WorldWideScience

Sample records for cobalt nitride films

  1. Phase formation, thermal stability and magnetic moment of cobalt nitride thin films

    Directory of Open Access Journals (Sweden)

    Rachana Gupta

    2015-09-01

    Full Text Available Cobalt nitride (Co-N thin films prepared using a reactive magnetron sputtering process are studied in this work. During the thin film deposition process, the relative nitrogen gas flow (RN2 was varied. As RN2 increases, Co(N, Co4N, Co3N and CoN phases are formed. An incremental increase in RN2, after emergence of Co4N phase at RN2 = 10%, results in a linear increase of the lattice constant (a of Co4N. For RN2 = 30%, a maximizes and becomes comparable to its theoretical value. An expansion in a of Co4N, results in an enhancement of the magnetic moment, to the extent that it becomes even larger than pure Co. Such larger than pure metal magnetic moment for tetra-metal nitrides (M4N have been theoretically predicted. Incorporation of N atoms in M4N configuration results in an expansion of a (relative to pure metal and enhances the itinerary of conduction band electrons leading to larger than pure metal magnetic moment for M4N compounds. Though a higher (than pure Fe magnetic moment for Fe4N thin films has been evidenced experimentally, higher (than pure Co magnetic moment is evidenced in this work.

  2. Low-temperature CVD of iron, cobalt, and nickel nitride thin films from bis[di(tert-butyl)amido]metal(II) precursors and ammonia

    International Nuclear Information System (INIS)

    Cloud, Andrew N.; Abelson, John R.; Davis, Luke M.; Girolami, Gregory S.

    2014-01-01

    Thin films of late transition metal nitrides (where the metal is iron, cobalt, or nickel) are grown by low-pressure metalorganic chemical vapor deposition from bis[di(tert-butyl)amido]metal(II) precursors and ammonia. These metal nitrides are known to have useful mechanical and magnetic properties, but there are few thin film growth techniques to produce them based on a single precursor family. The authors report the deposition of metal nitride thin films below 300 °C from three recently synthesized M[N(t-Bu) 2 ] 2 precursors, where M = Fe, Co, and Ni, with growth onset as low as room temperature. Metal-rich phases are obtained with constant nitrogen content from growth onset to 200 °C over a range of feedstock partial pressures. Carbon contamination in the films is minimal for iron and cobalt nitride, but similar to the nitrogen concentration for nickel nitride. X-ray photoelectron spectroscopy indicates that the incorporated nitrogen is present as metal nitride, even for films grown at the reaction onset temperature. Deposition rates of up to 18 nm/min are observed. The film morphologies, growth rates, and compositions are consistent with a gas-phase transamination reaction that produces precursor species with high sticking coefficients and low surface mobilities

  3. Relative SHG measurements of metal thin films: Gold, silver, aluminum, cobalt, chromium, germanium, nickel, antimony, titanium, titanium nitride, tungsten, zinc, silicon and indium tin oxide

    Directory of Open Access Journals (Sweden)

    Franklin Che

    Full Text Available We have experimentally measured the surface second-harmonic generation (SHG of sputtered gold, silver, aluminum, zinc, tungsten, copper, titanium, cobalt, nickel, chromium, germanium, antimony, titanium nitride, silicon and indium tin oxide thin films. The second-harmonic response was measured in reflection using a 150 fs p-polarized laser pulse at 1561 nm. We present a clear comparison of the SHG intensity of these films relative to each other. Our measured relative intensities compare favorably with the relative intensities of metals with published data. We also report for the first time to our knowledge the surface SHG intensity of tungsten and antimony relative to that of well known metallic thin films such as gold and silver. Keywords: Surface second-harmonic generation, Nonlinear optics, Metal thin films

  4. Phosphorus introduction mechanism in electrodeposited cobalt films

    International Nuclear Information System (INIS)

    Kravtchenko, Jean-Francois

    1973-01-01

    The cathodic reduction of hypophosphite, phosphite and phosphate ions was studied using chrono-potentiometry and voltammetry. Then cobalt was deposited at constant current from a bath containing one of these three compounds. The current, while giving an electrodeposition of cobalt, also enhances at the same time a chemical deposition of cobalt. It is shown that high coercive forces in cobalt films are much more related to this chemical deposition than to the simple fact that the films contain some phosphorus. (author) [fr

  5. Nanoscratch characterization of indium nitride films

    Energy Technology Data Exchange (ETDEWEB)

    Lian, Derming [Chin-Yi Univ. of Technology, Taichung, Taiwan (China). Dept. of Mechanical Engineering

    2014-01-15

    In this study we used RF plasma-assisted molecular beam epitaxy for the epitaxial growth of single-crystalline indium nitride (InN) thin films on aluminum nitride buffer layers/Si (111) substrates. We then used scratch techniques to study the influence of the c-axis orientation of the InN films and the beam interactions on the tribological performance of these samples. When grown at 440, 470, and 500 C, the coefficients of friction were 0.18, 0.22, and 0.26, respectively, under a normal force (F{sub n}) of 2000 {mu}N; 0.19, 0.23, and 0.27, respectively, under a value of Fn of 4000 {mu}N; and 0.21, 0.24, and 0.28, respectively, under a value of F{sub n} of 6000 {mu}N. These measured values increased slightly upon increasing the growth temperature because of the resulting smaller sizes of the apertures and/or pores in the inner films. The sliding resistance of the ploughed area was observed. The contact sliding line became increasingly noticeable upon increasing the value of F{sub n}; the plot of the friction with respect to the penetration depth revealed a significant relation in its adhesion properties presentation. (orig.)

  6. Study of obliquely deposited thin cobalt films

    International Nuclear Information System (INIS)

    Szmaja, W.; Kozlowski, W.; Balcerski, J.; Kowalczyk, P.J.; Grobelny, J.; Cichomski, M.

    2010-01-01

    Research highlights: → The paper reports simultaneously on the magnetic domain structure of obliquely deposited thin cobalt films (40 nm and 100 nm thick) and their morphological structure. Such studies are in fact rare (Refs. cited in the paper). → Moreover, to our knowledge, observations of the morphological structure of these films have not yet been carried out simultaneously by transmission electron microscopy (TEM) and atomic force microscopy (AFM). → The films of both thicknesses were found to have uniaxial in-plane magnetic anisotropy. → The magnetic microstructure of the films 40 nm thick was composed of domains running and magnetized predominantly in the direction perpendicular to the incidence plane of the vapor beam. → As the film thickness was changed from 40 nm to 100 nm, the magnetic anisotropy was observed to change from the direction perpendicular to parallel with respect to the incidence plane. → Thanks to the application of TEM and AFM, complementary information on the morphological structure of the films could be obtained. → In comparison with TEM images, AFM images revealed grains larger in size and slightly elongated in the direction perpendicular rather than parallel to the incidence plane. → These experimental findings clearly show that surface diffusion plays an important role in the process of film growth. → For the films 40 nm thick, the alignment of columnar grains in the direction perpendicular to the incidence plane was observed. → This correlates well with the magnetic domain structure of these films. → For the films 100 nm thick, the perpendicular alignment of columnar grains could also be found, although in fact with larger difficulty. → TEM studies showed that the films consisted mainly of the hexagonal close-packed (HCP) crystalline structure, but no preferred crystallographic orientation of the grains could be detected for the films of both thicknesses. → For the films 100 nm thick, the alignment of

  7. Critical fields of niobium nitride films of various granularity

    International Nuclear Information System (INIS)

    Antonova, E.A.; Sukhov, V.A.

    1983-01-01

    The behaviour of lattice parameter, specific electrical resistivity, critical temperature, and temperature dependence of upper critical field near Tsub(cr) of sputtered niobium nitride films is investigated versus the substrate temperature and gas mixture composition in the process of reactive cathode sputtering. The relation between extrapolated value of the upper critical field and granularity of niobium nitride films, close as to composition to the stoichiometric one, has been found. Values of the kappa parameter of the Ginsburg-Landau theory and of the coherence length for niobium nitride films of various granularity are estimated in an approximation of uniform distribution of impurities in a sample

  8. Optical properties of indium nitride films

    International Nuclear Information System (INIS)

    Tyagaj, V.A.; Evstigneev, A.M.; Krasiko, A.N.; Andreeva, A.F.; Malakhov, V.Ya.

    1977-01-01

    Reflection and transmission spectra of heavily doped indium nitride are studied at lambda=0.5-5 μm. Dispersion of the refractive index near the plasma resonance frequency, h.f. dielectric constant (epsilonsub(infinity)=9.3), and extinction coefficient near the transmission maximum of films have been determined from the analysis of interference pattern. The reflection spectrum exhibits maximum in the infrared range and optical effective mass is found through its position (msub(opt)*=0.11msub(0)). Free carrier absorption coefficient is shown to vary according to the law K approximately lambdasup(2.9+-0.1) which is characteristic of electron scattering by charged impurities. The analysis of absorption spectra near the threshold of interband transitions has lead to the conclusion that free carriers are localized in the lateral extremum of conduction band (or out of the center of the Brillouin zone), therefore the Burstein-Moss effect is absent

  9. Valence control of cobalt oxide thin films by annealing atmosphere

    International Nuclear Information System (INIS)

    Wang Shijing; Zhang Boping; Zhao Cuihua; Li Songjie; Zhang Meixia; Yan Liping

    2011-01-01

    The cobalt oxide (CoO and Co 3 O 4 ) thin films were successfully prepared using a spin-coating technique by a chemical solution method with CH 3 OCH 2 CH 2 OH and Co(NO 3 ) 2 .6H 2 O as starting materials. The grayish cobalt oxide films had uniform crystalline grains with less than 50 nm in diameter. The phase structure is able to tailor by controlling the annealing atmosphere and temperature, in which Co 3 O 4 thin film was obtained by annealing in air at 300-600, and N 2 at 300, and transferred to CoO thin film by raising annealing temperature in N 2 . The fitted X-ray photoelectron spectroscopy (XPS) spectra of the Co2p electrons are distinguishable from different valence states of cobalt oxide especially for their satellite structure. The valence control of cobalt oxide thin films by annealing atmosphere contributes to the tailored optical absorption property.

  10. Aluminum nitride and nanodiamond thin film microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Knoebber, Fabian; Bludau, Oliver; Roehlig, Claus-Christian; Williams, Oliver; Sah, Ram Ekwal; Kirste, Lutz; Cimalla, Volker; Lebedev, Vadim; Nebel, Christoph; Ambacher, Oliver [Fraunhofer-Institute for Applied Solid State Physics, Freiburg (Germany)

    2010-07-01

    In this work, aluminum nitride (AlN) and nanocrystalline diamond (NCD) thin film microstructures have been developed. Freestanding NCD membranes were coated with a piezoelectrical AlN layer in order to build tunable micro-lens arrays. For the evaluation of the single material quality, AlN and NCD thin films on silicon substrates were fabricated using RF magnetron sputtering and microwave chemical vapor deposition techniques, respectively. The crystal quality of AlN was investigated by X-ray diffraction. The piezoelectric constant d{sub 33} was determined by scanning laser vibrometry. The NCD thin films were optimized with respect to surface roughness, mechanical stability, intrinsic stress and transparency. To determine the mechanical properties of the materials, both, micromechanical resonator and membrane structures were fabricated and measured by magnetomotive resonant frequency spectroscopy and bulging experiments, respectively. Finally, the behavior of AlN/NCD heterostructures was modeled using the finite element method and the first structures were characterized by piezoelectrical measurements.

  11. Aluminum nitride insulating films for MOSFET devices

    Science.gov (United States)

    Lewicki, G. W.; Maserjian, J.

    1972-01-01

    Application of aluminum nitrides as electrical insulator for electric capacitors is discussed. Electrical properties of aluminum nitrides are analyzed and specific use with field effect transistors is defined. Operational limits of field effect transistors are developed.

  12. Surface modification of 17-4PH stainless steel by DC plasma nitriding and titanium nitride film duplex treatment

    International Nuclear Information System (INIS)

    Qi, F.; Leng, Y.X.; Huang, N.; Bai, B.; Zhang, P.Ch.

    2007-01-01

    17-4PH stainless steel was modified by direct current (DC) plasma nitriding and titanium nitride film duplex treatment in this study. The microstructure, wear resistance and corrosion resistance were characterized by X-ray diffraction (XRD), pin-on-disk tribological test and polarization experiment. The results revealed that the DC plasma nitriding pretreatment was in favor of improving properties of titanium nitride film. The corrosion resistance and wear resistance of duplex treatment specimen was more superior to that of only coated titanium nitride film

  13. Scratch-resistant transparent boron nitride films

    Energy Technology Data Exchange (ETDEWEB)

    Dekempeneer, E.H.A.; Kuypers, S.; Vercammen, K.; Meneve, J.; Smeets, J. [Vlaamse Instelling voor Technologisch Onderzoek (VITO), Mol (Belgium); Gibson, P.N.; Gissler, W. [Joint Research Centre of the Commission of the European Communities, Institute for Advanced Materials, Ispra (Vatican City State, Holy See) (Italy)

    1998-03-01

    Transparent boron nitride (BN) coatings were deposited on glass and Si substrates in a conventional capacitively coupled RF PACVD system starting from diborane (diluted in helium) and nitrogen. By varying the plasma conditions (bias voltage, ion current density), coatings were prepared with hardness values ranging from 2 to 12 GPa (measured with a nano-indenter). Infrared absorption measurements indicated that the BN was of the hexagonal type. A combination of glancing-angle X-ray diffraction measurements and simulations shows that the coatings consist of hexagonal-type BN crystallites with different degrees of disorder (nanocrystalline or turbostratic material). High-resolution transmission electron microscopy analysis revealed the presence of an amorphous interface layer and on top of this interface layer a well-developed fringe pattern characteristic for the basal planes in h-BN. Depending on the plasma process conditions, these fringe patterns showed different degrees of disorder as well as different orientational relationships with respect to the substrate surface. These observations were correlated with the mechanical properties of the films. (orig.) 14 refs.

  14. Direct growth of hexagonal boron nitride/graphene heterostructures on cobalt foil substrates by plasma-assisted molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhongguang; Khanaki, Alireza; Tian, Hao; Zheng, Renjing; Suja, Mohammad; Liu, Jianlin, E-mail: jianlin@ece.ucr.edu [Quantum Structures Laboratory, Department of Electrical and Computer Engineering, University of California, Riverside, California 92521 (United States); Zheng, Jian-Guo [Irvine Materials Research Institute, University of California, Irvine, California 92697-2800 (United States)

    2016-07-25

    Graphene/hexagonal boron nitride (G/h-BN) heterostructures have attracted a great deal of attention because of their exceptional properties and wide variety of potential applications in nanoelectronics. However, direct growth of large-area, high-quality, and stacked structures in a controllable and scalable way remains challenging. In this work, we demonstrate the synthesis of h-BN/graphene (h-BN/G) heterostructures on cobalt (Co) foil by sequential deposition of graphene and h-BN layers using plasma-assisted molecular beam epitaxy. It is found that the coverage of h-BN layers can be readily controlled on the epitaxial graphene by growth time. Large-area, uniform-quality, and multi-layer h-BN films on thin graphite layers were achieved. Based on an h-BN (5–6 nm)/G (26–27 nm) heterostructure, capacitor devices with Co(foil)/G/h-BN/Co(contact) configuration were fabricated to evaluate the dielectric properties of h-BN. The measured breakdown electric field showed a high value of ∼2.5–3.2 MV/cm. Both I-V and C-V characteristics indicate that the epitaxial h-BN film has good insulating characteristics.

  15. Morphologic and crystallographic studies on electrochemically formed chromium nitride films

    Energy Technology Data Exchange (ETDEWEB)

    Amezawa, Koji [Graduate School of Environmental Studies, Tohoku University, 6-6-01 Aramaki-Aoba, Aoba-ku, Sendai 980-8579 (Japan); Goto, Takuya; Tsujimura, Hiroyuki; Hagiwara, Rika; Tomii, Yoichi [Graduate School of Energy Science, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan); Uchimoto, Yoshiharu [Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan); Ito, Yasuhiko [Department of Environmental Systems Science, Faculty of Engineering, Doshisya University, Kyotanabe-shi, Kyoto 610-0321 (Japan)

    2007-11-20

    Chromium nitride films were prepared by anodically oxidizing nitride ions at 0.4-1.5 V versus Li{sup +}/Li on chromium substrates in molten LiCl-KCl-Li{sub 3}N systems at 723 K. A crystalline Cr{sub 2}N film was successfully prepared at 0.4-1.4 V, and was thicker at more positive electrolytic potential. At 1.5 V, a Cr-N film could be also obtained, but its growth rate was relatively low. The film prepared at 1.5 V consisted of two distinctive layers. The surface layer was amorphous Cr-N containing crystalline CrN particles, and the inner layer was crystalline CrN. It was considered the existence of the amorphous phase suppressed the film growth. (author)

  16. Nitrogen incorporation in sputter deposited molybdenum nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Stöber, Laura, E-mail: laura.stoeber@tuwien.ac.at; Patocka, Florian, E-mail: florian.patocka@tuwien.ac.at; Schneider, Michael, E-mail: michael.schneider@tuwien.ac.at; Schmid, Ulrich, E-mail: ulrich.e366.schmid@tuwien.ac.at [Institute of Sensor and Actuator Systems, TU Wien, Gußhausstraße 27-29, A-1040 Vienna (Austria); Konrath, Jens Peter, E-mail: jenspeter.konrath@infineon.com; Haberl, Verena, E-mail: verena.haberl@infineon.com [Infineon Technologies Austria AG, Siemensstraße 2, 9500 Villach (Austria)

    2016-03-15

    In this paper, the authors report on the high temperature performance of sputter deposited molybdenum (Mo) and molybdenum nitride (Mo{sub 2}N) thin films. Various argon and nitrogen gas compositions are applied for thin film synthetization, and the amount of nitrogen incorporation is determined by Auger measurements. Furthermore, effusion measurements identifying the binding conditions of the nitrogen in the thin film are performed up to 1000 °C. These results are in excellent agreement with film stress and scanning electron microscope analyses, both indicating stable film properties up to annealing temperatures of 500 °C.

  17. Nanocrystalline iron nitride films with perpendicular magnetic anisotropy

    International Nuclear Information System (INIS)

    Gupta, Ajay; Dubey, Ranu; Leitenberger, W.; Pietsch, U.

    2008-01-01

    Nanocrystalline α-iron nitride films have been prepared using reactive ion-beam sputtering. Films develop significant perpendicualr magnetic anisotropy (PMA) with increasing thickness. A comparison of x-ray diffraction patterns taken with scattering vectors in the film plane and out of the film plane provides a clear evidence for development of compressive strain in the film plane with thickness. Thermal annealing results in relaxation of the strain, which correlates very well with the relaxation of PMA. This suggests that the observed PMA is a consequence of the breaking of the symmetry of the crystal structure due to the compressive strain

  18. Crystallographic phases and magnetic properties of iron nitride films

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guo-Ke [Department of Physics, Hebei Advanced Thin Films Laboratory, Hebei Normal University, Shijiazhuang 050024 (China); Department of Mathematics and Physics, Shijiazhuang Tiedao University, Shijiazhuang 050043 (China); Liu, Yan; Zhao, Rui-Bin [Department of Physics, Hebei Advanced Thin Films Laboratory, Hebei Normal University, Shijiazhuang 050024 (China); Shen, Jun-Jie [Department of Mathematics and Physics, Shijiazhuang Tiedao University, Shijiazhuang 050043 (China); Wang, Shang; Shan, Pu-Jia; Zhen, Cong-Mian [Department of Physics, Hebei Advanced Thin Films Laboratory, Hebei Normal University, Shijiazhuang 050024 (China); Hou, Deng-Lu, E-mail: houdenglu@mail.hebtu.edu.cn [Department of Physics, Hebei Advanced Thin Films Laboratory, Hebei Normal University, Shijiazhuang 050024 (China)

    2015-08-31

    Iron nitride films, including single phase films of α-FeN (expanded bcc Fe), γ′-Fe{sub 4}N, ε-Fe{sub 3−x}N (0 ≤ x ≤ 1), and γ″-FeN, were sputtered onto AlN buffered glass substrates. It was found possible to control the phases in the films merely by changing the nitrogen partial pressure during deposition. The magnetization decreased with increased nitrogen concentration and dropped to zero when the N:Fe ratio was above 0.5. The experimental results, along with spin polarized band calculations, have been used to discuss and analyze the magnetic properties of iron nitrides. It has been demonstrated that in addition to influencing the lattice constant of the various iron nitrides, the nearest N atoms have a significant influence on the exchange splitting of the Fe atoms. Due to the hybridization of Fe-3d and N-2p states, the magnetic moment of Fe atoms decreases with an increase in the number of nearest neighbor nitrogen atoms. - Highlights: • Single phase γ′-Fe{sub 4}N, ε-Fe{sub 3−x}N, and γ″-FeN films were obtained using dc sputtering. • The phases in iron nitride films can be controlled by the nitrogen partial pressure. • The nearest N neighbors have a significant influence on the exchange splitting of Fe.

  19. Crystallographic phases and magnetic properties of iron nitride films

    International Nuclear Information System (INIS)

    Li, Guo-Ke; Liu, Yan; Zhao, Rui-Bin; Shen, Jun-Jie; Wang, Shang; Shan, Pu-Jia; Zhen, Cong-Mian; Hou, Deng-Lu

    2015-01-01

    Iron nitride films, including single phase films of α-FeN (expanded bcc Fe), γ′-Fe 4 N, ε-Fe 3−x N (0 ≤ x ≤ 1), and γ″-FeN, were sputtered onto AlN buffered glass substrates. It was found possible to control the phases in the films merely by changing the nitrogen partial pressure during deposition. The magnetization decreased with increased nitrogen concentration and dropped to zero when the N:Fe ratio was above 0.5. The experimental results, along with spin polarized band calculations, have been used to discuss and analyze the magnetic properties of iron nitrides. It has been demonstrated that in addition to influencing the lattice constant of the various iron nitrides, the nearest N atoms have a significant influence on the exchange splitting of the Fe atoms. Due to the hybridization of Fe-3d and N-2p states, the magnetic moment of Fe atoms decreases with an increase in the number of nearest neighbor nitrogen atoms. - Highlights: • Single phase γ′-Fe 4 N, ε-Fe 3−x N, and γ″-FeN films were obtained using dc sputtering. • The phases in iron nitride films can be controlled by the nitrogen partial pressure. • The nearest N neighbors have a significant influence on the exchange splitting of Fe

  20. Valence control of cobalt oxide thin films by annealing atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Wang Shijing [School of Materials Science and Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Beijing 100083 (China); Zhang Boping, E-mail: bpzhang@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Beijing 100083 (China); Zhao Cuihua; Li Songjie; Zhang Meixia; Yan Liping [School of Materials Science and Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Beijing 100083 (China)

    2011-02-01

    The cobalt oxide (CoO and Co{sub 3}O{sub 4}) thin films were successfully prepared using a spin-coating technique by a chemical solution method with CH{sub 3}OCH{sub 2}CH{sub 2}OH and Co(NO{sub 3}){sub 2}.6H{sub 2}O as starting materials. The grayish cobalt oxide films had uniform crystalline grains with less than 50 nm in diameter. The phase structure is able to tailor by controlling the annealing atmosphere and temperature, in which Co{sub 3}O{sub 4} thin film was obtained by annealing in air at 300-600, and N{sub 2} at 300, and transferred to CoO thin film by raising annealing temperature in N{sub 2}. The fitted X-ray photoelectron spectroscopy (XPS) spectra of the Co2p electrons are distinguishable from different valence states of cobalt oxide especially for their satellite structure. The valence control of cobalt oxide thin films by annealing atmosphere contributes to the tailored optical absorption property.

  1. Electrocatalytic performance evaluation of cobalt hydroxide and cobalt oxide thin films for oxygen evolution reaction

    Science.gov (United States)

    Babar, P. T.; Lokhande, A. C.; Pawar, B. S.; Gang, M. G.; Jo, Eunjin; Go, Changsik; Suryawanshi, M. P.; Pawar, S. M.; Kim, Jin Hyeok

    2018-01-01

    The development of an inexpensive, stable, and highly active electrocatalyst for oxygen evolution reaction (OER) is essential for the practical application of water splitting. Herein, we have synthesized an electrodeposited cobalt hydroxide on nickel foam and subsequently annealed in an air atmosphere at 400 °C for 2 h. In-depth characterization of all the films using X-ray diffraction (XRD), X-ray photoelectron emission spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM), electrochemical impedance spectroscopy (EIS) and linear sweep voltammetry (LSV) techniques, which reveals major changes for their structural, morphological, compositional and electrochemical properties, respectively. The cobalt hydroxide nanosheet film shows high catalytic activity with 290 mV overpotential at 10 mA cm-2 and 91 mV dec-1 Tafel slope and robust stability (24 h) for OER in 1 M KOH electrolyte compared to cobalt oxide (340 mV). The better OER activity of cobalt hydroxide in comparison to cobalt oxide originated from high active sites, enhanced surface, and charge transport capability.

  2. Electron microprobe analysis of tantalum--nitride thin films

    International Nuclear Information System (INIS)

    Stoltz, D.L.; Starkey, J.P.

    1979-06-01

    Quantitative chemical analysis of 500- and 2000-angstrom tantalum--nitride films on glass substrates has been accomplished using an electron microprobe x-ray analyzer. In order to achieve this analysis, modifications to the microprobe were necessary. A description of the calibration procedure, the method of analysis, and the quantitative results are discussed

  3. Cobalt Xanthate Thin Film with Chemical Bath Deposition

    Directory of Open Access Journals (Sweden)

    İ. A. Kariper

    2013-01-01

    Full Text Available Cobalt xanthate thin films (CXTFs were successfully deposited by chemical bath deposition, onto amorphous glass substrates, as well as on p- and n-silicon, indium tin oxide, and poly(methyl methacrylate. The structure of the films was analyzed by far-infrared spectrum (FIR, mid-infrared (MIR spectrum, nuclear magnetic resonance (NMR, and scanning electron microscopy (SEM. These films were investigated from their structural, optical, and electrical properties point of view. Electrical properties were measured using four-point method, whereas optical properties were investigated via UV-VIS spectroscopic technique. Uniform distribution of grains was clearly observed from the photographs taken by scanning electron microscope (SEM. The transmittance was about 70–80% (4 hours, 50°C. The optical band gap of the CXTF was graphically estimated to be 3.99–4.02 eV. The resistivity of the films was calculated as 22.47–75.91 Ω·cm on commercial glass depending on film thickness and 44.90–73.10 Ω ·cm on the other substrates. It has been observed that the relative resistivity changed with film thickness. The MIR and FIR spectra of the films were in agreement with the literature analogues. The expected peaks of cobalt xanthate were observed in NMR analysis on glass. The films were dipped in chloroform as organic solvent and were analyzed by NMR.

  4. Preparation of high-pressure phase boron nitride films by physical vapor deposition

    CERN Document Server

    Zhu, P W; Zhao, Y N; Li, D M; Liu, H W; Zou Guang Tian

    2002-01-01

    The high-pressure phases boron nitride films together with cubic, wurtzic, and explosive high-pressure phases, were successfully deposited on the metal alloy substrates by tuned substrate radio frequency magnetron sputtering. The percentage of cubic boron nitride phase in the film was about 50% as calculated by Fourier transform infrared measurements. Infrared peak position of cubic boron nitride at 1006.3 cm sup - sup 1 , which is close to the stressless state, indicates that the film has very low internal stress. Transition electron microscope micrograph shows that pure cubic boron nitride phase exits on the surface of the film. The growth mechanism of the BN films was also discussed.

  5. Differences in proliferation, differentiation, and cytokine production by bone cells seeded on titanium-nitride and cobalt-chromium-molybdenum surfaces

    NARCIS (Netherlands)

    van Hove, R.P.; Nolte, P.A.; Semeins, C.M.; Klein-Nulend, J.

    2013-01-01

    Titanium-nitride coating is used to improve cobalt-chromium-molybdenum implant survival in total knee arthroplasty, but its effect on osteoconduction is unknown. Chromium and cobalt ions negatively affect the growth and metabolism of cultured osteoblasts while enhancing osteoclastogenic cytokine

  6. TXRF analysis of trace metals in thin silicon nitride films

    International Nuclear Information System (INIS)

    Vereecke, G.; Arnauts, S.; Verstraeten, K.; Schaekers, M.; Heyrts, M.M.

    2000-01-01

    As critical dimensions of integrated circuits continue to decrease, high dielectric constant materials such as silicon nitride are being considered to replace silicon dioxide in capacitors and transistors. The achievement of low levels of metal contamination in these layers is critical for high performance and reliability. Existing methods of quantitative analysis of trace metals in silicon nitride require high amounts of sample (from about 0.1 to 1 g, compared to a mass of 0.2 mg for a 2 nm thick film on a 8'' silicon wafer), and involve digestion steps not applicable to films on wafers or non-standard techniques such as neutron activation analysis. A novel approach has recently been developed to analyze trace metals in thin films with analytical techniques currently used in the semiconductor industry. Sample preparation consists of three steps: (1) decomposition of the silicon nitride matrix by moist HF condensed at the wafer surface to form ammonium fluosilicate. (2) vaporization of the fluosilicate by a short heat treatment at 300 o C. (3) collection of contaminants by scanning the wafer surface with a solution droplet (VPD-DSC procedure). The determination of trace metals is performed by drying the droplet on the wafer and by analyzing the residue by TXRF, as it offers the advantages of multi-elemental analysis with no dilution of the sample. The lower limits of detection for metals in 2 nm thick films on 8'' silicon wafers range from about 10 to 200 ng/g. The present study will focus on the matrix effects and the possible loss of analyte associated with the evaporation of the fluosilicate salt, in relation with the accuracy and the reproducibility of the method. The benefits of using an internal standard will be assessed. Results will be presented from both model samples (ammonium fluoride contaminated with metallic salts) and real samples (silicon nitride films from a production tool). (author)

  7. Compositional analysis of silicon oxide/silicon nitride thin films

    Directory of Open Access Journals (Sweden)

    Meziani Samir

    2016-06-01

    Full Text Available Hydrogen, amorphous silicon nitride (SiNx:H abbreviated SiNx films were grown on multicrystalline silicon (mc-Si substrate by plasma enhanced chemical vapour deposition (PECVD in parallel configuration using NH3/SiH4 gas mixtures. The mc-Si wafers were taken from the same column of Si cast ingot. After the deposition process, the layers were oxidized (thermal oxidation in dry oxygen ambient environment at 950 °C to get oxide/nitride (ON structure. Secondary ion mass spectroscopy (SIMS, Rutherford backscattering spectroscopy (RBS, Auger electron spectroscopy (AES and energy dispersive X-ray analysis (EDX were employed for analyzing quantitatively the chemical composition and stoichiometry in the oxide-nitride stacked films. The effect of annealing temperature on the chemical composition of ON structure has been investigated. Some species, O, N, Si were redistributed in this structure during the thermal oxidation of SiNx. Indeed, oxygen diffused to the nitride layer into Si2O2N during dry oxidation.

  8. Effect of ultraviolet light irradiation on amorphous carbon nitride films

    International Nuclear Information System (INIS)

    Zhang, M.; Nakayama, Y.

    1997-01-01

    The amorphous carbon nitride films were produced using electron cyclotron resonance nitrogen plasma with various mixtures of N 2 and CH 4 gases. The dependence of film structures on the nitrogen incorporation and the structural modifications of the film due to ultraviolet (UV) light irradiation were investigated using infrared and UV-VIS spectroscopy. It is found that UV irradiation results in the decrease of CH bonding, increase of CC and CN double bonding in the film and increase of the optical band gap of the film. It appears that both bond removal and reordering have taken place as a result of UV irradiation. The structural modifications due to nitrogen incorporation and UV light irradiation are explained by a cluster model. copyright 1997 American Institute of Physics

  9. Iron nitride films formed in a r. f. glow discharge

    Energy Technology Data Exchange (ETDEWEB)

    Li, J.L.; O' Keefe, T.J.; James, W.J. (Depts. of Chemistry and Metallurgical Engineering and Graduate Center for Materials Research, Univ. of Missouri-Rolla (United States))

    1992-12-30

    Fe[sub 2]N and Fe[sub 3]N films were deposited on an r.f. glow discharge by introducing Fe(CO)[sub 5] and NH[sub 3] into the reactor. The iron nitride films thus formed exhibited sheet conductivities in the range of 10[sup 2]-10[sup 3] ohm[sup -1] cm[sup -1]. They exhibited microhardness ranging from 578 to 659 kg mm[sup -2] on glass slides. The effects of the deposition temperature and the nature of the substrate material on the structure and composition of the films were investigated. An Fe[sub 4]N layer was formed on iron substrates at 400degC in the plasma nitriding process using NH[sub 3] as the gas source. The Fe[sub 4]N layer exhibited a microhardness of 230 kg mm[sup -2]. The effect of the temperature on the formation of the nitrided layer is discussed. (orig.).

  10. Highly efficient cobalt-doped carbon nitride polymers for solvent-free selective oxidation of cyclohexane

    Directory of Open Access Journals (Sweden)

    Yu Fu

    2017-04-01

    Full Text Available Selective oxidation of saturated hydrocarbons with molecular oxygen has been of great interest in catalysis, and the development of highly efficient catalysts for this process is a crucial challenge. A new kind of heterogeneous catalyst, cobalt-doped carbon nitride polymer (g-C3N4, was harnessed for the selective oxidation of cyclohexane. X-ray diffraction, Fourier transform infrared spectra and high resolution transmission electron microscope revealed that Co species were highly dispersed in g-C3N4 matrix and the characteristic structure of polymeric g-C3N4 can be retained after Co-doping, although Co-doping caused the incomplete polymerization to some extent. Ultraviolet–visible, Raman and X-ray photoelectron spectroscopy further proved the successful Co doping in g-C3N4 matrix as the form of Co(IIN bonds. For the selective oxidation of cyclohexane, Co-doping can markedly promote the catalytic performance of g-C3N4 catalyst due to the synergistic effect of Co species and g-C3N4 hybrid. Furthermore, the content of Co largely affected the activity of Co-doped g-C3N4 catalysts, among which the catalyst with 9.0 wt% Co content exhibited the highest yield (9.0% of cyclohexanone and cyclohexanol, as well as a high stability. Meanwhile, the reaction mechanism over Co-doped g-C3N4 catalysts was elaborated. Keywords: Selective oxidation of cyclohexane, Oxygen oxidant, Carbon nitride, Co-doping

  11. Optically induced paramagnetism in amorphous hydrogenated silicon nitride thin films

    International Nuclear Information System (INIS)

    Warren, W.L.; Kanicki, J.; Buchwald, W.R.; Rong, F.C.; Harmatz, M.

    1992-01-01

    This paper reports that the creation mechanisms of Si and N dangling bond defect centers in amorphous hydrogenated silicon nitride thin films by ultra-violet (UV) illumination are investigated. The creation efficiency and density of Si centers in the N-rich films are independent of illumination temperature, strongly suggesting that the creation mechanism of the spins in electronic in nature, i.e., a charge transfer mechanism. However, our results suggest that the creation of the Si dangling bond in the Si-rich films are different. Last, we find that the creation of the N dangling-bond in N-rich films can be fit to a stretched exponential time dependence, which is characteristic of dispersive charge transport

  12. Magnetostrictive properties of polycrystalline iron cobalt films

    International Nuclear Information System (INIS)

    Cooke, M.D.

    2000-10-01

    This thesis is concerned with the magnetic properties of magnetostrictive FeCo polycrystalline alloy films produced by RF magnetron sputter deposition. The bulk material is known to have highly magnetostrictive properties, coupled with the possibility of a low anisotropy with the correct thermal treatment to allow ordering. Significant reduction in the anisotropy was found by using post depostional thermal treatment in Ar/H. It has been demonstrated that it is possible to produce FeCo films with magnetostrictive properties similar to those found in the bulk. Detailed examination showed an increased peak in the magnetostriction with composition which had not been previously viewed in the bulk materials. Initial development was also made of a novel co-depositional technique to allow magnetostrictive determination as a function of composition in a single deposition. Development was made of a technique using the Daresbury Synchrotron research facility and the XRD equipment to allow determination of the magnetostriction coefficients of polycrystalline films. This is the first time this has been achieved for thin film materials and provides exciting new possibilities for the future. A critique was made of the optical cantilever technique for determining magnetostriction. Clear consideration has to be made of rotational and frequency effects. A new analytical theory was devised which allowing determination of the cantilever deflection for similar substrate and film thickness. This is essential for development of current trends in nanotechnology. The results were then optimised for use in sensor and actuator devices providing novel results. Finally investigation was made of the possible effects of surfaces on the magnetic properties. The magnetostriction of FeCo/Ag multilayers and Ag embedded in an FeCo matrix are compared. These clearly show the influence of surface and illustrate the importance of considering the technique used to determine the magnetostriction. (author)

  13. Humidity resistant hydrogenated carbon nitride films

    Czech Academy of Sciences Publication Activity Database

    Mikmeková, Eliška; Polčák, J.; Sobota, Jaroslav; Müllerová, Ilona; Peřina, Vratislav; Caha, O.

    2013-01-01

    Roč. 275, 15 June (2013), s. 7-13 ISSN 0169-4332 R&D Projects: GA MŠk ED0017/01/01 Institutional support: RVO:68081731 ; RVO:61389005 Keywords : thin films * corrosion behanior * delamination * stress Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering; BH - Optics, Masers, Lasers (UJF-V) Impact factor: 2.538, year: 2013

  14. Gold film with gold nitride - A conductor but harder than gold

    International Nuclear Information System (INIS)

    Siller, L.; Peltekis, N.; Krishnamurthy, S.; Chao, Y.; Bull, S.J.; Hunt, M.R.C.

    2005-01-01

    The formation of surface nitrides on gold films is a particularly attractive proposition, addressing the need to produce harder, but still conductive, gold coatings which reduce wear but avoid the pollution associated with conventional additives. Here we report production of large area gold nitride films on silicon substrates, using reactive ion sputtering and plasma etching, without the need for ultrahigh vacuum. Nanoindentation data show that gold nitride films have a hardness ∼50% greater than that of pure gold. These results are important for large-scale applications of gold nitride in coatings and electronics

  15. Microbridge tests on gallium nitride thin films

    International Nuclear Information System (INIS)

    Huang, Hai-You; Li, Zhi-Ying; Lu, Jun-Yong; Wang, Zhi-Jia; Zhang, Tong-Yi; Wang, Chong-Shun; Lau, Kei-May; Chen, Kevin Jing

    2009-01-01

    In this work, we develop further the microbridge testing method by deriving a closed formula of deflection versus load, which is applied at an arbitrary position on the microbridge beam. Testing a single beam at various positions allows us to characterize simultaneouslyYoung's modulus and residual stress of the beam. The developed method was then used to characterize the mechanical properties of GaN thin films on patterned-Si (1 1 1) substrates grown by metal organic chemical vapor deposition (MOCVD). The microbridge samples were fabricated by using the microelectromechanical fabrication technique and tested with a nanoindentation system. Young's modulus and residual stress of the GaN films were determined to be 287 ± 190 GPa and 851 ± 155 MPa, respectively. In addition, alternative measurements of the residual stress, Young's modulus and hardness of the GaN films, were conducted with micro-Raman spectroscopy and the nanoindentation test, yielding the corresponding values of 847 ± 46 MPa, 269.0 ± 7.0 GPa and 17.8 ± 1.1 GPa

  16. Studies of tantalum nitride thin film resistors

    International Nuclear Information System (INIS)

    Langley, R.A.

    1975-01-01

    Backscattering of 2-MeV He ions was used to correlate the electrical properties of sputtered TaN/sub x/ thin-film resistors with their N content. The properties measured were sheet resistance, differential Seebeck potential (DSP), thermal coefficient of resistance (TCR), and stability. Resistivity and DSP are linearly dependent on N content for N/Ta ratios of 0.25 to 0.55. TCR decreases sharply below N/Ta = 0.35 and is relatively constant from 0.35 to 0.55. Stability is independent of N content. (DLC)

  17. Passivation of cobalt nanocluster assembled thin films with hydrogen

    DEFF Research Database (Denmark)

    Romero, C.P.; Volodin, A.; Di Vece, M.

    2012-01-01

    The effect of hydrogen passivation on bare and Pd capped cobalt nanocluster assembled thin films was studied with Rutherford backscattering spectrometry (RBS) and magnetic force microscopy (MFM) after exposure to ambient conditions. The nanoclusters are produced in a laser vaporization cluster...... source in which the helium carrier gas was mixed with hydrogen. RBS revealed that oxidation of the Co nanoclusters is considerably reduced by the presence of hydrogen during cluster formation. The capping did not modify the influence of the passivation. The hydrogen passivation method is especially...... effective in cases when capping of the films is not desirable, for example for magnetic studies. Clear differences in the magnetic domain structures between hydrogen passivated and non-passivated Co nanocluster films were demonstrated by MFM and are attributed to a difference in inter-cluster magnetic...

  18. Synthesis of low oxygen concentration molybdenum nitride films

    International Nuclear Information System (INIS)

    Roberson, S.L.; Davis, R.F.; Finello, D.

    1998-01-01

    Polycrystalline, small grain size, 15 μm thick Mo x N (x = 1 and 2) films containing ∼60 at.% γ-Mo 2 N and ∼40 at.% δ-MoN and void of Auger detectable concentrations of molybdenum oxides, have been prepared on 50-μm thick nitrided Ti substrates via programmed reaction and subsequent anneal at 750 C for 2 h of the precursor MoO 3 films with NH 3 . The latter films were prepared via liquid spray pyrolysis of an MoCl 5 /methanol mixture in air at 500 C. By contrast, residual MoO 2 occurred near the film-substrate interface in Mo x N films produced using the same programmed reaction but where MoO 3 had been deposited on bare Ti substrates. The change in density of MoO 3 (ρ = 4.69 gcm -3 ) to γ-Mo 2 N (ρ = 9.50 gcm -3 ) and δ-MoN (ρ = 9.05 gcm -3 ), as well as the nature of the topotactic conversion, produced grains which had a calculated average size of 10 nm and which exhibited good adhesion to the substrate. Variations in the conversion heating rates and the NH 3 flow rates also affected both the phase composition and the average grain size of the intermediate and the final reaction products. Scanning electron microscopy (SEM) of the Mo x N films revealed a highly porous surface morphology. (orig.)

  19. Physical vapor deposition of cubic boron nitride thin films

    International Nuclear Information System (INIS)

    Kester, D.J.

    1991-01-01

    Cubic boron nitride was successfully deposited using physical vapor-deposition methods. RF-sputtering, magnetron sputtering, dual-ion-beam deposition, and ion-beam-assisted evaporation were all used. The ion-assisted evaporation, using boron evaporation and bombardment by nitrogen and argon ions, led to successful cubic boron nitride growth over the widest and most controllable range of conditions. It was found that two factors were important for c-BN growth: bombardment of the growing film and the presence of argon. A systematic study of the deposition conditions was carried out. It was found that the value of momentum transferred into the growing from by the bombarding ions was critical. There was a very narrow transition range in which mixed cubic and hexagonal phase films were prepared. Momentum-per-atom value took into account all the variables involved in ion-assisted deposition: deposition rate, ion energy, ion flux, and ion species. No other factor led to the same control of the process. The role of temperature was also studied; it was found that at low temperatures only mixed cubic and hexagonal material are deposited

  20. Low temperature aluminum nitride thin films for sensory applications

    Energy Technology Data Exchange (ETDEWEB)

    Yarar, E.; Zamponi, C.; Piorra, A.; Quandt, E., E-mail: eq@tf.uni-kiel.de [Institute for Materials Science, Chair for Inorganic Functional Materials, Kiel University, D-24143 Kiel (Germany); Hrkac, V.; Kienle, L. [Institute for Materials Science, Chair for Synthesis and Real Structure, Kiel University, D-24143 Kiel (Germany)

    2016-07-15

    A low-temperature sputter deposition process for the synthesis of aluminum nitride (AlN) thin films that is attractive for applications with a limited temperature budget is presented. Influence of the reactive gas concentration, plasma treatment of the nucleation surface and film thickness on the microstructural, piezoelectric and dielectric properties of AlN is investigated. An improved crystal quality with respect to the increased film thickness was observed; where full width at half maximum (FWHM) of the AlN films decreased from 2.88 ± 0.16° down to 1.25 ± 0.07° and the effective longitudinal piezoelectric coefficient (d{sub 33,f}) increased from 2.30 ± 0.32 pm/V up to 5.57 ± 0.34 pm/V for film thicknesses in the range of 30 nm to 2 μm. Dielectric loss angle (tan δ) decreased from 0.626% ± 0.005% to 0.025% ± 0.011% for the same thickness range. The average relative permittivity (ε{sub r}) was calculated as 10.4 ± 0.05. An almost constant transversal piezoelectric coefficient (|e{sub 31,f}|) of 1.39 ± 0.01 C/m{sup 2} was measured for samples in the range of 0.5 μm to 2 μm. Transmission electron microscopy (TEM) investigations performed on thin (100 nm) and thick (1.6 μm) films revealed an (002) oriented AlN nucleation and growth starting directly from the AlN-Pt interface independent of the film thickness and exhibit comparable quality with the state-of-the-art AlN thin films sputtered at much higher substrate temperatures.

  1. Epitaxial ternary nitride thin films prepared by a chemical solution method

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Hongmei [Los Alamos National Laboratory; Feldmann, David M [Los Alamos National Laboratory; Wang, Haiyan [TEXAS A& M; Bi, Zhenxing [TEXAS A& M

    2008-01-01

    It is indispensable to use thin films for many technological applications. This is the first report of epitaxial growth of ternary nitride AMN2 films. Epitaxial tetragonal SrTiN2 films have been successfully prepared by a chemical solution approach, polymer-assisted deposition. The structural, electrical, and optical properties of the films are also investigated.

  2. Mechanical and electrochemical characterization of vanadium nitride (VN) thin films

    Energy Technology Data Exchange (ETDEWEB)

    Caicedo, J.C., E-mail: Jcesarca@calima.univalle.edu.co [Grupo de Peliculas Delgadas, Departamento de Fisica, Universidad del Valle, Cali (Colombia); Zambrano, G. [Grupo de Peliculas Delgadas, Departamento de Fisica, Universidad del Valle, Cali (Colombia); Aperador, W. [Ingenieria Mecatronica, Universidad Militar Nueva Granada, Bogota (Colombia); Escobar-Alarcon, L.; Camps, E. [Departamento de Fisica, Instituto Nacional de Investigaciones Nucleares, Apdo. Postal 18-1027, Mexico, DF 11801 (Mexico)

    2011-10-15

    Vanadium nitride (V-N) thin films were grown using a reactive d.c. magnetron sputtering process, from a vanadium target (99.999%) in an Ar/N{sub 2} gas mixture at different deposition bias voltage. Films were deposited onto silicon (1 0 0) and RUS-3 steel substrates at 400 deg. C. Structural, compositional, mechanical and electrochemical characterizations were performed by X-ray diffraction (XRD), elastic forward analysis (EFA), nanoindentation, electrochemical impedance spectroscopy (EIS), and Tafel polarization curves, respectively. X-ray diffraction patterns show the presence of (1 1 1) and (2 0 0) crystallographic orientations associated to the V-N cubic phase. Nanoindentation measurements revealed that when the bias voltage increases from 0 V to -150 V the hardness and elastic modulus are increased from 11 GPa to 20 GPa and from 187 GPa to 221 GPa, respectively. EIS and Tafel curves showed that the corrosion rate of steel, coated with V-N single layer films deposited without bias voltage, diminishes 90% compared to the steel without this coating. On the other hand, when the V-N coating was deposited at the highest d.c. bias voltage (-150 V), the corrosion rate was greater than in the steel coated with zero-voltage (0 V) V-N films. This last result could be attributed to the formation of porosities produced by the ion bombardment during the deposition process.

  3. Mechanical and electrochemical characterization of vanadium nitride (VN) thin films

    International Nuclear Information System (INIS)

    Caicedo, J.C.; Zambrano, G.; Aperador, W.; Escobar-Alarcon, L.; Camps, E.

    2011-01-01

    Vanadium nitride (V-N) thin films were grown using a reactive d.c. magnetron sputtering process, from a vanadium target (99.999%) in an Ar/N 2 gas mixture at different deposition bias voltage. Films were deposited onto silicon (1 0 0) and RUS-3 steel substrates at 400 deg. C. Structural, compositional, mechanical and electrochemical characterizations were performed by X-ray diffraction (XRD), elastic forward analysis (EFA), nanoindentation, electrochemical impedance spectroscopy (EIS), and Tafel polarization curves, respectively. X-ray diffraction patterns show the presence of (1 1 1) and (2 0 0) crystallographic orientations associated to the V-N cubic phase. Nanoindentation measurements revealed that when the bias voltage increases from 0 V to -150 V the hardness and elastic modulus are increased from 11 GPa to 20 GPa and from 187 GPa to 221 GPa, respectively. EIS and Tafel curves showed that the corrosion rate of steel, coated with V-N single layer films deposited without bias voltage, diminishes 90% compared to the steel without this coating. On the other hand, when the V-N coating was deposited at the highest d.c. bias voltage (-150 V), the corrosion rate was greater than in the steel coated with zero-voltage (0 V) V-N films. This last result could be attributed to the formation of porosities produced by the ion bombardment during the deposition process.

  4. Non-carbon titanium cobalt nitride nanotubes supported platinum catalyst with high activity and durability for methanol oxidation reaction

    Science.gov (United States)

    Chen, Xiaoxiang; Li, Wuyi; Pan, Zhanchang; Xu, Yanbin; Liu, Gen; Hu, Guanghui; Wu, Shoukun; Li, Jinghong; Chen, Chun; Lin, Yingsheng

    2018-05-01

    Titanium cobalt nitride nanotubes (Ti0.95Co0.05N NTs) hybrid support, a novel robust non-carbon support material prepared by solvothermal and post-nitriding processes, is further decorated with Pt nanoparticles for the electrooxidation of methanol. The catalyst is characterized by X-ray diffraction (XRD), nitrogen adsorption/desorption, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and electrochemical measurements. The morphology, structure and composition of the synthesized Ti0.95Co0.05N NTs suggest that the nanotube wall is porous and consists of homogeneous cohesively attached nitrides nanocube particles. Notable, Ti0.95Co0.05N NTs supported Pt catalyst exhibits significantly improved catalytic activity and durability for methanol electrooxidation compared with the conventional JM Pt/C catalyst. The experimental data indicate that enhanced catalytic activity and stability of Pt/Ti0.95Co0.05N NTs towards methanol electrooxidation might be mainly attributed to the tubular nanostructures and synergistic effect introduced by the Co doping. Both of them are playing an important role in improving the activity and durability of the Ti0.95Co0.05N NTs catalyst.

  5. Cobalt

    Science.gov (United States)

    Slack, John F.; Kimball, Bryn E.; Shedd, Kim B.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Cobalt is a silvery gray metal that has diverse uses based on certain key properties, including ferromagnetism, hardness and wear-resistance when alloyed with other metals, low thermal and electrical conductivity, high melting point, multiple valences, and production of intense blue colors when combined with silica. Cobalt is used mostly in cathodes in rechargeable batteries and in superalloys for turbine engines in jet aircraft. Annual global cobalt consumption was approximately 75,000 metric tons in 2011; China, Japan, and the United States (in order of consumption amount) were the top three cobalt-consuming countries. In 2011, approximately 109,000 metric tons of recoverable cobalt was produced in ores, concentrates, and intermediate products from cobalt, copper, nickel, platinum-group-element (PGE), and zinc operations. The Democratic Republic of the Congo (Congo [Kinshasa]) was the principal source of mined cobalt globally (55 percent). The United States produced a negligible amount of byproduct cobalt as an intermediate product from a PGE mining and refining operation in southeastern Montana; no U.S. production was from mines in which cobalt was the principal commodity. China was the leading refiner of cobalt, and much of its production came from cobalt ores, concentrates, and partially refined materials imported from Congo (Kinshasa).The mineralogy of cobalt deposits is diverse and includes both primary (hypogene) and secondary (supergene) phases. Principal terrestrial (land-based) deposit types, which represent most of world’s cobalt mine production, include primary magmatic Ni-Cu(-Co-PGE) sulfides, primary and secondary stratiform sediment-hosted Cu-Co sulfides and oxides, and secondary Ni-Co laterites. Seven additional terrestrial deposit types are described in this chapter. The total terrestrial cobalt resource (reserves plus other resources) plus past production, where available, is calculated to be 25.5 million metric tons. Additional resources of

  6. Superconducting niobium nitride films deposited by unbalanced magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Olaya, J.J. [Departamento de Ingenieria Mecanica y Mecatronica, Universidad Nacional de Colombia, Ciudad Universitaria, Carrera 30 Numero 45-03, Bogota (Colombia); Huerta, L. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito exterior s/n, CU Coyoacan, Mexico D.F. 04510 (Mexico); Rodil, S.E. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito exterior s/n, CU Coyoacan, Mexico D.F. 04510 (Mexico)], E-mail: ser42@iim.unam.mx; Escamilla, R. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito exterior s/n, CU Coyoacan, Mexico D.F. 04510 (Mexico)

    2008-10-01

    Niobium nitride (NbN) thin films were deposited under different configurations of the magnetic field using a magnetron sputtering system. The magnetic field configuration varied from balanced to unbalanced leading to different growth conditions and film properties. The aim of the paper was to identify correlations between deposition conditions, film properties and the electrical properties, specially the superconductive critical temperature (T{sub C}). The results suggested that there is a critical deposition condition, having an optimum ion-atom arrival ratio that promotes a well ordered and textured nanocrystalline structure (cubic phase) with the minimum residual stress and only under this condition a high critical temperature (16K) was obtained. Lower T{sub C} values around 12K were obtained for the NbN samples having a lower degree of structural perfection and texture, and a larger fraction of intergranular voids. On the other hand, analysis of valence-band spectra showed that the contribution of the Nb 4d states remained essentially constant while the higher T{sub C} was correlated to a higher contribution of the N 2p states.

  7. Superconducting niobium nitride films deposited by unbalanced magnetron sputtering

    International Nuclear Information System (INIS)

    Olaya, J.J.; Huerta, L.; Rodil, S.E.; Escamilla, R.

    2008-01-01

    Niobium nitride (NbN) thin films were deposited under different configurations of the magnetic field using a magnetron sputtering system. The magnetic field configuration varied from balanced to unbalanced leading to different growth conditions and film properties. The aim of the paper was to identify correlations between deposition conditions, film properties and the electrical properties, specially the superconductive critical temperature (T C ). The results suggested that there is a critical deposition condition, having an optimum ion-atom arrival ratio that promotes a well ordered and textured nanocrystalline structure (cubic phase) with the minimum residual stress and only under this condition a high critical temperature (16K) was obtained. Lower T C values around 12K were obtained for the NbN samples having a lower degree of structural perfection and texture, and a larger fraction of intergranular voids. On the other hand, analysis of valence-band spectra showed that the contribution of the Nb 4d states remained essentially constant while the higher T C was correlated to a higher contribution of the N 2p states

  8. Columnar structure of reactively sputtered aluminium nitride films

    International Nuclear Information System (INIS)

    Chen Chisan; Hwang Binghwai; Lu Hongyang; Hsu Tzuchien

    2002-01-01

    Columnar structure of thin aluminium nitride (AlN) films is examined by x-ray diffractometry (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The films were deposited on SiO 2 /Si(100) substrate using radiofrequency reactive sputtering method. Strong [0001] preferred orientation is observed by XRD and confirmed by selected area diffraction pattern of TEM. Columnar grains of ∼50-100 nm inclined at an angle of ∼10 deg. to the substrate normal are observed by SEM. As revealed by TEM, each columnar grain is composed of nano-grains of the order of 10 nm and no faceting is observed in the nano-grains and columns. The [0001] preferred orientation results as columnar grains are oriented at various azimuthal angles with their c-axes perpendicular to the substrate surface. A slight tilt of a few tenths of a degree between adjacent nano-grains within a column is also observed. The random azimuthal orientation of columnar grains and small tilt between nano-grains in the films are accommodated by the amorphous phase present in the grain boundaries

  9. Annealing effect on the microstructure modification and tribological properties of amorphous carbon nitride films

    Science.gov (United States)

    Wang, Zhou; Wang, Chengbing; Wang, Qi; Zhang, Junyan

    2008-10-01

    The influences of thermal annealing on the microstructural and tribological properties of amorphous carbon nitride films were investigated. X-ray photoelectron spectroscopy, Raman spectroscopy, and Fourier transform infrared spectrometer were utilized to characterize bond configuration and chemical state of the films. The results indicated that at low annealing temperatures (200 and 300 °C), the volatile species and surface contamination are easily dissociated without obvious bulk modification; while at high annealing temperatures (400 and 500 °C), the microstructure of carbon nitride films changed and favored a graphitization process, which indicated the growth of more graphitic film structures. The faint Raman signal of C≡N decreased with annealing temperature (TA) and completely disappeared at TA of 500 °C, indicating that nitrile bonds were thermal unstable under high temperature. Surprisingly, the tribological properties of the films showed a remarkably decreasing in friction coefficient as the TA increased; it is attributed to the graphitization of carbon nitride films during thermal annealing, which favored transfer film formation between the carbon nitride films and counterface materials. The transfer films benefit the decrease in coefficient of friction.

  10. Cobalt

    International Nuclear Information System (INIS)

    Stolyarova, I.A.; Bunakova, N.Yu.

    1983-01-01

    The neutron-activation method for determining cobalt in rocks, polymetallic and iron ores and rockforming minerals at 2x10 -6 -5x10 -3 % content is developed. Cobalt determination is based on the formation under the effect of thermal neutrons of nuclear reactor of the 60 Co radioactive isotope by the 59 Co (n, γ) 60 Co reaction with radiation energy of the most intensive line of 1333 keV. Cobalt can be determined by the scheme of the multicomponent analysis from the sample with other elements. Co is determined in the solution after separation of all determinable by the scheme elements. The 60 Co intensity is measured by the mUltichannel gamma-spectrometer with Ge(Li)-detector

  11. Functional nanostructured titanium nitride films obtained by sputtering magnetron

    International Nuclear Information System (INIS)

    Sanchez, O.; Hernandez-Velez, M.; Navas, D.; Auger, M.A.; Baldonedo, J.L.; Sanz, R.; Pirota, K.R.; Vazquez, M.

    2006-01-01

    Development of new methods in the formation of hollow structures, in particular, nanotubes and nanocages are currently generating a great interest as a consequence of the growing relevance of these nanostructures on many technological fields, ranging from optoelectronics to biotechnology. In this work, we report the formation of titanium nitride (TiN) nanotubes and nanohills via reactive sputtering magnetron processes. Anodic Alumina Membranes (AAM) were used as template substrates to grow the TiN nanostructures. The AAM were obtained through electrochemical anodization processes by using oxalic acid solutions as electrolytes. The nanotubes were produced at temperatures below 100 deg. C, and using a pure titanium (99.995%) sputtering target and nitrogen as reactive gas. The obtained TiN thin films showed surface morphologies adjusted to pore diameter and interpore distance of the substrates, as well as ordered arrays of nanotubes or nanohills depending on the sputtering and template conditions. High Resolution Scanning Electron Microscopy (HRSEM) was used to elucidate both the surface order and morphology of the different grown nanostructures. The crystalline structure of the samples was examined using X-ray Diffraction (XRD) patterns and their qualitative chemical composition by using X-ray Energy Dispersive Spectroscopy (XEDS) in a scanning electron microscopy

  12. Molybdenum Nitride Films: Crystal Structures, Synthesis, Mechanical, Electrical and Some Other Properties

    Directory of Open Access Journals (Sweden)

    Isabelle Jauberteau

    2015-10-01

    Full Text Available Among transition metal nitrides, molybdenum nitrides have been much less studied even though their mechanical properties as well as their electrical and catalytic properties make them very attractive for many applications. The δ-MoN phase of hexagonal structure is a potential candidate for an ultra-incompressible and hard material and can be compared with c-BN and diamond. The predicted superconducting temperature of the metastable MoN phase of NaCl-B1-type cubic structure is the highest of all refractory carbides and nitrides. The composition of molybdenum nitride films as well as the structures and properties depend on the parameters of the process used to deposit the films. They are also strongly correlated to the electronic structure and chemical bonding. An unusual mixture of metallic, covalent and ionic bonding is found in the stoichiometric compounds.

  13. On the difference between optically and electrically determined resistivity of ultra-thin titanium nitride films

    NARCIS (Netherlands)

    Van Hao, B.; Kovalgin, Alexeij Y.; Wolters, Robertus A.M.

    2013-01-01

    This work reports on the determination and comparison of the resistivity of ultra-thin atomic layer deposited titanium nitride films in the thickness range 0.65–20 nm using spectroscopic ellipsometry and electrical test structures. We found that for films thicker than 4 nm, the resistivity values

  14. Visible-light photocatalytic activity of nitrided TiO2 thin films

    International Nuclear Information System (INIS)

    Camps, Enrique; Escobar-Alarcon, L.; Camacho-Lopez, Marco Antonio; Casados, Dora A. Solis

    2010-01-01

    TiO 2 thin films have been applied in UV-light photocatalysis. Nevertheless visible-light photocatalytic activity would make this material more attractive for applications. In this work we present results on the modification of titanium oxide (anatase) sol-gel thin films, via a nitriding process using a microwave plasma source. After the treatment in the nitrogen plasma, the nitrogen content in the TiO 2 films varied in the range from 14 up to 28 at%. The titanium oxide films and the nitrided ones were characterized by XPS, micro-Raman spectroscopy and UV-vis spectroscopy. Photocatalytic activity tests were done using a Methylene Blue dye solution, and as catalyst TiO 2 and nitrided TiO 2 films. The irradiation of films was carried out with a lamp with emission in the visible (without UV). The results showed that the nitrided TiO 2 films had photocatalytic activity, while the unnitrided films did not.

  15. Cobalt nanosheet arrays supported silicon film as anode materials for lithium ion batteries

    International Nuclear Information System (INIS)

    Huang, X.H.; Wu, J.B.; Cao, Y.Q.; Zhang, P.; Lin, Y.; Guo, R.Q.

    2016-01-01

    Cobalt nanosheet arrays supported silicon film is prepared and used as anode materials for lithium ion batteries. The film is fabricated using chemical bath deposition, hydrogen reduction and radio-frequency magnetron sputtering techniques. The microstructure and morphology are characterized by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS). In this composite film, the silicon layer is supported by interconnected aligned cobalt nanosheet arrays that act as the three-dimensional current collector and buffering network. The electrochemical performance as anode materials for lithium ion batteries is investigated by cyclic voltammetry (CV) and galvanostatic charge-discharge tests. The results show that the film prepared by sputtering for 1500 s exhibits high capacity, good rate capability and stable cycle ability. It is believed that the cobalt nanosheet arrays play important roles in the electrochemical performance of the silicon layer.

  16. Thermal conductivity of nitride films of Ti, Cr, and W deposited by reactive magnetron sputtering

    International Nuclear Information System (INIS)

    Jagannadham, Kasichainula

    2015-01-01

    Nitride films of Ti, Cr, and W were deposited using reactive magnetron sputtering from metal targets in argon and nitrogen plasma. TiN films with (200) orientation were achieved on silicon (100) at the substrate temperature of 500 and 600 °C. The films were polycrystalline at lower temperature. An amorphous interface layer was observed between the TiN film and Si wafer deposited at 600 °C. TiN film deposited at 600 °C showed the nitrogen to Ti ratio to be near unity, but films deposited at lower temperature were nitrogen deficient. CrN film with (200) orientation and good stoichiometry was achieved at 600 °C on Si(111) wafer but the film deposited at 500 °C showed cubic CrN and hexagonal Cr 2 N phases with smaller grain size and amorphous back ground in the x-ray diffraction pattern. An amorphous interface layer was not observed in the cubic CrN film on Si(111) deposited at 600 °C. Nitride film of tungsten deposited at 600 °C on Si(100) wafer was nitrogen deficient, contained both cubic W 2 N and hexagonal WN phases with smaller grain size. Nitride films of tungsten deposited at 500 °C were nonstoichiometric and contained cubic W 2 N and unreacted W phases. There was no amorphous phase formed along the interface for the tungsten nitride film deposited at 600 °C on the Si wafer. Thermal conductivity and interface thermal conductance of all the nitride films of Ti, Cr, and W were determined by transient thermoreflectance technique. The thermal conductivity of the films as function of deposition temperature, microstructure, nitrogen stoichiometry and amorphous interaction layer at the interface was determined. Tungsten nitride film containing both cubic and hexagonal phases was found to exhibit much higher thermal conductivity and interface thermal conductance. The amorphous interface layer was found to reduce effective thermal conductivity of TiN and CrN films

  17. Advantageous use of metallic cobalt in the target for pulsed laser deposition of cobalt-doped ZnO films

    Energy Technology Data Exchange (ETDEWEB)

    Ying, Minju, E-mail: mjying@bnu.edu.cn, E-mail: g.gehring@sheffield.ac.uk [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom); Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Blythe, Harry J.; Gerriu, Fatma M.; Fox, A. Mark; Gehring, Gillian A., E-mail: mjying@bnu.edu.cn, E-mail: g.gehring@sheffield.ac.uk [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom); Dizayee, Wala [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom); Department of Science, Salahaddin University, Erbil (Iraq); Heald, Steve M. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2016-08-15

    We investigate the magnetic properties of ZnCoO thin films grown by pulsed laser deposition (PLD) from targets made containing metallic Co or CoO precursors instead of the usual Co{sub 3}O{sub 4}. We find that the films grown from metallic Co precursors in an oxygen rich environment contain negligible amounts of Co metal and have a large magnetization at room temperature. Structural analysis by X-ray diffraction and magneto-optical measurements indicate that the enhanced magnetism is due, in part, from Zn vacancies that partially compensate the naturally occurring n-type defects. We conclude that strongly magnetic films of Zn{sub 0.95}Co{sub 0.05}O that do not contain metallic cobalt can be grown by PLD from Co-metal-precursor targets if the films are grown in an oxygen atmosphere.

  18. Nano Indentation Inspection of the Mechanical Properties of Gold Nitride Thin Films

    Directory of Open Access Journals (Sweden)

    Armen Verdyan

    2007-10-01

    Full Text Available The morphology and the local mechanical properties of gold nitride thin films were studied by atomic force microscope (AFM. Gold nitride films were deposited for the first time on silicon substrate without any buffer layer at room temperature by reactive pulsed laser ablation deposition (RPLD. The films were fabricated on (100 Si wafers by RPLD technique in which KrF excimer laser was used to ablate a gold target in N2 atmosphere (0.1 GPa-100 Pa and ambient temperature. Scanning electron microscopy (SEM and atomic force microscopy inspections showed that the films were flat plane with rms roughness in the range of 35.1 nm-3.6 nm, depending on the deposition pressure. Rutherford backscattering spectrometry (RBS and energy dispersion spectroscopy (EDS used to detect the nitrogen concentration in the films, have revealed a composition close to Au3N. The film

  19. Thin film phase diagram of iron nitrides grown by molecular beam epitaxy

    Science.gov (United States)

    Gölden, D.; Hildebrandt, E.; Alff, L.

    2017-01-01

    A low-temperature thin film phase diagram of the iron nitride system is established for the case of thin films grown by molecular beam epitaxy and nitrided by a nitrogen radical source. A fine-tuning of the nitridation conditions allows for growth of α ‧ -Fe8Nx with increasing c / a -ratio and magnetic anisotropy with increasing x until almost phase pure α ‧ -Fe8N1 thin films are obtained. A further increase of nitrogen content below the phase decomposition temperature of α ‧ -Fe8N (180 °C) leads to a mixture of several phases that is also affected by the choice of substrate material and symmetry. At higher temperatures (350 °C), phase pure γ ‧ -Fe4N is the most stable phase.

  20. Electron and ion beam degradation effects in AES analysis of silicon nitride thin films

    International Nuclear Information System (INIS)

    Fransen, F.; Vanden Berghe, R.; Vlaeminck, R.; Hinoul, M.; Remmerie, J.; Maes, H.E.

    1985-01-01

    Silicon nitride films are currently investigated by AES combined with ion profiling techniques for their stoichiometry and oxygen content. During this analysis, ion beam and primary electron effects were observed. The effect of argon ion bombardment is the preferential sputtering of nitrogen, forming 'covalent' silicon at the surface layer (AES peak at 91 eV). The electron beam irradiation results in a decrease of the covalent silicon peak, either by an electron beam annealing effect in the bulk of the silicon nitride film, or by an ionization enhanced surface diffusion process of the silicon (electromigration). By the electron beam annealing, nitrogen species are liberated in the bulk of the silicon nitride film and migrate towards the surface where they react with the covalent silicon. The ionization enhanced diffusion originates from local charging of the surface, induced by the electron beam. (author)

  1. Reactive radio frequency sputtering deposition and characterization of zinc nitride and oxynitride thin films

    International Nuclear Information System (INIS)

    Jiang, Nanke; Georgiev, Daniel G.; Wen, Ting; Jayatissa, Ahalapitiya H.

    2012-01-01

    Zinc nitride films were deposited on glass or silicon substrates by reactive magnetron radio frequency sputtering of zinc in either N 2 –Ar or N 2 –Ar–O 2 ambient. The effects of varying the nitrogen contents and the substrate temperature were investigated. X-ray diffraction data showed that the as-deposited films contain the zinc nitride cubic crystalline phase with a preferred orientation, and Raman scattering measurements revealed Zn-N related modes. According to energy-dispersive X-ray spectroscopy analysis, the as-deposited films were nitrogen-rich and contained only a small fraction of oxygen. Hall-effect measurements showed that p-type zinc nitride with carrier concentration of ∼ 10 19 cm −3 , mobility of ∼ 10 1 cm 2 /Vs, resistivity of ∼ 10 −2 Ω ∗ cm, was obtained. The photon energy dependence of optical transmittance suggested that the material has an indirect bandgap.

  2. Sputter deposition of tantalum-nitride films on copper using an rf-plasma

    International Nuclear Information System (INIS)

    Walter, K.C.; Fetherston, R.P.; Sridharan, K.; Chen, A.; Shamim, M.M.; Conrad, J.R.

    1994-01-01

    A tantalum-nitride film was successfully deposited at ambient temperature on copper with a modified ion-assisted-deposition (IAD) technique. The process uses an argon and nitrogen plasma to sputter deposit from a tantalum rf-cathode and ion implant the deposited film simultaneously. Both argon and nitrogen ions are used for sputtering and ion implantation. Auger spectroscopy and x-ray diffraction were used to characterize the resulting film

  3. Facile fabrication of boron nitride nanosheets-amorphous carbon hybrid film for optoelectronic applications

    KAUST Repository

    Wan, Shanhong

    2015-01-01

    A novel boron nitride nanosheets (BNNSs)-amorphous carbon (a-C) hybrid film has been deposited successfully on silicon substrates by simultaneous electrochemical deposition, and showed a good integrity of this B-C-N composite film by the interfacial bonding. This synthesis can potentially provide the facile control of the B-C-N composite film for the potential optoelectronic devices. This journal is

  4. Investigation of nanocrystalline thin cobalt films thermally evaporated on Si(100) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Kozłowski, W., E-mail: wkozl@std2.phys.uni.lodz.pl [Department of Solid State Physics, Faculty of Physics and Applied Informatics, University of Łódź, Pomorska 149/153, 90-236 Łódź (Poland); Balcerski, J.; Szmaja, W. [Department of Solid State Physics, Faculty of Physics and Applied Informatics, University of Łódź, Pomorska 149/153, 90-236 Łódź (Poland); Piwoński, I. [Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Łódź, Pomorska 163, 90-236 Łódź (Poland); Batory, D. [Institute of Materials Science and Engineering, Łódź University of Technology, Stefanowskiego 1/15, 90-924 Łódź (Poland); Miękoś, E. [Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, 91-403 Łódź (Poland); and others

    2017-03-15

    We have made a quantitative study of the morphological and magnetic domain structures of 100 nm thick nanocrystalline cobalt films thermally evaporated on naturally oxidized Si(100) substrates. The morphological structure is composed of densely packed grains with the average grain size (35.6±0.8) nm. The grains exhibit no geometric alignment and no preferred elongation on the film surface. In the direction perpendicular to the film surface, the grains are aligned in columns. The films crystallize mainly in the hexagonal close-packed phase of cobalt and possess a crystallographic texture with the hexagonal axis perpendicular to the film surface. The magnetic domain structure consists of domains forming a maze stripe pattern with the average domain size (102±6) nm. The domains have their magnetizations oriented almost perpendicularly to the film surface. The domain wall energy, the domain wall thickness and the critical diameter for single-domain particle were determined. - Highlights: • 100 nm thick nanocrystalline cobalt films on Si(100) were studied quantitatively. • The grains are densely packed and possess the average size (35.6±0.8) nm. • The films have a texture with the hexagonal axis perpendicular to the film surface. • The magnetic domains form a maze stripe pattern with the average size (102±6) nm. • The domains are magnetized almost perpendicularly to the film surface.

  5. Preparation of mesoporous carbon nitride structure by the dealloying of Ni/a-CN nanocomposite films

    Science.gov (United States)

    Zhou, Han; Shen, Yongqing; Huang, Jie; Liao, Bin; Wu, Xianying; Zhang, Xu

    2018-05-01

    The preparation of mesoporous carbon nitride (p-CN) structure by the selective dealloying process of Ni/a-CN nanocomposite films is investigated. The composition and structure of the Ni/a-CN nanocomposite films and porous carbon nitride (p-CN) films are determined by scan electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. Phase separated structure including nickel carbide phase and the surrounding amorphous carbon nitride (a-CN) matrix are detected for the as-deposited films. Though the bulk diffusion is introduced in the film during the annealing process, the grain sizes for the post-annealed films are around 10 nm and change little comparing with the ones of the as-deposited films, which is associated with the thermostability of the CN surrounding in the film. The p-CN skeleton with its pore size around 12.5 nm is formed by etching the post-annealed films, indicative of the stability of the phase separated structure during the annealing process.

  6. RBS and NRA of cobalt oxide thin films prepared by the sol-gel process

    International Nuclear Information System (INIS)

    Andrade, E.; Huerta, L.; Pineda, J.C.; Zavala, E.P.; Barrera, E.; Rocha, M. F.; Vargas, C.A.

    2001-01-01

    This work presents a study of cobalt oxide thin films produced by the sol-gel process on aluminum and glass substrates. These films have been analyzed using two ion beam analysis (IBA) techniques: a) a standard RBS 4 He 2 MeV and b) nuclear reaction analysis (NRA) using a 1 MeV deuterium beam. The 12 C(d,p 0 ) 13 C nuclear reaction provides information that carbon is incorporated into the film structure, which could be associated to the sinterization film process. Other film measurements such as optical properties, XRD, and SEM were performed in order to complement the IBA analysis. The results show that cobalt oxide film coatings prepared by this technique have good optical properties as solar absorbers and potential uses in solar energy applications

  7. Carbon nitride films synthesized by NH3-ion-beam-assisted deposition

    International Nuclear Information System (INIS)

    Song, H.W.; Cui, F.Z.; He, X.M.; Li, W.Z.; Li, H.D.

    1994-01-01

    Carbon nitride thin film films have been prepared by NH 3 -ion-beam-assisted deposition with bombardment energies of 200-800 eV at room temperature. These films have been characterized by transmission electron microscopy. Auger electron spectroscopy and x-ray photoelectron spectroscopy for chemical analysis. It was found that the structure of the films varied with the bombardment energy. In the case of 400 eV bombardment, the tiny crystallites immersed on an amorphous matrix were identified to be β-C 3 N 4 . X-ray photoelectron spectroscopy indicated that some carbon atoms and nitrogen atoms form unpolarized covalent bonds in these films. (Author)

  8. Cobalt phosphate-modified barium-doped tantalum nitride nanorod photoanode with 1.5% solar energy conversion efficiency

    KAUST Repository

    Li, Yanbo

    2013-10-03

    Spurred by the decreased availability of fossil fuels and global warming, the idea of converting solar energy into clean fuels has been widely recognized. Hydrogen produced by photoelectrochemical water splitting using sunlight could provide a carbon dioxide lean fuel as an alternative to fossil fuels. A major challenge in photoelectrochemical water splitting is to develop an efficient photoanode that can stably oxidize water into oxygen. Here we report an efficient and stable photoanode that couples an active barium-doped tantalum nitride nanostructure with a stable cobalt phosphate co-catalyst. The effect of barium doping on the photoelectrochemical activity of the photoanode is investigated. The photoanode yields a maximum solar energy conversion efficiency of 1.5%, which is more than three times higher than that of state-of-the-art single-photon photoanodes. Further, stoichiometric oxygen and hydrogen are stably produced on the photoanode and the counter electrode with Faraday efficiency of almost unity for 100 min. © 2013 Macmillan Publishers Limited. All rights reserved.

  9. Quantitative Auger depth profiling of LPCVD and PECVD silicon nitride films

    International Nuclear Information System (INIS)

    Keim, E.G.; Aite, K.

    1989-01-01

    Thin silicon nitride films (100-210 nm) with refractive indices varying from 1.90 to 2.10 were deposited on silicon substrates by low pressure chemical vapour deposition (LPCVD) and plasma enhanced chemical vapour deposition (PECVD). Rutherford backscattering spectrometry (RBS), ellipsometry, surface profiling measurements and Auger electron spectroscopy (AES) in combination with Ar + sputtering were used to characterize these films. We have found that the use of (p-p)heights of the Si LVV and N KLL Auger transitions in the first derivative of the energy distribution (dN(E)/dE) leads to an accurate determination of the silicon nitride composition in Auger depth profiles over a wide range of atomic Si/N ratios. Moreover, we have shown that the Si KLL Auger transition, generally considered to be a better probe than the low energy Si LVV Auger transition in determining the chemical composition of silicon nitride layers, leads to deviating results. (orig.)

  10. Crystalline and amorphous carbon nitride films produced by high-energy shock plasma deposition

    International Nuclear Information System (INIS)

    Bursilll, L.A.; Peng, Julin; Gurarie, V.N.; Orlov, A.V.; Prawer, S.

    1995-01-01

    High-energy shock plasma deposition techniques are used to produce carbon-nitride films containing both crystalline and amorphous components. The structures are examined by high-resolution transmission electron microscopy, parallel-electron-energy loss spectroscopy and electron diffraction. The crystalline phase appears to be face-centered cubic with unit cell parameter approx. a=0.63nm and it may be stabilized by calcium and oxygen at about 1-2 at % levels. The carbon atoms appear to have both trigonal and tetrahedral bonding for the crystalline phase. There is PEELS evidence that a significant fraction of the nitrogen atoms have sp 2 trigonal bonds in the crystalline phase. The amorphous carbon-nitride film component varies from essentially graphite, containing virtually no nitrogen, to amorphous carbon-nitride containing up to 10 at % N, where the fraction of sp 3 bonds is significant. 15 refs., 5 figs

  11. Preparation and characterization of electrochemically deposited carbon nitride films on silicon substrate

    International Nuclear Information System (INIS)

    Yan Xingbin; Xu Tao; Chen Gang; Yang Shengrong; Liu Huiwen; Xue Qunji

    2004-01-01

    Carbon nitride films (CN x films) were deposited on Si(100) substrates by the electrolysis of methanol-urea solution at high voltage, atmospheric pressure, and low temperature. The microstructure and morphology of the resulting CN x films were analysed by means of Raman spectroscopy, x-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectrometry (FTIR), x-ray diffraction (XRD), and atomic force microscopy. The tribological properties of the CN x films were examined on an UMT-2MT friction and wear test rig. The Raman spectrum showed two characteristic bands: a graphite G band and a disordered D band of carbon, which suggested the presence of an amorphous carbon matrix. XPS and FTIR measurements suggested the existence of both single and double carbon-nitride bonds in the film and the hydrogenation of the carbon nitride phase. The XRD spectrum showed various peaks of different d values, which could confirm the existence of the polycrystalline carbon nitride phase. The hydrogenated CN x films were compact and uniform, with a root mean square roughness of about 18 nm. The films showed excellent friction-reduction and wear-resistance, with the friction coefficient in the stable phase being about 0.08. In addition, the growth mechanism of the CN x films in liquid phase electro-deposition was discussed as well. It was assumed that the molecules of CH 3 OH and CO(NH 2 ) 2 were polarized under high electric field, and the CN x film was formed on the substrate through the reaction of the -CH 3 and -NH 2 groups on the cathode

  12. Use of cermet thin film resistors with nitride passivated metal insulator field effect transistor

    Science.gov (United States)

    Brown, G. A.; Harrap, V.

    1971-01-01

    Film deposition of cermet resistors on same chip with metal nitride oxide silicon field effect transistors permits protection of contamination sensitive active devices from contaminants produced in cermet deposition and definition processes. Additional advantages include lower cost, greater reliability, and space savings.

  13. Effect of contact metals on the piezoelectric properties of aluminum nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Harman, J.P.; Kabulski, A. (West Virginia U., Morgantown, WV); Pagan, V.R. (West Virginia U., Morgantown, WV); Famouri, K. (West Virginia U., Morgantown, WV); Kasarla, K.R.; Rodak, L.E. (West Virginia U., Morgantown, WV); Hensel, J.P.; Korakakis, D.

    2008-07-01

    The converse piezoelectric response of aluminum nitride evaluated using standard metal insulator semiconductor structures has been found to exhibit a linear dependence on the work function of the metal used as the top electrode. The apparent d33 of the 150–1100 nm films also depends on the dc bias applied to the samples.

  14. Effect of contact metals on the piezoelectric properties of aluminum nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Harman, J.; Kabulski, A.; Pagán, V. R.; Famouri, P.; Kasarla, K. R.; Rodak, L. E.; Peter Hensel, J.; Korakakis, D.

    2008-01-01

    The converse piezoelectric response of aluminum nitride evaluated using standard metal insulator semiconductor structures has been found to exhibit a linear dependence on the work function of the metal used as the top electrode. The apparent d33 of the 150–1100 nm films also depends on the dc bias applied to the samples.

  15. Ion-induced stress relaxation during the growth of cubic boron nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Abendroth, B.E.

    2004-08-01

    in this thesis the deposition of cubic boron nitride films by magnetron sputtering is described. The deposition process is analyzed by Langmuir-probe measurement and energy resolved mass spectroscopy. the films are studied by stress measurement, spectroscopic ellipsometry, infrared spectroscopy, elastic recoil detection analysis, Rutherford backscattering spectroscopy, X-ray absorption near edge spectroscopy, X-ray diffraction, and transmission electron microscopy. Discussed are the stress relaxation and the microstructure and bonding characteristics together with the effects of ion bombardement. (HSI)

  16. Vibrational Spectroscopy of Chemical Species in Silicon and Silicon-Rich Nitride Thin Films

    Directory of Open Access Journals (Sweden)

    Kirill O. Bugaev

    2012-01-01

    Full Text Available Vibrational properties of hydrogenated silicon-rich nitride (SiN:H of various stoichiometry (0.6≤≤1.3 and hydrogenated amorphous silicon (a-Si:H films were studied using Raman spectroscopy and Fourier transform infrared spectroscopy. Furnace annealing during 5 hours in Ar ambient at 1130∘C and pulse laser annealing were applied to modify the structure of films. Surprisingly, after annealing with such high-thermal budget, according to the FTIR data, the nearly stoichiometric silicon nitride film contains hydrogen in the form of Si–H bonds. From analysis of the FTIR data of the Si–N bond vibrations, one can conclude that silicon nitride is partly crystallized. According to the Raman data a-Si:H films with hydrogen concentration 15% and lower contain mainly Si–H chemical species, and films with hydrogen concentration 30–35% contain mainly Si–H2 chemical species. Nanosecond pulse laser treatments lead to crystallization of the films and its dehydrogenization.

  17. Control of surface ripple amplitude in ion beam sputtered polycrystalline cobalt films

    Energy Technology Data Exchange (ETDEWEB)

    Colino, Jose M., E-mail: josemiguel.colino@uclm.es [Institute of Nanoscience, Nanotechnology and Molecular Materials, University of Castilla-La Mancha, Campus de la Fabrica de Armas, Toledo 45071 (Spain); Arranz, Miguel A. [Facultad de Ciencias Quimicas, University of Castilla-La Mancha, Ciudad Real 13071 (Spain)

    2011-02-15

    We have grown both polycrystalline and partially textured cobalt films by magnetron sputter deposition in the range of thickness (50-200 nm). Kinetic roughening of the growing film leads to a controlled rms surface roughness values (1-6 nm) increasing with the as-grown film thickness. Ion erosion of a low energy 1 keV Ar+ beam at glancing incidence (80{sup o}) on the cobalt film changes the surface morphology to a ripple pattern of nanometric wavelength. The wavelength evolution at relatively low fluency is strongly dependent on the initial surface topography (a wavelength selection mechanism hereby confirmed in polycrystalline rough surfaces and based on the shadowing instability). At sufficiently large fluency, the ripple wavelength steadily increases on a coarsening regime and does not recall the virgin surface morphology. Remarkably, the use of a rough virgin surface makes the ripple amplitude in the final pattern can be controllably increased without affecting the ripple wavelength.

  18. Study of high coercive force films made by vacuum deposition of cobalt onto chromium

    International Nuclear Information System (INIS)

    Randet, Denis

    1969-01-01

    A new method to make high coercive force films, by successive evaporations of chromium and cobalt, was demonstrated in 1966 at the 'Laboratoire d'Electronique et de Technologie de l'Informatique'. This work first contains a description of the magnetic properties of these films according to the conditions of preparation. These properties, which are isotropic in the plane of the film, are then related to the crystallographic structure of chromium and cobalt, in particular through electron microscopy. It is concluded that the coercive force is essentially due to the high magneto-crystalline anisotropy of cobalt in its hexagonal phase and depends, altogether with the shape of the hysteresis loop, on the magnetostatic coupling between the grains, which varies according to their dimensions. The chromium underlayer, if its surface is free enough of oxygen contamination, induces the growth of the hexagonal phase and influences the grain size of cobalt by a sort of epitaxy. At last, the behaviour of the Co/Cr films as a magnetic recording material is briefly examined and discussed. (author) [fr

  19. Deposition and properties of cobalt- and ruthenium-based ultra-thin films

    Science.gov (United States)

    Henderson, Lucas Benjamin

    Future copper interconnect systems will require replacement of the materials that currently comprise both the liner layer(s) and the capping layer. Ruthenium has previously been considered as a material that could function as a single material liner, however its poor ability to prevent copper diffusion makes it incompatible with liner requirements. A recently described chemical vapor deposition route to amorphous ruthenium-phosphorus alloy films could correct this problem by eliminating the grain boundaries found in pure ruthenium films. Bias-temperature stressing of capacitor structures using 5 nm ruthenium-phosphorus film as a barrier to copper diffusion and analysis of the times-to-failure at accelerated temperature and field conditions implies that ruthenium-phosphorus performs acceptably as a diffusion barrier for temperatures above 165°C. The future problems associated with the copper capping layer are primarily due to the poor adhesion between copper and the current Si-based capping layers. Cobalt, which adheres well to copper, has been widely proposed to replace the Si-based materials, but its ability to prevent copper diffusion must be improved if it is to be successfully implemented in the interconnect. Using a dual-source chemistry of dicobaltoctacarbonyl and trimethylphosphine at temperatures from 250-350°C, amorphous cobalt-phosphorus can be deposited by chemical vapor deposition. The films contain elemental cobalt and phosphorus, plus some carbon impurity, which is incorporated in the film as both graphitic and carbidic (bonded to cobalt) carbon. When deposited on copper, the adhesion between the two materials remains strong despite the presence of phosphorus and carbon at the interface, but the selectivity for growth on copper compared to silicon dioxide is poor and must be improved prior to consideration for application in interconnect systems. A single molecule precursor containing both cobalt and phosphorus atoms, tetrakis(trimethylphosphine)cobalt

  20. Mechanical and tribological properties of silicon nitride films synthesized by ion beam enhanced deposition

    International Nuclear Information System (INIS)

    Chen Yuanru; Li Shizhuo; Zhang Xushou; Liu Hong; Yang Genqing; Qu Baochun

    1991-01-01

    This article describes preliminary investigations of mechanical and tribological properties of silicon nitride film formed by ion beam enhanced deposition (IBED) on GH37 (Ni-based alloys) steel. The films were synthesized by silicon vapor deposition with a rate of 1 A/s and by 40 keV nitrogen ion bombardment simultaneously. The thickness of the film was about 5000 A. X-ray photoelectron spectroscopy and infrared absorption spectroscopy revealed that a stoichiometric Si 3 N 4 film was formed. The observation of TEM showed that the IBED Si 3 N 4 film normally had an amorphous structure. However, electron diffraction patterns revealed a certain crystallinity. The mechanical and tribological properties of the films were investigated with a scratch tester, microhardness meter, and a ball-on-disc tribometer respectively. Results show that the adhesive strength between film and substrate is about 51 N, the Vickers microhardness with a load of 0.2 N is 980, the friction coefficient measured for steel against silicon nitride film ranges from 0.1 to 0.15, and the wear rate of coatings is about 6.8x10 -5 mm 3 /(mN). Finally, the relationship among thermal annealing, crystallinity and tribological characteristics of the Si 3 N 4 film is discussed. (orig.)

  1. Morphology and thermal stability of Ti-doped copper nitride films

    International Nuclear Information System (INIS)

    Fan Xiaoyan; Wu Zhiguo; Li Huajun; Geng Baisong; Li Chun; Yan Pengxun

    2007-01-01

    A weakly Ti-doped copper nitride (Cu 3 N) film was prepared by cylindrical magnetron sputtering. The XPS results indicate that Ti atoms do not substitute for the Cu atoms but probably locate at the grain boundaries. The columnar grains size is about half of that of the undoped Cu 3 N film and the surface is smoother. For weakly Ti-doped Cu 3 N films, a dense layer appears on top of the columnar crystals. The RMS of the Cu film formed by annealing of the weakly Ti-doped Cu 3 N film is more than twice larger than that of the film before annealing. Compared with the undoped Cu 3 N film, it possesses fine thermal stability both in vacuum and in atmosphere

  2. Observation of ultraslow stress release in silicon nitride films on CaF2

    International Nuclear Information System (INIS)

    Guo, Tianyi; Deen, M. Jamal; Xu, Changqing; Fang, Qiyin; Selvaganapathy, P. Ravi; Zhang, Haiying

    2015-01-01

    Silicon nitride thin films are deposited by plasma-enhanced chemical vapor deposition on (100) and (111) CaF 2 crystalline substrates. Delaminated wavy buckles formed during the release of internal compressive stress in the films and the stress releasing processes are observed macroscopically and microscopically. The stress release patterns start from the substrate edges and propagate to the center along defined directions aligned with the crystallographic orientations of the substrate. The stress releasing velocity of SiN x film on (111) CaF 2 is larger than that of SiN x film with the same thickness on (100) CaF 2 . The velocities of SiN x film on both (100) and (111) CaF 2 increase with the film thickness. The stress releasing process is initiated when the films are exposed to atmosphere, but it is not a chemical change from x-ray photoelectron spectroscopy

  3. Observation of ultraslow stress release in silicon nitride films on CaF{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Tianyi [School of Biomedical Engineering, McMaster University, 1280 Main St W, Hamilton, Ontario L8S 4K1, Canada and Institute of Microelectronics, Chinese Academy of Science, Beijing 100029 (China); Deen, M. Jamal, E-mail: jamal@mcmaster.ca [Department of Electrical and Computer Engineering, McMaster University, 1280 Main St W, Hamilton, Ontario L8S 4K1, Canada and School of Biomedical Engineering, McMaster University, 1280 Main St W, Hamilton, Ontario L8S 4K1 (Canada); Xu, Changqing; Fang, Qiyin [Department of Engineering Physics, McMaster University, 1280 Main St W, Hamilton, Ontario L8S 4L7 (Canada); Selvaganapathy, P. Ravi [Department of Mechanical Engineering, McMaster University, 1280 Main St W, Hamilton, Ontario L8S 4L7 (Canada); Zhang, Haiying [Institute of Microelectronics, Chinese Academy of Science, Beijing 100029 (China)

    2015-07-15

    Silicon nitride thin films are deposited by plasma-enhanced chemical vapor deposition on (100) and (111) CaF{sub 2} crystalline substrates. Delaminated wavy buckles formed during the release of internal compressive stress in the films and the stress releasing processes are observed macroscopically and microscopically. The stress release patterns start from the substrate edges and propagate to the center along defined directions aligned with the crystallographic orientations of the substrate. The stress releasing velocity of SiN{sub x} film on (111) CaF{sub 2} is larger than that of SiN{sub x} film with the same thickness on (100) CaF{sub 2}. The velocities of SiN{sub x} film on both (100) and (111) CaF{sub 2} increase with the film thickness. The stress releasing process is initiated when the films are exposed to atmosphere, but it is not a chemical change from x-ray photoelectron spectroscopy.

  4. Room-temperature low-voltage electroluminescence in amorphous carbon nitride thin films

    Science.gov (United States)

    Reyes, R.; Legnani, C.; Ribeiro Pinto, P. M.; Cremona, M.; de Araújo, P. J. G.; Achete, C. A.

    2003-06-01

    White-blue electroluminescent emission with a voltage bias less than 10 V was achieved in rf sputter-deposited amorphous carbon nitride (a-CN) and amorphous silicon carbon nitride (a-SiCN) thin-film-based devices. The heterojunction structures of these devices consist of: Indium tin oxide (ITO), used as a transparent anode; amorphous carbon film as an emission layer, and aluminum as a cathode. The thickness of the carbon films was about 250 Å. In all of the produced diodes, a stable visible emission peaked around 475 nm is observed at room temperature and the emission intensity increases with the current density. For an applied voltage of 14 V, the luminance was about 3 mCd/m2. The electroluminescent properties of the two devices are discussed and compared.

  5. Helium ion beam induced electron emission from insulating silicon nitride films under charging conditions

    Science.gov (United States)

    Petrov, Yu. V.; Anikeva, A. E.; Vyvenko, O. F.

    2018-06-01

    Secondary electron emission from thin silicon nitride films of different thicknesses on silicon excited by helium ions with energies from 15 to 35 keV was investigated in the helium ion microscope. Secondary electron yield measured with Everhart-Thornley detector decreased with the irradiation time because of the charging of insulating films tending to zero or reaching a non-zero value for relatively thick or thin films, respectively. The finiteness of secondary electron yield value, which was found to be proportional to electronic energy losses of the helium ion in silicon substrate, can be explained by the electron emission excited from the substrate by the helium ions. The method of measurement of secondary electron energy distribution from insulators was suggested, and secondary electron energy distribution from silicon nitride was obtained.

  6. Germanium nitride and oxynitride films for surface passivation of Ge radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Maggioni, G., E-mail: maggioni@lnl.infn.it [Dipartimento di Fisica e Astronomia G. Galilei, Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell’Universita’2, I-35020 Legnaro, Padova (Italy); Carturan, S. [Dipartimento di Fisica e Astronomia G. Galilei, Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell’Universita’2, I-35020 Legnaro, Padova (Italy); Fiorese, L. [Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell’Universita’2, I-35020 Legnaro, Padova (Italy); Dipartimento di Ingegneria dei Materiali e delle Tecnologie Industriali, Università di Trento, Via Mesiano 77, I-38050 Povo, Trento (Italy); Pinto, N.; Caproli, F. [Scuola di Scienze e Tecnologie, Sezione di Fisica, Università di Camerino, Via Madonna delle Carceri 9, Camerino (Italy); INFN, Sezione di Perugia, Perugia (Italy); Napoli, D.R. [Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell’Universita’2, I-35020 Legnaro, Padova (Italy); Giarola, M.; Mariotto, G. [Dipartimento di Informatica—Università di Verona, Strada le Grazie 15, I-37134 Verona (Italy)

    2017-01-30

    Highlights: • A surface passivation method for HPGe radiation detectors is proposed. • Highly insulating GeNx- and GeOxNy-based layers are deposited at room temperature. • Deposition parameters affect composition and electrical properties of the layers. • The improved performance of a GeNx-coated HPGe diode is assessed. - Abstract: This work reports a detailed investigation of the properties of germanium nitride and oxynitride films to be applied as passivation layers to Ge radiation detectors. All the samples were deposited at room temperature by reactive RF magnetron sputtering. A strong correlation was found between the deposition parameters, such as deposition rate, substrate bias and atmosphere composition, and the oxygen and nitrogen content in the film matrix. We found that all the films were very poorly crystallized, consisting of very small Ge nitride and oxynitride nanocrystallites, and electrically insulating, with the resistivity changing from three to six orders of magnitude as a function of temperature. A preliminary test of these films as passivation layers was successfully performed by depositing a germanium nitride film on the intrinsic surface of a high-purity germanium (HPGe) diode and measuring the improved performance, in terms of leakage current, with respect to a reference passivated diode. All these interesting results allow us to envisage the application of this coating technology to the surface passivation of germanium-based radiation detectors.

  7. Epitaxial GaN films by hyperthermal ion-beam nitridation of Ga droplets

    Energy Technology Data Exchange (ETDEWEB)

    Gerlach, J. W.; Ivanov, T.; Neumann, L.; Hoeche, Th.; Hirsch, D.; Rauschenbach, B. [Leibniz-Institut fuer Oberflaechenmodifizierung (IOM), D-04318 Leipzig (Germany)

    2012-06-01

    Epitaxial GaN film formation on bare 6H-SiC(0001) substrates via the process of transformation of Ga droplets into a thin GaN film by applying hyperthermal nitrogen ions is investigated. Pre-deposited Ga atoms in well defined amounts form large droplets on the substrate surface which are subsequently nitridated at a substrate temperature of 630 Degree-Sign C by a low-energy nitrogen ion beam from a constricted glow-discharge ion source. The Ga deposition and ion-beam nitridation process steps are monitored in situ by reflection high-energy electron diffraction. Ex situ characterization by x-ray diffraction and reflectivity techniques, Rutherford backscattering spectrometry, and electron microscopy shows that the thickness of the resulting GaN films depends on the various amounts of pre-deposited gallium. The films are epitaxial to the substrate, exhibit a mosaic like, smooth surface topography and consist of coalesced large domains of low defect density. Possible transport mechanisms of reactive nitrogen species during hyperthermal nitridation are discussed and the formation of GaN films by an ion-beam assisted process is explained.

  8. Tribological behavior of DLC films deposited on nitrided and post-oxidized stainless steel by PACVD

    Science.gov (United States)

    Dalibon, E. L.; Brühl, S. P.; Heim, D.

    2012-06-01

    In this work, the tribological behavior and adhesion of DLC films deposited by PACVD on AISI 420 martensitic stainless steel was evaluated. Prior to DLC deposition, the samples were nitrided and some of them also post-oxidized. The films were characterized by Raman and EDS, microhardness was assessed with Vickers indenter and the microstructure was analyzed by OM, SEM, FIB. Fretting and linear reciprocating sliding tests were performed using a WC ball as counterpart, and the adhesion of the DLC films was characterized using the Scratch Test and Rockwell C indentation. Corrosion behavior was evaluated by the Salt Spray Fog Test. The film showed a hardness of only about 1500 HV but it was about 15-20 microns thick. The results of the mechanical tests showed that pre-treatments (nitriding and oxidizing) of the substrate did not have a big influence in the tribological behavior of the coating. However, the nitriding treatment before the DLC coating process reduced the interface stress and enhanced the adhesion. Additionally, all the films evidenced good corrosion resistance in a saline environment, better than the AISI 420 itself.

  9. Doped indium nitride thin film by sol-gel spin coating method

    Science.gov (United States)

    Lee, Hui San; Ng, Sha Shiong; Yam, Fong Kwong

    2017-12-01

    In this study, magnesium doped indium nitride (InN:Mg) thin films grown on silicon (100) substrate were prepared via sol-gel spin coating method followed by nitridation process. A custom-made tube furnace was used to perform the nitridation process. Through this method, the low dissociation temperature issue of InN:Mg thin films can be solved. The deposited InN:Mg thin films were investigated using various techniques. The X-rays diffraction results revealed that two intense diffraction peaks correspond to wurtzite structure InN (100), and InN (101) were observed at 29° and 33.1° respectively. Field emission scanning electron microscopy images showed that the surface of the films exhibits densely packed grains. The elemental composition of the deposited thin films was analyzed using energy dispersive X-rays spectroscopy. The detected atomic percentages for In, N, and Mg were 43.22 %, 3.28 %, and 0.61 % respectively. The Raman spectra showed two Raman- and infrared-active modes of E2 (High) and A1 (LO) of the wurtzite InN. The band gap obtained from the Tauc plot showed around 1.74 eV. Lastly, the average surface roughness measured by AFM was around 0.133 µm.

  10. Bacterial adhesion studies on titanium, titanium nitride and modified hydroxyapatite thin films

    International Nuclear Information System (INIS)

    Jeyachandran, Y.L.; Venkatachalam, S.; Karunagaran, B.; Narayandass, Sa.K.; Mangalaraj, D.; Bao, C.Y.; Zhang, C.L.

    2007-01-01

    A qualitative study on adhesion of the oral bacteria Porphyromonas gingivalis on titanium (Ti), titanium nitride (TiN), fluorine modified hydroxyapatite (FHA) and zinc modified FHA (Zn-FHA) thin films is investigated. Ti and TiN thin films were deposited by DC magnetron sputtering and hydroxyapatite-based films were prepared by solgel method. The crystalline structure, optical characteristics, chemical composition and surface topography of the films were studied by XRD, optical transmission, XPS, EDAX and AFM measurements. The predominant crystallite orientation in the Ti and TiN films was along (002) and (111) of hcp and cubic structures, respectively. The Ti : O : N composition ratio in the surface of the Ti and TiN films was found to be 7 : 21 : 1 and 3 : 8 : 2, respectively. The atomic concentration ratio (Zn + Ca) / P in Zn-FHA film was found to be 1.74 whereby the Zn replaced 3.2% of Ca. The rough surface feature in modified HA films was clearly observed in the SEM images and the surface roughness (rms) of Ti and TiN films was 2.49 and 3.5 nm, respectively, as observed using AFM. The film samples were sterilized, treated in the bacteria culture medium, processed and analyzed using SEM. Surface roughness of the films was found to have least influence on the bacterial adhesion. More bacteria were observed on the TiN film with oxide nitride surface layer and less number of adhered bacteria was noticed on the Ti film with native surface oxide layer and on Zn-FHA film

  11. Bacterial adhesion studies on titanium, titanium nitride and modified hydroxyapatite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jeyachandran, Y L [Department of Physics, Bharathiar University, Coimbatore 641 046, Tamil Nadu (India); Venkatachalam, S [Department of Physics, Bharathiar University, Coimbatore 641 046, Tamil Nadu (India); Karunagaran, B [Department of Physics, Bharathiar University, Coimbatore 641 046, Tamil Nadu (India); Narayandass, Sa K [Department of Physics, Bharathiar University, Coimbatore 641 046, Tamil Nadu (India); Mangalaraj, D [Department of Physics, Bharathiar University, Coimbatore 641 046, Tamil Nadu (India); Bao, C Y [West China College of Stomatology, Sichuan University, Chengdu 610041 (China); Zhang, C L [West China College of Stomatology, Sichuan University, Chengdu 610041 (China)

    2007-01-15

    A qualitative study on adhesion of the oral bacteria Porphyromonas gingivalis on titanium (Ti), titanium nitride (TiN), fluorine modified hydroxyapatite (FHA) and zinc modified FHA (Zn-FHA) thin films is investigated. Ti and TiN thin films were deposited by DC magnetron sputtering and hydroxyapatite-based films were prepared by solgel method. The crystalline structure, optical characteristics, chemical composition and surface topography of the films were studied by XRD, optical transmission, XPS, EDAX and AFM measurements. The predominant crystallite orientation in the Ti and TiN films was along (002) and (111) of hcp and cubic structures, respectively. The Ti : O : N composition ratio in the surface of the Ti and TiN films was found to be 7 : 21 : 1 and 3 : 8 : 2, respectively. The atomic concentration ratio (Zn + Ca) / P in Zn-FHA film was found to be 1.74 whereby the Zn replaced 3.2% of Ca. The rough surface feature in modified HA films was clearly observed in the SEM images and the surface roughness (rms) of Ti and TiN films was 2.49 and 3.5 nm, respectively, as observed using AFM. The film samples were sterilized, treated in the bacteria culture medium, processed and analyzed using SEM. Surface roughness of the films was found to have least influence on the bacterial adhesion. More bacteria were observed on the TiN film with oxide nitride surface layer and less number of adhered bacteria was noticed on the Ti film with native surface oxide layer and on Zn-FHA film.

  12. Transient Nonlinear Optical Properties of Thin Film Titanium Nitride

    Science.gov (United States)

    2017-03-23

    13] • Chemical composition • Crystal structure and lattice parameters • Defect structure This tuneability will be useful in future engineering ...Nitride SarahKatie Thomas Follow this and additional works at: https://scholar.afit.edu/etd Part of the Materials Science and Engineering Commons This... Thesis is brought to you for free and open access by AFIT Scholar. It has been accepted for inclusion in Theses and Dissertations by an authorized

  13. Synthesis and characterization of cobalt doped nickel oxide thin films by spray pyrolysis method

    Science.gov (United States)

    Sathisha, D.; Naik, K. Gopalakrishna

    2018-05-01

    Cobalt (Co) doped nickel oxide (NiO) thin films were deposited on glass substrates at a temperature of about 400 °C by spray pyrolysis method. The effect of Co doping concentration on structural, optical and compositional properties of NiO thin films was investigated. X-ray diffraction result shows that the deposited thin films are polycrystalline in nature. Surface morphologies of the deposited thin films were observed by FESEM and AFM. EDS spectra showed the incorporation of Co dopants in NiO thin films. Optical properties of the grown thin films were characterized by UV-visible spectroscopy. It was found that the optical band gap energy and transmittance of the films decrease with increasing Co doping concentration.

  14. Oxidation of nitride films in aqueous solution: Correlation between surface analysis and electrochemical studies

    International Nuclear Information System (INIS)

    Brown, R.; Alias, M.N.

    1994-01-01

    Ac impedance and dc polarization tests of 304 stainless steels coated by cathodic arc plasma deposition (CAPD) titanium nitride and zirconium nitride were conducted in aqueous chloride solution. Cyclic polarization data suggested passive films were formed over the nitride coatings which are most likely hydrated titanium oxide and zirconium oxides. ESCA analysis of fresh samples and samples exposed during impedance tests indicated a layer rich in oxygen over the ZrN coating after exposure but not over TiN coating. Chemical shifts in the Zr 3d 5/2 core electrons indicate transformation from ZrN to its oxide; the shifts in Ti 2P 3/2 did not support the change from TiN to its oxide. The influence of these shifts on corrosion protection is documented

  15. Plasma-enhanced growth, composition, and refractive index of silicon oxy-nitride films

    DEFF Research Database (Denmark)

    Mattsson, Kent Erik

    1995-01-01

    Secondary ion mass spectrometry and refractive index measurements have been carried out on silicon oxy-nitride produced by plasma-enhanced chemical vapor deposition (PECVD). Nitrous oxide and ammonia were added to a constant flow of 2% silane in nitrogen, to produce oxy-nitride films with atomic...... nitrogen concentrations between 2 and 10 at. %. A simple atomic valence model is found to describe both the measured atomic concentrations and published material compositions for silicon oxy-nitride produced by PECVD. A relation between the Si–N bond concentration and the refractive index is found......-product. A model, that combine the chemical net reaction and the stoichiometric rules, is found to agree with measured deposition rates for given material compositions. Effects of annealing in a nitrogen atmosphere has been investigated for the 400 °C– 1100 °C temperature range. It is observed that PECVD oxy...

  16. Characterization of a glass frit free TiCuAg-thick film metallization applied on aluminium nitride

    International Nuclear Information System (INIS)

    Reicher, R.; Smetana, W.; Adlassnig, A.; Schuster, J. C.; Gruber, U.

    1997-01-01

    The metallization of aluminium nitride substrates by glass frit free Ti CuAg-thick film pastes were investigated. Adhesion properties of the conductor paste were tested by measuring tensile strength and compared with commercial Cu-thick film pastes (within glass frit). Also numerical analysis of temperature-distribution and thermal extension of metallized aluminium nitride ceramic, induced by a continuous and a pulsed working electronic device were made with a finite element program. (author)

  17. Characterization of cobalt oxide thin films prepared by a facile spray pyrolysis technique using perfume atomizer

    Energy Technology Data Exchange (ETDEWEB)

    Louardi, A.; Rmili, A.; Ouachtari, F.; Bouaoud, A. [Laboratoire des Hautes Energies, Sciences de l' Ingenierie et Reacteurs (LHESIR), Equipe Ingenierie et Materiaux (INMA), Departement de Physique, Faculte des Sciences, Kenitra (Morocco); Elidrissi, B., E-mail: e.bachir@mailcity.com [Laboratoire des Hautes Energies, Sciences de l' Ingenierie et Reacteurs (LHESIR), Equipe Ingenierie et Materiaux (INMA), Departement de Physique, Faculte des Sciences, Kenitra (Morocco); Erguig, H. [Laboratoire des Hautes Energies, Sciences de l' Ingenierie et Reacteurs (LHESIR), Equipe Ingenierie et Materiaux (INMA), Departement de Physique, Faculte des Sciences, Kenitra (Morocco)

    2011-09-15

    Highlights: > Co{sub 3}O{sub 4} thin films show a micro porous structure. > Co{sub 3}O{sub 4} thin films are formed with spherical grains less than 50 nm in diameter. > The porous structure of Co{sub 3}O{sub 4} films is expected to have promising application in electrochromism. - Abstract: Cobalt oxide (Co{sub 3}O{sub 4}) thin films were prepared by a facile spray pyrolysis technique using perfume atomizer from aqueous solution of hydrated cobalt chloride salt (CoCl{sub 2}.6H{sub 2}O) as source of cobalt. The films were deposited onto the amorphous glass substrates kept at different temperatures (300-500 deg. C). The influences of molar concentration of the starting solution and substrate temperature on the structural, morphological and optical properties of (Co{sub 3}O{sub 4}) thin films were studied. It was found from X-ray diffraction (XRD) analysis that the films prepared with molar concentration greater than 0.025 M/L were polycrystalline spinel type cubic structure. The preferred orientation of the crystallites of these films changes gradually from (6 2 2) to (1 1 1) when the substrate temperature increases. By Raman spectroscopy, five Raman active modes characteristic of Co{sub 3}O{sub 4} spinel type cubic structure were found and identified at 194, 484, 522, 620 and 691 cm{sup -1}. The scanning electron microscopy (SEM) images showed micro porous structure with very fine grains less than 50 nm in diameter. These films exhibited also a transmittance value of about 70% in the visible and infra red range.

  18. Effect of post-deposition implantation and annealing on the properties of PECVD deposited silicon nitride films

    International Nuclear Information System (INIS)

    Shams, Q.A.

    1988-01-01

    Recently it has been shown that memory-quality silicon nitride can be deposited using plasma enhanced chemical vapor deposition (PECVD). Nitrogen implantation and post-deposition annealing resulted in improved memory properties of MNOS devices. The primary objective of the work described here is the continuation of the above work. Silicon nitride films were deposited using argon as the carrier gas and evaluated in terms of memory performance as the charge-trapping layer in the metal-nitride-oxide-silicon (MNOS) capacitor structure. The bonding structure of PECVD silicon nitride was modified by annealing in different ambients at temperatures higher than the deposition temperature. Post-deposition ion implantation was used to introduce argon into the films in an attempt to influence the transfer, trapping, and emission of charge during write/erase exercising of the MNOS devices. Results show that the memory performance of PECVD silicon nitride is sensitive to the deposition parameters and post-deposition processing

  19. Improvement of orthodontic friction by coating archwire with carbon nitride film

    International Nuclear Information System (INIS)

    Wei Songbo; Shao Tianmin; Ding Peng

    2011-01-01

    In order to reduce frictional resistance between archwire and bracket during orthodontic tooth movement, carbon nitride (CNx) thin films were deposited on the surface of archwires with ion beam assisted deposition (IBAD). The energy-dispersive X-ray spectrometer (EDS) analysis showed that the CNx film was successfully deposited on the surface of the orthodontic wires. X-ray photoelectron spectroscopy (XPS) analysis suggested that the deposited CNx film was sp 2 carbon dominated structures, and diversiform bonds (N-C, N≡C, et al.) coexisted in the film. The friction tests indicated that the CNx film significantly reduced the wire-bracket friction both in ambient air and in artificial saliva. The sp 2 C rich structure of the CNx film as well as its protection function for the archwire was responsible for the low friction of the wire-bracket sliding system.

  20. Improvement of orthodontic friction by coating archwire with carbon nitride film

    Energy Technology Data Exchange (ETDEWEB)

    Wei Songbo [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Shao Tianmin, E-mail: shaotm@mail.tsinghua.edu.cn [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Ding Peng [Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081 (China)

    2011-10-01

    In order to reduce frictional resistance between archwire and bracket during orthodontic tooth movement, carbon nitride (CNx) thin films were deposited on the surface of archwires with ion beam assisted deposition (IBAD). The energy-dispersive X-ray spectrometer (EDS) analysis showed that the CNx film was successfully deposited on the surface of the orthodontic wires. X-ray photoelectron spectroscopy (XPS) analysis suggested that the deposited CNx film was sp{sup 2} carbon dominated structures, and diversiform bonds (N-C, N{identical_to}C, et al.) coexisted in the film. The friction tests indicated that the CNx film significantly reduced the wire-bracket friction both in ambient air and in artificial saliva. The sp{sup 2}C rich structure of the CNx film as well as its protection function for the archwire was responsible for the low friction of the wire-bracket sliding system.

  1. Crystalline and amorphous phases in carbon nitride films produced by intense high-pressure plasma

    International Nuclear Information System (INIS)

    Gurarie, V.N.; Orlov, A.V.; Bursill, L.A.; JuLin, P.; Nugent, K.W.; Chon, J.W.; Prawer, S.

    1997-01-01

    Carbon-nitride films are prepared using a high-intensity pulsed plasma deposition technique. A wide range of nitrogen pressure and discharge intensity are used to investigate their effect on the morphology, nitrogen content, structure, bonding, phase composition and mechanical characteristics of the CN films deposited. Increasing the nitrogen pressure from 0.1 atm to 10 atm results in an increase of nitrogen incorporation into CN films to maximum of 45 at %. Under the high-energy density deposition conditions which involve ablation of the quartz substrate the CN films are found to incorporate in excess of 60 at %N. Raman spectra of these films contain sharp peaks characteristic of a distinct crystalline CN phase. TEM diffraction patterns for the films deposited below 1 atm unambiguously show the presence of micron-sized crystals displaying a cubic symmetry. (authors)

  2. Growth of group III nitride films by pulsed electron beam deposition

    International Nuclear Information System (INIS)

    Ohta, J.; Sakurada, K.; Shih, F.-Y.; Kobayashi, A.; Fujioka, H.

    2009-01-01

    We have grown group III nitride films on Al 2 O 3 (0 0 0 1), 6H-SiC (0 0 0 1), and ZnO (0001-bar) substrates by pulsed electron beam deposition (PED) for the first time and investigated their characteristics. We found that c-plane AlN and GaN grow epitaxially on these substrates. It has been revealed that the growth of GaN on atomically flat 6H-SiC substrates starts with the three-dimensional mode and eventually changes into the two-dimensional mode. The GaN films exhibited strong near-band-edge emission in their room temperature photoluminescence spectra. We also found that the use of PED allows us to reduce the epitaxial growth temperature for GaN down to 200 deg. C. - Graphical abstract: We have grown group III nitride films by pulsed electron beam deposition (PED) and found that the films of group III nitrides grow epitaxially on 6H-SiC and Al 2 O 3 substrates. We also found that the use of PED allows us to reduce the epitaxial growth temperature for GaN down to 200 deg. C.

  3. Magnetic properties of Cobalt thin films deposited on soft organic layers

    Energy Technology Data Exchange (ETDEWEB)

    Bergenti, I. [ISMN-CNR via P. Gobetti 101, Bologna 40129 (Italy)]. E-mail: i.bergenti@bo.ismn.cnr.it; Riminucci, A. [ISMN-CNR via P. Gobetti 101, Bologna 40129 (Italy); Arisi, E. [ISMN-CNR via P. Gobetti 101, Bologna 40129 (Italy); Murgia, M. [ISMN-CNR via P. Gobetti 101, Bologna 40129 (Italy); Cavallini, M. [ISMN-CNR via P. Gobetti 101, Bologna 40129 (Italy); Solzi, M. [Dipartimento di Fisica dell' Universita di Parma and CNISM, Parco Area delle Scienze 7/A, Parma 43100 (Italy); Casoli, F. [IMEM-CNR Parco Area delle Scienze 37/A, Parma 43100 (Italy); Dediu, V. [ISMN-CNR via P. Gobetti 101, Bologna 40129 (Italy)

    2007-09-15

    Magnetic and morphological properties of Cobalt thin films grown by RF sputtering on organic Alq3 layers were investigated by magneto-optical Kerr effect (MOKE) technique and atomic force microscopy (AFM). The AFM images indicate a template growth of Co layers on top of Alq3, the magnetic film 'decorates' the surface of organic material. This peculiar morphology induces a strong uniaxial magnetic anisotropy in the Co films, as detected by MOKE measurements. Results are important for the operation of a new class of devices-vertical organic spin valves.

  4. High quality superconducting titanium nitride thin film growth using infrared pulsed laser deposition

    Science.gov (United States)

    Torgovkin, A.; Chaudhuri, S.; Ruhtinas, A.; Lahtinen, M.; Sajavaara, T.; Maasilta, I. J.

    2018-05-01

    Superconducting titanium nitride (TiN) thin films were deposited on magnesium oxide, sapphire and silicon nitride substrates at 700 °C, using a pulsed laser deposition (PLD) technique, where infrared (1064 nm) pulses from a solid-state laser were used for the ablation from a titanium target in a nitrogen atmosphere. Structural studies performed with x-ray diffraction showed the best epitaxial crystallinity for films deposited on MgO. In the best films, superconducting transition temperatures, T C, as high as 4.8 K were observed, higher than in most previous superconducting TiN thin films deposited with reactive sputtering. A room temperature resistivity down to ∼17 μΩ cm and residual resistivity ratio up to 3 were observed in the best films, approaching reported single crystal film values, demonstrating that PLD is a good alternative to reactive sputtering for superconducting TiN film deposition. For less than ideal samples, the suppression of the film properties were correlated mostly with the unintended incorporation of oxygen (5–10 at%) in the film, and for high oxygen content films, vacuum annealing was also shown to increase the T C. On the other hand, superconducting properties were surprisingly insensitive to the nitrogen content, with high quality films achieved even in the highly nitrogen rich, Ti:N = 40/60 limit. Measures to limit oxygen exposure during deposition must be taken to guarantee the best superconducting film properties, a fact that needs to be taken into account with other deposition methods, as well.

  5. Influence of aluminum nitride interlayers on crystal orientation and piezoelectric property of aluminum nitride thin films prepared on titanium electrodes

    International Nuclear Information System (INIS)

    Kamohara, Toshihiro; Akiyama, Morito; Ueno, Naohiro; Nonaka, Kazuhiro; Kuwano, Noriyuki

    2007-01-01

    Highly c-axis-oriented aluminum nitride (AlN) thin films have been prepared on titanium (Ti) bottom electrodes by using AlN interlayers. The AlN interlayers were deposited between Ti electrodes and silicon (Si) substrates, such as AlN/Ti/AlN/Si. The crystallinity and crystal orientation of the AlN films and Ti electrodes strongly depended on the thickness of the AlN interlayers. Although the sputtering conditions were the same, the X-ray diffraction intensity of AlN (0002) and Ti (0002) planes drastically increased, and the full-width at half-maximum (FWHM) of the X-ray rocking curves decreased from 5.1 o to 2.6 o and from 3.3 o to 2.0 o , respectively. Furthermore, the piezoelectric constant d 33 of the AlN films was significantly improved from - 0.2 to - 4.5 pC/N

  6. Characterization of electrochemically deposited films from aqueous and ionic liquid cobalt precursors toward hydrogen evolution reactions

    Energy Technology Data Exchange (ETDEWEB)

    Dushatinski, Thomas; Huff, Clay; Abdel-Fattah, Tarek M., E-mail: fattah@cnu.edu

    2016-11-01

    Highlights: • Co films deposition via aqueous and ionic liquid Precursors. • Hydrogen evolution produced from reactive surfaces. • Co deposited films characterized by SEM, AFM, EDX and XRD techniques. - Abstract: Electrodepositions of cobalt films were achieved using an aqueous or an ethylene glycol based non-aqueous solution containing choline chloride (vitamin B4) with cobalt chloride hexahydrate precursor toward hydrogen evolution reactions from sodium borohydride (NaBH{sub 4}) as solid hydrogen feedstock (SHF). The resulting cobalt films had reflectivity at 550 nm of 2.2% for aqueously deposited films (ACoF) and 1.3% for non-aqueously deposited films (NCoF). Surface morphology studied by scanning electron microscopy showed a positive correlation between particle size and thickness. The film thicknesses were tunable between >100 μm and <300 μm for each film. The roughness (Ra) value measurements by Dektak surface profiling showed that the NCoF (Ra = 165 nm) was smoother than the ACoF (Ra = 418 nm). The NCoFs and ACoFs contained only α phase (FCC) crystallites. The NCoFs were crystalline while the ACoFs were largely amorphous from X-ray diffraction analysis. The NCoF had an average Vickers hardness value of 84 MPa as compared to 176 MPa for ACoF. The aqueous precursor has a single absorption maximum at 510 nm and the non-aqueous precursor had three absorption maxima at 630, 670, and 695 nm. The hydrogen evolution reactions over a 1 cm{sup 2} catalytic surface with aqueous NaBH{sub 4} solutions generated rate constants (K) = equal to 4.9 × 10{sup −3} min{sup −1}, 4.6 × 10{sup −3} min{sup −1}, and 3.3 × 10{sup −3} min{sup −1} for ACoF, NCoF, and copper substrate respectively.

  7. Cobalt oxide films for solar selective surfaces, obtained by spray pyrolisis

    Energy Technology Data Exchange (ETDEWEB)

    Avila G, A. [Departmento de Ingenieria Electrica, Seccion de Electronica del Estado Solido, CINVESTAV del I.P.N., Av. I.P.N. no. 2508, Ap. Postal 14-740, Mexico D. F., 07360 (Mexico); Barrera C, E. [Departamento de IPH, Area de Ingenieria en Recursos Energeticos, Universidad Autonoma Metropolitana-Iztapalapa, Ap. Postal 55-5340, Mexico, D. F. (Mexico); Huerta A, L.; Muhl, S. [Instituto de Investigaciones en Materiales, UNAM, Mexico, D.F. 04510 (Mexico)

    2004-05-01

    Cobalt oxide films upon stainless steel substrates were deposited by using the pneumatic spray pyrolisis technique, starting from an inorganic salt (CoNO{sub 3}{center_dot}3H{sub 2}O) dissolved in a water-alcohol mixture. Stainless steel and nickeled stainless steel substrates were used. Absorptance and emittance, for selective surface applications, were evaluated from reflectance measurements in the UV-Vis and infrared ranges. X-ray diffraction, XPS and AFM measurements were done. The predominant cobalt phase is Co{sub 3}O{sub 4}, but also CoO and Co{sub 2}O{sub 3} phases, besides metallic cobalt, were detected. Films upon nickeled steel substrates at 400C exhibit high absorptances (0.86), but also the emittance is high (0.43), yielding a selectivity of 2.0. A similar film on steel substrate reaches only a figure of 0.77 absorptance, but the thermal emittance remains low (0.20), giving a selectivity of 3.85. These films are good prospects for selective solar absorption coatings.

  8. Structural and optical properties of cobalt doped multiferroics BiFeO3 nanostructure thin films

    Science.gov (United States)

    Prasannakumara, R.; Naik, K. Gopalakrishna

    2018-05-01

    Bismuth ferrite (BiFeO3) and Cobalt doped BiFeO3 (BiFe1-XCoXO3) nanostructure thin films were deposited on glass substrates by the sol-gel spin coating method. The X-ray diffraction patterns (XRD) of the grown BiFeO3 and BiFe1-XCoXO3 nanostructure thin films showed distorted rhombohedral structure. The shifting of peaks to higher angles was observed in cobalt doped BiFeO3. The surface morphology of the BiFeO3 and BiFe1-XCoXO3 nanostructure thin films were studied using FESEM, an increase in grain size was observed as Co concentration increases. The thickness of the nanostructure thin films was examined using FESEM cross-section. The EDX studies confirmed the elemental composition of the grown BiFeO3 and BiFe1-XCoXO3 nanostructure thin films. The optical characterizations of the grown nanostructure thin films were carried out using FTIR, it confirms the existence of Fe-O and Bi-O bands and UV-Visible spectroscopy shows the increase in optical band gap of the BiFeO3 nanostructure thin films with Co doping by ploting Tauc plot.

  9. Microtribological Mechanisms of Tungsten and Aluminum Nitride Films

    Science.gov (United States)

    Zhao, Hongjian; Mu, Chunyan; Ye, Fuxing

    2016-04-01

    Microtribology experiments were carried out on the W1- x Al x N films, deposited by radio frequency magnetron reactive sputtering on 304 stainless steel substrates and Si(100). Film wear mechanisms were investigated from the evolution of the friction coefficient and scanning electron microscopy observations. The results show that the WAlN films consist of a mixture of face-centered cubic W(Al)N and hexagonal wurtzite structure AlN phases and the preferred orientation changes from (111) to (200). The film damage after sliding test is mainly attributed to the composition and microstructure of the films. The amount of debris generated by friction is linked to the crack resistance. The better tribological properties for W1- x Al x N films ( x < 0.4) are mainly determined by the higher toughness.

  10. Formation and characterization of titanium nitride and titanium carbide films prepared by reactive sputtering

    International Nuclear Information System (INIS)

    Sundgren, J.-E.

    1982-01-01

    Titanium has been reactively r.f. sputtered in mixed Ar-N 2 and Ar-CH 4 discharges on to substrates held at 775 K. The films obtained have been characterized by scanning electron microscopy, X-ray diffraction and by measurements of hardness and electrical resistivity. The compositions of the films have been determined using Auger electron spectroscopy. The processes occurring both on substrates and target surfaces have been studied and it is shown that the latter is of great importance for the composition and structure of deposited films. Titanium nitride films of full density and with electrical resistivity and hardness values close to those of bulk TiN were only obtained in a narrow range close to the stoichiometric composition. Titanium carbide films grown on non-biased substrates were found to have an open structure and thus a low density. A bias applied to the substrate, however, improved the quality of the films. It is also shown that the heat of formation of the compounds plays an important role in the formation of carbides and nitrides. A large value promotes the development of large grains and dense structures. (Auth.)

  11. Deposit of thin films of nitrided amorphous carbon using the laser ablation technique

    International Nuclear Information System (INIS)

    Rebollo, P.B.; Escobar A, L.; Camps C, E.; Haro P, E.; Camacho L, M.A.; Muhl S, S.

    2000-01-01

    It is reported the synthesis and characterization of thin films of amorphous carbon (a-C) nitrided, deposited by laser ablation in a nitrogen atmosphere at pressures which are from 4.5 x 10 -4 Torr until 7.5 x 10 -2 Torr. The structural properties of the films are studied by Raman spectroscopy obtaining similar spectra at the reported for carbon films type diamond. The study of behavior of the energy gap and the ratio nitrogen/carbon (N/C) in the films, shows that the energy gap is reduced when the nitrogen incorporation is increased. It is showed that the refraction index of the thin films diminish as nitrogen pressure is increased, indicating the formation of graphitic material. (Author)

  12. Deposition of silicon oxynitride films by low energy ion beam assisted nitridation at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Youroukov, S; Kitova, S; Danev, G [Central Laboratory of Photoprocesses, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 109, 113 Sofia (Bulgaria)], E-mail: skitova@clf.bas.bg

    2008-05-01

    The possibility is studied of growing thin silicon oxynitride films by e-gun evaporation of SiO and SiO{sub 2} together with concurrent bombardment with low energy N{sub 2}{sup +} ions from a cyclotron resonance (ECR) source at room temperature of substrates. The degree of nitridation and oxidation of the films is investigated by means of X-ray spectroscopy. The optical characteristics of the films, their environmental stability and adhesion to different substrates are examined. The results obtained show than the films deposited are transparent. It is found that in the case of SiO evaporation with concurrent N{sub 2}{sup +} ion bombardment, reactive implantation of nitrogen within the films takes place at room temperature of the substrate with the formation of a new silicon oxynitride compound even at low ion energy (150-200 eV)

  13. Deposition of silicon oxynitride films by low energy ion beam assisted nitridation at room temperature

    Science.gov (United States)

    Youroukov, S.; Kitova, S.; Danev, G.

    2008-05-01

    The possibility is studied of growing thin silicon oxynitride films by e-gun evaporation of SiO and SiO2 together with concurrent bombardment with low energy N2+ ions from a cyclotron resonance (ECR) source at room temperature of substrates. The degree of nitridation and oxidation of the films is investigated by means of X-ray spectroscopy. The optical characteristics of the films, their environmental stability and adhesion to different substrates are examined. The results obtained show than the films deposited are transparent. It is found that in the case of SiO evaporation with concurrent N2+ ion bombardment, reactive implantation of nitrogen within the films takes place at room temperature of the substrate with the formation of a new silicon oxynitride compound even at low ion energy (150-200 eV).

  14. Investigation of phase separated polyimide blend films containing boron nitride using FTIR imaging

    Science.gov (United States)

    Chae, Boknam; Hong, Deok Gi; Jung, Young Mee; Won, Jong Chan; Lee, Seung Woo

    2018-04-01

    Immiscible aromatic polyimide (PI) blend films and a PI blend film incorporated with thermally conductive boron nitride (BN) were prepared, and their phase separation behaviors were examined by optical microscopy and FTIR imaging. The 2,2‧-bis(trifluoromethyl)benzidine (TFMB)-containing and 4,4‧-thiodianiline (TDA)-containing aromatic PI blend films and a PI blend/BN composite film show two clearly separated regions; one region is the TFMB-rich phase, and the other region is the TDA-rich phase. The introduction of BN induces morphological changes in the immiscible aromatic PI blend film without altering the composition of either domain. In particular, the BN is selectively incorporated into the TDA-rich phase in this study.

  15. Multiple delta doping of single crystal cubic boron nitride films heteroepitaxially grown on (001)diamonds

    Science.gov (United States)

    Yin, H.; Ziemann, P.

    2014-06-01

    Phase pure cubic boron nitride (c-BN) films have been epitaxially grown on (001) diamond substrates at 900 °C. The n-type doping of c-BN epitaxial films relies on the sequential growth of nominally undoped (p-) and Si doped (n-) layers with well-controlled thickness (down to several nanometer range) in the concept of multiple delta doping. The existence of nominally undoped c-BN overgrowth separates the Si doped layers, preventing Si dopant segregation that was observed for continuously doped epitaxial c-BN films. This strategy allows doping of c-BN films can be scaled up to multiple numbers of doped layers through atomic level control of the interface in the future electronic devices. Enhanced electronic transport properties with higher hall mobility (102 cm2/V s) have been demonstrated at room temperature as compared to the normally continuously Si doped c-BN films.

  16. Plasma deposition of cubic boron nitride films from non-toxic material at low temperatures

    International Nuclear Information System (INIS)

    Karim, M.Z.; Cameron, D.C.; Murphy, M.J.; Hashmi, M.S.J.

    1991-01-01

    Boron nitride has become the focus of a considerable amount of interest because of its properties which relate closely to those of carbon. In particular, the cubic nitride phase has extreme hardness and very high thermal conductivity similar to the properties of diamond. The conventional methods of synthesis use the highly toxic and inflammable gas diborane (B 2 H 6 ) as the reactant material. A study has been made of the deposition of thin films of boron nitride (BN) using non-toxic material by the plasma-assisted chemical vapour deposition technique. The source material was borane-ammonia (BH 3 -NH 3 ) which is a crystalline solid at room temperature with a high vapour pressure. The BH 3 -NH 3 vapour was decomposed in a 13.56 MHz nitrogen plasma coupled either inductively or capacitively with the system. The composition of the films was assessed by measuring their IR absorption when deposited on silicon and KBr substrates. The hexagonal (graphitic) and cubic (diamond-like) allotropes can be distinguished by their characteristic absorption bands which occur at 1365 and 780 cm -1 (hexagonal) and 1070 cm -1 (cubic). We have deposited BN films consisting of a mixture of hexagonal and cubic phases; the relative content of the cubic phase was found to be directly dependent on r.f. power and substrate bias. (orig.)

  17. Silicon nitride gradient film as the underlayer of ultra-thin tetrahedral amorphous carbon overcoat for magnetic recording slider

    Energy Technology Data Exchange (ETDEWEB)

    Wang Guigen, E-mail: wanggghit@yahoo.com [Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055 (China); Kuang Xuping; Zhang Huayu; Zhu Can [Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055 (China); Han Jiecai [Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055 (China); Center for Composite Materials, Harbin Institute of Technology, Harbin 150080 (China); Zuo Hongbo [Center for Composite Materials, Harbin Institute of Technology, Harbin 150080 (China); Ma Hongtao [SAE Technologies Development (Dongguan) Co., Ltd., Dongguan 523087 (China)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer The ultra-thin carbon films with different silicon nitride (Si-N) film underlayers were prepared. Black-Right-Pointing-Pointer It highlighted the influences of Si-N underlayers. Black-Right-Pointing-Pointer The carbon films with Si-N underlayers obtained by nitriding especially at the substrate bias of -150 V, can exhibit better corrosion protection properties - Abstract: There are higher technical requirements for protection overcoat of magnetic recording slider used in high-density storage fields for the future. In this study, silicon nitride (Si-N) composition-gradient films were firstly prepared by nitriding of silicon thin films pre-sputtered on silicon wafers and magnetic recording sliders, using microwave electron cyclotron resonance plasma source. The ultra-thin tetrahedral amorphous carbon films were then deposited on the Si-N films by filtered cathodic vacuum arc method. Compared with amorphous carbon overcoats with conventional silicon underlayers, the overcoats with Si-N underlayers obtained by plasma nitriding especially at the substrate bias of -150 V, can provide better corrosion protection for high-density magnetic recording sliders.

  18. Silicon nitride gradient film as the underlayer of ultra-thin tetrahedral amorphous carbon overcoat for magnetic recording slider

    International Nuclear Information System (INIS)

    Wang Guigen; Kuang Xuping; Zhang Huayu; Zhu Can; Han Jiecai; Zuo Hongbo; Ma Hongtao

    2011-01-01

    Highlights: ► The ultra-thin carbon films with different silicon nitride (Si-N) film underlayers were prepared. ► It highlighted the influences of Si-N underlayers. ► The carbon films with Si-N underlayers obtained by nitriding especially at the substrate bias of −150 V, can exhibit better corrosion protection properties - Abstract: There are higher technical requirements for protection overcoat of magnetic recording slider used in high-density storage fields for the future. In this study, silicon nitride (Si-N) composition-gradient films were firstly prepared by nitriding of silicon thin films pre-sputtered on silicon wafers and magnetic recording sliders, using microwave electron cyclotron resonance plasma source. The ultra-thin tetrahedral amorphous carbon films were then deposited on the Si-N films by filtered cathodic vacuum arc method. Compared with amorphous carbon overcoats with conventional silicon underlayers, the overcoats with Si-N underlayers obtained by plasma nitriding especially at the substrate bias of −150 V, can provide better corrosion protection for high-density magnetic recording sliders.

  19. XPS study of the ultrathin a-C:H films deposited onto ion beam nitrided AISI 316 steel

    International Nuclear Information System (INIS)

    Meskinis, S.; Andrulevicius, M.; Kopustinskas, V.; Tamulevicius, S.

    2005-01-01

    Effects of the steel surface treatment by nitrogen ion beam and subsequent deposition of the diamond-like carbon (hydrogenated amorphous carbon (a-C:H) and nitrogen doped hydrogenated amorphous carbon (a-CN x :H)) films were investigated by means of the X-ray photoelectron spectroscopy (XPS). Experimental results show that nitrogen ion beam treatment of the AISI 316 steel surface even at room temperature results in the formation of the Cr and Fe nitrides. Replacement of the respective metal oxides by the nitrides takes place. Formation of the C-N bonds was observed for both ultrathin a-C:H and ultrathin a-CN x :H layers deposited onto the nitrided steel. Some Fe and/or Cr nitrides still were presented at the interface after the film deposition, too. Increased adhesion between the steel substrate and hydrogenated amorphous carbon layer after the ion beam nitridation was explained by three main factors. The first two is steel surface deoxidisation/passivation by nitrogen as a result of the ion beam treatment. The third one is carbon nitride formation at the nitrided steel-hydrogenated amorphous carbon (or a-CN x :H) film interface

  20. A cubic boron nitride film-based fluorescent sensor for detecting Hg2+

    Science.gov (United States)

    Liu, W. M.; Zhao, W. W.; Zhang, H. Y.; Wang, P. F.; Chong, Y. M.; Ye, Q.; Zou, Y. S.; Zhang, W. J.; Zapien, J. A.; Bello, I.; Lee, S. T.

    2009-05-01

    Cubic boron nitride (cBN) film-based sensors for detecting Hg2+ ions were developed by surface functionalization with dansyl chloride. To immobilize dansyl chloride, 3-aminopropyltriethoxy silane was modified on hydroxylated cBN surfaces to form an amino-group-terminated self-assembled monolayer. The covalent attachment of the amino groups was confirmed by x-ray photoelectron spectroscopy. The selectivity and sensitivity of the sensors to detect diverse metal cations in ethanol solutions were studied by using fluorescence spectroscopy, revealing a great selectivity to Hg2+ ions. Significantly, the dansyl-chloride-functionalized cBN film sensors were recyclable after the sensing test.

  1. Titanium nitride stamps replicating nanoporous anodic alumina films

    International Nuclear Information System (INIS)

    Navas, D; Sanchez, O; Asenjo, A; Jaafar, M; Baldonedo, J L; Vazquez, M; Hernandez-Velez, M

    2007-01-01

    Fabrication of nanostructured TiN films by magnetron sputtering using nanoporous anodic alumina films (NAAF) as substrates is reported. These hard nanostructured films could be used for pre-patterning aluminium foils and to obtain nanoporous films replicating the starting NAAF over a wide range of pore diameters and spacings. Pre-patterned Al foils are obtained by compression with pressures lower than those previously reported, then a new NAAF can be fabricated by means of only one anodization process. As an example, one of the TiN stamps was used for pre-patterning an Al foil at a pressure of 200 kg cm -2 and then it was anodized in oxalic acid solution obtaining the corresponding replica of the starting NAAF

  2. Thermal stability of tungsten sub-nitride thin film prepared by reactive magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.X. [School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050 (China); State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730050 (China); Wu, Y.Z., E-mail: youzhiwu@163.com [School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050 (China); Mu, B. [College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050 (China); Qiao, L. [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730050 (China); Li, W.X.; Li, J.J. [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Wang, P., E-mail: pengwang@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730050 (China)

    2017-03-15

    Tungsten sub-nitride thin films deposited on silicon samples by reactive magnetron sputtering were used as a model system to study the phase stability and microstructural evolution during thermal treatments. XRD, SEM&FIB, XPS, RBS and TDS were applied to investigate the stability of tungsten nitride films after heating up to 1473 K in vacuum. At the given experimental parameters a 920 nm thick crystalline film with a tungsten and nitrogen stoichiometry of 2:1 were achieved. The results showed that no phase and microstructure change occurred due to W{sub 2}N film annealing in vacuum up to 973 K. Heating up to 1073 K led to a partial decomposition of the W{sub 2}N phase and the formation of a W enrichment layer at the surface. Increasing the annealing time at the same temperature, the further decomposition of the W{sub 2}N phase was negligible. The complete decomposition of W{sub 2}N film happened as the temperature reached up to 1473 K.

  3. Electroplated thick-film cobalt platinum permanent magnets

    Energy Technology Data Exchange (ETDEWEB)

    Oniku, Ololade D.; Qi, Bin; Arnold, David P., E-mail: darnold@ufl.edu

    2016-10-15

    The material and magnetic properties of multi-micron-thick (up to 6 μm) L1{sub 0} CoPt magnetic films electroplated onto silicon substrates are investigated as candidate materials for integration in silicon-based microsystems. The influence of various process conditions on the structure and magnetic properties of electroplated CoPt thick-films is studied in order to better understand the complex process/structure/property relationships associated with the electroplated films. Process variables studied here include different seed layers, electroplating current densities (ranging from 25–200 mA/cm{sup 2}), deposition times (up to 60 min), and post-deposition annealing times and temperatures. Analyses include film morphology, film thickness, composition, surface roughness, grain size, phase volume fractions, and L1{sub 0} ordering parameter. Key correlations are found relating process and structure variations to the extrinsic magnetic properties (remanence, coercivity, squareness, and energy product). Strong hard magnetic properties (B{sub r} ~0.8 T, H{sub ci} ~800 kA/m, squareness close to 0.9, and BH{sub max} of 100 kJ/m{sup 3}) are obtained for films deposited on Si/TiN/Ti/Cu at current densities of 100 mA/cm{sup 2}, pH of 7, and subsequently annealed at 675 °C for 30 min. - Highlights: • CoPt films plated up to 6 μm thick on silicon substrates. • A1 to L1{sub 0} phase transformation by annealing in forming gas. • Various process–structure–property relationships explored. • Key results: B{sub r} ~0.8 T, H{sub ci} ~800 kA/m, squareness 0.9, and BH{sub max} ~100 kJ/m{sup 3}.

  4. Electroplated thick-film cobalt platinum permanent magnets

    International Nuclear Information System (INIS)

    Oniku, Ololade D.; Qi, Bin; Arnold, David P.

    2016-01-01

    The material and magnetic properties of multi-micron-thick (up to 6 μm) L1 0 CoPt magnetic films electroplated onto silicon substrates are investigated as candidate materials for integration in silicon-based microsystems. The influence of various process conditions on the structure and magnetic properties of electroplated CoPt thick-films is studied in order to better understand the complex process/structure/property relationships associated with the electroplated films. Process variables studied here include different seed layers, electroplating current densities (ranging from 25–200 mA/cm 2 ), deposition times (up to 60 min), and post-deposition annealing times and temperatures. Analyses include film morphology, film thickness, composition, surface roughness, grain size, phase volume fractions, and L1 0 ordering parameter. Key correlations are found relating process and structure variations to the extrinsic magnetic properties (remanence, coercivity, squareness, and energy product). Strong hard magnetic properties (B r ~0.8 T, H ci ~800 kA/m, squareness close to 0.9, and BH max of 100 kJ/m 3 ) are obtained for films deposited on Si/TiN/Ti/Cu at current densities of 100 mA/cm 2 , pH of 7, and subsequently annealed at 675 °C for 30 min. - Highlights: • CoPt films plated up to 6 μm thick on silicon substrates. • A1 to L1 0 phase transformation by annealing in forming gas. • Various process–structure–property relationships explored. • Key results: B r ~0.8 T, H ci ~800 kA/m, squareness 0.9, and BH max ~100 kJ/m 3 .

  5. Mechanisms of Low-Temperature Nitridation Technology on a TaN Thin Film Resistor for Temperature Sensor Applications.

    Science.gov (United States)

    Chen, Huey-Ru; Chen, Ying-Chung; Chang, Ting-Chang; Chang, Kuan-Chang; Tsai, Tsung-Ming; Chu, Tian-Jian; Shih, Chih-Cheng; Chuang, Nai-Chuan; Wang, Kao-Yuan

    2016-12-01

    In this letter, we propose a novel low-temperature nitridation technology on a tantalum nitride (TaN) thin film resistor (TFR) through supercritical carbon dioxide (SCCO2) treatment for temperature sensor applications. We also found that the sensitivity of temperature of the TaN TFR was improved about 10.2 %, which can be demonstrated from measurement of temperature coefficient of resistance (TCR). In order to understand the mechanism of SCCO2 nitridation on the TaN TFR, the carrier conduction mechanism of the device was analyzed through current fitting. The current conduction mechanism of the TaN TFR changes from hopping to a Schottky emission after the low-temperature SCCO2 nitridation treatment. A model of vacancy passivation in TaN grains with nitrogen and by SCCO2 nitridation treatment is eventually proposed to increase the isolation ability in TaN TFR, which causes the transfer of current conduction mechanisms.

  6. Electrocatalytic activity of electropolymerized cobalt tetraaminophthalocyanine film modified electrode towards 6-mercaptopurine and 2-mercaptobenzimidazole

    OpenAIRE

    Fan, Jie-Ping; Zhang, Xiao-Min; Ying, Min

    2010-01-01

    The electrocatalytic activity of electropolymerized cobalt tetraaminophthalocyanine (poly-CoTAPc) film modified on the glassy carbon electrode (GCE) towards 6-mercaptopurine (6MP) and 2-Mercaptobenzimidazole (MBI) was studied. Comparing with the case at the unmodified GCE, the poly-CoTAPc film decreased the overpotential of oxidation of 6MP (1.0 x 10-3 mol L-1) and MBI (1.0 x 10-3 mol L-1) by 335 and 189 mV, respectively, and increased the peak current by about 3 and 2 times, respectively, wh...

  7. Angular tuning of the magnetic birefringence in rippled cobalt films

    Energy Technology Data Exchange (ETDEWEB)

    Arranz, Miguel A., E-mail: MiguelAngel.Arranz@uclm.es [Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avda. Camilo J. Cela 10, 13071 Ciudad Real (Spain); Colino, José M. [Instituto de Nanociencia, Nanotecnología y Materiales Moleculares, Universidad de Castilla-La Mancha, Campus de la Fábrica de Armas, 45071 Toledo (Spain)

    2015-06-22

    We report the measurement of magnetically induced birefringence in rippled Co films. For this purpose, the magneto-optical properties of ion beam eroded ferromagnetic films were studied using Kerr magnetometry and magnetic birefringence in the transmitted light intensity. Upon sufficient ion sculpting, these ripple surface nanostructures developed a defined uniaxial anisotropy in the in-plane magnetization, finely tuning the magnetic birefringence effect. We have studied its dependence on the relative orientation between the ripple direction and the magnetic field, and found this effect to be dramatically correlated with the capability to neatly distinguish the mechanisms for the in-plane magnetization reversal, i.e., rotation and nucleation. This double refraction corresponds univocally to the two magnetization axes, parallel and perpendicular to the ripples direction. We have also observed that tuned birefringence in stack assemblies of rippled Co films, which enables us to technically manipulate the number and direction of refraction axes.

  8. Angular tuning of the magnetic birefringence in rippled cobalt films

    International Nuclear Information System (INIS)

    Arranz, Miguel A.; Colino, José M.

    2015-01-01

    We report the measurement of magnetically induced birefringence in rippled Co films. For this purpose, the magneto-optical properties of ion beam eroded ferromagnetic films were studied using Kerr magnetometry and magnetic birefringence in the transmitted light intensity. Upon sufficient ion sculpting, these ripple surface nanostructures developed a defined uniaxial anisotropy in the in-plane magnetization, finely tuning the magnetic birefringence effect. We have studied its dependence on the relative orientation between the ripple direction and the magnetic field, and found this effect to be dramatically correlated with the capability to neatly distinguish the mechanisms for the in-plane magnetization reversal, i.e., rotation and nucleation. This double refraction corresponds univocally to the two magnetization axes, parallel and perpendicular to the ripples direction. We have also observed that tuned birefringence in stack assemblies of rippled Co films, which enables us to technically manipulate the number and direction of refraction axes

  9. MgB2 thin films on silicon nitride substrates prepared by an in situ method

    International Nuclear Information System (INIS)

    Monticone, Eugenio; Gandini, Claudio; Portesi, Chiara; Rajteri, Mauro; Bodoardo, Silvia; Penazzi, Nerino; Dellarocca, Valeria; Gonnelli, Renato S

    2004-01-01

    Large-area MgB 2 thin films were deposited on silicon nitride and sapphire substrates by co-deposition of Mg and B. After a post-annealing in Ar atmosphere at temperatures between 773 and 1173 K depending on the substrate, the films showed a critical temperature higher than 35 K with a transition width less than 0.5 K. The x-ray diffraction pattern suggested a c-axis preferential orientation in films deposited on amorphous substrate. The smooth surface and the good structural properties of these MgB 2 films allowed their reproducible patterning by a standard photolithographic process down to dimensions of the order of 10 μm and without a considerable degradation of the superconducting properties

  10. Structural characterization of thin films of titanium nitride deposited by laser ablation

    International Nuclear Information System (INIS)

    Castro C, M.A.; Escobar A, L.; Camps C, E.; Mejia H, J.A.

    2004-01-01

    Thin films of titanium nitride were deposited using the technique of laser ablation. It was studied the effect of the density of laser energy used for ablation the target as well as of the pressure of the work gas about the structure and the hardness of the deposited thin films. Depending on the pressure of the work gas films was obtained with preferential orientation in the directions (200) and (111). At a pressure of 1 x 10 -2 Torr only the direction (200) was observed. On the other hand to the pressure of 5 x 10 -3 Torr the deposited material this formed by a mixture of the orientation (200) and (111), being the direction (111) the predominant one. Thin films of Ti N were obtained with hardness of up to 24.0 GPa that makes to these attractive materials for mechanical applications. The hardness showed an approximately linear dependence with the energy density. (Author)

  11. Structural and chemical analysis of annealed plasma-enhanced atomic layer deposition aluminum nitride films

    Energy Technology Data Exchange (ETDEWEB)

    Broas, Mikael, E-mail: mikael.broas@aalto.fi; Vuorinen, Vesa [Department of Electrical Engineering and Automation, Aalto University, P.O. Box 13500, FIN-00076 Aalto, Espoo (Finland); Sippola, Perttu; Pyymaki Perros, Alexander; Lipsanen, Harri [Department of Micro- and Nanosciences, Aalto University, P.O. Box 13500, FIN-00076 Aalto, Espoo (Finland); Sajavaara, Timo [Department of Physics, University of Jyväskylä, P.O. Box 35, FIN-40014 Jyväskylä (Finland); Paulasto-Kröckel, Mervi [Department of Electrical Engineering and Automation, Aalto University. P.O. Box 13500, FIN-00076 Aalto, Espoo (Finland)

    2016-07-15

    Plasma-enhanced atomic layer deposition was utilized to grow aluminum nitride (AlN) films on Si from trimethylaluminum and N{sub 2}:H{sub 2} plasma at 200 °C. Thermal treatments were then applied on the films which caused changes in their chemical composition and nanostructure. These changes were observed to manifest in the refractive indices and densities of the films. The AlN films were identified to contain light element impurities, namely, H, C, and excess N due to nonideal precursor reactions. Oxygen contamination was also identified in the films. Many of the embedded impurities became volatile in the elevated annealing temperatures. Most notably, high amounts of H were observed to desorb from the AlN films. Furthermore, dinitrogen triple bonds were identified with infrared spectroscopy in the films. The triple bonds broke after annealing at 1000 °C for 1 h which likely caused enhanced hydrolysis of the films. The nanostructure of the films was identified to be amorphous in the as-deposited state and to become nanocrystalline after 1 h of annealing at 1000 °C.

  12. High Temperature Annealing Studies on the Piezoelectric Properties of Thin Aluminum Nitride Films

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, R.; Pagan, V.R.; Kabulski, A.; Kuchibhatla, S.; Harman, J.; Kasarla, K.R.; Rodak, L.E.; Hensel, J.P.; Famouri, P.; Korakakis, D.

    2008-01-01

    A Rapid Thermal Annealing (RTA) system was used to anneal sputtered and MOVPE-grown Aluminum Nitride (AlN) thin films at temperatures up to 1000°C in ambient and controlled environments. According to Energy Dispersive X-Ray Analysis (EDAX), the films annealed in an ambient environment rapidly oxidize after five minutes at 1000°C. Below 1000°C the films oxidized linearly as a function of annealing temperature which is consistent with what has been reported in literature [1]. Laser Doppler Vibrometry (LDV) was used to measure the piezoelectric coefficient, d33, of these films. Films annealed in an ambient environment had a weak piezoelectric response indicating that oxidation on the surface of the film reduces the value of d33. A high temperature furnace has been built that is capable of taking in-situ measurements of the piezoelectric response of AlN films. In-situ d33 measurements are recorded up to 300°C for both sputtered and MOVPE-grown AlN thin films. The measured piezoelectric response appears to increase with temperature up to 300°C possibly due to stress in the film.

  13. High Temperature Annealing Studies on the Piezoelectric Properties of Thin Aluminum Nitride Films

    Energy Technology Data Exchange (ETDEWEB)

    R. Farrell; V. R. Pagan; A. Kabulski; Sridhar Kuchibhatl; J. Harman; K. R. Kasarla; L. E. Rodak; P. Famouri; J. Peter Hensel; D. Korakakis

    2008-05-01

    A Rapid Thermal Annealing (RTA) system was used to anneal sputtered and MOVPE grown Aluminum Nitride (AlN) thin films at temperatures up to 1000°C in ambient and controlled environments. According to Energy Dispersive X-Ray Analysis (EDAX), the films annealed in an ambient environment rapidly oxidize after five minutes at 1000°C. Below 1000°C the films oxidized linearly as a function of annealing temperature which is consistent with what has been reported in literature [1]. Laser Doppler Vibrometry (LDV) was used to measure the piezoelectric coefficient, d33, of these films. Films annealed in an ambient environment had a weak piezoelectric response indicating that oxidation on the surface of the film reduces the value of d33. A high temperature furnace has been built that is capable of taking in-situ measurements of the piezoelectric response of AlN films. In-situ d33 measurements are recorded up to 300°C for both sputtered and MOVPE-grown AlN thin films. The measured piezoelectric response appears to increase with temperature up to 300°C possibly due to stress in the film.

  14. Fracture toughness of silicon nitride thin films of different thicknesses as measured by bulge tests

    International Nuclear Information System (INIS)

    Merle, B.; Goeken, M.

    2011-01-01

    A bulge test setup was used to determine the fracture toughness of amorphous low-pressure chemical vapor deposited (LPCVD) silicon nitride films with various thicknesses in the range 40-108 nm. A crack-like slit was milled in the center of each free-standing film with a focused ion beam, and the membrane was deformed in the bulge test until failure occurred. The fracture toughness K IC was calculated from the pre-crack length and the stress at failure. It is shown that the membrane is in a transition state between pure plane-stress and plane-strain which, however, had a negligible influence on the measurement of the fracture toughness, because of the high brittleness of silicon nitride and its low Young's modulus over yield strength ratio. The fracture toughness K IC was found to be constant at 6.3 ± 0.4 MPa m 1/2 over the whole thickness range studied, which compares well with bulk values. This means that the fracture toughness, like the Young's modulus, is a size-independent quantity for LPCVD silicon nitride. This presumably holds true for all amorphous brittle ceramic materials.

  15. Remote PECVD silicon nitride films with improved electrical properties for GaAs P-HEMT passivation

    CERN Document Server

    Sohn, M K; Kim, K H; Yang, S G; Seo, K S

    1998-01-01

    In order to obtain thin silicon nitride films with excellent electrical and mechanical properties, we employed RPECVD (Remote Plasma Enhanced Chemical Vapor Deposition) process which produces less plasma-induced damage than the conventional PECVD. Through the optical and electrical measurements of the deposited films, we optimized the various RPECVD process parameters. The optimized silicon nitride films showed excellent characteristics such as small etch rate (approx 33 A/min by 7:1 BHF), high breakdown field (>9 MV/cm), and low compressive stress (approx 3.3x10 sup 9 dyne/cm sup 2). We successfully applied thin RPECVD silicon nitride films to the surface passivation of GaAs pseudomorphic high electron mobility transistors (P-HEMTs) with negligible degradations in DC and RF characteristics.

  16. Surface scattering mechanisms of tantalum nitride thin film resistor.

    Science.gov (United States)

    Chen, Huey-Ru; Chen, Ying-Chung; Chang, Ting-Chang; Chang, Kuan-Chang; Tsai, Tsung-Ming; Chu, Tian-Jian; Shih, Chih-Cheng; Chuang, Nai-Chuan; Wang, Kao-Yuan

    2014-01-01

    In this letter, we utilize an electrical analysis method to develop a TaN thin film resistor with a stricter spec and near-zero temperature coefficient of resistance (TCR) for car-used electronic applications. Simultaneously, we also propose a physical mechanism mode to explain the origin of near-zero TCR for the TaN thin film resistor (TFR). Through current fitting, the carrier conduction mechanism of the TaN TFR changes from hopping to surface scattering and finally to ohmic conduction for different TaN TFRs with different TaN microstructures. Experimental data of current-voltage measurement under successive increasing temperature confirm the conduction mechanism transition. A model of TaN grain boundary isolation ability is eventually proposed to influence the carrier transport in the TaN thin film resistor, which causes different current conduction mechanisms.

  17. Multilayered films of cobalt oxyhydroxide nanowires/manganese oxide nanosheets for electrochemical capacitor

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Huajun [State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014 (China); ARC Centre of Excellence for Functional Nanomaterials, School of Chemical Engineering and AIBN, The University of Queensland, St Lucia, Brisbane, QLD 4072 (Australia); Tang, Fengqiu; Mukherji, Aniruddh; Yan, Xiaoxia; Wang, Lianzhou (Max) Lu, Gao Qing [ARC Centre of Excellence for Functional Nanomaterials, School of Chemical Engineering and AIBN, The University of Queensland, St Lucia, Brisbane, QLD 4072 (Australia); Lim, Melvin [Division of Environmental and Water Resources Engineering, School of Civil and Environmental Engineering, Nanyang Technological University, 639798 (Singapore)

    2010-01-15

    Multilayered films of cobalt oxyhydroxide nanowires (CoOOHNW) and exfoliated manganese oxide nanosheet (MONS) are fabricated by potentiostatic deposition and electrostatic self-assembly on indium-tin oxide coated glass substrates. The morphology and chemical composition of these films are characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectra (XPS) and the potential application as electrochemical supercapacitors are investigated using cyclic voltammetry and charge-discharge measurements. These ITO/CoOOHNW/MONS multilayered film electrodes exhibit excellent electrochemical capacitance properties, including high specific capacitance (507 F g{sup -1}) and long cycling durability (less 2% capacity loss after 5000 charge/discharge cycles). These characteristics indicate that these newly developed films may find important application for electrochemical capacitors. (author)

  18. Study of functional properties of gas-sensitive cobalt-containing polyacrylonitrile films

    Science.gov (United States)

    Semenistaya, T. V.; Voronova, A. A.

    2017-11-01

    The design of the sensor materials with challenging gas-sensitivity can be solved by materials selection and their compatibility with the manufacturing technologies that allows to operate the process of formation of nanocomposite structure and to receive the required material. The polyacrylonitrile (PAN) as the conducting polymer with a highly π-conjugated polymeric chain due to flexibility for tailoring the structure of the final products by the pyrolysis method under the influence of incoherent IR-radiation is chosen. The aim of the work was to study the peculiarities of formation procedure of cobalt-containing PAN films. The gas-sensing Co-containing PAN films have been fabricated. The different temperature and time have been used to form the films. Depending on intensity and exposure time of IR-radiation the thermostructured PAN films with resistance values of · 108 Ω to 1010 Ω have been fabricated. It is shown that the heat-treated PAN is the p-type semiconductor. Irrespective of the level of the modifying additive in film-forming solution and the time-temperature modes little change of film resistance has been found. It has been found that the Co-containing PAN films are gas-sensing films and have high selectivity to Cl2 and NO2. A stationary state gas distribution method was used for testing gas-sensing properties. Obtained the Co-containing PAN films are perspective for low-temperature applications as Cl2 and NO2 sensors.

  19. Thermal conductivity of ultra-thin chemical vapor deposited hexagonal boron nitride films

    International Nuclear Information System (INIS)

    Alam, M. T.; Haque, M. A.; Bresnehan, M. S.; Robinson, J. A.

    2014-01-01

    Thermal conductivity of freestanding 10 nm and 20 nm thick chemical vapor deposited hexagonal boron nitride films was measured using both steady state and transient techniques. The measured value for both thicknesses, about 100 ± 10 W m −1 K −1 , is lower than the bulk basal plane value (390 W m −1 K −1 ) due to the imperfections in the specimen microstructure. Impressively, this value is still 100 times higher than conventional dielectrics. Considering scalability and ease of integration, hexagonal boron nitride grown over large area is an excellent candidate for thermal management in two dimensional materials-based nanoelectronics

  20. Adhesion analysis for chromium nitride thin films deposited by reactive magnetron sputtering

    Science.gov (United States)

    Rusu, F. M.; Merie, V. V.; Pintea, I. M.; Molea, A.

    2016-08-01

    The thin film industry is continuously growing due to the wide range of applications that require the fabrication of advanced components such as sensors, biological implants, micro-electromechanical devices, optical coatings and so on. The selection regarding the deposition materials, as well as the deposition technology influences the properties of the material and determines the suitability of devices for certain real-world applications. This paper is focused on the adhesion force for several chromium nitride thin films obtained by reactive magnetron sputtering. All chromium nitride thin films were deposited on a silicon substrate, the discharge current and the argon flow being kept constant. The main purpose of the paper is to determine the influence of deposition parameters on the adhesion force. Therefore some of the deposition parameters were varied in order to study their effect on the adhesion force. Experimentally, the values of the adhesion force were determined in multiple points for each sample using the spectroscopy in point mode of the atomic force microscope. The obtained values were used to estimate the surface energy of the CrN thin films based on two existing mathematical models for the adhesion force when considering the contact between two bodies.

  1. Characteristics of thin-film transistors based on silicon nitride passivation by excimer laser direct patterning

    International Nuclear Information System (INIS)

    Chen, Chao-Nan; Huang, Jung-Jie

    2013-01-01

    This study explored the removal of silicon nitride using KrF laser ablation technology with a high threshold fluence of 990 mJ/cm 2 . This technology was used for contact hole patterning to fabricate SiN x -passivation-based amorphous-silicon thin films in a transistor device. Compared to the photolithography process, laser direct patterning using KrF laser ablation technology can reduce the number of process steps by at least three. Experimental results showed that the mobility and threshold voltages of thin film transistors patterned using the laser process were 0.16 cm 2 /V-sec and 0.2 V, respectively. The device performance and the test results of gate voltage stress reliability demonstrated that laser direct patterning is a promising alternative to photolithography in the panel manufacturing of thin-film transistors for liquid crystal displays. - Highlights: ► KrF laser ablation technology is used to remove silicon nitride. ► A simple method for direct patterning contact-hole in thin-film-transistor device. ► Laser technology reduced processing by at least three steps

  2. Production of AlN films: ion nitriding versus PVD coating

    International Nuclear Information System (INIS)

    Figueroa, U.; Salas, O.; Oseguera, J.

    2004-01-01

    The properties of AlN render this material very attractive for optical, electronic, and tribological applications; thus, a great interest exists for the production of thin AlN films on a variety of substrates. Many methods have been developed for this purpose where two processes stand out: plasma-assisted nitriding (PAN) and PVD coating. In the present paper, we compare the processing advantages and disadvantages of both methods in terms of the characteristics of the layers formed. AlN production by ion nitriding is very sensitive to presputtering cleaning and working pressure. Layers several micrometers thick can be produced in a few hours, which are formed by a fine mixture of Al+AlN. The surface morphology of the layers is rather rough. On the other hand, formation of PVD AlN coatings by DC reactive magnetron sputtering is more readily performed and better controlled than in ion nitriding. PVD results in macroscopically smoother AlN films and with similar thickness than the ion nitrided layers but produced in shorter processing times. The morphology of the PVD AlN layers is columnar with a fairly flat surface. Mechanisms for the formation of both types of AlN layers are proposed. One of the main differences between the two processes that explain the different AlN layer morphologies is the energy of the particles that arrive at the substrate. Considering only the processing advantages and the morphology of the AlN layers formed, PVD performs better than PAN processing

  3. Optical and electrical properties of chemical bath deposited cobalt sulphide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Govindasamy, Geetha [R& D Centre, Bharathiar University, Coimbatore (India); Murugasen, Priya, E-mail: priyamurugasen15@gmail.com [Department of Physics, Saveetha Engineering, Chennai, Tamil Nadu (India); Sagadevan, Suresh [Department of Physics, AMET University, Chennai, Tamil Nadu (India)

    2017-01-15

    Cobalt sulphide (CoS) thin films were synthesized using the Chemical Bath Deposition (CBD) technique. X-ray diffraction (XRD) analysis was used to study the structure and the crystallite size of CoS thin film. Scanning Electron Microscope (SEM) studies reveal the surface morphology of these films. The optical properties of the CoS thin films were determined using UV-Visible absorption spectrum. The optical band gap of the thin films was found to be 1.6 eV. Optical constants such as the refractive index, the extinction coefficient and the electric susceptibility were determined. The dielectric studies were carried out at different frequencies and at different temperatures for the prepared CoS thin films. In addition, the plasma energy of the valence electron, Penn gap or average energy gap, the Fermi energy and electronic polarizability of the thin films were determined. The AC electrical conductivity measurement was also carried out for the thin films. The activation energy was determined by using DC electrical conductivity measurement. (author)

  4. Tc depression and superconductor-insulator transition in molybdenum nitride thin films

    Science.gov (United States)

    Ichikawa, F.; Makise, K.; Tsuneoka, T.; Maeda, S.; Shinozaki, B.

    2018-03-01

    We have studied that the Tc depression and the superconductor-insulator transition (SIT) in molybdenum nitride (MoN) thin films. Thin films were fabricated by reactive DC magnetron sputtering method onto (100) MgO substrates in the mixture of Ar and N2 gases. Several dozen MoN thin films were prepared in the range of 3 nm < thickness d < 60 nm. The resistance was measured by a DC four-probe technique. It is found that Tc decreases from 6.6 K for thick films with increase of the normal state sheet resistance {R}{{sq}}{{N}} and experimental data were fitted to the Finkel’stein formula using the bulk superconducting transition temperature Tc 0 = 6.45 K and the elastic scattering time of electron τ = 1.6 × 10‑16 s. From this analysis the critical sheet resistance Rc is found about 2 kΩ, which is smaller than the quantum sheet resistance R Q. This value of Rc is almost the same as those for 2D NbN films. The value of τ for MoN films is also the similar value for NbN films 1.0 × 10‑16 s, while Tc 0 is different from that for NbN films 14.85 K. It is indicated that the mechanism of SIT for MoN films is similar to that of NbN films, while the mean free path ℓ for MoN films is larger than that for NbN films.

  5. Variation of intrinsic magnetic parameters of single domain Co-N interstitial nitrides synthesized via hexa-ammine cobalt nitrate route

    Energy Technology Data Exchange (ETDEWEB)

    Ningthoujam, R.S. [Department of Chemistry, Indian Institute of Technology, Kanpur 208016 (India); Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Panda, R.N., E-mail: rnp@bits-goa.ac.in [Chemistry Group, Birla Institute of Technology and Science-Pilani, Goa Campus, Zuari Nagar, Goa 403726 (India); Gajbhiye, N.S. [Department of Chemistry, Indian Institute of Technology, Kanpur 208016 (India)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Variation of intrinsic magnetic parameters of Co-N. Black-Right-Pointing-Pointer Synthesis by hexa-ammine cobalt complex route. Black-Right-Pointing-Pointer Tuning of coercivity by variation of size. - Abstract: We report the variation of Curie temperature (T{sub c}) and coercivity (H{sub c}) of the single domain Co-N interstitial materials synthesized via nitridation of the hexa-ammine Cobalt(III) nitrate complex at 673 K. Co-N materials crystallize in the fcc cubic structure with unit cell parameter, a = 3.552 Angstrom-Sign . The X-ray diffraction (XRD) peaks are broader indicating the materials to be nano-structured with crystallite sizes of 5-14 nm. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) studies confirm the nanocrystalline nature of the materials. TEM images show chain-like clusters indicating dipolar interactions between the particles. Magnetic studies focus on the existence of giant magnetic Co atoms in the Co-N lattice that are not influenced by the thermal relaxation. The values of the H{sub c} could be tuned with the dimension of the particles. The values of T{sub c} of the nitride materials are masked by the onset of the ferromagnetic to superparamagnetic transition at higher temperatures. Thermomagnetic studies show an increasing trend in the Curie temperature, T{sub c}, with decrease in particle dimension. This result has been explained qualitatively on the basis of ferromagnetic to superparamagnetic transition and finite size scaling effects.

  6. Titanium nitride films for micro-supercapacitors: Effect of surface chemistry and film morphology on the capacitance

    Science.gov (United States)

    Achour, Amine; Porto, Raul Lucio; Soussou, Mohamed-Akram; Islam, Mohammad; Boujtita, Mohammed; Aissa, Kaltouma Ait; Le Brizoual, Laurent; Djouadi, Abdou; Brousse, Thierry

    2015-12-01

    Electrochemical capacitors (EC) in the form of packed films can be integrated in various electronic devices as power source. A fabrication process of EC electrodes, which is compatible with micro-fabrication, should be addressed for practical applications. Here, we show that titanium nitride films with controlled porosity can be deposited on flat silicon substrates by reactive DC-sputtering for use as high performance micro-supercapacitor electrodes. A superior volumetric capacitance as high as 146.4 F cm-3, with an outstanding cycling stability over 20,000 cycles, was measured in mild neutral electrolyte of potassium sulfate. The specific capacitance of the films as well as their capacitance retentions were found to depend on thickness, porosity and surface chemistry of electrodes. The one step process used to fabricate these TiN electrodes and the wide use of this material in the field of semiconductor technology make it promising for miniaturized energy storage systems.

  7. Synthesis of nanoscale copper nitride thin film and modification of the surface under high electronic excitation.

    Science.gov (United States)

    Ghosh, S; Tripathi, A; Ganesan, V; Avasthi, D K

    2008-05-01

    Nanoscale (approximately 90 nm) Copper nitride (Cu3N) films are deposited on borosilicate glass and Si substrates by RF sputtering technique in the reactive environment of nitrogen gas. These films are irradiated with 200 MeV Au15+ ions from Pelletron accelerator in order to modify the surface by high electronic energy deposition of heavy ions. Due to irradiation (i) at incident ion fluence of 1 x 10(12) ions/cm2 enhancement of grains, (ii) at 5 x 10912) ions/cm2 mass transport on the films surface, (iii) at 2 x 10(13) ions/cm2 line-like features on Cu3N/glass and nanometallic structures on Cu3N/Si surface are observed. The surface morphology is examined by atomic force microscope (AFM). All results are explained on the basis of a thermal spike model of ion-solid interaction.

  8. Deposition of carbon nitride films by vacuum ion diode with explosive emission

    Energy Technology Data Exchange (ETDEWEB)

    Korenev, S.A.; Perry, A.J. [New Jersey Inst. of Tech., Newark (United States); Elkind, A.; Kalmukov, A.

    1997-10-31

    Carbon nitride films were synthesized using a novel technique based on the pulsed high voltage ion/electron diode with explosive emission (pulsed voltage 200-700 kV pulsed current 100-500 Acm{sup -2} (ions) 150-2000 Acm{sup -2} (electrons)). The method and its novel features are discussed as well as its application to the formation of the crystalline {beta}-phase in C{sub 3}N{sub 4} films. Mixed elemental nitrogen and carbon films are formed by sequential deposition then subjected to ion and/or electron beam mixing to synthesize the C{sub 3}N{sub 4} structure. The experimental conditions used for this pulsed process are described and the efficiency of the method for nitrogen incorporation is demonstrated. The results presented indicate that {beta}-C{sub 3}N{sub 4} crystallites are formed in an amorphous matrix. (orig.) 20 refs.

  9. Effect of Al doping on phase formation and thermal stability of iron nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Tayal, Akhil [Amity Center for Spintronic Materials, Amity University, Sector 125, Noida 201 303 (India); Gupta, Mukul, E-mail: mgupta@csr.res.in [Amity Center for Spintronic Materials, Amity University, Sector 125, Noida 201 303 (India); Pandey, Nidhi [Amity Center for Spintronic Materials, Amity University, Sector 125, Noida 201 303 (India); Gupta, Ajay [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452 001 (India); Horisberger, Michael [Laboratory for Developments and Methods, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Stahn, Jochen [Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)

    2015-11-25

    In the present work, we systematically studied the effect of Al doping on the phase formation of iron nitride (Fe–N) thin films. Fe–N thin films with different concentration of Al (Al = 0, 2, 3, 6, and 12 at.%) were deposited using dc magnetron sputtering by varying the nitrogen partial pressure between 0 and 100%. The structural and magnetic properties of the films were studied using x-ray diffraction and polarized neutron reflectivity. It was observed that at the lowest doping level (2 at.% of Al), nitrogen rich non-magnetic Fe–N phase gets formed at a lower nitrogen partial pressure as compared to the un-doped sample. Interestingly, we observed that as Al doping is increased beyond 3 at.%, nitrogen rich non-magnetic Fe–N phase appears at higher nitrogen partial pressure as compared to un-doped sample. The thermal stability of films were also investigated. Un-doped Fe–N films deposited at 10% nitrogen partial pressure possess poor thermal stability. Doping of Al at 2 at.% improves it marginally, whereas, for 3, 6 and 12 at.% Al doping, it shows significant improvement. The obtained results have been explained in terms of thermodynamics of Fe–N and Al–N. - Highlights: • Doping effects of Al on Fe–N phase formation is studied. • Phase formation shows a non-monotonic behavior with Al doping. • Low doping levels of Al enhance and high levels retard the nitridation process. • Al doping beyond 3 at.% improve thermal stability of Fe–N films.

  10. Synthesis and characterization of boron carbon nitride films by radio frequency magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Z.F.; Bello, I.; Lei, M.K.; Lee, C.S.; Lee, S.T. [City Univ. of Hong Kong, Kowloon (Hong Kong). Dept. of Physics and Materials Science; Li, K.Y. [Department of Manufacturing Engineering and Engineering Management, City University of Hong Kong, Kowloon (Hong Kong)

    2000-06-01

    Boron carbon nitride (BCN) films were deposited on silicon substrates by radio frequency (r.f.) (13.56 MHz) magnetron sputtering from hexagonal boron nitride (h-BN) and graphite targets in an Ar-N{sub 2} gas mixture of a constant pressure of 1.0 Pa. During deposition, the substrates were maintained at a temperature of 400 C and negatively biased using a pulsed voltage with a frequency of 330 kHz. Different analysis techniques such as X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray diffraction (XRD) and scanning Auger electron microscopy (SAM) were used for characterization. In addition, the mechanical and tribological properties of the films were investigated by nano-indentation and micro-scratching. The carbon concentration in the films could be adjusted by the coverage area of a graphite sheet on the h-BN target, and decreased with increasing bias voltage. It was found that the ternary compound films within the B-C-N composition triangle possessed a less ordered structure. B--N, B--C and C--N chemical bonds were established in the films, and no phase separation of graphite and h-BN occurred. At zero bias voltage, amorphous BC{sub 2}N films with atomically smooth surface could be obtained, and the microfriction coefficient was 0.11 under a normal load of 1000 {mu}N. Hardness as determined by nano-indentation was usually in the range of 10-30 GPa, whereas the Young's modulus was within 100-200 GPa. (orig.)

  11. Synthesis and characterization of thin films of nitrided amorphous carbon deposited by laser ablation

    International Nuclear Information System (INIS)

    Rebollo P, B.

    2001-01-01

    The objective of this work is the synthesis and characterization of thin films of amorphous carbon (a-C) and thin films of nitrided amorphous carbon (a-C-N) using the laser ablation technique for their deposit. For this purpose, the physical properties of the obtained films were studied as function of diverse parameters of deposit such as: nitrogen pressure, power density, substrate temperature and substrate-target distance. For the characterization of the properties of the deposited thin films the following techniques were used: a) Raman spectroscopy which has demonstrated being a sensitive technique to the sp 2 and sp 3 bonds content, b) Energy Dispersive Spectroscopy which allows to know semi-quantitatively way the presence of the elements which make up the deposited films, c) Spectrophotometry, for obtaining the absorption spectra and subsequently the optical energy gap of the deposited material, d) Ellipsometry for determining the refraction index, e) Scanning Electron Microscopy for studying the surface morphology of thin films and, f) Profilemetry, which allows the determination the thickness of the deposited thin films. (Author)

  12. Niobium Nitride Thin Films and Multilayers for Superconducting Radio Frequency Cavities

    Science.gov (United States)

    Roach, William; Beringer, Douglas; Li, Zhaozhu; Clavero, Cesar; Lukaszew, Rosa

    2013-03-01

    Niobium nitride in thin film form has been considered for a number of applications including multi-layered coatings onto superconducting radio frequency cavities which have been proposed to overcome the fundamental accelerating gradient limit of ~50 MV/m in niobium based accelerators. In order to fulfill the latter application, the selected superconductor's thermodynamic critical field, HC, must be larger than that of niobium and separated from the Nb surface by an insulating layer in order to shield the Nb cavity from field penetration and thus allow higher field gradients. Thus, for the successful implementation of such multilayered stack it is important to consider not just the materials inherent properties but also how these properties may be affected in thin film geometry and also by the specific deposition techniques used. Here, we show the results of our correlated study of structure and superconducting properties in niobium nitride thin films and discuss the shielding exhibited in NbN/MgO/Nb multilayer samples beyond the lower critical field of Nb for the first time. This work was funded by the Defense Threat Reduction Agency (HDTRA-10-1-0072).

  13. Crystallographic contribution to the formation of the columnar grain structure in cobalt films

    International Nuclear Information System (INIS)

    Hara, K.; Itoh, K.; Okamoto, K.; Hashimoto, T.

    1996-01-01

    In order to clarify the crystallographic contribution to the formation of the columnar grain structure, the geometric and crystallographic alignments of columnar grains in cobalt films were investigated on the basis of magnetic and optical measurements. The films were deposited by sputtering at an incidence angle of 45 on glass substrates heated at 332 K. The film thickness ranged from 20 to 850 nm. Above 50 nm the columnar grains align in the direction parallel to the incidence plane and form a two-degree crystallographic orientation. The packing density of columnar grains decreases with increasing thickness when the thickness exceeds 50 nm. From these results we conclude that the crystal habit appearing on column tops induces the two-degree orientation through geometric selection and aligns the selected columnar grains in the parallel direction. (orig.)

  14. X-ray absorption fine structure (XAFS) studies of cobalt silicide thin films

    International Nuclear Information System (INIS)

    Naftel, S.J.; Coulthard, I.; Hu, Y.; Sham, T.K.; Zinke-Allmang, M.

    1998-01-01

    Cobalt silicide thin films, prepared on Si(100) wafers, have been studied by X-ray absorption near edge structures (XANES) at the Si K-, L 2,3 - and Co K-edges utilizing both total electron (TEY) and fluorescence yield (FLY) detection as well as extended X-ray absorption fine structure (EXAFS) at the Co K-edge. Samples made using DC sputter deposition on clean Si surfaces and MBE were studied along with a bulk CoSi 2 sample. XANES and EXAFS provide information about the electronic structure and morphology of the films. It was found that the films studied have essentially the same structure as bulk CoSi 2 . Both the spectroscopy and materials characterization aspects of XAFS (X-ray absorption fine structures) are discussed

  15. Formation of nanocrystals embedded in a silicon nitride film at a low temperature ({<=}200 deg. C)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyoung-Min; Kim, Tae-Hwan [Department of Nano Science and Technology, University of Seoul, Seoul 130-743 (Korea, Republic of); Hong, Wan-Shick [Department of Nano Science and Technology, University of Seoul, Seoul 130-743 (Korea, Republic of)], E-mail: wshong@uos.ac.kr

    2008-12-15

    Silicon-rich silicon nitride films with embedded silicon nanocrystals (Si NCs) were fabricated successfully on plastic substrates at a low temperature by catalytic chemical vapor deposition. A mixture of SiH{sub 4}, NH{sub 3} and H{sub 2} was used as a source gas. Formation of the silicon nanocrystals was analyzed by photoluminescence spectra and was confirmed by transmission electron microscopy. The formation of Si NCs required an H{sub 2}/SiH{sub 4} mixture ratio that was higher than four.

  16. Mechanics of silicon nitride thin-film stressors on a transistor-like geometry

    Directory of Open Access Journals (Sweden)

    S. Reboh

    2013-10-01

    Full Text Available To understand the behavior of silicon nitride capping etch stopping layer stressors in nanoscale microelectronics devices, a simplified structure mimicking typical transistor geometries was studied. Elastic strains in the silicon substrate were mapped using dark-field electron holography. The results were interpreted with the aid of finite element method modeling. We show, in a counterintuitive sense, that the stresses developed by the film in the vertical sections around the transistor gate can reach much higher values than the full sheet reference. This is an important insight for advanced technology nodes where the vertical contribution of such liners is predominant over the horizontal part.

  17. Chemical Mechanical Polishing of Ruthenium, Cobalt, and Black Diamond Films

    Science.gov (United States)

    Peethala, Brown Cornelius

    Ta/TaN bilayer serves as the diffusion barrier as well as the adhesion promoter between Cu and the dielectric in 32 nm technology devices. A key concern of future technology devices (layer (vs. a bilayer of Ta/TaN) to act as a barrier. During patterning, they need to be planarized using conventional chemical mechanical polishing (CMP) to achieve a planar surface. However, CMP of these new barrier materials requires novel slurry compositions that provide adequate selectivity towards Cu and dielectric films, and minimize galvanic corrosion. Apart from the application as a barrier, Ru also has been proposed as a lower electrode material in metal-insulator-metal capacitors where high (> 50 nm/min) Ru removal rates (RRs) are required and as a stop layer in magnetic recording head fabrication where low (hydroxide (KOH). It was also determined that increased the ionic strength is not responsible for the observed increase in Ru removal rate. Benzotirazole (BTA) and ascorbic acid were added to the slurry to reduce the open circuit potential (Eoc) difference between Cu and Ru to ˜20 mV from about 550 mV in the absence of additives. A removal mechanism with KIO4 as the oxidizing agent is proposed based on the formation of several ruthenium oxides, some of which formed residues on the polishing pad below a pH of ˜7. Next, a colloidal silica-based slurry with hydrogen peroxide (H 2O2) as the oxidizer (1 wt%), and arginine (0.5 wt%) as the complexing agent was developed to polish Co at pH 10. The Eoc between Cu and Co at the above conditions was reduced to ˜20 mV compared to ˜250 mV in the absence of additives, suggestive of reduced galvanic corrosion during the Co polishing. The slurry also has the advantages of good post-polish surface quality at pH 10, and no dissolution rate. BTA at a concentration of 5mM in this slurry inhibited Cu dissolution rates and yielded a Cu/Co RR ratio of ˜0.8:1 while the open potential difference between Cu and Co was further reduced to ˜10

  18. Ion-beam mixed ultra-thin cobalt suicide (CoSi2) films by cobalt sputtering and rapid thermal annealing

    Science.gov (United States)

    Kal, S.; Kasko, I.; Ryssel, H.

    1995-10-01

    The influence of ion-beam mixing on ultra-thin cobalt silicide (CoSi2) formation was investigated by characterizing the ion-beam mixed and unmixed CoSi2 films. A Ge+ ion-implantation through the Co film prior to silicidation causes an interface mixing of the cobalt film with the silicon substrate and results in improved silicide-to-silicon interface roughness. Rapid thermal annealing was used to form Ge+ ion mixed and unmixed thin CoSi2 layer from 10 nm sputter deposited Co film. The silicide films were characterized by secondary neutral mass spectroscopy, x-ray diffraction, tunneling electron microscopy (TEM), Rutherford backscattering, and sheet resistance measurements. The experi-mental results indicate that the final rapid thermal annealing temperature should not exceed 800°C for thin (micrographs of the ion-beam mixed and unmixed CoSi2 films reveals that Ge+ ion mixing (45 keV, 1 × 1015 cm-2) produces homogeneous silicide with smooth silicide-to-silicon interface.

  19. Impact of annealing temperature on the mechanical and electrical properties of sputtered aluminum nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Gillinger, M.; Schneider, M.; Bittner, A.; Schmid, U. [Institute of Sensor and Actuator Systems, Vienna University of Technology, Vienna 1040 (Austria); Nicolay, P. [CTR Carinthian Tech Research AG, Villach 9524 (Austria)

    2015-02-14

    Aluminium nitride (AlN) is a promising material for challenging sensor applications such as process monitoring in harsh environments (e.g., turbine exhaust), due to its piezoelectric properties, its high temperature stability and good thermal match to silicon. Basically, the operational temperature of piezoelectric materials is limited by the increase of the leakage current as well as by enhanced diffusion effects in the material at elevated temperatures. This work focuses on the characterization of aluminum nitride thin films after post deposition annealings up to temperatures of 1000 °C in harsh environments. For this purpose, thin film samples were temperature loaded for 2 h in pure nitrogen and oxygen gas atmospheres and characterized with respect to the film stress and the leakage current behaviour. The X-ray diffraction results show that AlN thin films are chemically stable in oxygen atmospheres for 2 h at annealing temperatures of up to 900 °C. At 1000 °C, a 100 nm thick AlN layer oxidizes completely. For nitrogen, the layer is stable up to 1000 °C. The activation energy of the samples was determined from leakage current measurements at different sample temperatures, in the range between 25 and 300 °C. Up to an annealing temperature of 700 °C, the leakage current in the thin film is dominated by Poole-Frenkel behavior, while at higher annealing temperatures, a mixture of different leakage current mechanisms is observed.

  20. TEM investigation of DC sputtered carbon-nitride-nickel thin films

    International Nuclear Information System (INIS)

    Safran, G.; Geszti, O.; Radnoczi, G.

    2002-01-01

    Deposition of carbon nitride (C-N) and carbon-nitride-nickel (C-N-Ni) films onto glass, NaCl and Si(001) substrates was carried out in a dc magnetron sputtering system. Carbon was deposited from high-purity (99.99%) pyrolytic graphite target, 50 mm in diameter, positioned at 10 cm from a resistance-heated substrate holder. C-N-Ni films were grown by a small Ni plate mounted on the graphite target. The base pressure of the deposition chamber was ∼7x10 -7 Torr. Films were grown at a substrate temperature of 20-700 grad C, in pure N 2 at partial pressures of 1.9 -2.2 mTorr and the substrates were held at ground potential. The typical film thickness of 15-30 nm was deposited on all the substrates at a magnetron current of 0.2 and 0.3 A, which resulted in a deposition rate of 1.5-2 nm/s. Structural characterizations were performed by high-resolution transmission electron microscopy (HRTEM) using a JEOL 3010 operated at 300 kV and a 200 kV Philips CM 20 electron microscope equipped with a Ge detector Noran EDS system. The N content of the C-N samples prepared at room temperature was 22-24% by EDS measurement and showed a decrease to 6-7% at elevated temperatures up to 700 grad C. The N concentration in the C-N-Ni films was higher: ∼38% at RT and ∼9% at 700 grad C. The Ni concentration of C-N-Ni samples was 5-6% and 0.3-0.4% in samples deposited at RT and 700 grad C respectively. The low Ni content in the latter is attributed to a decrease of the sticking coefficient of the carbon co-deposited Ni at elevated temperatures. (Authors)

  1. Optical transitions and electronic interactions in self-assembled cobalt-fullerene mixture films

    Czech Academy of Sciences Publication Activity Database

    Lavrentiev, Vasyl; Chvostová, Dagmar; Lavrentieva, Inna; Vacík, Jiří; Daskal, Y.; Barchuk, M.; Rafaja, D.; Dejneka, Alexandr

    2017-01-01

    Roč. 50, č. 48 (2017), č. článku 485305. ISSN 0022-3727 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk LM2015088; GA MŠk LM2015056 Institutional support: RVO:68378271 ; RVO:61389005 Keywords : fullerene * cobalt * electronic interaction * optical absorption * mixture film Subject RIV: BM - Solid Matter Physics ; Magnetism; BO - Biophysics (FZU-D) OBOR OECD: Condensed matter physics (including formerly solid state physics , supercond.); Biophysics (FZU-D) Impact factor: 2.588, year: 2016

  2. Facile synthesis of cobalt-doped zinc oxide thin films for highly efficient visible light photocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Altintas Yildirim, Ozlem, E-mail: ozlemaltintas@gmail.com [Department of Metallurgical and Materials Engineering, Selcuk University, Konya (Turkey); Arslan, Hanife; Sönmezoğlu, Savaş [Department of Metallurgical and Materials Engineering, Karamanoglu Mehmetbey University, Karaman (Turkey); Nanotechnology R& D Laboratory, Karamanoglu Mehmetbey University, Karaman (Turkey)

    2016-12-30

    Highlights: • Photocatalytically active Co-ZnO thin film was obtained by sol-gel method. • Co{sup 2+} doping narrowed the band gap of pure ZnO to an extent of 3.18 eV. • Co-ZnO was effective in MB degradation under visible light. • Optimum dopant content to show high performance was 3 at.%. - Abstract: Cobalt-doped zinc oxide (Co:ZnO) thin films with dopant contents ranging from 0 to 5 at.% were prepared using the sol–gel method, and their structural, morphological, optical, and photocatalytic properties were characterized. The effect of the dopant content on the photocatalytic properties of the films was investigated by examining the degradation behavior of methylene blue (MB) under visible light irradiation, and a detailed investigation of their photocatalytic activities was performed by determining the apparent quantum yields (AQYs). Co{sup 2+} ions were observed to be substitutionally incorporated into Zn{sup 2+} sites in the ZnO crystal, leading to lattice parameter constriction and band gap narrowing due to the photoinduced carriers produced under the visible light irradiation. Thus, the light absorption range of the Co:ZnO films was improved compared with that of the undoped ZnO film, and the Co:ZnO films exhibited highly efficient photocatalytic activity (∼92% decomposition of MB after 60-min visible light irradiation for the 3 at.% Co:ZnO film). The AQYs of the Co:ZnO films were greatly enhanced under visible light irradiation compared with that of the undoped ZnO thin film, demonstrating the effect of the Co doping level on the photocatalytic activity of the films.

  3. Influence of heat treatment on field emission characteristics of boron nitride thin films

    International Nuclear Information System (INIS)

    Li Weiqing; Gu Guangrui; Li Yingai; He Zhi; Feng Wei; Liu Lihua; Zhao Chunhong; Zhao Yongnian

    2005-01-01

    Boron nitride (BN) nanometer thin films are synthesized on Si (1 0 0) substrates by RF reactive magnetron sputtering. Then the film surfaces are treated in the case of the base pressure below 5 x 10 -4 Pa and the temperature of 800 and 1000 deg. C, respectively. And the films are studied by Fourier transform infrared spectra (FTIR), atomic force microscopic (AFM) and field emission characteristics at different annealing temperature. The results show that the surface heat treatment makes no apparent influence on the surface morphology of the BN films. The transformations of the sample emission characteristics have to do with the surface negative electron affinity (NEA) of the films possibly. The threshold electric fields are lower for BN samples without heat-treating than the treated films, which possibly ascribed to the surface negative electron affinity effect. A threshold field of 8 V/μm and the emission current of 80 μA are obtained. The surface NEA is still presence at the heat treatment temperature of 800 deg. C and disappeared at temperature of 1000 deg. C

  4. Superhydrophobic honeycomb-like cobalt stearate thin films on aluminum with excellent anti-corrosion properties

    Science.gov (United States)

    Xiong, Jiawei; Sarkar, D. K.; Chen, X.-Grant

    2017-06-01

    Superhydrophobic cobalt stearate thin films with excellent anti-corrosion properties were successfully fabricated on aluminum substrates via electrodeposition process. The water-repellent properties were attributed to the honeycomb-like micro-nano structure as well as low surface energy of cobalt stearate. The correlation between the surface morphology, composition as well as wetting properties and the molar ratio of inorganic cobalt salt (Co(NO3)2) and organic stearic acid (SA) abbreviated as Co/SA, in the electrolyte were studied carefully. The optimum superhydrophobic surface obtained on the electrodeposited cathodic aluminum substrate, in the mixed ethanolic solution with Co/SA molar ratio of 0.2, was found to have a maximum contact angle of 161°. The polarization resistance of superhydrophobic aluminum substrates was calculated as high as 1591 kΩ cm2, which is determined to be two orders of magnitude larger than that of the as-received aluminum substrate as 27 kΩ cm2. Electrochemical impedance spectroscopy (EIS) was also employed to evaluate the corrosion resistance properties of these samples. Furthermore, electrical equivalent circuits (EEC) have been suggested in order to better understand the corrosion phenomena on these surfaces based on the corresponding EIS data.

  5. Studies on the Optical Properties and Surface Morphology of Cobalt Phthalocyanine Thin Films

    Directory of Open Access Journals (Sweden)

    Benny Joseph

    2008-01-01

    Full Text Available Thin films of Cobalt Phthalocyanine (CoPc are fabricated at a base pressure of 10-5 m.bar using Hind-Hivac thermal evaporation plant. The films are deposited on to glass substrates at various temperatures 318, 363, 408 and 458K. The optical absorption spectra of these thin films are measured. The present studies reveal that the optical band gap energies of CoPc thin films are almost same on substrate temperature variation. The structure and surface morphology of the films deposited on glass substrates of temperatures 303, 363 and 458K are studied using X-ray diffractograms and Scanning Electron Micrographs (SEM, which show that there is a change in the crystallinity and surface morphology due to change in the substrate temperatures. Full width at half maximum (FWHM intensity of the diffraction peaks is also found reduced with increasing substrate temperatures. Scanning electron micrographs show that these crystals are needle like, which are interconnected at high substrate temperatures. The optical band gap energy is almost same on substrate temperature variation. Trap energy levels are also observed for these films.

  6. Chemical vapor deposition of hexagonal boron nitride films in the reduced pressure

    International Nuclear Information System (INIS)

    Choi, B.J.

    1999-01-01

    Hexagonal boron nitride (h-BN) films were deposited onto a graphite substrate in reduced pressure by reacting ammonia and boron tribromide at 800--1,200 C. The growth rate of h-BN films was dependent on the substrate temperature and the total pressures. The growth rate increased with increasing the substrate temperature at the pressure of 2 kPa, while it showed a maximum value at the pressures of 4 and 8 kPa. The temperature at which the maximum growth rate occurs decreased with increasing total pressure. With increasing the substrate temperature and total pressure, the apparent grain size increased and the surface morphology showed a rough, cauliflower-like structure

  7. Dual mechanical behaviour of hydrogen in stressed silicon nitride thin films

    International Nuclear Information System (INIS)

    Volpi, F.; Braccini, M.; Pasturel, A.; Devos, A.; Raymond, G.; Morin, P.

    2014-01-01

    In the present article, we report a study on the mechanical behaviour displayed by hydrogen atoms and pores in silicon nitride (SiN) films. A simple three-phase model is proposed to relate the physical properties (stiffness, film stress, mass density, etc.) of hydrogenated nanoporous SiN thin films to the volume fractions of hydrogen and pores. This model is then applied to experimental data extracted from films deposited by plasma enhanced chemical vapour deposition, where hydrogen content, stress, and mass densities range widely from 11% to 30%, −2.8 to 1.5 GPa, and 2.0 to 2.8 g/cm 3 , respectively. Starting from the conventional plotting of film's Young's modulus against film porosity, we first propose to correct the conventional calculation of porosity volume fraction with the hydrogen content, thus taking into account both hydrogen mass and concentration. The weight of this hydrogen-correction is found to evolve linearly with hydrogen concentration in tensile films (in accordance with a simple “mass correction” of the film density calculation), but a clear discontinuity is observed toward compressive stresses. Then, the effective volume occupied by hydrogen atoms is calculated taking account of the bond type (N-H or Si-H bonds), thus allowing a precise extraction of the hydrogen volume fraction. These calculations applied to tensile films show that both volume fractions of hydrogen and porosity are similar in magnitude and randomly distributed against Young's modulus. However, the expected linear dependence of the Young's modulus is clearly observed when both volume fractions are added. Finally, we show that the stiffer behaviour of compressive films cannot be only explained on the basis of this (hydrogen + porosity) volume fraction. Indeed this stiffness difference relies on a dual mechanical behaviour displayed by hydrogen atoms against the film stress state: while they participate to the stiffness in compressive films, hydrogen atoms mainly

  8. Application of plasma silicon nitride to crystalline thin-film silicon solar cells. Paper

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, J.; Oberbeck, L.; Rinke, T.J.; Berge, C.; Bergmann, R.B.

    2002-07-01

    We use plasma-enhanced chemical vapour deposition to deposit silicon nitride (SiN{sub x}) films at low temperature(400 C) onto the front surface of two different types of crystalline thin-film Si solar cells. The silicon nitride acts as an excellent antireflection coating on Si and provides a very high degree of electronic surface passivation over a wide range of compositions, including near-stoichiometric and Si-rich SiN{sub x}. Application of stoichiometric SiN{sub x} to non-textured thin-film cells, epitaxially grown at low temperature by ion-assisted deposition onto a monocrystalline Si substrate, results in an open-circuit voltage of 622 mV, a short-circuit current density of 26.6 mA/cm{sup 2} and an efficiency of 12.7%. It is shown that the SiN{sub x}-passivated in-situ grown n{sup +}-emitter of this cell type allows to reach open-circuit voltages of up to 667 mV. Silicon-rich SiN{sub x} is applied to the phosphorus-diffused n{sup +}-emitter of a textured thin-film cell on a glass superstrate fabricated by layer-transfer. The emitter saturation current density of these cells is only 40-64 fA/cm{sup 2}, which allows for open-circuit voltages of up to 699 mV. An impressively high open-circuit voltage of 638 mV and a short-circuit current density of 32.0 mA/cm{sup 2} are obtained for a 25 {mu}m thick SiN{sub x}-passivated, random pyramid-textured transfer cell. A transfer cell efficiency of 15.3% is independently confirmed.

  9. Characterization of boron nitride thin films prepared from a polymer precursor

    International Nuclear Information System (INIS)

    Chan, V.Z.; Rothman, J.B.; Palladino, P.; Sneddon, L.G.; Composto, R.J.

    1996-01-01

    Excellent quality boron nitride (BN) thin films on silicon have been produced by a simple procedure involving spincoating solutions of the open-quote open-quote single-source close-quote close-quote polymeric-precursor polyborazylene, (B 3 N 3 H ∼4 ) x , on a silicon substrate, followed by pyrolysis at 900 degree C. Rutherford backscattering spectrometry (RBS) indicates that the B/N ratios are 1.37 and 1.09 for conversions carried out in a vacuum oven at 900 and 1250 degree C, respectively. Forward recoil spectrometry (FRES) showed that the atomic percent of residual hydrogen is 10 and 9%, respectively. Plain-view and cross-sectional scanning electron microscopy (SEM) studies showed that the samples annealed at 900 degree C were clean and uniform in thickness. A thickness of 800x10 15 atoms/cm 2 was determined by ion scattering. Films annealed to 1250 degree C likewise showed a continuous unbroken boron nitride layer, but also exhibited morphological features resulting from reactions of the underlying silicon oxide-silicon interface in the substrate. Auger electron spectroscopy and atomic force microscopy showed that the BN coating produced at this higher temperature remained unbroken but had a surface area of ∼15% covered by dimples 2 endash 7 nm in depth. Compared to typical films made by chemical vapor deposition, BN films produced from this open-quote open-quote single-source close-quote close-quote method have lower hydrogen and carbon concentrations. copyright 1996 Materials Research Society

  10. Piezoelectric actuated micro-resonators based on the growth of diamond on aluminum nitride thin films

    International Nuclear Information System (INIS)

    Hees, J; Heidrich, N; Pletschen, W; Sah, R E; Wolfer, M; Lebedev, V; Nebel, C E; Ambacher, O; Williams, O A

    2013-01-01

    Unimorph heterostructures based on piezoelectric aluminum nitride (AlN) and diamond thin films are highly desirable for applications in micro- and nanoelectromechanical systems. In this paper, we present a new approach to combine thin conductive boron-doped as well as insulating nanocrystalline diamond (NCD) with sputtered AlN films without the need for any buffer layers between AlN and NCD or polishing steps. The zeta potentials of differently treated nanodiamond (ND) particles in aqueous colloids are adjusted to the zeta potential of AlN in water. Thereby, the nucleation density for the initial growth of diamond on AlN can be varied from very low (10 8 cm −2 ), in the case of hydrogen-treated ND seeding particles, to very high values of 10 11 cm −2 for oxidized ND particles. Our approach yielding high nucleation densities allows the growth of very thin NCD films on AlN with thicknesses as low as 40 nm for applications such as microelectromechanical beam resonators. Fabricated piezo-actuated micro-resonators exhibit enhanced mechanical properties due to the incorporation of boron-doped NCD films. Highly boron-doped NCD thin films which replace the metal top electrode offer Young’s moduli of more than 1000 GPa. (paper)

  11. High Dielectric Performance of Solution-Processed Aluminum Oxide-Boron Nitride Composite Films

    Science.gov (United States)

    Yu, Byoung-Soo; Ha, Tae-Jun

    2018-04-01

    The material compositions of oxide films have been extensively investigated in an effort to improve the electrical characteristics of dielectrics which have been utilized in various electronic devices such as field-effect transistors, and storage capacitors. Significantly, solution-based compositions have attracted considerable attention as a highly effective and practical technique to replace vacuum-based process in large-area. Here, we demonstrate solution-processed composite films consisting of aluminum oxide (Al2O3) and boron nitride (BN), which exhibit remarkable dielectric properties through the optimization process. The leakage current of the optimized Al2O3-BN thin films was decreased by a factor of 100 at 3V, compared to pristine Al2O3 thin film without a loss of the dielectric constant or degradation of the morphological roughness. The characterization by X-ray photoelectron spectroscopy measurements revealed that the incorporation of BN with an optimized concentration into the Al2O3 dielectric film reduced the density of oxygen vacancies which act as defect states, thereby improving the dielectric characteristics.

  12. In situ characterization of thin film growth: Boron nitride on silicon

    International Nuclear Information System (INIS)

    Fukarek, W.

    2001-01-01

    Real-time ellipsometry (RTE) in combination with particle flux measurement is applied to ion beam assisted deposition of boron nitride (BN) films. RTE is used as a tool for process diagnostic to improve the deposition stability. A novel technique for the determination of absolute density depth profiles from dynamic growth rate data and film forming particle flux is employed. From real-time cantilever curvature measurement and simultaneously recorded film thickness data instantaneous stress depth profiles are derived with a depth resolution in the nm range. The synergistic effects on the information obtained from RTE, particle flux, and cantilever bending data are demonstrated. The density of turbostratic BN (tBN) is found to increase slightly with film thickness while the compressive stress decreases, indicating an increasing quality and/or size of crystallites in the course of film growth. Refractive index and density depth profiles in cubic BN (cBN) films correspond perfectly to structural information obtained from dark field transmission electron microscope graphs. The established tBN/cBN two-layer model is found to be a crude approximation that has to be replaced by a three-layer model including nucleation, grain growth, and coalescence of cBN. The instantaneous compressive stress in a homogeneous tBN film is found to decrease, while the density increases during growth. The instantaneous compressive stress depth profiles in cBN films are more complex and not easy to understand but reliable information on the structural evolution during growth can be extracted

  13. Optical properties of aluminum nitride thin films grown by direct-current magnetron sputtering close to epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Stolz, A. [Institut d' Electronique de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, PRES Lille, Université Nord de France, Avenue Poincaré, 59652 Villeneuve d' Ascq Cedex (France); Soltani, A., E-mail: ali.soltani@iemn.univ-lille1.fr [Institut d' Electronique de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, PRES Lille, Université Nord de France, Avenue Poincaré, 59652 Villeneuve d' Ascq Cedex (France); Abdallah, B. [Department of Materials Physics, Atomic Energy Commission of Syria, Damascus, P.O. Box 6091 (Syrian Arab Republic); Charrier, J. [Fonctions Optiques pour les Technologies de l' informatiON (FOTON), UMR CNRS 6082, 6, rue de Kerampont CS 80518, 22305 Lannion Cedex (France); Deresmes, D. [Institut d' Electronique de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, PRES Lille, Université Nord de France, Avenue Poincaré, 59652 Villeneuve d' Ascq Cedex (France); Jouan, P.-Y.; Djouadi, M.A. [Institut des Matériaux Jean Rouxel – IMN, UMR CNRS 6502, 2, rue de la Houssinère BP 32229, 44322 Nantes (France); Dogheche, E.; De Jaeger, J.-C. [Institut d' Electronique de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, PRES Lille, Université Nord de France, Avenue Poincaré, 59652 Villeneuve d' Ascq Cedex (France)

    2013-05-01

    Low-temperature Aluminum Nitride (AlN) thin films with a thickness of 3 μm were deposited by Direct-Current magnetron sputtering on sapphire substrate. They present optical properties similar to those of epitaxially grown films. Different characterization methods such as X-Ray Diffraction, Transmission Electron Microscopy and Atomic Force Microscopy were used to determine the structural properties of the films such as its roughness and crystallinity. Newton interferometer was used for stress measurement of the films. Non-destructive prism-coupling technique was used to determine refractive index and thickness homogeneity by a mapping on the whole sample area. Results show that AlN films grown on AlGaN layer have a high crystallinity close to epitaxial films, associated to a low intrinsic stress for low thickness. These results highlight that it is possible to grow thick sample with microstructure and optical properties close to epitaxy, even on a large surface. - Highlights: ► Aluminum Nitride sputtering technique with a low temperature growth process ► Epitaxial quality of two microns sputtered Aluminum Nitride film ► Optics as a non-destructive accurate tool for acoustic wave investigation.

  14. Atomic layer deposition of cobalt carbide films and their magnetic properties using propanol as a reducing agent

    Energy Technology Data Exchange (ETDEWEB)

    Sarr, Mouhamadou, E-mail: sarrtapha44@yahoo.fr [Luxembourg Instituteof Science and Technology, 41, rue du Brill, L-4422 Belvaux (Luxembourg); Bahlawane, Naoufal; Arl, Didier [Luxembourg Instituteof Science and Technology, 41, rue du Brill, L-4422 Belvaux (Luxembourg); Dossot, Manuel [Laboratory of Physical Chemistry and Microbiology for the Environment, UMR 7564 CNRS-Université de Lorraine, 405 rue de Vandoeuvre, 54601 Villers-lès-Nancy (France); McRae, Edward [Institut Jean Lamour, UMR 7198CNRS-Université de Lorraine, FST, BP 70239, 54506 Vandoeuvre-lès-Nancy (France); Lenoble, Damien, E-mail: damien.lenoble@list.lu [Luxembourg Instituteof Science and Technology, 41, rue du Brill, L-4422 Belvaux (Luxembourg)

    2016-08-30

    Highlights: • Conformal carbon-Co-carbide thin films. • Chemically growth carbone-Co-carbide composite. • Tuneable magnetic properties. - Abstract: The investigation of highly conformal thin films using Atomic Layer Deposition (ALD) is driven by a variety of applications in modern technologies. In particular, the emergence of 3D memory device architectures requires conformal materials with tuneable magnetic properties. Here, nanocomposites of carbon, cobalt and cobalt carbide are deposited by ALD using cobalt acetylacetonate with propanol as a reducing agent. Films were grown by varying the ALD deposition parameters including deposition temperature and propanol exposure time. The morphology, the chemical composition and the crystalline structure of the cobalt carbide film were investigated. Vibrating Sample Magnetometer (VSM) measurements revealed magnetic hysteresis loops with a coercivity reaching 500 Oe and a maximal saturation magnetization of 0.9 T with a grain size less than 15 nm. Magnetic properties are shown to be tuneable by adjusting the deposition parameters that significantly affect the microstructure and the composition of the deposited films.

  15. Preparation of high-content hexagonal boron nitride composite film and characterization of atomic oxygen erosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu; Li, Min; Gu, Yizhuo; Wang, Shaokai, E-mail: wsk@buaa.edu.cn; Zhang, Zuoguang

    2017-04-30

    Highlights: • Hexagonal boron nitride nanosheets can be well exfoliated with the help of nanofibrillated cellulose. • A carpet-like rough surface and distortion in crystal structure of h-BN are found in both h-BN film and h-BN/epoxy film after AO exposure. • H-BN/epoxy film exhibits a higher mass loss and erosion yield, different element content changes and chemical oxidations compared with h-BN film. - Abstract: Space aircrafts circling in low earth orbit are suffered from highly reactive atomic oxygen (AO). To shield AO, a flexible thin film with 80 wt.% hexagonal boron nitride (h-BN) and h-BN/epoxy film were fabricated through vacuum filtration and adding nanofibrillated cellulose fibers. H-BN nanosheets were hydroxylated for enhancing interaction in the films. Mass loss and erosion yield at accumulated AO fluence about 3.04 × 10{sup 20} atoms/cm{sup 2} were adopted to evaluate the AO resistance properties of the films. A carpet-like rough surface, chemical oxidations and change in crystal structure of h-BN were found after AO treatment, and the degrading mechanism was proposed. The mass loss and erosion yield under AO attack were compared between h-BN film and h-BN/epoxy film, and the comparison was also done for various types of shielding AO materials. Excellent AO resistance property of h-BN film is shown, and the reasons are analyzed.

  16. Nanocrystalline Cobalt-doped SnO2 Thin Film: A Sensitive Cigarette Smoke Sensor

    Directory of Open Access Journals (Sweden)

    Patil Shriram B.

    2011-11-01

    Full Text Available This article discusses a sensitive cigarette smoke sensor based on Cobalt doped Tin oxide (Co-SnO2 thin films deposited on glass substrate by a conventional Spray Pyrolysis technique. The Co-SnO2 thin films have been characterized by X-ray Diffraction (XRD, Scanning Electron Microscopy (SEM and Energy Dispersive X-ray Spectroscopy (EDAX. The XRD spectrum shows polycrystalline nature of the film with a mixed phase comprising of SnO2 and Co3O4. The SEM image depicts uniform granular morphology covering total substrate surface. The compositional analysis derived using EDAX confirmed presence of Co in addition to Sn and O in the film. Cigarette smoke sensing characteristics of the Co-SnO2 thin film have been studied under atmospheric condition at different temperatures and smoke concentration levels. The sensing parameters such as sensitivity, response time and recovery time are observed to be temperature dependent, exhibiting better results at 330 oC.

  17. Study of the structure and electrical properties of the copper nitride thin films deposited by pulsed laser deposition

    International Nuclear Information System (INIS)

    Gallardo-Vega, C.; Cruz, W. de la

    2006-01-01

    Copper nitride thin films were prepared on glass and silicon substrates by ablating a copper target at different pressure of nitrogen. The films were characterized in situ by X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and ex situ by X-ray diffraction (XRD). The nitrogen content in the samples, x = [N]/[Cu], changed between 0 and 0.33 for a corresponding variation in nitrogen pressure of 9 x 10 -2 to 1.3 x 10 -1 Torr. Using this methodology, it is possible to achieve sub-, over- and stoichiometric films by controlling the nitrogen pressure. The XPS results show that is possible to obtain copper nitride with x = 0.33 (Cu 3 N) and x = 0.25 (Cu 4 N) when the nitrogen pressure is 1.3 x 10 -1 and 5 x 10 -2 Torr, respectively. The lattice constants obtained from XRD results for copper nitride with x = 0.25 is of 3.850 A and with x = 0.33 have values between 3.810 and 3.830 A. The electrical properties of the films were studied as a function of the lattice constant. These results show that the electrical resistivity increases when the lattice parameter is decreasing. The electrical resistivity of copper nitride with x = 0.25 was smaller than samples with x = 0.33

  18. Study of the structure and electrical properties of the copper nitride thin films deposited by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo-Vega, C. [Centro de Investigacion Cientifica y de Educacion Superior de Ensenada (CICESE), Km. 107 Carretera Tijuana-Ensenada, A. Postal 2732, 22860, Ensenada B.C. (Mexico)]. E-mail: gallardo@ccmc.unam.mx; Cruz, W. de la [Centro de Ciencias de la Materia Condensada, UNAM, Km. 107 Carretera Tijuana-Ensenada, A. Postal 2681, 22860, Ensenada B.C. (Mexico)

    2006-09-15

    Copper nitride thin films were prepared on glass and silicon substrates by ablating a copper target at different pressure of nitrogen. The films were characterized in situ by X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and ex situ by X-ray diffraction (XRD). The nitrogen content in the samples, x = [N]/[Cu], changed between 0 and 0.33 for a corresponding variation in nitrogen pressure of 9 x 10{sup -2} to 1.3 x 10{sup -1} Torr. Using this methodology, it is possible to achieve sub-, over- and stoichiometric films by controlling the nitrogen pressure. The XPS results show that is possible to obtain copper nitride with x = 0.33 (Cu{sub 3}N) and x = 0.25 (Cu{sub 4}N) when the nitrogen pressure is 1.3 x 10{sup -1} and 5 x 10{sup -2} Torr, respectively. The lattice constants obtained from XRD results for copper nitride with x = 0.25 is of 3.850 A and with x = 0.33 have values between 3.810 and 3.830 A. The electrical properties of the films were studied as a function of the lattice constant. These results show that the electrical resistivity increases when the lattice parameter is decreasing. The electrical resistivity of copper nitride with x = 0.25 was smaller than samples with x = 0.33.

  19. Increased charge storage capacity of titanium nitride electrodes by deposition of boron-doped nanocrystalline diamond films

    DEFF Research Database (Denmark)

    Meijs, Suzan; McDonald, Matthew; Sørensen, Søren

    2015-01-01

    The aim of this study was to investigate the feasibility of depositing a thin layer of boron-doped nanocrystalline diamond (B-NCD) on titanium nitride (TiN) coated electrodes and the effect this has on charge injection properties. The charge storage capacity increased by applying the B-NCD film...

  20. Effect of sapphire substrate nitridation on the elimination of rotation domains in ZnO epitaxial films

    International Nuclear Information System (INIS)

    Ying Minju; Du Xiaolong; Mei Zengxia; Zeng Zhaoquan; Zheng Hao; Wang Yong; Jia Jinfeng; Zhang Ze; Xue Qikun

    2004-01-01

    The rotation domain structures in ZnO films grown on sapphire substrates under different pre-treatment conditions have been investigated by in situ reflection high-energy electron diffraction and ex situ x-ray diffraction (XRD). It was found that by appropriate nitridation treatment, forming a thin AlN film on the substrate, the rotation domains in ZnO films could be completely suppressed, and a full width at half maximum of only 180 arcsec was observed in the (0 0 0 2) reflection of XRD rocking curves. The mechanisms for the elimination of rotation domains in the ZnO films are discussed

  1. Enhanced Electroluminescence from Silicon Quantum Dots Embedded in Silicon Nitride Thin Films Coupled with Gold Nanoparticles in Light Emitting Devices

    Directory of Open Access Journals (Sweden)

    Ana Luz Muñoz-Rosas

    2018-03-01

    Full Text Available Nowadays, the use of plasmonic metal layers to improve the photonic emission characteristics of several semiconductor quantum dots is a booming tool. In this work, we report the use of silicon quantum dots (SiQDs embedded in a silicon nitride thin film coupled with an ultra-thin gold film (AuNPs to fabricate light emitting devices. We used the remote plasma enhanced chemical vapor deposition technique (RPECVD in order to grow two types of silicon nitride thin films. One with an almost stoichiometric composition, acting as non-radiative spacer; the other one, with a silicon excess in its chemical composition, which causes the formation of silicon quantum dots imbibed in the silicon nitride thin film. The ultra-thin gold film was deposited by the direct current (DC-sputtering technique, and an aluminum doped zinc oxide thin film (AZO which was deposited by means of ultrasonic spray pyrolysis, plays the role of the ohmic metal-like electrode. We found that there is a maximum electroluminescence (EL enhancement when the appropriate AuNPs-spacer-SiQDs configuration is used. This EL is achieved at a moderate turn-on voltage of 11 V, and the EL enhancement is around four times bigger than the photoluminescence (PL enhancement of the same AuNPs-spacer-SiQDs configuration. From our experimental results, we surmise that EL enhancement may indeed be due to a plasmonic coupling. This kind of silicon-based LEDs has the potential for technology transfer.

  2. Humidity effects on the electrical properties of hexagonal boron nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Soltani, A. [Institut d' Electronique, de Microelectronique et de Nanotechnologie/CNRS UMR 8520, Cite Scientifique, Avenue Poincare, 59652 Villeneuve d' Ascq (France)]. E-mail: ali.soltani@iemn.univ-lille1.fr; Thevenin, P. [Laboratoire Materiaux Optiques Photonique et Systemes/CNRS FRE 2304, Universite de Metz and Supelec, 2 rue Edouard Belin, 57070 Metz (France); Bakhtiar, H. [Faculty of Science, Physics Department, Technology University of Malaysia, Karung Berkunci 791, 80990, Johor Bahru, Johor (Malaysia); Bath, A. [Laboratoire Materiaux Optiques Photonique et Systemes/CNRS FRE 2304, Universite de Metz and Supelec, 2 rue Edouard Belin, 57070 Metz (France)]. E-mail: bath@metz.supelec.fr

    2005-01-03

    Thin films of hexagonal boron nitride (h-BN) were grown by a plasma enhanced chemical vapour deposition (PECVD) technique. The quality of the films was assessed by infrared spectroscopy, microRaman spectroscopy as a function of annealing temperature and by X-ray photoelectron spectroscopy. The films proved to be thermally stable up to 1370 K. Current-voltage measurements were performed, as a function of humidity, using metal-insulator-semiconductor and metal-insulator-metal structures. Typical resistivities were found in the range 10{sup 13}-10{sup 14} {omega} cm in dry air and exhibit high sensitivity against humidity. The influence of the mean orientation of the c-axis of the BN films was considered. Sawtooth voltage pulse trains were also applied. Threshold switching phenomena were observed, but only in atmosphere containing humidity. The values of the switching voltages depend strongly on the relative humidity (RH), on the characteristics of the applied sawtooth voltage pulse trains, as well as on the nature of the metallic electrode.

  3. Selective ablation of a titanium nitride film on tungsten carbide substrate using ultrashort laser pulses

    International Nuclear Information System (INIS)

    Oliveira, Eduardo Spinelli

    2017-01-01

    Surface coatings are applied to many cutting tools in the metallurgical industry in order to improve cutting efficiency and extend its useful life. In this work, tests were performed to remove the coating of titanium aluminum nitride (TiAlN) on tungsten carbide (WC-Co) pellets, using an ultrashort laser pulses beam. After determination of the damage thresholds of the film and the substrate, were ablated on the surface of the coating lines using two ablation conditions, it was initially operated on the low fluence regime for the film, and later on the low fluence regime of the substrate, far below the threshold of the film, applying high overlapping pulses. A laser induced breakdown spectroscopy (LIBS) system was set up to monitor the materials present in the plasma generated by the laser, but the system did not present sufficient sensitivity to read the low intensity of the plasma generated in the process and was not used. After the analysis of the traces by electron microscopy, optical profilometer and X-ray fluorescence spectroscopy, it was not possible to determine a safe process to carry out the selective removal of the film in question, however, due to the data obtained and observations of the results in some traces, new possibilities were raised, opening the discussion for future work. (author)

  4. Direct growth of nanocrystalline hexagonal boron nitride films on dielectric substrates

    Energy Technology Data Exchange (ETDEWEB)

    Tay, Roland Yingjie [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, Singapore 639798 (Singapore); Temasek Laboratories@NTU, 50 Nanyang Avenue, Singapore, Singapore 639798 (Singapore); Tsang, Siu Hon [Temasek Laboratories@NTU, 50 Nanyang Avenue, Singapore, Singapore 639798 (Singapore); Loeblein, Manuela; Chow, Wai Leong [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, Singapore 639798 (Singapore); CNRS-International NTU Thales Research Alliance CINTRA UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Singapore, Singapore 637553 (Singapore); Loh, Guan Chee [Institue of High Performance Computing, 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632 (Singapore); Department of Physics, Michigan Technological University, Houghton, Michigan 49931 (United States); Toh, Joo Wah; Ang, Soon Loong [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, Singapore 639798 (Singapore); Teo, Edwin Hang Tong, E-mail: htteo@ntu.edu.sg [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, Singapore 639798 (Singapore); School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, Singapore 639798 (Singapore)

    2015-03-09

    Atomically thin hexagonal-boron nitride (h-BN) films are primarily synthesized through chemical vapor deposition (CVD) on various catalytic transition metal substrates. In this work, a single-step metal-catalyst-free approach to obtain few- to multi-layer nanocrystalline h-BN (NCBN) directly on amorphous SiO{sub 2}/Si and quartz substrates is demonstrated. The as-grown thin films are continuous and smooth with no observable pinholes or wrinkles across the entire deposited substrate as inspected using optical and atomic force microscopy. The starting layers of NCBN orient itself parallel to the substrate, initiating the growth of the textured thin film. Formation of NCBN is due to the random and uncontrolled nucleation of h-BN on the dielectric substrate surface with no epitaxial relation, unlike on metal surfaces. The crystallite size is ∼25 nm as determined by Raman spectroscopy. Transmission electron microscopy shows that the NCBN formed sheets of multi-stacked layers with controllable thickness from ∼2 to 25 nm. The absence of transfer process in this technique avoids any additional degradation, such as wrinkles, tears or folding and residues on the film which are detrimental to device performance. This work provides a wider perspective of CVD-grown h-BN and presents a viable route towards large-scale manufacturing of h-BN substrates and for coating applications.

  5. MOCVD of hexagonal boron nitride thin films on Si(100) using new single source precursors

    CERN Document Server

    Boo, J H; Yu, K S; Kim, Y S; Kim, Y S; Park, J T

    1999-01-01

    We have been carried out the growth of hexagonal boron nitride (h-BN) thin films on Si(100) substrates by low pressure metal-organic chemical vapor deposition (LPMOCVD) method using triethylborane tert-butylamine complex (TEBTBA), Et sub 3 BNH sub 2 ( sup t Bu), and triethylborane isopropylamine complex (TEBIPA), Et sub 3 BNH sub 2 ( sup t Pr) as a new single molecular precursors in the temperature range of 850 approx 1000 .deg. C. polycrystalline, crack-free h-BN film was successfully grown on Si(100) substrate at 850 .deg. C using TEBTBA. This growth temperature is very lower than those in previous reports. Carbon-rich polycrystalline BN was also obtained at 900 .deg. C from TEBIPA. With increasing substrate temperature to 1000 .deg. C, however, BC sub 4 N-like species are strongly formed along with h-BN and the BN films obtained from both TEBTBA and TEBIPA but almost polycrystalline. To our best knowledge, this is the first report of the growth of h-BN films formed with the new single source precursors of ...

  6. The magnetic properties of amorphous and nanocrystalline cobalt-rare earth films

    Science.gov (United States)

    Thomas, Richard Allen

    Magnetic materials are of great technological importance for their use in transformers, electric motors, computer disks and hard drives, etc. Understanding the intrinsic physical properties of magnetic materials is essential in order to develop new and better materials for these applications. Presented here is a study of the magnetic properties of amorphous and nanocrystalline cobalt-rare earth (Co-R, where R = Y, Pr, Gd, and Dy) films composed of very small crystalline grains, about 2--200 nm in size. The films are produced by co-sputtering two single element targets onto a single substrate. Many are then annealed briefly to produce magnetic films composed of nanoscale crystallites. The magnetic properties of these films depend largely on the relative strengths of the exchange interaction, which tends to align the spins within a group of crystallites, and the magnetocrystalline anisotropy, which tends to align the spins within each crystallite to an easy direction defined by the crystal lattice. The ratio of these two competing interactions varies strongly with grain size as predicted by the random magnetic anisotropy model. The coercivity, remanent magnetization, initial magnetization, etc., are discussed in light of the predictions made by the models of Callen et al (1977), Chi and Alben (1977), Chudnovsky (1986), and Fukunaga and Inoue (1992).

  7. Microstructure and initial growth characteristics of the low temperature microcrystalline silicon films on silicon nitride surface

    International Nuclear Information System (INIS)

    Park, Young-Bae; Rhee, Shi-Woo

    2001-01-01

    Microstructure and initial growth characteristics of the hydrogenated microcrystalline Si (μc-Si:H) films grown on hydrogenated amorphous silicon nitride (a-SiN x :H) surface at low temperature were investigated using high resolution transmission electron microscope and micro-Raman spectroscopy. With increasing the Si and Si - H contents in the SiN x :H surfaces, μc-Si crystallites, a few nanometers in size, were directly grown on amorphous nitride surfaces. It is believed that the crystallites were grown through the nucleation and phase transition from amorphous to crystal in a hydrogen-rich ambient of gas phase and growing surface. The crystallite growth characteristics on the dielectric surface were dependent on the stoichiometric (x=N/Si) ratio corresponding hydrogen bond configuration of the SiN x :H surface. Surface facetting and anisotropic growth of the Si crystallites resulted from the different growth rate on the different lattice planes of Si. No twins and stacking faults were observed in the (111) lattice planes of the Si crystallites surrounding the a-Si matrix. This atomic-scale structure was considered to be the characteristic of the low temperature crystallization of the μc-Si:H by the strain relaxation of crystallites in the a-Si:H matrix. [copyright] 2001 American Institute of Physics

  8. Direct bonding of ALD Al2O3 to silicon nitride thin films

    DEFF Research Database (Denmark)

    Laganà, Simone; Mikkelsen, E. K.; Marie, Rodolphe

    2017-01-01

    microscopy (TEM) by improving low temperature annealing bonding strength when using atomic layer deposition of aluminum oxide. We have investigated and characterized bonding of Al2O3-SixNy (low stress silicon rich nitride) and Al2O3-Si3N4 (stoichiometric nitride) thin films annealed from room temperature up......O3 can be bonded to. Preliminary tests demonstrating a well-defined nanochannel system with-100 nm high channels successfully bonded and tests against leaks using optical fluorescence technique and transmission electron microscopy (TEM) characterization of liquid samples are also reported. Moreover...

  9. Interface amorphization in hexagonal boron nitride films on sapphire substrate grown by metalorganic vapor phase epitaxy

    Science.gov (United States)

    Yang, Xu; Nitta, Shugo; Pristovsek, Markus; Liu, Yuhuai; Nagamatsu, Kentaro; Kushimoto, Maki; Honda, Yoshio; Amano, Hiroshi

    2018-05-01

    Hexagonal boron nitride (h-BN) films directly grown on c-plane sapphire substrates by pulsed-mode metalorganic vapor phase epitaxy exhibit an interlayer for growth temperatures above 1200 °C. Cross-sectional transmission electron microscopy shows that this interlayer is amorphous, while the crystalline h-BN layer above has a distinct orientational relationship with the sapphire substrate. Electron energy loss spectroscopy shows the energy-loss peaks of B and N in both the amorphous interlayer and the overlying crystalline h-BN layer, while Al and O signals are also seen in the amorphous interlayer. Thus, the interlayer forms during h-BN growth through the decomposition of the sapphire at elevated temperatures.

  10. On the residual stress and picostructure of titanium nitride films. Pt. 1

    International Nuclear Information System (INIS)

    Perry, A.J.; Valvoda, V.; Rafaja, D.; Williamson, D.L.; Sartwell, B.D.

    1992-01-01

    Titanium nitride films, dual energy ion implanted with argon or krypton, have been studied with a Seemann-Bohlin fine focus goniometer at grazing angles in the range 2-10. The implantation of 1% of either gas has little effect on the lattice parameters or the residual stress. It is thought that the gas atoms are on substitutional lattice sites and are associated with vacancies created during the implantation process. At 4% of implanted gas, it precipitates out in the form of bubbles; in the case of argon these are crystalline and their lattice parameter is close to that for solid argon as recorded in the literature. The lattice parameters and the residual stresses are affected slightly by the implantation: argon reduces the former and makes the latter more tensile, whereas the krypton has the opposite effects. It is thought that the difference in behavior is due to a difference in size of the bubbles or to the greater compressibility of argon

  11. Dependence of wet etch rate on deposition, annealing conditions and etchants for PECVD silicon nitride film

    International Nuclear Information System (INIS)

    Tang Longjuan; Zhu Yinfang; Yang Jinling; Li Yan; Zhou Wei; Xie Jing; Liu Yunfei; Yang Fuhua

    2009-01-01

    The influence of deposition, annealing conditions, and etchants on the wet etch rate of plasma enhanced chemical vapor deposition (PECVD) silicon nitride thin film is studied. The deposition source gas flow rate and annealing temperature were varied to decrease the etch rate of SiN x :H by HF solution. A low etch rate was achieved by increasing the SiH 4 gas flow rate or annealing temperature, or decreasing the NH 3 and N2 gas flow rate. Concentrated, buffered, and dilute hydrofluoric acid were utilized as etchants for SiO 2 and SiN x :H. A high etching selectivity of SiO 2 over SiN x :H was obtained using highly concentrated buffered HF.

  12. Effect of the stoichiometry of Si-rich silicon nitride thin films on their photoluminescence and structural properties

    Energy Technology Data Exchange (ETDEWEB)

    Torchynska, T.V., E-mail: ttorch@esfm.ipn.mx [ESFM—Instituto Politecnico Nacional, Mexico DF 07738 (Mexico); Casas Espinola, J.L. [ESFM—Instituto Politecnico Nacional, Mexico DF 07738 (Mexico); Vergara Hernandez, E. [UPIITA—Instituto Politecnico Nacional, Mexico DF 07320 (Mexico); Khomenkova, L., E-mail: khomen@ukr.net [V. Lashkaryov Institute of Semiconductor Physics, 45 Pr. Nauky, 03028 Kyiv (Ukraine); Delachat, F.; Slaoui, A. [ICube, 23 rue du Loess, BP 20 CR, 67037 Strasbourg Cedex 2 (France)

    2015-04-30

    Si-rich Silicon nitride films were grown on silicon substrates by plasma enhanced chemical vapor deposition. The film stoichiometry was controlled via the variation of NH{sub 3}/SiH{sub 4} ratio from 0.45 up to 1.0. Thermal annealing at 1100 °C for 30 min in the nitrogen flow was applied to form the Si nanocrystals in the films that have been investigated by means of photoluminescence and Raman scattering methods, as well as transmission electron microscopy. Several emission bands have been detected with the peak positions at: 2.8–3.0 eV, 2.5–2.7 eV, 2.10–2.25 eV, and 1.75–1.98 eV. The temperature dependences of photoluminescence spectra were studied with the aim to confirm the types of optical transitions and the nature of light emitting defects in silicon nitride. The former three bands were assigned to the defects in silicon nitride, whereas the last one (1.75–1.98 eV) was attributed to the exciton recombination inside of Si nanocrystals. The photoluminescence mechanism is discussed. - Highlights: • Substoichiometric silicon nitride films were grown by PECVD technique. • The variation of the NH{sub 3}/SiH{sub 4} ratio controls excess Si content in the films. • Both Si nanocrystals and amorphous Si phase were observed in annealed films. • Temperature evolution of carrier recombination via Si nanocrystals and host defects.

  13. Mechanical, Corrosion and Biological Properties of Room-Temperature Sputtered Aluminum Nitride Films with Dissimilar Nanostructure

    Directory of Open Access Journals (Sweden)

    Cristina Besleaga

    2017-11-01

    Full Text Available Aluminum Nitride (AlN has been long time being regarded as highly interesting material for developing sensing applications (including biosensors and implantable sensors. AlN, due to its appealing electronic properties, is envisaged lately to serve as a multi-functional biosensing platform. Although generally exploited for its intrinsic piezoelectricity, its surface morphology and mechanical performance (elastic modulus, hardness, wear, scratch and tensile resistance to delamination, adherence to the substrate, corrosion resistance and cytocompatibility are also essential features for high performance sustainable biosensor devices. However, information about AlN suitability for such applications is rather scarce or at best scattered and incomplete. Here, we aim to deliver a comprehensive evaluation of the morpho-structural, compositional, mechanical, electrochemical and biological properties of reactive radio-frequency magnetron sputtered AlN nanostructured thin films with various degrees of c-axis texturing, deposited at a low temperature (~50 °C on Si (100 substrates. The inter-conditionality elicited between the base pressure level attained in the reactor chamber and crystalline quality of AlN films is highlighted. The potential suitability of nanostructured AlN (in form of thin films for the realization of various type of sensors (with emphasis on bio-sensors is thoroughly probed, thus unveiling its advantages and limitations, as well as suggesting paths to safely exploit the remarkable prospects of this type of materials.

  14. Synthesis and corrosion properties of silicon nitride films by ion beam assisted deposition

    Science.gov (United States)

    Baba, K.; Hatada, R.; Emmerich, R.; Enders, B.; Wolf, G. K.

    1995-12-01

    Silicon nitride films SiN x were deposited on 316L austenitic stainless steel substrates by silicon evaporation and simultaneous nitrogen ion irradiation with an acceleration voltage of 2 kV. In order to study the influence of the nitrogen content on changes in stoichiometry, structure, morphology, thermal oxidation behaviour and corrosion behaviour, the atom to ion transport ratio was systematically varied. The changes of binding states and the stoichiometry were evaluated with XPS and AES analysis. A maximum nitrogen content was reached with a {Si}/{N} transport ratio lower than 2. The films are chemically inert when exposed to laboratory atmosphere up to a temperature of more than 1000°C. XRD and SEM measurements show amorphous and featureless films for transport ratios {Si}/{N} from 1 up to 10. The variation of the corrosion behaviour of coated stainless steel substrates in sulphuric acid and hydrochloric acid shows a minimum at medium transport ratios. This goes parallel with changes in porosity and adhesion. Additional investigations showed that titanium implantation as an intermediate step improves the corrosion resistance considerably.

  15. Mechanical, Corrosion and Biological Properties of Room-Temperature Sputtered Aluminum Nitride Films with Dissimilar Nanostructure.

    Science.gov (United States)

    Besleaga, Cristina; Dumitru, Viorel; Trinca, Liliana Marinela; Popa, Adrian-Claudiu; Negrila, Constantin-Catalin; Kołodziejczyk, Łukasz; Luculescu, Catalin-Romeo; Ionescu, Gabriela-Cristina; Ripeanu, Razvan-George; Vladescu, Alina; Stan, George E

    2017-11-17

    Aluminum Nitride (AlN) has been long time being regarded as highly interesting material for developing sensing applications (including biosensors and implantable sensors). AlN, due to its appealing electronic properties, is envisaged lately to serve as a multi-functional biosensing platform. Although generally exploited for its intrinsic piezoelectricity, its surface morphology and mechanical performance (elastic modulus, hardness, wear, scratch and tensile resistance to delamination, adherence to the substrate), corrosion resistance and cytocompatibility are also essential features for high performance sustainable biosensor devices. However, information about AlN suitability for such applications is rather scarce or at best scattered and incomplete. Here, we aim to deliver a comprehensive evaluation of the morpho-structural, compositional, mechanical, electrochemical and biological properties of reactive radio-frequency magnetron sputtered AlN nanostructured thin films with various degrees of c -axis texturing, deposited at a low temperature (~50 °C) on Si (100) substrates. The inter-conditionality elicited between the base pressure level attained in the reactor chamber and crystalline quality of AlN films is highlighted. The potential suitability of nanostructured AlN (in form of thin films) for the realization of various type of sensors (with emphasis on bio-sensors) is thoroughly probed, thus unveiling its advantages and limitations, as well as suggesting paths to safely exploit the remarkable prospects of this type of materials.

  16. APCVD hexagonal boron nitride thin films for passive near-junction thermal management of electronics

    Science.gov (United States)

    KC, Pratik; Rai, Amit; Ashton, Taylor S.; Moore, Arden L.

    2017-12-01

    The ability of graphene to serve as an ultrathin heat spreader has been previously demonstrated with impressive results. However, graphene is electrically conductive, making its use in contact with electronic devices problematic from a reliability and integration perspective. As an alternative, hexagonal boron nitride (h-BN) is a similarly structured material with large in-plane thermal conductivity but which possesses a wide band gap, thereby giving it potential to be utilized for directing contact, near-junction thermal management of electronics without shorting or the need for an insulating intermediate layer. In this work, the viability of using large area, continuous h-BN thin films as direct contact, near-junction heat spreaders for electronic devices is experimentally evaluated. Thin films of h-BN several square millimeters in size were synthesized via an atmospheric pressure chemical vapor deposition (APCVD) method that is both simple and scalable. These were subsequently transferred onto a microfabricated test device that simulated a multigate transistor while also allowing for measurements of the device temperature at various locations via precision resistance thermometry. Results showed that these large-area h-BN films with thicknesses of 77-125 nm are indeed capable of significantly lowering microdevice temperatures, with the best sample showing the presence of the h-BN thin film reduced the effective thermal resistance by 15.9% ± 4.6% compared to a bare microdevice at the same power density. Finally, finite element simulations of these experiments were utilized to estimate the thermal conductivity of the h-BN thin films and identify means by which further heat spreading performance gains could be attained.

  17. Performance evaluation of symmetric supercapacitor based on cobalt hydroxide [Co(OH)2] thin film electrodes

    International Nuclear Information System (INIS)

    Jagadale, A.D.; Kumbhar, V.S.; Dhawale, D.S.; Lokhande, C.D.

    2013-01-01

    In the present investigation, we have successfully assembled symmetric supercapacitor device based on cobalt hydroxide [Co(OH) 2 ] thin film electrodes using 1 M KOH as an electrolyte. Initially, potentiodynamic electrodeposition method is employed for the preparation of Co(OH) 2 thin films onto stainless steel substrate. These films are characterized for structural and morphological elucidations using X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The XRD reveals formation of β-Co(OH) 2 material with hexagonal crystal structure. The SEM images show formation of nanoflakes like microstructure with average flake width 100 nm. Electrochemical characterizations of Co(OH) 2 based symmetric supercapacitor cell are carried out using cyclic voltammetry, charge–discharge and electrochemical impedance spectroscopy (EIS) techniques. In the performance evaluation the maximum values of specific capacitance, specific energy and specific power are encountered as 44 F g −1 , 3.96 Wh kg −1 and 42 kW kg −1 . The value of equivalent series resistance (ESR) is estimated as 2.3 Ω using EIS

  18. Superconducting structure with layers of niobium nitride and aluminum nitride

    International Nuclear Information System (INIS)

    Murduck, J.M.; Lepetre, Y.J.; Schuller, I.K.; Ketterson, J.B.

    1989-01-01

    A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources. 8 figs

  19. Electrically conductive aluminum oxide thin film used as cobalt catalyst-support layer in vertically aligned carbon nanotube growth

    International Nuclear Information System (INIS)

    Azam, Mohd Asyadi; Ismail, Syahriza; Mohamad, Noraiham; Isomura, Kazuki; Shimoda, Tatsuya

    2015-01-01

    This paper will present the unique characteristics of aluminum oxide (Al–O) and cobalt catalyst included in aligned carbon nanotube (CNT) electrode system of energy storage device, namely electrochemical capacitor. Electrical conductivity and nanostructure of the thermally oxidized Al–O used as catalyst-support layer in vertically grown single-walled CNTs were studied. Al–O films were characterized by means of current–voltage measurement and high resolution transmission electron microscopy analysis. The Al–O support layer was found to be conductive, with a relatively low resistance and, approximately 20 nm film thickness of Al–O is suggested to be too thin to form insulating barrier. The scanning TEM—annular dark field analysis confirmed that the nanosized cobalt catalyst particles distributed on Al–O surfaces and also embedded inside the Al–O film structure. (paper)

  20. Surface Modification of C17200 Copper-Beryllium Alloy by Plasma Nitriding of Cu-Ti Gradient Film

    Science.gov (United States)

    Zhu, Y. D.; Yan, M. F.; Zhang, Y. X.; Zhang, C. S.

    2018-03-01

    In the present work, a copper-titanium film of gradient composition was firstly fabricated by the dual magnetron sputtering through power control and plasma nitriding of the film was then conducted to modify C17200 Cu alloy. The results showed that the prepared gradient Cu-Ti film by magnetron sputtering was amorphous. After plasma nitriding at 650 °C, crystalline Cu-Ti intermetallics appeared in the multi-phase coating, including CuTi2, Cu3Ti, Cu3Ti2 and CuTi. Moreover, even though the plasma nitriding duration of the gradient Cu-Ti film was only 0.5 h, the mechanical properties of the modified Cu surface were obviously improved, with the surface hardness enhanced to be 417 HV0.01, the wear rate to be 0.32 × 10-14 m3/Nm and the friction coefficient to be 0.075 at the load of 10 N, which are all more excellent than the C17200 Cu alloy. In addition, the wear mechanism also changed from adhesion wear for C17200 Cu substrate to abrasive wear for the modified surface.

  1. Ion energy/momentum effects during ion assisted growth of niobium nitride films

    Science.gov (United States)

    Klingenberg, Melissa L.

    The research described herein was performed to better understand and discern ion energy vs. ion momentum effects during ion beam assisted (IBAD) film growth and their effects on residual stress, crystalline structure, morphology, and composition, which influence film tribological properties. NbxN y was chosen for this research because it is a refractory material that can possess a large number of crystalline structures, and it has been found to have good tribological properties. To separate the effects of momentum transfer per arriving atom (p/a), which considers bombarding species mass, energy, and ion-to-atom transport ratio, from those of energy deposition per arriving atom (E/a), a mass independent parameter, different inert ion beams (krypton, argon, and neon) were used to create a matrix of coatings formed using similar energy deposition, but different momentum transfer and vice versa. Deposition was conducted in a research-scale IBAD system using electron beam evaporation, a radio frequency ion source, and a neutral nitrogen gas backfill. Films were characterized using x-ray diffraction, atomic force microscopy, Rutherford backscattering spectrometry, and residual stress analysis. Direct and quantifiable effects of bombardment were observed; however, energy deposition and momentum transfer effects could not be completely separated, confirming that thin film processes are complex. Complexities arose from ion-specific interactions (ion size, recoil energy, per cent reflected neutrals, Penning ionization, etc.) and chemistry effects that are not considered by the simple models. Overall, it can be stated that bombardment promoted nitride formation, nanocrystallinity, and compressive stress formation; influenced morphology (which influenced post-deposition oxygen uptake) and stress evolution; increased lattice parameter; modified crystalline phase and texture; and led to inert gas incorporation. High stress levels correlated strongly with material disorder and

  2. Supramolecular architectures in layer-by-layer films of single-walled carbon nanotubes, chitosan and cobalt (II) phthalocyanine

    International Nuclear Information System (INIS)

    Sousa Luz, Roberto A. de; Martins, Marccus Victor A.; Magalhaes, Janildo L.; Siqueira, Jose R.; Zucolotto, Valtencir; Oliveira, Osvaldo N.; Crespilho, Frank N.; Cantanhede da Silva, Welter

    2011-01-01

    Highlights: → Platforms were assembled from cobalt phthalocyanine, chitosan and carbon nanotubes. → Supramolecular organization of multilayer films was investigated. → Increase of the supramolecular charge transfer after carbon nanotube incorporation. → Functional modulation based on constitutional dynamic chemistry was achieved. - Abstract: The building of supramolecular structures in nanostructured films has been exploited for a number of applications, with the film properties being controlled at the molecular level. In this study, we report on the layer-by-layer (LbL) films combining cobalt (II) tetrasulfonated phthalocyanine (CoTsPc), chitosan (Chit) and single-walled carbon nanotubes (SWCNTs) in two architectures, {Chit/CoTsPc} n and {Chit-SWCNTs/CoTsPc} n (n = 1-10). The physicochemical properties of the films were evaluated and the multilayer formation was monitored with microgravimetry measurements using a quartz microbalance crystal and an electrochemical technique. According to atomic force microscopy (AFM) results, the incorporation of SWCNTs caused the films to be thicker, with a thickness ca. 3 fold that of a 2-bilayer LbL film with no SWCNTs. Cyclic voltammetry revealed a quasi-reversible, one electron process with E 1/2 at -0.65 V (vs SCE) and an irreversible oxidation process at 0.80 V in a physiological medium for both systems, which can be attributed to [CoTsPc(I)] 5- /[CoTsPc(II)] 4- and CoTsPc(II) to CoTsPc(III), respectively. The {Chit-SWCNTs/CoTsPc} 5 multilayer film exhibited an increased faradaic current, probably associated with the supramolecular charge transfer interaction between cobalt phthalocyanine and SWCNTs. The results demonstrate that an intimate contact at the supramolecular level between functional SWCNTs immobilized into biocompatible chitosan polymer and CoTsPc improves the electron flow from CoTsPc redox sites to the electrode surface.

  3. Carbon thin films deposited by the magnetron sputtering technique using cobalt, copper and nickel as buffer-layers

    International Nuclear Information System (INIS)

    Costa e Silva, Danilo Lopes

    2015-01-01

    In this work, carbon thin films were produced by the magnetron sputtering technique using single crystal substrates of alumina c-plane (0001) and Si (111) and Si (100) substrates, employing Co, Ni and Cu as intermediate films (buffer-layers). The depositions were conducted in three stages, first with cobalt buffer-layers where only after the production of a large number of samples, the depositions using cooper buffer-layers were carried out on Si substrates. Then, depositions were performed with nickel buffer layers using single-crystal alumina substrates. The crystallinity of the carbon films was evaluated by using the technique of Raman spectroscopy and, then, by X-ray diffraction (XRD). The morphological characterization of the films was performed by scanning electron microscopy (SEM and FEG-SEM) and high-resolution transmission electron microscopy (HRTEM). The XRD peaks related to the carbon films were observed only in the results of the samples with cobalt and nickel buffer-layers. The Raman spectroscopy showed that the carbon films with the best degree of crystallinity were the ones produced with Si (111) substrates, for the Cu buffers, and sapphire substrates for the Ni and Co buffers, where the latter resulted in a sample with the best crystallinity of all the ones produced in this work. It was observed that the cobalt has low recovering over the alumina substrates when compared to the nickel. Sorption tests of Ce ions by the carbon films were conducted in two samples and it was observed that the sorption did not occur probably because of the low crystallinity of the carbon films in both samples. (author)

  4. Electrical transport and capacitance characteristics of metal-insulator-metal structures using hexagonal and cubic boron nitride films as dielectrics

    Science.gov (United States)

    Teii, Kungen; Kawamoto, Shinsuke; Fukui, Shingo; Matsumoto, Seiichiro

    2018-04-01

    Metal-insulator-metal capacitor structures using thick hexagonal and cubic boron nitride (hBN and cBN) films as dielectrics are produced by plasma jet-enhanced chemical vapor deposition, and their electrical transport and capacitance characteristics are studied in a temperature range of 298 to 473 K. The resistivity of the cBN film is of the order of 107 Ω cm at 298 K, which is lower than that of the hBN film by two orders of magnitude, while it becomes the same order as the hBN film above ˜423 K. The dominant current transport mechanism at high fields (≥1 × 104 V cm-1) is described by the Frenkel-Poole emission and thermionic emission models for the hBN and cBN films, respectively. The capacitance of the hBN film remains stable for a change in alternating-current frequency and temperature, while that of the cBN film has variations of at most 18%. The dissipation factor as a measure of energy loss is satisfactorily low (≤5%) for both films. The origin of leakage current and capacitance variation is attributed to a high defect density in the film and a transition interlayer between the substrate and the film, respectively. This suggests that cBN films with higher crystallinity, stoichiometry, and phase purity are potentially applicable for dielectrics like hBN films.

  5. Gallium nitride based thin films for photon and particle radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Hofstetter, Markus

    2012-07-23

    Ionization chambers have been used since the beginning of the 20th century for measuring ionizing radiation and still represent the ''gold standard'' in dosimetry. However, since the sensitivity of the devices is proportional to the detection volume, ionization chambers are not common in numerous medical applications, such as imaging. In these fields, spatially resolved dose information is, beside film-systems, usually measured with scintillators and photo-multipliers, which is a relatively complex and expensive technique. For thus much effort has been focused on the development of novel detection systems in the last decades and especially in the last few years. Examples include germanium or silicon photoconductive detectors, MOSFETs, and PIN-diodes. Although for these systems, miniaturization for spatially resolved detection is possible, they suffer from a range of disadvantages. Characteristics such as poor measurement stability, material degradation, and/or a limited measurement range prevent routine application of these techniques in medical diagnostic devices. This work presents the development and evaluation of gallium nitride (GaN) thin films and heterostructures to validate their application in x-ray detection in the medical regime. Furthermore, the impact of particle radiation on device response was investigated. Although previous publications revealed relatively low energy absorption of GaN, it is possible to achieve very high signal amplification factors inside the material due to an appropriate sensor configuration, which, in turn, compensates the low energy absorption. Thus, gallium nitride can be used as a photo-conductor with ohmic contacts. The conductive volume of the sensor changes in the presence of external radiation, which results in an amplified measurement signal after applying a bias voltage to the device. Experiments revealed a sensitivity of the device between air kerma rates of 1 {mu}Gy/s and 20 mGy/s. In this range

  6. Effects of processing parameters on the properties of tantalum nitride thin films deposited by reactive sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Nazon, J.; Sarradin, J.; Flaud, V.; Tedenac, J.C. [Institut Charles Gerhardt, UMR 5253 CNRS-UM2-ENSCM-UM1, cc 1504, Place E. Bataillon, 34095 Montpellier Cedex 5 (France); Frety, N. [Institut Charles Gerhardt, UMR 5253 CNRS-UM2-ENSCM-UM1, cc 1504, Place E. Bataillon, 34095 Montpellier Cedex 5 (France)], E-mail: Nicole.Frety@univ-montp2.fr

    2008-09-22

    The effects of processing parameters on the properties of tantalum nitride thin films deposited by radio frequency reactive sputtering have been investigated. The influence of the N{sub 2} partial and (Ar + N{sub 2}) total gas pressures as well as the sputtering power on the microstructure and electrical properties is reported. Rising the N{sub 2} partial pressure, from 2 to 10.7%, induces a change in the composition of the {delta}-TaN phase, from TaN to TaN{sub 1.13}. This composition change is associated with a drastic increase of the electrical resistivity over a 7.3% N{sub 2} partial pressure. The total gas pressure is revealed to strongly affect the film microstructure since a variation in both composition and grain size is observed when the gas pressure rises from 6.8 to 24.6 Pa. When the sputtering power varied between 50 and 110 W, an increase of the grain size related to a decrease of the electrical resistivity is observed.

  7. Simulated radiation effects in the superinsulating phase of titanium nitride films

    Directory of Open Access Journals (Sweden)

    Vujisić Miloš Lj.

    2011-01-01

    Full Text Available This paper investigates possible effects of alpha particle and ion beam irradiation on the properties of the superinsulating phase, recently observed in titanium nitride films, by using numerical simulation of particle transport. Unique physical properties of the superinsulating state are considered by relying on a two-dimensional Josephson junction array as a model of material structure. It is suggested that radiation-induced change of the Josephson junction charging energy would not affect the current-voltage characteristics of the superinsulating film significantly. However, it is theorized that a relapse to an insulating state with thermally activated resistance is possible, due to radiation-induced disruption of the fine-tuned granular structure. The breaking of Cooper pairs caused by incident and displaced ions may also destroy the conditions for a superinsulating phase to exist. Finally, even the energy loss to phonons can influence the superinsulating state, by increasing the effective temperature of the phonon thermostat, thereby reestablishing means for an energy exchange that can support Cooper pair tunneling.

  8. Galvanic corrosion of structural non-stoichiometric silicon nitride thin films and its implications on reliability of microelectromechanical devices

    Energy Technology Data Exchange (ETDEWEB)

    Broas, M., E-mail: mikael.broas@aalto.fi; Mattila, T. T.; Paulasto-Kröckel, M. [Department of Electrical Engineering and Automation, Aalto University, Espoo, P.O. Box 13500, FIN-00076 Aalto (Finland); Liu, X.; Ge, Y. [Department of Materials Science and Engineering, Aalto University, Espoo, P.O. Box 16200, FIN-00076 Aalto (Finland)

    2015-06-28

    This paper describes a reliability assessment and failure analysis of a poly-Si/non-stoichiometric silicon nitride thin film composite structure. A set of poly-Si/SiN{sub x} thin film structures were exposed to a mixed flowing gas (MFG) environment, which simulates outdoor environments, for 90 days, and an elevated temperature and humidity (85 °C/95% R.H.) test for 140 days. The mechanical integrity of the thin films was observed to degrade during exposure to the chemically reactive atmospheres. The degree of degradation was analyzed with nanoindentation tests. Statistical analysis of the forces required to initiate a fracture in the thin films indicated degradation due to the exposure to the MFG environment in the SiN{sub x} part of the films. Scanning electron microscopy revealed a porous-like reaction layer on top of SiN{sub x}. The morphology of the reaction layer resembled that of galvanically corroded poly-Si. Transmission electron microscopy further clarified the microstructure of the reaction layer which had a complex multi-phase structure extending to depths of ∼100 nm. Furthermore, the layer was oxidized two times deeper in a 90 days MFG-tested sample compared to an untested reference. The formation of the layer is proposed to be caused by galvanic corrosion of elemental silicon in non-stoichiometric silicon nitride during hydrofluoric acid etching. The degradation is proposed to be due uncontrolled oxidation of the films during the stress tests.

  9. Ion-bombardment-induced reduction in vacancies and its enhanced effect on conductivity and reflectivity in hafnium nitride films

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Zhiqing; Wang, Jiafu; Hu, Chaoquan; Zhang, Xiaobo; Dang, Jianchen; Gao, Jing; Zheng, Weitao [Jilin University, School of Materials Science and Engineering, Key Laboratory of Mobile Materials, MOE, and State Key Laboratory of Superhard Materials, Changchun (China); Zhang, Sam [Nanyang Technological University, School of Mechanical and Aerospace Engineering, Singapore (Singapore); Wang, Xiaoyi [Chinese Academy of Sciences, Key Laboratory of Optical System Advanced Manufacturing Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Changchun (China); Chen, Hong [Jilin University, Department of Control Science and Engineering, Changchun (China)

    2016-08-15

    Although the role of ion bombardment on electrical conductivity and optical reflectivity of transition metal nitrides films was reported previously, the results were controversial and the mechanism was not yet well explored. Here, we show that proper ion bombardment, induced by applying the negative bias voltage (V{sub b}), significantly improves the electrical conductivity and optical reflectivity in rocksalt hafnium nitride films regardless of level of stoichiometry (i.e., in both near-stoichiometric HfN{sub 1.04} and over-stoichiometric HfN{sub 1.17} films). The observed improvement arises from the increase in the concentration of free electrons and the relaxation time as a result of reduction in nitrogen and hafnium vacancies in the films. Furthermore, HfN{sub 1.17} films have always much lower electrical conductivity and infrared reflectance than HfN{sub 1.04} films for a given V{sub b}, owing to more hafnium vacancies because of larger composition deviation from HfN exact stoichiometry (N:Hf = 1:1). These new insights are supported by good agreement between experimental results and theoretical calculations. (orig.)

  10. Spin Hall magnetoresistance at the interface between platinum and cobalt ferrite thin films with large magnetic anisotropy

    Directory of Open Access Journals (Sweden)

    Takeshi Tainosho

    2017-05-01

    Full Text Available The recently discovered spin Hall magnetoresistance (SMR effect is a useful means to obtain information on the magnetization process at the interface between a nonmagnetic metal and ferromagnetic insulators. We report the SMR measurements at the interface between platinum and cobalt ferrite thin films for samples with two different preferential directions of magnetization (out-of-plane and in-plane. The directional difference of the magnetic easy axis does not seem to influence the value of SMR.

  11. Polarity inversion of AlN film grown on nitrided a-plane sapphire substrate with pulsed DC reactive sputtering

    Directory of Open Access Journals (Sweden)

    Marsetio Noorprajuda

    2018-04-01

    Full Text Available The effect of oxygen partial pressure (PO2 on polarity and crystalline quality of AlN films grown on nitrided a-plane sapphire substrates by pulsed direct current (DC reactive sputtering was investigated as a fundamental study. The polarity inversion of AlN from nitrogen (−c-polarity to aluminum (+c-polarity occurred during growth at a high PO2 of 9.4×103 Pa owing to Al-O octahedral formation at the interface of nitrided layer and AlN sputtered film which reset the polarity of AlN. The top part of the 1300 nm-thick AlN film sputtered at the high PO2 was polycrystallized. The crystalline quality was improved owing to the high kinetic energy of Al sputtered atom in the sputtering phenomena. Thinner AlN films were also fabricated at the high PO2 to eliminate the polycrystallization. For the 200 nm-thick AlN film sputtered at the high PO2, the full width at half-maximum values of the AlN (0002 and (10−12 X-ray diffraction rocking curves were 47 and 637 arcsec, respectively.

  12. First-principles study of the effects of halogen dopants on the properties of intergranular films in silicon nitride ceramics

    International Nuclear Information System (INIS)

    Painter, Gayle S.; Becher, Paul F.; Kleebe, H.-J.; Pezzotti, G.

    2002-01-01

    The nanoscale intergranular films that form in the sintering of ceramics often occur as adherent glassy phases separating the crystalline grains in the ceramic. Consequently, the properties of these films are often equal in importance to those of the constituent grains in determining the ceramic's properties. The measured characteristics of the silica-rich phase separating the crystalline grains in Si 3 N 4 and many other ceramics are so reproducible that SiO 2 has become a model system for studies of intergranular films (IGF's). Recently, the influence of fluorine and chlorine dopants in SiO 2 -rich IGF's in silicon nitride was precisely documented by experiment. Along with the expected similarities between the halogens, some dramatically contrasting effects were found. But the atomic-scale mechanisms distinguishing the effects F and Cl on IGF behavior have not been well understood. First-principles density functional calculations reported here provide a quantum-level description of how these dopant-host interactions affect the properties of IGF's, with specific modeling of F and Cl in the silica-rich IGF in silicon nitride. Calculations were carried out for the energetics, structural changes, and forces on the atoms making up a model cluster fragment of an SiO 2 intergranular film segment in silicon nitride with and without dopants. Results show that both anions participate in the breaking of bonds within the IGF, directly reducing the viscosity of the SiO 2 -rich film and promoting decohesion. Observed differences in the way fluorine and chlorine affect IGF behavior become understandable in terms of the relative stabilities of the halogens as they interact with Si atoms that have lost one if their oxygen bridges

  13. Improvement in interfacial characteristics of low-voltage carbon nanotube thin-film transistors with solution-processed boron nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Jun-Young; Ha, Tae-Jun, E-mail: taejunha0604@gmail.com

    2017-08-15

    Highlights: • We demonstrate the potential of solution-processed boron nitride (BN) thin films for nanoelectronics. • Improved interfacial characteristics reduced the leakage current by three orders of magnitude. • The BN encapsulation improves all the device key metrics of low-voltage SWCNT-TFTs. • Such improvements were achieved by reduced interaction of interfacial localized states. - Abstract: In this article, we demonstrate the potential of solution-processed boron nitride (BN) thin films for high performance single-walled carbon nanotube thin-film transistors (SWCNT-TFTs) with low-voltage operation. The use of BN thin films between solution-processed high-k dielectric layers improved the interfacial characteristics of metal-insulator-metal devices, thereby reducing the current density by three orders of magnitude. We also investigated the origin of improved device performance in SWCNT-TFTs by employing solution-processed BN thin films as an encapsulation layer. The BN encapsulation layer improves the electrical characteristics of SWCNT-TFTs, which includes the device key metrics of linear field-effect mobility, sub-threshold swing, and threshold voltage as well as the long-term stability against the aging effect in air. Such improvements can be achieved by reduced interaction of interfacial localized states with charge carriers. We believe that this work can open up a promising route to demonstrate the potential of solution-processed BN thin films on nanoelectronics.

  14. Stress and piezoelectric properties of aluminum nitride thin films deposited onto metal electrodes by pulsed direct current reactive sputtering

    International Nuclear Information System (INIS)

    Dubois, Marc-Alexandre; Muralt, Paul

    2001-01-01

    Polycrystalline aluminum nitride thin films were deposited onto platinum, aluminum, and titanium electrodes by reactive magnetron sputtering in the pulsed direct current mode. The films exhibited all a columnar microstructure and a c-axis texture. The built-in stress and the piezoelectric properties of these films were studied as a function of both the processing conditions and the electrode material. Stress was found to be very much dependent on the growth conditions, and values ranging from strong compression to high tension were observed. The piezoelectric d 33,f coefficient was shown to rely on substrate quality and ionic bombardment: The nucleation surface must be stable with regard to the nitrogen plasma and present a hexagonal symmetry and, on the other hand, enough energy must be delivered to the growing film through ionic bombardment. [copyright] 2001 American Institute of Physics

  15. Surface cleaning procedures for thin films of indium gallium nitride grown on sapphire

    Energy Technology Data Exchange (ETDEWEB)

    Douglass, K.; Hunt, S. [Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716 (United States); Teplyakov, A., E-mail: andrewt@udel.edu [Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716 (United States); Opila, R.L. [Department of Material Science and Engineering, University of Delaware, Newark, DE 19716 (United States)

    2010-12-15

    Surface preparation procedures for indium gallium nitride (InGaN) thin films were analyzed for their effectiveness for carbon and oxide removal as well as for the resulting surface roughness. Aqua regia (3:1 mixture of concentrated hydrochloric acid and concentrated nitric acid, AR), hydrofluoric acid (HF), hydrochloric acid (HCl), piranha solution (1:1 mixture of sulfuric acid and 30% H{sub 2}O{sub 2}) and 1:9 ammonium sulfide:tert-butanol were all used along with high temperature anneals to remove surface contamination. X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) were utilized to study the extent of surface contamination and surface roughness, respectively. The ammonium sulfide treatment provided the best overall removal of oxygen and carbon. Annealing over 700 deg. C after a treatment showed an even further improvement in surface contamination removal. The piranha treatment resulted in the lowest residual carbon, while the ammonium sulfide treatment leads to the lowest residual oxygen. AFM data showed that all the treatments decreased the surface roughness (with respect to as-grown specimens) with HCl, HF, (NH{sub 4}){sub 2}S and RCA procedures giving the best RMS values ({approx}0.5-0.8 nm).

  16. Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film.

    Science.gov (United States)

    Nishiyama, Hidetoshi; Suga, Mitsuo; Ogura, Toshihiko; Maruyama, Yuusuke; Koizumi, Mitsuru; Mio, Kazuhiro; Kitamura, Shinichi; Sato, Chikara

    2010-03-01

    Direct observation of subcellular structures and their characterization is essential for understanding their physiological functions. To observe them in open environment, we have developed an inverted scanning electron microscope with a detachable, open-culture dish, capable of 8 nm resolution, and combined with a fluorescence microscope quasi-simultaneously observing the same area from the top. For scanning electron microscopy from the bottom, a silicon nitride film window in the base of the dish maintains a vacuum between electron gun and open sample dish while allowing electrons to pass through. Electrons are backscattered from the sample and captured by a detector under the dish. Cells cultured on the open dish can be externally manipulated under optical microscopy, fixed, and observed using scanning electron microscopy. Once fine structures have been revealed by scanning electron microscopy, their component proteins may be identified by comparison with separately prepared fluorescence-labeled optical microscopic images of the candidate proteins, with their heavy-metal-labeled or stained ASEM images. Furthermore, cell nuclei in a tissue block stained with platinum-blue were successfully observed without thin-sectioning, which suggests the applicability of this inverted scanning electron microscope to cancer diagnosis. This microscope visualizes mesoscopic-scale structures, and is also applicable to non-bioscience fields including polymer chemistry. (c) 2010 Elsevier Inc. All rights reserved.

  17. Influence of electroformation regime on the specific properties of cobalt oxide‒platinum composite films deposited on conductive diamond

    Energy Technology Data Exchange (ETDEWEB)

    Spătaru, Tanţa; Osiceanu, Petre; Preda, Loredana; Munteanu, Cornel [Institute of Physical Chemistry “Ilie Murgulescu”, 202 Spl. Independenţei 060021, Bucharest (Romania); Spătaru, Nicolae, E-mail: nspataru@icf.ro [Institute of Physical Chemistry “Ilie Murgulescu”, 202 Spl. Independenţei 060021, Bucharest (Romania); Fujishima, Akira [Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku Tokyo 162-8601 (Japan)

    2014-04-01

    Two straightforward electrochemical methods were used in the present work for depositing cobalt oxide-platinum composite films on boron-doped diamond substrates in order to put into evidence the effect of the electroformation regime on the morphological and electrochemical features of these hybrid systems. The shift from potentiostatic to potentiodynamic deposition enabled not only a significant improvement of the Pt particles dispersion but also a much higher surface concentration of oxygenated species of platinum. For similar Co{sub 3}O{sub 4} and Pt loadings, the specific capacitance of the composite films deposited by cyclic voltammetry was with ca. 8% higher than that of the potentiostatically obtained ones. Additional advantage of potentiodynamic deposition is the improved resistance to fouling during methanol anodic oxidation of Pt particles, tentatively ascribed to the higher surface concentration of oxygenated species of platinum. - Highlights: • Cobalt oxide-platinum composite films were electrodeposited on conductive diamond. • Composite films formed by cyclic voltammetry exhibit enhanced specific capacitance. • Potentiodynamic deposition enables higher concentration of oxygenated Pt species. • Co{sub 3}O{sub 4}–Pt films prepared by cyclic voltammetry are less susceptible to CO poisoning.

  18. Compositional analysis of silicon nitride films on Si and GaAs by backscattering spectrometry and nuclear resonance reaction analysis

    International Nuclear Information System (INIS)

    Kumar, Sanjiv; Raju, V.S.

    2004-01-01

    This paper describes the application of proton and α-backscattering spectrometry for the determination of atomic ratio of Si to N in 1100-5000 A silicon nitride films on Si and GaAs. The conventional α-Rutherford backscattering spectrometry is suitable for the analysis of films on Si; it is rather inadequate for films on GaAs due to higher background from the substrate. It is shown that these films can be analysed by 14 N(α,α) 14 N scattering with 3.5 MeV α-particles. Proton elastic scattering with enhanced cross sections for 28 Si(p,p) 28 Si and 14 N(p,p) 14 N scatterings, is also suitable for analysing films on GaAs. However, the analysis of films on Si by this technique is difficult due to interferences between the signals of Si from the film and the substrate. In addition, the hydrogen content in films is determined by 1 H( 19 F,αγ) 16 O nuclear reaction analysis using the resonance at 6.4 MeV. The combination of backscattering spectrometry with nuclear reaction analysis provides compositional analysis of ternary Si 1-(x+y) N x H y films

  19. Structural and optical properties of amorphous oxygenated iron boron nitride thin films produced by reactive co-sputtering

    International Nuclear Information System (INIS)

    Essafti, A.; Abouelaoualim, A.; Fierro, J.L.G.; Ech-chamikh, E.

    2009-01-01

    Amorphous oxygenated iron boron nitride (a-FeBN:O) thin films were prepared by reactive radio-frequency (RF) sputtering, from hexagonal boron nitride chips placed on iron target, under a total pressure of a gas mixture of argon and oxygen maintained at 1 Pa. The films were deposited onto silicon and glass substrates, at room temperature. The power of the generator RF was varied from 150 to 350 W. The chemical and structural analyses were investigated using X-ray photoelectron spectroscopy (XPS), energy dispersive of X-ray and X-ray reflectometry (XRR). The optical properties of the films were obtained from the optical transmittance and reflectance measurements in the ultraviolet-visible-near infrared wavelengths range. XPS reveals the presence of boron, nitrogen, iron and oxygen atoms and also the formation of different chemical bonds such as Fe-O, B-N, B-O and the ternary BNO phase. This latter phase is predominant in the deposited films as observed in the B 1s and N 1s core level spectra. As the RF power increases, the contribution of N-B bonds in the as-deposited films decreases. The XRR results show that the mass density of a-FeBN:O thin films increases from 2.6 to 4.12 g/cm 3 with increasing the RF power from 150 to 350 W. This behavior is more important for films deposited at RF power higher than 150 W, and has been associated with the enhancement of iron atoms in the film structure. The optical band gap decreases from 3.74 to 3.12 eV with increasing the RF power from 150 to 350 W.

  20. Enhanced Magnetization of Cobalt Defect Clusters Embedded in TiO2-δ Films.

    Science.gov (United States)

    Cortie, David L; Khaydukov, Yury; Keller, Thomas; Sprouster, David J; Hughes, Jacob S; Sullivan, James P; Wang, Xiaolin L; Le Brun, Anton P; Bertinshaw, Joel; Callori, Sara J; Aughterson, Robert; James, Michael; Evans, Peter J; Triani, Gerry; Klose, Frank

    2017-03-15

    High magnetizations are desirable for spintronic devices that operate by manipulating electronic states using built-in magnetic fields. However, the magnetic moment in promising dilute magnetic oxide nanocomposites is very low, typically corresponding to only fractions of a Bohr magneton for each dopant atom. In this study, we report a large magnetization formed by ion implantation of Co into amorphous TiO 2-δ films, producing an inhomogeneous magnetic moment, with certain regions producing over 2.5 μ B per Co, depending on the local dopant concentration. Polarized neutron reflectometry was used to depth-profile the magnetization in the Co:TiO 2-δ nanocomposites, thus confirming the pivotal role of the cobalt dopant profile inside the titania layer. X-ray photoemission spectra demonstrate the dominant electronic state of the implanted species is Co 0 , with a minor fraction of Co 2+ . The detected magnetizations have seldom been reported before and lie near the upper limit set by Hund's rules for Co 0 , which is unusual because the transition metal's magnetic moment is usually reduced in a symmetric 3D crystal-field environment. Low-energy positron annihilation lifetime spectroscopy indicates that defect structures within the titania layer are strongly modified by the implanted Co. We propose that a clustering motif is promoted by the affinity of the positively charged implanted species to occupy microvoids native to the amorphous host. This provides a seed for subsequent doping and nucleation of nanoclusters within an unusual local environment.

  1. Exchange Bias Optimization by Controlled Oxidation of Cobalt Nanoparticle Films Prepared by Sputter Gas Aggregation

    Directory of Open Access Journals (Sweden)

    Ricardo López Antón

    2017-03-01

    Full Text Available Porous films of cobalt nanoparticles have been obtained by sputter gas aggregation and controllably oxidized by air annealing at 100 °C for progressively longer times (up to more than 1400 h. The magnetic properties of the samples were monitored during the process, with a focus on the exchange bias field. Air annealing proves to be a convenient way to control the Co/CoO ratio in the samples, allowing the optimization of the exchange bias field to a value above 6 kOe at 5 K. The occurrence of the maximum in the exchange bias field is understood in terms of the density of CoO uncompensated spins and their degree of pinning, with the former reducing and the latter increasing upon the growth of a progressively thicker CoO shell. Vertical shifts exhibited in the magnetization loops are found to correlate qualitatively with the peak in the exchange bias field, while an increase in vertical shift observed for longer oxidation times may be explained by a growing fraction of almost completely oxidized particles. The presence of a hummingbird-like form in magnetization loops can be understood in terms of a combination of hard (biased and soft (unbiased components; however, the precise origin of the soft phase is as yet unresolved.

  2. Investigation of cobalt porphyrin doped polymer membrane films for the optical sensing of imidazole and its derivatives

    Directory of Open Access Journals (Sweden)

    Yueyang Tan

    2015-03-01

    Full Text Available A cobalt(II porphyrin was successfully incorporated into polymer membranes for the optical sensing of imidazole and its derivatives. This research has led to a better understanding of the behavior of Co(II porphyrin in solution and in polymeric membranes. In aprotic dichloromethane (DCM, the Co(II tetraphenylporphyrin (CoTPP and Co(II octaethylporphyrin (CoOEP show a sensitive response to imidazole due to the strong ligation of the N-3 on the imidazole ring to the Co(II center, which induces an absorbance change to the Soret band. However, when doped in polymeric films, only the CoTPP exhibits moderate sensitivity towards aqueous imidazole, histamine and histidine. This weakened coordination ability of CoTPP towards imidazole in the polymer films may be due to the coordination of the plasticizer, the impurities from the THF and polymer matrix at the Co(II center. The selectivity of the polymer films towards imidazole over common anions is high. Lifetime of the cobalt(II porphyrin incorporated polymer film was relatively short.

  3. Surface properties of self-assembled monolayer films of tetra-substituted cobalt, iron and manganese alkylthio phthalocyanine complexes

    Energy Technology Data Exchange (ETDEWEB)

    Akinbulu, Isaac Adebayo; Khene, Samson [Department of Chemistry, Rhodes University, Grahamstown 6140 (South Africa); Nyokong, Tebello, E-mail: t.nyokong@ru.ac.z [Department of Chemistry, Rhodes University, Grahamstown 6140 (South Africa)

    2010-09-30

    Self-assembled monolayer (SAM) films of iron (SAM-1), cobalt (SAM-2) and manganese (SAM-3) phthalocyanine complexes, tetra-substituted with diethylaminoethanethio at the non-peripheral positions, were formed on gold electrode in dimethylformamide (DMF). Electrochemical, impedimentary and surface properties of the SAM films were investigated. Cyclic voltammetry was used to investigate the electrochemical properties of the films. Ability of the films to inhibit common faradaic processes on bare gold surface (gold oxidation, solution redox chemistry of [Fe(H{sub 2}O){sub 6}]{sup 3+}/[Fe(H{sub 2}O){sub 6}]{sup 2+} and underpotential deposition (UDP) of copper) was investigated. Electrochemical impedance spectroscopy (EIS), using [Fe(CN){sub 6}]{sup 3-/4-} redox process as a probe, offered insights into the electrical properties of the films/electrode interfaces. Surface properties of the films were probed using atomic force microscopy (AFM) and scanning electron microscopy (SEM). The films were employed for the electrocatalytic oxidation of the pesticide, carbofuran. Electrocatalysis was evidenced from enhanced current signal and less positive oxidation potential of the pesticide on each film, relative to that observed on the bare gold electrode. Mechanism of electrocatalytic oxidation of the pesticide was studied using rotating disc electrode voltammetry.

  4. Screen-printed carbon electrode modified on its surface with amorphous carbon nitride thin film: Electrochemical and morphological study

    Energy Technology Data Exchange (ETDEWEB)

    Ghamouss, F. [Universite de Nantes, UMR 6006-CNRS, FR-2465-CNRS, Laboratoire d' Analyse isotopique et Electrochimique de Metabolismes (LAIEM) (France); Tessier, P.-Y. [Universite de Nantes, UMR CNRS 6502, Institut des Materiaux Jean Rouxel - IMN Faculte des Sciences and des Techniques de Nantes, 2 rue de la Houssiniere, 44322 Nantes Cedex 3 (France); Djouadi, A. [Universite de Nantes, UMR CNRS 6502, Institut des Materiaux Jean Rouxel - IMN Faculte des Sciences and des Techniques de Nantes, 2 rue de la Houssiniere, 44322 Nantes Cedex 3 (France); Besland, M.-P. [Universite de Nantes, UMR CNRS 6502, Institut des Materiaux Jean Rouxel - IMN Faculte des Sciences and des Techniques de Nantes, 2 rue de la Houssiniere, 44322 Nantes Cedex 3 (France); Boujtita, M. [Universite de Nantes, UMR 6006-CNRS, FR-2465-CNRS, Laboratoire d' Analyse isotopique et Electrochimique de Metabolismes (LAIEM) (France)]. E-mail: mohammed.boujtita@univ-nantes.fr

    2007-04-20

    The surface of a screen-printed carbon electrode (SPCE) was modified by using amorphous carbon nitride (a-CN {sub x}) thin film deposited by reactive magnetron sputtering. Scanning electron microscopy and photoelectron spectroscopy measurements were used to characterise respectively the morphology and the chemical structure of the a-CN {sub x} modified electrodes. The incorporation of nitrogen in the amorphous carbon network was demonstrated by X ray photoelectron spectroscopy. The a-CN {sub x} layers were deposited on both carbon screen-printed electrode (SPCE) and silicon (Si) substrates. A comparative study showed that the nature of substrate, i.e. SPCE and Si, has a significant effect on both the surface morphology of deposited a-CN {sub x} film and their electrochemical properties. The improvement of the electrochemical reactivity of SPCE after a-CN {sub x} film deposition was highlighted both by comparing the shapes of voltammograms and calculating the apparent heterogeneous electron transfer rate constant.

  5. Laser formation of titanium nitride films as a result of Ti coating modification in a nitrogen atmosphere

    Science.gov (United States)

    Eskin, Sergei

    1998-12-01

    Laser treatment of the 303 and 416 stainless steels with Ti precoating was studied. CW CO2 and UV ArF excimer lasers were used. The TiN films were formed at a treatment velocity of 0.5 to 3 - 5 cm/sec and a power density of CO2 laser at (3 - 5) 104 W/cm2. X-ray diffractometry, x-ray mapping and Auger electron spectroscopy techniques indicated a TiN phase on the surface with oxygen content 12 - 25 at%. The thickness of the TiN film was 0.3 - 0.4 micrometers after treatment of the 5 micrometers Ti coating and about 900 angstroms for the 0.3 micrometers coating. Some characteristics of TiN films were examined and features of the nitriding process are discussed.

  6. Growth and characterization of thin oriented Co3O4 (111) films obtained by decomposition of layered cobaltates NaxCoO2

    Czech Academy of Sciences Publication Activity Database

    Buršík, Josef; Soroka, Miroslav; Kužel, R.; Mika, Filip

    2015-01-01

    Roč. 227, JUL (2015), s. 17-24 ISSN 0022-4596 R&D Projects: GA ČR GA13-03708S; GA ČR(CZ) GA14-18392S Institutional support: RVO:61388980 ; RVO:68081731 Keywords : Cobalt oxides * Spinels * Layered cobaltates * Chemical solution deposition * Thin films Subject RIV: CA - Inorganic Chemistry; JA - Electronics ; Optoelectronics, Electrical Engineering (UPT-D) Impact factor: 2.265, year: 2015

  7. Supramolecular architectures in layer-by-layer films of single-walled carbon nanotubes, chitosan and cobalt (II) phthalocyanine

    Energy Technology Data Exchange (ETDEWEB)

    Sousa Luz, Roberto A. de; Martins, Marccus Victor A.; Magalhaes, Janildo L. [Departamento de Quimica, Centro de Ciencias da Natureza, Universidade Federal do Piaui, Teresina - PI, CEP 64049-550 (Brazil); Siqueira, Jose R. [Instituto de Ciencias Exatas, Naturais e Educacao, Universidade Federal do Triangulo Mineiro, Uberaba - MG, CEP 38025-180, Brazil (Brazil); Zucolotto, Valtencir; Oliveira, Osvaldo N. [Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, Sao Carlos - SP, CEP 13560-970 (Brazil); Crespilho, Frank N. [Centro de Ciencias Naturais e Humanas, Universidade Federal do ABC, Santo Andre - SP, CEP 09210-170 (Brazil); Cantanhede da Silva, Welter, E-mail: welter@ufpi.edu.br [Departamento de Quimica, Centro de Ciencias da Natureza, Universidade Federal do Piaui, Teresina - PI, CEP 64049-550 (Brazil)

    2011-11-01

    Highlights: {yields} Platforms were assembled from cobalt phthalocyanine, chitosan and carbon nanotubes. {yields} Supramolecular organization of multilayer films was investigated. {yields} Increase of the supramolecular charge transfer after carbon nanotube incorporation. {yields} Functional modulation based on constitutional dynamic chemistry was achieved. - Abstract: The building of supramolecular structures in nanostructured films has been exploited for a number of applications, with the film properties being controlled at the molecular level. In this study, we report on the layer-by-layer (LbL) films combining cobalt (II) tetrasulfonated phthalocyanine (CoTsPc), chitosan (Chit) and single-walled carbon nanotubes (SWCNTs) in two architectures, {l_brace}Chit/CoTsPc{r_brace}{sub n} and {l_brace}Chit-SWCNTs/CoTsPc{r_brace}{sub n} (n = 1-10). The physicochemical properties of the films were evaluated and the multilayer formation was monitored with microgravimetry measurements using a quartz microbalance crystal and an electrochemical technique. According to atomic force microscopy (AFM) results, the incorporation of SWCNTs caused the films to be thicker, with a thickness ca. 3 fold that of a 2-bilayer LbL film with no SWCNTs. Cyclic voltammetry revealed a quasi-reversible, one electron process with E{sub 1/2} at -0.65 V (vs SCE) and an irreversible oxidation process at 0.80 V in a physiological medium for both systems, which can be attributed to [CoTsPc(I)]{sup 5-}/[CoTsPc(II)]{sup 4-} and CoTsPc(II) to CoTsPc(III), respectively. The {l_brace}Chit-SWCNTs/CoTsPc{r_brace}{sub 5} multilayer film exhibited an increased faradaic current, probably associated with the supramolecular charge transfer interaction between cobalt phthalocyanine and SWCNTs. The results demonstrate that an intimate contact at the supramolecular level between functional SWCNTs immobilized into biocompatible chitosan polymer and CoTsPc improves the electron flow from CoTsPc redox sites to the

  8. The characteristics and residual stress of aluminum nitride films grown by two-stage sputtering of mid-frequency power

    International Nuclear Information System (INIS)

    Lin, T.-C.; Cheng, H.-E.; Tang, S.-H.; Liu, W.-C.; Lee, Antony H.C.

    2008-01-01

    The [0 0 2] oriented aluminum nitride has a high surface acoustic wave speed and high mechanic-electron couple coefficient. It is a potential material for manufacturing piezoelectric devices in high frequency application. The AlN films deposited onto silicon substrates were fabricated by two-stage sputtering process with mid-frequency generator. The results showed that the film did not have well [0 0 2] preferred orientation at 1.0 and 1.5 kW, and exhibited a [0 0 2] preferred orientation at 2.0 kW. The adhesion was poor when the film had a high preferred orientation because the substrate was damaged by high energetic atoms bombardment. A two-stage growth method was investigated in order to get high [0 0 2] preferred orientation and good adhesion. A good performance was obtained at the first stage power of 1.5 kW and the second stage power of 2.0 kW. The film showed a tensile stress state when the film was deposited at 1.0 kW. In contrast, the stress state was changed to compressive when the films were grown at 2.0 kW. The two-stage growth could succeed not only to get a high [0 0 2] preferred orientation but also to develop a reducing global stress film

  9. Characterisation of titanium nitride films obtained by metalorganic chemical vapor deposition (MOCVD); Caracterizacao de filmes de nitreto de titanio obtidos por MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Pillis, M.F., E-mail: mfpillis@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (CCTM/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Ciencia e Tecnologia de Materiais; Franco, A.C. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica; Araujo, E.G. de [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Sacilotti, M. [Universidade Federal de Pernambuco (IF/UFPE), Recife, PE (Brazil). Inst. de Fisica; Fundacao de Amparo a Ciencia e Tecnologia de Pernambuco (FACEPE), Recife, PE (Brazil)

    2009-07-01

    Ceramic coatings have been widely used as protective coating to improve the life of cutting tools, for corrosion protection and in microelectronics, optical and medical areas. Transition metals nitrides are of special interest due to its high hardness and thermal stability. In this work thin films of titanium nitride were obtained by MOCVD (metalorganic chemical vapor deposition) process. The tests were carried out for 1h at 700 deg C under 80 and 100 mbar of pressure. The characterization was made by using scanning electron microscopy coupled with dispersive energy analysis, and X-ray diffraction. Preliminary results suggested that Ti{sub 2}N phase was formed and that the growth rate varied between 4 and 13 nm/min according to the process parameter considered. (author)

  10. Nanostructures based in boro nitride thin films deposited by PLD onto Si/Si3N4/DLC substrate

    International Nuclear Information System (INIS)

    Roman, W S; Riascos, H; Caicedo, J C; Ospina, R; Tirado-MejIa, L

    2009-01-01

    Diamond-like carbon and boron nitride were deposited like nanostructered bilayer on Si/Si 3 N 4 substrate, both with (100) crystallographic orientation, these films were deposited through pulsed laser technique (Nd: YAG: 8 Jcm -2 , 9ns). Graphite (99.99%) and boron nitride (99.99%) targets used to growth the films in argon atmosphere. The thicknesses of bilayer were determined with a perfilometer, active vibration modes were analyzed using infrared spectroscopy (FTIR), finding bands associated around 1400 cm -1 for B - N bonding and bands around 1700 cm -1 associated with C=C stretching vibrations of non-conjugated alkenes and azometinic groups, respectively. The crystallites of thin films were analyzed using X-ray diffraction (XRD) and determinated the h-BN (0002), α-Si 3 N 4 (101) phases. The aim of this study is to relate the dependence on physical and chemical characteristics of the system Si/Si 3 N 4 /DLC/BN with gas pressure adjusted at the 1.33, 2.67 and 5.33 Pa values.

  11. Silicon nitride films fabricated by a plasma-enhanced chemical vapor deposition method for coatings of the laser interferometer gravitational wave detector

    Science.gov (United States)

    Pan, Huang-Wei; Kuo, Ling-Chi; Huang, Shu-Yu; Wu, Meng-Yun; Juang, Yu-Hang; Lee, Chia-Wei; Chen, Hsin-Chieh; Wen, Ting Ting; Chao, Shiuh

    2018-01-01

    Silicon is a potential substrate material for the large-areal-size mirrors of the next-generation laser interferometer gravitational wave detector operated in cryogenics. Silicon nitride thin films uniformly deposited by a chemical vapor deposition method on large-size silicon wafers is a common practice in the silicon integrated circuit industry. We used plasma-enhanced chemical vapor deposition to deposit silicon nitride films on silicon and studied the physical properties of the films that are pertinent to application of mirror coatings for laser interferometer gravitational wave detectors. We measured and analyzed the structure, optical properties, stress, Young's modulus, and mechanical loss of the films, at both room and cryogenic temperatures. Optical extinction coefficients of the films were in the 10-5 range at 1550-nm wavelength. Room-temperature mechanical loss of the films varied in the range from low 10-4 to low 10-5 within the frequency range of interest. The existence of a cryogenic mechanical loss peak depended on the composition of the films. We measured the bond concentrations of N - H , Si - H , Si - N , and Si - Si bonds in the films and analyzed the correlations between bond concentrations and cryogenic mechanical losses. We proposed three possible two-level systems associated with the N - H , Si - H , and Si - N bonds in the film. We inferred that the dominant source of the cryogenic mechanical loss for the silicon nitride films is the two-level system of exchanging position between a H+ and electron lone pair associated with the N - H bond. Under our deposition conditions, superior properties in terms of high refractive index with a large adjustable range, low optical absorption, and low mechanical loss were achieved for films with lower nitrogen content and lower N - H bond concentration. Possible pairing of the silicon nitride films with other materials in the quarter-wave stack is discussed.

  12. Structural, magnetic, and ferroelectric properties of T-like cobalt-doped BiFeO3 thin films

    Science.gov (United States)

    Young, T.; Sharma, P.; Kim, D. H.; Ha, Thai Duy; Juang, Jenh-Yih; Chu, Y.-H.; Seidel, J.; Nagarajan, V.; Yasui, S.; Itoh, M.; Sando, D.

    2018-02-01

    We present a comprehensive study of the physical properties of epitaxial cobalt-doped BiFeO3 films ˜50 nm thick grown on (001) LaAlO3 substrates. X-ray diffraction and magnetic characterization demonstrate high quality purely tetragonal-like (T') phase films with no parasitic impurities. Remarkably, the step-and-terrace film surface morphology can be fully recovered following a local electric-field-induced rhombohedral-like to T' phase transformation. Local switching spectroscopy experiments confirm the ferroelectric switching to follow previously reported transition pathways. Critically, we show unequivocal evidence for conduction at domain walls between polarization variants in T'-like BFO, making this material system an attractive candidate for domain wall-based nanoelectronics.

  13. Enhanced Magnetization of Cobalt Defect Clusters Embedded in TiO_2_-_δ Films

    International Nuclear Information System (INIS)

    Cortie, David L.; Khaydukov, Yury; Max Planck Society, Garching

    2017-01-01

    High magnetizations are desirable for spintronic devices that operate by manipulating electronic states using built-in magnetic fields. However, the magnetic moment in promising dilute magnetic oxide nanocomposites is very low, typically corresponding to only fractions of a Bohr magneton for each dopant atom. In this study, we report a large magnetization formed by ion implantation of Co into amorphous TiO_2_-_δ films, producing an inhomogeneous magnetic moment, with certain regions producing over 2.5 μ_B per Co, depending on the local dopant concentration. Polarized neutron reflectometry was used to depth-profile the magnetization in the Co:TiO_2_-_δ nanocomposites, thus confirming the pivotal role of the cobalt dopant profile inside the titania layer. X-ray photoemission spectra demonstrate the dominant electronic state of the implanted species is Co"0, with a minor fraction of Co"2"+. The detected magnetizations have seldom been reported before and lie near the upper limit set by Hund’s rules for Co"0, which is unusual because the transition metal’s magnetic moment is usually reduced in a symmetric 3D crystal-field environment. Low-energy positron annihilation lifetime spectroscopy indicates that defect structures within the titania layer are strongly modified by the implanted Co. We propose that a clustering motif is promoted by the affinity of the positively charged implanted species to occupy microvoids native to the amorphous host. This provides a seed for subsequent doping and nucleation of nanoclusters within an unusual local environment.

  14. Ion beam modification of sputtered metal nitride thin films: A study of the induced microstructural changes

    International Nuclear Information System (INIS)

    Milosavljevic, M.; Perusko, D.; Popovic, M.; Novakovic, M.

    2008-01-01

    Single CrN and TiN and multilayered AlN/TiN and Al/Ti thin film structures (t = 240-280 nm) deposited on Si were irradiated with 120-200 keV Ar + ions to the fluences ranging from 1 x 10 11 5 to 4 x 10 16 ions/cm 2 . The metallic Al/Ti multilayered structure was also irradiated with high fluence (1- 2 x 10 17 /cm 2 ) nitrogen ions at 200 keV, in order to study interface mixing and formation of nitrides. Single component CrN and TiN thin films were found to grow in the form of a very fine polycrystalline columnar structures. Individual crystal grains were of the order of a few tens of nm in diameter, stretching from the substrate to the surface. After ion irradiation, the layers retain their polycrystalline structure, although the columns become disconnected, the resulting structures consisting of larger grains and nano-particles of the same phase. The implanted samples displayed higher electrical resistivity, presumably due to a higher concentration of point defects and the presence of nano-particles. In Al/Ti and AlN/TiN multilayers irradiated with Ar ions, the as-deposited structures exhibit well-defined, isolated polycrystalline Al and Ti, or AlN and TiN layers, with sharp interfaces. In the metallic system ion irradiation induced interface mixing which progressed with increasing the ion fluence. Mixing was most pronounced at the interfaces that are located around the projected ion range. The multilayered structure was essentially preserved, but the implanted samples exhibit much larger crystal grains. Also, the formation of lamellar columns stretching over a number of individual layers was observed. The AlN/TiN multilayered structures exhibited no measurable interface mixing on Ar irradiation, attributable to the nature of interatomic bonding and to mutual immiscibility of AlN and TiN. High fluence nitrogen ion irradiation of Al/Ti multilayers results in both the introduction of nitrogen into the structures as well as a high level of their intermixing. A

  15. Positron annihilation in gaseous nitrided cold-rolled FeNiTi films

    NARCIS (Netherlands)

    Chechenin, NG; van Veen, A; Galindo, RE; Schut, H; Chezan, A; Boerma, DO; Triftshauser, W; Kogel, G; Sperr, P

    2001-01-01

    Positron beam analysis (PBA) was performed on cold-rolled Fe0.94Ni0.04Ti0.02 foils, which were subjected to different thermal treatments in an atmosphere of a gas mixture of NH3+H-2 (nitriding). The nitriding of the samples in the alpha -region (alphaN) of Lehrer diagram for the Fe-N system produced

  16. Evaluation of humidity sensing properties of TMBHPET thin film embedded with spinel cobalt ferrite nanoparticles

    International Nuclear Information System (INIS)

    Zafar, Qayyum; Azmer, Mohamad Izzat; Al-Sehemi, Abdullah G.; Al-Assiri, Mohammad S.; Kalam, Abul; Sulaiman, Khaulah

    2016-01-01

    In this study, we report the enhanced sensing parameters of previously reported TMBHPET-based humidity sensor. Significant improved sensing performance has been demonstrated by coupling of TMBHPET moisture sensing thin film with cobalt ferrite nanoparticles (synthesized by eco-benign ultrasonic method). The mean size of CoFe_2O_4 nanoparticles has been estimated to be ~ 6.5 nm. It is assumed that the thin film of organic–ceramic hybrid matrix (TMBHPET:CoFe_2O_4) is a potential candidate for humidity sensing utility by virtue of its high specific surface area and porous surface morphology (as evident from TEM, FESEM, and AFM images). The hybrid suspension has been drop-cast onto the glass substrate with preliminary deposited coplanar aluminum electrodes separated by 40 µm distance. The influence of humidity on the capacitance of the hybrid humidity sensor (Al/TMBHPET:CoFe_2O_4/Al) has been investigated at three different frequencies of the AC applied voltage (V_r_m_s ~ 1 V): 100 Hz, 1 kHz, and 10 kHz. It has been observed that at 100 Hz, under a humidity of 99 % RH, the capacitance of the sensor increased by 2.61 times, with respect to 30 % RH condition. The proposed sensor exhibits significantly improved sensitivity ~560 fF/ % RH at 100 Hz, which is nearly 7.5 times as high as that of pristine TMBHPET-based humidity sensor. Further, the capacitive sensor exhibits improved dynamic range (30–99 % RH), small hysteresis (~2.3 %), and relatively quicker response and recovery times (~12 s, 14 s, respectively). It is assumed that the humidity response of the sensor is associated with the diffusion kinetics of water vapors and doping of the semiconductor nanocomposite by water molecules.

  17. Achieving a Collapsible, Strong, and Highly Thermally Conductive Film Based on Oriented Functionalized Boron Nitride Nanosheets and Cellulose Nanofiber.

    Science.gov (United States)

    Wu, Kai; Fang, Jinchao; Ma, Jinrui; Huang, Rui; Chai, Songgang; Chen, Feng; Fu, Qiang

    2017-09-06

    Boron nitride nanosheet (BNNS) films receive wide attention in both academia and industry because of their high thermal conductivity (TC) and good electrical insulation capability. However, the brittleness and low strength of the BNNS film largely limit its application. Herein, functionalized BNNSs (f-BNNSs) with a well-maintained in-plane crystalline structure were first prepared utilizing urea in the aqueous solution via ball-milling for the purpose of improving their stability in water and enhancing the interaction with the polymer matrix. Then, a biodegradable and highly thermally conductive film with an orderly oriented structure based on cellulose nanofibers (CNFs) and f-BNNSs was prepared just by simple vacuum-assisted filtration. The modification of the BNNS and the introduction of the CNF result in a better orientation of the f-BNNS, sufficient connection between f-BNNS themselves, and strong interaction between f-BNNS and CNF, which not only make the prepared composite film strong and tough but also possess higher in-plane TC. An increase of 70% in-plane TC, 63.2% tensile strength, and 77.8% elongation could be achieved for CNF/f-BNNS films, compared with that for CNF/BNNS films at the filler content of 70%. Although at such a high f-BNNS content, this composite film can be bended and folded. It is even more interesting to find that the in-plane TC could be greatly enhanced with the decrease of the thickness of the film, and a value of 30.25 W/m K can be achieved at the thickness of ∼30 μm for the film containing 70 wt % f-BNNS. We believe that this highly thermally conductive film with good strength and toughness could have potential applications in next-generation highly powerful and collapsible electronic devices.

  18. Synthesis of aluminum nitride films by plasma immersion ion implantation-deposition using hybrid gas-metal cathodic arc gun

    International Nuclear Information System (INIS)

    Shen Liru; Fu, Ricky K.Y.; Chu, Paul K.

    2004-01-01

    Aluminum nitride (AlN) is of interest in the industry because of its excellent electronic, optical, acoustic, thermal, and mechanical properties. In this work, aluminum nitride films are deposited on silicon wafers (100) by metal plasma immersion ion implantation and deposition (PIIID) using a modified hybrid gas-metal cathodic arc plasma source and with no intentional heating to the substrate. The mixed metal and gaseous plasma is generated by feeding the gas into the arc discharge region. The deposition rate is found to mainly depend on the Al ion flux from the cathodic arc source and is only slightly affected by the N 2 flow rate. The AlN films fabricated by this method exhibit a cubic crystalline microstructure with stable and low internal stress. The surface of the AlN films is quite smooth with the surface roughness on the order of 1/2 nm as determined by atomic force microscopy, homogeneous, and continuous, and the dense granular microstructures give rise to good adhesion with the substrate. The N to Al ratio increases with the bias voltage applied to the substrates. A fairly large amount of O originating from the residual vacuum is found in the samples with low N:Al ratios, but a high bias reduces the oxygen concentration. The compositions, microstructures and crystal states of the deposited films are quite stable and remain unchanged after annealing at 800 deg. C for 1 h. Our hybrid gas-metal source cathodic arc source delivers better AlN thin films than conventional PIIID employing dual plasmas

  19. Correlations between optical properties, microstructure, and processing conditions of Aluminum nitride thin films fabricated by pulsed laser deposition

    International Nuclear Information System (INIS)

    Baek, Jonghoon; Ma, James; Becker, Michael F.; Keto, John W.; Kovar, Desiderio

    2007-01-01

    Aluminum nitride (AlN) films were deposited using pulsed laser deposition (PLD) onto sapphire (0001) substrates with varying processing conditions (temperature, pressure, and laser fluence). We have studied the dependence of optical properties, structural properties and their correlations for these AlN films. The optical transmission spectra of the produced films were measured, and a numerical procedure was applied to accurately determine the optical constants for films of non-uniform thickness. The microstructure and texture of the films were studied using various X-ray diffraction techniques. The real part of the refractive index was found to not vary significantly with processing parameters, but absorption was found to be strongly dependent on the deposition temperature and the nitrogen pressure in the deposition chamber. We report that low optical absorption, textured polycrystalline AlN films can be produced by PLD on sapphire substrates at both low and high laser fluence using a background nitrogen pressure of 6.0 x 10 -2 Pa (4.5 x 10 -4 Torr) of 99.9% purity

  20. Low-cost growth of magnesium doped gallium nitride thin films by sol-gel spin coating method

    Science.gov (United States)

    Amin, N. Mohd; Ng, S. S.

    2018-01-01

    Low-cost sol-gel spin coating growth of magnesium (Mg) doped gallium nitride (GaN) thin films with different concentrations of Mg was reported. The effects of the Mg concentration on the structural, surface morphology, elemental compositions, lattice vibrational, and electrical properties of the deposited films were investigated. X-ray diffraction results show that the Mg-doped samples have wurtzite structure with preferred orientation of GaN(002). The crystallite size decreases and the surface of the films with pits/pores were formed, while the crystalline quality of the films degraded as the Mg concentration increases from 2% to 6. %. All the Raman active phonon modes of the wurtzite GaN were observed while a broad peak attributed to the Mg-related lattice vibrational mode was detected at 669 cm-1. Hall effect results show that the resistivity of the thin films decreases while the hole concentration and hall mobility of thin films increases as the concentration of the Mg increases.

  1. A short literature survey on iron and cobalt ion doped TiO2 thin films and photocatalytic activity of these films against fungi

    International Nuclear Information System (INIS)

    Tatlıdil, İlknur; Bacaksız, Emin; Buruk, Celal Kurtuluş; Breen, Chris; Sökmen, Münevver

    2012-01-01

    Highlights: ► Co or Fe doped TiO 2 thin films were prepared by sol–gel method. ► We obtained lower E g values for Fe-doped and Co-TiO 2 thin films. ► Doping greatly affected the size and shape of the TiO 2 nanoparticles. ► Photocatalytic killing effect of the doped TiO 2 thin films on C. albicans and A. niger was significantly higher than undoped TiO 2 thin film for short exposure periods. - Abstract: In this study, a short recent literature survey which concentrated on the usage of Fe 3+ or Co 2+ ion doped TiO 2 thin films and suspensions were summarized. Additionally, a sol–gel method was used for preparation of the 2% Co or Fe doped TiO 2 thin films. The surface of the prepared materials was characterised using scanning-electron microscopy (SEM) combined with energy dispersive X-ray (EDX) analysis and band gap of the films were calculated from the transmission measurements that were taken over the range of 190 and 1100 nm. The E g value was 3.40 eV for the pure TiO 2 , 3.00 eV for the Fe-doped TiO 2 film and 3.25 eV for Co-TiO 2 thin film. Iron or cobalt doping at lower concentration produce more uniformed particles and doping greatly affected the size and shape of the TiO 2 nanoparticles. Photocatalytic killing effect of the 2% Co doped TiO 2 thin film on Candida albicans was significantly higher than Fe doped TiO 2 thin film for short and long exposure periods. Doped thin films were more effective on Aspergillus niger for short exposure periods.

  2. Studies of the composition, tribology and wetting behavior of silicon nitride films formed by pulsed reactive closed-field unbalanced magnetron sputtering

    International Nuclear Information System (INIS)

    Yao, Zh.Q.; Yang, P.; Huang, N.; Wang, J.; Wen, F.; Leng, Y.X.

    2006-01-01

    Silicon nitride films were formed by pulsed reactive closed-field unbalanced magnetron sputtering of high purity Si targets in an Ar-N 2 mixture. The effects of N 2 fraction on the chemical composition, and tribological and wetting behaviors were investigated. The films deposited at a high N 2 fraction were consistently N-rich. The surface microstructure changed from continuous granular surrounded by tiny void regions to a homogeneous and dense microstructure, and densitied as the N 2 fraction is increased. The as-deposited films have a relatively low friction coefficient and better wear resistance than 316L stainless steel under dry sliding friction and experienced only abrasive wear. The decreased surface roughness and increased nitrogen incorporation in the film give rise to increased contact angle with double-stilled water from 24 deg. to 49.6 deg. To some extent, the silicon nitride films deposited are hydrophilic in nature

  3. As-grown enhancement of spinodal decomposition in spinel cobalt ferrite thin films by Dynamic Aurora pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Debnath, Nipa [Graduate School of Science and Technology, Shizuoka University, Hamamatsu 432-8561 (Japan); Department of Physics, Jagannath University, Dhaka 1100 (Bangladesh); Kawaguchi, Takahiko; Kumasaka, Wataru [Department of Electronics and Materials Science, Shizuoka University, Hamamatsu 432-8561 (Japan); Das, Harinarayan [Materials Science Division, Atomic Energy Centre, Dhaka 1000 (Bangladesh); Shinozaki, Kazuo [School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo 152-8550 (Japan); Sakamoto, Naonori [Department of Electronics and Materials Science, Shizuoka University, Hamamatsu 432-8561 (Japan); Research Institute of Electronics, Shizuoka University, Hamamatsu 432-8561 (Japan); Suzuki, Hisao [Graduate School of Science and Technology, Shizuoka University, Hamamatsu 432-8561 (Japan); Department of Electronics and Materials Science, Shizuoka University, Hamamatsu 432-8561 (Japan); Research Institute of Electronics, Shizuoka University, Hamamatsu 432-8561 (Japan); Wakiya, Naoki, E-mail: wakiya.naoki@shizuoka.ac.jp [Graduate School of Science and Technology, Shizuoka University, Hamamatsu 432-8561 (Japan); Department of Electronics and Materials Science, Shizuoka University, Hamamatsu 432-8561 (Japan); Research Institute of Electronics, Shizuoka University, Hamamatsu 432-8561 (Japan)

    2017-06-15

    Highlights: • As-grown enhancement of spinodal decomposition (SD) in Co{sub x}Fe{sub 3−x}O{sub 4} film is observed. • Magnetic-field-induced ion-impingement enhances SD without any post-annealing. • The enhancement of SD is independent of the lattice-mismatch-induced strain. • This approach can promote SD in any thin film without post-deposition annealing. - Abstract: Cobalt ferrite Co{sub x}Fe{sub 3−x}O{sub 4} thin films with composition within the miscibility gap were grown using Dynamic Aurora pulsed laser deposition. X-ray diffraction patterns reveal as-grown phase separation to Fe-rich and Co-rich phases with no post-deposition annealing. The interconnected surface microstructure of thin film shows that this phase separation occurs through spinodal decomposition enhanced by magnetic-field-induced ion-impingement. The lattice parameter variation of the thin films with the magnetic field indicates that the composition fluctuations can be enhanced further by increasing the magnetic field. Results show that spinodal decomposition enhancement by magnetic-field-induced ion-impingement is independent of the lattice-mismatch-induced strain. This approach can promote spinodal decomposition in any thin film with no post-deposition annealing process.

  4. Solar selective performance of metal nitride/oxynitride based magnetron sputtered thin film coatings: a comprehensive review

    Science.gov (United States)

    Ibrahim, Khalil; Taha, Hatem; Mahbubur Rahman, M.; Kabir, Humayun; Jiang, Zhong-Tao

    2018-03-01

    Since solar-thermal collectors are considered to be the most direct way of converting solar energy into usable forms, in the last few years growing attention has been paid to the development of transition metal nitride and metal oxynitride based thin film selective surfaces for solar-thermal collectors, in order to harvest more solar energy. A solar-thermal energy system, generally, shows very high solar absorption of incident solar radiation from the solar-thermal collectors in the visible range (0.3 to 2.5 μm) and extremely low thermal losses through emission (or high reflection) in the infrared region (≥2.5 μm). The efficiency of a solar-thermal energy conversion system can be improved by the use of solar selective surfaces consisting of novel metallic nanoparticles embedded in metal nitride/oxynitride systems. In order to enhance the effectiveness of solar-thermal devices, solar selective surfaces with high thermal stability are a prerequisite. Over the years, substantial efforts have been made in the field of solar selective surfaces to attain higher solar absorptance and lower thermal emittance in high temperature (above 400 °C) applications. In this article, we review the present state-of-the-art transition metal nitride and/or oxynitride based vacuum sputtered nanostructured thin film coatings, with respect to their optical and solar selective surface applications. We have also summarized the solar selectivity data from recently published investigations, including discussion on some potential applications for these materials.

  5. Islanding and strain-induced shifts in the infrared absorption peaks of cubic boron nitride thin films

    International Nuclear Information System (INIS)

    Fahy, S.; Taylor, C.A. II and; Clarke, R.

    1997-01-01

    Experimental and theoretical investigations of the infrared-active, polarization-dependent phonon frequencies of cubic boron nitride films have been performed in light of recent claims that large frequency shifts during initial nucleation are the result of strain caused by highly nonequilibrium growth conditions. We show that the formation of small, separate grains of cubic boron nitride during the initial growth leads to a frequency shift in the infrared-active transverse-optic mode, polarized normal to the substrate, which is opposite in sign and twice the magnitude of the shift for modes polarized parallel to the substrate. In contrast, film strain causes a frequency shift in the mode polarized normal to the substrate, which is much smaller in magnitude than the frequency shift for modes polarized parallel to the substrate. Normal and off-normal incidence absorption measurements, performed at different stages of nucleation and growth, show that large frequency shifts in the transverse-optic-phonon modes during the initial stage of growth are not compatible with the expected effects of strain, but are in large part due to nucleation of small isolated cubic BN grains which coalesce to form a uniform layer. Numerical results from a simple model of island nucleation and growth are in good agreement with experimental results. copyright 1997 The American Physical Society

  6. Structural, morphological and mechanical properties of niobium nitride thin films grown by ion and electron beams emanated from plasma

    Science.gov (United States)

    Siddiqui, Jamil; Hussain, Tousif; Ahmad, Riaz; Umar, Zeeshan A.; Abdus Samad, Ubair

    2016-05-01

    The influence of variation in plasma deposition parameters on the structural, morphological and mechanical characteristics of the niobium nitride films grown by plasma-emanated ion and electron beams are investigated. Crystallographic investigation made by X-ray diffractometer shows that the film synthesized at 10 cm axial distance with 15 plasma focus shots (PFS) exhibits better crystallinity when compared to the other deposition conditions. Morphological analysis made by scanning electron microscope reveals a definite granular pattern composed of homogeneously distributed nano-spheroids grown as clustered particles for the film synthesized at 10 cm axial distance for 15 PFS. Roughness analysis demonstrates higher rms roughness for the films synthesized at shorter axial distance and by greater number of PFS. Maximum niobium atomic percentage (35.8) and maximum average hardness (19.4 ± 0.4 GPa) characterized by energy-dispersive spectroscopy and nano-hardness analyzer respectively are observed for film synthesized at 10 cm axial distance with 15 PFS.

  7. Thin film silicon on silicon nitride for radiation hardened dielectrically isolated MISFET's

    International Nuclear Information System (INIS)

    Neamen, D.; Shedd, W.; Buchanan, B.

    1975-01-01

    The permanent ionizing radiation effects resulting from charge trapping in a silicon nitride isolation dielectric have been determined for a total ionizing dose up to 10 7 rads (Si). Junction FET's, whose active channel region is directly adjacent to the silicon-silicon nitride interface, were used to measure the effects of the radiation induced charge trapping in the Si 3 N 4 isolation dielectric. The JFET saturation current and channel conductance versus junction gate voltage and substrate voltage were characterized as a function of the total ionizing radiation dose. The experimental results on the Si 3 N 4 are compared to results on similar devices with SiO 2 dielectric isolation. The ramifications of using the silicon nitride for fabricating radiation hardened dielectrically isolated MIS devices are discussed

  8. Microstructure and thermoelectric properties of screen-printed thick-films of misfit-layered cobalt oxides with Ag addition

    DEFF Research Database (Denmark)

    Van Nong, Ngo; Samson, Alfred Junio; Pryds, Nini

    2012-01-01

    Thermoelectric properties of thick (~60 μm) films prepared by a screen-printing technique using p-type misfit-layered cobalt oxide Ca3Co4O9+δ with Ag addition have been studied. The screen-printed films were sintered in air at various temperatures ranging from 973 K to 1223 K. After each sintering...... process, crystal and microstructure analyses were carried out to determine the optimal sintering condition. The results show that the thermoelectric properties of pure Ca3Co4O9+δ thick film are comparable to those of cold isostatic pressing (CIP) samples. We found that the maximum power factor...... was improved by about 67% (to 0.3 mW/m K2) for film with proper silver (Ag) metallic inclusions as compared with 0.18 mW/m K2 for pure Ca3Co4O9+δ film under the same sintering condition of 1223 K for 2 h in air....

  9. Layer-by-layer construction of graphene/cobalt phthalocyanine composite film on activated GCE for application as a nitrite sensor

    International Nuclear Information System (INIS)

    Cui, Lili; Pu, Tao; Liu, Ying; He, Xingquan

    2013-01-01

    Graphical abstract: A novel nitrite sensor was prepared by using LBL technique which for the first time used the activated positively charged glassy carbon electrode (A-GCE) as the substrate. The nitrite sensor shows super stability for consecutive CV testing and rather low detection limit. -- Abstract: In this paper, a novel graphene/cobalt phthalocyanine composite film was prepared by layer-by-layer (LBL) technique which for the first time used the activated positively charged glassy carbon electrode (A-GCE) as the substrate. The surface morphology of graphene/cobalt phthalocyanine composite film was characterized by scanning electron microscopy (SEM) and atomic force microscope (AFM). It is found that graphene/cobalt phthalocyanine composite film modified GCE exhibits good catalytic activity toward the oxidation of nitrite. The oxidation current barely decreases in consecutive CV test. Furthermore, the modified GCE shows long-term stability after 70 days. The super good stability can be attributed to the immobilization and dispersion of electroactive cobalt phthalocyanine by graphene, and using A-GCE as substrate which can enhance the interaction force between GCE and electroactive cobalt phthalocyanine. The nitrite sensor shows rather low detection limit of 0.084 μM at a signal-to-noise ratio = 3 (S/N = 3)

  10. Effect of argon ion beam voltages on the microstructure of aluminum nitride films prepared at room temperature by a dual ion beam sputtering system

    International Nuclear Information System (INIS)

    Chen, H.-Y.; Han Sheng; Cheng, C.-H.; Shih, H.C.

    2004-01-01

    Aluminum nitride (AlN) films were successfully deposited at room temperature onto p-type (1 0 0) silicon wafers by manipulating argon ion beam voltages in a dual ion beam sputtering (DIBS). X-ray diffraction spectra showed that aluminum nitride films could be synthesized above 800 V. The (0 0 2) orientation was dominant at 800 V, above which the orientation was random. The atomic force microscope (AFM) images displayed a relatively smooth surface with the root-mean-square roughness of 2-3 nm, where this roughness decreased with argon ion beam voltage. The Al 2p 3/2 and N 1s spectra indicated that both the aluminum-aluminum bond and aluminum-nitrogen bond appeared at 600 V, above which only the aluminum-nitrogen bond was detected. Moreover, the atomic concentration in aluminum nitride films was concentrated in aluminum-rich phases in all cases. Nevertheless, the aluminum concentration markedly increased with argon ion beam voltages below 1000 V, above which the concentration decreased slightly. The correlation between the microstructure of aluminum nitride films and argon ion beam voltages is also discussed

  11. Deposition and characterization of zirconium nitride (ZrN) thin films by reactive magnetron sputtering with linear gas ion source and bias voltage

    Energy Technology Data Exchange (ETDEWEB)

    Kavitha, A.; Kannan, R. [Department of Physics, University College of Engineering, Anna University, Dindugal-624622 (India); Subramanian, N. Sankara [Department of Physics, Thiagarajar College of Engineering, Madurai -625015, Tamilnadu (India); Loganathan, S. [Ion Plating, Titan Industries Ltd., Hosur - 635126, Tamilnadu (India)

    2014-04-24

    Zirconium nitride thin films have been prepared on stainless steel substrate (304L grade) by reactive cylindrical magnetron sputtering method with Gas Ion Source (GIS) and bias voltage using optimized coating parameters. The structure and surface morphologies of the ZrN films were characterized using X-ray diffraction, atomic microscopy and scanning electron microscopy. The adhesion property of ZrN thin film has been increased due to the GIS. The coating exhibits better adhesion strength up to 10 N whereas the ZrN thin film with bias voltage exhibits adhesion up to 500 mN.

  12. Correlation of film density and wet etch rate in hydrofluoric acid of plasma enhanced atomic layer deposited silicon nitride

    Energy Technology Data Exchange (ETDEWEB)

    Provine, J., E-mail: jprovine@stanford.edu; Schindler, Peter; Kim, Yongmin; Walch, Steve P.; Kim, Hyo Jin [Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States); Kim, Ki-Hyun [Manufacturing Technology Center, Samsung Electronics, Suwon, Gyeonggi-Do (Korea, Republic of); Prinz, Fritz B. [Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States); Department of Materials Science and Engineering, Stanford University, Stanford, California 94305 (United States)

    2016-06-15

    The continued scaling in transistors and memory elements has necessitated the development of atomic layer deposition (ALD) of silicon nitride (SiN{sub x}), particularly for use a low k dielectric spacer. One of the key material properties needed for SiN{sub x} films is a low wet etch rate (WER) in hydrofluoric (HF) acid. In this work, we report on the evaluation of multiple precursors for plasma enhanced atomic layer deposition (PEALD) of SiN{sub x} and evaluate the film’s WER in 100:1 dilutions of HF in H{sub 2}O. The remote plasma capability available in PEALD, enabled controlling the density of the SiN{sub x} film. Namely, prolonged plasma exposure made films denser which corresponded to lower WER in a systematic fashion. We determined that there is a strong correlation between WER and the density of the film that extends across multiple precursors, PEALD reactors, and a variety of process conditions. Limiting all steps in the deposition to a maximum temperature of 350 °C, it was shown to be possible to achieve a WER in PEALD SiN{sub x} of 6.1 Å/min, which is similar to WER of SiN{sub x} from LPCVD reactions at 850 °C.

  13. Mocvd Growth of Group-III Nitrides on Silicon Carbide: From Thin Films to Atomically Thin Layers

    Science.gov (United States)

    Al Balushi, Zakaria Y.

    Group-III nitride semiconductors (AlN, GaN, InN and their alloys) are considered one of the most important class of materials for electronic and optoelectronic devices. This is not limited to the blue light-emitting diode (LED) used for efficient solid-state lighting, but other applications as well, such as solar cells, radar and a variety of high frequency power electronics, which are all prime examples of the technological importance of nitride based wide bandgap semiconductors in our daily lives. The goal of this dissertation work was to explore and establish new growth schemes to improve the structural and optical properties of thick to atomically thin films of group-III nitrides grown by metalorganic chemical vapor deposition (MOCVD) on SiC substrates for future novel devices. The first research focus of this dissertation was on the growth of indium gallium nitride (InGaN). This wide bandgap semiconductor has attracted much research attention as an active layer in LEDs and recently as an absorber material for solar cells. InGaN has superior material properties for solar cells due to its wavelength absorption tunability that nearly covers the entire solar spectrum. This can be achieved by controlling the indium content in thick grown material. Thick InGaN films are also of interest as strain reducing based layers for deep-green and red light emitters. The growth of thick films of InGaN is, however, hindered by several combined problems. This includes poor incorporation of indium in alloys, high density of structural and morphological defects, as well as challenges associated with the segregation of indium in thick films. Overcoming some of these material challenges is essential in order integrate thick InGaN films into future optoelectronics. Therefore, this dissertation research investigated the growth mechanism of InGaN layers grown in the N-polar direction by MOCVD as a route to improve the structural and optical properties of thick InGaN films. The growth

  14. Enhanced magneto-optical Kerr effect in rare earth substituted nanostructured cobalt ferrite thin film prepared by sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Avazpour, L.; Toroghinejad, M.R. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Shokrollahi, H., E-mail: Shokrollahi@sutech.ac.ir [Electroceramics Group, Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz 13876-71557 (Iran, Islamic Republic of)

    2016-11-30

    Highlights: • The nanostructured rare earth doped Co-ferrite thin film was synthesized by the sol–gel method. • The coercivity of as high as 1.8 kOe is achieved for 20% substituted cobalt ferrite. • The average particle diameter of particulate film is decreasing by increasing substitute content. • Kerr spectra of films shifted to higher energies. • Kerr rotation angle increased to 1.65° for 0.1 Eu doped thin film. - Abstract: A series of rare-earth (RE)-doped nanocrystalline Co{sub x} RE{sub (1−x)} Fe{sub 2}O{sub 4} (x = 0, 0.1, 0.2 and RE: Nd, Eu) thin films were prepared on silicon substrates by a sol–gel process, and the influences of different RE{sup 3+} ions on the microstructure, magnetism and polar magneto-optical Kerr effect of the deposited films were investigated. Also this research presents the optimization process of cobalt ferrite thin films deposited via spin coating, by studying their structural and morphological properties at different thicknesses (200, 350 nm) and various heat treatment temperatures 300–850 °C. Nanoparticulate polycrystalline thin film were formed with heat treatment above 400 °C but proper magnetic properties due to well crystallization of the film were achieved at about 650 °C. AFM results indicated that the deposited thin films were crack-free exhibiting a dense nanogranular structure. The root-mean square (RMS) roughness of the thin films was in the range of 0.2–3.2 nm. The results revealed that both of the magnetism and magneto optical Kerr (MOKE) spectra of Co{sub x} RE{sub (1−x)} Fe{sub 2}O{sub 4} films could be mediated by doping with various RE ions. The Curie temperature of substituted samples was lower than pristine cobalt ferrite thin films. In MOKE spectra both dominant peaks were blue shifted with addition of RE ions. For low concentration dopant the inter-valence charge transfer related rotation was enhanced and for higher concentration dopant the crystal field rotation peak was enhanced

  15. A short literature survey on iron and cobalt ion doped TiO{sub 2} thin films and photocatalytic activity of these films against fungi

    Energy Technology Data Exchange (ETDEWEB)

    Tatl Latin-Small-Letter-Dotless-I dil, Ilknur [Department of Chemistry, Faculty of Science, Karadeniz Technical University, 61080 Trabzon (Turkey); Bacaks Latin-Small-Letter-Dotless-I z, Emin [Department of Physics, Faculty of Science, Karadeniz Technical University, 61080 Trabzon (Turkey); Buruk, Celal Kurtulus [Department of Microbiology, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon (Turkey); Breen, Chris [Materials and Engineering Research Institution, Sheffield Hallam University, Sheffield S1 1WB (United Kingdom); Soekmen, Muenevver, E-mail: msokmen@ktu.edu.tr [Department of Chemistry, Faculty of Science, Karadeniz Technical University, 61080 Trabzon (Turkey)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Co or Fe doped TiO{sub 2} thin films were prepared by sol-gel method. Black-Right-Pointing-Pointer We obtained lower E{sub g} values for Fe-doped and Co-TiO{sub 2} thin films. Black-Right-Pointing-Pointer Doping greatly affected the size and shape of the TiO{sub 2} nanoparticles. Black-Right-Pointing-Pointer Photocatalytic killing effect of the doped TiO{sub 2} thin films on C. albicans and A. niger was significantly higher than undoped TiO{sub 2} thin film for short exposure periods. - Abstract: In this study, a short recent literature survey which concentrated on the usage of Fe{sup 3+} or Co{sup 2+} ion doped TiO{sub 2} thin films and suspensions were summarized. Additionally, a sol-gel method was used for preparation of the 2% Co or Fe doped TiO{sub 2} thin films. The surface of the prepared materials was characterised using scanning-electron microscopy (SEM) combined with energy dispersive X-ray (EDX) analysis and band gap of the films were calculated from the transmission measurements that were taken over the range of 190 and 1100 nm. The E{sub g} value was 3.40 eV for the pure TiO{sub 2}, 3.00 eV for the Fe-doped TiO{sub 2} film and 3.25 eV for Co-TiO{sub 2} thin film. Iron or cobalt doping at lower concentration produce more uniformed particles and doping greatly affected the size and shape of the TiO{sub 2} nanoparticles. Photocatalytic killing effect of the 2% Co doped TiO{sub 2} thin film on Candida albicans was significantly higher than Fe doped TiO{sub 2} thin film for short and long exposure periods. Doped thin films were more effective on Aspergillus niger for short exposure periods.

  16. Flexible polyimide films hybrid with functionalized boron nitride and graphene oxide simultaneously to improve thermal conduction and dimensional stability.

    Science.gov (United States)

    Tsai, Mei-Hui; Tseng, I-Hsiang; Chiang, Jen-Chi; Li, Jheng-Jia

    2014-06-11

    Coupling agent-functionalized boron nitride (f-BN) and glycidyl methacrylate-grafted graphene (g-TrG) are simultaneously blended with polyimide (PI) to fabricate a flexible, electrically insulating and thermally conductive PI composite film. The silk-like g-TrG successfully fills in the gap between PI and f-BN to complete the thermal conduction network. In addition, the strong interaction between surface functional groups on f-BN and g-TrG contributes to the effective phonon transfer in the PI matrix. The thermal conductivity (TC) of the PI/f-BN composite films containing additional 1 wt % of g-TrG is at least doubled to the value of PI/f-BN and as high as 16 times to that of the pure PI. The hybrid film PI/f-BN-50/g-TrG-1 exhibits excellent flexibility, sufficient insulating property, the highest TC of 2.11 W/mK, and ultralow coefficient of thermal expansion of 11 ppm/K, which are perfect conditions for future flexible substrate materials requiring efficient heat dissipation.

  17. Sixfold ring clustering in sp2-dominated carbon and carbon nitride thin films: A Raman spectroscopy study

    International Nuclear Information System (INIS)

    Abrasonis, G.; Gago, R.; Vinnichenko, M.; Kreissig, U.; Kolitsch, A.; Moeller, W.

    2006-01-01

    The atomic arrangement in sp 2 -dominated carbon (C) and carbon nitride (CN x ) thin films has been studied by Raman spectroscopy as a function of substrate temperature and, in the case of CN x , different N incorporation routes (growth methods). In this way, materials composing graphitelike, fullerenelike (FL), and paracyanogenlike structures have been compared. The results show that each type of arrangement results in a characteristic set of the Raman spectra parameters, which describe the degree of aromatic clustering, bond length, and angle distortion and order in sixfold structures. In the case of C films, the atomic structure evolves with substrate temperature from a disordered network to nanocrystalline planar graphitic configurations, with a progressive promotion in size and ordering of sixfold ring clusters. Nitrogen incorporation favors the promotion of sixfold rings in highly disordered networks produced at low temperatures, but precludes the formation of extended graphiticlike clusters at elevated substrate temperatures (>700 K). In the latter case, N introduces a high degree of disorder in sixfold ring clusters and enhances the formation of a FL microstructure. The formation and growth of aromatic clusters are discussed in terms of substrate temperature, N incorporation, growth rate, film-forming sources, and concurrent bombardment by hyperthermal particles during growth

  18. Contrasting magnetism in dilute and supersaturated cobalt-fullerene mixture films

    Czech Academy of Sciences Publication Activity Database

    Lavrentiev, Vasyl; Stupakov, Alexandr; Pokorný, Jan; Lavrentieva, Inna; Vacík, Jiří; Dejneka, Alexandr; Barchuk, M.; Čapková, P.

    2015-01-01

    Roč. 48, č. 33 (2015), s. 335002 ISSN 0022-3727 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:68378271 ; RVO:61389005 Keywords : cobalt * fullerene * nanomagnetism * nanostructure * self-organization Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders; BM - Solid Matter Physics ; Magnetism (FZU-D) Impact factor: 2.772, year: 2015

  19. Analysis of Gafchromic EBT3 film calibration irradiated with gamma rays from different systems: Gamma Knife and Cobalt-60 unit.

    Science.gov (United States)

    Najafi, Mohsen; Geraily, Ghazale; Shirazi, Alireza; Esfahani, Mahbod; Teimouri, Javad

    2017-01-01

    In recent years, Gafchromic films are used as an advanced instrument for dosimetry systems. The EBT3 films are a new generation of Gafchromic films. Our main interest is to compare the response of the EBT3 films exposed to gamma rays provided by the Theratron 780C as a conventional radiotherapy system and the Leksell Gamma Knife as a stereotactic radiotherapy system (SRS). Both systems use Cobalt-60 sources, thus using the same energy. However, other factors such as source-to-axis distance, number of sources, dose rate, direction of irradiation, shape of phantom, the field shape of radiation, and different scatter contribution may influence the calibration curve. Calibration curves for the 2 systems were measured and plotted for doses ranging from 0 to 40 Gy at the red and green channels. The best fitting curve was obtained with the Levenberg-Marquardt algorithm. Also, the component of dose uncertainty was obtained for any calibration curve. With the best fitting curve for the EBT3 films, we can use the calibration curve to measure the absolute dose in radiation therapy. Although there is a small deviation between the 2 curves, the p-value at any channel shows no significant difference between the 2 calibration curves. Therefore, the calibration curve for each system can be the same because of minor differences. The results show that with the best fitting curve from measured data, while considering the measurement uncertainties related to them, the EBT3 calibration curve can be used to measure the unknown dose both in SRS and in conventional radiotherapy. Copyright © 2017. Published by Elsevier Inc.

  20. Tailoring of in-plane magnetic anisotropy in polycrystalline cobalt thin films by external stress

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Dileep, E-mail: dkumar@csr.res.in [UGC-DAE Consortium for Scientic Research, Khandwa Road, Indore 452001 (India); Singh, Sadhana [UGC-DAE Consortium for Scientic Research, Khandwa Road, Indore 452001 (India); Vishawakarma, Pramod [School of Nanotechnology, RGPV, Bhopal 462036 (India); Dev, Arun Singh; Reddy, V.R. [UGC-DAE Consortium for Scientic Research, Khandwa Road, Indore 452001 (India); Gupta, Ajay [Amity Center for Spintronic Materials, Amity University, Sector 125, Noida 201303 (India)

    2016-11-15

    Polycrystalline Co films of nominal thickness ~180 Å were deposited on intentionally curved Si substrates. Tensile and compressive stresses of 100 MPa and 150 MPa were induced in the films by relieving the curvature. It has been found that, within the elastic limit, presence of stress leads to an in-plane magnetic anisotropy in the film and its strength increases with increasing stress. Easy axis of magnetization in the films is found to be parallel/ transverse to the compressive /tensile stresses respectively. The origin of magnetic anisotropy in the stressed films is understood in terms of magneto- elastic coupling, where the stress try to align the magnetic moments in order to minimize the magneto-elastic as well as anisotropy energy. Tensile stress is also found to be responsible for the surface smoothening of the films, which is attributed to the movement of the atoms associated with the applied stress. The present work provides a possible way to tailor the magnetic anisotropy and its direction in polycrystalline and amorphous films using external stress. - Highlights: • Tensile and compressive stresses were induced in Co films by removing the bending force from the substrates after film deposition. • Controlled external mechanical stress is found to be responsible for magnetic anisotropies in amorphous and polycrystalline thin films, where crystalline anisotropy is absent. • Tensile stress leads to surface smoothening of the polycrystalline Co films.

  1. Variation of crystallinity and stoichiometry in films of gallium oxide, gallium nitride and barium zirconate prepared by means of PLD

    International Nuclear Information System (INIS)

    Brendt, Jochen

    2011-01-01

    Pulsed Laser Deposition (PLD) is an ablation technique for thin film preparation of many materials. The film properties can be well controlled by the process parameters. Therefore, in many cases a given material can be deposited with different properties by changing one or more process parameters. In this thesis thin films of gallium oxide, gallium nitride and barium zirconate were deposited with a large variation in structure and stoichiometry by means of Pulsed Laser Deposition. The characterization of the film crystallinity, phase purity and short range structural order was completed by means of X-ray diffraction and X-ray absorption spectroscopy. The stoichiometry was investigated using electron probe microanalysis. For analyzing the correlation between the structure and stoichiometry with the optical and electrical properties, optical absorption and electrical conductivity measurements were carried out. The investigation of all three material systems showed that very unique properties can be realized when combining an amorphous structure and a non-stoichiometric composition. For example, in amorphous and oxygen deficient gallium oxide an insulator-metal-transition can be induced by partial crystallization of the as prepared phase accomplished by annealing at about 400 C in argon atmosphere (as shown in literature). Furthermore, amorphous and highly non-stoichiometric barium zirconate has the ability to split water molecules to hydrogen and oxygen at room temperature. A detailed analysis of both phenomena has been performed by means of photoemission and transmission electron microscopy in the case of gallium oxide and via X-ray absorption spectroscopy and gas chromatography in the case of barium zirconate.

  2. Improving the Microstructure and Electrical Properties of Aluminum Induced Polysilicon Thin Films Using Silicon Nitride Capping Layer

    Directory of Open Access Journals (Sweden)

    Min-Hang Weng

    2014-01-01

    Full Text Available We investigated the capping layer effect of SiNx (silicon nitride on the microstructure, electrical, and optical properties of poly-Si (polycrystalline silicon prepared by aluminum induced crystallization (AIC. The primary multilayer structure comprised Al (30 nm/SiNx (20 nm/a-Si (amorphous silicon layer (100 nm/ITO coated glass and was then annealed in a low annealing temperature of 350°C with different annealing times, 15, 30, 45, and 60 min. The crystallization properties were analyzed and verified by X-ray diffraction (XRD and Raman spectra. The grain growth was analyzed via optical microscope (OM and scanning electron microscopy (SEM. The improved electrical properties such as Hall mobility, resistivity, and dark conductivity were investigated by using Hall and current-voltage (I-V measurements. The results show that the amorphous silicon film has been effectively induced even at a low temperature of 350°C and a short annealing time of 15 min and indicate that the SiNx capping layer can improve the grain growth and reduce the metal content in the induced poly-Si film. It is found that the large grain size is over 20 μm and the carrier mobility values are over 80 cm2/V-s.

  3. Influence of laser pulse frequency on the microstructure of aluminum nitride thin films synthesized by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Antonova, K., E-mail: krasa@issp.bas.bg [Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, Sofia 1784 (Bulgaria); Duta, L. [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, 077125 Magurele (Romania); Szekeres, A. [Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, Sofia 1784 (Bulgaria); Stan, G.E. [National Institute of Materials Physics, 105 bis Atomistilor Street, 077125 Magurele (Romania); Mihailescu, I.N. [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, 077125 Magurele (Romania); Anastasescu, M.; Stroescu, H.; Gartner, M. [Institute of Physical Chemistry, “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania)

    2017-02-01

    Highlights: • Study of pulsed laser deposited AlN films at different laser pulse frequencies. • Higher laser pulse frequency promotes nanocrystallites formation at temperature 450 °C. • AFM and GIXRD detect randomly oriented wurtzite AlN structures. • Characterization of the nanocrystallites’ orientation by FTIR reflectance spectra. • Berreman effect is registered in p-polarised radiation at large incidence angles. - Abstract: Aluminum Nitride (AlN) thin films were synthesized on Si (100) wafers at 450 °C by pulsed laser deposition. A polycrystalline AlN target was multipulsed irradiated in a nitrogen ambient, at different laser pulse repetition rate. Grazing Incidence X-Ray Diffraction and Atomic Force Microscopy analyses evidenced nanocrystallites with a hexagonal lattice in the amorphous AlN matrix. The thickness and optical constants of the layers were determined by infrared spectroscopic ellipsometry. The optical properties were studied by Fourier Transform Infrared reflectance spectroscopy in polarised oblique incidence radiation. Berreman effect was observed around the longitudinal phonon modes of the crystalline AlN component. Angular dependence of the A{sub 1}LO mode frequency was analysed and connected to the orientation of the particles’ optical axis to the substrate surface normal. The role of the laser pulse frequency on the layers’ properties is discussed on this basis.

  4. Light emission in forward and reverse bias operation in OLED with amorphous silicon carbon nitride thin films

    Science.gov (United States)

    Reyes, R.; Cremona, M.; Achete, C. A.

    2011-01-01

    Amorphous silicon carbon nitride (a-SiC:N) thin films deposited by magnetron sputtering were used in the structure of an organic light emitting diode (OLED), obtaining an OLED operating in forward and reverse bias mode. The device consist of the heterojunction structure ITO/a-SiC:N/Hole Transport Layer (HTL)/ Electron Transport Layer (ETL)/a-SiC:N/Al. As hole transporting layer was used a thin film of 1-(3-methylphenyl)-1,2,3,4 tetrahydroquinoline - 6 - carboxyaldehyde - 1,1'- diphenylhydrazone (MTCD), while the tris(8-hydroxyquinoline aluminum) (Alq3) is used as electron transport and emitting layer. A significant increase in the voltage operation compared to the conventional ITO/MTCD/Alq3/Al structure was observed, so the onset of electroluminescence occurs at about 22 V in the forward and reverse bias mode of operation. The electroluminescence spectra is similar in both cases, only slightly shifted 0.14 eV to lower energies in relation to the conventional device.

  5. Light emission in forward and reverse bias operation in OLED with amorphous silicon carbon nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, R [Facultad de Ingenieria Quimica y Textil, Universidad Nacional de Ingenieria, Av. Tupac Amaru SN, Lima (Peru); Cremona, M [Departamento de Fisica, PontifIcia Universidade Catolica de Rio de Janeiro, PUC-Rio, Cx. Postal 38071, Rio de Janeiro, RJ, CEP 22453-970 (Brazil); Achete, C A, E-mail: rreyes@uni.edu.pe [Departamento de Engenheria Metalurgica e de Materiais, Universidade Federal do Rio de Janeiro, Cx. Postal 68505, Rio de Janeiro, RJ, CEP 21945-970 (Brazil)

    2011-01-01

    Amorphous silicon carbon nitride (a-SiC:N) thin films deposited by magnetron sputtering were used in the structure of an organic light emitting diode (OLED), obtaining an OLED operating in forward and reverse bias mode. The device consist of the heterojunction structure ITO/a-SiC:N/Hole Transport Layer (HTL)/ Electron Transport Layer (ETL)/a-SiC:N/Al. As hole transporting layer was used a thin film of 1-(3-methylphenyl)-1,2,3,4 tetrahydroquinoline - 6 - carboxyaldehyde - 1,1'- diphenylhydrazone (MTCD), while the tris(8-hydroxyquinoline aluminum) (Alq{sub 3}) is used as electron transport and emitting layer. A significant increase in the voltage operation compared to the conventional ITO/MTCD/Alq{sub 3}/Al structure was observed, so the onset of electroluminescence occurs at about 22 V in the forward and reverse bias mode of operation. The electroluminescence spectra is similar in both cases, only slightly shifted 0.14 eV to lower energies in relation to the conventional device.

  6. Light emission in forward and reverse bias operation in OLED with amorphous silicon carbon nitride thin films

    International Nuclear Information System (INIS)

    Reyes, R; Cremona, M; Achete, C A

    2011-01-01

    Amorphous silicon carbon nitride (a-SiC:N) thin films deposited by magnetron sputtering were used in the structure of an organic light emitting diode (OLED), obtaining an OLED operating in forward and reverse bias mode. The device consist of the heterojunction structure ITO/a-SiC:N/Hole Transport Layer (HTL)/ Electron Transport Layer (ETL)/a-SiC:N/Al. As hole transporting layer was used a thin film of 1-(3-methylphenyl)-1,2,3,4 tetrahydroquinoline - 6 - carboxyaldehyde - 1,1'- diphenylhydrazone (MTCD), while the tris(8-hydroxyquinoline aluminum) (Alq 3 ) is used as electron transport and emitting layer. A significant increase in the voltage operation compared to the conventional ITO/MTCD/Alq 3 /Al structure was observed, so the onset of electroluminescence occurs at about 22 V in the forward and reverse bias mode of operation. The electroluminescence spectra is similar in both cases, only slightly shifted 0.14 eV to lower energies in relation to the conventional device.

  7. Nitrided FeB amorphous thin films for magneto mechanical systems

    International Nuclear Information System (INIS)

    Fernandez-Martinez, I.; Martin-Gonzalez, M.S.; Gonzalez-Arrabal, R.; Alvarez-Sanchez, R.; Briones, F.; Costa-Kraemer, J.L.

    2008-01-01

    The structural, magnetic and magnetoelastic properties of Fe-B-N amorphous films, sputtered from a Fe 80 B 20 target, in a mixture of argon and nitrogen gas, are studied for different nitrogen partial pressures. Nitrogen incorporates into the film preserving the amorphous structure, and modifying magnetic properties. The amount of nitrogen that incorporates into the amorphous structure is found to scale linearly with the nitrogen partial pressure during film growth. The structure, magnetization, field evolution, magnetic anisotropy and magnetostrictive behaviour are determined for films with different nitrogen content. An ∼20% increase of both the saturation magnetization and the magnetostriction constant values is found for moderate (∼8%) nitrogen content when compared to those for pure Fe 80 B 20 amorphous films. These improved properties, together with the still low coercivity of the amorphous films offer great potential for their use in magnetostrictive micro and nano magneto mechanical actuator devices

  8. Deposit of thin films of nitrided amorphous carbon using the laser ablation technique; Deposito de peliculas delgadas de carbono amorfo nitrurado utilizando la tecnica de ablacion laser

    Energy Technology Data Exchange (ETDEWEB)

    Rebollo, P.B.; Escobar A, L.; Camps C, E. [Departamento de Fisica, Instituto Nacional de Investigaciones Nucleares, C.P. 52045 Salazar, Estado de Mexico (Mexico); Haro P, E.; Camacho L, M.A. [Departamento de Fisica, Universidad Autonoma Metropolitana Iztapalapa (Mexico); Muhl S, S. [Instituto de Investigacion en Materiales, UNAM (Mexico)

    2000-07-01

    It is reported the synthesis and characterization of thin films of amorphous carbon (a-C) nitrided, deposited by laser ablation in a nitrogen atmosphere at pressures which are from 4.5 x 10 {sup -4} Torr until 7.5 x 10 {sup -2} Torr. The structural properties of the films are studied by Raman spectroscopy obtaining similar spectra at the reported for carbon films type diamond. The study of behavior of the energy gap and the ratio nitrogen/carbon (N/C) in the films, shows that the energy gap is reduced when the nitrogen incorporation is increased. It is showed that the refraction index of the thin films diminish as nitrogen pressure is increased, indicating the formation of graphitic material. (Author)

  9. A comparative study of transport properties in polycrystalline and epitaxial chromium nitride films

    KAUST Repository

    Duan, X. F.; Mi, Wenbo; Guo, Zaibing; Bai, Haili

    2013-01-01

    Polycrystalline CrNx films on Si(100) and glass substrates and epitaxial CrNx films on MgO(100) substrates were fabricated by reactive sputtering with different nitrogen gas flow rates (fN2). With the increase of fN2, a lattice phase transformation

  10. Low-temperature ({<=}200 Degree-Sign C) plasma enhanced atomic layer deposition of dense titanium nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Samal, Nigamananda; Du Hui; Luberoff, Russell; Chetry, Krishna; Bubber, Randhir; Hayes, Alan; Devasahayam, Adrian [Veeco Instruments, 1 Terminal Drive, Plainview, New York 11803 (United States)

    2013-01-15

    Titanium nitride (TiN) has been widely used in the semiconductor industry for its diffusion barrier and seed layer properties. However, it has seen limited adoption in other industries in which low temperature (<200 Degree-Sign C) deposition is a requirement. Examples of applications which require low temperature deposition are seed layers for magnetic materials in the data storage (DS) industry and seed and diffusion barrier layers for through-silicon-vias (TSV) in the MEMS industry. This paper describes a low temperature TiN process with appropriate electrical, chemical, and structural properties based on plasma enhanced atomic layer deposition method that is suitable for the DS and MEMS industries. It uses tetrakis-(dimethylamino)-titanium as an organometallic precursor and hydrogen (H{sub 2}) as co-reactant. This process was developed in a Veeco NEXUS Trade-Mark-Sign chemical vapor deposition tool. The tool uses a substrate rf-biased configuration with a grounded gas shower head. In this paper, the complimentary and self-limiting character of this process is demonstrated. The effects of key processing parameters including temperature, pulse time, and plasma power are investigated in terms of growth rate, stress, crystal morphology, chemical, electrical, and optical properties. Stoichiometric thin films with growth rates of 0.4-0.5 A/cycle were achieved. Low electrical resistivity (<300 {mu}{Omega} cm), high mass density (>4 g/cm{sup 3}), low stress (<250 MPa), and >85% step coverage for aspect ratio of 10:1 were realized. Wet chemical etch data show robust chemical stability of the film. The properties of the film have been optimized to satisfy industrial viability as a Ruthenium (Ru) preseed liner in potential data storage and TSV applications.

  11. Annealing temperature dependence of photoluminescent characteristics of silicon nanocrystals embedded in silicon-rich silicon nitride films grown by PECVD

    International Nuclear Information System (INIS)

    Chao, D.S.; Liang, J.H.

    2013-01-01

    Recently, light emission from silicon nanostructures has gained great interest due to its promising potential of realizing silicon-based optoelectronic applications. In this study, luminescent silicon nanocrystals (Si–NCs) were in situ synthesized in silicon-rich silicon nitride (SRSN) films grown by plasma-enhanced chemical vapor deposition (PECVD). SRSN films with various excess silicon contents were deposited by adjusting SiH 4 flow rate to 100 and 200 sccm and keeping NH 3 one at 40 sccm, and followed by furnace annealing (FA) treatments at 600, 850 and 1100 °C for 1 h. The effects of excess silicon content and post-annealing temperature on optical properties of Si–NCs were investigated by photoluminescence (PL) and Fourier transform infrared spectroscopy (FTIR). The origins of two groups of PL peaks found in this study can be attributed to defect-related interface states and quantum confinement effects (QCE). Defect-related interface states lead to the photon energy levels almost kept constant at about 3.4 eV, while QCE results in visible and tunable PL emission in the spectral range of yellow and blue light which depends on excess silicon content and post-annealing temperature. In addition, PL intensity was also demonstrated to be highly correlative to the excess silicon content and post-annealing temperature due to its corresponding effects on size, density, crystallinity, and surface passivation of Si–NCs. Considering the trade-off between surface passivation and structural properties of Si–NCs, an optimal post-annealing temperature of 600 °C was suggested to maximize the PL intensity of the SRSN films

  12. Hybrid methyl green/cobalt-polyoxotungstate nanostructured films: Self-assembly, electrochemical and electrocatalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Novais, Hugo C.; Fernandes, Diana M., E-mail: diana.fernandes@fc.up.pt; Freire, Cristina, E-mail: acfreire@fc.up.pt

    2015-08-30

    Graphical abstract: Hybrid {MG/Co(PW9)2}{sub n} multilayer films were successfully prepared and exhibit W-based electrocatalytic activity towards reduction of nitrite and iodate anions. - Highlights: • Layer-by-layer hybrid films {MG/Co(PW_9)_2}{sub n} were sucessfully prepared. • UV–vis was used to monitor film build-up and showed regular stepwise film growth. • XPS confirmed sucessfull {MG/Co(PW_9)_2}{sub n} film fabrication. • Films showed excellent electrocatalytic activity towards nitrite and iodate reduction. - Abstract: Hybrid multilayer films were prepared by alternately depositing cationic dye methyl green (MG) and anionic sandwich-type polyoxometalate K{sub 10}[Co{sub 4}(H{sub 2}O){sub 2}(PW{sub 9}O{sub 34}){sub 2}] (Co(PW{sub 9}){sub 2}) via electrostatic layer-by-layer (LbL) self-assembly method. Film build-up was monitored by UV–vis spectroscopy which showed a regular stepwise growth. X-ray photoelectron spectroscopy data confirmed the successful fabrication of the hybrid films with MG-Co(PW{sub 9}){sub 2} composition and scanning electron microscopy images revealed a completely covered surface with a non-uniform distribution of the molecular species. Electrochemical characterization of films by cyclic voltammetry revealed two tungsten-based reduction processes in the potential range between −0.9 and −0.5 V due to W{sup VI} → W{sup V} in Co(PW{sub 9}){sub 2}. Studies with the redox probes, [Fe(CN){sub 6}]{sup 3−/4−} and [Ru(NH{sub 3}){sub 6}]{sup 3+/2+}, revealed that not only the electrostatic attractions or repulsions have effects on the kinetics of the probe reactions, but also the film thickness. Additionally, the {MG/Co(PW_9)_2}{sub n} multilayer films exhibit efficient W-based electrocatalytic activity towards reduction of nitrite and iodate.

  13. Epitaxial thin film growth and properties of unconventional oxide superconductors. Cuprates and cobaltates

    International Nuclear Information System (INIS)

    Krockenberger, Y.

    2006-01-01

    The discovery of high-temperature superconductors has strongly driven the development of suited thin film fabrication methods of complex oxides. One way is the adaptation of molecular beam epitaxy (MBE) for the growth of oxide materials. Another approach is the use of pulsed laser deposition (PLD) which has the advantage of good stoichiometry transfer from target to the substrate. Both techniques are used within this thesis. Epitaxial thin films of new materials are of course needed for future applications. In addition, the controlled synthesis of thin film matter which can be formed far away from thermal equilibrium allows for the investigation of fundamental physical materials properties. (orig.)

  14. Epitaxial thin film growth and properties of unconventional oxide superconductors. Cuprates and cobaltates

    Energy Technology Data Exchange (ETDEWEB)

    Krockenberger, Y.

    2006-07-01

    The discovery of high-temperature superconductors has strongly driven the development of suited thin film fabrication methods of complex oxides. One way is the adaptation of molecular beam epitaxy (MBE) for the growth of oxide materials. Another approach is the use of pulsed laser deposition (PLD) which has the advantage of good stoichiometry transfer from target to the substrate. Both techniques are used within this thesis. Epitaxial thin films of new materials are of course needed for future applications. In addition, the controlled synthesis of thin film matter which can be formed far away from thermal equilibrium allows for the investigation of fundamental physical materials properties. (orig.)

  15. Self-induced inverse spin-Hall effect in an iron and a cobalt single-layer films themselves under the ferromagnetic resonance

    Science.gov (United States)

    Kanagawa, Kazunari; Teki, Yoshio; Shikoh, Eiji

    2018-05-01

    The inverse spin-Hall effect (ISHE) is produced even in a "single-layer" ferromagnetic material film. Previously, the self-induced ISHE in a Ni80Fe20 film under the ferromagnetic resonance (FMR) was discovered. In this study, we observed an electromotive force (EMF) in an iron (Fe) and a cobalt (Co) single-layer films themselves under the FMR. As origins of the EMFs in the films themselves, the ISHE was main for Fe and dominant for Co, respectively 2 and 18 times larger than the anomalous Hall effect. Thus, we demonstrated the self-induced ISHE in an Fe and a Co single-layer films themselves under the FMR.

  16. Magnetoresistance of drop-cast film of cobalt-substituted magnetite nanocrystals.

    Science.gov (United States)

    Kohiki, Shigemi; Nara, Koichiro; Mitome, Masanori; Tsuya, Daiju

    2014-10-22

    An oleic acid-coated Fe2.7Co0.3O4 nanocrystal (NC) self-assembled film was fabricated via drop casting of colloidal particles onto a three-terminal electrode/MgO substrate. The film exhibited a large coercivity (1620 Oe) and bifurcation of the zero-field-cooled and field-cooled magnetizations at 300 K. At 10 K, the film exhibited both a Coulomb blockade due to single electron charging as well as a magnetoresistance of ∼-80% due to spin-dependent electron tunneling. At 300 K, the film also showed a magnetoresistance of ∼-80% due to hopping of spin-polarized electrons. Enhanced magnetic coupling between adjacent NCs and the large coercivity resulted in a large spin-polarized current flow even at 300 K.

  17. Improving optical properties of silicon nitride films to be applied in the middle infrared optics by a combined high-power impulse/unbalanced magnetron sputtering deposition technique.

    Science.gov (United States)

    Liao, Bo-Huei; Hsiao, Chien-Nan

    2014-02-01

    Silicon nitride films are prepared by a combined high-power impulse/unbalanced magnetron sputtering (HIPIMS/UBMS) deposition technique. Different unbalance coefficients and pulse on/off ratios are applied to improve the optical properties of the silicon nitride films. The refractive indices of the Si3N4 films vary from 2.17 to 2.02 in the wavelength ranges of 400-700 nm, and all the extinction coefficients are smaller than 1×10(-4). The Fourier transform infrared spectroscopy and x-ray diffractometry measurements reveal the amorphous structure of the Si3N4 films with extremely low hydrogen content and very low absorption between the near IR and middle IR ranges. Compared to other deposition techniques, Si3N4 films deposited by the combined HIPIMS/UBMS deposition technique possess the highest refractive index, the lowest extinction coefficient, and excellent structural properties. Finally a four-layer coating is deposited on both sides of a silicon substrate. The average transmittance from 3200 to 4800 nm is 99.0%, and the highest transmittance is 99.97% around 4200 nm.

  18. A comparative study of transport properties in polycrystalline and epitaxial chromium nitride films

    KAUST Repository

    Duan, X. F.

    2013-01-08

    Polycrystalline CrNx films on Si(100) and glass substrates and epitaxial CrNx films on MgO(100) substrates were fabricated by reactive sputtering with different nitrogen gas flow rates (fN2). With the increase of fN2, a lattice phase transformation from metallic Cr2N to semiconducting CrN appears in both polycrystalline and epitaxial CrNx films. At fN2= 100 sccm, the low-temperature conductance mechanism is dominated by both Mott and Efros-Shklovskii variable-range hopping in either polycrystalline or epitaxial CrN films. In all of the polycrystalline and epitaxial films, only the polycrystalline CrNx films fabricated at fN2 = 30 and 50 sccm exhibit a discontinuity in ρ(T) curves at 260-280 K, indicating that both the N-vacancy concentration and grain boundaries play important roles in the metal-insulator transition. © 2013 American Institute of Physics.

  19. Sol-gel derived zinc oxide films alloyed with cobalt and aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Mamta [Department of Electronic Science, University of Delhi South Campus, Benito Juarez Road, New Delhi 110 021 (India); Mehra, R.M., E-mail: rammehra2003@yahoo.co [Department of Electronic Science, University of Delhi South Campus, Benito Juarez Road, New Delhi 110 021 (India)

    2010-05-03

    ZnO films codoped with 5 at.% Co and 1 at.% Al were prepared by sol-gel technique on corning glass and silicon substrates with precursor sols of different pH values. The pH was varied from 5.4 to 11 by adding varying amounts of monoethanolamine to the sol. Since pH plays an important role in controlling the properties of films, we discuss in detail the effect of pH value on the structural, morphological and optical properties of the grown films. X-ray diffraction and atomic force microscopy images reveal that the size of crystallites increases with pH of the sol. The variation of pH in the reaction system influences the density of homogeneous nucleation and the crystal growth along the c-axis. High quality Co and Al codoped ZnO films annealed at 600 {sup o}C have been obtained using a sol with pH = 9. These sol-gel derived films find their suitability to be used as dilute magnetic semiconductors.

  20. Sol-gel derived zinc oxide films alloyed with cobalt and aluminium

    International Nuclear Information System (INIS)

    Sharma, Mamta; Mehra, R.M.

    2010-01-01

    ZnO films codoped with 5 at.% Co and 1 at.% Al were prepared by sol-gel technique on corning glass and silicon substrates with precursor sols of different pH values. The pH was varied from 5.4 to 11 by adding varying amounts of monoethanolamine to the sol. Since pH plays an important role in controlling the properties of films, we discuss in detail the effect of pH value on the structural, morphological and optical properties of the grown films. X-ray diffraction and atomic force microscopy images reveal that the size of crystallites increases with pH of the sol. The variation of pH in the reaction system influences the density of homogeneous nucleation and the crystal growth along the c-axis. High quality Co and Al codoped ZnO films annealed at 600 o C have been obtained using a sol with pH = 9. These sol-gel derived films find their suitability to be used as dilute magnetic semiconductors.

  1. The electrical, optical, structural and thermoelectrical characterization of n- and p-type cobalt-doped SnO 2 transparent semiconducting films prepared by spray pyrolysis technique

    Science.gov (United States)

    Bagheri-Mohagheghi, Mohammad-Mehdi; Shokooh-Saremi, Mehrdad

    2010-10-01

    The electrical, optical and structural properties of Cobalt (Co) doped SnO 2 transparent semiconducting thin films, deposited by the spray pyrolysis technique, have been studied. The SnO 2:Co films, with different Co-content, were deposited on glass substrates using an aqueous-ethanol solution consisting of tin and cobalt chlorides. X-ray diffraction studies showed that the SnO 2:Co films were polycrystalline only with tin oxide phases and preferential orientations along (1 1 0) and (2 1 1) planes and grain sizes in the range 19-82 nm. Optical transmittance spectra of the films showed high transparency ∼75-90% in the visible region, decreasing with increase in Co-doping. The optical absorption edge for undoped SnO 2 films was found to be 3.76 eV, while for higher Co-doped films shifted toward higher energies (shorter wavelengths) in the range 3.76-4.04 eV and then slowly decreased again to 4.03 eV. A change in sign of the Hall voltage and Seebeck coefficient was observed for a specific acceptor dopant level ∼11.4 at% in film and interpreted as a conversion from n-type to p-type conductivity. The thermoelectric electro-motive force (e.m.f.) of the films was measured in the temperature range 300-500 K and Seebeck coefficients were found in the range from -62 to +499 μVK -1 for various Co-doped SnO 2 films.

  2. The electrical, optical, structural and thermoelectrical characterization of n- and p-type cobalt-doped SnO2 transparent semiconducting films prepared by spray pyrolysis technique

    International Nuclear Information System (INIS)

    Bagheri-Mohagheghi, Mohammad-Mehdi; Shokooh-Saremi, Mehrdad

    2010-01-01

    The electrical, optical and structural properties of Cobalt (Co) doped SnO 2 transparent semiconducting thin films, deposited by the spray pyrolysis technique, have been studied. The SnO 2 :Co films, with different Co-content, were deposited on glass substrates using an aqueous-ethanol solution consisting of tin and cobalt chlorides. X-ray diffraction studies showed that the SnO 2 :Co films were polycrystalline only with tin oxide phases and preferential orientations along (1 1 0) and (2 1 1) planes and grain sizes in the range 19-82 nm. Optical transmittance spectra of the films showed high transparency ∼75-90% in the visible region, decreasing with increase in Co-doping. The optical absorption edge for undoped SnO 2 films was found to be 3.76 eV, while for higher Co-doped films shifted toward higher energies (shorter wavelengths) in the range 3.76-4.04 eV and then slowly decreased again to 4.03 eV. A change in sign of the Hall voltage and Seebeck coefficient was observed for a specific acceptor dopant level ∼11.4 at% in film and interpreted as a conversion from n-type to p-type conductivity. The thermoelectric electro-motive force (e.m.f.) of the films was measured in the temperature range 300-500 K and Seebeck coefficients were found in the range from -62 to +499 μVK -1 for various Co-doped SnO 2 films.

  3. Structural characterization of thin films of titanium nitride deposited by laser ablation; Caracterizacion estructural de peliculas delgadas de nitruro de titanio depositadas por ablacion laser

    Energy Technology Data Exchange (ETDEWEB)

    Castro C, M.A.; Escobar A, L.; Camps C, E.; Mejia H, J.A. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2004-07-01

    Thin films of titanium nitride were deposited using the technique of laser ablation. It was studied the effect of the density of laser energy used for ablation the target as well as of the pressure of the work gas about the structure and the hardness of the deposited thin films. Depending on the pressure of the work gas films was obtained with preferential orientation in the directions (200) and (111). At a pressure of 1 x 10{sup -2} Torr only the direction (200) was observed. On the other hand to the pressure of 5 x 10{sup -3} Torr the deposited material this formed by a mixture of the orientation (200) and (111), being the direction (111) the predominant one. Thin films of Ti N were obtained with hardness of up to 24.0 GPa that makes to these attractive materials for mechanical applications. The hardness showed an approximately linear dependence with the energy density. (Author)

  4. Structural study of Mg doped cobalt ferrite thin films on ITO coated glass substrate

    Science.gov (United States)

    Suthar, Mahesh; Bapna, Komal; Kumar, Kishor; Ahuja, B. L.

    2018-05-01

    We have synthesized thin films of Co1-xMgxFe2O4 (x = 0, 0.4, 0.6, 0.8, 1) on transparent conducting indium tin oxide (ITO) coated glass substrate by pulsed laser deposition method. The structural properties of the grown films were analyzed by the X-ray diffraction and Raman spectroscopy, which suggest the single phase growth of these films. Raman spectra revealed the incorporation of Mg ions into CoFe2O4 lattice and suggest that the Mg ions initially go both to the octahedral and tetrahedral sites upto a certain concentration. For higher concentration, Mg ions prefer to occupy the tetrahedral sites.

  5. Studying the initial stages of film electrodeposition of magnetic cobalt-tungsten alloys

    International Nuclear Information System (INIS)

    Rachinskas, V.S.; Orlovskaya, L.V.; Parfenov, V.A.; Yasulajtene, V.V.

    1996-01-01

    Initial stages of magnetic film electrodeposition by recording potentiodynamic polarization and j c ,t-curves, determination of surface structure of electrolytically deposited films by the method of XPS and study of thin coating properties have been considered. It is shown that at initial stage of electrodeposition of magnetic Co-W-films a sharp decrease in cathode process rate and formation of Co(OH) 2 , WO 3 and/or WO 4 2- occur on Cu-cathode surface. Electrodeposition of metallic magnetic Co-W-alloy, consisting of Co, W and containing basic compounds of co-deposited metals, takes place after a certain time period depending on deposition E c . 6 refs.; 3 figs

  6. Reprint of: Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film.

    Science.gov (United States)

    Nishiyama, Hidetoshi; Suga, Mitsuo; Ogura, Toshihiko; Maruyama, Yuusuke; Koizumi, Mitsuru; Mio, Kazuhiro; Kitamura, Shinichi; Sato, Chikara

    2010-11-01

    Direct observation of subcellular structures and their characterization is essential for understanding their physiological functions. To observe them in open environment, we have developed an inverted scanning electron microscope with a detachable, open-culture dish, capable of 8 nm resolution, and combined with a fluorescence microscope quasi-simultaneously observing the same area from the top. For scanning electron microscopy from the bottom, a silicon nitride film window in the base of the dish maintains a vacuum between electron gun and open sample dish while allowing electrons to pass through. Electrons are backscattered from the sample and captured by a detector under the dish. Cells cultured on the open dish can be externally manipulated under optical microscopy, fixed, and observed using scanning electron microscopy. Once fine structures have been revealed by scanning electron microscopy, their component proteins may be identified by comparison with separately prepared fluorescence-labeled optical microscopic images of the candidate proteins, with their heavy-metal-labeled or stained ASEM images. Furthermore, cell nuclei in a tissue block stained with platinum-blue were successfully observed without thin-sectioning, which suggests the applicability of this inverted scanning electron microscope to cancer diagnosis. This microscope visualizes mesoscopic-scale structures, and is also applicable to non-bioscience fields including polymer chemistry. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Alignment of Boron Nitride Nanofibers in Epoxy Composite Films for Thermal Conductivity and Dielectric Breakdown Strength Improvement.

    Science.gov (United States)

    Wang, Zhengdong; Liu, Jingya; Cheng, Yonghong; Chen, Siyu; Yang, Mengmeng; Huang, Jialiang; Wang, Hongkang; Wu, Guanglei; Wu, Hongjing

    2018-04-15

    Development of polymer-based composites with simultaneously high thermal conductivity and breakdown strength has attracted considerable attention owing to their important applications in both electronic and electric industries. In this work, boron nitride (BN) nanofibers (BNNF) are successfully prepared as fillers, which are used for epoxy composites. In addition, the BNNF in epoxy composites are aligned by using a film casting method. The composites show enhanced thermal conductivity and dielectric breakdown strength. For instance, after doping with BNNF of 2 wt%, the thermal conductivity of composites increased by 36.4% in comparison with that of the epoxy matrix. Meanwhile, the breakdown strength of the composite with 1 wt% BNNF is 122.9 kV/mm, which increased by 6.8% more than that of neat epoxy (115.1 kV/mm). Moreover, the composites have maintained a low dielectric constant and alternating current conductivity among the range of full frequency, and show a higher thermal decomposition temperature and glass-transition temperature. The composites with aligning BNNF have wide application prospects in electronic packaging material and printed circuit boards.

  8. Development of stripper films made of high strength, long life carbon nitride

    International Nuclear Information System (INIS)

    Oyaizu, Mitsuhiro; Sugai, Isamu; Yoshida, Koji; Haruyama, Yoichi.

    1994-01-01

    The heavy ion accelerators such as tandem type van de Graaff, linear accelerators, cyclotrons and so on raise the acceleration efficiency usually by producing multivalent ions by making the charge conversion of heavy ions using carbon thin films. However, when the electrons of large atomic number ions of low energy, high intensity current are stripped, the conventional carbon thin films on the market or home made were very short in their life, and have become the cause of remarkably lowering the acceleration efficiency. The concrete objectives of the development are the use of the charge conversion of unstable nuclear ions in the E arena accelerator for JHP of the future project of Institute of Nuclear Study and the manufacture of the carbon films which are used for the charge conversion of the H beam of high energy, but at the time of exchanging the films, there is the problem of the radiation exposure of large amount, therefore, the development of high reliability, long life stripper films has been strongly demanded. The experiment was carried out by controlled carbon arc discharge process using both AC and DC and the ion beam sputtering process using reactive nitrogen gas. The results are reported. (K.I.)

  9. Amorphous intergranular films in silicon nitride ceramics quenched from high temperatures

    International Nuclear Information System (INIS)

    Cinibulk, M.K.; Kleebe, H.; Schneider, G.A.; Ruehle, M.

    1993-01-01

    High-temperature microstructure of an MgO-hot-pressed Si 3 N 4 and a Yb 2 O 3 + Al 2 O 3 -sintered/annealed Si 3 N 4 were obtained by quenching thin specimens from temperatures between 1,350 and 1,550 C. Quenching materials from 1,350 C produced no observable exchanges in the secondary phases at triple-grain junctions or along grain boundaries. Although quenching from temperatures of ∼1,450 C also showed no significant changes in the general microstructure or morphology of the Si 3 N 4 grains, the amorphous intergranular film thickness increased substantially from an initial ∼1 nm in the slowly cooled material to 1.5--9 nm in the quenched materials. The variability of film thickness in a given material suggests a nonequilibrium state. Specimens quenched from 1,550 C revealed once again thin (1-nm) intergranular films at all high-angle grain boundaries, indicating an equilibrium condition. The changes observed in intergranular-film thickness by high-resolution electron microscopy can be related to the eutectic temperature of the system and to diffusional and viscous processes occurring in the amorphous intergranular film during the high-temperature anneal prior to quenching

  10. Topotactic synthesis of strontium cobalt oxyhydride thin film with perovskite structure

    OpenAIRE

    Tsukasa Katayama; Akira Chikamatsu; Hideyuki Kamisaka; Yuichi Yokoyama; Yasuyuki Hirata; Hiroki Wadati; Tomoteru Fukumura; Tetsuya Hasegawa

    2015-01-01

    The substitution of hydride anions (H−) into transition metal oxides has recently become possible through topotactic reactions or high-pressure synthesis methods. However, the fabrication of oxyhydrides is still difficult because of their inherently less-stable frameworks. In this study, we successfully fabricated perovskite SrCoOxHy thin films via the topotactic hydride doping of brownmillerite SrCoO2.5 epitaxial thin films with CaH2. The perovskite-type cation framework was maintained durin...

  11. Peculiarities of the electrontransport properties of polyimide films implanted with copper and cobalt ions

    International Nuclear Information System (INIS)

    Nazhim, F.A.; Odzhaev, V.B.; Lukashevich, M.G.; Nuzhdin, V.I.; Khajbullin, R.I.

    2010-01-01

    Thin polyimide foils were implanted with 40 keV Co + and Cu + ions at fluencies of 2,5·1016-1,251017 cm 2 and at ion current densities of 4, 8 and 12 mA cm 2 . Surface dc electric resistance of the implanted polymer samples have been measured in the temperature range 40-300 K. Metal implantation results in decreasing polymer resistance with the dose and current density increasing for the both kinds of metal ions. The decrease of dc electric resistance is caused by radiation-induced carbonization and metal nanoparticle formation in the implanted region of polymer. The transition from the insulating to metallic regime of conductivity is observed in cobalt implanted samples for critical doses above Dc = 1,25?1017 cm 2 at an ion current density of 8 mA cm 2 . In the contrary, high-fluence implantation in the polymer with Cu + ions for the same regimes does not result in the transition. The dominating mechanisms of charge carrier transport and the origin of insulator-to-metal transition in the metal implanted polymer are discussed. (authors)

  12. Adsorption of ethylene carbonate on lithium cobalt oxide thin films: A synchrotron-based spectroscopic study of the surface chemistry

    Science.gov (United States)

    Fingerle, Mathias; Späth, Thomas; Schulz, Natalia; Hausbrand, René

    2017-11-01

    The surface chemistry of cathodic lithium cobalt oxide (LiCoO2) in contact with the Li-ion battery solvent ethylene carbonate (EC) was studied via synchrotron based soft X-ray photoelectron spectroscopy (SXPS). By stepwise in-situ adsorption of EC onto an rf-magnetron sputtered LiCoO2 thin film and consecutive recording of SXPS spectra, the chemical and electronic properties of the interface were determined. EC partially decomposes and forms a predominantly organic adlayer. Prolonged exposure results in the formation of a condensed EC layer, demonstrating that the decomposition layer has passivating properties. Lithium ions deintercalate from the electrode and are dissolved in the adsorbate phase, without forming a large amount of Li-containing reaction products, indicating that electrolyte reduction remains limited. Due to a large offset between the LiCoO2 valence band and the EC HOMO, oxidation of EC molecules is unlikely, and should require energy level shifts due to interaction or double layer effects for real systems.

  13. Effect of Cu buffer layer on magnetic anisotropy of cobalt thin films deposited on MgO(001 substrate

    Directory of Open Access Journals (Sweden)

    Syed Sheraz Ahmad

    2016-11-01

    Full Text Available Cobalt thin films with 5 nm thickness were prepared on single-crystal MgO (001 substrates with different thickness Cu buffer (0 nm, 5 nm, 10 nm, 20 nm. The structure, magnetic properties and transport behaviors were investigated by employing low-energy-electron-diffraction (LEED, magneto-optical Kerr effect (MOKE and anisotropic magnetoresistance (AMR. By comparing the magnetic properties of the sample as-deposited (without Cu buffer layer one with those having the buffer Cu, we found that the magnetic anisotropy was extremely affected by the Cu buffer layer. The magnetic anisotropy of the as-deposited, without buffer layer, sample shows the uniaxial magnetic anisotropy (UMA. We found that the symmetry of the magnetic anisotropy is changed from UMA to four-fold when the thickness of the Cu buffer layer reaches to 20 nm. Meanwhile, the coercivity increased from 49 Oe (without buffer layer to 300 Oe (with 20 nm Cu buffer, in the easy axis direction, as the thickness of the buffer layer increases. Moreover, the magnitudes of various magnetic anisotropy constants were determined from torque curves on the basis of AMR results. These results support the phenomenon shown in the MOKE.

  14. Topotactic synthesis of strontium cobalt oxyhydride thin film with perovskite structure

    Science.gov (United States)

    Katayama, Tsukasa; Chikamatsu, Akira; Kamisaka, Hideyuki; Yokoyama, Yuichi; Hirata, Yasuyuki; Wadati, Hiroki; Fukumura, Tomoteru; Hasegawa, Tetsuya

    2015-10-01

    The substitution of hydride anions (H-) into transition metal oxides has recently become possible through topotactic reactions or high-pressure synthesis methods. However, the fabrication of oxyhydrides is still difficult because of their inherently less-stable frameworks. In this study, we successfully fabricated perovskite SrCoOxHy thin films via the topotactic hydride doping of brownmillerite SrCoO2.5 epitaxial thin films with CaH2. The perovskite-type cation framework was maintained during the topotactic treatment owing to epitaxial stabilization. Structural and chemical analyses accompanied by X-ray absorption spectroscopy measurements revealed that the doped hydride ions form a two-dimensional network of Co-H--Co bonds, in contrast to other reported perovskite oxyhydrides, SrMO3-xHx (M = Cr, Ti, V). The SrCoOxHy thin film exhibited insulating behavior and had a direct band gap of 2.1 eV. Thus, topotactic hydride doping of transition-metal-oxide thin films on suitable substrates is a promising method for the synthesis of new transition metal oxyhydrides.

  15. Topotactic synthesis of strontium cobalt oxyhydride thin film with perovskite structure

    Directory of Open Access Journals (Sweden)

    Tsukasa Katayama

    2015-10-01

    Full Text Available The substitution of hydride anions (H− into transition metal oxides has recently become possible through topotactic reactions or high-pressure synthesis methods. However, the fabrication of oxyhydrides is still difficult because of their inherently less-stable frameworks. In this study, we successfully fabricated perovskite SrCoOxHy thin films via the topotactic hydride doping of brownmillerite SrCoO2.5 epitaxial thin films with CaH2. The perovskite-type cation framework was maintained during the topotactic treatment owing to epitaxial stabilization. Structural and chemical analyses accompanied by X-ray absorption spectroscopy measurements revealed that the doped hydride ions form a two-dimensional network of Co-H−-Co bonds, in contrast to other reported perovskite oxyhydrides, SrMO3−xHx (M = Cr, Ti, V. The SrCoOxHy thin film exhibited insulating behavior and had a direct band gap of 2.1 eV. Thus, topotactic hydride doping of transition-metal-oxide thin films on suitable substrates is a promising method for the synthesis of new transition metal oxyhydrides.

  16. Topotactic synthesis of strontium cobalt oxyhydride thin film with perovskite structure

    Energy Technology Data Exchange (ETDEWEB)

    Katayama, Tsukasa [Department of Chemistry, The University of Tokyo, Tokyo 113-0033 (Japan); Chikamatsu, Akira, E-mail: chikamatsu@chem.s.u-tokyo.ac.jp; Kamisaka, Hideyuki [Department of Chemistry, The University of Tokyo, Tokyo 113-0033 (Japan); CREST, Japan Science and Technology Agency (JST), Tokyo 113-0033 (Japan); Yokoyama, Yuichi; Hirata, Yasuyuki; Wadati, Hiroki [Institute for Solid State Physics, The University of Tokyo, Chiba 277-8581 (Japan); Fukumura, Tomoteru [CREST, Japan Science and Technology Agency (JST), Tokyo 113-0033 (Japan); Department of Chemistry, Tohoku University, Miyagi 980-8578 (Japan); Hasegawa, Tetsuya [Department of Chemistry, The University of Tokyo, Tokyo 113-0033 (Japan); CREST, Japan Science and Technology Agency (JST), Tokyo 113-0033 (Japan); Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan)

    2015-10-15

    The substitution of hydride anions (H{sup −}) into transition metal oxides has recently become possible through topotactic reactions or high-pressure synthesis methods. However, the fabrication of oxyhydrides is still difficult because of their inherently less-stable frameworks. In this study, we successfully fabricated perovskite SrCoO{sub x}H{sub y} thin films via the topotactic hydride doping of brownmillerite SrCoO{sub 2.5} epitaxial thin films with CaH{sub 2}. The perovskite-type cation framework was maintained during the topotactic treatment owing to epitaxial stabilization. Structural and chemical analyses accompanied by X-ray absorption spectroscopy measurements revealed that the doped hydride ions form a two-dimensional network of Co-H{sup −}-Co bonds, in contrast to other reported perovskite oxyhydrides, SrMO{sub 3−x}H{sub x} (M = Cr, Ti, V). The SrCoO{sub x}H{sub y} thin film exhibited insulating behavior and had a direct band gap of 2.1 eV. Thus, topotactic hydride doping of transition-metal-oxide thin films on suitable substrates is a promising method for the synthesis of new transition metal oxyhydrides.

  17. Electronic charge transfer in cobalt doped fullerene thin films and effect of energetic ion impacts by x-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Thakur, P.; Kumar, Amit; Gautam, S.; Chae, K.H.

    2011-01-01

    We report on the electronic charge transfer in cobalt doped fullerene thin films by means of near-edge x-ray-absorption fine structure (NEXAFS) spectroscopy measurement. Co-doped fullerene films were prepared by co-deposition technique and subjected to energetic ion irradiation (120 MeV Au) for possibly alignment or interconnect of randomly distributed metal particles. Polarization dependent NEXAFS spectra revealed the alignment of Co and C atoms along the irradiated ionic path. The structural changes in Co-doped as-deposited and ion irradiated fullerene films were investigated by means of Raman spectroscopy measurements. Downshift of pentagonal pinch mode A g (2) in Raman spectroscopy indicated the electronic charge transfer from Co atom to fullerene molecules, which is further confirmed by NEXAFS at C K-edge for Co-doped fullerene films.

  18. Cobalt sulfide thin films: Chemical growth, reaction kinetics and microstructural analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kamble, S.S. [Thin Film and Solar Studies Research Laboratory, Solapur University, Solapur 413 255, M.S. (India); Sikora, Andrzej [Electrotechnical Institute, Division of Electrotechnology and Materials Science, ul. M Skłodowskiej-Curie 55/61, 50-369 Wroclaw (Poland); Pawar, S.T. [Thin Film and Solar Studies Research Laboratory, Solapur University, Solapur 413 255, M.S. (India); Maldar, N.N. [Polymer Chemistry Department, Solapur University, Solapur 413 255, M.S. (India); Deshmukh, L.P., E-mail: laldeshmukh@gmail.com [Thin Film and Solar Studies Research Laboratory, Solapur University, Solapur 413 255, M.S. (India)

    2015-02-25

    Highlights: • CoS thin films were deposited from an aqueous alkaline bath. • The CoS thin films are polycrystalline with hexagonal crystal structure. • Microstructure consists of multifaceted webbed network of elongated CoS crystallites. • MFM images revealed presence of magnetic regions mimicking surface topography. • Influence of the complexing agents is also stressed by the bandgap measurements. - Abstract: CoS thin films were successfully deposited from an aqueous alkaline bath containing ammonia and TEA as the complexing agents. Under the pre-optimized conditions (temperature = 80 ± 0.5 °C, speed of the substrate rotation = 65 ± 2 rpm and deposition period = 90 min), ammonia and TEA quantities in the reaction bath were found to play a decisive role in the final product yield. Highly uniform, dark sea-green colored and tightly adherent deposits were obtained at our experimental conditions. As-obtained CoS thin films were polycrystalline in nature with hexagonal class of crystal system as derived from the X-ray diffraction analysis. Complex multifaceted webbed network of as-grown CoS crystals elongated and threaded into each other were observed through a scanning electron microscope. Atomic force micrographs revealed collapsing of the hillocks and filling of the valleys triggering decrease in the RMS roughness for increased TEA and NH{sub 3} quantities. Magnetic force microscopy (MFM) was employed to study surface topography in terms of magnetic mapping. MFM images highlighted the existence of the magnetic clusters imitating topography. Broad absorption edge with high absorption coefficient (α ≈ 10{sup 4} cm{sup −1}) was observed for as-grown CoS thin films. Determined values of the optical bandgaps revealed influence of complexing environment on the final product.

  19. LPCVD silicon-rich silicon nitride films for applications in micromechanics, studied with statistical experimental design

    NARCIS (Netherlands)

    Gardeniers, Johannes G.E.; Tilmans, H.A.C.; Tilmans, H.A.C.; Visser, C.C.G.

    A systematic investigation of the influence of the process parameters temperature, pressure, total gas flow, and SiH2Cl2:NH3 gas flow ratio on the residual stress, the refractive index, and its nonuniformity across a wafer, the growth rate, the film thickness nonuniformity across a wafer, and the

  20. Carbon thin films deposited by the magnetron sputtering technique using cobalt, copper and nickel as buffer-layers; Filmes finos de carbono depositados por meio da tecnica de magnetron sputtering usando cobalto, cobre e niquel como buffer-layers

    Energy Technology Data Exchange (ETDEWEB)

    Costa e Silva, Danilo Lopes

    2015-11-01

    In this work, carbon thin films were produced by the magnetron sputtering technique using single crystal substrates of alumina c-plane (0001) and Si (111) and Si (100) substrates, employing Co, Ni and Cu as intermediate films (buffer-layers). The depositions were conducted in three stages, first with cobalt buffer-layers where only after the production of a large number of samples, the depositions using cooper buffer-layers were carried out on Si substrates. Then, depositions were performed with nickel buffer layers using single-crystal alumina substrates. The crystallinity of the carbon films was evaluated by using the technique of Raman spectroscopy and, then, by X-ray diffraction (XRD). The morphological characterization of the films was performed by scanning electron microscopy (SEM and FEG-SEM) and high-resolution transmission electron microscopy (HRTEM). The XRD peaks related to the carbon films were observed only in the results of the samples with cobalt and nickel buffer-layers. The Raman spectroscopy showed that the carbon films with the best degree of crystallinity were the ones produced with Si (111) substrates, for the Cu buffers, and sapphire substrates for the Ni and Co buffers, where the latter resulted in a sample with the best crystallinity of all the ones produced in this work. It was observed that the cobalt has low recovering over the alumina substrates when compared to the nickel. Sorption tests of Ce ions by the carbon films were conducted in two samples and it was observed that the sorption did not occur probably because of the low crystallinity of the carbon films in both samples. (author)

  1. Vanadium nitride as a novel thin film anode material for rechargeable lithium batteries

    International Nuclear Information System (INIS)

    Sun Qian; Fu Zhengwen

    2008-01-01

    Vanadium mononitride (VN) thin films have been successfully fabricated by magnetron sputtering. Its electrochemical behaviour with lithium was examined by galvanostatic cell cycling and cyclic voltammetry. The capacity of VN was found to be stable above 800 mAh g -1 after 50 cycles. By using ex situ X-ray diffraction, high-resolution transmission electron microscopy and selected area electron diffraction as well as in situ spectroelectrochemical measurements, the electrochemical reaction mechanism of VN with lithium was investigated. The reversible conversion reaction of VN into metal V and Li 3 N was revealed. The high reversible capacity and good stable cycle of VN thin film electrode made it a new promising lithium-ion storage material for future rechargeable lithium batteries

  2. The stability of DLC film on nitrided CoCrMo alloy in phosphate buffer solution

    International Nuclear Information System (INIS)

    Zhang, T.F.; Liu, B.; Wu, B.J.; Liu, J.; Sun, H.; Leng, Y.X.; Huang, N.

    2014-01-01

    CoCrMo alloy is often used as the material for metal artificial joint, but metal debris and metal ions are the main concern on tissue inflammation or tissue proliferation for metal prosthesis. In this paper, nitrogen ion implantation and diamond like carbon (DLC) film composite treatment was used to reduce the wear and ion release of biomedical CoCrMo substrate. The mechanical properties and stability of N-implanted/DLC composite layer in phosphate buffer solution (PBS) was evaluated to explore the full potential of N-implanted/DLC composite layer as an artificial joint surface modification material. The results showed that the DLC film on N implanted CoCrMo (N-implanted/DLC composite layer) had the higher surface hardness and wear resistance than the DLC film on virgin CoCrMo alloy, which was resulted from the strengthen effect of the N implanted layer on CoCrMo alloy. After 30 days immersion in PBS, the structure of DLC film on virgin CoCrMo or on N implanted CoCrMo had no visible change. But the adhesion and corrosion resistance of DLC on N implanted CoCrMo (N-implanted/DLC composite layer) was weakened due to the dissolution of the N implanted layer after 30 days immersion in PBS. The adhesion reduction of N-implanted/DLC composite layer was adverse for in vivo application in long term. So researcher should be cautious to use N implanted layer as an inter-layer for increasing CoCrMo alloy load carrying capacity in vivo environment.

  3. Collision cascades enhanced hydrogen redistribution in cobalt implanted hydrogenated diamond-like carbon films

    International Nuclear Information System (INIS)

    Gupta, P.; Becker, H.-W.; Williams, G.V.M.; Hübner, R.; Heinig, K.-H.; Markwitz, A.

    2017-01-01

    Highlights: • This paper reports for the first time redistribution of hydrogen atoms in diamond like carbon thin films during ion implantation of low energy magnetic ions. • The results point towards new routes of controlling the composition and distribution of elements at the nanoscale within a base matrix without using any heat treatment methods. • Exploring these opportunities can lead to a new horizon of materials and device engineering needed for enabling advanced technologies and applications. - Abstract: Hydrogenated diamond-like carbon films produced by C_3H_6 deposition at 5 kV and implanted at room temperature with 30 keV Co atoms to 12 at.% show not only a bimodal distribution of Co atoms but also a massive redistribution of hydrogen in the films. Resonant nuclear reaction analysis was used to measure the hydrogen depth profiles (15N-method). Depletion of hydrogen near the surface was measured to be as low as 7 at.% followed by hydrogen accumulation from 27 to 35 at.%. A model is proposed considering the thermal energy deposited by collision cascade for thermal insulators. In this model, sufficient energy is provided for dissociated hydrogen to diffuse out of the sample from the surface and diffuse into the sample towards the interface which is however limited by the range of the incoming Co ions. At a hydrogen concentration of ∼35 at.%, the concentration gradient of the mobile unbounded hydrogen atoms is neutralised effectively stopping diffusion towards the interface. The results point towards new routes of controlling the composition and distribution of elements at the nanoscale within a base matrix without using any heat treatment methods. Exploring these opportunities can lead to a new horizon of materials and device engineering needed for enabling advanced technologies and applications.

  4. Collision cascades enhanced hydrogen redistribution in cobalt implanted hydrogenated diamond-like carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, P. [National Isotope Centre, GNS Science, Lower Hutt (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington (New Zealand); Becker, H.-W. [RUBION, Ruhr-University Bochum (Germany); Williams, G.V.M. [The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington (New Zealand); Hübner, R.; Heinig, K.-H. [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (Germany); Markwitz, A., E-mail: a.markwitz@gns.cri.nz [National Isotope Centre, GNS Science, Lower Hutt (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington (New Zealand)

    2017-03-01

    Highlights: • This paper reports for the first time redistribution of hydrogen atoms in diamond like carbon thin films during ion implantation of low energy magnetic ions. • The results point towards new routes of controlling the composition and distribution of elements at the nanoscale within a base matrix without using any heat treatment methods. • Exploring these opportunities can lead to a new horizon of materials and device engineering needed for enabling advanced technologies and applications. - Abstract: Hydrogenated diamond-like carbon films produced by C{sub 3}H{sub 6} deposition at 5 kV and implanted at room temperature with 30 keV Co atoms to 12 at.% show not only a bimodal distribution of Co atoms but also a massive redistribution of hydrogen in the films. Resonant nuclear reaction analysis was used to measure the hydrogen depth profiles (15N-method). Depletion of hydrogen near the surface was measured to be as low as 7 at.% followed by hydrogen accumulation from 27 to 35 at.%. A model is proposed considering the thermal energy deposited by collision cascade for thermal insulators. In this model, sufficient energy is provided for dissociated hydrogen to diffuse out of the sample from the surface and diffuse into the sample towards the interface which is however limited by the range of the incoming Co ions. At a hydrogen concentration of ∼35 at.%, the concentration gradient of the mobile unbounded hydrogen atoms is neutralised effectively stopping diffusion towards the interface. The results point towards new routes of controlling the composition and distribution of elements at the nanoscale within a base matrix without using any heat treatment methods. Exploring these opportunities can lead to a new horizon of materials and device engineering needed for enabling advanced technologies and applications.

  5. Enhanced c-axis orientation of aluminum nitride thin films by plasma-based pre-conditioning of sapphire substrates for SAW applications

    Science.gov (United States)

    Gillinger, M.; Shaposhnikov, K.; Knobloch, T.; Stöger-Pollach, M.; Artner, W.; Hradil, K.; Schneider, M.; Kaltenbacher, M.; Schmid, U.

    2018-03-01

    Aluminum nitride (AlN) on sapphire has been investigated with two different pretreatments prior to sputter deposition of the AlN layer to improve the orientation and homogeneity of the thin film. An inverse sputter etching of the substrate in argon atmosphere results in an improvement of the uniformity of the alignment of the AlN grains and hence, in enhanced electro-mechanical AlN film properties. This effect is demonstrated in the raw measurements of SAW test devices. Additionally, the impulse response of several devices shows that a poor AlN thin film layer quality leads to a higher signal damping during the transduction of energy in the inter-digital transducers. As a result, the triple-transit signal cannot be detected at the receiver.

  6. Domain configurations and hysteresis behaviors of ultrathin cobalt film deposited on copper surface

    International Nuclear Information System (INIS)

    Chan, Y.-L.; Jih, N.-Y.; Peng, C.-W.; Chuang, C.-H.; Lee, T.H.; Huang, J.C.A.; Hsu, Y.J.; Wei, D.H.

    2007-01-01

    Depositing additional Cu layer on top of a Co thin film changes the magnetic properties of buried layer significantly. Employing in situ magneto-optical Kerr effect (MOKE) to assess the magnetization behavior of uncovered and covered Co layer grown on Cu (0 0 1), the hysteresis loops give averaged, macroscopic response of the layered system. The microscopic information was examined through element-specific domain images acquired by the X-ray photoemission electron microscope (PEEM). Based on the image analysis, evidence of magnetization switching in some regions of the as-deposited Co layer upon capping 1 ML of Cu was found

  7. Effect of nitrogen doping on the structural, optical and electrical properties of indium tin oxide films prepared by magnetron sputtering for gallium nitride light emitting diodes

    Science.gov (United States)

    Tian, Lifei; Cheng, Guoan; Wang, Hougong; Wu, Yulong; Zheng, Ruiting; Ding, Peijun

    2017-01-01

    The indium tin oxide (ITO) films are prepared by the direct current magnetron sputtering technology with an ITO target in a mixture of argon and nitrogen gas at room temperature. The blue transmittance at 455 nm rises from 63% to 83% after nitrogen doping. The resistivity of the ITO film reduces from 4.6 × 10-3 (undoped film) to 5.7 × 10-4 Ω cm (N-doped film). The X-ray photoelectron spectroscopy data imply that the binding energy of the In3d5/2 peak is declined 0.05 eV after nitrogen doping. The high resolution transmission electron microscope images show that the nitrogen loss density of the GaN/ITO interface with N-doped ITO film is smaller than that of the GaN/ITO interface with undoped ITO film. The forward turn-on voltage of gallium nitride light emitting diode reduces by 0.5 V after nitrogen doping. The fabrication of the N-doped ITO film is conducive to modify the N component of the interface between GaN and ITO layer.

  8. Investigation of deposition characteristics and properties of high-rate deposited silicon nitride films prepared by atmospheric pressure plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Kakiuchi, H.; Nakahama, Y.; Ohmi, H.; Yasutake, K.; Yoshii, K.; Mori, Y.

    2005-01-01

    Silicon nitride (SiN x ) films have been prepared at extremely high deposition rates by the atmospheric pressure plasma chemical vapor deposition (AP-PCVD) technique on Si(001) wafers from gas mixtures containing He, H 2 , SiH 4 and N 2 or NH 3 . A 150 MHz very high frequency (VHF) power supply was used to generate high-density radicals in the atmospheric pressure plasma. Deposition rate, composition and morphology of the SiN x films prepared with various deposition parameters were studied by scanning electron microscopy and Auger electron spectroscopy. Fourier transformation infrared (FTIR) absorption spectroscopy was also used to characterize the structure and the chemical bonding configurations of the films. Furthermore, etching rate with buffered hydrofluoric acid (BHF) solution, refractive index and capacitance-voltage (C-V) characteristics were measured to evaluate the dielectric properties of the films. It was found that effective passivation of dangling bonds and elimination of excessive hydrogen atoms at the film-growing surface seemed to be the most important factor to form SiN x film with a dense Si-N network. The C-V curve of the optimized film showed good interface properties, although further improvement was necessary for use in the industrial metal-insulator-semiconductor (MIS) applications

  9. Synthesis and characterization of thin films of nitrided amorphous carbon deposited by laser ablation; Sintesis y caracterizacion de peliculas delgadas de carbono amorfo nitrurado, depositadas por ablacion laser

    Energy Technology Data Exchange (ETDEWEB)

    Rebollo P, B

    2001-07-01

    The objective of this work is the synthesis and characterization of thin films of amorphous carbon (a-C) and thin films of nitrided amorphous carbon (a-C-N) using the laser ablation technique for their deposit. For this purpose, the physical properties of the obtained films were studied as function of diverse parameters of deposit such as: nitrogen pressure, power density, substrate temperature and substrate-target distance. For the characterization of the properties of the deposited thin films the following techniques were used: a) Raman spectroscopy which has demonstrated being a sensitive technique to the sp{sup 2} and sp{sup 3} bonds content, b) Energy Dispersive Spectroscopy which allows to know semi-quantitatively way the presence of the elements which make up the deposited films, c) Spectrophotometry, for obtaining the absorption spectra and subsequently the optical energy gap of the deposited material, d) Ellipsometry for determining the refraction index, e) Scanning Electron Microscopy for studying the surface morphology of thin films and, f) Profilemetry, which allows the determination the thickness of the deposited thin films. (Author)

  10. Nanostructures based in boro nitride thin films deposited by PLD onto Si/Si{sub 3}N{sub 4}/DLC substrate

    Energy Technology Data Exchange (ETDEWEB)

    Roman, W S; Riascos, H [Grupo Plasma, Laser y Aplicaciones, Universidad Tecnologica de Pereira (Colombia); Caicedo, J C [Grupo de PelIculas Delgadas, Universidad del Valle, Cali (Colombia); Ospina, R [Laboratorio de Plasma, Universidad Nacional de Colombia, sede Manizales (Colombia); Tirado-MejIa, L, E-mail: hriascos@utp.edu.c [Laboratorio de Optoelectronica, Universidad del Quindio (Colombia)

    2009-05-01

    Diamond-like carbon and boron nitride were deposited like nanostructered bilayer on Si/Si{sub 3}N{sub 4} substrate, both with (100) crystallographic orientation, these films were deposited through pulsed laser technique (Nd: YAG: 8 Jcm{sup -2}, 9ns). Graphite (99.99%) and boron nitride (99.99%) targets used to growth the films in argon atmosphere. The thicknesses of bilayer were determined with a perfilometer, active vibration modes were analyzed using infrared spectroscopy (FTIR), finding bands associated around 1400 cm{sup -1} for B - N bonding and bands around 1700 cm{sup -1} associated with C=C stretching vibrations of non-conjugated alkenes and azometinic groups, respectively. The crystallites of thin films were analyzed using X-ray diffraction (XRD) and determinated the h-BN (0002), alpha-Si{sub 3}N{sub 4} (101) phases. The aim of this study is to relate the dependence on physical and chemical characteristics of the system Si/Si{sub 3}N{sub 4}/DLC/BN with gas pressure adjusted at the 1.33, 2.67 and 5.33 Pa values.

  11. Ultrahigh mobility and efficient charge injection in monolayer organic thin-film transistors on boron nitride.

    Science.gov (United States)

    He, Daowei; Qiao, Jingsi; Zhang, Linglong; Wang, Junya; Lan, Tu; Qian, Jun; Li, Yun; Shi, Yi; Chai, Yang; Lan, Wei; Ono, Luis K; Qi, Yabing; Xu, Jian-Bin; Ji, Wei; Wang, Xinran

    2017-09-01

    Organic thin-film transistors (OTFTs) with high mobility and low contact resistance have been actively pursued as building blocks for low-cost organic electronics. In conventional solution-processed or vacuum-deposited OTFTs, due to interfacial defects and traps, the organic film has to reach a certain thickness for efficient charge transport. Using an ultimate monolayer of 2,7-dioctyl[1]benzothieno[3,2- b ][1]benzothiophene (C 8 -BTBT) molecules as an OTFT channel, we demonstrate remarkable electrical characteristics, including intrinsic hole mobility over 30 cm 2 /Vs, Ohmic contact with 100 Ω · cm resistance, and band-like transport down to 150 K. Compared to conventional OTFTs, the main advantage of a monolayer channel is the direct, nondisruptive contact between the charge transport layer and metal leads, a feature that is vital for achieving low contact resistance and current saturation voltage. On the other hand, bilayer and thicker C 8 -BTBT OTFTs exhibit strong Schottky contact and much higher contact resistance but can be improved by inserting a doped graphene buffer layer. Our results suggest that highly crystalline molecular monolayers are promising form factors to build high-performance OTFTs and investigate device physics. They also allow us to precisely model how the molecular packing changes the transport and contact properties.

  12. Implantation of cobalt in SnO2 thin films studied by TDPAC

    Directory of Open Access Journals (Sweden)

    Juliana Schell

    2017-05-01

    Full Text Available Here we report time differential perturbed angular correlation (TDPAC results of Co-doped SnO2 thin films. Making use of stable Co and radioactive 111In implanted at the Bonn Radioisotope Separator with energies of 80 keV and 160 keV, respectively, it was possible to study the dopant incorporation and its lattice location during annealing. The hyperfine parameters have been probed as a function of temperature in vacuum. Two quadrupole interactions were observed. At high temperatures the dominant fraction for the probe nuclei can be assigned to the Cd-incorporation at the cation substitutional site in a highly disordered structure, obtained after implantation, to high crystallinity for the measurements at 873 K and 923 K. The similarity in TDPAC spectra obtained in undoped SnO gives indirect evidence that In and Co diffuse to different depths during the annealing process. Other interpretations will be discussed.

  13. Development and evaluation of gallium nitride-based thin films for x-ray dosimetry

    International Nuclear Information System (INIS)

    Hofstetter, Markus; Thalhammer, Stefan; Howgate, John; Sharp, Ian D; Stutzmann, Martin

    2011-01-01

    X-ray radiation plays an important role in medical procedures ranging from diagnostics to therapeutics. Due to the harm such ionizing radiation can cause, it has become common practice to closely monitor the dosages received by patients. To this end, precise online dosimeters have been developed with the dual objectives of monitoring radiation in the region of interest and improving therapeutic methods. In this work, we evaluate GaN thin film high electron mobility heterostructures with sub-mm 2 detection areas as x-ray radiation detectors. Devices were tested using 40-300 kV Bremsstrahlung x-ray sources. We find that the photoconductive device response exhibits a large gain, is almost independent of the angle of irradiation, and is constant to within 2% of the signal throughout this medical diagnostic x-ray range, indicating that these sensors do not require recalibration for geometry or energy. Furthermore, the devices show a high sensitivity to x-ray intensity and can measure in the air kerma rate (free-in-air) range of 1 μGy s -1 to 10 mGy s -1 with a signal stability of ±1% and a linear total dose response over time. Medical conditions were simulated by measurements of device responses to irradiation through human torso phantoms. Direct x-ray imaging is demonstrated using the index finger and wrist sections of a human phantom. The results presented here indicate that GaN-based thin film devices exhibit a wide range of properties, which make them promising candidates for dosimetry applications. In addition, with potential detection volumes smaller than 10 -6 cm 3 , they are well suited for high-resolution x-ray imaging. Moreover, with additional engineering steps, these devices can be adapted to potentially provide both in vivo biosensing and x-ray dosimetry.

  14. Fabrication of an a-IGZO thin film transistor using selective deposition of cobalt by the self-assembly monolayer (SAM) process.

    Science.gov (United States)

    Cho, Young-Je; Kim, HyunHo; Park, Kyoung-Yun; Lee, Jaegab; Bobade, Santosh M; Wu, Fu-Chung; Choi, Duck-Kyun

    2011-01-01

    Interest in transparent oxide thin film transistors utilizing ZnO material has been on the rise for many years. Recently, however, IGZO has begun to draw more attention due to its higher stability and superior electric field mobility when compared to ZnO. In this work, we address an improved method for patterning an a-IGZO film using the SAM process, which employs a cost-efficient micro-contact printing method instead of the conventional lithography process. After a-IGZO film deposition on the surface of a SiO2-layered Si wafer, the wafer was illuminated with UV light; sources and drains were then patterned using n-octadecyltrichlorosilane (OTS) molecules by a printing method. Due to the low surface energy of OTS, cobalt was selectively deposited on the OTS-free a-IGZO surface. The selective deposition of cobalt electrodes was successful, as confirmed by an optical microscope. The a-IZGO TFT fabricated using the SAM process exhibited good transistor performance: electric field mobility (micro(FE)), threshold voltage (V(th)), subthreshold slope (SS) and on/off ratio were 2.1 cm2/Vs, 2.4 V, 0.35 V/dec and 2.9 x 10(6), respectively.

  15. Heavy Ion Irradiated Ferromagnetic Films: The Cases of Cobalt and Iron

    Science.gov (United States)

    Lieb, K. P.; Zhang, K.; Müller, G. A.; Gupta, R.; Schaaf, P.

    2005-01-01

    Polycrystalline, e-gun deposited Co, Fe and Co/Fe films, tens of nanometers thick, have been irradiated with Ne, Kr, Xe and/or Fe ions to fluences of up to 5 × 1016 ions/cm2. Changes in the magnetic texture induced by the implanted ions have been measured by means of hyperfine methods, such as Magnetic Orientation Mössbauer Spectroscopy (Fe), and by Magneto-Optical Kerr Effect and Vibrating Sample Magnetometry. In Co and CoFe an hcp → fcc phase transition has been observed under the influence of Xe-ion implantation. For 1016 Xe-ions/cm2, ion beam mixing in the Co/Fe system produces a soft magnetic material with uniaxial anisotropy. The effects have been correlated with changes in the microstructure as determined via X-ray diffraction. The influences of internal and external strain fields, an external magnetic field and pre-magnetization have been studied. A comprehensive understanding of the various effects and underlying physical reasons for the modifications appears to emerge from these investigations.

  16. Heavy Ion Irradiated Ferromagnetic Films: The Cases of Cobalt and Iron

    Energy Technology Data Exchange (ETDEWEB)

    Lieb, K. P., E-mail: plieb@gwdg.de; Zhang, K.; MUller, G. A. [Universitaet Goettingen, II. Physikalisches Institut and SFB 602 (Germany); Gupta, R. [Devi Ahilya University, Institute of Instrumentation (India); Schaaf, P. [Universitaet Goettingen, II. Physikalisches Institut and SFB 602 (Germany)

    2005-01-15

    Polycrystalline, e-gun deposited Co, Fe and Co/Fe films, tens of nanometers thick, have been irradiated with Ne, Kr, Xe and/or Fe ions to fluences of up to 5 x 10{sup 16} ions/cm{sup 2}. Changes in the magnetic texture induced by the implanted ions have been measured by means of hyperfine methods, such as Magnetic Orientation Moessbauer Spectroscopy (Fe), and by Magneto-Optical Kerr Effect and Vibrating Sample Magnetometry. In Co and CoFe an hcp {yields} fcc phase transition has been observed under the influence of Xe-ion implantation. For 10{sup 16} Xe-ions/cm{sup 2}, ion beam mixing in the Co/Fe system produces a soft magnetic material with uniaxial anisotropy. The effects have been correlated with changes in the microstructure as determined via X-ray diffraction. The influences of internal and external strain fields, an external magnetic field and pre-magnetization have been studied. A comprehensive understanding of the various effects and underlying physical reasons for the modifications appears to emerge from these investigations.

  17. Development of a suppression method for deposition of radioactive cobalt after chemical decontamination: Confirmation of the Suppression Mechanism with Preoxidized Ferrite Film for Deposition of Radioactive Cobalt

    International Nuclear Information System (INIS)

    Ito, Tsuyoshi; Hosokawa, Hideyuki; Nagase, Makoto; Aizawa, Motohiro; Fuse, Motomasa

    2012-09-01

    Recently, chemical decontamination at the beginning of a periodical inspection is applied to many Japanese boiling water reactor (BWR) plants in order to reduce radiation exposure. In the chemical decontamination, the oxides that have incorporated 60 Co are dissolved using reductive and oxidative chemical reagents. Some of the piping stainless steel (SS) base metal is exposed to the reactor water after this decontamination. The oxide film growth rate of the piping during plant operation just after the decontamination is higher than that just before it. Therefore, there is a possibility that the deposition amount of 60 Co on the piping just after decontamination is higher than that just before the chemical decontamination. The Hi-F Coat (Hitachi ferrite coating) process has been developed to lower recontamination after the chemical decontamination. In this process, a fine Fe 3 O 4 coating film is formed on the piping SS base metal in aqueous solution at 363 K using three chemical reagents: ferrous ion, oxidant, and pH adjuster. The growth rate of the corrosion oxide film that incorporated 60 Co on the piping during plant operation is suppressed by the fine ferrite film that blocks both diffusion of oxidant in the reactor water to the SS base metal and metal ions in the oxide film to the reactor water. As a result, the amount of 60 Co deposition is suppressed by the Hi-F coating film. In a previous report, we found that the Hi-F Coat process lowered the amount of 60 Co to 1/3 that for non-coated specimens. To improve the suppression of 60 Co deposition further, we combined the Hi-F Coat process with a pre-oxidation step which we named the pre-oxidized Hi-F Coat process. In laboratory experiments, using the pre-oxidized Hi-F Coat process we found the deposited amount of 60 Co was 1/10 that for non-coated specimens. By combining the Hi-F Coat process with the pre-oxidation step, the suppression effect of 60 Co deposition was three times higher than that of the Hi

  18. The local environment of cobalt in amorphous, polycrystalline and epitaxial anatase TiO{sub 2}:Co films produced by cobalt ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Yildirim, O. [Helmholtz-Zentrum Dresden - Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstr. 400, 01328 Dresden (Germany); Technische Universität Dresden, D-01062 Dresden (Germany); Cornelius, S.; Hübner, R.; Potzger, K. [Helmholtz-Zentrum Dresden - Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstr. 400, 01328 Dresden (Germany); Smekhova, A.; Zykov, G.; Gan' shina, E. A.; Granovsky, A. B. [Lomonosov Moscow State University (MSU), Faculty of Physics, 119991 Moscow (Russian Federation); Bähtz, C. [Helmholtz-Zentrum Dresden - Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstr. 400, 01328 Dresden (Germany); Rossendorf Beamline, European Synchrotron Radiation Facility, F-38043 Grenoble (France)

    2015-05-14

    Amorphous, polycrystalline anatase and epitaxial anatase TiO{sub 2} films have been implanted with 5 at. % Co{sup +}. The magnetic and structural properties of different microstructures of TiO{sub 2}:Co, along with the local coordination of the implanted Co atoms within the host lattice are investigated. In amorphous TiO{sub 2}:Co film, Co atoms are in the (II) oxidation state with a complex coordination and exhibit a paramagnetic response. However, for the TiO{sub 2}:Co epitaxial and polycrystalline anatase films, Co atoms have a distorted octahedral (II) oxygen coordination assigned to a substitutional environment with traces of metallic Co clusters, which gives a rise to a superparamagnetic behavior. Despite the incorporation of the implanted atoms into the host lattice, high temperature ferromagnetism is absent in the films. On the other hand, it is found that the concentration and size of the implantation-induced nanoclusters and the magnetic properties of TiO{sub 2}:Co films have a strong dependency on the initial microstructure of TiO{sub 2}. Consequently, metallic nanocluster formation within ion implantation prepared transition metal doped TiO{sub 2} can be suppressed by tuning the film microstructure.

  19. New deposition processes for the growth of oxide and nitride thin films

    International Nuclear Information System (INIS)

    Apen, E.A.; Atagi, L.M.; Barbero, R.S.; Espinoza, B.F.; Hubbard, K.M.; Salazar, K.V.; Samuels, J.A.; Smith, D.C.; Hoffman, D.M.

    1998-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The goal of this effort is to study the use of homoleptic metal amido compounds as precursors for chemical vapor deposition (CVD). The amides offer potential for the deposition of a variety of important materials at low temperatures. The establishment of these precursor compounds will enhance the ability to exploit the properties of advanced materials in numerous coatings applications. Experiments were performed to study the reactivity of Sn[NMe 2 ] 4 with oxygen. The data demonstrated that gas-phase insertion of oxygen into the Sn-N bond, leading to a reactive intermediate, plays an important role in tin oxide deposition. Several CVD processes for technologically important materials were developed using the amido precursor complexes. These included the plasma enhanced CVD of TiN and Zr 3 N 4 , and the thermal CVD of GaN and AlN. Quality films were obtained in each case, demonstrating the potential of the amido compounds as CVD precursors

  20. Properties of thermally oxidized and nitrided Zr-oxynitride thin film on 4H–SiC in diluted N2O ambient

    International Nuclear Information System (INIS)

    Wong, Yew Hoong; Cheong, Kuan Yew

    2012-01-01

    A systematic investigation on the structural, chemical, and electrical properties of thermally oxidized and nitrided sputtered Zr thin film in various N 2 O ambient (10–100%) at 500 °C for 15 min to form Zr-oxynitride on 4H–SiC substrate has been carried out. The chemical composition, depth profile analysis, and energy band alignment have been evaluated by X-ray photoelectron spectrometer. Zr-oxynitride layer and its interfacial layer comprised of compounds related to Zr–O, Zr–N, Zr–O–N, Si–N, and/or C–N were identified. A model related to the oxidation and nitridation mechanism has been suggested. Supportive results related to the model were obtained by energy filtered transmission electron microscopy, X-ray diffraction, and Raman analyses. A proposed crystal structure was employed to elucidate the surface roughness and topographies of the samples, which were characterized by atomic force microscopy. The electrical results revealed that 10% N 2 O sample has possessed the highest breakdown field and reliability. This was owing to the confinement of nitrogen-related compounds of Zr–O–N and/or Zr–N at or near interfacial layer region, smaller grain with finer structure on the surface, the lowest interface trap density, total interface trap density, and effective oxide charge, and highest barrier height between conduction band edge of oxide and semiconductor. -- Highlights: ► Zr-oxynitride as the gate oxide deposited on 4H–SiC substrate. ► Simultaneous oxidation and nitridation of sputtered Zr thin film on 4H–SiC using various concentrations of N 2 O gas. ► Presence of interfacial layer comprised of mixed compounds related to Zr–O, Zr–N, Zr–O–N, Si–N, and/or C–N. ► The highest electrical breakdown and highest reliability at diluted N 2 O of 10%.

  1. Superconducting Fluctuations above T c and pair breaking parameters of two dimensional Niobium Nitride Films

    Science.gov (United States)

    Shinozaki, B.; Ezaki, S.; Odou, T.; Makise, K.; Asano, T.

    2018-03-01

    Transport properties have been investigated for the epitaxial superconducting NbN thin films. We analysed the excess conductance σ’ ≡ σ(T) - σN by the sum of the Aslamazov-Larkin (AL) and Maki-Thompson (MT) terms for thermal fluctuations above T c, where the σN ≡1/R sq N is the normal state sheet conductance. We have found that the theoretical expression σ’theo (T) = σ’AL (T) + σ’MT (T,δ) can be well fitted to σ’exp (T) with use of the suitable value of the pair breaking parameter δ in the MT term relating to the inelastic scattering rate 1/τin(T) as δ = πħ/8k B Tτin. The rate 1/τin(T) given by the sum of 1/τfluc(T), 1/τe-e(T) and 1/τe-ph (T) is determined from the analysis of the magneto-conductance Δσ = σ(H) – σ(0) by the sum of AL, MT and the localization terms, where the first, second and third terms correspond to the rate due to the superconducting fluctuation effect, electron-electron and electron-phonon interactions, respectively. The R sq N dependence of δ is expressed by δ = δ0 + αR sq N, where the first term δ0 due to 1/τe-ph (T) and the second term due to the sum of 1/τfluc(T) and 1/τe-e(T). Although we obtained a reasonable value of Debye temperature ΘD ≈630 K from the δ0, the magnitude of the α is about 5 times larger than the theoretical value.

  2. Influence of disorder on localization and density of states in amorphous carbon nitride thin films systems rich in π-bonded carbon atoms

    International Nuclear Information System (INIS)

    Alibart, F.; Lejeune, M.; Durand Drouhin, O.; Zellama, K.; Benlahsen, M.

    2010-01-01

    We discuss in this paper the evolution of both the density of states (DOS) located between the band-tail states and the DOS around the Fermi level N(E F ) in amorphous carbon nitride films (a-CN x ) as a function of the total nitrogen partial pressure ratio in the Ar/N 2 plasma mixture. The films were deposited by three different deposition techniques and their microstructure was characterized using a combination of infrared and Raman spectroscopy and optical transmission experiments, completed with electrical conductivity measurements, as a function of temperature. The observed changes in the optoelectronic properties are attributed to the modification in the atomic bonding structures, which were induced by N incorporation, accompanied by an increase in the sp 2 carbon bonding configurations and their relative disorder. The electrical conductivity variation was interpreted in terms of local effects on the nature and energy distribution of π and π* states.

  3. X-ray diffraction study of stress relaxation in cubic boron nitride films grown with simultaneous medium-energy ion bombardment

    International Nuclear Information System (INIS)

    Abendroth, B.; Gago, R.; Eichhorn, F.; Moeller, W.

    2004-01-01

    Relaxation of the intrinsic stress of cubic boron nitride (cBN) thin films has been studied by x-ray diffraction (XRD) using synchrotron light. The stress relaxation has been attained by simultaneous medium-energy ion bombardment (2-10 keV) during magnetron sputter deposition, and was confirmed macroscopically by substrate curvature measurements. In order to investigate the stress-release mechanisms, XRD measurements were performed in in-plane and out-of-plane geometry. The analysis shows a pronounced biaxial state of compressive stress in the cBN films grown without medium-energy ion bombardment. This stress is partially released during the medium-energy ion bombardment. It is suggested that the main path for stress relaxation is the elimination of strain within the cBN grains due to annealing of interstitials

  4. Low-temperature growth of low friction wear-resistant amorphous carbon nitride thin films by mid-frequency, high power impulse, and direct current magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Bakoglidis, Konstantinos D., E-mail: konba@ifm.liu.se; Schmidt, Susann; Garbrecht, Magnus; Ivanov, Ivan G.; Jensen, Jens; Greczynski, Grzegorz; Hultman, Lars [Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden)

    2015-09-15

    The potential of different magnetron sputtering techniques for the synthesis of low friction and wear resistant amorphous carbon nitride (a-CN{sub x}) thin films onto temperature-sensitive AISI52100 bearing steel, but also Si(001) substrates was studied. Hence, a substrate temperature of 150 °C was chosen for the film synthesis. The a-CN{sub x} films were deposited using mid-frequency magnetron sputtering (MFMS) with an MF bias voltage, high power impulse magnetron sputtering (HiPIMS) with a synchronized HiPIMS bias voltage, and direct current magnetron sputtering (DCMS) with a DC bias voltage. The films were deposited using a N{sub 2}/Ar flow ratio of 0.16 at the total pressure of 400 mPa. The negative bias voltage, V{sub s}, was varied from 20 to 120 V in each of the three deposition modes. The microstructure of the films was characterized by high-resolution transmission electron microscopy and selected area electron diffraction, while the film morphology was investigated by scanning electron microscopy. All films possessed an amorphous microstructure, while the film morphology changed with the bias voltage. Layers grown applying the lowest substrate bias of 20 V exhibited pronounced intercolumnar porosity, independent of the sputter technique. Voids closed and dense films are formed at V{sub s} ≥ 60 V, V{sub s} ≥ 100 V, and V{sub s} = 120 V for MFMS, DCMS, and HiPIMS, respectively. X-ray photoelectron spectroscopy revealed that the nitrogen-to-carbon ratio, N/C, of the films ranged between 0.2 and 0.24. Elastic recoil detection analysis showed that Ar content varied between 0 and 0.8 at. % and increased as a function of V{sub s} for all deposition techniques. All films exhibited compressive residual stress, σ, which depends on the growth method; HiPIMS produces the least stressed films with values ranging between −0.4 and −1.2 GPa for all V{sub s}, while CN{sub x} films deposited by MFMS showed residual stresses up to −4.2

  5. Low-temperature growth of low friction wear-resistant amorphous carbon nitride thin films by mid-frequency, high power impulse, and direct current magnetron sputtering

    International Nuclear Information System (INIS)

    Bakoglidis, Konstantinos D.; Schmidt, Susann; Garbrecht, Magnus; Ivanov, Ivan G.; Jensen, Jens; Greczynski, Grzegorz; Hultman, Lars

    2015-01-01

    The potential of different magnetron sputtering techniques for the synthesis of low friction and wear resistant amorphous carbon nitride (a-CN x ) thin films onto temperature-sensitive AISI52100 bearing steel, but also Si(001) substrates was studied. Hence, a substrate temperature of 150 °C was chosen for the film synthesis. The a-CN x films were deposited using mid-frequency magnetron sputtering (MFMS) with an MF bias voltage, high power impulse magnetron sputtering (HiPIMS) with a synchronized HiPIMS bias voltage, and direct current magnetron sputtering (DCMS) with a DC bias voltage. The films were deposited using a N 2 /Ar flow ratio of 0.16 at the total pressure of 400 mPa. The negative bias voltage, V s , was varied from 20 to 120 V in each of the three deposition modes. The microstructure of the films was characterized by high-resolution transmission electron microscopy and selected area electron diffraction, while the film morphology was investigated by scanning electron microscopy. All films possessed an amorphous microstructure, while the film morphology changed with the bias voltage. Layers grown applying the lowest substrate bias of 20 V exhibited pronounced intercolumnar porosity, independent of the sputter technique. Voids closed and dense films are formed at V s  ≥ 60 V, V s  ≥ 100 V, and V s  = 120 V for MFMS, DCMS, and HiPIMS, respectively. X-ray photoelectron spectroscopy revealed that the nitrogen-to-carbon ratio, N/C, of the films ranged between 0.2 and 0.24. Elastic recoil detection analysis showed that Ar content varied between 0 and 0.8 at. % and increased as a function of V s for all deposition techniques. All films exhibited compressive residual stress, σ, which depends on the growth method; HiPIMS produces the least stressed films with values ranging between −0.4 and −1.2 GPa for all V s , while CN x films deposited by MFMS showed residual stresses up to −4.2 GPa. Nanoindentation showed a significant

  6. Effect of pyrolysis atmospheres on the morphology of polymer-derived silicon oxynitrocarbide ceramic films coated aluminum nitride surface and the thermal conductivity of silicone rubber composites

    Science.gov (United States)

    Chiu, Hsien T.; Sukachonmakul, Tanapon; Wang, Chen H.; Wattanakul, Karnthidaporn; Kuo, Ming T.; Wang, Yu H.

    2014-02-01

    Amorphous silicon oxycarbide (SiOC) and silicon oxynitrocarbide (SiONC) ceramic films coated aluminum nitride (AlN) were prepared by using preceramic-polysilazane (PSZ) with dip-coating method, followed by pyrolysis at 700 °C in different (air, Ar, N2 and NH3) atmospheres to converted PSZ into SiOCair and SiONC(Ar,N2andNH3) ceramic. The existence of amorphous SiOCair and SiONC(Ar,N2andNH3) ceramic films on AlN surface was characterized by FTIR, XRD and XPS. The interfacial adhesion between silicone rubber and AlN was significantly improved after the introduction of amorphous SiOCair and SiONC(Ar,N2andNH3) ceramic films on AlN surface. It can be observed from AFM that the pyrolysis of PSZ at different atmosphere strongly affected to films morphology on AlN surface as SiOCair and SiONCNH3 ceramic films were more flat and smooth than SiONCN2 and SiONCAr ceramic films. Besides, the enhancement of the thermal conductivity of silicone rubber composites was found to be related to the decrease in the surface roughness of SiOCair and SiONC(Ar,N2andNH3) ceramic films on AlN surface. This present work provided an alternative surface modification of thermally conductive fillers to improve the thermal conductivity of silicon rubber composites by coating with amorphous SiOCair and SiONC(Ar,N2andNH3) ceramic films.

  7. Composition-induced structural, electrical, and magnetic phase transitions in AX-type mixed-valence cobalt oxynitride epitaxial thin films

    International Nuclear Information System (INIS)

    Takahashi, Jumpei; Oka, Daichi; Hirose, Yasushi; Yang, Chang; Fukumura, Tomoteru; Hasegawa, Tetsuya; Nakao, Shoichiro; Harayama, Isao; Sekiba, Daiichiro

    2015-01-01

    Synthesis of mid- to late-transition metal oxynitrides is generally difficult by conventional thermal ammonolysis because of thermal instability. In this letter, we synthesized epitaxial thin films of AX-type phase-pure cobalt oxynitrides (CoO x N y ) by using nitrogen-plasma-assisted pulsed laser deposition and investigated their structural, electrical, and magnetic properties. The CoO x N y thin films with 0 ≤ y/(x + y) ≤ 0.63 grown on MgO (100) substrates showed a structural phase transition from rock salt (RS) to zinc blend at the nitrogen content y/(x + y) ∼ 0.5. As the nitrogen content increased, the room-temperature electrical resistivity of the CoO x N y thin films monotonically decreased from the order of 10 5  Ω cm to 10 −4  Ω cm. Furthermore, we observed an insulator-to-metal transition at y/(x + y) ∼ 0.34 in the RS-CoO x N y phase, which has not yet been reported in Co 2+ /Co 3+ mixed-valence cobalt oxides with octahedral coordination. The low resistivity in the RS-CoO x N y phase, on the 10 −3  Ω cm order, may have originated from the intermediate spin state of Co 3+ stabilized by the lowered crystal field symmetry of the CoO 6−n N n octahedra (n = 1, 2,…5). Magnetization measurements suggested that a magnetic phase transition occurred in the RS-CoO x N y films during the insulator-to-metal transition. These results demonstrate that low-temperature epitaxial growth is a promising approach for exploring novel electronic functionalities in oxynitrides

  8. Hydrogen diffusion between plasma-deposited silicon nitride-polyimide polymer interfaces

    International Nuclear Information System (INIS)

    Nguyen, S.V.; Kerbaugh, M.

    1988-01-01

    This paper reports a nuclear reaction analysis (NRA) for hydrogen technique used to analyze the hydrogen concentration near plasma enhanced chemical vapor deposition (PECVD) silicon nitride-polyimide interfaces at various nitride-deposition and polyimide-polymer-curing temperatures. The CF 4 + O 2 (8% O 2 ) plasma-etch-rate variation of PECVD silicon nitride films deposited on polyimide appeared to correlate well with the variation of hydrogen-depth profiles in the nitride films. The NRA data indicate that hydrogen-depth-profile fluctuation in the nitride films is due to hydrogen diffusion between the nitride-polyimide interfaces during deposition. Annealing treatment of polyimide films in a hydrogen atmosphere prior to the nitride film deposition tends to enhance the hydrogen-depth-profile uniformity in the nitride films, and thus substantially reduces or eliminates variation in the nitride plasma-etch rate

  9. Effects of bias voltage on the corrosion resistance of titanium nitride thin films fabricated by dynamic plasma immersion ion implantation-deposition

    International Nuclear Information System (INIS)

    Tian Xiubo; Fu, Ricky K. Y.; Chu, Paul K.

    2002-01-01

    Dynamic plasma-based thin-film deposition incorporating ion mixing and plasma immersion is an effective technique to synthesize nitride-based hard films. We have fabricated TiN films using a filtered titanium vacuum arc in a nitrogen plasma environment. A pulsed high voltage is applied to the target for a short time when the metallic arc is fired to attain simultaneous plasma deposition and ion mixing. We investigate the dependence of the corrosion resistance and interfacial structure of the treated samples on the applied voltage. Our Auger results reveal an oxygen-rich surface film due to the non-ultra-high-vacuum conditions and high affinity of oxygen to titanium. The corrosion current is reduced by two orders of magnitude comparing the sample processed at 8 kV to the untreated sample, but the 23 kV sample unexpectedly shows worse results. The pitting potential diminishes substantially although the corrosion current is similar to that observed in the 8 kV sample. The polarization test data are consistent with our scanning electron microscopy observation, corroborating the difference in the pitting distribution and appearance. This anomalous behavior is believed to be due to the change in the chemical composition as a result of high-energy ion bombardment

  10. Evaluation of Poisson's ratio and Young's modulus of nitride films by combining grazing incidence X-ray diffraction and laser curvature techniques

    International Nuclear Information System (INIS)

    Chen, H.-Y.; Chen, J.-H.; Lu, F.-H.

    2007-01-01

    Measurements of Poisson's ratio and the Young's modulus of thin films have been problematic. In this work, evaluation of both Poisson's ratio and Young's modulus is conducted using grazing incidence X-ray diffraction combined with measurement of the induced stress. Poisson's ratio was evaluated from analysis of the X-ray diffraction data to obtain a strain-cos 2 α.sin 2 ψ plot. Moreover, the Young's modulus of the films could be also calculated from that plot as well as from the residual stress, which could be determined by a measurement of stress induced substrate curvature. The ternary nitride TiAlN is used as a model system for the evaluation. The films, prepared by cathodic arc plasma deposition, exhibited a strong (111) preferred orientation and a composition corresponding to Ti 0.6 Al 0.4 N. The measured Poisson's ratio and the Young's modulus of the films were 0.143 ± 0.003 and 310 ± 20 GPa, respectively, which are comparable to those reported in the literature

  11. Etching Enhancement Followed by Nitridation on Low-k SiOCH Film in Ar/C5F10O Plasma

    Science.gov (United States)

    Miyawaki, Yudai; Shibata, Emi; Kondo, Yusuke; Takeda, Keigo; Kondo, Hiroki; Ishikawa, Kenji; Okamoto, Hidekazu; Sekine, Makoto; Hori, Masaru

    2013-02-01

    The etching rates of low-dielectric-constant (low-k), porous SiOCH (p-SiOCH) films were increased by nitrogen-added Ar/C5F10O plasma etching in dual-frequency (60 MHz/2 MHz)-excited parallel plate capacitively coupled plasma. Previously, perfluoropropyl vinyl ether [C5F10O] provided a very high density of CF3+ ions [Nagai et al.: Jpn. J. Appl. Phys. 45 (2006) 7100]. Surface nitridation on the p-SiOCH surface exposed to Ar/N2 plasma led to the etching of larger amounts of p-SiOCH in Ar/C5F10O plasma, which depended on the formation of bonds such as =C(sp2)=N(sp2)- and -C(sp)≡N(sp).

  12. Effect of nitrogen plasma afterglow on the surface charge effect resulted during XPS surface analysis of amorphous carbon nitride thin films

    Science.gov (United States)

    Kayed, Kamal

    2018-06-01

    The aim of this paper is to investigate the relationship between the micro structure and the surface charge effect resulted during XPS surface analysis of amorphous carbon nitride thin films prepared by laser ablation method. The study results show that the charge effect coefficient (E) is not just a correction factor. We found that the changes in this coefficient value due to incorporation of nitrogen atoms into the carbon network are related to the spatial configurations of the sp2 bonded carbon atoms, order degree and sp2 clusters size. In addition, results show that the curve E vs. C(sp3)-N is a characteristic curve of the micro structure. This means that using this curve makes it easy to sorting the samples according to the micro structure (hexagonal rings or chains).

  13. Plasma nitridation optimization for sub-15 A gate dielectrics

    NARCIS (Netherlands)

    Cubaynes, F.N; Schmitz, Jurriaan; van der Marel, C.; Snijders, J.H.M.; Veloso, A.; Rothschild, A.; Olsen, C.; Date, L.

    The work investigates the impact of plasma nitridation process parameters upon the physical properties and upon the electrical performance of sub-15 A plasma nitrided gate dielectrics. The nitrogen distribution and chemical bonding of ultra-thin plasma nitrided films have been investigated using

  14. Properties of thermally oxidized and nitrided Zr-oxynitride thin film on 4H-SiC in diluted N{sub 2}O ambient

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Yew Hoong [Energy Efficient and Sustainable Semiconductor Research Group, School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Seberang Perai Selatan, Penang (Malaysia); Cheong, Kuan Yew, E-mail: cheong@eng.usm.my [Energy Efficient and Sustainable Semiconductor Research Group, School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Seberang Perai Selatan, Penang (Malaysia)

    2012-10-15

    A systematic investigation on the structural, chemical, and electrical properties of thermally oxidized and nitrided sputtered Zr thin film in various N{sub 2}O ambient (10-100%) at 500 Degree-Sign C for 15 min to form Zr-oxynitride on 4H-SiC substrate has been carried out. The chemical composition, depth profile analysis, and energy band alignment have been evaluated by X-ray photoelectron spectrometer. Zr-oxynitride layer and its interfacial layer comprised of compounds related to Zr-O, Zr-N, Zr-O-N, Si-N, and/or C-N were identified. A model related to the oxidation and nitridation mechanism has been suggested. Supportive results related to the model were obtained by energy filtered transmission electron microscopy, X-ray diffraction, and Raman analyses. A proposed crystal structure was employed to elucidate the surface roughness and topographies of the samples, which were characterized by atomic force microscopy. The electrical results revealed that 10% N{sub 2}O sample has possessed the highest breakdown field and reliability. This was owing to the confinement of nitrogen-related compounds of Zr-O-N and/or Zr-N at or near interfacial layer region, smaller grain with finer structure on the surface, the lowest interface trap density, total interface trap density, and effective oxide charge, and highest barrier height between conduction band edge of oxide and semiconductor. -- Highlights: Black-Right-Pointing-Pointer Zr-oxynitride as the gate oxide deposited on 4H-SiC substrate. Black-Right-Pointing-Pointer Simultaneous oxidation and nitridation of sputtered Zr thin film on 4H-SiC using various concentrations of N{sub 2}O gas. Black-Right-Pointing-Pointer Presence of interfacial layer comprised of mixed compounds related to Zr-O, Zr-N, Zr-O-N, Si-N, and/or C-N. Black-Right-Pointing-Pointer The highest electrical breakdown and highest reliability at diluted N{sub 2}O of 10%.

  15. Addressing the selectivity issue of cobalt doped zinc oxide thin film iso-butane sensors: Conductance transients and principal component analyses

    Science.gov (United States)

    Ghosh, A.; Majumder, S. B.

    2017-07-01

    Iso-butane (i-C4H10) is one of the major components of liquefied petroleum gas which is used as fuel in domestic and industrial applications. Developing chemi-resistive selective i-C4H10 thin film sensors remains a major challenge. Two strategies were undertaken to differentiate carbon monoxide, hydrogen, and iso-butane gases from the measured conductance transients of cobalt doped zinc oxide thin films. Following the first strategy, the response and recovery transients of conductances in these gas environments are fitted using the Langmuir adsorption kinetic model to estimate the heat of adsorption, response time constant, and activation energies for adsorption (response) and desorption (recovery). Although these test gases have seemingly different vapor densities, molecular diameters, and reactivities, analyzing the estimated heat of adsorption and activation energies (for both adsorption and desorption), we could not differentiate these gases unequivocally. However, we have found that the lower the vapor density, the faster the response time irrespective of the test gas concentration. As a second strategy, we demonstrated that feature extraction of conductance transients (using fast Fourier transformation) in conjunction with the pattern recognition algorithm (principal component analysis) is more fruitful to address the cross-sensitivity of Co doped ZnO thin film sensors. We have found that although the dispersion among different concentrations of hydrogen and carbon monoxide could not be avoided, each of these three gases forms distinct clusters in the plot of principal component 2 versus 1 and therefore could easily be differentiated.

  16. Composition-induced structural, electrical, and magnetic phase transitions in AX-type mixed-valence cobalt oxynitride epitaxial thin films

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Jumpei; Oka, Daichi [Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Kanagawa Academy of Science and Technology (KAST), 3-2-1 Sakado, Takatsu, Kawasaki 213-0012 (Japan); Hirose, Yasushi, E-mail: hirose@chem.s.u-tokyo.ac.jp; Yang, Chang; Fukumura, Tomoteru; Hasegawa, Tetsuya [Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Kanagawa Academy of Science and Technology (KAST), 3-2-1 Sakado, Takatsu, Kawasaki 213-0012 (Japan); CREST, Japan Science and Technology Agency, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Nakao, Shoichiro [Kanagawa Academy of Science and Technology (KAST), 3-2-1 Sakado, Takatsu, Kawasaki 213-0012 (Japan); CREST, Japan Science and Technology Agency, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Harayama, Isao; Sekiba, Daiichiro [University of Tsukuba Tandem Accelerator Complex (UTTAC), 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8577 (Japan)

    2015-12-07

    Synthesis of mid- to late-transition metal oxynitrides is generally difficult by conventional thermal ammonolysis because of thermal instability. In this letter, we synthesized epitaxial thin films of AX-type phase-pure cobalt oxynitrides (CoO{sub x}N{sub y}) by using nitrogen-plasma-assisted pulsed laser deposition and investigated their structural, electrical, and magnetic properties. The CoO{sub x}N{sub y} thin films with 0 ≤ y/(x + y) ≤ 0.63 grown on MgO (100) substrates showed a structural phase transition from rock salt (RS) to zinc blend at the nitrogen content y/(x + y) ∼ 0.5. As the nitrogen content increased, the room-temperature electrical resistivity of the CoO{sub x}N{sub y} thin films monotonically decreased from the order of 10{sup 5} Ω cm to 10{sup −4} Ω cm. Furthermore, we observed an insulator-to-metal transition at y/(x + y) ∼ 0.34 in the RS-CoO{sub x}N{sub y} phase, which has not yet been reported in Co{sup 2+}/Co{sup 3+} mixed-valence cobalt oxides with octahedral coordination. The low resistivity in the RS-CoO{sub x}N{sub y} phase, on the 10{sup −3} Ω cm order, may have originated from the intermediate spin state of Co{sup 3+} stabilized by the lowered crystal field symmetry of the CoO{sub 6−n}N{sub n} octahedra (n = 1, 2,…5). Magnetization measurements suggested that a magnetic phase transition occurred in the RS-CoO{sub x}N{sub y} films during the insulator-to-metal transition. These results demonstrate that low-temperature epitaxial growth is a promising approach for exploring novel electronic functionalities in oxynitrides.

  17. Clean and polymer-free transfer of CVD-grown graphene films on hexagonal boron nitride substrates

    Science.gov (United States)

    Fujihara, Miho; Ogawa, Shun; Yoshimura, Shintaro; Inoue, Ryosuke; Maniwa, Yutaka; Taniguchi, Takashi; Watanabe, Kenji; Shinohara, Hisanori; Miyata, Yasumitsu

    2017-05-01

    This report describes the development of a solution-assisted, polymer-free transfer method and the characterization of chemical vapor deposition (CVD)-grown graphene on hexagonal boron nitride. Raman analysis reveals that polymer-free samples have small variations in G- and 2D-mode Raman frequencies and are minimally affected by charge doping as observed for clean exfoliated graphene. Electrical measurements indicate that charge doping, hysteresis, and carrier scattering are suppressed in polymer-free samples. The results demonstrate that this method provides a simple and effective way to prepare clean heterostructures of CVD-grown, large-area graphene and other two-dimensional materials.

  18. Development of wear-resistant coatings for cobalt-base alloys

    International Nuclear Information System (INIS)

    Cockeram, B.V.

    1999-01-01

    The level of nuclear plant radiation exposure due to activated cobalt wear debris could potentially be reduced by covering the cobalt-base materials with a wear resistant coating. Laboratory pin-on-disc and rolling contact wear tests were used to evaluate the wear performance of several coatings. Based on the results of these tests, multilayer Cr-nitride coatings and ion nitriding are the most promising approaches

  19. X-ray diffraction stress analysis of interrupted titanium nitride films: Combining the sin2ψ and crystallite group methods

    International Nuclear Information System (INIS)

    Sinkovits, Theo; Zhao, Yue; O'Brien, Rebecca; Dowey, Steve

    2014-01-01

    Interruptions during film growth have been discussed by researchers to assist in understanding the evolution of stress in physical vapour deposition films. A change in intrinsic stress is directly related to microstructure, hence careful analysis of stress in films can provide valuable structure–stress correlated information. In this study we discuss the use of combining two X-ray diffraction (XRD) stress analysis methods to elucidate the effect of interruptions during growth on the residual stress of TiN films. The sin 2 ψ and crystallite group method (CGM), scanning the (220) peaks from all grains in the film and only (111) oriented crystallites respectively, were used to analyse residual stress in standard and interrupted cathodic arc TiN films 1.5, 3.5 and 6.5 μm thick, grown on high-speed steel substrates. The sin 2 ψ method does not reveal any changes in stress with interruptions, however, measurements using the CGM show increased compressive stress and increased a 0 in the resultant TiN films. A comparison of results from both XRD methods indicates that an increased compressive stress from interruptions could be due to an increased number of defects in (111) oriented grains during the interruptions which would also affect a 0 as evident. In both methods, compressive stresses are found to decrease with increased thickness of films. - Highlights: • Interrupting TiN film growth increases compressive stress in (111) grains. • Increased stress is believed to be caused by defects incorporated into or not annealed out of (111) grains. • A comparison of sin 2 ψ and CGM results reveals differences in stress. • Compressive stress decreases as TiN films increase in thickness from 1.5 μm to 6.5 μm

  20. Zirconium nitride hard coatings

    International Nuclear Information System (INIS)

    Roman, Daiane; Amorim, Cintia Lugnani Gomes de; Soares, Gabriel Vieira; Figueroa, Carlos Alejandro; Baumvol, Israel Jacob Rabin; Basso, Rodrigo Leonardo de Oliveira

    2010-01-01

    Zirconium nitride (ZrN) nanometric films were deposited onto different substrates, in order to study the surface crystalline microstructure and also to investigate the electrochemical behavior to obtain a better composition that minimizes corrosion reactions. The coatings were produced by physical vapor deposition (PVD). The influence of the nitrogen partial pressure, deposition time and temperature over the surface properties was studied. Rutherford backscattering spectrometry (RBS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM) and corrosion experiments were performed to characterize the ZrN hard coatings. The ZrN films properties and microstructure changes according to the deposition parameters. The corrosion resistance increases with temperature used in the films deposition. Corrosion tests show that ZrN coating deposited by PVD onto titanium substrate can improve the corrosion resistance. (author)

  1. Synthesis, characterization, and photocatalytic activities of Cobalt(II)-Titanium dioxide nanorods, and electrophoretic deposition of Titanium dioxide nanoparticle/nanorod composite films for self-cleaning applications

    Science.gov (United States)

    Kang, Wonjun

    This dissertation consists of two projects. The first project is synthesis, characterization, and photocatalytic activities of Co(II)-TiO2 nanorods. We modified brookite TiO2 nanorods with cobalt(II) ions to design new photocatalysts with visible light absorption. X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS) data indicated that the local structure of Co(II)-TiO2 nanorods was shown as tetrahedral and octahedral Co(II) sites at TiO2 nanorod surface. Dimethylglyoxime (DMG) has been used to remove surface Co(II) from Co(II)-TiO2 nanorods to determine single-site Co(II) ions selectively attached to the TiO 2 nanorod surface. We proposed a mechanism that the Co-Co bond of the precursor Co2(CO)8 undergoes heterolysis followed by disproportionation of Co(I) to produce Co(II) and Co(0) precipitate. Finally, the Co(II)-TiO2 nanorods showed greater activity than TiO 2 nanorods in the degradation of 5,8-dihydroxy-1,4-naphthoquinone (DHNQ) dye under visible light irradiation. The second project is electrophoretic deposition (EPD) of TiO2 nanoparticle/nanorod composite films for self-cleaning applications. We developed novel electrolyte system for EPD of TiO2 nanoparticle/nanorod composites for self-cleaning coatings. A mixture of TiO2 powder and TiO2 nanorods was used as EPD suspension in a mixture of THF and acetone. TiO2 nanoparticle/nanorod composite films were fabricated on aluminium substrates via the EPD method, and were characterized by scanning electron microscope (SEM). SEM images showed that TiO2 nanoparticle/nanorod composite films had a uniform pore structure. The hydrophobic properties of surfaces in TiO2 nanoparticle/nanorod composite films were evaluated by water contact angle measurements. It was found that the surfaces of TiO2 nanoparticle/nanorod composite films were hydrophobic with contact angle of 103°. These hydrophobic surfaces are expected to have potential applications for self-cleaning.

  2. Structural properties of iron nitride on Cu(100): An ab-initio molecular dynamics study

    KAUST Repository

    Heryadi, Dodi; Schwingenschlö gl, Udo

    2011-01-01

    Due to their potential applications in magnetic storage devices, iron nitrides have been a subject of numerous experimental and theoretical investigations. Thin films of iron nitride have been successfully grown on different substrates. To study

  3. Modification of Light Emission in Si-Rich Silicon Nitride Films Versus Stoichiometry and Excitation Light Energy

    Science.gov (United States)

    Torchynska, T.; Khomenkova, L.; Slaoui, A.

    2018-04-01

    Si-rich SiN x films with different stoichiometry were grown on Si substrate by plasma-enhanced chemical vapor deposition. The Si content was varied by changing the NH3/SiH4 gas flow ratio from 0.45 up to 1.0. Conventional furnace annealing at 1100°C for 30 min was applied to produce the Si quantum dots (QDs) in the SiN x films. Spectroscopic ellipsometry was used to determine the refractive index of the SiN x films that allowed estimating the film's stoichiometry. Fourier transform infrared spectroscopy has been also used to confirm the stoichiometry and microstructure. Photoluminescence (PL) spectra of Si-rich SiN x films are complex. A non-monotonous variation of the different PL peaks versus Si excess contents testifies to the competition of different radiative channels. The analysis of PL spectra, measured at the different excitation light energies and variable temperatures, has revealed that the PL bands with the peaks within the range 2.1-3.0 eV are related to the carrier recombination via radiative native defects in the SiN x host. Simultaneously, the PL bands with the peaks at 1.5-2.0 eV are caused by the exciton recombination in the Si QDs of different sizes. The way to control the SiN x emission is discussed.

  4. Feasibility study of using thin aluminum nitride film as a buffer layer for dual metal gate process

    International Nuclear Information System (INIS)

    Park, Chang Seo; Cho, Byung Jin; Balasubramanian, N.; Kwong, Dim-Lee

    2004-01-01

    We evaluated the feasibility of using an ultra thin aluminum nitride (AlN) buffer layer for dual metal gates CMOS process. Since the buffer layer should not affect the thickness of gate dielectric, it should be removed or consumed during subsequent process. In this work, it was shown that a thin AlN dielectric layer would be reacted with initial gate metals and would be consumed during subsequent annealing, resulting in no increase of equivalent oxide thickness (EOT). The reaction of AlN layer with tantalum (Ta) and hafnium (Hf) during subsequent annealing, which was confirmed with X-ray photoelectron spectroscopy (XPS) analysis, shifted the flat-band voltage of AlN buffered MOS capacitors. No contribution to equivalent oxide thickness (EOT) was also an indication showing the full consumption of AIN, which was confirmed with TEM analysis. The work functions of gate metals were modulated through the reaction, suggesting that the consumption of AlN resulted in new thin metal alloys. Finally, it was found that the barrier heights of the new alloys were consistent with their work functions

  5. Effect of ion nitriding on the crystal structure of 3 mol% Y2O3-doped ZrO2 thin-films prepared by the sol-gel method

    International Nuclear Information System (INIS)

    Ortiz, A.L.; Diaz-Parralejo, A.; Borrero-Lopez, O.; Guiberteau, F.

    2006-01-01

    We investigated the effect of ion nitriding on the crystal structure of 3 mol% Y 2 O 3 -doped ZrO 2 (3YSZ) thin-films prepared by the sol-gel method. For this purpose, we used X-ray diffractometry to determine the crystalline phases, the lattice parameters, the crystal sizes, and the lattice microstrains, and glow discharge-optical emission spectroscopy to obtain the depth profiles of the elemental chemical composition. We found that nitrogen atoms substitute oxygen atoms in the 3YSZ crystal, thus leading to the formation of unsaturated-substitutional solid solutions with reduced lattice parameters and Zr 0.94 Y 0.06 O 1.72 N 0.17 stoichiometric formula. We also found that ion nitriding does not affect the grain size, but does generate lattice microstrains due to the increase in point defects in the crystalline lattice

  6. Fabrication of iron-doped cobalt oxide nanocomposite films by electrodeposition and application as electrocatalyst for oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jingxuan; Wang, Xuemei; Qin, Dongdong; Xue, Zhonghua; Lu, Xiaoquan, E-mail: luxq@nwnu.edu.cn

    2014-11-30

    Highlights: • We fabricated the Fe-doped Co{sub 3}O{sub 4} nanofilms for the first time by potentiostatic electrodeposition method. • The Fe was doped homogeneously in the nanofilms by this method. • Among the different concentration ratios of Co{sup 2+}/Fe{sup 2+}, nanofilm with the ratio of 1:5 exhibits the optimal performance in electrochemical properties assessments. • The Fe-doped Co{sub 3}O{sub 4} nanofilms in this work exhibit good electrocatalytic activity toward oxygen reduction and appear to be promising cathodic electrocatalyst in alkaline fuel cells. - Abstract: In this work, Fe-doped Co{sub 3}O{sub 4} nanofilms were fabricated by electrodeposition on FTO glass substrates for the first time. The structures of the as-prepared nanofilms were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Characterization results demonstrate that Fe was doped homogeneously in the nanofilms. As the different concentration ratios of Fe{sup 2+}/Co{sup 2+} were explored, nanofilm with the ratio of 1:5 exhibits the optimal performance in electrochemical properties assessments. It is considered that the difference in the catalytic activities for the ORR of the samples may be due to the fact that the joining of iron changed the catalyst surface's electric state and enhanced the acidity of cobalt centers, on the other hand, the doping process probably modified the absorption property of the nanofilms. The experimental results suggest that the Fe-doped Co{sub 3}O{sub 4} nanofilms in this work exhibit favorable electrocatalytic activity toward ORR and appear to be promising cathodic electrocatalyst in alkaline fuel cells.

  7. Polar and Nonpolar Gallium Nitride and Zinc Oxide based thin film heterostructures Integrated with Sapphire and Silicon

    Science.gov (United States)

    Gupta, Pranav

    This dissertation work explores the understanding of the relaxation and integration of polar and non-polar of GaN and ZnO thin films with Sapphire and silicon substrates. Strain management and epitaxial analysis has been performed on wurtzitic GaN(0001) thin films grown on c-Sapphire and wurtzitic non-polar a-plane GaN(11-20) thin films grown on r-plane Sapphire (10-12) by remote plasma atomic nitrogen source assisted UHV Pulsed Laser Deposition process. It has been established that high-quality 2-dimensional c-axis GaN(0001) nucleation layers can be grown on c-Sapphire by PLD process at growth temperatures as low as ˜650°C. Whereas the c-axis GaN on c-sapphire has biaxially negative misfit, the crystalline anisotropy of the a-plane GaN films on r-Sapphire results in compressive and tensile misfits in the two major orthogonal directions. The measured strains have been analyzed in detail by X-ray, Raman spectroscopy and TEM. Strain relaxation in GaN(0001)/Sapphire thin film heterostructure has been explained by the principle of domain matched epitaxial growth in large planar misfit system and has been demonstrated by TEM study. An attempt has been made to qualitatively understand the minimization of free energy of the system from the strain perspective. Analysis has been presented to quantify the strain components responsible for the compressive strain observed in the GaN(0001) thin films on c-axis Sapphire substrates. It was also observed that gallium rich deposition conditions in PLD process lead to smoother nucleation layers because of higher ad-atom mobility of gallium. We demonstrate near strain relaxed epitaxial (0001) GaN thin films grown on (111) Si substrates using TiN as intermediate buffer layer by remote nitrogen plasma assisted UHV pulsed laser deposition (PLD). Because of large misfits between the TiN/GaN and TiN/Si systems the TIN buffer layer growth occurs via nucleation of interfacial dislocations under domain matching epitaxy paradigm. X-ray and

  8. Synthesis of organometallic hydroxides of titanium, vanadium, cobalt and chromium as precursors of thin films type MaOb

    International Nuclear Information System (INIS)

    Montero Villalobos, Mavis

    2001-01-01

    This study shows the results obtained from a general objective that was the synthesis and characterization of precursors of thin films of metallic oxides, two different routes of synthesis have been practiced: route molecular precursors and route Sol-Gel technic. In the first route one of the objectives of the investigation is to obtain a molecular precursor of material type M a O b a route of synthesis have been tried proved that involves anhydrous chlorides of the transition metals and linked R that are alcoxides of metal such as silicon, titanium and zirconium. In the second route the general objective to create thin films of metallic oxide has been maintained but the way to resolve the problem has changed, not giving so much emphasis to the molecular precursors as it was originally presented (this due mainly to its instability and difficulty of synthesis), but being supported in the sun-gel chemistry. It was started a new synthesis line through the sun-gel chemistry that is more versatile and simplifies the process in the film formation [es

  9. Development of pseudocapacitive molybdenum oxide–nitride for electrochemical capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Ting, Yen-Jui Bernie [Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3E4 (Canada); Wu, Haoran [Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4 (Canada); Kherani, Nazir P. [Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3E4 (Canada); Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4 (Canada); Lian, Keryn, E-mail: keryn.lian@utoronto.ca [Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4 (Canada)

    2015-03-15

    A thin film Mo oxide–nitride pseudocapacitive electrode was synthesized by electrodeposition of Mo oxide on Ti and a subsequent low-temperature (400 °C) thermal nitridation. Two nitridation environments, N{sub 2} and NH{sub 3}, were used and the results were compared. Surface analyses of these nitrided films showed partial conversion of Mo oxide to nitrides, with a lower conversion percentage being the film produced in N{sub 2}. However, the electrochemical analyses showed that the surface of the N{sub 2}-treated film had better pseudocapacitive behaviors and outperformed that nitrided in NH{sub 3}. Cycle life of the resultant N{sub 2}-treated Mo oxide–nitride was also much improved over Mo oxide. A two-electrode cell using Mo oxide–nitride electrodes was demonstrated and showed high rate performance. - Highlights: • Mo(O,N){sub x} was developed by electrodeposition and nitridation in N{sub 2} or NH{sub 3}. • N{sub 2} treated Mo(O,N){sub x} showed a capacitive performance superior to that treated by NH{sub 3}. • The promising electrochemical performance was due to the formation of γ-Mo{sub 2}N.

  10. Smoothing an isolated interface of cobalt-copper under irradiation by low-energy argon ions

    International Nuclear Information System (INIS)

    Stognij, A.I.; Novitskij, N.N.; Stukalov, O.M.

    2003-01-01

    Multilayer film structures, i.e. gold layer-copper-cobalt, are considered. It is shown that the structure, where cobalt surface prior to copper layer deposition was subjected to additional irradiation by a flow of argon ions, features the smoothest surface. The conclusion is made about smoothing out of cobalt-copper interface as a result of multiple collisions of argon slow ions and cobalt atoms during braking within two or three upper atomic rows of the cobalt layer [ru

  11. Modeling and simulation of the deposition/relaxation processes of polycrystalline diatomic structures of metallic nitride films

    Science.gov (United States)

    García, M. F.; Restrepo-Parra, E.; Riaño-Rojas, J. C.

    2015-05-01

    This work develops a model that mimics the growth of diatomic, polycrystalline thin films by artificially splitting the growth into deposition and relaxation processes including two stages: (1) a grain-based stochastic method (grains orientation randomly chosen) is considered and by means of the Kinetic Monte Carlo method employing a non-standard version, known as Constant Time Stepping, the deposition is simulated. The adsorption of adatoms is accepted or rejected depending on the neighborhood conditions; furthermore, the desorption process is not included in the simulation and (2) the Monte Carlo method combined with the metropolis algorithm is used to simulate the diffusion. The model was developed by accounting for parameters that determine the morphology of the film, such as the growth temperature, the interacting atomic species, the binding energy and the material crystal structure. The modeled samples exhibited an FCC structure with grain formation with orientations in the family planes of , and . The grain size and film roughness were analyzed. By construction, the grain size decreased, and the roughness increased, as the growth temperature increased. Although, during the growth process of real materials, the deposition and relaxation occurs simultaneously, this method may perhaps be valid to build realistic polycrystalline samples.

  12. Pull-test adhesion measurements of diamondlike carbon films on silicon carbide, silicon nitride, aluminum oxide, and zirconium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Erck, R.A.; Nichols, F.A. [Argonne National Lab., IL (United States); Dierks, J.F. [North Dakota State Univ., Fargo, ND (United States)

    1993-10-01

    Hydrogenated amorphous carbon films or diamondlike carbon (DLC) films were formed by ion-beam deposition of 400 eV methane (CH{sub 4}) ions on several smooth and rough ceramics, as well as on ceramics coated with a layer of Si and Ti. Adhesion was measured by the pin-pull method. Excellent adhesion was measured for smooth SiC and Si{sub 3}N{sub 4}, but adhesion of DLC to Al{sub 2}O{sub 3} and ZrO{sub 2} was negligible. The use of a Si bonding interlayer produced good adhesion to all the substrates, but a Ti layer was ineffective because bonding between the DLC film and Ti was poor. The presence of surface roughness appeared to greatly increase the measured adhesion in all cases. Bulk thermodynamic calculations are not directly applicable to bonding at the interface. If the standard enthalpy of formation for reaction between CH{sub 4} and substrate is calculated assumpting a carbide or carbon phase is produced, a relation is seen between reaction enthalpy and relative adhesion. Large positive enthalpies are associated with poor adhesion; negative or small positive enthalpies are associated with good adhesion. This relation between enthalpy and adhesion was also observed for DLC deposited on Si. Lack of adhesion to Ti was attributed to inadvertent formation of a surface oxide layer that rendered the enthalpy for reaction with CH{sub 4} strongly positive and similar in magnitude to that for Al{sub 2}O{sub 3} and ZrO{sub 2}.

  13. Influences of residual oxygen impurities, cubic indium oxide grains and indium oxy-nitride alloy grains in hexagonal InN crystalline films grown on Si(111) substrates by electron cyclotron resonance plasma-assisted molecular beam epitaxy

    International Nuclear Information System (INIS)

    Yodo, T.; Nakamura, T.; Kouyama, T.; Harada, Y.

    2005-01-01

    We investigated the influences of residual oxygen (O) impurities, cubic indium oxide (β-In 2 O 3 ) grains and indium oxy-nitride (InON) alloy grains in 200 nm-thick hexagonal (α)-InN crystalline films grown on Si(111) substrates by electron cyclotron resonance plasma-assisted molecular beam epitaxy. Although β-In 2 O 3 grains with wide band-gap energy were formed in In film by N 2 annealing, they were not easily formed in N 2 -annealed InN films. Even if they were not detected in N 2 -annealed InN films, the as-grown films still contained residual O impurities with concentrations of less than 0.5% ([O]≤0.5%). Although [O]∝1% could be estimated by investigating In 2 O 3 grains formed in N 2 -annealed InN films, [O]≤0.5% could not be measured by it. However, we found that they can be qualitatively measured by investigating In 2 O 3 grains formed by H 2 annealing with higher reactivity with InN and O 2 , using X-ray diffraction and PL spectroscopy. In this paper, we discuss the formation mechanism of InON alloy grains in InN films. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Pull-test adhesion measurements of diamondlike carbon films on silicon carbide, silicon nitride, aluminum oxide, and zirconium oxide

    International Nuclear Information System (INIS)

    Erck, R.A.; Nichols, F.A.; Dierks, J.F.

    1994-01-01

    Hydrogenated amorphous carbon or diamondlike carbon (DLC) films were formed by 400 eV methane (CH 4 ) ion bombardment of various smooth and rough ceramics, as well as ceramics coated with a layer of Si or Ti. Adhesion was measured by a bonded-pin method. Excellent adhesion was measured for smooth SiC and Si 3 N 4 , but adhesion of DLC to smooth Al 2 O 3 and ZrO 2 was negligible. The use of a Si bonding interlayer produced good adhesion to all the substrates, but a Ti layer was ineffective due to poor bonding between the DLC film and Ti. Bulk thermodynamic calculations are not directly applicable to bonding at the interface because the interface is two dimensional and the compositions of interfacial phases are generally not known. If the standard enthalpy ΔH degree for the reaction between CH 4 and the substrate material is calculated under the assumption that a carbide phase is produced, a relationship is seen between the reaction enthalpy and the relative adhesion. Large positive enthalpies are associated with poor adhesion; negative or small positive enthalpies are associated with good adhesion. This relation between enthalpy and adhesion was also observed for DLC deposited on Si. The lack of adhesion to the Ti was attributed to inadvertent formation of a surface oxide layer that rendered the enthalpy for the reaction with CH 4 positive

  15. Silicon nitride and intrinsic amorphous silicon double antireflection coatings for thin-film solar cells on foreign substrates

    International Nuclear Information System (INIS)

    Li, Da; Kunz, Thomas; Wolf, Nadine; Liebig, Jan Philipp; Wittmann, Stephan; Ahmad, Taimoor; Hessmann, Maik T.; Auer, Richard; Göken, Mathias; Brabec, Christoph J.

    2015-01-01

    Hydrogenated intrinsic amorphous silicon (a-Si:H) was investigated as a surface passivation method for crystalline silicon thin film solar cells on graphite substrates. The results of the experiments, including quantum efficiency and current density-voltage measurements, show improvements in cell performance. This improvement is due to surface passivation by an a-Si:H(i) layer, which increases the open circuit voltage and the fill factor. In comparison with our previous work, we have achieved an increase of 0.6% absolute cell efficiency for a 40 μm thick 4 cm 2 aperture area on the graphite substrate. The optical properties of the SiN x /a-Si:H(i) stack were studied using spectroscopic ellipsometer techniques. Scanning transmission electron microscopy inside a scanning electron microscope was applied to characterize the cross section of the SiN x /a-Si:H(i) stack using focus ion beam preparation. - Highlights: • We report a 10.8% efficiency for thin-film silicon solar cell on graphite. • Hydrogenated intrinsic amorphous silicon was applied for surface passivation. • SiN x /a-Si:H(i) stacks were characterized by spectroscopic ellipsometer techniques. • Cross-section micrograph was obtained by scanning transmission electron microscopy. • Quantum efficiency and J-V measurements show improvements in the cell performance

  16. Influence of electrochemical pre-treatment on highly reactive carbon nitride thin films deposited on stainless steel for electrochemical applications

    International Nuclear Information System (INIS)

    Benchikh, A.; Debiemme-Chouvy, C.; Cachet, H.; Pailleret, A.; Saidani, B.; Beaunier, L.; Berger, M.H.

    2012-01-01

    In this work, a-CNx films prepared by DC magnetron sputtering on stainless steel substrate have been investigated as electrode materials. While their wide potential window was confirmed as a property shared by boron doped diamond (BDD) electrodes, their electrochemical activity with respect to fast and reversible redox systems, [Ru(NH 3 ) 6 ] 3+/2+ , [Fe(CN) 6 ] 3−/4− and [IrCl 6 ] 2−/3− , was assessed by Electrochemical Impedance Spectroscopy (EIS) after cathodic or anodic electrochemical pre-treatments or for as grown samples. It was shown for the three systems that electrochemical reactivity of the a-CNx films was improved after the cathodic pre-treatment and degraded after the anodic one, the apparent heterogeneous rate constant k 0app being decreased by at least one order of magnitude for the latter case. A high k 0app value of 0.11 cm s −1 for [IrCl 6 ] 2−/3− was obtained, close to the highest values found for BDD electrodes.

  17. Lateral polarity control of III-nitride thin film and application in GaN Schottky barrier diode

    Science.gov (United States)

    Li, Junmei; Guo, Wei; Sheikhi, Moheb; Li, Hongwei; Bo, Baoxue; Ye, Jichun

    2018-05-01

    N-polar and III-polar GaN and AlN epitaxial thin films grown side by side on single sapphire substrate was reported. Surface morphology, wet etching susceptibility and bi-axial strain conditions were investigated and the polarity control scheme was utilized in the fabrication of Schottky barrier diode where ohmic contact and Schottky contact were deposited on N-polar domains and Ga-polar domains, respectively. The influence of N-polarity on on-state resistivity and I–V characteristic was discussed, demonstrating that lateral polarity structure of GaN and AlN can be widely used in new designs of optoelectronic and electronic devices. Project partially supported by the National Key Research and Development Program of China (No. 2016YFB0400802), the National Natural Science Foundation of China (No. 61704176), and the Open project of Zhejiang Key Laboratory for Advanced Microelectronic Intelligent Systems and Applications (No. ZJUAMIS1704).

  18. Air stable n-doping of WSe2 by silicon nitride thin films with tunable fixed charge density

    International Nuclear Information System (INIS)

    Chen, Kevin; Kiriya, Daisuke; Hettick, Mark; Tosun, Mahmut; Ha, Tae-Jun; Madhvapathy, Surabhi Rao; Desai, Sujay; Sachid, Angada; Javey, Ali

    2014-01-01

    Stable n-doping of WSe 2 using thin films of SiN x deposited on the surface via plasma-enhanced chemical vapor deposition is presented. Positive fixed charge centers inside SiN x act to dope WSe 2 thin flakes n-type via field-induced effect. The electron concentration in WSe 2 can be well controlled up to the degenerate limit by simply adjusting the stoichiometry of the SiN x through deposition process parameters. For the high doping limit, the Schottky barrier width at the metal/WSe 2 junction is significantly thinned, allowing for efficient electron injection via tunneling. Using this doping scheme, we demonstrate air-stable WSe 2 n-MOSFETs with a mobility of ∼70 cm 2 /V s

  19. Plasma nitriding of steels

    CERN Document Server

    Aghajani, Hossein

    2017-01-01

    This book focuses on the effect of plasma nitriding on the properties of steels. Parameters of different grades of steels are considered, such as structural and constructional steels, stainless steels and tools steels. The reader will find within the text an introduction to nitriding treatment, the basis of plasma and its roll in nitriding. The authors also address the advantages and disadvantages of plasma nitriding in comparison with other nitriding methods. .

  20. Cobalt hydroxide film on Pt as co-catalyst for oxidation of polyhydric alcohols in alkaline medium

    International Nuclear Information System (INIS)

    Das, Debasmita; Das, Kaushik

    2010-01-01

    Electrochemical behavior of chemically prepared Co(OH) 2 film on Pt has been studied in alkaline medium using cyclic voltammetry and chronoamperometry. Amount of Co(OH) 2 deposited increases linearly with the number of times of deposition. The deposit is of fibrous structure, as shown by scanning electron microphotograph. There is evidence of Co II /Co III and Co III /Co IV redox transitions during the cyclic potential scan. The former oxidation proceeds under diffusion control. The Co(OH) 2 deposit acts as an efficient co-catalyst for anodic oxidation of ethanediol, propanediol and glycerol on Pt in alkaline medium. This is demonstrated by appreciable enhancement of the alcohol oxidation currents upon deposition of Co(OH) 2 on Pt. Among the alcohols studied, the highest oxidation currents are obtained for ethanediol, both on Co(OH) 2 /Pt and bare Pt. Co(OH) 2 alone also acts as a redox mediator for alcohol oxidation at more positive potentials.

  1. Development of wear-resistant coatings for cobalt-base alloys

    International Nuclear Information System (INIS)

    Cockeram, B.V.

    1999-01-01

    The costs and hazards resulting from nuclear plant radiation exposure with activated cobalt wear debris could potentially be reduced by covering the cobalt-base materials with a wear resistant coating. However, the hardnesses of many cobalt-base wear alloys are significantly lower than conventional PVD hard coatings, and mechanical support of the hard coating is a concern. Four approaches have been taken to minimize the hardness differences between the substrate and PVD hard coating: (1) use a thin Cr-nitride hard coating with layers that are graded with respect to hardness, (2) use a thicker, multilayered coating (Cr-nitride or Zr-nitride) with graded layers, (3) use nitriding to harden the alloy subsurface followed by application of a multilayered coating of Cr-nitride, and (4) use of nitriding alone. Since little work has been done on application of PVD hard coatings to cobalt-base alloys, some details on process development and characterization of the coatings is presented. Scratch testing was used to evaluate the adhesion of the different coatings. A bench-top rolling contact test was used to evaluate the wear resistance of the coatings. The test results are discussed, and the more desirable coating approaches are identified

  2. Electrochemical Solution Growth of Magnetic Nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Monson, Todd C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pearce, Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    Magnetic nitrides, if manufactured in bulk form, would provide designers of transformers and inductors with a new class of better performing and affordable soft magnetic materials. According to experimental results from thin films and/or theoretical calculations, magnetic nitrides would have magnetic moments well in excess of current state of the art soft magnets. Furthermore, magnetic nitrides would have higher resistivities than current transformer core materials and therefore not require the use of laminates of inactive material to limit eddy current losses. However, almost all of the magnetic nitrides have been elusive except in difficult to reproduce thin films or as inclusions in another material. Now, through its ability to reduce atmospheric nitrogen, the electrochemical solution growth (ESG) technique can bring highly sought after (and previously inaccessible) new magnetic nitrides into existence in bulk form. This method utilizes a molten salt as a solvent to solubilize metal cations and nitrogen ions produced electrochemically and form nitrogen compounds. Unlike other growth methods, the scalable ESG process can sustain high growth rates (~mm/hr) even under reasonable operating conditions (atmospheric pressure and 500 °C). Ultimately, this translates into a high throughput, low cost, manufacturing process. The ESG process has already been used successfully to grow high quality GaN. Below, the experimental results of an exploratory express LDRD project to access the viability of the ESG technique to grow magnetic nitrides will be presented.

  3. Electrospun Gallium Nitride Nanofibers

    International Nuclear Information System (INIS)

    Melendez, Anamaris; Morales, Kristle; Ramos, Idalia; Campo, Eva; Santiago, Jorge J.

    2009-01-01

    The high thermal conductivity and wide bandgap of gallium nitride (GaN) are desirable characteristics in optoelectronics and sensing applications. In comparison to thin films and powders, in the nanofiber morphology the sensitivity of GaN is expected to increase as the exposed area (proportional to the length) increases. In this work we present electrospinning as a novel technique in the fabrication of GaN nanofibers. Electrospinning, invented in the 1930s, is a simple, inexpensive, and rapid technique to produce microscopically long ultrafine fibers. GaN nanofibers are produced using gallium nitrate and dimethyl-acetamide as precursors. After electrospinning, thermal decomposition under an inert atmosphere is used to pyrolyze the polymer. To complete the preparation, the nanofibers are sintered in a tube furnace under a NH 3 flow. Both scanning electron microscopy and profilometry show that the process produces continuous and uniform fibers with diameters ranging from 20 to a few hundred nanometers, and lengths of up to a few centimeters. X-ray diffraction (XRD) analysis shows the development of GaN nanofibers with hexagonal wurtzite structure. Future work includes additional characterization using transmission electron microscopy and XRD to understand the role of precursors and nitridation in nanofiber synthesis, and the use of single nanofibers for the construction of optical and gas sensing devices.

  4. Pulsed Laser Deposition Processing of Improved Titanium Nitride Coatings for Implant Applications

    Science.gov (United States)

    Haywood, Talisha M.

    Recently surface coating technology has attracted considerable attention of researchers to develop novel coatings with enhanced functional properties such as hardness, biocompatibility, wear and corrosion resistance for medical devices and surgical tools. The materials currently being used for surgical implants include predominantly stainless steel (316L), cobalt chromium (Co-Cr), titanium and its alloys. Some of the limitations of these implants include improper mechanical properties, corrosion resistance, cytotoxicity and bonding with bone. One of the ways to improve the performance and biocompatibility of these implants is to coat their surfaces with biocompatible materials. Among the various coating materials, titanium nitride (TiN) shows excellent mechanical properties, corrosion resistance and low cytotoxicity. In the present work, a systematic study of pulsed laser ablation processing of TiN coatings was conducted. TiN thin film coatings were grown on commercially pure titanium (Ti) and stainless steel (316L) substrates at different substrate temperatures and different nitrogen partial pressures using the pulsed laser deposition (PLD) technique. Microstructural, surface, mechanical, chemical, corrosion and biological analysis techniques were applied to characterize the TiN thin film coatings. The PLD processed TiN thin film coatings showed improvements in mechanical strength, corrosion resistance and biocompatibility when compared to the bare substrates. The enhanced performance properties of the TiN thin film coatings were a result of the changing and varying of the deposition parameters.

  5. Preparation of uranium nitride

    International Nuclear Information System (INIS)

    Potter, R.A.; Tennery, V.J.

    1976-01-01

    A process is described for preparing actinide-nitrides from massive actinide metal which is suitable for sintering into low density fuel shapes by partially hydriding the massive metal and simultaneously dehydriding and nitriding the dehydrided portion. The process is repeated until all of the massive metal is converted to a nitride

  6. Effect of ion nitriding on the crystal structure of 3 mol% Y{sub 2}O{sub 3}-doped ZrO{sub 2} thin-films prepared by the sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, A.L. [Departamento de Electronica e Ingenieria Electromecanica, Escuela de Ingenierias Industriales, Universidad de Extremadura, Badajoz 06071 (Spain)]. E-mail: alortiz@unex.es; Diaz-Parralejo, A. [Departamento de Electronica e Ingenieria Electromecanica, Escuela de Ingenierias Industriales, Universidad de Extremadura, Badajoz 06071 (Spain); Borrero-Lopez, O. [Departamento de Electronica e Ingenieria Electromecanica, Escuela de Ingenierias Industriales, Universidad de Extremadura, Badajoz 06071 (Spain); Guiberteau, F. [Departamento de Electronica e Ingenieria Electromecanica, Escuela de Ingenierias Industriales, Universidad de Extremadura, Badajoz 06071 (Spain)

    2006-06-30

    We investigated the effect of ion nitriding on the crystal structure of 3 mol% Y{sub 2}O{sub 3}-doped ZrO{sub 2} (3YSZ) thin-films prepared by the sol-gel method. For this purpose, we used X-ray diffractometry to determine the crystalline phases, the lattice parameters, the crystal sizes, and the lattice microstrains, and glow discharge-optical emission spectroscopy to obtain the depth profiles of the elemental chemical composition. We found that nitrogen atoms substitute oxygen atoms in the 3YSZ crystal, thus leading to the formation of unsaturated-substitutional solid solutions with reduced lattice parameters and Zr{sub 0.94}Y{sub 0.06}O{sub 1.72}N{sub 0.17} stoichiometric formula. We also found that ion nitriding does not affect the grain size, but does generate lattice microstrains due to the increase in point defects in the crystalline lattice.

  7. Formation, surface characterization, and electrocatalytic application of self-assembled monolayer films of tetra-substituted manganese, iron, and cobalt benzylthio phthalocyanine complexes

    CSIR Research Space (South Africa)

    Akinbulu, IA

    2011-10-01

    Full Text Available characteristics of the films were interrogated by cyclic voltammetry. Significant passivation of voltammetry processes associated with bare gold surface (gold oxidation and underpotential deposition of copper) confirmed formation of the films. Electrocatalytic...

  8. Nitridation of vanadium by ion beam irradiation

    International Nuclear Information System (INIS)

    Kiuchi, Masato; Chayahara, Akiyoshi; Kinomura, Atsushi; Ensinger, Wolfgang

    1994-01-01

    The nitridation of vanadium by ion beam irradiation is studied by the ion implantation method and the dynamic mixing method. The nitrogen ion implantation was carried out into deposited V(110) films. Using both methods, three phases are formed, i.e. α-V, β-V 2 N, and δ-VN. Which phases are formed is related to the implantation dose or the arrival ratio. The orientation of the VN films produced by the dynamic ion beam mixing method is (100) and that of the VN films produced by the ion implantation method is (111). The nitridation of vanadium is also discussed in comparison with that of titanium and chromium. ((orig.))

  9. Cobalt release from inexpensive jewellery

    DEFF Research Database (Denmark)

    Thyssen, Jacob Pontoppidan; Jellesen, Morten Stendahl; Menné, Torkil

    2010-01-01

    . Conclusions: This study showed that only a minority of inexpensive jewellery purchased in Denmark released cobalt when analysed with the cobalt spot test. As fashion trends fluctuate and we found cobalt release from dark appearing jewellery, cobalt release from consumer items should be monitored in the future......Objectives: The aim was to study 354 consumer items using the cobalt spot test. Cobalt release was assessed to obtain a risk estimate of cobalt allergy and dermatitis in consumers who would wear the jewellery. Methods: The cobalt spot test was used to assess cobalt release from all items...

  10. Passivation and corrosion behaviours of cobalt and cobalt-chromium-molybdenum alloy

    International Nuclear Information System (INIS)

    Metikos-Hukovic, M.; Babic, R.

    2007-01-01

    Passivation and corrosion behaviour of the cobalt and cobalt-base alloy Co30Cr6Mo was studied in a simulated physiological solution containing chloride and bicarbonate ions and with pH of 6.8. The oxido-reduction processes included solid state transformations occurring at the cobalt/electrolyte interface are interpreted using theories of surface electrochemistry. The dissolution of cobalt is significantly suppressed by alloying it with chromium and molybdenum, since the alloy exhibited 'chromium like' passivity. The structural and protective properties of passive oxide films formed spontaneously at the open circuit potential or during the anodic polarization were studied using electrochemical impedance spectroscopy in the wide frequency range

  11. Variation of crystallinity and stoichiometry in films of gallium oxide, gallium nitride and barium zirconate prepared by means of PLD; Variation von Kristallinitaet und Stoechiometrie in mittels PLD hergestellten Schichten aus Galliumoxid, Galliumnitrid und Bariumzirkonat

    Energy Technology Data Exchange (ETDEWEB)

    Brendt, Jochen

    2011-08-05

    Pulsed Laser Deposition (PLD) is an ablation technique for thin film preparation of many materials. The film properties can be well controlled by the process parameters. Therefore, in many cases a given material can be deposited with different properties by changing one or more process parameters. In this thesis thin films of gallium oxide, gallium nitride and barium zirconate were deposited with a large variation in structure and stoichiometry by means of Pulsed Laser Deposition. The characterization of the film crystallinity, phase purity and short range structural order was completed by means of X-ray diffraction and X-ray absorption spectroscopy. The stoichiometry was investigated using electron probe microanalysis. For analyzing the correlation between the structure and stoichiometry with the optical and electrical properties, optical absorption and electrical conductivity measurements were carried out. The investigation of all three material systems showed that very unique properties can be realized when combining an amorphous structure and a non-stoichiometric composition. For example, in amorphous and oxygen deficient gallium oxide an insulator-metal-transition can be induced by partial crystallization of the as prepared phase accomplished by annealing at about 400 C in argon atmosphere (as shown in literature). Furthermore, amorphous and highly non-stoichiometric barium zirconate has the ability to split water molecules to hydrogen and oxygen at room temperature. A detailed analysis of both phenomena has been performed by means of photoemission and transmission electron microscopy in the case of gallium oxide and via X-ray absorption spectroscopy and gas chromatography in the case of barium zirconate.

  12. Nanocrystalline Iron-Cobalt Alloys for High Saturation Indutance

    Science.gov (United States)

    2016-02-24

    film deposited just like the pick-up of a turn-table music player. The contact pads provide the electrical contacts to the starting and end point of...anisotropy using the geometry of the thin toroid. We have shown experimentally that the thin film toroid calculations may be applicable to up to millimeter...thin film as well as bulk devices. 15. SUBJECT TERMS Micromagnetic Calculations, Nanocrystalline cobalt-iron, Thin Film Toroids 16. SECURITY

  13. Perfluorinated cobalt phthalocyanine effectively catalyzes water electrooxidation

    KAUST Repository

    Morlanes, Natalia Sanchez

    2014-12-08

    Efficient electrocatalysis of water oxidation under mild conditions at neutral pH was achieved by a fluorinated cobalt phthalocyanine immobilized on fluorine-doped tin oxide (FTO) surfaces with an onset potential at 1.7 V vs. RHE. Spectroscopic, electrochemical, and inhibition studies indicate that phthalocyanine molecular species are the operational active sites. Neither free cobalt ions nor heterogeneous cobalt oxide particles or films were observed. During long-term controlled-potential electrolysis at 2 V vs. RHE (phosphate buffer, pH 7), electrocatalytic water oxidation was sustained for at least 8 h (TON ≈ 1.0 × 105), producing about 4 μmol O2 h-1 cm-2 with a turnover frequency (TOF) of about 3.6 s-1 and no measurable catalyst degradation.

  14. Electrochemical properties of lanthanum nitride with calcium nitride additions

    International Nuclear Information System (INIS)

    Lesunova, R.P.; Fishman, L.S.

    1986-01-01

    This paper reports on the electrochemical properties of lanthanum nitride with calcium nitride added. The lanthanum nitride was obtained by nitriding metallic lanthanum at 870 K in an ammonia stream. The product contained Cl, Pr, Nd, Sm, Fe, Ca, Cu, Mo, Mg, Al, Si, and Be. The calcium nitride was obtained by nitriding metallic calcium in a nitrogen stream. The conductivity on the LaN/C 3 N 2 system components are shown as a function of temperature. A table shows the solid solutions to be virtually electronic conductors and the lanthanum nitride a mixed conductor

  15. Silicon Nitride Photonic Integration Platforms for Visible, Near-Infrared and Mid-Infrared Applications

    Science.gov (United States)

    Micó, Gloria; Pastor, Daniel; Pérez, Daniel; Doménech, José David; Fernández, Juan; Baños, Rocío; Alemany, Rubén; Sánchez, Ana M.; Cirera, Josep M.; Mas, Roser

    2017-01-01

    Silicon nitride photonics is on the rise owing to the broadband nature of the material, allowing applications of biophotonics, tele/datacom, optical signal processing and sensing, from visible, through near to mid-infrared wavelengths. In this paper, a review of the state of the art of silicon nitride strip waveguide platforms is provided, alongside the experimental results on the development of a versatile 300 nm guiding film height silicon nitride platform. PMID:28895906

  16. Cobalt sensitization and dermatitis

    DEFF Research Database (Denmark)

    Thyssen, Jacob P

    2012-01-01

    : This clinical review article presents clinical and scientific data on cobalt sensitization and dermatitis. It is concluded that cobalt despite being a strong sensitizer and a prevalent contact allergen to come up on patch testing should be regarded as a very complex metal to test with. Exposure...

  17. Effect of deposition conditions on mechanical stresses and microstructure of sputter-deposited molybdenum and reactively sputter-deposited molybdenum nitride films

    International Nuclear Information System (INIS)

    Shen, Y.G.

    2003-01-01

    A combined investigation of mechanical stress generation by in situ substrate curvature measurements during the growth of MoN x thin films, with 0≤x≤0.35, and of structural properties by ex situ X-ray diffraction (XRD), transmission electron microscopy (TEM), transmission electron diffraction (TED), X-ray photoelectron spectroscopy (XPS), and electron energy-loss spectroscopy (EELS) is reported. It was found that the Mo film stresses strongly depended on the Ar sputtering pressure and changed from highly compressive to highly tensile in a relatively narrow pressure range of 6-12 mTorr. For pressures exceeding ∼40 mTorr, the stress in the film was nearly zero. Cross-sectional TEM measurements indicated that the compressively stressed films contained a dense microstructure without any columns, while the films having tensile stress had a very columnar microstructure. High sputtering-gas pressure conditions yielded dendritic-like film growth, resulting in complete relaxation of the mechanical tensile stresses. It was also found that the properties of the deposited MoN x films depended not only on the nitrogen partial pressure in Ar-N 2 gas mixtures but also on the total sputtering-gas pressure. Cross-sectional TEM studies showed that an average column width for 160 nm-thick films near stoichiometry of Mo 2 N was about ∼15-20 nm. Using the electron scattering data collected from a range of crystalline samples for calculating the pair distribution function (PDF) by Fourier transformation in real space, Mo-N and Mo-Mo bonding in the films was also identified. Once the Mo 2 N phase was formed, the density, microstructure and bonding feature were similar and insensitive to the total sputtering pressure used in this study

  18. Synthesis and thin film growth of alkaline cobaltates Na{sub x}CoO{sub 2} and Li{sub x}CoO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrandt, Sandra

    2013-02-18

    In this study sol-gel synthesis was used to fabricate Na{sub x}CoO{sub 2}, LiNi{sub 1/2}Co{sub 1/2}O{sub 2} and LiNi{sub 1/3}Mn{sub 1/3}Co{sub 1/3}O{sub 2}. By using acetate precursors a lower process temperature was accessible, which has a positive effect on the sodium and lithium loss during synthesis. The lithium based powders were single phase and kept cation stoichiometry after sintering. A small grain size is favourable for battery applications. Sodium content was slightly reduced after temperature treatment compared to the initial cation mixture, due to the high volatility of Na. To fabricate thin films PLD was used for deposition. All films were deposited on SrTiO{sub 3} substrates. The growth mechanism of Na{sub x}CoO{sub 2} on SrTiO{sub 3} was investigated and an in-plane and out-of-plane relation between film an substrate was found. The films grow 15 and 45 rotated with respect to the ab-plane of the substrate and grow in c-axis direction out-of-plane. The sodium content and the crystallinity of the Na{sub x}CoO{sub 2} was investigated as a function of the post deposition treatment. A change of x between 0.38 and 0.84 can be achieved. The γ-phase was preserved in all films despite of the change of the sodium content. The in-situ variation of sodium stoichiometry, allows to tune the film properties in a wide range. This feature is an advantage compared to bulk Na{sub x}CoO{sub 2}, in which only certain stoichiometries can be stabilized. Fabrication of superconducting thin films Na{sub 0.33}CoO{sub 2}.1.3H{sub 2}O was challenging, since the superconducting phase is metastable and hardly to stabilize as a thin film. LiNi{sub 1/3}Mn{sub 1/3}Co{sub 1/3}O{sub 2} and LiNi{sub 1/2}Co{sub 1/2}O{sub 2} thin films were grown by PLD in (104)-orientation. These thin film materials are promising candidates as cathode materials for the development of thin film batteries.

  19. Ion nitriding of aluminium

    International Nuclear Information System (INIS)

    Fitz, T.

    2002-09-01

    The present study is devoted to the investigation of the mechanism of aluminium nitriding by a technique that employs implantation of low-energy nitrogen ions and diffusional transport of atoms. The nitriding of aluminium is investigated, because this is a method for surface modification of aluminium and has a potential for application in a broad spectrum of fields such as automobile, marine, aviation, space technologies, etc. However, at present nitriding of aluminium does not find any large scale industrial application, due to problems in the formation of stoichiometric aluminium nitride layers with a sufficient thickness and good quality. For the purposes of this study, ion nitriding is chosen, as an ion beam method with the advantage of good and independent control over the process parameters, which thus can be related uniquely to the physical properties of the resulting layers. Moreover, ion nitriding has a close similarity to plasma nitriding and plasma immersion ion implantation, which are methods with a potential for industrial application. (orig.)

  20. Selective ablation of a titanium nitride film on tungsten carbide substrate using ultrashort laser pulses; Ablação seletiva de um filme de nitreto de titânio em substrato de carboneto de tungstênio utilizando laser de pulsos ultracurtos

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Eduardo Spinelli

    2017-07-01

    Surface coatings are applied to many cutting tools in the metallurgical industry in order to improve cutting efficiency and extend its useful life. In this work, tests were performed to remove the coating of titanium aluminum nitride (TiAlN) on tungsten carbide (WC-Co) pellets, using an ultrashort laser pulses beam. After determination of the damage thresholds of the film and the substrate, were ablated on the surface of the coating lines using two ablation conditions, it was initially operated on the low fluence regime for the film, and later on the low fluence regime of the substrate, far below the threshold of the film, applying high overlapping pulses. A laser induced breakdown spectroscopy (LIBS) system was set up to monitor the materials present in the plasma generated by the laser, but the system did not present sufficient sensitivity to read the low intensity of the plasma generated in the process and was not used. After the analysis of the traces by electron microscopy, optical profilometer and X-ray fluorescence spectroscopy, it was not possible to determine a safe process to carry out the selective removal of the film in question, however, due to the data obtained and observations of the results in some traces, new possibilities were raised, opening the discussion for future work. (author)

  1. Elicitation threshold of cobalt chloride

    DEFF Research Database (Denmark)

    Fischer, Louise A; Johansen, Jeanne D; Voelund, Aage

    2016-01-01

    : On the basis of five included studies, the ED10 values of aqueous cobalt chloride ranged between 0.0663 and 1.95 µg cobalt/cm(2), corresponding to 30.8-259 ppm. CONCLUSIONS: Our analysis provides an overview of the doses of cobalt that are required to elicit allergic cobalt contactdermatitis in sensitized...

  2. High-rate silicon nitride deposition for photovoltaics : from fundamentals to industrial application

    NARCIS (Netherlands)

    Kessels, W.M.M.; Oever, van den P.J.; Bosch, R.C.M.; Bijker, M.D.; Evers, M.F.J.; Schram, D.C.; Sanden, van de M.C.M.

    2005-01-01

    The development of a novel plasma technique for high rate (> 1 nm/s) silicon nitride deposition for multifunctional antireflection coatings on crystalline silicon solar cells is described. The research has involved the analysis of the structural and optical properties of the silicon nitride films as

  3. High-rate silicon nitride deposition for photovoltaics : from fundamentals to industrial application

    NARCIS (Netherlands)

    Kessels, W.M.M.; Oever, van den P.J.; Bosch, R.C.M.; Bijker, M.D.; Evers, M.F.J.; Schram, D.C.; Sanden, van de M.C.M.

    2004-01-01

    The development of a novel plasma technique for high rate (> 1 nm/s) silicon nitride deposition for multifunctional antireflection coatings on crystalline silicon solar cells is described. The research has involved the analysis of the structural and optical properties of the silicon nitride films as

  4. Study of High Quality Indium Nitride Films Grown on Si(100 Substrate by RF-MOMBE with GZO and AlN Buffer Layers

    Directory of Open Access Journals (Sweden)

    Wei-Chun Chen

    2012-01-01

    Full Text Available Wurtzite structure InN films were prepared on Si(100 substrates using radio-frequency metal-organic molecular beam epitaxy (RF-MOMBE system. Ga-doped ZnO (GZO and Amorphous AlN (a-AlN film were used as buffer layers for InN films growth. Structural, surface morphology and optical properties of InN films were investigated by X-ray diffraction (XRD, field emission scanning electron microscopy (FE-SEM, transmission electron microscopy (TEM, and photoluminescence (PL. XRD results indicated that all InN films exhibited preferred growth orientation along the c-axis with different intermediate buffers. TEM images exhibit the InN/GZO growth by two-dimensional mode and thickness about 900 nm. Also, the InN films can be obtained by growth rate about ~1.8 μm/h. Optical properties indicated that the band gap of InN/GZO is about 0.79 eV. These results indicate that the control of buffer layer is essential for engineering the growth of InN on silicon wafer.

  5. Reactive sputter deposition of boron nitride

    International Nuclear Information System (INIS)

    Jankowski, A.F.; Hayes, J.P.; McKernan, M.A.; Makowiecki, D.M.

    1995-10-01

    The preparation of fully dense, boron targets for use in planar magnetron sources has lead to the synthesis of Boron Nitride (BN) films by reactive rf sputtering. The deposition parameters of gas pressure, flow and composition are varied along with substrate temperature and applied bias. The films are characterized for composition using Auger electron spectroscopy, for chemical bonding using Raman spectroscopy and for crystalline structure using transmission electron microscopy. The deposition conditions are established which lead to the growth of crystalline BN phases. In particular, the growth of an adherent cubic BN coating requires 400--500 C substrate heating and an applied -300 V dc bias

  6. Thin (111) oriented CoFe{sub 2}O{sub 4} and Co{sub 3}O{sub 4} films prepared by decomposition of layered cobaltates

    Energy Technology Data Exchange (ETDEWEB)

    Buršík, Josef, E-mail: bursik@iic.cas.cz [Institute of Inorganic Chemistry of the Academy of Sciences of the Czech Republic, v.v.i., 250 68 Husinec-Řež 1001 (Czech Republic); Soroka, Miroslav, E-mail: soroka@iic.cas.cz [Institute of Inorganic Chemistry of the Academy of Sciences of the Czech Republic, v.v.i., 250 68 Husinec-Řež 1001 (Czech Republic); Uhrecký, Róbert, E-mail: uhrecky@iic.cas.cz [Institute of Inorganic Chemistry of the Academy of Sciences of the Czech Republic, v.v.i., 250 68 Husinec-Řež 1001 (Czech Republic); Kužel, Radomír, E-mail: kuzel@karlov.mff.cuni.cz [Charles University in Prague, Faculty of Mathematics and Physics, Ke Karlovu 5, 121 16 Praha 2 (Czech Republic); Mika, Filip, E-mail: filip.mika@isibrno.cz [Institute of Scientific Instruments, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 147, 612 64 Brno (Czech Republic); Huber, Štěpán, E-mail: stepan.huber@vscht.cz [University of Chemistry and Technology, Faculty of Chemical Technology, Technická 5, 166 28 Prague 6 (Czech Republic)

    2016-07-15

    Graphical abstract: Pole figures of NaCoO{sub 2} (left) and of CoFe{sub 2}O{sub 4} (right) films formed through the transformation of O3-type NaCoO{sub 2} phase in consequence of sodium deintercalation occurring at 800 °C. Films were prepared by chemical solution deposition on MgO(111) substrate. - Highlights: • Epitaxial Na(CoFe)O{sub 2} thin films by means of chemical solution deposition were prepared. • Oriented spinel films through transformation of Na(CoFe)O{sub 2} were obtained. • Orientation relation to MgO, SrTiO{sub 3} and Zr(Y)O{sub 2} substrates were determined. • Structural aspects of Na(CoFe)O{sub 2} → CoFe{sub 2}O{sub 4} transformation pathway were elucidated. - Abstract: The formation and structural characterization of highly (111)-oriented Co{sub 3}O{sub 4} and CoFe{sub 2}O{sub 4} films prepared by a novel procedure from 00l-oriented NaCoO{sub 2} and Na(CoFe)O{sub 2} is reported. The Na(CoFe)O{sub 2} films were deposited on MgO, SrTiO{sub 3}, LaAlO{sub 3}, and Zr(Y)O{sub 2} single crystals with (100) and (111) orientations by chemical solution deposition method and crystallized at 700 °C. Subsequently they were transformed into (111)-oriented spinel phase during post-growth annealing at 800–1000 °C. Morphology and structure of the films was investigated by means of scanning electron microscopy and X-ray diffraction. While all spinel films exhibit pronounced out-of-plane orientation irrespective of substrate, the rate of in-plane orientation strongly depend on lattice misfit values. Different epitaxial phenomena ranging from true one-to-one epitaxy to the existence of many-to-one epitaxy involving two or more orientations were determined by full 3D texture analysis.

  7. Structure and magnetic properties of chromium doped cobalt molybdenum nitrides

    Science.gov (United States)

    Guskos, Niko; Żołnierkiewicz, Grzegorz; Typek, Janusz; Guskos, Aleksander; Adamski, Paweł; Moszyński, Dariusz

    2016-09-01

    Four nanocomposites containing mixed phases of Co3Mo3N and Co2Mo3N doped with chromium have been prepared. A linear fit is found for relation between Co2Mo3N and chromium concentrations. The magnetization in ZFC and FC modes at different temperatures (2-300 K) and in applied magnetic fields (up to 70 kOe) have been investigated. It has been detected that many magnetic characteristics of the studied four nanocomposites correlate not with the chromium concentration but with nanocrystallite sizes. The obtained results were interpreted in terms of magnetic core-shell model of a nanoparticle involving paramagnetic core with two magnetic sublattices and a ferromagnetic shell related to chromium doping.

  8. Structure and magnetic properties of chromium doped cobalt molybdenum nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Guskos, Niko; Żołnierkiewicz, Grzegorz; Typek, Janusz; Guskos, Aleksander [Institute of Physics, Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology, Szczecin, Piastów 48, 70-311 Szczecin (Poland); Adamski, Paweł; Moszyński, Dariusz [Institute of Inorganic Chemical Technology and Environment Engineering, West Pomeranian University of Technology, Szczecin, Pułaskiego 10, 70-322 Szczecin (Poland)

    2016-09-15

    Four nanocomposites containing mixed phases of Co{sub 3}Mo{sub 3}N and Co{sub 2}Mo{sub 3}N doped with chromium have been prepared. A linear fit is found for relation between Co{sub 2}Mo{sub 3}N and chromium concentrations. The magnetization in ZFC and FC modes at different temperatures (2–300 K) and in applied magnetic fields (up to 70 kOe) have been investigated. It has been detected that many magnetic characteristics of the studied four nanocomposites correlate not with the chromium concentration but with nanocrystallite sizes. The obtained results were interpreted in terms of magnetic core-shell model of a nanoparticle involving paramagnetic core with two magnetic sublattices and a ferromagnetic shell related to chromium doping. - Highlights: • A new chromium doped mixed Co-Mn-N nanocomposites were synthesized. • Surface ferromagnetism was detected in a wide temperature range. • Core-shell model was applied to explain nanocomposites magnetism.

  9. A glassy carbon electrode modified with a film composed of cobalt oxide nanoparticles and graphene for electrochemical sensing of H2O2

    International Nuclear Information System (INIS)

    Li, Su-Juan; Du, Ji-Min; Zhang, Jia-Ping; Zhang, Meng-Jie; Chen, Jing

    2014-01-01

    We have prepared a graphene-based hybrid nanomaterial by electrochemical deposition of cobalt oxide nanoparticles (CoOxNPs) on the surface of electrochemically reduced graphene oxide deposited on a glassy carbon electrode (GCE). Scanning electron microscopy and cyclic voltammetry were used to characterize the immobilized nanoparticles. Electrochemical determination of H 2 O 2 is demonstrated with the modified GCE at pH 7. Compared to GCEs modified with CoO x NPs or graphene sheets only, the new electrode displays larger oxidative current response to H 2 O 2 , probably due to the synergistic effects between the graphene sheets and the CoO x NPs. The sensor responds to H 2 O 2 with a sensitivity of 148.6 μA mM −1 cm −2 and a linear response range from 5 μM to 1 mM. The detection limit is 0.2 μM at a signal to noise ratio (SNR) of three. The method was successfully applied to the determination of H 2 O 2 in hydrogen peroxide samples. (author)

  10. Tantalum Nitride Electron-Selective Contact for Crystalline Silicon Solar Cells

    KAUST Repository

    Yang, Xinbo; Aydin, Erkan; Xu, Hang; Kang, Jingxuan; Hedhili, Mohamed N.; Liu, Wenzhu; Wan, Yimao; Peng, Jun; Samundsett, Christian; Cuevas, Andres; De Wolf, Stefaan

    2018-01-01

    novel electron‐selective, passivating contact for c‐Si solar cells is presented. Tantalum nitride (TaN x ) thin films deposited by atomic layer deposition are demonstrated to provide excellent electron‐transporting and hole‐blocking properties

  11. Vertical integration of high-Q silicon nitride microresonators into silicon-on-insulator platform.

    Science.gov (United States)

    Li, Qing; Eftekhar, Ali A; Sodagar, Majid; Xia, Zhixuan; Atabaki, Amir H; Adibi, Ali

    2013-07-29

    We demonstrate a vertical integration of high-Q silicon nitride microresonators into the silicon-on-insulator platform for applications at the telecommunication wavelengths. Low-loss silicon nitride films with a thickness of 400 nm are successfully grown, enabling compact silicon nitride microresonators with ultra-high intrinsic Qs (~ 6 × 10(6) for 60 μm radius and ~ 2 × 10(7) for 240 μm radius). The coupling between the silicon nitride microresonator and the underneath silicon waveguide is based on evanescent coupling with silicon dioxide as buffer. Selective coupling to a desired radial mode of the silicon nitride microresonator is also achievable using a pulley coupling scheme. In this work, a 60-μm-radius silicon nitride microresonator has been successfully integrated into the silicon-on-insulator platform, showing a single-mode operation with an intrinsic Q of 2 × 10(6).

  12. Cobalt Ferrite Nanocrystallites for Sustainable Hydrogen Production Application

    Directory of Open Access Journals (Sweden)

    Rajendra S. Gaikwad

    2011-01-01

    Full Text Available Cobalt ferrite, CoFe2O4, nanocrystalline films were deposited using electrostatic spray method and explored in sustainable hydrogen production application. Reflection planes in X-ray diffraction pattern confirm CoFe2O4 phase. The surface scanning microscopy photoimages reveal an agglomeration of closely-packed CoFe2O4 nanoflakes. Concentrated solar-panel, a two-step water splitting process, measurement technique was preferred for measuring the hydrogen generation rate. For about 5 hr sustainable, 440 mL/hr, hydrogen production activity was achieved, confirming the efficient use of cobalt ferrite nanocrystallites film in hydrogen production application.

  13. Suspended HfO2 photonic crystal slab on III-nitride/Si platform

    International Nuclear Information System (INIS)

    Wang, Yongjin; Feng, Jiao; Cao, Ziping; Zhu, Hongbo

    2014-01-01

    We present here the fabrication of suspended hafnium oxide (HfO 2 ) photonic crystal slab on a III-nitride/Si platform. The calculations are performed to model the suspended HfO 2 photonic crystal slab. Aluminum nitride (AlN) film is employed as the sacrificial layer to form air gap. Photonic crystal patterns are defined by electron beam lithography and transferred into HfO 2 film, and suspended HfO 2 photonic crystal slab is achieved on a III-nitride/Si platform through wet-etching of AlN layer in the alkaline solution. The method is promising for the fabrication of suspended HfO 2 nanostructures incorporating into a III-nitride/Si platform, or acting as the template for epitaxial growth of III-nitride materials. (orig.)

  14. Metal Nitrides for Plasmonic Applications

    DEFF Research Database (Denmark)

    Naik, Gururaj V.; Schroeder, Jeremy; Guler, Urcan

    2012-01-01

    Metal nitrides as alternatives to metals such as gold could offer many advantages when used as plasmonic material. We show that transition metal nitrides can replace metals providing equally good optical performance for many plasmonic applications.......Metal nitrides as alternatives to metals such as gold could offer many advantages when used as plasmonic material. We show that transition metal nitrides can replace metals providing equally good optical performance for many plasmonic applications....

  15. Properties of minor actinide nitrides

    International Nuclear Information System (INIS)

    Takano, Masahide; Itoh, Akinori; Akabori, Mitsuo; Arai, Yasuo; Minato, Kazuo

    2004-01-01

    The present status of the research on properties of minor actinide nitrides for the development of an advanced nuclear fuel cycle based on nitride fuel and pyrochemical reprocessing is described. Some thermal stabilities of Am-based nitrides such as AmN and (Am, Zr)N were mainly investigated. Stabilization effect of ZrN was cleary confirmed for the vaporization and hydrolytic behaviors. New experimental equipments for measuring thermal properties of minor actinide nitrides were also introduced. (author)

  16. Ion beam induces nitridation of silicon

    International Nuclear Information System (INIS)

    Petravic, M.; Williams, J.S.; Conway, M.

    1998-01-01

    High dose ion bombardment of silicon with reactive species, such as oxygen and nitrogen, has attracted considerable interest due to possible applications of beam-induced chemical compounds with silicon. For example, high energy oxygen bombardment of Si is now routinely used to form buried oxide layers for device purposes, the so called SIMOX structures. On the other hand, Si nitrides, formed by low energy ( 100 keV) nitrogen beam bombardment of Si, are attractive as oxidation barriers or gate insulators, primarily due to the low diffusivity of many species in Si nitrides. However, little data exists on silicon nitride formation during bombardment and its angle dependence, in particular for N 2 + bombardment in the 10 keV range, which is of interest for analytical techniques such as SIMS. In SIMS, low energy oxygen ions are more commonly used as bombarding species, as oxygen provides stable ion yields and enhances the positive secondary ion yield. Therefore, a large body of data can be found in the literature on oxide formation during low energy oxygen bombardment. Nitrogen bombardment of Si may cause similar effects to oxygen bombardment, as nitrogen and oxygen have similar masses and ranges in Si, show similar sputtering effects and both have the ability to form chemical compounds with Si. In this work we explore this possibility in some detail. We compare oxide and nitride formation during oxygen and nitrogen ion bombardment of Si under similar conditions. Despite the expected similar behaviour, some large differences in compound formation were found. These differences are explained in terms of different atomic diffusivities in oxides and nitrides, film structural differences and thermodynamic properties. (author)

  17. Atomic-layer deposition of silicon nitride

    CERN Document Server

    Yokoyama, S; Ooba, K

    1999-01-01

    Atomic-layer deposition (ALD) of silicon nitride has been investigated by means of plasma ALD in which a NH sub 3 plasma is used, catalytic ALD in which NH sub 3 is dissociated by thermal catalytic reaction on a W filament, and temperature-controlled ALD in which only a thermal reaction on the substrate is employed. The NH sub 3 and the silicon source gases (SiH sub 2 Cl sub 2 or SiCl sub 4) were alternately supplied. For all these methods, the film thickness per cycle was saturated at a certain value for a wide range of deposition conditions. In the catalytic ALD, the selective deposition of silicon nitride on hydrogen-terminated Si was achieved, but, it was limited to only a thin (2SiO (evaporative).

  18. Frequency effects and properties of plasma deposited fluorinated silicon nitride

    International Nuclear Information System (INIS)

    Chang, C.; Flamm, D.L.; Ibbotson, D.E.; Mucha, J.A.

    1988-01-01

    The properties of low-hydrogen, fluorinated plasma-enhanced chemical vapor deposition (PECVD) silicon nitride films grown using NF 3 /SiH 4 /N 2 feed mixtures in 200 kHz and 14 MHz discharges were compared. High-energy ion bombardment at 200 kHz is expected to enhance surface diffusion and chemical reconstruction. Compared to fluorinated silicon nitride deposited at 14 MHz under otherwise comparable conditions, the 200 kHz films had a lower Si--H bond concentration (approx. 21 cm -3 ), lower total hydrogen content (5--8 x 10 21 cm -3 ), better resistance to oxidation, lower compressive stress (-0.7 to -1.5 Gdyne/cm), and higher density (3.1 g/cm 3 ). The dielectric constant of better low-frequency Class I films was constant to 500 MHz, while that of high-frequency films fell up to 15% between 100 Hz and 10 MHz. The absorption edges of low-frequency PECVD fluorinated silicon nitride films were between 5.0 and 6.1 eV, which compare with 4.4 to 5.6 eV for the high-excitation frequency fluorinated material and 3 to 4 eV for conventional PECVD nitride. However high-frequency films may have fewer trap centers and a lower dielectric constant. 14 MHz p-SiN:F films grown with NH 3 as an auxiliary nitrogen source showed absorption edges similar to low-frequency material grown from NF 3 /SiH 4 /N 2 , but they have substantially more N--H bonding. The dielectric constant and absorption edge of these films were comparable to those of low-frequency p-SiN:F from NF 3 /SiH 4 /N 2

  19. Structural properties of iron nitride on Cu(100): An ab-initio molecular dynamics study

    KAUST Repository

    Heryadi, Dodi

    2011-01-01

    Due to their potential applications in magnetic storage devices, iron nitrides have been a subject of numerous experimental and theoretical investigations. Thin films of iron nitride have been successfully grown on different substrates. To study the structural properties of a single monolayer film of FeN we have performed an ab-initio molecular dynamics simulation of its formation on a Cu(100) substrate. The iron nitride layer formed in our simulation shows a p4gm(2x2) reconstructed surface, in agreement with experimental results. In addition to its structural properties, we are also able to determine the magnetization of this thin film. Our results show that one monolayer of iron nitride on Cu(100) is ferromagnetic with a magnetic moment of 1.67 μ B. © 2011 Materials Research Society.

  20. Fabrication and analysis of ordered magnetic cobalt nanoparticles; Herstellung und Untersuchung geordneter magnetischer Kobaltnanoteilchen

    Energy Technology Data Exchange (ETDEWEB)

    Zuern, Klaus P.

    2009-12-17

    In the dissertation on hand monodisperse, wellordered magnetic cobalt and cobalt hydride nanoparticles have been produced and investigated magnetically. The preparation was achieved by diblock-copolymer-micelles filled with cobalt salt, from which nanoparticles of elementary cobalt respectively cobalt hydride were generated in different steps of the procedure. It was evident that the cobalthydride generated by the hydrogen plasma was surprisingly stable. It could even be taken into consideration as a hydrogen storage device for fuel cell. The magnetic properties of the particles has been investigated by x-ray magnetic circular dichroism (XMCD). In addition it was evident, that it was principally impossible to investigate a film layered on a substrate with a SQUID-magnetometer, if this film produces only a small signal as well absolutely as relatively to the magnetically measured total moment of the sample. (orig.)

  1. Laser ablation of molecular carbon nitride compounds

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, D., E-mail: d.fischer@fkf.mpg.de [Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Schwinghammer, K. [Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Department of Chemistry, University of Munich, LMU, Butenandtstr. 5-13, 81377 Munich (Germany); Nanosystems Initiative Munich (NIM) and Center for Nanoscience (CeNS), 80799 Munich (Germany); Sondermann, C. [Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Department of Chemistry, University of Munich, LMU, Butenandtstr. 5-13, 81377 Munich (Germany); Lau, V.W.; Mannhart, J. [Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Lotsch, B.V. [Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Department of Chemistry, University of Munich, LMU, Butenandtstr. 5-13, 81377 Munich (Germany); Nanosystems Initiative Munich (NIM) and Center for Nanoscience (CeNS), 80799 Munich (Germany)

    2015-09-15

    We present a method for the preparation of thin films on sapphire substrates of the carbon nitride precursors dicyandiamide (C{sub 2}N{sub 4}H{sub 4}), melamine (C{sub 3}N{sub 6}H{sub 6}), and melem (C{sub 6}N{sub 10}H{sub 6}), using the femtosecond-pulsed laser deposition technique (femto-PLD) at different temperatures. The depositions were carried out under high vacuum with a femtosecond-pulsed laser. The focused laser beam is scanned on the surface of a rotating target consisting of the pelletized compounds. The resulting polycrystalline, opaque films were characterized by X-ray powder diffraction, infrared, Raman, and X-ray photoelectron spectroscopy, photoluminescence, SEM, and MALDI-TOF mass spectrometry measurements. The crystal structures and optical/spectroscopic results of the obtained rough films largely match those of the bulk materials.

  2. CEMS of nitride coatings in agressive environments

    Science.gov (United States)

    Hanžel, D.; Agudelo, A. C.; Gancedo, J. R.; Lakatos-Varsanyi, M.; Marco, J. F.

    1998-12-01

    The corrosion properties of single layered TiN and CrN films have been compared to bi-layered and multi-layered Ti/TiN films. XPS has showed that in humid SO2 atmosphere the best corrosion properties have been achieved by a multi-layered Ti/TiN coating. Cyclic voltammetry in acetate buffer has been applied to measure the porousity and corrosion resistance of coatings. The best results have been achieved by multi-layered Ti/TiN and CrN films. Conversion electron Mössbauer spectroscopy has been used to study the changes in the interface Fe/TiN during thermal treatment in UHV. It has been shown that the amount of iron nitrides in the interface increases with increasing temperature.

  3. CEMS of nitride coatings in agressive environments

    International Nuclear Information System (INIS)

    Hanzel, D.; Agudelo, A.C.; Gancedo, J.R.; Lakatos-Varsanyi, M.; Marco, J.F.

    1998-01-01

    The corrosion properties of single layered TiN and CrN films have been compared to bi-layered and multi-layered Ti/TiN films. XPS has showed that in humid SO 2 atmosphere the best corrosion properties have been achieved by a multi-layered Ti/TiN coating. Cyclic voltammetry in acetate buffer has been applied to measure the porousity and corrosion resistance of coatings. The best results have been achieved by multi-layered Ti/TiN and CrN films. Conversion electron Moessbauer spectroscopy has been used to study the changes in the interface Fe/TiN during thermal treatment in UHV. It has been shown that the amount of iron nitrides in the interface increases with increasing temperature

  4. CEMS of nitride coatings in agressive environments

    Energy Technology Data Exchange (ETDEWEB)

    Hanzel, D. [University of Ljubljana, J. Stefan Institute (Slovenia); Agudelo, A.C.; Gancedo, J.R. [Instituto de Quimica-Fisica ' Rocasolano' , CSIC (Spain); Lakatos-Varsanyi, M. [Eoetvoes University, Department of Physical Chemistry (Hungary); Marco, J.F. [Instituto de Quimica-Fisica ' Rocasolano' , CSIC (Spain)

    1998-12-15

    The corrosion properties of single layered TiN and CrN films have been compared to bi-layered and multi-layered Ti/TiN films. XPS has showed that in humid SO{sub 2} atmosphere the best corrosion properties have been achieved by a multi-layered Ti/TiN coating. Cyclic voltammetry in acetate buffer has been applied to measure the porousity and corrosion resistance of coatings. The best results have been achieved by multi-layered Ti/TiN and CrN films. Conversion electron Moessbauer spectroscopy has been used to study the changes in the interface Fe/TiN during thermal treatment in UHV. It has been shown that the amount of iron nitrides in the interface increases with increasing temperature.

  5. Molecular dynamics simulations of the atomistic structure of the intergranular film between silicon nitride grains: Effect of composition, thickness, and surface vacancies

    International Nuclear Information System (INIS)

    Garofalini, Stephen H.

    2006-01-01

    Molecular dynamics computer simulations were used to study the atomistic structure of intergranular films (IGFs) between two basal oriented Si 3 N 4 crystals or between combined basal and prism oriented crystals. Ordering of the ions into the IGF induced by the crystal surfaces was observed using density profiles of the ions, although that ordering is effected by the roughness of the crystal surface. Density profiles of the sum of all ions misleadingly shows a rapid decay in the density oscillations and apparent ordering into the IGF. However, this is an artifact of the coincidence of the maximum in the peaks of one species with the minimum of another species and the actual oscillations of individual species extend into the IGF farther than the sum profile indicates. This result would have important implications regarding the density oscillations observed in physical experiments with regard to the actual extent of ordering into the IGF induced by the crystal surface

  6. Comprehensive perspective on the mechanism of preferred orientation in reactive-sputter-deposited nitrides

    International Nuclear Information System (INIS)

    Kajikawa, Yuya; Noda, Suguru; Komiyama, Hiroshi

    2003-01-01

    Texture control of sputter-deposited nitride films has provoked a great deal of interest due to its technological importance. Despite extensive research, however, the reported results are scattered and discussions about the origin of preferred orientation (PO) are sometimes conflicting, and therefore controversial. The aim of this study is to acquire a clear perspective in order to discuss the origin of PO of sputter-deposited nitrides. Among nitrides, we focus on titanium nitride (TiN), aluminum nitride (AlN), and tantalum nitride (TaN), which are three commonly used nitrides. First, we collected reported experimental results about the relation between operating conditions and PO, because PO is considered to be determined by film formation processes, such as surface diffusion or grain growth, which is affected by operating conditions. We also collected reported results about such PO-determining processes. Then, we categorized the PO-determining processes into an initial stage and a growth stage of film deposition, and further categorized each stage into a vapor-solid interface and a solid-solid interface. Then, we related each stage and interface to film morphology and to PO-determining processes. Finally, based on existing results, previous models, and proposed schema, we discuss the origin of PO. Based on previous experimental results on film morphology, PO of nitride films occurred in the growth stage at the vapor-solid interface, where the sticking process of the precursor and the surface diffusion process determine PO, rather than in the initial stage and in the growth stage at the solid-solid interface. TiN (002) PO, however, seems to be caused in the initial stage at the solid-solid interface

  7. Silicon nitride nanosieve membrane

    NARCIS (Netherlands)

    Tong, D.H.; Jansen, Henricus V.; Gadgil, V.J.; Bostan, C.G.; Berenschot, Johan W.; van Rijn, C.J.M.; Elwenspoek, Michael Curt

    2004-01-01

    An array of very uniform cylindrical nanopores with a pore diameter as small as 25 nm has been fabricated in an ultrathin micromachined silicon nitride membrane using focused ion beam (FIB) etching. The pore size of this nanosieve membrane was further reduced to below 10 nm by coating it with

  8. cobalt (ii), nickel (ii)

    African Journals Online (AJOL)

    DR. AMINU

    Department of Chemistry Bayero University, P. M. B. 3011, Kano, Nigeria. E-mail: hnuhu2000@yahoo.com. ABSTRACT. The manganese (II), cobalt (II), nickel (II) and .... water and common organic solvents, but are readily soluble in acetone. The molar conductance measurement [Table 3] of the complex compounds in.

  9. Thermodynamics of silicon nitridation - Effect of hydrogen

    Science.gov (United States)

    Shaw, N. J.; Zeleznik, F. J.

    1982-01-01

    Equilibrium compositions for the nitridization of Si were calculated to detect the effectiveness of H2 in removal of the oxide film and in increasing the concentration of SiO and reducing the proportions of O2. Gibbs free energy for the formation of SiN2O was computed above 1685 K, and at lower temperatures. The thermodynamic properties of SiN2O2 were then considered from 1000-3000 K, taking into account the known thermodynamic data for 39 molecular combinations of the Si, Ni, and O. The gases formed were assumed ideal mixtures with pure phase condensed species. The mole fractions were obtained for a system of SiO2 with each Si particle covered with a thin layer of SiO2 before nitridation, and a system in which the nitriding atmosphere had access to the Si. The presence of H2 was determined to enhance the removal of NiO2 in the first system, decrease the partial pressure of O2, increase the partial pressures of SiO, Si, H2O, NH3, and SiH4, while its effects were negligible in the Si system.

  10. Packing C60 in Boron Nitride Nanotubes

    Science.gov (United States)

    Mickelson, W.; Aloni, S.; Han, Wei-Qiang; Cumings, John; Zettl, A.

    2003-04-01

    We have created insulated C60 nanowire by packing C60 molecules into the interior of insulating boron nitride nanotubes (BNNTs). For small-diameter BNNTs, the wire consists of a linear chain of C60 molecules. With increasing BNNT inner diameter, unusual C60 stacking configurations are obtained (including helical, hollow core, and incommensurate) that are unknown for bulk or thin-film forms of C60. C60 in BNNTs thus presents a model system for studying the properties of dimensionally constrained ``silo'' crystal structures. For the linear-chain case, we have fused the C60 molecules to form a single-walled carbon nanotube inside the insulating BNNT.

  11. Oxide-nitride-oxide dielectric stacks with Si nanoparticles obtained by low-energy ion beam synthesis

    International Nuclear Information System (INIS)

    Ioannou-Sougleridis, V; Dimitrakis, P; Vamvakas, V Em; Normand, P; Bonafos, C; Schamm, S; Mouti, A; Assayag, G Ben; Paillard, V

    2007-01-01

    Formation of a thin band of silicon nanoparticles within silicon nitride films by low-energy (1 keV) silicon ion implantation and subsequent thermal annealing is demonstrated. Electrical characterization of metal-insulator-semiconductor capacitors reveals that oxide/Si-nanoparticles-nitride/oxide dielectric stacks exhibit enhanced charge transfer characteristics between the substrate and the silicon nitride layer compared to dielectric stacks using unimplanted silicon nitride. Attractive results are obtained in terms of write/erase memory characteristics and data retention, indicating the large potential of the low-energy ion-beam-synthesis technique in SONOS memory technology

  12. Reduction of Defects on Microstructure Aluminium Nitride Using High Temperature Annealing Heat Treatment

    Science.gov (United States)

    Tanasta, Z.; Muhamad, P.; Kuwano, N.; Norfazrina, H. M. Y.; Unuh, M. H.

    2018-03-01

    Aluminium Nitride (AlN) is a ceramic 111-nitride material that is used widely as components in functional devices. Besides good thermal conductivity, it also has a high band gap in emitting light which is 6 eV. AlN thin film is grown on the sapphire substrate (0001). However, lattice mismatch between both materials has caused defects to exist along the microstructure of AlN thin films. The defects have affected the properties of Aluminium Nitride. Annealing heat treatment has been proved by the previous researcher to be the best method to improve the microstructure of Aluminium Nitride thin films. Hence, this method is applied at four different temperatures for two hour. The changes of Aluminium Nitride microstructures before and after annealing is observed using Transmission Electron Microscope. It is observed that inversion domains start to occur at temperature of 1500 °C. Convergent Beam Electron Diffraction pattern simulation has confirmed the defects as inversion domain. Therefore, this paper is about to extract the matters occurred during the process of producing high quality Aluminium Nitride thin films and the ways to overcome this problem.

  13. Effect of plasma nitriding time on surface properties of hard chromium electroplated AISI 1010 steel

    International Nuclear Information System (INIS)

    Kocabas, Mustafa; Uelker, Suekrue

    2015-01-01

    Properties of steel can be enhanced by surface treatments such as coating. In some cases, further treatments such as nitriding can also be used in order to get even better results. In order to investigate the properties of nitride layer on hard Cr coated AISI 1010 steel, substrates were electroplated to form hard Cr coatings. Then hard Cr coatings were plasma nitrided at 700 C for 3 h, 5 h and 7 h and nitride phases on the coatings were investigated by X-ray diffraction analysis. The layer thickness and surface properties of nitride films were investigated by scanning electron microscopy. The hardness and adhesion properties of Cr-N phases were examined using nano indentation and Daimler-Benz Rockwell C adhesion tests. The highest measured hardness was 24.1 GPa and all the three samples exhibited poor adhesion.

  14. Effect of plasma nitriding time on surface properties of hard chromium electroplated AISI 1010 steel

    Energy Technology Data Exchange (ETDEWEB)

    Kocabas, Mustafa [Yildiz Technical Univ., Istanbul (Turkey). Metallurgical and Materials Engineering Dept.; Danisman, Murat [Gedik Univ., Istanbul (Turkey). Electrical and Electronic Engineering Dept.; Cansever, Nurhan [Yildiz Technical Univ., Istanbul (Turkey); Uelker, Suekrue [Afyon Kocatepe Univ. (Turkey). Dept. of Mechanical Engineering

    2015-06-01

    Properties of steel can be enhanced by surface treatments such as coating. In some cases, further treatments such as nitriding can also be used in order to get even better results. In order to investigate the properties of nitride layer on hard Cr coated AISI 1010 steel, substrates were electroplated to form hard Cr coatings. Then hard Cr coatings were plasma nitrided at 700 C for 3 h, 5 h and 7 h and nitride phases on the coatings were investigated by X-ray diffraction analysis. The layer thickness and surface properties of nitride films were investigated by scanning electron microscopy. The hardness and adhesion properties of Cr-N phases were examined using nano indentation and Daimler-Benz Rockwell C adhesion tests. The highest measured hardness was 24.1 GPa and all the three samples exhibited poor adhesion.

  15. Nitriding of high speed steel

    International Nuclear Information System (INIS)

    Doyle, E.D.; Pagon, A.M.; Hubbard, P.; Dowey, S.J.; Pilkington, A.; McCulloch, D.G.; Latham, K.; DuPlessis, J.

    2010-01-01

    Current practice when nitriding HSS cutting tools is to avoid embrittlement of the cutting edge by limiting the depth of the diffusion zone. This is accomplished by reducing the nitriding time and temperature and eliminating any compound layer formation. However, in many applications there is an argument for generating a compound layer with beneficial tribological properties. In this investigation results are presented of a metallographic, XRD and XPS analysis of nitrided surface layers generated using active screen plasma nitriding and reactive vapour deposition using cathodic arc. These results are discussed in the context of built up edge formation observed while machining inside a scanning electron microscope. (author)

  16. Defects in dilute nitrides

    International Nuclear Information System (INIS)

    Chen, W.M.; Buyanova, I.A.; Tu, C.W.; Yonezu, H.

    2005-01-01

    We provide a brief review our recent results from optically detected magnetic resonance studies of grown-in non-radiative defects in dilute nitrides, i.e. Ga(In)NAs and Ga(Al,In)NP. Defect complexes involving intrinsic defects such as As Ga antisites and Ga i self interstitials were positively identified.Effects of growth conditions, chemical compositions and post-growth treatments on formation of the defects are closely examined. These grown-in defects are shown to play an important role in non-radiative carrier recombination and thus in degrading optical quality of the alloys, harmful to performance of potential optoelectronic and photonic devices based on these dilute nitrides. (author)

  17. Analysis of radioactive cobalt

    International Nuclear Information System (INIS)

    1977-01-01

    This is a manual published by Science and Technology Agency, Japan, which prescribes on the analysis method for radioactive cobalt which is a typical indexing nuclide among the radioactive nuclides released from nuclear facilities. Since the released cobalt is mainly discharged to coastal region together with waste water, this manual is written for samples of sea water, sea bottom sediments and marine organisms. Radioactive cobalt includes the nuclides of 57 co, 58 Co, 60 Co, etc., the manual deals with them as a whole as 60 Co of long half life. Though 60 Co analysis has become feasible comparatively simply due to scintillation or semi-conductor spectrometry, trace 60 Co analysis is performed quantitatively by co-precipitation or collection into alumina and scintillation spectrometry. However, specific collecting operation and γ-γ coincidence measurement have been required so far. This manual employs 60 Co collection by means of ion-exchange method and measurement with low background GM counting system, to analyze quantitatively and rapidly low level 60 Co. It is primarily established as the standard analyzing method for the survey by local autonomous bodies. It is divided into 4 chapters including introduction sea water, marine organisms, and sea bottom sediments. List of required reagents is added in appendix. (Wakatsuki, Y.)

  18. Plasmonic Titanium Nitride Nanostructures via Nitridation of Nanopatterned Titanium Dioxide

    DEFF Research Database (Denmark)

    Guler, Urcan; Zemlyanov, Dmitry; Kim, Jongbum

    2017-01-01

    Plasmonic titanium nitride nanostructures are obtained via nitridation of titanium dioxide. Nanoparticles acquired a cubic shape with sharper edges following the rock-salt crystalline structure of TiN. Lattice constant of the resulting TiN nanoparticles matched well with the tabulated data. Energy...

  19. Stoichiometric carbon nitride synthesized by ion beam sputtering and post nitrogen ion implantation

    International Nuclear Information System (INIS)

    Valizadeh, R.; Colligon, J.S.; Katardiev, I.V.; Faunce, C.A.; Donnelly, S.E.

    1998-01-01

    Full text: Carbon nitride films have been deposited on Si (100) by ion beam sputtering a vitreous graphite target with nitrogen and argon ions with and without concurrent N2 ion bombardment at room temperature. The sputtering beam energy was 1000 eV and the assisted beam energy was 300 eV with ion / atom arrival ratio ranging from 0.5 to 5. The carbon nitride films were deposited both as single layer directly on silicon substrate and as multilayer between two layers of stoichiometric amorphous silicon nitride and polycrystalline titanium nitride. The deposited films were implanted ex-situ with 30 keV nitrogen ions with various doses ranging from 1E17 to 4E17 ions.cm -2 and 2 GeV xenon ion with a dose of 1E12 ions.cm -2 . The nitrogen concentration of the films was measured with Rutherford Backscattering (RBS), Secondary Neutral Mass Spectrometry (SNMS) and Parallel Electron Energy Loss Spectroscopy (PEELS). The nitrogen concentration for as deposited sample was 34 at% and stoichiometric carbon nitride C 3 N 4 was achieved by post nitrogen implantation of the multi-layered films. Post bombardment of single layer carbon nitride films lead to reduction in the total nitrogen concentration. Carbon K edge structure obtained from PEELS analysis suggested that the amorphous C 3 N 4 matrix was predominantly sp 2 bonded. This was confirmed by Fourier Transforrn Infra-Red Spectroscopy (FTIR) analysis of the single CN layer which showed the nitrogen was mostly bonded with carbon in nitrile (C≡N) and imine (C=N) groups. The microstructure of the film was determined by Transmission Electron Microscopy (TEM) which indicated that the films were amorphous

  20. Gallium Nitride Schottky betavoltaic nuclear batteries

    International Nuclear Information System (INIS)

    Lu Min; Zhang Guoguang; Fu Kai; Yu Guohao; Su Dan; Hu Jifeng

    2011-01-01

    Research highlights: → Gallium Nitride nuclear batteries with Ni-63 are demonstrated for the first time. → Open circuit voltage of 0.1 V and conversion efficiency of 0.32% have been obtained. → The limited performance is due to thin effective energy deposition layer. → The output power is expected to greatly increase with growing thick GaN films. -- Abstract: Gallium Nitride (GaN) Schottky betavoltaic nuclear batteries (GNBB) are demonstrated in our work for the first time. GaN films are grown on sapphire substrates by metalorganic chemical vapor deposition (MOCVD), and then GaN Schottky diodes are fabricated by normal micro-fabrication process. Nickel with mass number of 63 ( 63 Ni), which emits β particles, is loaded on the GaN Schottky diodes to achieve GNBB. X-ray diffraction (XRD) and photoluminescence (PL) are carried out to investigate the crystal quality for the GaN films as grown. Current-voltage (I-V) characteristics shows that the GaN Schottky diodes are not jet broken down at -200 V due to consummate fabrication processes, and the open circuit voltage of the GNBB is 0.1 V and the short circuit current density is 1.2 nA cm -2 . The limited performance of the GNBB is due to thin effective energy deposition layer, which is only 206 nm to absorb very small partial energy of the β particles because of the relatively high dislocation density and carrier concentration. However, the conversion efficiency of 0.32% and charge collection efficiency (CCE) of 29% for the GNBB have been obtained. Therefore, the output power of the GNBB are expected to greatly increase with growing high quality thick GaN films.

  1. Second-harmonic generation in substoichiometric silicon nitride layers

    Science.gov (United States)

    Pecora, Emanuele; Capretti, Antonio; Miano, Giovanni; Dal Negro, Luca

    2013-03-01

    Harmonic generation in optical circuits offers the possibility to integrate wavelength converters, light amplifiers, lasers, and multiple optical signal processing devices with electronic components. Bulk silicon has a negligible second-order nonlinear optical susceptibility owing to its crystal centrosymmetry. Silicon nitride has its place in the microelectronic industry as an insulator and chemical barrier. In this work, we propose to take advantage of silicon excess in silicon nitride to increase the Second Harmonic Generation (SHG) efficiency. Thin films have been grown by reactive magnetron sputtering and their nonlinear optical properties have been studied by femtosecond pumping over a wide range of excitation wavelengths, silicon nitride stoichiometry and thermal processes. We demonstrate SHG in the visible range (375 - 450 nm) using a tunable 150 fs Ti:sapphire laser, and we optimize the SH emission at a silicon excess of 46 at.% demonstrating a maximum SHG efficiency of 4x10-6 in optimized films. Polarization properties, generation efficiency, and the second order nonlinear optical susceptibility are measured for all the investigated samples and discussed in terms of an effective theoretical model. Our findings show that the large nonlinear optical response demonstrated in optimized Si-rich silicon nitride materials can be utilized for the engineering of nonlinear optical functions and devices on a Si chip.

  2. Optical characterization of gallium nitride

    NARCIS (Netherlands)

    Kirilyuk, Victoria

    2002-01-01

    Group III-nitrides have been considered a promising system for semiconductor devices since a few decades, first for blue- and UV-light emitting diodes, later also for high-frequency/high-power applications. Due to the lack of native substrates, heteroepitaxially grown III-nitride layers are usually

  3. Blood doping by cobalt. Should we measure cobalt in athletes?

    Directory of Open Access Journals (Sweden)

    Guidi Gian

    2006-07-01

    Full Text Available Abstract Background Blood doping is commonplace in competitive athletes who seek to enhance their aerobic performances through illicit techniques. Presentation of the hypothesis Cobalt, a naturally-occurring element with properties similar to those of iron and nickel, induces a marked and stable polycythemic response through a more efficient transcription of the erythropoietin gene. Testing the hypothesis Although little information is available so far on cobalt metabolism, reference value ranges or supplementation in athletes, there is emerging evidence that cobalt is used as a supplement and increased serum concentrations are occasionally observed in athletes. Therefore, given the athlete's connatural inclination to experiment with innovative, unfair and potentially unhealthy doping techniques, cobalt administration might soon become the most suited complement or surrogate for erythropoiesis-stimulating substances. Nevertheless, cobalt administration is not free from unsafe consequences, which involve toxic effects on heart, liver, kidney, thyroid and cancer promotion. Implications of the hypothesis Cobalt is easily purchasable, inexpensive and not currently comprehended within the World Anti-Doping Agency prohibited list. Moreover, available techniques for measuring whole blood, serum, plasma or urinary cobalt involve analytic approaches which are currently not practical for antidoping laboratories. Thus more research on cobalt metabolism in athletes is compelling, along with implementation of effective strategies to unmask this potentially deleterious doping practice

  4. Method of activating an article of passive ferrous or non-ferrous metal prior to carburising, nitriding and /or nitrocarburising

    DEFF Research Database (Denmark)

    2011-01-01

    Source: US2012111456A A method of activating an article of passive ferrous or non-ferrous metal by heating at least one compound containing nitrogen and carbon, wherein the article is treated with gaseous species derived from the compound. The activated article can be subsequently carburised......, nitrided or nitrocarburised in shorter time at lower temperature and resulting superior mechanical properties compared with non-activated articles and even articles of stainless steel, nickel alloy, cobalt alloy or titanium based material can be carburised, nitrided or nitrocarburised....

  5. Nickel, cobalt, and their alloys

    CERN Document Server

    2000-01-01

    This book is a comprehensive guide to the compositions, properties, processing, performance, and applications of nickel, cobalt, and their alloys. It includes all of the essential information contained in the ASM Handbook series, as well as new or updated coverage in many areas in the nickel, cobalt, and related industries.

  6. Plasma Deposition and Characterization of Copper-doped Cobalt Oxide Nanocatalysts

    Directory of Open Access Journals (Sweden)

    Jacek TYCZKOWSKI

    2013-09-01

    Full Text Available A series of pure and copper-doped cobalt oxide films was prepared by plasma-enhanced metalorganic chemical vapor deposition (PEMOCVD. The effect of Cu-doping on the chemical structure and morphology of the deposited films was investigated. Raman and FTIR spectroscopies were used to characterize the chemical structure and morphology of the produced films. The bulk composition and homogeneity of the samples were investigated by energy dispersive X-ray microanalysis (EDX, and X-ray photoelectron spectroscopy (XPS was employed to assess the surface chemical composition of pure and doped materials. The obtained results permit to affirm that the PEMOCVD technique is a simple, versatile and efficient method for providing homogeneous layers of cobalt oxides with a different content of copper. It has been found that pure cobalt oxide films mainly contain Co3O4 in the form of nanoclusters whereas the films doped with Cu are much more complex, and CoOx (also Co3O4, mixed Co-Cu oxides and CuOx nanoclusters are detected in them. Preliminary catalytical tests show that Cu-doped cobalt oxide films allow to initiate catalytic combustion of n-hexane at a lower temperature compared to the pure cobalt oxide (Co3O4 films. From what has been stated above, the plasma-deposited thin films of Cu-doped cobalt oxides pave the way towards a new class of nanomaterials with interesting catalytic properties. DOI: http://dx.doi.org/10.5755/j01.ms.19.3.2320

  7. Cobalt source calibration

    International Nuclear Information System (INIS)

    Rizvi, H.M.

    1999-01-01

    The data obtained from these tests determine the dose rate of the two cobalt sources in SRTC. Building 774-A houses one of these sources while the other resides in room C-067 of Building 773-A. The data from this experiment shows the following: (1) The dose rate of the No.2 cobalt source in Building 774-A measured 1.073 x 10 5 rad/h (June 17, 1999). The dose rate of the Shepherd Model 109 Gamma cobalt source in Building 773-A measured 9.27 x 10 5 rad/h (June 25, 1999). These rates come from placing the graduated cylinder containing the dosimeter solution in the center of the irradiation chamber. (2) Two calibration tests in the 774-A source placed the graduated cylinder with the dosimeter solution approximately 1.5 inches off center in the axial direction. This movement of the sample reduced the measured dose rate 0.92% from 1.083 x 10 5 rad/h to 1.073 x 10 5 rad/h. and (3) A similar test in the cobalt source in 773-A placed the graduated cylinder approximately 2.0 inches off center in the axial direction. This change in position reduced the measured dose rate by 10.34% from 1.036 x 10 6 to 9.27 x 10 5 . This testing used chemical dosimetry to measure the dose rate of a radioactive source. In this method, one determines the dose by the chemical change that takes place in the dosimeter. For this calibration experiment, the author used a Fricke (ferrous ammonium sulfate) dosimeter. This solution works well for dose rates to 10 7 rad/h. During irradiation of the Fricke dosimeter solution the Fe 2+ ions ionize to Fe 3+ . When this occurs, the solution acquires a slightly darker tint (not visible to the human eye). To determine the magnitude of the change in Fe ions, one places the solution in an UV-VIS Spectrophotometer. The UV-VIS Spectrophotometer measures the absorbency of the solution. Dividing the absorbency by the total time (in minutes) of exposure yields the dose rate

  8. Unithiol - a cobalt antidote

    International Nuclear Information System (INIS)

    Cherkes, A.I.; Braver-Chernobul'skaya, B.S.

    1977-06-01

    The blockade of the sulfhydryl groups of the proteins leads to a disturbance of the normal activity of many enzymes and thus of the functioning of the organs and tissue. The search for antidotes against these substances which inactivate the enzymes led to the synthesis of a large group of thiols in the Ukrainian Scientific Research Sanitary Chemical Institute. The most active is sodium dithiol-2,3-dimercaptonpropansulphonate CH 2 SH-CHSH-CH 2 SO 3 Na x H 2 O, named unithiol. Its antidote activity is discussed in detail, especially concerning cobalt intoxication. (HK) [de

  9. Hot pressing of uranium nitride and mixed uranium plutonium nitride

    International Nuclear Information System (INIS)

    Chang, J.Y.

    1975-01-01

    The hot pressing characteristics of uranium nitride and mixed uranium plutonium nitride were studied. The utilization of computer programs together with the experimental technique developed in the present study may serve as a useful purpose of prediction and fabrication of advanced reactor fuel and other high temperature ceramic materials for the future. The densification of nitrides follow closely with a plastic flow theory expressed as: d rho/ dt = A/T(t) (1-rho) [1/1-(1-rho)/sup 2/3/ + B1n (1-rho)] The coefficients, A and B, were obtained from experiment and computer curve fitting. (8 figures) (U.S.)

  10. Model for cobalt 60/58 deposition on primary coolant piping in a boiling water reactor

    International Nuclear Information System (INIS)

    Dehollander, W.R.

    1979-01-01

    A first principles model for deposition of radioactive metals into the corrosion films of primary coolant piping is proposed. It is shown that the predominant mechanism is the inclusion of the radioactive species such as Cobalt 60 into the spinel structure of the corrosion film during the act of active corrosion. This deposition can occupy only a defined fraction of the available plus 2 valence sites of the spinel. For cobalt ions, this ratio is roughly 4.6 x 10 -3 of the total iron sites. Since no distinction is made between Cobalt 60, Cobalt 58, and Cobalt 59 in this process, the radioactivity associated with this inclusion is a function of the ratio of the radioactive species to the nonradioactive species in the water causing the corrosion of the pipe metal. The other controlling parameter is the corrosion rate of the pipe material. This can be a function of time, for example, and it shown that freshly descaled metal when exposed to the cobalt containing water can incorporate as much as 10 x 10 -3 cobalt ions per iron atom in the initial corrosion period. This has implications for the problem of decontaminating nuclear reactor piping. Equations and selected observations are presented without reference to any specifically identified reactor or utility, so as to protect any proprietary interest

  11. Corrosion resistant surface for vanadium nitride and hafnium nitride layers as function of grain size

    Science.gov (United States)

    Escobar, C. A.; Caicedo, J. C.; Aperador, W.

    2014-01-01

    In this research it was studied vanadium nitride (VN) and hafnium nitride (HfN) film, which were deposited onto silicon (Si (100)) and AISI 4140 steel substrates via r.f. magnetron sputtering technique in Ar/N2 atmosphere with purity at 99.99% for both V and Hf metallic targets. Both films were approximately 1.2±0.1 μm thick. The crystallography structures that were evaluated via X-ray diffraction analysis (XRD) showed preferential orientations in the Bragg planes VN (200) and HfN (111). The chemical compositions for both films were characterized by EDX. Atomic Force Microscopy (AFM) was used to study the morphology; the results reveal grain sizes of 78±2 nm for VN and 58±2 nm for HfN and roughness values of 4.2±0.1 nm for VN and 1.5±0.1 nm for HfN films. The electrochemical performance in VN and HfN films deposited onto steel 4140 were studied by Tafel polarization curves and impedance spectroscopy methods (EIS) under contact with sodium chloride at 3.5 wt% solution, therefore, it was found that the corrosion rate decreased about 95% in VN and 99% for HfN films in relation to uncoated 4140 steel, thus demonstrating, the protecting effect of VN and HfN films under a corrosive environment as function of morphological characteristics (grain size). VN(grain size)=78±2.0 nm, VN(roughness)=4.2±0.1 nm, VN(corrosion rate)=40.87 μmy. HfN(grain size)=58±2.0 nm, HfN(roughness)=1.5±0.1 nm, HfN(corrosion rate)=0.205 μmy. It was possible to analyze that films with larger grain size, can be observed smaller grain boundary thus generating a higher corrosion rate, therefore, in this work it was found that the HfN layer has better corrosion resistance (low corrosion rate) in relation to VN film which presents a larger grain size, indicating that the low grain boundary in (VN films) does not restrict movement of the Cl- ion and in this way the corrosion rate increases dramatically.

  12. Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen.

    Science.gov (United States)

    Yeo, Boon Siang; Bell, Alexis T

    2011-04-13

    Scanning electron microscopy, linear sweep voltammetry, chronoamperometry, and in situ surface-enhanced Raman spectroscopy were used to investigate the electrochemical oxygen evolution reaction (OER) occurring on cobalt oxide films deposited on Au and other metal substrates. All experiments were carried out in 0.1 M KOH. A remarkable finding is that the turnover frequency for the OER exhibited by ∼0.4 ML of cobalt oxide deposited on Au is 40 times higher than that of bulk cobalt oxide. The activity of small amounts of cobalt oxide deposited on Pt, Pd, Cu, and Co decreased monotonically in the order Au > Pt > Pd > Cu > Co, paralleling the decreasing electronegativity of the substrate metal. Another notable finding is that the OER turnover frequency for ∼0.4 ML of cobalt oxide deposited on Au is nearly three times higher than that for bulk Ir. Raman spectroscopy revealed that the as-deposited cobalt oxide is present as Co(3)O(4) but undergoes progressive oxidation to CoO(OH) with increasing anodic potential. The higher OER activity of cobalt oxide deposited on Au is attributed to an increase in fraction of the Co sites present as Co(IV) cations, a state of cobalt believed to be essential for OER to occur. A hypothesis for how Co(IV) cations contribute to OER is proposed and discussed. © 2011 American Chemical Society

  13. Electrochemical capacitance performance of titanium nitride nanoarray

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yibing, E-mail: ybxie@seu.edu.cn [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Suzhou Research Institute of Southeast University, Suzhou 215123 (China); Wang, Yong [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Du, Hongxiu [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Suzhou Research Institute of Southeast University, Suzhou 215123 (China)

    2013-12-01

    Highlights: • TiN nanoarray is formed by a nitridation process of TiO{sub 2} in ammonia atmosphere. • TiN nanoarray exhibits much higher EDLC capacitance than TiO{sub 2} nanoarray. • The specific capacitance of TiN nanoarray achieves a high level of 99.7 mF cm{sup −2}. • A flexible solid-state supercapacitor is constructed by TiN nanoarray and PVA gel. -- Abstract: In this study, titanium nitride (TiN) nanoarrays with a short nanotube and long nanopore structure have been prepared by an anodization process of ultra thin titanium foil in ethylene glycol (EG) solution containing ammonium fluoride, subsequent calcination process in an air atmosphere, and final nitridation process in an ammonia atmosphere. The morphology and microstructure characterization has been conducted using field emission scanning electron microscope and X-ray diffraction. The electrochemical properties have been investigated through cyclic voltammetry and electrochemical impedance spectrum measurements. The electrochemical capacitance performance has been investigated by galvanostatic charge–discharge measurements in the acidic, neural and alkali electrolyte solution. Well-defined TiN nanoarrays contribute a much higher capacitance performance than titania (TiO{sub 2}) in the supercapacitor application due to the extraordinarily improved electrical conductivity. Such an electrochemical capacitance can be further enhanced by increasing aspect ratio of TiN nanoarray from short nanotubes to long nanopores. A flexible supercapacitor has been constructed using two symmetrical TiN nanoarray electrodes and a polyvinyl alcohol (PVA) gel electrolyte with H{sub 2}SO{sub 4}–KCl–H{sub 2}O–EG. Such a supercapacitor has a highly improved potential window and still keeps good electrochemical energy storage. TiN nanoarray with a high aspect ratio can act well as an ultra thin film electrode material of flexible supercapacitor to contribute a superior capacitance performance.

  14. Substoichiometric cobalt oxide monolayer on Ir(100)-(1 x 1)

    International Nuclear Information System (INIS)

    Gubo, M; Ebensperger, C; Meyer, W; Hammer, L; Heinz, K

    2009-01-01

    A substoichiometric monolayer of cobalt oxide has been prepared by deposition and oxidation of slightly less than one monolayer of cobalt on the unreconstructed surface of Ir(100). The ultrathin film was investigated by scanning tunnelling microscopy (STM) and quantitative low-energy electron diffraction (LEED). The cobalt species of the film reside in or near hollow positions of the substrate with, however, unoccupied sites (vacancies) in a 3 x 3 arrangement. In the so-formed 3 x 3 supercell the oxide's oxygen species are both threefold and fourfold coordinated to cobalt, forming pyramids with a triangular and square cobalt basis, respectively. These pyramids are the building blocks of the oxide. Due to the reduced coordination as compared to the sixfold one in the bulk of rock-salt-type CoO, the Co-O bond lengths are smaller than in the latter. For the threefold coordination they compare very well with the bond length in oxygen terminated CoO(111) films investigated recently. The substoichiometric 3 x 3 oxide monolayer phase transforms to a stoichiometric c(10 x 2)-periodic oxide monolayer under oxygen exposure, in which, however, cobalt and oxygen species are in (111) orientation and so form a CoO(111) layer.

  15. Method for producing polycrystalline boron nitride

    International Nuclear Information System (INIS)

    Alexeevskii, V.P.; Bochko, A.V.; Dzhamarov, S.S.; Karpinos, D.M.; Karyuk, G.G.; Kolomiets, I.P.; Kurdyumov, A.V.; Pivovarov, M.S.; Frantsevich, I.N.; Yarosh, V.V.

    1975-01-01

    A mixture containing less than 50 percent of graphite-like boron nitride treated by a shock wave and highly defective wurtzite-like boron nitride obtained by a shock-wave method is compressed and heated at pressure and temperature values corresponding to the region of the phase diagram for boron nitride defined by the graphite-like compact modifications of boron nitride equilibrium line and the cubic wurtzite-like boron nitride equilibrium line. The resulting crystals of boron nitride exhibit a structure of wurtzite-like boron nitride or of both wurtzite-like and cubic boron nitride. The resulting material exhibits higher plasticity as compared with polycrystalline cubic boron nitride. Tools made of this compact polycrystalline material have a longer service life under impact loads in machining hardened steel and chilled iron. (U.S.)

  16. Radio cobalt in French rivers

    International Nuclear Information System (INIS)

    Lambrechts, A.; Baudin-Jaulent, Y.

    1996-01-01

    The isotopes 58 and 60 of cobalt present in liquid wastes from nuclear plants or from fuel reprocessing plant of Marcoule are fixed in the different compartments of French rivers. The activity levels of radio-cobalt vary according to the sampled compartments nature (bryophyta > immersed plants > sediment > fish). Elsewhere, laboratory experimentations show that the contamination of fish occurs essentially from the water way rather than from food. Cobalt is mainly fixed by kidneys; muscles is no more than 30 % of the total fish activity. (author)

  17. Pyrochemical reprocessing of nitride fuel

    International Nuclear Information System (INIS)

    Nakazono, Yoshihisa; Iwai, Takashi; Arai, Yasuo

    2004-01-01

    Electrochemical behavior of actinide nitrides in LiCl-KCl eutectic melt was investigated in order to apply pyrochemical process to nitride fuel cycle. The electrode reaction of UN and (U, Nd)N was examined by cyclic voltammetry. The observed rest potential of (U, Nd)N depended on the equilibrium of U 3+ /UN and was not affected by the addition of NdN of 8 wt.%. (author)

  18. Heterostructures for Increased Quantum Efficiency in Nitride LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Robert F. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2010-09-30

    Task 1. Development of an advanced LED simulator useful for the design of efficient nitride-based devices. Simulator will contain graphical interface software that can be used to specify the device structure, the material parameters, the operating conditions and the desired output results. Task 2. Theoretical and experimental investigations regarding the influence on the microstructure, defect concentration, mechanical stress and strain and IQE of controlled changes in the chemistry and process route of deposition of the buffer layer underlying the active region of nitride-based blue- and greenemitting LEDs. Task 3. Theoretical and experimental investigations regarding the influence on the physical properties including polarization and IQE of controlled changes in the geometry, chemistry, defect density, and microstructure of components in the active region of nitride-based blue- and green-emitting LEDs. Task 4. Theoretical and experimental investigations regarding the influence on IQE of novel heterostructure designs to funnel carriers into the active region for enhanced recombination efficiency and elimination of diffusion beyond this region. Task 5. Theoretical and experimental investigations regarding the influence of enhanced p-type doping on the chemical, electrical, and microstructural characteristics of the acceptor-doped layers, the hole injection levels at Ohmic contacts, the specific contact resistivity and the IQE of nitride-based blue- and green-emitting LEDs. Development and optical and electrical characterization of reflective Ohmic contacts to n- and p-type GaN films.

  19. EDITORIAL: Non-polar and semipolar nitride semiconductors Non-polar and semipolar nitride semiconductors

    Science.gov (United States)

    Han, Jung; Kneissl, Michael

    2012-02-01

    Throughout the history of group-III-nitride materials and devices, scientific breakthroughs and technological advances have gone hand-in-hand. In the late 1980s and early 1990s, the discovery of the nucleation of smooth (0001) GaN films on c-plane sapphire and the activation of p-dopants in GaN led very quickly to the realization of high-brightness blue and green LEDs, followed by the first demonstration of GaN-based violet laser diodes in the mid 1990s. Today, blue InGaN LEDs boast record external quantum efficiencies exceeding 80% and the emission wavelength of the InGaN-based laser diode has been pushed into the green spectral range. Although these tremenduous advances have already spurred multi-billion dollar industries, there are still a number of scientific questions and technological issues that are unanswered. One key challenge is related to the polar nature of the III-nitride wurtzite crystal. Until a decade ago all research activities had almost exclusively concentrated on (0001)-oriented polar GaN layers and heterostructures. Although the device characteristics seem excellent, the strong polarization fields at GaN heterointerfaces can lead to a significant deterioration of the device performance. Triggered by the first demonstration non-polar GaN quantum wells grown on LiAlO2 by Waltereit and colleagues in 2000, impressive advances in the area of non-polar and semipolar nitride semiconductors and devices have been achieved. Today, a large variety of heterostructures free of polarization fields and exhibiting exceptional electronic and optical properties have been demonstrated, and the fundamental understanding of polar, semipolar and non-polar nitrides has made significant leaps forward. The contributions in this Semiconductor Science and Technology special issue on non-polar and semipolar nitride semiconductors provide an impressive and up-to-date cross-section of all areas of research and device physics in this field. The articles cover a wide range of

  20. Superplastic forging nitride ceramics

    Science.gov (United States)

    Panda, P.C.; Seydel, E.R.; Raj, R.

    1988-03-22

    A process is disclosed for preparing silicon nitride ceramic parts which are relatively flaw free and which need little or no machining, said process comprising the steps of: (a) preparing a starting powder by wet or dry mixing ingredients comprising by weight from about 70% to about 99% silicon nitride, from about 1% to about 30% of liquid phase forming additive and from 1% to about 7% free silicon; (b) cold pressing to obtain a preform of green density ranging from about 30% to about 75% of theoretical density; (c) sintering at atmospheric pressure in a nitrogen atmosphere at a temperature ranging from about 1,400 C to about 2,200 C to obtain a density which ranges from about 50% to about 100% of theoretical density and which is higher than said preform green density, and (d) press forging workpiece resulting from step (c) by isothermally uniaxially pressing said workpiece in an open die without initial contact between said workpiece and die wall perpendicular to the direction of pressing and so that pressed workpiece does not contact die wall perpendicular to the direction of pressing, to substantially final shape in a nitrogen atmosphere utilizing a temperature within the range of from about 1,400 C to essentially 1,750 C and strain rate within the range of about 10[sup [minus]7] to about 10[sup [minus]1] seconds[sup [minus]1], the temperature and strain rate being such that surface cracks do not occur, said pressing being carried out to obtain a shear deformation greater than 30% whereby superplastic forging is effected.

  1. Nitride stabilized core/shell nanoparticles

    Science.gov (United States)

    Kuttiyiel, Kurian Abraham; Sasaki, Kotaro; Adzic, Radoslav R.

    2018-01-30

    Nitride stabilized metal nanoparticles and methods for their manufacture are disclosed. In one embodiment the metal nanoparticles have a continuous and nonporous noble metal shell with a nitride-stabilized non-noble metal core. The nitride-stabilized core provides a stabilizing effect under high oxidizing conditions suppressing the noble metal dissolution during potential cycling. The nitride stabilized nanoparticles may be fabricated by a process in which a core is coated with a shell layer that encapsulates the entire core. Introduction of nitrogen into the core by annealing produces metal nitride(s) that are less susceptible to dissolution during potential cycling under high oxidizing conditions.

  2. Boron nitride: A new photonic material

    International Nuclear Information System (INIS)

    Chubarov, M.; Pedersen, H.; Högberg, H.; Filippov, S.; Engelbrecht, J.A.A.; O'Connel, J.; Henry, A.

    2014-01-01

    Rhombohedral boron nitride (r-BN) layers were grown on sapphire substrate in a hot-wall chemical vapor deposition reactor. Characterization of these layers is reported in details. X-ray diffraction (XRD) is used as a routine characterization tool to investigate the crystalline quality of the films and the identification of the phases is revealed using detailed pole figure measurements. Transmission electron microscopy reveals stacking of more than 40 atomic layers. Results from Fourier Transform InfraRed (FTIR) spectroscopy measurements are compared with XRD data showing that FTIR is not phase sensitive when various phases of sp 2 -BN are investigated. XRD measurements show a significant improvement of the crystalline quality when adding silicon to the gas mixture during the growth; this is further confirmed by cathodoluminescence which shows a decrease of the defects related luminescence intensity.

  3. Boron nitride: A new photonic material

    Energy Technology Data Exchange (ETDEWEB)

    Chubarov, M., E-mail: mihcu@ifm.liu.se [Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden); Pedersen, H., E-mail: henke@ifm.liu.se [Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden); Högberg, H., E-mail: hanho@ifm.liu.se [Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden); Filippov, S., E-mail: stafi@ifm.liu.se [Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden); Engelbrecht, J.A.A., E-mail: Japie.Engelbrecht@nmmu.ac.za [Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); O' Connel, J., E-mail: jacques.oconnell@gmail.com [Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Henry, A., E-mail: anne.henry@liu.se [Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden)

    2014-04-15

    Rhombohedral boron nitride (r-BN) layers were grown on sapphire substrate in a hot-wall chemical vapor deposition reactor. Characterization of these layers is reported in details. X-ray diffraction (XRD) is used as a routine characterization tool to investigate the crystalline quality of the films and the identification of the phases is revealed using detailed pole figure measurements. Transmission electron microscopy reveals stacking of more than 40 atomic layers. Results from Fourier Transform InfraRed (FTIR) spectroscopy measurements are compared with XRD data showing that FTIR is not phase sensitive when various phases of sp{sup 2}-BN are investigated. XRD measurements show a significant improvement of the crystalline quality when adding silicon to the gas mixture during the growth; this is further confirmed by cathodoluminescence which shows a decrease of the defects related luminescence intensity.

  4. Rebar graphene from functionalized boron nitride nanotubes.

    Science.gov (United States)

    Li, Yilun; Peng, Zhiwei; Larios, Eduardo; Wang, Gunuk; Lin, Jian; Yan, Zheng; Ruiz-Zepeda, Francisco; José-Yacamán, Miguel; Tour, James M

    2015-01-27

    The synthesis of rebar graphene on Cu substrates is described using functionalized boron nitride nanotubes (BNNTs) that were annealed or subjected to chemical vapor deposition (CVD) growth of graphene. Characterization shows that the BNNTs partially unzip and form a reinforcing bar (rebar) network within the graphene layer that enhances the mechanical strength through covalent bonds. The rebar graphene is transferrable to other substrates without polymer assistance. The optical transmittance and conductivity of the hybrid rebar graphene film was tested, and a field effect transistor was fabricated to explore its electrical properties. This method of synthesizing 2D hybrid graphene/BN structures should enable the hybridization of various 1D nanotube and 2D layered structures with enhanced mechanical properties.

  5. Preparation and characterization of electrodeposited cobalt nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Irshad, M. I., E-mail: imrancssp@gmail.com; Mohamed, N. M., E-mail: noranimuti-mohamed@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 31750 PERAK (Malaysia); Ahmad, F., E-mail: faizahmad@petronas.com.my; Abdullah, M. Z., E-mail: zaki-abdullah@petronas.com.my [Department of Mechanical Engineering, Universiti Teknologi PETRONAS, 31750 PERAK (Malaysia)

    2014-10-24

    Electrochemical deposition technique has been used to deposit cobalt nanowires into the nano sized channels of Anodized Aluminium Oxide (AAO) templates. CoCl{sub 2}Ðœ‡6H2O salt solution was used, which was buffered with H{sub 3}BO{sub 3} and acidified by dilute H{sub 2}SO{sub 4} to increase the plating life and control pH of the solution. Thin film of copper around 150 nm thick on one side of AAO template coated by e-beam evaporation system served as cathode to create electrical contact. FESEM analysis shows that the as-deposited nanowires are highly aligned, parallel to one another and have high aspect ratio with a reasonably high pore-filing factor. The TEM results show that electrodeposited cobalt nanowires are crystalline in nature. The Hysteresis loop shows the magnetization properties for in and out of plane configuration. The in plane saturation magnetization (Ms) is lower than out of plane configuration because of the easy axis of magnetization is perpendicular to nanowire axis. These magnetic nanowires could be utilized for applications such as spintronic devices, high density magnetic storage, and magnetic sensor applications.

  6. Preparation and characterization of electrodeposited cobalt nanowires

    International Nuclear Information System (INIS)

    Irshad, M. I.; Mohamed, N. M.; Ahmad, F.; Abdullah, M. Z.

    2014-01-01

    Electrochemical deposition technique has been used to deposit cobalt nanowires into the nano sized channels of Anodized Aluminium Oxide (AAO) templates. CoCl 2 Ðœ‡6H2O salt solution was used, which was buffered with H 3 BO 3 and acidified by dilute H 2 SO 4 to increase the plating life and control pH of the solution. Thin film of copper around 150 nm thick on one side of AAO template coated by e-beam evaporation system served as cathode to create electrical contact. FESEM analysis shows that the as-deposited nanowires are highly aligned, parallel to one another and have high aspect ratio with a reasonably high pore-filing factor. The TEM results show that electrodeposited cobalt nanowires are crystalline in nature. The Hysteresis loop shows the magnetization properties for in and out of plane configuration. The in plane saturation magnetization (Ms) is lower than out of plane configuration because of the easy axis of magnetization is perpendicular to nanowire axis. These magnetic nanowires could be utilized for applications such as spintronic devices, high density magnetic storage, and magnetic sensor applications

  7. Cobalt: for strength and color

    Science.gov (United States)

    Boland, Maeve A.; Kropschot, S.J.

    2011-01-01

    Cobalt is a shiny, gray, brittle metal that is best known for creating an intense blue color in glass and paints. It is frequently used in the manufacture of rechargeable batteries and to create alloys that maintain their strength at high temperatures. It is also one of the essential trace elements (or "micronutrients") that humans and many other living creatures require for good health. Cobalt is an important component in many aerospace, defense, and medical applications and is a key element in many clean energy technologies. The name cobalt comes from the German word kobold, meaning goblin. It was given this name by medieval miners who believed that troublesome goblins replaced the valuable metals in their ore with a substance that emitted poisonous fumes when smelted. The Swedish chemist Georg Brandt isolated metallic cobalt-the first new metal to be discovered since ancient times-in about 1735 and identified some of its valuable properties.

  8. Cobalt release from implants and consumer items and characteristics of cobalt sensitized patients with dermatitis

    DEFF Research Database (Denmark)

    Thyssen, Jacob Pontoppidan; Menne, Torkil; Liden, Carola

    2012-01-01

    -containing dental alloys and revised hip implant components.Results. Six of eight dental alloys and 10 of 98 revised hip implant components released cobalt in the cobalt spot test, whereas none of 50 mobile phones gave positive reactions. The clinical relevance of positive cobalt test reactions was difficult......-tested dermatitis patients in an attempt to better understand cobalt allergy.Materials and methods. 19 780 dermatitis patients aged 4-99 years were patch tested with nickel, chromium or cobalt between 1985 and 2010. The cobalt spot test was used to test for cobalt ion release from mobile phones as well as cobalt...

  9. Electroplated zinc-cobalt alloy

    International Nuclear Information System (INIS)

    Carpenter, D.E.O.S.; Farr, J.P.G.

    2005-01-01

    Recent work on the deposition and use of ectrodeposited zinc-cobalt alloys is surveyed. Alloys containing lower of Nuclear quantities of cobalt are potentially more useful. The structures of the deposits is related to their chemical and mechanical properties. The inclusion of oxide and its role in the deposition mechanism may be significant. Chemical and engineering properties relate to the metallurgical structure of the alloys, which derives from the mechanism of deposition. The inclusion of oxides and hydroxides in the electroplate may provide evidence for this mechanism. Electrochemical impedance measurements have been made at significant deposition potentials, in alkaline electrolytes. These reveal a complex electrode behaviour which depends not only on the electrode potential but on the Co content of the electrolyte. For the relevant range of cathodic potential zinc-cobalt alloy electrodeposition occurs through a stratified interface. The formation of an absorbed layer ZnOH/sup +/ is the initial step, this inhibits the deposition of cobalt at low cathodic potentials, so explaining its 'anomalous deposition'. A porous layer of zinc forms on the adsorbed ZnOH/sup +/ at underpotential. As the potential becomes more cathodic, cobalt co- deposits from its electrolytic complex forming a metallic solid solution of Co in Zn. In electrolytes containing a high concentration of cobalt a mixed entity (ZnCo)/sub +/ is assumed to adsorb at the cathode from which a CoZn intermetallic deposits. (author)

  10. High-phase-purity zinc-blende InN on r-plane sapphire substrate with controlled nitridation pretreatment

    International Nuclear Information System (INIS)

    Hsiao, C.-L.; Wu, C.-T.; Hsu, H.-C.; Hsu, G.-M.; Chen, L.-C.; Liu, T.-W.; Shiao, W.-Y.; Yang, C. C.; Gaellstroem, Andreas; Holtz, Per-Olof; Chen, C.-C.; Chen, K.-H.

    2008-01-01

    High-phase-purity zinc-blende (zb) InN thin film has been grown by plasma-assisted molecular-beam epitaxy on r-plane sapphire substrate pretreated with nitridation. X-ray diffraction analysis shows that the phase of the InN films changes from wurtzite (w) InN to a mixture of w-InN and zb-InN, to zb-InN with increasing nitridation time. High-resolution transmission electron microscopy reveals an ultrathin crystallized interlayer produced by substrate nitridation, which plays an important role in controlling the InN phase. Photoluminescence emission of zb-InN measured at 20 K shows a peak at a very low energy, 0.636 eV, and an absorption edge at ∼0.62 eV is observed at 2 K, which is the lowest bandgap reported to date among the III-nitride semiconductors

  11. Graphene growth by transfer-free chemical vapour deposition on a cobalt layer

    Science.gov (United States)

    Macháč, Petr; Hejna, Ondřej; Slepička, Petr

    2017-01-01

    The contribution deals with the preparation of graphene films by a transfer-free chemical vapour deposition process utilizing a thin cobalt layer. This method allows growing graphene directly on a dielectric substrate. The process was carried out in a cold-wall reactor with methane as carbon precursor. We managed to prepare bilayer graphene. The best results were obtained for a structure with a cobalt layer with a thickness of 50 nm. The quality of prepared graphene films and of the number of graphene layers were estimated using Raman spectroscopy. with a minimal dots diameter of 180 nm and spacing of 1000 nm were successfully developed.

  12. Pulsed laser deposition and characterization of multilayer metal-carbon thin films

    Energy Technology Data Exchange (ETDEWEB)

    Siraj, K., E-mail: khurram.uet@gmail.com [Advance Physics Laboratory, Department of Physics, University of Engineering and Technology, Lahore (Pakistan); Khaleeq-ur-Rahman, M.; Rafique, M.S.; Munawar, M.Z. [Advance Physics Laboratory, Department of Physics, University of Engineering and Technology, Lahore (Pakistan); Naseem, S.; Riaz, S. [Center for Solid State Physics, University of Punjab, Lahore (Pakistan)

    2011-05-15

    Cobalt-DLC multilayer films were deposited with increasing content of cobalt, keeping carbon content constant by pulsed laser deposition technique. A cobalt free carbon film was also deposited for comparison. Excimer laser was employed to ablate the materials onto silicon substrate, kept at 250 deg. C, while post-deposition annealing at 400 deg. C was also performed in situ. The formation of cobalt grains within the carbon matrix in Co-DLC films can be seen through scanning electron and atomic force micrographs while no grains on the surface of the cobalt-free DLC film were observed. Raman spectra of all the films show D- and G-bands, which is a confirmation that the films are DLC in nature. According to Vibrating sample magnetometer (VSM) measurements, the DLC films with cobalt revealed ferromagnetic behaviour whereas the cobalt free DLC film exhibited diamagnetic behaviour. The pure DLC film also shows ferromagnetic nature when diamagnetic background is subtracted. Spectroscopic Ellipsometry (SE) analysis showed that the optical band gaps, refractive indices and extinction coefficients of Co-DLC films can be effectively tuned with increasing content of cobalt.

  13. Pulsed laser deposition and characterization of multilayer metal-carbon thin films

    International Nuclear Information System (INIS)

    Siraj, K.; Khaleeq-ur-Rahman, M.; Rafique, M.S.; Munawar, M.Z.; Naseem, S.; Riaz, S.

    2011-01-01

    Cobalt-DLC multilayer films were deposited with increasing content of cobalt, keeping carbon content constant by pulsed laser deposition technique. A cobalt free carbon film was also deposited for comparison. Excimer laser was employed to ablate the materials onto silicon substrate, kept at 250 deg. C, while post-deposition annealing at 400 deg. C was also performed in situ. The formation of cobalt grains within the carbon matrix in Co-DLC films can be seen through scanning electron and atomic force micrographs while no grains on the surface of the cobalt-free DLC film were observed. Raman spectra of all the films show D- and G-bands, which is a confirmation that the films are DLC in nature. According to Vibrating sample magnetometer (VSM) measurements, the DLC films with cobalt revealed ferromagnetic behaviour whereas the cobalt free DLC film exhibited diamagnetic behaviour. The pure DLC film also shows ferromagnetic nature when diamagnetic background is subtracted. Spectroscopic Ellipsometry (SE) analysis showed that the optical band gaps, refractive indices and extinction coefficients of Co-DLC films can be effectively tuned with increasing content of cobalt.

  14. Leachability of nitrided ilmenite in hydrochloric acid

    CSIR Research Space (South Africa)

    Swanepoel, JJ

    2010-10-01

    Full Text Available Titanium nitride in upgraded nitrided ilmenite (bulk of iron removed) can selectively be chlorinated to produce titanium tetrachloride. Except for iron, most other components present during this low temperature (ca. 200 °C) chlorination reaction...

  15. Hydrogen evolution catalyzed by cobalt diimine-dioxime complexes.

    Science.gov (United States)

    Kaeffer, Nicolas; Chavarot-Kerlidou, Murielle; Artero, Vincent

    2015-05-19

    bulk. It led us to evidence that these cobalt complexes, as cobaloximes and other cobalt salts do, decompose under turnover conditions where they are free in solution. Of note, this process generates in aqueous phosphate buffer a nanoparticulate film consisting of metallic cobalt coated with a cobalt-oxo/hydroxo-phosphate layer in contact with the electrolyte. This novel material, H2-CoCat, mediates H2 evolution from neutral aqueous buffer at low overpotentials. Finally, the potential of diimine-dioxime cobalt complexes for light-driven H2 generation has been attested both in water/acetonitrile mixtures and in fully aqueous solutions. All together, these studies hold promise for the construction of molecular-based photoelectrodes for H2 evolution and further integration in dye-sensitized photoelectrochemical cells (DS-PECs) able to achieve overall water splitting.

  16. COBALT SALTS PRODUCTION BY USING SOLVENT EXTRACTION

    Directory of Open Access Journals (Sweden)

    Liudmila V. Dyakova

    2010-06-01

    Full Text Available The paper deals with the extracting cobalt salts by using mixtures on the basis of tertiary amine from multicomponent solutions from the process of hydrochloride leaching of cobalt concentrate. The optimal composition for the extraction mixture, the relationship between the cobalt distribution coefficients and modifier’s nature and concentration, and the saltingout agent type have been determined. A hydrochloride extraction technology of cobalt concentrate yielding a purified concentrated cobalt solution for the production of pure cobalt salts has been developed and introduced at Severonikel combine.

  17. Leachability of nitrided ilmenite in hydrochloric acid

    OpenAIRE

    Swanepoel, J.J.; van Vuuren, D.S.; Heydenrych, M.

    2011-01-01

    Titanium nitride in upgraded nitrided ilmenite (bulk of iron removed) can selectively be chlorinated to produce titanium tetrachloride. Except for iron, most other components present during this low temperature (ca. 200°C) chlorination reaction will not react with chlorine. It is therefore necessary to remove as much iron as possible from the nitrided ilmenite. Hydrochloric acid leaching is a possible process route to remove metallic iron from nitrided ilmenite without excessive dissolution o...

  18. Anomalous microstructural changes in III-nitrides under ion bombardment

    International Nuclear Information System (INIS)

    Kucheyev, S.O.; Williams, J.S.; Jagadish, C.

    2002-01-01

    Full text: Group-III nitrides (GaN, AlGaN, and InGaN) are currently a 'hot topic' in the physics and material research community due to very important technological applications of these materials in (opto)electronics. In the fabrication of III-nitride-based devices, ion bombardment represents a very attractive processing tool. However, ion-beam-produced lattice disorder and its undesirable consequences limit technological applications of ion implantation. Hence, studies of ion-beam-damage processes in Ill-nitrides are not only physically interesting but also technologically important. In this study, wurtzite GaN, AlGaN, and InGaN films exposed to ion bombardment under a wide range of irradiation conditions are studied by a combination of transmission electron microscopy (TEM), environmental scanning electron microscopy (ESEM), energy dispersive x-ray spectrometry (EDS), atomic force microscopy (AFM), cathodoluminescence (CL), and Rutherford backscattering/channeling (RBS/C) spectrometry. Results show that, unlike the situation for mature semiconductors such as Si and GaAs, Ill-nitrides exhibit a range of intriguing behavior involving extreme microstructural changes under ion bombardment. In this presentation, the following aspects are discussed: (i) formation of lattice defects during ion bombardment, (ii) ion-beam-induced phase transformations, (iii) ion-beam-produced stoichiometric imbalance and associated material decomposition, and (iv) an application of charging phenomena during ESEM imaging for studies of electrical isolation in GaN by MeV light ion irradiation. Emphasis is given to the (powerful) application of electron microscopy techniques for the understanding of physical processes occurring in Ill-nitrides under ion bombardment. Copyright (2002) Australian Society for Electron Microscopy Inc

  19. Study on tribological behavior and cutting performance of CVD diamond and DLC films on Co-cemented tungsten carbide substrates

    International Nuclear Information System (INIS)

    Zhang Dongcan; Shen Bin; Sun Fanghong

    2010-01-01

    The tribological behaviors of diamond and diamond-like carbon (DLC) films play a major role on their machining and mechanical applications. In this study, diamond and diamond-like carbon (DLC) films are deposited on the cobalt cemented tungsten carbide (WC-Co) substrate respectively adopting the hot filament chemical vapor deposition (HFCVD) technique and the vacuum arc discharge with a graphite cathode, and their friction properties are evaluated on a reciprocating ball-on-plate tribometer with counterfaces of silicon nitride (Si 3 N 4 ) ceramic, cemented tungsten carbide (WC) and ball-bearing steel materials, under the ambient air without lubricating condition. Moreover, to evaluate their cutting performance, comparative turning tests are conducted using the uncoated WC-Co and as-fabricated CVD diamond and DLC coated inserts, with glass fiber reinforced plastics (GFRP) composite materials as the workpiece. The as-deposited HFCVD diamond and DLC films are characterized with energy-dispersive X-ray spectroscopy (EDX), scanning electron microscope (SEM), X-ray diffraction spectroscopy (XRD), Raman spectroscopy and 3D surface topography based on white-light interferometry. Furthermore, Rocwell C indentation tests are conducted to evaluate the adhesion of HFCVD diamond and DLC films grown onto WC-Co substrates. SEM and 3D surface topography based on white-light interferometry are also used to investigate the worn region on the surfaces of diamond and DLC films. The friction tests suggest that the obtained friction coefficient curves that of various contacts exhibit similar evolution tendency. For a given counterface, DLC films present lower stable friction coefficients than HFCVD diamond films under the same sliding conditions. The cutting tests results indicate that flank wear of the HFCVD diamond coated insert is lower than that of DLC coated insert before diamond films peeling off.

  20. Fabrication of vanadium nitride by carbothermal nitridation reaction

    International Nuclear Information System (INIS)

    Wang Xitang; Wang Zhuofu; Zhang Baoguo; Deng Chengji

    2005-01-01

    Vanadium nitride is produced from V 2 O 5 by carbon-thermal reduction and nitridation. When the sintered temperature is above 1273 K, VN can be formed, and the nitrogen content of the products increased with the firing temperature raised, and then is the largest when the sintered temperature is 1573 K. The C/V 2 O 5 mass ratio of the green samples is the other key factor affecting on the nitrogen contents of the products. The nitrogen content of the products reaches the most when the C/V 2 O 5 mass ratio is 0.33, which is the theoretical ratio of the carbothermal nitridation of V 2 O 5 . (orig.)

  1. Cobalt deposition studies in the primary circuit under BWR conditions (Phase 1 and 2)

    International Nuclear Information System (INIS)

    Bennett, Peter

    1996-04-01

    This report presents the results from the first 2 phases of an experiment performed to investigate the effects of water chemistry on cobalt transport and deposition in the primary circuit under BWR conditions. Two high pressure water loops have been used to compare the incorporation of cobalt into the oxide films on coupons of various LWR primary circuit constructional materials, with several pretreatments, under Hydrogen Water Chemistry (HWC) and Normal Water Chemistry (NWC) conditions. Cobalt-60 deposition rates onto samples that had been pre-oxidised in air were lower than on samples that had been exposed previously in a water loop or had untreated surfaces. In NWC, oxide layers were thicker, normalised Co-60 deposition rates were higher and Co-60 activities per unit volume of oxide were greater. Some evidence has been produced to support the conclusions of other workers that a chromium-rich outer oxide layer is responsible for enhanced cobalt incorporation. (author)

  2. Niobium nitride Josephson tunnel junctions with magnesium oxide barriers

    International Nuclear Information System (INIS)

    Shoji, A.; Aoyagi, M.; Kosaka, S.; Shinoki, F.; Hayakawa, H.

    1985-01-01

    Niobium nitride-niobium nitride Josephson tunnel junctions have been fabricated using amorphous magnesium oxide (a-MgO) films as barriers. These junctions have excellent tunneling characteristics. For example, a large gap voltage (V/sub g/ = 5.1 mV), a large product of the maximum critical current and the normal tunneling resistance (I/sub c/R/sub n/ = 3.25 mV), and a small subgap leakage current (V/sub m/ = 45 mV, measured at 3 mV) have been obtained for a NbN/a-MgO/NbN junction. The critical current of this junction remains finite up to 14.5 K

  3. Chemical vapor deposition of refractory ternary nitrides for advanced diffusion barriers

    Energy Technology Data Exchange (ETDEWEB)

    Custer, Jonathan S.; Fleming, James G.; Roherty-Osmun, Elizabeth; Smith, Paul Martin

    1998-09-22

    Refractory ternary nitride films for diffusion barriers in microelectronics have been grown using chemical vapor deposition. Thin films of titanium-silicon-nitride, tungsten-boron-nitride, and tungsten-silicon-nitride of various compositions have been deposited on 150 mm Si wafers. The microstructure of the films are either fully amorphous for the tungsten based films, or nauocrystalline TiN in an amorphous matrix for titanium-silicon-nitride. All films exhibit step coverages suitable for use in future microelectronics generations. Selected films have been tested as diffusion barriers between copper and silicon, and generally perform extremely weH. These fiIms are promising candidates for advanced diffusion barriers for microelectronics applications. The manufacturing of silicon wafers into integrated circuits uses many different process and materials. The manufacturing process is usually divided into two parts: the front end of line (FEOL) and the back end of line (BEOL). In the FEOL the individual transistors that are the heart of an integrated circuit are made on the silicon wafer. The responsibility of the BEOL is to wire all the transistors together to make a complete circuit. The transistors are fabricated in the silicon itself. The wiring is made out of metal, currently aluminum and tungsten, insulated by silicon dioxide, see Figure 1. Unfortunately, silicon will diffuse into aluminum, causing aluminum spiking of junctions, killing transistors. Similarly, during chemical vapor deposition (CVD) of tungsten from ~fj, the reactivity of the fluorine can cause "worn-holes" in the silicon, also destroying transistors. The solution to these problems is a so-called diffusion barrier, which will allow current to pass from the transistors to the wiring, but will prevent reactions between silicon and the metal.

  4. Simulation of the Nitriding Process

    Science.gov (United States)

    Krukovich, M. G.

    2004-01-01

    Simulation of the nitriding process makes it possible to solve many practical problems of process control, prediction of results, and development of new treatment modes and treated materials. The presented classification systematizes nitriding processes and processes based on nitriding, enables consideration of the theory and practice of an individual process in interrelation with other phenomena, outlines ways for intensification of various process variants, and gives grounds for development of recommendations for controlling the structure and properties of the obtained layers. The general rules for conducting the process and formation of phases in the layer and properties of the treated surfaces are used to create a prediction computational model based on analytical, numerical, and empirical approaches.

  5. Pulsed laser deposition of Pb(Zr0.52Ti0.48)O3 thin film on cobalt ferrite nano-seed layered Pt(111)/Si substrate: effect of oxygen pressure

    Science.gov (United States)

    Khodaei, M.; Seyyed Ebrahimi, S. A.; Park, Yong Jun; Song, Seungwoo; Jang, Hyun Myung; Son, Junwoo; Baik, Sunggi

    2014-07-01

    The effect of oxygen pressure during pulsed laser deposition of Pb(Zr0.52Ti0.48)O3 (PZT) thin films on CoFe2O4 nano-seed layered Pt(111)/Si substrate was investigated. The PZT film deposited at oxygen pressure lower than 25 mTorr is identified as both perovskite and pyrochlore phases and the films deposited at high oxygen pressure (50-100 mTorr) show the single-phase perovskite PZT that has a perfect (111)-orientation. In addition, the film deposited at PO2 of 50 mTorr has a uniform surface morphology, whereas the film deposited at PO2 of 100 mTorr has a non-uniform surface morphology and more incompacted columnar cross-section microstructure. The polarization of film deposited at 100 mTorr is higher than that deposited at 50 mTorr, but shift of the hysteresis loop along the electrical field axis in the film deposited at PO2 of 100 mTorr is larger than that of the film deposited at PO2 of 50 mTorr.

  6. Controlling of morphology and electrocatalytic properties of cobalt oxide nanostructures prepared by potentiodynamic deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Hallaj, Rahman [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Akhtari, Keivan [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Research Center for Nanotechnology, University of Kurdistan, P.O.Box 416, Sanandaj (Iran, Islamic Republic of); Salimi, Abdollah, E-mail: absalimi@uok.ac.ir [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Research Center for Nanotechnology, University of Kurdistan, P.O.Box 416, Sanandaj (Iran, Islamic Republic of); Soltanian, Saied [Department of Physics, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of)

    2013-07-01

    Electrodeposited cobalt oxide nanostructures were prepared by Repetitive Triangular Potential Scans (RTPS) as a simple, remarkably fast and scalable potentiodynamic method. Electrochemical deposition of cobalt oxide nanostructures onto GC electrode was performed from aqueous Co(NO{sub 3}){sub 2}, (pH 6) solution using cyclic voltammetry method. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to characterize the morphology of fabricated nanostructures. The evaluation of electrochemical properties of deposited films was performed using cyclic voltametry (CV) and impedance spectroscopy (IS) techniques. The analysis of the experimental data clearly showed that the variations of potential scanning ranges during deposition process have drastic effects on the geometry, chemical structure and particle size of cobalt oxide nanoparticles. In addition, the electrochemical and electrocatalytic properties of prepared nanostructures can be controlled through applying different potential windows in electrodeposition process. The imaging and voltammetric studies suggested to the existence of at least three different shapes of cobalt-oxide nanostructures in various potential windows applied for electrodeposition. With enlarging the applied potential window, the spherical-like cobalt oxide nanoparticles with particles sizes about 30–50 nm changed to the grain-like structures (30 nm × 80 nm) and then to the worm-like cobalt oxide nanostructures with 30 nm diameter and 200–400 nm in length. Furthermore, the roughness of the prepared nanostructures increased with increasing positive potential window. The GC electrodes modified with cobalt oxide nanostructures shows excellent electrocatalytic activity toward H{sub 2}O{sub 2} and As (III) oxidation. The electrocatalytic activity of cobalt oxide nanostructures prepared at more positive potential window toward hydrogen peroxide oxidation was increased, while for As(III) oxidation the electrocatalytic

  7. Controlling of morphology and electrocatalytic properties of cobalt oxide nanostructures prepared by potentiodynamic deposition method

    International Nuclear Information System (INIS)

    Hallaj, Rahman; Akhtari, Keivan; Salimi, Abdollah; Soltanian, Saied

    2013-01-01

    Electrodeposited cobalt oxide nanostructures were prepared by Repetitive Triangular Potential Scans (RTPS) as a simple, remarkably fast and scalable potentiodynamic method. Electrochemical deposition of cobalt oxide nanostructures onto GC electrode was performed from aqueous Co(NO 3 ) 2 , (pH 6) solution using cyclic voltammetry method. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to characterize the morphology of fabricated nanostructures. The evaluation of electrochemical properties of deposited films was performed using cyclic voltametry (CV) and impedance spectroscopy (IS) techniques. The analysis of the experimental data clearly showed that the variations of potential scanning ranges during deposition process have drastic effects on the geometry, chemical structure and particle size of cobalt oxide nanoparticles. In addition, the electrochemical and electrocatalytic properties of prepared nanostructures can be controlled through applying different potential windows in electrodeposition process. The imaging and voltammetric studies suggested to the existence of at least three different shapes of cobalt-oxide nanostructures in various potential windows applied for electrodeposition. With enlarging the applied potential window, the spherical-like cobalt oxide nanoparticles with particles sizes about 30–50 nm changed to the grain-like structures (30 nm × 80 nm) and then to the worm-like cobalt oxide nanostructures with 30 nm diameter and 200–400 nm in length. Furthermore, the roughness of the prepared nanostructures increased with increasing positive potential window. The GC electrodes modified with cobalt oxide nanostructures shows excellent electrocatalytic activity toward H 2 O 2 and As (III) oxidation. The electrocatalytic activity of cobalt oxide nanostructures prepared at more positive potential window toward hydrogen peroxide oxidation was increased, while for As(III) oxidation the electrocatalytic activity decreased

  8. Molecular mechanics calculations on cobalt phthalocyanine dimers

    NARCIS (Netherlands)

    Heuts, J.P.A.; Schipper, E.T.W.M.; Piet, P.; German, A.L.

    1995-01-01

    In order to obtain insight into the structure of cobalt phthalocyanine dimers, molecular mechanics calculations were performed on dimeric cobalt phthalocyanine species. Molecular mechanics calculations are first presented on monomeric cobalt(II) phthalocyanine. Using the Tripos force field for the

  9. Transport of cobalt-60 industrial radiation sources

    Science.gov (United States)

    Kunstadt, Peter; Gibson, Wayne

    This paper will deal with safety aspects of the handling of Cobalt-60, the most widely used industrial radio-isotope. Cobalt-60 is a man-made radioisotope of Cobalt-59, a naturally occurring non radioactive element, that is made to order for radiation therapy and a wide range of industrial processing applications including sterilization of medical disposables, food irradiation, etc.

  10. Precipitation of metal nitrides from chloride melts

    International Nuclear Information System (INIS)

    Slater, S.A.; Miller, W.E.; Willit, J.L.

    1996-01-01

    Precipitation of actinides, lanthanides, and fission products as nitrides from molten chloride melts is being investigated for use as a final cleanup step in treating radioactive salt wastes generated by electrometallurgical processing of spent nuclear fuel. The radioactive components (eg, fission products) need to be removed to reduce the volume of high-level waste that requires disposal. To extract the fission products from the salt, a nitride precipitation process is being developed. The salt waste is first contacted with a molten metal; after equilibrium is reached, a nitride is added to the metal phase. The insoluble nitrides can be recovered and converted to a borosilicate glass after air oxidation. For a bench-scale experimental setup, a crucible was designed to contact the salt and metal phases. Solubility tests were performed with candidate nitrides and metal nitrides for which there are no solubility data. Experiments were performed to assess feasibility of precipitation of metal nitrides from chloride melts

  11. Accumulation of cobalt by cephalopods

    International Nuclear Information System (INIS)

    Nakahara, Motokazu

    1981-01-01

    Accumulation of cobalt by cephalopod mollusca was investigated by radiotracer experiments and elemental analysis. In the radiotracer experiments, Octopus vulgaris took up cobalt-60 from seawater fairly well and the concentration of the nuclide in whole body attained about 150 times the level of seawater at 25th day at 20 0 C. Among the tissues and organs measured, branchial heart which is the specific organ of cephalopods showed the highest affinity for the nuclide. The organ accumulated about 50% of the radioactivity in whole body in spite of its little mass as 0.2% of total body weight. On the other hand, more than 90% of the radioactivity taken up from food (soft parts of Gomphina melanaegis labelled with cobalt-60 previously in an aquarium) was accumulated in liver at 3rd day after the single administration and then the radioactivity in the liver seemed to be distributed to other organs and tissues. The characteristic elution profiles of cobalt-60 was observed for each of the organs and tissues in Sephadex gel-filtration experiment. It was confirmed by the gel-filtration that most of cobalt-60 in the branchial heart was combined with the constituents of low molecular weights. The average concentration of stable cobalt in muscle of several species of cephalopods was 5.3 +- 3.0 μg/kg wet and it was almost comparable to the fish muscle. On the basis of soft parts, concentration of the nuclide closed association among bivalve, gastropod and cephalopod except squid that gave lower values than the others. (author)

  12. Cobalt production in RAPS-1

    International Nuclear Information System (INIS)

    Krishnan, P.D.; Purandare, H.D.

    1978-01-01

    At present in RAPS-1 radioisotope Co 60 is produced by irradiating Co 59 in the adjusters which perform the function of regulation of reactivity, power and xenon override. But the manrem expenditure of the crew handling the charge and discharge of the adjusters is going to be prohibitively high. It is therefore proposed to irradiate Co 59 in the fuel channel positions. The physics optimisation study for such irradiation is presented. The burnup penalty and loss of power are estimated to produce the required quantity of Co 60 after optimising the number of cobalt pencils in a bundle and the positions of the cobalt producing channels in the reactor core. (author)

  13. Synthesis of cobalt stearate as oxidant additive for oxo-biodegradable polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Asriza, Ristika O.; Arcana, I Made, E-mail: arcana@chem.itb.ac.id [Division of Inorganic and Physical Chemistry, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, 40132 (Indonesia)

    2015-09-30

    Cobalt stearate is an oxidant additives that can initiate a process of degradation in high density polyethylene (HDPE). To determine the effect of cobalt stearate in HDPE, oxo-biodegradable polyethylene film was given an irradiation with UV light or heating at various temperature. After given a heating, the FTIR spectra showed a new absorption peak at wave number 1712 cm{sup −1} indicating the presence of carbonyl groups in polymers, whereas after irradiation with UV light is not visible the presence of this absorption peak. The increase concentration of cobalt stearate added in HDPE and the higher heating temperature, the intensity of the absorption peak of the carbonyl group increased. The increasing intensity of the carbonyl group absorption is caused the presence of damage in the film surface after heating, and this result is supported by analysis the surface properties of the film with using SEM. Biodegradation tests were performed on oxo-biodegradable polyethylene film which has been given heating or UV light with using activated sludge under optimal conditions the growth of microorganisms. After biodegradation, the maximum weight decreased by 23% in the oxo-biodegradable polyethylene film with a cobalt stearate concentration of 0.2% and after heating at a temperature of 75 °C for 10 days, and only 0.69% in the same film after irradiation UV light for 10 days. Based on the results above, cobalt stearate additive is more effective to initiate the oxidative degradation of HDPE when it is initiated by heating compared to irradiation with UV light.

  14. Synthesis of cobalt stearate as oxidant additive for oxo-biodegradable polyethylene

    Science.gov (United States)

    Asriza, Ristika O.; Arcana, I. Made

    2015-09-01

    Cobalt stearate is an oxidant additives that can initiate a process of degradation in high density polyethylene (HDPE). To determine the effect of cobalt stearate in HDPE, oxo-biodegradable polyethylene film was given an irradiation with UV light or heating at various temperature. After given a heating, the FTIR spectra showed a new absorption peak at wave number 1712 cm-1 indicating the presence of carbonyl groups in polymers, whereas after irradiation with UV light is not visible the presence of this absorption peak. The increase concentration of cobalt stearate added in HDPE and the higher heating temperature, the intensity of the absorption peak of the carbonyl group increased. The increasing intensity of the carbonyl group absorption is caused the presence of damage in the film surface after heating, and this result is supported by analysis the surface properties of the film with using SEM. Biodegradation tests were performed on oxo-biodegradable polyethylene film which has been given heating or UV light with using activated sludge under optimal conditions the growth of microorganisms. After biodegradation, the maximum weight decreased by 23% in the oxo-biodegradable polyethylene film with a cobalt stearate concentration of 0.2% and after heating at a temperature of 75 °C for 10 days, and only 0.69% in the same film after irradiation UV light for 10 days. Based on the results above, cobalt stearate additive is more effective to initiate the oxidative degradation of HDPE when it is initiated by heating compared to irradiation with UV light.

  15. Nanostructured thin film coatings with different strengthening effects

    Directory of Open Access Journals (Sweden)

    Panfilov Yury

    2017-01-01

    Full Text Available A number of articles on strengthening thin film coatings were analyzed and a lot of unusual strengthening effects, such as super high hardness and plasticity simultaneously, ultra low friction coefficient, high wear-resistance, curve rigidity increasing of drills with small diameter, associated with process formation of nanostructured coatings by the different thin film deposition methods were detected. Vacuum coater with RF magnetron sputtering system and ion-beam source and arc evaporator for nanostructured thin film coating manufacture are represented. Diamond Like Carbon and MoS2 thin film coatings, Ti, Al, Nb, Cr, nitride, carbide, and carbo-nitride thin film materials are described as strengthening coatings.

  16. Cobalt(II) and Cobalt(III) Coordination Compounds.

    Science.gov (United States)

    Thomas, Nicholas C.; And Others

    1989-01-01

    Presents a laboratory experiment which illustrates the formation of tris(phenanthroline)cobalt complexes in the 2+ and 3+ oxidation states, the effect of coordination on reactions of the ligand, and the use of a ligand displacement reaction in recovering the transformed ligand. Uses IR, UV-VIS, conductivity, and NMR. (MVL)

  17. Reaction-bonded silicon nitride

    International Nuclear Information System (INIS)

    Porz, F.

    1982-10-01

    Reaction-bonded silicon nitride (RBSN) has been characterized. The oxidation behaviour in air up to 1500 0 C and 3000 h and the effects of static and cyclic oxidation on room-temperature strength have been studied. (orig./IHOE) [de

  18. XPS analysis for cubic boron nitride crystal synthesized under high pressure and high temperature using Li3N as catalysis

    International Nuclear Information System (INIS)

    Guo, Xiaofei; Xu, Bin; Zhang, Wen; Cai, Zhichao; Wen, Zhenxing

    2014-01-01

    Highlights: • The cBN was synthesized by Li 3 N as catalyst under high pressure and high temperature (HPHT). • The film coated on the as-grown cBN crystals was studied by XPS. • The electronic structure variation in the film was investigated. • The growth mechanism of cubic boron nitride crystal was analyzed briefly. - Abstract: Cubic boron nitride (cBN) single crystals are synthesized with lithium nitride (Li3N) as catalyst under high pressure and high temperature. The variation of electronic structures from boron nitride of different layers in coating film on the cBN single crystal has been investigated by X-ray photoelectron spectroscopy. Combining the atomic concentration analysis, it was shown that from the film/cBN crystal interface to the inner, the sp 2 fractions are decreasing, and the sp 3 fractions are increasing in the film at the same time. Moreover, by transmission electron microscopy, a lot of cBN microparticles are found in the interface. For there is no Li 3 N in the film, it is possible that Li 3 N first reacts with hexagonal boron nitride to produce Li 3 BN 2 during cBN crystals synthesis under high pressure and high temperature (HPHT). Boron and nitrogen atoms, required for cBN crystals growth, could come from the direct conversion from hexagonal boron nitride with the catalysis of Li 3 BN 2 under high pressure and high temperature, but not directly from the decomposition of Li 3 BN 2

  19. The cobalt-60 container scanner

    International Nuclear Information System (INIS)

    Jigang, A.; Liye, Z.; Yisi, L.; Haifeng, W.; Zhifang, W.; Liqiang, W.; Yuanshi, Z.; Xincheng, X.; Furong, L.; Baozeng, G.; Chunfa, S.

    1997-01-01

    The Institute of Nuclear Energy Technology (INET) has successfully designed and constructed a container (cargo) scanner, which uses cobalt-60 of 100-300 Ci as radiation source. The following performances of the Cobalt-60 container scanner have been achieved at INET: a) IQI (Image Quality Indicator) - 2.5% behind 100 mm of steel; b) CI (Contrast Indicator) - 0.7% behind 100 mm of steel; c) SP (Steel Penetration) - 240 mm of steel; d) Maximum Dose per Scanning - 0.02mGy; e) Throughput - twenty 40-foot containers per hour. These performances are equal or similar to those of the accelerator scanners. Besides these nice enough inspection properties, the Cobalt-60 scanner possesses many other special features which are better than accelerator scanners: a) cheap price - it will be only or two tenths of the accelerator scanner's; b) low radiation intensity - the radiation protection problem is much easier to solve and a lot of money can be saved on the radiation shielding building; c) much smaller area for installation and operation; d) simple operation and convenient maintenance; e) high reliability and stability. The Cobalt-60 container (or cargo) scanner is satisfied for boundary customs, seaports, airports and railway stations etc. Because of the nice special features said above, it is more suitable to be applied widely. Its high properties and low price will make it have much better application prospects

  20. Cobalt 60 commercial irradiation facilities

    International Nuclear Information System (INIS)

    West, G.

    1985-01-01

    The advantage of using cobalt 60 for ionizing treatment is that it has excellent penetration. Gamma plants are also very efficient, in as much as there is very little mechanical or electrical equipment in a gamma irradiation facility. The average efficiency of a gamma plant is usually around 95% of all available processing time

  1. Aluminum nitride nanophotonic circuits operating at ultraviolet wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Stegmaier, M.; Ebert, J.; Pernice, W. H. P., E-mail: wolfram.pernice@kit.edu [Institute of Nanotechnology, Karlsruhe Institute of Technology, 76133 Karlsruhe (Germany); Meckbach, J. M.; Ilin, K.; Siegel, M. [Institute of Micro- und Nanoelectronic Systems, Karlsruhe Institute of Technology, 76187 Karlsruhe (Germany)

    2014-03-03

    Aluminum nitride (AlN) has recently emerged as a promising material for integrated photonics due to a large bandgap and attractive optical properties. Exploiting the wideband transparency, we demonstrate waveguiding in AlN-on-Insulator circuits from near-infrared to ultraviolet wavelengths using nanophotonic components with dimensions down to 40 nm. By measuring the propagation loss over a wide spectral range, we conclude that both scattering and absorption of AlN-intrinsic defects contribute to strong attenuation at short wavelengths, thus providing guidelines for future improvements in thin-film deposition and circuit fabrication.

  2. Substrate temperature influence on the trombogenicity in amorphous carbon nitride thin coatings

    International Nuclear Information System (INIS)

    Galeano-Osorio, D.S.; Vargas, S.; Lopez-Cordoba, L.M.; Ospina, R.; Restrepo-Parra, E.; Arango, P.J.

    2010-01-01

    Carbon nitride thin films were obtained through plasma assisted physical vapor deposition technique by pulsed arc, varying the substrate temperature and investigating the influence of this parameter on the films hemocompatibility. For obtaining approaches of blood compatibility, environmental scanning electron microscopy (ESEM) was used in order to study the platelets adherence and their morphology. Moreover, the elemental chemical composition was determined by using energy dispersive spectroscopy (EDS), finding C, N and O. The coatings hemocompatibility was evaluated by in vitro thrombogenicity test, whose results were correlated with the microstructure and roughness of the films obtained. During the films growth process, the substrate temperature was varied, obtaining coatings under different temperatures, room temperature (T room ), 100 deg. C, 150 deg. C and 200 deg. C. Parameters as interelectrodic distance, voltage, work pressure and number of discharges, were remained constant. By EDS, carbon and nitrogen were found in the films. Visible Raman spectroscopy was used, and it revealed an amorphous lattice, with graphitic process as the substrate temperature was increased. However, at a critical temperature of 150 deg. C, this tendency was broken, and the film became more amorphous. This film showed the lowest roughness, 2 ± 1 nm. This last characteristic favored the films hemocompatibility. Also, it was demonstrated that the blood compatibility of carbon nitride films obtained were affected by the I D /I G or sp 3 /sp 2 ratio and not by the absolute sp 3 or sp 2 concentration.

  3. Substrate temperature influence on the trombogenicity in amorphous carbon nitride thin coatings

    Energy Technology Data Exchange (ETDEWEB)

    Galeano-Osorio, D.S.; Vargas, S.; Lopez-Cordoba, L.M.; Ospina, R. [Laboratorio de Fisica del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 via al Magdalena, Manizales (Colombia); Restrepo-Parra, E., E-mail: erestrepopa@unal.edu.co [Laboratorio de Fisica del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 via al Magdalena, Manizales (Colombia); Arango, P.J. [Laboratorio de Fisica del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 via al Magdalena, Manizales (Colombia)

    2010-10-01

    Carbon nitride thin films were obtained through plasma assisted physical vapor deposition technique by pulsed arc, varying the substrate temperature and investigating the influence of this parameter on the films hemocompatibility. For obtaining approaches of blood compatibility, environmental scanning electron microscopy (ESEM) was used in order to study the platelets adherence and their morphology. Moreover, the elemental chemical composition was determined by using energy dispersive spectroscopy (EDS), finding C, N and O. The coatings hemocompatibility was evaluated by in vitro thrombogenicity test, whose results were correlated with the microstructure and roughness of the films obtained. During the films growth process, the substrate temperature was varied, obtaining coatings under different temperatures, room temperature (T{sub room}), 100 deg. C, 150 deg. C and 200 deg. C. Parameters as interelectrodic distance, voltage, work pressure and number of discharges, were remained constant. By EDS, carbon and nitrogen were found in the films. Visible Raman spectroscopy was used, and it revealed an amorphous lattice, with graphitic process as the substrate temperature was increased. However, at a critical temperature of 150 deg. C, this tendency was broken, and the film became more amorphous. This film showed the lowest roughness, 2 {+-} 1 nm. This last characteristic favored the films hemocompatibility. Also, it was demonstrated that the blood compatibility of carbon nitride films obtained were affected by the I{sub D}/I{sub G} or sp{sup 3}/sp{sup 2} ratio and not by the absolute sp{sup 3} or sp{sup 2} concentration.

  4. Tunable Nitride Josephson Junctions.

    Energy Technology Data Exchange (ETDEWEB)

    Missert, Nancy A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Henry, Michael David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lewis, Rupert M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Howell, Stephen W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wolfley, Steven L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brunke, Lyle Brent [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wolak, Matthaeus [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-12-01

    We have developed an ambient temperature, SiO2/Si wafer - scale process for Josephson junctions based on Nb electrodes and Ta x N barriers with tunable electronic properties. The films are fabricated by magnetron sputtering. The electronic properties of the TaxN barriers are controlled by adjusting the nitrogen flow during sputtering. This technology offers a scalable alternative to the more traditional junctions based on AlOx barriers for low - power, high - performance computing.

  5. Growth and characterization of thin oriented Co{sub 3}O{sub 4} (111) films obtained by decomposition of layered cobaltates Na{sub x}CoO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Buršík, Josef, E-mail: bursik@iic.cas.cz [Institute of Inorganic Chemistry of the Academy of Sciences of the Czech Republic, v.v.i., 250 68, Husinec-Řež 1001 (Czech Republic); Soroka, Miroslav, E-mail: soroka@iic.cas.cz [Institute of Inorganic Chemistry of the Academy of Sciences of the Czech Republic, v.v.i., 250 68, Husinec-Řež 1001 (Czech Republic); Kužel, Radomír, E-mail: kuzel@karlov.mff.cuni.cz [Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, 121 16 Praha 2 (Czech Republic); Mika, Filip, E-mail: filip.mika@isibrno.cz [Institute of Scientific Instruments, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 147, 612 64 Brno (Czech Republic)

    2015-07-15

    The formation and structural characterization of highly (111)-oriented Co{sub 3}O{sub 4} films prepared by a novel procedure from weakly (001)-oriented Na{sub x}CoO{sub 2} is reported. The Na{sub x}CoO{sub 2} films were deposited on both single crystal and amorphous substrates by chemical solution deposition (CSD) method and crystallized at 700 °C. Subsequently they were transformed into (111)-oriented Co{sub 3}O{sub 4} phase during post-growth annealing at 900 °C. The degree of preferred orientation in Co{sub 3}O{sub 4}, which was determined by phi-scan and pole figure measurements, depends on the content of Na in the starting Na{sub x}CoO{sub 2} phase. Surface morphology of the films was investigated using electron microscopy and atomic force microscopy. - Graphical abstract: Structure of growth twins and possible O{sup 2−} stacking sequences in (111)-oriented Co{sub 3}O{sub 4} thin films on α-Al{sub 2}O{sub 3}(001) prepared by chemical solution deposition through the transformation of (001)-oriented Na{sub x}CoO{sub 2} thin film. - Highlights: • Single phase Co{sub 3}O{sub 4} thin films was prepared by means of chemical solution deposition. • Conditions for γ-Na{sub x}CoO{sub 2} to Co{sub 3}O{sub 4} transformation were optimized. • Growth twinning of Co{sub 3}O{sub 4} films due to two possible O{sup 2−} stacking sequences. • Growth with (pseudo)epitaxial relation Co{sub 3}O{sub 4} (111)[−121]//α-Al{sub 2}O{sub 3} (001)[10−10].

  6. AlN piezoelectric films for sensing and actuation

    NARCIS (Netherlands)

    Tran, A.T.

    2014-01-01

    Aluminum Nitride (AlN) is explored as a thin film material for piezoelectric MEMS applications. A pulse DC reactive sputtering technique is used to deposit the AlN thin films and process parameters are optimized to obtain good crystallinity and high c-axis orientation films. A CMOS compatible

  7. Effects of plasma-deposited silicon nitride passivation on the radiation hardness of CMOS integrated circuits

    International Nuclear Information System (INIS)

    Clement, J.J.

    1980-01-01

    The use of plasma-deposited silicon nitride as a final passivation over metal-gate CMOS integrated circuits degrades the radiation hardness of these devices. The hardness degradation is manifested by increased radiation-induced threshold voltage shifts caused principally by the charging of new interface states and, to a lesser extent, by the trapping of holes created upon exposure to ionizing radiation. The threshold voltage shifts are a strong function of the deposition temperature, and show very little dependence on thickness for films deposited at 300 0 C. There is some correlation between the threshold voltage shifts and the hydrogen content of the PECVD silicon nitride films used as the final passivation layer as a function of deposition temperature. The mechanism by which the hydrogen contained in these films may react with the Si/SiO 2 interface is not clear at this point

  8. Synthesis and ammonolysis of nickel and cobalt tungstates and their characterisation

    Directory of Open Access Journals (Sweden)

    J.L. Rico

    2016-07-01

    Full Text Available The synthesis and characterization of NiW and CoW compounds are herein reported. The NiWO4 and CoWO4 samples, successfully synthesised by the hydrothermal method, were treated under NH3 to obtain the metal nitride. The SEM micrographs show that this transformation is a topotactic process. Tungsten trioxide was also treated under NH3 at similar operating conditions, and used as a reference. High nitrogen contents after ammonolysis were calculated, however, the percentages were below the theoretical values assuming the formation of pure NiWN, CoWN and WN. The XRD pattern indicates that WON is likely formed after ammonolysis of tungsten oxide whereas phase segregation was observed on the nickel and cobalt samples. Furthermore, the reactivity of the nitride samples as function of temperature was measured under argon and the results show that most of the nitrogen is removed from the cobalt and nickel samples whereas it was partially released from the tungsten specimen.

  9. High-quality AlN films grown on chemical vapor-deposited graphene films

    Directory of Open Access Journals (Sweden)

    Chen Bin-Hao

    2016-01-01

    Full Text Available We report the growth of high-quality AlN films on graphene. The graphene films were synthesized by CVD and then transferred onto silicon substrates. Epitaxial aluminum nitride films were deposited by DC magnetron sputtering on both graphene as an intermediate layer and silicon as a substrate. The structural characteristics of the AlN films and graphene were investigated. Highly c-axis-oriented AlN crystal structures are investigated based on the XRDpatterns observations.

  10. Preliminary results about Electrodeposition of Cobalt at laboratory level

    International Nuclear Information System (INIS)

    Cornejo, N.

    1992-01-01

    As of an organic compound, an extraction and Cobalt electrodeposition method had been developed as a part of fabrication aim of a sealed radioactive source with objective to the construction of density meter prototype. It was performed preliminary test of electrodeposition in the laboratory level in a simple cell. The used electrolyte had been a sulphate solution obtained by extraction of an organic solution. It is obtained a Co film by electrodeposition at 55 o C temperature and with an approximately Co concentration in 70 g/lt. (Author) 3 refs., 1 fig., 1 tab

  11. Annealing and deposition effects of the chemical composition of silicon rich nitride

    DEFF Research Database (Denmark)

    Andersen, Karin Nordström; Svendsen, Winnie Edith; Stimpel-Lindner, T.

    2005-01-01

    Silicon-rich nitride, deposited by LPCVD, is a low stress amorphous material with a high refractive index. After deposition the silicon-rich nitride thin film is annealed at temperatures above 1100 oC to break N-H bonds, which have absorption peaks in the wavelength band important for optical...... in optical waveguides. This means that the annealing temperature must be high enough to break the N-H bonds, but no so high as to produce clusters. Therefore, the process window for an annealing step lies between 1100 and 1150 oC. The chemical composition of amorphous silicon-rich nitride has been...... investigated by Rutherford back scattering (RBS) and X-ray photoelectron spectroscopy (XPS). The influence of deposition parameters and annealing temperatures on the stoichiometry and the chemical bonds will be discussed. The origin of the clusters has been found to be silicon due to severe silicon out...

  12. Conduction Mechanism and Improved Endurance in HfO2-Based RRAM with Nitridation Treatment

    Science.gov (United States)

    Yuan, Fang-Yuan; Deng, Ning; Shih, Chih-Cheng; Tseng, Yi-Ting; Chang, Ting-Chang; Chang, Kuan-Chang; Wang, Ming-Hui; Chen, Wen-Chung; Zheng, Hao-Xuan; Wu, Huaqiang; Qian, He; Sze, Simon M.

    2017-10-01

    A nitridation treatment technology with a urea/ammonia complex nitrogen source improved resistive switching property in HfO2-based resistive random access memory (RRAM). The nitridation treatment produced a high performance and reliable device which results in superior endurance (more than 109 cycles) and a self-compliance effect. Thus, the current conduction mechanism changed due to defect passivation by nitrogen atoms in the HfO2 thin film. At a high resistance state (HRS), it transferred to Schottky emission from Poole-Frenkel in HfO2-based RRAM. At low resistance state (LRS), the current conduction mechanism was space charge limited current (SCLC) after the nitridation treatment, which suggests that the nitrogen atoms form Hf-N-Ox vacancy clusters (Vo +) which limit electron movement through the switching layer.

  13. Cobalt release from inexpensive jewellery: has the use of cobalt replaced nickel following regulatory intervention?

    Science.gov (United States)

    Thyssen, Jacob Pontoppidan; Jellesen, Morten S; Menné, Torkil; Lidén, Carola; Julander, Anneli; Møller, Per; Johansen, Jeanne Duus

    2010-08-01

    Before the introduction of the EU Nickel Directive, concern was raised that manufacturers of jewellery might turn from the use of nickel to cobalt following the regulatory intervention on nickel exposure. The aim was to study 354 consumer items using the cobalt spot test. Cobalt release was assessed to obtain a risk estimate of cobalt allergy and dermatitis in consumers who would wear the jewellery. The cobalt spot test was used to assess cobalt release from all items. Microstructural characterization was made using scanning electron microscope (SEM) and energy-dispersive spectroscopy (EDS). Cobalt release was found in 4 (1.1%) of 354 items. All these had a dark appearance. SEM/EDS was performed on the four dark appearing items which showed tin-cobalt plating on these. This study showed that only a minority of inexpensive jewellery purchased in Denmark released cobalt when analysed with the cobalt spot test. As fashion trends fluctuate and we found cobalt release from dark appearing jewellery, cobalt release from consumer items should be monitored in the future. Industries may not be fully aware of the potential cobalt allergy problem.

  14. Ion nitridation - physical and technological aspects

    International Nuclear Information System (INIS)

    Elbern, A.W.

    1980-01-01

    Ion nitridation, is a technique which allows the formation of a controlled thickness of nitrides in the surface of the material, using this material as the cathode in a low pressure glow discharge, which presents many advantages over the conventional method. A brief review of the ion nitriding techniqu