or even corrected. The traditional tools of coding theory have come from combinatorics and group theory. Lately, however, coding theorists have added techniques from algebraic geometry to their toolboxes. In particular, by re-interpreting the Reed-Solomon codes, one can see how to define new codes based on divisors on algebraic curves. For instance, using modular curves over finite fields, Tsfasman, Vladut, and Zink showed that one can define a sequence of codes with asymptotically better parameters than any previously known codes. This monograph is based on a series of lectures the author gave as part of the IAS/PCMI program on arithmetic algebraic geometry. Here, the reader is introduced to the exciting field of algebraic geometric coding theory. Presenting the material in the same conversational tone of the lectures, the author covers linear codes, inclu...
Di Giulio, Massimo
2016-06-21
I analyze the mechanism on which are based the majority of theories that put to the center of the origin of the genetic code the physico-chemical properties of amino acids. As this mechanism is based on excessive mutational steps, I conclude that it could not have been operative or if operative it would not have allowed a full realization of predictions of these theories, because this mechanism contained, evidently, a high indeterminacy. I make that disapproving the four-column theory of the origin of the genetic code (Higgs, 2009) and reply to the criticism that was directed towards the coevolution theory of the origin of the genetic code. In this context, I suggest a new hypothesis that clarifies the mechanism by which the domains of codons of the precursor amino acids would have evolved, as predicted by the coevolution theory. This mechanism would have used particular elongation factors that would have constrained the evolution of all amino acids belonging to a given biosynthetic family to the progenitor pre-tRNA, that for first recognized, the first codons that evolved in a certain codon domain of a determined precursor amino acid. This happened because the elongation factors recognized two characteristics of the progenitor pre-tRNAs of precursor amino acids, which prevented the elongation factors from recognizing the pre-tRNAs belonging to biosynthetic families of different precursor amino acids. Finally, I analyze by means of Fisher's exact test, the distribution, within the genetic code, of the biosynthetic classes of amino acids and the ones of polarity values of amino acids. This analysis would seem to support the biosynthetic classes of amino acids over the ones of polarity values, as the main factor that led to the structuring of the genetic code, with the physico-chemical properties of amino acids playing only a subsidiary role in this evolution. As a whole, the full analysis brings to the conclusion that the coevolution theory of the origin of the
Harman, C. J.
2015-12-01
Even amongst the academic community, new theoretical tools can remain underutilized due to the investment of time and resources required to understand and implement them. This surely limits the frequency that new theory is rigorously tested against data by scientists outside the group that developed it, and limits the impact that new tools could have on the advancement of science. Reducing the barriers to adoption through online education and open-source code can bridge the gap between theory and data, forging new collaborations, and advancing science. A pilot venture aimed at increasing the adoption of a new theory of time-variable transit time distributions was begun in July 2015 as a collaboration between Johns Hopkins University and The Consortium of Universities for the Advancement of Hydrologic Science (CUAHSI). There were four main components to the venture: a public online seminar covering the theory, an open source code repository, a virtual short course designed to help participants apply the theory to their data, and an online forum to maintain discussion and build a community of users. 18 participants were selected for the non-public components based on their responses in an application, and were asked to fill out a course evaluation at the end of the short course, and again several months later. These evaluations, along with participation in the forum and on-going contact with the organizer suggest strengths and weaknesses in this combination of components to assist participants in adopting new tools.
Dual Coding, Reasoning and Fallacies.
Hample, Dale
1982-01-01
Develops the theory that a fallacy is not a comparison of a rhetorical text to a set of definitions but a comparison of one person's cognition with another's. Reviews Paivio's dual coding theory, relates nonverbal coding to reasoning processes, and generates a limited fallacy theory based on dual coding theory. (PD)
An algebraic approach to graph codes
DEFF Research Database (Denmark)
Pinero, Fernando
This thesis consists of six chapters. The first chapter, contains a short introduction to coding theory in which we explain the coding theory concepts we use. In the second chapter, we present the required theory for evaluation codes and also give an example of some fundamental codes in coding...... theory as evaluation codes. Chapter three consists of the introduction to graph based codes, such as Tanner codes and graph codes. In Chapter four, we compute the dimension of some graph based codes with a result combining graph based codes and subfield subcodes. Moreover, some codes in chapter four...
Djordjevic, Ivan; Vasic, Bane
2010-01-01
This unique book provides a coherent and comprehensive introduction to the fundamentals of optical communications, signal processing and coding for optical channels. It is the first to integrate the fundamentals of coding theory and optical communication.
THE THEORY OF IMPREVISION IN THE CONTEXT OF THE ECONOMIC CRISIS AND THE NEW ROMANIAN CIVIL CODE (NCC
Directory of Open Access Journals (Sweden)
Bazil Oglindă
2012-11-01
Full Text Available This paper addresses one of the most pressing issues of private law, namely, the theory of unpredictability. The theory of imprevision is a question of law under the effects of the current economic crisis has resulted in contract law. Also, updating legal issues raised by the theory of unpredictability occurs in the context of regulation for the first time at its principle in art. 1271 NCC. This paper deals with the concept, scope, conditions applying theory in the context of imprevision in terms of law doctrine and the relevant case law. It also presents elements of comparative law.
Energy Technology Data Exchange (ETDEWEB)
Anderson, Jonas T., E-mail: jonastyleranderson@gmail.com
2013-03-15
In this paper we define homological stabilizer codes on qubits which encompass codes such as Kitaev's toric code and the topological color codes. These codes are defined solely by the graphs they reside on. This feature allows us to use properties of topological graph theory to determine the graphs which are suitable as homological stabilizer codes. We then show that all toric codes are equivalent to homological stabilizer codes on 4-valent graphs. We show that the topological color codes and toric codes correspond to two distinct classes of graphs. We define the notion of label set equivalencies and show that under a small set of constraints the only homological stabilizer codes without local logical operators are equivalent to Kitaev's toric code or to the topological color codes. - Highlights: Black-Right-Pointing-Pointer We show that Kitaev's toric codes are equivalent to homological stabilizer codes on 4-valent graphs. Black-Right-Pointing-Pointer We show that toric codes and color codes correspond to homological stabilizer codes on distinct graphs. Black-Right-Pointing-Pointer We find and classify all 2D homological stabilizer codes. Black-Right-Pointing-Pointer We find optimal codes among the homological stabilizer codes.
Momeni, Ali; Rouhi, Kasra; Rajabalipanah, Hamid; Abdolali, Ali
2018-04-18
Inspired by the information theory, a new concept of re-programmable encrypted graphene-based coding metasurfaces was investigated at terahertz frequencies. A channel-coding function was proposed to convolutionally record an arbitrary information message onto unrecognizable but recoverable parity beams generated by a phase-encrypted coding metasurface. A single graphene-based reflective cell with dual-mode biasing voltages was designed to act as "0" and "1" meta-atoms, providing broadband opposite reflection phases. By exploiting graphene tunability, the proposed scheme enabled an unprecedented degree of freedom in the real-time mapping of information messages onto multiple parity beams which could not be damaged, altered, and reverse-engineered. Various encryption types such as mirroring, anomalous reflection, multi-beam generation, and scattering diffusion can be dynamically attained via our multifunctional metasurface. Besides, contrary to conventional time-consuming and optimization-based methods, this paper convincingly offers a fast, straightforward, and efficient design of diffusion metasurfaces of arbitrarily large size. Rigorous full-wave simulations corroborated the results where the phase-encrypted metasurfaces exhibited a polarization-insensitive reflectivity less than -10 dB over a broadband frequency range from 1 THz to 1.7 THz. This work reveals new opportunities for the extension of re-programmable THz-coding metasurfaces and may be of interest for reflection-type security systems, computational imaging, and camouflage technology.
Webber, C J
2001-05-01
This article shows analytically that single-cell learning rules that give rise to oriented and localized receptive fields, when their synaptic weights are randomly and independently initialized according to a plausible assumption of zero prior information, will generate visual codes that are invariant under two-dimensional translations, rotations, and scale magnifications, provided that the statistics of their training images are sufficiently invariant under these transformations. Such codes span different image locations, orientations, and size scales with equal economy. Thus, single-cell rules could account for the spatial scaling property of the cortical simple-cell code. This prediction is tested computationally by training with natural scenes; it is demonstrated that a single-cell learning rule can give rise to simple-cell receptive fields spanning the full range of orientations, image locations, and spatial frequencies (except at the extreme high and low frequencies at which the scale invariance of the statistics of digitally sampled images must ultimately break down, because of the image boundary and the finite pixel resolution). Thus, no constraint on completeness, or any other coupling between cells, is necessary to induce the visual code to span wide ranges of locations, orientations, and size scales. This prediction is made using the theory of spontaneous symmetry breaking, which we have previously shown can also explain the data-driven self-organization of a wide variety of transformation invariances in neurons' responses, such as the translation invariance of complex cell response.
International Nuclear Information System (INIS)
Vondy, D.R.; Fowler, T.B.; Cunningham, G.W.
1977-11-01
The report documents the computer code block VENTURE designed to solve multigroup neutronics problems with application of the finite-difference diffusion-theory approximation to neutron transport (or alternatively simple P 1 ) in up to three-dimensional geometry. It uses and generates interface data files adopted in the cooperative effort sponsored by the Reactor Physics Branch of the Division of Reactor Research and Development of the Energy Research and Development Administration. Several different data handling procedures have been incorporated to provide considerable flexibility; it is possible to solve a wide variety of problems on a variety of computer configurations relatively efficiently
Energy Technology Data Exchange (ETDEWEB)
Vondy, D.R.; Fowler, T.B.; Cunningham, G.W.
1977-11-01
The report documents the computer code block VENTURE designed to solve multigroup neutronics problems with application of the finite-difference diffusion-theory approximation to neutron transport (or alternatively simple P/sub 1/) in up to three-dimensional geometry. It uses and generates interface data files adopted in the cooperative effort sponsored by the Reactor Physics Branch of the Division of Reactor Research and Development of the Energy Research and Development Administration. Several different data handling procedures have been incorporated to provide considerable flexibility; it is possible to solve a wide variety of problems on a variety of computer configurations relatively efficiently.
International Nuclear Information System (INIS)
Vondy, D.R.; Fowler, T.B.; Cunningham, G.W.
1975-10-01
The computer code block VENTURE, designed to solve multigroup neutronics problems with application of the finite-difference diffusion-theory approximation to neutron transport (or alternatively simple P 1 ) in up to three-dimensional geometry is described. A variety of types of problems may be solved: the usual eigenvalue problem, a direct criticality search on the buckling, on a reciprocal velocity absorber (prompt mode), or on nuclide concentrations, or an indirect criticality search on nuclide concentrations, or on dimensions. First-order perturbation analysis capability is available at the macroscopic cross section level
International Nuclear Information System (INIS)
Nichols, B.D.; Mueller, C.; Necker, G.A.; Travis, J.R.; Spore, J.W.; Lam, K.L.; Royl, P.; Redlinger, R.; Wilson, T.L.
1998-01-01
Los Alamos National Laboratory (LANL) and Forschungszentrum Karlsruhe (FzK) are developing GASFLOW, a three-dimensional (3D) fluid dynamics field code as a best-estimate tool to characterize local phenomena within a flow field. Examples of 3D phenomena include circulation patterns; flow stratification; hydrogen distribution mixing and stratification; combustion and flame propagation; effects of noncondensable gas distribution on local condensation and evaporation; and aerosol entrainment, transport, and deposition. An analysis with GASFLOW will result in a prediction of the gas composition and discrete particle distribution in space and time throughout the facility and the resulting pressure and temperature loadings on the walls and internal structures with or without combustion. A major application of GASFLOW is for predicting the transport, mixing, and combustion of hydrogen and other gases in nuclear reactor containments and other facilities. It has been applied to situations involving transporting and distributing combustible gas mixtures. It has been used to study gas dynamic behavior (1) in low-speed, buoyancy-driven flows, as well as sonic flows or diffusion dominated flows; and (2) during chemically reacting flows, including deflagrations. The effects of controlling such mixtures by safety systems can be analyzed. The code version described in this manual is designated GASFLOW 2.1, which combines previous versions of the United States Nuclear Regulatory Commission code HMS (for Hydrogen Mixing Studies) and the Department of Energy and FzK versions of GASFLOW. The code was written in standard Fortran 90. This manual comprises three volumes. Volume I describes the governing physical equations and computational model. Volume II describes how to use the code to set up a model geometry, specify gas species and material properties, define initial and boundary conditions, and specify different outputs, especially graphical displays. Sample problems are included
International Nuclear Information System (INIS)
Robinson, G.S.
1985-12-01
MIRANDA is the cross-section generation module of the AUS neutronics code system used to prepare multigroup cross-section data which are pertinent to a particular study from a general purpose multigroup library of cross sections. Libraries have been prepared from ENDF/B which are suitable for thermal and fast fission reactors and for fusion blanket studies. The libraries include temperature dependent data, resonance cross sections represented by subgroup parameters and may contain photon as well as neutron data. The MIRANDA module includes a multiregion resonance calculation in slab, cylinder or cluster geometry, a homogeneous B L flux solution, and a group condensation facility. This report documents the modifications to an earlier version of MIRANDA and provides a complete user's manual
Energy Technology Data Exchange (ETDEWEB)
Monniaux, D.
2009-06-15
Software operating critical systems (aircraft, nuclear power plants) should not fail - whereas most computerised systems of daily life (personal computer, ticket vending machines, cell phone) fail from time to time. This is not a simple engineering problem: it is known, since the works of Turing and Cook, that proving that programs work correctly is intrinsically hard. In order to solve this problem, one needs methods that are, at the same time, efficient (moderate costs in time and memory), safe (all possible failures should be found), and precise (few warnings about nonexistent failures). In order to reach a satisfactory compromise between these goals, one can research fields as diverse as formal logic, numerical analysis or 'classical' algorithmics. From 2002 to 2007 I participated in the development of the Astree static analyser. This suggested to me a number of side projects, both theoretical and practical (use of formal proof techniques, analysis of numerical filters...). More recently, I became interested in modular analysis of numerical property and in the applications to program analysis of constraint solving techniques (semi-definite programming, SAT and SAT modulo theory). (author)
Kirvelis, Dobilas; Beitas, Kastytis
2008-10-01
The aim of this work is to show that the essence of life and living systems is their organization as bioinformational technology on the base of informational anticipatory control. Principal paradigmatic and structural schemes of functional organization of life (organisms and their systems) are constructed on the basis of systemic analysis and synthesis of main phenomenological features of living world. Life is based on functional elements that implement engineering procedures of closed-loop coding-decoding control (CL-CDC). Phenomenon of natural bioinformational control appeared and developed on the Earth 3-4 bln years ago, when the life originated as a result of chemical and later biological evolution. Informatics paradigm considers the physical and chemical transformations of energy and matter in organized systems as flows that are controlled and the signals as means for purposive informational control programs. The social and technical technological systems as informational control systems are a latter phenomenon engineered by man. The information emerges in organized systems as a necessary component of control technology. Generalized schemes of functional organization on levels of cell, organism and brain neocortex, as the highest biosystem with CL-CDC, are presented. CL-CDC concept expands the understanding of bioinformatics.
International Nuclear Information System (INIS)
Jagannathan, V.
1985-01-01
For solving the multigroup diffusion theory equations in 3-D problems in which the material properties are uniform in large segments of axial direction, the synthesis method is known to give fairly accurate results, at very low computational cost. In the code system FEMSYN, the single channel continuous flux synthesis option has been incorporated. One can generate the radial trail functions by either finite difference method (FDM) or finite element method (FEM). The axial mixing functions can also be found by either FDM or FEM. Use of FEM for both radial and axial directions is found to reduce the calculation time considerably. One can determine eigenvalue, 3-D flux and power distributions with FEMSYN. In this report, a detailed discription of the synthesis module SYNTHD is given. (author)
DIF3D: a code to solve one-, two-, and three-dimensional finite-difference diffusion theory problems
International Nuclear Information System (INIS)
Derstine, K.L.
1984-04-01
The mathematical development and numerical solution of the finite-difference equations are summarized. The report provides a guide for user application and details the programming structure of DIF3D. Guidelines are included for implementing the DIF3D export package on several large scale computers. Optimized iteration methods for the solution of large-scale fast-reactor finite-difference diffusion theory calculations are presented, along with their theoretical basis. The computational and data management considerations that went into their formulation are discussed. The methods utilized include a variant of the Chebyshev acceleration technique applied to the outer fission source iterations and an optimized block successive overrelaxation method for the within-group iterations. A nodal solution option intended for analysis of LMFBR designs in two- and three-dimensional hexagonal geometries is incorporated in the DIF3D package and is documented in a companion report, ANL-83-1
International Nuclear Information System (INIS)
Lee, Ki Bog; Kim, Yeong Il; Kim, Kang Seok; Kim, Sang Ji; Kim, Young Gyun; Song, Hoon; Lee, Dong Uk; Lee, Byoung Oon; Jang, Jin Wook; Lim, Hyun Jin; Kim, Hak Sung
2004-05-01
In this report, the results of KALIMER (Korea Advanced LIquid MEtal Reactor) core design calculated by the K-CORE computing system are compared and analyzed with those of MCDEP calculation. The effective multiplication factor, flux distribution, fission power distribution and the number densities of the important nuclides effected from the depletion calculation for the R-Z model and Hex-Z model of KALIMER core are compared. It is confirmed that the results of K-CORE system compared with those of MCDEP based on the Monte Carlo transport theory method agree well within 700 pcm for the effective multiplication factor estimation and also within 2% in the driver fuel region, within 10% in the radial blanket region for the reaction rate and the fission power density. Thus, the K-CORE system for the core design of KALIMER by treating the lumped fission product and mainly important nuclides can be used as a core design tool keeping the necessary accuracy
Directory of Open Access Journals (Sweden)
Rumen Daskalov
2017-07-01
Full Text Available Let an $[n,k,d]_q$ code be a linear code of length $n$, dimension $k$ and minimum Hamming distance $d$ over $GF(q$. One of the most important problems in coding theory is to construct codes with optimal minimum distances. In this paper 22 new ternary linear codes are presented. Two of them are optimal. All new codes improve the respective lower bounds in [11].
International Nuclear Information System (INIS)
Ritchie, A.I.M.; Wilson, D.J.
1984-12-01
A multigroup diffusion code has been used to predict the count rate from a neutron moisture meter for a range of values of soil water content ω, thermal neutron absorption cross section Ssub(a) (defined as Σsub(a)/rho) of the soil matrix and soil matrix density rho. Two dimensions adequately approximated the geometry of the source, detector and soil surrounding the detector. Seven energy groups, the data for which were condensed from 128 group data set over the neutron energy spectrum appropriate to the soil-water mixture under study, proved adequate to describe neutron slowing-down and diffusion. The soil-water mixture was an SiO 2 →water mixture, with the absorption cross section of SiO 2 increased to cover the range of Σsub(a) required. The response to changes in matrix density is, in general, linear but the response to changes in water content is not linear over the range of parameter values investigated. Tabular results are presented which allow interpolation of the response for a particular ω, Ssub(a) and rho. It is shown that R(ω, Ssub(a), rho) rho M(Ssub(a)) + C(ω) is a crude representation of the response over a very limited range of variation of ω, and Ssub(a). As the response is a slowly varying function of rho, Ssub(a) and ω, a polynomial fit will provide a better estimate of the response for values of rho, Ssub(a) and ω not tabulated
Energy Technology Data Exchange (ETDEWEB)
Fajeau, M; Nguyen, L T; Saunier, J [Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)
1966-09-01
This code handles the following problems: -1) Analysis of thermal experiments on a water loop at high or low pressure; steady state or transient behavior; -2) Analysis of thermal and hydrodynamic behavior of water-cooled and moderated reactors, at either high or low pressure, with boiling permitted; fuel elements are assumed to be flat plates: - Flowrate in parallel channels coupled or not by conduction across plates, with conditions of pressure drops or flowrate, variable or not with respect to time is given; the power can be coupled to reactor kinetics calculation or supplied by the code user. The code, containing a schematic representation of safety rod behavior, is a one dimensional, multi-channel code, and has as its complement (FLID), a one-channel, two-dimensional code. (authors) [French] Ce code permet de traiter les problemes ci-dessous: 1. Depouillement d'essais thermiques sur boucle a eau, haute ou basse pression, en regime permanent ou transitoire; 2. Etudes thermiques et hydrauliques de reacteurs a eau, a plaques, a haute ou basse pression, ebullition permise: - repartition entre canaux paralleles, couples on non par conduction a travers plaques, pour des conditions de debit ou de pertes de charge imposees, variables ou non dans le temps; - la puissance peut etre couplee a la neutronique et une representation schematique des actions de securite est prevue. Ce code (Cactus) a une dimension d'espace et plusieurs canaux, a pour complement Flid qui traite l'etude d'un seul canal a deux dimensions. (auteurs)
Fotopoulou, Aikaterini
2014-03-01
Cognitive neuroscience, being more inclusive and ambitious in scope than cognitive neuropsychology, seems to have taken the place of the latter within the modern neurosciences. Nevertheless, recent advances in the neurosciences afford neuropsychology with epistemic possibilities that simply did not exist even 15 years ago. Human lesion studies still have an important role to play in shaping such possibilities, particularly when combined with other methods of enquiry. I first outline theoretical and methodological advances within the neurosciences that can inform and shape the rebirth of a dynamic, non-modular neuropsychology. I then use an influential computational theory of brain function, the free energy principle, to suggest an unified account of anosognosia for hemiplegia as a research example of the potential for transition from a modular, cognitive neuropsychology to a dynamic, computational and even restorative neuropsychology. These and many other adjectives that can flexibly, take the place of 'cognitive' next to 'neuropsychology' will hopefully designate the much needed rebirth and demarcation of a field, neuropsychology itself, that has somehow lost its place within the modern neurosciences and yet seems to have a unique and important role to play in the future understanding of the brain. © 2013 The British Psychological Society.
International Nuclear Information System (INIS)
Monniaux, D.
2009-06-01
Software operating critical systems (aircraft, nuclear power plants) should not fail - whereas most computerised systems of daily life (personal computer, ticket vending machines, cell phone) fail from time to time. This is not a simple engineering problem: it is known, since the works of Turing and Cook, that proving that programs work correctly is intrinsically hard. In order to solve this problem, one needs methods that are, at the same time, efficient (moderate costs in time and memory), safe (all possible failures should be found), and precise (few warnings about nonexistent failures). In order to reach a satisfactory compromise between these goals, one can research fields as diverse as formal logic, numerical analysis or 'classical' algorithmics. From 2002 to 2007 I participated in the development of the Astree static analyser. This suggested to me a number of side projects, both theoretical and practical (use of formal proof techniques, analysis of numerical filters...). More recently, I became interested in modular analysis of numerical property and in the applications to program analysis of constraint solving techniques (semi-definite programming, SAT and SAT modulo theory). (author)
International Nuclear Information System (INIS)
Curti, E.
1991-02-01
A model describing the corrosion kinetics of silicate glasses has been developed by Grambow in recent years. In this report, the theoretical background of the model is thoroughly discussed, and its practical use demonstrated. The main objectives were: 1) to test the validity of the basic assumptions on which the model relies, and 2) to assess whether it can be applied to the safety analysis of a Swiss final repository for high-level radioactive waste. Transition State Theory, a tool based on quantum mechanical principles, has been used by Grambow to derive a general kinetic equation for the corrosion of silicate glasses. This equation predicts successfully the observed dependence of the corrosion rate on the silicic acid concentration in solution according to a first order kinetics law. However, some parameters required by this equation are determined on the base of questionable assumptions. In particular, the simplistic surface complexation model used for the calculation of the free energy of the glass-water reaction yields, for the protonation of silicon on the glass surface, results which are not consistent with the experimental findings. Further, although the model predicts a unique value, common to all silicate glasses, for the activation energy of the rate-determining elementary reaction, leaching experiments conducted on a wide variety of glasses suggest that this quantity may vary by a factor 2. In its present form, the model is judged to be unsuitable for the safety analysis of the Swiss final repository. The reasons include: 1) the model neglects the potential effects of diffusive transport and silica sorption in a bentonite backfill on the glass corrosion kinetics, 2) the release of radionuclides can be only modelled assuming congruent dissolution, and 3) the magnitude of the final rates of corrosion, the parameter defining the maximal lifetime of the glass matrix, is still not known with sufficient precision. (author) figs., tabs., 27 refs
Directory of Open Access Journals (Sweden)
Wattanapong Kurdthongmee
2003-05-01
Full Text Available A real-time system is a computer system that monitors or controls an external environment. The system must meet various timing and other constraints that are imposed on it by the real-time behaviour of the external world. One of the differences between a real-time and a conventional software is that a real-time program must be both logically and temporally correct. To successfully design and implement a real-time system, some analysis is typically done to assure that requirements or designs are consistent and that they satisfy certain desirable properties that may not be immediately obvious from specification. Executable specifications, prototypes and simulation are particularly useful in real-time systems for debugging specifications. In this paper, we propose the adaptations to the coloured Petri-net theory to ease the modeling, simulation and code generation process of an embedded, microcontroller-based, real-time system. The benefits of the proposed approach are demonstrated by use of our prototype software tool called ENVisAge (an Extended Coloured Petri-Net Based Visual Application Generator Tool.
Energy Technology Data Exchange (ETDEWEB)
Batet, L., E-mail: lluis.batet@upc.edu [Technical University of Catalonia (UPC), Energy and Radiation Studies Research Group (GREENER), Technology for Fusion T4F, Barcelona (Spain); UPC, Department of Physics and Nuclear Engineering (DFEN), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Fradera, J. [Technical University of Catalonia (UPC), Energy and Radiation Studies Research Group (GREENER), Technology for Fusion T4F, Barcelona (Spain); UPC, Department of Physics and Nuclear Engineering (DFEN), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Valls, E. Mas de les [Technical University of Catalonia (UPC), Energy and Radiation Studies Research Group (GREENER), Technology for Fusion T4F, Barcelona (Spain); UPC, Department of Heat Engines (DMMT), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Sedano, L.A. [EURATOM-CIEMAT Association, Fusion Technology Division, Av. Complutense 22, 28040 Madrid (Spain)
2011-06-15
Large helium (He) production rates in liquid metal breeding blankets of a DT fusion reactor might have a significant influence in the system design. Low He solubility together with high local concentrations may create the conditions for He cavitation, which would have an impact in the components performance. The paper states that such a possibility is not remote in a helium cooled lithium-lead breeding blanket design. A model based on the Classical Nucleation Theory (CNT) has been developed and implemented in order to have a specific tool able to simulate HCLL systems and identify the key parameters and sensitivities. The nucleation and growth model has been implemented in the open source CFD code OpenFOAM so that transport of dissolved atomic He and nucleated He bubbles can be simulated. At the current level of development it is assumed that void fraction is small enough not to affect either the hydrodynamics or the properties of the liquid metal; thus, bubbles can be represented by means of a passive scalar. He growth and transport has been implemented using the mean radius approach in order to save computational time. Limitations and capabilities of the model are shown by means of zero-dimensional simulation and sensitivity analysis under HCLL breeding unit conditions.
System Design Description for the TMAD Code
International Nuclear Information System (INIS)
Finfrock, S.H.
1995-01-01
This document serves as the System Design Description (SDD) for the TMAD Code System, which includes the TMAD code and the LIBMAKR code. The SDD provides a detailed description of the theory behind the code, and the implementation of that theory. It is essential for anyone who is attempting to review or modify the code or who otherwise needs to understand the internal workings of the code. In addition, this document includes, in Appendix A, the System Requirements Specification for the TMAD System
Evaluation Codes from an Affine Veriety Code Perspective
DEFF Research Database (Denmark)
Geil, Hans Olav
2008-01-01
Evaluation codes (also called order domain codes) are traditionally introduced as generalized one-point geometric Goppa codes. In the present paper we will give a new point of view on evaluation codes by introducing them instead as particular nice examples of affine variety codes. Our study...... includes a reformulation of the usual methods to estimate the minimum distances of evaluation codes into the setting of affine variety codes. Finally we describe the connection to the theory of one-pointgeometric Goppa codes. Contents 4.1 Introduction...... . . . . . . . . . . . . . . . . . . . . . . . 171 4.9 Codes form order domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 4.10 One-point geometric Goppa codes . . . . . . . . . . . . . . . . . . . . . . . . 176 4.11 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 References...
Phonological coding during reading.
Leinenger, Mallorie
2014-11-01
The exact role that phonological coding (the recoding of written, orthographic information into a sound based code) plays during silent reading has been extensively studied for more than a century. Despite the large body of research surrounding the topic, varying theories as to the time course and function of this recoding still exist. The present review synthesizes this body of research, addressing the topics of time course and function in tandem. The varying theories surrounding the function of phonological coding (e.g., that phonological codes aid lexical access, that phonological codes aid comprehension and bolster short-term memory, or that phonological codes are largely epiphenomenal in skilled readers) are first outlined, and the time courses that each maps onto (e.g., that phonological codes come online early [prelexical] or that phonological codes come online late [postlexical]) are discussed. Next the research relevant to each of these proposed functions is reviewed, discussing the varying methodologies that have been used to investigate phonological coding (e.g., response time methods, reading while eye-tracking or recording EEG and MEG, concurrent articulation) and highlighting the advantages and limitations of each with respect to the study of phonological coding. In response to the view that phonological coding is largely epiphenomenal in skilled readers, research on the use of phonological codes in prelingually, profoundly deaf readers is reviewed. Finally, implications for current models of word identification (activation-verification model, Van Orden, 1987; dual-route model, e.g., M. Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001; parallel distributed processing model, Seidenberg & McClelland, 1989) are discussed. (PsycINFO Database Record (c) 2014 APA, all rights reserved).
Error-correction coding for digital communications
Clark, G. C., Jr.; Cain, J. B.
This book is written for the design engineer who must build the coding and decoding equipment and for the communication system engineer who must incorporate this equipment into a system. It is also suitable as a senior-level or first-year graduate text for an introductory one-semester course in coding theory. Fundamental concepts of coding are discussed along with group codes, taking into account basic principles, practical constraints, performance computations, coding bounds, generalized parity check codes, polynomial codes, and important classes of group codes. Other topics explored are related to simple nonalgebraic decoding techniques for group codes, soft decision decoding of block codes, algebraic techniques for multiple error correction, the convolutional code structure and Viterbi decoding, syndrome decoding techniques, and sequential decoding techniques. System applications are also considered, giving attention to concatenated codes, coding for the white Gaussian noise channel, interleaver structures for coded systems, and coding for burst noise channels.
Directory of Open Access Journals (Sweden)
Fabio Burderi
2007-05-01
Full Text Available Motivated by the study of decipherability conditions for codes weaker than Unique Decipherability (UD, we introduce the notion of coding partition. Such a notion generalizes that of UD code and, for codes that are not UD, allows to recover the ``unique decipherability" at the level of the classes of the partition. By tacking into account the natural order between the partitions, we define the characteristic partition of a code X as the finest coding partition of X. This leads to introduce the canonical decomposition of a code in at most one unambiguouscomponent and other (if any totally ambiguouscomponents. In the case the code is finite, we give an algorithm for computing its canonical partition. This, in particular, allows to decide whether a given partition of a finite code X is a coding partition. This last problem is then approached in the case the code is a rational set. We prove its decidability under the hypothesis that the partition contains a finite number of classes and each class is a rational set. Moreover we conjecture that the canonical partition satisfies such a hypothesis. Finally we consider also some relationships between coding partitions and varieties of codes.
International Nuclear Information System (INIS)
Burkhard, N.R.
1979-01-01
The gravity inversion code applies stabilized linear inverse theory to determine the topography of a subsurface density anomaly from Bouguer gravity data. The gravity inversion program consists of four source codes: SEARCH, TREND, INVERT, and AVERAGE. TREND and INVERT are used iteratively to converge on a solution. SEARCH forms the input gravity data files for Nevada Test Site data. AVERAGE performs a covariance analysis on the solution. This document describes the necessary input files and the proper operation of the code. 2 figures, 2 tables
Energy Technology Data Exchange (ETDEWEB)
Xiao, Jianjun; Travis, Jack; Royl, Peter; Necker, Gottfried; Svishchev, Anatoly; Jordan, Thomas
2016-07-01
Karlsruhe Institute of Technology (KIT) is developing the parallel computational fluid dynamics code GASFLOW-MPI as a best-estimate tool for predicting transport, mixing, and combustion of hydrogen and other gases in nuclear reactor containments and other facility buildings. GASFLOW-MPI is a finite-volume code based on proven computational fluid dynamics methodology that solves the compressible Navier-Stokes equations for three-dimensional volumes in Cartesian or cylindrical coordinates.
A Dual Coding View of Vocabulary Learning
Sadoski, Mark
2005-01-01
A theoretical perspective on acquiring sight vocabulary and developing meaningful vocabulary is presented. Dual Coding Theory assumes that cognition occurs in two independent but connected codes: a verbal code for language and a nonverbal code for mental imagery. The mixed research literature on using pictures in teaching sight vocabulary is…
Error Correcting Codes -34 ...
Indian Academy of Sciences (India)
information and coding theory. A large scale relay computer had failed to deliver the expected results due to a hardware fault. Hamming, one of the active proponents of computer usage, was determined to find an efficient means by which computers could detect and correct their own faults. A mathematician by train-.
Hatada, Keisuke; Ebert, Hubert
2018-01-01
This edited book, based on material presented at the EU Spec Training School on Multiple Scattering Codes and the following MSNano Conference, is divided into two distinct parts. The first part, subtitled “basic knowledge”, provides the basics of the multiple scattering description in spectroscopies, enabling readers to understand the physics behind the various multiple scattering codes available for modelling spectroscopies. The second part, “extended knowledge”, presents “state- of-the-art” short chapters on specific subjects associated with improving of the actual description of spectroscopies within the multiple scattering formalism, such as inelastic processes, or precise examples of modelling.
Anderson, John B
2017-01-01
Bandwidth Efficient Coding addresses the major challenge in communication engineering today: how to communicate more bits of information in the same radio spectrum. Energy and bandwidth are needed to transmit bits, and bandwidth affects capacity the most. Methods have been developed that are ten times as energy efficient at a given bandwidth consumption as simple methods. These employ signals with very complex patterns and are called "coding" solutions. The book begins with classical theory before introducing new techniques that combine older methods of error correction coding and radio transmission in order to create narrowband methods that are as efficient in both spectrum and energy as nature allows. Other topics covered include modulation techniques such as CPM, coded QAM and pulse design.
Rice, Bart F.; Wilde, Carroll O.
It is noted that with the prominence of computers in today's technological society, digital communication systems have become widely used in a variety of applications. Some of the problems that arise in digital communications systems are described. This unit presents the problem of correcting errors in such systems. Error correcting codes are…
Grassmann codes and Schubert unions
DEFF Research Database (Denmark)
Hansen, Johan Peder; Johnsen, Trygve; Ranestad, Kristian
2009-01-01
We study subsets of Grassmann varieties over a field , such that these subsets are unions of Schubert cycles, with respect to a fixed flag. We study such sets in detail, and give applications to coding theory, in particular for Grassmann codes. For much is known about such Schubert unions with a ...
DEFF Research Database (Denmark)
Cox, Geoff
Speaking Code begins by invoking the “Hello World” convention used by programmers when learning a new language, helping to establish the interplay of text and code that runs through the book. Interweaving the voice of critical writing from the humanities with the tradition of computing and software...
New quantum codes constructed from quaternary BCH codes
Xu, Gen; Li, Ruihu; Guo, Luobin; Ma, Yuena
2016-10-01
In this paper, we firstly study construction of new quantum error-correcting codes (QECCs) from three classes of quaternary imprimitive BCH codes. As a result, the improved maximal designed distance of these narrow-sense imprimitive Hermitian dual-containing quaternary BCH codes are determined to be much larger than the result given according to Aly et al. (IEEE Trans Inf Theory 53:1183-1188, 2007) for each different code length. Thus, families of new QECCs are newly obtained, and the constructed QECCs have larger distance than those in the previous literature. Secondly, we apply a combinatorial construction to the imprimitive BCH codes with their corresponding primitive counterpart and construct many new linear quantum codes with good parameters, some of which have parameters exceeding the finite Gilbert-Varshamov bound for linear quantum codes.
Radhakrishnan, Krishnan
1994-01-01
LSENS, the Lewis General Chemical Kinetics and Sensitivity Analysis Code, has been developed for solving complex, homogeneous, gas-phase chemical kinetics problems and contains sensitivity analysis for a variety of problems, including nonisothermal situations. This report is part 1 of a series of three reference publications that describe LENS, provide a detailed guide to its usage, and present many example problems. Part 1 derives the governing equations and describes the numerical solution procedures for the types of problems that can be solved. The accuracy and efficiency of LSENS are examined by means of various test problems, and comparisons with other methods and codes are presented. LSENS is a flexible, convenient, accurate, and efficient solver for chemical reaction problems such as static system; steady, one-dimensional, inviscid flow; reaction behind incident shock wave, including boundary layer correction; and perfectly stirred (highly backmixed) reactor. In addition, the chemical equilibrium state can be computed for the following assigned states: temperature and pressure, enthalpy and pressure, temperature and volume, and internal energy and volume. For static problems the code computes the sensitivity coefficients of the dependent variables and their temporal derivatives with respect to the initial values of the dependent variables and/or the three rate coefficient parameters of the chemical reactions.
Energy Technology Data Exchange (ETDEWEB)
Williams, P. T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dickson, T. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yin, S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2007-12-01
The current regulations to insure that nuclear reactor pressure vessels (RPVs) maintain their structural integrity when subjected to transients such as pressurized thermal shock (PTS) events were derived from computational models developed in the early-to-mid 1980s. Since that time, advancements and refinements in relevant technologies that impact RPV integrity assessment have led to an effort by the NRC to re-evaluate its PTS regulations. Updated computational methodologies have been developed through interactions between experts in the relevant disciplines of thermal hydraulics, probabilistic risk assessment, materials embrittlement, fracture mechanics, and inspection (flaw characterization). Contributors to the development of these methodologies include the NRC staff, their contractors, and representatives from the nuclear industry. These updated methodologies have been integrated into the Fracture Analysis of Vessels -- Oak Ridge (FAVOR, v06.1) computer code developed for the NRC by the Heavy Section Steel Technology (HSST) program at Oak Ridge National Laboratory (ORNL). The FAVOR, v04.1, code represents the baseline NRC-selected applications tool for re-assessing the current PTS regulations. This report is intended to document the technical bases for the assumptions, algorithms, methods, and correlations employed in the development of the FAVOR, v06.1, code.
Elements of algebraic coding systems
Cardoso da Rocha, Jr, Valdemar
2014-01-01
Elements of Algebraic Coding Systems is an introductory text to algebraic coding theory. In the first chapter, you'll gain inside knowledge of coding fundamentals, which is essential for a deeper understanding of state-of-the-art coding systems. This book is a quick reference for those who are unfamiliar with this topic, as well as for use with specific applications such as cryptography and communication. Linear error-correcting block codes through elementary principles span eleven chapters of the text. Cyclic codes, some finite field algebra, Goppa codes, algebraic decoding algorithms, and applications in public-key cryptography and secret-key cryptography are discussed, including problems and solutions at the end of each chapter. Three appendices cover the Gilbert bound and some related derivations, a derivation of the Mac- Williams' identities based on the probability of undetected error, and two important tools for algebraic decoding-namely, the finite field Fourier transform and the Euclidean algorithm f...
Network Coding Fundamentals and Applications
Medard, Muriel
2011-01-01
Network coding is a field of information and coding theory and is a method of attaining maximum information flow in a network. This book is an ideal introduction for the communications and network engineer, working in research and development, who needs an intuitive introduction to network coding and to the increased performance and reliability it offers in many applications. This book is an ideal introduction for the research and development communications and network engineer who needs an intuitive introduction to the theory and wishes to understand the increased performance and reliabil
Linear network error correction coding
Guang, Xuan
2014-01-01
There are two main approaches in the theory of network error correction coding. In this SpringerBrief, the authors summarize some of the most important contributions following the classic approach, which represents messages by sequences?similar to algebraic coding,?and also briefly discuss the main results following the?other approach,?that uses the theory of rank metric codes for network error correction of representing messages by subspaces. This book starts by establishing the basic linear network error correction (LNEC) model and then characterizes two equivalent descriptions. Distances an
Directory of Open Access Journals (Sweden)
Anthony McCosker
2014-03-01
Full Text Available As well as introducing the Coding Labour section, the authors explore the diffusion of code across the material contexts of everyday life, through the objects and tools of mediation, the systems and practices of cultural production and organisational management, and in the material conditions of labour. Taking code beyond computation and software, their specific focus is on the increasingly familiar connections between code and labour with a focus on the codification and modulation of affect through technologies and practices of management within the contemporary work organisation. In the grey literature of spreadsheets, minutes, workload models, email and the like they identify a violence of forms through which workplace affect, in its constant flux of crisis and ‘prodromal’ modes, is regulated and governed.
The Coding Process and Its Challenges
Directory of Open Access Journals (Sweden)
Judith A. Holton, Ph.D.
2010-02-01
Full Text Available Coding is the core process in classic grounded theory methodology. It is through coding that the conceptual abstraction of data and its reintegration as theory takes place. There are two types of coding in a classic grounded theory study: substantive coding, which includes both open and selective coding procedures, and theoretical coding. In substantive coding, the researcher works with the data directly, fracturing and analysing it, initially through open coding for the emergence of a core category and related concepts and then subsequently through theoretical sampling and selective coding of data to theoretically saturate the core and related concepts. Theoretical saturation is achieved through constant comparison of incidents (indicators in the data to elicit the properties and dimensions of each category (code. This constant comparing of incidents continues until the process yields the interchangeability of indicators, meaning that no new properties or dimensions are emerging from continued coding and comparison. At this point, the concepts have achieved theoretical saturation and the theorist shifts attention to exploring the emergent fit of potential theoretical codes that enable the conceptual integration of the core and related concepts to produce hypotheses that account for relationships between the concepts thereby explaining the latent pattern of social behaviour that forms the basis of the emergent theory. The coding of data in grounded theory occurs in conjunction with analysis through a process of conceptual memoing, capturing the theorist’s ideation of the emerging theory. Memoing occurs initially at the substantive coding level and proceeds to higher levels of conceptual abstraction as coding proceeds to theoretical saturation and the theorist begins to explore conceptual reintegration through theoretical coding.
An introduction to information theory
Reza, Fazlollah M
1994-01-01
Graduate-level study for engineering students presents elements of modern probability theory, information theory, coding theory, more. Emphasis on sample space, random variables, capacity, etc. Many reference tables and extensive bibliography. 1961 edition.
Explicit MDS Codes with Complementary Duals
DEFF Research Database (Denmark)
Beelen, Duals Peter; Jin, Lingfei
2018-01-01
In 1964, Massey introduced a class of codes with complementary duals which are called Linear Complimentary Dual (LCD for short) codes. He showed that LCD codes have applications in communication system, side-channel attack (SCA) and so on. LCD codes have been extensively studied in literature....... On the other hand, MDS codes form an optimal family of classical codes which have wide applications in both theory and practice. The main purpose of this paper is to give an explicit construction of several classes of LCD MDS codes, using tools from algebraic function fields. We exemplify this construction...
International Nuclear Information System (INIS)
Tsuchihashi, Keichiro; Ishiguro, Yukio; Kaneko, Kunio; Ido, Masaru.
1986-09-01
Since the publication of JAERI-1285 in 1983 for the preliminary version of the SRAC code system, a number of additions and modifications to the functions have been made to establish an overall neutronics code system. Major points are (1) addition of JENDL-2 version of data library, (2) a direct treatment of doubly heterogeneous effect on resonance absorption, (3) a generalized Dancoff factor, (4) a cell calculation based on the fixed boundary source problem, (5) the corresponding edit required for experimental analysis and reactor design, (6) a perturbation theory calculation for reactivity change, (7) an auxiliary code for core burnup and fuel management, etc. This report is a revision of the users manual which consists of the general description, input data requirements and their explanation, detailed information on usage, mathematics, contents of libraries and sample I/O. (author)
Energy Technology Data Exchange (ETDEWEB)
Ravishankar, C., Hughes Network Systems, Germantown, MD
1998-05-08
Speech is the predominant means of communication between human beings and since the invention of the telephone by Alexander Graham Bell in 1876, speech services have remained to be the core service in almost all telecommunication systems. Original analog methods of telephony had the disadvantage of speech signal getting corrupted by noise, cross-talk and distortion Long haul transmissions which use repeaters to compensate for the loss in signal strength on transmission links also increase the associated noise and distortion. On the other hand digital transmission is relatively immune to noise, cross-talk and distortion primarily because of the capability to faithfully regenerate digital signal at each repeater purely based on a binary decision. Hence end-to-end performance of the digital link essentially becomes independent of the length and operating frequency bands of the link Hence from a transmission point of view digital transmission has been the preferred approach due to its higher immunity to noise. The need to carry digital speech became extremely important from a service provision point of view as well. Modem requirements have introduced the need for robust, flexible and secure services that can carry a multitude of signal types (such as voice, data and video) without a fundamental change in infrastructure. Such a requirement could not have been easily met without the advent of digital transmission systems, thereby requiring speech to be coded digitally. The term Speech Coding is often referred to techniques that represent or code speech signals either directly as a waveform or as a set of parameters by analyzing the speech signal. In either case, the codes are transmitted to the distant end where speech is reconstructed or synthesized using the received set of codes. A more generic term that is applicable to these techniques that is often interchangeably used with speech coding is the term voice coding. This term is more generic in the sense that the
Optimal codes as Tanner codes with cyclic component codes
DEFF Research Database (Denmark)
Høholdt, Tom; Pinero, Fernando; Zeng, Peng
2014-01-01
In this article we study a class of graph codes with cyclic code component codes as affine variety codes. Within this class of Tanner codes we find some optimal binary codes. We use a particular subgraph of the point-line incidence plane of A(2,q) as the Tanner graph, and we are able to describe ...
Swisher, Laura Lee; Hiller, Peggy
2010-05-01
In June 2009, the House of Delegates (HOD) of the American Physical Therapy Association (APTA) passed a major revision of the APTA Code of Ethics for physical therapists and the Standards of Ethical Conduct for the Physical Therapist Assistant. The revised documents will be effective July 1, 2010. The purposes of this article are: (1) to provide a historical, professional, and theoretical context for this important revision; (2) to describe the 4-year revision process; (3) to examine major features of the documents; and (4) to discuss the significance of the revisions from the perspective of the maturation of physical therapy as a doctoring profession. PROCESS OF REVISION: The process for revision is delineated within the context of history and the Bylaws of APTA. FORMAT, STRUCTURE, AND CONTENT OF REVISED CORE ETHICS DOCUMENTS: The revised documents represent a significant change in format, level of detail, and scope of application. Previous APTA Codes of Ethics and Standards of Ethical Conduct for the Physical Therapist Assistant have delineated very broad general principles, with specific obligations spelled out in the Ethics and Judicial Committee's Guide for Professional Conduct and Guide for Conduct of the Physical Therapist Assistant. In contrast to the current documents, the revised documents address all 5 roles of the physical therapist, delineate ethical obligations in organizational and business contexts, and align with the tenets of Vision 2020. The significance of this revision is discussed within historical parameters, the implications for physical therapists and physical therapist assistants, the maturation of the profession, societal accountability and moral community, potential regulatory implications, and the inclusive and deliberative process of moral dialogue by which changes were developed, revised, and approved.
Directory of Open Access Journals (Sweden)
Veronika A. Abakanova
2015-03-01
Full Text Available In the present article assumptions of the theory concept of forensic crime, which were developed in the forensic science is being analyzed. In the study, author shows possibility of the theory of systems using for the construction of the concept of forensic crime. Author distributes systems theory on money laundering by the alius. Author examined structure of forensic money laundering by alius and described elements of the structure, their internal and external relationships and patterns, as well as mechanisms to ensure its integrity. Author suggests the following set of elements of money laundering by alius: object of direct attacks, subject of the attacks, physical attacks on the activity of the subject of money laundering by alius, mental activity of the subject of infringement, facts, consequences of money laundering by alius, time and place of money laundering other persons, public danger and wrongfulness of the act. During the study, author starts the discussion, as the starting positions allow us to consider money laundering as a complex system that has a "mechanism", ensuring its integrity and diverse types of bonds. Author notes that in the absence of this complex system, at least one of these elements is the complete destruction of the whole system of crime (lack of it. In conclusion, author proposes the concept of forensic money laundering by alius. Presented forensic structure of money laundering by alius and description of the elements of the structure, as well as their internal and external relationships and patterns, what gives the practitioners a chance to have a full picture of the crime and, therefore, to navigate freely in the initial information on the crime and to understand it correctly.
International Nuclear Information System (INIS)
Quezada G, S.; Espinosa P, G.; Centeno P, J.; Sanchez M, H.
2017-09-01
This paper presents the Aztheca code, which is formed by the mathematical models of neutron kinetics, power generation, heat transfer, core thermo-hydraulics, recirculation systems, dynamic pressure and level models and control system. The Aztheca code is validated with plant data, as well as with predictions from the manufacturer when the reactor operates in a stationary state. On the other hand, to demonstrate that the model is applicable during a transient, an event occurred in a nuclear power plant with a BWR reactor is selected. The plant data are compared with the results obtained with RELAP-5 and the Aztheca model. The results show that both RELAP-5 and the Aztheca code have the ability to adequately predict the behavior of the reactor. (Author)
Hall, Marshall
2011-01-01
Includes proof of van der Waerden's 1926 conjecture on permanents, Wilson's theorem on asymptotic existence, and other developments in combinatorics since 1967. Also covers coding theory and its important connection with designs, problems of enumeration, and partition. Presents fundamentals in addition to latest advances, with illustrative problems at the end of each chapter. Enlarged appendixes include a longer list of block designs.
DEFF Research Database (Denmark)
Soon, Winnie; Cox, Geoff
2018-01-01
a computational and poetic composition for two screens: on one of these, texts and voices are repeated and disrupted by mathematical chaos, together exploring the performativity of code and language; on the other, is a mix of a computer programming syntax and human language. In this sense queer code can...... be understood as both an object and subject of study that intervenes in the world’s ‘becoming' and how material bodies are produced via human and nonhuman practices. Through mixing the natural and computer language, this article presents a script in six parts from a performative lecture for two persons...
International Nuclear Information System (INIS)
Rattan, D.S.
1993-11-01
NSURE stands for Near-Surface Repository code. NSURE is a performance assessment code. developed for the safety assessment of near-surface disposal facilities for low-level radioactive waste (LLRW). Part one of this report documents the NSURE model, governing equations and formulation of the mathematical models, and their implementation under the SYVAC3 executive. The NSURE model simulates the release of nuclides from an engineered vault, their subsequent transport via the groundwater and surface water pathways tot he biosphere, and predicts the resulting dose rate to a critical individual. Part two of this report consists of a User's manual, describing simulation procedures, input data preparation, output and example test cases
Energy Technology Data Exchange (ETDEWEB)
Berry, Ray Alden [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zou, Ling [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhao, Haihua [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhang, Hongbin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Peterson, John William [Idaho National Lab. (INL), Idaho Falls, ID (United States); Martineau, Richard Charles [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kadioglu, Samet Yucel [Idaho National Lab. (INL), Idaho Falls, ID (United States); Andrs, David [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2016-03-01
This document summarizes the physical models and mathematical formulations used in the RELAP-7 code. In summary, the MOOSE based RELAP-7 code development is an ongoing effort. The MOOSE framework enables rapid development of the RELAP-7 code. The developmental efforts and results demonstrate that the RELAP-7 project is on a path to success. This theory manual documents the main features implemented into the RELAP-7 code. Because the code is an ongoing development effort, this RELAP-7 Theory Manual will evolve with periodic updates to keep it current with the state of the development, implementation, and model additions/revisions.
Energy Technology Data Exchange (ETDEWEB)
Delbecq, J.M
1999-07-01
The Aster code is a 2D or 3D finite-element calculation code for structures developed by the R and D direction of Electricite de France (EdF). This dossier presents a complete overview of the characteristics and uses of the Aster code: introduction of version 4; the context of Aster (organisation of the code development, versions, systems and interfaces, development tools, quality assurance, independent validation); static mechanics (linear thermo-elasticity, Euler buckling, cables, Zarka-Casier method); non-linear mechanics (materials behaviour, big deformations, specific loads, unloading and loss of load proportionality indicators, global algorithm, contact and friction); rupture mechanics (G energy restitution level, restitution level in thermo-elasto-plasticity, 3D local energy restitution level, KI and KII stress intensity factors, calculation of limit loads for structures), specific treatments (fatigue, rupture, wear, error estimation); meshes and models (mesh generation, modeling, loads and boundary conditions, links between different modeling processes, resolution of linear systems, display of results etc..); vibration mechanics (modal and harmonic analysis, dynamics with shocks, direct transient dynamics, seismic analysis and aleatory dynamics, non-linear dynamics, dynamical sub-structuring); fluid-structure interactions (internal acoustics, mass, rigidity and damping); linear and non-linear thermal analysis; steels and metal industry (structure transformations); coupled problems (internal chaining, internal thermo-hydro-mechanical coupling, chaining with other codes); products and services. (J.S.)
DEFF Research Database (Denmark)
Ejsing-Duun, Stine; Hansbøl, Mikala
Denne rapport rummer evaluering og dokumentation af Coding Class projektet1. Coding Class projektet blev igangsat i skoleåret 2016/2017 af IT-Branchen i samarbejde med en række medlemsvirksomheder, Københavns kommune, Vejle Kommune, Styrelsen for IT- og Læring (STIL) og den frivillige forening...... Coding Pirates2. Rapporten er forfattet af Docent i digitale læringsressourcer og forskningskoordinator for forsknings- og udviklingsmiljøet Digitalisering i Skolen (DiS), Mikala Hansbøl, fra Institut for Skole og Læring ved Professionshøjskolen Metropol; og Lektor i læringsteknologi, interaktionsdesign......, design tænkning og design-pædagogik, Stine Ejsing-Duun fra Forskningslab: It og Læringsdesign (ILD-LAB) ved Institut for kommunikation og psykologi, Aalborg Universitet i København. Vi har fulgt og gennemført evaluering og dokumentation af Coding Class projektet i perioden november 2016 til maj 2017...
Andrews, Ken; Divsalar, Dariush; Dolinar, Sam; Moision, Bruce; Hamkins, Jon; Pollara, Fabrizio
2007-01-01
This slide presentation reviews the objectives, meeting goals and overall NASA goals for the NASA Data Standards Working Group. The presentation includes information on the technical progress surrounding the objective, short LDPC codes, and the general results on the Pu-Pw tradeoff.
International Nuclear Information System (INIS)
Lindemuth, I.R.
1979-01-01
This report describes ANIMAL, a two-dimensional Eulerian magnetohydrodynamic computer code. ANIMAL's physical model also appears. Formulated are temporal and spatial finite-difference equations in a manner that facilitates implementation of the algorithm. Outlined are the functions of the algorithm's FORTRAN subroutines and variables
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 7. Network Coding. K V Rashmi Nihar B Shah P Vijay Kumar. General Article Volume 15 Issue 7 July 2010 pp 604-621. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/015/07/0604-0621 ...
International Nuclear Information System (INIS)
Cramer, S.N.
1984-01-01
The MCNP code is the major Monte Carlo coupled neutron-photon transport research tool at the Los Alamos National Laboratory, and it represents the most extensive Monte Carlo development program in the United States which is available in the public domain. The present code is the direct descendent of the original Monte Carlo work of Fermi, von Neumaum, and Ulam at Los Alamos in the 1940s. Development has continued uninterrupted since that time, and the current version of MCNP (or its predecessors) has always included state-of-the-art methods in the Monte Carlo simulation of radiation transport, basic cross section data, geometry capability, variance reduction, and estimation procedures. The authors of the present code have oriented its development toward general user application. The documentation, though extensive, is presented in a clear and simple manner with many examples, illustrations, and sample problems. In addition to providing the desired results, the output listings give a a wealth of detailed information (some optional) concerning each state of the calculation. The code system is continually updated to take advantage of advances in computer hardware and software, including interactive modes of operation, diagnostic interrupts and restarts, and a variety of graphical and video aids
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 1. Expander Codes - The Sipser–Spielman Construction. Priti Shankar. General Article Volume 10 ... Author Affiliations. Priti Shankar1. Department of Computer Science and Automation, Indian Institute of Science Bangalore 560 012, India.
Strict optical orthogonal codes for purely asynchronous code-division multiple-access applications
Zhang, Jian-Guo
1996-12-01
Strict optical orthogonal codes are presented for purely asynchronous optical code-division multiple-access (CDMA) applications. The proposed code can strictly guarantee the peaks of its cross-correlation functions and the sidelobes of any of its autocorrelation functions to have a value of 1 in purely asynchronous data communications. The basic theory of the proposed codes is given. An experiment on optical CDMA systems is also demonstrated to verify the characteristics of the proposed code.
International Nuclear Information System (INIS)
Altomare, S.; Minton, G.
1975-02-01
PANDA is a new two-group one-dimensional (slab/cylinder) neutron diffusion code designed to replace and extend the FAB series. PANDA allows for the nonlinear effects of xenon, enthalpy and Doppler. Fuel depletion is allowed. PANDA has a completely general search facility which will seek criticality, maximize reactivity, or minimize peaking. Any single parameter may be varied in a search. PANDA is written in FORTRAN IV, and as such is nearly machine independent. However, PANDA has been written with the present limitations of the Westinghouse CDC-6600 system in mind. Most computation loops are very short, and the code is less than half the useful 6600 memory size so that two jobs can reside in the core at once. (auth)
International Nuclear Information System (INIS)
Gara, P.; Martin, E.
1983-01-01
The CANAL code presented here optimizes a realistic iron free extraction channel which has to provide a given transversal magnetic field law in the median plane: the current bars may be curved, have finite lengths and cooling ducts and move in a restricted transversal area; terminal connectors may be added, images of the bars in pole pieces may be included. A special option optimizes a real set of circular coils [fr
International Nuclear Information System (INIS)
Chang, Jong Hwa; Lee, Ki Bog; Zee, Sung Kyun; Lee, Chang Ho
1993-12-01
ONED90 developed by KAERI is a 1-dimensional 2-group diffusion theory code. For nuclear design and reactor simulation, the usage of ONED90 encompasses core follow calculation, load follow calculation, plant power control simulation, xenon oscillation simulation and control rod maneuvering, etc. In order to verify the validity of ONED90 code, two well-known benchmark problems are solved by ONED90 shows very similar result to reference solution. (Author) 11 refs., 5 figs., 13 tabs
LOLA SYSTEM: A code block for nodal PWR simulation. Part. I - Simula-3 Code
Energy Technology Data Exchange (ETDEWEB)
Aragones, J M; Ahnert, C; Gomez Santamaria, J; Rodriguez Olabarria, I
1985-07-01
Description of the theory and users manual of the SIMULA-3 code, which is part of the core calculation system by nodal theory in one group, called LOLA SYSTEM. SIMULA-3 is the main module of the system, it uses a modified nodal theory, with interface leakages equivalent to the diffusion theory. (Author) 4 refs.
LOLA SYSTEM: A code block for nodal PWR simulation. Part. I - Simula-3 Code
International Nuclear Information System (INIS)
Aragones, J. M.; Ahnert, C.; Gomez Santamaria, J.; Rodriguez Olabarria, I.
1985-01-01
Description of the theory and users manual of the SIMULA-3 code, which is part of the core calculation system by nodal theory in one group, called LOLA SYSTEM. SIMULA-3 is the main module of the system, it uses a modified nodal theory, with interface leakages equivalent to the diffusion theory. (Author) 4 refs
Channel coding techniques for wireless communications
Deergha Rao, K
2015-01-01
The book discusses modern channel coding techniques for wireless communications such as turbo codes, low-density parity check (LDPC) codes, space–time (ST) coding, RS (or Reed–Solomon) codes and convolutional codes. Many illustrative examples are included in each chapter for easy understanding of the coding techniques. The text is integrated with MATLAB-based programs to enhance the understanding of the subject’s underlying theories. It includes current topics of increasing importance such as turbo codes, LDPC codes, Luby transform (LT) codes, Raptor codes, and ST coding in detail, in addition to the traditional codes such as cyclic codes, BCH (or Bose–Chaudhuri–Hocquenghem) and RS codes and convolutional codes. Multiple-input and multiple-output (MIMO) communications is a multiple antenna technology, which is an effective method for high-speed or high-reliability wireless communications. PC-based MATLAB m-files for the illustrative examples are provided on the book page on Springer.com for free dow...
Goldie, Charles M
1991-01-01
This book is an introduction, for mathematics students, to the theories of information and codes. They are usually treated separately but, as both address the problem of communication through noisy channels (albeit from different directions), the authors have been able to exploit the connection to give a reasonably self-contained treatment, relating the probabilistic and algebraic viewpoints. The style is discursive and, as befits the subject, plenty of examples and exercises are provided. Some examples and exercises are provided. Some examples of computer codes are given to provide concrete illustrations of abstract ideas.
Reliability-Based Code Calibration
DEFF Research Database (Denmark)
Faber, M.H.; Sørensen, John Dalsgaard
2003-01-01
The present paper addresses fundamental concepts of reliability based code calibration. First basic principles of structural reliability theory are introduced and it is shown how the results of FORM based reliability analysis may be related to partial safety factors and characteristic values....... Thereafter the code calibration problem is presented in its principal decision theoretical form and it is discussed how acceptable levels of failure probability (or target reliabilities) may be established. Furthermore suggested values for acceptable annual failure probabilities are given for ultimate...... and serviceability limit states. Finally the paper describes the Joint Committee on Structural Safety (JCSS) recommended procedure - CodeCal - for the practical implementation of reliability based code calibration of LRFD based design codes....
Directory of Open Access Journals (Sweden)
Lluís Ribas de Pouplana
2017-04-01
Full Text Available The frozen accident theory of the Genetic Code was a proposal by Francis Crick that attempted to explain the universal nature of the Genetic Code and the fact that it only contains information for twenty amino acids. Fifty years later, it is clear that variations to the universal Genetic Code exist in nature and that translation is not limited to twenty amino acids. However, given the astonishing diversity of life on earth, and the extended evolutionary time that has taken place since the emergence of the extant Genetic Code, the idea that the translation apparatus is for the most part immobile remains true. Here, we will offer a potential explanation to the reason why the code has remained mostly stable for over three billion years, and discuss some of the mechanisms that allow species to overcome the intrinsic functional limitations of the protein synthesis machinery.
Ribas de Pouplana, Lluís; Torres, Adrian Gabriel; Rafels-Ybern, Àlbert
2017-04-05
The frozen accident theory of the Genetic Code was a proposal by Francis Crick that attempted to explain the universal nature of the Genetic Code and the fact that it only contains information for twenty amino acids. Fifty years later, it is clear that variations to the universal Genetic Code exist in nature and that translation is not limited to twenty amino acids. However, given the astonishing diversity of life on earth, and the extended evolutionary time that has taken place since the emergence of the extant Genetic Code, the idea that the translation apparatus is for the most part immobile remains true. Here, we will offer a potential explanation to the reason why the code has remained mostly stable for over three billion years, and discuss some of the mechanisms that allow species to overcome the intrinsic functional limitations of the protein synthesis machinery.
Implementation of LT codes based on chaos
International Nuclear Information System (INIS)
Zhou Qian; Li Liang; Chen Zengqiang; Zhao Jiaxiang
2008-01-01
Fountain codes provide an efficient way to transfer information over erasure channels like the Internet. LT codes are the first codes fully realizing the digital fountain concept. They are asymptotically optimal rateless erasure codes with highly efficient encoding and decoding algorithms. In theory, for each encoding symbol of LT codes, its degree is randomly chosen according to a predetermined degree distribution, and its neighbours used to generate that encoding symbol are chosen uniformly at random. Practical implementation of LT codes usually realizes the randomness through pseudo-randomness number generator like linear congruential method. This paper applies the pseudo-randomness of chaotic sequence in the implementation of LT codes. Two Kent chaotic maps are used to determine the degree and neighbour(s) of each encoding symbol. It is shown that the implemented LT codes based on chaos perform better than the LT codes implemented by the traditional pseudo-randomness number generator. (general)
From concatenated codes to graph codes
DEFF Research Database (Denmark)
Justesen, Jørn; Høholdt, Tom
2004-01-01
We consider codes based on simple bipartite expander graphs. These codes may be seen as the first step leading from product type concatenated codes to more complex graph codes. We emphasize constructions of specific codes of realistic lengths, and study the details of decoding by message passing...
Gröbner Bases, Coding, and Cryptography
Sala, Massimiliano; Perret, Ludovic
2009-01-01
Coding theory and cryptography allow secure and reliable data transmission, which is at the heart of modern communication. This book offers a comprehensive overview on the application of commutative algebra to coding theory and cryptography. It analyzes important properties of algebraic/geometric coding systems individually.
International Nuclear Information System (INIS)
Shire, P.R.
1977-03-01
The SPRAY computer code has been developed to model the effects of postulated sodium spray release from LMFBR piping within containment chambers. The calculation method utilizes gas convection, heat transfer and droplet combustion theory to calculate the pressure and temperature effects within the enclosure. The applicable range is 0-21 mol percent oxygen and .02-.30 inch droplets with or without humidity. Droplet motion and large sodium surface area combine to produce rapid heat release and pressure rise within the enclosed volume
Some new quasi-twisted ternary linear codes
Directory of Open Access Journals (Sweden)
Rumen Daskalov
2015-09-01
Full Text Available Let [n, k, d]_q code be a linear code of length n, dimension k and minimum Hamming distance d over GF(q. One of the basic and most important problems in coding theory is to construct codes with best possible minimum distances. In this paper seven quasi-twisted ternary linear codes are constructed. These codes are new and improve the best known lower bounds on the minimum distance in [6].
New quantum codes derived from a family of antiprimitive BCH codes
Liu, Yang; Li, Ruihu; Lü, Liangdong; Guo, Luobin
The Bose-Chaudhuri-Hocquenghem (BCH) codes have been studied for more than 57 years and have found wide application in classical communication system and quantum information theory. In this paper, we study the construction of quantum codes from a family of q2-ary BCH codes with length n=q2m+1 (also called antiprimitive BCH codes in the literature), where q≥4 is a power of 2 and m≥2. By a detailed analysis of some useful properties about q2-ary cyclotomic cosets modulo n, Hermitian dual-containing conditions for a family of non-narrow-sense antiprimitive BCH codes are presented, which are similar to those of q2-ary primitive BCH codes. Consequently, via Hermitian Construction, a family of new quantum codes can be derived from these dual-containing BCH codes. Some of these new antiprimitive quantum BCH codes are comparable with those derived from primitive BCH codes.
International Nuclear Information System (INIS)
Buckel, G.
1983-01-01
The objectives are the development, testing and cultivation of reliable, efficient and user-optimized neutron-physical calculation methods and conformity with users' requirements concerning design of power reactors, planning and analysis of experiments necessary for their protection as well as research on physical key problems. A short outline of available computing programmes for the following objectives is given: - Provision of macroscopic group constants, - Calculation of neutron flux distribution in transport theory and diffusion approximation, - Evaluation of neutron flux-distribution, - Execution of disturbance calculations for the determination reactivity coefficients, and - graphical representation of results. (orig./RW) [de
Simpson, Timothy J.
Paivio's Dual Coding Theory has received widespread recognition for its connection between visual and aural channels of internal information processing. The use of only two channels, however, cannot satisfactorily explain the effects witnessed every day. This paper presents a study suggesting the presence a third, kinesthetic channel, currently…
Feature coding for image representation and recognition
Huang, Yongzhen
2015-01-01
This brief presents a comprehensive introduction to feature coding, which serves as a key module for the typical object recognition pipeline. The text offers a rich blend of theory and practice while reflects the recent developments on feature coding, covering the following five aspects: (1) Review the state-of-the-art, analyzing the motivations and mathematical representations of various feature coding methods; (2) Explore how various feature coding algorithms evolve along years; (3) Summarize the main characteristics of typical feature coding algorithms and categorize them accordingly; (4) D
Multimedia signal coding and transmission
Ohm, Jens-Rainer
2015-01-01
This textbook covers the theoretical background of one- and multidimensional signal processing, statistical analysis and modelling, coding and information theory with regard to the principles and design of image, video and audio compression systems. The theoretical concepts are augmented by practical examples of algorithms for multimedia signal coding technology, and related transmission aspects. On this basis, principles behind multimedia coding standards, including most recent developments like High Efficiency Video Coding, can be well understood. Furthermore, potential advances in future development are pointed out. Numerous figures and examples help to illustrate the concepts covered. The book was developed on the basis of a graduate-level university course, and most chapters are supplemented by exercises. The book is also a self-contained introduction both for researchers and developers of multimedia compression systems in industry.
Automatic coding method of the ACR Code
International Nuclear Information System (INIS)
Park, Kwi Ae; Ihm, Jong Sool; Ahn, Woo Hyun; Baik, Seung Kook; Choi, Han Yong; Kim, Bong Gi
1993-01-01
The authors developed a computer program for automatic coding of ACR(American College of Radiology) code. The automatic coding of the ACR code is essential for computerization of the data in the department of radiology. This program was written in foxbase language and has been used for automatic coding of diagnosis in the Department of Radiology, Wallace Memorial Baptist since May 1992. The ACR dictionary files consisted of 11 files, one for the organ code and the others for the pathology code. The organ code was obtained by typing organ name or code number itself among the upper and lower level codes of the selected one that were simultaneous displayed on the screen. According to the first number of the selected organ code, the corresponding pathology code file was chosen automatically. By the similar fashion of organ code selection, the proper pathologic dode was obtained. An example of obtained ACR code is '131.3661'. This procedure was reproducible regardless of the number of fields of data. Because this program was written in 'User's Defined Function' from, decoding of the stored ACR code was achieved by this same program and incorporation of this program into program in to another data processing was possible. This program had merits of simple operation, accurate and detail coding, and easy adjustment for another program. Therefore, this program can be used for automation of routine work in the department of radiology
National Workshop on Coding Theory and Cryptography
Indian Academy of Sciences (India)
commerce and other interdisciplinary aspects of the theme. Participants. Research scholars/teachers from Academic Institutions and those from Software Development. Centres, National Laboratories and other Research and Development ...
Hinds, Erold W. (Principal Investigator)
1996-01-01
This report describes the progress made towards the completion of a specific task on error-correcting coding. The proposed research consisted of investigating the use of modulation block codes as the inner code of a concatenated coding system in order to improve the overall space link communications performance. The study proposed to identify and analyze candidate codes that will complement the performance of the overall coding system which uses the interleaved RS (255,223) code as the outer code.
Gagie, Travis
2005-01-01
We present a new algorithm for dynamic prefix-free coding, based on Shannon coding. We give a simple analysis and prove a better upper bound on the length of the encoding produced than the corresponding bound for dynamic Huffman coding. We show how our algorithm can be modified for efficient length-restricted coding, alphabetic coding and coding with unequal letter costs.
Fundamentals of convolutional coding
Johannesson, Rolf
2015-01-01
Fundamentals of Convolutional Coding, Second Edition, regarded as a bible of convolutional coding brings you a clear and comprehensive discussion of the basic principles of this field * Two new chapters on low-density parity-check (LDPC) convolutional codes and iterative coding * Viterbi, BCJR, BEAST, list, and sequential decoding of convolutional codes * Distance properties of convolutional codes * Includes a downloadable solutions manual
Bit rates in audio source coding
Veldhuis, Raymond N.J.
1992-01-01
The goal is to introduce and solve the audio coding optimization problem. Psychoacoustic results such as masking and excitation pattern models are combined with results from rate distortion theory to formulate the audio coding optimization problem. The solution of the audio optimization problem is a
Circular codes revisited: a statistical approach.
Gonzalez, D L; Giannerini, S; Rosa, R
2011-04-21
In 1996 Arquès and Michel [1996. A complementary circular code in the protein coding genes. J. Theor. Biol. 182, 45-58] discovered the existence of a common circular code in eukaryote and prokaryote genomes. Since then, circular code theory has provoked great interest and underwent a rapid development. In this paper we discuss some theoretical issues related to the synchronization properties of coding sequences and circular codes with particular emphasis on the problem of retrieval and maintenance of the reading frame. Motivated by the theoretical discussion, we adopt a rigorous statistical approach in order to try to answer different questions. First, we investigate the covering capability of the whole class of 216 self-complementary, C(3) maximal codes with respect to a large set of coding sequences. The results indicate that, on average, the code proposed by Arquès and Michel has the best covering capability but, still, there exists a great variability among sequences. Second, we focus on such code and explore the role played by the proportion of the bases by means of a hierarchy of permutation tests. The results show the existence of a sort of optimization mechanism such that coding sequences are tailored as to maximize or minimize the coverage of circular codes on specific reading frames. Such optimization clearly relates the function of circular codes with reading frame synchronization. Copyright © 2011 Elsevier Ltd. All rights reserved.
Niederreiter, Harald
2015-01-01
This textbook effectively builds a bridge from basic number theory to recent advances in applied number theory. It presents the first unified account of the four major areas of application where number theory plays a fundamental role, namely cryptography, coding theory, quasi-Monte Carlo methods, and pseudorandom number generation, allowing the authors to delineate the manifold links and interrelations between these areas. Number theory, which Carl-Friedrich Gauss famously dubbed the queen of mathematics, has always been considered a very beautiful field of mathematics, producing lovely results and elegant proofs. While only very few real-life applications were known in the past, today number theory can be found in everyday life: in supermarket bar code scanners, in our cars’ GPS systems, in online banking, etc. Starting with a brief introductory course on number theory in Chapter 1, which makes the book more accessible for undergraduates, the authors describe the four main application areas in Chapters...
Sawamura, Jitsuki; Morishita, Shigeru; Ishigooka, Jun
2014-05-07
Previously, we suggested prototypal models that describe some clinical states based on group postulates. Here, we demonstrate a group/category theory-like model for molecular/genetic biology as an alternative application of our previous model. Specifically, we focus on deoxyribonucleic acid (DNA) base sequences. We construct a wallpaper pattern based on a five-letter cruciform motif with letters C, A, T, G, and E. Whereas the first four letters represent the standard DNA bases, the fifth is introduced for ease in formulating group operations that reproduce insertions and deletions of DNA base sequences. A basic group Z5 = {r, u, d, l, n} of operations is defined for the wallpaper pattern, with which a sequence of points can be generated corresponding to changes of a base in a DNA sequence by following the orbit of a point of the pattern under operations in group Z5. Other manipulations of DNA sequence can be treated using a vector-like notation 'Dj' corresponding to a DNA sequence but based on the five-letter base set; also, 'Dj's are expressed graphically. Insertions and deletions of a series of letters 'E' are admitted to assist in describing DNA recombination. Likewise, a vector-like notation Rj can be constructed for sequences of ribonucleic acid (RNA). The wallpaper group B = {Z5×∞, ●} (an ∞-fold Cartesian product of Z5) acts on Dj (or Rj) yielding changes to Dj (or Rj) denoted by 'Dj◦B(j→k) = Dk' (or 'Rj◦B(j→k) = Rk'). Based on the operations of this group, two types of groups-a modulo 5 linear group and a rotational group over the Gaussian plane, acting on the five bases-are linked as parts of the wallpaper group for broader applications. As a result, changes, insertions/deletions and DNA (RNA) recombination (partial/total conversion) are described. As an exploratory study, a notation for the canonical "central dogma" via a category theory-like way is presented for future developments. Despite the large incompleteness of our
Vector Network Coding Algorithms
Ebrahimi, Javad; Fragouli, Christina
2010-01-01
We develop new algebraic algorithms for scalar and vector network coding. In vector network coding, the source multicasts information by transmitting vectors of length L, while intermediate nodes process and combine their incoming packets by multiplying them with L x L coding matrices that play a similar role as coding c in scalar coding. Our algorithms for scalar network jointly optimize the employed field size while selecting the coding coefficients. Similarly, for vector coding, our algori...
A Monte Carlo burnup code linking MCNP and REBUS
International Nuclear Information System (INIS)
Hanan, N.A.; Olson, A.P.; Pond, R.B.; Matos, J.E.
1998-01-01
The REBUS-3 burnup code, used in the anl RERTR Program, is a very general code that uses diffusion theory (DIF3D) to obtain the fluxes required for reactor burnup analyses. Diffusion theory works well for most reactors. However, to include the effects of exact geometry and strong absorbers that are difficult to model using diffusion theory, a Monte Carlo method is required. MCNP, a general-purpose, generalized-geometry, time-dependent, Monte Carlo transport code, is the most widely used Monte Carlo code. This paper presents a linking of the MCNP code and the REBUS burnup code to perform these difficult analyses. The linked code will permit the use of the full capabilities of REBUS which include non-equilibrium and equilibrium burnup analyses. Results of burnup analyses using this new linked code are also presented. (author)
A Monte Carlo burnup code linking MCNP and REBUS
International Nuclear Information System (INIS)
Hanan, N. A.
1998-01-01
The REBUS-3 burnup code, used in the ANL RERTR Program, is a very general code that uses diffusion theory (DIF3D) to obtain the fluxes required for reactor burnup analyses. Diffusion theory works well for most reactors. However, to include the effects of exact geometry and strong absorbers that are difficult to model using diffusion theory, a Monte Carlo method is required. MCNP, a general-purpose, generalized-geometry, time-dependent, Monte Carlo transport code, is the most widely used Monte Carlo code. This paper presents a linking of the MCNP code and the REBUS burnup code to perform these difficult burnup analyses. The linked code will permit the use of the full capabilities of REBUS which include non-equilibrium and equilibrium burnup analyses. Results of burnup analyses using this new linked code are also presented
Mattson Solomon transform and algebra codes
DEFF Research Database (Denmark)
Martínez-Moro, E.; Benito, Diego Ruano
2009-01-01
In this note we review some results of the first author on the structure of codes defined as subalgebras of a commutative semisimple algebra over a finite field (see Martínez-Moro in Algebra Discrete Math. 3:99-112, 2007). Generator theory and those aspects related to the theory of Gröbner bases ...
Diagnostic Coding for Epilepsy.
Williams, Korwyn; Nuwer, Marc R; Buchhalter, Jeffrey R
2016-02-01
Accurate coding is an important function of neurologic practice. This contribution to Continuum is part of an ongoing series that presents helpful coding information along with examples related to the issue topic. Tips for diagnosis coding, Evaluation and Management coding, procedure coding, or a combination are presented, depending on which is most applicable to the subject area of the issue.
Coding of Neuroinfectious Diseases.
Barkley, Gregory L
2015-12-01
Accurate coding is an important function of neurologic practice. This contribution to Continuum is part of an ongoing series that presents helpful coding information along with examples related to the issue topic. Tips for diagnosis coding, Evaluation and Management coding, procedure coding, or a combination are presented, depending on which is most applicable to the subject area of the issue.
Quantum BCH Codes Based on Spectral Techniques
International Nuclear Information System (INIS)
Guo Ying; Zeng Guihua
2006-01-01
When the time variable in quantum signal processing is discrete, the Fourier transform exists on the vector space of n-tuples over the Galois field F 2 , which plays an important role in the investigation of quantum signals. By using Fourier transforms, the idea of quantum coding theory can be described in a setting that is much different from that seen that far. Quantum BCH codes can be defined as codes whose quantum states have certain specified consecutive spectral components equal to zero and the error-correcting ability is also described by the number of the consecutive zeros. Moreover, the decoding of quantum codes can be described spectrally with more efficiency.
Error-correction coding and decoding bounds, codes, decoders, analysis and applications
Tomlinson, Martin; Ambroze, Marcel A; Ahmed, Mohammed; Jibril, Mubarak
2017-01-01
This book discusses both the theory and practical applications of self-correcting data, commonly known as error-correcting codes. The applications included demonstrate the importance of these codes in a wide range of everyday technologies, from smartphones to secure communications and transactions. Written in a readily understandable style, the book presents the authors’ twenty-five years of research organized into five parts: Part I is concerned with the theoretical performance attainable by using error correcting codes to achieve communications efficiency in digital communications systems. Part II explores the construction of error-correcting codes and explains the different families of codes and how they are designed. Techniques are described for producing the very best codes. Part III addresses the analysis of low-density parity-check (LDPC) codes, primarily to calculate their stopping sets and low-weight codeword spectrum which determines the performance of these codes. Part IV deals with decoders desi...
Forms and Linear Network Codes
DEFF Research Database (Denmark)
Hansen, Johan P.
We present a general theory to obtain linear network codes utilizing forms and obtain explicit families of equidimensional vector spaces, in which any pair of distinct vector spaces intersect in the same small dimension. The theory is inspired by the methods of the author utilizing the osculating...... spaces of Veronese varieties. Linear network coding transmits information in terms of a basis of a vector space and the information is received as a basis of a possibly altered vector space. Ralf Koetter and Frank R. Kschischang introduced a metric on the set af vector spaces and showed that a minimal...... distance decoder for this metric achieves correct decoding if the dimension of the intersection of the transmitted and received vector space is sufficiently large. The vector spaces in our construction are equidistant in the above metric and the distance between any pair of vector spaces is large making...
Ebrahimi, Javad; Fragouli, Christina
2010-01-01
We develop new algebraic algorithms for scalar and vector network coding. In vector network coding, the source multicasts information by transmitting vectors of length L, while intermediate nodes process and combine their incoming packets by multiplying them with L X L coding matrices that play a similar role as coding coefficients in scalar coding. Our algorithms for scalar network jointly optimize the employed field size while selecting the coding coefficients. Similarly, for vector co...
Sze, Vivienne; Marpe, Detlev
2014-01-01
Context-Based Adaptive Binary Arithmetic Coding (CABAC) is a method of entropy coding first introduced in H.264/AVC and now used in the latest High Efficiency Video Coding (HEVC) standard. While it provides high coding efficiency, the data dependencies in H.264/AVC CABAC make it challenging to parallelize and thus limit its throughput. Accordingly, during the standardization of entropy coding for HEVC, both aspects of coding efficiency and throughput were considered. This chapter describes th...
Generalized concatenated quantum codes
International Nuclear Information System (INIS)
Grassl, Markus; Shor, Peter; Smith, Graeme; Smolin, John; Zeng Bei
2009-01-01
We discuss the concept of generalized concatenated quantum codes. This generalized concatenation method provides a systematical way for constructing good quantum codes, both stabilizer codes and nonadditive codes. Using this method, we construct families of single-error-correcting nonadditive quantum codes, in both binary and nonbinary cases, which not only outperform any stabilizer codes for finite block length but also asymptotically meet the quantum Hamming bound for large block length.
DEFF Research Database (Denmark)
Sørensen, Jesper Hemming; Koike-Akino, Toshiaki; Orlik, Philip
2012-01-01
This paper proposes a concept called rateless feedback coding. We redesign the existing LT and Raptor codes, by introducing new degree distributions for the case when a few feedback opportunities are available. We show that incorporating feedback to LT codes can significantly decrease both...... the coding overhead and the encoding/decoding complexity. Moreover, we show that, at the price of a slight increase in the coding overhead, linear complexity is achieved with Raptor feedback coding....
Weber, Rebecca
2012-01-01
What can we compute--even with unlimited resources? Is everything within reach? Or are computations necessarily drastically limited, not just in practice, but theoretically? These questions are at the heart of computability theory. The goal of this book is to give the reader a firm grounding in the fundamentals of computability theory and an overview of currently active areas of research, such as reverse mathematics and algorithmic randomness. Turing machines and partial recursive functions are explored in detail, and vital tools and concepts including coding, uniformity, and diagonalization are described explicitly. From there the material continues with universal machines, the halting problem, parametrization and the recursion theorem, and thence to computability for sets, enumerability, and Turing reduction and degrees. A few more advanced topics round out the book before the chapter on areas of research. The text is designed to be self-contained, with an entire chapter of preliminary material including re...
The VEGA Assembly Spectrum Code
International Nuclear Information System (INIS)
Milosevic, M.
1997-01-01
The VEGA is assembly spectrum code, developed as a design tool for producing a few-group averaged cross section data for a wide range of reactor types including both thermal and fast reactors. It belongs to a class of codes, which may be characterized by the separate stages for micro group, spectrum and macro group assembly calculations. The theoretical foundation for the development of the VEGA code was integral transport theory in the first-flight collision probability formulation. Two versions of VEGA are now in use, VEGA-1 established on standard equivalence theory and VEGA-2 based on new subgroup method applicable for any geometry for which a flux solution is possible. This paper describes a features which are unique to the VEGA codes with concentration on the basic principles and algorithms used in the proposed subgroup method. Presented validation of this method, comprise the results for a homogenous uranium-plutonium mixture and a PWR cell containing a recycled uranium-plutonium oxide. Example application for a realistic fuel dissolver benchmark problem , which was extensive analyzed in the international calculations, is also included. (author)
Gao, Wen
2015-01-01
This comprehensive and accessible text/reference presents an overview of the state of the art in video coding technology. Specifically, the book introduces the tools of the AVS2 standard, describing how AVS2 can help to achieve a significant improvement in coding efficiency for future video networks and applications by incorporating smarter coding tools such as scene video coding. Topics and features: introduces the basic concepts in video coding, and presents a short history of video coding technology and standards; reviews the coding framework, main coding tools, and syntax structure of AV
Abraham, Nikhil
2015-01-01
Hands-on exercises help you learn to code like a pro No coding experience is required for Coding For Dummies,your one-stop guide to building a foundation of knowledge inwriting computer code for web, application, and softwaredevelopment. It doesn't matter if you've dabbled in coding or neverwritten a line of code, this book guides you through the basics.Using foundational web development languages like HTML, CSS, andJavaScript, it explains in plain English how coding works and whyit's needed. Online exercises developed by Codecademy, a leading online codetraining site, help hone coding skill
Analysis of quantum error-correcting codes: Symplectic lattice codes and toric codes
Harrington, James William
Quantum information theory is concerned with identifying how quantum mechanical resources (such as entangled quantum states) can be utilized for a number of information processing tasks, including data storage, computation, communication, and cryptography. Efficient quantum algorithms and protocols have been developed for performing some tasks (e.g. , factoring large numbers, securely communicating over a public channel, and simulating quantum mechanical systems) that appear to be very difficult with just classical resources. In addition to identifying the separation between classical and quantum computational power, much of the theoretical focus in this field over the last decade has been concerned with finding novel ways of encoding quantum information that are robust against errors, which is an important step toward building practical quantum information processing devices. In this thesis I present some results on the quantum error-correcting properties of oscillator codes (also described as symplectic lattice codes) and toric codes. Any harmonic oscillator system (such as a mode of light) can be encoded with quantum information via symplectic lattice codes that are robust against shifts in the system's continuous quantum variables. I show the existence of lattice codes whose achievable rates match the one-shot coherent information over the Gaussian quantum channel. Also, I construct a family of symplectic self-dual lattices and search for optimal encodings of quantum information distributed between several oscillators. Toric codes provide encodings of quantum information into two-dimensional spin lattices that are robust against local clusters of errors and which require only local quantum operations for error correction. Numerical simulations of this system under various error models provide a calculation of the accuracy threshold for quantum memory using toric codes, which can be related to phase transitions in certain condensed matter models. I also present
Status of reactor core design code system in COSINE code package
International Nuclear Information System (INIS)
Chen, Y.; Yu, H.; Liu, Z.
2014-01-01
For self-reliance, COre and System INtegrated Engine for design and analysis (COSINE) code package is under development in China. In this paper, recent development status of the reactor core design code system (including the lattice physics code and the core simulator) is presented. The well-established theoretical models have been implemented. The preliminary verification results are illustrated. And some special efforts, such as updated theory models and direct data access application, are also made to achieve better software product. (author)
Status of reactor core design code system in COSINE code package
Energy Technology Data Exchange (ETDEWEB)
Chen, Y.; Yu, H.; Liu, Z., E-mail: yuhui@snptc.com.cn [State Nuclear Power Software Development Center, SNPTC, National Energy Key Laboratory of Nuclear Power Software (NEKLS), Beijiing (China)
2014-07-01
For self-reliance, COre and System INtegrated Engine for design and analysis (COSINE) code package is under development in China. In this paper, recent development status of the reactor core design code system (including the lattice physics code and the core simulator) is presented. The well-established theoretical models have been implemented. The preliminary verification results are illustrated. And some special efforts, such as updated theory models and direct data access application, are also made to achieve better software product. (author)
On affine variety codes from the Klein quartic
DEFF Research Database (Denmark)
Geil, Hans Olav; Ozbudak, Ferruh
2018-01-01
as the best known codes according to Grassl (2007) and in the remaining few cases the parameters are almost as good. To establish the code parameters we apply the footprint bound (Geil and Høholdt, IEEE Trans. Inform. Theory 46(2), 635–641, 2000 and Høholdt 1998) from Gröbner basis theory and for this purpose...
The maximum number of minimal codewords in long codes
DEFF Research Database (Denmark)
Alahmadi, A.; Aldred, R.E.L.; dela Cruz, R.
2013-01-01
Upper bounds on the maximum number of minimal codewords in a binary code follow from the theory of matroids. Random coding provides lower bounds. In this paper, we compare these bounds with analogous bounds for the cycle code of graphs. This problem (in the graphic case) was considered in 1981 by...
LOLA SYSTEM: A code block for nodal PWR simulation. Part. II - MELON-3, CONCON and CONAXI Codes
Energy Technology Data Exchange (ETDEWEB)
Aragones, J M; Ahnert, C; Gomez Santamaria, J; Rodriguez Olabarria, I
1985-07-01
Description of the theory and users manual of the MELON-3, CONCON and CONAXI codes, which are part of the core calculation system by nodal theory in one group, called LOLA SYSTEM. These auxiliary codes, provide some of the input data for the main module SIMULA-3; these are, the reactivity correlations constants, the albe does and the transport factors. (Author) 7 refs.
LOLA SYSTEM: A code block for nodal PWR simulation. Part. II - MELON-3, CONCON and CONAXI Codes
International Nuclear Information System (INIS)
Aragones, J. M.; Ahnert, C.; Gomez Santamaria, J.; Rodriguez Olabarria, I.
1985-01-01
Description of the theory and users manual of the MELON-3, CONCON and CONAXI codes, which are part of the core calculation system by nodal theory in one group, called LOLA SYSTEM. These auxiliary codes, provide some of the input data for the main module SIMULA-3; these are, the reactivity correlations constants, the albe does and the transport factors. (Author) 7 refs
Discussion on LDPC Codes and Uplink Coding
Andrews, Ken; Divsalar, Dariush; Dolinar, Sam; Moision, Bruce; Hamkins, Jon; Pollara, Fabrizio
2007-01-01
This slide presentation reviews the progress that the workgroup on Low-Density Parity-Check (LDPC) for space link coding. The workgroup is tasked with developing and recommending new error correcting codes for near-Earth, Lunar, and deep space applications. Included in the presentation is a summary of the technical progress of the workgroup. Charts that show the LDPC decoder sensitivity to symbol scaling errors are reviewed, as well as a chart showing the performance of several frame synchronizer algorithms compared to that of some good codes and LDPC decoder tests at ESTL. Also reviewed is a study on Coding, Modulation, and Link Protocol (CMLP), and the recommended codes. A design for the Pseudo-Randomizer with LDPC Decoder and CRC is also reviewed. A chart that summarizes the three proposed coding systems is also presented.
Locally orderless registration code
DEFF Research Database (Denmark)
2012-01-01
This is code for the TPAMI paper "Locally Orderless Registration". The code requires intel threadding building blocks installed and is provided for 64 bit on mac, linux and windows.......This is code for the TPAMI paper "Locally Orderless Registration". The code requires intel threadding building blocks installed and is provided for 64 bit on mac, linux and windows....
Indian Academy of Sciences (India)
Shannon limit of the channel. Among the earliest discovered codes that approach the. Shannon limit were the low density parity check (LDPC) codes. The term low density arises from the property of the parity check matrix defining the code. We will now define this matrix and the role that it plays in decoding. 2. Linear Codes.
Manually operated coded switch
International Nuclear Information System (INIS)
Barnette, J.H.
1978-01-01
The disclosure related to a manually operated recodable coded switch in which a code may be inserted, tried and used to actuate a lever controlling an external device. After attempting a code, the switch's code wheels must be returned to their zero positions before another try is made
Jones, Lyell K; Ney, John P
2016-12-01
Accurate coding is critically important for clinical practice and research. Ongoing changes to diagnostic and billing codes require the clinician to stay abreast of coding updates. Payment for health care services, data sets for health services research, and reporting for medical quality improvement all require accurate administrative coding. This article provides an overview of administrative coding for patients with muscle disease and includes a case-based review of diagnostic and Evaluation and Management (E/M) coding principles in patients with myopathy. Procedural coding for electrodiagnostic studies and neuromuscular ultrasound is also reviewed.
Directory of Open Access Journals (Sweden)
Dr. Alvita Nathaniel, DSN, APRN, BC
2005-06-01
Full Text Available The Grounded Theory Perspective III: Theoretical Coding, Barney G. Glaser (Sociology Press, 2005. Not intended for a beginner, this book further defi nes, describes, and explicates the classic grounded theory (GT method. Perspective III lays out various facets of theoretical coding as Glaser meticulously distinguishes classic GT from other subsequent methods. Developed many years after Glaser’s classic GT, these methods, particularly as described by Strauss and Corbin, adopt the grounded theory name and engender ongoing confusion about the very premises of grounded theory. Glaser distinguishes between classic GT and the adscititious methods in his writings, referring to remodeled grounded theory and its offshoots as Qualitative Data Analysis (QDA models.
Crompton, Helen; LaFrance, Jason; van 't Hooft, Mark
2012-01-01
A QR (quick-response) code is a two-dimensional scannable code, similar in function to a traditional bar code that one might find on a product at the supermarket. The main difference between the two is that, while a traditional bar code can hold a maximum of only 20 digits, a QR code can hold up to 7,089 characters, so it can contain much more…
Habibi, Ali
1993-01-01
The objective of this article is to present a discussion on the future of image data compression in the next two decades. It is virtually impossible to predict with any degree of certainty the breakthroughs in theory and developments, the milestones in advancement of technology and the success of the upcoming commercial products in the market place which will be the main factors in establishing the future stage to image coding. What we propose to do, instead, is look back at the progress in image coding during the last two decades and assess the state of the art in image coding today. Then, by observing the trends in developments of theory, software, and hardware coupled with the future needs for use and dissemination of imagery data and the constraints on the bandwidth and capacity of various networks, predict the future state of image coding. What seems to be certain today is the growing need for bandwidth compression. The television is using a technology which is half a century old and is ready to be replaced by high definition television with an extremely high digital bandwidth. Smart telephones coupled with personal computers and TV monitors accommodating both printed and video data will be common in homes and businesses within the next decade. Efficient and compact digital processing modules using developing technologies will make bandwidth compressed imagery the cheap and preferred alternative in satellite and on-board applications. In view of the above needs, we expect increased activities in development of theory, software, special purpose chips and hardware for image bandwidth compression in the next two decades. The following sections summarize the future trends in these areas.
Beer, M; Nohria, N
2000-01-01
Today's fast-paced economy demands that businesses change or die. But few companies manage corporate transformations as well as they would like. The brutal fact is that about 70% of all change initiatives fail. In this article, authors Michael Beer and Nitin Nohria describe two archetypes--or theories--of corporate transformation that may help executives crack the code of change. Theory E is change based on economic value: shareholder value is the only legitimate measure of success, and change often involves heavy use of economic incentives, layoffs, downsizing, and restructuring. Theory O is change based on organizational capability: the goal is to build and strengthen corporate culture. Most companies focus purely on one theory or the other, or haphazardly use a mix of both, the authors say. Combining E and O is directionally correct, they contend, but it requires a careful, conscious integration plan. Beer and Nohria present the examples of two companies, Scott Paper and Champion International, that used a purely E or purely O strategy to create change--and met with limited levels of success. They contrast those corporate transformations with that of UK-based retailer ASDA, which has successfully embraced the paradox between the opposing theories of change and integrated E and O. The lesson from ASDA? To thrive and adapt in the new economy, companies must make sure the E and O theories of business change are in sync at their own organizations.
Spectral amplitude coding OCDMA using and subtraction technique.
Hasoon, Feras N; Aljunid, S A; Samad, M D A; Abdullah, Mohamad Khazani; Shaari, Sahbudin
2008-03-20
An optical decoding technique is proposed for a spectral-amplitude-coding-optical code division multiple access, namely, the AND subtraction technique. The theory is being elaborated and experimental results have been done by comparing a double-weight code against the existing code, Hadamard. We have proved that the and subtraction technique gives better bit error rate performance than the conventional complementary subtraction technique against the received power level.
QR CODES IN EDUCATION AND COMMUNICATION
Directory of Open Access Journals (Sweden)
Gurhan DURAK
2016-04-01
Full Text Available Technological advances brought applications of innovations to education. Conventional education increasingly flourishes with new technologies accompanied by more learner active environments. In this continuum, there are learners preferring self-learning. Traditional learning materials yield attractive, motivating and technologically enhanced learning materials. The QR (Quick Response Codes are one of these innovations. The aim of this study is to redesign a lesson unit supported with QR Codes and to get the learner views about the redesigned material. For this purpose, the redesigned lesson unit was delivered to 15 learners in Balıkesir University in the academic year of 2013-2014. The learners were asked to study the material. The learners who had smart phones and Internet access were chosen for the study. To provide sectional diversity, three groups were created. The group learners were from Faculty of Education, Faculty of Science and Literature and Faculty of Engineering. After the semi-structured interviews were held, the learners were asked about their pre-knowledge about QR Codes, QR Codes’ contribution to learning, difficulties with using QR Codes about and design issues. Descriptive data analysis was used in the study. The findings were interpreted on the basis of Theory of Diffusion of Innovations and Theory of Uses and Gratifications. After the research, the themes found were awareness of QR Code, types of QR Codes and applications, contributions to learning, and proliferation of QR Codes. Generally, the learners participating in the study reported that they were aware of QR Codes; that they could use the QR Codes; and that using QR Codes in education was useful. They also expressed that such features as visual elements, attractiveness and direct routing had positive impact on learning. In addition, they generally mentioned that they did not have any difficulty using QR Codes; that they liked the design; and that the content should
Degenerate quantum codes and the quantum Hamming bound
International Nuclear Information System (INIS)
Sarvepalli, Pradeep; Klappenecker, Andreas
2010-01-01
The parameters of a nondegenerate quantum code must obey the Hamming bound. An important open problem in quantum coding theory is whether the parameters of a degenerate quantum code can violate this bound for nondegenerate quantum codes. In this article we show that Calderbank-Shor-Steane (CSS) codes, over a prime power alphabet q≥5, cannot beat the quantum Hamming bound. We prove a quantum version of the Griesmer bound for the CSS codes, which allows us to strengthen the Rains' bound that an [[n,k,d
[Introduction to grounded theory].
Wang, Shou-Yu; Windsor, Carol; Yates, Patsy
2012-02-01
Grounded theory, first developed by Glaser and Strauss in the 1960s, was introduced into nursing education as a distinct research methodology in the 1970s. The theory is grounded in a critique of the dominant contemporary approach to social inquiry, which imposed "enduring" theoretical propositions onto study data. Rather than starting from a set theoretical framework, grounded theory relies on researchers distinguishing meaningful constructs from generated data and then identifying an appropriate theory. Grounded theory is thus particularly useful in investigating complex issues and behaviours not previously addressed and concepts and relationships in particular populations or places that are still undeveloped or weakly connected. Grounded theory data analysis processes include open, axial and selective coding levels. The purpose of this article was to explore the grounded theory research process and provide an initial understanding of this methodology.
Computational invariant theory
Derksen, Harm
2015-01-01
This book is about the computational aspects of invariant theory. Of central interest is the question how the invariant ring of a given group action can be calculated. Algorithms for this purpose form the main pillars around which the book is built. There are two introductory chapters, one on Gröbner basis methods and one on the basic concepts of invariant theory, which prepare the ground for the algorithms. Then algorithms for computing invariants of finite and reductive groups are discussed. Particular emphasis lies on interrelations between structural properties of invariant rings and computational methods. Finally, the book contains a chapter on applications of invariant theory, covering fields as disparate as graph theory, coding theory, dynamical systems, and computer vision. The book is intended for postgraduate students as well as researchers in geometry, computer algebra, and, of course, invariant theory. The text is enriched with numerous explicit examples which illustrate the theory and should be ...
DEFF Research Database (Denmark)
Rennison, Betina Wolfgang
of management differently. In this chaos of codes the managerial challenge is to take a second order position in order to strategically manage the communication that manages management itself. Key words: Management; personnel management; human-relations; pay-system; communication; system-theory; discursive...... of Denmark (called New Wage), this paper theorizes this complexity in terms of Niklas Luhmann's systems theory. It identifies four wholly different `codes' of communication: legal, economic, pedagogical and intimate. Each of them shapes the phenomena of `pay', the construal of the employee and the form...
Computation of the Genetic Code
Kozlov, Nicolay N.; Kozlova, Olga N.
2018-03-01
One of the problems in the development of mathematical theory of the genetic code (summary is presented in [1], the detailed -to [2]) is the problem of the calculation of the genetic code. Similar problems in the world is unknown and could be delivered only in the 21st century. One approach to solving this problem is devoted to this work. For the first time provides a detailed description of the method of calculation of the genetic code, the idea of which was first published earlier [3]), and the choice of one of the most important sets for the calculation was based on an article [4]. Such a set of amino acid corresponds to a complete set of representations of the plurality of overlapping triple gene belonging to the same DNA strand. A separate issue was the initial point, triggering an iterative search process all codes submitted by the initial data. Mathematical analysis has shown that the said set contains some ambiguities, which have been founded because of our proposed compressed representation of the set. As a result, the developed method of calculation was limited to the two main stages of research, where the first stage only the of the area were used in the calculations. The proposed approach will significantly reduce the amount of computations at each step in this complex discrete structure.
Coding, cryptography and combinatorics
Niederreiter, Harald; Xing, Chaoping
2004-01-01
It has long been recognized that there are fascinating connections between cod ing theory, cryptology, and combinatorics. Therefore it seemed desirable to us to organize a conference that brings together experts from these three areas for a fruitful exchange of ideas. We decided on a venue in the Huang Shan (Yellow Mountain) region, one of the most scenic areas of China, so as to provide the additional inducement of an attractive location. The conference was planned for June 2003 with the official title Workshop on Coding, Cryptography and Combi natorics (CCC 2003). Those who are familiar with events in East Asia in the first half of 2003 can guess what happened in the end, namely the conference had to be cancelled in the interest of the health of the participants. The SARS epidemic posed too serious a threat. At the time of the cancellation, the organization of the conference was at an advanced stage: all invited speakers had been selected and all abstracts of contributed talks had been screened by the p...
International Nuclear Information System (INIS)
Chen Zhenpeng; Qi Huiquan
1990-01-01
A comprehensive R-matrix analysis code has been developed. It is based on the multichannel and multilevel R-matrix theory and runs in VAX computer with FORTRAN-77. With this code many kinds of experimental data for one nuclear system can be fitted simultaneously. The comparisions between code RAC and code EDA of LANL are made. The data show both codes produced the same calculation results when one set of R-matrix parameters was used. The differential cross section of 10 B (n, α) 7 Li for E n = 0.4 MeV and the polarization of 16 O (n,n) 16 O for E n = 2.56 MeV are presented
Advanced hardware design for error correcting codes
Coussy, Philippe
2015-01-01
This book provides thorough coverage of error correcting techniques. It includes essential basic concepts and the latest advances on key topics in design, implementation, and optimization of hardware/software systems for error correction. The book’s chapters are written by internationally recognized experts in this field. Topics include evolution of error correction techniques, industrial user needs, architectures, and design approaches for the most advanced error correcting codes (Polar Codes, Non-Binary LDPC, Product Codes, etc). This book provides access to recent results, and is suitable for graduate students and researchers of mathematics, computer science, and engineering. • Examines how to optimize the architecture of hardware design for error correcting codes; • Presents error correction codes from theory to optimized architecture for the current and the next generation standards; • Provides coverage of industrial user needs advanced error correcting techniques.
Potential of the MCNP computer code
International Nuclear Information System (INIS)
Kyncl, J.
1995-01-01
The MCNP code is designed for numerical solution of neutron, photon, and electron transport problems by the Monte Carlo method. The code is based on the linear transport theory of behavior of the differential flux of the particles. The code directly uses data from the cross section point data library for input. Experience is outlined, gained in the application of the code to the calculation of the effective parameters of fuel assemblies and of the entire reactor core, to the determination of the effective parameters of the elementary fuel cell, and to the numerical solution of neutron diffusion and/or transport problems of the fuel assembly. The agreement between the calculated and observed data gives evidence that the MCNP code can be used with advantage for calculations involving WWER type fuel assemblies. (J.B.). 4 figs., 6 refs
DEFF Research Database (Denmark)
Soon, Winnie
2014-01-01
This essay studies the source code of an artwork from a software studies perspective. By examining code that come close to the approach of critical code studies (Marino, 2006), I trace the network artwork, Pupufu (Lin, 2009) to understand various real-time approaches to social media platforms (MSN......, Twitter and Facebook). The focus is not to investigate the functionalities and efficiencies of the code, but to study and interpret the program level of code in order to trace the use of various technological methods such as third-party libraries and platforms’ interfaces. These are important...... to understand the socio-technical side of a changing network environment. Through the study of code, including but not limited to source code, technical specifications and other materials in relation to the artwork production, I would like to explore the materiality of code that goes beyond technical...
International Nuclear Information System (INIS)
Sacramento, A.M. do.
1989-01-01
This user's manual contains all the necessary information concerning the use of SEVERO code. This computer code is related to the statistics of extremes = extreme winds, extreme precipitation and flooding hazard risk analysis. (A.C.A.S.)
Predictive coding in Agency Detection
DEFF Research Database (Denmark)
Andersen, Marc Malmdorf
2017-01-01
Agency detection is a central concept in the cognitive science of religion (CSR). Experimental studies, however, have so far failed to lend support to some of the most common predictions that follow from current theories on agency detection. In this article, I argue that predictive coding, a highly...... promising new framework for understanding perception and action, may solve pending theoretical inconsistencies in agency detection research, account for the puzzling experimental findings mentioned above, and provide hypotheses for future experimental testing. Predictive coding explains how the brain......, unbeknownst to consciousness, engages in sophisticated Bayesian statistics in an effort to constantly predict the hidden causes of sensory input. My fundamental argument is that most false positives in agency detection can be seen as the result of top-down interference in a Bayesian system generating high...
Whalen, Michael; Schumann, Johann; Fischer, Bernd
2002-01-01
Code certification is a lightweight approach for formally demonstrating software quality. Its basic idea is to require code producers to provide formal proofs that their code satisfies certain quality properties. These proofs serve as certificates that can be checked independently. Since code certification uses the same underlying technology as program verification, it requires detailed annotations (e.g., loop invariants) to make the proofs possible. However, manually adding annotations to th...
International Nuclear Information System (INIS)
Schmittroth, F.
1979-09-01
A documentation of the FERRET data analysis code is given. The code provides a way to combine related measurements and calculations in a consistent evaluation. Basically a very general least-squares code, it is oriented towards problems frequently encountered in nuclear data and reactor physics. A strong emphasis is on the proper treatment of uncertainties and correlations and in providing quantitative uncertainty estimates. Documentation includes a review of the method, structure of the code, input formats, and examples
Xu, Mingliang; Su, Hao; Li, Yafei; Li, Xi; Liao, Jing; Niu, Jianwei; Lv, Pei; Zhou, Bing
2018-01-01
With the continued proliferation of smart mobile devices, Quick Response (QR) code has become one of the most-used types of two-dimensional code in the world. Aiming at beautifying the appearance of QR codes, existing works have developed a series of techniques to make the QR code more visual-pleasant. However, these works still leave much to be desired, such as visual diversity, aesthetic quality, flexibility, universal property, and robustness. To address these issues, in this paper, we pro...
Zhang, Linfan; Zheng, Shuang
2015-01-01
Quick Response code opens possibility to convey data in a unique way yet insufficient prevention and protection might lead into QR code being exploited on behalf of attackers. This thesis starts by presenting a general introduction of background and stating two problems regarding QR code security, which followed by a comprehensive research on both QR code itself and related issues. From the research a solution taking advantages of cloud and cryptography together with an implementation come af...
DEFF Research Database (Denmark)
Steensig, Jakob; Heinemann, Trine
2015-01-01
doing formal coding and when doing more “traditional” conversation analysis research based on collections. We are more wary, however, of the implication that coding-based research is the end result of a process that starts with qualitative investigations and ends with categories that can be coded...
DEFF Research Database (Denmark)
Bombin Palomo, Hector
2015-01-01
Color codes are topological stabilizer codes with unusual transversality properties. Here I show that their group of transversal gates is optimal and only depends on the spatial dimension, not the local geometry. I also introduce a generalized, subsystem version of color codes. In 3D they allow...
A. van Deursen (Arie); L.M.F. Moonen (Leon); A. van den Bergh; G. Kok
2001-01-01
textabstractTwo key aspects of extreme programming (XP) are unit testing and merciless refactoring. Given the fact that the ideal test code / production code ratio approaches 1:1, it is not surprising that unit tests are being refactored. We found that refactoring test code is different from
Software Certification - Coding, Code, and Coders
Havelund, Klaus; Holzmann, Gerard J.
2011-01-01
We describe a certification approach for software development that has been adopted at our organization. JPL develops robotic spacecraft for the exploration of the solar system. The flight software that controls these spacecraft is considered to be mission critical. We argue that the goal of a software certification process cannot be the development of "perfect" software, i.e., software that can be formally proven to be correct under all imaginable and unimaginable circumstances. More realistically, the goal is to guarantee a software development process that is conducted by knowledgeable engineers, who follow generally accepted procedures to control known risks, while meeting agreed upon standards of workmanship. We target three specific issues that must be addressed in such a certification procedure: the coding process, the code that is developed, and the skills of the coders. The coding process is driven by standards (e.g., a coding standard) and tools. The code is mechanically checked against the standard with the help of state-of-the-art static source code analyzers. The coders, finally, are certified in on-site training courses that include formal exams.
International Nuclear Information System (INIS)
1997-01-01
The Network Code defines the rights and responsibilities of all users of the natural gas transportation system in the liberalised gas industry in the United Kingdom. This report describes the operation of the Code, what it means, how it works and its implications for the various participants in the industry. The topics covered are: development of the competitive gas market in the UK; key points in the Code; gas transportation charging; impact of the Code on producers upstream; impact on shippers; gas storage; supply point administration; impact of the Code on end users; the future. (20 tables; 33 figures) (UK)
Rice, R. F.; Lee, J. J.
1986-01-01
Scheme for coding facsimile messages promises to reduce data transmission requirements to one-tenth current level. Coding scheme paves way for true electronic mail in which handwritten, typed, or printed messages or diagrams sent virtually instantaneously - between buildings or between continents. Scheme, called Universal System for Efficient Electronic Mail (USEEM), uses unsupervised character recognition and adaptive noiseless coding of text. Image quality of resulting delivered messages improved over messages transmitted by conventional coding. Coding scheme compatible with direct-entry electronic mail as well as facsimile reproduction. Text transmitted in this scheme automatically translated to word-processor form.
International Nuclear Information System (INIS)
Mueller, W.H.; Schneider, B.; Staeuble, J.
1984-01-01
This reference manual provides users of the NAGRADATA system with comprehensive keys to the coding/decoding of geological and technical information to be stored in or retreaved from the databank. Emphasis has been placed on input data coding. When data is retreaved the translation into plain language of stored coded information is done automatically by computer. Three keys each, list the complete set of currently defined codes for the NAGRADATA system, namely codes with appropriate definitions, arranged: 1. according to subject matter (thematically) 2. the codes listed alphabetically and 3. the definitions listed alphabetically. Additional explanation is provided for the proper application of the codes and the logic behind the creation of new codes to be used within the NAGRADATA system. NAGRADATA makes use of codes instead of plain language for data storage; this offers the following advantages: speed of data processing, mainly data retrieval, economies of storage memory requirements, the standardisation of terminology. The nature of this thesaurian type 'key to codes' makes it impossible to either establish a final form or to cover the entire spectrum of requirements. Therefore, this first issue of codes to NAGRADATA must be considered to represent the current state of progress of a living system and future editions will be issued in a loose leave ringbook system which can be updated by an organised (updating) service. (author)
International Nuclear Information System (INIS)
Jow, Hong-Nian; Murfin, W.B.; Johnson, J.D.
1993-11-01
This report describes the source term estimation codes, XSORs. The codes are written for three pressurized water reactors (Surry, Sequoyah, and Zion) and two boiling water reactors (Peach Bottom and Grand Gulf). The ensemble of codes has been named ''XSOR''. The purpose of XSOR codes is to estimate the source terms which would be released to the atmosphere in severe accidents. A source term includes the release fractions of several radionuclide groups, the timing and duration of releases, the rates of energy release, and the elevation of releases. The codes have been developed by Sandia National Laboratories for the US Nuclear Regulatory Commission (NRC) in support of the NUREG-1150 program. The XSOR codes are fast running parametric codes and are used as surrogates for detailed mechanistic codes. The XSOR codes also provide the capability to explore the phenomena and their uncertainty which are not currently modeled by the mechanistic codes. The uncertainty distributions of input parameters may be used by an. XSOR code to estimate the uncertainty of source terms
International Nuclear Information System (INIS)
Kulikowska, T.
1999-01-01
The present lecture has a main goal to show how the transport lattice calculations are realised in a standard computer code. This is illustrated on the example of the WIMSD code, belonging to the most popular tools for reactor calculations. Most of the approaches discussed here can be easily modified to any other lattice code. The description of the code assumes the basic knowledge of reactor lattice, on the level given in the lecture on 'Reactor lattice transport calculations'. For more advanced explanation of the WIMSD code the reader is directed to the detailed descriptions of the code cited in References. The discussion of the methods and models included in the code is followed by the generally used homogenisation procedure and several numerical examples of discrepancies in calculated multiplication factors based on different sources of library data. (author)
Energy Technology Data Exchange (ETDEWEB)
2014-05-14
DLLExternalCode is the a general dynamic-link library (DLL) interface for linking GoldSim (www.goldsim.com) with external codes. The overall concept is to use GoldSim as top level modeling software with interfaces to external codes for specific calculations. The DLLExternalCode DLL that performs the linking function is designed to take a list of code inputs from GoldSim, create an input file for the external application, run the external code, and return a list of outputs, read from files created by the external application, back to GoldSim. Instructions for creating the input file, running the external code, and reading the output are contained in an instructions file that is read and interpreted by the DLL.
Code subspaces for LLM geometries
Berenstein, David; Miller, Alexandra
2018-03-01
We consider effective field theory around classical background geometries with a gauge theory dual, specifically those in the class of LLM geometries. These are dual to half-BPS states of N= 4 SYM. We find that the language of code subspaces is natural for discussing the set of nearby states, which are built by acting with effective fields on these backgrounds. This work extends our previous work by going beyond the strict infinite N limit. We further discuss how one can extract the topology of the state beyond N→∞ and find that, as before, uncertainty and entanglement entropy calculations provide a useful tool to do so. Finally, we discuss obstructions to writing down a globally defined metric operator. We find that the answer depends on the choice of reference state that one starts with. Therefore, within this setup, there is ambiguity in trying to write an operator that describes the metric globally.
Cracking the code of oscillatory activity.
Directory of Open Access Journals (Sweden)
Philippe G Schyns
2011-05-01
Full Text Available Neural oscillations are ubiquitous measurements of cognitive processes and dynamic routing and gating of information. The fundamental and so far unresolved problem for neuroscience remains to understand how oscillatory activity in the brain codes information for human cognition. In a biologically relevant cognitive task, we instructed six human observers to categorize facial expressions of emotion while we measured the observers' EEG. We combined state-of-the-art stimulus control with statistical information theory analysis to quantify how the three parameters of oscillations (i.e., power, phase, and frequency code the visual information relevant for behavior in a cognitive task. We make three points: First, we demonstrate that phase codes considerably more information (2.4 times relating to the cognitive task than power. Second, we show that the conjunction of power and phase coding reflects detailed visual features relevant for behavioral response--that is, features of facial expressions predicted by behavior. Third, we demonstrate, in analogy to communication technology, that oscillatory frequencies in the brain multiplex the coding of visual features, increasing coding capacity. Together, our findings about the fundamental coding properties of neural oscillations will redirect the research agenda in neuroscience by establishing the differential role of frequency, phase, and amplitude in coding behaviorally relevant information in the brain.
A MacWilliams Identity for Convolutional Codes: The General Case
Gluesing-Luerssen, Heide; Schneider, Gert
2008-01-01
A MacWilliams Identity for convolutional codes will be established. It makes use of the weight adjacency matrices of the code and its dual, based on state space realizations (the controller canonical form) of the codes in question. The MacWilliams Identity applies to various notions of duality appearing in the literature on convolutional coding theory.
Secret Codes, Remainder Arithmetic, and Matrices.
Peck, Lyman C.
This pamphlet is designed for use as enrichment material for able junior and senior high school students who are interested in mathematics. No more than a clear understanding of basic arithmetic is expected. Students are introduced to ideas from number theory and modern algebra by learning mathematical ways of coding and decoding secret messages.…
RAYS: a geometrical optics code for EBT
International Nuclear Information System (INIS)
Batchelor, D.B.; Goldfinger, R.C.
1982-04-01
The theory, structure, and operation of the code are described. Mathematical details of equilibrium subroutiones for slab, bumpy torus, and tokamak plasma geometry are presented. Wave dispersion and absorption subroutines are presented for frequencies ranging from ion cyclotron frequency to electron cyclotron frequency. Graphics postprocessors for RAYS output data are also described
Radio frequency channel coding made easy
Faruque, Saleh
2016-01-01
This book introduces Radio Frequency Channel Coding to a broad audience. The author blends theory and practice to bring readers up-to-date in key concepts, underlying principles and practical applications of wireless communications. The presentation is designed to be easily accessible, minimizing mathematics and maximizing visuals.
A Code of Ethics for Democratic Leadership
Molina, Ricardo; Klinker, JoAnn Franklin
2012-01-01
Democratic leadership rests on sacred values, awareness, judgement, motivation and courage. Four turning points in a 38-year school administrator's career revealed decision-making in problematic moments stemmed from values in a personal and professional code of ethics. Reflection on practice and theory added vocabulary and understanding to make…
Toric Varieties and Codes, Error-correcting Codes, Quantum Codes, Secret Sharing and Decoding
DEFF Research Database (Denmark)
Hansen, Johan Peder
We present toric varieties and associated toric codes and their decoding. Toric codes are applied to construct Linear Secret Sharing Schemes (LSSS) with strong multiplication by the Massey construction. Asymmetric Quantum Codes are obtained from toric codes by the A.R. Calderbank P.W. Shor and A.......M. Steane construction of stabilizer codes (CSS) from linear codes containing their dual codes....
An Optimal Linear Coding for Index Coding Problem
Pezeshkpour, Pouya
2015-01-01
An optimal linear coding solution for index coding problem is established. Instead of network coding approach by focus on graph theoric and algebraic methods a linear coding program for solving both unicast and groupcast index coding problem is presented. The coding is proved to be the optimal solution from the linear perspective and can be easily utilize for any number of messages. The importance of this work is lying mostly on the usage of the presented coding in the groupcast index coding ...
PORPST: A statistical postprocessor for the PORMC computer code
International Nuclear Information System (INIS)
Eslinger, P.W.; Didier, B.T.
1991-06-01
This report describes the theory underlying the PORPST code and gives details for using the code. The PORPST code is designed to do statistical postprocessing on files written by the PORMC computer code. The data written by PORMC are summarized in terms of means, variances, standard deviations, or statistical distributions. In addition, the PORPST code provides for plotting of the results, either internal to the code or through use of the CONTOUR3 postprocessor. Section 2.0 discusses the mathematical basis of the code, and Section 3.0 discusses the code structure. Section 4.0 describes the free-format point command language. Section 5.0 describes in detail the commands to run the program. Section 6.0 provides an example program run, and Section 7.0 provides the references. 11 refs., 1 fig., 17 tabs
Neural Elements for Predictive Coding
Directory of Open Access Journals (Sweden)
Stewart SHIPP
2016-11-01
Full Text Available Predictive coding theories of sensory brain function interpret the hierarchical construction of the cerebral cortex as a Bayesian, generative model capable of predicting the sensory data consistent with any given percept. Predictions are fed backwards in the hierarchy and reciprocated by prediction error in the forward direction, acting to modify the representation of the outside world at increasing levels of abstraction, and so to optimize the nature of perception over a series of iterations. This accounts for many ‘illusory’ instances of perception where what is seen (heard, etc is unduly influenced by what is expected, based on past experience. This simple conception, the hierarchical exchange of prediction and prediction error, confronts a rich cortical microcircuitry that is yet to be fully documented. This article presents the view that, in the current state of theory and practice, it is profitable to begin a two-way exchange: that predictive coding theory can support an understanding of cortical microcircuit function, and prompt particular aspects of future investigation, whilst existing knowledge of microcircuitry can, in return, influence theoretical development. As an example, a neural inference arising from the earliest formulations of predictive coding is that the source populations of forwards and backwards pathways should be completely separate, given their functional distinction; this aspect of circuitry – that neurons with extrinsically bifurcating axons do not project in both directions – has only recently been confirmed. Here, the computational architecture prescribed by a generalized (free-energy formulation of predictive coding is combined with the classic ‘canonical microcircuit’ and the laminar architecture of hierarchical extrinsic connectivity to produce a template schematic, that is further examined in the light of (a updates in the microcircuitry of primate visual cortex, and (b rapid technical advances made
Neural Elements for Predictive Coding.
Shipp, Stewart
2016-01-01
Predictive coding theories of sensory brain function interpret the hierarchical construction of the cerebral cortex as a Bayesian, generative model capable of predicting the sensory data consistent with any given percept. Predictions are fed backward in the hierarchy and reciprocated by prediction error in the forward direction, acting to modify the representation of the outside world at increasing levels of abstraction, and so to optimize the nature of perception over a series of iterations. This accounts for many 'illusory' instances of perception where what is seen (heard, etc.) is unduly influenced by what is expected, based on past experience. This simple conception, the hierarchical exchange of prediction and prediction error, confronts a rich cortical microcircuitry that is yet to be fully documented. This article presents the view that, in the current state of theory and practice, it is profitable to begin a two-way exchange: that predictive coding theory can support an understanding of cortical microcircuit function, and prompt particular aspects of future investigation, whilst existing knowledge of microcircuitry can, in return, influence theoretical development. As an example, a neural inference arising from the earliest formulations of predictive coding is that the source populations of forward and backward pathways should be completely separate, given their functional distinction; this aspect of circuitry - that neurons with extrinsically bifurcating axons do not project in both directions - has only recently been confirmed. Here, the computational architecture prescribed by a generalized (free-energy) formulation of predictive coding is combined with the classic 'canonical microcircuit' and the laminar architecture of hierarchical extrinsic connectivity to produce a template schematic, that is further examined in the light of (a) updates in the microcircuitry of primate visual cortex, and (b) rapid technical advances made possible by transgenic neural
DEFF Research Database (Denmark)
Andersen, Christian Ulrik
2007-01-01
Computer art is often associated with computer-generated expressions (digitally manipulated audio/images in music, video, stage design, media facades, etc.). In recent computer art, however, the code-text itself – not the generated output – has become the artwork (Perl Poetry, ASCII Art, obfuscated...... code, etc.). The presentation relates this artistic fascination of code to a media critique expressed by Florian Cramer, claiming that the graphical interface represents a media separation (of text/code and image) causing alienation to the computer’s materiality. Cramer is thus the voice of a new ‘code...... avant-garde’. In line with Cramer, the artists Alex McLean and Adrian Ward (aka Slub) declare: “art-oriented programming needs to acknowledge the conditions of its own making – its poesis.” By analysing the Live Coding performances of Slub (where they program computer music live), the presentation...
International Nuclear Information System (INIS)
Bravyi, Sergey; Terhal, Barbara M; Leemhuis, Bernhard
2010-01-01
We initiate the study of Majorana fermion codes (MFCs). These codes can be viewed as extensions of Kitaev's one-dimensional (1D) model of unpaired Majorana fermions in quantum wires to higher spatial dimensions and interacting fermions. The purpose of MFCs is to protect quantum information against low-weight fermionic errors, that is, operators acting on sufficiently small subsets of fermionic modes. We examine to what extent MFCs can surpass qubit stabilizer codes in terms of their stability properties. A general construction of 2D MFCs is proposed that combines topological protection based on a macroscopic code distance with protection based on fermionic parity conservation. Finally, we use MFCs to show how to transform any qubit stabilizer code to a weakly self-dual CSS code.
International Nuclear Information System (INIS)
Vokac, P.
1999-12-01
DISP1 code is a simple tool for assessment of the dispersion of the fission product cloud escaping from a nuclear power plant after an accident. The code makes it possible to tentatively check the feasibility of calculations by more complex PSA3 codes and/or codes for real-time dispersion calculations. The number of input parameters is reasonably low and the user interface is simple enough to allow a rapid processing of sensitivity analyses. All input data entered through the user interface are stored in the text format. Implementation of dispersion model corrections taken from the ARCON96 code enables the DISP1 code to be employed for assessment of the radiation hazard within the NPP area, in the control room for instance. (P.A.)
Energy Technology Data Exchange (ETDEWEB)
Visser, B. [Stork Product Eng., Amsterdam (Netherlands)
1996-09-01
To support the discussion on aeroelastic codes, a description of the code FLEXLAST was given and experiences within benchmarks and measurement programmes were summarized. The code FLEXLAST has been developed since 1982 at Stork Product Engineering (SPE). Since 1992 FLEXLAST has been used by Dutch industries for wind turbine and rotor design. Based on the comparison with measurements, it can be concluded that the main shortcomings of wind turbine modelling lie in the field of aerodynamics, wind field and wake modelling. (au)
International Nuclear Information System (INIS)
Cramer, S.N.
1984-01-01
The MORSE code is a large general-use multigroup Monte Carlo code system. Although no claims can be made regarding its superiority in either theoretical details or Monte Carlo techniques, MORSE has been, since its inception at ORNL in the late 1960s, the most widely used Monte Carlo radiation transport code. The principal reason for this popularity is that MORSE is relatively easy to use, independent of any installation or distribution center, and it can be easily customized to fit almost any specific need. Features of the MORSE code are described
Waters, Joe
2012-01-01
Find out how to effectively create, use, and track QR codes QR (Quick Response) codes are popping up everywhere, and businesses are reaping the rewards. Get in on the action with the no-nonsense advice in this streamlined, portable guide. You'll find out how to get started, plan your strategy, and actually create the codes. Then you'll learn to link codes to mobile-friendly content, track your results, and develop ways to give your customers value that will keep them coming back. It's all presented in the straightforward style you've come to know and love, with a dash of humor thrown
International Nuclear Information System (INIS)
Reid, R.L.; Barrett, R.J.; Brown, T.G.
1985-03-01
The FEDC Tokamak Systems Code calculates tokamak performance, cost, and configuration as a function of plasma engineering parameters. This version of the code models experimental tokamaks. It does not currently consider tokamak configurations that generate electrical power or incorporate breeding blankets. The code has a modular (or subroutine) structure to allow independent modeling for each major tokamak component or system. A primary benefit of modularization is that a component module may be updated without disturbing the remainder of the systems code as long as the imput to or output from the module remains unchanged
On quadratic residue codes and hyperelliptic curves
Directory of Open Access Journals (Sweden)
David Joyner
2008-01-01
Full Text Available For an odd prime p and each non-empty subset S⊂GF(p, consider the hyperelliptic curve X S defined by y 2 =f S (x, where f S (x = ∏ a∈S (x-a. Using a connection between binary quadratic residue codes and hyperelliptic curves over GF(p, this paper investigates how coding theory bounds give rise to bounds such as the following example: for all sufficiently large primes p there exists a subset S⊂GF(p for which the bound |X S (GF(p| > 1.39p holds. We also use the quasi-quadratic residue codes defined below to construct an example of a formally self-dual optimal code whose zeta function does not satisfy the ``Riemann hypothesis.''
Efficient Coding of Information: Huffman Coding -RE ...
Indian Academy of Sciences (India)
to a stream of equally-likely symbols so as to recover the original stream in the event of errors. The for- ... The source-coding problem is one of finding a mapping from U to a ... probability that the random variable X takes the value x written as ...
NR-code: Nonlinear reconstruction code
Yu, Yu; Pen, Ue-Li; Zhu, Hong-Ming
2018-04-01
NR-code applies nonlinear reconstruction to the dark matter density field in redshift space and solves for the nonlinear mapping from the initial Lagrangian positions to the final redshift space positions; this reverses the large-scale bulk flows and improves the precision measurement of the baryon acoustic oscillations (BAO) scale.
New nonbinary quantum codes with larger distance constructed from BCH codes over 𝔽q2
Xu, Gen; Li, Ruihu; Fu, Qiang; Ma, Yuena; Guo, Luobin
2017-03-01
This paper concentrates on construction of new nonbinary quantum error-correcting codes (QECCs) from three classes of narrow-sense imprimitive BCH codes over finite field 𝔽q2 (q ≥ 3 is an odd prime power). By a careful analysis on properties of cyclotomic cosets in defining set T of these BCH codes, the improved maximal designed distance of these narrow-sense imprimitive Hermitian dual-containing BCH codes is determined to be much larger than the result given according to Aly et al. [S. A. Aly, A. Klappenecker and P. K. Sarvepalli, IEEE Trans. Inf. Theory 53, 1183 (2007)] for each different code length. Thus families of new nonbinary QECCs are constructed, and the newly obtained QECCs have larger distance than those in previous literature.
Multi-group diffusion perturbation calculation code. PERKY (2002)
Energy Technology Data Exchange (ETDEWEB)
Iijima, Susumu; Okajima, Shigeaki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
2002-12-01
Perturbation calculation code based on the diffusion theory ''PERKY'' is designed for nuclear characteristic analyses of fast reactor. The code calculates reactivity worth on the multi-group diffusion perturbation theory in two or three dimensional core model and kinetics parameters such as effective delayed neutron fraction, prompt neutron lifetime and absolute reactivity scale factor ({rho}{sub 0} {delta}k/k) for FCA experiments. (author)
Strength evaluation code STEP for brittle materials
International Nuclear Information System (INIS)
Ishihara, Masahiro; Futakawa, Masatoshi.
1997-12-01
In a structural design using brittle materials such as graphite and/or ceramics it is necessary to evaluate the strength of component under complex stress condition. The strength of ceramic materials is said to be influenced by the stress distribution. However, in the structural design criteria simplified stress limits had been adopted without taking account of the strength change with the stress distribution. It is, therefore, important to evaluate the strength of component on the basis of the fracture model for brittle material. Consequently, the strength evaluation program, STEP, on a brittle fracture of ceramic materials based on the competing risk theory had been developed. Two different brittle fracture modes, a surface layer fracture mode dominated by surface flaws and an internal fracture mode by internal flaws, are treated in the STEP code in order to evaluate the strength of brittle fracture. The STEP code uses stress calculation results including complex shape of structures analyzed by the generalized FEM stress analysis code, ABAQUS, so as to be possible to evaluate the strength of brittle fracture for the structures having complicate shapes. This code is, therefore, useful to evaluate the structural integrity of arbitrary shapes of components such as core graphite components in the HTTR, heat exchanger components made of ceramics materials etc. This paper describes the basic equations applying to the STEP code, code system with a combination of the STEP and the ABAQUS codes and the result of the verification analysis. (author)
The Classification of Complementary Information Set Codes of Lengths 14 and 16
Freibert, Finley
2012-01-01
In the paper "A new class of codes for Boolean masking of cryptographic computations," Carlet, Gaborit, Kim, and Sol\\'{e} defined a new class of rate one-half binary codes called \\emph{complementary information set} (or CIS) codes. The authors then classified all CIS codes of length less than or equal to 12. CIS codes have relations to classical Coding Theory as they are a generalization of self-dual codes. As stated in the paper, CIS codes also have important practical applications as they m...
Joslin, Ronald D.; Streett, Craig L.; Chang, Chau-Lyan
1992-01-01
Spatially evolving instabilities in a boundary layer on a flat plate are computed by direct numerical simulation (DNS) of the incompressible Navier-Stokes equations. In a truncated physical domain, a nonstaggered mesh is used for the grid. A Chebyshev-collocation method is used normal to the wall; finite difference and compact difference methods are used in the streamwise direction; and a Fourier series is used in the spanwise direction. For time stepping, implicit Crank-Nicolson and explicit Runge-Kutta schemes are used to the time-splitting method. The influence-matrix technique is used to solve the pressure equation. At the outflow boundary, the buffer-domain technique is used to prevent convective wave reflection or upstream propagation of information from the boundary. Results of the DNS are compared with those from both linear stability theory (LST) and parabolized stability equation (PSE) theory. Computed disturbance amplitudes and phases are in very good agreement with those of LST (for small inflow disturbance amplitudes). A measure of the sensitivity of the inflow condition is demonstrated with both LST and PSE theory used to approximate inflows. Although the DNS numerics are very different than those of PSE theory, the results are in good agreement. A small discrepancy in the results that does occur is likely a result of the variation in PSE boundary condition treatment in the far field. Finally, a small-amplitude wave triad is forced at the inflow, and simulation results are compared with those of LST. Again, very good agreement is found between DNS and LST results for the 3-D simulations, the implication being that the disturbance amplitudes are sufficiently small that nonlinear interactions are negligible.
Energy Technology Data Exchange (ETDEWEB)
Avramova, Maria N. [Pennsylvania State Univ., University Park, PA (United States); Salko, Robert K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2016-05-25
Coolant-Boiling in Rod Arrays|Two Fluids (COBRA-TF) is a thermal/ hydraulic (T/H) simulation code designed for light water reactor (LWR) vessel analysis. It uses a two-fluid, three-field (i.e. fluid film, fluid drops, and vapor) modeling approach. Both sub-channel and 3D Cartesian forms of 9 conservation equations are available for LWR modeling. The code was originally developed by Pacific Northwest Laboratory in 1980 and had been used and modified by several institutions over the last few decades. COBRA-TF also found use at the Pennsylvania State University (PSU) by the Reactor Dynamics and Fuel Management Group (RDFMG) and has been improved, updated, and subsequently re-branded as CTF. As part of the improvement process, it was necessary to generate sufficient documentation for the open-source code which had lacked such material upon being adopted by RDFMG. This document serves mainly as a theory manual for CTF, detailing the many two-phase heat transfer, drag, and important accident scenario models contained in the code as well as the numerical solution process utilized. Coding of the models is also discussed, all with consideration for updates that have been made when transitioning from COBRA-TF to CTF. Further documentation outside of this manual is also available at RDFMG which focus on code input deck generation and source code global variable and module listings.
Survey of particle codes in the Magnetic Fusion Energy Program
International Nuclear Information System (INIS)
1977-12-01
In the spring of 1976, the Fusion Plasma Theory Branch of the Division of Magnetic Fusion Energy conducted a survey of all the physics computer codes being supported at that time. The purpose of that survey was to allow DMFE to prepare a description of the codes for distribution to the plasma physics community. This document is the first of several planned and covers those types of codes which treat the plasma as a group of particles
Inclusion of nodal option in diffusion conventional codes
International Nuclear Information System (INIS)
Prati, A.; Anaf, J.
1985-01-01
The GCMDT (Generalized Coarse Mesh Diffusion Theory) is studied to use in the 2DB diffusion conventional code. An adequate formalism for its implementation in codes of 'Mesh-Centered' is developed for retangular, triangular and hexagonal geometries. (M.C.K.) [pt
Whalen, Michael; Schumann, Johann; Fischer, Bernd
2002-01-01
Code certification is a lightweight approach to demonstrate software quality on a formal level. Its basic idea is to require producers to provide formal proofs that their code satisfies certain quality properties. These proofs serve as certificates which can be checked independently. Since code certification uses the same underlying technology as program verification, it also requires many detailed annotations (e.g., loop invariants) to make the proofs possible. However, manually adding theses annotations to the code is time-consuming and error-prone. We address this problem by combining code certification with automatic program synthesis. We propose an approach to generate simultaneously, from a high-level specification, code and all annotations required to certify generated code. Here, we describe a certification extension of AUTOBAYES, a synthesis tool which automatically generates complex data analysis programs from compact specifications. AUTOBAYES contains sufficient high-level domain knowledge to generate detailed annotations. This allows us to use a general-purpose verification condition generator to produce a set of proof obligations in first-order logic. The obligations are then discharged using the automated theorem E-SETHEO. We demonstrate our approach by certifying operator safety for a generated iterative data classification program without manual annotation of the code.
Division for Early Childhood, Council for Exceptional Children, 2009
2009-01-01
The Code of Ethics of the Division for Early Childhood (DEC) of the Council for Exceptional Children is a public statement of principles and practice guidelines supported by the mission of DEC. The foundation of this Code is based on sound ethical reasoning related to professional practice with young children with disabilities and their families…
Interleaved Product LDPC Codes
Baldi, Marco; Cancellieri, Giovanni; Chiaraluce, Franco
2011-01-01
Product LDPC codes take advantage of LDPC decoding algorithms and the high minimum distance of product codes. We propose to add suitable interleavers to improve the waterfall performance of LDPC decoding. Interleaving also reduces the number of low weight codewords, that gives a further advantage in the error floor region.
Napier, Rebecca H; Bruelheide, Lori S; Demann, Eric T K; Haug, Richard H
2008-07-01
The purpose of this article is to highlight the importance of understanding various numeric and alpha-numeric codes for accurately billing dental and medically related services to private pay or third-party insurance carriers. In the United States, common dental terminology (CDT) codes are most commonly used by dentists to submit claims, whereas current procedural terminology (CPT) and International Classification of Diseases, Ninth Revision, Clinical Modification (ICD.9.CM) codes are more commonly used by physicians to bill for their services. The CPT and ICD.9.CM coding systems complement each other in that CPT codes provide the procedure and service information and ICD.9.CM codes provide the reason or rationale for a particular procedure or service. These codes are more commonly used for "medical necessity" determinations, and general dentists and specialists who routinely perform care, including trauma-related care, biopsies, and dental treatment as a result of or in anticipation of a cancer-related treatment, are likely to use these codes. Claim submissions for care provided can be completed electronically or by means of paper forms.
Indian Academy of Sciences (India)
Science and Automation at ... the Reed-Solomon code contained 223 bytes of data, (a byte ... then you have a data storage system with error correction, that ..... practical codes, storing such a table is infeasible, as it is generally too large.
DEFF Research Database (Denmark)
Pries-Heje, Lene; Pries-Heje, Jan; Dalgaard, Bente
2013-01-01
is required. In this paper we present the design of such a new approach, the Scrum Code Camp, which can be used to assess agile team capability in a transparent and consistent way. A design science research approach is used to analyze properties of two instances of the Scrum Code Camp where seven agile teams...
International Nuclear Information System (INIS)
Lysenko, W.P.
1984-04-01
We have developed the RFQLIB simulation system to provide a means to systematically generate the new versions of radio-frequency quadrupole (RFQ) linac simulation codes that are required by the constantly changing needs of a research environment. This integrated system simplifies keeping track of the various versions of the simulation code and makes it practical to maintain complete and up-to-date documentation. In this scheme, there is a certain standard version of the simulation code that forms a library upon which new versions are built. To generate a new version of the simulation code, the routines to be modified or added are appended to a standard command file, which contains the commands to compile the new routines and link them to the routines in the library. The library itself is rarely changed. Whenever the library is modified, however, this modification is seen by all versions of the simulation code, which actually exist as different versions of the command file. All code is written according to the rules of structured programming. Modularity is enforced by not using COMMON statements, simplifying the relation of the data flow to a hierarchy diagram. Simulation results are similar to those of the PARMTEQ code, as expected, because of the similar physical model. Different capabilities, such as those for generating beams matched in detail to the structure, are available in the new code for help in testing new ideas in designing RFQ linacs
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 3. Error Correcting Codes - Reed Solomon Codes. Priti Shankar. Series Article Volume 2 Issue 3 March ... Author Affiliations. Priti Shankar1. Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560 012, India ...
2013-03-26
... Energy Conservation Code. International Existing Building Code. International Fire Code. International... Code. International Property Maintenance Code. International Residential Code. International Swimming Pool and Spa Code International Wildland-Urban Interface Code. International Zoning Code. ICC Standards...
Validation of thermalhydraulic codes
International Nuclear Information System (INIS)
Wilkie, D.
1992-01-01
Thermalhydraulic codes require to be validated against experimental data collected over a wide range of situations if they are to be relied upon. A good example is provided by the nuclear industry where codes are used for safety studies and for determining operating conditions. Errors in the codes could lead to financial penalties, to the incorrect estimation of the consequences of accidents and even to the accidents themselves. Comparison between prediction and experiment is often described qualitatively or in approximate terms, e.g. ''agreement is within 10%''. A quantitative method is preferable, especially when several competing codes are available. The codes can then be ranked in order of merit. Such a method is described. (Author)
International Nuclear Information System (INIS)
Dershowitz, W; Herbert, A.; Long, J.
1989-03-01
The hydrology of the SCV site will be modelled utilizing discrete fracture flow models. These models are complex, and can not be fully cerified by comparison to analytical solutions. The best approach for verification of these codes is therefore cross-verification between different codes. This is complicated by the variation in assumptions and solution techniques utilized in different codes. Cross-verification procedures are defined which allow comparison of the codes developed by Harwell Laboratory, Lawrence Berkeley Laboratory, and Golder Associates Inc. Six cross-verification datasets are defined for deterministic and stochastic verification of geometric and flow features of the codes. Additional datasets for verification of transport features will be documented in a future report. (13 figs., 7 tabs., 10 refs.) (authors)
Phenotypic Graphs and Evolution Unfold the Standard Genetic Code as the Optimal
Zamudio, Gabriel S.; José, Marco V.
2018-03-01
In this work, we explicitly consider the evolution of the Standard Genetic Code (SGC) by assuming two evolutionary stages, to wit, the primeval RNY code and two intermediate codes in between. We used network theory and graph theory to measure the connectivity of each phenotypic graph. The connectivity values are compared to the values of the codes under different randomization scenarios. An error-correcting optimal code is one in which the algebraic connectivity is minimized. We show that the SGC is optimal in regard to its robustness and error-tolerance when compared to all random codes under different assumptions.
Huffman coding in advanced audio coding standard
Brzuchalski, Grzegorz
2012-05-01
This article presents several hardware architectures of Advanced Audio Coding (AAC) Huffman noiseless encoder, its optimisations and working implementation. Much attention has been paid to optimise the demand of hardware resources especially memory size. The aim of design was to get as short binary stream as possible in this standard. The Huffman encoder with whole audio-video system has been implemented in FPGA devices.
Joyner, W David
2017-01-01
This textbook acts as a pathway to higher mathematics by seeking and illuminating the connections between graph theory and diverse fields of mathematics, such as calculus on manifolds, group theory, algebraic curves, Fourier analysis, cryptography and other areas of combinatorics. An overview of graph theory definitions and polynomial invariants for graphs prepares the reader for the subsequent dive into the applications of graph theory. To pique the reader’s interest in areas of possible exploration, recent results in mathematics appear throughout the book, accompanied with examples of related graphs, how they arise, and what their valuable uses are. The consequences of graph theory covered by the authors are complicated and far-reaching, so topics are always exhibited in a user-friendly manner with copious graphs, exercises, and Sage code for the computation of equations. Samples of the book’s source code can be found at github.com/springer-math/adventures-in-graph-theory. The text is geared towards ad...
Directory of Open Access Journals (Sweden)
Yan Zhang
2015-01-01
Full Text Available This paper presents four different integer sequences to construct quasi-cyclic low-density parity-check (QC-LDPC codes with mathematical theory. The paper introduces the procedure of the coding principle and coding. Four different integer sequences constructing QC-LDPC code are compared with LDPC codes by using PEG algorithm, array codes, and the Mackey codes, respectively. Then, the integer sequence QC-LDPC codes are used in coded cooperative communication. Simulation results show that the integer sequence constructed QC-LDPC codes are effective, and overall performance is better than that of other types of LDPC codes in the coded cooperative communication. The performance of Dayan integer sequence constructed QC-LDPC is the most excellent performance.
A Nonvolume Preserving Plasticity Theory with Applications to Powder Metallurgy
Cassenti, B. N.
1983-01-01
A plasticity theory has been developed to predict the mechanical response of powder metals during hot isostatic pressing. The theory parameters were obtained through an experimental program consisting of hydrostatic pressure tests, uniaxial compression and uniaxial tension tests. A nonlinear finite element code was modified to include the theory and the results of themodified code compared favorably to the results from a verification experiment.
Energy Technology Data Exchange (ETDEWEB)
Nelson, R.N. (ed.)
1985-05-01
This publication lists all report number codes processed by the Office of Scientific and Technical Information. The report codes are substantially based on the American National Standards Institute, Standard Technical Report Number (STRN)-Format and Creation Z39.23-1983. The Standard Technical Report Number (STRN) provides one of the primary methods of identifying a specific technical report. The STRN consists of two parts: The report code and the sequential number. The report code identifies the issuing organization, a specific program, or a type of document. The sequential number, which is assigned in sequence by each report issuing entity, is not included in this publication. Part I of this compilation is alphabetized by report codes followed by issuing installations. Part II lists the issuing organization followed by the assigned report code(s). In both Parts I and II, the names of issuing organizations appear for the most part in the form used at the time the reports were issued. However, for some of the more prolific installations which have had name changes, all entries have been merged under the current name.
International Nuclear Information System (INIS)
Nelson, R.N.
1985-05-01
This publication lists all report number codes processed by the Office of Scientific and Technical Information. The report codes are substantially based on the American National Standards Institute, Standard Technical Report Number (STRN)-Format and Creation Z39.23-1983. The Standard Technical Report Number (STRN) provides one of the primary methods of identifying a specific technical report. The STRN consists of two parts: The report code and the sequential number. The report code identifies the issuing organization, a specific program, or a type of document. The sequential number, which is assigned in sequence by each report issuing entity, is not included in this publication. Part I of this compilation is alphabetized by report codes followed by issuing installations. Part II lists the issuing organization followed by the assigned report code(s). In both Parts I and II, the names of issuing organizations appear for the most part in the form used at the time the reports were issued. However, for some of the more prolific installations which have had name changes, all entries have been merged under the current name
Psychometric challenges and proposed solutions when scoring facial emotion expression codes
Olderbak, Sally; Hildebrandt, Andrea; Pinkpank, Thomas; Sommer, Werner; Wilhelm, Oliver
2013-01-01
Coding of facial emotion expressions is increasingly performed by automated emotion expression scoring software; however, there is limited discussion on how best to score the resulting codes. We present a discussion of facial emotion expression theories and a review of contemporary emotion expression coding methodology. We highlight methodological challenges pertinent to scoring software-coded facial emotion expression codes and present important psychometric research questions centered on co...
DEFF Research Database (Denmark)
Wæver, Ole
2009-01-01
-empiricism and anti-positivism of his position. Followers and critics alike have treated Waltzian neorealism as if it was at bottom a formal proposition about cause-effect relations. The extreme case of Waltz being so victorious in the discipline, and yet being consistently mis-interpreted on the question of theory......, shows the power of a dominant philosophy of science in US IR, and thus the challenge facing any ambitious theorising. The article suggests a possible movement of fronts away from the ‘fourth debate' between rationalism and reflectivism towards one of theory against empiricism. To help this new agenda...
2014-01-01
While cracking a code might seem like something few of us would encounter in our daily lives, it is actually far more prevalent than we may realize. Anyone who has had personal information taken because of a hacked email account can understand the need for cryptography and the importance of encryption-essentially the need to code information to keep it safe. This detailed volume examines the logic and science behind various ciphers, their real world uses, how codes can be broken, and the use of technology in this oft-overlooked field.
Coded Splitting Tree Protocols
DEFF Research Database (Denmark)
Sørensen, Jesper Hemming; Stefanovic, Cedomir; Popovski, Petar
2013-01-01
This paper presents a novel approach to multiple access control called coded splitting tree protocol. The approach builds on the known tree splitting protocols, code structure and successive interference cancellation (SIC). Several instances of the tree splitting protocol are initiated, each...... instance is terminated prematurely and subsequently iterated. The combined set of leaves from all the tree instances can then be viewed as a graph code, which is decodable using belief propagation. The main design problem is determining the order of splitting, which enables successful decoding as early...
MARS code manual volume I: code structure, system models, and solution methods
International Nuclear Information System (INIS)
Chung, Bub Dong; Kim, Kyung Doo; Bae, Sung Won; Jeong, Jae Jun; Lee, Seung Wook; Hwang, Moon Kyu; Yoon, Churl
2010-02-01
Korea Advanced Energy Research Institute (KAERI) conceived and started the development of MARS code with the main objective of producing a state-of-the-art realistic thermal hydraulic systems analysis code with multi-dimensional analysis capability. MARS achieves this objective by very tightly integrating the one dimensional RELAP5/MOD3 with the multi-dimensional COBRA-TF codes. The method of integration of the two codes is based on the dynamic link library techniques, and the system pressure equation matrices of both codes are implicitly integrated and solved simultaneously. In addition, the Equation-Of-State (EOS) for the light water was unified by replacing the EOS of COBRA-TF by that of the RELAP5. This theory manual provides a complete list of overall information of code structure and major function of MARS including code architecture, hydrodynamic model, heat structure, trip / control system and point reactor kinetics model. Therefore, this report would be very useful for the code users. The overall structure of the manual is modeled on the structure of the RELAP5 and as such the layout of the manual is very similar to that of the RELAP. This similitude to RELAP5 input is intentional as this input scheme will allow minimum modification between the inputs of RELAP5 and MARS3.1. MARS3.1 development team would like to express its appreciation to the RELAP5 Development Team and the USNRC for making this manual possible
Amino acid code of protein secondary structure.
Shestopalov, B V
2003-01-01
The calculation of protein three-dimensional structure from the amino acid sequence is a fundamental problem to be solved. This paper presents principles of the code theory of protein secondary structure, and their consequence--the amino acid code of protein secondary structure. The doublet code model of protein secondary structure, developed earlier by the author (Shestopalov, 1990), is part of this theory. The theory basis are: 1) the name secondary structure is assigned to the conformation, stabilized only by the nearest (intraresidual) and middle-range (at a distance no more than that between residues i and i + 5) interactions; 2) the secondary structure consists of regular (alpha-helical and beta-structural) and irregular (coil) segments; 3) the alpha-helices, beta-strands and coil segments are encoded, respectively, by residue pairs (i, i + 4), (i, i + 2), (i, i = 1), according to the numbers of residues per period, 3.6, 2, 1; 4) all such pairs in the amino acid sequence are codons for elementary structural elements, or structurons; 5) the codons are divided into 21 types depending on their strength, i.e. their encoding capability; 6) overlappings of structurons of one and the same structure generate the longer segments of this structure; 7) overlapping of structurons of different structures is forbidden, and therefore selection of codons is required, the codon selection is hierarchic; 8) the code theory of protein secondary structure generates six variants of the amino acid code of protein secondary structure. There are two possible kinds of model construction based on the theory: the physical one using physical properties of amino acid residues, and the statistical one using results of statistical analysis of a great body of structural data. Some evident consequences of the theory are: a) the theory can be used for calculating the secondary structure from the amino acid sequence as a partial solution of the problem of calculation of protein three
DEFF Research Database (Denmark)
2015-01-01
Fulcrum network codes, which are a network coding framework, achieve three objectives: (i) to reduce the overhead per coded packet to almost 1 bit per source packet; (ii) to operate the network using only low field size operations at intermediate nodes, dramatically reducing complexity...... in the network; and (iii) to deliver an end-to-end performance that is close to that of a high field size network coding system for high-end receivers while simultaneously catering to low-end ones that can only decode in a lower field size. Sources may encode using a high field size expansion to increase...... the number of dimensions seen by the network using a linear mapping. Receivers can tradeoff computational effort with network delay, decoding in the high field size, the low field size, or a combination thereof....
Supervised Convolutional Sparse Coding
Affara, Lama Ahmed; Ghanem, Bernard; Wonka, Peter
2018-01-01
coding, which aims at learning discriminative dictionaries instead of purely reconstructive ones. We incorporate a supervised regularization term into the traditional unsupervised CSC objective to encourage the final dictionary elements
International Nuclear Information System (INIS)
Dunn, F.E.; Prohammer, F.G.; Weber, D.P.
1983-01-01
The SASSYS LMFBR systems analysis code is being developed mainly to analyze the behavior of the shut-down heat-removal system and the consequences of failures in the system, although it is also capable of analyzing a wide range of transients, from mild operational transients through more severe transients leading to sodium boiling in the core and possible melting of clad and fuel. The code includes a detailed SAS4A multi-channel core treatment plus a general thermal-hydraulic treatment of the primary and intermediate heat-transport loops and the steam generators. The code can handle any LMFBR design, loop or pool, with an arbitrary arrangement of components. The code is fast running: usually faster than real time
Montgomery County of Maryland — The Office of the County Attorney (OCA) processes Code Violation Citations issued by County agencies. The citations can be viewed by issued department, issued date...
Energy Technology Data Exchange (ETDEWEB)
Freeman, L.N.; Wilson, R.E. [Oregon State Univ., Dept. of Mechanical Engineering, Corvallis, OR (United States)
1996-09-01
The FAST Code which is capable of determining structural loads on a flexible, teetering, horizontal axis wind turbine is described and comparisons of calculated loads with test data are given at two wind speeds for the ESI-80. The FAST Code models a two-bladed HAWT with degrees of freedom for blade bending, teeter, drive train flexibility, yaw, and windwise and crosswind tower motion. The code allows blade dimensions, stiffnesses, and weights to differ and models tower shadow, wind shear, and turbulence. Additionally, dynamic stall is included as are delta-3 and an underslung rotor. Load comparisons are made with ESI-80 test data in the form of power spectral density, rainflow counting, occurrence histograms, and azimuth averaged bin plots. It is concluded that agreement between the FAST Code and test results is good. (au)
Code Disentanglement: Initial Plan
Energy Technology Data Exchange (ETDEWEB)
Wohlbier, John Greaton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kelley, Timothy M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rockefeller, Gabriel M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Calef, Matthew Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-01-27
The first step to making more ambitious changes in the EAP code base is to disentangle the code into a set of independent, levelized packages. We define a package as a collection of code, most often across a set of files, that provides a defined set of functionality; a package a) can be built and tested as an entity and b) fits within an overall levelization design. Each package contributes one or more libraries, or an application that uses the other libraries. A package set is levelized if the relationships between packages form a directed, acyclic graph and each package uses only packages at lower levels of the diagram (in Fortran this relationship is often describable by the use relationship between modules). Independent packages permit independent- and therefore parallel|development. The packages form separable units for the purposes of development and testing. This is a proven path for enabling finer-grained changes to a complex code.
Induction technology optimization code
International Nuclear Information System (INIS)
Caporaso, G.J.; Brooks, A.L.; Kirbie, H.C.
1992-01-01
A code has been developed to evaluate relative costs of induction accelerator driver systems for relativistic klystrons. The code incorporates beam generation, transport and pulsed power system constraints to provide an integrated design tool. The code generates an injector/accelerator combination which satisfies the top level requirements and all system constraints once a small number of design choices have been specified (rise time of the injector voltage and aspect ratio of the ferrite induction cores, for example). The code calculates dimensions of accelerator mechanical assemblies and values of all electrical components. Cost factors for machined parts, raw materials and components are applied to yield a total system cost. These costs are then plotted as a function of the two design choices to enable selection of an optimum design based on various criteria. (Author) 11 refs., 3 figs
Vermont Center for Geographic Information — (Link to Metadata) A ZIP Code Tabulation Area (ZCTA) is a statistical geographic entity that approximates the delivery area for a U.S. Postal Service five-digit...
International Nuclear Information System (INIS)
Kulikowska, T.
2001-01-01
The description of reactor lattice codes is carried out on the example of the WIMSD-5B code. The WIMS code in its various version is the most recognised lattice code. It is used in all parts of the world for calculations of research and power reactors. The version WIMSD-5B is distributed free of charge by NEA Data Bank. The description of its main features given in the present lecture follows the aspects defined previously for lattice calculations in the lecture on Reactor Lattice Transport Calculations. The spatial models are described, and the approach to the energy treatment is given. Finally the specific algorithm applied in fuel depletion calculations is outlined. (author)
Optimal interference code based on machine learning
Qian, Ye; Chen, Qian; Hu, Xiaobo; Cao, Ercong; Qian, Weixian; Gu, Guohua
2016-10-01
In this paper, we analyze the characteristics of pseudo-random code, by the case of m sequence. Depending on the description of coding theory, we introduce the jamming methods. We simulate the interference effect or probability model by the means of MATLAB to consolidate. In accordance with the length of decoding time the adversary spends, we find out the optimal formula and optimal coefficients based on machine learning, then we get the new optimal interference code. First, when it comes to the phase of recognition, this study judges the effect of interference by the way of simulating the length of time over the decoding period of laser seeker. Then, we use laser active deception jamming simulate interference process in the tracking phase in the next block. In this study we choose the method of laser active deception jamming. In order to improve the performance of the interference, this paper simulates the model by MATLAB software. We find out the least number of pulse intervals which must be received, then we can make the conclusion that the precise interval number of the laser pointer for m sequence encoding. In order to find the shortest space, we make the choice of the greatest common divisor method. Then, combining with the coding regularity that has been found before, we restore pulse interval of pseudo-random code, which has been already received. Finally, we can control the time period of laser interference, get the optimal interference code, and also increase the probability of interference as well.
Puzzling the Picture Using Grounded Theory
Bennett, Elisabeth E.
2016-01-01
Since the first publication by Glaser and Strauss in 1967, Grounded Theory has become a highly influential research approach in the social sciences. The approach provides techniques and coding strategies for building theory inductively from the "ground up" as concepts within the data earn relevance into an evolving substantive theory.…
Critical Care Coding for Neurologists.
Nuwer, Marc R; Vespa, Paul M
2015-10-01
Accurate coding is an important function of neurologic practice. This contribution to Continuum is part of an ongoing series that presents helpful coding information along with examples related to the issue topic. Tips for diagnosis coding, Evaluation and Management coding, procedure coding, or a combination are presented, depending on which is most applicable to the subject area of the issue.
Natarajan, Lakshmi; Hong, Yi; Viterbo, Emanuele
2014-01-01
The index coding problem involves a sender with K messages to be transmitted across a broadcast channel, and a set of receivers each of which demands a subset of the K messages while having prior knowledge of a different subset as side information. We consider the specific case of noisy index coding where the broadcast channel is Gaussian and every receiver demands all the messages from the source. Instances of this communication problem arise in wireless relay networks, sensor networks, and ...
Towards advanced code simulators
International Nuclear Information System (INIS)
Scriven, A.H.
1990-01-01
The Central Electricity Generating Board (CEGB) uses advanced thermohydraulic codes extensively to support PWR safety analyses. A system has been developed to allow fully interactive execution of any code with graphical simulation of the operator desk and mimic display. The system operates in a virtual machine environment, with the thermohydraulic code executing in one virtual machine, communicating via interrupts with any number of other virtual machines each running other programs and graphics drivers. The driver code itself does not have to be modified from its normal batch form. Shortly following the release of RELAP5 MOD1 in IBM compatible form in 1983, this code was used as the driver for this system. When RELAP5 MOD2 became available, it was adopted with no changes needed in the basic system. Overall the system has been used for some 5 years for the analysis of LOBI tests, full scale plant studies and for simple what-if studies. For gaining rapid understanding of system dependencies it has proved invaluable. The graphical mimic system, being independent of the driver code, has also been used with other codes to study core rewetting, to replay results obtained from batch jobs on a CRAY2 computer system and to display suitably processed experimental results from the LOBI facility to aid interpretation. For the above work real-time execution was not necessary. Current work now centers on implementing the RELAP 5 code on a true parallel architecture machine. Marconi Simulation have been contracted to investigate the feasibility of using upwards of 100 processors, each capable of a peak of 30 MIPS to run a highly detailed RELAP5 model in real time, complete with specially written 3D core neutronics and balance of plant models. This paper describes the experience of using RELAP5 as an analyzer/simulator, and outlines the proposed methods and problems associated with parallel execution of RELAP5
DEFF Research Database (Denmark)
Rennison, Betina Wolfgang
2016-01-01
extensive work to raise the proportion of women. This has helped slightly, but women remain underrepresented at the corporate top. Why is this so? What can be done to solve it? This article presents five different types of answers relating to five discursive codes: nature, talent, business, exclusion...... in leadership management, we must become more aware and take advantage of this complexity. We must crack the codes in order to crack the curve....
International Nuclear Information System (INIS)
De Wit, R.; Jamieson, T.; Lord, M.; Lafortune, J.F.
1997-07-01
As a necessary component in the continuous improvement and refinement of methodologies employed in the nuclear industry, regulatory agencies need to periodically evaluate these processes to improve confidence in results and ensure appropriate levels of safety are being achieved. The independent and objective review of industry-standard computer codes forms an essential part of this program. To this end, this work undertakes an in-depth review of the computer code PEAR (Public Exposures from Accidental Releases), developed by Atomic Energy of Canada Limited (AECL) to assess accidental releases from CANDU reactors. PEAR is based largely on the models contained in the Canadian Standards Association (CSA) N288.2-M91. This report presents the results of a detailed technical review of the PEAR code to identify any variations from the CSA standard and other supporting documentation, verify the source code, assess the quality of numerical models and results, and identify general strengths and weaknesses of the code. The version of the code employed in this review is the one which AECL intends to use for CANDU 9 safety analyses. (author)
International Nuclear Information System (INIS)
Cramer, S.N.
1984-01-01
The KENO-V code is the current release of the Oak Ridge multigroup Monte Carlo criticality code development. The original KENO, with 16 group Hansen-Roach cross sections and P 1 scattering, was one ot the first multigroup Monte Carlo codes and it and its successors have always been a much-used research tool for criticality studies. KENO-V is able to accept large neutron cross section libraries (a 218 group set is distributed with the code) and has a general P/sub N/ scattering capability. A supergroup feature allows execution of large problems on small computers, but at the expense of increased calculation time and system input/output operations. This supergroup feature is activated automatically by the code in a manner which utilizes as much computer memory as is available. The primary purpose of KENO-V is to calculate the system k/sub eff/, from small bare critical assemblies to large reflected arrays of differing fissile and moderator elements. In this respect KENO-V neither has nor requires the many options and sophisticated biasing techniques of general Monte Carlo codes
Code, standard and specifications
International Nuclear Information System (INIS)
Abdul Nassir Ibrahim; Azali Muhammad; Ab. Razak Hamzah; Abd. Aziz Mohamed; Mohamad Pauzi Ismail
2008-01-01
Radiography also same as the other technique, it need standard. This standard was used widely and method of used it also regular. With that, radiography testing only practical based on regulations as mentioned and documented. These regulation or guideline documented in code, standard and specifications. In Malaysia, level one and basic radiographer can do radiography work based on instruction give by level two or three radiographer. This instruction was produced based on guideline that mention in document. Level two must follow the specifications mentioned in standard when write the instruction. From this scenario, it makes clearly that this radiography work is a type of work that everything must follow the rule. For the code, the radiography follow the code of American Society for Mechanical Engineer (ASME) and the only code that have in Malaysia for this time is rule that published by Atomic Energy Licensing Board (AELB) known as Practical code for radiation Protection in Industrial radiography. With the existence of this code, all the radiography must follow the rule or standard regulated automatically.
Fast Coding Unit Encoding Mechanism for Low Complexity Video Coding
Gao, Yuan; Liu, Pengyu; Wu, Yueying; Jia, Kebin; Gao, Guandong
2016-01-01
In high efficiency video coding (HEVC), coding tree contributes to excellent compression performance. However, coding tree brings extremely high computational complexity. Innovative works for improving coding tree to further reduce encoding time are stated in this paper. A novel low complexity coding tree mechanism is proposed for HEVC fast coding unit (CU) encoding. Firstly, this paper makes an in-depth study of the relationship among CU distribution, quantization parameter (QP) and content ...
NP-hardness of decoding quantum error-correction codes
Hsieh, Min-Hsiu; Le Gall, François
2011-05-01
Although the theory of quantum error correction is intimately related to classical coding theory and, in particular, one can construct quantum error-correction codes (QECCs) from classical codes with the dual-containing property, this does not necessarily imply that the computational complexity of decoding QECCs is the same as their classical counterparts. Instead, decoding QECCs can be very much different from decoding classical codes due to the degeneracy property. Intuitively, one expects degeneracy would simplify the decoding since two different errors might not and need not be distinguished in order to correct them. However, we show that general quantum decoding problem is NP-hard regardless of the quantum codes being degenerate or nondegenerate. This finding implies that no considerably fast decoding algorithm exists for the general quantum decoding problems and suggests the existence of a quantum cryptosystem based on the hardness of decoding QECCs.
NP-hardness of decoding quantum error-correction codes
International Nuclear Information System (INIS)
Hsieh, Min-Hsiu; Le Gall, Francois
2011-01-01
Although the theory of quantum error correction is intimately related to classical coding theory and, in particular, one can construct quantum error-correction codes (QECCs) from classical codes with the dual-containing property, this does not necessarily imply that the computational complexity of decoding QECCs is the same as their classical counterparts. Instead, decoding QECCs can be very much different from decoding classical codes due to the degeneracy property. Intuitively, one expects degeneracy would simplify the decoding since two different errors might not and need not be distinguished in order to correct them. However, we show that general quantum decoding problem is NP-hard regardless of the quantum codes being degenerate or nondegenerate. This finding implies that no considerably fast decoding algorithm exists for the general quantum decoding problems and suggests the existence of a quantum cryptosystem based on the hardness of decoding QECCs.
Improvement of group collapsing in TRANSX code
International Nuclear Information System (INIS)
Jeong, Hyun Tae; Kim, Young Cheol; Kim, Young In; Kim, Young Kyun
1996-07-01
A cross section generating and processing computer code TRANSX version 2.15 in the K-CORE system, being developed by the KAERI LMR core design technology development team produces various cross section input files appropriated for flux calculation options from the cross section library MATXS. In this report, a group collapsing function of TRANSX has been improved to utilize the zone averaged flux file RZFLUX written in double precision as flux weighting functions. As a result, an iterative calculation system using double precision RZFLUX consisting of the cross section data library file MATXS, the effective cross section producing and processing code TRANSX, and the transport theory calculation code TWODANT has been set up and verified through a sample model calculation. 4 refs. (Author)
Two-dimensional sensitivity calculation code: SENSETWO
International Nuclear Information System (INIS)
Yamauchi, Michinori; Nakayama, Mitsuo; Minami, Kazuyoshi; Seki, Yasushi; Iida, Hiromasa.
1979-05-01
A SENSETWO code for the calculation of cross section sensitivities with a two-dimensional model has been developed, on the basis of first order perturbation theory. It uses forward neutron and/or gamma-ray fluxes and adjoint fluxes obtained by two-dimensional discrete ordinates code TWOTRAN-II. The data and informations of cross sections, geometry, nuclide density, response functions, etc. are transmitted to SENSETWO by the dump magnetic tape made in TWOTRAN calculations. The required input for SENSETWO calculations is thus very simple. The SENSETWO yields as printed output the cross section sensitivities for each coarse mesh zone and for each energy group, as well as the plotted output of sensitivity profiles specified by the input. A special feature of the code is that it also calculates the reaction rate with the response function used as the adjoint source in TWOTRAN adjoint calculation and the calculated forward flux from the TWOTRAN forward calculation. (author)
RODMOD: a code for control rod positioning
International Nuclear Information System (INIS)
Vondy, D.R.; Fowler, T.B.
1978-11-01
The report documents a computer code which has been implemented to position control rods according to a prescribed schedule during the calculation of a reactor history. Control rods may be represented explicitly with or without internal black absorber conditions in selected energy groups, or fractional insertion may be done, or both, in a problem. There is provision for control rod follower, movement of materials through a series of zones in a closed loop, and shutdown rod insertion and subsequent removal to allow the reactor history calculation to be continued. This code is incorporated in the system containing the VENTURE diffusion theory neutronics and the BURNER exposure codes for routine use. The implemented automated procedures cause the prescribed control rod insertion schedule to be applied without the access of additional user input data during the calculation of a reactor operating history
Evaluation of the efficiency and fault density of software generated by code generators
Schreur, Barbara
1993-01-01
Flight computers and flight software are used for GN&C (guidance, navigation, and control), engine controllers, and avionics during missions. The software development requires the generation of a considerable amount of code. The engineers who generate the code make mistakes and the generation of a large body of code with high reliability requires considerable time. Computer-aided software engineering (CASE) tools are available which generates code automatically with inputs through graphical interfaces. These tools are referred to as code generators. In theory, code generators could write highly reliable code quickly and inexpensively. The various code generators offer different levels of reliability checking. Some check only the finished product while some allow checking of individual modules and combined sets of modules as well. Considering NASA's requirement for reliability, an in house manually generated code is needed. Furthermore, automatically generated code is reputed to be as efficient as the best manually generated code when executed. In house verification is warranted.
SPECTRAL AMPLITUDE CODING OCDMA SYSTEMS USING ENHANCED DOUBLE WEIGHT CODE
Directory of Open Access Journals (Sweden)
F.N. HASOON
2006-12-01
Full Text Available A new code structure for spectral amplitude coding optical code division multiple access systems based on double weight (DW code families is proposed. The DW has a fixed weight of two. Enhanced double-weight (EDW code is another variation of a DW code family that can has a variable weight greater than one. The EDW code possesses ideal cross-correlation properties and exists for every natural number n. A much better performance can be provided by using the EDW code compared to the existing code such as Hadamard and Modified Frequency-Hopping (MFH codes. It has been observed that theoretical analysis and simulation for EDW is much better performance compared to Hadamard and Modified Frequency-Hopping (MFH codes.
Nuclear code abstracts (1975 edition)
International Nuclear Information System (INIS)
Akanuma, Makoto; Hirakawa, Takashi
1976-02-01
Nuclear Code Abstracts is compiled in the Nuclear Code Committee to exchange information of the nuclear code developments among members of the committee. Enlarging the collection, the present one includes nuclear code abstracts obtained in 1975 through liaison officers of the organizations in Japan participating in the Nuclear Energy Agency's Computer Program Library at Ispra, Italy. The classification of nuclear codes and the format of code abstracts are the same as those in the library. (auth.)
ACE - Manufacturer Identification Code (MID)
Department of Homeland Security — The ACE Manufacturer Identification Code (MID) application is used to track and control identifications codes for manufacturers. A manufacturer is identified on an...
International Nuclear Information System (INIS)
Delbecq, J.M.
1999-01-01
The Aster code is a 2D or 3D finite-element calculation code for structures developed by the R and D direction of Electricite de France (EdF). This dossier presents a complete overview of the characteristics and uses of the Aster code: introduction of version 4; the context of Aster (organisation of the code development, versions, systems and interfaces, development tools, quality assurance, independent validation); static mechanics (linear thermo-elasticity, Euler buckling, cables, Zarka-Casier method); non-linear mechanics (materials behaviour, big deformations, specific loads, unloading and loss of load proportionality indicators, global algorithm, contact and friction); rupture mechanics (G energy restitution level, restitution level in thermo-elasto-plasticity, 3D local energy restitution level, KI and KII stress intensity factors, calculation of limit loads for structures), specific treatments (fatigue, rupture, wear, error estimation); meshes and models (mesh generation, modeling, loads and boundary conditions, links between different modeling processes, resolution of linear systems, display of results etc..); vibration mechanics (modal and harmonic analysis, dynamics with shocks, direct transient dynamics, seismic analysis and aleatory dynamics, non-linear dynamics, dynamical sub-structuring); fluid-structure interactions (internal acoustics, mass, rigidity and damping); linear and non-linear thermal analysis; steels and metal industry (structure transformations); coupled problems (internal chaining, internal thermo-hydro-mechanical coupling, chaining with other codes); products and services. (J.S.)
Adaptive distributed source coding.
Varodayan, David; Lin, Yao-Chung; Girod, Bernd
2012-05-01
We consider distributed source coding in the presence of hidden variables that parameterize the statistical dependence among sources. We derive the Slepian-Wolf bound and devise coding algorithms for a block-candidate model of this problem. The encoder sends, in addition to syndrome bits, a portion of the source to the decoder uncoded as doping bits. The decoder uses the sum-product algorithm to simultaneously recover the source symbols and the hidden statistical dependence variables. We also develop novel techniques based on density evolution (DE) to analyze the coding algorithms. We experimentally confirm that our DE analysis closely approximates practical performance. This result allows us to efficiently optimize parameters of the algorithms. In particular, we show that the system performs close to the Slepian-Wolf bound when an appropriate doping rate is selected. We then apply our coding and analysis techniques to a reduced-reference video quality monitoring system and show a bit rate saving of about 75% compared with fixed-length coding.
International Nuclear Information System (INIS)
Lenain, Roland
2015-01-01
This thesis is devoted to the implementation of a domain decomposition method applied to the neutron transport equation. The objective of this work is to access high-fidelity deterministic solutions to properly handle heterogeneities located in nuclear reactor cores, for problems' size ranging from color-sets of assemblies to large reactor cores configurations in 2D and 3D. The innovative algorithm developed during the thesis intends to optimize the use of parallelism and memory. The approach also aims to minimize the influence of the parallel implementation on the performances. These goals match the needs of APOLLO3 project, developed at CEA and supported by EDF and AREVA, which must be a portable code (no optimization on a specific architecture) in order to achieve best estimate modeling with resources ranging from personal computer to compute cluster available for engineers analyses. The proposed algorithm is a Parallel Multigroup-Block Jacobi one. Each sub-domain is considered as a multi-group fixed-source problem with volume-sources (fission) and surface-sources (interface flux between the sub-domains). The multi-group problem is solved in each sub-domain and a single communication of the interface flux is required at each power iteration. The spectral radius of the resolution algorithm is made similar to the one of a classical resolution algorithm with a nonlinear diffusion acceleration method: the well-known Coarse Mesh Finite Difference. In this way an ideal scalability is achievable when the calculation is parallelized. The memory organization, taking advantage of shared memory parallelism, optimizes the resources by avoiding redundant copies of the data shared between the sub-domains. Distributed memory architectures are made available by a hybrid parallel method that combines both paradigms of shared memory parallelism and distributed memory parallelism. For large problems, these architectures provide a greater number of processors and the amount of
Speech coding code- excited linear prediction
Bäckström, Tom
2017-01-01
This book provides scientific understanding of the most central techniques used in speech coding both for advanced students as well as professionals with a background in speech audio and or digital signal processing. It provides a clear connection between the whys hows and whats thus enabling a clear view of the necessity purpose and solutions provided by various tools as well as their strengths and weaknesses in each respect Equivalently this book sheds light on the following perspectives for each technology presented Objective What do we want to achieve and especially why is this goal important Resource Information What information is available and how can it be useful and Resource Platform What kind of platforms are we working with and what are their capabilities restrictions This includes computational memory and acoustic properties and the transmission capacity of devices used. The book goes on to address Solutions Which solutions have been proposed and how can they be used to reach the stated goals and ...
Contributions to Persistence Theory
Directory of Open Access Journals (Sweden)
Du Dong
2014-12-01
Full Text Available Persistence theory discussed in this paper is an application of algebraic topology (Morse Theory [29] to Data Analysis, precisely to qualitative understanding of point cloud data, or PCD for short. PCD can be geometrized as a filtration of simplicial complexes (Vietoris-Rips complex [25] [36] and the homology changes of these complexes provide qualitative information about the data. Bar codes describe the changes in homology with coefficients in a fixed field. When the coefficient field is ℤ2, the calculation of bar codes is done by ELZ algorithm (named after H. Edelsbrunner, D. Letscher, and A. Zomorodian [20]. When the coefficient field is ℝ, we propose an algorithm based on the Hodge decomposition [17]. With Dan Burghelea and Tamal K. Dey we developed a persistence theory which involves level sets discussed in Section 4. We introduce and discuss new computable invariants, the “relevant level persistence numbers” and the “positive and negative bar codes”, and explain how they are related to the bar codes for level persistence. We provide enhancements and modifications of ELZ algorithm to calculate such invariants and illustrate them by examples.
Spatially coded backscatter radiography
International Nuclear Information System (INIS)
Thangavelu, S.; Hussein, E.M.A.
2007-01-01
Conventional radiography requires access to two opposite sides of an object, which makes it unsuitable for the inspection of extended and/or thick structures (airframes, bridges, floors etc.). Backscatter imaging can overcome this problem, but the indications obtained are difficult to interpret. This paper applies the coded aperture technique to gamma-ray backscatter-radiography in order to enhance the detectability of flaws. This spatial coding method involves the positioning of a mask with closed and open holes to selectively permit or block the passage of radiation. The obtained coded-aperture indications are then mathematically decoded to detect the presence of anomalies. Indications obtained from Monte Carlo calculations were utilized in this work to simulate radiation scattering measurements. These simulated measurements were used to investigate the applicability of this technique to the detection of flaws by backscatter radiography
Energy Technology Data Exchange (ETDEWEB)
Quezada G, S.; Espinosa P, G. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, San Rafael Atlixco No. 186, Col. Vicentina, 09340 Ciudad de Mexico (Mexico); Centeno P, J.; Sanchez M, H., E-mail: sequga@gmail.com [UNAM, Facultad de Ingenieria, Ciudad Universitaria, Circuito Exterior s/n, 04510 Ciudad de Mexico (Mexico)
2017-09-15
This paper presents the Aztheca code, which is formed by the mathematical models of neutron kinetics, power generation, heat transfer, core thermo-hydraulics, recirculation systems, dynamic pressure and level models and control system. The Aztheca code is validated with plant data, as well as with predictions from the manufacturer when the reactor operates in a stationary state. On the other hand, to demonstrate that the model is applicable during a transient, an event occurred in a nuclear power plant with a BWR reactor is selected. The plant data are compared with the results obtained with RELAP-5 and the Aztheca model. The results show that both RELAP-5 and the Aztheca code have the ability to adequately predict the behavior of the reactor. (Author)
Gallistel, C R
2017-07-01
Recent electrophysiological results imply that the duration of the stimulus onset asynchrony in eyeblink conditioning is encoded by a mechanism intrinsic to the cerebellar Purkinje cell. This raises the general question - how is quantitative information (durations, distances, rates, probabilities, amounts, etc.) transmitted by spike trains and encoded into engrams? The usual assumption is that information is transmitted by firing rates. However, rate codes are energetically inefficient and computationally awkward. A combinatorial code is more plausible. If the engram consists of altered synaptic conductances (the usual assumption), then we must ask how numbers may be written to synapses. It is much easier to formulate a coding hypothesis if the engram is realized by a cell-intrinsic molecular mechanism. Copyright © 2017 Elsevier Ltd. All rights reserved.
Vaucouleur, Sebastien
2011-02-01
We introduce code query by example for customisation of evolvable software products in general and of enterprise resource planning systems (ERPs) in particular. The concept is based on an initial empirical study on practices around ERP systems. We motivate our design choices based on those empirical results, and we show how the proposed solution helps with respect to the infamous upgrade problem: the conflict between the need for customisation and the need for upgrade of ERP systems. We further show how code query by example can be used as a form of lightweight static analysis, to detect automatically potential defects in large software products. Code query by example as a form of lightweight static analysis is particularly interesting in the context of ERP systems: it is often the case that programmers working in this field are not computer science specialists but more of domain experts. Hence, they require a simple language to express custom rules.
Lee weight enumerators of self-dual codes and theta functions
Asch, van A.G.; Martens, F.J.L.
2008-01-01
The theory of modular forms, in particular theta functions, and coding theory are in a remarkable way connected. The connection is established by defining a suitable lattice corresponding to the given code, and considering its theta function. First we define some special theta functions, and
Adaptation of HAMMER computer code to CYBER 170/750 computer
International Nuclear Information System (INIS)
Pinheiro, A.M.B.S.; Nair, R.P.K.
1982-01-01
The adaptation of HAMMER computer code to CYBER 170/750 computer is presented. The HAMMER code calculates cell parameters by multigroup transport theory and reactor parameters by few group diffusion theory. The auxiliary programs, the carried out modifications and the use of HAMMER system adapted to CYBER 170/750 computer are described. (M.C.K.) [pt
The correspondence between projective codes and 2-weight codes
Brouwer, A.E.; Eupen, van M.J.M.; Tilborg, van H.C.A.; Willems, F.M.J.
1994-01-01
The hyperplanes intersecting a 2-weight code in the same number of points obviously form the point set of a projective code. On the other hand, if we have a projective code C, then we can make a 2-weight code by taking the multiset of points
Visualizing code and coverage changes for code review
Oosterwaal, Sebastiaan; van Deursen, A.; De Souza Coelho, R.; Sawant, A.A.; Bacchelli, A.
2016-01-01
One of the tasks of reviewers is to verify that code modifications are well tested. However, current tools offer little support in understanding precisely how changes to the code relate to changes to the tests. In particular, it is hard to see whether (modified) test code covers the changed code.
Turbo-Gallager Codes: The Emergence of an Intelligent Coding ...
African Journals Online (AJOL)
Today, both turbo codes and low-density parity-check codes are largely superior to other code families and are being used in an increasing number of modern communication systems including 3G standards, satellite and deep space communications. However, the two codes have certain distinctive characteristics that ...
Jara, Pascual; Torrecillas, Blas
1988-01-01
The papers in this proceedings volume are selected research papers in different areas of ring theory, including graded rings, differential operator rings, K-theory of noetherian rings, torsion theory, regular rings, cohomology of algebras, local cohomology of noncommutative rings. The book will be important for mathematicians active in research in ring theory.
DEFF Research Database (Denmark)
Hendricks, Vincent F.
Game Theory is a collection of short interviews based on 5 questions presented to some of the most influential and prominent scholars in game theory. We hear their views on game theory, its aim, scope, use, the future direction of game theory and how their work fits in these respects....
Directory of Open Access Journals (Sweden)
. SZD-SZZ
2017-03-01
Full Text Available Te Code was approved on December 12, 1992, at the 3rd regular meeting of the General Assembly of the Medical Chamber of Slovenia and revised on April 24, 1997, at the 27th regular meeting of the General Assembly of the Medical Chamber of Slovenia. The Code was updated and harmonized with the Medical Association of Slovenia and approved on October 6, 2016, at the regular meeting of the General Assembly of the Medical Chamber of Slovenia.
Supervised Convolutional Sparse Coding
Affara, Lama Ahmed
2018-04-08
Convolutional Sparse Coding (CSC) is a well-established image representation model especially suited for image restoration tasks. In this work, we extend the applicability of this model by proposing a supervised approach to convolutional sparse coding, which aims at learning discriminative dictionaries instead of purely reconstructive ones. We incorporate a supervised regularization term into the traditional unsupervised CSC objective to encourage the final dictionary elements to be discriminative. Experimental results show that using supervised convolutional learning results in two key advantages. First, we learn more semantically relevant filters in the dictionary and second, we achieve improved image reconstruction on unseen data.
International Nuclear Information System (INIS)
Delene, J.
1984-01-01
CONCEPT is a computer code that will provide conceptual capital investment cost estimates for nuclear and coal-fired power plants. The code can develop an estimate for construction at any point in time. Any unit size within the range of about 400 to 1300 MW electric may be selected. Any of 23 reference site locations across the United States and Canada may be selected. PWR, BWR, and coal-fired plants burning high-sulfur and low-sulfur coal can be estimated. Multiple-unit plants can be estimated. Costs due to escalation/inflation and interest during construction are calculated
Ogunfunmi, Tokunbo
2010-01-01
It is becoming increasingly apparent that all forms of communication-including voice-will be transmitted through packet-switched networks based on the Internet Protocol (IP). Therefore, the design of modern devices that rely on speech interfaces, such as cell phones and PDAs, requires a complete and up-to-date understanding of the basics of speech coding. Outlines key signal processing algorithms used to mitigate impairments to speech quality in VoIP networksOffering a detailed yet easily accessible introduction to the field, Principles of Speech Coding provides an in-depth examination of the
Codes on the Klein quartic, ideals, and decoding
DEFF Research Database (Denmark)
Hansen, Johan P.
1987-01-01
descriptions as left ideals in the group-algebra GF(2^{3})[G]. This description allows for easy decoding. For instance, in the case of the single error correcting code of length21and dimension16with minimal distance3. decoding is obtained by multiplication with an idempotent in the group algebra.......A sequence of codes with particular symmetries and with large rates compared to their minimal distances is constructed over the field GF(2^{3}). In the sequence there is, for instance, a code of length 21 and dimension10with minimal distance9, and a code of length21and dimension16with minimal...... distance3. The codes are constructed from algebraic geometry using the dictionary between coding theory and algebraic curves over finite fields established by Goppa. The curve used in the present work is the Klein quartic. This curve has the maximal number of rational points over GF(2^{3})allowed by Serre...
Continuous Materiality: Through a Hierarchy of Computational Codes
Directory of Open Access Journals (Sweden)
Jichen Zhu
2008-01-01
Full Text Available The legacy of Cartesian dualism inherent in linguistic theory deeply influences current views on the relation between natural language, computer code, and the physical world. However, the oversimplified distinction between mind and body falls short of capturing the complex interaction between the material and the immaterial. In this paper, we posit a hierarchy of codes to delineate a wide spectrum of continuous materiality. Our research suggests that diagrams in architecture provide a valuable analog for approaching computer code in emergent digital systems. After commenting on ways that Cartesian dualism continues to haunt discussions of code, we turn our attention to diagrams and design morphology. Finally we notice the implications a material understanding of code bears for further research on the relation between human cognition and digital code. Our discussion concludes by noticing several areas that we have projected for ongoing research.
Statistical mechanics of low-density parity-check codes
Energy Technology Data Exchange (ETDEWEB)
Kabashima, Yoshiyuki [Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology, Yokohama 2268502 (Japan); Saad, David [Neural Computing Research Group, Aston University, Birmingham B4 7ET (United Kingdom)
2004-02-13
We review recent theoretical progress on the statistical mechanics of error correcting codes, focusing on low-density parity-check (LDPC) codes in general, and on Gallager and MacKay-Neal codes in particular. By exploiting the relation between LDPC codes and Ising spin systems with multi-spin interactions, one can carry out a statistical mechanics based analysis that determines the practical and theoretical limitations of various code constructions, corresponding to dynamical and thermodynamical transitions, respectively, as well as the behaviour of error-exponents averaged over the corresponding code ensemble as a function of channel noise. We also contrast the results obtained using methods of statistical mechanics with those derived in the information theory literature, and show how these methods can be generalized to include other channel types and related communication problems. (topical review)
Statistical mechanics of low-density parity-check codes
International Nuclear Information System (INIS)
Kabashima, Yoshiyuki; Saad, David
2004-01-01
We review recent theoretical progress on the statistical mechanics of error correcting codes, focusing on low-density parity-check (LDPC) codes in general, and on Gallager and MacKay-Neal codes in particular. By exploiting the relation between LDPC codes and Ising spin systems with multi-spin interactions, one can carry out a statistical mechanics based analysis that determines the practical and theoretical limitations of various code constructions, corresponding to dynamical and thermodynamical transitions, respectively, as well as the behaviour of error-exponents averaged over the corresponding code ensemble as a function of channel noise. We also contrast the results obtained using methods of statistical mechanics with those derived in the information theory literature, and show how these methods can be generalized to include other channel types and related communication problems. (topical review)
An object-oriented scripting interface to a legacy electronic structure code
DEFF Research Database (Denmark)
Bahn, Sune Rastad; Jacobsen, Karsten Wedel
2002-01-01
The authors have created an object-oriented scripting interface to a mature density functional theory code. The interface gives users a high-level, flexible handle on the code without rewriting the underlying number-crunching code. The authors also discuss design issues and the advantages...
On the Need of Novel Medium Access Control Schemes for Network Coding enabled Wireless Mesh Networks
DEFF Research Database (Denmark)
Paramanathan, Achuthan; Pahlevani, Peyman; Roetter, Daniel Enrique Lucani
2013-01-01
that network coding will improve the throughput in such systems, but our novel medium access scheme improves the performance in the cross topology by another 66 % for network coding and 150 % for classical forwarding in theory. These gains translate in a theoretical gain of 33 % of network coding over...
An Introduction to Quantum Theory
Greensite, Jeff
2017-02-01
Written in a lucid and engaging style, the author takes readers from an overview of classical mechanics and the historical development of quantum theory through to advanced topics. The mathematical aspects of quantum theory necessary for a firm grasp of the subject are developed in the early chapters, but an effort is made to motivate that formalism on physical grounds. Including animated figures and their respective Mathematica® codes, this book provides a complete and comprehensive text for students in physics, maths, chemistry and engineering needing an accessible introduction to quantum mechanics. Supplementary Mathematica codes available within Book Information
TEA: A CODE CALCULATING THERMOCHEMICAL EQUILIBRIUM ABUNDANCES
Energy Technology Data Exchange (ETDEWEB)
Blecic, Jasmina; Harrington, Joseph; Bowman, M. Oliver, E-mail: jasmina@physics.ucf.edu [Planetary Sciences Group, Department of Physics, University of Central Florida, Orlando, FL 32816-2385 (United States)
2016-07-01
We present an open-source Thermochemical Equilibrium Abundances (TEA) code that calculates the abundances of gaseous molecular species. The code is based on the methodology of White et al. and Eriksson. It applies Gibbs free-energy minimization using an iterative, Lagrangian optimization scheme. Given elemental abundances, TEA calculates molecular abundances for a particular temperature and pressure or a list of temperature–pressure pairs. We tested the code against the method of Burrows and Sharp, the free thermochemical equilibrium code Chemical Equilibrium with Applications (CEA), and the example given by Burrows and Sharp. Using their thermodynamic data, TEA reproduces their final abundances, but with higher precision. We also applied the TEA abundance calculations to models of several hot-Jupiter exoplanets, producing expected results. TEA is written in Python in a modular format. There is a start guide, a user manual, and a code document in addition to this theory paper. TEA is available under a reproducible-research, open-source license via https://github.com/dzesmin/TEA.
TEA: A CODE CALCULATING THERMOCHEMICAL EQUILIBRIUM ABUNDANCES
International Nuclear Information System (INIS)
Blecic, Jasmina; Harrington, Joseph; Bowman, M. Oliver
2016-01-01
We present an open-source Thermochemical Equilibrium Abundances (TEA) code that calculates the abundances of gaseous molecular species. The code is based on the methodology of White et al. and Eriksson. It applies Gibbs free-energy minimization using an iterative, Lagrangian optimization scheme. Given elemental abundances, TEA calculates molecular abundances for a particular temperature and pressure or a list of temperature–pressure pairs. We tested the code against the method of Burrows and Sharp, the free thermochemical equilibrium code Chemical Equilibrium with Applications (CEA), and the example given by Burrows and Sharp. Using their thermodynamic data, TEA reproduces their final abundances, but with higher precision. We also applied the TEA abundance calculations to models of several hot-Jupiter exoplanets, producing expected results. TEA is written in Python in a modular format. There is a start guide, a user manual, and a code document in addition to this theory paper. TEA is available under a reproducible-research, open-source license via https://github.com/dzesmin/TEA.
International Nuclear Information System (INIS)
Chan Hongmo.
1987-10-01
The paper traces the development of the String Theory, and was presented at Professor Sir Rudolf Peierls' 80sup(th) Birthday Symposium. The String theory is discussed with respect to the interaction of strings, the inclusion of both gauge theory and gravitation, inconsistencies in the theory, and the role of space-time. The physical principles underlying string theory are also outlined. (U.K.)
International Nuclear Information System (INIS)
Clancy, B.E.; Cook, J.L.
1984-12-01
The zero-dimensional code SCORCH determines number density and temperature evolution in plasmas using concepts derived from the Hinton and Hazeltine transport theory. The code uses the previously reported ADL-1 data library
Burton, John K.; Wildman, Terry M.
The purpose of this study was to test the applicability of the dual coding hypothesis to children's recall performance. The hypothesis predicts that visual interference will have a small effect on the recall of visually presented words or pictures, but that acoustic interference will cause a decline in recall of visually presented words and…
DEFF Research Database (Denmark)
Fukui, Hironori; Popovski, Petar; Yomo, Hiroyuki
2014-01-01
Physical layer network coding (PLNC) has been proposed to improve throughput of the two-way relay channel, where two nodes communicate with each other, being assisted by a relay node. Most of the works related to PLNC are focused on a simple three-node model and they do not take into account...
International Nuclear Information System (INIS)
Anon.
1988-01-01
A new coding system, 'Hazrad', for buildings and transportation containers for alerting emergency services personnel to the presence of radioactive materials has been developed in the United Kingdom. The hazards of materials in the buildings or transport container, together with the recommended emergency action, are represented by a number of codes which are marked on the building or container and interpreted from a chart carried as a pocket-size guide. Buildings would be marked with the familiar yellow 'radioactive' trefoil, the written information 'Radioactive materials' and a list of isotopes. Under this the 'Hazrad' code would be written - three symbols to denote the relative radioactive risk (low, medium or high), the biological risk (also low, medium or high) and the third showing the type of radiation emitted, alpha, beta or gamma. The response cards indicate appropriate measures to take, eg for a high biological risk, Bio3, the wearing of a gas-tight protection suit is advised. The code and its uses are explained. (U.K.)
Building Codes and Regulations.
Fisher, John L.
The hazard of fire is of great concern to libraries due to combustible books and new plastics used in construction and interiors. Building codes and standards can offer architects and planners guidelines to follow but these standards should be closely monitored, updated, and researched for fire prevention. (DS)
International Nuclear Information System (INIS)
Cooper, R.K.; Jones, M.E.
1989-01-01
The title given this paper is a bit presumptuous, since one can hardly expect to cover the physics incorporated into all the codes already written and currently being written. The authors focus on those codes which have been found to be particularly useful in the analysis and design of linacs. At that the authors will be a bit parochial and discuss primarily those codes used for the design of radio-frequency (rf) linacs, although the discussions of TRANSPORT and MARYLIE have little to do with the time structures of the beams being analyzed. The plan of this paper is first to describe rather simply the concepts of emittance and brightness, then to describe rather briefly each of the codes TRANSPORT, PARMTEQ, TBCI, MARYLIE, and ISIS, indicating what physics is and is not included in each of them. It is expected that the vast majority of what is covered will apply equally well to protons and electrons (and other particles). This material is intended to be tutorial in nature and can in no way be expected to be exhaustive. 31 references, 4 figures
Kasperski, M.; Geurts, C.P.W.
2005-01-01
The paper describes the work of the IAWE Working Group WBG - Reliability and Code Level, one of the International Codification Working Groups set up at ICWE10 in Copenhagen. The following topics are covered: sources of uncertainties in the design wind load, appropriate design target values for the
Anaïs Schaeffer
2013-01-01
This summer, CERN took part in the Google Summer of Code programme for the third year in succession. Open to students from all over the world, this programme leads to very successful collaborations for open source software projects. Image: GSoC 2013. Google Summer of Code (GSoC) is a global programme that offers student developers grants to write code for open-source software projects. Since its creation in 2005, the programme has brought together some 6,000 students from over 100 countries worldwide. The students selected by Google are paired with a mentor from one of the participating projects, which can be led by institutes, organisations, companies, etc. This year, CERN PH Department’s SFT (Software Development for Experiments) Group took part in the GSoC programme for the third time, submitting 15 open-source projects. “Once published on the Google Summer for Code website (in April), the projects are open to applications,” says Jakob Blomer, one of the o...
Department, HR
2010-01-01
The Code is intended as a guide in helping us, as CERN contributors, to understand how to conduct ourselves, treat others and expect to be treated. It is based around the five core values of the Organization. We should all become familiar with it and try to incorporate it into our daily life at CERN.
Energy Technology Data Exchange (ETDEWEB)
Hu, H.H.; Ford, D.; Le, H.; Park, S.; Cooke, K.L.; Bleakney, T.; Spanier, J.; Wilburn, N.P.; O' Reilly, B.; Carmichael, B.
1981-01-01
The objective is to analyze an overpower accident in an LMFBR. A simplified model of the primary coolant loop was developed in order to understand the instabilities encountered with the MELT III and SAS codes. The computer programs were translated for switching to the IBM 4331. Numerical methods were investigated for solving the neutron kinetics equations; the Adams and Gear methods were compared. (DLC)
Revised C++ coding conventions
Callot, O
2001-01-01
This document replaces the note LHCb 98-049 by Pavel Binko. After a few years of practice, some simplification and clarification of the rules was needed. As many more people have now some experience in writing C++ code, their opinion was also taken into account to get a commonly agreed set of conventions
Corporate governance through codes
Haxhi, I.; Aguilera, R.V.; Vodosek, M.; den Hartog, D.; McNett, J.M.
2014-01-01
The UK's 1992 Cadbury Report defines corporate governance (CG) as the system by which businesses are directed and controlled. CG codes are a set of best practices designed to address deficiencies in the formal contracts and institutions by suggesting prescriptions on the preferred role and
DEFF Research Database (Denmark)
Ivanov, Mikhail; Brännström, Frederik; Graell i Amat, Alexandre
2016-01-01
We propose an uncoordinated medium access control (MAC) protocol, called all-to-all broadcast coded slotted ALOHA (B-CSA) for reliable all-to-all broadcast with strict latency constraints. In B-CSA, each user acts as both transmitter and receiver in a half-duplex mode. The half-duplex mode gives ...
Software Defined Coded Networking
DEFF Research Database (Denmark)
Di Paola, Carla; Roetter, Daniel Enrique Lucani; Palazzo, Sergio
2017-01-01
the quality of each link and even across neighbouring links and using simulations to show that an additional reduction of packet transmission in the order of 40% is possible. Second, to advocate for the use of network coding (NC) jointly with software defined networking (SDN) providing an implementation...
Laëtitia Pedroso
2010-01-01
During his talk to the staff at the beginning of the year, the Director-General mentioned that a new code of conduct was being drawn up. What exactly is it and what is its purpose? Anne-Sylvie Catherin, Head of the Human Resources (HR) Department, talked to us about the whys and wherefores of the project. Drawing by Georges Boixader from the cartoon strip “The World of Particles” by Brian Southworth. A code of conduct is a general framework laying down the behaviour expected of all members of an organisation's personnel. “CERN is one of the very few international organisations that don’t yet have one", explains Anne-Sylvie Catherin. “We have been thinking about introducing a code of conduct for a long time but lacked the necessary resources until now”. The call for a code of conduct has come from different sources within the Laboratory. “The Equal Opportunities Advisory Panel (read also the "Equal opportuni...
Khina, Anatoly
2016-08-15
We consider the problem of stabilizing an unstable plant driven by bounded noise over a digital noisy communication link, a scenario at the heart of networked control. To stabilize such a plant, one needs real-time encoding and decoding with an error probability profile that decays exponentially with the decoding delay. The works of Schulman and Sahai over the past two decades have developed the notions of tree codes and anytime capacity, and provided the theoretical framework for studying such problems. Nonetheless, there has been little practical progress in this area due to the absence of explicit constructions of tree codes with efficient encoding and decoding algorithms. Recently, linear time-invariant tree codes were proposed to achieve the desired result under maximum-likelihood decoding. In this work, we take one more step towards practicality, by showing that these codes can be efficiently decoded using sequential decoding algorithms, up to some loss in performance (and with some practical complexity caveats). We supplement our theoretical results with numerical simulations that demonstrate the effectiveness of the decoder in a control system setting.
Indian Academy of Sciences (India)
having a probability Pi of being equal to a 1. Let us assume ... equal to a 0/1 has no bearing on the probability of the. It is often ... bits (call this set S) whose individual bits add up to zero ... In the context of binary error-correct~ng codes, specifi-.
Jones, Dean P; Sies, Helmut
2015-09-20
The redox code is a set of principles that defines the positioning of the nicotinamide adenine dinucleotide (NAD, NADP) and thiol/disulfide and other redox systems as well as the thiol redox proteome in space and time in biological systems. The code is richly elaborated in an oxygen-dependent life, where activation/deactivation cycles involving O₂ and H₂O₂ contribute to spatiotemporal organization for differentiation, development, and adaptation to the environment. Disruption of this organizational structure during oxidative stress represents a fundamental mechanism in system failure and disease. Methodology in assessing components of the redox code under physiological conditions has progressed, permitting insight into spatiotemporal organization and allowing for identification of redox partners in redox proteomics and redox metabolomics. Complexity of redox networks and redox regulation is being revealed step by step, yet much still needs to be learned. Detailed knowledge of the molecular patterns generated from the principles of the redox code under defined physiological or pathological conditions in cells and organs will contribute to understanding the redox component in health and disease. Ultimately, there will be a scientific basis to a modern redox medicine.
Borges, J.
2014-01-01
A binary linear code C is a Z2-double cyclic code if the set of coordinates can be partitioned into two subsets such that any cyclic shift of the coordinates of both subsets leaves invariant the code. These codes can be identified as submodules of the Z2[x]-module Z2[x]/(x^r − 1) × Z2[x]/(x^s − 1). We determine the structure of Z2-double cyclic codes giving the generator polynomials of these codes. The related polynomial representation of Z2-double cyclic codes and its duals, and the relation...
Coding for urologic office procedures.
Dowling, Robert A; Painter, Mark
2013-11-01
This article summarizes current best practices for documenting, coding, and billing common office-based urologic procedures. Topics covered include general principles, basic and advanced urologic coding, creation of medical records that support compliant coding practices, bundled codes and unbundling, global periods, modifiers for procedure codes, when to bill for evaluation and management services during the same visit, coding for supplies, and laboratory and radiology procedures pertinent to urology practice. Detailed information is included for the most common urology office procedures, and suggested resources and references are provided. This information is of value to physicians, office managers, and their coding staff. Copyright © 2013 Elsevier Inc. All rights reserved.
String theory or field theory?
International Nuclear Information System (INIS)
Marshakov, A.V.
2002-01-01
The status of string theory is reviewed, and major recent developments - especially those in going beyond perturbation theory in the string theory and quantum field theory frameworks - are analyzed. This analysis helps better understand the role and place of experimental phenomena, it is emphasized that there are some insurmountable problems inherent in it - notably the impossibility to formulate the quantum theory of gravity on its basis - which prevent it from being a fundamental physical theory of the world of microscopic distances. It is this task, the creation of such a theory, which string theory, currently far from completion, is expected to solve. In spite of its somewhat vague current form, string theory has already led to a number of serious results and greatly contributed to progress in the understanding of quantum field theory. It is these developments, which are our concern in this review [ru
Essential idempotents and simplex codes
Directory of Open Access Journals (Sweden)
Gladys Chalom
2017-01-01
Full Text Available We define essential idempotents in group algebras and use them to prove that every mininmal abelian non-cyclic code is a repetition code. Also we use them to prove that every minimal abelian code is equivalent to a minimal cyclic code of the same length. Finally, we show that a binary cyclic code is simplex if and only if is of length of the form $n=2^k-1$ and is generated by an essential idempotent.
Rate-adaptive BCH codes for distributed source coding
DEFF Research Database (Denmark)
Salmistraro, Matteo; Larsen, Knud J.; Forchhammer, Søren
2013-01-01
This paper considers Bose-Chaudhuri-Hocquenghem (BCH) codes for distributed source coding. A feedback channel is employed to adapt the rate of the code during the decoding process. The focus is on codes with short block lengths for independently coding a binary source X and decoding it given its...... strategies for improving the reliability of the decoded result are analyzed, and methods for estimating the performance are proposed. In the analysis, noiseless feedback and noiseless communication are assumed. Simulation results show that rate-adaptive BCH codes achieve better performance than low...... correlated side information Y. The proposed codes have been analyzed in a high-correlation scenario, where the marginal probability of each symbol, Xi in X, given Y is highly skewed (unbalanced). Rate-adaptive BCH codes are presented and applied to distributed source coding. Adaptive and fixed checking...
Toward a New Theory for Selecting Instructional Visuals.
Croft, Richard S.; Burton, John K.
This paper provides a rationale for the selection of illustrations and visual aids for the classroom. The theories that describe the processing of visuals are dual coding theory and cue summation theory. Concept attainment theory offers a basis for selecting which cues are relevant for any learning task which includes a component of identification…
Entanglement-assisted quantum MDS codes constructed from negacyclic codes
Chen, Jianzhang; Huang, Yuanyuan; Feng, Chunhui; Chen, Riqing
2017-12-01
Recently, entanglement-assisted quantum codes have been constructed from cyclic codes by some scholars. However, how to determine the number of shared pairs required to construct entanglement-assisted quantum codes is not an easy work. In this paper, we propose a decomposition of the defining set of negacyclic codes. Based on this method, four families of entanglement-assisted quantum codes constructed in this paper satisfy the entanglement-assisted quantum Singleton bound, where the minimum distance satisfies q+1 ≤ d≤ n+2/2. Furthermore, we construct two families of entanglement-assisted quantum codes with maximal entanglement.
Current Capability of Atomic Structure Theory
International Nuclear Information System (INIS)
Kim, Yong Ki
1993-01-01
Current capability of atomic structure theory is reviewed, and advantages, disadvantages and major features of popular atomic structure codes described. Comparisons between theoretical and experimental data on transition energies and lifetimes of excited levels are presented to illustrate the current capability of atomic structure codes.
Coding the Complexity of Activity in Video Recordings
DEFF Research Database (Denmark)
Harter, Christopher Daniel; Otrel-Cass, Kathrin
2017-01-01
This paper presents a theoretical approach to coding and analyzing video data on human interaction and activity, using principles found in cultural historical activity theory. The systematic classification or coding of information contained in video data on activity can be arduous and time...... Bødker’s in 1996, three possible areas of expansion to Susanne Bødker’s method for analyzing video data were found. Firstly, a technological expansion due to contemporary developments in sophisticated analysis software, since the mid 1990’s. Secondly, a conceptual expansion, where the applicability...... of using Activity Theory outside of the context of human–computer interaction, is assessed. Lastly, a temporal expansion, by facilitating an organized method for tracking the development of activities over time, within the coding and analysis of video data. To expand on the above areas, a prototype coding...
Efficient convolutional sparse coding
Wohlberg, Brendt
2017-06-20
Computationally efficient algorithms may be applied for fast dictionary learning solving the convolutional sparse coding problem in the Fourier domain. More specifically, efficient convolutional sparse coding may be derived within an alternating direction method of multipliers (ADMM) framework that utilizes fast Fourier transforms (FFT) to solve the main linear system in the frequency domain. Such algorithms may enable a significant reduction in computational cost over conventional approaches by implementing a linear solver for the most critical and computationally expensive component of the conventional iterative algorithm. The theoretical computational cost of the algorithm may be reduced from O(M.sup.3N) to O(MN log N), where N is the dimensionality of the data and M is the number of elements in the dictionary. This significant improvement in efficiency may greatly increase the range of problems that can practically be addressed via convolutional sparse representations.
Coded Network Function Virtualization
DEFF Research Database (Denmark)
Al-Shuwaili, A.; Simone, O.; Kliewer, J.
2016-01-01
Network function virtualization (NFV) prescribes the instantiation of network functions on general-purpose network devices, such as servers and switches. While yielding a more flexible and cost-effective network architecture, NFV is potentially limited by the fact that commercial off......-the-shelf hardware is less reliable than the dedicated network elements used in conventional cellular deployments. The typical solution for this problem is to duplicate network functions across geographically distributed hardware in order to ensure diversity. In contrast, this letter proposes to leverage channel...... coding in order to enhance the robustness on NFV to hardware failure. The proposed approach targets the network function of uplink channel decoding, and builds on the algebraic structure of the encoded data frames in order to perform in-network coding on the signals to be processed at different servers...
Schnack, D. D.; Glasser, A. H.
1996-11-01
NIMROD is a new code system that is being developed for the analysis of modern fusion experiments. It is being designed from the beginning to make the maximum use of massively parallel computer architectures and computer graphics. The NIMROD physics kernel solves the three-dimensional, time-dependent two-fluid equations with neo-classical effects in toroidal geometry of arbitrary poloidal cross section. The NIMROD system also includes a pre-processor, a grid generator, and a post processor. User interaction with NIMROD is facilitated by a modern graphical user interface (GUI). The NIMROD project is using Quality Function Deployment (QFD) team management techniques to minimize re-engineering and reduce code development time. This paper gives an overview of the NIMROD project. Operation of the GUI is demonstrated, and the first results from the physics kernel are given.
International Nuclear Information System (INIS)
Uehara, S.
1985-01-01
Of all supergravity theories, the maximal, i.e., N = 8 in 4-dimension or N = 1 in 11-dimension, theory should perform the unification since it owns the highest degree of symmetry. As to the N = 1 in d = 11 theory, it has been investigated how to compactify to the d = 4 theories. From the phenomenological point of view, local SUSY GUTs, i.e., N = 1 SUSY GUTs with soft breaking terms, have been studied from various angles. The structures of extended supergravity theories are less understood than those of N = 1 supergravity theories, and matter couplings in N = 2 extended supergravity theories are under investigation. The harmonic superspace was recently proposed which may be useful to investigate the quantum effects of extended supersymmetry and supergravity theories. As to the so-called Kaluza-Klein supergravity, there is another possibility. (Mori, K.)
Johnstone, PT
2014-01-01
Focusing on topos theory's integration of geometric and logical ideas into the foundations of mathematics and theoretical computer science, this volume explores internal category theory, topologies and sheaves, geometric morphisms, other subjects. 1977 edition.
International Nuclear Information System (INIS)
Rohmann, D.; Koehler, T.
1987-02-01
This is a description of the computer code FIT, written in FORTRAN-77 for a PDP 11/34. FIT is an interactive program to decude position, width and intensity of lines of X-ray spectra (max. length of 4K channels). The lines (max. 30 lines per fit) may have Gauss- or Voigt-profile, as well as exponential tails. Spectrum and fit can be displayed on a Tektronix terminal. (orig.) [de
Exarchakis, Georgios; Lücke, Jörg
2017-11-01
Sparse coding algorithms with continuous latent variables have been the subject of a large number of studies. However, discrete latent spaces for sparse coding have been largely ignored. In this work, we study sparse coding with latents described by discrete instead of continuous prior distributions. We consider the general case in which the latents (while being sparse) can take on any value of a finite set of possible values and in which we learn the prior probability of any value from data. This approach can be applied to any data generated by discrete causes, and it can be applied as an approximation of continuous causes. As the prior probabilities are learned, the approach then allows for estimating the prior shape without assuming specific functional forms. To efficiently train the parameters of our probabilistic generative model, we apply a truncated expectation-maximization approach (expectation truncation) that we modify to work with a general discrete prior. We evaluate the performance of the algorithm by applying it to a variety of tasks: (1) we use artificial data to verify that the algorithm can recover the generating parameters from a random initialization, (2) use image patches of natural images and discuss the role of the prior for the extraction of image components, (3) use extracellular recordings of neurons to present a novel method of analysis for spiking neurons that includes an intuitive discretization strategy, and (4) apply the algorithm on the task of encoding audio waveforms of human speech. The diverse set of numerical experiments presented in this letter suggests that discrete sparse coding algorithms can scale efficiently to work with realistic data sets and provide novel statistical quantities to describe the structure of the data.
International Nuclear Information System (INIS)
Doyle, Colin; Hone, Christopher; Nowlan, N.V.
1984-05-01
This Code of Practice introduces accepted safety procedures associated with the use of alpha, beta, gamma and X-radiation in secondary schools (pupils aged 12 to 18) in Ireland, and summarises good practice and procedures as they apply to radiation protection. Typical dose rates at various distances from sealed sources are quoted, and simplified equations are used to demonstrate dose and shielding calculations. The regulatory aspects of radiation protection are outlined, and references to statutory documents are given
Tokamak simulation code manual
International Nuclear Information System (INIS)
Chung, Moon Kyoo; Oh, Byung Hoon; Hong, Bong Keun; Lee, Kwang Won
1995-01-01
The method to use TSC (Tokamak Simulation Code) developed by Princeton plasma physics laboratory is illustrated. In KT-2 tokamak, time dependent simulation of axisymmetric toroidal plasma and vertical stability have to be taken into account in design phase using TSC. In this report physical modelling of TSC are described and examples of application in JAERI and SERI are illustrated, which will be useful when TSC is installed KAERI computer system. (Author) 15 refs., 6 figs., 3 tabs
Energy Technology Data Exchange (ETDEWEB)
N.V. Mokhov
2003-04-09
Status and recent developments of the MARS 14 Monte Carlo code system for simulation of hadronic and electromagnetic cascades in shielding, accelerator and detector components in the energy range from a fraction of an electronvolt up to 100 TeV are described. these include physics models both in strong and electromagnetic interaction sectors, variance reduction techniques, residual dose, geometry, tracking, histograming. MAD-MARS Beam Line Build and Graphical-User Interface.
DEFF Research Database (Denmark)
Beck Jørgensen, Torben; Sørensen, Ditte-Lene
2013-01-01
Good governance is a broad concept used by many international organizations to spell out how states or countries should be governed. Definitions vary, but there is a clear core of common public values, such as transparency, accountability, effectiveness, and the rule of law. It is quite likely......, transparency, neutrality, impartiality, effectiveness, accountability, and legality. The normative context of public administration, as expressed in codes, seems to ignore the New Public Management and Reinventing Government reform movements....
Dorogovtsev, A Ya; Skorokhod, A V; Silvestrov, D S; Skorokhod, A V
1997-01-01
This book of problems is intended for students in pure and applied mathematics. There are problems in traditional areas of probability theory and problems in the theory of stochastic processes, which has wide applications in the theory of automatic control, queuing and reliability theories, and in many other modern science and engineering fields. Answers to most of the problems are given, and the book provides hints and solutions for more complicated problems.
International Nuclear Information System (INIS)
Lee, B.W.
1976-01-01
Some introductory remarks to Yang-Mills fields are given and the problem of the Coulomb gauge is considered. The perturbation expansion for quantized gauge theories is discussed and a survey of renormalization schemes is made. The role of Ward-Takahashi identities in gauge theories is discussed. The author then discusses the renormalization of pure gauge theories and theories with spontaneously broken symmetry. (B.R.H.)
Orthopedics coding and funding.
Baron, S; Duclos, C; Thoreux, P
2014-02-01
The French tarification à l'activité (T2A) prospective payment system is a financial system in which a health-care institution's resources are based on performed activity. Activity is described via the PMSI medical information system (programme de médicalisation du système d'information). The PMSI classifies hospital cases by clinical and economic categories known as diagnosis-related groups (DRG), each with an associated price tag. Coding a hospital case involves giving as realistic a description as possible so as to categorize it in the right DRG and thus ensure appropriate payment. For this, it is essential to understand what determines the pricing of inpatient stay: namely, the code for the surgical procedure, the patient's principal diagnosis (reason for admission), codes for comorbidities (everything that adds to management burden), and the management of the length of inpatient stay. The PMSI is used to analyze the institution's activity and dynamism: change on previous year, relation to target, and comparison with competing institutions based on indicators such as the mean length of stay performance indicator (MLS PI). The T2A system improves overall care efficiency. Quality of care, however, is not presently taken account of in the payment made to the institution, as there are no indicators for this; work needs to be done on this topic. Copyright © 2014. Published by Elsevier Masson SAS.
Bird, Robert; Nystrom, David; Albright, Brian
2017-10-01
The ability of scientific simulations to effectively deliver performant computation is increasingly being challenged by successive generations of high-performance computing architectures. Code development to support efficient computation on these modern architectures is both expensive, and highly complex; if it is approached without due care, it may also not be directly transferable between subsequent hardware generations. Previous works have discussed techniques to support the process of adapting a legacy code for modern hardware generations, but despite the breakthroughs in the areas of mini-app development, portable-performance, and cache oblivious algorithms the problem still remains largely unsolved. In this work we demonstrate how a focus on platform agnostic modern code-development can be applied to Particle-in-Cell (PIC) simulations to facilitate effective scientific delivery. This work builds directly on our previous work optimizing VPIC, in which we replaced intrinsic based vectorisation with compile generated auto-vectorization to improve the performance and portability of VPIC. In this work we present the use of a specialized SIMD queue for processing some particle operations, and also preview a GPU capable OpenMP variant of VPIC. Finally we include a lessons learnt. Work performed under the auspices of the U.S. Dept. of Energy by the Los Alamos National Security, LLC Los Alamos National Laboratory under contract DE-AC52-06NA25396 and supported by the LANL LDRD program.
Energy Technology Data Exchange (ETDEWEB)
Summers, R.M.; Cole, R.K. Jr.; Smith, R.C.; Stuart, D.S.; Thompson, S.L. [Sandia National Labs., Albuquerque, NM (United States); Hodge, S.A.; Hyman, C.R.; Sanders, R.L. [Oak Ridge National Lab., TN (United States)
1995-03-01
MELCOR is a fully integrated, engineering-level computer code that models the progression of severe accidents in light water reactor nuclear power plants. MELCOR is being developed at Sandia National Laboratories for the U.S. Nuclear Regulatory Commission as a second-generation plant risk assessment tool and the successor to the Source Term Code Package. A broad spectrum of severe accident phenomena in both boiling and pressurized water reactors is treated in MELCOR in a unified framework. These include: thermal-hydraulic response in the reactor coolant system, reactor cavity, containment, and confinement buildings; core heatup, degradation, and relocation; core-concrete attack; hydrogen production, transport, and combustion; fission product release and transport; and the impact of engineered safety features on thermal-hydraulic and radionuclide behavior. Current uses of MELCOR include estimation of severe accident source terms and their sensitivities and uncertainties in a variety of applications. This publication of the MELCOR computer code manuals corresponds to MELCOR 1.8.3, released to users in August, 1994. Volume 1 contains a primer that describes MELCOR`s phenomenological scope, organization (by package), and documentation. The remainder of Volume 1 contains the MELCOR Users Guides, which provide the input instructions and guidelines for each package. Volume 2 contains the MELCOR Reference Manuals, which describe the phenomenological models that have been implemented in each package.
International Nuclear Information System (INIS)
Summers, R.M.; Cole, R.K. Jr.; Smith, R.C.; Stuart, D.S.; Thompson, S.L.; Hodge, S.A.; Hyman, C.R.; Sanders, R.L.
1995-03-01
MELCOR is a fully integrated, engineering-level computer code that models the progression of severe accidents in light water reactor nuclear power plants. MELCOR is being developed at Sandia National Laboratories for the U.S. Nuclear Regulatory Commission as a second-generation plant risk assessment tool and the successor to the Source Term Code Package. A broad spectrum of severe accident phenomena in both boiling and pressurized water reactors is treated in MELCOR in a unified framework. These include: thermal-hydraulic response in the reactor coolant system, reactor cavity, containment, and confinement buildings; core heatup, degradation, and relocation; core-concrete attack; hydrogen production, transport, and combustion; fission product release and transport; and the impact of engineered safety features on thermal-hydraulic and radionuclide behavior. Current uses of MELCOR include estimation of severe accident source terms and their sensitivities and uncertainties in a variety of applications. This publication of the MELCOR computer code manuals corresponds to MELCOR 1.8.3, released to users in August, 1994. Volume 1 contains a primer that describes MELCOR's phenomenological scope, organization (by package), and documentation. The remainder of Volume 1 contains the MELCOR Users Guides, which provide the input instructions and guidelines for each package. Volume 2 contains the MELCOR Reference Manuals, which describe the phenomenological models that have been implemented in each package
Statistical coding and decoding of heartbeat intervals.
Lucena, Fausto; Barros, Allan Kardec; Príncipe, José C; Ohnishi, Noboru
2011-01-01
The heart integrates neuroregulatory messages into specific bands of frequency, such that the overall amplitude spectrum of the cardiac output reflects the variations of the autonomic nervous system. This modulatory mechanism seems to be well adjusted to the unpredictability of the cardiac demand, maintaining a proper cardiac regulation. A longstanding theory holds that biological organisms facing an ever-changing environment are likely to evolve adaptive mechanisms to extract essential features in order to adjust their behavior. The key question, however, has been to understand how the neural circuitry self-organizes these feature detectors to select behaviorally relevant information. Previous studies in computational perception suggest that a neural population enhances information that is important for survival by minimizing the statistical redundancy of the stimuli. Herein we investigate whether the cardiac system makes use of a redundancy reduction strategy to regulate the cardiac rhythm. Based on a network of neural filters optimized to code heartbeat intervals, we learn a population code that maximizes the information across the neural ensemble. The emerging population code displays filter tuning proprieties whose characteristics explain diverse aspects of the autonomic cardiac regulation, such as the compromise between fast and slow cardiac responses. We show that the filters yield responses that are quantitatively similar to observed heart rate responses during direct sympathetic or parasympathetic nerve stimulation. Our findings suggest that the heart decodes autonomic stimuli according to information theory principles analogous to how perceptual cues are encoded by sensory systems.
The SWAN coupling code: user's guide
International Nuclear Information System (INIS)
Litaudon, X.; Moreau, D.
1988-11-01
Coupling of slow waves in a plasma near the lower hybrid frequency is well known and linear theory with density step followed by a constant gradient can be used with some confidence. With the aid of the computer code SWAN, which stands for 'Slow Wave Antenna', the following parameters can be numerically calculated: n parallel power spectrum, directivity (weighted by the current drive efficiency), reflection coefficients (amplitude and phase) both before and after the E-plane junctions, scattering matrix at the plasma interface, scattering matrix at the E-plane junctions, maximum electric fields in secondary waveguides and location where it occurs, effect of passive waveguides on each side of the antenna, and the effect of a finite magnetic field in front of the antenna (for homogeneous plasma). This manual gives the basic information on the main assumptions of the coupling theory and on the use and general structure of the code itself. It answers the questions what are the main assumptions of the physical model? how to execute a job? what are the input parameters of the code? and what are the output results and where are they written? (author)
Statistical coding and decoding of heartbeat intervals.
Directory of Open Access Journals (Sweden)
Fausto Lucena
Full Text Available The heart integrates neuroregulatory messages into specific bands of frequency, such that the overall amplitude spectrum of the cardiac output reflects the variations of the autonomic nervous system. This modulatory mechanism seems to be well adjusted to the unpredictability of the cardiac demand, maintaining a proper cardiac regulation. A longstanding theory holds that biological organisms facing an ever-changing environment are likely to evolve adaptive mechanisms to extract essential features in order to adjust their behavior. The key question, however, has been to understand how the neural circuitry self-organizes these feature detectors to select behaviorally relevant information. Previous studies in computational perception suggest that a neural population enhances information that is important for survival by minimizing the statistical redundancy of the stimuli. Herein we investigate whether the cardiac system makes use of a redundancy reduction strategy to regulate the cardiac rhythm. Based on a network of neural filters optimized to code heartbeat intervals, we learn a population code that maximizes the information across the neural ensemble. The emerging population code displays filter tuning proprieties whose characteristics explain diverse aspects of the autonomic cardiac regulation, such as the compromise between fast and slow cardiac responses. We show that the filters yield responses that are quantitatively similar to observed heart rate responses during direct sympathetic or parasympathetic nerve stimulation. Our findings suggest that the heart decodes autonomic stimuli according to information theory principles analogous to how perceptual cues are encoded by sensory systems.
Information theory and rate distortion theory for communications and compression
Gibson, Jerry
2013-01-01
This book is very specifically targeted to problems in communications and compression by providing the fundamental principles and results in information theory and rate distortion theory for these applications and presenting methods that have proved and will prove useful in analyzing and designing real systems. The chapters contain treatments of entropy, mutual information, lossless source coding, channel capacity, and rate distortion theory; however, it is the selection, ordering, and presentation of the topics within these broad categories that is unique to this concise book. While the cover
Quality Improvement of MARS Code and Establishment of Code Coupling
International Nuclear Information System (INIS)
Chung, Bub Dong; Jeong, Jae Jun; Kim, Kyung Doo
2010-04-01
The improvement of MARS code quality and coupling with regulatory auditing code have been accomplished for the establishment of self-reliable technology based regulatory auditing system. The unified auditing system code was realized also by implementing the CANDU specific models and correlations. As a part of the quality assurance activities, the various QA reports were published through the code assessments. The code manuals were updated and published a new manual which describe the new models and correlations. The code coupling methods were verified though the exercise of plant application. The education-training seminar and technology transfer were performed for the code users. The developed MARS-KS is utilized as reliable auditing tool for the resolving the safety issue and other regulatory calculations. The code can be utilized as a base technology for GEN IV reactor applications
Design of convolutional tornado code
Zhou, Hui; Yang, Yao; Gao, Hongmin; Tan, Lu
2017-09-01
As a linear block code, the traditional tornado (tTN) code is inefficient in burst-erasure environment and its multi-level structure may lead to high encoding/decoding complexity. This paper presents a convolutional tornado (cTN) code which is able to improve the burst-erasure protection capability by applying the convolution property to the tTN code, and reduce computational complexity by abrogating the multi-level structure. The simulation results show that cTN code can provide a better packet loss protection performance with lower computation complexity than tTN code.
Random linear codes in steganography
Directory of Open Access Journals (Sweden)
Kamil Kaczyński
2016-12-01
Full Text Available Syndrome coding using linear codes is a technique that allows improvement in the steganographic algorithms parameters. The use of random linear codes gives a great flexibility in choosing the parameters of the linear code. In parallel, it offers easy generation of parity check matrix. In this paper, the modification of LSB algorithm is presented. A random linear code [8, 2] was used as a base for algorithm modification. The implementation of the proposed algorithm, along with practical evaluation of algorithms’ parameters based on the test images was made.[b]Keywords:[/b] steganography, random linear codes, RLC, LSB
Containment Code Validation Matrix
International Nuclear Information System (INIS)
Chin, Yu-Shan; Mathew, P.M.; Glowa, Glenn; Dickson, Ray; Liang, Zhe; Leitch, Brian; Barber, Duncan; Vasic, Aleks; Bentaib, Ahmed; Journeau, Christophe; Malet, Jeanne; Studer, Etienne; Meynet, Nicolas; Piluso, Pascal; Gelain, Thomas; Michielsen, Nathalie; Peillon, Samuel; Porcheron, Emmanuel; Albiol, Thierry; Clement, Bernard; Sonnenkalb, Martin; Klein-Hessling, Walter; Arndt, Siegfried; Weber, Gunter; Yanez, Jorge; Kotchourko, Alexei; Kuznetsov, Mike; Sangiorgi, Marco; Fontanet, Joan; Herranz, Luis; Garcia De La Rua, Carmen; Santiago, Aleza Enciso; Andreani, Michele; Paladino, Domenico; Dreier, Joerg; Lee, Richard; Amri, Abdallah
2014-01-01
The Committee on the Safety of Nuclear Installations (CSNI) formed the CCVM (Containment Code Validation Matrix) task group in 2002. The objective of this group was to define a basic set of available experiments for code validation, covering the range of containment (ex-vessel) phenomena expected in the course of light and heavy water reactor design basis accidents and beyond design basis accidents/severe accidents. It was to consider phenomena relevant to pressurised heavy water reactor (PHWR), pressurised water reactor (PWR) and boiling water reactor (BWR) designs of Western origin as well as of Eastern European VVER types. This work would complement the two existing CSNI validation matrices for thermal hydraulic code validation (NEA/CSNI/R(1993)14) and In-vessel core degradation (NEA/CSNI/R(2001)21). The report initially provides a brief overview of the main features of a PWR, BWR, CANDU and VVER reactors. It also provides an overview of the ex-vessel corium retention (core catcher). It then provides a general overview of the accident progression for light water and heavy water reactors. The main focus is to capture most of the phenomena and safety systems employed in these reactor types and to highlight the differences. This CCVM contains a description of 127 phenomena, broken down into 6 categories: - Containment Thermal-hydraulics Phenomena; - Hydrogen Behaviour (Combustion, Mitigation and Generation) Phenomena; - Aerosol and Fission Product Behaviour Phenomena; - Iodine Chemistry Phenomena; - Core Melt Distribution and Behaviour in Containment Phenomena; - Systems Phenomena. A synopsis is provided for each phenomenon, including a description, references for further information, significance for DBA and SA/BDBA and a list of experiments that may be used for code validation. The report identified 213 experiments, broken down into the same six categories (as done for the phenomena). An experiment synopsis is provided for each test. Along with a test description
Decoding of concatenated codes with interleaved outer codes
DEFF Research Database (Denmark)
Justesen, Jørn; Høholdt, Tom; Thommesen, Christian
2004-01-01
Recently Bleichenbacher et al. proposed a decoding algorithm for interleaved (N, K) Reed-Solomon codes, which allows close to N-K errors to be corrected in many cases. We discuss the application of this decoding algorithm to concatenated codes.......Recently Bleichenbacher et al. proposed a decoding algorithm for interleaved (N, K) Reed-Solomon codes, which allows close to N-K errors to be corrected in many cases. We discuss the application of this decoding algorithm to concatenated codes....
TASS code topical report. V.1 TASS code technical manual
International Nuclear Information System (INIS)
Sim, Suk K.; Chang, W. P.; Kim, K. D.; Kim, H. C.; Yoon, H. Y.
1997-02-01
TASS 1.0 code has been developed at KAERI for the initial and reload non-LOCA safety analysis for the operating PWRs as well as the PWRs under construction in Korea. TASS code will replace various vendor's non-LOCA safety analysis codes currently used for the Westinghouse and ABB-CE type PWRs in Korea. This can be achieved through TASS code input modifications specific to each reactor type. The TASS code can be run interactively through the keyboard operation. A simimodular configuration used in developing the TASS code enables the user easily implement new models. TASS code has been programmed using FORTRAN77 which makes it easy to install and port for different computer environments. The TASS code can be utilized for the steady state simulation as well as the non-LOCA transient simulations such as power excursions, reactor coolant pump trips, load rejections, loss of feedwater, steam line breaks, steam generator tube ruptures, rod withdrawal and drop, and anticipated transients without scram (ATWS). The malfunctions of the control systems, components, operator actions and the transients caused by the malfunctions can be easily simulated using the TASS code. This technical report describes the TASS 1.0 code models including reactor thermal hydraulic, reactor core and control models. This TASS code models including reactor thermal hydraulic, reactor core and control models. This TASS code technical manual has been prepared as a part of the TASS code manual which includes TASS code user's manual and TASS code validation report, and will be submitted to the regulatory body as a TASS code topical report for a licensing non-LOCA safety analysis for the Westinghouse and ABB-CE type PWRs operating and under construction in Korea. (author). 42 refs., 29 tabs., 32 figs
Construction of new quantum MDS codes derived from constacyclic codes
Taneja, Divya; Gupta, Manish; Narula, Rajesh; Bhullar, Jaskaran
Obtaining quantum maximum distance separable (MDS) codes from dual containing classical constacyclic codes using Hermitian construction have paved a path to undertake the challenges related to such constructions. Using the same technique, some new parameters of quantum MDS codes have been constructed here. One set of parameters obtained in this paper has achieved much larger distance than work done earlier. The remaining constructed parameters of quantum MDS codes have large minimum distance and were not explored yet.
RELAP5/MOD3 code manual: Code structure, system models, and solution methods. Volume 1
International Nuclear Information System (INIS)
1995-08-01
The RELAP5 code has been developed for best estimate transient simulation of light water reactor coolant systems during postulated accidents. The code models the coupled behavior of the reactor coolant system and the core for loss-of-coolant accidents, and operational transients, such as anticipated transient without scram, loss of offsite power, loss of feedwater, and loss of flow. A generic modeling, approach is used that permits simulating a variety of thermal hydraulic systems. Control system and secondary system components are included to permit modeling of plant controls, turbines, condensers, and secondary feedwater systems. RELAP5/MOD3 code documentation is divided into seven volumes: Volume I provides modeling theory and associated numerical schemes
Loring, FH
2014-01-01
Summarising the most novel facts and theories which were coming into prominence at the time, particularly those which had not yet been incorporated into standard textbooks, this important work was first published in 1921. The subjects treated cover a wide range of research that was being conducted into the atom, and include Quantum Theory, the Bohr Theory, the Sommerfield extension of Bohr's work, the Octet Theory and Isotopes, as well as Ionisation Potentials and Solar Phenomena. Because much of the material of Atomic Theories lies on the boundary between experimentally verified fact and spec
Harris, Tina
2015-04-29
Grounded theory is a popular research approach in health care and the social sciences. This article provides a description of grounded theory methodology and its key components, using examples from published studies to demonstrate practical application. It aims to demystify grounded theory for novice nurse researchers, by explaining what it is, when to use it, why they would want to use it and how to use it. It should enable nurse researchers to decide if grounded theory is an appropriate approach for their research, and to determine the quality of any grounded theory research they read.
Number theory via Representation theory
Indian Academy of Sciences (India)
2014-11-09
Number theory via Representation theory. Eknath Ghate. November 9, 2014. Eightieth Annual Meeting, Chennai. Indian Academy of Sciences1. 1. This is a non-technical 20 minute talk intended for a general Academy audience.
Convolutional coding techniques for data protection
Massey, J. L.
1975-01-01
Results of research on the use of convolutional codes in data communications are presented. Convolutional coding fundamentals are discussed along with modulation and coding interaction. Concatenated coding systems and data compression with convolutional codes are described.
Codon Distribution in Error-Detecting Circular Codes
Directory of Open Access Journals (Sweden)
Elena Fimmel
2016-03-01
Full Text Available In 1957, Francis Crick et al. suggested an ingenious explanation for the process of frame maintenance. The idea was based on the notion of comma-free codes. Although Crick’s hypothesis proved to be wrong, in 1996, Arquès and Michel discovered the existence of a weaker version of such codes in eukaryote and prokaryote genomes, namely the so-called circular codes. Since then, circular code theory has invariably evoked great interest and made significant progress. In this article, the codon distributions in maximal comma-free, maximal self-complementary C3 and maximal self-complementary circular codes are discussed, i.e., we investigate in how many of such codes a given codon participates. As the main (and surprising result, it is shown that the codons can be separated into very few classes (three, or five, or six with respect to their frequency. Moreover, the distribution classes can be hierarchically ordered as refinements from maximal comma-free codes via maximal self-complementary C3 codes to maximal self-complementary circular codes.
Codon Distribution in Error-Detecting Circular Codes.
Fimmel, Elena; Strüngmann, Lutz
2016-03-15
In 1957, Francis Crick et al. suggested an ingenious explanation for the process of frame maintenance. The idea was based on the notion of comma-free codes. Although Crick's hypothesis proved to be wrong, in 1996, Arquès and Michel discovered the existence of a weaker version of such codes in eukaryote and prokaryote genomes, namely the so-called circular codes. Since then, circular code theory has invariably evoked great interest and made significant progress. In this article, the codon distributions in maximal comma-free, maximal self-complementary C³ and maximal self-complementary circular codes are discussed, i.e., we investigate in how many of such codes a given codon participates. As the main (and surprising) result, it is shown that the codons can be separated into very few classes (three, or five, or six) with respect to their frequency. Moreover, the distribution classes can be hierarchically ordered as refinements from maximal comma-free codes via maximal self-complementary C(3) codes to maximal self-complementary circular codes.
Measuring Modularity in Open Source Code Bases
Directory of Open Access Journals (Sweden)
Roberto Milev
2009-03-01
Full Text Available Modularity of an open source software code base has been associated with growth of the software development community, the incentives for voluntary code contribution, and a reduction in the number of users who take code without contributing back to the community. As a theoretical construct, modularity links OSS to other domains of research, including organization theory, the economics of industry structure, and new product development. However, measuring the modularity of an OSS design has proven difficult, especially for large and complex systems. In this article, we describe some preliminary results of recent research at Carleton University that examines the evolving modularity of large-scale software systems. We describe a measurement method and a new modularity metric for comparing code bases of different size, introduce an open source toolkit that implements this method and metric, and provide an analysis of the evolution of the Apache Tomcat application server as an illustrative example of the insights gained from this approach. Although these results are preliminary, they open the door to further cross-discipline research that quantitatively links the concerns of business managers, entrepreneurs, policy-makers, and open source software developers.
TACO: a finite element heat transfer code
International Nuclear Information System (INIS)
Mason, W.E. Jr.
1980-02-01
TACO is a two-dimensional implicit finite element code for heat transfer analysis. It can perform both linear and nonlinear analyses and can be used to solve either transient or steady state problems. Either plane or axisymmetric geometries can be analyzed. TACO has the capability to handle time or temperature dependent material properties and materials may be either isotropic or orthotropic. A variety of time and temperature dependent loadings and boundary conditions are available including temperature, flux, convection, and radiation boundary conditions and internal heat generation. Additionally, TACO has some specialized features such as internal surface conditions (e.g., contact resistance), bulk nodes, enclosure radiation with view factor calculations, and chemical reactive kinetics. A user subprogram feature allows for any type of functional representation of any independent variable. A bandwidth and profile minimization option is also available in the code. Graphical representation of data generated by TACO is provided by a companion post-processor named POSTACO. The theory on which TACO is based is outlined, the capabilities of the code are explained, the input data required to perform an analysis with TACO are described. Some simple examples are provided to illustrate the use of the code
International Nuclear Information System (INIS)
Schwarz, J.H.
1985-01-01
Dual string theories, initially developed as phenomenological models of hadrons, now appear more promising as candidates for a unified theory of fundamental interactions. Type I superstring theory (SST I), is a ten-dimensional theory of interacting open and closed strings, with one supersymmetry, that is free from ghosts and tachyons. It requires that an SO(eta) or Sp(2eta) gauge group be used. A light-cone-gauge string action with space-time supersymmetry automatically incorporates the superstring restrictions and leads to the discovery of type II superstring theory (SST II). SST II is an interacting theory of closed strings only, with two D=10 supersymmetries, that is also free from ghosts and tachyons. By taking six of the spatial dimensions to form a compact space, it becomes possible to reconcile the models with our four-dimensional perception of spacetime and to define low-energy limits in which SST I reduces to N=4, D=4 super Yang-Mills theory and SST II reduces to N=8, D=4 supergravity theory. The superstring theories can be described by a light-cone-gauge action principle based on fields that are functionals of string coordinates. With this formalism any physical quantity should be calculable. There is some evidence that, unlike any conventional field theory, the superstring theories provide perturbatively renormalizable (SST I) or finite (SST II) unifications of gravity with other interactions
On Field Size and Success Probability in Network Coding
DEFF Research Database (Denmark)
Geil, Hans Olav; Matsumoto, Ryutaroh; Thomsen, Casper
2008-01-01
Using tools from algebraic geometry and Gröbner basis theory we solve two problems in network coding. First we present a method to determine the smallest field size for which linear network coding is feasible. Second we derive improved estimates on the success probability of random linear network...... coding. These estimates take into account which monomials occur in the support of the determinant of the product of Edmonds matrices. Therefore we finally investigate which monomials can occur in the determinant of the Edmonds matrix....
Porting of serial molecular dynamics code on MIMD platforms
International Nuclear Information System (INIS)
Celino, M.
1995-05-01
A molecular Dynamics (MD) code, utilized for the study of atomistic models of metallic systems has been parallelized for MIMD (Multiple Instructions Multiple Data) parallel platforms by means of the Parallel Virtual Machine (PVM) message passing library. Since the parallelization implies modifications of the sequential algorithms, these are described from the point of view of the Statistical Mechanics theory. Furthermore, techniques and parallelization strategies utilized and the MD parallel code are described in detail. Benchmarks on several MIMD platforms (IBM SP1 and SP2, Cray T3D, Cluster of workstations) allow performances evaluation of the code versus the different characteristics of the parallel platforms
Production of analysis code for 'JOYO' dosimetry experiment
International Nuclear Information System (INIS)
Sasaki, Makoto; Nakazawa, Masaharu.
1981-01-01
As part of the measurement and analysis plan for the Dosimetry Experiment at the ''JOYO'' experimental fast reactor, neutron flux spectra analysis is performed using the NEUPAC (Neutron Unfolding Code Package) computer program. The code calculates the neutron flux spectra and other integral quantities from the activation data of the dosimeter foils. The NEUPAC code is based on the J1-type unfolding method, and the estimated neutron flux spectra is obtained as its solution. The program is able to determine the integral quantities and their sensitivities, together with an error estimate of the unfolded spectra and integral quantities. The code also performs a chi-square test of the input/output data, and contains many options for the calculational routines. This report presents the analytic theory, the program algorithms, and a description of the functions and use of the NEUPAC code. (author)
String theory or field theory?
International Nuclear Information System (INIS)
Marshakov, Andrei V
2002-01-01
The status of string theory is reviewed, and major recent developments - especially those in going beyond perturbation theory in the string theory and quantum field theory frameworks - are analyzed. This analysis helps better understand the role and place of string theory in the modern picture of the physical world. Even though quantum field theory describes a wide range of experimental phenomena, it is emphasized that there are some insurmountable problems inherent in it - notably the impossibility to formulate the quantum theory of gravity on its basis - which prevent it from being a fundamental physical theory of the world of microscopic distances. It is this task, the creation of such a theory, which string theory, currently far from completion, is expected to solve. In spite of its somewhat vague current form, string theory has already led to a number of serious results and greatly contributed to progress in the understanding of quantum field theory. It is these developments which are our concern in this review. (reviews of topical problems)
Dependence theory via game theory
Grossi, D.; Turrini, P.
2011-01-01
In the multi-agent systems community, dependence theory and game theory are often presented as two alternative perspectives on the analysis of social interaction. Up till now no research has been done relating these two approaches. The unification presented provides dependence theory with the sort
High Energy Transport Code HETC
International Nuclear Information System (INIS)
Gabriel, T.A.
1985-09-01
The physics contained in the High Energy Transport Code (HETC), in particular the collision models, are discussed. An application using HETC as part of the CALOR code system is also given. 19 refs., 5 figs., 3 tabs
WWER radial reflector modeling by diffusion codes
International Nuclear Information System (INIS)
Petkov, P. T.; Mittag, S.
2005-01-01
The two commonly used approaches to describe the WWER radial reflectors in diffusion codes, by albedo on the core-reflector boundary and by a ring of diffusive assembly size nodes, are discussed. The advantages and disadvantages of the first approach are presented first, then the Koebke's equivalence theory is outlined and its implementation for the WWER radial reflectors is discussed. Results for the WWER-1000 reactor are presented. Then the boundary conditions on the outer reflector boundary are discussed. The possibility to divide the library into fuel assembly and reflector parts and to generate each library by a separate code package is discussed. Finally, the homogenization errors for rodded assemblies are presented and discussed (Author)
Update on the opal opacity code
International Nuclear Information System (INIS)
Rogers, F.J.; Iglesias, C.A.; Wilson, B.G.
1990-01-01
Persisting discrepancies between theory and observation in a number of astrophysical properties has led to the conjecture that opacity databases may be inaccurate. The OPAL opacity code has been developed to address this question. The physical basis of OPAL removes several of the approximations present in past calculations. For example, it utilizes a much larger and more detailed set of atomic data than was used to construct the los Alamos Astrophysical Library. This data is generated online, in LS or intermediate coupling, from prefitted analytic effective potentials and is of similar quality as single configuration, relativistic, self-consistent-field calculations. The OPAL code has been used to calculate opacities for the solar core and for Cepheid variable stars. In both cases, significant increases in the opacity compared to the Los Alamos Astrophysical Library were found
Coding Military Command as a Promiscuous Practice
DEFF Research Database (Denmark)
Ashcraft, Karen Lee; Muhr, Sara Louise
2018-01-01
by translating the vague promise of queering leadership into a tangible method distinguished by specific habits. The article formulates this analytical practice out of empirical provocations encountered by the authors: namely, a striking mismatch between their experiences in military fields and the dominant......Despite abundant scholarship addressed to gender equity in leadership, much leadership literature remains invested in gender binaries. Metaphors of leadership are especially dependent on gender oppositions, and this article treats the scholarly practice of coding leadership through gendered...... metaphor as a consequential practice of leadership unto itself. Drawing on queer theory, the article develops a mode of analysis, called ‘promiscuous coding’, conducive to disrupting the gender divisions that currently anchor most leadership metaphors. Promiscuous coding can assist leadership scholars...
Benavente, L; Villanueva, M J; Vega, P; Casado, I; Vidal, J A; Castaño, B; Amorín, M; de la Vega, V; Santos, H; Trigo, A; Gómez, M B; Larrosa, D; Temprano, T; González, M; Murias, E; Calleja, S
2016-04-01
Intravenous thrombolysis with alteplase is an effective treatment for ischaemic stroke when applied during the first 4.5 hours, but less than 15% of patients have access to this technique. Mechanical thrombectomy is more frequently able to recanalise proximal occlusions in large vessels, but the infrastructure it requires makes it even less available. We describe the implementation of code stroke in Asturias, as well as the process of adapting various existing resources for urgent stroke care in the region. By considering these resources, and the demographic and geographic circumstances of our region, we examine ways of reorganising the code stroke protocol that would optimise treatment times and provide the most appropriate treatment for each patient. We distributed the 8 health districts in Asturias so as to permit referral of candidates for reperfusion therapies to either of the 2 hospitals with 24-hour stroke units and on-call neurologists and providing IV fibrinolysis. Hospitals were assigned according to proximity and stroke severity; the most severe cases were immediately referred to the hospital with on-call interventional neurology care. Patient triage was provided by pre-hospital emergency services according to the NIHSS score. Modifications to code stroke in Asturias have allowed us to apply reperfusion therapies with good results, while emphasising equitable care and managing the severity-time ratio to offer the best and safest treatment for each patient as soon as possible. Copyright © 2015 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights reserved.
Benchmarking of FA2D/PARCS Code Package
International Nuclear Information System (INIS)
Grgic, D.; Jecmenica, R.; Pevec, D.
2006-01-01
FA2D/PARCS code package is used at Faculty of Electrical Engineering and Computing (FER), University of Zagreb, for static and dynamic reactor core analyses. It consists of two codes: FA2D and PARCS. FA2D is a multigroup two dimensional transport theory code for burn-up calculations based on collision probability method, developed at FER. It generates homogenised cross sections both of single pins and entire fuel assemblies. PARCS is an advanced nodal code developed at Purdue University for US NRC and it is based on neutron diffusion theory for three dimensional whole core static and dynamic calculations. It is modified at FER to enable internal 3D depletion calculation and usage of neutron cross section data in a format produced by FA2D and interface codes. The FA2D/PARCS code system has been validated on NPP Krsko operational data (Cycles 1 and 21). As we intend to use this code package for development of IRIS reactor loading patterns the first logical step was to validate the FA2D/PARCS code package on a set of IRIS benchmarks, starting from simple unit fuel cell, via fuel assembly, to full core benchmark. The IRIS 17x17 fuel with erbium burnable absorber was used in last full core benchmark. The results of modelling the IRIS full core benchmark using FA2D/PARCS code package have been compared with reference data showing the adequacy of FA2D/PARCS code package model for IRIS reactor core design.(author)
DEFF Research Database (Denmark)
Nielsen, Rasmus Refslund
2002-01-01
This paper describes an efficient decoding method for a recent construction of good linear codes as well as an extension to the construction. Furthermore, asymptotic properties and list decoding of the codes are discussed.......This paper describes an efficient decoding method for a recent construction of good linear codes as well as an extension to the construction. Furthermore, asymptotic properties and list decoding of the codes are discussed....
WWER reactor physics code applications
International Nuclear Information System (INIS)
Gado, J.; Kereszturi, A.; Gacs, A.; Telbisz, M.
1994-01-01
The coupled steady-state reactor physics and thermohydraulic code system KARATE has been developed and applied for WWER-1000 and WWER-440 operational calculations. The 3 D coupled kinetic code KIKO3D has been developed and validated for WWER-440 accident analysis applications. The coupled kinetic code SMARTA developed by VTT Helsinki has been applied for WWER-440 accident analysis. The paper gives a summary of the experience in code development and application. (authors). 10 refs., 2 tabs., 5 figs
CERN. Geneva
2017-01-01
Join the path of code linting and discover how it can help you reach higher levels of programming enlightenment. Today we will cover how to embrace code linters to offload cognitive strain on preserving style standards in your code base as well as avoiding error-prone constructs. Additionally, I will show you the journey ahead for integrating several code linters in the programming tools your already use with very little effort.
The CORSYS neutronics code system
International Nuclear Information System (INIS)
Caner, M.; Krumbein, A.D.; Saphier, D.; Shapira, M.
1994-01-01
The purpose of this work is to assemble a code package for LWR core physics including coupled neutronics, burnup and thermal hydraulics. The CORSYS system is built around the cell code WIMS (for group microscopic cross section calculations) and 3-dimension diffusion code CITATION (for burnup and fuel management). We are implementing such a system on an IBM RS-6000 workstation. The code was rested with a simplified model of the Zion Unit 2 PWR. (authors). 6 refs., 8 figs., 1 tabs
Bar codes for nuclear safeguards
International Nuclear Information System (INIS)
Keswani, A.N.; Bieber, A.M. Jr.
1983-01-01
Bar codes similar to those used in supermarkets can be used to reduce the effort and cost of collecting nuclear materials accountability data. A wide range of equipment is now commercially available for printing and reading bar-coded information. Several examples of each of the major types of commercially available equipment are given, and considerations are discussed both for planning systems using bar codes and for choosing suitable bar code equipment
Bar codes for nuclear safeguards
International Nuclear Information System (INIS)
Keswani, A.N.; Bieber, A.M.
1983-01-01
Bar codes similar to those used in supermarkets can be used to reduce the effort and cost of collecting nuclear materials accountability data. A wide range of equipment is now commercially available for printing and reading bar-coded information. Several examples of each of the major types of commercially-available equipment are given, and considerations are discussed both for planning systems using bar codes and for choosing suitable bar code equipment
Quick response codes in Orthodontics
Directory of Open Access Journals (Sweden)
Moidin Shakil
2015-01-01
Full Text Available Quick response (QR code codes are two-dimensional barcodes, which encodes for a large amount of information. QR codes in Orthodontics are an innovative approach in which patient details, radiographic interpretation, and treatment plan can be encoded. Implementing QR code in Orthodontics will save time, reduces paperwork, and minimizes manual efforts in storage and retrieval of patient information during subsequent stages of treatment.
Multiple LDPC decoding for distributed source coding and video coding
DEFF Research Database (Denmark)
Forchhammer, Søren; Luong, Huynh Van; Huang, Xin
2011-01-01
Distributed source coding (DSC) is a coding paradigm for systems which fully or partly exploit the source statistics at the decoder to reduce the computational burden at the encoder. Distributed video coding (DVC) is one example. This paper considers the use of Low Density Parity Check Accumulate...... (LDPCA) codes in a DSC scheme with feed-back. To improve the LDPC coding performance in the context of DSC and DVC, while retaining short encoder blocks, this paper proposes multiple parallel LDPC decoding. The proposed scheme passes soft information between decoders to enhance performance. Experimental...
Rijnieks, Krisjanis
2013-01-01
Presented in an easy to follow, tutorial-style format, this book will lead you step-by-step through the multi-faceted uses of Cinder.""Cinder: Begin Creative Coding"" is for people who already have experience in programming. It can serve as a transition from a previous background in Processing, Java in general, JavaScript, openFrameworks, C++ in general or ActionScript to the framework covered in this book, namely Cinder. If you like quick and easy to follow tutorials that will let yousee progress in less than an hour - this book is for you. If you are searching for a book that will explain al
UNSPEC: revisited (semaphore code)
International Nuclear Information System (INIS)
Neifert, R.D.
1981-01-01
The UNSPEC code is used to solve the problem of unfolding an observed x-ray spectrum given the response matrix of the measuring system and the measured signal values. UNSPEC uses an iterative technique to solve the unfold problem. Due to experimental errors in the measured signal values and/or computer round-off errors, discontinuities and oscillatory behavior may occur in the iterated spectrum. These can be suppressed by smoothing the results after each iteration. Input/output options and control cards are explained; sample input and output are provided
International Nuclear Information System (INIS)
Basher, J.C.
1965-05-01
This report describes the FORTRAN programmes, FLIC 1 and FLIC 2. These programmes convert programmes coded in one dialect of FORTRAN to another dialect of the same language. FLIC 1 is a general pattern recognition and replacement programme whereas FLIC 2 contains extensions directed towards the conversion of FORTRAN II and S2 programmes to EGTRAN 1 - the dialect now in use on the Winfrith KDF9. FII or S2 statements are replaced where possible by their E1 equivalents; other statements which may need changing are flagged. (author)
Energy Technology Data Exchange (ETDEWEB)
Basher, J C [General Reactor Physics Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)
1965-05-15
This report describes the FORTRAN programmes, FLIC 1 and FLIC 2. These programmes convert programmes coded in one dialect of FORTRAN to another dialect of the same language. FLIC 1 is a general pattern recognition and replacement programme whereas FLIC 2 contains extensions directed towards the conversion of FORTRAN II and S2 programmes to EGTRAN 1 - the dialect now in use on the Winfrith KDF9. FII or S2 statements are replaced where possible by their E1 equivalents; other statements which may need changing are flagged. (author)
Code Generation with Templates
Arnoldus, Jeroen; Serebrenik, A
2012-01-01
Templates are used to generate all kinds of text, including computer code. The last decade, the use of templates gained a lot of popularity due to the increase of dynamic web applications. Templates are a tool for programmers, and implementations of template engines are most times based on practical experience rather than based on a theoretical background. This book reveals the mathematical background of templates and shows interesting findings for improving the practical use of templates. First, a framework to determine the necessary computational power for the template metalanguage is presen
Differentially Encoded LDPC CodesÃ¢Â€Â”Part II: General Case and Code Optimization
Directory of Open Access Journals (Sweden)
Jing Li (Tiffany
2008-04-01
Full Text Available This two-part series of papers studies the theory and practice of differentially encoded low-density parity-check (DE-LDPC codes, especially in the context of noncoherent detection. Part I showed that a special class of DE-LDPC codes, product accumulate codes, perform very well with both coherent and noncoherent detections. The analysis here reveals that a conventional LDPC code, however, is not fitful for differential coding and does not, in general, deliver a desirable performance when detected noncoherently. Through extrinsic information transfer (EXIT analysis and a modified Ã¢Â€Âœconvergence-constraintÃ¢Â€Â density evolution (DE method developed here, we provide a characterization of the type of LDPC degree profiles that work in harmony with differential detection (or a recursive inner code in general, and demonstrate how to optimize these LDPC codes. The convergence-constraint method provides a useful extension to the conventional Ã¢Â€Âœthreshold-constraintÃ¢Â€Â method, and can match an outer LDPC code to any given inner code with the imperfectness of the inner decoder taken into consideration.
Stable isotope labeling strategy based on coding theory
Energy Technology Data Exchange (ETDEWEB)
Kasai, Takuma; Koshiba, Seizo; Yokoyama, Jun; Kigawa, Takanori, E-mail: kigawa@riken.jp [RIKEN Quantitative Biology Center (QBiC), Laboratory for Biomolecular Structure and Dynamics (Japan)
2015-10-15
We describe a strategy for stable isotope-aided protein nuclear magnetic resonance (NMR) analysis, called stable isotope encoding. The basic idea of this strategy is that amino-acid selective labeling can be considered as “encoding and decoding” processes, in which the information of amino acid type is encoded by the stable isotope labeling ratio of the corresponding residue and it is decoded by analyzing NMR spectra. According to the idea, the strategy can diminish the required number of labelled samples by increasing information content per sample, enabling discrimination of 19 kinds of non-proline amino acids with only three labeled samples. The idea also enables this strategy to combine with information technologies, such as error detection by check digit, to improve the robustness of analyses with low quality data. Stable isotope encoding will facilitate NMR analyses of proteins under non-ideal conditions, such as those in large complex systems, with low-solubility, and in living cells.
Stable isotope labeling strategy based on coding theory
International Nuclear Information System (INIS)
Kasai, Takuma; Koshiba, Seizo; Yokoyama, Jun; Kigawa, Takanori
2015-01-01
We describe a strategy for stable isotope-aided protein nuclear magnetic resonance (NMR) analysis, called stable isotope encoding. The basic idea of this strategy is that amino-acid selective labeling can be considered as “encoding and decoding” processes, in which the information of amino acid type is encoded by the stable isotope labeling ratio of the corresponding residue and it is decoded by analyzing NMR spectra. According to the idea, the strategy can diminish the required number of labelled samples by increasing information content per sample, enabling discrimination of 19 kinds of non-proline amino acids with only three labeled samples. The idea also enables this strategy to combine with information technologies, such as error detection by check digit, to improve the robustness of analyses with low quality data. Stable isotope encoding will facilitate NMR analyses of proteins under non-ideal conditions, such as those in large complex systems, with low-solubility, and in living cells
A study of cognitive loading in dual-coding theory.
Ishi, H; Yamauchi, H
1994-08-01
15 university students were engaged in a task of recalling sentences with and without figures. Analysis of the number recalled indicated that cognitive loading for sentences with figures was more effective than for recall of sentences without figures.
Explaining autism spectrum disorders: central coherence vs. predictive coding theories.
Chan, Jason S; Naumer, Marcus J
2014-12-01
In this article, we review a recent paper by Stevenson et al. (J Neurosci 34: 691-697, 2014). This paper illustrates the need to present different forms of stimuli in order to characterize the perceptual abilities of people with autism spectrum disorder (ASD). Furthermore, we will discuss their behavioral results and offer an opposing viewpoint to the suggested neuronal drivers of ASD. Copyright © 2014 the American Physiological Society.
Order functions and evaluation codes
DEFF Research Database (Denmark)
Høholdt, Tom; Pellikaan, Ruud; van Lint, Jack
1997-01-01
Based on the notion of an order function we construct and determine the parameters of a class of error-correcting evaluation codes. This class includes the one-point algebraic geometry codes as wella s the generalized Reed-Muller codes and the parameters are detremined without using the heavy...... machinery of algebraic geometry....
International Nuclear Information System (INIS)
Cvelbar, F.
1999-01-01
Recent codes for direct-semidirect (DSD) model calculations in the form of answers to a detailed questionnaire are reviewed. These codes include those embodying the classical DSD approach covering only the transitions to the bound states (RAF, HIKARI, and those of the Bologna group), as well as the code CUPIDO++ that also treats transitions to unbound states. (author)
Strongly-MDS convolutional codes
Gluesing-Luerssen, H; Rosenthal, J; Smarandache, R
Maximum-distance separable (MDS) convolutional codes have the property that their free distance is maximal among all codes of the same rate and the same degree. In this paper, a class of MDS convolutional codes is introduced whose column distances reach the generalized Singleton bound at the
Computer codes for safety analysis
International Nuclear Information System (INIS)
Holland, D.F.
1986-11-01
Computer codes for fusion safety analysis have been under development in the United States for about a decade. This paper will discuss five codes that are currently under development by the Fusion Safety Program. The purpose and capability of each code will be presented, a sample given, followed by a discussion of the present status and future development plans
Geochemical computer codes. A review
International Nuclear Information System (INIS)
Andersson, K.
1987-01-01
In this report a review of available codes is performed and some code intercomparisons are also discussed. The number of codes treating natural waters (groundwater, lake water, sea water) is large. Most geochemical computer codes treat equilibrium conditions, although some codes with kinetic capability are available. A geochemical equilibrium model consists of a computer code, solving a set of equations by some numerical method and a data base, consisting of thermodynamic data required for the calculations. There are some codes which treat coupled geochemical and transport modeling. Some of these codes solve the equilibrium and transport equations simultaneously while other solve the equations separately from each other. The coupled codes require a large computer capacity and have thus as yet limited use. Three code intercomparisons have been found in literature. It may be concluded that there are many codes available for geochemical calculations but most of them require a user that us quite familiar with the code. The user also has to know the geochemical system in order to judge the reliability of the results. A high quality data base is necessary to obtain a reliable result. The best results may be expected for the major species of natural waters. For more complicated problems, including trace elements, precipitation/dissolution, adsorption, etc., the results seem to be less reliable. (With 44 refs.) (author)
Separate Turbo Code and Single Turbo Code Adaptive OFDM Transmissions
Directory of Open Access Journals (Sweden)
Lei Ye
2009-01-01
Full Text Available This paper discusses the application of adaptive modulation and adaptive rate turbo coding to orthogonal frequency-division multiplexing (OFDM, to increase throughput on the time and frequency selective channel. The adaptive turbo code scheme is based on a subband adaptive method, and compares two adaptive systems: a conventional approach where a separate turbo code is used for each subband, and a single turbo code adaptive system which uses a single turbo code over all subbands. Five modulation schemes (BPSK, QPSK, 8AMPM, 16QAM, and 64QAM are employed and turbo code rates considered are 1/2 and 1/3. The performances of both systems with high (10−2 and low (10−4 BER targets are compared. Simulation results for throughput and BER show that the single turbo code adaptive system provides a significant improvement.
Quantum Codes From Cyclic Codes Over The Ring R 2
International Nuclear Information System (INIS)
Altinel, Alev; Güzeltepe, Murat
2016-01-01
Let R 2 denotes the ring F 2 + μF 2 + υ 2 + μυ F 2 + wF 2 + μwF 2 + υwF 2 + μυwF 2 . In this study, we construct quantum codes from cyclic codes over the ring R 2 , for arbitrary length n, with the restrictions μ 2 = 0, υ 2 = 0, w 2 = 0, μυ = υμ, μw = wμ, υw = wυ and μ (υw) = (μυ) w. Also, we give a necessary and sufficient condition for cyclic codes over R 2 that contains its dual. As a final point, we obtain the parameters of quantum error-correcting codes from cyclic codes over R 2 and we give an example of quantum error-correcting codes form cyclic codes over R 2 . (paper)
Separate Turbo Code and Single Turbo Code Adaptive OFDM Transmissions
Directory of Open Access Journals (Sweden)
Burr Alister
2009-01-01
Full Text Available Abstract This paper discusses the application of adaptive modulation and adaptive rate turbo coding to orthogonal frequency-division multiplexing (OFDM, to increase throughput on the time and frequency selective channel. The adaptive turbo code scheme is based on a subband adaptive method, and compares two adaptive systems: a conventional approach where a separate turbo code is used for each subband, and a single turbo code adaptive system which uses a single turbo code over all subbands. Five modulation schemes (BPSK, QPSK, 8AMPM, 16QAM, and 64QAM are employed and turbo code rates considered are and . The performances of both systems with high ( and low ( BER targets are compared. Simulation results for throughput and BER show that the single turbo code adaptive system provides a significant improvement.
Converter of a continuous code into the Grey code
International Nuclear Information System (INIS)
Gonchar, A.I.; TrUbnikov, V.R.
1979-01-01
Described is a converter of a continuous code into the Grey code used in a 12-charged precision amplitude-to-digital converter to decrease the digital component of spectrometer differential nonlinearity to +0.7% in the 98% range of the measured band. To construct the converter of a continuous code corresponding to the input signal amplitude into the Grey code used is the regularity in recycling of units and zeroes in each discharge of the Grey code in the case of a continuous change of the number of pulses of a continuous code. The converter is constructed on the elements of 155 series, the frequency of continuous code pulse passing at the converter input is 25 MHz
Comparison of calculations of a reflected reactor with diffusion, SN and Monte Carlo codes
International Nuclear Information System (INIS)
McGregor, B.
1975-01-01
A diffusion theory code, POW, was compared with a Monte Carlo transport theory code, KENO, for the calculation of a small C/ 235 U cylindrical core with a graphite reflector. The calculated multiplication factors were in good agreement but differences were noted in region-averaged group fluxes. A one-dimensional spherical geometry was devised to approximate cylindrical geometry. Differences similar to those already observed were noted when the region-averaged fluxes from a diffusion theory (POW) calculation were compared with an SN transport theory (ANAUSN) calculation for the spherical model. Calculations made with SN and Monte Carlo transport codes were in good agreement. It was concluded that observed flux differences were attributable to the POW code, and were not inconsistent with inherent diffusion theory approximations. (author)
ICAN Computer Code Adapted for Building Materials
Murthy, Pappu L. N.
1997-01-01
The NASA Lewis Research Center has been involved in developing composite micromechanics and macromechanics theories over the last three decades. These activities have resulted in several composite mechanics theories and structural analysis codes whose applications range from material behavior design and analysis to structural component response. One of these computer codes, the Integrated Composite Analyzer (ICAN), is designed primarily to address issues related to designing polymer matrix composites and predicting their properties - including hygral, thermal, and mechanical load effects. Recently, under a cost-sharing cooperative agreement with a Fortune 500 corporation, Master Builders Inc., ICAN was adapted to analyze building materials. The high costs and technical difficulties involved with the fabrication of continuous-fiber-reinforced composites sometimes limit their use. Particulate-reinforced composites can be thought of as a viable alternative. They are as easily processed to near-net shape as monolithic materials, yet have the improved stiffness, strength, and fracture toughness that is characteristic of continuous-fiber-reinforced composites. For example, particlereinforced metal-matrix composites show great potential for a variety of automotive applications, such as disk brake rotors, connecting rods, cylinder liners, and other hightemperature applications. Building materials, such as concrete, can be thought of as one of the oldest materials in this category of multiphase, particle-reinforced materials. The adaptation of ICAN to analyze particle-reinforced composite materials involved the development of new micromechanics-based theories. A derivative of the ICAN code, ICAN/PART, was developed and delivered to Master Builders Inc. as a part of the cooperative activity.